
BEAWebLogic
Portal™

Production Operations
User Guide

Version 8.1 with Service Pack 5
Document Revised: October 2005
Rev. 1.0

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Production Operations User Guide iii

Contents

Introduction to Production Operations
Managing the Portal Life Cycle . 1-1

Setting Up a Team Development Environment . 1-2

Configuring the Portal Cluster . 1-2

Building and Deploying the EAR File . 1-3

Propagating a Portal Application . 1-3

Performing Round-Trip Development . 1-4

Installing the Propagation Software
Updating the Database . 2-1

Installing the Propagation Utility . 2-2

Verifying the Propagation Utility Installation . 2-3

Installing the Export/Import Utility . 2-3

Running the Export/Import Utility. 2-4

Managing a Team Development Environment
Choosing a Source Control Vendor . 3-1

Creating a Shared Portal Domain. 3-2

The BEA Home Directory . 3-2

Understanding Why a Common BEA Home Matters . 3-2

Managing Multiple BEA Home Directory Locations for Your Team 3-4

Creating and Sharing the Portal Domain . 3-7

Best Practices for Creating a Portal Domain to Share with a Team 3-7

iv Production Operations User Guide

Excluding Domain Files From Source Control Management 3-9

Binary Files in Source Control Management . 3-9

Developing Against an Enterprise-Quality Database . 3-12

Creating and Sharing the Portal Application. 3-13

Creating the Domain and Application Directories. 3-13

Checking in the WebLogic Workshop Application . 3-14

Excluding Portal Application Files From Source Control Management 3-14

Managing Checkouts of the WebLogic Workshop Application. 3-14

WebLogic Portal Coding Practices . 3-16

Java Projects. 3-16

Cross-Platform Support . 3-16

Definition Labels for Portal Components . 3-17

Cluster Configuration. 3-17

Setting up a Configuration File Template (config-template.xml) 3-17

Exclude config.xml From Source Control . 3-17

Using Multiple Enterprise Applications in a Single Domain 3-18

Additional Files Recommended in Source Control . 3-20

Configuring a Portal Cluster
Setting up a Production Database . 4-1

Reading the wlw-manifest.xml File . 4-2

Choosing a Cluster Architecture . 4-2

Single Cluster. 4-2

Multi Cluster . 4-3

Configuring a Domain. 4-5

Using the Configuration Wizard . 4-5

Creating a Production Cluster Environment with the Configuration Wizard 4-5

Configuring the Administration Server . 4-10

Production Operations User Guide v

Increasing the Default Memory Size. 4-10

Allowing Server Startup Without Requiring Authentication 4-11

Setting up JMS Servers . 4-11

Creating Managed Server Directories . 4-13

Increasing the Default Memory Size. 4-14

Understanding Portal Resources . 4-15

Understanding the Portlet Deployment Life Cycle . 4-16

Understanding the Database Structure for Storing Portlets 4-16

Removing Portlets from Production. 4-17

Zero-Downtime Architectures . 4-17

Single Database Instance . 4-21

Portal Cache . 4-21

Preparing and Deploying the EAR File
Preparing the EAR File for Deployment . 5-1

Configuring Portal Application Deployment Descriptors . 5-1

Modifying Application Deployment Descriptors . 5-1

Modifying Web Application Deployment Descriptors . 5-2

Modifying WebLogic Workshop Deployment Descriptors. 5-3

Creating Content Management Repositories. 5-3

Compiling with Your Runtime JVM . 5-4

Building a Portal Application with WebLogic Workshop . 5-4

Building In the Command Line . 5-5

Deploying the EAR for a New Application. 5-5

Using Targeted Deployment. 5-7

Starting Managed Servers. 5-7

Configuring Your Proxy Server . 5-8

Troubleshooting Unresolved URLs . 5-8

vi Production Operations User Guide

Deploying a Portal Application to the Cluster . 5-8

Redeploying Applications . 5-9

Redeploying a Portal Application with weblogic.Deployer 5-9

Partial Redeployment with weblogic.Deployer . 5-10

Developing a Propagation Strategy
What is Propagation? . 6-1

What Kind of Data Can Be Propagated?. 6-2

What Tools Does BEA Provide to Assist with Propagation? . 6-4

WebLogic Server Administration Console (EAR Deployment) 6-4

Propagation Utility . 6-4

Datasync Web Application . 6-5

Export/Import Utility . 6-6

Manual Propagation Steps . 6-6

Database Vendor Tools (Not Supported) . 6-7

Choosing the Right Propagation Tool. 6-7

Propagation Roadmap . 6-8

Development Environments. 6-10

Source Control . 6-10

Moving from Development to Staging . 6-10

Staging Environment . 6-11

Source Control in the Staging Environment . 6-11

Moving to the Production Environment. 6-11

Assessing Your Portal System Configuration. 6-12

General Propagation Scenarios . 6-13

Example Environment . 6-13

Scenario 1: Deploying the EAR file for the first time 6-14

Scenario 2: Redeploying an EAR file. 6-14

Production Operations User Guide vii

Scenario 3: Propagating from Staging to Production: Enterprise Scope. 6-17

Scenario 4: Propagating from Staging to Production: Desktop Scope 6-17

Scenario 5: Propagating from Production to Staging: Both Have Changed . . . 6-18

Scenario 6: Round-Trip Development . 6-19

Production Mode vs. Development Mode . 6-19

Inside the Propagation Utility
The Propagation Utility Sequence. 7-2

General Propagation Guidelines . 7-2

Propagating in a Clustered Environment . 7-2

Propagating Across Networked Systems . 7-3

Before You Begin . 7-3

Perform a Data Backup . 7-3

Plan to Inactivate the System During the Import Process . 7-3

Install the Patch . 7-3

Customize the Session Timeout and Inventory/Log File Location (Optional) 7-4

Session Timeout Value . 7-4

Inventory and Log File Location. 7-4

Deploy the J2EE Application (EAR) . 7-5

Make Required Manual Changes . 7-5

Propagation Scope . 7-6

Setting the Scope . 7-6

Scope and Library Inheritance . 7-7

Portal Asset Instances and Inheritance . 7-7

Creating a New Desktop and Disassembling to the Library 7-7

Decoupling of Property Settings . 7-8

Propagation Scope Reference Table . 7-8

Security Information and Propagation. 7-14

viii Production Operations User Guide

User Customizations and Propagation . 7-15

Datasync Assets and Propagation . 7-16

Conflict Resolution Using Policies . 7-16

Identifying Differences Between Assets. 7-16

Prioritizing Changes Based on Policies . 7-17

Handling Propagation Conflicts . 7-17

Rolling Back an Import Process . 7-18

WSRP Propagation . 7-18

Two Models for WSRP Propagation . 7-18

Support for Shared Registration. 7-18

Best Practices . 7-19

Keep Portal Framework Definition Labels and Instance Labels 7-19

Do Not Manually Replicate Changes Between Environments 7-19

Set the Scope to the Enterprise Application Level . 7-19

Using the Propagation Utility
Inventory Export Process . 8-1

Starting the Propagation Utility and Logging In . 8-2

Viewing the Application Inventory . 8-4

Exporting the Application Inventory to a File . 8-7

Reviewing Propagation Utility Export Log Files . 8-9

Inventory Import Process . 8-9

Starting the Utility . 8-10

Selecting the Source Inventory to Import . 8-10

Loading and Validating the Imported Inventory List. 8-11

Viewing the Application Inventory . 8-12

Acknowledging the Quiescence Requirement . 8-14

Deploying the J2EE Application on the Destination . 8-14

Production Operations User Guide ix

Setting the Scope . 8-15

Creating Policies for Merging Inventory Information . 8-16

Previewing Changes . 8-17

Summary Statistics . 8-19

Change Manifest Legend . 8-19

Pending Change List (Change Manifest) . 8-20

Exporting the Change Manifest for the Inventory . 8-21

Making Manual Changes Prior to Propagation . 8-21

Committing the Inventory Import . 8-22

Reviewing the Import Log Files. 8-23

Import Overview Log File. 8-23

Import Processing Verbose Log Files . 8-24

Using the Export/Import Utility
Installing the Export/Import Utility . 9-2

Before You Use the Export/Import Utility . 9-2

Understanding .portal Files vs. Desktops . 9-2

Understanding .pinc Files. 9-3

Understanding Export and Import Scope . 9-3

Library Scope . 9-5

Admin Scope . 9-5

Visitor Scope . 9-6

Customization . 9-6

Overview of the Export/Import Utility . 9-6

What the Utility Moves . 9-6

What the Utility Does Not Move . 9-7

Merging and Scoping Rules . 9-7

Using the Export/Import Utility. 9-8

x Production Operations User Guide

Understanding the Properties File . 9-8

Specifying the Properties File Location . 9-9

Specifying Parameters in the Properties File . 9-9

Exporting a Desktop. 9-12

Editing the Properties File . 9-12

Running the Build Script . 9-14

Importing a .portal File . 9-15

Editing the Properties File . 9-15

Running the Build Script . 9-19

Exporting a Page . 9-20

Editing the Properties File . 9-20

Running the Build Script . 9-22

Importing a Page . 9-23

Editing the Properties File . 9-23

Running the Build Script . 9-26

Handling Deletes . 9-27

Handling Moves . 9-29

Inner Moves . 9-29

Outer Moves. 9-30

Specifying Identifiers . 9-31

Locating the Definition Label for a Page. 9-32

Locating the Definition Label for a Book . 9-32

Managing the Cache . 9-32

Using the Datasync Web Application
Portal Datasync Definitions . 10-1

Datasync Definition Usage During Development. 10-2

Compressed Versus Uncompressed EAR . 10-2

Production Operations User Guide xi

Datasync Web Application . 10-3

Removing Content . 10-6

Working with a Compressed EAR File . 10-6

Uploading new contents . 10-7

Bootstrapping from an EAR . 10-8

Creating a JAR file . 10-8

Validating Contents. 10-8

Pulling Definitions from Production . 10-8

Options for Connecting to the Server. 10-9

Examples . 10-10

Usage . 10-11

Commands . 10-11

Working with an Uncompressed EAR File . 10-12

Rules for Deploying Datasync Definitions . 10-13

Removing Property Sets . 10-14

Index

xii Production Operations User Guide

Production Operations User Guide 1-1

C H A P T E R 1

Introduction to Production Operations

The life cycle of a WebLogic Portal application requires careful planning and management.
During its lifetime, a typical portal moves back and forth between development, staging, and
production environments. The process of configuring and managing these environments, and of
moving portals between them, is called Production Operations. This guide discusses the
following major areas of Production Operations. The rest of this chapter provides a brief
description of each area:

Managing the Portal Life Cycle

Setting Up a Team Development Environment

Configuring the Portal Cluster

Building and Deploying the EAR File

Propagating a Portal Application

Performing Round-Trip Development

Managing the Portal Life Cycle
Production operations addresses the tools, procedures, methodologies, and best practices that
provide the backbone for managing the portal life cycle, from portal development to staging and
testing to live production environments. As Figure 1-1 shows, portals are typically developed in
a team development environment by developers using WebLogic Workshop. Portal components
are then moved to a staging environment, where portal administrators use the WebLogic
Administration Portal to create desktops, add entitlements, set up content repositories, and

1-2 Production Operations User Guide

perform testing. The production environment is the live environment, where users access and
interact with portal applications. The arrows between environments indicate that you can move
portals and portal resources back and forth between each of these environments using utilities
provided by BEA. Utilities such as the Propagation Utility and the Export/Import Utility allow
you to easily and reliably move and merge changes between environments.

Figure 1-1 Typical WebLogic Portal Environments

Like considering the architecture of a network or a software system, you should also consider and
carefully plan how you will address production operations for your portal system. It is important
to consider your particular portal system configuration, how your development team is organized,
how you will test and configure portals, how your server is configured, and how you will plan to
manage the life cycle of your portal applications. This guide describes the specific
methodologies, tools, and best practices to help you achieve the goal of creating solid,
manageable environments for portal development, staging, and production.

Setting Up a Team Development Environment
Team development of a WebLogic Portal Web site revolves around good source control. Proper
use of a source control management system has many benefits, such as close integration between
team members, the ability to quickly scale the size of a development team, and protection against
data loss.

Chapter 3, “Managing a Team Development Environment” shows you how to configure, store,
and manage a common development domain, database data, and portal applications in source
control, letting you quickly and consistently develop, build, and update your portal applications.

Configuring the Portal Cluster
By clustering a portal application, you can attain high availability and scalability for that
application. Chapter 4, “Configuring a Portal Cluster” discusses how to set up a production
database, choose a cluster architecture (single versus multi-cluster) and configure the domain.

Bui ld ing and Dep loy ing the EAR F i l e

Production Operations User Guide 1-3

Building and Deploying the EAR File
Deployment refers to preparing deployment descriptors and configuration files, building an
Enterprise archive file (EAR), and deploying the EAR file to a destination server. Chapter 5,
“Preparing and Deploying the EAR File” describes how to prepare a portal application’s
descriptor files and deploy the EAR file.

Propagating a Portal Application
Propagation refers to the process of moving the database and LDAP contents of one portal
domain environment to another. During the typical portal life cycle, portals are moved between
the following environments:

Development – In the development phase, developers use WebLogic Workshop to create
portals and portal components, such as portlets.

Staging – In a staging environment, administrators use the Administration Portal to build
and configure portal desktops, create entitlements, and create content repositories.

Production – A production, or live, environment can be modified by administrators using
the Administration Portal and customized by users using Visitor Tools.

BEA provides tools to help with portal propagation. These tools not only move database assets
and LDAP information, but they also report differences and potential conflicts between the
source and the target environments. You can define policies to automatically resolve conflicts, or
an administrator can view a list of differences and decide the appropriate actions to take on a
case-by-case basis. These tools are described in detail in this guide, and they include:

The Propagation Utility, described in Chapter 8, “Using the Propagation Utility”

Datasync Web Application, described in Chapter 10, “Using the Datasync Web
Application”

This guide also helps you through the process of planning a strategy for propagation and provides
detailed information on the best practices. See the following chapters for more information:

Chapter 6, “Developing a Propagation Strategy”

Chapter 7, “Inside the Propagation Utility”

1-4 Production Operations User Guide

Performing Round-Trip Development
Round-trip development refers to moving portal assets back and forth between a WebLogic
Workshop-based development environment and a staging environment where portal assets are
assembled with the WebLogic Administration Portal and stored in a database. The Export/Import
Utility lets you export portal assets from a database to .portal and .pinc files that can be loaded
into WebLogic Workshop. The utility also lets you import .portal and .pinc files into a
database, as shown in Figure 1-2.

Figure 1-2 The Export/Import Utility Allows Round-Trip Development

Tip: The Export/Import Utility is also known as the xip tool (pronounced “zip”). Typically,
developers use this utility to move assets back and forth between a development and a staging
environment.

In addition, the Export/Import Utility allows you to:

Merge .portal files into a database

Specify rules to determine how objects are merged

Specify scoping rules

The Export/Import Utility is described in Chapter 9, “Using the Export/Import Utility”.

Production Operations User Guide 2-1

C H A P T E R 2

Installing the Propagation Software

This chapter explains how to install the Propagation Utility and the Export/Import Utility.

This chapter includes the following sections:

Updating the Database

Installing the Propagation Utility

Verifying the Propagation Utility Installation

Installing the Export/Import Utility

Running the Export/Import Utility

Updating the Database
Note: You only need to perform a database update if you are upgrading your WebLogic Portal

installation from an SP4 or older version.

1. Run the pf_update_system_data.sql script using your database’s SQL command tool.
This script is located in:
BEA_HOME/weblogic81/portal/db/data/required

Tip: The exact procedure for running this script depends on your database system. For example,
if you use an Oracle database, start SQL*Plus and enter:

SQL>@pf_update_system_data.sql

2-2 Production Operations User Guide

Note: This script updates the default markup in the database. The default markup for books,
pages, and desktops is used when new desktops, books, and pages are created with the
Administration Portal or Visitor Tools. The script includes the $(markupName) token in
the database. If this token is not added, SAXParseException errors are thrown when you
import desktops, pages, or books that were created with the Administration Portal or
Visitor Tools.

Installing the Propagation Utility
The Propagation Utility is a web application that you deploy into an existing WebLogic Portal
application. You need to install the Propagation Utility into any existing portal application that
you want to propagate.

Note: If you are upgrading from SP4 or an older version of WebLogic Portal, you first need to
run an SQL script to update your database, as explained in the previous section, Updating
the Database.

1. Stop WebLogic Server if it is running.

2. Copy the propagation.war file from the BEA_HOME/weblogic81/portal/lib directory
to the root directory of your Enterprise application.

3. In the root directory of your domain, open the config.xml file and add the following
WebAppComponent tag to the Application tag for the Enterprise application you are
propagating to or from:

<Application Name="myEnterpriseApp" ...>

<WebAppComponent Name="propagation" Targets="portalServer" URI=

"propagation.war"/>

</Application>

Note: You need to perform Step 3 for each new domain you create after the patch has been
installed.

4. In the root directory of your Enterprise application, open the META-INF\application.xml
file and add the following module if it is not already present:

<module>

<web>

<web-uri>propagation.war</web-uri>

<context-root>propagation</context-root>

</web>

</module>

Ver i f y ing the P ropagat ion Ut i l i t y I ns ta l la t i on

Production Operations User Guide 2-3

Verifying the Propagation Utility Installation
1. Start WebLogic Server.

2. Open a Web browser.

3. Go to the following URL to start the Propagation Utility:
http://host:port/propagation

where host and port are the host name and port number that are configured for your
WebLogic Server.

The main page of the Propagation Utility appears.

4. Click the View Configuration Details link and verify that the JAR files were installed.

Installing the Export/Import Utility
You only need to perform the following procedure if you intend to run the Export/Import Utility
as a stand-alone application. If you only want to run the Propagation Utility, then the following
procedure is unnecessary.

Before installing the Export/Import Utility, be sure you have Ant 1.5 in your PATH environment
variable. Ant is part of the normal WebLogic Server installation. It is located in:

WEBLOGIC_HOME\server\bin\ant

Note: If you are upgrading from SP4 or an older version of WebLogic Portal, you first need to
run an SQL script to update your database, as explained in the previous section,
“Updating the Database” on page 2-1.

1. Stop WebLogic Server if it is running.

2. Open the file BEA_HOME\weblogic81\portal\xip\build.xml, and edit the following
properties in the Installer section to point to the appropriate locations:

3. Build the Export/Import Utility. To do this, run the following command from within the
BEA_HOME\weblogic81\portal\xip directory:

Property Description

bea.dir Points to the BEA home directory

wlp.lib.dir Points to the WEBLOGIC_HOME\portal\lib\netuix directory

2-4 Production Operations User Guide

ant jar

Running the Export/Import Utility
For detailed information about running and using the Export/Import Utility, see Chapter 9,
“Using the Export/Import Utility”.

Production Operations User Guide 3-1

C H A P T E R 3

Managing a Team Development
Environment

Team development of a WebLogic Portal web site revolves around good source control. Proper
use of a source control system has many benefits, such as close integration between team
members, the ability to quickly scale the size of a development team, and protection against data
loss.

This section shows you how to configure, store, and manage a common development domain,
database data, and portal applications in source control, letting you quickly and consistently
develop, build, and update your portal applications.

This document contains the following sections:

Choosing a Source Control Vendor

Creating a Shared Portal Domain

Creating and Sharing the Portal Application

WebLogic Portal Coding Practices

Choosing a Source Control Vendor
There are a number of source control providers, such as CVS, Perforce, Starteam, Visual Source
Safe (VSS), and PVCS. This guide should assist you with using any of those vendors. However,
each vendor has different characteristics when it comes to storing code. An important
consideration when choosing your source control management system for team development of
portal applications is that it must support an unreserved checkout model for files. There are

3-2 Production Operations User Guide

numerous files in the domain and application that need to be checked into source control
management but must be writable by the server.

Note: Even if your source control management tool does not directly integrate with WebLogic
Workshop (see also Visual Studio Source Control Provider for WebLogic Workshop),
you can still use it to manage your WebLogic Server domains and applications.

Creating a Shared Portal Domain
Have the development team lead create the appropriate portal domain for the group. Before
creating and storing domain assets, determine the BEA home directory—where the team will
install WebLogic software.

The BEA Home Directory
The directory where WebLogic Platform software is installed is called the BEA home directory.
WebLogic Workshop applications and domains each reference the BEA home directory. It is
important to carefully consider where to put the BEA home directory. When installing WebLogic
Platform, each developer can determine which drive and directory to install to.

When creating a new portal domain with the domain Configuration Wizard, you choose which
BEA home directory you want to reference for that domain. The physical path to this directory is
contained in any portal domain’s config.xml file on each development machine and in domain
batch scripts such as startWeblogic.cmd.

Understanding Why a Common BEA Home Matters
Team members share these domain files using source control, so that all modifications to existing
deployed applications, the addition of new applications, and other settings stored in config.xml
and the start scripts can be shared.

Note: When development environments require different domain configuration settings, and
you want to use a configuration file template as a solution, do not store config.xml in
source control. For more information see “Setting up a Configuration File Template
(config-template.xml)” on page 3-17.

Following code fragments from config.xml and startWebLogic.cmd show hard-coded paths:

config.xml
<Application Name="JWSQueueTransport" Deployed="true"
 LoadOrder="1000" Path="C:\bea812\weblogic81\server\lib\" TwoPhase="true">
 <EJBComponent Name="QueueTransportEJB" Targets="portalServer"

http://dev.bea.com/codelibrary/code/vsscp.jsp

Creat i ng a Shared Po r ta l Domain

Production Operations User Guide 3-3

 URI="QueueTransportEJB.jar"/>
</Application>

startWebLogic.cmd
set DOMAIN_HOME=C:\bea812\weblogic81\samples\domains\portal

If the config.xml and startWeblogic.cmd files are shared in source control, all team members
must have installed WebLogic Server to the path shown in those files. However, there are
circumstances when developers cannot install WebLogic Server to a particular drive, such as
when they have multiple partitions with not enough space left on their C drive.

In addition, pointbase.ini in the domain root directory is a configuration file that may contain
a documentation.home property that points to a hard-coded location on the filesystem.

Table 3-1 shows which files in a domain contain hard-coded paths.

3-4 Production Operations User Guide

The next section contains strategies to employ when not all team members can use the same BEA
home directory.

If all team members can use the same BEA home directory, skip to “Creating and Sharing the
Portal Domain” on page 3-7.

Managing Multiple BEA Home Directory Locations for Your Team
There are a number of different techniques for sharing a common domain with team members
with different BEA home directories, which are described in the following sections:

Table 3-1 Domain Files with Hard-Coded Paths

backup_config.xml

config.xml

create_db.*

installService.cmd

set-dbenv.*

setDomainEnv.*

setDomainEnvQS.*

startManagedWebLogic.*

startManagedWebLogicQS.*

startPointBaseConsole.*

startPointBaseConsoleQS.*

startWebLogic.*

startWebLogicQS.*

stopManagedWebLogic.*

stopManagedWebLogicQS.*

stopWebLogic.*

stopWebLogicQS.*

uninstallService.*

webappCompile.*

webappCompileQS.*

domain-info.xml (in /_cfgwiz_donotdelete)
startscript.xml (in /_cfgwiz_donotdelete)

Creat i ng a Shared Po r ta l Domain

Production Operations User Guide 3-5

Option 1: Placing BEA Home in a Configuration File Template
Creating a configuration file template avoids many of the problems associated with other
solutions, but it requires you to implement search and replace activities on your config.xml and
other files. By creating a template for your config.xml which contains tokens that represent
your BEA home directory, you can create a process to create a config.xml from a combination
of the template and developer-specified token values.

A configuration file template can be used for much more than setting up machines with different
BEA home directories: it can provide a way for each developer to work with a separate database
instance that shares a common data source configuration.

With a configuration file template, config.xml is not stored in source control. For information
on setting up a configuration file template, see “Setting up a Configuration File Template
(config-template.xml)” on page 3-17.

Option 2: Using a Common Virtual Drive for BEA Home (Windows)
Windows-based developers may consider setting up a substitute drive letter to map to their BEA
home directory.

From the command prompt, Windows lets you create a virtual drive and map it to an existing
drive and path using the subst command. Your team can configure a common virtual drive
letter not currently in use and use that drive for application and domain activities.

For example, you can create a drive letter P: that maps to a directory on the C: drive, such as
C:\bea812, by executing the following command from a Windows Command prompt:

subst P: C:\bea812

Now, after creating a new domain, you can change all references to C:\bea812 to P: in the
domain files listed in Table 3-1.

The previously listed config.xml and startWebLogic.cmd entries would now look like the
following, with the changes highlighted in bold type:

config.xml

<Application Name="JWSQueueTransport" Deployed="true"
 LoadOrder="1000" Path="P:\weblogic81\server\lib\" TwoPhase="true">
 <EJBComponent Name="QueueTransportEJB" Targets="portalServer"
 URI="QueueTransportEJB.jar"/>
</Application>

startWebLogic.cmd

3-6 Production Operations User Guide

set DOMAIN_HOME=P:\weblogic81\samples\domains\portal

Note: The new hard-coded paths do not contain C:\bea812, because C:\bea812 was mapped
to P: using the subst command.

When you want to use the domain, switch to the P drive and go into the domain directory. If more
developers install WebLogic Server to D:\bea, they can simply substitute that directory for P:\
by executing subst P: d:\bea and share the same config.xml and start scripts with ease.

This virtual drive option has a number of drawbacks:

Users must run the subst command upon each reboot, though they can type the command
in a text file, save the text file with a .cmd extension, and put it in their program \Startup
folder so the command runs automatically at system startup.

Users must run the created domain and application from the new virtual drive. Running the
domain from the “true” install drive and path will result in errors.

UNIX development is not supported, though UNIX developers can use the link command.

Option 3: Using Relative Paths
If team members need to install different paths on the same drive, and the domain and application
are located in a common relative path to the WebLogic Server directory, it is possible to change
all file paths in config.xml and your start scripts to be relative. However, this solution is limited
in its scope.

Assuming the domain is installed to C:\bea812\user_projects\mydomain, the previously
listed config.xml and startWebLogic.cmd entries would now look like the following, with the
changes highlighted in bold type:

Creat i ng a Shared Po r ta l Domain

Production Operations User Guide 3-7

config.xml

<Application Name="JWSQueueTransport" Deployed="true"
 LoadOrder="1000" Path="..\..\weblogic81\server\lib\" TwoPhase="true">
 <EJBComponent Name="QueueTransportEJB" Targets="portalServer"
 URI="QueueTransportEJB.jar"/>
</Application>

startWebLogic.cmd

set DOMAIN_HOME=..\..\weblogic81\samples\domains\portal

Problems with this solution include:

No ability to span multiple drives.

Project domain directory must always be in the exact same relative location to the server,
even in a deployed production environment.

Creating and Sharing the Portal Domain
The first step the team lead needs to take is the creation of the new portal domain. There are
several phases of domain creation, including creating your own domain template, performing the
domain Configuration Wizard process, initially checking-in to source control, and configuring
the domain.

Best Practices for Creating a Portal Domain to Share with a Team
Create a custom domain template before creating a domain with the Configuration Wizard.
A custom domain template determines what is in the domain you create, and you can store
the template in source control. The domain Configuration Wizard builds the domain using
your template. For instructions on using the Configuration Template Builder to create a
domain template, see Creating Configuration Templates Using the WebLogic
Configuration Template Builder.

Select Development Mode when you use the Configuration Wizard to create a new domain
for your team development environment. For instructions on running the Configuration
Wizard to create a new portal domain, see Creating WebLogic Configurations Using the
Configuration Wizard.

Store the domain directory in a short path to avoid path-length exceptions, For example,
drive:\ourDomain.

Place the domain and application directories in a common parent directory to make sharing
them with source control management systems easier to manage.

../../../platform/docs81/confgwiz/index.html
../../../platform/docs81/confgwiz/index.html
../../../platform/docs81/confgwiz/tempbuild.html
../../../platform/docs81/confgwiz/tempbuild.html

3-8 Production Operations User Guide

For example, install your domain to
WEBLOGIC_HOME\user_projects\PROJECT\domain\DOMAIN

And install your application to
WEBLOGIC_HOME\user_projects\PROJECT\application\APP

Note: Your paths can be shorter and outside the BEA installation hierarchy.

This approach lets you have a common root directory (%PROJECTNAME) in your source
control system’s project for both the domain and application.

After you create the domain, but before you start the server, check the domain into source
control. WebLogic Server creates a number of temporary files and directories in the
domain directory at server startup that you are unlikely to want in source control. Table 3-2
lists the post-startup files to exclude.

Use a shared parent directory for your domains and applications, and use that directory as
the root directory for source control.

Add an environment variable entry to the start script to enable file logging. File logging
allows WebLogic Portal messages to be sent to a file instead of just to the screen. Open the
startWebLogic script in a text editor and add a path for the WLS_REDIRECT_LOG file
before the if “%WLS_REDIRECT_LOG%” line. For example:

WLS_REDIRECT_LOG=D:\logs\admin

if "%WLS_REDIRECT_LOG%"=="" (

Check the domain back out of source control and start the domain using the
startWeblogic command after establishing your initial baseline for the domain in source
control. With the server running, you may want to configure the domain so it is ready to
use for your project. Using the WebLogic Server Administration Console
(http://server:port/console), you can set up the domain to support the development
team, including the addition of needed data sources.

Common tuning activities for a development domain include setting the server logging
mode to “Info” from “Warn” (for more verbose console output and outputting JVM
messages to the console). In addition, you can limit the maximum size of the log files.

For information on server configuration, see WebLogic Server System Administration.

After you make changes to the server configuration, check in config.xml (or a
hand-modified version of a templated config-template.xml).

Have another developer validate the changes by checking out the domain and starting the
server without error before configuring your portal application.

../../../wls/docs81/admin.html

Creat i ng a Shared Po r ta l Domain

Production Operations User Guide 3-9

Excluding Domain Files From Source Control Management
Exclude the following domain files from source control:

Binary Files in Source Control Management
There are a number of binary files in the WebLogic Server domain that need to be checked into
source control management for the domain to function properly. These binary files may change
over time for user-initiated reasons, automatic growth of index files, and so on. For this reason,
it is important that developers have a good understanding of what these files are, why they
change, and when to check them in and out. The emphasis of this section is explaining how to
determine when you need to update those files in source control management. Some kinds of

Table 3-2 Domain Files to Exclude from Source Control

Path Wildcard

/ (domain root) config.xml
(ONLY if you are using a configuration file template. See “Setting up
a Configuration File Template (config-template.xml)” on page 17.)

/ config.xml.booted

/ config.xml.original

/ *.log

/logs *

/portalServer/pstore/
(persistent file store for session beans)

*

/servername/ *.log

/servername/ .app_poller_lastrun

/servername/.wlnotdelete/ *

/servername/.internal/ *

/servername/ldap/ *LDAPBackup*.zip

/servername/ldap/log/ *

/servername/logs/ *

3-10 Production Operations User Guide

binary files you can update include: LDAP files, security-related files, and database configuration
files.

Working with Binary Files
With all binary files, there is a consistent process to follow when you make changes to them so
they can be shared in source control. Changes to binaries should be initiated by a single user,
typically the team lead. This reduces the chances of merge conflicts over the project life cycle.

To modify domain binary files in source control:

1. Stop the server.

2. Perform a clean checkout of the binary files from source control to ensure you are working
from a common base.

3. Start the server.

4. Make your changes.

5. Stop the server.

6. Check-in any modified binary files to source control management.

7. Test a clean checkout from another machine.

Users, Groups, Roles, and Entitlements – Updating LDAP
A common activity in development is the creation of a base set of users that are used to test the
system. By default, WebLogic Server stores user, group, role, and entitlement information in an
embedded LDAP provided by BEA. This LDAP server persists its data store to the filesystem in
the domain/ldap directory.

For information on BEA’s LDAP server, see Managing the Embedded LDAP Server.

Because the LDAP server contains information that needs to be shared by team members, check
the files in the LDAP directory into source control, excluding backup and log files (see
Table 3-2). During project development, there may be occasion to modify the existing users,
groups, roles, and entitlements. You can configure users, groups, roles, and entitlements with the
WebLogic Administration Portal and check in the updated LDAP files to source control.

For instructions on using the WebLogic Administration Portal, see Getting Started with Portal
Administration.

../../../wls/docs81/secmanage/ldap.html
../startadm/index.html
../startadm/index.html

Creat i ng a Shared Po r ta l Domain

Production Operations User Guide 3-11

Other Security Information
Other important security files located in the domain are the SerializedSystemIni.dat,
DefaultAuthenticatorInit.ldift, DefaultAuthorizerInit.ldift, and
DefaultRoleMapperInit.ldift files. These files contain essential security information
needed to start the domain. While not typically modified during the course of development, these
files must exist for the server to start. The boot.properties file in the domain root contains
encrypted username and password information for starting the domain. That file is not
mandatory, but it is typically used in development environments to allow server startup without
requiring authentication.

Databases
WebLogic Portal stores much of its configuration information in the database, and there are
occasions where development teams need to share access to this configuration. However,
WebLogic Portal does not support running multiple instances of a portal server against the same
single database or database schema. Although the default database for a WebLogic Portal domain
is PointBase, it is recommended that an Enterprise-quality database be used for development
efforts, because moving data between heterogeneous databases can be a labor-intensive manual
effort. See “Developing Against an Enterprise-Quality Database” on page 12.

PointBase
When creating a new portal domain, an instance of a PointBase database is created that is
persisted in the root directory of the domain. New domains can also create the database objects
necessary for an Enterprise-quality database. For details on configuring an Oracle, SQL Server,
DB2 or Sybase database, see the Database Administration Guide. For details on creating new
domains, see Creating WebLogic Configurations Using the Configuration Wizard.

The database contains a number of tables that store base WebLogic Portal and WebLogic
Workshop data. For a description of the database objects for each component of WebLogic
Portal, see the Data Dictionary. In addition, WebLogic Workshop stores some of its internal state
in the database. The topic How Do I: Configure WebLogic Workshop to Use a Different Database
for Internal State? in the WebLogic Workshop help system addresses how to move that internal
state store to another database.

PointBase Development Considerations

PointBase uses two files to persist the database to the filesystem: workshop$1.wal and
workshop.dbn. Because the database is persisted to the filesystem, sharing copies of the
database can easily be accomplished using source control management. However, PointBase files
grows incrementally over time when PointBase is used, which means that the files always appear

../db/index.html
../../../platform/docs81/confgwiz/index.html
../db/4Schemas.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html

3-12 Production Operations User Guide

to have been modified by the user. Over time, the PointBase files can grow from about 3 MB to
10 or more. Developers need to be aware that they should not check in the database unless they
explicitly are making changes to the underlying data directly through the WebLogic
Administration Portal or the PointBase console. When a change does need to be made, there is a
process to follow to keep the size of the updates to a minimum, which is outlined in the following
paragraph steps:

To make changes to the database:

1. Stop the servers (WebLogic Server and PointBase).

2. Perform a clean checkout of the binary files from source control to ensure you are working
from a common base.

This is especially important as your PointBase files may have grown significantly since the
last checkout, so a new checkout will reduce the size of those files before making your
additions.

3. To modify those files in source control, follow the procedure in “Working with Binary
Files” on page 3-10.

Knowing When You Are Making Changes to PointBase

In general, most activities that are accomplished using the WebLogic Administration Portal are
persisted to the database, with the exception of user data, group data, entitlements, and delegated
administration policies, which are persisted to the embedded LDAP. However, there may be
times when you want to develop with test users with user property, which are stored in the
database.

Developing Against an Enterprise-Quality Database
Rather than share the PointBase database between developers as a binary file, it is common for
each developer to work against their own unique instance of the portal database using Oracle,
SQL Server, or another Enterprise-quality database.

The same Enterprise-quality DBMS used in production should be used for development. For
example, if you plan to deploy your application on Oracle you should develop your application
on Oracle as well.

Note: For Oracle and DB2, a separate database schema for each developer on a development
database instance is recommended. For Sybase and SQL Server, a separate database and
database log file for each developer on the development database instance is
recommended.

Creat ing and Shar ing the Po r ta l Appl ica t i on

Production Operations User Guide 3-13

This methodology allows greater performance and easier maintenance of a baseline of data (with
proper support from a database administrator and scripts).

Each development machine is configured to use a specific database, contained in config.xml,
which is a shared file in source control management. “Setting up a Configuration File Template
(config-template.xml)” on page 3-17 can help provide some mechanisms for allowing developers
to share config.xml while still pointing to their unique database instance.

Sharing Information Using Unique Enterprise Quality Database Instances
To share information, a database administrator sets up a process where a developer can save an
instance of his database schema. This snapshot can then be applied to other developer schemas
as part of a process that those developers can initiate. Snapshots of partial pieces of the database,
or the storing of a common set of DDL scripts, are also common practices.

For a description of the database objects for each component of WebLogic Portal, see the Data
Dictionary.

In addition, WebLogic Workshop stores some of its internal state in the database. The following
topic in the WebLogic Workshop Help System, How Do I: Configure WebLogic Workshop to
Use a Different Database for Internal State addresses how to move that internal state store to
another database.

Creating and Sharing the Portal Application
After configuring the portal domain, the team lead needs to create a new portal application. There
are several phases of application creation, including creating the application and any number of
portal Web projects with WebLogic Workshop and initial check-in to source control.

For instructions on creating a new portal application and Web project, see Creating a Portal
Application and Portal Web Project.

Be sure to install any services necessary to your application, such as Commerce and Pipeline, as
well as any necessary tag libraries in each portal Web project, such as Commerce and Webflow
(for compatibility with legacy portal web applications).

Creating the Domain and Application Directories
As mentioned in “Best Practices for Creating a Portal Domain to Share with a Team” on page 3-7,
placing the domain and application directories in a common parent directory makes sharing them
in source control management systems easier to manage.

../db/4Schemas.html
../db/4Schemas.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html
../../../workshop/docs81/doc/en/portal/buildportals/addPortalApp.html
../../../workshop/docs81/doc/en/portal/buildportals/addPortalApp.html

3-14 Production Operations User Guide

For example, install your domain to: drive:\ourDomain and your application to:
drive:\ourApp

This approach lets you have a common root directory (%PROJECTNAME) in your source control
system’s project for both the domain and application.

Note: To avoid path length exceptions, store the domain and application directories in a short
path. For example, drive:\ourDomain.

Checking in the WebLogic Workshop Application
Once the WebLogic Workshop application has been constructed, the team lead should check the
application into source control. This should be done before doing a build of the application,
because a number of the files created during a build should not be checked into source control.

Excluding Portal Application Files From Source Control Management
Exclude the following application files from source control:

Files that are excluded from source control include compiled JARs, temporary configuration
files, and the output directory for WebLogic Workshop.

Managing Checkouts of the WebLogic Workshop Application
The fundamental idea when working with source control management and a WebLogic
Workshop application is that developers should be able to check out the application, initiate a
build, and start the server without error.

Table 3-3 Application Files to Exclude from Source Control

Path Wildcard

/ (portal application root) Each “EJB Project” contains a .jar file. These should be excluded.

/ .beabuild.txt

/APP-INF/lib/ Each “Java Project” contains a .jar file. These should be excluded.

/project/WEB-INF/
.pageflow-struts-generated/

*

/.workshop/ *

Creat ing and Shar ing the Po r ta l Appl ica t i on

Production Operations User Guide 3-15

When a build is initiated in WebLogic Workshop, a number of JAR files and temporary
directories are created inside the WebLogic Workshop application itself. These files are listed in
Table 3-3. In addition, WebLogic Workshop creates some additional files such as stateless
session beans for controls in the .workshop directory of the application. These stateless beans
often have names like TimerControl_-1n8kn2z7skxv.

When the application is deployed to the domain by WebLogic Workshop, it is registered in
config.xml. This deployment happens automatically when the server is started and the
application is built. At this point, the application is added to config.xml in a new XML block.

Listing 3-1 shows the block added to config.xml for an application named portalpm.

Listing 3-1 Application Added to config.xml File

 <Application Name="portalpm" Path="P:\user_projects\applications"
 StagingMode="nostage" TwoPhase="true">
 <WebAppComponent Name="portalpmAdmin" Targets="portalServer"
 URI="adminPortal.war"/>
 <EJBComponent Name="content.jar" Targets="portalServer"
 URI="content.jar"/>
 <EJBComponent Name="content_repo.jar" Targets="portalServer"
 URI="content_repo.jar"/>
 <WebAppComponent Name="portalpmDatasync" Targets="portalServer"
 URI="datasync.war"/>
 <EJBComponent Name="netuix.jar" Targets="portalServer"
 URI="netuix.jar"/>
 <EJBComponent Name="p13n_ejb.jar" Targets="portalServer"
 URI="p13n_ejb.jar"/>
 <EJBComponent Name="prefs.jar" Targets="portalServer"
 URI="prefs.jar"/>
 <WebServiceComponent Name="portalpmTool" Targets="portalServer"
 URI="wps-toolSupport.war"/>
 <EJBComponent Name="wps.jar" Targets="portalServer" URI="wps.jar"/>
 <ApplicationConfiguration Name="portalpm" Targets="portalServer"/>
 </Application>

Because WebLogic Workshop updates the config.xml for the domain automatically, it is not
necessary to check in a config.xml that contains the application name XML block. Instead, a
developer checks out the application, performs a build, and starts the server against a domain
without this application reference. The developer’s application is then deployed to config.xml
with all the required references to the newly built application components. If the application name

3-16 Production Operations User Guide

XML block is checked in with config.xml, WebLogic Workshop automatically updates it if
necessary to add or remove components.

Note: If you are using a configuration file template, as described in “Setting up a Configuration
File Template (config-template.xml)” on page 3-17, the basic config.xml has already
been created on each development machine using the configuration file template, and
application modifications or additions are correctly added to each developer’s
config.xml file.

There are two other files that store the components for the application: application.xml and
weblogic-application.xml, which are found in the application's META-INF directory. These
files need to be shared in source control, and when new components are added to the application
(such as a new EJB), the updated application.xml and weblogic-application.xml must
be checked back in to source control.

WebLogic Portal Coding Practices
This section provides best practices guidance for storing portal application source code.

Java Projects
If you have a number of general-purpose Java libraries that will be used by your portals, it is
recommended they be stored in a Java project inside the portal Enterprise archive. This enables
portability of your Java libraries across multiple instances of the server and is a convenient
mechanism for packaging libraries for reuse.

Cross-Platform Support
When coding to develop and deploy in a cross-platform environment, you observe the following
best practices:

Do not use spaces in filenames.

Keep filenames short (older versions of TAR do not support long filenames).

Use forward slashes (/) in paths when possible.

Be aware of the difference between case-sensitive operating systems (UNIX) and
case-preservative operating systems (Windows). For example, you could create a file called
myPortletContent.jsp and specify the file MyPortletContent.jsp as the Content
URI on windows without problems. However, when this same application is deployed on
UNIX, an error that the file MyPortletContent.jsp cannot be found is generated.

WebLog ic Por ta l Coding P rac t ices

Production Operations User Guide 3-17

Definition Labels for Portal Components
As you add books, pages, and portlets to portal desktops in WebLogic Workshop, a Definition
Label (unique ID) is automatically generated for each component (which appears in the Property
Editor window). With multiple developers creating new portal components, it is possible that
different components can have the same automatically generated Definition Labels. To avoid
duplicate Definition Labels, manually change the Definition Label for each new component using
your own naming conventions.

Cluster Configuration
Any code you write should be tested often in a clustered environment. Also important is keeping
session data to a manageable size and configuring your web applications to support session
sharing across the cluster. For clustering information, see Chapter 4, “Configuring a Portal
Cluster”.

Setting up a Configuration File Template
(config-template.xml)
When working in a team development environment, your team members need to work with the
same config.xml file so that all modifications to existing deployed applications, the addition of
new applications, and other settings stored in config.xml file can be shared. However, there are
configuration settings that may need to vary from user to user. The most common variations are
when developers are using different BEA home directories or their own database instances.
Developers typically have different database logins and need different settings for their JDBC
connection pools.

A configuration file template addresses this problem by letting you distribute a templatized
domain configuration file, config-template.xml. Developers share this
config-template.xml file through source control.

Exclude config.xml From Source Control
When you need unique domain configurations in each developer environment, exclude the
config.xml file from source control. Check in config-template.xml instead.

You can use Ant or another script language to set up a process that copies the
config-template.xml over the config.xml file. Next, certain strings in the config.xml file
are replaced with strings that each developer defines in a properties file.

For example, you can start with a config-template.xml file that contains the following:

3-18 Production Operations User Guide

<JDBCConnectionPool DriverName="weblogic.jdbc.oci.Driver"

 MaxCapacity="10" Name="Arcadia"

 Properties="user=ARCADIAUSER;password=ARCADIAPASSWORD;server=arcadia"

 RefreshMinutes="10" Targets="myserver"

 URL="jdbc:weblogic:oracle"/>

and a particular user has a local.configtemplate.properties file with the following two
entries:

ARCADIAUSER=john

ARCADIAPASSWORD=mypassword

After running the replacement process, that user ends up with a config.xml file that reads:
<JDBCConnectionPool DriverName="weblogic.jdbc.oci.Driver"

 MaxCapacity="10" Name="Arcadia"

 Properties="user=john;password=mypassword;server=arcadia"

 RefreshMinutes="10" Targets="myserver"

 URL="jdbc:weblogic:oracle"/>

Each user need only keep his own copy of the local.configtemplate.properties file,
which should not be checked into source control. A file named configtemplate.properties
should be distributed in source control to serve as an example of a valid
local.configtemplate.properties file.

Using Multiple Enterprise Applications in a Single Domain
You can create and run multiple enterprise applications in a single-cluster domain. As shown in
Figure 3-1, a single domain can host multiple enterprise applications (EARs). Each EAR
deployment can host multiple web applications, and any number of desktops can be created based
on the web applications. The web applications and desktops associated with one enterprise
application (EAR) are not dependent on those in another enterprise application (they are
decoupled).

WebLog ic Por ta l Coding P rac t ices

Production Operations User Guide 3-19

Figure 3-1 Multiple Enterprise Applications in a Single Domain

The following restrictions apply to this configuration of multiple enterprise applications in a
single domain:

Database – If you place multiple enterprise applications in a single domain, all
applications must share the same database. The use of multiple databases in this
configuration is not supported.

Resource names – Names cannot conflict. For example, for each deployment, web
application names must be unique. This applies as well to context-root names and their
associated CookieName names. For each enterprise application, the WebLogic
Administration Portal shows all of the portal web applications that are deployed to the
server.

Note: Each enterprise application must be managed through its respective Administration
Portal. Some domain-level resources, such as content, users, and groups, can be viewed
and managed across enterprise applications from a single Administration Portal;
however, be aware that data in one application may be cached, and updates to the same
data made from another application’s Administration Portal may not be immediately
visible.

Content – If you are deploying multiple enterprise applications within the same domain,
and plan to use content management’s library services for each application, you must
configure each repository datasource (one per repository) to be XA-enabled. For more

3-20 Production Operations User Guide

information regarding XA connections, see
http://edocs.bea.com/platform/docs81/confgwiz/examples.html#1074297.

Note: Content for each enterprise application is managed through its respective Portal
Administration tool and Virtual Content Repository. Virtual Content Repositories (as
well as Portal Administration tools) are unique to each application cannot be shared.

Personalization – The same local property sets cannot be shared between multiple
enterprise applications. If common properties must be shared among different enterprise
applications, then use Unified User Profile (UUP). Another alternative is to copy and
deploy the same property sets to multiple applications.

Additional Files Recommended in Source Control
For releases prior to SP4, BEA recommended not storing the class files in the path
WEB-INF/classes because these are built automatically by WebLogic Workshop. However, in
SP4 several new classes were added in the path:

WEB-INF/classes/com/bea/jsptools/portal

for which source files are not provided, specifically:

PortalManager.class

PortalLogger.class

PortalBeanManager.class

PortalAdminLogger.class

DefaultPortalLogger.class

Because of this change, SP4 portal projects based on WebLogic Workshop will not build
successfully when extracted from their source control repository.

To ensure a successful build of your portal project while using source control, you can create a
.jar file containing the class files listed above, and check the .jar file into the source control
system repository.

../../../platform/docs81/confgwiz/examples.html#1074297

Production Operations User Guide 4-1

C H A P T E R 4

Configuring a Portal Cluster

This chapter describes the steps necessary to set up a cluster across which your portal application
is deployed. The topics discussed in this chapter include:

Setting up a Production Database

Reading the wlw-manifest.xml File

Choosing a Cluster Architecture

Configuring a Domain

Understanding Portal Resources

Zero-Downtime Architectures

Setting up a Production Database
To deploy a portal application into production, it is necessary to set up an Enterprise-quality
database instance. PointBase is supported only for the design, development, and verification of
applications. It is not supported for production server deployment.

Details on configuring your production database can be found in the Database Administration
Guide.

Once you have configured your Enterprise database instance, it is possible to install the required
database DDL and DML from the command line as described in the Database Administration
Guide. A simpler option, described in this chapter, is to create the DDL and DML from the
domain Configuration Wizard when configuring your production environment.

../db/index.html
../db/index.html

4-2 Production Operations User Guide

Reading the wlw-manifest.xml File
When configuring your production servers or cluster with the domain Configuration Wizard, you
need to deploy JMS queues that are required by WebLogic Workshop-generated components that
are deployed at run time. To find the JMS queue names you need, open the wlw-manifest.xml
file in the portal application’s /META-INF directory.

In the file, find the JMS queue JNDI names that are the defined values in elements named
<con:async-request-queue> and <con:async-request-error-queue>. Record the JNDI
names of the JMS queues found in those definitions for use when configuring your production
system.

You may also need to configure other settings in wlw-manifest.xml. For more information, see
How Do I: Deploy a WebLogic Workshop Application to a Production Server?.

Choosing a Cluster Architecture
By clustering a portal application, you can attain high availability and scalability for that
application. Use this section to help you choose which cluster configuration you want to use.

Single Cluster
When setting up an environment to support a production instance of a portal application, the most
common configuration is to use the WebLogic Recommended Basic Architecture.

Figure 4-1 shows a WebLogic Portal-specific version of the recommended basic architecture.

../../../wls/docs81/cluster/planning.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogicWorkshopWebServicestoaProductionServer.html

Choosing a C lust er Ar ch i t ec tu re

Production Operations User Guide 4-3

Figure 4-1 WebLogic Portal Single Cluster Architecture

Note: WebLogic Portal does not support a split-configuration architecture where EJBs and
JSPs are split onto different servers in a cluster. The basic architecture provides
significant performance advantages over a split configuration for Portal.

Even if you are running a single server instance in your initial production deployment, this
architecture allows you to easily configure new server instances if and when needed.

Multi Cluster
A multi-clustered architecture can be used to support a zero-downtime environment when your
portal application needs to be accessible continually. While a portal application can run
indefinitely in a single cluster environment, deploying new components to that cluster or server
will result in some period of time when the portal is inaccessible. This is due to the fact that while
a new EAR application is being deployed to a WebLogic Server, HTTP requests cannot be
handled. Redeployment of a portal application also results in the loss of existing sessions.

A multi-cluster environment involves setting up two clusters, typically a primary cluster and
secondary cluster. During normal operations, all traffic is directed to the primary cluster. When

4-4 Production Operations User Guide

some new components (such as portlets) need to be deployed, the secondary cluster is used to
handle requests while the primary is updated. The process for managing and updating a
multi-clustered environment is more complex than with a single cluster and is addressed in
“Zero-Downtime Architectures” on page 4-17. If this environment is of interest, you may want
to review that section now.

Figure 4-2 Weblogic Portal Multi-Cluster Architecture

Conf igur ing a Domain

Production Operations User Guide 4-5

Configuring a Domain
You should determine the network layout of your domain before building your domain with the
Configuration Wizard. Determine the number of managed servers you will have in your cluster—
the machines they will run on, their listen ports, and their DNS addresses. Decide if you will use
WebLogic Node Manager to start the servers. For information on Node Manager, see
Configuring and Managing WebLogic Server.

WebLogic Portal must be installed on the cluster’s administration server machine and on all
managed server machines.

Using the Configuration Wizard
Create your new production environment with the domain Configuration Wizard. See Creating
WebLogic Configurations Using the Configuration Wizard.

Creating a Production Cluster Environment with the
Configuration Wizard
This section guides you through the creation of a production cluster environment for WebLogic
Portal.

1. Start the Configuration Wizard. In Windows, choose Start > Programs > BEA WebLogic
Platform 8.1 > Configuration Wizard.

2. In the Create or Extend a Configuration window, select Create a new WebLogic
configuration and click Next.

3. In the Select a Configuration Template window, select Basic WebLogic Portal Domain
and click Next.

4. In the Choose Express or Custom Configuration window, select Custom and click Next.

5. In the Configure the Administration Server window:

a. Enter a name for your administration server.

b. In the Listen Address field, leave the default “All Local Addresses” selection.

c. Enter the listen port.

d. If you want to use the Secure Sockets Layer (SSL) protocol for secure access to portal
application resources, select the SSL enabled option and enter an SSL listen port.

../../../wls/docs81/adminguide/nodemgr.html
../../../platform/docs81/confgwiz/intro.html
../../../platform/docs81/confgwiz/intro.html

4-6 Production Operations User Guide

e. Click Next.

6. In the Managed Servers, Clusters, and Machines Options window, select Yes to customize
the configuration settings, and click Next.

7. In the Configure Managed Servers window, add your managed servers. The number of
managed servers you want in your cluster(s) will vary depending on your choice of
hardware.

In the Listen Address field, enter the IP address for each managed server.

Note: Do not leave the default “All Local Addresses” setting.

When you are finished adding managed servers, click Next.

8. In the Configure Clusters window, add your cluster(s). Choose a multicast address that is
not currently in use. Choose the Cluster addresses for the managed servers in this cluster.
These take the form of a comma-separated list of the DNS alias names of the managed
servers.

See “Cluster Address” in Using WebLogic Server Clusters for more information.

When you are finished, click Next.

9. In the Assign to Clusters window, choose all the managed servers you want to associate
with each cluster by moving the server names from the left pane to the right pane. Click
Next.

10. In the Configure Machines window, you can create logical representations of the systems
that host your server instances. Host information is used for locality routing, especially
during session replication. If you are running more than one managed server per machine, it
is important that you configure host information so that WebLogic Server does not replicate
a session on the same machine.

Also, if you are using Node Manager to manage starting and stopping your servers, you
should specify that information here.

Click Next.

11. If you choose to Configure Machines, in the Assign Servers to Machines window, target the
servers to the appropriate machines.

12. In the Database (JDBC) Options window, select Yes to define JDBC components, and click
Next.

../../../wls/docs81/cluster/setup.html#ClusterAddress

Conf igur ing a Domain

Production Operations User Guide 4-7

13. In the Configure JDBC Connection Pools window, there will be a cgPool tab. Change the
cgPool Vendor to use your production database type, and then specify the information
needed to connect to that database instance such as the host and port information.

Make the same changes on the cgJMSPool-nonXA and portalPool tabs.

For cgJMSPool-nonXA, in the Driver field, be sure to select the non-XA driver.

Click Next.

14. In the Configure JDBC Multipools window, click Next.

15. In the Configure JDBC Data Sources window, you should see a list of JDBC Data Sources
configured. Click Next.

16. In the Test JDBC Connection Pool and Setup JDBC Database window, select cgPool in the
Available JDBC Connection Pools pane, and click Test Connection.

If you have not already created the database objects for the portal application in your
database instance, select your database version in the DB Version field, and click Load
Database.

Warning: Exercise caution when loading the database, as the scripts will delete any portal
database objects from the database instance if they already exist. You will see a
large number of SQL statements being executed. It is normal for the scripts to
have a number of statements with errors on execution, because the script drops
objects that may not have been created before.

Click Next.

17. In the Messaging (JMS) Options window, select Yes to define JMS components, and click
Next.

18. In the Configure JMS Connection Factories window, you should see the cgQueue. Its
Default delivery mode should be set to Persistent. Click Next.

19. In the Configure JMS Destination Key(s) window, click Next.

20. In the Configure JMS Template(s) window, click Next.

21. In the Configure JMS File Stores window, validate that FileStore exists, and click Next.

22. In the Configure JMS JDBC Store window, validate that you have JMS stores for the
administration server and for each of the managed servers, typically named
cgJMSStore_auto_1, cgJMSStore_auto_2, and so on.

To create a JMS store:

4-8 Production Operations User Guide

a. Click Add.

b. Specify a name, such as cgJMSStore_auto_a for the administration server.

c. In the Connection Pool field, select the same connection pool used for all stores (such as
cgJMSPool-nonXA).

d. In the Prefix Name field, specify a unique JMS prefix name (such as por_a for the
administration server).

If you are using Oracle as a database, specify the Oracle schema name before the prefix
name. For example, OSCHEMA.por_a.

e. Click Next.

23. In the Configure JMS Servers window, validate that you have servers (including the
administration server) that correspond to the JMS stores created, typically named
cgJMSServer_auto_1, cgJMSServer_auto_2, and so on. To create a JMS server:

a. Click Add.

b. Specify a name, such as cgJMSServer_auto_a for the administration server.

c. In the Store field, select the corresponding JMS JDBC store you created in the previous
window.

d. Click Next.

24. In the Assign JMS Servers to WebLogic Servers window, assign the JMS Servers to the
administration server and to each of the managed servers. Click Next.

25. In the Configure JMS Topics window, click Next.

26. In the Configure JMS Queues window, click Next.

27. In the Configure JMS Distributed Topics window, click Next.

28. In the Configure JMS Distributed Queues window, you need to add new queues that are
required by WebLogic Workshop. The JNDI names for these queues can be found in your
application’s /META-INF/wlw-manifest.xml file, as described in “Reading the
wlw-manifest.xml File” on page 4-2.

These names will be similar to WEB_APP.queue.AsyncDispacher and
WEB_APP.queue.AsyncDispacher_error. For each queue, add a new JMS Distributed
Queue with the Add button. Set the Name entry and JNDI name entry to the name listed in

Conf igur ing a Domain

Production Operations User Guide 4-9

wlw-manifest.xml. Set the Load balancing policy and Forward delay as appropriate for
your application.

A pair of queue entries exists for each web application (portal web project) in your portal
application. When you are finished, you should have a distributed queue for each queue. In
other words, if your Enterprise application has three web applications, you should have
added six distributed queues—two for each web application.

You do not need to create queues for the WebLogic Administration Portal web application.

Note: If you are using multiple clusters, create an additional set of queues for each cluster.
For example, if you have a web application called basicWebApp, and you are using
a second cluster, create a unique basicWebApp queue for that cluster named
something like basicWebApp.queue.AsyncDispatcher.2. When you do this, the
Configuration Wizard does not let you enter the same JNDI name for multiple
queues. In this example, enter a JNDI name that ends with a “.2”. Later in the setup
procedures you will make all JNDI names the same in the WebLogic Administration
Console for each web application.

Click Next.

29. In the Assign JMS Distributed Destinations to Servers or Clusters window, target your
newly defined queues to your cluster. In the right pane, select the cluster, in the left pane,
select the queue(s), and click the right arrow icon. Click Next.

30. In the JMS Distributed Queue Members window, click Next. You will create distributed
JMS queue members in “Setting up JMS Servers” on page 4-11.

31. In the Applications and Services Targeting Options window, select Yes and click Next.

32. In the Target Applications to Servers or Clusters window, target all applications to the
administration server as well as to the cluster. Click Next.

33. In the Target Services to Servers or Clusters window, click Next.

34. In the Configure Administrative Username and Password window, enter a username and
password for starting the administration server. You do not need to configure additional
users, groups, and global roles, so make sure No is selected at the bottom of the window.
Click Next.

35. If you are installing on Windows, in the Configure Windows Options window, select the
options you want for adding a shortcut to the Windows menu and installing the
administration server as Windows service. The wizard always creates a single default
shortcut on the windows menu regardless of what you select for the Create Start Menu
option. The option lets you create an additional shortcut with different settings.

4-10 Production Operations User Guide

If you chose to create a Windows menu shortcut for your domain, click Next in the Build
Start Menu Entries window.

Click Next.

For information on starting WebLogic Server, see Creating Startup Scripts.

36. In the Configure Server Start Mode and Java SDK window, select Production Mode and
select the SDK (JDK) you want to use. Click Next.

37. In the Create WebLogic Configuration window, browse to the directory where you want to
install your administration server domain, and enter a Configuration Name.

To avoid path length exceptions, use a short path for the domain, such as
drive:/ourDomain.

38. Click Create.

39. When the domain is created, click Done.

Configuring the Administration Server
At this point your administration server domain has been configured using the domain
Configuration Wizard. Before you start the administration server to do additional configuration
work, you may want to perform one or both of the following setup tasks:

increase the default memory size allocated to the administration server

allow server startup without requiring authentication by creating a boot.properties file

Increasing the Default Memory Size
To increase the default memory size allocated to the administration server, you need to modify
your startWebLogic script in the domain’s root directory and change the memory arguments.
For example:

In Windows, change:

set MEM_ARGS=-Xms256m %memmax% to set MEM_ARGS=-Xms512m -Xmx512m

In UNIX, change:

MEM_ARGS="-Xms256m ${memmax}" to MEM_ARGS="-Xms512m -Xmx512m"

The exact amount of memory you should allocate to the server will vary based on a number of
factors such as the size of your portal application, but in general 512 Mb of memory is
recommended as a default.

../../../wls/docs81/isv/startup.html

Conf igur ing a Domain

Production Operations User Guide 4-11

Allowing Server Startup Without Requiring Authentication
To allow server startup without requiring authentication, create a boot.properties file in your
domain root directory that contains the username and password you want to log in with. For
example:

username=weblogic

password=weblogic

After the server starts for the first time using this file, the username and password are encrypted
in the file.

Setting up JMS Servers
In this procedure you finish configuration of the JMS servers.

1. Start the administration server and log in to the WebLogic Server Administration Console,
found at http://server:port/console.

2. Configure the JMS distributed destinations.

a. Expand Services > JMS > Distributed Destinations. Perform the following sub-steps for
each queue you defined earlier for the WebLogic Workshop components.

Note: You do not need to configure the dist_cgJWSQueue_auto queue.

b. Select the queue name, and select the Auto Deploy tab.

c. Click Create members on the selected Servers (and JMS Servers).

d. Select your cluster(s) to target the JMS queue to, and click Next.

e. Select all the managed servers in the cluster to create members for the queue, and click
Next.

f. Select all the JMS Servers where members will be created, and click Next.

g. Commit the changes by clicking Apply.

h. If you are using multiple clusters, change the JNDI names you assigned to the cluster
queues in Creating a Production Cluster Environment with the Configuration Wizard
step 28. Select each cluster queue (for example, select
basicWebApp.queue.AsyncDispatcher.2), click the General tab, and remove the
“.2” suffix (or whatever unique identifier you used in the Configuration Wizard) so that
all JNDI names are the same for each web application. For example, all JNDI names for

4-12 Production Operations User Guide

the basicWebApp should be basicWebApp.queue.AsyncDispatcher. After each
change, click Apply.

3. Configure the JMS servers for the managed servers.

a. Expand Services > JMS > Servers > managed server JMS server name > Destinations.
Perform the following sub-steps for each member queue ending in AsyncDispatcher
(but not for member queues ending in AsyncDispatcher_error).

b. Select the queue, and select the Redelivery tab.

c. In the Error Destination field, select the companion error queue for the queue.

d. Click Apply.

4. Create JMS queues for the administration server.

a. Select Services > JMS > Servers > administration JMS server name > Destinations.

b. Click Configure a New JMS Queue.

c. Create JMS queues and error queues for each web application. Use any name, but for
convention you can make the Name the same as the JNDI Name.

View your application’s META-INF/wlw-manifest.xml file to see the queues you
must create. See “Reading the wlw-manifest.xml File” on page 4-2.

For example, if you have two web applications, basicWebApp and bigWebApp, create
the following queues for the administration server JMS server:

basicWebApp.queue.AsyncDispatcher
basicWebApp.queue.AsyncDispatcher_error
bigWebApp.queue.AsyncDispatcher
bigWebApp.queue.AsyncDispatcher_error

You must also create a single queue named jws.queue if it does not already exist.

Click Create after you create each queue.

5. Retarget the JMS servers to “migratable” to support JMS failover.

a. Expand Services > JMS > Servers. Perform the following sub-steps for each JMS server.

b. Select the JMS server, and select the Target and Deploy tab.

Conf igur ing a Domain

Production Operations User Guide 4-13

c. In the Target field, select the target (migratable) counterpart item for the previously
selected target. For example, if the target was managed1, select
managed1 (migratable).

d. Click Apply.

Creating Managed Server Directories
Now that you have configured your domain, including defining your managed servers, you need
to create a server root directory for each managed server. There are many options for this,
depending on whether or not the managed server will reside on the same machine as the
administration server and whether or not you will use the Node Manager.

Most of the files in the domain-level directory are not necessary for managed servers, so a
domain (files directly in the domain directory) is not required on each managed server,
especially if you are using the Node Manager to start and stop managed servers. For
example, config.xml in a managed server domain is not used. Instead, the config.xml
file in the administration server is used. The only requirement for managed servers is to
have the wsrpKeystore.jks file one directory above the server directory (in the
equivalent of a domain-level directory).

If the managed server will run on a different machine than the administration server and
you will not use Node Manager, the easiest option is to use the Configuration Wizard to
create a full filesystem domain for the managed server, as described in the following
procedure.

WebLogic Portal must be installed on all managed servers.

1. To create a new managed server, launch the Configuration Wizard.

2. Choose Create a new WebLogic configuration, and click Next.

3. In the Select a Configuration Template window, select Basic WebLogic Portal Domain, and
click Next.

4. In the Choose Express or Custom Configuration window, select Express, and click Next.

5. In the Configure Administrative Username and Password window, enter a username and
password for the server, and click Next.

This information is not typically be used, because you bind this server to the administration
server using the administration server’s credentials.

4-14 Production Operations User Guide

6. In the Configure Server Start Mode and Java JDK, select Production Mode and the
SDK (JDK) you will use with the domain. Click Next.

It is important you choose the same JDK across all instances in the cluster.

7. In the Create WebLogic Configuration window, choose the directory you want to install to,
and in the Configuration Name field, enter a domain name to use. For best practices,
choose a domain name like managedServer1, managedServer2, and so on.

8. Click Create.

9. When the domain is created, click Done.

10. If you want to allow server startup without requiring authentication on each managed
server, create a boot.properties file in each managed server’s domain directory (or one
level above the server directory) that contains a username and password. For example:

username=weblogic
password=weblogic

After the initial server startup using boot.properties, the username and password are
encrypted in the file.

Once you have created a filesystem domain directory for a managed server, you can reuse the
same domain for your other managed server on the same machine by specifying different
servername parameters to your startManagedWebLogic script, or create new managed domains
using the domain Configuration Wizard.

Note: If you decide not to use a full domain for your managed servers (that is, not include all
files in the domain-level directory), be sure you keep or put a copy of
wsrpKeystore.jks in the directory directly above the server directory (in the
equivalent of the domain-level directory).

Increasing the Default Memory Size
To increase the default memory size allocated to a managed server (if you are not using Node
Manager), you need to modify your startManagedWebLogic script in the managed server root
directory and change the memory arguments. For example:

In Windows, change:

set MEM_ARGS=-Xms256m %memmax% to set MEM_ARGS=-Xms512m -Xmx512m

In UNIX, change:

MEM_ARGS="-Xms256m ${memmax}" to MEM_ARGS="-Xms512m -Xmx512m"

Unders tanding Por ta l Resources

Production Operations User Guide 4-15

The exact amount of memory you should allocate to the server will vary based on a number of
factors such as the size of your portal application, but in general 512 megabytes of memory is
recommended as a default.

Understanding Portal Resources
The Portal Library contains books, pages, layouts, portlets, desktops, and other types of
portal-specific resources. Using the WebLogic Administration Portal, these resources can be
created, modified, entitled, and arranged to shape the portal desktops that end users access.

Figure 4-3 shows an image of the Portal Resources tree in the WebLogic Administration Portal.
The tree contains two main nodes: Library and Portals. The Library node contains the global set
of portlets and other resources, while the Portals node contains instances of those resources, such
as the colorsSample desktop and its pages, books, and portlets.

Figure 4-3 PortAl Resources Library

Each of these resources is defined partially in the portal database so they can be easily modified
at run time. The majority of resources that exist are created by an administrator, either from
scratch or by creating a new desktop from an existing .portal template file that was created in
WebLogic Workshop.

4-16 Production Operations User Guide

However, portlets themselves are created by developers and exist initially as XML files. In
production, any existing .portlet files in a portal application are automatically read into the
database so they are available to the WebLogic Administration Portal.

The following section addresses the life cycle and storage mechanisms around portlets, because
their deployment process is an important part of portal administration and management.

Understanding the Portlet Deployment Life Cycle
During development time, .portlet files are stored as XML in any existing portal web
application in the Portal EAR. As a developer creates new .portlet files, a file poller thread
monitors changes and loads the development database with the .portlet information.

In a production environment, .portlet files are loaded when the portal web application that
contains them is redeployed on the administration server. This redeployment timing ensures that
the content of the portlet, such as a JSP or Page Flow, is available at the same time as the
.portlet file is available in the Portal Library. The administration server is the chosen master
responsible for updating the database so that there are no issues around every server in the
production cluster trying to write the new portlet information into the database at the same time.
When deploying new portlets to a production environment, target the portal application for
redeployment on the administration server.

Understanding the Database Structure for Storing Portlets
When a portlet is loaded into the database, the portlet XML is parsed and a number of tables are
populated with information about the portlet, including PF_PORTLET_DEFINITION,
PF_MARKUP_DEFINITION, PF_PORTLET_INSTANCE, PF_PORTLET_PREFERENCE,
L10N_RESOURCE, and L10N_INTERSECTION.

PF_PORTLET_DEFINITION is the master record for the portlet and contains rows for properties
that are defined for the portlet, such as the definition label, the forkable setting, edit URI, help
URI, and so on. The definition label and web application name are the unique identifying records
for the portlet. Portlet definitions refer to the rest of the actual XML for the portlet that is stored
in PF_MARKUP_DEF.

PF_MARKUP_DEF contains stored tokenized XML for the .portlet file. This means that the
.portlet XML is parsed into the database and properties are replaced with tokens. For example,
the following code fragment shows a tokenized portlet:

<netuix:portlet $(definitionLabel) $(title) $(renderCacheable)

$(cacheExpires)>

Ze ro-Downt ime A rch i tectures

Production Operations User Guide 4-17

These tokens are replaced by values from the master definition table in
PF_PORTLET_DEFINITION, or by a customized instance of the portlet stored in
PF_PORTLET_INSTANCE.

The following four types of portlet instances are recorded in the database for storing portlet
properties:

Primary – Properties defined in development and stored in the .portlet file.

Library – Properties defined in the Portal Library, which may be changed using the
WebLogic Administration Portal.

Admin – A customized instance of the portlet in a desktop. This allows you to customize a
portlet in a particular way for a desktop without affecting other instances of the portlet in
other desktops.

User – User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET_INSTANCE contains properties for the portlet for attributes such as
DEFAULT_MINIMIZED, TITLE_BAR_ORIENTATION, and PORTLET_LABEL.

If a portlet has portlet preferences defined, those are stored in the PF_PORTLET_PREFERENCE
table.

Finally, portlet titles can be internationalized. Those names are stored in the L10N_ RESOURCE
table which is linked using L10N_INTERSECTION to PF_PORTLET_DEFINITION.

Removing Portlets from Production
If a portlet is removed from a newly deployed portal application, and it has already been defined
in the production database, it is marked as IS_PORTLET_FILE_DELETED in the
PF_PORTLET_DEFINITION table. It displays as grayed out in the WebLogic Administration
Portal, and user requests for the portlet if it is still contained in a desktop instance return a
message that says the portlet is unavailable.

Zero-Downtime Architectures
One limitation of redeploying a portal application to a WebLogic Server cluster is that during
redeployment, users cannot access the site. For Enterprise environments where it is not possible
to schedule down time to update a portal application with new portlets and other components, a
multi-cluster configuration lets you keep your portal application up and running during
redeployment.

4-18 Production Operations User Guide

The basis for a multi-clustered environment is the notion that you have a secondary cluster to
which user requests are routed while you update the portal application in your primary cluster.

For normal operations, all traffic is sent to the primary cluster, as shown in Figure 4-4. Traffic is
not sent to the secondary cluster under normal conditions because the two clusters cannot use the
same session cache. If traffic was being sent to both clusters and one cluster failed, a user in the
middle of a session on the failed cluster would be routed to the other cluster, and the user’s session
cache would be lost.

Figure 4-4 During Normal Operations, Traffic Is Sent to the Primary Cluster

All traffic is routed to the secondary cluster, then the primary cluster is updated with a new Portal
EAR, as shown in Figure 4-5. This EAR has a new portlet, which is loaded into the database.
Routing requests to the secondary cluster is a gradual process. Existing requess to the primary

Ze ro-Downt ime A rch i tectures

Production Operations User Guide 4-19

cluster must first end over a period of time until no more requests exist. At that point, you can
update the primary cluster with the new portal application.

Figure 4-5 Traffic Is Routed to the Secondary Cluster; The Primary Cluster Is Updated

All traffic is routed back to the primary cluster, and the secondary cluster is updated with the new
EAR, as shown in Figure 4-6. Because the database was updated when the primary cluster was
updated, the database is not updated when the secondary cluster is updated.

4-20 Production Operations User Guide

Figure 4-6 Traffic Is Routed Back to the Primary Cluster; The Secondary Cluster Is Updated

Even though the secondary cluster does not receive traffic under normal conditions, you must still
update it with the current portal application. When you next update the portal application, the
secondary cluster temporarily receives requests, and the current application must be available.

In summary, to upgrade a multi-clustered portal environment, you switch traffic away from your
primary cluster to a secondary one that is pointed at the same portal database instance. You can
then update the primary cluster and switch users back from the secondary. This switch can happen
instantaneously, so the site experiences no down time. However, in this situation, any existing
user sessions will be lost during the switches.

A more advanced scenario is a gradual switchover, where you switch new sessions to the
secondary cluster, and after the primary cluster has no existing user sessions you upgrade it.
Gradual switchovers can be managed using a variety of specialized hardware and software load
balancers. For both scenarios, there are several general concepts that should be understood before

Ze ro-Downt ime A rch i tectures

Production Operations User Guide 4-21

deploying applications, including the portal cache and the impact of using a single database
instance.

Single Database Instance
When you configure multiple clusters for your portal application, they will share the same
database instance. This database instance stores configuration data for the portal. This can
become an issue, because when you upgrade the primary cluster it is common to make changes
to portal configuration information in the database. These changes are then picked up by the
secondary cluster where users are working.

For example, redeploying a portal application with a new portlet to the primary cluster will add
that portlet configuration information to the database. This new portlet will in turn be picked up
on the secondary cluster. However, the new content (JSP pages or Page Flows) that is referenced
by the portlet is not deployed on the secondary cluster.

Portlets are invoked only when they are part of a desktop, so having them available to the
secondary cluster has no immediate effect on the portal that users see. However, adding a new
portlet to a desktop with the WebLogic Administration Portal will immediately affect the desktop
that users see on the secondary cluster. In this case, that portlet would show up, but the contents
of the portlet will not be found.

To handle this situation, you have several options. First, you can delay adding the portlet to any
desktop instances until all users are back on the primary cluster. Another option is to entitle the
portlet in the library so that it will not be viewable by any users on the secondary cluster. Then
add the portlet to the desktop, and once all users have been moved back to the primary cluster,
remove or modify that entitlement.

Tip: It is possible to update an existing portlet’s content URI to a new location that is not yet
deployed. For this reason, exercise caution when updating the content URI of a portlet. The best
practice is to update the content URIs as part of a multi-phase update.

When running two portal clusters simultaneoiusly against the same database, you must also
consider the portal cache, as described in the next section.

Portal Cache
WebLogic Portal provides facilities for a sophisticated cluster-aware cache. This cache is used
by a number of different portal frameworks to cache everything from markup definitions to
portlet preferences. Additionally, developers can define their own caches using the portal cache
framework. The portal cache is configured in the WebLogic Administration Console under

4-22 Production Operations User Guide

Configuration Settings > Service Administration > Cache Manager. For any cache entry, the
cache can be enabled or disabled, a time to live can be set, the cache maximum size can be set,
the entire cache can be flushed, or you can invalidate a specific key.

When a portal framework asset that is cached is updated, it will typically write something to the
database and automatically invalidate the cache across all machines in the cluster. This process
keeps the cache in sync for users on any managed server.

When operating a multi-clustered environment for application redeployment, special care needs
to be taken with regard to the cache. The cache invalidation mechanism does not span both
clusters, so it is possible to make changes on one cluster that is written to the database but not
picked up immediately on the other cluster. Because this situation could lead to system instability,
it is recommended that during this user migration window the caches be disabled on both clusters.
This is important when you have a gradual switchover between clusters versus a hard switch that
drops existing user sessions.

Production Operations User Guide 5-1

C H A P T E R 5

Preparing and Deploying the EAR File

This chapter discusses the steps for preparing your application’s Enterprise archive (EAR) file to
be deployed. This chapter includes the following topics:

Preparing the EAR File for Deployment

Deploying the EAR for a New Application

Deploying a Portal Application to the Cluster

Preparing the EAR File for Deployment
To bring your portal online in a production environment, it is first necessary to prepare your
portal application. Typical preparation steps include modifying deployment descriptors for the
product, building the Enterprise archive (EAR) with all its pre-compiled classes, and deciding if
you want to compress that EAR into an archive or leave it exploded.

Configuring Portal Application Deployment Descriptors
Similar to any J2EE application, a portal application has a number of deployment descriptors that
you may want to tune for your production environment.

Modifying Application Deployment Descriptors
Within the Portal application is the /META-INF directory that contains a number of deployment
descriptors, including application-config.xml, a portal-specific deployment descriptor that
contains cache configuration, behavior tracking, campaign, and commerce tax settings. If these

5-2 Production Operations User Guide

values are different for your production environment than for your existing development settings,
modify this file appropriately before building the portal application.

Modifying Web Application Deployment Descriptors
Within any portal web application is a /WEB-INF directory that contains a number of deployment
descriptors you may need to modify for your production environment.

web.xml is a J2EE standard deployment descriptor. Among other settings, it has a set of
elements for configuring security for the web application. For more details about web.xml
see web.xml Deployment Descriptor Elements.

Note: If you are running your portal application on a managed server, you can improve the
performance of the WebLogic Administration Portal by adding the following
parameter to the web.xml file:

<context-param>
<param-name>portalFileDirectory</param-name>
<param-value>/</param-value>

</context-param>

This parameter takes advantage of an optimized call to an mbean that returns EAR
content information. Without this parameter, the mbean call recursively searches for
.portal files. To avoid the overhead of this recursive call, you can place all of your
.portal files in one directory and specify the directory with the
portalFileDirectory parameter. In the example above, all .portal files reside in
the web application’s root directory (/).

If you use this parameter, you must place all of the .portal files in the same
directory under the portal web application. Use the <param-value> to specify the
directory.

weblogic.xml is a standard WebLogic Server deployment descriptor for web applications
that has a number of important descriptor entries. For more details, see: weblogic.xml
Deployment Descriptor Elements.

Note: In a clustered production environment, it is important that you configure the
<session-param> descriptor element in weblogic.xml to enable session
replication to take place across the cluster. Without this setting, you will not have
failover of a user’s state information if a server in the cluster is stopped. You may
need to add the following block to weblogic.xml.

<session-descriptor>

<session-param>

<param-name>PersistentStoreType</param-name>

../../../wls/docs81/webapp/web_xml.html
../../../wls/docs81/webapp/weblogic_xml.html
../../../wls/docs81/webapp/weblogic_xml.html

Prepar ing the EAR F i l e fo r Dep loyment

Production Operations User Guide 5-3

<param-value>replicated_if_clustered</param-value>

</session-param>

</session-descriptor>

By default if PersistentStoreType is not set, it defaults to disabling persistent session
storage.

The other commonly modified element in weblogic.xml for production environments
is the <jsp-descriptor>. For production, it is common to make these modifications:

Turn off debugging by setting debug to false.

Precompile the JSPs in the web application to reduce the time needed to display
pages on their first invocation by setting precompile to true.

Also set precompileContinue to true, because if any JSPs do not compile,
deployment of the web application stops.

You may need to add these elements to weblogic.xml inside the existing
<jsp-descriptor> section. For example:

<jsp-param>
<param-name>precompile</param-name>
<param-value>true</param-value>
<param-name>precompileContinue</param-name>
<param-value>true</param-value>
</jsp-param>

In a compressed EAR environment, set pageCheckSeconds to -1 to disable
polling of JSP pages for changes.

Modifying WebLogic Workshop Deployment Descriptors
WebLogic Workshop has a number of additional deployment descriptors that are important if you
are developing web services. You can find information on these descriptors in WebLogic
Workshop Internals.

Creating Content Management Repositories
Before packaging your application into an EAR file, use the WebLogic Administration Portal to
create any content management repositories you want to use in your application. This means
creating only the root repositories, not the content nodes and content items. After you create
repositories, they are registered in the application-config.xml deployment descriptor. When
you create the application EAR, application-config.xml becomes read-only and cannot be

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp
http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp

5-4 Production Operations User Guide

modified within the EAR. That is, you cannot add or remove repositories in the WebLogic
Administration Portal when the application is in an EAR file.

For information on creating repositories, see Add a New Repository Connection.

Compiling with Your Runtime JVM
If you are going to use a particular Java Virtual Machine (JVM) in your production environment,
it is a good idea to compile the EAR application with the JDK for that JVM. You can change the
JVM for your WebLogic Workshop project by going to Tools > Application Properties,
selecting WebLogic Server, and specifying the path to the JDK Home (root directory) you want
to use.

Building a Portal Application with WebLogic Workshop
To deploy a portal application to a production environment, you must first build the application
in WebLogic Workshop to compile necessary classes in the portal application. There are two
options:

Build > Build EAR – Most common. Use this option to compile the classes and build the
portal application as a compressed EAR.

or

Build > Build Application – Use this option to compile the classes and build the portal
application as an exploded (uncompressed) EAR. This option, however, many not invoke
all the same processing as Build EAR. Review how WebLogic Workshop treats
deployment descriptors when Build EAR is run and determine if there is an impact. See
WebLogic Workshop Internals for more information.

Alternatively, to generate an uncompressed EAR, you can run Build > Build EAR and
then uncompress the generated EAR file.

After you create an exploded EAR, rename the application directory so that it has a .ear
extension. For example, if the application directory is called myPortalApp, rename the
directory to myPortalApp.ear. Adding the .ear extension to the directory name prevents
deployment exceptions for exploded EARs.

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp
../adminportal/help/CM_CreateNewRepository.html

Dep loy ing the EAR fo r a New Appl ica t i on

Production Operations User Guide 5-5

Building In the Command Line
You can build your portal application from the command line using the wlwBuild command.
This can make it easier for you to automate the process of building your application. See
wlwBuild Command for more information.

Deploying the EAR for a New Application
This section provides instructions for the initial deployment of your portal application.

At this point you can deploy your portal application to the cluster. First, place the .ear file (or
exploded EAR) on the filesystem of the administration server. To make it easier to redeploy
changes to the application, place the file in a known location from which you will always deploy
the application, such as the root directory of the administration domain.

The steps for initial application deployment to the administration server and managed servers,
and the order with which you start the managed servers, differ in different scenarios. Table 5-1
describes different scenarios and the deployment/startup procedures that must be used for each.

Table 5-1 Initial Deployment/Startup Scenarios

Scenario Deployment/Startup Procedures

Application not previously deployed,
only administration server running –
application does not use commerce (no
commerce*.jar files in the
application root directory)

1. Make sure the EAR (compressed or exploded) is in the location
you want on the administration server.

2. Start the administration server.
3. Open the WebLogic Server Administration Console

(http://adminserver:port/console) and select
Deployments > Applications.

4. Click Deploy a new Application, and select the archive for the
application from the filesystem. Click Target Application.

5. Target the application to the administration server and the cluster.
6. Deploy the application.
7. Once deployment has completed, start the managed servers

however you like, such as in parallel (simultaneously).

Application not previously deployed,
only administration server running –
application uses commerce (has the
commerce*.jar files in the
application root directory)

Perform the previous deployment steps except the last step. When you
start the managed servers, start a single managed server first. After this
managed server has started, you can start the remaining managed
servers in parallel.

../../../workshop/docs81/doc/en/workshop/reference/commands/cmdWlwBuild.html
../../../workshop/docs81/doc/en/workshop/reference/commands/cmdWlwBuild.html

5-6 Production Operations User Guide

Most components must be targeted to the administration server as well as the cluster. Here are the
following exceptions:

AppNameAdmin is not required on the administration server (though deploying
AppNameAdmin on the administration server will not cause any problems).

AppNameDatasync is not required on the target server or cluster (though deploying
AppNameDatasync to the target server or cluster will not cause any problems).

This full level of deployment on the administration server and the cluster is required, and it is the
only supported configuration. There are several application design challenges specific to
clustering that WebLogic Portal solves to ensure that portal applications perform properly and
optimally in a cluster environment. The full targeting scheme described is part of the solution to
those design challenges.

If you want to reduce the number of modules deployed on the administration server and the
cluster, click Target Each Module in the deployment steps and untarget AppNameAdmin from
the administration server and AppNameDatasync from the cluster.

While you need to deploy your portal application to the administration server, the administration
server is not typically used to serve pages for portal applications.

Administration server and cluster up
and running (whether or not commerce
is being used)

8. Make sure the EAR (compressed or exploded) is in the location
you want on the administration server.

9. In the WebLogic Server Administration Console on the
administration server
(http://adminserver:port/console), select
Deployments > Applications.

10. Click Deploy a new Application, and select the archive for the
application from the filesystem. Click Target Application.

11. Target the application to the administration server only.
12. Deploy the application on the administration server.
13. Once deployment has completed, select Deployments >

Applications > appName.
14. On the Targets tab, target the administration server and the

cluster, and click Apply.
15. On the Deploy tab, redeploy the application.

Table 5-1 Initial Deployment/Startup Scenarios (Continued)

Scenario Deployment/Startup Procedures

Dep loy ing the EAR fo r a New Appl ica t i on

Production Operations User Guide 5-7

Using Targeted Deployment
In the previous steps, you targeted the entire application for deployment rather than targeting
individual modules to the administration server and to the cluster. This is the recommended
deployment approach. Since almost all modules must be deployed to both the administration
server and to the cluster, any performance or disk space benefits you want to achieve by targeting
individual modules is not significant.

However, if for some reason you want to use targeted deployment, use the following
recommendations, which are listed in order from easiest to most difficult.

Avoid targeted deployment. Deploy the entire application to the administration server and
to the cluster.

Use Netscape or Mozilla browsers to perform targeted deployment in the WebLogic
Administration Console.

Perform multiple targeted deployments. Deploy half of the modules first, then deploy the
rest.

Run the weblogic.Deployer utility in Linux or UNIX environments. For information on
using the weblogic.Deployer utility, see Deployment Tools Reference.

Write Java code to call the weblogic.Deployer main() and pass in the module
arguments.

Use the WebLogic Server Scripting Tool (WLST). This option has not been tested on
WebLogic Portal deployment. For information on WLST, see Code Library.

Starting Managed Servers
The sequence with which you start managed servers is important and depends upon your
application deployment. See Table 5-1 for the startup sequences you must use.

If you are not deploying (a new application or an updated application), you can start all managed
servers in parallel (simultaneously).

There are numerous ways to start a managed server and bind it to your administration server,
including using Node Manager. For your initial setup, you may want to use the
startManagedWebLogic script in the domain root directory. You can run this script by
specifying the name of the managed server for this server instance and the URL of the
administration server. Before starting the script, edit it and give the managed server more memory

../../../wls/docs81/deployment/tools.html
http://dev2dev.bea.com/codelibrary/code/wlst.jsp

5-8 Production Operations User Guide

than it is allocated by default. This can be done by specifying a new MEM_ARGS setting. For
example, change the memory allocation to -Xms512m -Xmx512m.

After starting a managed server, you can browse your portal application by going to the
appropriate URL on the managed server instance. To provide your users a single point of entry
to your cluster, as well as support session failover, you will need to configure a proxy server.

Configuring Your Proxy Server
For instructions on configuring a proxy plugin for WebLogic Server, see Configure Proxy
Plugins.

There are no WebLogic Portal-specific configuration tasks when setting up a proxy plug-in.

Troubleshooting Unresolved URLs
If you are using a proxy server or switching back and forth between non-secure and secure ports,
you may find that URLs do not resolve if you use the {url:port} or {url:securePort}
variables. This is because the variables for those values are read from the request. For example,
if a user in a non-secure port (port 80) clicks a secure https link that was created with a URL
template that uses the {url:securePort} variable, the port number of the request (80) is used
for the {url:securePort} variable, which would create a secure request (https) on an
non-secure port. The same could happen if a user on a proxy server (port 80) clicks a link to a
resource outside the proxy server (port 443).

In both of those cases, you need to hard code port numbers in the URL templates to get URLs to
resolve correctly.

For more information using URL templates, see Creating URLs to Portal Resources at
http://e-docs.bea.com/workshop/docs81/doc/en/portal/buildportals/url.html

Deploying a Portal Application to the Cluster
This section contains instructions for redeployment, partial redeployment, and iterative
deployment of datasync data, such as user profile properties, user segments, content selectors,
campaigns, discounts, and other property sets.

Redeploying Applications
Use the following procedure to redeploy an application.

../../../wls/docs81/cluster/setup.html#684345
../../../wls/docs81/cluster/setup.html#684345
../../../workshop/docs81/doc/en/portal/buildportals/url.html

Depl oy ing a Po r ta l App l i cat i on t o t he C lus te r

Production Operations User Guide 5-9

1. In the WebLogic Server Administration Console on the administration server
(http://adminserver:port/console), select Deployments > Applications.

2. In the list of deployed applications, click the trash can icon next to the application you want
to redeploy. This undeploys the current version of the application.

3. After undeployment (when the application name disappears from the list of applications),
replace the EAR with the updated application on the filesystem.

4. Redeploy the application, targeting the administration server and the cluster.

5. Run the Propagation Utility if you have updated datasync files. For more details on what
datasync files contain and how to use them, see Chapter 10, “Using the Datasync Web
Application”.

Redeploying a Portal Application with weblogic.Deployer
You can use the WebLogic Server Administration Console or weblogic.Deployer tool to
redeploy an updated portal application to your production server. See weblogic.Deployer Utility.

The following batch file shown in Listing 5-1 is an example of how to use weblogic.Deployer
to redeploy a portal application to production.

Listing 5-1 Batch File That Calls weblogic.Deployer

@echo off

echo Redeploys a Portal Web Project to a Server or Cluster

echo First Parameter is the name of the Server or Cluster

echo Second Parameter is the name of the Application

echo Third Parameter is the administrative username for the Portal Server

set SERVER=%1

set APPNAME=%2

set USERNAME=%3

echo server = %SERVER%

echo appname = %APPNAME%

echo username = %USERNAME%

java weblogic.Deployer -redeploy -username %USERNAME% -name %APPNAME%

-targets %SERVER%

../../../wls/docs81/deployment/tools.html

5-10 Production Operations User Guide

Partial Redeployment with weblogic.Deployer
In certain situations you can reduce the time needed to redeploy individual pieces of a portal
application by using the weblogic.Deployer tool.

If your updates are contained within a particular portal web application, you can redeploy just that
web application and greatly reduce the time spent in redeployment. This is of use if you have new
portlets and page flows, but no new EJBs, libraries, or modules (which are Enterprise application
scoped).

Because a portal web application has a number of dependencies on WebLogic Workshop control
classes, those needed to be redeployed as well. The following batch file can be used to help
simplify that process. You need to have weblogic.Deployer in your classpath, which can be
added by running WEBLOGIC_HOME/common/bin/commEnv script.

Listing 5-2 Batch File for Redeploying WebLogic Server Control Classes

@echo off

echo Redeploys a Portal Web Project to a Server or Cluster

echo First Parameter is the name of the Server or Cluster

echo Second Parameter is the name of the Application

echo Third Parameter is the name of the Portal Web Application

echo Fourth Parameter is the administrative username for the Portal Server

set SERVER=%1

set APPNAME=%2

set WEBAPPNAME=%3

set USERNAME=%4

echo server = %SERVER%

echo appname = %APPNAME%

echo webappname = %WEBAPPNAME%

echo username = %USERNAME%

set TARGETS=%APPNAME%@%SERVER%

set TARGETS=%TARGETS%,.workshop/%APPNAME%/EJB/TimerControl_-livsjc6qp6ws@

%SERVER%

set TARGETS=%TARGETS%,.workshop/%APPNAME%/EJB/p13controls_k3cw9vg6497r@

%SERVER%

set TARGETS=%TARGETS%,.workshop/%APPNAME%/EJB/MDBListener_-1x0154i4jz0he@

%SERVER%

set TARGETS=%TARGETS%,.workshop/%APPNAME%/EJB/GenericStateless@%SERVER%

Depl oy ing a Po r ta l App l i cat i on t o t he C lus te r

Production Operations User Guide 5-11

set TARGETS=%TARGETS%,.workshop/%APPNAME%/EJB/ProjectBeans@%SERVER%

java weblogic.Deployer -redeploy -username %USERNAME% -name %WEBAPPNAME%

-targets %TARGETS%

5-12 Production Operations User Guide

Production Operations User Guide 6-1

C H A P T E R 6

Developing a Propagation Strategy

The steps you take to successfully move a portal configuration from one environment to another
depend on many variables. It is impossible to prescribe a single procedure that applies to all
circumstances. Therefore, before you attempt to move or propagate a portal application, it is
important to plan your strategy, pick the appropriate tools, and develop a set of procedures based
on recommended best practices. This chapter explains what you need to consider before you
attempt to move or propagate portal assets.

The topics included in this chapter are:

What is Propagation?

What Kind of Data Can Be Propagated?

What Tools Does BEA Provide to Assist with Propagation?

Choosing the Right Propagation Tool

Propagation Roadmap

Assessing Your Portal System Configuration

General Propagation Scenarios

What is Propagation?
Specifically, propagation refers to moving the database contents of a portal application from one
server environment to another. To accomplish this, BEA provides a tool called the Propagation
Utility, which is discussed in detail in Chapter 7, “Inside the Propagation Utility” and Chapter 8,

6-2 Production Operations User Guide

“Using the Propagation Utility”. BEA also provides a tool, the Export/Import Utility, for moving
portal assets from the database of a staging environment to files that can be imported back into
WebLogic Workshop. The Export/Import Utility is described in Chapter 9, “Using the
Export/Import Utility”. This utility also lets you move and merge portal assets from a WebLogic
Workshop environment to a staging environment’s database.

Figure shows the three typical environments between which portal assets are moved.

Figure 6-1 Moving Portals Between Environments

These three environments include:

Development – In the development environment, a team of developers uses WebLogic
Workshop to create portals and portal components, such as portlets.

Staging – In the staging environment, administrators use the Administration Portal to build
and configure portal desktops, create entitlements, and set up content repositories.

Production – The production environment is the “live” website. In a production
environment users access the web application and, optionally, customize it using Visitor
Tools. Administrators can also use the Administration Portal to modify the production
environment.

What Kind of Data Can Be Propagated?
Generally speaking, a WebLogic Portal application consists of an EAR file, an LDAP repository,
and a database. The EAR file contains application code, such as JSPs and Java classes, and portal
framework files that define portals, portlets, and datasync data. The embedded LDAP contains
security-related data, such as entitlements, roles, users, and groups. The database contains
representations of portal framework and datasync elements.

This section divides portal data into four categories, and lists the types of data that fall into each
category. The categories include:

Portal Framework Data – Refers to desktops, books, pages, and other portal framework
elements that are created with the WebLogic Administration Portal

What K ind of Data Can Be P ropagated?

Production Operations User Guide 6-3

Datasync Data – Refers to definition files, such as user profiles and content selectors that
WebLogic Portal allows you to create. Within WebLogic Workshop, these definitions are
exposed in the /data subdirectory. This data is deployed with the EAR file. If the
destination server is running in production mode, datasync data is placed in the database.

Security Data – Refers to security data, such as entitilements and role definitions. This
data is generated by administrators using the WebLogic Administration Portal.

EAR Data – Refers to the final product of WebLogic Workshop development—a J2EE
EAR file. The EAR must be deployed to a destination server using the deployment feature
of the WebLogic Server Administration Console.

Table 6-1 lists the specific kinds of data that comprise each of these categories.

Table 6-1 General Categories of Data to Propagate

Portal Framework
Data

Datasync Data Security Data EAR Data

• Desktops
• Portals
• Books
• Pages
• Portlets
• Portlet

Preferences

• Catalog data
• Content selectors
• Discounts
• Events
• Placeholders
• Request properties
• Segments
• Session properties
• User profiles
• Campaigns (must be

propagated with the
Datasync Web
Application)

• Policies (visitor entitlement
and delegated
administration)

• Roles (global, visitor
entitlement , and delegated
administration)

The following delegated
administration policies:
• portal resources (Library

and Desktop level)
• user group management
• content selectors
• campaigns
• visitor roles
• placeholders
• segments
• security providers

Note that definitions pertaining
to Content Management are not
propagated.

• .portal

• .portlet

• .pinc

• .shell

• .theme

• .menu

• .layout

• .laf (look and feel)
• .jsp

• .class

6-4 Production Operations User Guide

Note: EAR data consists of files that are generated by developers using WebLogic Workshop.
If you make a change to EAR data in WebLogic Workshop (for instance, modifying a
theme), the only way to move those changes to a staging environment is to redeploy the
EAR file. Note, however, that desktops, books, pages that are created in the
Administration Portal usually contain references to EAR data. For instance, an
administrator can assign a specific theme to a page using the Administration Portal, and
a reference to the actual theme file is maintained in the database. When you propagate a
desktop to another environment using the Propagation Utility, those references are
propagated, but the actual file the reference points to (for example, a .theme file) is not.
EAR deployment and the Propagation Utility are described in the following sections.

The following sections discuss the tools that BEA provides for moving portal data between
environments.

What Tools Does BEA Provide to Assist with Propagation?
As you develop a propagation strategy, it is important that you know what tools are available to
help you propagate a portal from one environment to another. This section introduces the primary
tools at your disposal and their purposes.

WebLogic Server Administration Console (EAR Deployment)
Use the WebLogic Server Administration Console to deploy an Enterprise Application’s EAR
file to a target server. EAR deployment is almost always the first step in any propagation. The
EAR file must be redeployed any time changes are made using WebLogic Workshop. For
example, if developers add or remove pages from a .portal file, define content selectors, create
new portlets and related Java resources (such as JSPs), then the EAR file must be built and
deployed to propagate those changes to a new environment.

For detailed information on EAR deployment, see Chapter 5, “Preparing and Deploying the EAR
File”.

Propagation Utility
The Propagation Utility guides you through the process of propagating the configuration
contents, including portal framework, datasync, and security data, of one portal domain
environment to another. For example, the Propagation Utility can play a role whenever you move
a portal application from a staging environment to the production environment.

Tip: Before using the Propagation Utility to propagate a portal, always deploy the EAR file in
the target environment first.

What Too l s Does BEA P rov ide to Ass is t w i th Pr opagat ion?

Production Operations User Guide 6-5

Features of the Propagation Utility include:

Exporting portal assets – The tool lets you export the portal assets stored in the portal
application’s database into an XML file.

Differencing – The tool lets you view the differences between portal assets in the source
application and the target application. For instance, you can tell at a glance if a particular
page in a portal was added or removed from the target configuration.

Importing portal assets – Portal assets that have been exported from a source
configuration can be imported into the target. Before importing, you can view the
differences between the assets stored in the two configurations. On import, merge decisions
are made based on well-defined policies.

Policies – Policies are well-defined conditions under which source assets will (or will not)
be merged into a target configuration. For instance, a policy may state that if an asset exists
on the source, but not on the destination, add it to the destination. Another policy may state
that if an asset exists on the destination, but not on the source, delete it from the
destination. The Propagation Utility allows you to customize the policies that govern these
merge operations. For more information on policies, see “Creating Policies for Merging
Inventory Information” on page 8-16.

Scope – You can set a scope for the propagation. Scopes include Enterprise application,
web application, and desktop. For more information on scope, see “Setting the Scope” on
page 7-6.

For detailed information on using the GUI-based Propagation Utility, see Chapter 8, “Using the
Propagation Utility”.

Datasync Web Application
Datasync data includes personalization components, such as campaigns, catalog definitions,
content selectors, discounts, placeholders, user segments, and user profile definitions. You can
find these components in your Enterprise application’s /data directory.

Note: You can propagate datasync data using either the Propagation Utility or the Datasync
web application; however, the Propagation Utility is usually recommended. The only
scenario where you must use the Datasync web application is when you need to
propagate campaign data. The Propagation Utility ignores campaign data.

To use the Datasync web application, you must first deploy the EAR file on the destination server.
The Datasync web application synchronizes file-based datasync data with the application’s

6-6 Production Operations User Guide

database. In other words, the web application pulls datasync data, such as content selector files
(.sel files) out of the deployed EAR and merges that data into the database.

For detailed information on datasync data and using the Datasync web application, see
Chapter 10, “Using the Datasync Web Application”.

Export/Import Utility
The Export/Import Utility allows you to export desktops, books, and pages from a database to a
.portal file. This .portal file can then be opened with WebLogic Workshop by a developer,
modified, and then merged back into the database using the Export/Import Utility. Therefore, this
utility allows developers to move portal assets in a “round trip” between a development
environment and a staging environment, or between development environments.

The utility lets you scope its operations to the following levels:

Library level – Assets that exist in the Library of the Administration Portal

Administration level – Assets that exist in desktops created in the Administration Portal

Visitor level – Asset instances that have been customized by users through Visitor Tools or
user customizations

In addition, the utility lets you specify a set of rules to determine how the objects are merged. You
can also specify different scoping rules, from the Enterprise Application scope (at the highest
level) down to pages within books. This flexibility helps ensure that the user’s and
administrator’s customizations will not be lost when the assets are merged.

For detailed information on the Export/Import Utility, see Chapter 9, “Using the Export/Import
Utility”.

Manual Propagation Steps
The propagation tools provided by BEA handle most of the work necessary to move a portal web
application from one environment to another. However, there are some manual steps that you
may need to perform to ensure a successful migration. In some cases, these steps are required by
design. For instance, some security data is intentionally not propagated. Other cases involve
known limitations in the tools themselves. For instance, propagation of campaign data and data
from the content management system is currently not supported. Whenever possible, these cases
are clearly documented and workarounds are discussed.

For detailed information on manual propagation steps, see “Making Manual Changes Prior to
Propagation” on page 8-21.

Choos ing the R igh t P ropagat ion Too l

Production Operations User Guide 6-7

Database Vendor Tools (Not Supported)
BEA does not support the use of database vendor tools as a means of propagating any WebLogic
Portal assets from one database environment to another.

Choosing the Right Propagation Tool
Table 6-2 shows the appropriate propagation tool to use depending on the type of propagation and
the specific kinds of changes to propagate. Items in the Changes to Propagate column are defined
in “What Kind of Data Can Be Propagated?” on page 6-2, and the tools listed are summarized in
“What Tools Does BEA Provide to Assist with Propagation?” on page 6-4.

For example, the first row of the table indicates that if you are making an initial deployment from
a development to a staging environment, you simply deploy the EAR file.

Table 6-2 Choosing a Propagation Method

Source Destination Changes to Propagate Propagation
Method

Development environment Staging environment
• Development mode *
• Initial deployment

• Portal Framework data
• Datasync data
• EAR data

Deploy EAR

Development environment Staging environment
• Production mode *
• Redeployment

• Portal Framework data
• Datasync data
• EAR data

1. Deploy EAR
2. Datasync web

application

Staging environment Development environment • Portal Framework data
(only desktops, books,
and pages)

Export/Import
Utility

Staging environment
• Production mode *

Development environment • Datasync data Datasync web
application

Staging environment
• Administration Portal

changes

Production environment
• Production mode *
• Administration Portal

changes

• Portal Framework data
• Datasync data
• Security data

1. Deploy EAR
2. Propagation

Utility
3. Datasync web

application (for
campaigns)

6-8 Production Operations User Guide

* See “Production Mode vs. Development Mode” on page 6-19.

Propagation Roadmap
As you plan your propagation strategy, it is important to develop a roadmap of your system. This
section describes the interrelationships between a typical system that includes development,
staging, and production environments. The roadmap, Figure 6-2, shows how portals are moved
across these environments and the tools that are used to move them.

This section is intended to help you understand not only the connections between the different
systems on which portals exist, but the tools and methods used to move or propagate portals
between those systems. The numbered parts of the figure are described in detail in the remainder
of this section. Please refer to the figure as you read the following sections.

Staging Environment

Administration Portal
changes

Production Environment
• Development mode *

• Portal Framework data
• Datasync data
• Security data

1. Deploy EAR

2. Propagation
Utility

Development Environment
• Administration Portal

changes

Staging Environment
• Administration Portal

changes

• Portal Framework data Propagation Utility

Table 6-2 Choosing a Propagation Method (Continued)

Source Destination Changes to Propagate Propagation
Method

Propagat i on Roadmap

Production Operations User Guide 6-9

Fi
gu

re
6-

2
 P

ro
pa

ga
tio

n
Ro

ad
m

ap

6-10 Production Operations User Guide

Development Environments
Portal development is typically spread out among members of a team using WebLogic Workshop
on individual client machines. Refer to Chapter 3, “Managing a Team Development
Environment” for detailed information on setting up a multi-developer portal development
environment.

It is important to remember that files are the primary, and often only, product of the IDE-based
environment. WebLogic Workshop allows developers to create Java components that are used by
portals, such as Java Pageflows, Controls, and JSPs. WebLogic Workshop also lets developers
create portlets, portals, look and feels, layouts, and so on. All of these components are stored in
files, such as .java, .jsp, .jpf, .jcs, .portal, .pinc, .portlet, .laf, and so on.

Source Control
Development typically occurs in conjunction with a source control system. As explained in
Chapter 3, “Managing a Team Development Environment”, a common domain is established for
the team, but the web application itself is checked into source control where individual
developers can check it out, create and modify files, and check them back into source control.
Once built, the EAR file can also be checked into source control.

Chapter 3, “Managing a Team Development Environment” discusses the use of source control in
team development environments.

Moving from Development to Staging
When development is complete, an EAR file can be deployed to the staging environment. The
easiest way to do this is to use FTP to move the EAR to the staging server, and then to use the
WebLogic Server Deployment feature to deploy the EAR into the J2EE server environment. See
Chapter 5, “Preparing and Deploying the EAR File” for more details.

Note: It is possible to run the Administration Portal from WebLogic Workshop. Whenever the
Administration Portal is used, the output is stored in a database, not in a file. Therefore,
if you are in development and use the Administration Portal to create Desktops, users,
groups, entitlements, or other administrative features, that information is stored in a
database. Assets in the database are not included in the EAR file, and will not be
transferred when you move and deploy the EAR.

Propagat i on Roadmap

Production Operations User Guide 6-11

Tip: The best practice in portal development is to use the WebLogic Administration Portal only
in a staging or production environment. If you use the Administration Portal in a development
environment, then you must use the Propagation Utility to move the database assets.

Staging Environment
In the staging environment the Administration Portal is used to assemble the portal components
that were created in development into desktops, to create users and groups, assign administrative
privileges, configure delegated administration rights, modify books and pages, and so on. It is
important to remember that anytime you use the Administration Portal to modify a portal, all
portal assets from that point on are stored in the database: the connection to the .portal and
.pinc, files created in WebLogic Workshop is lost.

Tip: It is possible to return portal assets stored in the database back to files using the
Export/Import Utility. To move portal assets to a production environment (database to database),
the best practice is to use the Propagation Utility.

For details on the Export/Import Utility, see Chapter 9, “Using the Export/Import Utility”. For
details on the Propagation Utility, see Chapter 8, “Using the Propagation Utility”.

Source Control in the Staging Environment
It is a best practice to employ source control in the staging environment. Two components to store
in source control are the web application’s EAR file and the application’s portal-specific assets,
or inventory. The easiest way to extract the inventory from a web application is to use the
Propagation Utility to export the inventory into a ZIP file.

For details on the Propagation Utility, see Chapter 8, “Using the Propagation Utility”.

Moving to the Production Environment
The Propagation Utility allows you to move a staged portal application to a live production
environment.

Note: The Propagation Utility reads the portal inventory ZIP file that was created in staging and
reports the differences between the staging inventory and the current production
inventory. At this point, you can view these differences and decide whether or not to go
ahead with the propagation. Differences can include portal assets that have been added,
deleted, or updated. For example, if a page was added to a desktop in staging the
Propagation Utility will report that a page was added if it does not exist in the production

6-12 Production Operations User Guide

environment. Similarly, if a page was deleted from the production environment, the
Propagation Utility will report that it was deleted and give you the option of adding it
back or not (if it still exists on the staging server).

For information on EAR deployment, see Chapter 5, “Preparing and Deploying the EAR File”.

For details on the Propagation Utility, see Chapter 8, “Using the Propagation Utility”.

Assessing Your Portal System Configuration
It is important for each site that deploys WebLogic Portal to develop a strategy for propagating
portal applications from one environment to another. When you plan a propagation strategy, it
helps to assess carefully the structure of your site and your methods of portal development. Some
questions to ask include:

What is the portal life cycle pattern for your site? Will you be propagating primarily
from a development server to a production server, or is there also an intermediate
staging/testing environment? For example, in development, developers typically use
WebLogic Workshop to create portal assets. In staging and production, administrators use
the WebLogic Administration Portal to create and configure portal desktops. In addition,
users of the production system can use Visitor Tools to customize portals. Also, extensive
testing typically occurs in the staging environment. For an overview of the environments
you can propagate to and from, see the previous section, “Propagation Roadmap” on
page 6-8

What mode is your production server in? For more information on modes, see
“Production Mode vs. Development Mode” on page 6-19.

Are you deploying your application for the first time, or are you redeploying it? For
details, see “General Propagation Scenarios” on page 6-13.

If you are redeploying an existing application, what kinds of changes were made to it,
and how were they made? Did developers use WebLogic Workshop to modify, create, or
remove portal resources (such as adding a new book and pages to a portal, and adding
portlets to the pages)? Was your application modified in a staging environment by
administrators using the Administration Portal? For details, see “General Propagation
Scenarios” on page 6-13.

What is the scope of your propagation? Do you wish to propagate the entire Enterprise
application, a single web application, or a desktop? For details on scope, see “Propagation
Scope” on page 7-6.

Genera l P ropagat i on Scenar i os

Production Operations User Guide 6-13

Do you wish to push a portal from a staging or production environment back to a
WebLogic Workshop environment? For information on accomplishing this task, see
Chapter 9, “Using the Export/Import Utility”.

Do you wish to push a portal from a production environment back to a staging
environment? This can be accomplished with the Propagation Utility. See Chapter 8,
“Using the Propagation Utility”.

Have you defined entitlements for portal assets, such as portlets? If so, you need to be
aware that some security information is by design never propagated by existing BEA tools,
and you may need to manually recreate specific user and group definitions on the
production server. For information on how security elements are handled during
propagation, see “Security Information and Propagation” on page 7-14.

The next section discusses typical propagation scenarios and the tools and methods that are used
in each.

General Propagation Scenarios
After you familiarize yourself with the available propagation tools, the next challenge is to decide
when and where to use them. This section presents several general propagation scenarios and
offers suggested best practices.

Example Environment
The scenarios outlined in this section assume an environment where there are separate
development, staging, and production servers, as shown in Figure .

Figure 6-3 Example of a Portal Development and Production Environment

In a development environment, developers use WebLogic Workshop to create portals and
portlets. In this environment, all portal-related data is file-based (stored in XML files, such as
.portal and .portlet files). At the completion of development, these file-based assets,
including Java and JSP files, configuration files, and datasync files, are assembled and
compressed into an EAR file.

6-14 Production Operations User Guide

A staging environment has been established on a server that is separated from the development
environment. The staging server will be used to test the application and to further configure it. In
the staging environment, administrators use the Administration Portal to create and arrange portal
desktops, entitle portal resources, create users and groups for testing purposes, and so on.

The production environment is the “live” Web site. In this environment, users are accessing and
using portal applications. Both administrators and users can make changes to the portal in the
production environment. Administrators use the Administration Portal to effect changes, and
users use the Visitor Tools to customize their individual portal views.

Scenario 1: Deploying the EAR file for the first time

If you are deploying an EAR file to a server for the first time, the procedure is relatively easy.
Typically, developers have used WebLogic Workshop to create portals, portlets, and other
application features, and they wish to deploy the new application to a staging server.

For detailed information on deploying an EAR file, see Chapter 5, “Preparing and Deploying the
EAR File”.

Note: When you begin using the WebLogic Administration Portal, data stored in the EAR is
automatically pulled out of the EAR and stored in the staging server’s database. At this
point, all subsequent modifications to the portal occur in the database only. Changes are
not reflected back into the EAR file.

Scenario 2: Redeploying an EAR file
When redeploying, it is assumed that the target server is a staging or production server. As with
the first deployment described previously, the first steps in redeploying are to build the EAR file,
move it to the staging server, and use WebLogic Server Console to deploy the EAR on the staging
server.

Tip: For detailed information on using WebLogic Server Console to redeploy an application, see
“Redeploying Applications” on page 5-9.

If you are redeploying the application, there are caveats depending on whether the server you are
deploying to is in development mode or production mode. Recall that you choose the server’s
mode when you create the domain. A server in production mode is optimized to run more
efficiently than one in development mode.

Genera l P ropagat i on Scenar i os

Production Operations User Guide 6-15

If the Target Server is in Development Mode

Any changes made to the EAR file, including datasync data, are automatically detected and
deployed to the target server.

New portlets are automatically detected and moved into the Library of the Administration
Portal.

New Books and Pages added to a portal are not automatically added to the Library. They
are added only if you use the Administration Portal to create a new Desktop that uses the
new books and pages.

If the Target Server is in Production Mode

Datasync data is ignored if the EAR is deployed to a server in production mode. See the
following section for information on moving the datasync data.

New portlets are automatically detected and moved into the Library of the Administration
Portal.

New Books and Pages added to a portal are not automatically added to the Library. They
are added only if you use the Administration Portal to create a new Desktop that uses the
new books and pages.

Moving the Datasync Data
When you redeploy an Enterprise application, you have a choice between deploying an EAR file
or an exploded EAR file. The way in which datasync data is handled during deployment depends
on (a) whether you deploy an exploded EAR or an EAR file and (b) whether the server is in
development mode or production mode. (See also “Production Mode vs. Development Mode” on
page 6-19.)

As Figure 6-4 shows, when you deploy an Enterprise application, datasync data is placed in the
/data directory (it is deployed to the filesystem) except in the case where you redeploy an EAR
file to a server in production mode. In the later case, you must use either the Propagation Utility
or the Datasync web application to move the datasync assets to the target server’s database.

6-16 Production Operations User Guide

Figure 6-4 Where Datasync Data Is Located When You Deploy an Enterprise Application

When you redeploy an EAR file (not an exploded EAR) to a server that is in production mode,
you have to propagate the datasync data as a separate operation.

To do this, you have two options:

Use the Propagation Utility to propagate the database from the source to the target server.
The Propagation Utility lets you view the differences between the two environments and
automatically handles merging those differences based on configurable policies.

The Propagation Utility is the recommended method for propagating database assets.

Use the Datasync Web Application to synchronize the contents of the EAR file with the
database.

Tip: The best practice is to always use the Propagation Utility to move datasync data. There are
situations, however, where the Datasync Web Application must be used. For example, if the
scope of the Propagation Utility is set to the Desktop level, datasync data will not be propagated

Genera l P ropagat i on Scenar i os

Production Operations User Guide 6-17

(datasync data resides at the Enterprise Application level, and so would be out of scope in this
case).

Scenario 3: Propagating from Staging to Production: Enterprise Scope
When propagating an Enterprise application from a staging to a production environment, it is
assumed that the target server is in production mode. Having the production server in production
mode is the best practice. However, nothing prevents a site from running the “live” production
server in development mode. Be aware that if the target server is running in development mode,
datasync data is automatically moved when the EAR is deployed. If the target is running in
production mode, EAR-based datasync data is ignored.

The basic steps for propagating from staging to production environments are:

1. Deploy the EAR file.

2. Use the Propagation Utility to propagate the database assets from the staging server to the
production server.

Note: Typically, the two environments will be out of sync. It is possible that changes were made
to both the production and staging servers since the previous propagation. See the section
“Scenario 5: Propagating from Production to Staging: Both Have Changed” on
page 6-18.

3. If you are using a content management system, you must manually recreate the repository
from the staging environment in the production environment.

Tip: Be aware that users and groups, by design, are not propagated by the Propagation Utility.
Therefore, typically, items such as groups (which contain users) must be manually recreated on
the production server (Although, if the staging and production servers share the same LDAP
directory, and this authentication information is stored in LDAP, it is not necessary to recreate
the users and groups.). For more information on LDAP propagation, see “Security Information
and Propagation” on page 7-14.

Scenario 4: Propagating from Staging to Production: Desktop Scope
If you do not wish to propagate the entire Enterprise application, you can adjust the scope. For
example, you can use the Propagation Utility to propagate only a desktop. In this case, you must
be aware that datasync data will not be propagated because it resides at the Enterprise application
scope, and is not included in the Desktop scope. Therefore, you need a strategy for propagating
datasync data in this circumstance.

6-18 Production Operations User Guide

The basic steps for propagating with Desktop scope are the same as Enterprise scope, described
in the previous section.

Tip: It is recommended as a best practice to initially scope to the Enterprise application level, and
then to the desktop level.

To propagate the datasync data outside of the Desktop scope, use the Datasync web application.
The recommended method for accomplishing this is to place the new datasync files in a JAR file
and move the JAR file to the production server. Then, run the Datasync web application on that
JAR file. The Datasync web application will insert, or bootstrap, the specified files into the
production server’s database. For more information on using the Datasync web application, see
Chapter 10, “Using the Datasync Web Application”.

Scenario 5: Propagating from Production to Staging: Both Have Changed
It is sometimes necessary to return a production environment configuration to a staging
environment. Typically, this allows administrators and developers to add new features and fix
known problems. The problem associated with this propagation is that both administrative and
user customizations could have been made to the production system. For instance, an
administrator may have added a new desktop, or removed a page. A user may have customized
her individual view of a portal using Visitor Tools.

To complicate the scenario, additional development and customization may have occurred in the
staging environment since the application was last propagated. The problem, then, is to identify
the differences between the two environments and, decide which changes to keep and which to
remove.

The Propagation Utility reports differences between the source and target environments. While
the Propagation Utility policies allow you to set rules for merging portal assets, it is up to you to
review the differences and verify that the changes you intend to make to the target are made.

Note: User customizations are not propagated, but they are preserved on the destination. The
Propagation Utility modifies or removes user customizations on the destination server
only under certain circumstances, such as if another change causes a conflict. For
example, if a user customizes a portlet, but the portlet is deleted, the user customizations
that reference the deleted portlet will be removed. For more information see “User
Customizations and Propagation” on page 7-15.

Tip: If you make a change to the staging environment using the Administration Portal, the
changes you make are saved in the database if the EAR file is compressed. If the EAR is
uncompressed (exploded) changes are written to the filesystem. If you redeploy the EAR file at
a later time, you must be sure to propagate datasync elements that have been changed. You can

Produc t ion Mode vs . Deve lopment Mode

Production Operations User Guide 6-19

use the Propagation Utility or the Datasync Web Application to move datasync data. For more
information, see “Datasync Web Application” on page 6-5 and “Production Mode vs.
Development Mode” on page 6-19.

Scenario 6: Round-Trip Development
The Export/Import Utility allows you to propagate desktops, books, and pages back and forth
between development (WebLogic Workshop) and staging environments. Propagating from
development to staging and back to development is called a round trip.

The Export/Import Utility exports desktops, books, and pages from the staging database to .portal
and .pinc files that can be read into WebLogic Workshop. The utility also allows you to import
.portal and .pinc files into a staging database. You can set the scope of imports and exports to the
library, desktop, or visitor level.

Warning: When a new asset, such as a new book or page, is created in the Administration
Portal, a unique identifier is generated for that asset. It is a best practice to avoid
changing these definition labels once they have been propagated (or moved with
the Export/Import Utility) for the first time. If you change a resource’s definition
label, the Export/Import Utility views the resource as a new resource rather than an
updated resource. As a result, the Export/Import Utility will perform an add
operation rather than an update operation.

Tip: An important feature of the Export/Import Utility is that it allows you to merge file-based
assets from the development environment into a database-based staging environment. In other
words, if you export an application to a file-based development environment, and then make
changes in the development environment, you can use the Export/Import Utility to merge those
changes back into the database of the staging environment.

Production Mode vs. Development Mode
When you configure a domain, you are given a choice between a development mode and a
production mode. As a best practice, it makes sense for the production (live) environment to be
in production mode because it runs more efficiently; however, some sites run their live
production servers in development mode. Knowing the server’s mode is important for
understanding how certain portal assets are propagated. For instance, when you deploy an EAR
file to a server that is in production mode, datasync data is ignored.

6-20 Production Operations User Guide

Production Operations User Guide 7-1

C H A P T E R 7

Inside the Propagation Utility

The Propagation Utility allows you to propagate the configuration of one portal environment to
another. This chapter provides information that you need to know before using the Propagation
Utility. For usage information about this utility, see “Using the Propagation Utility” on page 8-1.
For a description of limitations in the current release of the Propagation Utility, see the WebLogic
Portal SP4 Propagation Patch Release Notes.

The sections included in this chapter are:

The Propagation Utility Sequence

General Propagation Guidelines

Before You Begin

Propagation Scope

Propagation Scope Reference Table

Security Information and Propagation

User Customizations and Propagation

Datasync Assets and Propagation

Conflict Resolution Using Policies

Best Practices

7-2 Production Operations User Guide

The Propagation Utility Sequence
Propagation using the Propagation Utility consists of two primary tasks:

First you export a system inventory from a source system, which is typically a staging
system. This exported inventory list describes the entire Enterprise application
configuration, as contained in the database for that system. The exported inventory is
stored in the form of XML files, which are grouped into a single ZIP file.

Then you import and commit the inventory to a destination system, which is typically a
production system. The following text summarizes the steps that you perform as part of the
import process:

– Set the scope – You choose a scope for the propagation; scopes include Enterprise
application, Portal web applications (as a group), individual Portal web application,
portal, and desktop. For more information on scope, see “Setting the Scope” on
page 7-6.

– Choose policies – Policies are well-defined conditions under which source assets will
(or will not) be merged into the destination database. For more information on policies,
see “Conflict Resolution Using Policies” on page 7-16.

– Preview changes – The Propagation Utility finds and displays the changes that will
occur when you choose to commit the propagation, based on the scope and policies that
you select. For more information on the types of data that can be propagated, see
“Propagation Scope Reference Table” on page 7-8.

– Commit the changes – When you commit the changes, the Propagation Utility
performs the changes based on the previewed change manifest.

General Propagation Guidelines
The following sections describe some general considerations to keep in mind as you prepare to
use the Propagation Utility.

Propagating in a Clustered Environment
In a clustered environment, propagate from the source server to the specific managed server on
the destination.

Befor e You Beg in

Production Operations User Guide 7-3

Propagating Across Networked Systems
Keep in mind that the Propagation Utility is a Web-based application that runs on the server that
you are importing to or exporting from. If you have a firewall between the source and the
destination system that blocks access from a client browser, give access to the client machine or
run the import process from the destination machine.

Before You Begin
The following sections describe some preparation tasks to perform before using the Propagation
Utility. For additional information about the propagation planning process, see Chapter 6,
“Developing a Propagation Strategy.”

Perform a Data Backup
Back up your WebLogic LDAP repository using the steps in the “Recovering Failed Servers”
section of the WebLogic Server documentation.

Back up your database using the the vendor tools appropriate for your environment. Save a copy
of the deployed application that you are propagating; you will be deploying an EAR to the
existing application, which will overwrite the current configuration.

Plan to Inactivate the System During the Import Process
The Propagation Utility does not provide the ability to quiesce the system (that is, disable
modification of portal data via the Administration Portal). You might want to prevent users from
changing portal data during a propagation by redirecting WebLogic Administration Portal URLs
to a maintenance page. It is very important that you make no changes to the production system
after you load and validate the inventory listing during the import portion of the propagation. For
more information, see “Acknowledging the Quiescence Requirement” on page 8-14.

Install the Patch
Before running the Propagation Utility you must have already installed appropriate software. For
instructions, see “Installing the Propagation Software” on page 2-1.

http://e-docs.bea.com/wls/docs81/adminguide/failures.html

7-4 Production Operations User Guide

Customize the Session Timeout and Inventory/Log File
Location (Optional)
You can change the default location of the verbose log files and inventory files, and change the
session timeout period.

To edit these values, uncompress the propagation.war file, which is located in the following
directory:

patchpath\8.1 SP4 Patch\Propagation Tool

where patchpath is the root directory where you unzipped the patch.

Edit the web.xml file to make any changes that you want; this file is located here:

patchpath\8.1 SP4 Patch\Propagation Tooll\WEB-INF

When you finish editing the file, remember to compress the files to recreate the
propagation.war file.

Session Timeout Value
To change the timeout period, expressed in minutes, edit the web.xml file to change the
session-timeout value:

<session-config>
 <session-timeout>15</session-timeout>

</session-config>

Inventory and Log File Location
To change the default location of the generated inventories that the Propagation Utility produces
and the default location for the Propagation Utility’s verbose log files, edit the web.xml file to
change param-value:

<context-param>
<param-name>oamDataFilesystemPath</param-name>
 <param-value>d:/propagation/81xDomain/inventories</param-value>
 <description>Base folder path for runtime data, such as
 inventory exports.</description>
</context-param>

For more information on the log files that the Propagation Utility produces, see “Reviewing
Propagation Utility Export Log Files” on page 8-9 and “Reviewing the Import Log Files” on
page 8-23.

Befor e You Beg in

Production Operations User Guide 7-5

Deploy the J2EE Application (EAR)
If you created new resources for your web application using WebLogic Workshop, including
portlets, portals, books, pages, custom layouts, look and feels, menus, shells, themes, JSPs, or
Java classes, you must deploy the J2EE application from the source system to the destination
system at some point prior to committing the changes with the Propagation Utility. When you
deploy the J2EE application, changes reflected in the EAR file may or may not be propagated
automatically, depending on whether your server is in production mode or development mode.
For more information, see “General Propagation Scenarios” on page 6-13 and “Scenario 2:
Redeploying an EAR file” on page 6-14. For detailed information on deploying EAR files, see
“Preparing and Deploying the EAR File” on page 5-1.

Tip: It is not required that you deploy your J2EE application prior to beginning the Propagation
Utility; the Propagation Utility Web-based interface contains a reminder page at the required
stage in the propagation process. However, deploying the application beforehand is a good
practice.

If you commit propagation changes without deploying the J2EE application, the inventory listing
includes the new resources, but the resources are not displayed in the portal library on the
destination system and the following destination database tables are not updated with new data:

PF_MENU_DEFINITION

PF_LAYOUT_DEFINITION

PF_LOOK_AND_FEEL_DEFINITION

PF_SHELL_DEFINITION

PF_THEME_DEFINITION

PF_PORTLET_DEFINITION

For more information on these database tables and how they are used, see the BEA WebLogic
Portal Database Administrator Guide.

Make Required Manual Changes
Because the Propagation Utility does not propagate the complete set of portal resources from the
source to the destination system, there might be cases where propagated data depends on other
data that is not propagated. For example:

../db/index.html
../db/index.html

7-6 Production Operations User Guide

Visitor entitlement roles are propagated to the destination but any related users and groups
are not, so you must manually add those related users and groups on the destination
system.

If you are propagating any data related to new content repositories, you must create the
new content repositories on the destination system before using the Propagation Utility.

For a list of propagated and non-propagated resources, see “Propagation Scope Reference Table”
on page 7-8.

The Propagation Utility Web-based interface includes a page that lists pending changes that
require associated manual updates. Review this list of changes to verify that you have already
performed all required manual changes.

To view an example of a manual change listing, see “Making Manual Changes Prior to
Propagation” on page 8-21.

Propagation Scope
To understand how portal assets are propagated, it is crucial to understand propagation scope. The
Propagation Utility detects differences that exist between the source and destination systems and
creates a nested list of possible scopes. From this list, you may select a specific scope for the
propagation. For instance, if you select web application scope, all assets in the web application
are propagated. If you select desktop scope, only the assets associated with a specific desktop are
propagated.

Setting the Scope
You specify the scope of a propagation during the import process. You can select to scope the
propagation at several levels of granularity, depending on where differences exist between your
two systems.

Enterprise application – Propagates all detected changes for the Enterprise application to
the destination system.

Note: The Propagation Utility can be used to move data between different instances of the
same enterprise application; it does not support propagating from one application to
another.

Portal Webapps – Propagates as a group all of the portal framework data for the web
applications present in the Enterprise application.

Web application – Propagates all portal framework data within a single web application.

Propagat i on Scope

Production Operations User Guide 7-7

Library - Propagates portal framework Library data for a single web application.

Portal – Propagates as a group all of the desktops in a single portal web application.

Desktop – Propagates all differences within a single desktop. This scope maps to the
Export/Import Utility’s Admin scope, as described in Chapter 9, “Using the Export/Import
Utility.”

Tip: When using the Propagation Utility, the best practice is to scope to the highest level—
Enterprise application. This ensures that the destination environment will exactly mirror the
source environment. If you scope to a lower level, web application or desktop, the source and
destination might be in different states. In this case, additional quality assurance testing may be
required on the destination. For details, see “Set the Scope to the Enterprise Application Level”
on page 7-19.

Scope and Library Inheritance
The WebLogic Administration Portal organizes portal resources in a tree that consists of Library
resources and desktop resources. Understanding the relationship between Library and desktop
resources helps you to understand the effects and consequences of propagation.

Portal Asset Instances and Inheritance
The following text describes the relationships between the following instances of portal assets:

Primary instance – Created in WebLogic Workshop and stored in a .portal or
.portlet file

Library instance – Created or updated in the Administration Portal, and displayed in the
Portal Resources tree under the Library node

Desktop instance – Created or updated in the Administration Portal, and displayed in the
Portal Resources tree under the Portals node

Visitor instance – Created or updated in the Visitor Tools

Creating a New Desktop and Disassembling to the Library
When you create a new desktop using the Administration Portal, you can use an existing portal
template. Using a template means that you will be taking the portal resources for your desktop
directly from a .portal file that was created in WebLogic Workshop. (The .portal file is also
called the primary instance.) When you create a desktop, the portal assets are removed from the
.portal file, placed in a database, and surfaced in both the Library and desktop trees of the

7-8 Production Operations User Guide

Administration Portal. Taking the assets from a new desktop instance and placing them in the
Library is called disassembling.

At this point, the assets (books, pages, and so on) in the Library (Library instances) are
hierarchically related to their corresponding desktop instances. A change to a Library resource,
such as a name change, is automatically inherited by the corresponding desktop asset. On the
other hand, a change to the desktop asset is not reflected back up the hierarchy.

Note: Changes made to assets are never “reverse inherited” up the hierarchy. A change to a
desktop asset is never inherited by its corresponding Library instance. Likewise, a change
to a Visitor instance is never inherited by a desktop or Library instance.

New books and pages that you create in a desktop are not disassembled—they are considered to
be private to that desktop.

When you propagate a portal using either portal or desktop scope, new pages and books are
disassembled to the Portal Library if they do not already exist there.

Decoupling of Property Settings
If an administrator or a visitor (using Visitor Tools) changes the Book Properties of a book or the
Page Properties of a page in a desktop, those property settings become decoupled from the
settings in the parent book or page in the Library. Page properties include layout and theme, while
Book Properties include menus and layout. These properties can be modified in the
Administration Portal. When a portal is propagated, any assets that are decoupled in the source
application will remain decoupled in the destination.

Propagation Scope Reference Table
This section lists the kinds of portal assets handled by the Propagation Utility and shows you the
scoping levels that are available for each type of asset. Table 7-1 helps you choose the appropriate
scope for the propagation you wish to perform, and to ensure that the assets you wish to propagate
are propagated. For example, some assets, such as dataync data, are only propagated at the
Enterprise scope.

This table includes data that can be propagated by the Propagation Utility as well as using the
Datasync web application or by deploying the EAR. If you deploy the EAR prior to using the
Propagation Utility, as recommended, fewer changes will actually be handled by the Propagation
Utility. For details on the Datasync web application, see “Using the Datasync Web Application”
on page 10-1. For details on EAR deployment, see “Preparing and Deploying the EAR File” on
page 5-1.

Propagat i on Scope Re fe rence Tab le

Production Operations User Guide 7-9

For more details on manually propagating assets, see “Make Required Manual Changes” on
page 7-5.

Data propagation depends on the scope that you set during the Import task. The following
indicators in the table show the applicable propagation scopes for each type of data:

E – Enterprise Application scope

PW – Portal Webapps scope (all web applications that reside in the Enterprise application)

W – Web application scope

L - Web application Library scope

P – Portal scope (all desktops that reside in an individual portal)

D – Desktop scope

For more information about propagation scopes, see “Setting the Scope” on page 7-6.

7-10 Production Operations User Guide

Table 7-1 Data Propagation Reference Table

Data Category Data Propagation Scope and Description

Framework Portals E, PW, W, L, P – fully propagated.

D – not applicable. Data at this scope is moved by deploying
the EAR.

Desktops E, PW, W, L, P, D – fully propagated.

Books E, PW, W, L, P, D – fully propagated.

Note: The description field content is not propagated; for
details see the WebLogic Portal 8.1 SP4 Propagation
Patch Release Notes.

Pages E, PW, W, L, P, D – fully propagated.

In addition, Look and Feel references, such as a dependency
between a page and its layout, are propagated.

Note: The description field content is not propagated; for
details see the WebLogic Portal 8.1 SP4 Propagation
Patch Release Notes.

Portlets E, PW, W, L, P, D – fully propagated.

Portlet Preferences E, PW, W, L, P, D – fully propagated.

Note: For the current release, portlet preferences are never
deleted from the destination server; changed
preference attributes are concatenated rather than
updated. For details, see the WebLogic Portal SP4
Propagation Patch Release Notes.

Portlet Categories E, PW, W, L – fully propagated.

P, D – not applicable. Data at this scope is moved by
deploying the EAR.

Propagat i on Scope Re fe rence Tab le

Production Operations User Guide 7-11

Framework,
continued

Shells Not applicable. Data at this scope is moved by deploying the
EAR.

Themes Not applicable. Data at this scope is moved by deploying the
EAR.

Menus Not applicable. Data at this scope is moved by deploying the
EAR.

Layouts Not applicable. Data at this scope is moved by deploying the
EAR.

Look and Feels Not applicable. Data at this scope is moved by deploying the
EAR.

Framework,
continued

User Customizations Not propagated. User customizations are preserved on
the destination system, but may be modified when
imported changes are applied to the destination. For
more information, see “User Customizations and
Propagation” on page 7-15.

Table 7-1 Data Propagation Reference Table (Continued)

Data Category Data Propagation Scope and Description

7-12 Production Operations User Guide

Datasync Catalog Property
Definitions

E – fully propagated.
PW, W, L, P, D – not propagated.

Content Selectors E – fully propagated.
PW, W, L, P, D – not propagated.

Discount Definitions E – fully propagated.
PW, W, L, P, D – not propagated.

Event Definitions E – fully propagated.
PW, W, L, P, D – not propagated.

Placeholders E – fully propagated.
PW, W, L, P, D – not propagated.

Request Properties E – fully propagated.
PW, W, L, P, D – not propagated.

Segments E – fully propagated.
PW, W, L, P, D – not propagated.

Session Properties E – fully propagated.
PW, W, L, P, D – not propagated.

User Profile Definitions E – fully propagated.
PW, W, L, P, D – not propagated.

Campaign Definitions Not propagated.

Runtime Data Behavior Tracking Events Not propagated.

Orders Not propagated.

User Profiles Not propagated.

Table 7-1 Data Propagation Reference Table (Continued)

Data Category Data Propagation Scope and Description

Propagat i on Scope Re fe rence Tab le

Production Operations User Guide 7-13

Security Global Roles (created using
WebLogic Server)

E, PW, W, L, P, D – fully propagated, except definitions that
you create using public entitlement APIs.

Visitor Entitlement Policy
Definitions

E, PW, W, L, P, D – fully propagated, except definitions that
you create using your own custom code (APIs).

Delegated Administration
Policy Definitions

E – fully propagated.
PW, W, L, P, D – only the roles that are required (that a
given asset depends upon) are propagated.

These delegated administration policies are propagated:
• Portal resources (Library and Desktop level)
• Users and groups
• Content selectors
• Campaigns
• Visitor roles
• Placeholders
• Segments
• Security providers

Note that definitions pertaining to Content Management are
not propagated.

Delegated Administration
and Visitor Entitlement
Roles

E – fully propagated.
PW, W, L, P, D – only the roles that are required (that a
given asset depends upon) are propagated.

Note: Whenever you propagate roles, do so at the
Enterprise scope. Otherwise, lower level
dependencies and the role hierarchy might not be
preserved on the destination. For details, see the
WebLogic Portal 8.1 SP4 Propagation Patch
Release Notes.

Roles that you create using your own custom code (APIs) are
not propagated.

Users and groups are not propagated, but user and group
identification is preserved; you must manually create users
and groups that correspond with propagated roles.

Users Not propagated; the hashed passwords cannot be propagated.

Table 7-1 Data Propagation Reference Table (Continued)

Data Category Data Propagation Scope and Description

7-14 Production Operations User Guide

Security Information and Propagation
Security information consists generally of authentication data and authorization data. As
Table 7-2 shows, authorization data consists of roles and policies, while authentication consists
of users and groups.

For more details on the specific data propagated, see “Propagation Scope Reference Table” on
page 7-8.

Authentication information (users and groups) is never propagated by the Propagation Utility.
User and group information is often maintained in separate external authentication repositories
over which WebLogic Portal has no control.

WSRP WSRP Registration Data Not propagated. For more information on WSRP
propagation, see “WSRP Propagation” on page 7-18.

Content
Management

All Content Management
information, items, types,
and metadata

Not propagated.

Table 7-1 Data Propagation Reference Table (Continued)

Data Category Data Propagation Scope and Description

Table 7-2 Types of security data

Authorization Roles • Visitor entitlement
• Delegated administration
• Global (defined in WebLogic

Server)
• Delegated role hierarchy

Stored in internal providers or
external providers, such as a
custom Authorization provider.

The delegation hierarchy is stored
in the database, but optionally can
be stored in LDAP.

Policies • Visitor entitlements
• Delegated administration

Authentication • Users
• Groups

Stored in internal providers or
external providers, such as an
RDBMS user store or an
OpenLDAP. Also stored provider
configurations and audit trails.

User Customizat i ons and P ropagat i on

Production Operations User Guide 7-15

In addition to user and group information, the Propagation Utility does not propagate the
following:

Provider configurations (although they are listed when an application is exported)

Data from external providers

Audit Trails

Because roles contain user and group information, you need to consider how user and group
information is stored for your staging and production system; these two systems systems may or
may not share the same authentication repositories.

If your systems do not share the same authentication repositories for managing users and groups,
then after propagating a portal, you must manually edit each role to add the appropriate users and
groups on the destination system. If the systems do share the same authentication repositories,
then no manual changes to roles need to be made after a propagation.

For more information on manual propagation changes, see “Make Required Manual Changes” on
page 7-5.

Note: It is a best practice to reference groups, but not specific users, in roles. This practice
makes it easier to maintain roles when users need to be added or removed from the
system.

User Customizations and Propagation
The typical propagation occurs from a staging environment to a production system. In this
scenario, users typically do not have access to the staging environment, and no user customization
changes that require propagation would exist. As a result, the Propagation Utility is not designed
to propagate user customizations.

User customizations are preserved on the destination, but when you propagate to a destination
system, those customizations might be removed or modified on the destination server under
certain conditions. For intstance, an administrator might make changes through the
Administration Portal that potentially conflict with a given user’s customizations. For example,
an administrator might delete a particular portlet from the portal that has been added by a user to
one of their pages using the Visitor Tools. In this situation, the user’s customization is “lost” in
the sense that the portlet no longer exists, and as such, will not appear in the user’s portal upon
the next login.

7-16 Production Operations User Guide

In general, when changes on a staging system are propagated to the production system, the
merging of staged changes and user customizations will occur just as it would if the staged
changes were made directly on the production system using the WebLogic Administration Portal.

Datasync Assets and Propagation
The Propagation Utility propagates datasync assets at the Enterprise Application scope only. For
more information on datasync propagation, see “Moving the Datasync Data” on page 6-15.

Conflict Resolution Using Policies
The Propagation Utility merges source and destination data based on policy rules, also called
merge rules, that you can configure for your requirements. You can choose to either activate or
ignore the policy rules during a propagation. If the policy choices you make here lead to a conflict
as the propagation proceeds, policies take precedence in the order shown here.

1. If an asset exists on the source, but not on the destination, add it to the destination.

2. If an asset exists on the destination, but not on the source, delete it from the destination.

3. If an asset exists on the source and the destination, update the destination with the asset’s
source attributes.

The following sections describe how the Propagation Utility prioritizes and implements policies,
and describe some considerations that you must keep in mind as you decide how to set these
propagation policies.

Identifying Differences Between Assets
The Propagation Utility creates unique identifiers for portal assets so that they can distinguish
whether two assets are the same in the source and destination systems. A portion of this identifier
is based on the definition label, or the instance label, which shown in the property editor pane in
WebLogic Workshop and the page properties within the WebLogic Administration Portal.
Figure 7-1 shows an example of the definition labels as displayed by the WebLogic
Administration Portal:

Conf l i c t Reso lu t ion Usi ng Po l i c ies

Production Operations User Guide 7-17

Figure 7-1 Definition Labels

When you preview changes during the propagation process, you can view the planned changes
based on the detected differences between the two systems.

Prioritizing Changes Based on Policies
If a conflict occurs while processing a propagation, the Propagation Utility attempts to handle
conflicts according to the policies you created, in the priority order listed previously.

When the Propagation Utility resolves a conflict, the resolutions are listed in the log file that the
utility creates during processing, and the web-based Propagation Utility interface will list any
changes that occurred in order to resolve conflicts.

Handling Propagation Conflicts
When conflicts arise, policies take precedence in the order in which they appear in the
Propagation Utility policies page. The following example describe how the Propagation Utility
resolves a conflict when the same page is added to different books on the source and destination.

A user adds Page1 to Book2 on the source system, but another user adds the same Page1 to Book3
on the destination. The rules are defined such that additions to the source are added to the
destination, and “deletions” on the source are ignored (that is, if an asset exists on the destination
and not on the source, it remains on the destination). Because WebLogic Portal requires that a
given page cannot exist in more than one book, the Propagation Utility resolves the conflict by
adding Page1 to Book2, and removing it in Book3 on the destination system.

Definition labels assigned
using Administration Portal

Definition label assigned
using WebLogic Workshop

7-18 Production Operations User Guide

Rolling Back an Import Process
If you must revert to a pre-propagated environment, use the backups that you created before
beginning the propagation process. For more information, see “Perform a Data Backup” on
page 7-3.

WSRP Propagation
One of the primary advantages of Web Services for Remote Portlets (WSRP) is that the WSRP
model decouples the producers that host and maintain remote services and the consumers that use
them. It is important to note that when you create a remote portlet on a consumer, registration
information about the consumer is stored on the producer. Registration information includes the
registration handle, WSDL URL, and other optional information. When you propagate the
consumer from a staging to a production environment, the propagation utility is not directly
aware of the producer or of the consumer registration information it maintains.

Two Models for WSRP Propagation
There are two models for working with WSRP propagation across staging and production
environments: shared registration and dual registration.

Note: Currently, shared registration is the only model that is supported by WebLogic Portal.

Shared registration — Both the staging and production servers use the same registration
handle. After propagating the consumer, the producer cannot distinguish between the
staging and production consumer, because they both share the same handle. In effect, both
consumers “point” to the same producer. Note that any changes that are made to the
producer’s portlets will be seen by the consumers in both staging and production. In
addition, if a producer is un-registered in the staging environment, it will be un-registered
in the production environment as well.

Dual registration — The staging and production environments each use their own
registration handle. In this case, configuration changes made in one environment are not
visible to the other.

Support for Shared Registration
WebLogic Portal supports only the shared registration model. Because the registration handle is
shared by the staging and production environments, the same producer is visible to both
environments; therefore, propagation of producer data is not necessary.

Best P rac t ices

Production Operations User Guide 7-19

The drawback of this model is that it is not possible to “stage” the producer’s portlets: any change
to a producer portlet will automatically be reflected in both the staging and production systems.

In the future, WebLogic Portal will support WSRP 2.0, which provides support for propagating
a producer’s state with a dual registration model.

Best Practices
The following sections describe some practices that you should follow to achieve the most
predictable and accurate results with the Propagation Utility.

Keep Portal Framework Definition Labels and Instance Labels
When you create new portals and portal resources in WebLogic Workshop, BEA recommends
that you change the definition labels and instance labels at that time, to create meaningful names
for these resources. Once you have used the Propagation Utility to propagate changes among your
environments, it is very important that you do not change these resource names. The Propagation
Utility uses definition labels and instance labels in order to identify differences between source
and destination systems; inconsistent results might occur if you change these labels within
WebLogic Workshop or the WebLogic Administration Portal.

Do Not Manually Replicate Changes Between Environments
Create artifacts in only one environment. If you make changes in both, even if they are identical
changes, the utility cannot identify them as being the same changes—propagation is carried out
as if they were two separate resources.

Set the Scope to the Enterprise Application Level
Choosing the highest level of scoping for the propagation ensures the that the destination
environment will closely mirror the source environment. If you scope to a lower level, such as
web application or desktop, the source and destination will inherently be in different states. In this
case, additional quality assurance testing may be required on the destination.

Although you can restrict the scope of a propagation, sometimes the utility must implement a
higher-level change if a change at that narrower scope depends on a change that occurs at a higher
level. For example, if you propagate a desktop that depends on assets in the library, and changes
occur for those library assets, the Propagation Utility can cause changes to other desktops even
though you set the scope at a desktop level. For more information on the relationships among
Portal resources, see “Scope and Library Inheritance” on page 7-7.

7-20 Production Operations User Guide

Production Operations User Guide 8-1

C H A P T E R 8

Using the Propagation Utility

This chapter provides information about each page of the Propagation Utility web-based
interface.

Before you use the Propagation Utility, familiarize yourself with how the Propagation Utility
handles various types of data, and what you need to do before using it. See “Inside the
Propagation Utility” on page 7-1.

The sections in this chapter are:

Inventory Export Process

Inventory Import Process

Inventory Export Process
You use the Propagation Utility to export a system inventory from a source system, which is
typically a staging system. This exported inventory list describes the entire Enterprise application
environment, as contained in the database, for that system. The exported inventory is stored in
the form of XML files, which are grouped into a single ZIP file.

Figure 8-1 shows the overall process of exporting an inventory:

8-2 Production Operations User Guide

Figure 8-1 Exporting an Inventory

During the export process, you create an inventory report that describes the entire content of the
source environment. Later, during the import process, you assign the scope of the information to
propagate. For more information, see “Inventory Import Process” on page 8-9.

Warning: You must not edit the individual XML files generated during the export task.

Starting the Propagation Utility and Logging In
Before running the Propagation Utility you must have already completed the steps in “Before
You Begin” on page 7-3.

To start the Propagation Utility, open your Web browser and enter a URL in the following format:

http://host:port/propagation/

Figure 8-2 displays:

Inventor y E xpo r t Pr ocess

Production Operations User Guide 8-3

Figure 8-2 Propagation Utility Start Page

Select the task Export an Inventory. Then log in with the username and password of a valid user
on the destination system; you must belong to the PortalSystemAdministrators group.

Figure 8-3 shows the login page:

8-4 Production Operations User Guide

Figure 8-3 Propagation Utility Login Page

Viewing the Application Inventory
After you log in, the Propagation Utility creates an inventory tree and displays it, as shown in
Figure 8-4. Options for accepting this inventory listing, regenerating an inventory listing, or
restarting the Propagation Utility are also shown.

Inventor y E xpo r t Pr ocess

Production Operations User Guide 8-5

Figure 8-4 Propagation Utility View Application Inventory Page

By default, the Propagation Utility displays a summarized, or “abridged” view of the inventory
listing. If you want to view a more detailed listing of the inventory, click View Full Tree.

If you want to accept the inventory listing as shown and save it, click Export XML. If you know
that changes were made using the WebLogic Administration Portal after you started the export
process, you can click Refresh Inventory List to recreate the inventory listing. If you want to
start the export process again from the beginning without using this inventory, click Restart.

The inventory list contains a hierarchical description of the entire content of the source
environment that you want to propagate. Figure 8-5 shows a segment of an inventory listing:

8-6 Production Operations User Guide

Figure 8-5 Propagation Utility Inventory Listing Example

If you click the Describe link, detailed information about the particular asset (node) in the tree is
displayed, including:

XML Description – The XML for the asset. Note that the XML generated by the
Propagation Utility must not be hand-edited; if you do so, propagation results might be
corrupted.

Dependencies – If applicable, displays a list of nodes that, if removed, will make this asset
invalid.

Dependents – If applicable, displays a list of nodes that will become invalid if this node is
removed.

Inventor y E xpo r t Pr ocess

Production Operations User Guide 8-7

Exporting the Application Inventory to a File
You can choose to save the inventory file on your local machine, or save it on the machine hosting
the associated inventory—the machine you are exporting from. For example, you might want to
save the file to your local system for storage in a source control system.

Figure 8-6 shows the available locations for saving the exported inventory list:

Figure 8-6 Propagation Utility Export Application Inventory Page

If you prefer to export the file to your local system, click Export Locally. A file download
window appears; follow the instructions to save the file to a desired location. The filename
inventory.zip appears by default; create a meaningful name so that you can track this file, but
keep the .zip file extension.

Note: If the file to be exported is larger than 5 MB in size, you must export it to the server that
you are exporting from.

If you prefer to save the file on the machine you are exporting from, you can either use the
automatically generated working directory path or enter a path and filename of your choice. The

8-8 Production Operations User Guide

Propagation Utility displays the working directory path as it is set up in the web.xml deployment
descriptor file, and appends a day_hour_minute label.

Tip: BEA recommends that you store the saved file within a source control system for
safe-keeping. At a minimum, keep track of your exported filenames and locations so that you can
easily access them during the propagation Import process.

After you save the file, a final page describes the export results, as shown in Figure 8-7:

Figure 8-7 Propagation Utility Inventory Export Results Page

If the inventory file is saved successfully the results page will display a simple message indicating
success. If a problem occurred, such as selecting an existing filename or inadequate disk space,
an error description displays.

After a successful export, you can import the inventory from the source system into the
destination system.

Warning: You must not edit the individual XML files generated during the export task.

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-9

Reviewing Propagation Utility Export Log Files
The Propagation Utility creates the following logging information during an export process:

Overview information is placed in the default server log file. You control the detail level of
this log using the WebLogic Server console. For details about server log files, see the topic
“Server Log” in the WebLogic Server Administration Console Online Help.

A verbose log is placed in the working directory—the same location where inventory files
are stored. For details on the working directory and how to change its location, see
“Customize the Session Timeout and Inventory/Log File Location (Optional)” on page 7-4.

You should review the overview log file to ensure that the import process completed as expected.
The verbose log file is primarily for diagnostic purposes.

Inventory Import Process
Figure 8-8 shows the overall process of importing an inventory:

Figure 8-8 Inventory Import Process

../../../wls/docs81/ConsoleHelp/logging.html

8-10 Production Operations User Guide

Starting the Utility
Follow the startup and login instructions as described in “Starting the Propagation Utility and
Logging In” on page 8-2.

Selecting the Source Inventory to Import
Choose the source inventory (the ZIP file you exported in from the source system) from which
you want to import changes, as shown in Figure 8-9:

Figure 8-9 Propagation Utility Select Import Source Page

Select a radio button to provide the source file using one of these methods:

Select to specify a path and filename. The field automatically displays the working
directory path, as it is set up in the web.xml deployment descriptor file.

Use the dropdown menu to select a ZIP file in the working directory.

Click Continue to retrieve and validate the inventory.

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-11

Loading and Validating the Imported Inventory List
The Propagation Utility validates the imported inventory according to the XML schema.
Validation errors that can occur include missing dependencies, for example.

The utility displays the results of the validation. Figure 8-10 shows the results of a successful
validation:

Figure 8-10 Propagation Utility Review Inventory Validation Results Page

Click Continue to view the validated inventory listing on which the propagation will be based.

8-12 Production Operations User Guide

Viewing the Application Inventory
The Propagation Utility displays the validated inventory, as shown in Figure 8-11. Options for
accepting this inventory listing or restarting the Propagation Utility are included.

Figure 8-11 Propagation Utility View Application Inventory Page

The Propagation Utility displays a hierarchical description of the content of the imported source
environment that you want to propagate. By default, the Propagation Utility displays a
summarized, or “abridged” view of the inventory listing. If you want to view a more detailed
listing of the inventory, click View Full Tree.

Later, you can refine the set of changes by setting policies for making changes and by setting a
level of scope for the propagation.

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-13

If you want to accept the inventory listing as shown and continue, click Preview Import. If you
determine that you do not want to use this inventory and you want to start the Propagation Utility
again from the beginning, scroll to the bottom of the page and click Restart Propagation Utility.

If you click the Describe link, detailed information about the particular asset (node) in the tree is
displayed. This information is the same as that displayed as part of the export process, as
described in “Viewing the Application Inventory” on page 8-4.

Figure 8-12 shows a segment of an inventory listing:

Figure 8-12 Propagation Utility Inventory Listing Example

8-14 Production Operations User Guide

Acknowledging the Quiescence Requirement
The Propagation Utility does not automatically quiesce the system to prevent users from
changing portal data using the Administration Portal or Visitor Tools on the production system.
If a user makes changes on the production system after the inventory listing has been imported
and validated, propagation results might be inaccurate and changes could be unsuccessful.

Warning: It is very important that you make no changes to the production system after you load
and validate the inventory during the import process.

To ensure that you understand and agree to this requirement, a confirmation page appears, as
shown in Figure 8-13. Select the checkbox and click Continue to proceed to the next step.

Figure 8-13 Propagation Utility Configure Changes Confirmation Page

Deploying the J2EE Application on the Destination
If you have not already done so, you must deploy the J2EE application (EAR file) from the source
system to the destination system before committing changes that the Propagation Utility
identified. For more information on this requirement, see “Deploy the J2EE Application (EAR)”
on page 7-5.

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-15

Figure 8-14 shows the Deploy J2EE Application reminder page:

Figure 8-14 Propagation Utility Deploy J2EE Application Page

If you have not yet deployed the application, you can leave this window open while you do so,
and then return to this page and click Deployment Complete to continue.

Note: If you leave the Propagation Utility window open while you perform other activities, the
Propagation Utility might time out. If this occurs, your previous process and selections
are lost. You must restart the Propagation Utility and perform the import again. For
instructions on changing the session timeout period, see “Customize the Session Timeout
and Inventory/Log File Location (Optional)” on page 7-4.

Setting the Scope
You specify the scope of a propagation during the import process. The Propagation Utility detects
differences that exist between the source and destination systems and creates a nested list of
possible scopes. A page similar to Figure 8-15 appears:

8-16 Production Operations User Guide

Figure 8-15 Propagation Utility Select Import Scope Page

You can select to scope the propagation at several levels of granularity, depending on where
differences exist between your two systems. For detailed information on scoping, see
“Propagation Scope” on page 7-6.

Tip: When using the Propagation Utility, the best practice is to scope to the highest level—
Enterprise application. This ensures the that the destination environment will closely mirror the
source environment. If you scope to a lower level, web application or desktop, the source and
destination might be in different states. In this case, additional quality assurance testing may be
required on the destination. For details, see “Set the Scope to the Enterprise Application Level”
on page 7-19.

Creating Policies for Merging Inventory Information
The Propagation Utility merges source and destination data based on policy rules, also called
merge rules, that you can configure for your requirements.

Figure 8-16 shows the policy setting page in the Propagation Utility:

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-17

Figure 8-16 Propagation Utility Create Import Policy Page

For more details on how the Propagation Utility prioritizes and implements these policies, and
some considerations that you must keep in mind, see “Conflict Resolution Using Policies” on
page 7-16.

Previewing Changes
In the final step prior to committing the pending changes to the destination system, the
Propagation Utility displays the changes that will be made to the destination if you continue. The
Review Pending Changes page is similar to the example shown in Figure 8-17:

8-18 Production Operations User Guide

Figure 8-17 Propagation Utility Review Pending Changes Page

If you find that the changes displayed do not reflect your desired results, do not continue. Make
changes as needed and return to this step later. Depending on the action that you want to change,
you might be able to correct the propagation by changing the propagation scope or the
propagation policies. If this does not solve the problem, exit from the Propagation Utility. Make
changes within your source or destination environment, and run the export or import task again.

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-19

The Review Pending Changes page contains summary statistics, a detailed application resource
change list, and a filename selection for saving the pending change manifest (pending changes)
to a file. The following sections contain more details on each of these part of the page.

Summary Statistics
The totals in this section reflect the number and type of changes included in the Action column
of the change list.

The Propagation Utility counts the total number of potential changes whether or not they will
actually be carried out. For example, if 15 potential deletes were found, but 12 of them will be
excluded because of policies that you specified earlier, the count will still include them.

Change Manifest Legend
The color-coding of the inventory list identifies the status of a pending change, indicating any
items that might require special attention from you.

The following list describes each color and its meaning:

Black – This change is pending, and has no special considerations.

Red – This change cannot be performed; this status occurs very rarely, in a situation when
a potential change violates a data integrity rule.

Blue – This change requires that an associated manual change be performed; for example,
entitlement changes are blue to indicate that any associated users or groups must be added
manually on the destination system. Manual changes are also identified separately later; for
details, see “Making Manual Changes Prior to Propagation” on page 8-21.

Green – This change is implied by another change that the Propagation Utility will be
making; for example, when you propagate using either portal or desktop scope, new pages
and books are added to the Portal Library if they do not already exist there.

Assets can have multiple dependencies, but depending on the type of dependency they
might appear in the change manifest only once. Carefully review the listing for
dependencies that result in multiple changes.

Brown – This change, although correct, should be reviewed carefully for unintended side
effects; for example, an item has this status if a change is required to the item based on the
policy, but the item is not within the scope of the propagation.

Gray – This change has been excluded due to the policy in effect; for example, if you
chose to ignore (not delete) assets that exist on the destination but not on the source, all

8-20 Production Operations User Guide

assets that meet this criteria (they exist on the destination but not on the source) are shown
in gray and will not be deleted.

For detailed information on any asset in the change manifest, click the Details link for that asset.

Pending Change List (Change Manifest)
The Pending Change List shows each change that will be made to the destination system by the
Propagation Utility when you commit changes. To keep the display to a manageable size, long
asset identifiers are shortened, with the notation “//” used to indicate a portion of the identifier
that was removed.

Note: The Change Manifest includes only the updates that will be made explicitly by the
Propagation Utility on the destination system, once you commit the changes. For
example, changes that occur on the destination based on the EAR deployment that you
perform prior to previewing changes are not included in the Change Manifest.

Figure 8-18 show an example portion of a Change Manifest:

Figure 8-18 Propagation Utility Change Manifest Listing Example

You can click the Details link to see the details for a particular change; these details include the
following information:

Identifier – The internal identifier for the particular asset.

Taxonomy – The complete taxonomy used internally by the Propagation Utility to track
assets. For items displayed in the change manifest with shortened entries, you can view
complete taxonomies here.

Item Description – The description of the individual asset.

Explanation – The reason for including this asset in the change manifest.

Has this change been implied by another change? – Indicates whether or not the asset is
an implied change based on another pending change.

Is this change impossible? – Indicates whether this change can be performed by the
Propagation Utility.

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-21

Does this change require manual work by the operator? – Indicates whether or not the
item requires that you perform an associated manual change.

Source XML – The XML listing of the item from the source system, if it exists there.

Destination XML – The XML listing of the item from the destination system, if it exists
there.

Exporting the Change Manifest for the Inventory
If the pending change list correctly describes the propagation that you want to perform, save the
change manifest. The Propagation Utility automatically displays a path and filename; you can
accept this as shown or enter a different path and filename. Click Continue to save the file and
continue to the next step.

Making Manual Changes Prior to Propagation
Because the Propagation Utility does not propagate the complete set of portal resources from the
source to the destination system, there might be cases where propagated data depends on other
data that is not propagated. For example, delegated administration roles are propagated to the
destination but the related users and groups are not, so you must manually add those related users
and groups on the destination system.

If manual changes are needed to coordinate your two environments, the Propagation Utility
displays these necessary changes on the Review Required Manual Changes page. The Review
Required Manual Changes page is similar to the following example, as shown in Figure 8-19:

8-22 Production Operations User Guide

Figure 8-19 Propagation Utility Review Required Manual Changes Page

This page lists manual changes that you must perform before importing this inventory, if
applicable. For more information, see “Make Required Manual Changes” on page 7-5.

If required changes are listed, you can leave the Propagation Utility window open, make changes
as needed using WebLogic Portal, and then come back to this page and click Continue when
changes are complete.

Note: If you leave the Propagation Utility window open while you perform other activities, the
Propagation Utility might time out. If this occurs, your previous process and selections
are lost. You must restart the Propagation Utility and perform the import again. For
instructions on changing the session timeout period, see “Customize the Session Timeout
and Inventory/Log File Location (Optional)” on page 7-4.

Committing the Inventory Import
The Propagate the Inventory page summarizes the policy selections you made previously, and
provides an opportunity to return to the inventory listing if you decide you do not want to
propagate this change. Figure 8-20 provides an example of the page:

Inven to ry Impor t Pr ocess

Production Operations User Guide 8-23

Figure 8-20 Propagation Utility Propagate the Inventory Page

When you click Commit Inventory, the Propagation Utility propagates the database assets from
the staging server to the production server, according to the scope you assigned and the policies
you selected previously.

When complete, a results page displays the status of the completed propagation and the time
required to complete it. To save an inventory listing of the destination system after the
propagation, click Begin Export to start an export process for the new destination inventory.

Reviewing the Import Log Files
The following sections describe log files that the Propagation Utility creates during an import
process:

You should review the overview log file to ensure that the import process completed as expected.
The verbose log files are primarily for diagnostic purposes.

Import Overview Log File
This log file contains errors and warnings, including:

Warnings for propagated assets that depend on other non-propagated assets; for example,
propagated roles dependent on non-propagated groups that do not exist on the destination.

Warnings for “implied” changes

8-24 Production Operations User Guide

This information is placed in the default server log file. You control the detail level of this log
using the WebLogic Server console. For details about server log files, see the topic “Server Log”
in the WebLogic Server Administration Console Online Help.

Import Processing Verbose Log Files
The Propagation Utility creates two verbose log files for each import:

Verbose output from the processes of reading in and validating the inventory on the
filesystem

Verbose output from the differencing and commiting process

Verbose logs are placed in the working directory—the same location where inventory files are
stored. For details on the working directory and how to change its location, see “Customize the
Session Timeout and Inventory/Log File Location (Optional)” on page 7-4.

../../../wls/docs81/ConsoleHelp/logging.html

Production Operations User Guide 9-1

C H A P T E R 9

Using the Export/Import Utility

The Export/Import Utility provides a round-trip feature that allows you to move books, pages,
and desktops, back and forth between development and staging environments. The utility, also
called the xip utility (eXport/Import Portal), lets you import .portal and .pinc (portal include)
files into the database, and lets you export these files from the database. The exported files can
be loaded back into WebLogic Workshop, or imported into another WebLogic Portal database.
For more information on the specific elements the utility handles, see “Overview of the
Export/Import Utility” on page 9-6.

Figure 9-1 shows how the Export/Import Utility moves files between environments.

Figure 9-1 Export/ImporT Utility Allows Round-Trip Development

9-2 Production Operations User Guide

This chapter explains how to use the Export/Import Utility. The chapter includes background
information on the utility and its purpose. In addition, detailed examples are provided that
illustrate common use cases.

This chapter includes the following topics:

Installing the Export/Import Utility

Before You Use the Export/Import Utility

Overview of the Export/Import Utility

Understanding the Properties File

Exporting a Desktop

Importing a .portal File

Exporting a Page

Importing a Page

Managing the Cache

Installing the Export/Import Utility
For information on installing the utility, see Chapter 2, “Installing the Propagation Software”.

Before You Use the Export/Import Utility
Before you use the Export/Import Utility, it is important to understand some basic portal concepts
and terms. If you review this section, the explanations and examples provided in the rest of this
chapter will be more clear.

Understanding .portal Files vs. Desktops
The .portal file that you create in WebLogic Workshop is a fully functioning portal. However,
it can also be used as a template to create a desktop. In this template you create books, pages and
references to portlets. When you view the .portal file with your browser, the portal is rendered
in “single file mode,” meaning that you are viewing the portal from your filesystem as opposed
to a database; the .portal file’s XML is parsed and the rendered portal is returned to the
browser. The creation and use of a .portal is intended for development purposes and for static
portals (portals that are not customized by the end user or administrator). Because there is no

Befo re You Use the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-3

database involved you cannot take advantage of functionality such as user customization or
entitlements.

Once you have created a .portal file you can use it as a template to create desktops for a staging
or production environment. A desktop is a particular view of a portal that visitors access. When
you create a desktop based on the .portal file in the WebLogic Administration Portal, a desktop
and its books and pages are placed into the database. The desktop, books, and pages reference
shells, menus, look and feels, and portlets. The settings in the .portal file template, such as the
look and feel, serve as defaults to the desktop. Once a new desktop is created from a .portal
template, the desktop is decoupled from the template, and modifications to the .portal file do
not affect the desktop, and vice versa. For example, when you change a desktop’s look and feel
in the WebLogic Administration Portal, the change is made only to the desktop, not to the original
.portal file. When you view a desktop with a browser it is rendered in “streaming mode” (from
the database). Now that a database is involved, desktop customizations can be saved and
delegated administration policies and entitlements can be set on portal resources.

Understanding .pinc Files
A .pinc file is a portal include file. Just like a JSP can include other JSPs, a .portal can include
other .pinc files. The .pinc files help reduce the size of .portal files and prevent conflicts
caused by many developers trying to access the same resources simultaneously. A .pinc file
must begin with a page or book as its root element. The book or page may then contain other
nested books and pages.

Understanding Export and Import Scope
Exports and imports can be scoped to the library, admin, or visitor levels. The first two levels
correspond to the Library and Portals nodes in the Portal Resources tree of the WebLogic
Administration Portal, as shown in Figure 9-2. The visitor level includes changes made by users
to individual desktops using the Visitor Tools.

9-4 Production Operations User Guide

Figure 9-2 Portal Resources Tree of the WebLogic Administration Portal

The relationshiop between library, admin, and visitor views is hierarchical, and properties from
objects up the hierarchy can be inherited by objects down the hierarchy. For example, a change
to a library element is inherited by desktops that use that element and by visitor views that use
those desktops.

Figure 9-3 shows the hierarchy in which library, admin, and visitor instances are organized, the
direction in which changes are inherited, and the tools that are typically used to make
modifications at the different levels in the hierarchy.

Library Scope

Admin Scope

Befo re You Use the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-5

Figure 9-3 Scoping Hierarchy

Library Scope
An object (book, page, or portlet) can exist in the library and not be referenced by any desktop.
A developer or administrator may create a page or book in the library only, outside the context of
a desktop. This page or book can then be placed on a desktop at a later point in time. Changes
made to objects in the library cascade down through all desktops that reference those objects. For
more information on library inheritance, see “Scope and Library Inheritance” on page 7-7.

Admin Scope
The admin scope represents the “default desktop.” This is where an administrator creates and
modifies individual desktops. Changes made by an administrator to a desktop may use elements
from the library, but desktop changes are never reflected back up into the library. Furthermore,
changes made to individual desktops do not affect other desktops. However, changes made to
desktops are cascaded down to the visitor views. See also “Scope and Library Inheritance” on
page 7-7.

9-6 Production Operations User Guide

Visitor Scope
Visitors (users who access desktops) may be permitted to customize their desktop. Changes made
to a visitor’s desktop are restricted to that visitor’s view. The changes do not show up in either
the admin-level desktop, which the visitor view references, or in the library level. The changes
also do not show up in other visitor’s views.

Customization
Customization refers to modifying a portal through an API. This API is typically called from the
WebLogic Administration Portal and Visitor Tools, but it is also exposed to developers who wish
to modify desktops. The API provides all the create, read, update, and delete (CRUD) operations
needed to modify a desktop and all of its components (portlets, books, pages, menus, and so on).

Note: Customization and personalization are two distinctly different features. With
customization, someone is making a conscious decision to change the makeup of a
desktop. With personalization, desktops are modified based on rules and user behavior.

Overview of the Export/Import Utility
The Export/Import Utility allows a full round-trip development life cycle, where you can easily
move portals between a WebLogic Workshop environment and a staging or production
environment, as shown in Figure 9-1. The utility performs its work in a single database
transaction. If the utility fails for some reason, the database is not affected.

What the Utility Moves
The Export/Import Utility moves desktops, portlet references, books, pages, and localization
definitions. In other words, the utility exports .portal and .pinc files from a database, and
imports the contents of .portal and .pinc files into a database. These XML files describe fully
functioning portals, and books and pages that are included in portals.

Tip: For detailed information on the portal framework, see the following documents:

http://edocs/wlp/docs81/lookandfeel/lookandfeel.html

http://edocs/wlp/docs81/whitepapers/netix/index.html

Note: The actual definitions for portlets, look and feels, shells, menus, layouts, themes, JSPs,
and other code are contained in the EAR file. These files are stored in directories in portal
web applications, such as the framework/markup directory. If any of these file-based
elements change, you must rebuild and redeploy the EAR. The .portal and .pinc files
simply refer to the definition files.

Overv iew o f t he Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-7

What the Utility Does Not Move
The Export/Import Utility does not handle the following items: campaigns, behavior tracking
events, content management assets, entitlements, WSRP producer registration, portlet categories,
localization resources, user profiles, and commerce data.

Merging and Scoping Rules
To refine and customize the export and import of .portal and .pinc files to and from the
database, you can:

Specify rules to determine how portal elements are merged. For instance, in a manner
similar to that of a source code control mechanism, changes in a .portal file can be
merged with changes in the database.

Specify scoping rules. Scoping rules determine how new books and pages will be merged
into the new environment. Note that user and administrator customizations are preserved
when assets are merged.

As shown in Figure 9-4, the Export/Import Utility offers flexibility with respect to importing,
exporting, and scoping. You can scope changes to the library, admin (desktop), or visitor
(individual user) level. For instance, if you import a desktop at the admin scope, the imported
changes will be applied only to the specified desktop. If a user has customized that particular
desktop, then the changes will also be inherited by the user desktop. Note, however, that changes
are never inherited up the hierarchy: elements in the library will not inherit changes made to a
desktop.

Tip: For a more in depth discussion of the relationship between the library, desktops, and user
views, see “Scope and Library Inheritance” on page 7-7.

9-8 Production Operations User Guide

Figure 9-4 Import, Export, and Scoping Options Offered by the Export/Import Utility

To summarize, the Export/Import Utility allows you to select an object (desktop, book or page)
at any level (library, admin, visitor) and import it or export it, according to specified rules.

Using the Export/Import Utility
Before using the utility, you must install it. For installation instructions, see Chapter 2, “Installing
the Propagation Software”. The utility is a Java program that reads a properties file. After
parameters are read from the properties file, the Java program calls an API that executes the
appropriate actions on the server. For instance, if you wish to import a page and scope the change
to the admin level, you must specify this in the properites file. The following sections explain how
to configure the properties file and present common use cases.

Tip: The Java client’s source code is freely available in the installation directory of the
Export/Import Utility. You are free to use this source code to develop your own client interface,
if you wish.

Understanding the Properties File
By default the Export/Import Utility retrieves all of its parameters from a properties file. You
must edit this properties file appropriately to configure the export or import parameters.

Library
Scope

Admin
Scope

Visitor
Scope

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-9

Specifying the Properties File Location
By default, the properties file that is used to configure the Export/Import Utility is called
xip.properties. It is located in the installation directory of the Export/Import Utility. You can
specify an alternate properties file by editing the Ant build file build.xml, which is also included
in the installation directory of the utility. Listing 9-1 shows the Ant target definition to edit:

Listing 9-1 Modifying the Location of the Properties File in the Ant Script

 <target name="run" depends="jar" description="Run the Xip utility">
 <java classname="com.bea.wlp.xip.Xip" fork="true" failonerror="true">
 <arg value="-verbose"/>
 <arg value="-properties=my.properties"/>
 <classpath>
 <pathelement path="${wls.classpath}"/>
 <pathelement path="${wlp.classpath}"/>
 <pathelement path="${jarfile}"/>
 </classpath>
 </java>
 </target>

Specifying Parameters in the Properties File
In the properties file you can specify such things as server configuration information, export
import commands, objects, scoping rules, and propagation rules.

Listing 9-2 shows the default xip.properties file.

Listing 9-2 The Default xip.properties File

Export/Import Properties file. The properties in this file are read by the Xip
(pronounced zip) utility. You may specify an alternate properties file via the
-properties command line argument.
#
Server connfiguration information
#
xip.config.url=t3://localhost:7003
xip.config.username=weblogic
xip.config.password=weblogic
xip.config.application=myEnterpriseApp
#

9-10 Production Operations User Guide

command - Are we exporting or importing. Valid values are: "export", "import"
#
#xip.command=export
xip.command=import
#
object - The "thing" you want to export/import (desktop, book, page)
xip.object=desktop
#xip.object=book
#xip.object=page
#
Identifier properties, tells the import export utility how to identify the
artifacts to be retrieved or updated. When importing and exporting books and
pages (.pinc files). If scoping changes to the admin desktop (default desktop)
or visitor desktop then "portal.path" and "desktop.path" must be specified. If
you are exporting a book or page then the book.label or page.label need to be
specified.
#
#page.label and book.label are not used on import as the labels are pulled from
#the .pinc files themselves.
#
The webapp must always be specified. This is the webapp name not necessarily
the directory name. If you are export or importing this is where you are export
from or importing to respectively.
#
xip.identifier.webapp=myPortal
xip.identifier.portal.path=myPortal
xip.identifier.desktop.path=myDesktop
xip.identifier.book.label=
xip.identifier.page.label=
#
Input and output files. These can be .pinc or .portal files. These files are
relative to the "xip" directory
#
#xip.input.file=Book1.pinc
xip.input.file=myPortal.portal
xip.output.file=myPortal1.portal
xip.output.encoding=UTF-8
#
Import options - these options are used as rules to the export/import utility
#
scope - Changes can be scoped to the "library", "admin", or "visitor" when
importing a .pinc file, and "admin" or "visitor" when exporting a .portal file.
If this property # has a value of "admin" or "visitor" then a
xip.identifier.portal.path and xip.identifier.desktop.path # must be specified
above. Of course to scope exports to the "library" or "admin" you must be in
the Admin or PortalSystemAdministrator Role.
#

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-11

#
deletes - If true, then books, pages and portlets that are currently on the
existing desktop in the database but not in the new import file (.portal or
.pinc) will be removed from exiting desktop.
#
moves - (innerMoves) If true, then existing books, pages and portlets that are
in different locations on the same parent will be moved to the correct location.
If you want to move books, pages and portlets across different parents
then see outermoves
#
outermoves - If true, then existing books, pages and portlets that are moved
from different parents will be moved to the new parent. If this is not set then
it will be handled as a remove and add (different customizations are lost)
#
updates - If true, then books, pages and portlets that are currently not on
the existing desktop will be added, and any instance attributes on the books,
page, and portlet will be updated in the database.
#
abort.if.portlets.missing - if true, then if the new .portal or .pinc file
references a portlet that is not in the current webapp then abort, otherwise
skip the portlet and continue on.
#
modify.definitions - If this flag is set to true then any changes in the import
file will effect the defintions and not just the instances. These include
things like markup (backing files, rollover images, isHidden, ... for a more|
complete list refer to the database schema). It is important to note that these
changes may effect other desktops outside the one you are scoping it to.
#
propagate.changes - Typically all changes that are made to Library artifacts
are cascaded down to the admin's desktop and subsequently cascaded down to the
visitor'ss view. If this property is set to "sync" then
these changes will occur synchronously as part of this transaction. If this
property is set to "off" then changes will not get cascaded for the artifacts
which have been modified. For books, pages and portlets that have not
been modified at the admin or visitor level, then these will always receive
the changes as they point to the default.
#
create.portal - If this flag is set then when importing a desktop and the given
portal is not already create then one will be created for you.
#
portal.title - If the above flag is set and a new portal is being created it
needs a title. This property value will be the new portal's title.
#
locale - the locale of the titles and descriptions in the .portal or .pinc
file. Note the encoding is defined in the file itself.
#
xip.import.context.scope=admin
xip.import.context.deletes=false
xip.import.context.moves=false

9-12 Production Operations User Guide

xip.import.context.outermoves=false
xip.import.context.updates=true
xip.import.context.abort.if.portlets.missing=false
xip.import.context.modify.definitions=true
xip.import.context.propagate.changes=off
xip.import.context.create.portal=true
xip.import.context.portal.title=My Green Portal
xip.import.context.locale.language=en
xip.import.context.locale.country=
xip.import.context.locale.variant=
#
Export Options
#
scope - Changes can be scoped to the "library", "admin", or "visitor" when
importing a .pinc file, and "admin" or "visitor" when exporting a .portal file.
If this property has a value of "admin" or "visitor" then a
xip.identifier.portal.path and xip.identifier.desktop.path
must be specified above. Of course to scope exports to the "library" or "admin"
you must be in the Admin or PortalSystemAdministrator Role.
#
locale - the locale of the titles and descriptions in the .portal or .pinc file.
#
xip.export.context.scope=admin
xip.export.context.locale.language=en
xip.export.context.locale.country=
xip.export.context.locale.variant=

Exporting a Desktop
This section explains how to export a desktop using the Export/Import Utility. Exporting a
desktop means retrieving the attributes of a desktop from the database and restoring them in a
.portal file. The exported .portal file can then be loaded into WebLogic Workshop for further
development. To export a desktop, you need to edit the xip.properties file and run an Ant
build script.

Editing the Properties File
To export an existing desktop as a .portal file you need to specify attributes in the
xip.properties file. This section highlights the required changes.
xip.config.application=portalProject

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-13

You must specify the name of Enterprise application from which you are exporting. In
WebLogic Workshop, this value corresponds to the Application name, as shown in the
following figure:

Figure 9-5 Application Name Shown in the Administration Portal

xip.command=export

Specify that you wish to export, rather than import.
xip.object=desktop

Specify the object you wish to export—in this example, a desktop.
xip.identifier.webapp=PortalWebApp_1

xip.identifier.portal.path=yourPortalPath

xip.identifier.desktop.path=yourDesktopPath

Note: These lines identify the objects you wish to export. For information on where to find the
values for these properties, if you do not know what they are, see “Specifying Identifiers”
on page 9-31 for more information.

The web webapp property must always be specified.

If you scope the export to the admin or visitor level, then you must specify the
portal.path and desktop.path properties.

xip.output.file=myportal.portal

Specify where you wish to save the result (the exported .portal file). In this example,
the resulting file is called myportal.portal, and it is placed in a location relative to
where the utility was run.

Note: You do not need to specify the encoding as this information is in the database.
xip.export.context.scope=admin

Application name

9-14 Production Operations User Guide

Specify the scope of the export. In this example, the admin scope is specified. For more
information on scope, see “Understanding Export and Import Scope” on page 9-3.

xip.export.context.locale.language=en

Specify the locale of the exported desktop (in this example, English). Only one locale can
be exported or imported at a time.

Running the Build Script
Once the property attributes are defined, you can run the Ant build script, as shown in Listing 9-3.
The build script’s task writes status information, also shown below, to the console window.

Listing 9-3 Running the Ant Build Script

C:\dev\xip>ant run
Buildfile: build.xml
init:
compile:
jar:
run:

[java] Using: Properties from file [xip.properties]
[java] Name [xip.config.url] Value [t3://localhost:7003]
[java] Name [xip.config.username] Value [weblogic]
[java] Name [xip.config.password] Value [********]
[java] Name [xip.config.application] Value [portalProject]
[java] Name [xip.command] Value [export]
[java] Name [xip.object] Value [desktop]
[java] Name [xip.identifier.webapp] Value [PortalWebApp_1]
[java] Name [xip.identifier.portal.path] Value [yourPortalPath]
[java] Name [xip.identifier.desktop.path] Value [yourPortalDesktop]
[java] Name [xip.identifier.book.label] Value [mainBook]
[java] Name [xip.identifier.page.label] Value []
[java] Name [xip.input.file] Value [yourPortal.portal]
[java] Name [xip.output.file] Value [myportal.portal]
[java] Name [xip.import.context.deletes] Value [false]
[java] Name [xip.import.context.moves] Value [false]
[java] Name [xip.import.context.outermoves] Value [false]
[java] Name [xip.import.context.updates] Value [true]
[java] Name [xip.import.context.abort.on.collisions] Value [null]
[java] Name [xip.import.context.abort.if.portlets.missing] Value [false]
[java] Name [xip.import.context.scope] Value [admin]
[java] Name [xip.import.context.modify.definitions] Value [false]
[java] Name [xip.import.context.propagate.changes] Value [sync]
[java] Name [xip.import.context.create.portal] Value [true]

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-15

[java] Name [xip.import.context.portal.title] Value [My Portal]
[java] Name [xip.import.context.locale.language] Value [en]
[java] Name [xip.import.context.locale.country] Value []
[java] Name [xip.import.context.locale.variant] Value []
[java] Name [xip.export.context.scope] Value [admin]
[java] Name [xip.export.context.locale.language] Value [en]
[java] Name [xip.export.context.locale.country] Value []
[java] Name [xip.export.context.locale.variant] Value []

[java] Executing command: export
[java] Exporting desktop [Webapp: [PortalWebApp_1] PortalPath: [yourPortalPath]
DesktopPath: [yourDesktopPath]] to file [myportal.portal]
[java] Connection to host: t3://localhost:7003
[java] Saving changes to: myportal.portal
[java] Done. time taken 6 sec.

BUILD SUCCESSFUL

Total time: 8 seconds

C:\dev\xip>

The file myportal.portal can now be reloaded into WebLogic Workshop or imported into
another staging or production (database) environment.

Importing a .portal File
This section explains how to import a .portal file into a desktop using the Export/Import
Utility. When importing a .portal file into a desktop, there are two possible cases: the desktop
already exists in the database or it does not. If the desktop does not already exist in the database,
then the Export/Import Utility automatically creates it. If, however, the desktop does already exist
in the database, you need to specify merging options. As with other kinds of options, you specify
merge options in the xip.properties file, as explained in the following sections.

Editing the Properties File
To import an existing .portal file into a desktop, you need to specify attributes in the
xip.properties file. This section highlights the required changes.
xip.config.application=portalProject

9-16 Production Operations User Guide

You must specify the name of Enterprise application you are importing to. In WebLogic
Workshop, this value corresponds to the Application name, as shown in the following
figure:

Figure 9-6 Application Name

xip.command=import

Specify that you wish to import, rather than export.
xip.object=desktop

The object you are interested in importing – in this example a desktop.
xip.identifier.webapp=PortalWebApp_1

xip.identifier.portal.path=yourPortalPath

xip.identifier.desktop.path=yourDesktopPath

Note: These lines identify the objects you wish to export. For information on where to find the
values for these properties, if you do not know what they are, see “Specifying Identifiers”
on page 9-31.

The web webapp property must always be specified.

If you scope the export to the admin or visitor level, then you must specify the
portal.path and desktop.path properties.

xip.input.file=myportal.portal

Specify the .portal file that you wish to import from. The utility looks for the file in a
location relative to where the utility is installed.

Note: You do not need to specify an encoding as that is defined in the .portal file itself.

Application name

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-17

xip.import.context.scope=admin

Specify the scope of the import. In this example, you wish to import a desktop at the
admin level. For detailed information on scope, see “Understanding Export and Import
Scope” on page 9-3.

xip.import.context.deletes=false

You must specify how to handle deletes. See “Handling Deletes” on page 9-27 for
detailed information.

xip.import.context.moves=false

xip.import.context.outermoves=true

You must specify how to handle moves. See “Handling Moves” on page 9-29 for detailed
information.

xip.import.context.updates=true

If xip.import.context.updates is true then new portlets, books, and pages that do
not exist in the desktop but exist in the .portal will be added to the new desktop. Also
instance level resources will be updated.

xip.import.context.abort.if.portlets.missing=true

If xip.import.context.abort.if.portlets.missing is true then if a portlet is
referenced in the .portal file but does not exist in the web application then the import
is halted. If this flag is false a warning is logged and the import continues.

xip.import.context.modify.definitions=true

If xip.import.context.modify.definitions is true, when updating books and
pages the utility also updates the library definition. A library definition consists of
markup, which includes backing files, activate, deactivate, and rollover images. Also
titles and descriptions for books and pages, and the is_hidden flag are stored in these
definitions.

Note: Be aware that if you modify a library definition, desktop instances that share that library
definition could be affected. Therefore, if you scope to a particular desktop, you may
inadvertently affect other desktops if this property is set to true. For a detailed
discussion about the relationship between library definitions and desktop instances, see
“Scope and Library Inheritance” on page 7-7.

xip.import.context.propagate.changes=sync

The xip.import.context.propagate.changes property lets you specify whether or
not to propagate changes down the hierarchy of portal elements. Valid values for this
property are sync or off.

9-18 Production Operations User Guide

When adding, removing, or moving portlets, pages or books, the changes typically are
propagated down the hierarchy. In other words, changes made in the library are seen in
all desktops, and changes made to the admin view (default desktop) are seen by all users.

A user’s desktop view initially points to (inherits its properties from) the default desktop
(admin view). If the default desktop changes, the changes are propagated downward to
the user view.

When users customize their views, each user’s view receives a copy of the customized
portions of their view, and the rest of the portal continues to reference the default, or
parent, desktop.

This property gives you the ability to control how changes are propagated down the
hierarchy when users have customized their portals. If a user’s or admin’s portal is never
customized, their views will always inherit changes from up the hierarchy, even if this
property is set to off.

If, however, a user has customized a portion of a portal, and the same portion is modified
up the hierarchy, this property allows you to control whether or not the change is
propagated down the hierarchy. In this case, if you set this property to off, admin and
user views will not inherit updates made to parent components. If set to synch, changes
will be propagated downward, even if the user customized his or her view.

Tip: You may want to turn this property off if you do not want to modify the pages or books that
the user or administrator considers to be privately owned.

Tip: It is considered good practice to allow your users to modify only a certain section of the
portal and lock down the rest (for instance, one page that they have full control over), instead of
allowing them free control over the entire portal. This promotes better scalablity and makes
portals more manageable when a large number of users make customizations.
xip.import.context.create.portal=true

If xip.import.context.create.portal is set to true and a portal does not exist in the
database, one will be created for you. In addition, you must specify a title for the new
portal using the next property.

xip.import.context.portal.title=My Portal

If xip.import.context.create.portal (described previously) is set to true, then
you must specify a title using this property.

xip.import.context.locale.language=en

xip.import.context.locale.country=

xip.import.context.locale.variant=

These properties define the locale for the .portal file’s titles and descriptions.

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-19

Running the Build Script
Once the property attributes are defined, you can run the build script, as shown in Listing 9-4.
The build script’s task writes status information, also shown below, to the console window.

Listing 9-4 Running the Ant Build Script

C:\dev\xip>ant run

[java] Using: Properties from file [xip.properties]
[java] Name [xip.config.url] Value [t3://localhost:7003]
[java] Name [xip.config.username] Value [weblogic]
[java] Name [xip.config.password] Value [weblogic]
[java] Name [xip.config.application] Value [portalProject]
[java] Name [xip.command] Value [import]
[java] Name [xip.object] Value [desktop]
[java] Name [xip.identifier.webapp] Value [PortalWebApp_1]
[java] Name [xip.identifier.portal.path] Value [yourPortal]
[java] Name [xip.identifier.desktop.path] Value [yourDesktop]
[java] Name [xip.identifier.book.label] Value []
[java] Name [xip.identifier.page.label] Value []
[java] Name [xip.input.file] Value [myportal.portal]
[java] Name [xip.output.file] Value []
[java] Name [xip.import.context.deletes] Value [false]
[java] Name [xip.import.context.moves] Value [false]
[java] Name [xip.import.context.outermoves] Value [false]
[java] Name [xip.import.context.updates] Value [true]
[java] Name [xip.import.context.abort.on.collisions] Value [null]
[java] Name [xip.import.context.abort.if.portlets.missing] Value [false]
[java] Name [xip.import.context.scope] Value [admin]
[java] Name [xip.import.context.modify.definitions] Value [false]
[java] Name [xip.import.context.propagate.changes] Value [sync]
[java] Name [xip.import.context.create.portal] Value [true]
[java] Name [xip.import.context.portal.title] Value [My Portal]
[java] Name [xip.import.context.locale.language] Value [en]
[java] Name [xip.import.context.locale.country] Value []
[java] Name [xip.import.context.locale.variant] Value []
[java] Name [xip.export.context.scope] Value [admin]
[java] Name [xip.export.context.locale.language] Value [en]
[java] Name [xip.export.context.locale.country] Value []
[java] Name [xip.export.context.locale.variant] Value []

[java] Executing command: import
[java] Importing desktop: Webapp: [PortalWebApp_1] PortalPath: [yourPortalPath]
DesktopPath: [yourDesktopPath]
[java] Connection to host: t3://localhost:7003

9-20 Production Operations User Guide

[java] Uploading file: myportal.portal
[java] Done. time taken 40 sec.

BUILD SUCCESSFUL

Total time: 52 seconds

Exporting a Page
If you do not wish to export an entire desktop, you can configure the utility to export a single
page.

Tip: While this section explicitly deals with exporting pages, the same basic procedure applies
to exporting books.

This section explains how to export a page from a desktop. Exporting a page is another common
use case. When you export a page or a book, the result is a .pinc file. For more information, see
“Understanding .pinc Files” on page 9-3.

Note: If you export a page or a book, all children of that page or book are exported as well.

Editing the Properties File
To export an existing page as a .pinc file you will need to specify attributes in the
xip.properties file. This section highlights the required changes.
xip.config.application=portalProject

You must specify the name of Enterprise application you are exporting from. In
WebLogic Workshop, this value corresponds to the Application name, as shown in the
following figure:

Figure 9-7 Application Name

Application name

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-21

xip.command=export

Specify that you wish to export, rather than import.
xip.object=page

The object you are interested in exporting – in this example a page.
xip.identifier.webapp=PortalWebApp_1

xip.identifier.portal.path=yourPortalPath

xip.identifier.desktop.path=yourDesktopPath

Note: These lines identify the objects you wish to export. For information on where to find the
values for these properties (if you do not know what they are), see “Specifying
Identifiers” on page 9-31.

The web webapp property must always be specified.

If you scope the export to the admin or visitor level, then you must specify the
portal.path and desktop.path properties. If you are exporting a book or a page, then
the book.label or page.label properties must be specified.

If you scope the export to the library then you do not need to supply a portal.path and
desktop.path, but you still need to supply a webapp name.

xip.identifier.book.label=

xip.identifier.page.label=P200134591113965077078

You need to identify the page or book that you wish to export. To do this, specify the
definition label of the page or book using the xip.identifier.page.label property.
The definition label is typically supplied by the developer in WebLogic Workshop, but
it could also have been automatically generated by the Administration Portal. See
“Specifying Identifiers” on page 9-31 for information on finding the definition label.

xip.output.file=mypage.pinc

Use this property to specify a file in which to save the result. In this example, the file
mypage.pinc is saved in the directory in which the utility is run.

Note: You do not need to specify the encoding as this information is in the database.
xip.export.context.scope=admin

Specify the scope of the export. In this example, the page is exported from within a
desktop (admin scope). If you want to export a page from the library, set the scope to
library.

9-22 Production Operations User Guide

xip.export.context.locale.language=en

Specify the locale of the exported page.

Running the Build Script
Once the property attributes are defined, you can run the Ant build script, as shown in Listing 9-5.
The build script’s task writes status information, also shown below, to the console window.

Listing 9-5 Running the Ant Build Script

C:\dev\xip>ant run
Buildfile: build.xml
init:
compile:
jar:
run:

[java] Using: Properties from file [xip.properties]
[java] Name [xip.config.url] Value [t3://localhost:7003]
[java] Name [xip.config.username] Value [weblogic]
[java] Name [xip.config.password] Value [********]
[java] Name [xip.config.application] Value [portalProject]
[java] Name [xip.command] Value [export]
[java] Name [xip.object] Value [page]
[java] Name [xip.identifier.webapp] Value [yourPortal]
[java] Name [xip.identifier.portal.path] Value [yourPortalPath]
[java] Name [xip.identifier.desktop.path] Value [yourDesktopPath]
[java] Name [xip.identifier.book.label] Value []
[java] Name [xip.identifier.page.label] Value [P200134591113965077078]
[java] Name [xip.input.file] Value []
[java] Name [xip.output.file] Value [mypage.pinc]
[java] Name [xip.import.context.deletes] Value [false]
[java] Name [xip.import.context.moves] Value [false]
[java] Name [xip.import.context.outermoves] Value [false]
[java] Name [xip.import.context.updates] Value [true]
[java] Name [xip.import.context.abort.on.collisions] Value [null]
[java] Name [xip.import.context.abort.if.portlets.missing] Value [false]
[java] Name [xip.import.context.scope] Value [admin]
[java] Name [xip.import.context.modify.definitions] Value [false]
[java] Name [xip.import.context.propagate.changes] Value [sync]
[java] Name [xip.import.context.create.portal] Value [true]
[java] Name [xip.import.context.portal.title] Value [My Portal]
[java] Name [xip.import.context.locale.language] Value [en]
[java] Name [xip.import.context.locale.country] Value []
[java] Name [xip.import.context.locale.variant] Value []

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-23

[java] Name [xip.export.context.scope] Value [admin]
[java] Name [xip.export.context.locale.language] Value [en]
[java] Name [xip.export.context.locale.country] Value []
[java] Name [xip.export.context.locale.variant] Value []

[java] Executing command: export

[java] Exporting page [mypage] scoped to desktop: Webapp: [PortalWebApp_1]
PortalPath: [yourPortalPath] DesktopPath: [yourDesktopPath]]
[java] Connection to host: t3://localhost:7003
[java] Saving changes to: mypage.pinc
[java] Done. time taken 6 sec.

BUILD SUCCESSFUL

Total time: 8 seconds

Importing a Page
This section explains how to import a single page.

Tip: While this section explicitly deals with pages, the same procedure applies to importing a
book.

The imported page could have been created in WebLogic Workshop or exported from another
staging or production environment. Either way you are importing a .pinc file into the database.

Note: When you import or export a page or book, all the children are imported as well.

Editing the Properties File
To import an existing .pinc file you must specify attributes in the xip.properties file. This
section highlights the required changes you must make to the properties file to import a page.
xip.config.application=portalProject

You must specify the name of Enterprise application you are importing to. In WebLogic
Workshop, this value corresponds to the Application name, as shown in the following
figure:

9-24 Production Operations User Guide

Figure 9-8 Application Name

xip.command=import

Specify that you wish to import, rather than export.
xip.object=page

The object you are interested in importing – in this example a page.
xip.identifier.webapp=PortalWebApp_1

xip.identifier.portal.path=yourPortalPath

xip.identifier.desktop.path=yourDesktopPath

xip.identifier.book.label=

xip.identifier.page.label=

Note: These lines identify the objects you wish to export. For information on where to find the
values for these properties (if you do not know what they are), see “Specifying
Identifiers” on page 9-31.

If you scope the import to the admin or visitor level, then you must specify the
portal.path and desktop.path properties. If you are importing a book or a page, then
the book.label or page.label properties must be specified.

The web webapp property must always be specified.

Note: The page.label property is not needed on imports. This is because the page label is
defined in the .pinc file as an attribute of the <netuix:page ... /> element.

xip.input.file=mypage.pinc

Specify the .pinc file to import from. By default, the utility locates the file in a directory
relative to where you run the utility.

xip.import.context.scope=admin

Identify the scope of the import. In this example you are importing a page at the admin
level.

Application name

Us ing the Expo r t / Impor t Ut i l i t y

Production Operations User Guide 9-25

xip.import.context.deletes=false

You need to specify how to handle deletes. See “Handling Deletes” on page 9-27 for
more information on this property.

xip.import.context.moves=false

You need to specify how to handle moves. See “Handling Moves” on page 9-29 for more
information on this property.

xip.import.context.updates=true

If xip.import.context.updates is true then new portlets, book and pages that don’t
exist in the desktop but exist in the .portal will be added to the new desktop. Also
instance level resources will be updated.

xip.import.context.abort.if.portlets.missing=true

If xip.import.context.abort.if.portlets.missing is true then if a portlet is
referenced in the .portal file but does not exist in the web application then the utility
will halt the import. If this flag is false then the utility logs a warning and continues.

xip.import.context.modify.definitions=true

If xip.import.context.modify.definitions is true, when updating books and
pages the utility also updates the library definition. A library definition consists of
markup, which includes backing files, activate, deactivate, and rollover images. Also
titles and descriptions for books and pages, and the is_hidden flag are stored in these
definitions.

Note: Be aware that if you modify a library definition, desktop instances that share that library
definition could be affected. Therefore, if you scope to a particular desktop, you may
inadvertently affect other desktops if this property is set to true. For a detailed discussion
about the relationship between library definitions and desktop instances, see “Scope and
Library Inheritance” on page 7-7.

xip.import.context.propagate.changes=sync

The xip.import.context.propagate.changes property lets you specify whether or
not to propagate changes down the hierarchy of portal elements. Valid values for this
property are sync or off.

When adding, removing, or moving portlets, pages or books, the changes typically are
propagated down the hierarchy. In other words changes made in the library are seen in
all desktops. And changes made to the admin view (desktop) are seen by all users.

A user’s desktop view inherits its properties from the default desktop (admin view). If
the default desktop changes, the changes are propagated downward to the user view.

9-26 Production Operations User Guide

When a users customize their views, each user’s view receives a copy of the customized
portions of their view, and the rest of the portal continues to reference the default, or
parent, desktop.

This property gives you the ability to control how changes are propagated down the
hierarchy when users have customized their portals. If a user’s or admin’s portal is never
customized, their views will always inherit changes from up the hierarchy, even if this
property is set to off.

If, however, they have customized a portion of a portal, and the same portion is modified
up the hierarchy, this property allows you to control whether or not the change is
propagated down the hierarchy. In this case, if you set this property to off, admin and
user views will not inherit updates made to parent components. If set to synch, changes
will be propagated downward, even if the user customized his or her view.

Tip: You may wish to turn this property off if you do not want to modify the pages or books that
the user or administrator considers to be privately owned.

Tip: It is considered good practice to only allow your users to modify a certain section of the
portal and lock down the rest (for instance, one page that they have full control over), instead of
allowing them free control over the entire portal. This promotes better scalablity and makes
portals more manageable when a large number of users make customizations.

xip.import.context.locale.language=en

xip.import.context.locale.country=

xip.import.context.locale.variant=

These properties define the locale for the .pinc file’s titles and descriptions.

Running the Build Script
Once the property attributes are defined, you can run the build script, as shown in Listing 9-6.
The build script’s task writes status information, also shown below, to the console window.

Listing 9-6 Running the Ant Build Script

C:\dev\xip>ant run

[java] Using: Properties from file [xip.properties]
[java] Name [xip.config.url] Value [t3://localhost:7003]
[java] Name [xip.config.username] Value [weblogic]
[java] Name [xip.config.password] Value [weblogic]
[java] Name [xip.config.application] Value [portalProject]
[java] Name [xip.command] Value [import]

Hand l ing De let es

Production Operations User Guide 9-27

[java] Name [xip.object] Value [page]
[java] Name [xip.identifier.webapp] Value [PortalWebApp_1]
[java] Name [xip.identifier.portal.path] Value [yourPortalPath]
[java] Name [xip.identifier.desktop.path] Value [yourDesktopPath]
[java] Name [xip.identifier.book.label] Value []
[java] Name [xip.identifier.page.label] Value []
[java] Name [xip.input.file] Value [mypage.pinc]
[java] Name [xip.output.file] Value []
[java] Name [xip.import.context.deletes] Value [false]
[java] Name [xip.import.context.moves] Value [false]
[java] Name [xip.import.context.outermoves] Value [false]
[java] Name [xip.import.context.updates] Value [true]
[java] Name [xip.import.context.abort.on.collisions] Value [null]
[java] Name [xip.import.context.abort.if.portlets.missing] Value [false]
[java] Name [xip.import.context.scope] Value [admin]
[java] Name [xip.import.context.modify.definitions] Value [false]
[java] Name [xip.import.context.propagate.changes] Value [sync]
[java] Name [xip.import.context.create.portal] Value [true]
[java] Name [xip.import.context.portal.title] Value [My Portal]
[java] Name [xip.import.context.locale.language] Value [en]
[java] Name [xip.import.context.locale.country] Value []
[java] Name [xip.import.context.locale.variant] Value []
[java] Name [xip.export.context.scope] Value [admin]
[java] Name [xip.export.context.locale.language] Value [en]
[java] Name [xip.export.context.locale.country] Value []
[java] Name [xip.export.context.locale.variant] Value []

[java] Executing command: import

[java] Importing page scoped to desktop: Webapp: [PortalWebApp_1] PortalPath:
[yourPortalPath] DesktopPath: [yourDesktopPath]

[java] Connection to host: t3://localhost:7003
[java] Uploading file: mypage.pinc
[java] Done. time taken 20 sec.

BUILD SUCCESSFUL

Total time: 25 seconds

Handling Deletes
The xip.import.context.deletes property lets you control how portal assets are merged
during an import. As shown in Figure 9-10, if you set this property to false, the contents of the
imported pages are combined with the existing pages.

9-28 Production Operations User Guide

Note: This example refers to portlets; however, the same merge operations would apply as well
for pages on a book.

Figure 9-9 Merge Results with Deletes = false

As shown in Figure 9-10, if you set this property to true, any portlets that do not exist in the
.portal file but do exist in the desktop are deleted.

Note: This example refers to portlets; however, the same merge operations would apply as well
for pages on a book.

Results are
combined

Hand l ing Moves

Production Operations User Guide 9-29

Figure 9-10 Merge Result with Deletes = true

Handling Moves
The xip.import.context.moves and xip.import.context.outermoves properties let you
specify how moves are handled when portal assets are imported. To understand how moves
operate, you need to understand the meaning of inner moves and outer moves.

Inner Moves
When an asset such as a portlet or a page is moved within the context of a single parent, the move
is called an inner move. For example, if you move a portlet to a different placeholder within a
page, it is an inner move because the parent (the page) remains the same. Likewise, if you move

Portlet 2
was deleted

9-30 Production Operations User Guide

a page to a different position in a book, it is an inner move because the parent (the book) remains
the same. The following figure illustrates this concept:

Figure 9-11 Inner Move: Pages P1 and P2 Swap Positions Within the Same Book

Set the xip.import.context.moves property to true to allow inner moves. If the property is
set to false, the positions of assets will not change; however, the contents will be updated
appropriately. If you want to move books, pages, or portlets across different parents, then use the
xip.import.context.outermoves property, described in the next section.

Outer Moves
When an asset such as a portlet or a page is moved from one parent to another, the move is called
an outer move. For example, if you move a page from one book to a different book, that is an
outer move because the parent (the book) is different. The following figure illustrates this
concept:

Figure 9-12 Outer Move: Pages P1 and P4 Swap Positions Across Different Books

Set the xip.import.context.outermoves property to true to allow outer moves. If the
property is set to false, then the operation handles the requested move as a deletion and addition
operation.

P1 P2 P3 P2 P1 P3

Book 1 Book 1

Inner
Move

P1 P2 P3

Book 1

P4 P5 P6

Book 2

P4 P2 P3

Book 1

P1 P5 P6

Book 2

Outer
Move

Speci f y i ng Ident i f i e rs

Production Operations User Guide 9-31

Note: Move operations preserve customizations. When a deletion/addition operation is
performed, some customizations are lost.

If you want to move books, pages, or portlets across the same parent, then use the
xip.import.context.moves property, described in the previous section.

Specifying Identifiers
This section explains how to find the values for the identifier properties in the
xip.properties file. These properties help to identify the portal element to export or import.
The identifier properties include:

xip.identifier.webapp=

xip.identifier.portal.path=

xip.identifier.desktop.path=

xip.identifier.book.label=

xip.identifier.page.label=

The web webapp property must always be specified. The web application name is listed in the
WebLogic Administration Portal, as shown in the following figure:

Figure 9-13 The Web Application Name

If you scope the export to the admin or visitor level, then you must specify the portal.path and
desktop.path properties. You can find the correct value in the Administration Portal. The portal
path is shown in the Portal Properties tab, and the desktop path is shown in the Desktop Properties
tab. For example, the portal path is shown in the following figure:

Figure 9-14 The Portal Path Value As Shown in the Portal Properties Tab

Web Application
Name

Portal Path

9-32 Production Operations User Guide

If you are exporting or importing a page or book, you need to specify the definition label of the
page or book using the xip.identifier.page.label or xip.identifier.book.label
property. Definition labels are typically supplied by the developer in WebLogic Workshop;
however, they can also be created in the Administration Portal. If the page was created using the
Administration Portal, a definition label is assigned automatically.

Note: If you are exporting a book or a page, then the book.label or page.label properties
must be specified. If you are importing a book or a page, the book.label or
page.label properties are not needed, because these values are obtained directly from
the .pinc files.

Locating the Definition Label for a Page
You can locate the definition label for a page in the Administration Portal on the Page Properties
tab. Figure 9-15 shows the definition label for a page.

Figure 9-15 The Location of a Page’s Definition Label in the Weblogic Administration Portal

Locating the Definition Label for a Book
To find the definition label of a book, you need to look at the Manage Book Contents tab of the
book’s parent book. You will find the labels of all of the child books listed there.

Managing the Cache
Proper cache management greatly improves portal performance. Whenever a cache is
invalidated, the portal API must retreive fresh data from the database. It is inefficient when the
API retrieves data that has not changed. The Export/Import Utility invalidates only the caches

Page definition
label

Manag ing the Cache

Production Operations User Guide 9-33

(specifically, the portalControlTreeCache) for portal resources that have changed. The
invalidation of the cache is governed by the following properties:

xip.config.application

xip.identifier.webapp

xip.identifier.portal.path

xip.identifier.desktop.path

xip.import.context.scope

xip.import.context.modify.definitions

These properties are described below.

Note: Be sure to understand these properties and how they affect the invalidation of the cache.
Understanding your changes, scoping them correctly, and tuning these properties
correctly will greatly improve your production system’s performance.

xip.config.application

Specifies the name of the Enterprise application. Only portals under this Enterprise
application will be affected. In WebLogic Workshop, this value corresponds to the
Application name, as shown in the following figure:

Figure 9-16 Application Name

xip.identifier.webapp

Specifies the name of the web application. Only portals under this web application will
be affected. See also “Specifying Identifiers” on page 9-31.

xip.import.context.scope

Specifies the scope of the change. If the scope is set to library then all
portalControlTree caches for the entire web application are invalidated. If the scope
is set to admin then only the cache for the desktop defined by
xip.identifier.portal.path and xip.identifier.desktop.path is affected,
leaving the other desktop caches intact. If the scope is set to visitor then only the cache

Application name

9-34 Production Operations User Guide

of an individual user’s view is invalidated. See also “Specifying Identifiers” on
page 9-31.

xip.import.context.modify.definitions

If set to true, library definitions may be modified. Since definitions are shared across all
instances of library resources, the entire web application cache must be invalidated, even
if the scope is set to admin. If you are just adding pages or portlets to the books and pages
there is no reason to update the definitions.

Note: A library definition consists of markup, which includes backing files, activate,
deactivate, and rollover images. Also titles and descriptions for books and pages, and the
is_hidden flag are stored in these definitions.

Warning: Be aware that if you modify a library definition, desktop instances that share that
library definition could be affected. Therefore, if you scope to a particular desktop,
you may inadvertently affect other desktops if this property is set to true. For a
detailed discussion about the relationship between library definitions and desktop
instances, see “Scope and Library Inheritance” on page 7-7.

Production Operations User Guide 10-1

C H A P T E R 10

Using the Datasync Web Application

This chaper provides instructions for updating portal application datasync data, such as user
profile properties, user segments, content selectors, campaigns, discounts, and other property
sets, which must be bootstrapped to the database in a separate deployment process.

Note: In a WebLogic Portal cluster where the managed servers are running on different
computers than the administration server, the ListenAddress attribute of each managed
server must be set to its own IP address or DNS name; this allows datasync to propagate
updates throughout the cluster. Setting the cluster addresses to DNS addresses is covered
in “Creating a Production Cluster Environment with the Configuration Wizard” on
page 4-5.

This chapter includes the following topics:

Portal Datasync Definitions

Datasync Definition Usage During Development

Compressed Versus Uncompressed EAR

Rules for Deploying Datasync Definitions

Portal Datasync Definitions
WebLogic Portal allows you to author a number of definition files, such as user profiles and
content selectors, that must be managed carefully when moving from development to production
and back.

10-2 Production Operations User Guide

Within WebLogic Workshop, portal definitions are created in a special datasync project, exposed
in the WebLogic Workshop Application window as a /data subdirectory. (On the filesystem, the
directory exists in the application’s /META-INF/data directory.) This project can contain user
profile property sets, user segments, content selectors, campaigns, discounts, catalog property
sets, event property sets, and session and request property sets.

Datasync Definition Usage During Development
During development, all files created in the datasync project are stored in the META-INF/data
directory of the portal application and exposed in WebLogic Workshop in the
portalApplication/data directory. To provide optimim access from runtime components to
the definitions, a datasync facility provides an in-memory cache of the files. This cache
intelligently polls for changes to definitions, loads new contents into memory, and provides
listener-based notification services when content changes, letting developers preview datasync
functionality in the development environment.

Datasync definition modifications are made not only by WebLogic Workshop developers, but
also by business users and portal administrators, who can modify user segments, campaigns,
placeholders, and content selectors with the Weblogic Administration Portal. In the development
environment, both WebLogic Workshop and the WebLogic Administration Portal write to the
files in the META-INF/data directory.

Compressed Versus Uncompressed EAR
When deployed into a production system, portal definitions often need to be modifiable using the
Weblogic Administration Portal. In most production environments, the portal application will be
deployed as a compressed EAR file, which limits the ability to write modifications to these files.
In a production environment, all datasync assets must be loaded from the filesystem into the
database so the application can be updated.

Figure 10-1 shows how the /data directory from the updated portal application is put into a
standalone JAR and bootstrapped to the database.

Compressed Ve rsus Uncompressed EAR

Production Operations User Guide 10-3

Figure 10-1 Loading Updated Datasync Files to the Database

Alternatively, some production environments deploy their portal applications as uncompressed
EARs. In this case, the deployed portal application on the administration server is the primary
store of datasync definitions. Work done in the WebLogic Administration Portal on any managed
server is automatically synchronized with the primary store.

For both compressed and uncompressed EAR files, you can view and update datasync definitions
using the Datasync Web Application.

Datasync Web Application
Each portal application contains a Datasync Web Application located in datasync.war in the
application root directory. Typically, the URL to the Datasync web application is

10-4 Production Operations User Guide

http://server:port/appNameDataSync. For example,
http://localhost:7001/portalAppDataSync. You can also find the URL to your Datasync web
application by loading the WebLogic Server Administration Console and selecting
Deployments > Applications > appName > *DataSync and clicking the Testing tab to view the
URL.

The Datasync web application allows you to view the contents of the repository and upload new
content, as shown in Figure 10-2.

Figure 10-2 Datasync Web Application Home Page

Working with the Repository Browser – When working with the Data Repository Browser, you
have the option to work with all the files in the repository using the icons on the left hand side of
the page, or drill down into a particular sub-repository, such as the repository that contains all
Property Set definitions.

Compressed Ve rsus Uncompressed EAR

Production Operations User Guide 10-5

View Contents – To view the contents of a repository, click on the

icon to bring up the window shown in Figure 10-3.

Figure 10-3 Browsing the Datasync Repository

From this list, click on a particular data item to see its contents, as shown in Figure 10-4.

10-6 Production Operations User Guide

Figure 10-4 Data Item Contents

As you can see in Figure 10-4, you can view the XML data for a particular content item.

Removing Content
To remove content from a repository, click the trash can icon on the left side of the page.

Working with a Compressed EAR File
When the application is deployed, if the JDBC Repository is empty (contains no data), then the
files in the EAR will be used to bootstrap (initialize) the database. The Datasync assets are stored

Compressed Ve rsus Uncompressed EAR

Production Operations User Guide 10-7

in the following tables: DATA_SYNC_APPLICATION, DATA_SYNC_ITEM,
DATA_SYNC_SCHEMA_URI, and DATA_SYNC_VERSION. The bootstrap operation by default
happens only if the database is empty. When you want to do incremental updates, the Datasync
web application provides the ability to load new definitions directly into the database. This can
be done as part of redeploying a portal application, or independently using a special JAR file that
contains your definitions, as shown in Figure 10-4, “Data Item Contents,” on page 10-6.

Uploading new contents

When you click the icon, the following page appears, which lets you load data into the
database.

Figure 10-5 Uploading New Datasync Data

When you bootstrap, you choose a bootstrap source, which is either your deployed portal
application or a stand-alone JAR file. For example, if you have an updated portal application that
you have redeployed to your production environment, you can add any new definitions it contains
to your portal. Alternatively, if you have authored new definitions that you want to load
independently, you can create a JAR file with only those definitions and load them at any point.

Either way, when you update the data repository, you can choose to “Overwrite ALL data in the
Master Data Repository,” “Bootstrap only if the Mastery Repository is empty,” or “Merge with
Master Data Repository–latest timestamp wins.”

10-8 Production Operations User Guide

Bootstrapping from an EAR
If you are redeploy an existing EAR application and want to load any new definitions into the
database, choose the Application Data (META-INF/data) as your bootstrap source, and then
choose the appropriate Bootstrap Mode. To ensure that you do not lose any information, you may
want to follow the instructions in the section entitled, “Pulling Definitions from Production” on
page 10-8 to create a backup first. It is not possible to bootstrap definition data from an EAR file
that is not deployed.

Creating a JAR file
To bootstrap new definition files independently of updates to your portal application, you can
create a JAR file that is loaded onto the server that contains the files (content selectors,
campaigns, user segments, and so on) that you want to add to the production system.

To do this, you can use the jar command from your META-INF/data directory. For example:

jar -cvf myfiles.jar *

This example will create a JAR file called myfiles.jar that contains all the files in your data
directory, in the root of the JAR file. Then, you can bootstrap information from this JAR file by
choosing Jar File on Server as your data source, specifying the full physical path to the JAR file
and choosing the appropriate bootstrap mode. By running this process you can upgrade all the
files that are packaged in your JAR. Controlling the contents of your JAR allows you to be
selective in what pieces you want to update.

When creating the JAR file, the contents of the META-INF/data directory should be in the root
of the JAR file. Do not jar the files into a META-INF/data directory in the JAR itself.

Validating Contents
After bootstrapping data, it is a good idea to validate the contents of what you loaded by using
the View functionality of the Datasync web application.

Pulling Definitions from Production
Developers and testers may be interested in bringing datasync definitions that are being modified
in a production environment back into their development domains.As the modified files are
stored in the database, Portal provides a mechanism for exporting XML from the database back
into files.

One approach is to use the browse capability of the Datasync web application to view all XML
stored in the database in a web browser. This information can then be cut and pasted into a file.

Compressed Ve rsus Uncompressed EAR

Production Operations User Guide 10-9

A better alternative is to use the DataRepositoryQuery Command Line Tool, which allows you
to fetch particular files from the database using an FTP-like interface.

The DataRepositoryQuery Command Line Tool supports a basic, FTP-style interface for
querying the data repository on a server.

The command line class is com.bea.p13n.management.data.DataRepositoryQuery. In
order to use it, you must have the following in your CLASSPATH: p13n_ejb.jar,
p13n_system.jar, and weblogic.jar.

Run the class with the argument help to print basic usage help.

For example:

set classpath=c:\bea\weblogic81\p13n\lib\p13n_system.jar;

c:\bea\weblogic81\p13n\lib\p13n_ejb.jar;

C:\bea\weblogic81\server\lib\weblogic.jar

java com.bea.p13n.management.data.DataRepositoryQuery help

Options for Connecting to the Server
Several optional command arguments are used for connecting to the server. The default values
are probably adequate for samples provided by BEA. In real deployments, the options will be
necessary.

Only one of -app or -url may be used, as they represent two alternate ways to describe how to
connect to a server.

The URL is the most direct route to the server, but it must point to the DataRepositoryQuery
servlet in the Datasync web application. This servlet should have the URI of
DataRepositoryQuery, but you also need to know the hostname, port, and the context-root
used to deploy datasync.war in your application. So the URL might be something like

-username userid Username of a privileged user (an
administrator)

Default = weblogic

-password password Password for the privileged user Default = weblogic

-app appName@host:port Application to manage Default = @7001

-url url URL to DataRepositoryQuery servlet

10-10 Production Operations User Guide

http://localhost:7001/datasync/DataRepositoryQuery if datasync.war was deployed
with a context-root of datasync.

The -app option allows you to be a bit less specific. All you need to know is the hostname, port
number, and the name of the application. If there is only one datasync.war deployed, you do
not even need to know the application name. The form of the -app description is
appname@host:port, but you can leave out some pieces if they match the default of a single
application on localhost port 7001.

The -app option can be slow, as it has to perform many queries to the server, but it will print the
URL that it finds, so you can use that with the -url option on future invocations.

Examples
This section lists examples of using the DataRepositoryQuery command.

Assuming CLASSPATH is set as previously described, and the default username/password of
weblogic/weblogic is valid):

Find the application named p13nBase running on localhost port 7001:

java com.bea.p13n.management.data.DataRepositoryQuery -app p13nBase

Find the application named p13nBase running on snidely port 7501:

java com.bea.p13n.management.data.DataRepositoryQuery -app

p13nBase@snidely:7501

Find the single application running on localhost port 7101:

java com.bea.p13n.management.data.DataRepositoryQuery -app @7101

Find the single application running on snidely port 7001:

java com.bea.p13n.management.data.DataRepositoryQuery -app @snidely

Find the single application running on snidely port 7501:

java com.bea.p13n.management.data.DataRepositoryQuery -app @snidely:7501

In each of the examples, the first line of output will be something like this:
Using url: http://snidely:7001/myApp/datasync/DataRepositoryQuery

Compressed Ve rsus Uncompressed EAR

Production Operations User Guide 10-11

Usage
The easiest way to use the tool is in shell mode. To use this mode, invoke
DataRepositoryQuery without any arguments (other than those needed to connect as described
previously).

In this mode, the tool starts a command shell (you will see a drq> prompt) where you can
interactively type commands, similar to how you would use something like ftp.

Alternatively, you can supply a single command (and its arguments), and
DataRepositoryQuery will run that command and exit.

Commands
The HELP command gives you help on the commands you can use. Or use HELP command to get
help on a specific command.

The available commands are:

Commands are not case-sensitive, but arguments such as filenames and data item URIs may be.
More help than what is listed above can be obtained by using HELP command for the command
you are interested in.

Command Description

HELP Basic Help

HELP OPTIONS Help on command line options

HELP command Help on a specific command

HELP WILDCARDS Help on wildcards that can be used with URI arguments

LIST [-l] [uri(s)] List available data items

INFO [-l] [-d] Print repository info

PRINT uri Print a data item (the xml)

GET [-f] uri [filename] Retrieve a data item to a file

MGET [-f] [uri(s)] Retrieve multiple data items as files. Not specifying a URI retrieves all files.

EXIT or QUIT Exit the shell (shell only)

10-12 Production Operations User Guide

Where multiple URIs are allowed (indicated by uri(s) in the help), you can use simple
wildcards, or you can specify multiple URIs. The result of the command includes all matching
data items.

Options in square brackets ([]) are optional and have the following meanings:

The following example retrieves all assets from the repository as files:

java com.bea.p13n.management.data.DataRepositoryQuery -app mget

Working with an Uncompressed EAR File
When working with a production server with an uncompressed EAR, the only difference from
development mode is that there is no poller thread.

When updating definition files using the WebLogic Administration Portal, the files are updated
on the administration server in the deployed uncompressed EAR directory automatically. This
means that the WebLogic Administration Portal can be used from any managed server in the
cluster, but the primary store always resides on the administration server. If the deployable EAR
directory is read-only, the WebLogic Administration Portal cannot be used to modify files.

Making sure you are not overwriting files – When working with an uncompressed EAR file in
production, special care needs to be taken when working with definition files. When you redeploy
your application to your production environment, the existing definition files are replaced. If you
have administrators updating definitions using the WebLogic Administration Portal, their
changes will be lost upon redeploying an updated application.

Copying back to development – To prevent overwriting any changes done by administrators to
definition files when redeploying a new portal application, you must first copy all the definition
files from the administration server back to development manually or using the Datasync web
application.

-l Output a longer, more detailed listing

-d Include URIs of data items contained in each repository

-f Force overwrite of existing files

Rules f or Dep loy i ng Datasync De f i n i t i ons

Production Operations User Guide 10-13

Rules for Deploying Datasync Definitions
There are a number of general concepts to think about when iteratively deploying datasync
definitions into a production system. In general, adding new datasync definitions to a production
system is a routine process that you can do at any time. However, removing or making destructive
modifications to datasync definitions can have unintended consequences if you are not careful.

When removing or making destructive modifications to datasync definitions, you should first
consider whether there are other components that are linked to those components. There are
several types of bindings that might exist between definitions.

Note: For some of these bindings, it is very important to understand that they may have been
defined on the production server using the WebLogic Administration Portal and may not
be known by the developers.

One example of bindings is that you may have two datasync definitions bound together. An
example of this is a campaign that is based on a user property defined in a user property set. If
you remove the property set or the specify property, that campaign will no longer execute
properly. In this case, you should update any associated datasync definitions before removing the
property set or property.

A second scenario is that you have defined an entitlement rule that is bound to a datasync
definition. For example, you might have locked down a portlet based on a dynamic role that
checks if a user has a particular user property value. In this case, you should update that dynamic
role before removing the property set or property.

A third scenario is that there are in-page bindings between datasync items and Portal JSP tags.
An example is a <pz:contentSelector> tag that references a content selector. Update the
content selector tag in the production environment before you remove the content selector. This
is one type of binding that is only configured in WebLogic Workshop at development time rather
than in the WebLogic Administration Portal.

A good guideline for developers is not to remove or make significant changes to existing datasync
definitions that are in production. Instead, create new definitions with the changes that are
needed. This can be accomplished by creating new versions of, for example, campaigns where
there is no chance that they are being used in unanticipated ways. Additionally, perform datasync
bootstraps of the production system’s existing datasync definitions back into development on a
regular basis.

10-14 Production Operations User Guide

Removing Property Sets
When you remove a property set, any existing values being stored locally by WebLogic Portal in
the database will NOT be removed automatically. You need to examine the PROPERTY_KEY and
PROPERTY_VALUE tables to clean up the data if desired.

Production Operations User Guide Index-1

Index

A
administration server, configuring 4-10
and Propagation Utility 7-2
Ant build script

see Export/Import Utility
applications, enterprise

multiple in single domain 3-18
authentication, on server startup 4-11

B
BEA home directory 3-2
binary files, in source control 3-9
book

exporting a 9-20
importing a 9-23

build script
see Export/Import Utility

C
cache

management 9-32
portal 4-21

change manifest, and Propagation Utility 8-19
cluster 7-2

architecture, choosing 4-2
configuring a 1-2
multi 4-3
setting up with configuration wizard 4-5
single 4-2

coding practices, for portals 3-16
config.xml 3-5

config-template.xml 3-17
configuration file template 3-17
conflict resolution, and propagation 7-16
Content Management

creating repositories 5-3
data, and propagation 7-14

cross-platform support 3-16
customization, defined 9-6

D
data types propagated by Propagation Utility 7-8
database

enterprise-quality 3-12
PointBase 3-11
setting up a production 4-1
shared 3-11
single instance 4-21
structure for portlets 4-16

datasync data
and propagation 7-12
moving 6-15
web application 6-5, 10-1

Datasync Web application 10-1
Datasync web application 6-5
decoupling portal assets 7-7
definition labels

and propagation 7-19
defined 3-17

deletes, handling for import 9-27
deployment

descriptors 5-1, 5-3
of portal application to cluster 5-8

Index-2 Production Operations User Guide

targeted 5-7
desktop

defined 9-2
exporting 9-12
propagation scope 7-7
scope 6-17

development
environment 6-10, 6-13
environment, team 1-2
mode 6-15, 6-19
round trip 6-19

disassembling portal assets 7-7
domain

configuring 4-5
shared portal 3-2

domain, with multiple enterprise applications
3-18

E
EAR file

and propagation 6-4
building 5-4
compressed vs. uncompressed 10-2
deploying 5-1
deploying for new application 5-5
deployment 6-4, 6-14, 7-5
multiple in single domain 3-18
preparing to deploy 5-1
redeployment 6-14
references to 6-4

enterprise application scoped propagation 6-17,
7-6
environment

development 6-10, 6-13
production 6-11
staging 6-11, 6-14

Export/Import Utility
admin scope 9-3, 9-5
Ant build script 9-14
build script, Ant 9-14

data moved by 9-6
data not moved by 9-7
export a book 9-20
export a page 9-20
export desktop 9-12
handling deletes 9-27
handling moves 9-29
identifiers 9-31
import .portal file 9-15
import a book 9-23
import a page 9-23
inner moves 9-29
installation 2-3
introduction
library scope 9-3, 9-5
merge rules 9-7
merging 9-27
outer moves 9-29
overview 6-6, 9-6
properties file 9-8
round trip development 1-4
scenario 6-19
scope 9-3
scope rules 9-7
using 9-8
visitor scope 9-3, 9-6
xip, defined 9-1

exporting
a book 9-20
a desktop 9-12
a page 9-20
see Export/Import utility

F
files

 wlw-manifest.xml 4-2
.pinc, defined 9-3
.portal

defined 9-2
importing 9-15

Production Operations User Guide Index-3

config.xml 3-5
config-template.xml 3-17
web.xml 5-2
weblogic.xml 5-2
xip.properties 9-8

framework data, and propagation 7-10

H
home directory

BEA 3-2
multiple locations for 3-2

I
identifiers, specifying 9-31
importing

see Export/Import Utility
inheritance

of imported changes 9-17
of portal assets in propagation 7-7

installation guide 2-1
instance labels, and propagation 7-19
inventory

defined 8-1
export, and Propagation Utility 8-1
import, and Propagation Utility 8-9

J
JMS servers, setting up 4-11
JVM, compiling with your runtime 5-4

L
LDAP

backup before propagating 7-3
propagation of 7-14

legend, for pending propagation changes 8-19
library inheritance 7-7
log file, and Propagation Utility 7-17
log files, and Propagation Utility 8-9, 8-23

M
managed server directories, creating 4-13
managed servers, starting 5-7
memory, increasing default 4-10
merging

portal assets 9-27
with Export/Import Utility 9-7

mode, server
development 6-15
production 6-15

moves
handling 9-29
inner 9-29
outer 9-29

P
page

exporting a 9-20
importing a 9-23

partial redeployment 5-10
personalization, defined 9-6
PointBase database 3-11
portal

building an application 5-4
cache 4-21
coding practices 3-16
domain, creating a shared 3-2
resources, understanding 4-15

portal assets
disassembling/decoupling 7-7
instances and inheritance 7-7

portal webapp scoped propagation 7-6
portlet database structure 4-16
prioritizing changes, and Propagation Utility
7-17
production

database, setting up 4-1
environment 6-11, 6-14
mode 6-15, 6-19

propagation

Index-4 Production Operations User Guide

conflict resolution 7-16
defined 6-1
definition labels 7-19
framework data 7-10
inheritance of scope 7-7
introduction 1-3
scenarios 6-13
schematic view 6-9
staging to production 6-18
strategy 6-12
tools for 6-4

Propagation Utility
asset identifiers 7-16
before you begin 7-3
best practices 7-19
commit changes to inventory 8-22
conflict resolution 7-16
conflict resolution examples 7-17
Content Management data not propagated

7-14
data types propagated 7-8
datasync data propagated 7-12
definition labels 7-19
deploying EAR 7-5
deploying J2EE application (EAR) 8-14
disassembling/decoupling 7-7
export

inventory to file 8-7
results page 8-8
summary 7-2, 8-1

file format 7-2, 8-1
framework data propagated 7-10
general guidelines 7-2
import

change manifest legend 8-19
policy 8-16
preview changes 8-17
scope 8-15
summary statistics 8-19

import process summary 7-2
inheritance of scope 7-7

installation 2-2
instance labels 7-19
inventory

export process diagram 8-1
import process diagram 8-9

log file
resolved conflict list 7-17

log files
export 8-9, 8-23

manual
changes 6-6, 7-5
replication between environments 7-19

overview 6-4
policies 7-16
preview changes 8-17
priority of changes 7-17
property setting decoupling 7-8
purpose 7-1
quiescence of system 7-3
quiescence requirement 8-14
revert a committed change 7-18
reviewing manual change listing 8-21
rules for merging 7-16
scope

best practice 7-19
indicators in table 7-9
overview 7-6

screenshots
configure changes using imported

inventory 8-14
create import policy 8-16
deploy J2EE application 8-14
export application inventory 8-7
inventory export results 8-8
login 8-3
propagate the inventory 8-22
review inventory validation results 8-11
review pending changes 8-17
review required manual changes 8-21
select import scope 8-15
select import source for inventory 8-10

Production Operations User Guide Index-5

starting 8-2
view application inventory 8-12

security data propagated 7-13
selecting source for import 8-10
sequence 7-2
server quiesce before import 7-3
starting 8-2
user

customizations 7-15
using

across a network 7-3
in a cluster 7-2

validating imported inventory 8-11
viewing imported inventory 8-12
WSRP data not propagated 7-14

properties file, for Export/Import Utility 9-8
property settings and propagation 7-8
proxy server, configuring 5-8

Q
quiesced system, and Propagation Utility 7-3

R
redeployment

of applications 5-9
partial 5-10

revert propagation 7-18
round trip development 6-19

see also Export/Import Utility

S
scope

admin, Export/Import Utility 9-5
and Export/Import Utility 9-3
desktop 6-17
enterprise 6-17
hierarchy for Export/Import Utility 9-4
inheritance 7-7
library, Export/Import Utility 9-5

visitor, Export/Import Utility 9-6
with Export/Import Utility 9-7

security data
and propagation 7-13

server
cluster configuration 1-2
configuring proxy 5-8
creating managed directories 4-13
managed, starting 5-7

server mode
development 6-19
production 6-19

shared portal domain 3-2
single instance database 4-21
source control

binary files 3-9
chosing a vendor 3-1
excluding domain files 3-9
use in portal environments 6-10

staging environment 6-11, 6-14
startWebLogic.cmd 3-5
support, cross-platform 3-16

T
targeted deployment 5-7
team development environment

managing 3-1
setting up a 1-2

template, configuration file 3-17
tools, used for propagation 6-19

U
user customizations, and Propagation Utility
7-15

W
web.xml file 5-2
weblogic.Deployer application 5-9
weblogic.xml file 5-2

Index-6 Production Operations User Guide

wlw-manifext.xml file 4-2
WSRP data, and Propagation Utility 7-14

X
xip

see Export/Import Utility
xip.properties file 9-8

Z
zero-downtime architecture 4-17

	Introduction to Production Operations
	Managing the Portal Life Cycle
	Setting Up a Team Development Environment
	Configuring the Portal Cluster
	Building and Deploying the EAR File
	Propagating a Portal Application
	Performing Round-Trip Development

	Installing the Propagation Software
	Updating the Database
	Installing the Propagation Utility
	Verifying the Propagation Utility Installation
	Installing the Export/Import Utility
	Running the Export/Import Utility

	Managing a Team Development Environment
	Choosing a Source Control Vendor
	Creating a Shared Portal Domain
	The BEA Home Directory
	Understanding Why a Common BEA Home Matters
	Managing Multiple BEA Home Directory Locations for Your Team

	Creating and Sharing the Portal Domain
	Best Practices for Creating a Portal Domain to Share with a Team
	Excluding Domain Files From Source Control Management
	Binary Files in Source Control Management
	Developing Against an Enterprise-Quality Database

	Creating and Sharing the Portal Application
	Creating the Domain and Application Directories
	Checking in the WebLogic Workshop Application
	Excluding Portal Application Files From Source Control Management

	Managing Checkouts of the WebLogic Workshop Application

	WebLogic Portal Coding Practices
	Java Projects
	Cross-Platform Support
	Definition Labels for Portal Components
	Cluster Configuration
	Setting up a Configuration File Template (config-template.xml)
	Exclude config.xml From Source Control

	Using Multiple Enterprise Applications in a Single Domain
	Additional Files Recommended in Source Control

	Configuring a Portal Cluster
	Setting up a Production Database
	Reading the wlw-manifest.xml File
	Choosing a Cluster Architecture
	Single Cluster
	Multi Cluster

	Configuring a Domain
	Using the Configuration Wizard
	Creating a Production Cluster Environment with the Configuration Wizard
	Configuring the Administration Server
	Increasing the Default Memory Size
	Allowing Server Startup Without Requiring Authentication

	Setting up JMS Servers
	Creating Managed Server Directories
	Increasing the Default Memory Size

	Understanding Portal Resources
	Understanding the Portlet Deployment Life Cycle
	Understanding the Database Structure for Storing Portlets
	Removing Portlets from Production

	Zero-Downtime Architectures
	Single Database Instance
	Portal Cache

	Preparing and Deploying the EAR File
	Preparing the EAR File for Deployment
	Configuring Portal Application Deployment Descriptors
	Modifying Application Deployment Descriptors
	Modifying Web Application Deployment Descriptors
	Modifying WebLogic Workshop Deployment Descriptors
	Creating Content Management Repositories

	Compiling with Your Runtime JVM
	Building a Portal Application with WebLogic Workshop
	Building In the Command Line

	Deploying the EAR for a New Application
	Using Targeted Deployment
	Starting Managed Servers
	Configuring Your Proxy Server
	Troubleshooting Unresolved URLs

	Deploying a Portal Application to the Cluster
	Redeploying Applications
	Redeploying a Portal Application with weblogic.Deployer
	Partial Redeployment with weblogic.Deployer

	Developing a Propagation Strategy
	What is Propagation?
	What Kind of Data Can Be Propagated?
	What Tools Does BEA Provide to Assist with Propagation?
	WebLogic Server Administration Console (EAR Deployment)
	Propagation Utility
	Datasync Web Application
	Export/Import Utility
	Manual Propagation Steps
	Database Vendor Tools (Not Supported)

	Choosing the Right Propagation Tool
	Propagation Roadmap
	Development Environments
	Source Control
	Moving from Development to Staging
	Staging Environment
	Source Control in the Staging Environment
	Moving to the Production Environment

	Assessing Your Portal System Configuration
	General Propagation Scenarios
	Example Environment
	Scenario 1: Deploying the EAR file for the first time
	Scenario 2: Redeploying an EAR file
	Scenario 3: Propagating from Staging to Production: Enterprise Scope
	Scenario 4: Propagating from Staging to Production: Desktop Scope
	Scenario 5: Propagating from Production to Staging: Both Have Changed
	Scenario 6: Round-Trip Development

	Production Mode vs. Development Mode

	Inside the Propagation Utility
	The Propagation Utility Sequence
	General Propagation Guidelines
	Propagating in a Clustered Environment
	Propagating Across Networked Systems

	Before You Begin
	Perform a Data Backup
	Plan to Inactivate the System During the Import Process
	Install the Patch
	Customize the Session Timeout and Inventory/Log File Location (Optional)
	Session Timeout Value
	Inventory and Log File Location

	Deploy the J2EE Application (EAR)
	Make Required Manual Changes

	Propagation Scope
	Setting the Scope
	Scope and Library Inheritance
	Portal Asset Instances and Inheritance
	Creating a New Desktop and Disassembling to the Library
	Decoupling of Property Settings

	Propagation Scope Reference Table
	Security Information and Propagation
	User Customizations and Propagation
	Datasync Assets and Propagation
	Conflict Resolution Using Policies
	Identifying Differences Between Assets
	Prioritizing Changes Based on Policies
	Handling Propagation Conflicts

	Rolling Back an Import Process
	WSRP Propagation
	Two Models for WSRP Propagation
	Support for Shared Registration

	Best Practices
	Keep Portal Framework Definition Labels and Instance Labels
	Do Not Manually Replicate Changes Between Environments
	Set the Scope to the Enterprise Application Level

	Using the Propagation Utility
	Inventory Export Process
	Starting the Propagation Utility and Logging In
	Viewing the Application Inventory
	Exporting the Application Inventory to a File
	Reviewing Propagation Utility Export Log Files

	Inventory Import Process
	Starting the Utility
	Selecting the Source Inventory to Import
	Loading and Validating the Imported Inventory List
	Viewing the Application Inventory
	Acknowledging the Quiescence Requirement
	Deploying the J2EE Application on the Destination
	Setting the Scope
	Creating Policies for Merging Inventory Information
	Previewing Changes
	Summary Statistics
	Change Manifest Legend
	Pending Change List (Change Manifest)
	Exporting the Change Manifest for the Inventory

	Making Manual Changes Prior to Propagation
	Committing the Inventory Import
	Reviewing the Import Log Files
	Import Overview Log File
	Import Processing Verbose Log Files

	Using the Export/Import Utility
	Installing the Export/Import Utility
	Before You Use the Export/Import Utility
	Understanding .portal Files vs. Desktops
	Understanding .pinc Files
	Understanding Export and Import Scope
	Library Scope
	Admin Scope
	Visitor Scope
	Customization

	Overview of the Export/Import Utility
	What the Utility Moves
	What the Utility Does Not Move
	Merging and Scoping Rules

	Using the Export/Import Utility
	Understanding the Properties File
	Specifying the Properties File Location
	Specifying Parameters in the Properties File

	Exporting a Desktop
	Editing the Properties File
	Running the Build Script

	Importing a .portal File
	Editing the Properties File
	Running the Build Script

	Exporting a Page
	Editing the Properties File
	Running the Build Script

	Importing a Page
	Editing the Properties File
	Running the Build Script

	Handling Deletes
	Handling Moves
	Inner Moves
	Outer Moves

	Specifying Identifiers
	Locating the Definition Label for a Page
	Locating the Definition Label for a Book

	Managing the Cache

	Using the Datasync Web Application
	Portal Datasync Definitions
	Datasync Definition Usage During Development
	Compressed Versus Uncompressed EAR
	Datasync Web Application
	Removing Content
	Working with a Compressed EAR File
	Uploading new contents
	Bootstrapping from an EAR
	Creating a JAR file
	Validating Contents

	Pulling Definitions from Production
	Options for Connecting to the Server
	Examples
	Usage
	Commands
	Working with an Uncompressed EAR File

	Rules for Deploying Datasync Definitions
	Removing Property Sets

	Index

