

BEA WebLogic Workshop 9.2 – Tuxedo Control Migration 1

Tuxedo Control Migration
BEA WebLogic Workshop 8.1 included a component called the Tuxedo Control. This control
allowed easy development of applications that included WebLogic Workshop features and
Tuxedo services. Applications of this type are often called composite applications.
The Tuxedo Control allowed easy development of applications that included WebLogic Workshop
features and Tuxedo services. Applications of this type are often called composite applications.

In BEA WebLogic Workshop 9.2 the Tuxedo Control is not included. As a result, composite
applications utilizing the Tuxedo Control will need to use another mechanism to access the
required Tuxedo services. This whitepaper describes three alternatives that can be utilized to
access the Tuxedo services that the Tuxedo Control was being used to access.

The Tuxedo Control performed the following functions:

1) Created a WebLogic Tuxedo Connector (WTC) connection.
2) Mapped Java data types into a Tuxedo buffer.
3) Performed a tpcall or tpenqueue to send the buffer to Tuxedo.
4) Mapped the returned buffer into a Java data type.
5) Mapped any returned errors into a Java exception.

The mapping performed was done by matching parameter and property or field names to Tuxedo
field names for Tuxedo fielded buffers. This matching applied to nested properties or fields as
well. This mapping represented the bulk of the work performed by the control and was
dependent upon the method signature defined in the Tuxedo Control extension and the types of
the Tuxedo buffer fields.

Alternatives to the Tuxedo Control
The next three sections describe three alternatives to using the Tuxedo Control.

Custom Java Control
One approach to replace the Tuxedo Control is to develop a custom Java control. The
complexity of this approach depends mostly on the complexity of the Tuxedo buffer that the
service requires and the complexity of the Tuxedo buffer the service returns. For simple non-
fielded buffer types such as STRING, MBSTRING, and CARRAY, the current Tuxedo Control
extension should only have a single parameter and return a simple type. This makes the
mapping between Java and the Tuxedo buffer very straight forward. For fielded buffers the
process is a bit more complex as each field in the buffer needs to be populated from the Java
parameters the Tuxedo Control extension expected. A brief summary of what must be done
follows.

The Java control would need to first create a WebLogic Tuxedo Connector connection. This code
might look like:

BEA WebLogic Workshop 9.2 – Tuxedo Control Migration 2

 Context ctx;
 TuxedoConnectionFactory tcf;
 TuxedoConnection myTux;
 ctx = new InitialContext();
tcf = (TuxedoConnectionFactory)

ctx.lookup("tuxedo.services.TuxedoConnection");
 myTux = tcf.getTuxedoConnection();

This connection then is used for all WTC interactions.

For non-fielded buffer types, the Java control then creates the appropriate buffer type using
something similar to:

 TypedString myData;
 myData = new TypedString(toConvert);

Where toConvert is the parameter that was passed to the Java control. At this point the buffer is
ready to be sent to the Tuxedo service via something like:

 Reply myRtn;
 myRtn = myTux.tpcall("TOUPPER", myData, 0);

Where TOUPPER is the name of the Tuxedo service being called and myData is the Tuxedo
buffer being sent to the Tuxedo service. The returned buffer from the Tuxedo call can then be
accessed using something similar to:

 myData = (TypedString) myRtn.getReplyBuffer();
 return (myData.toString());

For fielded buffers the setup and process is a bit more involved. For VIEW and VIEW32 buffers,
the view description file needs to be converted to a class. This should have already been done to
use the Tuxedo Control by using the viewj or viewj32 utilities. Likewise for FML and FML32
buffers, the field table files must have been converted to field table classes. Again this should
have already been done for use by the Tuxedo Control and these classes can be reused in the
Java control that is replacing the Tuxedo Control instance.

With these pieces in place, what’s required now is a method that creates the appropriate Tuxedo
buffer type and places the method parameters values into the buffer. To create an FML32 buffer,
one would use some code similar to:

 myData = new TypedFML32(new MyFieldTable());

Where MyFieldTable is the field table class that was created with the mkfldclass32 utility.
Now each of the parameters and their associated fields must be placed into the Tuxedo typed
buffer. The Tuxedo Control used reflection to discover the field and property names at runtime.

BEA WebLogic Workshop 9.2 – Tuxedo Control Migration 3

A simpler approach is to simply hard code the population of the Tuxedo buffer based upon the
known signature of the control. This is done using something similar to:

 myData.Fchg(MyFieldTable.MyString, 0, toConvert);

Where MyString is the field name that is to be added to the buffer and toConvert is the
parameter that was passed to the control. This needs to be done for each parameter and for any
contained fields or JavaBean properties of the parameter. Once the buffer has been populated,
then invoking the Tuxedo service can proceed as described above.

Web Service Control and Salt
Another method of accessing Tuxedo services from a WebLogic Workshop (WLW) application is
via the Web Service control and the new Salt v1.1 Tuxedo option. Salt (Services Architecture
Leveraging Tuxedo) is a native Web Services gateway that provides SOAP over HTTP(S) access
to Tuxedo services. This approach for replacing the Tuxedo Control should be very straight
forward for most applications and relatively simple to do.

The Web Service control provides a mechanism for accessing Web Services from within a
Workshop application. All that is required is the WSDL of the Web Service to be invoked.
Combined with Salt’s totally configuration based model for exposing Tuxedo services as Web
Services means that there is no Java coding to be performed. Using Salt or the Tuxedo Service
Metadata Repository, one can easily generate the WSDL required for the Tuxedo service being
called.

The steps for this approach are:

1) Install Salt.
2) Add the Tuxedo service definitions to the Tuxedo Service Metadata Repository.
3) Create the Salt configuration file that describes the services offered by each Web Service

gateway (GWWS).
4) Add the metadata repository server to the Tuxedo configuration file, if that has not

already been done.
5) Add the GWWS instances to the Tuxedo configuration file.
6) Restart the Tuxedo application.
7) Use the WSDL file generated by Salt to create an instance of the Web Service control.

The signature of the Web Service control generated from the Salt gateway should be nearly
identical to the signature of the Tuxedo Control that is being replaced. If the signatures of the
method are identical to the one defined in the Tuxedo Control, then the Web Service control can
be used directly. If there are differences in the signatures, then the code using the Tuxedo
Control would need to be refactored to match the new signature.

For more information about BEA Salt, refer to the Product Documentation web site at the
following URL: http://e-docs.bea.com.

BEA WebLogic Workshop 9.2 – Tuxedo Control Migration 4

Web Service Control and AquaLogic Service Bus
This approach is nearly identical to the previous approach. The primary difference is that
AquaLogic Service Bus (ALSB) is being used to provide the Web Service access to the Tuxedo
service. In this scenario, ALSB is configured with a Tuxedo business service that accepts an any
XML message. An HTTP proxy is defined that accepts a SOAP request defined by the WSDL file
generated from the Tuxedo service metadata repository. This proxy is routed to the Tuxedo
business service. Once the proxy and business service have been set up, the steps to use this
Web Service with the Web Service Control are identical to the steps outlined in the previous
approach.

For more information about BEA Salt, refer to the Product Documentation web site at the
following URL: http://e-docs.bea.com.

Comparison of the Approaches
Each of the alternatives has advantages and disadvantages. The following sections compare
and contrast the alternatives.

Factor Tuxedo

Control
Custom Java
Control

BEA Salt BEA ALSB

Coding Needed Minimal Yes No No
Service
Invocation/Tuxedo
Domain Decision

At WLS At WLS Tuxedo ALSB

Need Additional
Product

No No Yes Yes

Complexity Low High Low Medium
Security
Propagation

Yes Yes No* No

Transaction
Propagation

Yes Yes No* No

Failover
Capability

Domain Level Domain Level Depends upon
client

Domain Level

Performance Medium Medium High Medium

* Planned for future release

