
BEAWebLogic
Server®

WebLogic Web Services:
Security

Version 10.0
Revised: April 28, 2008

WebLogic Web Services: Security iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

WebLogic Web Services Documentation Set . 1-2

Guide to This Document . 1-2

Related Documentation . 1-3

Samples for the Web Services Developer . 1-4

Release-Specific WebLogic Web Services Information . 1-4

Summary of WebLogic Web Services Security Features . 1-4

2. Overview of Web Services Security
Overview of Web Services Security . 2-1

What Type of Security Should You Configure? . 2-1

3. Configuring Message-Level Security
Overview of Message-Level Security . 3-1

Web Services Security Supported Standards . 3-2

Main Use Cases of Message-Level Security . 3-3

Using Policy Files for Message-Level Security Configuration . 3-4

Configuring Simple Message-Level Security: Main Steps . 3-4

Ensuring That WebLogic Server Can Validate the Client’s Certificate 3-7

Updating the JWS File with @Policy and @Policies Annotations 3-8

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair 3-12

Updating a Client Application to Invoke a Message-Secured Web Service 3-13

iv WebLogic Web Services: Security

Invoking a Message-Secured Web Service From a Client Running in a WebLogic
Server Instance . 3-16

Creating and Using a Custom Policy File . 3-18

Multiple Transport Assertions . 3-18

Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation) . . .
3-19

WS-SecureConversation and Clusters . 3-19

Updating a Client Application to Negotiate Security Contexts 3-19

Associating Policy Files at Runtime Using the Administration Console 3-22

Using Security Assertion Markup Language (SAML) Tokens For Identity 3-22

Associating a Web Service with a Security Configuration Other Than the Default 3-26

Using System Properties to Debug Message-Level Security . 3-27

Using a Client-Side Security Policy File . 3-27

Associating a Policy File with a Client Application: Main Steps 3-28

Updating clientgen to Generate Methods That Load Policy Files 3-29

Updating a Client Application To Load Policy Files . 3-30

Using WS-SecurityPolicy 1.2 Policy Files . 3-32

Transport Level Policies . 3-33

Protection Assertion Policies . 3-34

WS-Security 1.0 Username and X509 Token Policies . 3-34

WS-Security 1.1 Username and X509 Token Policies . 3-36

WS-SecureConversation 2005/2 Policies. 3-37

Choosing a Policy. 3-38

Smart Policy Selection . 3-39

Unsupported WS-SecurityPolicy 1.2 Assertions . 3-42

BEA Web Services Security Policy Files . 3-46

Abstract and Concrete Policy Files . 3-47

Auth.xml. 3-48

WebLogic Web Services: Security v

Sign.xml . 3-49

Encrypt.xml. 3-51

Wssc-dk.xml . 3-51

Wssc-sct.xml. 3-54

4. Configuring Transport-Level Security
Configuring Transport-Level Security: Main Steps. 4-1

Configuring Two-Way SSL for a Client Application . 4-3

Additional Web Services SSL Examples. 4-4

5. Configuring Access Control Security
Configuring Access Control Security: Main Steps . 5-1

Updating the JWS File With the Security-Related Annotations . 5-4

Updating the JWS File With the @RunAs Annotation . 5-6

Setting the Username and Password When Creating the JAX-RPC Service Object 5-7

vi WebLogic Web Services: Security

WebLogic Web Services: Security 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—WebLogic Web Services:
Security.

“Document Scope and Audience” on page 1-1

“WebLogic Web Services Documentation Set” on page 1-2

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-3

“Samples for the Web Services Developer” on page 1-4

“Release-Specific WebLogic Web Services Information” on page 1-4

“Summary of WebLogic Web Services Security Features” on page 1-4

Document Scope and Audience
This document is a resource for software developers who program and configure security for
WebLogic Web Services. It also contains information that is useful for business analysts and
system architects who are evaluating WebLogic Server or considering the use of WebLogic Web
Services for a particular application.

The topics in this document are relevant during the design and development phases of a software
project. The document also includes topics that are useful in solving application problems that are
discovered during test and pre-production phases of a project.

I n t roduct i on and Roadmap

1-2 WebLogic Web Services: Security

This document does not address production phase administration, monitoring, or performance
tuning Web Service topics. For links to WebLogic Server® documentation and resources for
these topics, see “Related Documentation” on page 1-3.

It is assumed that the reader is familiar with J2EE and Web Services concepts, the Java
programming language, Web technologies, and security concepts. This document emphasizes the
value-added features provided by WebLogic Web Services and key information about how to use
WebLogic Server features and facilities to get a WebLogic Web Service application up and
running.

WebLogic Web Services Documentation Set
This document is part of a larger WebLogic Web Services documentation set that covers a
comprehensive list of Web Services topics. The full documentation set includes the following
documents:

WebLogic Web Services: Getting Started—Describes the basic knowledge and tasks
required to program a simple WebLogic Web Service. This is the first document you
should read if you are new to WebLogic Web Services. The guide includes Web Service
overview information, use cases and examples, iterative development procedures, typical
JWS programming steps, data type information, and how to invoke a Web Service.

WebLogic Web Services: Security—Describes how to program and configure
message-level (digital signatures and encryption), transport-level, and access control
security for a Web Service.

WebLogic Web Services: Advanced Programming—Describes how to program more
advanced features, such as Web Service reliable messaging, callbacks, conversational Web
Services, use of JMS transport to invoke a Web Service, and SOAP message handlers.

WebLogic Web Services: Reference—Contains all WebLogic Web Service reference
documenation about JWS annotations, Ant tasks, reliable messaging WS-Policy assertions,
security policy assertions, and deployment descriptors.

Guide to This Document
This document is organized as follows:

This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and the security features of WebLogic Web Services.

Rela ted Documentat ion

WebLogic Web Services: Security 1-3

Chapter 2, “Overview of Web Services Security,” provides overview information about the
different types of security you can configure for a Web Service, when you should configure
which, and so on.

Chapter 3, “Configuring Message-Level Security,” describes how to configure
message-level security for a Web Service, which includes digital signatures, encryption,
SAML, and implementation of various specifications, such as WS-Security,
WS-SecureConversations, WS-SecurityPolicy, and so on.

Chapter 4, “Configuring Transport-Level Security,” describes how to secure the connection
between a client application and a Web Service with Secure Sockets Layer (SSL).

Chapter 5, “Configuring Access Control Security,” describes how to configure a Web
Service to control the users who are allowed to access it.

Related Documentation
This document contains information specific to WebLogic Web Services security topics. See
“WebLogic Web Services Documentation Set” on page 1-2 for a description of the related Web
Services documentation.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

Developing WebLogic Server Applications is a guide to developing WebLogic Server
components (such as Web applications and EJBs) and applications.

Developing Web Applications, Servlets, and JSPs for WebLogic Server is a guide to
developing Web applications, including servlets and JSPs, that are deployed and run on
WebLogic Server.

Programming WebLogic Enterprise Java Beans is a guide to developing EJBs that are
deployed and run on WebLogic Server.

Programming WebLogic XML is a guide to designing and developing applications that
include XML processing.

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications. Use this guide for both development and
production deployment of your applications.

Configuring Applications for Production Deployment describes how to configure your
applications for deployment to a production WebLogic Server environment.

I n t roduct i on and Roadmap

1-4 WebLogic Web Services: Security

WebLogic Server Performance and Tuning contains information on monitoring and
improving the performance of WebLogic Server applications.

Overview of WebLogic Server System Administration is an overview of administering
WebLogic Server and its deployed applications.

Samples for the Web Services Developer
In addition to this document, BEA Systems provides a variety of code samples for Web Services
developers. The examples and tutorials illustrate WebLogic Web Services in action, and provide
practical instructions on how to perform key Web Service development tasks.

BEA recommends that you run some or all of the Web Service examples before programming
your own application that use Web Services.

For a description and location of the available code samples, see Samples for the Web Services
Developer in the WebLogic Web Services: Getting Started document.

Release-Specific WebLogic Web Services Information
For release-specific information, see these sections in WebLogic Server Release Notes:

WebLogic Server Features and Changes lists new, changed, and deprecated features.

WebLogic Server Known and Resolved Issues lists known problems by general release, as
well as service pack, for all WebLogic Server APIs, including Web Services.

Summary of WebLogic Web Services Security Features
For a full list of WebLogic Web Services features, including security features, see Summary of
WebLogic Web Services Features in the WebLogic Web Services: Getting Started document.

Programming Web Services for WebLogic Server 2-1

C H A P T E R 2

Overview of Web Services Security

The following sections describe how to configure security for your Web Service:

“Overview of Web Services Security” on page 2-1

“What Type of Security Should You Configure?” on page 2-1

Overview of Web Services Security
To secure your WebLogic Web Service, you configure one or more of three different types of
security:

Message-level security, in which data in a SOAP message is digitally signed or encrypted.

See Chapter 3, “Configuring Message-Level Security.”

Transport-level security, in which SSL is used to secure the connection between a client
application and the Web Service.

See Chapter 4, “Configuring Transport-Level Security.”

Access control security, which specifies which roles are allowed to access Web Services.

See Chapter 5, “Configuring Access Control Security.”

What Type of Security Should You Configure?
Access control security answers the question “who can do what?” First you specify the security
roles that are allowed to access a Web Service; a security role is a privilege granted to users or

Overv iew o f Web Se rv ices Secur i t y

2-2 Programming Web Services for WebLogic Server

groups based on specific conditions. Then, when a client application attempts to invoke a Web
Service operation, the client authenticates itself to WebLogic Server, and if the client has the
authorization, it is allowed to continue with the invocation. Access control security secures only
WebLogic Server resources. That is, if you configure only access control security, the connection
between the client application and WebLogic Server is not secure and the SOAP message is in
plain text.

Transport-level security secures the connection between the client application and WebLogic
Server with Secure Sockets Layer (SSL). SSL provides secure connections by allowing two
applications connecting over a network to authenticate the other's identity and by encrypting the
data exchanged between the applications. Authentication allows a server, and optionally a client,
to verify the identity of the application on the other end of a network connection. Encryption
makes data transmitted over the network intelligible only to the intended recipient.

Transport-level security, however, secures only the connection itself. This means that if there is
an intermediary between the client and WebLogic Server, such as a router or message queue, the
intermediary gets the SOAP message in plain text. When the intermediary sends the message to
a second receiver, the second receiver does not know who the original sender was. Additionally,
the encryption used by SSL is “all or nothing”: either the entire SOAP message is encrypted or it
is not encrypted at all. There is no way to specify that only selected parts of the SOAP message
be encrypted.

Message-level security includes all the security benefits of SSL, but with additional flexibility
and features. Message-level security is end-to-end, which means that a SOAP message is secure
even when the transmission involves one or more intermediaries. The SOAP message itself is
digitally signed and encrypted, rather than just the connection. And finally, you can specify that
only parts of the message be signed or encrypted.

WebLogic Web Services: Security 3-1

C H A P T E R 3

Configuring Message-Level Security

The following sections describe how to configure security for your Web Service:

“Overview of Message-Level Security” on page 3-1

“Main Use Cases of Message-Level Security” on page 3-3

“Using Policy Files for Message-Level Security Configuration” on page 3-4

“Configuring Simple Message-Level Security: Main Steps” on page 3-4

“Using System Properties to Debug Message-Level Security” on page 3-27

“Using a Client-Side Security Policy File” on page 3-27

“Using a Client-Side Security Policy File” on page 3-27

“Using WS-SecurityPolicy 1.2 Policy Files” on page 3-32

“BEA Web Services Security Policy Files” on page 3-46

Overview of Message-Level Security
Message-level security specifies whether the SOAP messages between a client application and
the Web Service invoked by the client should be digitally signed or encrypted or both. It also can
specify a shared security context between the Web Service and client in the event that they
exchange multiple SOAP messages. You can use message-level security to assure:

Confidentiality, by encrypting message parts

Conf igur ing Message-Leve l Secur i t y

3-2 WebLogic Web Services: Security

Integrity, by digital signatures

Authentication, by requiring username or X.509 tokens

See “Configuring Simple Message-Level Security: Main Steps” on page 3-4 for the basic steps
you must perform to configure simple message-level security. This section discusses
configuration of the Web Services runtime environment, as well as configuration of
message-level security for a particular Web Service and how to code a client application to
invoke the service.

You can also configure message-level security for a Web Service at runtime, after a Web Service
has been deployed. See “Associating Policy Files at Runtime Using the Administration Console”
on page 3-22 for details.

Note: You cannot digitally sign or encrypt a SOAP attachment.

Web Services Security Supported Standards
WebLogic Web Services implement the following OASIS Standard 1.1 Web Services Security
(WS-Security 1.1) specifications, dated February 1, 2006:

WS-Security Core Specification 1.1

WS-Security 1.0 and 1.1

Username Token Profile 1.1

X.509 Token Profile 1.1

These specifications provide security token propagation, message integrity, and message
confidentiality. These mechanisms can be used independently (such as passing a username token
for user authentication) or together (such as digitally signing and encrypting a SOAP message and
specifying that a user must use X.509 certificates for authentication).

Web Services Secure Conversation
WebLogic Web Services also implement the Web Services Trust Language (WS-Trust) and Web
Services Secure Conversation Language (WS-SecureConversation 1,2) specifications which
together provide secure communication between Web Services and their clients (either other Web
Services or standalone Java client applications). In particular, the WS-SecureConversation
specification defines mechanisms for establishing and sharing security contexts, and deriving
keys from security contexts, to enable a secure conversation. Together, the security context and

Main Use Cases o f Message-Leve l Secur i t y

WebLogic Web Services: Security 3-3

derived keys potentially increase the overall performance and security of the subsequent
exchanges.

Web Services SecurityPolicy 1.2
The WS-Policy specification defines a framework for allowing Web Services to express their
constraints and requirements. Such constraints and requirements are expressed as policy
assertions. WS-SecurityPolicy defines a set of security policy assertions for use with the
WS-Policy framework to describe how messages are to be secured in the context of WSS: SOAP
Message Security, WS-Trust and WS-SecureConversation. You configure message-level
security for a Web Service by attaching one or more policy files that contain security policy
statements, as specified by the WS-SecurityPolicy specification. See “Using Policy Files for
Message-Level Security Configuration” on page 3-4 for detailed information about how the Web
Services runtime environment uses security policy files. The Web Services SecurityPolicy
specification is not final as of this release of WebLogic Server. For information about the
elements of the Web Services SecurityPolicy 1.2 draft dated 21 February 2007, that are not
supported in this release of WebLogic Server, see “Unsupported WS-SecurityPolicy 1.2
Assertions” on page 3-42.

Main Use Cases of Message-Level Security
The BEA implementation of the Web Services Security: SOAP Message Security specification
supports the following use cases:

Use X.509 certificates to sign and encrypt a SOAP message, starting from the client
application that invokes the message-secured Web Service, to the WebLogic Server
instance that is hosting the Web Service and back to the client application.

Specify the SOAP message targets that are signed or encrypted: the body, specific SOAP
headers, or specific elements.

Include a token (username, SAML, or X.509) in the SOAP message for authentication.

Specify that a Web Service and its client (either another Web Service or a standalone
application) establish and share a security context when exchanging multiple messages.

Derive keys for each key usage in a secure context, once the context has been established
and is being shared between a Web Service and its client. This means that a particular
SOAP message uses two derived keys, one for signing and another for encrypting, and
each SOAP message uses a different pair of derived keys from other SOAP messages.

Conf igur ing Message-Leve l Secur i t y

3-4 WebLogic Web Services: Security

Because each SOAP message uses its own pair of derived keys, the conversation between
the client and Web Service is extremely secure.

Using Policy Files for Message-Level Security
Configuration

You specify the details of message-level security for a WebLogic Web Service with one or more
security policy files. The WS-SecurityPolicy specification provides a general purpose model and
XML syntax to describe and communicate the security policies of a Web Service.

Note: Previous releases of WebLogic Server, released before the formulation of the
WS-SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary BEA schema for security policy. This release of
WebLogic Server supports either security policy files that conform to the
WS-SecurityPolicy 1.2 specification or the BEA Web Services security policy schema
first included in WebLogic Server 9. For information about the packaged
WS-SecurityPolicy 1.2 security policy files, see “Using WS-SecurityPolicy 1.2 Policy
Files” on page 3-32. For information about the packaged BEA Web Services security
policy schema files, see “BEA Web Services Security Policy Files” on page 3-46.

The security policy files used for message-level security are XML files that describe whether and
how the SOAP messages resulting from an invoke of an operation should be digitally signed or
encrypted. They can also specify that a client application authenticate itself using a username,
SAML, or X.509 token.

You use the @Policy and @Policies JWS annotations in your JWS file to associate policy files
with your Web Service. You can associate any number of policy files with a Web Service,
although it is up to you to ensure that the assertions do not contradict each other. You can specify
a policy file at both the class- and method-level of your JWS file.

Configuring Simple Message-Level Security: Main Steps
The following procedure describes how to configure simple message-level security for the Web
Services security runtime, a particular WebLogic Web Service, and a client application that
invokes an operation of the Web Service. In this document, simple message-level security is
defined as follows:

The message-secured Web Service uses the pre-packaged WS-SecurityPolicy files to
specify its security requirements, rather than a user-created WS-SecurityPolicy file. See

Conf igur ing S imple Message-Leve l Secur i t y : Ma in S teps

WebLogic Web Services: Security 3-5

“Using Policy Files for Message-Level Security Configuration” on page 3-4 for a
description of these files.

The Web Service makes its associated security policy files publicly available by attaching
them to its deployed WSDL, which is also publicly visible.

The Web Services runtime uses the out-of-the-box private key and X.509 certificate pairs,
store in the default keystores, for its encryption and digital signatures, rather than its own
key pairs. These out-of-the-box pairs are also used by the core WebLogic Server security
subsystem for SSL and are provided for demonstration and testing purposes. For this
reason BEA highly recommends you use your own keystore and key pair in production. To
use key pairs other than out-of-the-box pairs, see “Using Key Pairs Other Than the
Out-Of-The-Box SSL Pair” on page 3-12.

WARNING: If you plan to deploy the Web Service to a cluster in which different
WebLogic Server instances are running on different computers, you must use
a keystore and key pair other than the out-of-the-box ones, even for testing
purposes. The reason is that the key pairs in the default WebLogic Server
keystore, DemoIdentity.jks, are not guaranteed to be the same across
WebLogic Servers running on different machines. If you were to use the
default keystore, the WSDL of the deployed Web Service would specify the
public key from one of these keystores, but the invoke of the service might
actually be handled by a server running on a different computer, and in this
case the server’s private key would not match the published public key and the
invoke would fail. This problem only occurs if you use the default keystore
and key pairs in a cluster, and is easily resolved by using your own keystore
and key pairs.

The client invoking the Web Service uses a username token to authenticate itself, rather
than an X.509 token.

The client invoking the Web Service is a stand-alone Java application, rather than a module
running in WebLogic Server.

Later sections describe some of the preceding scenarios in more detail, as well as additional Web
Services security uses cases that build on the simple message-level security use case.

It is assumed in the following procedure that you have already created a JWS file that implements
a WebLogic Web Service and you want to update it so that the SOAP messages are digitally
signed and encrypted. It is also assumed that you use Ant build scripts to iteratively develop your
Web Service and that you have a working build.xml file that you can update with new
information. Finally, it is assumed that you have a client application that invokes the non-secured
Web Service. If these assumptions are not true, see:

Conf igur ing Message-Leve l Secur i t y

3-6 WebLogic Web Services: Security

Programming the JWS File

Iterative Development of WebLogic Web Services

 Invoking Web Services

To configure simple message-level security for a WebLogic Web Service:

1. Update your JWS file, adding WebLogic-specific @Policy and @Policies JWS annotations
to specify the pre-packaged policy files that are attached to either the entire Web Service or
to particular operations.

See “Updating the JWS File with @Policy and @Policies Annotations” on page 3-8, which
describes how to specify any policy file.

2. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See Iterative Development of WebLogic Web Services.

3. Create a keystore used by the client application. BEA recommends that you create one client
keystore per application user.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys and Digital Signatures.

4. Create a private key and digital certificate pair, and load it into the client keystore. The same
pair will be used to both digitally sign the client’s SOAP request and encrypt the SOAP
responses from WebLogic Server.

Make sure that the certificate’s key usage allows both encryption and digital signatures.
Also see “Ensuring That WebLogic Server Can Validate the Client’s Certificate” on
page 3-7 for information about how WebLogic Server ensures that the client’s certificate is
valid.

WARNING: BEA requires a key length of 1024 bits or larger.

You can use Sun Microsystem's keytool utility to perform this step.

See Obtaining Private Keys and Digital Signatures.

5. Using the Administration Console, create users for authentication in your security realm.

See Users, Groups, and Security Roles.

Conf igur ing S imple Message-Leve l Secur i t y : Ma in S teps

WebLogic Web Services: Security 3-7

6. Update your client application by adding the Java code to invoke the message-secured Web
Service.

See “Using a Client-Side Security Policy File” on page 3-27.

7. Recompile your client application.

See Invoking Web Services for general information.

See the following sections for information about additional Web Service security uses cases that
build on the basic message-level security use case:

“Using Key Pairs Other Than the Out-Of-The-Box SSL Pair” on page 3-12

“Creating and Using a Custom Policy File” on page 3-18

“Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation)”
on page 3-19

“Associating Policy Files at Runtime Using the Administration Console” on page 3-22

“Using Security Assertion Markup Language (SAML) Tokens For Identity” on page 3-22

“Invoking a Message-Secured Web Service From a Client Running in a WebLogic Server
Instance” on page 3-16

“Associating a Web Service with a Security Configuration Other Than the Default” on
page 3-26

See “Using System Properties to Debug Message-Level Security” on page 3-27 for information
on debugging problems with your message-secured Web Service.

Ensuring That WebLogic Server Can Validate the Client’s
Certificate
You must ensure that WebLogic Server is able to validate the X.509 certificate that the client uses
to digitally sign its SOAP request, and that WebLogic Server in turn uses to encrypt its SOAP
responses to the client. Do one of the following:

Ensure that the client application obtains a digital certificate that WebLogic Server
automatically trusts, because it has been issued by a trusted certificate authority.

Create a certificate registry which lists all the individual certificates trusted by WebLogic
Server, and then ensure that the client uses one of these registered certificates.

For more information, see SSL Certificate Validation.

Conf igur ing Message-Leve l Secur i t y

3-8 WebLogic Web Services: Security

Updating the JWS File with @Policy and @Policies
Annotations
Use the @Policy and @Policies annotations in your JWS file to specify that the Web Service
has one or more policy files attached to it. You can use these annotations at either the class or
method level.

The @Policies annotation simply groups two or more @Policy annotations together. Use the
@Policies annotation if you want to attach two or more policy files to the class or method. If
you want to attach just one policy file, you can use @Policy on its own.

The @Policy annotation specifies a single policy file, where it is located, whether the policy
applies to the request or response SOAP message (or both), and whether to attach the policy file
to the public WSDL of the service.

WARNING: As is true for all JWS annotations, the @Policy annotation cannot be overridden
at runtime, which means that the policy file you specify at buildtime using the
annotation will always be associated with the Web Service. This means, for
example, that although you can view the associated policy file at runtime using
the Administration Console, you cannot delete (unassociate) it. You can,
however, associate additional policy files, as described in “Associating Policy
Files at Runtime Using the Administration Console” on page 3-22.

Use the uri attribute to specify the location of the policy file, as described below:

To specify one of the pre-packaged security policy files that are installed with WebLogic
Server, use the policy: prefix and the name of one of the policy files, as shown in the
following example:

@Policy(uri="policy:Wssp1.2-Https-BasicAuth.xml")

If you use the pre-packaged policy files, you do not have to create one yourself or package
it in an accessible location. For this reason, BEA recommends that you use the
pre-packaged policy files whenever you can.

See “Using Policy Files for Message-Level Security Configuration” on page 3-4 for
information on the various types of message-level security provided by the pre-packaged
policy files.

To specify a user-created policy file, specify the path (relative to the location of the JWS
file) along with its name, as shown in the following example:

@Policy(uri="../policies/MyPolicy.xml")

Conf igur ing S imple Message-Leve l Secur i t y : Ma in S teps

WebLogic Web Services: Security 3-9

In the example, the MyPolicy.xml file is located in the policies sibling directory of the
one that contains the JWS file.

You can also specify a policy file that is located in a shared J2EE library; this method is
useful if you want to share the file amongst multiple Web Services packaged in different
J2EE archives.

In this case, it is assumed that the policy file is in the META-INF/policies or
WEB-INF/policies directory of the shared J2EE library. Be sure, when you package the
library, that you put the policy file in this directory.

To specify a policy file in a shared J2EE library, use the policy prefix and then the name
of the policy file, as shown in the following example:

@Policy(uri=”policy:MySharedPolicy.xml”)

 See Creating Shared J2EE Libraries and Optional Packages for information on creating
shared libraries and setting up your environment so the Web Service can find the shared
policy files.

You can also set the following attributes of the @Policy annotation:

direction—Specifies whether the policy file should be applied to the request (inbound)
SOAP message, the response (outbound) SOAP message, or both. The default value if you
do not specify this attribute is both. The direction attribute accepts the following values:
– Policy.Direction.both

– Policy.Direction.inbound

– Policy.Direction.outbound

attachToWsdl—Specifies whether the policy file should be attached to the WSDL file
that describes the public contract of the Web Service. The default value of this attribute is
false.

The following example shows how to use the @Policy and @Policies JWS annotations, with
the relevant sections shown in bold:

Listing 3-1 Using @Policy and @Policies Annotations

package wssp12.wss10;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Policy;

import weblogic.jws.Policies;

Conf igur ing Message-Leve l Secur i t y

3-10 WebLogic Web Services: Security

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.Oneway;

/**

 * This Web Service demonstrates how to use WS-SecurityPolicy 1.2

 * to enable message-level security specified in WS-Security 1.0.

 *

 * The service authenticates the client with a username token.

 * Both the request and response messages are signed and encrypted with X509

 certificates.

 *

*/

@WebService(name="Simple", targetNamespace="http://example.org")

@WLHttpTransport(contextPath="/wssp12/wss10",

 serviceUri="UsernameTokenPlainX509SignAndEncrypt")

@Policy(uri="policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")

public class UsernameTokenPlainX509SignAndEncrypt {

 @WebMethod

 @Policies({

 @Policy(uri="policy:Wssp1.2-SignBody.xml"),

 @Policy(uri="policy:Wssp1.2-EncryptBody.xml")})

 public String echo(String s) {

 return s;

 }

 @WebMethod

 @Policies({

 @Policy(uri="policy:Wssp1.2-SignBody.xml"),

 @Policy(uri="policy:Wssp1.2-Sign-Wsa-Headers.xml")})

 public String echoWithWsa(String s) {

 return s;

 }

 @WebMethod

Conf igur ing S imple Message-Leve l Secur i t y : Ma in S teps

WebLogic Web Services: Security 3-11

 @Policy(uri="policy:Wssp1.2-SignBody.xml",

 direction=Policy.Direction.inbound)

 @Oneway

 public void echoOneway(String s) {

 System.out.println("s = " + s);

 }

 @WebMethod

 @Policies({

 @Policy(uri="policy:Wssp1.2-Wss1.0-X509-Basic256.xml",

direction=Policy.Direction.inbound),

 @Policy(uri="policy:Wssp1.2-SignBody.xml",

direction=Policy.Direction.inbound)

 })

 @Oneway

 public void echoOnewayX509(String s) {

 System.out.println("X509SignEncrypt.echoOneway: " + s);

 }

}

The following section of the example is the binding policy for the Web Service, specifying the
policy:

@WebService(name="Simple", targetNamespace="http://example.org")

@WLHttpTransport(contextPath="/wssp12/wss10",

 serviceUri="UsernameTokenPlainX509SignAndEncrypt")

@Policy(uri="policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")

In the example, security policy files are attached to the Web Service at the method level. The
specified policy files are those pre-packaged with WebLogic Server, which means that the
developers do not need to create their own files or package them in the corresponding archive.

The Wssp1.2-SignBody.xml policy file specifies that the body and WebLogic system headers
of both the request and response SOAP message be digitally signed. The
Wssp1.2-EncryptBody.xml policy file specifies that the body of both the request and response
SOAP messages be encrypted.

Conf igur ing Message-Leve l Secur i t y

3-12 WebLogic Web Services: Security

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair
In the simple message-level configuration procedure, documented in “Configuring Simple
Message-Level Security: Main Steps” on page 3-4, it is assumed that the Web Services runtime
uses the private key and X.509 certificate pair that is provided out-of-the-box with WebLogic
Server; this same key pair is also used by the core security subsystem for SSL and is provided
mostly for demonstration and testing purposes. In production environments, the Web Services
runtime typically uses its own two private key and digital certificate pairs, one for signing and
one for encrypting SOAP messages.

The following procedure describes the additional steps you must take to enable this use case.

1. Obtain two private key and digital certificate pairs to be used by the Web Services runtime.
One of the pairs is used for digitally signing the SOAP message and the other for encrypting it.

Although not required, BEA recommends that you obtain two pairs that will be used only
by WebLogic Web Services. You must also ensure that both of the certificate’s key usage
matches what you are configuring them to do. For example, if you are specifying that a
certificate be used for encryption, be sure that the certificate’s key usage is specified as for
encryption or is undefined. Otherwise, the Web Services security runtime will reject the
certificate.

WARNING: BEA requires that the key length be 1024 bits or larger.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys and Digital Signatures.

2. Create, if one does not currently exist, a custom identity keystore for WebLogic Server and
load the private key and digital certificate pairs you obtained in the preceding step into the
identity keystore.

If you have already configured WebLogic Server for SSL, then you have already created a
identity keystore which you can also use in this step.

You can use WebLogic’s ImportPrivateKey utility and Sun Microsystem’s keytool
utility to perform this step. For development purposes, the keytool utility is the easiest
way to get started.

See Creating a Keystore and Loading Private Keys and Trusted Certificate Authorities Into
the Keystore.

Updat ing a C l ien t App l i cat ion to I nvoke a Message-Secured Web Serv i ce

WebLogic Web Services: Security 3-13

3. Using the Administration Console, configure WebLogic Server to locate the keystore you
created in the preceding step. If you are using a keystore that has already been configured for
WebLogic Server, you do not need to perform this step.

See Configuring Keystores for Production.

4. Using the Administration Console, create the default Web Service security configuration,
which must be named default_wss. The default Web Service security configuration is used
by all Web Services in the domain unless they have been explicitly programmed to use a
different configuration.

See Create a Web Service security configuration.

5. Update the default Web Services security configuration you created in the preceding step to
use one of the private key and digital certificate pairs for digitally signing SOAP messages.

See Specify the Key Pair Used to Sign SOAP Messages. In the procedure, when you create
the properties used to identify the keystore and key pair, enter the exact value for the Name
of each property (such as IntegrityKeyStore, IntegrityKeyStorePassword, and so
on), but enter the value that identifies your own previously-created keystore and key pair in
the Value fields.

6. Similarly, update the default Web Services security configuration you created in a preceding
step to use the second private key and digital certificate pair for encrypting SOAP messages.

See Create keystore used by SOAP message encryption. In the procedure, when you create
the properties used to identify the keystore and key pair, enter the exact value for the Name
of each property (such as ConfidentialityKeyStore.
ConfidentialityKeyStorePassword, and so on), but enter the value that identifies your
own previously-created keystore and key pair in the Value fields.

Updating a Client Application to Invoke a
Message-Secured Web Service

When you update your Java code to invoke a message-secured Web Service, you must load a
private key and digital certificate pair from the client’s keystore and pass this information, along
with a username and password for user authentication if so required by the security policy, to the
secure WebLogic Web Service being invoked.

If the security policy file of the Web Service specifies that the SOAP request must be encrypted,
then the Web Services client runtime automatically gets the server’s certificate from the policy
file that is attached to the WSDL of the service, and uses it for the encryption. If, however, the
policy file is not attached to the WSDL, or the entire WSDL itself is not available, then the client

Conf igur ing Message-Leve l Secur i t y

3-14 WebLogic Web Services: Security

application must use a client-side copy of the policy file; for details, see“Using a Client-Side
Security Policy File” on page 3-27.

Listing 3-2 shows a Java client application that invokes the message-secured WebLogic Web
Service described by the JWS file in “Updating the JWS File With the Security-Related
Annotations” on page 5-4. The client application takes five arguments:

Client username for client authentication

Client password for client authentication

Client private key file

Client digital certificate

WSDL of the deployed Web Service

The security-specific code in the sample client application is shown in bold (and described after
the example):

Listing 3-2 Client Application Invoking a Message-Secured Web Service

package examples.webservices.security_jws.client;

import weblogic.security.SSL.TrustManager;

import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;

import java.security.cert.X509Certificate;

/**
 * Copyright (c) 2005 by BEA Systems. All Rights Reserved.
 */
public class SecureHelloWorldClient {
 public static void main(String[] args) throws Throwable {

 //username or password for the UsernameToken
 String username = args[0];
 String password = args[1];

Updat ing a C l ien t App l i cat ion to I nvoke a Message-Secured Web Serv i ce

WebLogic Web Services: Security 3-15

 //client private key file
 String keyFile = args[2];

 //client certificate
 String clientCertFile = args[3];

 String wsdl = args[4];

 SecureHelloWorldService service = new SecureHelloWorldService_Impl(wsdl +
"?WSDL");

 SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();

 //create credential provider and set it to the Stub
 List credProviders = new ArrayList();

 //client side BinarySecurityToken credential provider -- x509
 CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile,
keyFile);
 credProviders.add(cp);

 //client side UsernameToken credential provider
 cp = new ClientUNTCredentialProvider(username, password);
 credProviders.add(cp);

 Stub stub = (Stub)port;
 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders);

 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 return true;
 }
 });

 String response = port.sayHello("World");
 System.out.println("response = " + response);
 }
}

The main points to note about the preceding code are:

Import the WebLogic security TrustManager API:

import weblogic.security.SSL.TrustManager;

Import the following WebLogic Web Services security APIs to create the needed
client-side credential providers, as specified by the policy files that are associated with the
Web Service:

Conf igur ing Message-Leve l Secur i t y

3-16 WebLogic Web Services: Security

import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

Use the ClientBSTCredentialProvider WebLogic API to create a binary security token
credential provider from the client’s certificate and private key:

 CredentialProvider cp =
 new ClientBSTCredentialProvider(clientCertFile, keyFile);

Use the ClientUNTCredentialProvider WebLogic API to create a username token from
the client’s username and password, which are also known by WebLogic Server:

cp = new ClientUNTCredentialProvider(username, password);

Use the WSSecurityContext.CREDENTIAL_PROVIDER_LIST property to pass a List
object that contains the binary security and username tokens to the JAX-RPC Stub:

stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders)

Use the weblogic.security.SSL.TrustManager WebLogic security API to verify that
the certificate used to encrypt the SOAP request is valid. The Web Services client runtime
gets this certificate from the deployed WSDL of the Web Service, which in production
situations is not automatically trusted, so the client application must ensure that it is okay
before it uses it to encrypt the SOAP request:

stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 return true;
 }
 });

This example shows the TrustManager API on the client side. The Web Service application
must implement proper verification code to ensure security.

Invoking a Message-Secured Web Service From a Client
Running in a WebLogic Server Instance
In the simple Web Services configuration procedure, described in “Configuring Simple
Message-Level Security: Main Steps” on page 3-4, it is assumed that a stand-alone client
application invokes the message-secured Web Service. Sometimes, however, the client is itself
running in a WebLogic Server instance, as part of an EJB, a servlet, or another Web Service. In

Updat ing a C l ien t App l i cat ion to I nvoke a Message-Secured Web Serv i ce

WebLogic Web Services: Security 3-17

this case, you can use the core WebLogic Server security framework to configure the credential
providers and trust manager so that your EJB, servlet, or JWS code contains only the simple
invoke of the secured operation and no other security-related API usage. The following
procedure describes the high level steps you must perform to make use of the core WebLogic
Server security framework in this use case.

1. In your EJB, servlet, or JWS code, invoke the Web Service operation as if it were not
configured for message-level security. Specifically, do not create a CredentialProvider
object that contains username or X.509 tokens, and do not use the TrustManager core
security API to validate the certificate from the WebLogic Server hosting the secure Web
Service. The reason you should not use these APIs in your client code is that the Web Services
runtime will perform this work for you.

2. Using the Administration Console, configure the required credential mapping providers of the
core security of the WebLogic Server instance that hosts your client application. The list of
required credential mapper providers depends on the policy file that is attached to the Web
Service you are invoking. Typically, you must configure the credential mapper providers for
both username/password and X.509 certificates. See Configuring a WebLogic Credential
Mapping Provider.

Note: WebLogic Server includes a credential mapping provider for username/passwords
and X.509. However, only username/password is configured by default.

3. Using the Administration Console, create the actual credential mappings in the credential
mapping providers you configured in the preceding step. You must map the user principal,
associated with the client running in the server, to the credentials that are valid for the Web
Service you are invoking. See Configuring a WebLogic Credential Mapping Provider.

4. Using the Administration Console, configure the core WebLogic Server security framework
to trust the X.509 certificate of the invoked Web Service. See Configuring the Credential
Lookup and Validation Framework.

You are not required to configure the core WebLogic Server security framework, as described in
this procedure, if your client application does not want to use the out-of-the-box credential
provider and trust manager. Rather, you can override all of this configuration by using the same
APIs in your EJB, servlet, and JWS code as in the stand-alone Java code described in “Using a
Client-Side Security Policy File” on page 3-27. However, using the core security framework
standardizes the WebLogic Server configuration and simplifies the Java code of the client
application that invokes the Web Service.

Conf igur ing Message-Leve l Secur i t y

3-18 WebLogic Web Services: Security

Creating and Using a Custom Policy File
Although WebLogic Server includes a number of pre-packaged Web Services security policy
files that typically satisfy the security needs of most programmers, you can also create and use
your own WS-SecurityPolicy file if you need additional configuration. See “Using Policy Files
for Message-Level Security Configuration” on page 3-4 for general information about security
policy files and how they are used for message-level security configuration.

When you create a custom policy file, you can separate out the three main security categories
(authentication, encryption, and signing) into three separate policy files, as do the pre-packaged
files, or create a single policy file that contains all three categories. You can also create a custom
policy file that changes just one category (such as authentication) and use the pre-packaged files
for the other categories (Wssp1.2-SignBody.xml and Wssp1.2-EncryptBody). In other words,
you can mix and match the number and content of the policy files that you associate with a Web
Service. In this case, however, you must always ensure yourself that the multiple files do not
contradict each other.

Your custom policy file needs to comply with the standard format and assertions defined in
WS-SecurityPolicy 1.2. Note, however, that this release of WebLogic Server does not completely
implement WS-SecurityPolicy 1.2. For more information, see “Unsupported WS-SecurityPolicy
1.2 Assertions” on page 3-42. The root element of your WS-SecurityPolicy file must be
<Policy> and include the following namespace declarations:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"
 >

You can also use the pre-packaged WS-SecurityPolicy files as templates to create your own
custom files. See “Using WS-SecurityPolicy 1.2 Policy Files” on page 3-32.

Multiple Transport Assertions
If there are multiple available transport-level assertions in your security policies, WebLogic
Server uses the policy that requires https. If more than one policy alternative requires https,
WebLogic Server randomly picks one of them. You should therefore avoid using multiple policy
alternatives that contain mixed transport-level policy assertions.

Conf igur ing and Us ing Secur i t y Contex ts and De r i ved Keys (WS-SecureConversa t i on)

WebLogic Web Services: Security 3-19

Configuring and Using Security Contexts and Derived
Keys (WS-SecureConversation)

BEA provides three pre-packaged WS-SecurityPolicy files
(Wssp1.2-Wssc200502-Bootstrap-Https.xml,
Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml, and
Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml) to configure security contexts and derived
keys, as described by the WS-SecureConversation 1.2 (2005/2) specification. It is recommended
that you use the pre-packaged files if you want to configure security contexts, because these
security policy files provide most of the required functionality and typical default values. See
“WS-SecureConversation 2005/2 Policies” on page 3-37 for more information about these files.

WARNING: If you are deploying a Web Service that uses shared security contexts to a cluster,
then you are required to also configure cross-cluster session state replication. For
details, see Failover and Replication in a Cluster.

WS-SecureConversation and Clusters
WS-SecureConversation is pinned to a particular WebLogic Server instance in the cluster. If a
SecureConversation request lands in the wrong server, it is automatically rerouted to the correct
server. If the server instance hosting the WS-SecureConversation fails, the SecureConversation
will not be available until the server instance is brought up again.

Updating a Client Application to Negotiate Security
Contexts
A client application that negotiates security contexts when invoking a Web Service is similar to
a standard client application that invokes a message-secured Web Service, as described in “Using
a Client-Side Security Policy File” on page 3-27. The only real difference is that you can use the
weblogic.wsee.security.wssc.utils.WSSCClientUtil API to explicitly cancel the
secure context token.

Note: WebLogic Server provides the WSSCCLientUtil API for your convenience only; the
Web Services runtime automatically cancels the secure context token when the
configured timeout is reached. Use the API only if you want to have more control over
when the token is cancelled.

Conf igur ing Message-Leve l Secur i t y

3-20 WebLogic Web Services: Security

Listing 3-3 shows a simple example of a client application invoking a Web Service that is
associated with a pre-packaged security policy file that enables secure conversations; the sections
in bold which are relevant to security contexts are discussed after the example:

Listing 3-3 Client Application Using WS-SecureConversation

package examples.webservices.wssc.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;
import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
import weblogic.wsee.security.util.CertUtils;

import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;
import java.security.cert.X509Certificate;

/**
 * Copyright (c) 2004 by BEA Systems. All Rights Reserved.
 */
public class WSSecureConvClient {
 public static void main(String[] args) throws Throwable {

 String clientKeyStore = args[0];
 String clientKeyStorePass = args[1];
 String clientKeyAlias = args[2];
 String clientKeyPass = args[3];
 String serverCert = args[4];
 String wsdl = args[5];

 WSSecureConvService service = new WSSecureConvService_Impl(wsdl);
 WSSecureConvPortType port = service.getWSSecureConvServicePort();

 //create credential provider and set it to the Stub
 List credProviders = new ArrayList();

 //use x509 to secure wssc handshake
 credProviders.add(new ClientBSTCredentialProvider(clientKeyStore,
clientKeyStorePass, clientKeyAlias, clientKeyPass));

 Stub stub = (Stub)port;

Conf igur ing and Us ing Secur i t y Contex ts and De r i ved Keys (WS-SecureConversa t i on)

WebLogic Web Services: Security 3-21

 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders);
 stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils.getCertificate(serverCert));

 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 //need to validate if the server cert can be trusted
 return true;
 }
 }
);

 System.out.println (port.sayHelloWithWSSC("Hello World, once"));
 System.out.println (port.sayHelloWithWSSC("Hello World, twice"));
 System.out.println (port.sayHelloWithWSSC("Hello World, thrice"));

 //cancel SecureContextToken after done with invocation
 WSSCClientUtil.terminateWssc(stub);
 System.out.println("WSSC terminated!");

 }
}

The points to notice in the preceding example are:

Import the WebLogic API used to explicitly terminate the secure context token:

import weblogic.wsee.security.wssc.utils.WSSCClientUtil;

Set a property on the JAX-RPC stub which specifies that the client application must
encrypt its request to WebLogic Server to cancel the secure context token with WebLogic
Server’s public key:

stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils.getCertificate(serverCert));

Use the terminateWssc() method of the WSSClientUtil class to terminate the secure
context token:

WSSCClientUtil.terminateWssc(stub);

Conf igur ing Message-Leve l Secur i t y

3-22 WebLogic Web Services: Security

Associating Policy Files at Runtime Using the
Administration Console

The simple message-level configuration procedure, documented in “Configuring Simple
Message-Level Security: Main Steps” on page 3-4, describes how to use the @Policy and
@Policies JWS annotations in the JWS file that implements your Web Service to specify one
or more policy files that are associated with your service. This of course implies that you must
already know, at the time you program your Web Service, which policy files you want to
associate with your Web Service and its operations. This might not always be possible, which is
why you can also associate policy files at runtime, after the Web Service has been deployed, using
the Administration Console.

You can use no @Policy or @Policies JWS annotations at all in your JWS file and associate
policy files only at runtime using the Administration Console, or you can specify some policy
files using the annotations and then associate additional ones at runtime. However, once you
associate a policy file using the JWS annotations, you cannot change this association at runtime
using the Administration Console.

At runtime, the Administration Console allows you to associate as many policy files as you want
with a Web Service and its operations, even if the policy assertions in the files contradict each
other or contradict the assertions in policy files associated with the JWS annotations. It is up to
you to ensure that multiple associated policy files work together. If any contradictions do exist,
WebLogic Server returns a runtime error when a client application invokes the Web Service
operation.

See Associate a policy file with a Web Service for detailed instructions on using the
Administration Console to associate a policy file at runtime.

Using Security Assertion Markup Language (SAML)
Tokens For Identity

In the simple Web Services configuration procedure, described in “Configuring Simple
Message-Level Security: Main Steps” on page 3-4, it is assumed that users use username tokens
to authenticate themselves. Because WebLogic Server implements the Web Services Security:
SAML Token Profile of the Web Services Security specification, users can also use SAML
tokens in the SOAP messages to authenticate themselves when invoking a Web Service
operation, as described in this section.

Using Secur i t y Asse r t i on Markup Language (SAML) Tokens Fo r Ident i t y

WebLogic Web Services: Security 3-23

Use of SAML tokens works server-to-server. This means that the client application is running
inside of a WebLogic Server instance and then invokes a Web Service running in another
WebLogic Server instance using SAML for identity. Because the client application is itself a Web
Service, the Web Services security runtime takes care of all the SAML processing.

When you configure a Web Service to require SAML tokens for identity, you can specify one of
the following confirmation methods:

sender-vouches

holder-of-key

See SAML Token Profile Support in WebLogic Web Services, as well as the Web Services
Security: SAML Token Profile specification itself, for details about these confirmation methods.

Note: It is assumed in this section that you understand the basics of SAML and how it relates
to core security in WebLogic Server. For general information, see Security Assertion
Markup Language (SAML).

It is also assumed in the following procedure that you have followed the steps in
“Configuring Simple Message-Level Security: Main Steps” on page 3-4 and now want
to enable the additional use case of using SAML tokens, rather than usename tokens, for
identity.

To use SAML tokens for identity, follow these steps:

1. Using the Administration Console, configure a SAML identity assertion and credential
mapping provider. This step configures the core WebLogic Server security subsystem. For
details, see:

– Configuring a SAML Identity Assertion Provider

– Configuring a SAML Credential Mapping Provider

2. Use a security policy file that specifies that SAML should be used for identity. The exact
syntax depends on the type of confirmation method you want to configure (sender-vouches
or holder-of-key). Note that this release of WebLogic Server does not support the use of
SAML with WS-SecurityPolicy 1.2 policy files. Instead, you must use security policy files
written under BEA’s security policy schema. The exact syntax depends on the type of
confirmation method you want to configure (sender-vouches or holder-of-key).

To specify the sender-vouches confirmation method:

– Create a <SecurityToken> child element of the <Identity><SupportedTokens>
elements and set the TokenType attribute to a value that indicates SAML token usage.

Conf igur ing Message-Leve l Secur i t y

3-24 WebLogic Web Services: Security

– Add a <Claims><Confirmationmethod> child element of <SecurityToken> and
specify sender-vouches.

For example:

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >

 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml
-token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>

<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>

</wsp:Policy>

To specify the holder-of-key confirmation method:

– Create a <SecurityToken> child element of the <Integrity><SupportedTokens>
elements and set the TokenType attribute to a value that indicates SAML token usage.

The reason you put the SAML token in the <Integrity> assertion for the
holder-of-key confirmation method is that the Web Service runtime must prove the
integrity of the message, which is not required by sender-vouches.

– Add a <Claims><Confirmationmethod> child element of <SecurityToken> and
specify holder-of-key.

For example:

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

Using Secur i t y Asse r t i on Markup Language (SAML) Tokens Fo r Ident i t y

WebLogic Web Services: Security 3-25

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">

 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:SupportedTokens>
 <wssp:SecurityToken
 IncludeInMessage="true"

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml
-token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>

<wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>

</wsp:Policy>

– By default, the WebLogic Web Services runtime always validates the X.509 certificate
specified in the <KeyInfo> assertion of any associated WS-Policy file. To disable this
validation when using SAML holder-of-key assertions, you must configure the Web
Service security configuration associated with the Web service by setting a property on
the SAML token handler. See Disable X.509 certificate validation when using SAML
holder_of_key assertions for information on how to do this using the Administration
Console.

See “Creating and Using a Custom Policy File” on page 3-18 for additional information
about creating your own security policy file. See Security Policy Assertion Reference for
reference information about the assertions.

Conf igur ing Message-Leve l Secur i t y

3-26 WebLogic Web Services: Security

3. Update the appropriate @Policy annotations in the JWS file that implements the Web Service
to point to the security policy file from the preceding step. For example, if you want invokes
of all the operations of a Web Service to SAML for identity, specify the @Policy annotation
at the class-level.

You can mix and match the policy files that you associate with a Web Service, as long as
they do not contradict each other and as long as you do not combine OASIS
WS-SecurityPolicy 1.2 files with security policy files written under BEA’s security policy
schema. For example, you can create a simple MyAuth.xml file that contains only the
<Identity> security assertion to specify use of SAML for identity and then associate it
with the Web Service together with the pre-packaged Wssp1.2-EncryptBody.xml and
Wssp1.2-SignBody.xml files. It is, however, up to you to ensure that multiple associated
policy files do not contradict each other; if they do, you will either receive a runtime error
or the Web Service might not behave as you expect.

4. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See Iterative Development of WebLogic Web Services.

5. Create a client application that runs in a WebLogic Server instance to invoke the main Web
Service using SAML as identity. See “Invoking a Message-Secured Web Service From a
Client Running in a WebLogic Server Instance” on page 3-16 for details.

Associating a Web Service with a Security Configuration
Other Than the Default

Many use cases previously discussed require you to use the Administration Console to create the
default Web Service security configuration called default_wss. After you create this
configuration, it is applied to all Web Services that either do not use the
@weblogic.jws.security.WssConfiguration JWS annotation or specify the annotation
with no attribute.

There are some cases, however, in which you might want to associate a Web Service with a
security configuration other than the default; such use cases include specifying different
timestamp values for different services.

To associate a Web Service with a security configuration other than the default:

1. Create a Web Service security configuration with a name that is not default_wss.

Using Sys tem Prope r t i es to Debug Message-Leve l Secur i t y

WebLogic Web Services: Security 3-27

2. Update your JWS file, adding the @WssConfiguration annotation to specify the name of this
security configuration. See weblogic.jws.security.WssConfiguration for additional
information and an example.

WARNING: If you are going to package additional Web Services in the same Web
application, and these Web Services also use the @WssConfiguration
annotation, then you must specify the same security configuration for each
Web Service. See weblogic.jws.security.WssConfiguration for more details.

3. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See Iterative Development of WebLogic Web Services.

WARNING: All Web Services security configurations are required to specify the same
password digest use. Inconsistent password digest use in different Web Service
security configurations will result in a runtime error.

Using System Properties to Debug Message-Level
Security

The following table lists the system properties you can set to debug problems with your
message-secured Web Service.

Using a Client-Side Security Policy File
The section “Using Policy Files for Message-Level Security Configuration” on page 3-4
describes how a WebLogic Web Service can be associated with one or more security policy files

Table 3-1 System Properties for Debugging Message-Level Security

System Property Data Type Description

weblogic.xml.crypto.dsig.verbose Boolean Prints information about digital signature
processing.

weblogic.xml.crypto.encrypt.verbose Boolean Prints information about encryption processing.

weblogic.xml.crypto.keyinfo.verbose Boolean Prints information about key resolution processing.

weblogic.xml.crypto.wss.verbose Boolean Prints information about Web Service security
token and token reference processing.

Conf igur ing Message-Leve l Secur i t y

3-28 WebLogic Web Services: Security

that describe the message-level security of the Web Service. These policy files are XML files that
describe how a SOAP message should be digitally signed or encrypted and what sort of user
authentication is required from a client that invokes the Web Service. Typically, the policy file
associated with a Web Service is attached to its WSDL, which the Web Services client runtime
reads to determine whether and how to digitally sign and encrypt the SOAP message request from
an operation invoke from the client application.

Sometimes, however, a Web Service might not attach the policy file to its deployed WSDL or the
Web Service might be configured to not expose its WSDL at all. In these cases, the Web Services
client runtime cannot determine from the service itself the security that must be enabled for the
SOAP message request. Rather, it must load a client-side copy of the policy file. This section
describes how to update a client application to load a local copy of a policy file.

The client-side policy file is typically exactly the same as the one associated with a deployed Web
Service. If the two files are different, and there is a conflict in the security assertions contained in
the files, then the invoke of the Web Service operation returns an error.

You can specify that the client-side policy file be associated with the SOAP message request,
response, or both. Additionally, you can specify that the policy file be associated with the entire
Web Service, or just one of its operations.

Associating a Policy File with a Client Application: Main
Steps
The following procedure describes the high-level steps to associate a security policy file with the
client application that invokes a Web Service operation.

It is assumed that you have created the client application that invokes a deployed Web Service,
and that you want to update it by associating a client-side policy file. It is also assumed that you
have set up an Ant-based development environment and that you have a working build.xml file
that includes a target for running the clientgen Ant task. See “Invoking a Web Service from a
Stand-alone Client: Main Steps.

1. Create the client-side security policy files and save them in a location accessible by the client
application. Typically, the security policy files are the same as those configured for the Web
Service you are invoking, but because the server-side files are not exposed to the client
runtime, the client application must load its own local copies.

See “Creating and Using a Custom Policy File” on page 3-18 for information about
creating security policy files.

Us ing a Cl i en t-S ide Secur i t y Po l i cy F i l e

WebLogic Web Services: Security 3-29

2. Update the build.xml file that builds your client application by specifying to the clientgen
Ant task that it should generate additional getXXXPort() methods in the JAX-RPC stub,
where XXX refers to the name of the Web Service. These methods are later used by the client
application to load the client-side policy files.

See “Updating clientgen to Generate Methods That Load Policy Files” on page 3-29.

3. Update your Java client application to load the client-side policy files using the additional
getXXXPort() methods that the clientgen Ant task generates.

See “Updating a Client Application To Load Policy Files” on page 3-30.

4. Rebuild your client application by running the relevant task. For example:

prompt> ant build-client

When you next run the client application, it will load local copies of the policy files that the Web
Service client runtime uses to enable security for the SOAP request message.

Note: If you have a Web Services operation that already have a security policy (for example,
one that was set in the WSDL file that was stored when generating the client from the
server policy), then when you use this procedure to programmatically set the client-side
security policy, all previously-existing policies will be removed.

Updating clientgen to Generate Methods That Load Policy
Files
Set the generatePolicyMethods attribute of the clientgen Ant task to true to specify that
the Ant task should generate additional getXXX() methods in the implementation of the
JAX-RPC Service interface for loading client-side copies of policy files when you get a port, as
shown in the following example:

 <clientgen

 wsdl="http://ariel:7001/policy/ClientPolicyService?WSDL"

 destDir="${clientclass-dir}"

 generatePolicyMethods="true"

 packageName="examples.webservices.client_policy.client"/>

See “Updating a Client Application To Load Policy Files” on page 3-30 for a description of the
additional methods that are generated and how to use them in a client application.

Conf igur ing Message-Leve l Secur i t y

3-30 WebLogic Web Services: Security

Updating a Client Application To Load Policy Files
When you set generatePolicyMethods="true" for clientgen, the Ant task generates
additional methods in the implementation of the JAX-RPC Service interface that you can use to
load policy files, where XXX refers to the name of the Web Service. You can use either an Array
or Set of policy files to associate multiple files to a Web Service. If you want to associate just a
single policy file, create a single-member Array or Set.

getXXXPort(String operationName, java.util.Set<java.io.InputStream>
inbound, java.util.Set<java.io.InputStream> outbound)

Loads two different sets of client-side policy files from InputStreams and associates the
first set to the SOAP request and the second set to the SOAP response. Applies to a
specific operation, as specified by the first parameter.

getXXXPort(String operationName, java.io.InputStream[] inbound,
java.io.InputStream[] outbound)

Loads two different arrays of client-side policy files from InputStreams and associates the
first array to the SOAP request and the second array to the SOAP response. Applies to a
specific operation, as specified by the first parameter.

getXXXPort(java.util.Set<java.io.InputStream> inbound,
java.util.Set<java.io.InputStream> outbound)

Loads two different sets of client-side policy files from InputStreams and associates the
first set to the SOAP request and the second set to the SOAP response. Applies to all
operations of the Web Service.

getXXXPort(java.io.InputStream[] inbound, java.io.InputStream[]
outbound)

Loads two different arrays of client-side policy files from InputStreams and associates the
first array to the SOAP request and the second array to the SOAP response. Applies to all
operations of the Web Service.

Use these methods, rather than the normal getXXXPort() method with no parameters, for getting
a Web Service port and specifying at the same time that invokes of all, or the specified, operation
using that port have an associated policy file or files.

Note: The following methods from a previous release of WebLogic Server have been
deprecated; if you want to associate a single client-side policy file, specify a
single-member Array or Set and use the corresponding method described above.

– getXXXPort(java.io.InputStream policyInputStream);

Us ing a Cl i en t-S ide Secur i t y Po l i cy F i l e

WebLogic Web Services: Security 3-31

Loads a single client-side policy file from an InputStream and applies it to both the
SOAP request (inbound) and response (outbound) messages.

– getXXXPort(java.io.InputStream policyInputStream, boolean inbound,
boolean outbound);

Loads a single client-side policy file from an InputStream and applies it to either the
SOAP request or response messages, depending on the Boolean value of the second
and third parameters.

Listing 3-4 shows an example of using these policy methods in a simple client application; the
code in bold is described after the example.

Listing 3-4 Loading Policies in a Client Application

package examples.webservices.client_policy.client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;

import java.io.FileInputStream;
import java.io.IOException;

/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the ClientPolicyService Web service.
 *
 * @author Copyright (c) 2004 by BEA Systems. All Rights Reserved.
 */

public class Main {

 public static void main(String[] args)
 throws ServiceException, RemoteException, IOException {

 FileInputStream [] inbound_policy_array = new FileInputStream[2];
 inbound_policy_array[0] = new FileInputStream(args[1]);
 inbound_policy_array[1] = new FileInputStream(args[2]);

 FileInputStream [] outbound_policy_array = new FileInputStream[2];
 outbound_policy_array[0] = new FileInputStream(args[1]);
 outbound_policy_array[1] = new FileInputStream(args[2]);

 ClientPolicyService service = new ClientPolicyService_Impl(args[0] +
"?WSDL");

Conf igur ing Message-Leve l Secur i t y

3-32 WebLogic Web Services: Security

 // standard way to get the Web Service port
 ClientPolicyPortType normal_port = service.getClientPolicyPort();

 // specify an array of policy files for the request and response
 // of a particular operation
 ClientPolicyPortType array_of_policy_port =
service.getClientPolicyPort("sayHello", inbound_policy_array,
outbound_policy_array);

 try {
 String result = null;
 result = normal_port.sayHello("Hi there!");
 result = array_of_policy_port.sayHello("Hi there!");
 System.out.println("Got result: " + result);
 } catch (RemoteException e) {
 throw e;
 }
 }
}

The second and third argument to the client application are the two policy files from which the
application makes an array of FileInputStreams (inbound_policy_array and
outbound_policy_array). The normal_port uses the standard parameterless method for
getting a port; the array_of_policy_port, however, uses one of the policy methods to specify
that an invoke of the sayHello operation using the port has multiple policy files (specified with
an Array of FileInputStream) associated with both the inbound and outbound SOAP request
and response:

 ClientPolicyPortType array_of_policy_port =

service.getClientPolicyPort("sayHello", inbound_policy_array,

outbound_policy_array);

Using WS-SecurityPolicy 1.2 Policy Files
WebLogic Server includes a number of WS-SecurityPolicy files you can use in most Web
Services applications. The policy files are located in
BEA_HOME/WL_HOME/server/lib/weblogic.jar. Within weblogic.jar, the policy files are
located in /weblogic/wsee/policy/runtime.

These security policy files conform to the OASIS WS-SecurityPolicy 1.2 specification and have
the following namespace:

<wsp:Policy

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

Using WS-Secur i t yPo l i c y 1 .2 Po l i c y F i l es

WebLogic Web Services: Security 3-33

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"

 >

Note: This release of WebLogic Server also includes five security policy files (first included in
WebLogic Server 9) written under a proprietary BEA Web Services security policy
schema. These security policy files, described in “BEA Web Services Security Policy
Files” on page 3-46 have the following namespace:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >

The following sections describe the available WS-SecurityPolicy 1.2 policy files:

“Transport Level Policies” on page 3-33

“Protection Assertion Policies” on page 3-34

“WS-Security 1.0 Username and X509 Token Policies” on page 3-34

“WS-Security 1.1 Username and X509 Token Policies” on page 3-36

“WS-SecureConversation 2005/2 Policies” on page 3-37

In addition, see “Choosing a Policy” on page 3-38 and “Smart Policy Selection” on page 3-39 for
information about how to choose the best security policy approach for your Web Services
implementation and for information about WS-SecurityPolicy 1.2 elements that are not
supported in this release of WebLogic Server.

Transport Level Policies
These policies require use of the https protocol to access WSDL and invoke Web Services
operations:

Table 3-2 Transport Level Policies

Policy File Description

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-BasicAuth.
xml

One way SSL with Basic Authentication. A 401 challenge occurs if
the Authorization header is not present in the request.

Conf igur ing Message-Leve l Secur i t y

3-34 WebLogic Web Services: Security

Protection Assertion Policies
Protection assertions are used to identify what is being protected and the level of protection
provided. Protection assertion policies can not be used alone; they should be used only in
combination with X.509 Token Policies. For example, you might use
Wssp1.2-Wss1.1-X509-Basic256.xml together with Wssp1.2-SignBody.xml. The
following policy files provide for the protection of message parts by signing or encryption:

WS-Security 1.0 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of
WS-Security 1.0:

Wssp1.2-Https-UsernameT
oken-Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-UsernameT
oken-Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-ClientCert
Req.xml

Two way SSL. The recipient checks for the initiator’s public
certificate. Note that the client certificate can be used for
authentication.

Table 3-3 Protection Assertion Policies

Policy File Description

Wssp1.2-SignBody.xml All message body parts are signed.

Wssp1.2-EncryptBody.
xml

All message body parts are encrypted.

Wssp1.2-Sign-Wsa-Hea
ders.xml

WS-Addressing headers are signed.

Table 3-2 Transport Level Policies

Policy File Description

Using WS-Secur i t yPo l i c y 1 .2 Po l i c y F i l es

WebLogic Web Services: Security 3-35

Table 3-4 WS-Security 1.0 Policies

Policy File Description

Wssp1.2-Wss1.0-Usern
ameToken-Plain-X509-
Basic256.xml

Username token with plain text password is sent in the request
for authentication, signed with the client's private key and
encrypted with server's public key. The client also signs the
request body and includes its public certificate, protected by
the signature in the message. The server signs the response
body with its private key and sends its public certificate in the
message. Both request and response messages include signed
time stamps. The encryption method is aes256.

Wssp1.2-Wss1.0-Usern
ameToken-Plain-X509-
TripleDesRsa15.xml

Username token with plain text password is sent in the request
for authentication, signed with the client's private key and
encrypted with server's public key. The client also signs the
request body and includes its public certificate, protected by
the signature in the message. The server signs the response
body with its private key and sends its public certificate in the
message. Both request and response messages include signed
time stamps. The encryption method is TripleDes.

Wssp1.2-Wss1.0-Usern
ameToken-Digest-X509
-Basic256.xml

Username token with digested password is sent in the request
for authentication. The encryption method is aes256.

Wssp1.2-Wss1.0-Usern
ameToken-Digest-X509
-TripleDesRsa15.xml

Username token with digested password is sent in the request
for authentication. The encryption method is TripleDes.

Wssp1.2-Wss1.0-X509-
Basic256.xml

Mutual Authentication with X.509 Certificates. The message is
signed and encrypted on both request and response. The
algorithm of aes256 should be used for both sides.

Wssp1.2-Wss1.0-X509-
TripleDesRsa15.xml

Mutual Authentication with X.509 Certificates and message is
signed and encrypted on both request and response. The
algorithm of TripleDes should be used for both sides

Wssp1.2-Wss1.0-X509-
EncryptRequest-SignRe
sponse.xml

This policy is used where only the server has X.509v3
certificates (and public-private key pairs). The request is
encrypted and the response is signed.

Conf igur ing Message-Leve l Secur i t y

3-36 WebLogic Web Services: Security

WS-Security 1.1 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of
WS-Security 1.1:

Table 3-5 WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Wssp1.2-Wss1.1-X509-
Basic256.xml

This policy is similar to policy
Wssp1.2-Wss1.0-X509-Basic256.xml except it uses
additional WS-Security 1.1 features, including Signature
Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-Encry
ptedKey.xml

This is a symmetric binding policy that uses the WS-Security
1.1 Encrypted Key feature for both signature and encryption. It
also uses WS-Security 1.1 features, including Signature
Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-Encry
ptedKey-X509-SignedE
ndorsing.xml

This policy has all of the features defined in policy
Wssp1.2-Wss1.1-EncryptedKey.xml, and in addition it
uses sender's key to endorse the message signature. The
endorsing key is also signed with the message signature.

Wssp1.2-Wss1.1-DK.x
ml

This policy has all of features defined in policy
Wssp1.2-Wss1.1-EncryptedKey.xml, except that instead of
using an encrypted key, the request is signed using
DerivedKeyToken1, then encrypted using a
DerivedKeyToken2. Response is signed using
DerivedKeyToken3, and encrypted using DerivedKeyToken4.

Wssp1.2-Wss1.1-DK-X
509-Endorsing.xml

This policy has all features defined in policy
Wssp1.2-Wss1.1-DK.xml, and in addition it uses the sender's
key to endorse the message signature.

Using WS-Secur i t yPo l i c y 1 .2 Po l i c y F i l es

WebLogic Web Services: Security 3-37

WS-SecureConversation 2005/2 Policies
The following policies implement WS-SecureConversation 2005/2:

Wssp1.2-Wss1.1-X509-
EncryptRequest-SignRe
sponse.xml

This policy is similar to policy
Wssp1.2-Wss1.0-X509-EncryptRequest-SignResponse.
xml, except that it uses additional WSS 1.1 features, including
Signature Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-X509-
SignRequest-EncryptRe
sponse.xml

This policy is the reverse of policy
Wssp1.2-Wss1.1-X509-EncryptRequest-SignResponse.
xml: the request is signed and the response is encrypted.

Table 3-6 WS-SecureConversation Policies

Policy File Description

Wssp1.2-Wssc200502-
Bootstrap-Https.xml

WS-SecureConversation handshake
(RequestSecurityToken and
RequestSecurityTokenResponse messages) occurs in
https transport. The application messages are signed and
encrypted with DerivedKeys.

Table 3-5 WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Conf igur ing Message-Leve l Secur i t y

3-38 WebLogic Web Services: Security

Choosing a Policy
WebLogic Server's implementation of WS-SecurityPolicy 1.2 makes a wide variety of security
policy alternatives available to you. When choosing a security policy for your Web Service, you
should consider your requirements in these areas:

Performance

Security

Interoperability

Credential availability (X.509 certificate, username token, clear or digest password)

Whenever possible, BEA recommends that you:

Use a policy packaged in WebLogic Server rather than creating a custom policy

Use a WS-SecurityPolicy 1.2 policy rather than a BEA WebLogic Server 9.x style policy,
unless you require features that are not yet supported by WS-SecurityPolicy 1.2 policies.

Wssp1.2-Wssc200502-
Bootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by
WS-Security 1.0. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and
RequestSecurityTokenResponse messages are both signed
and encrypted. The WS-Addressing headers are signed.
Timestamp is included and signed. The algorithm suite is
Basic128.

Wssp1.2-Wssc200502-
Bootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by
WS-Security 1.1. The application messages are signed and
encrypted with DerivedKeys. The soap:Body of the
RequestSecurityToken and
RequestSecurityTokenResponse messages are both signed
and encrypted. The WS-Addressing headers are signed.
Signature and encryption use derived keys from an encrypted
key.

Table 3-6 WS-SecureConversation Policies

Policy File Description

Using WS-Secur i t yPo l i c y 1 .2 Po l i c y F i l es

WebLogic Web Services: Security 3-39

Examples of features that may require you to use BEA WebLogic Server 9.x style policies
include SAML 1.1 and element-level signature and encryption.

Use transport-level policies (Wssp1.2-Https-*.xml) only where message-level security is
not required.

Use WS-Security 1.0 policies if you require interoperability. Use one of the following,
depending on your authentication requirements and credential availability:
– Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

– Wssp1.2-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

– Wssp1.2-Wss1.0-X509-Basic256.xml

Use WS-Security 1.1 policies if you have strong security requirements. Use one of the
following:
– Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

– Wssp1.2-Wss1.1-DK-X509-Endorsing.xml

Use a WS-SecureConversation policy where WS-ReliableMessaging plus security are
required:
– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

Smart Policy Selection
You can configure multiple policy alternatives for a single Web Service by creating a custom
policy. At runtime, WebLogic Server selects which of the configured policies to apply. It
excludes policies that are not supported or have conflicting assertions and selects the appropriate
policy to verify incoming messages and build the response messages. For example, a single Web
Service can be configured with security policies that can handle either WS-Security 1.0 or
WS-Security 1.1 requests.

Listing 3-5 gives an example of a security policy that supports both WS-Security 1.0 and
WS-Security 1.1. Each policy alternative is enclosed in a <wsp:All> element.

Listing 3-5 Policy Defining Multiple Alternatives

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">

Conf igur ing Message-Leve l Secur i t y

3-40 WebLogic Web Services: Security

<wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>

Using WS-Secur i t yPo l i c y 1 .2 Po l i c y F i l es

WebLogic Web Services: Security 3-41

 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>

Conf igur ing Message-Leve l Secur i t y

3-42 WebLogic Web Services: Security

 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Unsupported WS-SecurityPolicy 1.2 Assertions
The Web Services SecurityPolicy specification is not final as of this release of WebLogic Server.
The implementation of WS-SecurityPolicy in this release of WebLogic Server is based on OASIS
WS-SecurityPolicy 1.2 Editors Draft dated 19 June 2006 (WS-SX WSSP 1.2 (06/2006).
Table 3-7 details the elements of the Web Services SecurityPolicy 1.2 draft dated 21 February
2007, that are not supported in this release of WebLogic Server:

Table 3-7 Web Services SecurityPolicy 1.2 Unsupported Assertions

Spec
Section

 Assertion Remarks

4.1.2 SignedElements Not yet supported

4.2.2 EncryptedElements Not yet supported

4.3.1 RequiredElements Not yet supported

4.3.2 RequiredParts Not yet supported

5.1.1 TokenInclusion includeTokenPolicy=Once is not supported

5.4.1 UsernameToken Only <sp:UsernameToken10> is supported in this release,
<sp:UsernameToken11> and Password Derived Keys are not
yet supported.

5.4.2 IssuedToken Not yet supported

Using WS-Secur i t yPo l i c y 1 .2 Po l i c y F i l es

WebLogic Web Services: Security 3-43

5.4.3 X509Token Supported:

<sp:WssX509V3Token10>
<sp:WssX509V3Token11>

Not yet supported:

<sp:WssX509Pkcs7Token10>
<sp:WssX509Pkcs7Token11>
<sp:WssX509PkiPathV1Token10>
<sp:WssX509PkiPathV1Token11>
<sp:WssX509V1Token10>
<sp:WssX509V1Token11>

5.4.4 KerberosToken Not yet supported

5.4.5 SpnegoContextToken Not yet supported

5.4.6 SecurityContextToken Not yet supported

5.4.7 SecureConversationToken Not yet supported:

<sp:IssuerName>
<sp:RequireExternalUriReference>

For <sp:BootStrapPolicy>, we support all the features that are
supported in the normal policy binding. <sp:Strict> layout and
Derived Key endorsing with Derived Key is not supported in
this release.

5.4.8 SamlToken Not yet supported

5.4.9 RelToken Not supported

5.4.11 KeyValueToken Not yet supported

6.3 ProtectionOrder <sp:SignBeforeEncrypting> is supported.
<sp:EncryptBeforeSigning> is not yet supported

6.5 Token Protection Token Protection in cases where
includeTokenPolicy="Never" or in cases where the Token is
not in the Message is not supported

Table 3-7 Web Services SecurityPolicy 1.2 Unsupported Assertions

Spec
Section

 Assertion Remarks

Conf igur ing Message-Leve l Secur i t y

3-44 WebLogic Web Services: Security

6.7/7.2 Security Header Layout
Property

<sp:Strict> is partially supported.

7.1 AlgorithmSuite Not yet supported:

/sp:AlgorithmSuite/wsp:Policy/sp:XPathFilter20 assertion
/sp:AlgorithmSuite/wsp:Policy/sp:XPath10 assertion
/sp:AlgorithmSuite/wsp:Policy/sp:SoapNormalization10

8.1 SupportingTokens Not yet supported:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

8.2 SignedSupportingTokens Not yet supported:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

The runtime will not be able to sign the supporting token in
cases where the Token is not in the Message (such as for
includeTokenPolicy=Never/Once).

8.3 EndorsingSupportingTokens Not yet supported:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

<sp:RequireDerivedKeys/> is not supported inside the
EndorsingSupportingTokens. The runtime will not be able to
endorse the supporting token in cases where the Token is not
in the Message (such as for
includeTokenPolicy=Never/Once).

Table 3-7 Web Services SecurityPolicy 1.2 Unsupported Assertions

Spec
Section

 Assertion Remarks

Using WS-Secur i t yPo l i c y 1 .2 Po l i c y F i l es

WebLogic Web Services: Security 3-45

8.4 SignedEndorsingSupportingTo
kens

Not yet supported:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

<sp:RequireDerivedKeys/> is not supported inside the
SignedEndorsingSupportingTokens. The runtime will not be
able to sign/endorse the supporting token in cases where the
Token is not in the Message (such as for
includeTokenPolicy=Never/Once).

8.5 SignedEncrtptedSupportingTo
kens

Not yet supported:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

<sp:RequireDerivedKeys/> is not support inside the
SignedEncryptedSupportingTokens. The runtime will not be
able to sign the supporting token in cases where the Token is
not in the Message (such as for
includeTokenPolicy=Never/Once).

8.6 EncryptedSupportingTokens Not yet supported:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

The UserName Token is only supporting token type that is
supported.

8.7 EndorsingEncryptedSupportin
gTokens

Not yet supported

8.8 SignedEndorsingEncryptedSup
portingTokens

Not yet supported

Table 3-7 Web Services SecurityPolicy 1.2 Unsupported Assertions

Spec
Section

 Assertion Remarks

Conf igur ing Message-Leve l Secur i t y

3-46 WebLogic Web Services: Security

BEA Web Services Security Policy Files
Previous releases of WebLogic Server, released before the formulation of the WS-SecurityPolicy
specification, used security policy files written under the WS-Policy specification, using a
proprietary BEA schema for security policy. This release of WebLogic Server supports both
security policy files that conform to the WS-SecurityPolicy 1.2 specification and the files written
under the BEA Web Services security policy schema first included in WebLogic Server 9.

WARNING: WS-SecurityPolicy 1.2 policy files and BEA proprietary Web Services security
policy schema files are not mutually compatible; you cannot define both types of
policy file in the same Web Service. If you want to use WS-Security 1.1 features,
you must use the WS-SecurityPolicy 1.2 policy file format.

This section describes the set of pre-packaged BEA Web Services security policy schema files
included in WebLogic Server. These policy files are all abstract; see “Abstract and Concrete
Policy Files” on page 3-47 for details.

Note: The policy assertions used in these security policy files to configure message-level
security for a WebLogic Web Service are based on the assertions described in the
December 18, 2002 version of the Web Services Security Policy Language
(WS-SecurityPolicy) specification. This means that although the exact syntax and usage
of the assertions in WebLogic Server are different, they are similar in meaning to those

9.1 WSS10 Assertion Everything is supported with the exception of
<sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken>.

9.2 WSS11 Assertion Everything is supported with the exception of
<sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken>.

10.1 Trust10 Assertion Not yet supported:

MustSupportClientChallenge
MustSupportServerChallenge

We only support this assertion in the WS-SecureConversation
policy.

Table 3-7 Web Services SecurityPolicy 1.2 Unsupported Assertions

Spec
Section

 Assertion Remarks

BEA Web Se rv ices Secur i t y Po l i c y F i l es

WebLogic Web Services: Security 3-47

described in the specification. The assertions are not based on later updates of the
specification.

The pre-packaged BEA Web Services security policy files are:

Auth.xml—Specifies that the client must authenticate itself. Can be used on its own, or
together with Sign.xml and Encrypt.xml.

Sign.xml—Specifies that the SOAP messages are digitally signed. Can be used on its own,
or together with Auth.xml and Encrypt.xml.

Encrypt.xml—Specifies that the SOAP messages are encrypted. Can be used on its own, or
together with Auth.xml and Sign.xml.

Wssc-dk.xml—Specifies that the client and service share a security context when multiple
messages are exchanged and that derived keys are used for encryption and digital
signatures, as described by the WS-SecureConversation specification.

Note: This pre-packaged policy file is meant to be used on its own and not together with
Auth.xml, Sign.xml, Encrypt.xml, or Wssc-sct.xml. Also, BEA recommends
that you use this policy file, rather than Wssc-sct.xml, if you want the client and
service to share a security context, due to its higher level of security.

Wssc-sct.xml—Specifies that the client and service share a security context when multiple
messages are exchanged, as described by the WS-SecureConversation specification.

Note: This pre-packaged policy file is meant to be used on its own and not together with
Auth.xml, Sign.xml, Encrypt.xml, or Wssc-dk.xml. Also, BEA provides this
policy file to support the various use cases of the WS-SecureConversation
specification; however, BEA recommends that you use the Wssc-dk.xml policy file,
rather than Wssc-sct.xml, if you want the client and service to share a security
context, due to its higher level of security.

Abstract and Concrete Policy Files
The WebLogic Web Services runtime environment recognizes two slightly different types of
security policy files: abstract and concrete.

Abstract policy files do not explicitly specify the security tokens that are used for authentication,
encryption, and digital signatures, but rather, the Web Services runtime environment determines
the security tokens when the Web Service is deployed. Specifically, this means the <Identity>
and <Integrity> elements (or assertions) of the policy files do not contain a
<SupportedTokens><SecurityToken> child element, and the <Confidentiality> element
policy file does not contain a <KeyInfo><SecurityToken> child element.

Conf igur ing Message-Leve l Secur i t y

3-48 WebLogic Web Services: Security

If your Web Service is associated with only the pre-packaged policy files, then client
authentication requires username tokens. Web Services support only one type of token for
encryption and digital signatures (X.509), which means that in the case of the <Integrity> and
<Confidentiality> elements, concrete and abstract policy files end up being essentially the
same.

If your Web Service is associated with an abstract policy file and it is published as an attachment
to the WSDL (which is the default behavior), the static WSDL file packaged in the Web Service
archive file (JAR or WAR) will be slightly different than the dynamic WSDL of the deployed
Web Service. This is because the static WSDL, being abstract, does not include specific
<SecurityToken> elements, but the dynamic WSDL does include these elements because the
Web Services runtime has automatically filled them in when it deployed the service. For this
reason, in the code that creates the JAX-RPC stub in your client application, ensure that you
specify the dynamic WSDL or you will get a runtime error when you try to invoke an operation:

HelloService service = new HelloService(Dynamic_WSDL);

You can specify either the static or dynamic WSDL to the clientgen Ant task in this case. See
Browsing to the WSDL of the Web Service for information on viewing the dynamic WSDL of a
deployed Web Service.

Concrete policy files explicitly specify the details of the security tokens at the time the Web
Service is programmed. Programmers create concrete security policy files when they know, at the
time they are programming the service, the details of the type of authentication (such as using
x509 or SAML tokens); whether multiple private key and certificate pairs from the keystore are
going to be used for encryption and digital signatures; and so on.

Auth.xml
The WebLogic Server Auth.xml file, shown below, specifies that the client application invoking
the Web Service must authenticate itself with one of the tokens (username or X.509) that support
authentication.

Because the pre-packaged BEA Web Services security policy schema files are abstract, there is
no specific username or X.509 token assertions in the Auth.xml file at development-time.
Depending on how you have configured security for WebLogic Server, either a username token,
an X.509 token, or both will appear in the actual runtime-version of the Auth.xml policy file
associated with your Web Service. Additionally, if the runtime-version of the policy file includes
an X.509 token and it is applied to a client invoke, then the entire body of the SOAP message is
signed.

BEA Web Se rv ices Secur i t y Po l i c y F i l es

WebLogic Web Services: Security 3-49

If you want to specify that only X.509, and never username tokens, be used for identity, or want
to specify that, when using X.509 for identity, only certain parts of the SOAP message be signed,
then you must create a custom security policy file.

Listing 3-6 Auth.xml

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

 >

 <wssp:Identity/>

</wsp:Policy>

Sign.xml
The WebLogic Server Sign.xml file specifies that the body and WebLogic-specific system
headers of the SOAP message be digitally signed. It also specifies that the SOAP message include
a Timestamp, which is digitally signed, and that the token used for signing is also digitally signed.
The token used for signing is included in the SOAP message.

The following headers are signed when using the Sign.xml security policy file:

SequenceAcknowledgement

AckRequested

Sequence

Action

FaultTo

From

MessageID

RelatesTo

ReplyTo

To

SetCookie

Conf igur ing Message-Leve l Secur i t y

3-50 WebLogic Web Services: Security

Timestamp

The WebLogic Server Sign.xml file is shown below:

Listing 3-7 Sign.xml

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >

 <wssp:Integrity>

 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>

 </wssp:Integrity>

BEA Web Se rv ices Secur i t y Po l i c y F i l es

WebLogic Web Services: Security 3-51

 <wssp:MessageAge/>

</wsp:Policy>

Encrypt.xml
The WebLogic Server Encrypt.xml file specifies that the entire body of the SOAP message be
encrypted. By default, the encryption token is not included in the SOAP message.

Listing 3-8 Encrypt.xml

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >

 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>

</wsp:Policy>

Wssc-dk.xml
Specifies that the client and Web Service share a security context, as described by the
WS-SecureConversation specification, and that a derived key token is used. This ensures the
highest form of security.

This policy file provides the following configuration:

A derived key token is used to sign all system SOAP headers, the timestamp security
SOAP header, and the SOAP body.

Conf igur ing Message-Leve l Secur i t y

3-52 WebLogic Web Services: Security

A derived key token is used to encrypt the body of the SOAP message. This token is
different from the one used for signing.

Each SOAP message uses its own pair of derived keys.

For both digital signatures and encryption, the key length is 16 (as opposed to the default
32)

The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will have to
create a custom security policy file, described in later sections.

WARNING: If you specify this pre-packaged security policy file, you should not also specify
any other pre-packaged security policy file.

Listing 3-9 Wssc-dk.xml

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >

 <wssp:Integrity SupportTrust10="true">
 <wssp:SignatureAlgorithm
URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <wssp:CanonicalizationAlgorithm
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">

BEA Web Se rv ices Secur i t y Po l i c y F i l es

WebLogic Web Services: Security 3-53

 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
 DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 <wssp:Claims>
 <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
 <wssp:Length>16</wssp:Length>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>

 </wssp:Integrity>

 <wssp:Confidentiality SupportTrust10="true">

 <wssp:Target>
 <wssp:EncryptionAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>
 </wssp:Target>

 <wssp:KeyInfo>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
 DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 <wssp:Claims>
 <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
 <wssp:Length>16</wssp:Length>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:KeyInfo>

 </wssp:Confidentiality>

 <wssp:MessageAge/>

</wsp:Policy>

Conf igur ing Message-Leve l Secur i t y

3-54 WebLogic Web Services: Security

Wssc-sct.xml
Specifies that the client and Web Service share a security context, as described by the
WS-SecureConversation specification. In this case, security context tokens are used to encrypt
and sign the SOAP messages, which differs from Wssc-dk.xml in which derived key tokens are
used. The Wssc-sct.xml policy file is provided to support all the use cases of the specification;
for utmost security, however, BEA recommends you always use Wssc-dk.xml when specifying
shared security contexts due to its higher level of security.

This security policy file provides the following configuration:

A security context token is used to sign all system SOAP headers, the timestamp security
SOAP header, and the SOAP body.

A security context token is used to encrypt the body of the SOAP message.

The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will have to
create a custom security policy file, described in later sections.

WARNING: If you specify this pre-packaged security policy file, you should not also specify
any other pre-packaged security policy file.

Listing 3-10 Wssc-sct.xml

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >

 <wssp:Integrity SupportTrust10="true">
 <wssp:SignatureAlgorithm
URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <wssp:CanonicalizationAlgorithm
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>

BEA Web Se rv ices Secur i t y Po l i c y F i l es

WebLogic Web Services: Security 3-55

<wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 </wssp:SecurityToken>
 </wssp:SupportedTokens>

 </wssp:Integrity>

 <wssp:Confidentiality SupportTrust10="true">

 <wssp:Target>
 <wssp:EncryptionAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>
 </wssp:Target>

 <wssp:KeyInfo>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 </wssp:SecurityToken>
 </wssp:KeyInfo>
 </wssp:Confidentiality>

 <wssp:MessageAge />

</wsp:Policy>

Conf igur ing Message-Leve l Secur i t y

3-56 WebLogic Web Services: Security

WebLogic Web Services: Security 4-1

C H A P T E R 4

Configuring Transport-Level Security

The following sections describe how to configure security for your Web Service:

“Configuring Transport-Level Security: Main Steps” on page 4-1

“Configuring Two-Way SSL for a Client Application” on page 4-3

“Additional Web Services SSL Examples” on page 4-4

Configuring Transport-Level Security: Main Steps
Transport-level security refers to securing the connection between a client application and a Web
Service with Secure Sockets Layer (SSL).

See Secure Sockets Layer (SSL) for general information about SSL and the implementations
included in WebLogic Server.

To configure transport-level Web Services security:

1. Configure SSL for the core WebLogic Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client applications and
WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security subsystem,
see Configuring SSL.

Conf igur ing T ranspo r t -Leve l Secur i t y

4-2 WebLogic Web Services: Security

2. In the JWS file that implements your Web Service, add the
@weblogic.jws.security.UserDataConstaint annotation to require that the Web
Service be invoked using the HTTPS transport.

For details, see weblogic.jws.security.UserDataConstraint.

3. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See Iterative Development of WebLogic Web Services.

4. Update the build.xml file that invokes the clientgen Ant task to use a static WSDL to
generate the JAX-RPC stubs of the Web Service, rather than the dynamic deployed WSDL of
the service.

The reason clientgen cannot generate the stubs from the dynamic WSDL in this case is
that when you specify the @UserDataConstraint annotation, all client applications are
required to specify a truststore, including clientgen. However, there is currently no way
for clientgen to specify a truststore, thus the Ant task must generate its client
components from a static WSDL that describes the Web Service in the same way as the
dynamic WSDL.

5. When you run the client application that invokes the Web Service, specify certain properties
to indicate the SSL implementation that your application should use. In particular:

– To specify the Certicom SSL implementation, use the following properties

-Djava.protocol.handler.pkgs=weblogic.net
-Dweblogic.security.SSL.trustedCAKeyStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list
of trusted certificates (one of which should be the server’s certificate).To disable host
name verification, also specify the following property:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

– To specify Sun’s SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list
of trusted certificates (one of which should be the server’s certificate). To disable host
name verification, also specify the following property:

-Dweblogic.wsee.client.ssl.stricthostchecking=false

 See “Configuring Two-Way SSL for a Client Application” on page 4-3 for details about
two-way SSL.

Conf igur ing Two-Way SSL fo r a C l ien t App l i cat ion

WebLogic Web Services: Security 4-3

Configuring Two-Way SSL for a Client Application
If you configured two-way SSL for WebLogic Server, the client application must present a
certificate to WebLogic Server, in addition to WebLogic Server presenting a certificate to the
client application as required by one-way SSL. You must also follow these requirements:

Create a client-side keystore that contains the client’s private key and X.509 certificate
pair.

The SSL package of J2SE requires that the password of the client’s private key must be the
same as the password of the client’s keystore. For this reason, the client keystore can
include only one private key and X.509 certificate pair.

Configure the core WebLogic Server’s security subsystem, mapping the client’s X.509
certificate in the client keystore to a user. See Configuring a User Name Mapper.

Create a truststore which contains the certificates that the client trusts; the client
application uses this truststore to validate the certificate it receives from WebLogic Server.
Because of the J2SE password requirement described in the preceding bullet item, this
truststore must be different from the keystore that contains the key pair that the client
presents to the server.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys and Digital Signatures.

When you run the client application that invokes the Web Service, specify the following
properties:
– -Djavax.net.ssl.trustStore=trustStore

– -Djavax.net.ssl.trustStorePassword=trustStorePassword

where trustStore specifies the name of the client-side truststore that contains the list of
trusted certificates (one of which should be the server’s certificate) and
trustStorePassword specifies the truststore’s password.

The preceding properties are in addition to the standard properties you must set to specify
the client-side keystore:
– -Djavax.net.ssl.keyStore=keyStore

– -Djavax.net.ssl.keyStorePassword=keyStorePassword

Conf igur ing T ranspo r t -Leve l Secur i t y

4-4 WebLogic Web Services: Security

Additional Web Services SSL Examples
The dev2dev CodeShare is a community of developers that share ideas, code and best practices
related to BEA technologies. The site includes code examples for a variety of BEA technologies,
including using SSL with Web Services.

To view and download the SSL Web Services code examples on the dev2dev site, go to the main
Projects page and click on Web Services in the By Technology column.

WebLogic Web Services: Security 5-1

C H A P T E R 5

Configuring Access Control Security

The following sections describe how to configure security for your Web Service:

“Configuring Access Control Security: Main Steps” on page 5-1

“Updating the JWS File With the Security-Related Annotations” on page 5-4

“Updating the JWS File With the @RunAs Annotation” on page 5-6

“Setting the Username and Password When Creating the JAX-RPC Service Object” on
page 5-7

Configuring Access Control Security: Main Steps
Access control security refers to configuring the Web Service to control the users who are
allowed to access it, and then coding your client application to authenticate itself, using HTTP/S
or username tokens, to the Web Service when the client invokes one of its operations.

You specify access control security for your Web Service by using one or more of the following
annotations in your JWS file:

weblogic.jws.security.RolesAllowed

weblogic.jws.security.SecurityRole

weblogic.jws.security.RolesReferenced

weblogic.jws.security.SecurityRoleRef

weblogic.jws.security.RunAs

Conf igur ing Access Cont ro l Secur i t y

5-2 WebLogic Web Services: Security

Note: The @weblogic.security.jws.SecurityRoles and
@weblogic.security.jws.SecurityIdentity JWS annotations are deprecated as of
WebLogic Server 9.1.

The following procedure describes the high-level steps to use these annotations to enable access
control security; later sections in the chapter describe the steps in more detail.

Note: It is assumed in the following procedure that you have already created a JWS file that
implements a WebLogic Web Service and you want to update it with access control
security. It is also assumed that you use Ant build scripts to iteratively develop your Web
Service and that you have a working build.xml file that you can update with new
information. Finally, it is assumed that you have a client application that invokes the
non-secured Web Service. If these assumptions are not true, see:

Programming the JWS File

Iterative Development of WebLogic Web Services

 Invoking Web Services

1. Update your JWS file, adding the @weblogic.jws.security.RolesAllowed,
@weblogic.jws.security.SecurityRole,
@weblogic.jws.security.RolesReferenced, or
@weblogic.jws.security.SecurityRoleRef annotations as needed at the appropriate
level (class or operation).

See “Updating the JWS File With the Security-Related Annotations” on page 5-4.

2. Optionally specify that WebLogic Server internally run the Web Service using a specific role,
rather than the role assigned to the user who actually invokes the Web Service, by adding the
@weblogic.jws.security.RunAs JWS annotation.

See “Updating the JWS File With the @RunAs Annotation” on page 5-6.

3. Optionally specify that your Web Service can be, or is required to be, invoked using HTTPS
by adding the @weblogic.jws.security.UserDataConstraint JWS annotation.

See “Configuring Access Control Security: Main Steps” on page 5-1 for details. This
section also discusses how to update your client application to use SSL.

4. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See Iterative Development of WebLogic Web Services.

Conf igur ing Access Cont ro l Secur i t y : Ma in S teps

WebLogic Web Services: Security 5-3

5. Using the Administration Console, create valid WebLogic Server users, if they do not already
exist. If the mapping of users to roles is external, also use the Administration Console to create
the roles specified by the @SecurityRole annotation and map the users to the roles.

Note: The mapping of users to roles is defined externally if you do not specify the
mapToPrincipals attribute of the @SecurityRole annotation in your JWS file to
list all users who can invoke the Web Service.

See Users, Groups, and Security Roles.

6. Update your client application to use the HttpTransportInfo WebLogic API to specify the
appropriate user and password when creating the JAX-RPC Service object.

See “Setting the Username and Password When Creating the JAX-RPC Service Object” on
page 5-7.

7. Update the clientgen Ant task in your build.xml file to specify the username and
password of a valid WebLogic user (in the case where your Web Service uses the
@RolesAllowed annotation) and the trust store that contains the list of trusted certificates,
including WebLogic Server’s (in the case you specify @UserDataConstraint).

You do this by adding the standard Ant <sysproperty> nested element to the clientgen
Ant task, and set the key attribute to the required Java property, as shown in the following
example:

<clientgen
 wsdl="http://example.com/myapp/myservice.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.myservice.client"
 serviceName="StockQuoteService"
 <sysproperty key="javax.net.ssl.trustStore"
 value="/keystores/DemoTrust.jks"/>
 <sysproperty key="weblogic.wsee.client.ssl.stricthostchecking"
 value="false"/>
 <sysproperty key="javax.xml.rpc.security.auth.username"
 value="juliet"/>
 <sysproperty key="javax.xml.rpc.security.auth.password"
 value="secret"/>
</clientgen>

8. Regenerate client-side components and recompile client Java code as usual.

Conf igur ing Access Cont ro l Secur i t y

5-4 WebLogic Web Services: Security

Updating the JWS File With the Security-Related
Annotations

Use the WebLogic-specific @weblogic.jws.security.RolesAllowed annotation in your
JWS file to specify an array of @weblogic.jws.security.SecurityRoles annotations that
list the roles that are allowed to invoke the Web Service. You can specify these two annotations
at either the class- or method-level. When set at the class-level, the roles apply to all public
operations. You can add additional roles to a particular operation by specifying the annotation at
the method level.

The @SecurityRole annotation has the following two attributes:

role—Name of the role that is allowed to invoke the Web Service.

mapToPrincipals—List of users that map to the role. If you specify one or more users
with this attribute, you do not have to externally create the mapping between users and
roles, typically using the Administration Console. However, the mapping specified with
this attribute applies only within the context of the Web Service.

The @RolesAllowed annotation does not have any attributes.

You can also use the @weblogic.jws.security.RolesReferenced annotation to specify an
array of @weblogic.jws.security.SecurityRoleRef annotations that list references to
existing roles. For example, if the role manager is already allowed to invoke the Web Service,
you can specify that the mgr role be linked to the manager role and any user mapped to mgr is
also able to invoke the Web Service. You can specify these two annotations only at the
class-level.

The @SecurityRoleRef annotation has the following two attributes:

role—Name of the role reference.

link—Name of the already-specified role that is allowed to invoke the Web Service. The
value of this attribute corresponds to the value of the role attribute of a @SecurityRole
annotation specified in the same JWS file.

The @RolesReferenced annotation does not have any attributes.

The following example shows how to use the annotations described in this section in a JWS file,
with the relevant sections shown in bold:

package examples.webservices.security_roles;

Updat ing the JWS F i l e Wi th the Secur i t y -Re lated Annotat i ons

WebLogic Web Services: Security 5-5

import javax.jws.WebMethod;

import javax.jws.WebService;

// WebLogic JWS annotations

import weblogic.jws.WLHttpTransport;

import weblogic.jws.security.RolesAllowed;

import weblogic.jws.security.RolesReferenced;

import weblogic.jws.security.SecurityRole;

import weblogic.jws.security.SecurityRoleRef;

@WebService(name="SecurityRolesPortType",

 serviceName="SecurityRolesService",

 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="security",

 serviceUri="SecurityRolesService",

 portName="SecurityRolesPort")

@RolesAllowed ({

 @SecurityRole (role="manager",

 mapToPrincipals={ "juliet","amanda" }),

 @SecurityRole (role="vp")

})

@RolesReferenced (

 @SecurityRoleRef (role="mgr", link="manager")

)

/**

 * This JWS file forms the basis of simple Java-class implemented WebLogic

 * Web Service with a single operation: sayHello

 *

 */

public class SecurityRolesImpl {

 @WebMethod()

 public String sayHello(String message) {

 System.out.println("sayHello:" + message);

 return "Here is the message: '" + message + "'";

 }

Conf igur ing Access Cont ro l Secur i t y

5-6 WebLogic Web Services: Security

}

The example shows how to specify that only the manager, vp, and mgr roles are allowed to
invoke the Web Service. The mgr role is actually a reference to the manager role. The users
juliet and amanda are mapped to the manager role within the context of the Web Service.
Because no users are mapped to the vp role, it is assumed that the mapping occurs externally,
typically using the Administration Console to update the WebLogic Server security realm.

See JWS Annotation Reference for reference information on these annotations.

Updating the JWS File With the @RunAs Annotation
Use the WebLogic-specific @weblogic.jws.security.RunAs annotation in your JWS file to
specify that the Web Service is always run as a particular role. This means that regardless of the
user, and the role to which the user is mapped, initially invokes the Web Service, the service is
internally executed as the specified role.

You can set the @RunAs annotation only at the class-level. The annotation has the following
attributes:

role—Role which the Web Service should run as.

mapToPrincipal—Principal user that maps to the role.

The following example shows how to use the @RunAs annotation in a JWS file, with the relevant
sections shown in bold:

package examples.webservices.security_roles;

import javax.jws.WebMethod;

import javax.jws.WebService;

// WebLogic JWS annotations

import weblogic.jws.WLHttpTransport;

import weblogic.jws.security.RunAs;

@WebService(name="SecurityRunAsPortType",

 serviceName="SecurityRunAsService",

 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="security_runas",

 serviceUri="SecurityRunAsService",

 portName="SecurityRunAsPort")

Set t ing the Use rname and Password When Creat ing the JAX-RPC Serv ice Ob jec t

WebLogic Web Services: Security 5-7

@RunAs (role="manager", mapToPrincipal="juliet")

/**

 * This JWS file forms the basis of simple WebLogic

 * Web Service with a single operation: sayHello

 *

 */

public class SecurityRunAsImpl {

 @WebMethod()

 public String sayHello(String message) {

 System.out.println("sayHello:" + message);

 return "Here is the message: '" + message + "'";

 }

}

Setting the Username and Password When Creating the
JAX-RPC Service Object

When you use the @RolesAllowed JWS annotation to secure a Web Service, only the specified
roles are allowed to invoke the Web Service operations. This means that you must specify the
username and password of a user that maps to the role when creating the JAX-RPC Service
object in your client application that invokes the protected Web Service.

WebLogic Server provides the HttpTransportInfo class for setting the username and
password and passing it to the Service constructor. The following example is based on the
standard way to invoke a Web Service from a standalone Java client (as described in Invoking
Web Services) but also shows how to use the HttpTransportInfo class to set the username and
password. The sections in bold are discussed after the example.

package examples.webservices.sec_wsdl.client;

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import javax.xml.rpc.Stub;

/**

 * This is a simple standalone client application that invokes the

 * the <code>sayHello</code> operation of the SecWsdlService Web service.

Conf igur ing Access Cont ro l Secur i t y

5-8 WebLogic Web Services: Security

 *

 * @author Copyright (c) 2004 by BEA Systems. All Rights Reserved.

 */

public class Main {

 public static void main(String[] args)

 throws ServiceException, RemoteException{

 HttpTransportInfo info = new HttpTransportInfo();

 info.setUsername("juliet".getBytes());

 info.setPassword("secret".getBytes());

 SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL",

info);

 SecWsdlPortType port = service.getSecWsdlPort();

 try {

 String result = null;

 result = port.sayHello("Hi there!");

 System.out.println("Got result: " + result);

 } catch (RemoteException e) {

 throw e;

 }

 }

}

The main points to note in the preceding example are as follows:

Import the HttpTransportInfo class into your client application:

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

Use the setXXX() methods of the HttpTransportInfo class to set the username and
password:

HttpTransportInfo info = new HttpTransportInfo();
info.setUsername("juliet".getBytes());
info.setPassword("secret".getBytes());

In the example, it is assumed that the user juliet with password secret is a valid
WebLogic Server user and has been mapped to the role specified in the @RolesAllowed
JWS annotation of the Web Service.

If you are accessing a Web Service using a proxy, the Java code would be similar to:

Set t ing the Use rname and Password When Creat ing the JAX-RPC Serv ice Ob jec t

WebLogic Web Services: Security 5-9

HttpTransportInfo info = new HttpTransportInfo();
Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));
info.setProxy(p);
info.setProxyUsername(user.getBytes());
info.setProxyPassword(pass.getBytes());

Pass the info object that contains the username and password to the Service constructor
as the second argument, in addition to the standard WSDL first argument:

SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL",
info);

See Invoking Web Services for general information about invoking a non-secured Web Service.

Conf igur ing Access Cont ro l Secur i t y

5-10 WebLogic Web Services: Security

