
BEAWebLogic
Portal™®

White Paper: Content
Personalization

Version 8.1
Document Revised: May 2004
By: Greg Smith

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

White Paper: Content Personalization iii

Contents

Content Personalization
What is Content? .1

What is Personalized Content? .1

Users .2

Authentication Identification .2

Profile. .3

Example User Profiles .3

Manipulating User Profiles .5

Content .9

Retrieving Content Nodes. .10

Searching for Content Nodes with Content Query Expressions.10

Searching for Content Nodes Via the APIs. .12

Personalization .12

Notes on the Following Samples .13

Personalized Searching .13

Content Rendering .15

Content Selectors .17

Content Placeholders .23

Campaigns .25

Conclusion .25

iv White Paper: Content Personalization

White Paper: Content Personalization 1

Content Personalization

What is Content?
Content is information. Most people think of things like documents, images, audio, and video as
being content, which is true. Content also generally entails an amount of information that
describes the content in more concrete terms. In fact, content can be just information, or metadata,
with no associated media. Metadata is typically parametric and/or structured data about the
content itself.

For example, an advertisement image for a car might have metadata parameters that describe its
make, model, size, color, and price. Content can usually be retrieved by searching through the
metadata and, sometimes, the media. Content is often managed by a Content Management
System, which provides a variety of services to help in the creation, editing, and publishing of
content.

BEA WebLogic Portal provides content management services through a Virtual Content
Repository. The Virtual Content Repository supports "plugging" in access to multiple content
management systems and providing a single point of access to all of them. Additionally, BEA
WebLogic Portal provides a full-featured content repository that can be used either instead of or
in conjunction with 3rd party content management systems.

What is Personalized Content?
Personalized content is content which matches a particular context, generally around a user. It
takes into account information contained in the context to correctly generate search queries which
will retrieve the content most appropriate to the context. For example, if you have red, green, and
blue images, and you have determined that the user prefers green, you would probably want to

Content Pe rsona l i za t i on

2 White Paper: Content Personalization

display green images to the user (assuming you want to have happy users).
In BEA WebLogic Portal, the context to match against includes at least the user's profile, the
user's current request, the user's current session, and current date and time. Additionally, Portal
supports writing business rules which can classify users into various segments; these segments
support the same contextual information. For example, you could define a business rule which
defines who your Premier Users are. In some cases, you can also use these segments when
personalizing content.

Users
Users use your application. In Portal, you will need to have a user, or a simulation of a user, to
retrieve personalized content. Users have 2 aspects in Portal: their identity and their profile.

Authentication Identification
This is a Subject containing multiple Principals, including the user's. This is used by the security
subsystems to identify the user and their capabilities.

Listing 1 Getting a principal

<%@ page import="com.bea.p13n.security.Authentication" %>

<%-- Current Subject, which can comprise multiple Principals.

 This method is usable anywhere, not just from webapps.

--%>

Authentication Utility class:

<pre><%= Authentication.getCurrentSubject() %></pre>

Servlet Request: [<code><%= request.getUserPrincipal() %></code>]

There are several ways to authenticate users with the system, including:

<security-constraint> in WEB-INF/web.xml: This can be used for both HTTP
BASIC Auth and form-based authentication in a standard, j2ee-compliant way.

com.bea.p13n.security.Authentication.login(), generally from a servlet, servlet
filter, portlet BackingFile, or a PageFlow.

Pro f i l e

White Paper: Content Personalization 3

com.bea.p13n.security.Authentication.authenticate().

<um:login> JSP tag.

the UserLoginControl's login() method, from a PageFlow or JSP.

Profile
The profile is metadata about the user. It can be separate from a user identity. In fact, in Portal,
there are three kinds of user profiles:

Registered: This is the profile for a fully-registered user who can be authenticated with the
system.

Anonymous: This is the profile for a user who does not have an identity with the system.

Tracked Anonymous: This is the profile for a user who Portal recognizes but is not
registered; it, therefore, does not have an identity which can authenticate with the system.

The profile is kept in the session by default. The user profile is usually initialized by the
PortalServletFilter in the webapp. This filter will initialize either an Anonymous or
Tracked Anonymous profile in the session on first access, depending upon whether user tracking
is enabled and the request has a valid tracking cookie. If the user authenticates (logs in), the filter
will switch the profile with the user's registered profile. If the user registers with the system, the
filter will create a registered profile, initialized with any values in their (tracked) anonymous
profile, and put that in the session.

User profiles can store properties specified via User Profile Property Sets defined in the data
project of a portal application in WebLogic Workshop and those that are not. However, the
Administration Portal and the other WebLogic Workshop editors can only operate against
properties defined in a User Profile Property Set.

Example User Profiles
The user's profile object can be retrieved from the session in several ways:

Listing 2 Retrieving a user profile from the session

<%@ page import="com.bea.p13n.usermgmt.SessionHelper"%>
<%@ taglib uri="http://www.bea.com/servers/p13n/tags/usermanagement"
prefix="um"%>
<%@ taglib uri="netui-tags-databinding.tld" prefix="netui-data"%>

Content Pe rsona l i za t i on

4 White Paper: Content Personalization

<%@ taglib uri="netui-tags-html.tld" prefix="netui"%>
Profile is: [<code><%= SessionHelper.getProfile(request) %></code>]

<%-- This tag works for authenticated users. --%>
<um:getProfile profileKey="<%=request.getUserPrincipal().getName()%>"
profileId="profile"/>
Profile is: [<code><%= profile %></code>]

<%-- You would generally want to do this in your PageFlow, not your JSP. --%>
<netui-data:declareControl controlId="profileControl"
 type="com.bea.p13n.controls.profile.UserProfileControl"/>
<netui-data:callControl resultId="getProfileFromRequestResult"
 controlId="profileControl" method="getProfileFromRequest">
<netui-data:methodParameter value="{request}"></netui-data:methodParameter>
</netui-data:callControl>
Profile is: [<code><netui:label
value="{pageContext.getProfileFromRequestResult}"></netui:label></code>]

If the user is registered, then the user's profile can be retrieved without a reference to the session:

Listing 3 Retrieving a user profile without a session reference

import com.bea.p13n.usermgmt.profile.ProfileFactory;
import com.bea.p13n.usermgmt.profile.ProfileNotFoundException;
import com.bea.p13n.usermgmt.profile.ProfileWrapper;
import java.rmi.RemoteException;
public class MyHelper
{
 public static String helperMethod(String username)
 {
 try
 {
 ProfileWrapper profile = ProfileFactory.getProfile(username, null);
 // do something helpful here.
 return profile.toString();
 }
 catch (RemoteException ex)
 {
 }
 catch (ProfileNotFoundException ex)
 {
 }
 return null;

Manipu la t ing Use r P ro f i l es

White Paper: Content Personalization 5

 }
}

Additionally, the UserProfileControl has methods for retrieving a user's profile based upon
the username.

Of course, for anonymous and tracked anonymous profiles, you have to retrieve the profile from
the session. Anonymous profiles have no identity whatsoever. Tracked anonymous profile have
an identity which is not valid for authentication. A safe way to retrieve the identity for a user,
based upon whatever type of profile they have, is:

Listing 4 Sample Code for Retreiving a User’s Identity

<%@ page import="com.bea.p13n.usermgmt.SessionHelper"%>

Profile Id is: [<code><%= SessionHelper.getUserId(request) %></code>]

Note: The returned value will be null for anonymous profiles, the tracking id (which can not be
used for authentication) for tracked anonymous profiles, and the user principal name for
authenticated and registered profiles.

Manipulating User Profiles
To manipulate the user's profile, you can either:

use the ProfileWrapper object directly, or

use the <um:getProperty> and <um:setProperty> tags, or

use a UserProfileControl to manipulate a ProfileWrapper.

Here's an example page flow (and associated JSP) that use controls to offer a form for the user to
set their Favorite Color. This examples requires that a Generalnfo.usr User Profile Property
Set file exist in the userprofiles/ folder of the data project, with a single-valued, restricted, text
FavoriteColor property.

Note: See the sample application for more details.

Content Pe rsona l i za t i on

6 White Paper: Content Personalization

Listing 5 Letting a user change a user profile property

package users.setcolor;

import com.bea.p13n.controls.exceptions.P13nControlException;
import com.bea.p13n.property.PropertyDefinition;
import com.bea.p13n.property.PropertySet;
import com.bea.p13n.usermgmt.profile.ProfileWrapper;
import com.bea.wlw.netui.pageflow.FormData;
import com.bea.wlw.netui.pageflow.Forward;
import com.bea.wlw.netui.pageflow.PageFlowController;
import java.util.Collection;
import java.util.Iterator;

/**
 * @jpf:controller
 */
public class SetColorController extends PageFlowController
{
 /**
 * @common:control
 */
 private com.bea.p13n.controls.ejb.property.PropertySetManager propSetMgr;

 /**
 * @common:control
 */
 private com.bea.p13n.controls.profile.UserProfileControl profileControl;

 /** Cached possible colors from the User Profile Property Set definition.
 */
 private String[] possibleColors = null;

 /** Get the possible colors, based upon the User Profile Property Set.
 */
 public String[] getPossibleColors()
 {
 if (possibleColors != null)
 return possibleColors;
 try
 {
 PropertySet ps = propSetMgr.getPropertySet("USER", "GeneralInfo");
 PropertyDefinition pd = ps.getPropertyDefinition("FavoriteColor");
 Collection l = pd.getRestrictedValues();
 String[] s = new String[l.size()];
 Iterator it = l.iterator();
 for (int i = 0; it.hasNext(); i++)
 s[i] = it.next().toString();

Manipu la t ing Use r P ro f i l es

White Paper: Content Personalization 7

 possibleColors = s;
 }
 catch (P13nControlException ex)
 {
 ex.printStackTrace();
 possibleColors = new String[0];
 }
 return possibleColors;
 }

 /** Get the user's favorite color from their profile.
 */
 public String getUsersColor()
 {
 try
 {
 ProfileWrapper profile =
profileControl.getProfileFromRequest(getRequest());
 return profileControl.getProperty(profile, "GeneralInfo",
"FavoriteColor").toString();
 }
 catch (P13nControlException ex)
 {
 ex.printStackTrace();
 }
 return null;
 }

 // Uncomment this declaration to access Global.app.
 //
 // protected global.Global globalApp;
 //

 // For an example of page flow exception handling see the example "catch"
and "exception-handler"
 // annotations in {project}/WEB-INF/src/global/Global.app

 /**
 * This method represents the point of entry into the pageflow
 * @jpf:action
 * @jpf:forward name="success" path="index.jsp"
 */
 protected Forward begin()
 {
 return new Forward("success");
 }

 /**
 * @jpf:action

Content Pe rsona l i za t i on

8 White Paper: Content Personalization

 * @jpf:forward name="success" path="begin.do"
 */
 protected Forward setColor(ColorFormBean form)
 {
 // set the color in the user's profile
 try
 {
 ProfileWrapper profile =
profileControl.getProfileFromRequest(getRequest());
 profileControl.setProperty(profile, "GeneralInfo", "FavoriteColor",
form.getColor());
 }
 catch (P13nControlException ex)
 {
 ex.printStackTrace();
 }
 return new Forward("success");
 }

 /**
 * FormData get and set methods may be overwritten by the Form Bean editor.
 */
 public static class ColorFormBean extends FormData
 {
 private String color;

 public void setColor(String color)
 {
 this.color = color;
 }

 public String getColor()
 {
 return this.color;
 }
 }
}

Listing 6 Example of the Associated index.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="netui-tags-databinding.tld" prefix="netui-data"%>
<%@ taglib uri="netui-tags-html.tld" prefix="netui"%>
<%@ taglib uri="netui-tags-template.tld" prefix="netui-template"%>
<netui:html>
 <body>

Content

White Paper: Content Personalization 9

 <netui:form action="setColor">
 <table>
 <tr valign="top">
 <td>Favorite Color:</td>
 <td>
 <netui:select dataSource="{actionForm.color}"
 defaultValue="{pageFlow.usersColor}"
 optionsDataSource="{pageFlow.possibleColors}"></netui:select>
 </td>
 </tr>
 </table>

 <netui:button value="Set Color" type="submit"/>
 </netui:form>
 </body>
</netui:html>

Note: Much of this sample was generated via drag-and-drop and the wizards in WebLogic
Workshop.

Content
In Portal, content exists in a hierarchy. At the top are the configured repositories for the
application. Under each repository is the tree of content Nodes. Each Node can be either a
hierarchy or content Node. Hierarchy Nodes are analogous to folders; content Nodes are
analogous to files. Both can have metadata properties bound to a content type, which is internally
called an ObjectClass. ObjectClasses are like Property Sets for content. They define the available
metadata properties, their data types, and their default and possible values.

There are APIs in the com.bea.content and com.bea.content.manager packages are creating,
editing, deleting, and retrieving ObjectClasses and Nodes. For this article, however, it will suffice
to use the Administration Portal to manipulate the content tree.

To access the Administration Portal, use the Portal|Portal Administration... option in the menu in
WebLogic Workshop; alternatively, the Administration Portal is a webapp deployed to the
<appname>Admin URL on your server (e.g. contentAppAdmin/). Once it's open in your
browser, use an admin-capable username to login, such as the one you used to create the domain;
weblogic/weblogic and portaladmin/portaladmin are the defaults. Select the Content link in the
header.

Content Pe rsona l i za t i on

10 White Paper: Content Personalization

Retrieving Content Nodes
Content is retrieved generally in one of 2 ways: by Node path or by a search query. All Nodes are
addressable by a unique path. This path is visible in the Administration Portal as you create folder
Nodes (via the Add Node button) and content Nodes. Then, you can use the <cm:getNode> JSP
tag retrieve the Node. For example, if your content hierarchy appears in the Administration Portal
as shown in Figure 1, you could use the code in Listing 7 to retrieve the CarPic node.

Figure 1 Content hierarchy

Listing 7 Sample Code for Retrieving the CarPic Node

<%@ taglib uri="content.tld" prefix="cm"%>

<cm:getNode path="/BEA Repository/Dev2Dev/CarPic" id="carpic" />

Searching for Content Nodes with Content Query Expressions
To search for Nodes, you can construct a content query expression. Content query expressions
can be constructed either in object form or via the query syntax. Full details can be found in the
JavaDoc for com.bea.content.expression.ExpressionHelper.parse(), including on the
format of the query syntax.

Search ing fo r Conten t Nodes w i th Conten t Query Exp ress ions

White Paper: Content Personalization 11

There is a JSP tag available to search for Nodes based upon a search expression. For example, to
find all Nodes whose name (which is the last part of the Node path) includes 'Pic', you could use
the following:

Listing 8 Sample Code for Searching Content with Expressions

<%@ taglib uri="content.tld" prefix="cm"%>

<%@ taglib uri="http://www.bea.com/servers/p13n/tags/utility"

prefix="utility"%>

<cm:search id="nodes" query=" cm_nodeName like '*Pic' " sortBy="cm_nodeName

desc"/>

Found <%=nodes.length%> Node(s):

<utility:forEachInArray array="<%=nodes%>" id="node"

type="com.bea.content.Node">

<cm:getProperty id="node" name="cm_nodeName"

conversionType="html"/>

</utility:forEachInArray>

This will print out the names of the Nodes that end in 'Pic' in reverse order, so, given the
previous Node hierarchy, it would be:

1. SportsPic

2. FoodPic

3. ComputerPic

4. CarPic

5. BooksPic

For most portal tags, the Property Editor in WebLogic Workshop gives descriptions of the tag
and attributes. Additionally, F1 help exists for most portal tags; just put the cursor on the tag (in
Source or Design view) and press F1 (or Help|Context Help in the menu).

Content Pe rsona l i za t i on

12 White Paper: Content Personalization

Searching for Content Nodes Via the APIs
Alternatively, you could use the search APIs directly, particularly if you're not in a JSP or servlet
context:

Listing 9 Sample Code for Searching Content Via the APIs

<%@ page import="com.bea.content.Node"%>

<%@ page import="com.bea.content.expression.ExpressionHelper"%>

<%@ page import="com.bea.content.expression.Search"%>

<%@ page import="com.bea.content.manager.RepositoryManager"%>

<%@ page import="com.bea.content.manager.RepositoryManagerFactory"%>

<%@ page import="com.bea.content.manager.SearchOps"%>

<%

// Construct the search object from a content query and a sorting clause

Search search = new Search();

search.setExpression(ExpressionHelper.parse(" cm_nodeName like '*Pic' "));

search.setSortCriteria("cm_nodeName desc");

// connect to the repositories

RepositoryManager mgr = RepositoryManagerFactory.connect(session);

// search and fetches Nodes

Node[] nodes =

mgr.getNodeOps().getNodes(mgr.getSearchOps().search(search));

%>

Found <%=nodes.length%> Node(s):

<% for (int i = 0; i < nodes.length; i++) { %>

<%=nodes[i].getName()%>

<% } %>

Personalization
So, now we know about users and profiles, and about content and searching. We just need to put
these together to get personalized content. There are many ways to do this, depending upon your
needs and what technologies are being used.

Notes on the Fo l l owing Samples

White Paper: Content Personalization 13

Notes on the Following Samples
The following samples, and the sample application, rely upon certain data being initialized in the
content repository. I've created a Dev2Dev content type which appears in the Administration
Portal, shown in Listing 2.

Figure 2 Properties in the Dev2Dev content type

Note: The media property is designated as the primary property.

From that content type, Nodes were created for each topic, with each color being represented in
at least one Node. For the media attribute for each, I uploaded an image file appropriate to the
node's topic and color. This made sure I had enough content to try out various personalizations.

In a real application, especially against an enterprise content management system, it will be
typical to have significantly more data. Often, the developer does not generate the data but must
instead use the tools to discover what's available.

Also, the sample application and this sample code was written with a BEA WebLogic Platform
8.1.2 installation. You might see different behavior with other versions.

Personalized Searching
The content query syntax supports the ability to refer to user, request, and session properties. This
is done by using special keywords in the query syntax. For example, to refer to user's

Content Pe rsona l i za t i on

14 White Paper: Content Personalization

FavoriteColor property from the GeneralInfo User Profile PropertySet, your query could look
like:

color == userProperty('GeneralInfo', 'FavoriteColor')

Similarly, requestProperty and sessionProperty will refer to request and session
properties, respectively.

Of course, you could manually build the query in a StringBuffer by fetching the user, request,
or session property and doing appends. In some cases, this might be required, but the above
syntax is often easier to use and understand.

The SearchOps API from above does not recognize the userProperty syntax; it expects fully
complete (realized) expressions. An expression can be realized via the
ExpressionHelper.realize() method, which takes a PropertyProvider implementation.

The DefaultPropertyProvider implementation supports a context with a
com.bea.p13n.usermgmt.profile.ProfileWrapper, a com.bea.p13n.http.Request, a
com.bea.p13n.http.Session, and a com.bea.p13n.events.Event. ProfileWrapper is
the base interface for all implementations of a user profile.

Request is a serializable copy of the HttpServletRequest object; similarly, Session is a
serializable copy of the HttpSession object. Event is used in conjunction with campaign-based
personalized content queries, which will be covered later in this article.

Listing 10 Manually building a query

// this could be retrieved instead of hard-coded (e.g. from a ResourceBundle)
String query = "color == userProperty('GeneralInfo', 'FavoriteColor')";
Expression expr = ExpressionHelper.parse(query);
// this assumes you have access to the request and session.
// if you don't, use the no-args constructors for empty copies.
PropertyProvider provider = new DefaultPropertyProvider(
 SessionHelper.getProfile(request),
 new Request(request),
 new Session(session),
 null); // the event can be null
expr = ExpressionHelper.realize(expr, provider);
// Construct the search object from a content query and a sorting clause
Search search = new Search();
search.setExpression(expr);
search.setSortCriteria("cm_nodeName desc");
// connect to the repositories
RepositoryManager mgr = RepositoryManagerFactory.connect(session);

Content Render ing

White Paper: Content Personalization 15

// search and fetches Nodes
Node[] nodes = mgr.getNodeOps().getNodes(mgr.getSearchOps().search(search));

If you're in a JSP, you can just use the same query with the <cm:search> tag:

Listing 11 Building a query with the <cm:search> JSP tag

<%@ taglib uri="content.tld" prefix="cm"%>
<%@ taglib uri="http://www.bea.com/servers/p13n/tags/utility"
prefix="utility"%>
<cm:search id="nodes" query=" color == userProperty('GeneralInfo',
'FavoriteColor') "
 sortBy="cm_nodeName desc"/>
Found <%=nodes.length%> Node(s):

<utility:forEachInArray array="<%=nodes%>" id="node"
type="com.bea.content.Node">
<cm:getProperty id="node" name="title" conversionType="html"/>
</utility:forEachInArray>

The tag will take care of constructing and realizing the query. When these are used in conjunction
with the code to update the user's profile, the display for the user will dynamically change to
match their settings.

Content Rendering
The next questions is what to do with each Node that comes back. In the previous examples,
we've just printed out a metadata property of each Node. While that's useful and common, we
probably want to show the media related to the Node.

The easiest way to do this is to use the <ad:render> JSP tag. This tag will call the
com.bea.p13n.ad.AdService.renderContent() method. This will use the MIME type of
the primary property's BinaryValue.getContentType() to pick an AdContentProvider to
generate the appropriate HTML.

The AdContentProviders are configured in META-INF/application-config.xml in the
application directory, in an <AdContentProvider> block under the <AdService> tag. The

Content Pe rsona l i za t i on

16 White Paper: Content Personalization

Name attribute of the <AdContentProvider> should be the major/minor MIME type to match
on, with the minor portion being optional.

The Provider attribute should be the fully qualified class name of the AdContentProvider
implementation; you can create these in Java projects in your applications. So, if you created an
implementation of AdContentProvider that handles generating appropriate HTML for video
media, you would add the code shown in Listing 12 in the <AdService> tag in
META-INF/application-config.xml:

Listing 12 Sample Code for <AdContentProvider>

<AdContentProvider Name="video"

 Notes="A content render that handles video."

 Provider="examples.contentp13n.VideoContentProvider"

 Properties=""/>

In your AdContentProvider, you need to implement the renderContent() method to return
a block of XHTML that can display the Node correctly. You can reference the
com.bea.content.manager.servlets.ShowPropertyServlet registered under the
servletBase URI to return the bytes of the Node; this is useful in conjunction with ,
<EMBED>, and <OBJECT> HTML tags. An example VideoContentProvider is in the sample
application in the utils Java project; it generates an <EMBED> HTML statement.

Note: <EMBED> tags don't always work correctly in all browsers, depending upon what plugins
you have configured).

BEA WebLogic Portal includes AdContentProviders to handle images, text, and shockwave.
Additionally, the default AdContentProvider will just print out a link to any Node of an
unknown MIME type.

Now that you have your content renderers configured, you can use the <ad:render> JSP tag to
display your content:

Listing 13 Displaying content with the <ad:render> JSP tag

<%@ taglib uri="content.tld" prefix="cm"%>

<%@ taglib uri="http://www.bea.com/servers/p13n/tags/utility"

Content Se lec to rs

White Paper: Content Personalization 17

prefix="utility"%>

<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>

<cm:search id="nodes" query=" color == userProperty('GeneralInfo',

'FavoriteColor') "

 sortBy="cm_nodeName desc"/>

Found <%=nodes.length%> Node(s):

<dl>

<utility:forEachInArray array="<%=nodes%>" id="node"

type="com.bea.content.Node">

<dt><cm:getProperty id="node" name="title" conversionType="html"/></dt>

<dd><ad:render id="node" /></dd>

</utility:forEachInArray>

</dl>

Another option is pick one Node and to cycle through the matching Nodes on subsequent
requests. You can use the <ad:adTarget> JSP tag to do this. It will use the
AdConflictResolver to pick which Node to show. That will get each Node's adWeight
property (converted to a number) as the relative weight of each Node and then use a random
number to pick which Node to use; the higher the weight, the more likely the Node is to be
displayed. If the Node doesn't have an adWeight property, it assumes a value of 1. This is an easy
way to get rotating banner-style content on your website:

<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>
<ad:adTarget query=" color == userProperty('GeneralInfo', 'FavoriteColor') "/>

Content Selectors
The previous methods give you a large amount of control over what gets displayed and how.
However, it's all contained in code, which is compiled and deployed. This makes it difficult to
modify the queries in a live, production server. Additionally, you have to have do much of the
work.

Content selectors are a rules-based mechanism to define both who gets to see content and what
content they get to see. The rules are created as files in WebLogic Workshop. During
development, the files reload when they change, just like JSPs, so you can quickly develop with
content selectors. However, when the server's in production mode, content selectors are loaded
into the database (from the file-based definitions in the application) where they can be modified
in the Administration Portal, without redeploying the application or restarting the server.

Content Pe rsona l i za t i on

18 White Paper: Content Personalization

Note: For more details, see the Datasync Documentation on edocs.bea.com.

Additionally, the tools in the Administration Portal can be used by non-developers, making it
possible for analysts to make changes to the content displayed on your website without requiring
developer time.

Content selectors are created in the contentselectors/GlobalContentSelectors folder of the data
project. In it, you define the conditions under which a user will match the content selector by
dragging conditions from the Available Conditions Palette. You can delete conditions by
right-mouse-clicking on one and selecting Delete.

For example, let's make a content selector which causes Male visitors to see content that matches
their favorite color. First, you drag the condition from the palette to the content selector, as shown
in Figure 3.

Figure 3 Adding a condition to a content selector definition

You can delete the date checking condition since it's not needed for this example. In the rule
editor, red portions are considered unfinished and will prevent the content selector from
operating. You can also see this with the icons in the Document Structure window. Next, you
would define the condition by clicking on the underlined part, as shown in Figure 4.

Content Se lec to rs

White Paper: Content Personalization 19

Figure 4 Setting up the condition you added to the content selector

Next, you would define the content query, as shown in Figure 5.

Content Pe rsona l i za t i on

20 White Paper: Content Personalization

Figure 5 Defining the query for the content selector

Now, the content selector definition is complete, as shown in Figure 6.

Content Se lec to rs

White Paper: Content Personalization 21

Figure 6 The completed content selector definition with a condition and a query

You can see what content would return from the content query in the Content Preview window,
as shown in Figure 7. In this case, since the content query refers to a user's profile, you must
provide a username to the Content Preview for it to preview. For queries that don't refer to user
properties, you don't need a preview username.

Figure 7 Previewing retrieved content

As you change the query, or switch between queries, the Content Preview pane will show what
content Nodes match the query. For Nodes whose primary property is an image, it will attempt
to show a thumbnail; for others, it will show an icon based upon the content type.

The next thing is to put the content selector somewhere. You can use the
<pz:contentSelector> JSP tag do run the content selector and possibly get the results, as
shown in Listing 14. We can actually just replace the <cm:search> in our previous example and
have the rule define what content we see.

Content Pe rsona l i za t i on

22 White Paper: Content Personalization

Listing 14 Using the <pz:contentSelector> JSP tag to display content from the content selector

<%@ taglib uri="content.tld" prefix="cm"%>
<%@ taglib uri="http://www.bea.com/servers/p13n/tags/utility"
prefix="utility"%>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/personalization"
prefix="pz"%>
<pz:contentSelector rule="MaleContent" id="nodes" sortBy="cm_nodeName desc"/>
Found <%=nodes.length%> Node(s):
<dl>
<utility:forEachInArray array="<%=nodes%>" id="node"
type="com.bea.content.Node">
<dt><cm:getProperty id="node" name="title" conversionType="html"/></dt>
<dd><ad:render id="node" /></dd>
</utility:forEachInArray>
</dl>

You can also drag the .sel file on to a JSP, or from the Data Palette window, and it will generate
the appropriate tag. So, if the user matches the conditions, it will return the results of the content
query. For this example, you can use the Administration Portal's Users & Groups page to set
values in a user's profile. Just find the user and choose the Edit User Profile Values tab. In your
application, you will want to have places that manipulate the user's profile, such as demographics
forms, preferences, and questionnaires, which can affect the personalized content.

You can use multiple content selectors with conditional logic to get hierarchical personalized
content, where you try to match the most specific to the least specific, or for mutually exclusive
content selectors.

Listing 15 Using multiple content selectors

<%@ taglib uri="content.tld" prefix="cm"%>
<%@ taglib uri="http://www.bea.com/servers/p13n/tags/utility"
prefix="utility"%>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/personalization"
prefix="pz"%>
<pz:contentSelector rule="FemaleContent" id="nodes" sortBy="cm_nodeName desc"/>
<% if (nodes == null || nodes.length <= 0) { %>
<pz:contentSelector rule="MaleContent" id="nodes" sortBy="cm_nodeName desc"/>
<% }%>

Content P lacehol de rs

White Paper: Content Personalization 23

<% if (nodes == null || nodes.length <= 0) { %>
Sorry, you don't get anything today.
<% }%>
Found <%=nodes.length%> Node(s):
<dl>
<utility:forEachInArray array="<%=nodes%>" id="node"
type="com.bea.content.Node">
<dt><cm:getProperty id="node" name="title" conversionType="html"/></dt>
<dd><ad:render id="node" /></dd>
</utility:forEachInArray>
</dl>

Content Placeholders
To mix automatic content rendering with content selection (like from <ad:adTarget>) with
externalized definitions, you can use content placeholders. Content placeholder contains multiple
queries, but no conditions. Each query has a priority, which is basically a weight.

When a content placeholder is supposed to display content, it uses the AdConflictResolver
which uses the weight of each query to randomly pick a query; once a query is picked it's like the
<ad:adTarget> tag for how the content is displayed (it uses the same AdConflictResolver
and AdContentProviders). Content placeholder are managed similarly to content selectors, so
they can edited in the Administration Portal as well. This allows you to have externalized rotating
banner-style content display.

Content placeholder are created in the placeholders folder of the data project. You can either drag
the New Query from the palette on to the placeholder or right-mouse-click and select New Query
to add a query. You can use the Property Editor window to give each query a name (which is only
used for display purposes) and to specify the query's priority relative to other queries. Once a
query is added to the placeholder, it's edited just like in a content selector, as shown in Figure 8.

Content Pe rsona l i za t i on

24 White Paper: Content Personalization

Figure 8 Defining a placeholder query

To display the content of the placeholder, you use the <ph:placeholder> JSP tag, or you can
just drag the .pla file on to a JSP and it will generate the tag, or you can drag the placeholder
from the Data Palette to your JSP.

<%@ taglib uri="http://www.bea.com/servers/portal/tags/placeholder"
prefix="ph"%>
<ph:placeholder name="/placeholders/FavoriteColor.pla"/>

Conc lusi on

White Paper: Content Personalization 25

Campaigns
Content placeholders can also be supplied queries for particular users by Interaction Management
Campaigns. Campaigns allow you to run certain behaviors when Events occurs on the website
and specified conditions are true. For example, you might want people who login with a certain
browser type at lunchtime to get some special content displayed in a content placeholder. To do
that, you would create a campaign (in the campaigns folder of the data project), like that shown
in Figure 9.

Figure 9 Creating a campaign

Then, when the FrontBanner content placeholder picks a query for the user, if its Mix Globals
property it false, it will check if it has campaign-based queries; if so, it choose from amongst only
those, otherwise it will fall back to the queries defined in the placeholder. If Mix Globals is true,
it will choose from the queries in the placeholder and those from campaigns.

The Events that campaigns respond to can include arbitrary metadata properties, which you can
use to further customize the content query, as well as the conditions.

Conclusion
BEA WebLogic Portal provides many features to help you show the right content to the right
people at the right time. These technologies can be utilized from within many parts of the BEA

Content Pe rsona l i za t i on

26 White Paper: Content Personalization

WebLogic Platform to help you succeed in making your application be personalized to your
customers.

	Copyright
	What is Content?
	What is Personalized Content?
	Users

	Authentication Identification
	Profile
	Example User Profiles
	Manipulating User Profiles

	Content
	Retrieving Content Nodes
	Searching for Content Nodes with Content Query Expressions
	Searching for Content Nodes Via the APIs

	Personalization
	Notes on the Following Samples
	Personalized Searching

	Content Rendering
	Content Selectors
	Content Placeholders
	Campaigns

	Conclusion

