Oracle® WebLogic Integration
Tutorials for Trading Partner Integration

10g Release 3 (10.3.1)

January 2010

ORACLE

Oracle WebLogic Integration Tutorials for Trading Partner Integration, 10g Release 3 (10.3.1)
Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction

About the Tutorials for Trading Partner Integration 1-1
Before YoU Begin ov i e 1-2
Setting Upthe Tutorials. ot e e 1-2
Step 1: Create a New Oracle WebLogic Integration Domain. 1-2
Step 2: View the Default Trading Partner Information. 1-5
Default Trading Partners e 1-5

Default Protocol Bindings. 1-5
Viewing Trading Partner Information (Optional) 1-6

Step 3: Install the Tutorial Files i e 1-9

N Xt S OPS o ottt 1-10

2. Tutorial: Building RosettaNet Solutions

Tutorial Goals 2-1
Before YOU BegIN 2-2
PrErEqUISITES ottt 2-2
Suggested Readingot 2-2
Note About Obtaining RosettaNet W3C XSD Schemas 2-3
Tutorial OVEIVIEWo 2-3
PIPs Implemented In These Examples. it 2-4
Folders in the RosettaNet Tutorial Application 2-4
RosettaNet Design Patternsot e 2-5

Tutorials for Trading Partner Integration iii

TUtOrTal SEEPS . oo 2-6

Step 1: Open the RosettaNet Example Application. 2-7
Step 2: Open the PIPOAL: Notification of Failure Example 2-9
About the PIPOAL Example 2-9
Components of the PIPOALExample., 2-10
Walkthrough of the Failure Notifier Business Process. 2-12
Walkthrough of the Report Administrator Business Process 2-15

Step 3: Open the PIP3B2: Notify of Advance Shipment Example 2-17
Aboutthe PIP3B2 Example 2-17
Components of the PIP3B2 Example it 2-17
Walkthrough of the Shipper Business Processcovvvnon.. 2-20
Walkthrough of the Receiver Business Process 2-23
Walkthrough of the Private Business Processes.coovvvvunn... 2-24
Running the PIP3B2 Example i 2-25

Step 4: Open the PIP3A4: Request Purchase Order Example.. 2-26
About the PIP3A4 Example o 2-27
Components of the PIPBA4AEXxample. 2-27
Walkthrough of the Seller Business Process.c.ccovvunoa... 2-30
Walkthrough of the Buyer Business Processc.ovvvunen... 2-34
Walkthrough of the Private Business Processes.coovvvvunenn.. 2-36
Running the PIPBA4 Example e 2-37
Implementing New PIPs Based on the Example PIPs 2-38
About Implementing New PIPS 2-38
Copying and Customizing PIP Implementations. 2-39
Converting RosettaNet DTD Schemas to XSD Schemas 2-39

3. Tutorial: Building ebXML Solutions

Before YOU Begin oo 3-1

iv Tutorials for Trading Partner Integration

PrErEqUISITES oot 3-2

Suggested Readingo .ot 3-2
Tutorial OVEIVIEW . . . oo 3-2
Step 1: Getting Started. 3-4

Creating the Business Process Application oo, 3-4

Importing the Tutorial Sample Data. i 3-6

Importing the Tutorial Schemas. o i 3-7

Creating the Read and Write Directoriest 3-9
Step 2: Sending an XML Message through an One-Way ebXML Exchange.......... 3-9

Building the Seller BuSingsS ProCeSSo vt 3-9

Building the Buyer BUSINess Process.vviiiie e 3-18
Step 3: Selecting the Trading Partner Information Dynamically Through Typed XML 3-26

Building the SelectorSeller Business Processcoovvivn... 3-26

Building the SelectorBuyer BUSiness ProCessovvvineinennnann 3-30
Step 4: Sending Raw Data (Binary File) Through an ebXML Exchange............ 3-35

Building the BinarySeller Business Process.ciiiineinan. 3-35

Building the BinaryBuyer Business Process, 3-36

Creating a File Event Generator.t 3-40
Step 5: Creating a Roundtrip ebXML Conversation., 3-42

Building the RoundtripSeller Business Process. ..., 3-42

Building the RoundtripBuyer Business Process.oovuveinaann. 3-46
Step 6: Implementing the Public/Private Pattern. 3-51

Building the PublicBuyer Business Process.cvviiniinenennnn. 3-51

Building the PrivateBuyer Business Processccooviiiineinan. 3-53

Building the PrivateSeller Business Processcooviiiiiiinnnan. 3-54

Building the PublicSeller Business Process.ooiiiineinan. 3-56

Testing the Public/Private Pattern Example. oot 3-57
Step 7: Using the TPM Control and Callbacks i, 3-58

Tutorials for Trading Partner Integration

vi

Building the BuyerAlert Business Processooiiiineinnnan. 3-59

Testing the BuyerAlert Business Process., 3-63
Step 8: Setting Partner ID Dynamically Based on Directory Name................ 3-63
Reviewing the Initiator Side of the Example., 3-64
Reviewing the Participant Side of the Example. 3-67
Step 9: Creating a Distributed Setup. 3-68
Step 10: Configuring Non-Default Protocol Settings. oo, 3-69
Configuring the Participant Side i 3-70
Configuring the Initiator Side 3-71

Tutorials for Trading Partner Integration

Introduction

This topic introduces the trading partner integration tutorials and describes the setup steps
required before starting the tutorials. It contains the following sections:

e About the Tutorials for Trading Partner Integration

e Before You Begin

e Setting Up the Tutorials

e Next Steps

About the Tutorials for Trading Partner Integration

This document provides the following tutorials:

Table 1-1 Tutorials in This Document

Tutorial

Description Business Protocol

Chapter 2, “Tutorial:

Building RosettaNet
Solutions”

Describes the components of two completed http://www.rosettanet.org
RosettaNet examples (PIP3B2 and PIP3A4) and

suggests how to adapt the examples for other PIP

implementations.

Chapter 3, “Tutorial:

Building ebXML
Solutions”

Describes how to build the ebXML (Electronic http://lwww.ebXML.org
Business using eXtensible Markup Language)
business process examples.

Tutorials for Trading Partner Integration 1-1

http://www.ebXML.org
http://www.rosettanet.org

Introduction

These are standalone tutorials. You can complete both tutorials, if you want, but you can also
complete just the ebXML tutorial without the RosettaNet tutorial, and vice versa.

Before You Begin

Before you begin using the trading partner integration tutorials:

e You must have Oracle WebL ogic Integration 10g Release 3 (10.3) installed on your
system. For more information, see Installing Guide.

e It is recommended that you complete the following tutorials so that you know how to build
business processes and create data transformations in Oracle Workshop for WebLogic:

— Tutorial: Building Your First Business Process

— Tutorial: Building Your First Data Transformation

e You should be familiar with basic trading partner integration concepts, as described in
Introducing Trading Partner Integration.

e You should first create the tptutorial domain and install the tutorial files, as described
in “Setting Up the Tutorials” on page 1-2.

Setting Up the Tutorials

Before you start using the trading partner integration tutorials, you need to complete the
following steps:

e Step 1: Create a New Oracle WebLogic Integration Domain
e Step 2: View the Default Trading Partner Information

e Step 3: Install the Tutorial Files

Step 1: Create a New Oracle WebLogic Integration Domain

The trading partner integration tutorials require a Oracle WebLogic Integration domain that you
must create using the Oracle WebLogic Configuration Wizard. The domain name used in this
document is tptutorial, but you can use any valid domain name you want.

Note: You can also use an existing Oracle WebLogic Integration for these tutorials. However,
creating a new, separate domain ensures that the required default trading partner
configuration is available for use with the tutorials.

To create a new Oracle WebLogic Integration domain:

1-2 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E12840_01/common/docs103/install/index.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/dttutorial/index.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/tpintro/index.html

Setting Up the Tutorials

1. To Start the Configuration Wizard, from the Start menu, click All Programs > Oracle
WebLogic > WebLogic Server 10gR3 > Tools > Configuration Wizard to start the Oracle

WebLogic Configuration Wizard. This displays the Welcome page in the Oracle WebLogic
Configuration Wizard dialog box (see Figure 1-1).

Figure 1-1 Oracle WebLogic Configuration Wizard.

B) Oracle WeblLogic Configuration Wizard

Welcome

Chonse between creating and extending a domain, Based on your selection, ORACLE’
the Configuration Wizard guides you through the steps to generate a new or extend an existing domain,

® Create a new Webl ogic domain
Create a WeblLogic domain in wour projects directary.
O Extend an existing WebLogic domain

Extend an existing WeblLogic domain.

Use this option to add applications and services, or to override existing database access (JDBC) and
messaging (IMS) settings.

[]

2. Select Create a new WebLogic domain and click Next. This displays the Select Domain
Source page in the Oracle WebLogic Configuration Wizard dialog box.

As you proceed through the Oracle WebLogic Configuration Wizard, several pages will
appear in a sequence. You need to specify your settings on each page and click Next to

proceed to the subsequent page. Table 1-2 lists the pages and the options that you need to
select to create the domain successfully.

Note: These instructions assume mostly default selections. For more information about

advanced configuration options, see Creating WebLogic Domains Using the
Configuration Wizard.

Tutorials for Trading Partner Integration 1-3

http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html

Introduction

1-4

Table 1-2 Configuring the Domain Using the Oracle WebLogic Configuration Wizard

Page in the Configuration Wizard Recommended Action
Dialog Box
Select a Domain Source Select Generate a domain configured automatically to

support the following Products option for the following
Oracle Products:

e WebLogic Server (Required)
* Workshop for WebLogic 10.3
* WebLogic Integration

Click Next to proceed.

Configure Administrator Username Specify the following mandatory credentials:
and Password User name = weblogic

User password = weblogic
Confirm user password = weblogic

Click Next to proceed.

Configure Server Start Node and JDK ~ Select Development Mode in the WebLogic Domain Startup
Mode column.

Select Sun SDK 1.6.0_05 @ C:\bea\jdk160_05 in the
Available JDKs column.

Click Next to proceed.

Customize Environment and Service Click No, to retain the settings defined in the domain source and
Settings proceed directly to creating your domain.

Click Next to proceed.

3. On the Create WebLogic Domain page, specify the following values for each field and click
Create:

— Domain name: tptutorial
— Domain Location: BEA_HOME\user_projects\domains
— Application Location: BEA_HOME\user_projects\applications

After the domain is created successfully, the Creating Domain page is displayed.

4. Select the Start Admin Server check box and click Done to proceed.

Tutorials for Trading Partner Integration

Setting Up the Tutorials

Step 2: View the Default Trading Partner Information

When you create a new Oracle WebLogic Integration domain using the Oracle WebLogic
Configuration Wizard, the Configuration Wizard automatically populates the Trading Partner
Management (TPM) repository with default trading partners and protocol bindings. The trading
partner integration tutorials use this default configuration. To learn more about the TPM
repository, see Trading Partner Management in Using The Oracle WebLogic Integration
Administration Console.

By default, Oracle WebLogic Integration runs in Test (development) mode, which allows you to
use the default protocol bindings and to run business processes from separate trading partners on
the same machine (collocated). In a production environment, each trading partner would run its
respective business process on its own separate Oracle WebLogic Integration server, service
profiles would need to be explicitly configured, both trading partners would need to be enabled,
and the service profile would need to be enabled. For more information about the Test and
Production modes, see “Configuring the Mode and Message Tracking” in Trading Partner
Management in Using The Oracle WebLogic Integration Administration Console.

Default Trading Partners

The Oracle WebLogic Integration domain provides two preconfigured trading partners for
development and testing:

Table 1-3 Default Trading Partner Configuration in Oracle WebLogic Integration Domain

Trading Partner Name Trading Description
Partner ID

Test_TradingPartner_1 000000001 Default local trading partner. In the tutorials, this trading
partner is usually the initiator of conversations.

In the absence of specific trading partner information, the
default trading partner is designated as the trading partner
used for sending or receiving messages for the local host
system

Test_TradingPartner_2 000000002 In the tutorials, this trading partner is usually the
participant in conversations.

Default Protocol Bindings
Each default trading partner comes with the following preconfigured protocol bindings:

Tutorials for Trading Partner Integration 1-5

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html

Introduction

1-6

ebXML 1.0

ebXML 2.0

RosettaNet Implementation FrameWork (RNIF) 1.1

e RNIF 2.0

Each protocol binding (except ebXML 1.0) is marked as default. At run-time, the default binding
can be used automatically in the absence of specific protocol information.

Viewing Trading Partner Information (Optional)

You view and update the contents of the TPM repository using the Oracle WebL ogic Integration
Administration Console. If you want, you can use the Oracle WebLogic Integration
Administration Console to browse the preconfigured settings in the TPM repository. The trading
partner integration tutorials use the preconfigured settings, so no changes to the TPM repository
are required unless otherwise stated in the tutorials.

Note: If you make any changes to the preconfigured settings in the TPM repository, you should
adjust the instructions in the tutorials accordingly. For configuration instructions, see
Trading Partner Management in Using The Oracle WebLogic Integration Administration
Console.

To view the default trading partner information:
1. Start the WebLogic Integration Administration Console.
2. In a browser, enter the following URL: http://localhost:7001/wliconsole.

3. When prompted, specify the username and password.

The Oracle WebLogic Integration Administration Console displays the home page (see
Figure 1-2).

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html

Setting Up the Tutorials

Figure 1-2 Oracle WebLogic Integration Administration Console

egration - Cons:

Be Bt Yew Halry foskmerks e

° * € X a0 | | hemflocshost: 7004 whconsoie whconsole. portsl 7 - (3]
-
ORACLE weblogic Console
System Configuration Welcome, weblogic Connected to : tptutorial & Home | WLS Console | LOGOUT | Help | AskOracke
Tracking, Purging and Reporting Polickes I current Tracking and Reporting Data Settings
View Tracking, Purging and Reporting Polcied The puge alows you tn enabie o ™ I Piarren. This page sl alows: you 1o contral how much trading
E hee X
Furge g trg Gata Cataetore
Purge Trackng 0aca Hisportng Dats S¥eam s DISARED
Passward Store Rumpr g Dt Etaizors D1 N egbutatoren
YAl Configure cpbatasoute
Create New
: Purge Scheduie
SFTP
e HextPurge Start Teme \Wedresday, Hovember 5, 2005 4:35:44 AM 15T
Every Lday
Purge Deley 1o
Beefsre
Dafiit Trackirg Lavel Rl
System Confiquration
Defouit Regoring Data Pocy on
Dafait Vasinbin Trackng Level ot
Rskable Tradang on

Ruskable ngrorting ot

& Copymght 2008, Oradie andjor its affilates, Al nghts reserved.
Note: If you want more information about a particular screen in the Oracle WebLogic
Integration Administration Console, click Help.

4. Select the Trading Partner Management module to see the Trading Partner Management
home page and the profiles for the preconfigured trading partners (see Figure 1-3).

Tutorials for Trading Partner Integration 1-1

Introduction

Figure 1-3 View and Edit Trading Partner Profiles

%3 Oracle Weblogic Integration - Consale - Mozilla Firefox
Ble Edt Yew Hgtory Sockmada Teoh el
e - o W L - ! partal?_nfh=rues, 18, wingoml, acsencr

COHRACLE Weblogic Integration Adminlstration Consale

Partner Prafiles H Vhew and Edit Trading Partner Profies
| View Al This page deplays & kst of rading partnens withn WebLoge Integrason. To vew or edt detals sbout & trading pirtner, chdk e name of the Tadng partner.
Create New] search [—

Certificates
Choose tradng partnes |

Thers 1200 2
Trading Partner Wame .. Type o Bussiness 1d irscriptian ...
Craate Haw O | Test_Tradegparte_1 [T e Mo Sata

e O Test_TradegPartner 2 [00000002 N Dats

SO

Chooss trading partnar Inems 1-20f 2
Craate Naw

Custons Extession
hoose tradng partnar
Craate Naw

Services
View Al

Create New

Message Tracking
View Al

Impart [Export
Import
Eqort

Buk Dakate

Statistics.
Vi Statstics

Lonfiguration

General

Prowy Host

Seawe Awdt Log

Seaxe Trnestarp

Refrash keystore

Certficate Verfication Provider

5. From the left panel, select Bindings > Choose trading partner.

6. Select Test_TradingPartner_1 name from the drop-down menu in the Choose Trading

Partner page, and click Go button to see the preconfigured bindings for the default trading
partner (see Figure 1-4).

1-8 Tutorials for Trading Partner Integration

Figure 1-4 Edit Binding

Note:

&3 Oracle Weblogic Integration
Bie Bt Yew Hglory Bockearks

O -cxa

ORACLE Weblogic Integration Administration Console

LT T PR TSI Wekcome, weblogic Connected to

Partner Profiles.
View Al
Create New

Certficates
Choase trading partner

Create New

Bl

Choosa tradng partnar

Create New

Carstm Extensian
Choosa tradng partnar

Create New

Serviees
Viaw Al

Create New

Hessage Tracking
View Al

TImport/Export
Irport
Export.

Bulk Dt

Satistics
Viaw Statistics

[—r—
Genaral
Promy Host
Secure Audit Log
Secure Trmastamp
Rafrash keystora

Certificate Verfication Provider

Console

Mazilla Firefox
Toch to

i Cit Binding
s puage bt b for thus trawding. To

W Search [View Statistcs w

Mame Test_TradngPartner_1

+ tptutorial & Home

Setting Up the Tutorials

., hiTrar e instanceSor det_sctionCvermide = foom bea il ftom fewToPrat

echt detais shout & bincieg, chck S i rise. To i a bincdng | ¢

Type LOCAL

Ttems 1-44F
Mame .
T# L-ehumi20 binding Emoe frue 20
TP L-ghum 10 bieesing =M Fise 10
P11l bindng ROSETTANET e 11
T 1o 0-rdng ROSETTANET e 20

Stems 14of 4

[razvean

ek Ack ey

Delete.

By default, trading partner endpoints are configured to listen on 1ocalhost:7001.
If you configured Oracle WebLogic Server to listen on a different port, adjust the
trading partner binding information accordingly.

Step 3: Install the Tutorial Files

The documentation and example files for the trading partner integration tutorials are distributed
in an archive file (tptutorial.zip). This archive file contains the completed ebXML and
RosettaNet applications used in the tutorials, as well as schema files and sample XML files.

To install the files for the trading partner integration tutorials:

1. Download the tptutorial.zip file from the Oracle WebLogic Integration web site.

2. Extract the contents of the tptutorial.zip file (using folder names) to a local directory.
The extracted files have the following directory structure:

Tutorials for Trading Partner Integration 1-9

http://www.oracle.com/technology/sample_code/products/wli/index.html

Introduction

Table 1-4 Contents of tptutorial.zip

Folder / File Description

tptutorialapps\ebxml Completed application that you can refer to if you encounter
difficulties while building the business processes during the
ebXML tutorial. Also contains schema files and sample XML
data files.

tptutorialapps\rosettanet Application containing example implementations of PIPs 3B2
and 3A4.

Next Steps
After you have set up the tutorial domain and extracted the tutorial files, you can begin using the
following tutorials:

e Chapter 2, “Tutorial: Building RosettaNet Solutions”

e Chapter 3, “Tutorial: Building ebXML Solutions”

Both tutorials use the same Oracle WebL ogic Integration domain that you created in “Setting Up
the Tutorials” on page 1-2. These are standalone tutorials. You can complete both tutorials, if you
want, but you can also complete just the ebXML tutorial without the RosettaNet tutorial, and vice

versa.

1-10 Tutorials for Trading Partner Integration

CHAPTERa

Tutorial: Building RosettaNet Solutions

This topic describes how to implement RosettaNet solutions for trading partner integration in
Oracle WebL ogic Integration. It contains the following sections:

e Before You Begin
e Tutorial Goals
e Tutorial Overview
e Tutorial Steps

e Implementing New PIPs Based on the Example PIPs

RosettaNet is a business protocol that enables enterprises to conduct business over the Internet.
To learn about RosettaNet, see http://www.rosettanet.org.

Tutorial Goals

This tutorial has the following goals:

e To demonstrate two common RosettaNet design patterns (asynchronous single-action and
asynchronous two-action activity, both with notification of failure interactions) that form
the basis of most PIP implementations.

e To describe example Oracle Workshop for WebLogic public business processes that
implement two RosettaNet Partner Interface Processes (PIPs)—PIP3B2 (an asynchronous
single-action activity) and 3A4 (an asynchronous two-action activity).

Tutorials for Trading Partner Integration 2-1

http://www.rosettanet.org

Tutorial: Building RosettaNet Solutions

e To describe the example private business processes, which are stubs that represent
integration with back-end systems.

e To explain how to run the example PIPs, using example XML data, so that you can view
them at runtime.

e To explain how you can easily implement business processes for other PIPs using the
provided PIP implementations as starting points.

Before You Begin

This topic describes tasks that you should perform before you begin using this tutorial. It contains
the following sections:

e Prerequisites
e Suggested Reading
e Note About Obtaining RosettaNet W3C XSD Schemas

Prerequisites

To use this tutorial, you must have:

e Installed Oracle WebLogic Integration on your system according to the instructions in
Installation Guide.

e Completed the tutorial setup procedure according to the instructions in “Setting Up the
Tutorials” on page 1-2.

Suggested Reading

To gain a detailed understanding of how RosettaNet solutions are implemented in Oracle
WebLogic Integration, consider reading the following material:

e For an overview of integrating trading partners using Oracle WebLogic Integration, see
Introducing Trading Partner Integration.

e For an introduction to RosettaNet solutions using Oracle WebLogic Integration, see
Introducing RosettaNet Solutions.

e For more information about using the RosettaNet control in initiator business processes,
see RosettaNet Control.

2-2 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/tpintro/index.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/tpintro/rosettanet.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsRosettaNetExample.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/install/index.html

Note About Obtaining RosettaNet W3C XSD Schemas

To learn more about the RosettaNet business protocol and how to implement RosettaNet
solutions, see:

e The RosettaNet web site, which is available at:

http://www.rosettanet.org

o RosettaNet Implementation Framework: Core Specification (RNIF Specification), available
at: http://www.rosettanet.org

Note About Obtaining RosettaNet W3C XSD Schemas

The RosettaNet W3C XSD schemas for selected PIPs are included in the RosettaNet Self-Test
Kit (STK) which can be downloaded from the Developer Tools area on the RosettaNet Ready
Web site, available at: http: //www.rosettanet.org.

If the schema for the PIP you are using is not available on this web site, it is possible to implement
RosettaNet solutions in Oracle WebLogic integration using RosettaNet message definitions
specified as DTD files. However, it is recommended to use W3C XSD files instead, since many
of the Oracle WebLogic Integration tools such as the XQuery mapping tools (used to define data
transformations) only support XSD schemas.

If you want to use the graphical XQuery mapping tools, you need to convert the RosettaNet DTD
files to W3C XSD files (using a tool like XML Spy Enterprise Edition) and then import the XSD
files into your project. Make sure that you refer to the RosettaNet Message Guidelines for the PIP
which DTD file you are converting and add the appropriate validation rules for Service Content
Validation to your XSD file after the conversion. For instructions on how to convert the files
using XML Spy, see “Converting RosettaNet DTD Schemas to XSD Schemas” on page 2-39.

In this tutorial, all the XSDs necessary to complete the examples are included in the tutorial files.

Tutorial Overview

The RosettaNet example includes business process definitions (.java), schemas, and other files
that illustrate how to implement RosettaNet PIPs using Oracle WebLogic Integration. The
example business process files implement common design patterns and provide a head start for
building initiator and participant business processes for RosettaNet conversations. Rather than
build the business processes from scratch, you can easily adapt the example files to implement
any PIP.

This topic contains the following sections:

e PIPs Implemented In These Examples

Tutorials for Trading Partner Integration 2-3

http://www.rosettanet.org
http://www.rosettanet.org
http://www.rosettanet.org

Tutorial: Building RosettaNet Solutions

2-4

e Folders in the RosettaNet Tutorial Application

e RosettaNet Design Patterns

The PIPs implemented in this tutorial follow RosettaNet Implementation Framework (RNIF) 2.0.

PIPs Implemented In These Examples

The following table describes the RosettaNet examples that are provided in this tutorial:

Table 2-1 RosettaNet Examples

PIP

Description

0Al

Implements PIPOA1: Notification of Failure.

You can initiate this business process from any other business process in which a RosettaNet
notification of failure is required. For example, you can use this business process in
conjunction with the RosettaNet Participant Business Process template provided in Oracle
Workshop for WebLogic. For more information, see Building RosettaNet Participant
Business Processes.

3B2

Implements PIP3B2: Notify of Advance Shipment. Described in “Step 3: Open the PIP3B2:
Notify of Advance Shipment Example” on page 2-17.

3A4

Implements PIP3A4: Request Purchase Order. Described in “Step 4: Open the PIP3A4:
Request Purchase Order Example” on page 2-26.

Folders in the RosettaNet Tutorial Application

The following table describes the folders you see in your Package Explorer pane when you open
the in the \tptutorialapps\rosettanet directory:

Table 2-2 Folders in \tptutorialapps\rosettanet

Directory Description

PIPOAlSchema Schema project for the PIPOA1 schema.
PIP3A4Schema Schema project for the PIP3A4 schema.
PIP3B2Schema Schema project for the PIP3B2 schema.

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideRosettaNetCustomizing.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideRosettaNetCustomizing.html

Tutorial Overview

Table 2-2 Folders in \tptutorialapps\rosettanet (Continued)

Directory Description

pips Contains business process folders for each example PIP implementation
(PIPOAlProcesses, PIP3A4Processes, and PIP3B2Processes) and
the private administrator alert notification (privateAdmin).

rosettanet Contains the EAR folder

System Schema project for standard Oracle WebLogic Integration system schemas.

RosettaNet Design Patterns

RosettaNet PIPs follow one of the following design patterns:

Table 2-3 RosettaNet PIP Design Patterns

Directory

Description

Asynchronous
single-action activity

Involves a single action message and a receipt acknowledgment:
« Initiator sends a business message to the participant.
e The participant sends a receipt acknowledgement to the initiator.

The PIP3B2 (Notify of Advance Shipment) example, which implements this
design pattern, is described in “Step 3: Open the PIP3B2: Notify of Advance
Shipment Example” on page 2-17.

Tutorials for Trading Partner Integration 2-5

Tutorial: Building RosettaNet Solutions

Tahble 2-3 RosettaNet PIP Design Patterns (Continued)

Directory Description
Asynchronous Involves actions messages and receipt acknowledgments from both trading
two-action activity partners:

< Initiator sends a business message to the participant.

e The participant sends a receipt acknowledgement to the initiator.
» The participant sends a business message to the initiator.

e The initiator sends a receipt acknowledgement to the participant.

The PIP3A4 (Request Purchase Order) example, which implements this
design pattern, is described in “Step 4: Open the PIP3A4: Request Purchase
Order Example” on page 2-26.

Synchronous Synchronous versions of the above design patterns, in which an immediate
one-action / two-action response is required. The current release of Oracle WebLogic Integration does
activity not support synchronous design patterns.

Note: Synchronous RosettaNet design patterns usually do not
implement the receipt acknowledgments described in the
asynchronous single-action and two-action activity design
patterns.

The example PIP implementations provided in this tutorial allow you to quickly and easily build
any PIPs that following the same design patterns, as described in “Implementing New PIPs Based
on the Example PIPs” on page 2-38.

For more information about RosettaNet design patterns and conversation choreography, see the
following documents:

e “PIP Design Patterns” in Introducing RosettaNet Solutions.

o RosettaNet Implementation Framework Core Specification (version \V02.00.01) at
http://www.rosettanet.org.

Tutorial Steps

This section describes the following tutorial steps:
e “Step 1: Open the RosettaNet Example Application” on page 2-7

e “Step 2: Open the PIPOAL: Notification of Failure Example” on page 2-9

2-6 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/tpintro/rosettanet.html
http://www.rosettanet.org

Tutorial Steps

e “Step 3: Open the PIP3B2: Notify of Advance Shipment Example” on page 2-17

e “Step 4: Open the PIP3A4: Request Purchase Order Example” on page 2-26

Before you proceed through these steps, make sure that you have reviewed the material in
“Before You Begin” on page 2-2.

Step 1: Open the RosettaNet Example Application

The RosettaNet example application contains all the PIP implementations described in “PIPs
Implemented In These Examples” on page 2-4.

To open the RosettaNet example application:
1. Start Oracle Workshop for WebLogic, if you have not already done so.

2. From the File menu, choose Import

The Import wizard appears.

3. Expand General and select Existing Projects into Workspace (see Figure 2-1).

Tutorials for Trading Partner Integration 2-1

Tutorial: Building RosettaNet Solutions

2-8

Figure 2-1 Import

W Import [EJ

Select

Choose impork source, I E - 5 I

Select an import source:

| tvpe Filker text |

== General
(B Archive File
90‘ Breakpoints
ﬁ Existing Projects inko Warkspace
{7, File System
L preferences

(= s

(= EXB

(= J2EE

(= Team

(= web

(= Cther

@ < Back Mext = Finish

. Click Next.

. Check Select root directory, and click Browse, then navigate to the tptutorialapps

folder that you created in “Step 3: Install the Tutorial Files” on page 1-9.

. Select the rosettanet folder and click OK.

Ensure all the files are selected and click Finish.

Note: If you are prompted to select a Oracle WebLogic Integration domain and server,
select the Oracle WebLogic Integration domain that you created in “Step 1: Create a
New Oracle WebL ogic Integration Domain” on page 1-2 (such as

c:\bea\user_proj ects\domains\tptutorial)

The Package Explorer pane displays the contents of the RosettaNet tutorial application (see
Figure 2-2), which is described in “Folders in the RosettaNet Tutorial Application” on
page 2-4.

Tutorials for Trading Partner Integration

Tutorial Steps

Figure 2-2 RosettaNet Tutorial Application

F X - B

<% PIP0ALSchema
+- % PIP3A4Schema
+- % PIP3EZSchema
+- 5 pips

+-7= rosettanet

+ ﬂﬁ Syskem

Step 2: Open the PIPOAL: Notification of Failure Example

This topic describes the example implementation of PIPOAL: Notification of Failure. It contains
the following sections:

e About the PIPOA1 Example
e Components of the PIPOAL Example
e Walkthrough of the Failure Notifier Business Process

e Walkthrough of the Report Administrator Business Process

For detailed information about PIPOAL, see http://www.rosettanet.org.

About the PIPOA1 Example

PIPOA1 is an example of how to implement the PIPOAL Notification of Failure.
The prPoAlProcesses folder contains business process definitions for PIPOAL.
The pIPOAlSchemas Schema project contains the schema file for the PIPOAL1 message.

The PIPOAL demonstrates how to set up business logic, properly process error messages, and
then, based on the business logic and error messages, open the correct channel to use when
sending notifications of failure to the appropriate failure administrator. In this tutorial, the
PIPOAL Notification of Failure scenarios are:

e The Buyer side of PIP 3A4 example found the Purchase Order Syntactically correct and
sent a Receipt Acknowledgment. However, when while the private process is processing, it
finds a disagreement/error with the Purchase Order Response. Since the Seller process
would have completed its instance, a new instance of PIPOAL is started to notify the Seller
about the disagreement/error.

Tutorials for Trading Partner Integration 2-9

http://www.rosettanet.org

Tutorial: Building RosettaNet Solutions

2-10

e The Receiver side of PIP3B2 finds a disagreement/error while processing the Advance

Shipment Notification in its Private process. However, the participant side has already sent
a Receipt Acknowledgment after syntactically verifying the Advance Shipment
Notification from the Shipper. Since the Shipper instance would have completed upon
Acknowledgment receipt, a new instance of PIPOAL is started to notify the Shipper about
the disagreement/error.

Note: For demonstration purposes, the business processes in the tutorial examples are

purposely configured to trigger Notification of Failure.

The following steps provides a brief overview of the PIP A01 business logic:

1.

The PIPOAL Failure Notifier business process (P1r0al. java) receives a Notification of
Failure request from either the PIP3A4 Seller or the PIP3B2 Receiver side.

The Failure Notifier processes the Notification of Failure request and sends a Notification
of Failure message to the appropriate Report Administrator (in this case the
PIPOAlReportAdmin.java). The Failure Notifier process also writes a notification on the
Oracle WebL ogic Server Console to show that it has sent the message.

The Report Administrator process validates the Notification of Failure message and sends a
receipt acknowledgement to the Failure Notifier. The process also writes a notification on
the Oracle WebLogic Server Console to show that it has received the message.

Components of the PIPOA1 Example

When you open the pIr0oAlProcesses folder in Oracle Workshop for WebLogic, the Package
Explorer pane displays the contents of the folder (see Figure 2-3).

Tutorials for Trading Partner Integration

Figure 2-3 PIPOA1 Processes

<

Tutorial Steps

ckage Explorer X =8
v
8%
T FIPOR15chema »
= PIP3A4schema
2 PIP3EZ5chema
= ::‘Jr pips
B, Process Libraries [jpd-jars]
- src
=R PIPOA L Processes
S PIPOAL java
[£: FIPOALContral javs
B PIPOA1ReportAdmin.java
Q\} PIFOA1TransFormation. java
4B Rnjava
% getFailureMotificationDoc, xq
% getskaticProperties.xg s
>

The following table summarizes the components of the PIPOAL example:

Table 2-4 Components of the PIPOA1: Notification of Failure Example

Role / Component

Description

PIPAOLl.java

The initiator business process that receives the
Notification of Failure from the PIP3A4 initiator
or the PIP3B2 participant. It then sends a
Notification of Failure to the failure administrator
business process by using an instance of the
RosettaNet control.

PIPAOlControl.java

Process control definition file that wraps
PIPAOL.java for use in other processes.
Automatically generated by right-clicking the
PIPAOL.java file in the Package Explorer tab
and choosing Generate > Process Control.

Rn.java

RosettaNet control definition file used to
exchange messages with the failure administrator
business process. For more information about the
RosettaNet control, see RosettaNet Control.

Tutorials for Trading Partner Integration 2-11

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsRosettaNetExample.html

Tutorial: Building RosettaNet Solutions

2-12

Tahle 2-4 Components of the PIPOA1: Notification of Failure Example (Continued)

PIPOAlReportAdmin. java

Business process that demonstrates the back end
business logic used to process error messages and
notifications.

PIPOAlTransformation.java

Transformation control definition file which is
used to generate XQueries. To learn more about
transformation and XQueries, see Guide to Data
Transformation.

getStaticProperties.xq

XQuery that was generated when the
getStaticProp Control Send with Return node was
configured.

getFailureNotificationDoc.xg

XQuery that was generated when the
getFailureNotificationDoc Control Send with
Return node was configured.

Walkthrough of the Failure Notifier Business Process

This section describes the example initiator business process (PIP0Al. java). To view this
business process:

1.

Tutorials for Trading Partner Integration

Double click the p1poa1l . java file.

In the Package Explorer pane in Oracle Workshop for WebLogic, expand pips > src, and
open the pIPOA1Processes folder.

If necessary, collapse the Retry block paths to see only the main (success) path.

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/dtguide/index.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/dtguide/index.html

Tutorial Steps

Figure 2-4 PIPOA1 Business Process

@E

PIPCAL

=

Skart

<@°

gekStaticProperties

"

setProperties

!
CA

getFailuremotificationDoc

o

B

setDoctype

Retry block.

Voo
B ®

Client Response
Finish

Tutorials for Trading Partner Integration 2-13

Tutorial: Building RosettaNet Solutions

2-14

Success Process Path
The success path of the business process is as follows:

1.
2.

The Client Request node named Start receives a notification of failure message.

The Control Send with Return node named getStaticProperties extracts the RosettaNet
context properties from the incoming message. For more information about RosettaNet
context, see Interface RosettaNet Control.

The setProperties Control Send node maps the extracted properties to a document based on
the PIPOA1 Schema

The Control Send with Return node named getFailureNotification uses the PIPAO1
transformation query to map the RosettaNet Context properties to a document based on
the PIPAQ1 Schema.

To view the fields that are being mapped, in the Package Explorer pane, double click on
the getFailureNotification.xq file.

The Perform node named setDocType sets the DOCTYPE DTD value in the transformation
output.

Note: This step is necessary since the Oracle WebLogic Integration transformation output
by default does not contain the DOCTYPE property.

The group named Retry block contains a Control Send node named Send Notification of
Failure and a Control Receive node named Receipt acknowledgement. This block sends a
notification of failure to the PIPOAIReportadmin business process and waits for an
acknowledgement that the message was received.

For demonstration purposes, the Send Notification of Failure node also prints a message to
the Oracle WebLogic Server Console after it has sent the message to the
PIPOAlReportAdmin [Process.

The Client Response node at the end of the business process is a place holder for any
business logic that would take place after the Notification of Failure message is sent to the
PIPOAIReportAdmin business process.

Failure Paths

The OnTimeout path handle failure management, such as in the event of a network failure. To
view the failure path:

1.

Expand the OnTimeout path next to the group of nodes named Retry block.

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/wli.javadoc/com/bea/control/RosettaNetControl.html

Tutorial Steps

Figure 2-5 OnTimeout Path

—

onTimeout

Check retries Default

=y

a— Infarm Retries Exhausted

Finish

Retries exhausted?

This path represents a standard BPM OnTimeout construct. The timeout value is set to two
hours (the standard PIP retry interval) and three retries (the standard PIP retry count).
Thus, if for any reason the acknowledgement fails to arrive within two hours, the group
will be retried and the sendNotification of Failure step will be executed again. The
OnTimeout path contains a condition that determines whether retries have been exhausted
and, if so, logic could be added to the path which takes the appropriate action.

Walkthrough of the Report Administrator Business Process

The participant business process of the PIPOAL example is named PIPA01ReportAdmin. java.
To view the participant business process in Oracle Workshop for WebL ogic, in the Package
Explorer pane, double click on PTPA01ReportAdmin. java.

Tutorials for Trading Partner Integration 2-15

Tutorial: Building RosettaNet Solutions

Figure 2-6 Report Administrator Business Process

®®

PIPOA1ReportAdmin Participant

He®

Receive MNoF

E@

Print MOF on System Console

Ho ©

Send MoF Receipt Acknowledgment

Finish
The Report Administrator business process includes the following steps:
1. The Notification of Failure message arrives at the Client Request node hamed Receive NoF.

2. The Perform node named Print NOF on System Console prints an acknowledgement on
the Oracle WebLogic Server Console window. This node is a place holder for any business
logic that would take place in a PIPOA1 Report Administrator business process used in
production mode.

3. The Client Response node named Send NoF Receipt Acknowledgment sends an
acknowledgement back to the Failure Notifier process.

The following two examples in this tutorial, both utilize the PIPOAL notification of failure
example. To see how the example works, complete either “Running the PIP3B2 Example” on
page 2-25 or “Running the PIP3A4 Example” on page 2-37.

2-16 Tutorials for Trading Partner Integration

Tutorial Steps

Step 3: Open the PIP3B2: Notify of Advance Shipment Example

This topic describes the example implementation of PIP3B2: Notify of Advance Shipment.
It contains the following sections:

e About the PIP3B2 Example

e Components of the PIP3B2 Example

e Walkthrough of the Shipper Business Process
e Walkthrough of the Receiver Business Process
e Walkthrough of the Private Business Processes

e Running the PIP3B2 Example
For detailed information about PIP3B2, see http://www.rosettanet.org.

About the PIP3B2 Example

PIP3B2 is an example of the asynchronous single action activity design pattern described in
“RosettaNet Design Patterns” on page 2-5. The p1p3B2Processes folder contains business
process definitions for PIP3B2. The prp3B2Schemas Schema project contains the schema file for
the PIP3B2 message. The sampledata directory contains sample XML documents that you can
use in section “Running the PIP3B2 Example” on page 2-25.

The following steps provides a brief overview of the PIP3B2 business logic:

1. The Shipper (initiator process PIP3B2 . java) constructs an Notify of Advance Shipment
message and sends it to the Receiver (participant process- PIP3B2Participant.java).

2. The Receiver validates the message and sends a receipt acknowledgement to the Shipper.

3. The Receiver submits the message to the backend system
(PIP3B2ParticipantPrivate.java) for further processing.

4. The backend system encounters a problem during processing and invokes the PIPOA1
example.

Components of the PIP3B2 Example

When you open the pTpP3B2Processes folder in Oracle Workshop for WebLogic, the Package
Explorer pane displays the contents of the folder (see Figure 2-7).

Tutorials for Trading Partner Integration 2-11

http://www.rosettanet.org

Tutorial: Building RosettaNet Solutions

Figure 2-7 PIP3B2 Processes

+-$% PIPOALSchema
+-3% pIP3Ad4schema
+- 3% PIP3BZSchema
= g pip=

+- B, Process Libraries [jpd-jars]

=5 sre

+- T PIPDALProcesses

+- T PIP3A4Processe
-8 R s
+-J2) PIP3BZ.jawa

+ _’E Rn.java

+- [k PIP3BZCantral.java

+-J3 PIP3BZParticipant. java

+ _% PIP3EZParticipantPrivate.java

+ @ PIP3BZParticipantPrivateControl java
+-J3 PIP3BZPrivate. java

+ S\j PIP3BZPrivateTransformation.java

+ S\j PIP3BZTransformation. java

% getStaticProperties.xg
% PIP3BZPrivateplP3B2Controlstart. xg

The following table summarizes the components of the PIP3B2 example:

Table 2-5 Components of the PIP3B2: Notify of Advance Shipment Example

Role / Component

Description

Shipper (Initiator)

RosettaNet role name.

PIP3B2.java

Public initiator business process that sends the
message, waits for the acknowledgement, and

handles failures. Uses Rn . java, a RosettaNet
control instance.

Rn.java

RosettaNet control definition file which is used to
exchange messages with the Receiver via RNIF.
For more information about the RosettaNet
control, see RosettaNet Control.

The annotations on this control instance in
PIP3B2.java include the PIP name and
version, role names.

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsRosettaNetExample.html

Tutorial Steps

Table 2-5 Components of the PIP3B2: Notify of Advance Shipment Example (Continued)

PIP3B2Control.java

Process control definition file that wraps
PIP3B2.java for use in other processes.
Automatically generated by right-clicking the
PIP3B2.java fileinthe Package Explorer pane,
and choosing Generate > Process Control.

PIP3B2Private.java

Private business process that invokes the
PIP3B2.process business process via a
process control.

This private business process can utilize the full
power of Oracle WebLogic Integration to access
the backend systems, assemble the information,
and transform the request data into the data format
required for PIP3B2.

PIP3B2PrivateTransformation.dtf and
PIP3B2PrivatepIP3B2ControlStart.xqg
(the associated . xq file)

Example transformation file. Automatically
generated when a transformation is defined in a
process node.

PIP3B2Transformation. java and
getStaticProperties.xq (theassociated. xg
file)

Example transformation file. Automatically
generated when a transformation is defined in a
process node.

Receiver (Participant)

RosettaNet role name.

PIP3B2Participant.java

Public business process that receives the RNIF
message and sends the receipt acknowledgement
to the Shipper. The RosettaNet annotations
include the PIP name, version, and role.

PIP3B2ParticipantPrivate.java

Private business process that represents the
backend processing of the shipment notice.

PIP3B2ParticipantPrivateControl.jav
a

Process control that wraps the private process for
use in PIP3B2Participant.java.
Automatically generated by right-clicking the
PIP3B2ParticipantPrivate.java filein
the Package Explorer pane, and choosing
Generate > Process Control.

Tutorials for Trading Partner Integration 2-19

Tutorial: Building RosettaNet Solutions

Walkthrough of the Shipper Business Process

This section describes the example initiator business process (pIp3B2. java) for PIP3B2. To
view this business process:

1. Onthe Package Explorer pane in Oracle Workshop for WebLogic, expand pips > src and open
the PIP3B2Processes folder.

2. Double-click the pIP3B2. java file.

3. If necessary, collapse the OnTimeout and On Error Message paths, as well as the Set static
properties for header and Retry block groups to see only the main (success) path.

Figure 2-8 PIP3B2 Business Process

PIP3EZ

Set static properties For header

Retry block

|§| &) 4

Return Success

Finish

2-20 Tutorials for Trading Partner Integration

Tutorial Steps

Success Path
The success path is the main path of the business process:

1.

The Client Receive node named Start invokes the process when the Notify of Advance
Shipment XML document (in this tutorial, the client request comes from the private process)
is received.

The Set static properties for header group contains a Control Send with Return node
named getStaticProperties and a Control Send node named setStaticProperties. These two
nodes extract the RosettaNet properties from the message and then map them to a document
based on the PIP3B2 Schema.

The Retry block group contains a two nodes. The Control Send node named sendMessage
sends a message to the Receiver (participant) via the sendMessage method on the
RosettaNet control. The Control Receive node named Receipt acknowledgement waits for
the receipt acknowledgement callback (rn_onack method) from the Receiver.

Once the acknowledgement is received, the process responds to the private process via the
Client Response node named Return Success.

Because PIP3B2 implements the single-action activity design pattern, no business action is
returned from the Receiver—only a business signal (Receipt Acknowledgment or Exception).
The response to the private process merely indicates a successful completion and returns no data.

Failure Paths

The OnTimeout and On Error Message paths handle failure management, such as in the event of
a network failure. To view the failure paths:

1.

Expand the OnTimeout path next to the group of nodes named Retry block.

Tutorials for Trading Partner Integration 2-21

Tutorial: Building RosettaNet Solutions

Figure 2-9 OnTimeout Path

— e

CnTimeout

4?9 ?

Check retries Default

(_j? =

Motification of Failure

|§| 45:: =

Return Failure

Finish

Retries exhausted?

This path represents a standard BPM OnTimeout construct. The timeout value is set to two
hours (the standard PIP retry interval) and three retries (the standard PIP retry count).
Thus, if for any reason the acknowledgement fails to arrive within two hours, the group
will be retried and the sendmessage step will be executed again. The OnTimeout path
contains a condition that determines whether retries have been exhausted and, if so, the
PIP OA1 (Natification of Failure) subprocess is triggered (via a Control Send node), and
the process responds to the private process with an error and finishes.

2. Expand the On Error Message path next to the PIP3B2 node at the top of the process.

2-22 Tutorials for Trading Partner Integration

Tutorial Steps

Figure 2-10 OnError Message Path

C —

On Global Process Timeout ©On Error Massage
@ aQ°

Statt notification of Failure onErrar

—

0% mis i

Return Failure alertAdministrator

|§| &) =

Return Failure

The Global Process Timeout is configured for the standard PIP timeout value of 24 hours.
If the whole process fails to complete within this time, the PIPOA1 (Notification of Failure)
subprocess is triggered and an error is returned to the private process.

Finally, the Receiver might reject the message for a variety of reasons (for example, the
message fails validation). The message rejection is represented as the onError callback on
the RosettaNet control. You can see that the global On Error Message handler is prepared
to receive the error at any time and, if it does, it starts a subprocess to notify the
administrator of the problem, returns an error to the private process, and exits. Notice that,
if we cannot successfully send the message (for example, due to network problems), the
business process starts the PIPOAL (Notification of Failure) to try to notify the remote
partner of the problem. Similarly, upon receipt of an error from the Receiver, the business
process should notify the local administrator as well as the remote administrator.

Walkthrough of the Receiver Business Process

To view the participant business process in Oracle Workshop for WebLogic, open the
PIP3B2Participant.java file.

Tutorials for Trading Partner Integration 2-23

Tutorial: Building RosettaNet Solutions

Figure 2-11 PIP3B2Participant Business Process

=1

PIP3EZ Participant

N

Receive Advance Shipping MNotice

Check if Matification of Advance Shipment is carrect

Invoke private process

Finish
The participant business process includes the following nodes:

1. The Client Request node named Receive Advance Shipping Notice receives the Notify of
Advance Shipment message.

2. The Check if Notification of Advance Shipment Decision node validates the message
and:

— Sends a receipt acknowledgement through the Send receipt acknowledgement Client
Response node if the message is correct.

— Sends an error message through the send Exception Client Response node if there is a
problem with the message.

3. Inthe Invoke private process group, the Control Send node named processShipment,
passes the Notify of Advance Shipment to a private business process for further processing
while the get Private Response Control Receive node waits for an acknowledgement from
the private process.

Walkthrough of the Private Business Processes

The private processes on both sides are place holders for processes which in production
environments would interact with backend applications. For example, the shipment notice can be

2-24 Tutorials for Trading Partner Integration

Tutorial Steps

inserted into an ERP application via the Application View control and Oracle adapters, sent on a
message queue, and written out to file or database.

The public/private process pattern used in this example is not mandatory and is merely a
recommended approach. You are free to partition your processes as best suits your environment.
It is entirely possible to not use the private processes and implement all the necessary backend
integration as well as RosettaNet interactions in a single process. However, separating processes
into public (those that only deal with RosettaNet choreography) and private (those that deal with
backend system integration) may improve the reuse and maintainability of your application.

In this example, the PIP3B2ParticipantPrivate.java ispurposely configured to trigger an
error and invoke the PIPOA1 example when you run the process.

Running the PIP3B2 Example

By default, Oracle WebLogic Integration runs in Test (development) mode, which allows you to
run the PIP3B2 example business processes on the same machine (collocated). In a production
environment, each trading partner would run its respective business process on its own separate
Oracle WebLogic Integration server. For more information about the Test and Production modes,
see “Configuring the Mode and Message Tracking” in Trading Partner Management.

To run the PIP3B2 example:

1. If Oracle WebLogic Server is not already running, from the Oracle Workshop for WebLogic
menu, choose Window > Show View > Other > Server > Servers, and click OK. A Server
view is displayed in which the Server and its state are shown.

2. Inthe Package Explorer, expand Pips > PIP3B2Processes, select and right-click on
PIP3B2Participant.java, click Run As, and click Run On Server.

3. Inthe Define a New Server dialog box, select either a Choose an existing server option or
Manually define a server (if there is no server defined), and click Next.

4. In the Oracle WebL ogic Server dialog box, to manually define a server, click Browse, and
select the Oracle WebLogic Integration domain that you created in “Step 1: Create a New
Oracle WebLogic Integration Domain” on page 1-2 (such as
c: \bea\user_projects\domains\tptutorial), and then click OK.

5. Click Finish.

The samples domain integration server is started, and the RequestQuote application is
deployed on it. When Oracle WebLogic Server is running, the following indicator is visible
in the Servers view:

Tutorials for Trading Partner Integration 2-25

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html

Tutorial: Building RosettaNet Solutions

Skatus

& Started

6. After the application is deployed, t_he Test Browser is displayed.
7. Click the Test Form tab.

8. Inthe Test Form page, Click Browse, beside the xml pro (file value) field. and navigate to
[file location]\rosettanet\pips\WebContent\PIP3B2Processes\sampledata\3
B2AdvanceShipmentNotificationMessageBase.xml

Where [file location] is the directory in which you installed the tutorial files as
described in “Step 3: Install the Tutorial Files” on page 1-9.

9. Click onMessage.

10. In a few moments, the end-to-end choreography will execute. The client response will echo
back the XML message.Bring up your Oracle WebLogic Server Console

11. In a few moments, you should see the following messages on the console:
® >>>>> PIPOAl.jpd: Sent Notification of Failure
® >>>>> PIPOAlReportAdmin.jpd: GOT Notification of Failure.

12. Optionally, you can open the Oracle WebLogic Integration Administration Console and
observe message tracking and process tracking entries.

Step 4: Open the PIP3A4: Request Purchase Order Example

This topic describes the example implementation of the PIP3A4: Request Purchase Order.
It contains the following sections:

e About the PIP3A4 Example

e Components of the PIP3A4 Example

e Walkthrough of the Seller Business Process

e Walkthrough of the Buyer Business Process

e Walkthrough of the Private Business Processes

e Running the PIP3A4 Example

For detailed information about PIP3A4, see http://www.rosettanet.org.

2-26 Tutorials for Trading Partner Integration

http://www.rosettanet.org

Tutorial Steps

About the PIP3A4 Example

PIP3A4 is an example of the asynchronous two-action activity design pattern described in
“RosettaNet Design Patterns” on page 2-5. The prp3a4processes folder contains business
process definitions for PIP3A4. The pIp3a4schemas Schema project contains the schema file for
the PIP3A4 message. The sampledata directory contains sample XML documents that you can
use when “Running the PIP3A4 Example” on page 2-37.

The PIP3A4 Request Purchase Order involves the following steps:

1.

The Buyer (initiator) constructs a Purchase Order Request message and sends it to the Seller
(participant).

The Seller validates the message and sends a receipt acknowledgement to the Buyer.

The Seller then submits the order request message to the backend system for further
processing.

The Seller’s backend system generates a Purchase Order Confirmation (which confirms the
availability of requested products and the expected ship dates).

The Seller sends the confirmation to the Buyer.
The Buyer acknowledges the receipt of the message to the Seller.

The Buyer passes the Purchase Order Confirmation to its backend system for processing,
but encounters an error during processing which triggers the PIP A01 example.

Components of the PIP3A4 Example

When you open the prr3a4Processes folder in Oracle Workshop for WebLogic, the Package
Explorer pane displays the contents of the folder.

Tutorials for Trading Partner Integration 2-21

Tutorial: Building RosettaNet Solutions

55

<% PIPOALSchema
+- % PIP3A4Schema
% PIP3EZSchema

- pips

+- B4, Process Libraries [jpd-jars]

e

+-[H PIPOALProcesses
-1- /8 PIP3A4Processes
+ 'E fe.java
3 PIP3A4.java
[£: PIP3A4Cantral. java
3 PIP3A4Participant. java
!% PIP3A4ParticipantPrivate.java
@ PIP3A4ParticipantPrivateControl java
El\} PIP3A4Participant Transformation. java
I3 PIP3A4Private. java
El\} PIP3a4PrivateTransformation.java
El\} PIP3a4Transformation.java

!E Rn.java

[] e [[[[[[

&~ =0

% getStaticProperties. =g

% getSkaticProperties1.xq

% PIP3A4PrivateplP3A4Conkrol_onPOdck, g
% PIP3A4PrivateplP3A4Conkrolskart, g

The following table describes the components of the PIP3A4 example implementation.

Table 2-6 Components of the PIP3A4 (Request Purchase Order) Example

Role / Component

Description

Buyer (Initiator)

RosettaNet role name.

PIP3A4.java

Public business process that exchanges
messages with the seller, waits for the
acknowledgement, and handles failures. Uses
the RosettaNet control instance (Rn.. java).

Rn.java

RosettaNet control definition file used to
exchange messages with the Seller via RNIF.
For more information about the RosettaNet
control, see RosettaNet Control.

The annotations on this control instance in
PIP3A4.java include the PIP name, version,
and role names.

2-28 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsRosettaNetExample.html

Tutorial Steps

Table 2-6 Components of the PIP3A4 (Request Purchase Order) Example (Continued)

PIP3A4Control.java

Process control definition file that wraps
PIP3A4.java for use in other processes.
Automatically generated by right-clicking the
PIP3A4.java file in the Package Explorer
pane and choosing Generate > Process
Control.

PIP3A4Private.java

Private business process that invokes the
PIP3A4 process via a process control. This
business process can utilize the full power of
Oracle WebLogic Integration to access the
backend systems, assemble the information,
and transform it into the required format for
PIP3A4.

PIP3A4PrivateTransformation.dtf and the
associated . xq files

PIP3A4Transformation.dtf and the associated
getStaticProperties.xqg file

Example transformation file. Automatically
generated when a transformation is defined in a
process node.

Seller (Participant)

RosettaNet role name.

PIP3A4Participant.java

Public business process that receives the
message and sends the receipt
acknowledgement, responds with a message
and receives acknowledgement. The
RosettaNet annotations include the PIP name,
version, and role. For more information, see
Annotation Type RosettaNet.

PIP3A4ParticipantPrivate.java

Private business process that represents the
backend processing of the purchase order and
the creation of the PO Confirmation.

fc.java

File control definition file which is used to read
the PO Confirmation sample file from the local
file system.

Tutorials for Trading Partner Integration 2-29

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/wli.javadoc/com/bea/wli/jpd/RosettaNet.html

Tutorial: Building RosettaNet Solutions

2-30

Table 2-6 Components of the PIP3A4 (Request Purchase Order) Example (Continued)

PIP3A4ParticipantPrivateControl.java

Process control that wraps the private process
for use in PIP3A4Participant.java
Automatically generated by right-clicking the
PIP3A4ParticipantPrivate.java file
in the Package Explorer pane and choosing
Generate > Process Control.

PIP3A4ParticipantTransformation. java
and the associated getStaticPropertiesl.xqg
file

Example transformation file. Automatically
generated when a transformation is defined in a
process node.

Walkthrough of the Seller Business Process
This section describes the example initiator business process (p1p324.java) for PIP3B2. To

view this business process:

1. In Oracle Workshop for WebLogic, open the pIp32a4. java file.

2. If necessary, collapse the OnTimeout and On Error Message paths, as well as any groups to

see only the main (success) path.

Tutorials for Trading Partner Integration

Tutorial Steps

e

PIF3A4

CRL

Skark

Set properties thak go into
service header

Retry block

onMessage

E

carrectnoMamespace

Drecision

Hs ©

Return PO Ack.

L

Process Message

W

Finish

Tutorials for Trading Partner Integration

2-31

Tutorial: Building RosettaNet Solutions

2-32

Success Path
The success path business logic is as follows:

1.

8.

The Client Request node named Start receives the Purchase Order Request XML document
message (in this tutorial, the client request comes from the private process).

The Set properties that go into service header group contains a Control Send with Return
node named getStaticProperties and a Control Send node named setStaticProperties.
These two nodes extract the RosettaNet properties from the message and then map them to
a document based on the PIP3B2 Schema.

The Retry block group contains two nodes. The Control Send node named sendMessage
sends a message to the Seller (participant) via the sendMessage method on the RosettaNet
control. The Control Receive node named Receipt acknowledgement waits for the receipt
acknowledgement callback (rn_onack method) from the Receiver.

Once the acknowledgement is received, the business process waits for the Purchase Order
Confirmation at the Control Receive node named onMessage.

The Correctnonamespace Perform Node adds the correct name space to the received XML
Bean. (This step is necessary since Schemas in the project folder cannot have the same
name space.)

After receiving the Purchase Order Confirmation, the Decision node validates the message
and:

— Sends a receipt acknowledgement through the Send PO Ack receipt
acknowledgement Control Send node if the message is correct.

— Sends an error message through the sendError Control Send node if there is a problem
with the message.

The business process responds to the private process with the PO Confirmation through the
Return PO ack Client Response node.

The Process Message Perform node is purposely configured to trigger an error and invoke
the PIPOAL example.

Note: Oracle WebLogic Integration allows the receipt acknowledgement and business message

to be received in either order, in conformance with RosettaNet specifications. If the
initiator receives the response message before the receipt acknowledgement, the
response message is queued for later processing.

Tutorials for Trading Partner Integration

Tutorial Steps

Failure Paths

The OnTimeout and On Error Message paths handle failure management, such as in the event of
a network failure. To view the failure paths:

1. Expand the OnTimeout path next to the group of nodes named Retry block.

—

OnTimeout

®—— 8|7

Check retries Defaulk

g

Matification of failure

B ©

Return Failure

W

=

Finish

B —

Retries exhausted?

This path represents a standard BPM OnTimeout construct. The timeout value is set to two
hours (the standard PIP retry interval) and three retries (the standard PIP retry count).
Thus, if for any reason the acknowledgement fails to arrive within two hours, the group
will be retried and the sendaMessage Step will be executed again. The OnTimeout path
contains a condition that determines whether retries have been exhausted and, if so, the
PIP 0A1 (Notification of Failure) subprocess is triggered (via a Control Send node), and
the process responds to the private process with an error and finishes.

Tutorials for Trading Partner Integration 2-33

Tutorial: Building RosettaNet Solutions

2. Expand the On Error Message path next to the PIP3A4 node at the top of the process.

v; .,)' A [A
On Global Process Timeout On Error Message
('? « SN «
Start niotification of Failure onErrar
02 o' o
0— B = @l 1
PIP3A4 |D_,:,_| & (-? iy
Return Failure alertAdministrator
e
Return Failure

The Global Process Timeout is configured for the standard PIP timeout value of 24 hours.
If the whole process fails to complete within this time, the PIPOA1 (Notification of Failure)
subprocess is triggered and an error is returned to the private process.

Finally, the Receiver might reject the message for a variety of reasons (for example, the
message fails validation). The message rejection is represented as the onErroxr callback on
the RosettaNet control. You can see that the global On Error Message handler is prepared
to receive the error at any time and, if it does, it starts a subprocess to notify the
administrator of the problem, returns an error to the private process, and exits. Notice that,
if we cannot successfully send the message (for example, due to network problems), the
business process starts the PIPOA1 (Notification of Failure) to try to notify the remote
partner of the problem. Similarly, upon receipt of an error from the Receiver, the business
process should notify the local administrator as well as the remote administrator.

Walkthrough of the Buyer Business Process

The participant business process (PIP3a4Participant.java) on the Seller side is less complex
than the initiator business process. To view the participant business process in Oracle Workshop

for WebLogic, open the pTP3a4Participant.java file.

2-34 Tutorials for Trading Partner Integration

Tutorial Steps

e:

PIPSA4 Participant

= @

Receive PO message

=°

Check, for noMamespace and do correction

Drecision

Invoke private process

(2@

getStaticProperties

Retry black

Finish

The participant business process includes the following steps:

1.
2.

The Client Request node Receive PO message receives the Purchase Order Request message.

The Check for noNamespace and do the correction Perform node adds the correct name
space to the received XML Bean. (This step is necessary since Schemas in the project folder
cannot have the same name space.)

The Decision node validates the PO:

Tutorials for Trading Partner Integration 2-35

Tutorial: Building RosettaNet Solutions

2-36

— Sends a receipt acknowledgement to the Buyer through the Send receipt
acknowledgement Client Response node if the PO is correct.

— Sends an error message through the send Exception Client Response node if there is a
problem with the PO.

4. In the Invoke Private Process group, the processOrder Control Send node passes the PO
Request to a private business process for further processing, while the onPOAck Control
Receive node waits for the response back from the private process. The private process
constructs the response that was sent after reading the confirmation using a File Control.

5. The Controls Send with Return node named getStaticProp extracts the RosettaNet
context properties from the incoming message. These properties are needed only in case
of errors. These properties can be saved for later use and contains the information that is
needed to construct the PIPOAL Notification of Failure. For example: from / to / message id
/ etc.

6. Inthe Retry block group, the Send PO Acknowledgement Client Response node sends the
Purchase Order Confirmation message to the buyer using the sendrep1y callback method,
while the Receive receipt acknowledgement Client Request node waits for the receipt
acknowledgement.

Unlike the 3B2 participant business process, which merely receives the message, the 3A4
participant business process sends out a response, so it is necessary to account for failure
scenarios, such as network failures or validation failure. Open the onTimeout path on the Retry
Block to display the time-outs and retries. Note that this path is similar to the onTimeout path in
the 3B2 initiator business process described in “Walkthrough of the Shipper Business Process”
on page 2-20. In addition, there is a global onMessage handler that handles errors returned by the
Buyer.

Walkthrough of the Private Business Processes

As in the 3B2 example, the private processes on both sides are merely place holders for backend
business logic. The participant private process actually echoes the received message. You would
typically customize these processes to tie them with the backend applications. For example, the
shipment notice can be inserted into an ERP application via the Application View control and
Oracle adapters, sent on a message queue, written out to file or database.

The public/private process pattern used in this example is not mandatory and is merely a
recommended approach. You are free to partition your processes as best suits your environment.
It is entirely possible to not use the private processes and implement all the necessary backend
integration as well as RosettaNet interactions in a single process. However, separating processes

Tutorials for Trading Partner Integration

Tutorial Steps

into public (those that only deal with RosettaNet choreography) and private (those that deal with
backend system integration) may improve the reuse and maintainability of your application.

Running the PIP3A4 Example
To run the PIP3A4 example:

1.

This example uses a File Control to read the PO Confirmation message from your local file
system. Before you can run the example, you have to set the directory path in the fc.java
file so that it can find the correct sample data file:

a. Inthe Package Explorer pane, double-click the fc.java file.

b. In the Source view, set the directory-name attribute to:

[file location]\tptutorialapps\rosettanet\PIP3A4Processes

Where [file location] isthe directory in which you installed the tutorial files as
described in “Step 3: Install the Tutorial Files” on page 1-9.

If Oracle WebLogic Server is not already running, from the Oracle Workshop for
WebLogic menu, choose Window > Show View > Other Server > Servers, and click OK.
A Server view is displayed in which the Server and its state are shown.

In the Package Explorer, expand PIP3A4Processes and select and right-click on
PIP3A4Participant.java, click Run As, and click Run On Server.

In the Define a New Server dialog box, select either a Choose an existing server option or
Manually define a server (if there is no server defined), and click Next.

In the Oracle WebL ogic Server dialog box, to manually define a server, click Browse, and
select the Oracle WebL ogic Integration domain that you created in “Step 1: Create a New
Oracle WebLogic Integration Domain” on page 1-2 (such as
c:\bea\user_projects\domains\tptutorial), and then click OK.

Click Finish.

The samples domain integration server is started, and the RequestQuote application is
deployed on it. When Oracle WebLogic Server is running, the following indicator is visible
in the Servers view:

After the application is deployed, the Test Browser is displayed.
Click the Test Form tab.

Tutorials for Trading Partner Integration 2-31

Tutorial:

10.

11.

12.

Building RosettaNet Solutions

In the Test Form page, Click Browse, beside the xml pro (file value) field. and navigate to
[file location]\rosettanet\pips\WebContent\PIP3A4Processes\sampledata\3
AdPurchaseOrderRequestMessageBase_0010.xml

Where [file location] is the directory in which you installed the tutorial files as
described in “Step 3: Install the Tutorial Files” on page 1-9.

Click onMessage.

In a few moments, the end-to-end choreography will execute. The client response will echo
back the XML message.

Bring up your Oracle WebLogic Server Console
In a few moments, you should see the following messages on the console:
>>>>> PIPOAl.jpd: Sent Notification of Failure

>>>>> PIPOAlReportAdmin.jpd: GOT Notification of Failure.

Optionally, you can open the Oracle WebL ogic Integration Administration Console and
observe message tracking and process tracking entries.

Implementing New PIPs Based on the Example PIPs

2-38

This topic describes implementing new PIP based on the example PIPs in this tutorial. It contains
the following topics:

About Implementing New PIPs
Copying and Customizing PIP Implementations

Converting RosettaNet DTD Schemas to XSD Schemas

About Implementing New PIPs

You can implement a new PIP based on an existing PIP implementation with a similar design
pattern. For example, PIP 3A2: Request Price and Availability, is an example of a message send
with response design pattern. Therefore, the business process choreography is identical to that of
PIP3A4. The main differences are that the request and response message schemas are different
and the annotations must be changed. You can duplicate and rename the 3A4 processes and
change the schema type of the messages to easily create a PIP 3A2. implementation. For detailed
information about PIP3A4, see http://www.rosettanet.org.

Tutorials for Trading Partner Integration

http://www.rosettanet.org

Implementing New PIPs Based on the Example PIPs

Copying and Customizing PIP Implementations

To implement a new PIP based on an existing PIP implementation, complete the following tasks:

1. Download the PIP distribution, including the specification and any DTDs, from the
RosettaNet web site at http://www.rosettanet.org.

2. Optionally, convert any DTDs to XSD files, as described in “Converting RosettaNet DTD
Schemas to XSD Schemas” on page 2-39.

3. Copy the example PIP implementation associated with the design pattern that you want to
use.

4. In Oracle Workshop for WebLogic, import the schema for the new PIP into the project and
then change the schema definition to the new PIP.

5. Change the RosettaNet annotations for the new PIP:

— For public initiator business processes, you change the pip and pip-version,
to-role, and from-role attributes (and others if needed) in the Interface
RosettaNetControl.

— For public participant business processes, you change the pip-name, pip-role and
pip-version attributes (and others if needed) in the Annotation Type RosettaNet.

6. Rename the Process and control files and change the names of other components to be more
descriptive of the new PIP implementation, if you want.

7. Change the implementation of any private business processes as needed.

8. Make any other changes as needed.

Converting RosettaNet DTD Schemas to XSD Schemas

The RosettaNet W3C XSD schemas for selected PIPs are included in the RosettaNet Self-Test
Kit (STK) which can be downloaded from the Developer Tools area on the RosettaNet Ready
Web site, available at: http: //www.rosettanet.org.

If the schema for the PIP you are using is not available on this web site, it is possible to implement
RosettaNet solutions in Oracle WebLogic integration using RosettaNet message definitions
specified as DTD files. However, it is recommended to use W3C XSD files instead, since many
of the Oracle WebLogic Integration tools such as the XQuery mapping tools (used to define data
transformations) only support XSD schemas.

Tutorials for Trading Partner Integration 2-39

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/wli.javadoc/com/bea/wli/jpd/RosettaNet.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/wli.javadoc/com/bea/control/RosettaNetControl.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/wli.javadoc/com/bea/control/RosettaNetControl.html
http://www.rosettanet.org
http://www.rosettanet.org

Tutorial: Building RosettaNet Solutions

2-40

If you want to use the graphical XQuery mapping tools, you need to convert the RosettaNet DTD
files to W3C XSD files (using a tool like XML Spy Enterprise Edition) and then import the XSD
files into your project. Make sure that you refer to the RosettaNet Message Guidelines for the PIP
which DTD file you are converting and add the appropriate validation rules for Service Content
Validation to your XSD file after the conversion.

When converting the files, consider the following issues:

e When you convert the DTD to W3C schema, you might get an error message about the
xml:lang name. To fix the problem, replace the following text:
<xs:extension base="xs:string">
<xs:attribute name="xml:lang" type="xs:string"/>
</xs:extension>
with the following text:
<xs:extension base="xs:string">
<xs:attribute ref="xml:lang"/>
</xs:extension>
and add the following import statement:

<xs:import namespace="http://www.w3.org/XML/1998/namespace"
schemalLocation="http://www.w3.0rg/2001/xml.xsd" />

Save the schema file, and then drag and drop it into a Oracle Workshop for WebLogic
schema project.

e The schema generated by XMLSPY has elements that have both a name and reference, as
shown in the following example.

<xs:element name="ActionIdentity" ref="ActionIdentity"/>

This creates problems in Oracle Workshop for WebLogic. To fix the file, open it in Oracle
Workshop for WebLogic, press Ctrl+H, make sure that wildcard pattern matching is
enabled, and then replacing all occurrences of:

name="*" ref

with

ref

as in the following example:

<xs:element ref="ActionIdentity"/>

Tutorials for Trading Partner Integration

Implementing New PIPs Based on the Example PIPs

In some cases, two different schemas will contain identical element definitions, which results in
schema compilation problems. The name collisions can be avoided by using explicit
targetNamespace. For example for the 3A4 Purchase Order Request W3C Schema in this
tutorial we use: <xs:schema id="Pip3A4PurchaseOrderRequest"
targetNamespace="Pip3A4PurchaseOrderRequest"
xmlns="Pip3A4PurchaseOrderRequest">

After you build the schema projects, the PIP types will become available in the type system for
use in parameter and variable types.

Tutorials for Trading Partner Integration 2-11

Tutorial: Building RosettaNet Solutions

2-42 Tutorials for Trading Partner Integration

CHAPTERa

Tutorial: Building ebXML Solutions

The ebXML language (Electronic Business using eXtensible Markup Language) is a business
protocol that enables enterprises to conduct business over the Internet. Oracle Workshop for
WebLogic uses ebXML controls for initiator processes and ebXML Participant Business
Processes templates for participant processes to build business processes systems which
exchange ebXML business messages between trading partners. The ebXML control provides the
initiator business process with predefined customizable methods for sending and receiving
ebXML messages in a conversation. The ebXML Participant Business Process template provides
a head start for building public participant business processes for ebXML conversations.
Although the template is not required to build ebXML participant business processes, it includes
the nodes and business process annotations needed to integrate easily with ebXML initiator
business processes. The purpose of this tutorial is to demonstrate the different options available
for ebXML trading partner management in Oracle Workshop for WebLogic and Oracle
WebLogic Integration.

Before You Begin

This topic describes tasks that you should perform before you begin using this tutorial. It contains
the following sections:

e Prerequisites

e Suggested Reading

Tutorials for Trading Partner Integration 3-1

Tutorial: Building ebXML Solutions

Prerequisites

To use this tutorial, you must have:

e Installed Oracle WebLogic Integration on your system according to the instructions in
Installation Guide.

e Completed the tutorial setup procedure according to the instructions in “Setting Up the
Tutorials” on page 1-2.

Suggested Reading
To gain a detailed understanding of how ebXML solutions are implemented in Oracle WebLogic

Integration, consider reading the following material:

e For an overview of integrating trading partners using Oracle WebL ogic Integration, see
Introducing Trading Partner Integration.

e For an introduction to ebXML solutions using Oracle WebLogic Integration, see
Introducing ebXML Solutions in Introducing Trading Partner Integration.

e For more information about using the ebXML control in initiator business processes, see
ebXML Control.

e For information about using participant business processes, see the following topics:
— Building ebXML Participant Business Processes

— ebXML Annotation.

Tutorial Overview

In this tutorial, the first couple of examples contains detailed instructions of how to use the Oracle
Workshop for WebLogic user interface and the Oracle WebL ogic Integration Administration
Console user interface to perform the steps outlined in the example. The preceding examples
build on the skills you learn in the first couple of sections, but do not outline the steps in quite as
much detail.

The tutorial is organized into these parts:

“Step 1: Getting Started” on page 3-4
This section describes how to create the business process application in which you will
create the business processes and other components required for the examples of the

3-2 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/tpintro/index.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/tpintro/ebxml.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/install/index.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsebXMLExample.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideEbXML.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/wli.javadoc/com/bea/wli/jpd/EbXML.html

Tutorial Overview

tutorial. It also describes how to import the sample data and schemas which are included
in the zipped archive of the tutorial files.

“Step 2: Sending an XML Message through an One-Way ebXML Exchange” on page 3-9
This example demonstrates how to send an XML message from one trading partner to
another through a simple one-way ebXML exchange. In this example, you will learn how
to create participant and initiator business processes as well as, how to create and
configure ebXML and file controls. The section also contains a detailed description of
how to deploy and test business processes using the Oracle Workshop for WebL ogic Test
Browser.

“Step 3: Selecting the Trading Partner Information Dynamically Through Typed XML” on
page 3-26
This example is similar to the preceding one except for that this example demonstrates
how to specify the trading partner information dynamically by using an XQuery selector,
rather than specifying it statically in the ebXML control. It also describes how to
configure the ebXML control to use typed XML data and specific method names.

“Step 4: Sending Raw Data (Binary File) Through an ebXML Exchange” on page 3-35
In this example, you learn how to use ebXML to send binary data between two trading
partners through a Message Broker channel.

“Step 5: Creating a Roundtrip ebXML Conversation” on page 3-42
This section describes how to implement an ebXML conversation in which when a request
message (order) is received, a response (invoice) message is sent back by adding a Client
Response node to the participant business process and using the ebXML control callback
feature to send the response message.

“Step 6: Implementing the Public/Private Pattern” on page 3-51
This example illustrates how to use subprocesses to implement the public/private pattern.
The public/private pattern can be used to keep the details of backend integration contained
to a private process definition, while the public process definitions are dedicated to trading
partner interaction.

“Step 7: Using the TPM Control and Callbacks” on page 3-58
In this section, you learn how to at run time obtain trading partner information from the
TPM repository. You also learn how to use the onAck callback of the ebXML control.

“Step 8: Setting Partner 1D Dynamically Based on Directory Name” on page 3-63
In this example, you investigate the already built application included with the tutorial
files to learn how to read the name of a sub-directory and use that as the partner ID. The
business process sets the partner ID dynamically using the setProperties method included
in the ebXML control.

Tutorials for Trading Partner Integration 3-3

Tutorial: Building ebXML Solutions

“Step 9: Creating a Distributed Setup” on page 3-68
This example briefly explains how to move to a distributed setup where one trading
partner operates in one Oracle WebLogic Integration instance while the other trading
partner operates in another instance. This is the setup that you would use in a production
scenario where the two trading partners are running on two physically separated systems.

“Step 10: Configuring Non-Default Protocol Settings” on page 3-69
In this section you will learn how to add a service and a service profile in the Oracle
WebLogic Integration Administration Console, which will give you control over trading
partner communications.

Step 1: Getting Started

3-4

Before you start the ebXML tutorial, you have to complete the procedures described in “Setting
Up the Tutorials” on page 1-2. If you have not yet completed these procedures, please do so
before proceeding with this section.

In this step, you use Oracle Workshop for WebLogic to create application, in which you build the
ebXML tutorial business processes. You then import the sample data and schemas provided in
the zipped archive that came with the tutorial files (see, “Step 3: Install the Tutorial Files” on
page 1-9). The sample data and schemas are used to illustrate the functionality of the ebXML
tutorial examples. Lastly, you create two directories on your hard drive which are used
throughout the tutorial to read files from and to write files to.

This section contains the following procedures:
e “Creating the Business Process Application” on page 3-4
e “Importing the Tutorial Sample Data” on page 3-6

e “Importing the Tutorial Schemas” on page 3-7

Creating the Business Process Application

Oracle WebLogic Integration extends the Oracle Workshop for WebLogic to allow the building
of integrated enterprise applications. An application in turn contains projects and files. A project
can contain several components including, business processes, Web services, and XML files. In
this section, you will create the Business Process Application in which you will later build the
ebXML tutorial processes and process components.

Tutorials for Trading Partner Integration

Step 1: Getting Started

To Create a Business Process Application

1.

Start Oracle Workshop for WebL ogic by choosing, Start > All Programs > Oracle
WebL ogic > Workshop for WebLogic 10gR3

If this is the first time Oracle Workshop for WebL ogic is started since it was installed, the
samples project, which contains sample services installed with Oracle Workshop for
WebLogic, is displayed. Otherwise, the project which was opened last is displayed.

From the Oracle Workshop for WebLogic menu, click File > New > Project.
The Select a wizard dialog box is displayed.

Expand WebLogic Integration and select Process Application and click Next.

The Process Application dialog box is displayed.

In the Process Application dialog box, enter the following:
a. Inthe EAR Project Name field, enter ebXML.

b. Inthe Web Project Name field, ebXMLWeb .

c. Inthe Utility Project Name field, enter schemas.

d. Select Add WebLogic Integration System and Control Schemas in Utility Project
check box. This adds the system schemas to the Utility Project/schemas folder.

e. Click Finish.

In the displayed Open Associated Perspective? dialog box, click Yes to switch to Process
Perspective.

Your ebXML process application is created and displayed in the Package Explorer pane
(see Figure 3-1).

Figure 3-1 ebXML Application

_‘i-{)vnﬁ

% Package Explorer X

+- 424 shiMLieb
+- 1% Schemas

The components we will work with in this tutorial includes the following:

ebXML—This contains the JAR files and deployment descriptors build files and
auto-generated files. J2EE Applications and their components are deployed on the Oracle
WebLogic Server as EAR files.

Tutorials for Trading Partner Integration 3-5

Tutorial: Building ebXML Solutions

3-6

7.
8.
9.

ebXMLWeb—A Web application project folder. Every application contains one or more
projects. Projects represent Oracle WebLogic Server Web applications. In other words,
when you create a project, you are creating a Web application. (The name of your project
is included in the URL your clients use to access your application.)

Note: The Web application project folder is named by appending Web to the name you
gave your application.

Schemas—A Schemas project that contains the XML Schemas and the Message Broker
channel file used in the application. It also contains ebXML envelope schemas that are
used to package ebXML messages.

Expand the ebXMLWeb folder.

The processes folder inside the ebXMLWeb folder is created when you created your
business process application. Since we do not need it for our tutorial, you can delete it:

Go to ebXMLWeb > src > processes.
Right-click on the processes folder and select Delete from the drop-down menu.

Click Yes in the confirmation dialogue.

You have now completed the first step in this tutorial and are ready to start creating the tutorial
ebXML business processes. For more information about business process applications, see Guide
to Building Business Processes.

Importing the Tutorial Sample Data

In this tutorial, we use sample data files to send in the ebXML messages. You can use your own
XML data files if you wish, but some sample data files have been provided for you in the
tptutorial.zip archive that you downloaded from the Oracle website (see, “Step 3: Install the
Tutorial Files” on page 1-9).

To Import the Sample Data Into Your Project Application

1.

2.

In the Package Explorer pane, right click on ebxmIWeb and select Import.

The Import dialog box is displayed.

In the Import dialog box, select General > File System, and click next.

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/index.html

Step 1: Getting Started

3. In File System window, click Browse next to From directory: and navigate to [unzip
location] \tptutorialapps\ebxml\ebxmlWeb\webContent\sampledata Where
[unzip location] is the directory to which you unzipped the files from the tptutorial.zip
(see, “Step 3: Install the Tutorial Files” on page 1-9).

4. Check Sampledata check-box (see Figure 3-2).

Figure 3-2 Import File System

File system —
Import resources from the local file system, t"" .-_"
-
From directory: | CtitptutorialitptutorislappsiebsMLiebMLweb) webContentisamp s
E[E=3 = ampledata i sampleiraice, xml
Esamplearder . xml
Filter Types. ..] [Select Al] [Deselect Al]
Into Folder: | ebiMLWeb
Options
|:| Overwrite existing resources without warning
(O Create complete Folder structure
(3 Create selected Folders anly
@ Finish] [Cancel

5. Click Finish.

sampleinvoice.xml and sampleorder.xml is added to your Package Explorer pane under
ebXMLWeb.

Importing the Tutorial Schemas

In this tutorial, specific schemas are used for the XML data that is sent by the eb XML messages.
This section describes how to import the schemas into your schemas folder in your eb XML
application.

To Import the Tutorial Schemas

1. In the Package Explorer pane, right-click on Schemas.

Tutorials for Trading Partner Integration 3-7

Tutorial: Building ebXML Solutions

2. Select Import from the drop-down menu.

The Import dialog box is displayed.
3. Inthe Import dialog box, select General > File System and click Next.

4. In File System window, click Browse next to From directory: and navigate to: [unzip
location] \tptutorialapps\ebxml\Schemas\schemas. Where [unzip location] iS
the directory to which you unzipped the files from the tptutorial.zip file (see,“Step 3: Install
the Tutorial Files” on page 1-9).

5. Check Schemas check-box (see Figure 3-3).

Figure 3-3 Import Schemas

File system

Import resources from the local file system, { .-_"
-\

From directory: | Ctitptutorialitptutorislappsieb®ML Schemasischemas W

B EE

schemas

%] bzbirevoice. xsd
%] bzborder . xsd

Filter Types...] [Select Al] [Deselect Al]
Into Folder: | Schemas
Options

|:| Overwrite existing resources without warning
(O Create complete Folder structure

() Create selected Folders anly

@ Finish] [Cancel

6. Click Finish.

When a XSD or MFL file is imported, a build of the current Schemas project folder is triggered.
(The build verifies that the schema file is well formed. For XSD files, it also verifies that the
element and attribute names in the XML Schema do not conflict with the XSD files that have
already been imported into the current Schemas project folder.) For more information about what
gets generated when you import schemas, see Importing Schemas.

3-8 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/dtguide/dtguideMapper.html

Step 2: Sending an XML Message through an One-Way ebXML Exchange

Creating the Read and Write Directories

To demonstrate how messages can be exchanged by ebXML, several of the examples in this
tutorial write out files to and read files from directories on your hard drive. Before you start
working with any of the examples in this tutorial, create the following two directories on your
hard drive:

® C:\tptutorial\binary-in
® C:\tptutorial\binary-out

Note: This is assuming that you created your application in “Creating the Business Process
Application” on page 3-4 on the C drive. If you created the application on another drive,
please place the above directories at the root level of that drive.

Step 2: Sending an XML Message through an One-Way ebXML
Exchange

In this example, you will learn how to send an XML message from one trading partner to another
using ebXML. Imagine that one of the trading partners is accepting and processing orders. We
refer to this partner as the seller and it is the participator of the ebXML conversation. The other
trading partner, which we call the buyer, sends an XML order to the seller. The buyer is the
initiator of the conversation. The seller accepts the message and simply writes it out to a file. This
section contains the following procedures:

e “Building the Seller Business Process” on page 3-9

e “Building the Buyer Business Process” on page 3-18

Building the Seller Business Process

The Seller business process is the participator of our ebXML conversation. When building
ebXML participator processes, you can use the ebXML Participant Process file which comes
pre-configured with the nodes, variables, and other components necessary for building
participants processes. In this example, you add a File control to the business process which
writes the test data out to a file located on your hard drive. This section includes the following
tasks:

e “To Create the Seller Business Process File”

e “To Create the File Control and the Control Node” on page 3-12

Tutorials for Trading Partner Integration 3-9

Tutorial: Building ebXML Solutions

3-10

e “To Configure the Control Node” on page 3-14

e “To View the ebXML Source view Parameters” on page 3-15

e “To Test the Seller Process” on page 3-16
To Create the Seller Business Process File
1. In the Package Explorer pane, expand ebXMLWeb and select src.
2. Right-click the src folder, then select New > Package.

The New Java Package dialog box is displayed.

3. Inthe New Java Package dialog box, enter ebxml.oneway as the name of the new package.

4. Click Finish.

The ebxml.oneway package appears under ebXMLWeb/src directory in the Project
Explorer.

5. Right-click ebxml.oneway package.

6. Select New > Other.
The Select a Wizard dialog box is displayed.

7. Expand WebLogic Integration and select ebXML Participant Process.
8. Click Next.

The New Process dialog box is displayed.

9. Inthe New Process dialog box, enter Seller in the Name field (see Figure 3-4).

Tutorials for Trading Partner Integration

Step 2: Sending an XML Message through an One-Way ebXML Exchange

Figure 3-4 New Process Dialog Box

Process
This wizard creates a new Process file with *.java extension,

=g =
Source Folder: | ebxMLWebjsrc | [Browse, ..]
Package: | ebxml.oneway | [Browse, ..]

Mame: | Seller |

1] com.bea. jpd.ProcessDefinition

Do you want to add comments as configured in the properties of the current project?
|:| Generate comments

@ Finish] [Cancel

10. Click Finish.

A new ebXML participant process file is created in your ebxml.oneway package in the
Package Explorer pane and is displayed in Design view (see Figure 3-5).

Figure 3-5 Seller ebXML participant process

L

Seller

B-o®

Receive request

B ©

Respond ko request

Tutorials for Trading Partner Integration 3-11

Tutorial: Building ebXML Solutions

The ebXML participant process file is created pre-configured with the nodes and business
process annotations needed to integrate easily with ebXML initiator business processes.
For more information about ebXML participant process files, see Building ebXML
Participant Business Processes.

11. In this example, we will not respond to the buyer process, so we can delete the Respond to
request node: right-click on the node and select Delete from the drop-down menu.

In this example, instead of responding to the buyer process, we add a File control which will write
out the incoming ebXML messages to a file. This File control is then added to the business
process as a Control Send with Return node.

To Create the File Control and the Control Node

1. Ifthe Data Palette is not visible in Oracle Workshop for WebLogic, choose Window > Show
View > Data Palette from the Oracle Workshop for WebLogic menu.

2. Click " onthe Data Palette. A drop-down list of controls that represent the resources
with which your business process can interact is displayed. Instances of controls already
available in your project are displayed in the Controls tab.

3. Select File from the Integrations Controls drop-down menu.

The Insert Control: File window opens.

4. Inthe Insert File: Control dialog box do the following:

— In the Field Name, type the variable name as File, this is used to access the new File
control instance from your business process. The name you enter must be a valid Java
identifier.

— Click Next.

5. Inthe Create Control dialog box enter the following details:
— In the Name field, enter File as the name of the new control file that will be created.
— Click Next.

6. The Insert control - File dialog-box appears.

7. Inthe Insert control - File dialog-box enter the following.

— In the Directory Name field, enter /tptutorial as the directory-name. This is the
directory to which the message received by the Seller.java will be written. In this
tutorial, we always use the tptutorial directory that you created in the “Creating the

3-12 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideEbXML.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideEbXML.html

Step 2: Sending an XML Message through an One-Way ebXML Exchange

Read and Write Directories” on page 3-9 section as the directory to read from and write
to.

— In the File name filter field, enter order.xml as the file name This is the name of the
file to which the message received by the Seller.java will be written.

— Select XmlObject as the type of data contained in the received message from the Type
of Data drop-down menu (see Figure 3-6).

Figure 3-6 File Control Properties
W Insert control: File g|

Insert Control - File

Directory Mame: | C:ftptutorialf
File name filter: | order,cml
Type of Data: | xmlObject v
Encoding:
@ Finish] [Cancel

8. Click Finish.

The File control instance is added to your list of controls in the Data palette, and a control
file corresponding to the File control (File.java) is added to the Package Explorer pane.
For more information about File controls, see File Control.

9. In the Data palette, under Controls expand the File control by clicking on the + next to it.

The methods associated with the File control are displayed (see Figure 3-7).

Tutorials for Trading Partner Integration 3-13

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsFile.html

Tutorial: Building ebXML Solutions

Figure 3-7 File Control Methods
s X ~=a

=L, Warisbles
-l #ML

payload : xmiobject
2 Non-¥ML

5 Java
-1-lzj Contrals
= file

= void copyiString argd)
= void deletel)
= void ftpTolLocal)
2 FileControlFileListDocument getFiles()
2 FilsControlPropertiesDocument getProperties))
2 smiobject read()
= void rename(String argl)
= void reset()
= void setPropertiesiFileControlPropertiesDocument argd)
2 FileControlPropertiesDocument writelXmlobject someData)

10. Select the FileControlPropertiesDocument write (XmlObject someData)method.
11. Drag the selected method into Design view and drop it on the © which appears
immediately following the Receive request node.

A new Control Send with Return node named write is added to your business process.
For more information about Control Send with Return nodes, see Interacting With
Resources Using Controls.

The next step in our procedure is to configure the Control Node we just created with the correct
variables and method assignments.

To Configure the Control Node

1. Double-click the new write node.

The write node builder is invoked.
2. Click Send Data.

3. From the Select variables to assign drop-down menu, select payload as the variable to
assign to the write method (see Figure 3-8).

3-14 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideControlsProperties.html

Step 2: Sending an XML Message through an One-Way ebXML Exchange

Figure 3-8 Configure Send Data

= !

@
adl % Variable Assignment ¢ Transformation
write
Select variables to assign: Control Expects:
g General Settings payload (¥miObject) |+ “miObject someData

[# send Data

Receive Data

Help
Yiew Code

4. Click Close to close the node builder.

Close

5. Select File > Save or enter Ctrl+S to save your work.

Your seller side ebXML process is now complete. The process is invoked when an XML message
is received from the Buyer initiator process by the Receive request node, the Receive request
node assigns the XML to a variable, and the write node writes the XML message to a file named
order.xml via the File control.

Note: The grey check box icon is there because the receive data tab of the node has not been
configured which marks the node as incomplete. However, since the example is not
receiving any data, no more configuration is necessary for the business process to run

properly.
To View the ebXML Source view Parameters

The ebXML binding information and service name of the business process is displayed in the JPD
Configuration pane in Source view. To view these properties:

1. Click the Source view tab.

2. Clickonpublic class Seller implements com.bea.jpd.ProcessDefinition tO
display the JPD Configuration pane for the seller class.

3. Inthe JPD Configuration pane, note the following:

— In the process section, the binding is listed as ebxml.

Tutorials for Trading Partner Integration 3-15

Tutorial: Building ebXML Solutions

3-16

— In the ebxml section, the ebxml-service-name property is set to Seller. This is the
name you gave your process and it corresponds to the eb: service entry in the ebXML
message envelope. It is also the name used by the initiator business process as the
ebXML service name. This is the name that trading partners will use to identify this
service, it also matches the initiator process with the participant process.

For more information about Source view ebXML process annotations, see ebxml Annotation.

We are now ready to test the Seller business process. Oracle Workshop for WebLogic provides
a browser-based interface through which you can test the functionality of your business process.
Using this Test view interface, you play the role of the client, invoking the business process's
methods and viewing the responses.

To Test the Seller Process

1.

If the Server view is not visible in Oracle Workshop for WebLogic menu, choose Window
> Show View > Other > Server > Servers, and click Ok. A Server view is displayed.

On the Package Explorer pane, select and right-click the Seller.java business process.
Click Run As, and Run On Server.

In the Define a New Server dialog box, select Choose an existing server option and click
Next.

In the Oracle WebLogic Server dialog box, to manually define a server choose the server
which you created when you set up your domain in “Step 1: Create a New Oracle WebLogic
Integration Domain” on page 1-2.

Click Finish.

The server is started, and the application is deployed on it. When Oracle WebL ogic Server
is running, the following indicator is visible in the Server view (see Figure 3-9).

Figure 3-9 Sever Status

8.

Status
if. Started

After the application is deployed, thé Test Browser is displayed (see Figure 3-10).

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/wli.javadoc/com/bea/wli/jpd/EbXML.html

Step 2: Sending an XML Message through an One-Way ebXML Exchange

Figure 3-10 Seller.jpd Process Test Browser

O} Q:><h |http:,l’,l’localhost:?DD1,l’ebXML_Web,l’oneway,l’Seller.jpd j =
Created by BEA Weblogic Workshop e
bd Process

User: =anonymous:

http://localhost:7001/ebXML Web/

[Overview | [Console | [Test Form | [Test SOAP | [Message Broker | [Process Graph | oneway/Seller.jpd
Public Information See other services in this project

about Seller.jpd Process

Process Description Language files

This WSDL file describes the complete public contract of Seller.jpd, including both operations and

Process Clients

callbacks.

Senvics Broker Control | Source code for a Service Broker Control that can be used by a WebLogic Workshop process to

Web Sarvice Proxy A JAR file containing Java classes you can use to access this process as though it were a local

RMI Prosxy A JAR file containing a JPD Proxy (RMI client) you can use to access this process. To build you v

communicate with this service.

Java class.

Javapackage: [| (defsult package: weblogic jws.proxies)

9. Click Test Form in the Test Browser window.

10. To enter test data, do one of the following:

11.

12.
13.

14.

— Click Browse, and navigate to
C:\myappstptutorialapps\ebXML\ebXMLWeb\WebContent\sampledata\sampleo

rder.xml.

— Cut and paste the content of
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\WebContent\sampledata\sample

order .xml, except for the first line of the file, into the xml variable (payload) field.

Click request.
The Test Form page refreshes to display a summary of your request parameters.
Click Refresh to refresh the summary.

Scroll down to the Operation request section to see the content of the sampleorder.xml
file.

Using a file browser or command line tool, navigate to your c: \tptutorial directory.

Tutorials for Trading Partner Integration 3-17

Tutorial: Building ebXML Solutions

It now contains a file named order.xml with identical content to that of sampleorder.xml.
This file was written by the File control that you created and configured in the section “To
Create the Seller Business Process File” on page 3-10.

For more information about the different options in the Test Browser and how to use it to test your
business processes, see Running and Testing Your Business Process.

Your Seller business process is now deployed and ready to accept ebXML messaged. By default
the protocols specified in the default ebXML 2.0 binding will be used, so no additional
configurations are required. In production scenarios however, you typically create a TPM service
profile using the Oracle WebLogic Workshop Administration Console. For more information
about creating service profiles, see Adding Service Profiles to a Service in Trading Partner
Management.

Building the Buyer Business Process

The Buyer business process is the initiator of our ebXML conversation. After creating the Buyer
business process, we will use an ebXML control to communicate with the Seller participator
business process. This section contains the following procedures:

e “To Create the Buyer Business Process File” on page 3-18
e “To Configure the Client Request Node” on page 3-20
e “To Create the ebXML Control and Control Node” on page 3-21
e “To Configure the Request Node” on page 3-23
e “To Test the Buyer Business Process” on page 3-24
To Create the Buyer Business Process File

1. Inthe Package Explorer pane, right-click on ebxml.oneway and select New > Process.

The New Process dialog box opens (see Figure 3-11).

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideTest.html

Step 2: Sending an XML Message through an One-Way ebXML Exchange

Figure 3-11 New Process

W New Process rg|
Process
This wizard creates a new Process file with *.java extension, I
= =l
Source Folder: | ebXMLweb)src | [Browse, ., l
Package: | eboml, onevay | [Browse, ., l

Mame: | |

(1] com.bea. jpd. ProcessDefinition

Do wou want ko add comments as configured in the properties of the current project?
|:| Generate comments

Py
() Cancel

Since we are creating a initiator business process file this time and will use a ebXML file
control to communicate with the participator process, we will create a default process file
rather than an ebXML participant process file.

2. Enter Buyer in the Name field.
3. Click Finish.

A new Buyer.java file is added to your Package Explorer pane and displayed in Design
view (see Figure 3-12).

Tutorials for Trading Partner Integration 3-19

Tutorial: Building ebXML Solutions

Figure 3-12 Buyer Business Process

Burer

Poubie Cick fo Sefect Start
Lwend

]

Finish

The Buyer.java file contains a Start node, a Start Event place holder and a Finish node.

4. Double-click on the Start Event place holder.

The Starting Event selection window is displayed.
5. Select Invoked via a Client Request and click Close.
A Client Request node is added as the Starting Event to your business process.
We will now configure the Client Request node with the correct methods and variable types.
To Configure the Client Request Node
1. Double-click the Client Request node.

The Client Request node builder is invoked.
2. Inthe General Settings tab:
a. Change the method name from clientRequest to startBuyer.
b. Click Add.
c. If not already selected, select the XML option.
d. Scroll down to the untyped XML types and select XmlObject.

e. Click OK.
The XmlObject parameter type is added to the pane.

3-20 Tutorials for Trading Partner Integration

Step 2: Sending an XML Message through an One-Way ebXML Exchange

3. Click Receive Data.
4. In the Receive Data tab:
a. Select Create New Variable... from the Select Variables to Assign drop-down menu.
The Create Variable window opens.
b. Enter order as the variable name.

c. Note that the type name XmlObject is preselected for you since this is the type you
specified on the General Settings tab.

d. Click OK.
The new order variable is added to the Select variables to assign drop-down list.

e. Click Close.

Your Client Request node is completed. To learn more about Client Request nodes, see
Receiving Messages From Clients. To learn more about variables and data types, see
Working with Data Types.

It is now time to add the ebXML control which will be used to communicate with the Seller
process. This control represents what would normally be the remote service we are trying to
contact, although in this example, the service runs on the same machine as the Buyer process.

To Create the ebXML Control and Control Node

1. Click Menu on the Data Palette and from the drop-down list choose Integration Controls
to display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click Window
> Show View > Data Palette from the menu bar.

2. Select ebXML.

The Insert Control: eb XML window opens.

3. Inthe Insert control: ebXML dialog box enter sellerControl as the name of the variable to
use for the control. This name must be a valid Java identifier.

4. Click Next.

The Create Control wizard appears.

5. Enter SellerControl as the name of the new control file that will be created.

Tutorials for Trading Partner Integration 3-21

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguidebufferingclientmessages.html
http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguideDataTypes.html

Tutorial: Building ebXML Solutions

3-22

6. Click Next.

The Insert control: Ebxml dialog box appears.

7. Inthe Insert control: Ebxml dialog box, specify the following information:

— Leave the from field blank. This will default to the 000000001 at runtime, the default
trading partner.

— Enter 000000002 in the to field. This sets the participating trading partner id as a static
value.

— Enter servicename as Seller.

— select XmIObject as the type of data contained in the received message from the
message-arg-type drop-down menu.

— Accept the default setting for ebXMLActionMode and xQueryVersion (see
Figure 3-13).

Figure 3-13 Ebxml Control Properties

¥ Insert control: Ebxml @

Insert Control

Business identifier of the Initiabor of ebXML conversation

Fram

b | OO0000002

serviceMams Seller
rmethod-arg-type | KmiObject w
eb¥MLAckionMode | Mon Default w
®QueryWersion | 2004 “
@ I Finish] [Cancel]

— Click Finish.

The ebXML control instance is added to your list of controls in the Data palette, and a
control file (SellerControl.java) corresponding to the ebXML control is added to the
Package Explorer pane. You can double-click on the control file (SellerControl.java) to
open it in Design view and review the values which you just entered. For more information
about ebXML controls, see ebXML Control.

Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsebXMLExample.html

Step 2: Sending an XML Message through an One-Way ebXML Exchange

8. In the Data palette, expand the ebXML control (SellerControl) by clicking on the + next to
it.

The methods associated with the ebXML control are displayed (see Figure 3-14).

Figure 3-14 ebXML Control Methods
i Data Palette X =0

= % Variables
-G WML
order : ¥mlObject
2 Mon-smML
@ Java
-5 Contrals
= sellerContral
2 EBXMLControlPropertissDocument getPropertisst)
== y0id onAck{EnvelopeDocument ack)
= 0id onError{EnvelopeDocument error)
= void request{¥mlObject payload)
= y0id response(¥mlObject payload)
= void setPropertiesiEEXMLControlPropertiesDocument argd)

9. Selectthe void request (xmlObject payload)method. The name of the method on this
control must match the method name of the Receive request node in the participant process.

10. Drag the selected method into Design view and drop it on the © which appears
immediately following the Client Request node.

A new Control Send node named request is added to your business process.
We will now configure the request node with the correct variable assignment.

To Configure the Request Node

1. Double-click the new request node.

The request node builder is invoked.
2. Click Send Data.

3. From the Select variables to assign drop-down menu, select order as the variable to assign
to the request method.

4. Click Close to close the node builder.

5. Select File > Save or enter Ctrl+S to save your work.

Tutorials for Trading Partner Integration 3-23

Tutorial: Building ebXML Solutions

3-24

Your buyer side ebXML process is now complete. The process sends a message to the Seller
business process which is then written to a file named order.xml via the File control in the Seller
process.

To Test the Buyer Business Process

1.

If the Server view is not visible in Oracle Workshop for WebLogic, choose Window > Show
View > Other > Server > Servers, and click Ok. A Server view is displayed.

On the Package Explorer pane, select and right-click the Buyer.java business process.
Click Run As, and Run On Server.

In the Define a New Server dialog box, select Choose an existing server option and click
Next.

In the Oracle WebLogic Server dialog box, to manually define a server choose the server
which you created when you set up your domain in “Step 1: Create a New Oracle WebLogic
Integration Domain” on page 1-2.

Click Finish.
The server is started, and the application is deployed on it.

After the application is deployed, the Test Browser is displayed (see Figure 3-15).

Tutorials for Trading Partner Integration

Step 2: Sending an XML Message through an One-Way ebXML Exchange

Figure 3-15 Buyer.Jpd Test Browser

O} Q:><h |http:,l’,l’localhost:?DDI,l’ebXML_Web,l’oneway,l’Buyer.jpd j B

nd Process

Created by BEA Weblogic Workshop [led
User: <anonymous:

http://localhost:7001/ebXML Web/oneway/
[overview | [Console | [Test Form | [Test SOAP | [Message Broker | [Process Graph | Buyer.jpd

Public Information See other services in this project
about Buyer.jpd Process

Process Description Language files

This WSDL file describes the complete public contract of Buyer.jpd, including both operations and

callbacks.

Process Clients

[senvice Broker Control | Source code for a Service Broker Control that can be used by a WebLogic Workshop process to
communicate with this service.

Web Sarvice Proxy A JAR file containing Java classes you can use to access this process as though it were a local Java

class.

Javapackage: [| (default package: weblogic jws.proxies)

A JAR file containing a JPD Proxy (RMI client) you can use to access this process. To build you need v

9. Click Test Form in the Test Browser window.

10. To enter test data, do one of the following:

— Click Browse, and navigate to
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\WebContent\sampledata\sample
order.xml.

— Cut and paste the content of
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\WebContent\sampledata\sample
order.xml into the xml variable (payload) field.

11. Click startBuyer.
The Test Form page refreshes to display a summary of your request parameters.
12. Click Refresh to refresh the summary.

13. Confirm that the order.xm1 file was written out correctly to the c: \tptutorial directory
by checking that the time stamp of the file is current.

This part of the tutorial is now complete. You have successfully sent an XML message over
ebXML from one trading partner to another. The participant (Seller) process wrote the XML out
to the file system.

Tutorials for Trading Partner Integration 3-25

Tutorial: Building ebXML Solutions

Step 3: Selecting the Trading Partner Information Dynamically
Through Typed XML

3-26

In this example we build on what you learned in the previous exercise, “Step 2: Sending an XML
Message through an One-Way eb XML Exchange” on page 3-9. You will learn how to specify the
trading partner information dynamically using an XQuery selector rather than specifying it
statically in the ebXML control. Then you will customize the ebXML control in the initiator
(buyer) process and the participant process file (Seller) to use typed XML and business specific
method names.

This step contains the following procedures:
e “Building the SelectorSeller Business Process” on page 3-26

e “Building the SelectorBuyer Business Process” on page 3-30

Building the SelectorSeller Business Process

In this procedure, you create an ebXML participant business process which will accept typed
XML data instead of the XmlIObject variable you used in the previous example’s participant
process. This section contains the following tasks:

e “To Create the SelectorSeller Business Process File” on page 3-26
e “To Configure the Receive Request Node” on page 3-27
e “To Create the File Control and Control Node” on page 3-29
e “To Configure the Control Node” on page 3-29
e “To Test the SelectorSeller Process” on page 3-29
To Create the SelectorSeller Business Process File
1. In the Package Explorer pane, go to ebXMLWeb > src.

2. Right-click src, and select New > Package.

The New Package dialog box is displayed.
3. Enter the name ebxml.oneway.selector.

4. Click Finish.

Tutorials for Trading Partner Integration

Step 3: Selecting the Trading Partner Information Dynamically Through Typed XML

The ebxml.oneway.selector package appears under ebXMLWeb/src directory in the
Package Explorer.

5. Right-click ebxml.oneway.selector package, then select New > Other.

6. Inthe New dialog box, expand WebL ogic Integration and select ebXML Participant
Process.

7. Click Next.

The New Process dialog box is displayed.
8. Inthe New Process dialog box, enter SelectorSeller in the Name field.

9. Click Finish.

A new ebXML participant process file is created in your ebxml.oneway.selector package
in the Package Explorer pane and is displayed in Design view.

10. Delete the Respond to request node: right-click on the node and select Delete from the
drop-down menu.

The next step involves configuring the Receive request node to accept XML data of a type that is
specified in the Schemas which you imported into your application in “Importing the Tutorial
Schemas” on page 3-7.

To Configure the Receive Request Node

1. Double-click the Receive request node.

The Receive request node builder is invoked.
2. Inthe General Settings tab:
a. Change the method name from request to processOrder.
b. Select XmlObject payload.
c. Click Remove
d. Click Add.
e. If not already selected, select the XML option.

f. Expand Typed and go to Schemas > schemas and select b2border.xsd (see Figure 3-16).

Tutorials for Trading Partner Integration 3-21

Tutorial: Building ebXML Solutions

3-28

Figure 3-16 Selecting Schemas

Parameter Mame: | x0

Type Mame:

Simple | #ML | Mon-¥ML
= @m
=-1=F Schemas
== schemas
H[= system
+- |X| bzbirvoice,xsd
+- %] bzborder.xsd
=1k Untyped
mlObject
mlobjectList

Expand the b2border.xsd by clicking on the + next to it.
Select Order from the expanded list.

Click OK

The OrderDocument parameter type is added to the pane.

. Click Receive Data.

In the Receive Data tab:

a.

d.

Select Create New Variable... from the Select Variables to Assign drop-down menu.
The Create Variable window opens.
Enter order as the variable name.

Note: The type of the variable is already specified to be
com.bea.tutorial.order.OrderDocument Which is what you specified in the
preceding steps.

Click OK.
The new order variable is added to the Select variables to assign drop-down list.

Click Close.

You will add a file control to the business process file, which will write the order variable
out to a file.

Tutorials for Trading Partner Integration

Step 3: Selecting the Trading Partner Information Dynamically Through Typed XML

To Create the File Control and Control Node

Refer to the instructions in “To Create the File Control and the Control Node” on page 3-12 to
create a new File control. To save time, you can also drag and drop File.java from the oneway
package in the Package Explorer pane directly on to the Data Palette under Controls.

The control definitions you created earlier will be reused in a new instance for this business
process.

To Configure the Control Node

1. Double-click the new write node.
The write node builder is invoked.

2. Click Send Data.

3. From the Select variables to assign drop-down menu, select order as the variable to assign
to the write method.

4. Click Close to close the node builder.

5. Select File > Save or enter Ctrl+S to save your work.

This concludes the creation of the SelectorSeller business process.
To Test the SelectorSeller Process

1. Right-click SellectorSeller.java and select Run As > Run on Server. (For more detailed
instructions refer back to, “To Test the Seller Process” on page 3-16.)

2. After the application is deployed, the Test Browser is displayed.

3. To enter test data, do one of the following:

— Click Browse, and navigate to
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\WebContent\sampledata\sample
order.xml.

— Cut and paste the content of
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\sampledata\WebContent\sample
order.xml into the xml variable (payload) field.

4. Click processOrder

5. Confirm that the order.xm1 file was written out correctly to the c: \tptutorial directory
by checking that the time stamp of the file is current

Tutorials for Trading Partner Integration 3-29

Tutorial: Building ebXML Solutions

3-30

You are now ready to go on and create a SelectorBuyer initiator process.

Building the SelectorBuyer Business Process

For the initiator process in this example you use an XQuery selector to retrieve the trading partner
ID dynamically rather than specifying it statically in the ebXML control as done in the previous
example. This section contains the following tasks:

“To Create the SelectorBuyer Business Process File” on page 3-30
“To Configure the Client Request Node” on page 3-30

“To Create the ebXML Control” on page 3-31

“To Modify the ebXML Control Definition File” on page 3-32
“To Create the processOrder Control Send Node” on page 3-33

“To Test the SelectorBuyer Process” on page 3-34

To Create the SelectorBuyer Business Process File
1.

2.

3.

Right-click ebxml.oneway.selector package, and select New > Process.
Enter SelectorBuyer in the Name field.

Click Finish.

A new SelectorBuyer.java file is added to your Package Explorer pane and displayed in
Design view.

The SelectorBuyer.java file contains a Start node, a Start Event place holder and a Finish
node.

Double-click on the Start Event place holder.
The Starting Event selection window is displayed.
Select Invoked via a Client Request and click Close.

A Client Request node is added as the Starting Event to your business process.

We will now configure the Client Request node with the correct methods and variable types.

To Configure the Client Request Node

1. Double-click the Client Request node.

Tutorials for Trading Partner Integration

Step 3: Selecting the Trading Partner Information Dynamically Through Typed XML

The Client Request node builder is invoked.

In the General Settings tab:

a.

b.

Click Add.

If not already selected, select the XML option.

Expand Typed and go to Schemas > schemas and select b2border.xsd.
Expand the b2border.xsd by clicking on the + next to it.

Select Order from the expanded list.

Click OK

The OrderDocument parameter type is added to the pane.

3. Click Receive Data.

4,

In the Receive Data tab:

a.

d.

Select Create New Variable... from the Select Variables to Assign drop-down menu.

The Create Variable window opens.

Enter order as the variable name.

Note: The type of the variable is already specified to be
com.bea.tutorial.order.OrderDocument Which is what you specified in the
preceding steps.

Click OK.
The new order variable is added to the Select variables to assign drop-down list.

Click Close.

In the next step you add a ebXML control and configure this control with an XQuery selector.

To Create the ebXML Control

1.

Click ™ on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Select ebXML.

The Insert Control: Ebxml dialog box displays.

Tutorials for Trading Partner Integration 3-31

Tutorial:

3-32

Building ebXML Solutions

In the Insert control: eb XML dialog box enter, enter selectorSellerControl as the name of
the variable to use for the control. This name must be a valid Java identifier.

Click Next.

The Create Control wizard appears.
Enter SelectorSellerControl as the name of the new java file that will be created.

Click Next.

The Insert control: Ebxml dialog box appears.

In the Insert control: Ebxml dialog box, specify the following information:

— Leave the from field blank. This will default to the 000000001 at runtime, the default
trading partner.

— Leave the to field blank. This will be determined at runtime by the XQuery selector
which you will define in the next section.

— Enter servicename as SelectorSeller.

— select XmIObject as the type of data contained in the received message from the
message-arg-type drop-down menu.

Accept the default setting for ebXMLActionMode and xQuery\ersion
Click Finish.

The ebXML control instance is added to your list of controls in the Data palette, and a
java file (SelectorSwllerControl.java) corresponding to the ebXML control is added to the
Package Explorer pane. You can double-click on the java file to open it in Design view and
review the values which you just entered.

You will now modify the control definition file of the ebXML control. In the next section, you
change the method name, change the message type, and add an XQuery selector.

To Modify the ebXML Control Definition File

1.
2.

In the Data Palette, right-click on the ebXML selectorSellerControl.

Select Edit from the drop-down menu.

The SelectorSellerControl is displayed in Source view.

Rename request as processOrder in the Source view.

Tutorials for Trading Partner Integration

Step 3: Selecting the Trading Partner Information Dynamically Through Typed XML

The method name now matches the name of the method on the participant business
process. This method name corresponds to the eb:Action element in the ebXML message
envelope.

4. Change the line void processOrder (xmlObject payload); t0 void
processOrder (OrderDocument payload) ;

5. The tooltip editor displays a suggested package to import, select
Import’'OrderDocument ' (com.bea.tutoriat.order).

This ebXML control is now set up to use XML typed according to the schema you
imported in “To Import the Tutorial Schemas” on page 3-7 rather than generic untyped
XML.

6. Select processOrder in the Source view.

7. In the Properties pane, expand EBXMLControl.EbxmIMethod and add the following value
in the toselector:

"declare namespace ns0=\"bea.com/tutorial/order\"
data ($payload/ns0:Supplier_ID)

Note: If the Properties pane is not visible in Oracle Workshop for WebLogic, choose Window
> Show View > Other > Workshop > Properties from the Oracle Workshop for
WebLogic menu bar.

8. Select File > Save or enter Ctrl+S to save your work.

9. Close the SelectorSellerControl.java by clicking the x in the top right corner of the
window.

The ebXML control is now configured to pick out the trading partner ID from the message
according to the specifications of the XQuery statement you generated in the selector. The next
step is to add a processOrder Control Send node to the business process.

To Create the processOrder Control Send Node
1. Inthe Data Palette, expand the selectorSellerControl by clicking on the + next to it.

2. Select the void processOrder (OrderDocument payload) method. The name of the
method on this control must match the method name of the Receive request node in the
participant process.

3. Drag the selected method into Design view and drop it on the © which appears
immediately following the Client Request node.

Tutorials for Trading Partner Integration 3-33

Tutorial:

3-34

Building ebXML Solutions

A new Control Send node named processOrder is added to your business process.
To specify the order variable as the input variable:
a. Inthe Data Palette, select order from the list of XML variables.

b. Drag and drop it onto the processOrder Control Send node.

This concludes the creation of the SelectorBuyer business process. In this section, you learned
how to customize the participant and initiator processes to use typed XML and custom method
names. You also learned how to use and XQuery selector to extract the target trading partner 1D
form the payload message rather than declaring it statically. The next section describes how to
test your business processes.

To Test the SelectorBuyer Process

1.

9.

If the Server view is not visible in Oracle Workshop for WebLogic menu, choose Window
> Show View > Other > Server > Servers, and click Ok. A Server view is displayed.

On the Package Explorer pane, select and right-click the SelectorBuyer.java business
process.

Click Run As, and Run On Server.

In the Define a New Server dialog box, select Choose an existing server option and click
Next.

Click Finish.
After the application is deployed, the Test Browser is displayed.
Click Test Form in the Test Browser window.

To enter test data, do one of the following:

— Click Browse, and navigate to
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\WebContent\sampledata\sample
order.xml.

— Cut and paste the content of
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\WebContent\sampledata\sample
order.xml into the xml variable (payload) field.

Click clientRequest.

10. Confirm that the order.xm1 file was written out correctly to the c: \tptutorial directory

by checking that the time stamp of the file is current.

Tutorials for Trading Partner Integration

Step 4: Sending Raw Data (Binary File) Through an ebXML

Step 4: Sending Raw Data (Binary File) Through an ebXML Exchange

Exchange

In this example, we will use ebXML to send binary data between two trading partners through a
Message Broker channel. This example builds on the examples describes in previous sections. If

at any time you need more information about how to complete a task that was previously

explained, refer back to the preceding sections. This section contains the following procedures:

e “Building the BinarySeller Business Process” on page 3-35

e “Building the BinaryBuyer Business Process” on page 3-36

Building the BinarySeller Business Process

This example builds on what you have learned in the previous examples. If at any time you need
more detailed instructions, refer back to “Building the Seller Business Process” on page 3-9. This
section contains the following tasks:

e “To Create the BinarySeller Business Process” on page 3-35

“To Test the BinarySeller Business Process” on page 3-36

To Create the BinarySeller Business Process

1.

o & w0 N

In the Project Explorer, expand ebXMLWeb and select src folder.
Right-click src folder, then select New > Java Package.

Enter ebxml.oneway.binary, as the name.

Click Finish.

Create a new ebXML participant process named BinarySeller under the
ebxml.oneway.binary Package.

Delete the Respond to request node.

Modify the Receive request node as follows:

a. Inthe General Setting tab, remove the XmlObject parameter data type.
b. Click Add.

c. Select the Non-XML option.

Tutorials for Trading Partner Integration

3-35

Tutorial: Building ebXML Solutions

d. Go to Untyped and select RawData parameter data type.
e. Create a new variable named data of type RawData.
f. Click Close.

8. Create a new File control with the following values specified:

Variable name: file

New control name: File

directory-name: /tptutorial/binary-in

Type of Data: RawData

9. Drag and drop the write method (FileControlPropertiesDocument write(RawData
someData) of the file control after the Receive request node in the business process.

10. Double-click the write node and on the Send Data tab, specify data as the variable to assign
to the write method.

To Test the BinarySeller Business Process
1. On the Package Explorer pane, select and right-click the BinarySeller.java business process.

2. Click Run As, and Run On Server (For more detailed instructions refer back to, “To Test
the Seller Process” on page 3-16).

3. Use any binary file (for example an image file) as binary payload test data.

4. Confirm that the data.bin file was written out correctly to the
C:\tptutorial\binary-in directory by checking that the time stamp of the file is
current.

Building the BinaryBuyer Business Process

For the initiator side of this example, the process will look very similar to those in previous
examples, except that it will be invoked through a subscription to a file event which will cause
the process to pick up a file from a directory. This section contains the following tasks:

e “To Create the BinaryBuyer Business Process File” on page 3-37
e “To Create the Channel File” on page 3-37
e “To Configure the Subscription Node” on page 3-39

3-36 Tutorials for Trading Partner Integration

Step 4: Sending Raw Data (Binary File) Through an ebXML Exchange

e “To Create the ebXML Control” on page 3-39
e “To Test the BinaryBuyer Business Process” on page 3-40

To Create the BinaryBuyer Business Process File

Use the instructions outlined in detail in “Building the Buyer Business Process” on page 3-18 to
complete the following tasks:

1. In the ebxml.oneway.binary package, create a new business process named BinaryBuyer.

2. Double-click the Start Event and select the Subscribe to a Message Broker channel and
start via an event (Timer, Email, File, Adapter, etc.) option.

3. Click Close.

Before you can start to configure the Message Broker Subscription node, you need to create a
subscription channel file to which the subscription node can listen for events.

To Create the Channel File

1. Inthe Package Explorer pane select ebxml.oneway.binary.
2. Right-click on the ebxml.oneway.binary folder.

3. Select New > Channel Definitions.

4. Enter tptutorial.channel as the file name (see Figure 3-17).

Tutorials for Trading Partner Integration 3-37

Tutorial: Building ebXML Solutions

3-38

Figure 3-17 New Channel Definitions

9.

Click Finish.

New Channel Definitions

Choose a file name for the channel definitions file,

Enter or select the parent folder:

ebxMLWeb)srcfebxmlfoneway binary

(= .apt_src
(= .settings
(= .xbean_bin
(= .xbean_src
(= build
(= schemas
BE src
== ebxml
== oneway
(= binary
(= selector
(= WebContent
=2 Schemas

File name: | tptutorial.channel|

W New Channel Definitions @

Finish] [Cancel

The new channel file is created, added under the ebxml.oneway.binary Package in the
Package Explorer pane, and displayed on screen. An application build is also started

automatically to build the Schemas project.

In the channel file code, locate the following line:

<channel name="SampleRawDataChannel" messageType="rawData"/>

Remove the comment tags <! -- and --> preceding and following the line.

Select File > Save or enter Ctrl+S to save the channel file.

The Schemas project builds again.

Close the Channel file.

The sample channels defined in the file are now available for selection in the subscription node.

Tutorials for Trading Partner Integration

Step 4: Sending Raw Data (Binary File) Through an ebXML Exchange

To Configure the Subscription Node

1.

4,

Double-click the Subscription node.

The Subscription node builder is invoked.

On the General Settings tab, select the SampleRawDataChannel from the Channel name
drop-down list.

In the Receive Data tab:
a. Create a variable named data of type RawData
b. Select it to be the variable to assign to the subscription method.

Click Close.

You have now completed the configuration of your subscription node.

In the next section, you create a ebXML control to be used to communicate with the participator
business process.

To Create the ebXML Control

1.

Use the instructions in “To Create the ebXML Control and Control Node” on page 3-21 to
create an ebXML with the following values:

— Field name: binarySellerControl

— Name: BinarySellerControl

ebxml-service-name: BinarySeller (must match the value in the participant process)
from: leave blank
to: 000000002

method-arg-type: RawData
Click Finish.

From the Data Palette, drag and drop the void request (RawData payload) method
on the target appearing in the business process below the Subscription node.

From the Data Palette, drag and drop the data variable in the Non-XML list onto the
request node.

The BinaryBuyer business process is now complete, run and test it to ensure that it is working
properly.

Tutorials for Trading Partner Integration 3-39

Tutorial: Building ebXML Solutions

3-40

To Test the BinaryBuyer Business Process

1.

If the Server view is not visible in Oracle Workshop for WebLogic menu, choose Window
> Show View > Other > Server > Servers, and click Ok. A Server view is displayed.

On the Package Explorer pane, select and right-click the BinaryBuyer.java business
process (For more detailed instructions refer back to, “To Test the Seller Process” on
page 3-16).

After the application is deployed, the Test Browser is displayed, click Test Form in the
Test Browser window.

Use an image file as the binary payload test data.
Click subscription.

Confirm that the data.bin file was written out correctly to the
C:\tptutorial\binary-in directory by checking that the time stamp of the file is
current.

Note: Before you test your business process, make sure that you have completed the “To Create

the Channel File” on page 3-37 section. If you do not create a channel file before testing
the process, you will encounter an error.

Creating a File Event Generator

In this section you create the file event which will invoke the BinayBuyer business process when
a raw data type file is dropped in a directory.

To Create the File Event

1.
2.

Create the following new directory on your hard drive: c: \tptutorial\errors
If not already running, start your Oracle WebLogic Server.

After the Server is running, open the Oracle WebLogic Administration Console by selecting
Run > WebLogic Integration > WebLogic Integration Administration Console from the
Oracle Workshop for WebLogic menu.

Log in to the console using the server user name and password that you specified in the
“Step 1: Create a New Oracle WebLogic Integration Domain” on page 1-2 section.

Click Event Generators on the left pane.

Click File > Create New on the left pane.

Tutorials for Trading Partner Integration

Step 4: Sending Raw Data (Binary File) Through an ebXML Exchange

The Create a New File Event Generator page opens.

7. Enter TPTutoriall as the Generator Name.

8. Click Submit.

The File Event Generator Definition page opens

9. Click Define a New Channel Rule.

The File Generator Channel Rule Definition page opens.

10. Enter the following parameters:

File Type: Disk File

Channel Name: /SamplePrefix/Samples/SamplesRawDataChannel (rawData)
Message Encoding: leave blank

Directory: <Base Directory>/tptutorial/binary-out

Pass by file name: No

Scan subdirectories: No

File pattern: leave blank, it defaults to *.*

Sort by Arrival?: No

Polling interval: 3 seconds (small enough to avoid a long wait)
Read limit: 0

Post Read Action: Delete

Archive Directory: leave blank

Error Directory:<Home Directory> /tptutorial/errors

Description: Raw data file.

11. Click Submit.

You have completed creating the File Event. For more information about the Oracle WebLogic
Administration Console and Event Generators, see Event Generators.

To Test the Sending Raw Data Example.

1. On the Package Explorer pane, select and right-click the BinaryBuyer.java business process
(For more detailed instructions refer back to, “To Test the Seller Process” on page 3-16).

Tutorials for Trading Partner Integration 3-41

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/evntgen.html

Tutorial: Building ebXML Solutions

2. Putabinary file in the binary-out directory you created earlier. In a few seconds it should
disappear and a file named data.bin should appear in the binary-in directory.

Note: About Message Tracking: In this and previous examples, all messages sent via eb XML
are tracked in the tracking database. In the Oracle WebLogic Administration Console,
navigate to Trading Partner Management > Message Tracking to look at the
messages. Basic message information and payload information are both tracked. You can
also navigate from the message to the process that created or consumed the message. For
more information see, Trading Partner Management.

Step 5: Creating a Roundtrip ebXML Conversation

This example illustrates how to implement an ebXML conversation in which a request message
(order request) is followed by a response message (invoice). The first part of the conversation is
identical to the one-way scenario you developed earlier. In this example, you add a Client
Response node to the participant business process and use the ebXML control callback for the
response message. This section contains the following procedures:

e “Building the RoundtripSeller Business Process” on page 3-42

e “Building the RoundtripBuyer Business Process” on page 3-46

Building the RoundtripSeller Business Process

This example builds on the previous examples that you have completed. If at any time you need
more detailed instructions, refer back to “Building the Seller Business Process” on page 3-9 to
complete the following sections:

e “To Create the Business Process File and Configure the Receive Request Node” on
page 3-42

e “To Create the File Controls and Configure the Control Nodes” on page 3-43
e “To Configure the Respond to Request Node” on page 3-45
e “To Deploy the RoundtripSeller Business Process” on page 3-46

To Create the Business Process File and Configure the Receive Request Node

1. In the Package Explorer pane, expand ebxmIWeb and select src.

2. Right-click src, and select New > Package.

The Java Package dialog box is displayed.

3-42 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/adminhelp/tpm.html

Step 5: Creating a Roundtrip ebXML Conversation

3. Enter ebxml.roundtrip in the Name field and click Finish.

The ebxml.roundtrip Package appears under ebxmlWeb\src.
4. In the roundtrip Package, create a new ebXML participant process named RoundtripSeller.
5. Double-click the Receive request node and configure as follows:

a. Inthe General Setting, tab rename the method to processOrder.

b. Remove the XmIObject payload parameter type.

c. Click Add and from the XML list select the parameter type Order (from b2border.xsd).

d. Inthe Receive Data tab, create a new variable named order and select it as the variable
to be assigned to the method.

e. Click Close.

For illustration purposes, this example simplifies the order/invoice process.The seller will again
write the incoming order out to file and for the response, the seller will read an invoice document
from the file system. The invoice will be the same for each order. In production scenarios, the
seller process could instead read the information from a database, obtain it from a message queue,
or get it from a backend application as an event from an Application View control. The process
could also delegate processing of the order to a subprocess, which is illustrated in the next
example “Step 6: Implementing the Public/Private Pattern” on page 3-51.

To Create the File Controls and Configure the Control Nodes

1. Addanew File control named file and configure it to write out order.xmlto c: \tptutorial\

Note: To save time, you can drag and drop the File.java in the ebxml.oneway folder onto
the Data Palette. This will create a new instance of the File.java control.

2. Drag and drop the FileControlPropertiesDocument write (XmlObject someData)
method to the target that appears below the Receive request node.

Double-click on the write node.
Select Send Data and select Order variable.

Create a new directory on your hard drive named c: \tptutorial\invoice.

o o ~ w

Copy the file
C:\myapps\tptutorialapps\ebxml\ebxmlWeb\WebContent\sampledata\sampleinv

oice.xml to the c:\tptutorial\invoice directory

Tutorials for Trading Partner Integration 3-43

Tutorial: Building ebXML Solutions

7. Rename sampleinvoice.xml t0 invoice.xml.

8. Create a second new File control named InvoiceFile and configure it to read an XmlObject
(invoice.xml) from the <Home Directory>\tptutorial\invoice directory by using the
following configurations:

— Field name: InvoiceFile
— File name filter: invoice.xml
— Type of Data: XmlObject

— directory-name: /tptutorial/invoice

9. Drag and drop the XmIObject read() method from Invoicefile control to the target that
appears below the write node.

10. Double-click the read node.

11. Click Receive Data.

The method expects untyped XML (XmlObject) but our invoice.xml file contains typed
XML so we will need to do a simple transformation between the two.

12. Select the Transformation Option.

13. Click Select Variable > Create New Variable....

The Create Variable window opens.
14. Enter invoice as variable name.
15. From the XML list, expand b2binvoice.xml and select Invoice.

16. Click OK.

The Create Variable window closes and your new variable is listed in the variable pane of
the node builder.

17. Click Create Transformation.

The Transformation Tool window opens.

18. Drag and drop the XmlIObjectDoc in the Source pane to the Invoice root in the Target
pane (see Figure 3-18).

3-44 Tutorials for Trading Partner Integration

Step 5: Creating a Roundtrip ebXML Conversation

Figure 3-18 Transformation Tool

Source | Target
- %miObjectDoc = =N iroice
@ Invoice_Mumber
@ Customer_ID
@ Supplier_ID
@ Customer_Mame
@ Available_Date

+-(@ Invaice_ltems
@ Product_Type
@ Invoice_Amaunt

Design | Source | Test

An XQuery transformation is created a corresponding transformation control is created and
stored in the RoundtripSellerTransformation.java file, which was created in your
Package Explorer pane when you opened the Transformation tool.

19. Close the Transformation Tool window by clicking on the x in the top of the
Transformation Tool window.

20. Click Yes in the Save Resource dialogue window.

21. Click Close in the node builder.

The transformation you created in the preceding steps, only transforms from one data type to
another. In production scenarios, you would use the Transformation Tool to convert from the
backend system format to the format expected by the trading partner. You can also use the
Transformation Tool to manipulate data. For more information about the Transformation Tool,
see Guide to Data Transformation.

The next step in this example is to configure the Respond to request node.
To Configure the Respond to Request Node

1. Double-click the Respond to request node.

2. Rename the method name to onlInvoice.

3. Remove the XmlObiject payload parameter type.

4. Click Add, and from the XML list, select the parameter Invoice from the b2binvoice.xsd
schema.

5. Click Ok.

Tutorials for Trading Partner Integration 3-45

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/dtguide/index.html

Tutorial: Building ebXML Solutions

3-46

Click Send Data.
Select invoice from the Select variables to assign drop-down list.

Click Close.

© © N o

Select File > Save or enter Ctrl+S to save.

You have completed building the seller (participant) side of this example. The seller will receive
an order document from the buyer, write it out to file, read in an invoice file and send it to the
buyer. The name of the ebXML service created for this transaction is RoundtripSeller. The
message exchange will be carried out as a single ebXML conversation. The Trading Partner
Integration (TPI) system automatically manages the ebXML conversation and ensures that the
same conversation ID is used within the same participant process instance.

To Deploy the RoundtripSeller Business Process

1. On the Package Explorer pane, select and right-click the RoundtripSeller.java business
process.

Click Run As, and Run On Server.
The server is started, and the application is deployed on it.

After the application is deployed, the Test Browser is displayed.

o > w D

Close the Test Browser window.

Testing the process at this point would create an exception on the callback method since you have
not yet created the initiator process. That is why you only deploy the process so that it will run
properly when you test the initiator process later on.

Building the RoundtripBuyer Business Process

This section builds on the tasks that you have learned in previous examples. If at any time you
need more detailed descriptions, refer back to “Building the Buyer Business Process” on
page 3-18 while completing the following tasks:

e “To Create the Business Process and Configure the Client Request Node” on page 3-47
e “To Create and Configure the ebXML Control” on page 3-47
e “To Create and Configure the ebXML Control Nodes” on page 3-48

e “To Create and Configure the Client Response Node” on page 3-49

Tutorials for Trading Partner Integration

Step 5: Creating a Roundtrip ebXML Conversation

“To Specify the Trading Partner ID in an XML Variable” on page 3-50

“To Test the Business Processes” on page 3-50

To Create the Business Process and Configure the Client Request Node

1.

o & w0 D

In the ebxml.roundtrip folder, create a new business process named RoundtripBuyer.
Double-click the Start Event.

Select Invoked via a Client Request.

Click Close.

Double-click the Client Request node and configure as follows:

a. Change the method name to startBuyer.

b. Click Add and from the XML list select the parameter type Order (from b2border.xsd).

c. On the Receive Data tab, create a new variable named order of type Order and specify
it to be assigned to the method.

d. Click Close.

To Create and Configure the ebXML Control

1.

2.

Add a new ebXML control and configure it as follows:

Field Name: roundtripSellerControl

Name: RoundtripSellerControl

ebxml-service-name: RoundtripSeller (matches the participant side)

Accept defaults for all other fields.

In the Data Palette, right-click on the roundtripSellerControl (ebXML control) and select
Edit.

In the Source view, replace the following line public void request (XmlObject
payload); With public void processOrder (OrderDocument payload) ;.

Double-click on the warning next to the public void processOrder (OrderDocument
payload) ; and select Import’'OrderDocument’ (com.bea.tutorial.order) .

The warning sign disappears.

Tutorials for Trading Partner Integration 3-41

Tutorial: Building ebXML Solutions

3-48

5. Inthe Source view, replace the following line public void response (XxmlObject
payload); With public void onInvoice (InvoiceDocument payload) ;.

6. Double-click on the warning next to the public void onInvoice (InvoiceDocument
payload) ;.

Figure 3-19
" PEYVITHO E0RINT MES5E0e Ay I0aa (=]
wl,.-’ —

public void DnInvoice(;gxg}ggggggggg& payload) ;

J#% Invoked when an ebXML 30ALF envelope containing an acknowledgement is
* ack EBXML ZI0AF Envelope containing acknowledgement

v

< - >
7. Select Import’'InvoiceDocument’ (com.bea.tutorial.invoice) .

8. Save your work by selecting File > Save or enter Ctrl+S

9. Close the ebXML Source view by clicking the x in the top right corner of the window.

You have now completed the roundtripSeller (ebXML) control configuration. In the next step,
you create control nodes associated with the methods of your ebXML control.

To Create and Configure the ebXML Control Nodes
1. In the Data Palette, expand the roundtripSeller (ebXML) control.

2. Drag and drop the void processOrder (OrderDocument payload) method to the target
that appears below the Client Request node.

3. Drag and drop the order: OrderDocument variable under the XML list on the Data Palette
onto the processOrder node.

4. Drag and drop the void onInvoice (InvoiceDocument payload) callback to the target
that appears below the processOrder node.

5. Double-click the onlnvoice node.

6. Click Receive Data.

7. Select Create New Variable... from the Select variables to assign drop-down list.
8. Create a new variable named invoice.

9. Click OK.

10. Click Close.

Tutorials for Trading Partner Integration

Step 5: Creating a Roundtrip ebXML Conversation

11. Create a new File control named BuyerFile and configure it to write out invoice.xml to the
<Home Directory>\tptutorial\buyer directory by using the following configurations:

— Field name: File

— Name: BuyerFile

— Directory-name: /tptutorial/buyer

Note: Create a new directory on your hard drive named C:\tptutorial\buyer.
— File name filter: invoice.xml

— Type of Data: XmlObject

12. In the Data palette, under Controls expand the File control and select the
FileControlPropertiesDocument write (XmlObject someData)method.

13. Drag the selected method into Design view and drop it below the Onlnvoice node.

14. Double-click the new write node.

The write node builder is invoked.
15. Click Send Data and select invoice variable.
16. Click Close
17. Right-click on the onInvoice node and select Add Timeout Path.

18. Select the OnTimeout Path and in the JPD Configuration pane configure the following
properties:

— duration: 10s
— retry: 5

You have completed adding the controls. The next step is to add a Client Response node and
configure it to return the contents of the invoice variable.

To Create and Configure the Client Response Node

1. Dragand drop a Client Response node from the Node Palette to the target that appears below
the onlnvoice node.

2. Double-click the Client Response node.
3. Change the method name to onBuyerComplete.

4. Click Add and select the parameter Invoice (under b2binvoice.xsd) from the XML list.

Tutorials for Trading Partner Integration 3-49

Tutorial: Building ebXML Solutions

3-50

5. Click Send Data.
6. Select the invoice variable from the Select variables to assign drop-down list.

7. Click Close.

The buyer side of this example is almost complete, but you have not yet specified the ID of the
trading partner. In the previous examples, you provided it as a static value in the ebXML control
and also configured the control to pick the ID out at runtime from the payload. In this example,
you specify the ID in a process XML variable using an XQuery selector.

To Specify the Trading Partner ID in an XML Variable
1. Inthe Data Palette, click on roundtripSellerControl.

2. Inthe Annotations pane, locate the ebxml attribute section.

In the previous examples, we specified the ebXML attributes in the control definition (the
Java file). The values of those attributes apply wherever the control is used. Here you
specify the control instance attributes, which only apply to the instance of the control
declared in this business process.

3. In the ServiceName filed, enter RoundtripSeller.

Note: This value has to be specified again although it exists in the controls definition file.
This is because any required fields in the configuration will not be inherited from the
controls definition file but instead needs to be specified in each instance of the
control.

4. In the to-selector field, enter declare namespace
ns0=""bea.com/tutorial/order'data($order/ns0:Supplier_ID).

The buyer side is now complete. You can run and test your processes using the Oracle WebLogic
Test Browser.

To Test the Business Processes

1. On the Package Explorer pane, select and right-click the RoundtripBuyer.java business
process.

2. Click Run As, and Run On Server.

The server is started, and the application is deployed on it.
3. After the application is deployed, the Test Browser is displayed.

4, Select Test Form

Tutorials for Trading Partner Integration

10.

Step 6: Implementing the Public/Private Pattern

In the Test Form page, click Browse and enter <Home Directory>
\myapps\tptutorialapps\ebXML\ebXMLWeb\sampledata\sampleorder.xml into the
xml variable (payload) field.

Click startBuyer.

Confirm that the Supplier_ID field in the test data has the correct trading partner ID
(000000002).

Click the Refresh link to see the callback method.

Confirm that the order . xm1 file was written out correctly to the c: \tptutorial directory
by checking that the time stamp of the file is current.

Confirm that the invoice.xm1 file was written out correctly to the c: \tptutorial\buyer
directory by checking that the time stamp of the file is current.

Step 6: Implementing the Public/Private Pattern

This example illustrates how to use subprocesses to implement the public/private pattern. You
can use this pattern to keep the details of backend integration confined to a private process
definition and keep the public process definitions dedicated to trading partner interaction. This
example contains the following procedures:

“Building the PublicBuyer Business Process” on page 3-51
“Building the PrivateBuyer Business Process” on page 3-53
“Building the PrivateSeller Business Process” on page 3-54

“Testing the Public/Private Pattern Example” on page 3-57

Building the PublicBuyer Business Process

In this example we reuse some of the files that you have created in the previous examples.

1.
2.

In the Package Explorer pane, expand ebxmlWeb and select src.

Right-click src, and select New > Package.

The Java Package dialog box is displayed.
Enter ebxml.publicprivate in the Name field and click Finish.

The ebxml.publicprivate package appears under ebxmlWeb\src.

Tutorials for Trading Partner Integration 3-51

Tutorial:

Building ebXML Solutions

Click on the RoundtripBuyer.java in the ebxml.roundtrip folder and drag it to the
publicprivate folder while holding down your Ctrl key.

Release your mouse button.
A copy of the RoundtripBuyer.java file is created in the publicprivate folder.

Note: Whenever you duplicate a business process file, the new copy still reference the same
(old) controls, even if you duplicate folders which include control files.

Right-click on the new business process and select Refactor > Rename.

Note: You may have to stop the Oracle WebLogic Server before you can rename the
business process. To do so, select Tools > WebL ogic ServerStop > WebLogic
Server.

Enter PublicBuyer and click OK.
Right-click on PublicBuyer and select Generate > Process Control.

Click Ok.

A new control definition file (PublicBuyerPControl.java) is created in your publicprivate
folder. This control can be used in other processes to invoke the PublicBuyer.java business
process. You use this control in the PrivateBuyer business process to invoke the
PublicBuyer process.

10. Right-click on the onInvoice node and select Add Timeout Path.

11. Select the OnTimeout Path and in the JPD Configuration pane, configure the following

properties:
— duration: 10s

— retry: 5

12. Create a new File control named BuyerFile and configure it to write out invoice.xml to the

3-52

<Home Directory>\tptutorial\publicprivate directory by using the following configurations:
Note: Create a new directory on your hard drive named C:\tptutorial\publicprivate.

Field name: File

Name: PublicFile

Directory-name: /tptutorial/publicprivate

File name filter: publicinvoice.xml

Tutorials for Trading Partner Integration

Step 6: Implementing the Public/Private Pattern

— Type of Data: XmlObject

13. In the Data palette, under Controls expand the File control and select the

FileControlPropertiesDocument write (XmlObject someData) method.

14. Drag the selected method into Design view and drop it below the Onlnvoice node.

15. Double-click the new write node.

16. The write node builder is invoked.

17. Click Send Data and select invoice variable.

18. Click Close.

Building the PrivateBuyer Business Process

This section builds on the tasks you learned in previous examples. If at any time you need more
detailed information, refer back to “Building the Buyer Business Process” on page 3-18 while
completing the following tasks:

1.
2.
3.

Create a new business process in the ebxml.publicprivate folder named PrivateBuyer.
Double-click Start Event and select Invoked via a Client Request node.

Configure the Client Request node according to the following:
— Method name: startPrivateBuyer
— Expected parameter type: Order from the b2border.xsd schema under XML list.
— Receive data tab: create a new XML variable named order.
Add a Client Response node from the Node Palette.
Configure the Client Response node according to the following:
— Method name: onPrivateBuyerComplete
— Expected parameter type: Invoice from the b2binvoice.xsd schema under XML list.

— Send Data tab: create a new XML variable named invoice of type Invoice and specify
it to be assigned to the method.

Drag and drop the PublicBuyerPControl.java from the Package Explorer pane onto the
Data Palette.

Tutorials for Trading Partner Integration 3-53

Tutorial:

3-54

10.

11.

12.
13.
14.

Building ebXML Solutions

An instance of the publicBuyerPControl is added to your Controls list in the Data
Palette.

Expand the new process control.

Drag and drop the startBuyer method onto the target that appears after the Client Request
node.

Drag and drop the order variable from the Data Palette under the XML list onto the
startBuyer node.

Drag and drop the onBuyerComplete method from the Controls list in the Data Palette
onto the target that appears after the startBuyer node.

Drag and drop the invoice variable from the Data Palette under the XML list onto the
onBuyerComplete node.

Click Save.
Right-click on the onBuyerComplete node and select Add Timeout Path.

Select the OnBuyerComplete Path and in the JPD Configuration pane, configure the
following properties:

— duration: 10s

— retry: 5

The buyer side business processes are now complete.

Building the PrivateSeller Business Process

If at any time you need detailed instructions while completing the tasks in the section, refer back
to “Building the Seller Business Process” on page 3-9.

1.
2.

3.

In the ebxml.publicprivate folder, create a new business process named PrivateSeller.
Configure it to be invoked by a Client Request node.
Configure the Client Request node as follows:

— Method name: privateProcessOrder

— Expected variable type: Order from the b2border.xsd schema.

— Receive Data tab: Create a new variable named order of type Order and specify it to
be assigned to the method.

Tutorials for Trading Partner Integration

10.

11.
12.
13.
14.

15.
16.
17.

Step 6: Implementing the Public/Private Pattern

Add a Client Response node from the Node Palette to the business process, following the
Client Request node.

Configure the Client Response node as follows:
— Method name: onPrivatelnvoice
— Expected variable type: Invoice from the b2binvoice.xsd schema.

— Send Data tab: create a new variable named invoice of type Invoice and specify it to
be assigned to the method.

There are several options for processing a private process. Since this example is for
illustration purposes only, you use a simple file control to read and write the data from and
to the file directory system.

Drag and drop File.java from the ebxml.oneway folder in the Package Explorer pane onto
the Data Palette.

Drag and drop the FileControlPropertiesDocument write method onto the target that
appears below the Client Request node.

Double-click the write node.
Click Send Data and select the order variable from Select variable to assign.

Drag and drop InvoiceFile.java from the ebxml.roundtrip folder in the Package Explorer
pane to the Data Palette.

Drag and drop the read method to the target that appears below the write node.
Double-click the XMLObject read() node.
Double-click the read node.

Click Receive Data.

The method expects untyped XML (XmlObject) but our invoice.xml file contains typed
XML so we will need to do a simple transformation between the two.

Select the Transformation Option.
Click Select Variable and select invoice from the drop-down menu.

Click Create Transformation.

The Transformation Tool window opens.

Tutorials for Trading Partner Integration 3-55

Tutorial: Building ebXML Solutions

3-56

18. Drag and drop the XmlObjectDoc in the Source Schema pane to the Invoice root in the
Target Schema pane.

An XQuery transformation is created a corresponding transformation control is created and
stored in the PrivateSellerTransformation.java file, which was created in your Package
Explorer pane when you opened the Transformation tool.

19. Close the Transformation Tool window by clicking on the x in the top right corner of the
window.

20. Click Yes in the Save Before Closing dialogue window.
21. Click Close in the node builder.
22. Save your work.

23. Right-click on PrivateSeller.java and select Generate > Process Control.

You have completed building the PrivateSeller business process. In the next section, you will
create the public process for the seller side of the conversation.

Building the PublicSeller Business Process

To create the PublicSeller business process, you re-use some of the files that you created in the
previous example. You can refer back to the detailed instruction in “Building the Seller Business
Process” on page 3-9 to complete the tasks in this section.

1. Drop and drag the RoundtripSeller.java file from the ebxml.roundtrip folder to the
ebxml.publicprivate folder while holding down your ctrl key.

Right-click on the new process file and select Refactor > Rename.
Enter PublicSeller.
Double-click on PublicSeller.

Click the Source view tab.

o o~ w N

In the Annotations pane, change the ebxml-service-name to PublicSeller.
7. Click Design view.
8. Delete the write node.

9. Delete the read node

Tutorials for Trading Partner Integration

Step 6: Implementing the Public/Private Pattern

10. In the Data Palette Controls section, delete all three control instances (file, invoiceFile, and
transformations).

11. Drag and drop the PrivateSellerPControl.java file from the Package Explorer pane onto
Data Palette.

12. Expand the privateSellerPControl in the Data Palette.

13. Drag and drop the privateProcessOrder method onto the target that appears just below the
Receive request node.

14. Drag and drop the order variable from the XML list in the Data Palette onto the
privateProcessOrder node.

15. Drag and drop the onPrivatelnvoice method onto the target that appears just below the
privateProcessOrder node.

16. Drag and drop the invoice variable from the XML list in the Data Palette onto the
onPrivatelnvoice node.

17. Right-click on the onPrivatelnvoice node and select Add Timeout Path.

18. Select the OnTimeout Path and in the JPD Configuration pane, configure the following
properties:

— duration: 10s
— retry: 5

You have completed the seller side of the conversation. The public process receives a message
via ebXML and passes it on to the private process. When the private process responds, it calls
back to the public process, which returns the invoice information via ebXML to the initiating
trading partner.

You need to do one final adjustment before running and testing this example:
1. Double-click on PublicBuyer.java.
2. Inthe Data Palette, select the roundtripSellerControl.

3. Inthe Annotaion pane, change the ebxml-service-name to PublicSeller to match the
participant side.

Testing the Public/Private Pattern Example

1. Open PublicSeller.java.

Tutorials for Trading Partner Integration 3-57

Tutorial: Building ebXML Solutions

2. Click Run As > Run On Server.
3. Switch back to Oracle Workshop for WebLogic and open PrivateBuyer.java.
4. Click Run As > Run On Server.

The server is started, and the application is deployed on it.
5. After the application is deployed, the Test Browser is displayed.
6. Click Test Form.

7. To enter test data, do one of the following:

— Click Browse, and navigate to
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\sampledata\sampleorder.xml.

— Cut and paste the content of
C:\myapps\tptutorialapps\ebXML\ebXMLWeb\sampledata\sampleorder.xml
into the xml variable (payload) field.

8. Refresh the browser after a few seconds. The log entry for
callback.onPrivateBuyerComplete Will have the content of the response with the
Invoice document.

9. Confirm that the order.xm1 file was written out correctly to the c: \tptutorial directory
by checking that the time stamp of the file is current.

10. Confirm that the invoice.xml file was written out correctly to the
C:\tptutorial\publicprivate directory by checking that the time stamp of the file is
current.

Step 7: Using the TPM Control and Callbacks

3-58

This example illustrates how to obtain trading partner information from the Trading Partner
Management (TPM) repository at runtime by using the TPM control. It will also show you how
to use the onAck callback of the ebXML control. In the example you send an ebXML message
and wait for the ebXML acknowledgement. If the acknowledgement times out, for example,
because the remote partner is offline, and the TPM protocol binding for both local and remote
trading partners have “once and only once” or “at least once” delivery schematics, an email alert
is sent to that remote trading partner. You obtain the email address by querying the TPM database
using a TPM control.

This example contains the following sections:

Tutorials for Trading Partner Integration

Step 7: Using the TPM Control and Callbacks

“Building the BuyerAlert Business Process” on page 3-59

“Testing the BuyerAlert Business Process” on page 3-63

Building the BuyerAlert Business Process

Use the skills you have learned in previous sections to complete the following tasks:

“To Create the BuyerAlert Business Process” on page 3-59

“To Create and Add the TPM Control to the Process” on page 3-60

“To Create and Add an Email Control to the Business Process” on page 3-60
“To Specify the Target Trading Partner ID” on page 3-62

“To Specify the Email Address for the Trading Partner Profile” on page 3-62

To Create the BuyerAlert Business Process

1.

2.

3.

Create a new package named tpm under the root ebxmlIWeb/src of your project.
Add a new process file named BuyerAlert.
Configure the business process to be invoked by a Client Request node.

Configure the Client Request node as follows:
— In General Settings tab: add Parameter Types: XmlObject and String

— Receive Data tab: Create a new XmlObject variable named payload and a new String
variable named partnerld. Select them to be assigned to the corresponding methods.

— Click Close.

Add an ebXML control and configure it as follows:
— Field Name: sellerControl
— Name: SellerControl

— ebxml-service-name: use any value that does not correspond to an actual deployed
participant service

— Accept defaults for all other fields

From the Data Palette, drag and drop the request method of the sellerControl onto the
target that appear below the Client Request node.

Tutorials for Trading Partner Integration 3-59

Tutorial: Building ebXML Solutions

7. Drag and drop the payload variable onto the request node.

8. Drag and drop the onAck callback onto the target that appears below the request node.

This callback will occur when the ebXML message sent in the previous step is
acknowledged. In case the acknowledgement does not arrive, you add logic in the next
steps that alerts the trading partner.

9. Right-click on the onAck node.
10. Select Add Timeout Path from the drop-down menu.

11. In the JPD Configuration pane, for the timer, provide a duration value of 10 seconds by
typing 10s.

To Create and Add the TPM Control to the Process

1. Create anew TPM control by selecting Integration Controls > TPM in the Controls section
of the Data Palette.

2. Enter tpm as the variable name.

3. Click Finish.

For more information about the TPM control, see TPM Control.
4. Expand the new TPM control.

5. Drag and drop the TradingPartnerDocument getBasicProperties (String
partnerId) onto the target that appears in the timeout path below the timer.

Double-click the getBasicProperties node.
Click Send Data.

Select partnerld from the Select variables to assign drop-down list.

© © N ©

Click Receive Data.

10. Create a new variable named basicPartnerInfo of type TradingPartnerDocument and
specify it to be assigned to the method.

11. Click Close.

To Create and Add an Email Control to the Business Process

1. Select Email from the Integrations Controls drop-down menu in the Data Palette.

3-60 Tutorials for Trading Partner Integration

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsTPM.html

2.

© oo N o O

11.
12.
13.
14.
15.
16.
17.
18.

Step 7: Using the TPM Control and Callbacks

Configure the Email control as follows:

Field Name: alert

Name: Alert

SMTP host: <your SMTP host name, e.g. mail.mycompany.com>

From-address: <a reply address, e.g.admin@mycompany.com>

From-name: <Name, e.g. Administrator>

Body-type: String
For more information about the Email control, see Email Control.
Expand the new Email control.

Drag and drop the sendEmail method onto the target that appears after the
getBasicProperties node in the timeout path.

Double-click the sendEmail node.

Click on Send Data.

Select the Transformation option.

Click Select Variable and select basicPartnerInfo.

Click Create Transformation.

. Drop and drag the email leaf from the Source Schema onto the argl (corresponds to the

email “To’ filed) leaf in the Target Schema.

Right-Click on arg4 (corresponds to the email ‘Subject’ field).
Select Create Constant.

Enter Problem Sending Order.

Click OK.

Right-Click on arg5 (corresponds to the email body).

Select Create Constant.

Enter We encountered a problem while sending you an order.

Click OK.

Tutorials for Trading Partner Integration 3-61

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/controls/controlsEmailSampleMsg.html

Tutorial: Building ebXML Solutions

3-62

19. Close the Transformation Tool by clicking the x in the top right corner.

20. Click Yes in the Save Before Closing? dialogue.

21. Click Close in the node builder.

The last step in this example is to specify the ID of the target trading partner in our ebXML
control. In this example, you use the setProperties method of the control to accomplish this.

To Specify the Target Trading Partner 1D

1.
2.

o o k~ w

~

Select the setProperties method under the ebXML control in the Data Palette.

Drop and drag the method onto the target that appear between the Client Request node and
the request node.

Double-click on the setProperties node.
Click Send Data.

Select the Transformation option.
Select partnerld as the variable.

Click on Create Transformation.

8. Drag the string variable from the Source Schema pane to the ‘to’ element in the Target

9.

Schema pane.

Close and Save your transformation.

10. Close the node builder

Before you can test the example, you need to specify the email address in the trading partner
profile.

To Specify the Email Address for the Trading Partner Profile

1.
2.

If not already running, start your Oracle WebLogic Server.

After the Server is running, open the Oracle WebLogic Administration Console by selecting
Run > WebLogic Integration > WebLogic Integration Administration Console.

Log into the console using your server user name and password you specified in the “Step
1: Create a New Oracle WebLogic Integration Domain” on page 1-2 section.

Click Trading Partner Managment.

Tutorials for Trading Partner Integration

Step 8: Setting Partner ID Dynamically Based on Directory Name

Click Profile Management.
Click Test_TradingPartner_2.
Click Edit profile.

© N o g

In the Email field, enter you email. This is where the alert messages will be deliver.
9. Click Submit.

10. Close the console.

Testing the BuyerAlert Business Process
1. Select BuyerAlert.java.

Click Run As > Run On Server.

Test the BuyerAlert business process.

Specify any XML data as the payload.

Enter 000000002 for the string parameter.

o g ~ w D

After the process completes, check your email for the alert message.

These emails where sent since an error occurred and triggered the email control to send an
email to the address you specified when you set up the control.

Step 8: Setting Partner ID Dynamically Based on Directory
Name

In this example you look at the already built application which was distributed with the zipped
archive that contained this tutorial (see, “Step 3: Install the Tutorial Files” on page 1-9). This
example demonstrates how to use the name of a sub-directory on your hard drive as the partner
ID and set it dynamically using the setProperties method in the ebXML control. This example
contains the following sections:

e “Reviewing the Initiator Side of the Example” on page 3-64

e “Reviewing the Participant Side of the Example” on page 3-67

Tutorials for Trading Partner Integration 3-63

Tutorial: Building ebXML Solutions

Reviewing the Initiator Side of the Example

In this example you begin with looking at the initiator side of the application. Use the skills you
learned in previous sections to complete the following tasks:

e “To Set Up the Initiator Side of the Example” on page 3-64
e “To Review the Configuration of the DynamicBinaryBuyer Process” on page 3-65
e “To Add a New Rule in the File Event Generator” on page 3-65
e “To Test the DynamicBinaryBuyer Process” on page 3-67
To Set Up the Initiator Side of the Example
1. Create the following two directories on your hard drive:

— C:\tptutorial\binary-out\dynamic\000000002

— C:\tptutorial\binary-in\dynamic\000000001

2. Create a new package under ebxmlWeb/src, and name it as
ebxml.oneway.binary.advance.

3. Right-click on ebxml.oneway.binary.advanced, and select Import from the drop-down
menu.

The Import dialog box is displayed.
4. In the Import dialog box, select File System and click Next.

5. In the File System window, click Browse next to From directory: and navigate to the
advanced folder in the [unzip
location] \tptutorialapps\ebxml\ebxmlWeb\src\ebxml\oneway\binary
directory Where [unzip location] is the location where you unzipped the tutorial
archive in “Step 3: Install the Tutorial Files” on page 1-9.

6. Click Select All.
7. Click Finish.
8. In the Package Explorer pane, expand the ebxml.oneway.binary.advanced folder.

9. Double-click on DynamicBinaryBuyer.java

DynamicBinaryBuyer.java opens in Design view.

3-64 Tutorials for Trading Partner Integration

Step 8: Setting Partner ID Dynamically Based on Directory Name

To Review the Configuration of the DynamicBinaryBuyer Process

1. This application uses the name of a sub directory as the partner ID and sets it dynamically

using the setProperties method in the ebXML control. You can double-click on any of the
nodes to note the following:

— The business process is invoked by a RawData message coming through on the channel
which the starting event subscribes to through the Subscription node.

— The Extract partner id node contains custom Java code which extracts the partner id
from the incoming message. To learn about writing custom Java code in business
processes, see Writing Custom Java Code in Perform Nodes.

— The setProperties node takes the trading partner 1D and assigns it to a string variable
which corresponds to the ‘to” parameter of the ebXML envelope.

— The request sends the message to the trading partner.

In the Package Explorer pane, double-click on the \schemas\src\tptutorial.channel
file.

The channel file opens in Design view.

Go to the Source view and add the following line to your channel file:

<channel name="TutorialChannel" messageType="rawData"
qualifiedMetadataType="eg:FileEventGenerator"/>

This line specifies a new channel which listens messages that are sent using event a
File event generator. All event generators and some applications send metadata with
messages.

The next step in the process is to add a new rule in the File Even Generator in the Oracle
WebLogic Integration Administration Console to listen to the correct folder on your hard drive.

To Add a New Rule in the File Event Generator

1.
2.

If not already running, start your Oracle WebL ogic Server.

After the Server is running, open the Oracle WebLogic Administration Console by selecting
Run > WebLogic Integration > WebLogic Integration Administration Console from the
Oracle Workshop for WebLogic menu.

Log into the console using your server user name and password you specified in the “Step
1: Create a New Oracle WebLogic Integration Domain” on page 1-2 section.

Click Event Generators on the left pane.

Tutorials for Trading Partner Integration 3-65

http://download.oracle.com/docs/cd/E14981_01/wli/docs1031/bpguide/bpguidePerform.html

Tutorial: Building ebXML Solutions

5. Click File > Create New on the left pane.

The Create a New File Event Generator page opens.
6. Enter TPTutorial2 as the Generator Name.

7. Click Submit.

The File Event Generator Definition page opens

8. Click Define a New Channel Rule.

The File Generator Channel Rule Definition page opens.

9. Enter the following parameters:
— File Type: Disk File
— Channel Name: /SamplePrefix/Samples/Tutorial Channel (rawData)
— Message Encoding: leave blank
— Directory: /tptutorial/binary-out/dynamic
— Pass by file name: No
— Scan subdirectories: Yes
— File pattern: leave blank, it defaults to *.*
— Sort by Arrival?: No
— Polling interval: 3 seconds (small enough to avoid a long wait)
— Read limit: 0
— Post Read Action: Delete
— Archive Directory: leave blank
— Error Directory: /tptutorial/errors
— Description: Raw data file.

10. Click Submit.

11. Close the Oracle WebLogic Integration Administration Console.
You are now ready to build and test the application.

3-66 Tutorials for Trading Partner Integration

Step 8: Setting Partner ID Dynamically Based on Directory Name

To Test the DynamicBinaryBuyer Process
1. Click on the DynamicBinaryBuyer.java to build and deploy.

2. Place a binary file in the c: \tptutorial\binary-out\dynanmic\000000002 directory.

The file disappears is delivered to the trading partner.
You have completed the steps for the initiator side of this example.

Reviewing the Participant Side of the Example

The next step involves reviewing the participant side. Use what you have learned in previous
examples to complete the following tasks:

e “To Review the Participant Side of the Example” on page 3-67
e “To Test the Example” on page 3-68
To Review the Participant Side of the Example

1. Double-click on DynamicBinarySeller.java

The DynamicBinarySeller.java opens in Design view.

2. Double-click on the Receive request node and note that there are two parameter types; one
for the payload and the other for the ebXML envelope.

3. Close the node builder.
4. Right-Click on the Receive request node and select View Code.

5. Select the request method and look at the JPD Configuration pane parameter entered for
the ebxml-method envelope. The {env} parameter indicates that the ebXML envelope will
be placed in the second parameter, env.

6. Click the Design tab.

7. Inthe Data Palette, select the baseDirectory variable. In the Annotations pane , note that
the value of the variable is “/tptutorial/binary-in/dynamic/”. This is the base
directory from which the application will read the sub-directory name and use it as the
trading partner 1D.

8. The remaining two nodes:

— setProperties—invokes the setProperties on the file control with a transformation that
concatenates the “From” ID from the ebXML envelope and the directory base string.

Tutorials for Trading Partner Integration 3-67

Tutorial: Building ebXML Solutions

To review the transformation, double-click on the
DynamicBinarySellerfileSetProperties.xq in the Package Explorer pane.

— write—this node reads and writes the binary files from and out to the directories you
created on your hard drive.

To Test the Example
1. Select DynamicBinarySeller.java to run and deploy the process.

2. Drop afile into the c: \tptutorial\binary-out\dynamic\000000002 directory and
watch it appear in a few moments in the
C:\tptutorial\binary-in\dynamic\000000001 directory.

Step 9: Creating a Distributed Setup

In all of the examples so far, the initiator (000000001) and the participant (000000002) are both
located in the same Oracle WebLogic Integration instance and are using the same database
repository. In practice, the two sides will operate on two physically separated systems. This
examples briefly describes how to move to a distributed setup where 000000001 operates in one
Oracle WebL ogic Integration instance and the 000000002 in another.

1. Install and configure a second Oracle WebLogic instance on another machine.

a. Complete the procedure described in “Step 1: Create a New Oracle WebLogic Integration
Domain” on page 1-2.

2. Inthe Oracle WebLogic Integration Administration Console, click Trading Partner
Management on the left pane.

3. For the first Oracle WebLogic Integration Server, modify the Test_Trading Partner_2
(000000002) trading partner information as follows:

a. Inthe View and Edit Trading Partner Profiles, change
Test_TradingPartner_2(000000002) to remote instead of local, to do this perform the
following:

— Click Test_TradingPartner_2.
— Under General Information, click Edit Profile.

— In Edit Trading Partner Profile page, in the Type option, select Remote from the
drop-down menu option.

— Click Submit.

3-68 Tutorials for Trading Partner Integration

Step 10: Configuring Non-Default Protocol Settings

b. Modify the ebXML 2.0 binding by changing the EndPoint URL as follows:
— Go to Bindings on the left pane and select Choose trading partner.

— In the Choose Trading Partner page, select Test_TradingPartner_2 from the drop-down
option and, then click Go.

c. Inthe Edit Binding page, select TP2-ebxmlL20-binding.
d. The View Binding Details page appears, click Edit Binding

e. Inthe Edit Binding page, enter the correct server/port of the second Oracle WebLogic
Integration server in the EndPoint URL.

Note: The examples use ebXML 2.0 binding by default, modify this to other bindings if you
use them.

4. For the second Oracle WebL ogic Integration server modify the Test_TradingPartner_1
(000000001) as follows:

a. Deselect the default option.
b. Change local to remote.

c. Modify the ebXML 2.0 binding by changing the EndPoint URL to include the correct
server/port of the first Oracle WebLogic Integration server.

5. On each of the servers, start Oracle Workshop for WebLogic and open the tutorial
application.

6. Ensure that the Server Home Directory field is set to the correct path.

7. Before testing any of the examples: use the Oracle WebLogic Test Browser to run the
participant side processes to force them to build and deploy.

Step 10: Configuring Non-Default Protocol Settings

In the previous examples, default values were used for the initiator trading partner and the
protocol information. The default values were used as follows:

e from field (initiator ID)—trading partner which is marked as default in the Oracle
WebLogic Integration Administration console, 000000001 in the previous examples.

e Protocol information—taken from the binding which is marked as default for each
business protocol (ebXML MS 2.0; RNIF 1.1, 2.0).

Tutorials for Trading Partner Integration 3-69

Tutorial: Building ebXML Solutions

3-10

In production scenarios, you will typically add a service and service profile entry which gives you
control over the trading partner communication. This example illustrates how to add a service and
a service profile by using the Seller and Buyer business processes which you created in “Step 2:
Sending an XML Message through an One-Way ebXML Exchange” on page 3-9. It contains the
following sections:

e “Configuring the Participant Side” on page 3-70
e “Configuring the Initiator Side” on page 3-71

Configuring the Participant Side

The Seller business process is the participant of the ebXML communication.
1. If not already running, start your Oracle WebLogic Server.

2. After the Server is running, open the Oracle WebL ogic Administration Console by selecting
Run > WebL ogic Integration > WebL ogic Integration Administration Console from the
Oracle Workshop for WebLogic.

3. Log in to the console using the server user name and password that you specified in the
“Step 1: Create a New Oracle WebL ogic Integration Domain” on page 1-2 section.

4. Click Trading Partner Management on the left pane.
5. Inthe Services on the left pane, click View All.
A list of all participant processes which are currently deployed on your server is displayed.
6. Click on ebxmlweb\ebxml\oneway\Seller.java
The View And Edit Service window opens.
7. Click Add Service Profile.
The Add Service Profile window opens.

8. Inthe Name row, select Test_TradingPartner_2 as the LOCAL trading partner. This is the
partner actually hosting the Seller service.

9. Inthe Name row, select Test_TradingPartner_1 as the REMOTE trading partner. This is
the partner who will use the service.

10. Select ebXML 2.0 bindings for both the LOCAL and REMOTE binding.
11. Click Submit.

Tutorials for Trading Partner Integration

Step 10: Configuring Non-Default Protocol Settings

Configuring the Initiator Side

For the initiator side, service configuration information is added to the ebXML control that
represents the remote service.

1.
2.

o o k~ w

8.
9.

In the Services pane, click Create New.

Next to the name filed, click Browse.

A list of currently deployed participant business processes on your server and controls
which are referenced from currently deployed processes is displayed.

Click on ebxml.oneway.SellerControl.
Click Add Service.
Click Add Service Profile.

In the Name row, select Test_TradingPartner_1 as the LOCAL trading partner. This is the
initiator partner on the local system.

In the Name row, select Test_TradingPartner_2 as the REMOTE trading partner. This is
the remote partner who hosts the actual service.

Select ebXML 2.0 bindings for both the LOCAL and REMOTE binding.
Click Submit.

You have now completed setting up the protocol settings. For each of the examples in this
tutorial, you can create a corresponding service entry for each participant and initiator side. There
is no limit to how many service profiles you enter, you can create as many as you need for each
service entry to reference different protocol bindings.

Tutorials for Trading Partner Integration 3-N1

Tutorial: Building ebXML Solutions

3-12 Tutorials for Trading Partner Integration

	Oracle® WebLogic Integration
	10g Release 3 (10.3.1)

	Oracle WebLogic Integration Tutorials for Trading Partner Integration, 10g Release 3 (10.3.1)
	Introduction
	About the Tutorials for Trading Partner Integration
	Before You Begin
	Setting Up the Tutorials
	Step 1: Create a New Oracle WebLogic Integration Domain
	Step 2: View the Default Trading Partner Information
	Default Trading Partners
	Default Protocol Bindings
	Viewing Trading Partner Information (Optional)

	Step 3: Install the Tutorial Files

	Next Steps

	Tutorial: Building RosettaNet Solutions
	Tutorial Goals
	Before You Begin
	Prerequisites
	Suggested Reading

	Note About Obtaining RosettaNet W3C XSD Schemas
	Tutorial Overview
	PIPs Implemented In These Examples
	Folders in the RosettaNet Tutorial Application
	RosettaNet Design Patterns

	Tutorial Steps
	Step 1: Open the RosettaNet Example Application
	Step 2: Open the PIP0A1: Notification of Failure Example
	About the PIP0A1 Example
	Components of the PIP0A1 Example
	Walkthrough of the Failure Notifier Business Process
	Walkthrough of the Report Administrator Business Process

	Step 3: Open the PIP3B2: Notify of Advance Shipment Example
	About the PIP3B2 Example
	Components of the PIP3B2 Example
	Walkthrough of the Shipper Business Process
	Walkthrough of the Receiver Business Process
	Walkthrough of the Private Business Processes
	Running the PIP3B2 Example

	Step 4: Open the PIP3A4: Request Purchase Order Example
	About the PIP3A4 Example
	Components of the PIP3A4 Example
	Walkthrough of the Seller Business Process
	Walkthrough of the Buyer Business Process
	Walkthrough of the Private Business Processes
	Running the PIP3A4 Example

	Implementing New PIPs Based on the Example PIPs
	About Implementing New PIPs
	Copying and Customizing PIP Implementations
	Converting RosettaNet DTD Schemas to XSD Schemas

	Tutorial: Building ebXML Solutions
	Before You Begin
	Prerequisites
	Suggested Reading

	Tutorial Overview
	Step 1: Getting Started
	Creating the Business Process Application
	Importing the Tutorial Sample Data
	Importing the Tutorial Schemas
	Creating the Read and Write Directories

	Step 2: Sending an XML Message through an One-Way ebXML Exchange
	Building the Seller Business Process
	Building the Buyer Business Process

	Step 3: Selecting the Trading Partner Information Dynamically Through Typed XML
	Building the SelectorSeller Business Process
	Building the SelectorBuyer Business Process

	Step 4: Sending Raw Data (Binary File) Through an ebXML Exchange
	Building the BinarySeller Business Process
	Building the BinaryBuyer Business Process
	Creating a File Event Generator

	Step 5: Creating a Roundtrip ebXML Conversation
	Building the RoundtripSeller Business Process
	Building the RoundtripBuyer Business Process

	Step 6: Implementing the Public/Private Pattern
	Building the PublicBuyer Business Process
	Building the PrivateBuyer Business Process
	Building the PrivateSeller Business Process
	Building the PublicSeller Business Process
	Testing the Public/Private Pattern Example

	Step 7: Using the TPM Control and Callbacks
	Building the BuyerAlert Business Process
	Testing the BuyerAlert Business Process

	Step 8: Setting Partner ID Dynamically Based on Directory Name
	Reviewing the Initiator Side of the Example
	Reviewing the Participant Side of the Example

	Step 9: Creating a Distributed Setup
	Step 10: Configuring Non-Default Protocol Settings
	Configuring the Participant Side
	Configuring the Initiator Side

