
 Page 1 of 146

 Skywire Software

Programmer’s Guide

 Page 2 of 146

Contents

Programmers Guide .. 1
Contents .. 2
Source Libraries.. 7

File Locations ... 7
Global (common) Directories ... 8
Platform Specific Directories.. 8
Library Directories.. 8

Libraries .. 8
Naming Conventions .. 8
Guidelines for new libraries.. 10

Building Libraries ... 11
Overview... 11
Software Used for PC Platforms... 11

Compiler, Linker, Librarian, Resource Compiler ... 11
Make Utility.. 12
Heap Management .. 12
Font Scaling and Conversions... 13
DBase (DBF) File Manager .. 14
Spelling-Checker Engine .. 14
Data Grid Display and Editor.. 15
SQL Dynamic Library .. 15
Docucorp Utilities... 16

Software Used for MVS Libraries .. 17
Compiler and Linker ... 17
Runtime Library.. 17

Software Used for UNIX Libraries ... 18
Compiler and Linker ... 18
Make ... 18
SQL Dynamic Library .. 18

Third Party Source Modification Policy ... 18
Windows 9x/NT Requirements... 19
Building a Library for PC Platforms... 20

Switches and Settings ... 20
Configuring Make... 21
Syntax of MAKEFILE.PRG and MASTER.PRG... 23
Required Settings in MAKEFILE.PRG .. 24

 Page 3 of 146

Other Settings ... 24
Sample MAKEFILE.PRG... 25
Running a Library Build ... 26

Adding Custom Code to a Library Make.. 27
Adding Libraries to Link .. 27
Custom Flags and Variables ... 27
Adding source files to a library... 28

Batch Build for PC Platforms ... 28
The MK??? batch files .. 28
Files Used by MK???.. 29
Files Created by MK???.. 30
Generating new MK??? and CMP??? files ... 30

System Basics ... 31
Commonly used System Data Types .. 31

VMMHANDLE .. 31
FAPPARM and FSIPARM ... 31
FAPPFN.. 32

FAP Object Message Handlers ... 32
FAPHANDLER Prototype.. 32

Virtual Memory .. 33
Linked Lists .. 33
Dynamic Arrays .. 38
Hashed Tables... 40
Cache Management... 42

Customizing the System ... 43
Print... 43

Print Callback Functions... 43
Support for Docusave ... 43
Support for OnDemand... 45

Library Version Control.. 45
INI Settings ... 46
Functions... 46

Customizing Batch Processing ... 47
CUSLIB .. 47

Base Rules .. 47
Image Rules .. 49
Field Rules .. 49
Recipient Rules ... 50

Customizing Documaker Workstation.. 52
Remote Access Library (RACLib and RacCo) ... 52
Writing Custom Code ... 52

CSTLIB... 52
Defining Custom Functions .. 52
Defining Custom Functions for Cross-Platforms.. 53

MENU Procedures.. 54
Menu Resource Format... 54
Menu Keywords.. 54
Menu Item IDs .. 58
Menu Procedure Prototype ... 59
Menu Replacement ... 59

AFE Procedure Hooks .. 59
INI Options ... 60
Hook Prototypes ... 60
INI Settings ... 61
Functions and Hooks... 61

Transactions .. 63

 Page 4 of 146

INI Definition ... 63
DAL Functions and Procedures .. 64

INI Registration .. 64
DAL Function Prototype... 64

Edit Functions ... 65
Prototypes ... 65
Pre-Edit Functions .. 66
Post-Edit Functions... 66

Image Functions.. 66
Prototypes ... 66
Open Functions ... 67
Close Functions... 67

Export Formats ... 67
Import Formats ... 68
Document Set Procedures ... 68

INI Settings ... 69
Functions... 69

Timed Service Functions .. 69
History .. 70
INI Settings ... 70
Example Registrations .. 73
Multiple Platforms .. 74
Timed Service Function Prototype ... 75
Messages... 76
Considerations .. 77
Timing Example ... 77

Function and Hook Reference .. 79
AddComment.. 80
AFE Append Record Hook... 81

AFERetriB4AppendgToLstHook ... 81
AFE Archive List Hook .. 82

AFERetDisplLstHook... 82
AFE Archive Record Selected Hook .. 84

AFERetriOkButtonHook .. 84
AFE Check Form Set Data Hook.. 85

CheckUserEntry.. 85
AFE Complete Form Set Hook... 86

Complete... 86
AFE Entry Form Set Hook ... 88

EntryFormset .. 88
AFE Form Selection Buttons Hook .. 90

BUTTONx .. 90
AFE Initialization Hook.. 92

Init... 92
AFE Parse Command Line Hook.. 93

Parse.. 93
AFE Post Edit Hook ... 94

PostEdit... 94
AFE Pre Edit Hook ... 95

PreEdit .. 95
AFE Termination Hook .. 96

Term.. 96
AFE Window Procedure Hook ... 97

WindowProc ... 97
AFEArchive2WipKeys ... 98

Archive2WIP .. 98

 Page 5 of 146

AFESecurityFunc.. 99
Security ... 99

AFEWip2Archive ... 101
Wip2Archive... 101

AFEWip2ArchiveRecord.. 102
Archive ... 102

AppIdxRec .. 103
CUSGetArcIdxName .. 104

IndexName.. 104
DSDefAppendBuffer .. 105

Append.. 105
DSDefCloseBuffer.. 106

Close ... 106
DSDefCreateBuffer .. 107

Create .. 107
DSDefFirstBuffer.. 108

First ... 108
DSDefNextBuffer ... 109

Next... 109
DSDefOpenBuffer .. 110

Open.. 110
GVM... 111
HaveGVM... 112
LBYCARRetrieveFile .. 113

RetrieveFile... 113
LBYCARRetrieveMemFile .. 114

RetrieveMemFile .. 114
LBYCARSaveFile .. 115

SaveFile .. 115
LMGLBYCheckin .. 116

CheckIn... 116
LMGLBYCheckout .. 117

CheckOut .. 117
LMGLBYInit .. 118

Init... 118
LMGLBYReInit.. 119

ReInit .. 119
LMGLBYSelect.. 120

Select... 120
LMGLBYTerm... 121

Term.. 121
LMGLBYUnlock.. 122

Unlock... 122
LMGLBYView... 123

View.. 123
MajorVersion.. 124
MinorVersion.. 125
PrinterClass... 126
PrinterGroup ... 127
PRINT_IT ... 128
SetGVM.. 129
TMRTimers .. 130
TMRInit .. 131
TMRTerm... 132
TMRSetAppData .. 133
TMRAppData ... 134

 Page 6 of 146

TMRSetHwnd... 135
TMRHwnd.. 136
TMRSetHab.. 137
TMRHab... 138
TMRIsDesktopUp... 139
TMRIsDialogUp ... 140
TMRTimerTest1 ... 141
TMRTimerTest2 ... 142
TMRTimerTest3 ... 143
TRNAutoKeyIDUsrFunc.. 144

AutoKeyID.. 144
TRNSetBannerFormInfo... 146

Set Banner Information... 146

 Page 7 of 146

Source Libraries

File Locations
Each release has a directory tree that contains all of the files to produce that release. The directory tree is placed
off the root of a drive and has a name that describes the release version. The following shows an example of
version 11.1 with some of its directories.

\REL111 Release number

 \DOC Documentation

 \3RDPARTY Third party file directories

 \RPS100 Base library

 \INC Global include files used by all build platforms.

 \W32INC Platform global include files from third parties

 \W32LIB Platform import library files

 \W32BIN Platform debug binary files.

 \SHIPW32 Platform ship binary files.

 \LIBNAME Source library directory (for example: FSILIB, FAPLIB, and IMGED)

 \C C and C++ source files

 \H Include files made for this library

 Page 8 of 146

Global (common) Directories

The Docucorp source is written to be compiled for many different target operating systems. For the most part,
there is one set of source for the platforms. Libraries have their own source tree under the base library
subdirectory (RPS100). Unique source and include files for a library are made and maintained in each library's
subdirectory. When a library wants to expose some of its functionality to others, the relevant include files are
copied to a global include directory (\INC). The files in the \INC directory are merely a copy of the source files
that are maintained in the library subdirectory. These files are copied atomically with the build process.

Platform Specific Directories

Include Directory

Each PC operating system has its own include directory. This directory is used for platform specific include files.
These files are generally from third parties. For example, the Windows 32-bit platform has some SQL include
files in its W32INC directory.

Import Library Directory

Each PC operating system has its own import library directory. This directory is where libraries get the files to
link from other libraries. Both DLL import libraries and static libraries such as FSILIB are copied to this
subdirectory for the target platform.

Binary Directory

Each PC operating system has its own binary directory. This directory is where the debug version of the libraries
is copied for the target platform.

Ship Directory

Each PC operating system has its own ship files directory. This directory is where the non-debug version of the
libraries is copied for the target platform.

Library Directories

The subdirectory name should reflect the library name. Each library will have a subdirectory tree for source files,
include files, and targets. The source file subdirectory is named “C”, the header file subdirectory is name “H”,
and the targets are named by a three-letter acronym for the environment and a three letter acronym for the target
file type.

Libraries

Naming Conventions

File names are generally created from abbreviations using the following syntax:
[Library][Editor Qualifier][Environment][Library Qualifier][.Extension]

Library file names are built from the library abbreviation and an abbreviation for the target environment, and in
some cases, an editor or library qualifier is necessary.

Here are examples of LIB, DLL, and EXE names:

 Page 9 of 146

Library Target Name Description

FSIW32.LIB Core library for Windows 32-bit

VMMW32.DLL Dynamic link library of VMM for Windows 32-bit

VMMW32.LIB Import library of VMM for Windows 32-bit

INIW32.DLL INI dynamic link library for Windows 32-bit

IMGEDW32.EXE Image Editor for Windows 32-bit

 [Library] Component

Libraries should have a name that describes the function of the library and a two- or three-character abbreviation
for that name. Here are examples of some currently established library names:

Library Description

FAP Forms Automation Platform

AFP Advanced Function Print

VMM Virtual Memory Management

GUI Graphical User Interface

WIP Work In Progress

[Editor Qualifier] Component

Editor file names use an ‘ED’ as and editor qualifier. If a library is not an editor and not a conversion utility, then
the editor qualifier is not used. Conversion utility names include a '2' before the target. Here are some examples:

Editor Description

IMGED Image Editor

LGOED Logo Editor

PCL2FAP Convert a PCL file into a FAP file.

FAP2DDT Make a DDT file from a FAP file.

[Environment] names

Environment names should have a name that describes the target platform in a two- or three-character
abbreviation. Here are examples of environment names:

Environment Description

W32 Windows NT/95/98/2000

[Library Qualifier] Component

Here are examples of qualifiers:

 Page 10 of 146

Qualifier Description

M Migration

HX Heap expander

C7 Microsoft C 7.0

 [.Extensions] Component

Here are examples of extensions:

Extension Description

.LIB A library. Can be a static linked library or an import library
for a DLL.

.DLL Dynamic link library

.EXE Executable

Guidelines for new libraries

Library Name

The subdirectory name should reflect the library name. Each library will have a subdirectory tree for source files,
include files, and targets. The source file subdirectory is named “C”, the header file subdirectory is name “H”,
and the targets are named by a three letter acronym for the environment and a three letter acronym for the target
file type.

Header Files

Primary

Try to have only one header file for exported features of a library. This header should be copied to the
\RPS100\INC directory by the make process.

Internal

If the library requires internal headers, make the internal headers include the primary header, not the other way
around. Do not copy the internal headers to the INC directory.

Names

Try to name the header the same as the library. Here are examples:
VMM.H
INI.H

If there is some conflict with this name, then add LIB, for example,
FAPLIB.H

Source Files

Try to name source files using the library abbreviation and something that describes the primary use of the
source module. Here are examples:

FAPCURNT.C Current access functions
INIUNLD.C Unload INI file
FAPLDASC Load ASC file

 Page 11 of 146

Building Libraries

Overview
Docucorp source is compiled for many operating systems. Only one set of source code is maintained for these
many different target platforms. Source is maintained and built on the PC and uploaded to other non-PC
platforms after successful completion of PC builds. The code has conditional compilation where necessary to
handle the different operating systems. The core libraries isolate platform dependencies so libraries built upon
these core ones rarely have to deal directly with conditional compilation in their own code.

Software Used for PC Platforms

Compiler, Linker, Librarian, Resource Compiler

The Windows platforms use the Microsoft Visual C++ compiler. The build process uses the compiler, linker,
librarian, and resource compiler. However, the make program (NMAKE from Microsoft or MAKE form IBM) is
not used by the Docucorp build process in favor of a more platform independent make program from Opus
Software.

Software Version Operating System Platform Vendor Information

Microsoft Visual C++ version 7.0 Windows 32-bit Microsoft Corporation

www.microsoft.com

When this software is required

If the libraries need to be re-compiled, you will need to get the compiler.

Using other software

It is possible to use other software to compile and link system code. However, Docucorp does not recommend
doing so. Generally…

� If you have a version of the Microsoft software that is later than the version used by Docucorp, then
Docucorp libraries should be able to be linked without the need to recompile them.

 Page 12 of 146

� If you have another vendor's software, it is quite probable that you will need to re-compile the Docucorp
libraries with your software unless the compiler supports setting that will generate code compatible with our
libraries.

Make Utility

Opus Make is the make system that Docucorp uses to build PC platforms. Opus Make allows Docucorp to
maintain one make file for all the PC platforms the system is built on.

Software Version Operating System Platform Vendor Information

Opus Make version 6.12 Windows 32-bit

Opus Software, Inc.

1032 Irving St.

Suite 439

San Francisco, CA 94122

(415) 485-9703

(800) 248-6787

www.opussoftware.com

When this software is required

Docucorp PC batch build process is set up to expect Opus Make.

MAKEFILE.PRG

Each library has an Opus Make project file. This file defines the library type, libraries to link, and includes files
to copy to a global directory. The MAKEFILE.PRG uses a MASTER.PRG file that handles the actual make
process. The library MAKEFILE.PRG defines things for the MASTER.PRG file. Since the build settings and
process flow are contained to one file, it ensures that all the libraries are built the same way.

Heap Management

SmartHeap

SmartHeap is the memory manager used by executable programs and is linked in to provide increased
performance.

HeapAgent

HeapAgent provides additional debugging facilities for Smart Heap. If you want to run the debug version of
Docucorp software, you must acquire a license and include the heap agent file (HA312W32.DLL).

Software Version Docucorp Platform Vendor Information

SmartHeap Version 8.0 Windows 32-bit - (SHDW32M.LIB) MicroQuill Software

11200 Kirkland Way

Suite 310

Kirkland, WA 98033

(425) 827-7200

 Page 13 of 146

www.microquill.com

HeapAgent Version 3.1 Windows 32-bit - (HAW32M.LIB) MicroQuill Software

11200 Kirkland Way

Suite 310

Kirkland, WA 98033

(425) 827-7200

www.microquill.com

When this software is required

SmartHeap is not required to compile any Docucorp code; however, our build files are set up to use SmartHeap.

1. To use SmartHeap, the SmartHeap library must be the last library in the link list before the system libraries.

2. To use the standard C memory manager in place of SmartHeap, references to SmartHeap can be removed
from the build process by modifying Docucorp MASTER.PRG. The MASTER.PRG has comments in it
instructing where to remove references to SmartHeap for each operating system. To comment out a line in
the MASTER.PRG, start the line with the # character.

For example, the following lines are in a WINDOWS 32-BIT section that activates SmartHeap and HeapAgent:
----- SmartHeap V8.0 library names -----
Comment these names out if you do not want SmartHeap
 %if %null(ACTIVEX)
 %if %null(SMARTHEAP)
 SMARTHEAP=SHDW32M.LIB
 %endif
 %if %null(SMARTHEAPD)
 SMARTHEAPD=HAW32M.LIB
 %endif
 %endif

To eliminate SmartHeap and HeapAgent, comment out the lines like this:
----- SmartHeap V8.0 library names -----
Comment these names out if you do not want SmartHeap
 %if %null(ACTIVEX)
 %if %null(SMARTHEAP)
SMARTHEAP=SHDW32M.LIB
 %endif
 %if %null(SMARTHEAPD)
SMARTHEAPD=HAW32M.LIB
 %endif
 %endif

Font Scaling and Conversions

UFST is the dynamic linked library used for font conversions in Docucreate. UFST is contained within
Docucorp’s FXRLIB, and other Docucorp modules access UFST functions via FXRLIB.

Software Version Docucorp Platform Vendor Information

UFST Version 4.6

(Universal Font Scaling
Technology)

Windows 32-bit - (IFW32.DLL,
IFW32.LIB)

AGFA Corp.

100 Challenger Road

Ridgefield Park, NJ 07660

(201) 440-2500

 Page 14 of 146

www.agfa.com

When this software is required

Because UFST is isolated within FXRLIB, you do not need UFST unless FXRLIB is modified or re-compiled.
Docucorp has modified the original UFST source code, so you must have a source code license from AGFA
before you ask Docucorp to modify the source code on your behalf (see the Third Party Source Modification
Policy section below).

DBase (DBF) File Manager

CodeBase is the static library file manager used to provide access to dBase (DBF) files. CodeBase is contained
within Docucorp’s DB5LIB. Other Docucorp modules access CodeBase functions via DBLIB, which in turn
calls DB5LIB.

Software Version Docucorp Platform Vendor Information

CodeBase Version 5.1 Windows 32-bit - (DB5W32.DLL)

Sequiter Software, Inc.

PO Box 783

Greenland, NH 03840

(780) 437 - 2410

www.sequiter.com

When this software is required

Because CodeBase is isolated within DB5LIB, you do not need to have CodeBase unless DB5LIB is modified or
re-compiled. If DB5LIB needs to be re-compiled, you will need to get CodeBase from Sequiter Software.
Docucorp has modified the original CodeBase source code. Since CodeBase has been modified by Docucorp, a
source code license for CodeBase from Sequiter Software is required before requesting Docucorp to modify the
source code on your behalf (see the Third Party Source Modification Policy section below).

Spelling-Checker Engine

The Sentry Spelling-Checker Engine is a static library used by Docucorp software. The Sentry Spelling-Checker
Engine is contained within Docucorp’s SPLLIB, and other Docucorp modules access Spell Checker functions via
SPLLIB.

Software Version Docucorp Platform Vendor Information

Sentry Spelling-Checker Engine
Version 5.15

Windows 32-bit - (SPLW32.DLL)

Wintertree Software Inc.
69 Beddington Ave.
Nepean, Ontario
Canada K2J3N4
(613) 825 - 6271

(800) 340 - 8803

www.wintertreesoftware.com

 Page 15 of 146

When this software is required

Because Sentry Spell-Checker Engine is isolated within SPLLIB, you do not need to have Sentry Spell-Checker
unless SPLLIB is modified or re-compiled. Docucorp has modified the original Sentry Spelling-Checker Engine.
Since the Sentry Spelling-Checker Engine has been modified by Docucorp, you must get a source code license
from Wintertree Software before you ask Docucorp to modify the source code (see the Third Party Source
Modification Policy section below).

Data Grid Display and Editor

DataTable is a dynamic linked library that provides a “spreadsheet like” grid component that is used by
Docucreate and the Entry module of Documaker Workstation. DataTable is contained within Docucorp’s
DTBLLIB, and other Docucorp modules access the data table function via DTBLLIB.

Software Version Docucorp Platform Vendor Information

DataTable Version 3.0 Windows 32-bit - (DTBW32.DLL)

Proto View

2540 Route 130

Cranbury, NJ 08512

(609) 655-5000

www.protoview.com

When this software is required

Because DataTable is isolated within DTBLLIB, you do not need DataTable unless DTBLLIB is modified or re-
compiled. Docucorp has modified the original DataTable source code. Since DataTable has been modified by
Docucorp, you must get a source code license from ProtoView before you ask Docucorp to modify the source
code on your behalf (see the Third Party Source Modification Policy section below).

SQL Dynamic Library

The dynamic SQL library allows access to file systems via SQL statements. This SQL interface is contained
within Docucorp’s DB2LIB or SQLLIB--depending upon the platform running. Other Docucorp modules access
dynamic SQL functions via DBLIB, which in turn calls DB2LIB or SQLLIB.

Software Version Docucorp Platform Vendor Information

DB2 software developer kit
Version 6.1

Windows 32-bit - (DB2W32.DLL)

AIX - (DB2 6.1)

IBM Corp.

www.ibm.com

SQL Server Version 6.5 Windows 32-bit - (SQLW32.DLL)

ODBC for NT 3.70.06.23

ODBC for 95 3.60.03.02

Microsoft Corporation
www.microsoft.com

Oracle Server 7.3.2 HP-UX Oracle Corporation

 www.oracle.com

When this software is required

Since SQL Dynamic Library is isolated within the libraries listed above, you do not need SQL Dynamic Library
unless you are modifying or re-compiling one of the listed libraries.

 Page 16 of 146

Docucorp Utilities

These utilities are used in the Docucorp build process. They are developed by Docucorp and are supplied with
the source release.

SLEEP

Makes the current process sleep for the number of seconds requested.

SYNC

This utility synchronizes files and directories.
SKEMP Version 1.4 Jun 24 1997 11:06:32
SYNC path1 path2 [path3]
Sync files from path1 to path2
if path3 is specified the files are copied there.
 /? This help info
 /V Verify before copying files
 /S Subdirectories included in file sync
 /C Consolidate matching files into a single destination directory
 /R Overwrite read-only files on destination
 /H Include Hidden and System files in file sync
 /N No Copy performed. Matching files simply identified
 /2 2-Way files sync
 /A Attributes preserved from source file
 /D Delete destination file first to conserve space
 /X No-Existing files on destination are copied from source
 /U Update only existing files on destination
 /F Force read-only on files copied to destination
 /M Move files (source files deleted after copy)
 /O Sync OLDER files over newer
 /P Path derived from file, where /P=DestDriveLetter
 /W Wait time if copy to destination fails and try again, where /W=seconds
 /B Error Bells sound if sync fails, where /B=count

CCHK

This is a C source checker for things that compilers for other environments do not support. It checks that lines are
no longer than 72 characters. Forces the /* */ style C comments...

CCHK Version 1.01 Jun 8 1999 15:03:34 by SKEMP
CCHK filePattern [filePattern...]
Search for illegal cross-platform items in text files
defaults search includes // ^ [] and TAB characters.
A ^ will indicate that a default search item was found.
A ! will indicate a line length exceeds maximum.
A $ will indicate an EOF marker was found.
A X will indicate a #include case error was found.
A * will indicate a user-entered item was found.
A M will indicate characters follow continuation char.
 /? This help info
 /S Subdirectories included in search
 /I Input user items to search
 /C Case insensitive search used
 /L Line maximum= change default from 71
 /V Verbose output
 /N No Caret check
 /F No Forward // characters checked
 /M No line cont. \ characters checked
 /T No Tab characters checked
 /[No square bracket characters checked

 Page 17 of 146

 /X Exit program on first error
 /Z End of File Check for Ctrl+Z
 /# No #include case checked
 /Q Quiet will suppress output messages

DDEL

This utility deletes files and directories.
SKEMP Version 2.01 Jan 4 1996 10:19:00
DDEL pattern [pattern...]
Delete files in directory and subdirectories
 /? This help info
 /V Verify before deleting file
 /S Subdirectories included in file search
 /D Delete Subdirectories if empty, after deleting files
 /R read-only files also deleted
 /Z Zero Length files only deleted

DDIR

This utility shows a directory of files and directories.
SKEMP Version 2.0 Apr 10 1995 11:17:53
DDIR pattern
Show files w/ attributes in directory and subdirectories
 /? This help info
 /S Subdirectories included in search
 /A All files with attributes
 /P Search Path for specified files
 /E Error Level set if matching found
 /Q Quiet output messages

Software Used for MVS Libraries
See the MVS Installation Guide for more information on MVS requirements and configurations.

Compiler and Linker

If you plan to customize your system by writing custom rules or other custom code, or if your license includes
source code, you will also need one of the following compilers from IBM:

� C/370 version 2.1 or higher

� C/C++ For OS/390, version 2.10 or higher

Compile times are much faster with this compiler than with the other compilers. Additionally, we have observed
approximately an 8% performance improvement in GenData and GenPrint runs when the C/C++ compiler has
been used versus the other compilers. We recommend you use C/C++ For OS/390, version 2.10 (or higher)
compiler.

Runtime Library

One of the following runtime libraries from IBM Corp is required:

� C/370 Library Version 2.2 or higher

� Language Environment (LE) 1.5 or higher

Docucorp recommends using the language environment (LE) runtime.

 Page 18 of 146

Software Used for UNIX Libraries

Compiler and Linker

Software Version Operating System Platform Vendor Information

IBM C SET++ for AIX/6000,
version 2, release 1

AIX IBM Corp.

http://www.ibm.com/

Sun Workshop C/C++ 5.0 Sun Solaris Sun Microsystems

http://www.sun.com/

ANSI C Compiler Software 10.10 HP-UX Hewlett-Packard

http://www.hp.com/

Make

Standard UNIX make utility

SQL Dynamic Library

The dynamic SQL library allows access to file systems via SQL statements. This SQL interface is contained
within Docucorp’s DB2LIB or SQLLIB--depending upon the platform running. Other Docucorp modules access
dynamic SQL functions via DBLIB, which in turn calls DB2LIB or SQLLIB.

Software Version Operating System Platform Vendor Information

DB2 software developer kit
Version 6.1

AIX IBM Corp.

www.ibm.com

Oracle Server 7.3.2 HP-UX Oracle Corporation

www.oracle.com

When this software is required

Since SQL Dynamic Library is isolated within the libraries listed above, you do not need SQL Dynamic Library
unless you are modifying or re-compiling one of the listed libraries.

Third Party Source Modification Policy
Docucorp will not ship modified third party source code that it does not have the rights to release. Docucorp will
make identical modifications to the original source code (as would a contractor) on behalf of the properly
licensed customer or business partner, when requested to do so in writing. This makes sure Docucorp is
complying with third party software license agreements, both in spirit and to the letter.

The procedures are:

1. Back up your original purchased software.

2. Send us the original media (CD, diskettes, and so on) for operating systems version, along with a letter
requesting that we make any and all modifications necessary to be compatible with version 11.1.

When Docucorp receives the software and the request Docucorp will:

 Page 19 of 146

1. Copy the source code you provided to a hard drive and compare the directories and compare source file
names and content, for both "C" and "H" files, to the version we maintain and establish a list of differing
files.

2. Place the following comment block at the top of each source module requiring modification:
/***
 Source modifications performed by Docucorp International
 at the request of Company Name.

 MM/DD/YY Initials or programmer
**/

3. Comment out all of the source code in the version you have provided in the following fashion:
#if 0
... original source
#endif

4. Place a comment before our source:
/***
* Docucorp modifications begin:
**/

5. Insert the source code that is compatible with the shipping version of version 11.1.
Note: Since there may be new modules with different software versions, those modules may be completely
commented out without any code inserted to take its place.

6. Ensure that we are able to build the library and that it will work correctly with version 11.1.

7. Return the original software along with our modifications.

This complete process may take a little time, but will provide the results you are looking for. Following this
procedure will be viewed as compliant with source code licensing restrictions of the software vendor, and
preserve the necessary rights.

Windows 9x/NT Requirements
Note: These instructions only apply to versions 10.3 and earlier.

Follow these steps to install Visual Studio .NET 2003.

1. Apply all service packs.

2. Set this environment variable:

VCTOOLS=\Program Files\Microsoft Visual Studio .NET 2003\Vc7

3. Go to this directory:

\Program Files\Microsoft Visual Studio .NET 2003\Vc7\crt\src

4. Copy the _sample_.DEF and _sample_.RC files into the R10MSVC.DEF and R10MSVC.RC files.

5. Modify makefile by replacing all references to _sample_ with references to R10MSVC.

6. Modify R10MSVC.RC to indicate the company name and DLL name.

7. Modify R10MSVC.DEF to indicate the DLL name.

8. Run bldnt.cmd

 Page 20 of 146

The new R10MSVC.DLL and R10MSVC.LIB files are built in the \Program Files\Microsoft Visual Studio
.NET 2003\Vc7\crt\src\build\intel directory.

Building a Library for PC Platforms

Switches and Settings

The switches and settings can be found in the MASTER.PRG file in the base directory \REL111\RPS100.

Windows 32-bit

Compile Switch Description

/nologo Suppress copyright message

/W3 Set warning level (default n=1)

/Z7 Enable old-style debug info

/Od Disable optimizations (default)

/G3 Optimize for 80386

/Zp1 Pack structures on n-byte boundary

/J Default char type is unsigned

/MD Link with MSVCRT.LIB

/D "WIN32" Define

/D "_WINDOWS" Define

/D _WIN32_IE=0x0200 Define

/D "WIN32_LEAN_AND_MEAN" Define

/D "_DEBUG" Define

Link Switch Description

/NOLOGO Suppress startup banner

/MACHINE:I386 Specifies the target platform

/NODEFAULTLIB:LIBCMT Ignore specified library when resolving externals

/NODEFAULTLIB:MSVCRT Ignore specified library when resolving externals

/NODEFAULTLIB:MSVCRTD Ignore specified library when resolving externals

/SUBSYSTEM:windows,4.0 * Tells the operating system how to run the .EXE file. The
WINDOWS subsystem applies to an application that does
not require a console, probably because it creates its own
windows for interaction with the user. If the variable
QUICKWIN is empty, then this setting is used.

/SUBSYSTEM:console * Tells the operating system how to run the .EXE file. The
CONSOLE subsystem is for a Windows 32-bit character-
mode application. If the variable QUICKWIN is not empty,
this setting is used.

 Page 21 of 146

/DEF:$(TARGET).def Definition file

/DLL * If DLL, then say so

/IMPLIB:$(TARGET).lib * Create an import library for DLL

Using the Microsoft IDE (and NMAKE)

If you do not have Opus Make and wish to set up a library to use the Microsoft environment, you will have to set
the switches that apply to the library on settings windows. All of the switches above that do not have an asterisk
(*) in the description apply to all libraries. (To find out special settings and link files for a library you must
examine the MAKEFILE.PRG file for that library. This document explains settings and syntax of the
MAKEFILE.PRG and the MASTER.PRG file that it includes. Refer to other areas of this document for more
information on those topics.

/W3 Use warning level 3

/Gf Enable string pooling

/Z7 Use C 7 style CodeView Info

/Od Disable optimizations

/D "_DEBUG" Define

/D "__WIN__" Define

/GEf Customize Windows entry/exit

/Gee Customize Windows entry/exit

/D "__PPS__" Define when making PPS

/GD Protected mode Win entry/exit code

/AL Large memory model

/GD Protected mode Win entry/exit code

/Alw Custom memory model

/Ged Customize Windows entry/exit

/GA Protected mode Win entry/exit code

/AL Large memory model

Configuring Make

Each Docucorp library has an Opus Make project (MAKEFILE.PRG) file for each target platform supported by
that library. This MAKEFILE.PRG is read by a "make makefile" utility (MKMF by Opus software) that
generates a make file (MAKEFILE.) that is used by the make utility. This MAKEFILE has all the source files
found in the library's C directory, their dependencies, compile instructions, link instructions, and file distribution
instructions in it. The batch build process will automatically call the make makefile utility to generate a new
make file when one does not exist.

The MAKEFILE.PRG is the road map for the library. It is set up so you can easily define the components of a
library without having to get involved in all the details. The MAKFILE.PRG includes a MASTER.PRG file that
defines the specific instructions used to do the actual build. The master project uses the values defined in the
individual libraries' MAKEFILE.PRG to build the library for the platform requested.

The Docucorp make process lets you override your C environment, compile directory, and certain file locations,
without having to change the MASTER.PRG. Environment variables are used to define many of the components
used in the make process. To override defaults, just define the environment variable before running Opus Make.

 Page 22 of 146

C Environment

The environment variable CENVIRON sets the C environment. The variable is defaulted per platform so it is not
usually necessary to set this variable.

Here is an example:
SET CENVIRON=MSDEV

The supported values for CENVIRON are MSDEV for Windows 32-bit.

Compiler Directory

The environment variable CMPDIR sets the compiler base directory. The variable is defaulted per platform and
CENVIRON so it may not be necessary to set this variable. To override the defaults, define this environment
variable before running Opus Make. To make your changes more permanent, add them to your
AUTOEXEC.BAT file.

Docucorp Platform Default Value

Windows 32-bit If msdevdir is not defined, then
CMPDIR=\PROGRA~1\DEVSTU~1

The msdevdir variable is usually set up by the Microsoft
compiler installation.

Other variables

Other variables can be set before running Opus Make. These variables can be set in the AUTOEXEC.BAT file if
they apply across libraries. If you want settings for only a particular library, add the setting to the library
MAKEFILE.PRG before the include of the MASTER.PRG file.

Variable Description

CFLAGS Compiler flags

EXTRAINC Extra #includes only the first one will get /I

EXTRALIBS Extra libraries to link

HCOPY Header files to be copied

IDLFLAGS IDL compiler flags

INCLUDE Include file directories

LDFLAGS Linker flags

MS32LIBRARIES Microsoft Windows 32-bit libraries

RFLAGS Resource compiler flags

 XTRAPATH Another path for the target

Docucorp Directories

The Docucorp directory variables are defaulted so it may not be necessary to set these variables. To override the
defaults, define the environment variable before running Opus Make. To make your changes more permanent,
add them to your AUTOEXEC.BAT file.

 Page 23 of 146

Variable Default

FSISYS ..\..

FSIINC += $(FSISYS)\INC

FSILIB $(FSISYS)\W32LIB (for Windows 32-bit)

FSIBIN $(FSISYS)\W32BIN (for Windows 32-bit)

FSISHP $(FSISYS)\SHIPW32 (for Windows 32-bit)

Syntax of MAKEFILE.PRG and MASTER.PRG

A brief description of some of the syntax will be covered here. If you do not have Opus Make, this information
should help you read these files to make settings in your environment. If you do have Opus, you can find out
more about this in your Opus documentation.

Overview

The Opus syntax is similar to the C language syntax. For example, one equal sign does an assignment, two equal
signs do a comparison, and exclamation equal sign is not equal. Commands are preceded by a percent sign (%)
such as %if which is similar to C's pre-processor commands such as #if.

Comments

Comments begin with a pound sign on a line. The comments only apply to text following the pound sign. They
do not automatically span lines. Therefore, a pound sign should be placed before each line of text that is a
comment.

Here are some examples:
#!!!!!!! ASSIGN THE APPROPRIATE ANSWERS IN THIS SECTION UNTIL
#!!!!!!! YOU REACH STOP
RESULT = DLL # Choose DLL EXE or LIB

Branching Commands (%if, %else, %elif, and %endif)

Opus has syntax for if blocks. The %if requires a %endif to complete the block. A %else and %elif can also be
used within the block.

Here is an example of an if block using all the if block commands:
%if $(OS) == OS2 # If compiling for OS/2
 TARGET = FAPOS2
%elif $(OS) == MSDOS # Else if compiling for Win16
 TARGET = FAPWIN
%else # Otherwise forcing Windows 32-bit
 TARGET = FAPW32
%endif

Other Commands (%null, %exists)

Opus provides a %null command to test if a variable is set.

Here is an example:
%if %null(TARGET) # If the target variable is not set
 %abort Nothing to build
%endif

There is also a %exists command to test if something exists.
%if %exists(..\..\..\doc) # If there is a doc directory

 Page 24 of 146

 copy $(TARGET).DOC ..\..\..\doc
%endif

Variables

Variables can be defined at any time. Use the equal sign to assign a value to a variable. The following is an
example of setting up a variable called result:

RESULT = DLL # Choose DLL EXE or LIB
To access the value of a variable use a dollar sign followed by parentheses surrounding the variable name.

Here is an example:
%if $(RESULT) == LIB
 # do something
%endif

Variable Lists

To make a variable list use the plus then the equals sign.

Here is an example:
FSILIBS = FSIOS2.LIB
FSILIBS += VMMOS2.LIB

Required Settings in MAKEFILE.PRG

RESULT

The RESULT variable must be set in the libraries MAKEFILE.PRG. This variable tells the build process what
type of target to make. RESULT can be set to DLL, LIB, or EXE.

Here is an example:
RESULT = DLL # Choose DLL EXE or LIB

TARGET

The TARGET variable must be set in the libraries MAKEFILE.PRG. This variable tells the build process what to
name target file. The file name uses both the TARGET and RESULT to make the name.

Here is an example:
TARGET = CUSW32 # base name

MASTERPRG

The MASTERPRG variable must be set in the libraries MAKEFILE.PRG. This variable tells the build process
what file to include as the master project file. Almost all the libraries have the same setting for MASTERPRG in
their MAKEFILE.PRG file.

Here is an example:
MASTERPRG=..\..\MASTER.PRG

Other Settings

All other settings are optional or a default value is supplied. The following is a list of settings that are usually set
in the library MAKEFILE.PRG.

 Page 25 of 146

Variable Description

MULTICOMP Multiple platforms compile. This means the library is compiled for a non-PC platform
such as MVS. If this variable is set, run the CCHK utility to make sure the file has no
invalid syntax and can be uploaded to the host machine.

QUICKWIN If this variable is set, then the Windows EXE is to be QUICKWIN. This is usually set
for non-GUI utility programs.

STOPERR If this variable is set, the build will stop when an ERR file exists.

VERSRC If there is a library version file for this library, then the file name (without extension)
should be set for this variable. The library version module will always compile.

FSILIBS List of Docucorp libraries to link. Enter the file name and extension.

HCOPY List of header files to copy to the global INC directory. Supply the file name and
extension.

Sample MAKEFILE.PRG

Here's the MAKEFILE.PRG for CUSLIB:
--
MKMF program settings

#!!!!!!! ASSIGN THE APPROPRIATE ANSWERS IN THIS SECTION UNTIL
#!!!!!!! YOU REACH STOP
RESULT = DLL # Choose DLL EXE or LIB
MULTICOMP = Y # multi platform compile
STOPERR = Y # Stop if an ERR file exist

CCHKCMD = /n # Do no do caret check

--
Program names

%if $(OS) == WIN32
 TARGET = CUSW32 # library name for Windows 32-bit
%endif

--
Library Version Module to always compile
- No extension please.

VERSRC = CUSVERSN

--
FSI Libraries used for this program
- Do not enter a path, (FSILIB) will be added automatically
- Remember we have at least two platforms for many projects

%if $(OS) == WIN32
 FSILIBS = FSIW32.LIB
 FSILIBS += VMMW32.LIB
 FSILIBS += INIW32.LIB
 FSILIBS += FAPW32.LIB
 FSILIBS += RPW32.LIB
 FSILIBS += GLBW32.LIB
 FSILIBS += RCBW32.LIB
 FSILIBS += GVMW32.LIB
 FSILIBS += DSW32.LIB
 FSILIBS += DBHW32.LIB
 FSILIBS += DALW32.LIB

 Page 26 of 146

 FSILIBS += GENW32.LIB
 FSILIBS += ASCW32.LIB
 FSILIBS += RULW32.LIB
 FSILIBS += UTLW32.LIB
 FSILIBS += PRTW32.LIB
 FSILIBS += LOGW32.LIB
 FSILIBS += RULW32.LIB
 FSILIBS += W32FIX.LIB
%endif

--
Header files to copy
Assign each file that should be copied to the INC directory
- path (LOCINC) will be used so don't assign a path.

HCOPY = CUSLIB.H

#!!!!!! STOP
#!!!!!! IN MOST CASES YOU WILL NOT HAVE TO MAKE ANY CHANGES BELOW THIS LINE
#!!!!!!
--
MKMF automatically maintains the HDRS, EXTHDRS, OBJS and SRCS macros.
The EXTHDRS, HDRS, and SRCS macro are not explicitly used in this makefile
but you may have a need for them elsewhere, such as for revision control.

get source and object by like extensions i.e. *.obj *.res

%if %null(SRCS)
SRCS.RC =
OBJS.RES =
OBJS.OBJ =
EXTHDRS =
HDRS =
SRCS =
OBJS =
%endif

MASTERPRG=..\..\MASTER.PRG
 %include $(MASTERPRG)

Running a Library Build

To build a library, you must change directory to the libraries target directory, such as W32DLL, W32LIB, or
W32EXE. In that directory the MAKEFILE.PRG and MAKEFILE. file for the library will be found.

If you do not have a MAKEFILE. file, you must run MKMF to generate one.

To run MKMF type:

Command Platform

MKMF OS=WIN32 Windows 32-bit

Once a MAKEFILE. has been generated for a library, MAKE can be run.

To run MAKE type:

 Page 27 of 146

Command Platform

MAKE OS=WIN32 Windows 32-bit

For example, to build the Windows 32-bit version of CUSLIB you would:

1. CD \REL111\RPS100\CUSLIB\W32DLL

2. MKMF OS=WIN32 (if there is no MAKFILE. Possibly using OS2MKMF on NT.)

3. MAKE OS=WIN32 (Possibly using OS2MAKE on NT.)

Adding Custom Code to a Library Make
The Microsoft C run time DLL built with MS Visual Studio 6.0 is required to be able to compile the Documaker
Server version 11.1.

Adding Libraries to Link

Docucorp Library

Docucorp libraries are defined in the FSILIBS variable in the MAKEFILE.PRG for a library. To make
modifications, you must edit the MAKEFILE.PRG for that library changing the FSILIBS variable. Once the
change has been made, you must run the MKMF utility before running MAKE.

External Library

To add external libraries to a library link set the EXTRALIBS variable in the MAKEFILE.PRG. To make
modifications, you must edit the MAKEFILE.PRG for that library changing the EXTRALIBS variable. Once the
change has been made, you must run the MKMF utility before running MAKE.

The following example adds SQL_DYN to a link:
EXTRALIBS=\SQLLIB\SQL_DYN.LIB

Custom Flags and Variables

You can customize a library build by setting any of the following variables in the MAKEFILE.PRG. Once the
change has been made, you must run the MKMF utility before running MAKE.

Variable Description

CFLAGS Compiler flags

EXTRAINC Extra #includes only the first one will get /I

EXTRALIBS Extra libraries to link

HCOPY Header files to be copied

IDLFLAGS IDL compiler flags

LDFLAGS Linker flags

MS32LIBRARIES Microsoft Windows 32-bit libraries

RFLAGS Resource compiler flags

 XTRAPATH Another path for the target

 Page 28 of 146

Adding source files to a library

You can add your own source files to a library. The library directory structure will look like this:

\LIBNAME Source library directory (for example: FSILIB, FAPLIB, and IMGED)

 \C C and C++ source files

 \H Include files made for this library

 \W32LIB Static library target directory.

 \W32DLL Dynamic library target.

 \W32EXE Executable library target.

To add your new source:

1. Copy your new header files to the H directory

2. Copy your new source files to the C directory

3. Go to the target directory (W32DLL, W32EXE, …)

4. Delete the MAKEFILE.

5. Run MKMF to create a new make file (for Windows 32-bit, type MKMF OS=WIN32).

6. Run MAKE to create a new library (for Windows 32-bit, type MAKE OS=WIN32).

Batch Build for PC Platforms
The batch build process is a series of batch command files and utilities that runs through the release directory
building the requested libraries. This process makes many assumptions about your environment. It uses the third
party software described above and, most importantly, requires Opus Make.

The MK??? batch files

The MK??? batch files have been set up to run builds for Windows 32-bit compiles.

The ??? is replaced by the target (W32). Therefore, the following batch files are provided for builds.

MKW32.BAT builds the Windows 32-bit platform

Run these command files from the \REL111\RPS100 directory.

Syntax
MKW32 [qa]make/[qa]link/[qa]all/[qa]force [RESTARTDIR] [flags]

Param1: Use 'make' to make only those modules that have changed

Use 'link' to delete all .EXE and .DLL files, and remake

Use 'all' to rebuild makefile, delete all objects, and remake

 Use 'force' to compile all targets

 Add 'qa' to the beginning of make/link/all to also copy the release to the QARELEASE drive R:

Param2: Use 'RESTARTDIR' to restart the make at a given directory, such as FAPLib, and continue the batch
build from there.

 Page 29 of 146

Param3: Optional Opus Make settings

Examples:

To run a normal Windows 32-bit build you would type:
MKW32 make

To run a Windows 32-bit build that copies to QARELEASE drive you would type:
MKW32 qamake

Files Used by MK???

INPROC.BAT

This batch file is called to generate an INPROC.??? file when a build is run. If MKW32 is run, then
INPROC.W32 is generated. When MK??? is run it checks to see if its INPROC.??? exists. If INPROC.??? exists
then it stops and reports who is running the build by typing INPROC.???.

If you have had an abnormal end of your build (loss of network, Ctrl+Break...) then be sure to delete
the INPROC.??? file you generated in the \REL111\RPS100 directory. Also check for *.TMP files in
the \REL111\RPS100 directory. Type them and if you created them, then they must be deleted. As the
build is running, a .TMP is generated for the library being compiled. When the build tries to compile a
library and there is a .TMP by that library name, the build process sleeps for a while then tries to create
the .TMP file again. By doing this the MK??? makes sure there is never more than one operating
system accessing the files of a library. It synchronizes the compiles somewhat across operating system
builds.

ALLFILES.BAT (or ALLFILES.CMD)

This file provides the list of libraries to build. The ALLFILES.BAT file is the master file so for OS2 and VIS
builds this file is copied to ALLFILES.CMD. To add a library to the build you must check out ALLFILES.BAT
and make an entry in it for the new library name. It is important to make sure you add your new library in the
proper order. The DLL and LIB files are built in the order of dependency for other libraries. The EXE files are
listed alphabetically followed by PMSC specific stuff and FSIVER.EXE.

CMP???.BAT (or CMP???.CMD)

This command file compiles the library. The ALLFILES files calls this command file passing in the library name
and compile switches.

ERR.BAT

This command file echoes *.ERR files into \REL111\RPS100\ERRORS.???.

UPDDOC.BAT

This command file updates both the RES&DEV and the QARELEASE drive with the latest document files.

UPDHLP.BAT

This command file updates both the RES&DEV and the QARELEASE drive with the latest Help files.

 Page 30 of 146

CLEANQA.BAT

Deletes the files and subdirectories on the QARELEASE drive for RPS100, PMSC, INSTALL, MVS, and DOC.

Files Created by MK???

INPROC.???

The \REL111\RPS100\INPROC.??? file is generated when the MK???. See INPROC.BAT above for more
information.

??????.TMP

The \REL111\RPS100\??????.TMP file is generated as the library name .TMP for the library being built by the
MK??? command file.

Generating new MK??? and CMP??? files

GENMKS.BAT

The GENMKS.BAT file generates the MK??? and CMP??? files. If you need to make a change to the MK??? or
the CMP??? file then you should do it in this file so that command files for each operating system can be easily
made and re-created.

If you do not make your changes in this file also, then your changes can be overwritten at a later point
by someone running the genmks batch file.

Syntax: GENMKS OS2/WIN/W32/VIS
Param1: Specify Operating system W32
 When W32 it generates MKW32.BAT and CMPW32.BAT
Example:

GENMKS W32

 Page 31 of 146

System Basics

This section covers general customizations that can be done for batch rules processing or for Documaker
Workstation. Refer to the sections Customizing Batch Processing or Customizing Documaker Workstation for
specifics.

Commonly used System Data Types

VMMHANDLE

A VMMHANDLE is a virtual memory handle that in many environments merely resolves to a standard pointer
reference. The definition for VMMHANDLE is found in FSI.H.

FAPPARM and FSIPARM

The variable type FAPPARM is defined in UTL.H as a redefinition of FSIPARM.
#define FAPPARM FSIPARM

The FSIPARM definition is found in FSI.H. A FSIPARM needs to be a variable that can handle several variable
types that may need to be passed to the handler. For most environments, a DWORD is sufficient storage space
and for others (OS/400) a definition is required and takes the following form:

typedef FSIPARMTYPE _FSIPARM
{
 VMMHANDLE vmmh;
 VOID FAR *ptr;
 FAPPFN fn;
 DWORD dw;
 WORD w;
 BYTE b;
} FSIPARM;

Macros have been provided to access the different variable types passed as a FAPPARM/FSIPARM. You should
use these macros to access variable so that your custom code will always work if changes are made to the
FSIPARM definitions for your platform.

FAPPARM2VMMH(p1) // Access a VMMHANDLE
FAPPARM2PTR(p1) // Access a void pointer (void *)
FAPPARM2PFN(p1) // Access a function pointer
FAPPARM2DWORD(p1) // Access a DWORD
FAPPARM2WORD(p1) // Access a WORD

 Page 32 of 146

FAPPARM2BYTE(p1) // Access a BYTE
FAPPARMDEF // Default parameter value (0)
FAPPARMVMMH(p1) // Pass a VMMHANDLE
FAPPARMPTR(p1) // Pass a void pointer (void *)
FAPPARMPFN(p1) // Pass a function pointer
FAPPARMDW(p1) // Pass a DWORD
FAPPARMW(p1) // Pass a WORD
FAPPARMB(p1) // Pass a BYTE

Example
DWORD _VMMAPI MyFieldHandler(VMMHANDLE fieldH,
 DWORD msg,
 FAPPARM p1,
 FAPPARM p2)
{
 FAPWINDOW * fw;
 . . .

switch (msg) {
case FAP_MSGATTRIBUTES:

fw = (FAPWINDOW*) FAPPARM2PTR(p1); // Access the pointer
FAPSendObjectMessage(fieldH,
 FAP_MSGSELECT,
 FAPPARMPTR(fw), // Pass a pointer
 FAPPARMDEF); // Pass a default value
break;
. . .

}
return(OrigFieldHandler(fieldH,msg,p1,p2));

}

FAPPFN

A FAPPFN is a pointer to a void function. The FAPPFN definition is found in FSI.H.
typedef void (_VMMAPIPTR FAPPFN)(void);

If the value represents some other function prototype, an appropriate cast will be required to call the procedure or
assign it to another variable.

FAP Object Message Handlers
Each FAPOBJECT (defined in FAPFORM.H and structures defined in FAPDEF.H) has a registered message
handler that acts similar to the way window procedures handle messages for a window. The registered message
handler for an object reacts to messages sent within the system to perform the requested task for the object. You
can install your own object message handler to intercept messages and perform your customizations. The
handlers conform to the FAPHANDLER prototype.

FAPHANDLER Prototype

This prototype is defined in FAPFORM.H and takes the following form:
typedef DWORD (_VMMAPIPTR FAPHANDLER)(VMMHANDLE objectH,
 DWORD msgno,
 FAPPARM p1,
 FAPPARM p2);

Name Description

ObjectH Represents a VMMHANDLE to a FAPOBJECT.

 Page 33 of 146

Msgno Contains the specific message number being passed to the function. Each type of
message used by FAPOBJECTs must be unique. There is a list of pre-defined
messages in FAPFORM.H, but this list may be extended by defining your own
messages with FAP_MSGUSER + n, where n represents some number greater than
zero.

p1 May contain values to be used by the functions and are specific to the message
number being passed.

p2 May contain values to be used by the functions and are specific to the message
number being passed.

Example
FAPHANDLER OrigFieldHandler; // Need to keep original handler
. . .
OrigFieldHandler = FAPSetObjectHandler(FAP_OBJFIELD, MyFieldHandler);
// Set my field handler and save the original
. . .
// After I am through I will restore the original handler
FAPSetObjectHandler(FAP_OBJFIELD, OrigFieldHandler);
. . .
//---
DWORD _VMMAPI MyFieldHandler(VMMHANDLE fieldH,
 DWORD msg,
 FAPPARM p1,
 FAPPARM p2)
{
 FAPWINDOW * fw;
 . . .

switch (msg) {
case FAP_MSGATTRIBUTES:

fw = (FAPWINDOW*) FAPPARM2PTR(p1); // Access the pointer
FAPSendObjectMessage(fieldH,
 FAP_MSGSELECT,
 FAPPARMPTR(fw), // Pass a pointer
 FAPPARMDEF); // Pass a default value
break;
. . .

}
return(OrigFieldHandler(fieldH,msg,p1,p2)); // Call the original

}

Virtual Memory
The Virtual Memory Management library (VMM) offers a set of functions for managing a large amount of data
using a limited amount of conventional memory. Data is managed in structures: doubly linked lists (ordered and
unordered), hashed symbol tables, data caches, and dynamic arrays. The system utilizes the memory
management functionality that VmmLib provides so you need to become familiar with this library in order to
manipulate things within the system. For information on the Docucorp API, refer to the online API
documentation found with the release \REL111\DOC\API\INDEX.HTM.

Linked Lists

Doubly linked list routines create and manage chains of variable-length records in virtual memory. A list consists
of a list descriptor and a chain of variable-length elements. Each element contains data and is preceded by an
element header.

The doubly linked list data structure is a valuable, general-purpose method for managing a related set of data,
particularly when:

 Page 34 of 146

� The number of data elements in not known in advance.

� The allocated space for the data elements does not need to be contiguous.

� The size and structure of a data element may vary.

� The makeup of the data set is volatile (lots of additions and deletions.)

� The data set has an order that must be maintained as elements are inserted or deleted.

Handles

Each descriptor or element is identified by a handle. A handle, represented by the data type VMMHANDLE,
contains a value that uniquely identifies a given list or element. The content of a handle is managed by library
functions. Do not attempt to directly manipulate the contents of a handle.

Implementations prior to version 8.0 used a four-byte unsigned long integer as a handle (version 8.0 and up uses
a far void pointer), but applications should not rely on this. Always use the sizeof directive to compute the size of
a handle. Currently, if it is necessary to "printf" a handle, use %lu, %ld, %lx, or %lp.

List Descriptors

A list descriptor "describes" a virtual doubly linked list. List descriptors are allocated in virtual memory and
contain the following information:

� The handle of the list itself.

� The handle of the first element in the list. To obtain, use VMMFirstElem.

� The handle of the last element in the list. To obtain, use VMMLastElem.

� The number of elements currently stored in the list. To obtain, use VMMCountList.

� The total number of elements that has been added to (or inserted into) the list. To obtain, use
VMMTotAddList.

� The offset of key data within an element data record. To obtain, use VMMKeyOffset.

� The number of key components. To obtain, use VMMKeyCount.

� The key comparison function. To obtain, use VMMKeyCompare.

� The type of the list:

� VMMLST_NORMAL = 0,

� VMMLST_ORDERED = 1,

� VMMLST_HASHSYM = 2,

� VMMLST_FROZEN = 3.

� To obtain, use VMMListType.

� The number of hash buckets. To obtain, use VMMHashBuckets.

� The handle of the hash bucket table (or the frozen-list handle table). To obtain, use VMMHashTable.

� List descriptors are identified by a handle. The content of a list descriptor is managed by library functions.
Do not attempt to directly address or manipulate the content of a list descriptor.

 Page 35 of 146

Elements

An element contains data that has been inserted into a list. An element can be up to 64K in length.

For DOS and Heap Expander: An element can be up to about 16K in length. Although as much as 32 megabytes
of data can be stored, the number of elements that a list can contain is limited by available conventional memory.
(There is a physical hardware limit of 64K handles, and the actual limit is much less.)

Elements are allocated in virtual memory and consist of the data and a set of control information (called an
element header) which includes the following:

The handle of the list itself. In this way, each element "knows" the list to which it belongs. To obtain, use
VMMElemList.

The handle of the next element in the list. To obtain, use VMMNextElem.

The handle of the previous element in the list. To obtain, use VMMPrevElem.

The length of the element (the number of bytes of data stored in the element.) To obtain, use VMMElemLength.

The hash bucket number of the element, or if it is a frozen list, the element index. To obtain, use
VMMHashBucket.

Elements are identified by a handle. The content of an element header is managed by library functions. Do not
attempt to directly access or manipulate the content of an element header.

Creating a List

Before a list can be used, it must be created. The create process will assign a handle which is used to identify the
list in subsequent call to library functions. To create a list, use VMMCreateList.

Destroying a List

When a list is no longer needed, its allocated memory can be released by destroying the list. Once a list has been
destroyed, its handle is no longer valid. To be used again, the list must be recreated. To destroy a list, use
VMMDestroyList. Destroying a list also releases the memory used by any elements in the list, and any memory
used to create a hashed symbol table for the list.

Inserting Elements

Elements are added to a list via an insertion process. Every element points both forward and backward. In order
to insert a new element, an existing element must be identified as an insertion point. An element designated as an
insertion point will become the next element in the chain following the new element about to be inserted.

For example, suppose a list contains elements A, B, and D. Assume we wish to insert element C between B and
D. To accomplish the insert correctly, we must name D as the insertion point element.

In some linked list schemes, the first element points backward to NULL and the last element points forward to
NULL. In the VMM library, the list descriptor is actually part of the chain. When a list is empty, the first and last
elements point to the list itself. When elements are added, the first element points backward to the list, and the
last element points forward to the list. Therefore, to insert an element at the end of the list, the list descriptor
itself is named as the insertion point element.

To add an element to the end of a list, use VMMAppendElem. To insert an element at the front of a list, use
VMMPushElem. To insert an element into any position in a list, use VMMInsertElem. To insert an element into
the proper position in an ordered list, use VMMInsOrdElem.

 Page 36 of 146

Deleting Elements

Any element can be deleted from a list. When an element is deleted from somewhere in the middle, the forward
and backward pointers of the elements before and after it are corrected to take up the slack. Once deleted, the
space allocated to an element is returned to the resource pool. To delete an individual element, use
VMMDeleteElem. To delete the first element in a list, use VMMPopElem. To delete all of the elements in a list,
use VMMFreeList. To free all elements in a list and destroy the list itself, use VMMDestroyList.

Navigating a Linked List

Linked lists can be sequentially processed (forward or backward) from any point in the list. All that is needed is
the handle of the element at which to begin. Forward navigation is accomplished using VMMNextElem.
Backward navigation is managed with VMMPrevElem. Both functions return a handle. This handle can be used
to retrieve the element.

The end of the list has been reached when the handle of an element is the same as the handle of the list (because
the list descriptor itself is part of the chain.)

There are numerous ways of obtaining a starting point. Most library functions return an element handle. Any
handle can be used as a starting point. Typically, however, most sequential processing starts at the beginning and
goes forward to the end. For

In addition, as shown earlier, a more efficient (but not so straightforward) method makes use of the fact that the
last element in a list is the element prior to the list descriptor. Once understood, use this as the preferred form:

for (elemH = listH;
 (elemH = VMMPrevElem(elemH) != listH;) {
 // etc.

Sometimes it is desirable to view a list as an unbroken circle without the list descriptor to get in the way. The
functions VMMNextCircElem and VMMPrevCircElem are similar to the above except that the handle of the list
descriptor is never returned. In this case, the assumption is that some mechanism other than the end of the list
will be used to determine when to stop processing.

Accessing Elements

Elements are retrieved via VMMGetElem, and stored via VMMPutElem.

DOS note: A temporary pointer to the current location of the element's data can be retrieved via VMMElemPtr. It
is important to realize that this is a temporary pointer. Temporary pointers are only valid until the next VMM
library function call. The physical location of any element is dynamic. Each time an element is accessed, it is
located via its handle and temporarily made addressable via a process called handle de-referencing.

As more library and application code is built using the VMM library, it becomes prudent to regard any function
as a potential call to the VMM library. Therefore, the point cannot be stressed enough that care must be taken in
the use of temporary pointers. For example:

typedef struct {
 char field1 DIM(20);
 int field2;
 long field3;
} MY_STRUCT;

MY_STRUCT myStruct;
MY_STRUCT *ptr;
VMMHANDLE elemH;
VMMHANDLE listH;
int length;

 Page 37 of 146

ptr = VMMElemPtr(elemH);

// "ptr" is now valid until the next function
// that calls the VMM library (potentially any
// function.) Until then, we can use "ptr" as
// much as we like.

strcpy(ptr->field1,"hello world");
 ptr->field2 = 123;
 ptr->field3 = 456;

VMMAppendElem(listH,&myStruct,sizeof(MY_STRUCT));

// We must now assume that "ptr" is invalid. It might
// still be valid, but we have no easy way to know,
// and we can only safely assume that it no longer
// points to the data contained in element "elemH".
// In order to use "ptr" again, it must first be
//refreshed.

ptr = VMMElemPtr(elemH);

Ordered Lists

An ordered linked list is one that is kept in an ascending order according to values in a key position in the record
area of the elements.

The information necessary to establish a key for an ordered linked list can be set with VMMKeyOrdList. Once
the key information has been defined, elements can be added in order using VMMInsOrdElem. Elements can be
retrieved from an ordered list using VMMLocateOrdElem. Both functions make use of the lower level utility
function VMMFindOrdElem.

In some cases, building an ordered list is one means of accomplishing a sort. To specifically sort a list, use
VMMSortOrdList, which will use the key information established by VMMKeyOrdList and use a lower level
function VMMQSort.

Frozen Lists

Versions 9.0 and above provide support for "frozen" lists, to help improve overall system performance. A frozen
list is an ordered list that has been marked as "frozen" and then optimized internally for faster access. The
assumption is that once a list is stable, i.e., no longer needs to be modified, a snapshot of the state of the list can
be taken and saved. This snapshot process is called "freezing" the list. When a list is frozen, a table of handles is
created which provides easy indexing to any element in the list. Functions that locate elements in ordered lists by
key or index operate at dramatically faster rates. The time required to freeze a list is generally negligible next to
the time it would otherwise take to locate elements in a normal, non-frozen ordered list. If a frozen list is
subsequently modified, VMMLIB will automatically "unfreeze" the list, and then it becomes simply an ordered
list once more.

A list can be explicitly frozen and unfrozen with VMMFreezeList and VMMUnfreezeList. The function
VMMSortOrdList implicitly freezes an ordered list automatically.

 Page 38 of 146

Node-linked lists

A node-linked list is one that is lists within lists thus creating a collection. A tree is created by using the node
functions.

Each of the nodes named parent above are elements in a list. They have children that are elements in their own
list. Each child itself could be a parent with children.

Using a List as a Queue

A linked list can be utilized as a queue. Queues are processed FIFO, or "first in first out." New elements are put
into the queue by always inserting them at the end using VMMAppendElem. The front of the queue is the
element returned by VMMFirstElem. When that element has been processed, it can be deleted with
VMMDeleteElem, which will then return the next element.

Using a List as a Stack

A linked list can also be utilized as a stack. Stacks are processed LIFO, or "last in first out." New elements are
pushed onto the stack by inserting them at the beginning. This process is simplified by using VMMPushElem.
Once processed, the top of stack is deleted (or popped off) using VMMPopElem. Any element can be floated to
the top of the stack by using VMMFloatElem. Any element can be sunk to the bottom of the stack by using
VMMSinkElem. Any element can be moved to any other position in the list using VMMMoveElem.

Dynamic Arrays

The Dynamic Array functions build on top of the same lower level virtual memory functions used by the linked
list functions. A dynamic array trades some of the flexibility of the linked list in exchange for less overhead and a
greater number of possible elements.

Dynamic arrays should be used instead of linked lists when:

� The array metaphor seems a better fit.

� The elements are relatively short and fixed in length.

� Elements do not need to be inserted or deleted, but rather can be simply pigeonholed into a slot via an index.

The VMMARRAY Structure

Dynamic arrays are identified by a VMMARRAY structure. The address of the structure is passed to the
manipulation functions. Handles are only used internally. Any given element can be retrieved via an index. To
support more than 64K elements, indexes are declared ulong (unsigned long). The contents of the VMMARRAY
structure may be examined, but only library functions should be allowed to modify the variables.

 Page 39 of 146

Initializing an Array

Arrays are initialized via VMMInitArray. At initialization time, the element length and a blocking type number
are used to compute a block size and a blocking factor. Elements are stored in blocks of virtual memory. Handle
overhead is reduced by maximizing the number of elements stored per block.

Block types are numbers that represent the approximate size of the block. For example, a block type of 2
represents a block size of about 2K bytes. Valid block types are 1, 2, 4, 8, and 16. Restricting to these block sizes
ensures the best use will be made of the 16K virtual page.

Conventional Memory Usage

Dynamic arrays allocate an array block of handles in conventional memory. If conventional memory is not
available, an attempt to add a dynamic array block will fail. If this happens, a function pointer is examined. By
default, VMM will invoke its own dynamic array "out of conventional memory" function which will display the
message "VMMDefNoFreeMem:nnnn" (where nnnn is the amount of memory requested), and exit the program.
As the program exits, the virtual memory system will be terminated.

A different "no free memory" function may be installed, or the function can be completely disabled, at any time.

Array bounds checking

At initialization time, a maximum number of elements can be specified. If the maximum elements parameter is
set to zero (use the equate VMMNO_BOUNDS), an array's size is limited only by the amount of conventional
memory available to keep track of the virtual handles and pages. If a non-zero value is specified, representing the
maximum number of elements that can be accessed, array bounds checking is enabled.

If bounds checking is enabled, each time an array is accessed, the index will be validated. If the maximum is
exceeded, a function pointer is examined. If the pointer is not zero (VMMBADINDEX or NULL), a "bad index
function" is invoked. By default, VMM will invoke its own bad index function that will display the message
"VMMDefBadIndex:nnnnnn" (where nnnnnn is the invalid index), and exit the program. As the program exits,
the virtual memory system will be terminated.

A different bad index function may be installed, or the function can be completely disabled, at any time. For
example:

VMMSetBadIndex((VMMBADINDEX)NULL);
Will disable the bad index function. In this case, arrays with maximum elements specified will be bounds
checked, but all invalid indexes will be mapped to the highest valid index. An application can install its own bad
index function as follows:

void *_VMMAPI MyBadIndexFunc(VMMARRAY *array, ulong index,void *rec);

. . .

VMMSetBadIndex(MyBadIndexFunc);

Freeing an Array

Individual elements of an array cannot be freed. All of an array's elements are freed at once using
VMMFreeArray.

Once freed, an array can be used again without re-initializing. The previously set values for the element length,
blocking factor, and upper bounds are preserved. If a new geometry for the array is desired, the array should be
re-initialized with VMMInitArray using new values.

 Page 40 of 146

Accessing an Array Element

Array elements are accessed via an index using VMMGetArray, VMMPutArray, and VMMArrayPtr. These
functions return a temporary pointer to the element. A temporary pointer may be NULL if the out-of-memory
function is disabled and memory was exhausted while attempting to allocate a block to contain the element. If
not NULL, a temporary pointer is valid until the next call to any VMM library function. The same warnings
about temporary pointers that were expressed in the section on "Accessing Elements" for linked lists, also applies
to dynamic arrays.

Hashed Tables

A symbol table is a collection of data elements that are accessed by name. Typically, the list is large, the order of
the elements in the list is not important, and the time to retrieve an element by symbol name must be as short as
possible.

VMM hashed symbol tables use an efficient hashing algorithm on a variable length null-terminated string to
produce an integer value. This integer value (called a bucket number) is used as an index into an array of
VMMHANDLEs. Each handle in the array (called a bucket) is the first element in a list of elements that share the
same bucket number. This much smaller list can quickly be searched for the desired element. By reducing the
number of compare operations, and eliminating most of the movement through the list, the time to access an
element by key is dramatically reduced.

Initializing a hashed symbol table

Any linked list can become a hashed symbol table if it has a null-terminated string field that can be used as a key.
As usual, a list is created with VMMCreateList. It can be converted to a hashed symbol table at any time after
that by calling VMMInitHashList. If the list already contains elements when VMMInitHashList is called, the
elements are converted and any duplicates are eliminated.

Freeing a hashed symbol table

When a hashed symbol table is initialized with VMMInitHashList, an array of VMMHANDLEs is created. This
array is known as the hash bucket table. The size of the bucket table is determined by the numBuckets parameter
passed to VMMInitHashList. In addition, at initialization type, the internal type of the list is set to
VMMLST_HASHSYM (2). If the list is no longer needed, it can be destroyed with VMMDestroyList. If the list
needs to stay around, but no longer needs to be used as a hashed symbol table, the virtual memory used by the
bucket table can be released by calling VMMFreeHashList. This also resets the list type to either
VMMLST_NORMAL (0), or VMMLST_ORDERED (1).

Inserting elements into a hashed symbol table

Once a hashed symbol table has been initialized, elements can be inserted via VMMInsertHashElem. The
internal hashing algorithm determines the bucket to which the new element belongs. If that bucket is empty, the
element is appended to the list and its handle is assigned to that bucket. If the bucket already has one or more
elements, the new element is inserted into the list next to those elements. Each element in the hashed symbol
table has recorded in its element header the number of the bucket to which it is assigned. The list of elements that
belong to that bucket is searched sequentially. When an element is found that does not belong to that bucket, the
element is inserted ahead of it. If a duplicate symbol entry is found, the new element overlays the existing
element.

Deleting elements from a hashed symbol table

Elements are deleted from a hashed symbol table with VMMDeleteHashElem.

 Page 41 of 146

Locating elements in a hashed symbol table

The handle of an element can be retrieved by key from a hashed symbol table with VMMLocateHashElem. This
function uses a lower level function VMMFindHashElem that searches a specified bucket.

Updating elements in a hashed symbol table

Once the handle of an element is obtained, the data of the element can be accessed with VMMGetElem,
VMMElemPtr, and modified with VMMPutElem and VMMPutElem. If, however, any change is made to the
data of an element that affects either the value of the key field, or the size of the element, the element must be
updated with VMMUpdateHashElem. Changing the size of the element will require a new handle for the
element. Changing the key value will more than likely affect the bucket number of the element. In either case, if
VMMUpdateHashElem is not used, the integrity of the list could be compromised.

Comparing ordered lists, frozen lists, and hashed symbol tables

The following charts help illustrate the performance comparisons between the three types of lists that support
keyed access.

The statistics show the relative speed of the list search algorithms. All of the tests were run under the OS/2
environment. (Note that in order to obtain meaningful numbers, the number of calls had to be increased as the
key size was reduced.)

Key length of 1000 bytes. 100,000 calls.

Elements in list 10 100 500 1000

Hash list 23 27 36 36

Frozen list 15 30 44 51

Ordered list 15 35 64 95

Key length of 100 bytes. 300,000 calls.

Elements in list 10 100 500 1000

Hash list 9 10 13 13

Frozen list 9 15 17 18

Ordered list 9 18 48 86

Key length of 50 bytes. 300,000 calls.

Elements in list 10 100 500 1000

Hash list 6 7 8 8

Frozen list 6 9 11 13

Ordered list 6 14 43 77

 Page 42 of 146

Key length of 10 bytes. 500,000 calls.

Elements in list 10 100 500 1000

Hash list 7 8 9 10

Frozen list 9 13 15 16

Ordered list 9 19 60 124

Cache Management

A cache is a collection of data elements that are pooled for possible reuse. Cache support is implemented via
hash tables and dynamic arrays.

 Page 43 of 146

Customizing the System

Print

Print Callback Functions

Prototypes

The print callback function prototypes are found in the PRTLIB.H file. There is a function prototype macro
clbck_func_def. The defines are as follows:

#define clbck_func_def(fname) \
 DWORD _VMMAPI fname(VMMHANDLE formsetH, \
 DWORD msg, \
 FAPPARM p1, \
 FAPPARM p2)

Support for Docusave

Docusave can archive AFP and Metacode print streams. To produce print streams that can be archived by
Docusave, the print streams must be in a Docusave-compatible format and must contain special records used to
index the archive. The OutMode option in the Metacode or AFP print control group will cause the Metacode or
AFP print stream to be written in a Docusave-compatible format. There are two Docusave-compatible formats
that are supported, “MRG2” and “MRG4”.

For example,
< PRTType:AFP >
OutMode = MRG4

< PRTType:MET >
OutMode = MRG2

When OutMode is set to “MRG4”, print stream records will have a 4-byte sequence that precedes them defining
their length. Records will be grouped into blocks and there may be one or more records within a “block”. Both
records and blocks have a 4-byte sequence that precedes them defining their length. These length indicators are
formed by taking the high-order byte of length followed by the low-order byte of length followed by two bytes of
zeros. Thus, the maximum number that can be displayed is a 16-bit quantity. The value in each includes the
length of the structure itself. A one-byte data record in its own block would have 5 for the record length and 9 for
the block length. The following shows what a 3-byte record would look like:

 Page 44 of 146

Byte Offset Value (Hex) Meaning

0 00 Block length High-Order

1 0B Block length Low-Order

2 00 Always 0

3 00 Always 0

4 00 Record length High-Order

5 07 Record length Low-Order

6 00 Always 0

7 00 Always 0

8 31 ‘1’

9 32 ‘2’

10 33 ‘3’

“MRG2” uses a subset of the above blocking scheme. It consists a two-byte record length preceding each record.
Again, the value contains the length of the header itself. It was designed for the PC type of system where the
low-order byte of length is first followed by the high-order value. The example record above would look like
this:

Byte Offset Value (Hex) Meaning

0 05 Record length Low Order

1 00 Record length High Order

2 31 '1'

3 32 '2'

4 33 '3'

In addition to using OutMode to produce the print streams in a Docusave-compatible format, special records
must be included in the print streams in order to index the archive. These special records are written into the print
stream as comment records. A DAL script can be used to add these comment records into the print stream. A
DocuSaveScript option in the Metacode or AFP print control group will cause a DAL script to be executed at the
times when Docusave comments can be added to the print streams. To add Docusave comments to an AFP print
stream, you would need to add the DocuSaveScript option, containing the name of a DAL script to execute.

For example,
< PrtType:AFP >
DocuSaveScript = Docusave.DAL
OutMode = MRG4

Additional DAL functions have been added to assist in creating archive keys to use with Docusave.

Function Description

AddComment Adds a comment string to the print stream

AppIdxRec Gets an archive record based on APPIDX.DFD and Trigger2Archive INI settings

HaveGVM Verifies if a GVM variable exists

SetGVM Updates the contents of a GVM variable

 Page 45 of 146

GVM Gets the contents of a GVM variable

MajorVersion Gets the system’s major version number

MinorVersion Gets the system’s minor version number

PrinterClass Gets the type of print being produced

PrinterGroup Gets the name of the print group being used

Print_It Debug tool to print a string to the console

Support for OnDemand

OnDemand is part of an IBM suite of products that provide high performance document capture, indexing,
storage, retrieval and presentation of AFP data streams. To enable a Documaker Server-produced AFP print
stream to be archived by OnDemand, you will need to define a new INI setting and provide a DAL script that
produces the archive keys to use.

In the printer control group set up for AFP printing (usually PrtType:AFP), add an the OnDemandScript option
with the name of a DAL script you want the system to execute.

For example,
< PrtType:AFP >
 OnDemandScript = OnDemand.DAL

Additional DAL functions have been added to CUSLIB to assist in creating archive keys to use with OnDemand.

Function Description

AddComment Adds a comment string to the print stream

AppIdxRec Gets an archive record based on APPIDX.DFD and Trigger2Archive INI settings

HaveGVM Verifies if a GVM variable exists

SetGVM Updates the contents of a GVM variable

GVM Gets the contents of a GVM variable

MajorVersion Gets the system’s major version number

MinorVersion Gets the system’s minor version number

PrinterClass Gets the type of print being produced

PrinterGroup Gets the name of the print group being used

Print_It Debug tool to print a string to the console

Library Version Control
The version-control code is replaced through INI options that specify what function to call when certain
operations are requested. All these options are under the group "VCS". "Wrapper function" shows the version-
control function that should be called from another library. This function checks the given INI option to see what
function to call, using the given default if no INI option is specified. The defaults do version-control operations
through LBYLIB. (The same way it worked in previous versions.)

 Page 46 of 146

INI Settings
[VCS]
Checkin = LMGOS2->LMGLBYCheckin
Checkout = LMGOS2->LMGLBYCheckout
Init = LMGOS2->LMGLBYInit
ReInit = LMGOS2->LMGLBYReInit
RetrieveFile = LBYOS2->LBYCARRetrieveFile
RetrieveMemFile = LBYOS2->LBYCARRetrieveMemFile
SaveFile = LBYOS2->LBYCARSaveFile
Select = LMGOS2->LMGLBYSelect
Term = LMGOS2->LMGLBYTerm
Unlock = LMGOS2->LMGLBYUnlock
View = LMGOS2->LMGLBYView

Functions

You can replace two sets of functions. You can replace the LMG functions to completely replace the version-
control code, from dialog boxes. If you do this, you need not worry about the LBY functions- they'll never be
called. You can also leave the default LMG functions, but replace the LBY functions- This will use most of the
default VCS code, only replacing the part where files are actually stored/retrieved from some kind of database.
The standard windows will still be used, a database of version, user ID, comments, and so on will be kept in the
usual way, but the actual data can be stored in a different repository.

To customize version-control, just provide replacements for the desired functions, and set the INI options so that
the new functions are called. More details (parameters, and so on.) are documented in the online API
documentation of LMGLIB and LBYLIB found with the release \REL111\DOC\API\INDEX.HTM, but here's a
brief list of what the functions do:

Functionality Description

Init Any one-time initialization that needs to be done. To find out more, see the
LMGLBYInit section.

ReInit Any re-initialization that needs to be done after the master-resources has been
changed. (The default LMGLBY functions need a chance to re-read some INI
options, and so on.) To find out more, see the LMGLBYReInit section.

Term One-time cleanup when program terminates. To find out more, see the
LMGLBYTerm section.

Select Allows user to select a file without taking any other action. To find out more, see the
LMGLBYTerm section.

Checkout, View, Checkin,
Unlock

Called when user selects the matching menu item. To find out more, see the
LMGLBYCheckout, LMGLBYView, LMGLBYCheckin, and LMGLBYUnlock sections

SaveFile Saves a file to some sort of repository, returning a key to it. To find out more, see the
LBYCARSaveFile section.

RetrieveFile Retrieves a file from repository to disk, given its key. To find out more, see the
LBYCARSaveFile section.

RetrieveMemFile Retrieves file directly into memory. To find out more, see the
LBYCARRetrieveMemFile section.

 Page 47 of 146

Customizing Batch Processing

CUSLIB
The CUSLIB library is where you should make customizations for a batch system. For more information on
processing rules, refer to the Rules Processor System Guide and the Rules Reference. For information on the
Docucorp API, refer to the online API documentation found with the release \REL111\DOC\API\INDEX.HTM.

Base Rules

Base rules are stored in the Job Definition Table (AFGJOB.JDT). This file is used to define job level (level 1)
and form set level (level 2) rules.

Job level rules (level 1)

 Job level rules are global rules used to apply procedures prior to and following the processing of all transactions
in a given set. Most of these rules are designed to initialize processing; open and close necessary data files;
allocate or release resources used during processing; and other specialized functions do exist.

Form set level rules (level 2)

These rules are also known as transaction rules. Such rules are designed to manage and manipulate the behavior
of form sets. Form set level rules typically affect the form set as a whole. These rules are responsible for the
following:

� includes functions that initialize or reinitialize resources between transactions

� determines which transactions to include or exclude from the run

� controls the creation of the form set

� controls what happens to the form set after the transaction has completed

 Page 48 of 146

Prototypes

The base rule prototypes are found in the RPLIB.H file. There is a typdef of base_func and a rule prototype
macro base_func_def. The defines are as follows:

typedef DWORD (_VMMAPIPTR base_func) (RPS *pRPS, WORD msg);

/* Base rule function prototype macro...*/
#define base_func_def(fname) DWORD _VMMAPI fname(RPS *pRPS, WORD msg)

The RPS structure passed by address as a parameter is also defined in the RPLIB.H header file.

Making a new base rule

When adding a base rule, you need to add it to the base rules list in CUSJDT.H and the custom rules array in
CUSREG.H. The array lets you define a name by which you wish to identify the rule and the rule function that
will be executed when that name is invoked. The registered name is the name you will use in the AFGJOB.JDT
file. Usually the rule names are the same, or similar to, the actual function name, but this is not a requirement.

For example, in CUSJDT.H to add a function named MyNewBaseFunc you would add:
base_func_def(MyNewBaseFunc);

Then add the MyNewBaseFunc to the array in CUSREG.H:
/* String-to-Pointer array of custom rules... */
BaseFuncSym aBaseCustomRuleParms EMPTY() =
{
 {"BatchByPageCount", BatchByPageCount},
 {"ChubbCreateMacros", ChubbCreateMacros},
 {"CreateRecordList", CreateRecordList},
 {"CUSInitPageBatchedJob", CUSInitPageBatchedJob},
 {"InitPageBatchedJob", CUSInitPageBatchedJob},
 {"GetRCBRec", GetRCBRec},
 {"GetBatch", GetRCBRec},
 {"ImageRemover", ImageRemover},
 {"InitMerge", CUSInitMerge},
 {"InitPrint", CUSInitPrint},
 {"InstCustomConvertDateProcs", CUSInstCustomConvertDateProcs},
 {"InstCustomFormatNumberProc", CUSInstCustomFormatNumberProc},
 {"LoadFieldVars", LoadFieldVars},
 {"LoadGlobalFonts", LoadGlobalFonts},
 {"MyNewBaseFunc", MyNewBaseFunc},
 {"ProcessRcpRecs", ProcessRecord},
 {"ProcessRecord", ProcessRecord},
 {"PageBatchStage1InitTerm", PageBatchStage1InitTerm },
 {"PrintFormset", PrintFormset},
 {"PrintData", PrintData},
 {"MergeAFP", CUSMergeAFP},
 {"AddTextLabel", CUSAddTextLabel},
 {"AddLine", CUSAddLine},
 {"ParseCommentExample", ParseCommentExample},
 {"WriteRCBWithPageCount", CUSWriteRCBWithPageCount},
 {"CUSWriteRCBWithPageCount", CUSWriteRCBWithPageCount},
#if defined(__OS22__) || defined(__WIN__) || defined(WIN32)
 {"CUSInitMail", CUSInitMail},
 {"MailFormset", MailFormset},
#endif
 {"PrintFormsetListForDebugging", CUSPrintFormsetListForDebugging},
 {"PrintImageInfo", PrintImageInfo},
 {"WriteIniList", CUSWriteIniList},
 {"CUSInstallCommentLineCallback", CUSInstallCommentLineCallback},
 {"CUSHideImage", CUSHideImage},
 {"\0", NULL}
};

 Page 49 of 146

Image Rules

These rules define actions to perform on single images within a form, based on a specific transaction. Image
level rules typically affect the how an image is added to a given form. For instance, such rules might determine
where the image will be placed (its origin) on a given form; what size it will have; and the propagation of field
data once the image has completed processing.

Image level rules are stored in the Data Definition Table (DDT files).

Prototypes

The image rule prototypes are found in the RPLIB.H file. There is a typdef of image_func and a rule prototype
macro image_func_def. The defines are as follows:

/* Image rule function definition...*/
typedef DWORD (_VMMAPIPTR image_func) (RPS *pRPS, WORD msg);

/* Image rule function prototype macro...*/
#define image_func_def(fname) DWORD _VMMAPI fname(RPS *pRPS, WORD msg)

The RPS structure passed by address as a parameter is also defined in the RPLIB.H header file.

Making a new image rule

When adding an image rule, you need to add it to the image rules list in CUSJDT.H and the custom rules array in
CUSFDT.H. The array lets you define a name to register the rule as and the rule function name. The registered
name is the name you will use in the DDT file. Usually these names are the same as the actual function name.

For example, in CUSJDT.H to add a function named MyNewImageFunc you would add:
image_func_def (MyNewImageFunc);

Then add the MyNewImageFunc to the array in CUSFDT.H:
/* String-to-Pointer array of custom rules... */

ImageFuncSym aImageCustomRuleParms EMPTY() =
{
 {"AddImgAfterCurImg", AddImgAfterCurImg},
 {"AddImgIfNextIsDiff", AddImgIfNextIsDiff},
 {"AddImgIfNextIsSame", AddImgIfNextIsSame},
 {"CUSMeterLines", CUSMeterLines},
 {"CreateSubExtractList", CreateSubExtractList},
 {"ImageTest", ImageTest},
 {"IncMacroValue", IncMacroValue},
 {"MyNewImageFunc", MyNewImageFunc},
 {"SetMacroValue", SetMacroValue},
 {"SetCustChartAxisLabels", SetCustChartAxisLabels},
 {"CusSetDynamicScaleAxis", CusSetDynamicScaleAxis},
 {"\0", NULL}
};

Field Rules

These rules define actions to perform on the variable fields in an image. Field level rules provide mapping,
masking, and formatting information for each variable field on a form.

Field level rules are stored in the Data Definition Table (DDT files).

Prototypes

The field rule prototypes are found in the RPLIB.H file. There is a typdef of field_func and a rule prototype
macro field_func_def. The defines are as follows:

 Page 50 of 146

/* Field rule function definition...*/
typedef DWORD (_VMMAPIPTR field_func) (RPS *pRPS, WORD msg);

/* Field rule function prototype macro...*/
#define field_func_def(fname) DWORD _VMMAPI fname(RPS *pRPS, WORD msg)

The RPS structure passed by address as a parameter is also defined in the RPLIB.H header file.

Making a new field rule

When adding a field rule, you need to add it to the field rules list in CUSJDT.H and the custom rules array in
CUSDDT.H. The array lets you define a name to register the rule as and the rule function name. The registered
name is the name you will use in the DDT file. Usually these names are the same as the actual function name.

For example, in CUSJDT.H to add a function named MyNewFieldFunc you would add:
field_func_def (MyNewFieldFunc);

Then add the MyNewFieldFunc to the array in CUSDDT.H:
/* String-to-Pointer array of custom rules... */
FieldFuncSym aFieldCustomRuleParms EMPTY() =
{
 {"MoveBarcode", MoveBarcode},
 {"MoveCityStateZip4", MoveCityStateZip4},
 {"MoveDate", MoveDate},
 {"MyNewFieldFunc", MyNewFieldFunc},
 {"TextMerge", TextMerge},
 {"CUSDisplayUsage", CUSDisplayUsage},
/* {"CUSmove_it", CUSmove_it}, */
 {"CUSTableLookUp", CUSTableLookUp},
 {"SelectRule", SelectRule},
 {"\0", NULL}
};

Recipient Rules

Prototypes

The recipient rule prototypes are found in the RPLIB.H file. There is a typdef of rcp_func and a rule prototype
macro recip_func_def. The defines are as follows:

/* Recipient rule function definition...*/
typedef DWORD (_VMMAPIPTR rcp_func) (RPS *pRPS, RECIP_TBL_ENTRY
 *current_entry, int *RecsFound);

/* Recipient rule function prototype macro...*/
#define recip_func_def(fname) \
 DWORD _VMMAPI fname (RPS *pRPS, RECIP_TBL_ENTRY *current_entry, \
 int *RecsFound)

The RPS structure passed by address as a parameter is also defined in the RPLIB.H header file.

Making a new recipient rule

When adding a recipient rule, you need to add it to the recipient rules list in CUSLIB.H and the custom rules
array in CUSRCP.H. The array lets you define a name to register the rule as and the rule function name. Usually
these names are the same as the actual function name.

For example, in CUSLIB.H to add a function named MyNewRecipFunc you would add:
recip_func_def (MyNewRecipFunc);

Then add the MyNewRecipFunc to the array in CUSRCP.H:

 Page 51 of 146

/* String-to-Pointer array of custom rules... */
RcpFuncSym aRcpCustomRuleParms EMPTY() =
{
 /* Insert Rules (see also prototypes in cuslib.h)...*/

 {"CUSnoopfunc", CUSnoopfunc},
 {"MyNewRecipFunc", MyNewRecipFunc},
 {"\0", NULL}
};

 Page 52 of 146

Customizing Documaker Workstation

No program can be all things to all people therefore customizations are inevitable. The infrastructure of
Documaker Workstation is designed in such a way that much of the functionality is handled through replaceable
functions. This makes it possible to add, alter, or substitute functionality easily without having to change the base
system. Another benefit of this replaceable functionality design is that it helps to ensure there is an upgrade path
for customers with custom code. Isolating custom code from the base implementation allows new features to be
added to the product without losing (or interfering) with the changes made for a specific customer’s installation.

Documaker Workstation is designed to support several different types of external procedures. This document will
cover the standard method of extending functionality by use of the remote access library, menu procedures, DAL
procedures, and hook procedures. The purpose of this document is to reveal and define the external hooks
provided in the libraries, not to explain or insinuate the way any hook should be used.

Remote Access Library (RACLib and RacCo)
The Remote Access Library (RACLib) was created to give non-Docucorp applications the ability to start, stop,
and control (to some degree) Documaker Workstation. The library provides API functions that can be called
from any computer language that can interface to C functions in a DLL. In addition, an ActiveX component
(RacCo) is provided for Windows NT/9x. Refer to the Remote Access Library document for details.

Writing Custom Code
For more information on Documaker Workstation, refer to the Documaker Workstation Supervisor Guide, the
Documaker Workstation User Guide, and the DAL Reference. For information on the Docucorp API, refer to the
online API documentation found with the release \REL111\DOC\API\INDEX.HTM.

CSTLIB

The CSTLIB library is where you should make code customizations for Documaker Workstation. This library is
reserved for processing customizations and comes with sample functions. You can use and build upon these
functions for customer installations.

Defining Custom Functions

Most of the external functions that are recognized within Documaker Workstation are defined via INI options,
although some are defined within the menu resource. These definitions are covered in detail later in this
document.

 Page 53 of 146

Many of the function references that you can place in the INI or menu resource require a specific definition or
syntax. However, all external definitions have one format option in common. The common element is the method
used to identify a DLL name and an exported function name to call. This element is shown as:

DLL->FuncName
The DLL name comes first and the function name is separated by use of the “->” characters.

Case is important when defining the exported function name. Generally, the name should be typed in the same
case manner that is used to define the function in the .DEF (export definition) file for the DLL. If the DLL is
linked without case-sensitivity, it may be necessary to use all uppercase to define the function name. All
Docucorp DLLs are linked with case sensitivity.

If the named function cannot be located in the specified DLL, a Docucorp style (and on some platforms and
operating system) message box will appear revealing the error. In this event, the two most likely problems are the
spelling of the function name in the INI file or the function was not included in the .DEF file for the DLL.

Defining Custom Functions for Cross-Platforms

Most of the programs and DLLs provided by Docucorp are compiled and used on several different operating
systems -- Windows 32-BIT (Windows 95, 98, 2000, and NT). With this in mind, Docucorp has designed the
applications in a manner that allows the sharing of resources between these environments.

Because, it is sometimes desirable to have the executable programs for more than one operating system in the
same location, Docucorp has unique OS specific names for its DLLs. For instance: VMMOS2.DLL,
VMMWIN.DLL, and VMMW32.DLL are all names of the “same” DLL compiled for different environments.

With this naming convention, it is necessary to support a method of defining external procedures using the DLL-
>FuncName method that can be used for all platforms without requiring separate INI or menu resources. This is
accomplished via a name substitution group that can be included in the INI file.

Separate INI groups are recognized by WIN32 for defining substitute DLL names. These groups are named [
OS2SUBS] , [WINDOWSUBS] and [WINDOW32SUBS]. Since OS/2 was the original operating system for
most Docucorp products, the OS/2 names are considered the key or primary name and, as such, should be used
when defining external function references.

Consider the following example that identifies a hook procedure recognized by AFE.
[AFEProcedures]
PreEdit = TRNOS2->TRNPreEdit
[WindowSubs]
TRNOS2 = TRNWIN.DLL
[Window32Subs]
TRNOS2 = TRNW32.DLL

In this example, the first group identifies a hook procedure that is called in a specific situation. Since only one
DLL name can be used in the definition, multiple platforms must be handled using the substitution group. In this
example, alternate names are defined for Windows and for WIN32.

When a Docucorp program decides to load and query the specified hook, the DLL name is used as a search key
within that operating system’s substitution group. If an entry is located in that group, the newly found name is
used instead of the one specified for the hook procedure. If an entry is not found, the original name will be used.
In this example, OS/2 would use the name TRNOS2 because no [OS2SUBS] key was defined by that name;
Windows would use the name TRNWIN.DLL taken from [WINDOWSUBS]; and WIN32 would use the name
TRNW32.DLL taken from [WINDOW32SUBS].

All “base” DLL names, provided by Docucorp International, have been pre-registered in both the [
WINDOWSUBS] and [WINDOW32SUBS] INI groups. The above example is used to merely
demonstrate the type of INI changes required accessing DLLs not provided in a base release.

 Page 54 of 146

To help the Windows’ environment to distinguish what module to load, it is often necessary to include
the DLL extension on the names provided for substitution. All base DLLs are pre-registered in this
fashion.

MENU Procedures
A menu procedure is one of simplest methods of extending the AFE application or the DDS workbench. As the
name implies, a menu procedure is called when the user selects a menu item.

Menu Resource Format

Documaker Workstation reads an external file to create its menu. This file is identified by the INI option:
[MENU]
FILE = path\file name

Where path\file name specifies a menu resource file. The value associated with FILE should contain the file
name (with a path specified if necessary) that identifies the external menu resource. By default, AFE INI files
ship with a menu file named as MEN.RES or MENU.RES.

The DDS workbench reads an external file to create its menu. This file is located by retrieving an INI option
from the FAPCOMP.INI file:

[MENU]
DDSFile = path\file name

The value associated with DDSFile should contain the file name (with a path if necessary) that identifies the
external menu resource. By default, the file named as DDS.MNU is used.

Each line of the menu resource file begins with a keyword. A keyword determines how the rest of the menu
resource line (statement) will be interpreted. All statement elements required to define a menu resource line are
separated by a space. Extra white space and blank lines are ignored.

The definition of the menu resource file also contains security information. You can disable menu items for users
who do not possess a sufficient security rating.

Menu Keywords

BEGIN and END

Example:
POPUP "&File" 251 "System menu"
BEGIN
 MENUITEM "&New" 260 "AFEOS2->AFECreate" "New document" 9
 SEPARATOR
 MENUITEM "E&xit" 50000 "NULL" "Exit application"
END

These keywords do not have parameters and they must be used in matched pairs. All MENU and POPUP
statements require a BEGIN and END to enclose the items that belong to those groups.

 Page 55 of 146

Old menu resource files may also contain the following obsolete keywords. PRODUCT1 was a second
product name line. PRODUCT2 was generally used as a copyright notice. Moreover, POPUPBUTTON
defined a menu level button for OS/2 versions.

BITMAP

This keyword defines the bitmap that displays in the background of the window.

Syntax:
BITMAP bitmapname.bmp

Example:
BITMAP collagem.bmp

BUTTON

Each BUTTON statement defines a new button that is subordinate to the BUTTON or SUBBUTTON that
contains the statement. This statement defines the text to appear and the function to call when selected.

Syntax:
BUTTON “item” ### “DLL->FuncName” “description” #

Examples:
BUTTON "Formset" "fdt.bmp" 4836 "FDTOS2->FDTEdit" "Run Formset Editor"
BUTTON "Image" "img.bmp" 4837 "IMGOS2->IMGEdit" "Run Image Editor"

“item” represents the text that will appear on the client area button.

The element ### represents a unique numerical value to associate with the menu item. Generally, client buttons
are associated with menu items. If this is the case, then the menu item and function should match that put in your
menu definition.

A standard definition used by Documaker Workstation to identify an external DLL and an exported function to
call is expected as the next parameter. The string “NULL” can only be used if the function is an internally
recognized menu item.

The DLL function indicator must conform to the format shown in the example. The DLL name comes first and
the function name is separated by the “->” characters. Case is usually important when defining the exported
function name.

A “description” parameter is next and may be “NULL” to indicate that no description is defined or necessary.

Security level is the last element of the BUTTON statement. The value may range from 0 to 9, where 0 is the
highest (supervisor) level and 9 is the lowest (anybody) level. The security level will default to 9 if this
parameter is omitted.

BUTTONS

A BUTTONS statement must be followed by the BEGIN keyword. Each BUTTONS grouping must be closed
with an END keyword. Only the first BUTTONS statement group is loaded from the resource file.

Example:
BUTTONS
BEGIN
 BUTTON "Formset" "fdt.bmp" 4836 "FDTOS2->FDTEdit" "Run Form Set Editor"
 BUTTON "Image" "img.bmp" 4837 "IMGOS2->IMGEdit" "Run Image Editor"
END

 Page 56 of 146

MENU

This keyword defines the title of the menu or program and the title must be enclosed in quotes.

Syntax:
MENU “program window title”

Example:
MENU "Processing System"

A MENU statement must be followed by the BEGIN keyword. Each MENU grouping must be closed with an
END keyword. Only the first MENU statement group is loaded from the resource file.

MENUITEM

Each MENUI TEM statement defines a new menu item that is subordinate to the menu or sub-menu that contains
the statement. This statement defines the text to appear and the function to call when selected.

Syntax:
MENUITEM “item” ### “DLL->FuncName” “description” #

Examples:
MENUITEM "&New" 260 "AFEOS2->AFECreate" "New document" 9
MENUITEM "E&xit" 50000 "NULL" "Exit application"

“item” represents the text that will appear on the parent MENU or POPUP that contains the statement.
Ampersand (&) is used to indicate the “accelerator” letter for the menu item. This letter will be underlined by the
operating system.

The element ### represents a unique numerical value to associate with the menu item.

A standard definition used by Documaker Workstation to identify an external DLL and an exported function to
call is expected as the next parameter. The string “NULL” can only be used if the function is an internally
recognized menu item.

The DLL function indicator must conform to the format shown in the example. The DLL name comes first and
the function name is separated by the “->” characters. Case is usually important when defining the exported
function name.

A “description” parameter is next and may be “NULL” to indicate that no description is defined or necessary.

Security level is the last element of the MENUITEM statement. The value may range from 0 to 9, where 0 is the
highest (supervisor) level and 9 is the lowest (anybody) level. The security level will default to 9 if this
parameter is omitted.

POPUP

Each POPUP statement defines a new sub-menu that is subordinate to the menu or sub-menu that contains the
statement.

Syntax:
POPUP “item” ### “description”

Example:
POPUP "&File" 251 "System menu"

The first string (enclosed in quotes) will be shown on the parent menu. The next element is a unique number to
associate with the menu item. Finally, a short description of the menu item (enclosed in quotes) completes the
line. The string “NULL” may be used for the description to indicate that no description is necessary or available.

 Page 57 of 146

The first string can include an ampersand (&) to indicate the following letter is the “accelerator” letter for the
menu item. This letter will be underlined by the operating system.

Like MENU, the POPUP statement must be followed by a BEGIN keyword and is closed with an END keyword.

A POPUP statement that has the MENU statement as its parent is called a top-level popup. Top level popups will
normally be seen on the program’s menu bar at all times.

Sub-level popup are permitted. This means that a POPUP statement may be included within another POPUP
statement’s BEGIN and END grouping. It is possible to build a long descending chain of menu popups, if that is
required.

If the all items contained within the BEGIN and END grouping are disabled due to security values, then
the POPUP item will be disabled on its parent menu.

SEPARATOR

No parameters are required on this statement. This keyword will cause a line to appear between the previous
menu item and the next item read.

Example:
MENUITEM "&New" 260 "AFEOS2->AFECreate" "New document" 9
SEPARATOR
MENUITEM "E&xit" 50000 "NULL" "Exit application"

SUBUTTON

Each SUBBUTTON statement defines a new sub-menu that is subordinate to the BUTTONS or SUBBUTTON
that contains the statement. A SUBBUTTON statement must be followed by the BEGIN keyword. Each
SUBBUTTON grouping must be closed with an END keyword.

Syntax:
SUBUTTON “item” ### “description” #

Examples:
SUBBUTTON "Resources" "res.bmp" 1 "Resource Programs"
 BEGIN
 BUTTON "Fonts" "fxr.bmp" 4842 "FXROS2->FXREdit" "Run Font editor"
 BUTTON "Logos" "lgo.bmp" 4843 "LGOOS2->LGOEdit" "Run Logo editor"
END

The first string (enclosed in quotes) will be shown on the client area's push button. The next element is a unique
number to associate with the menu item. Finally, a short description of the menu item (enclosed in quotes)
completes the line. The string “NULL” may be used for the description to indicate that no description is
necessary or available.

Like BUTTON, the SUBBUTTON statement must be followed by a BEGIN keyword and is closed with an END
keyword.

SUBBUTTONs are very similar to POPUPs in menus. They cannot have a function associated with them, but
when the user clicks on one, the set of buttons specified under it appears. Two functions are available for backing
up in the hierarchy of buttons: FWMShowPrevButtons and FWMShowMainButtons, which back up one level
and return to the first/main level, respectively. (See the example, above.)

The IDs assigned to buttons can be duplicates of menu items, or unique. If a button has a duplicate ID, the
function associated with the menu item will be called when the button it pressed.

 Page 58 of 146

As a side effect of this enhancement, TOOLBAR items now have to go outside any BEGIN/END pair.
(They originally went inside the BEGIN/END for the menu.)

For a program to fully support these buttons, it should have the following call in the WM_SIZE case of
its client window proc (This will re-center the buttons when the window is resized.):

FWMPositionButtons (hwnd, VMMNULLHANDLE);

For SUBBUTTONs, it's probably safest to assign unique Ids, not the same ID as the parallel menu item.

The buttons are about 20% of the window size, and approximately square.

Placement: You can use SEPARATOR to start a new row of buttons. Each row is centered
horizontally, and the whole group of buttons is centered vertically.

TOOL

The TOOL statement defines a button for a tool bar that will be displayed under the title bar. The TOOL
statement items have to go outside any BEGIN/END pair.

Syntax:
TOOL bitmap offset, menu ID, button state, button type

Example:
TOOL 0 0 NULL SEPARATOR
TOOL 0 260 ENABLED BUTTON
TOOL 1 261 ENABLED BUTTON
TOOL 2 110 ENABLED BUTTON

Menu Item IDs

Menu IDs are grouped into several categories.

ID Range Description

100 - 200 Reserved for AFE procedures that are active while a form set is open but deactivated
when no form set is open. The macro AFEISGFEID() will return TRUE or FALSE if a
specified ID falls within this range.

100 - 150 A sub-category of the first range. These menu items are only activated while a form
set is open that was not retrieved from an archive. The macro AFEISGFEARCID()
will return TRUE or FALSE whether a specified ID falls within this range.

201 - 300 Reserved for AFE procedures that are active while a form set is not open but
deactivated when a form set is open. The macro AFEISNONGFEID() will return
TRUE or FALSE whether a specific ID falls within this range.

1000-1199 Reserved for GFE (the base Entry module) procedures that are active while a form
set is open. These are disabled if a form set is not open. The macro GFEISGFEID()
will return TRUE or FALSE whether a specific ID falls within this range. Since many
of these IDs are automatically recognized by the base system without requiring the
“DLL->Function” definition, do not add custom menu items in this range.

Any value not contained within these ranges is assumed to be active at all times. When assigning an ID to a new
menu item, it will be important to determine which range to use or avoid. Each menu item must be unique.

 Page 59 of 146

Menu Procedure Prototype

All menu procedures called by Documaker Workstation must conform to the following prototype.
int _VMMAPI funcname(HAB hab,
 HWND mainhwnd,
 VMMHANDLE menuH);

The parameters passed to the service function have the following meanings:

HANDLE hab is the program’s anchor block or instance handle. The distinction depends upon whether the
program is running on an OS/2 or Windows platform. Within the Docucorp programming environment, both
definitions serve the same purpose.
HWND mainhwnd will be the window handle of the application that contains the menu.

VMMHANDLE menuH is the VMMHANDLE of the menu item's structure element. Each menu item has a
structure definition created when the menu resource file is read. In general, it is not wise to manipulate the
structure elements in the called function. Several macros/functions will return useful information from the
structure, however the following two are especially useful within AFE.

PAFEDATA pdata = (PAFEDATA)FWMItemvPtr(menuH);
FWMItemvPtr() will return any pointer associated with the menu item. In AFE, this will return a pointer to the
AFEDATA structure.

The AFEDATA structure is defined in AFELIB.H. This structure contains most (if not all) of the global data
necessary to manipulate the form sets in use by the Entry module. Even if you are familiar with AFELIB and
how the Entry module works, you should be careful when you manipulate data within this structure.

ULONG id = FWMItemId(menuH);
FWMItemId() will return the unique identifier (ID) of the menu item. This ID can be used to enable or disable
the menu item or used to determine its position within the menu.

In most cases, the return value of a menu procedure is ignored, but in general, it is a good idea to return whether
the function succeeded (a zero value) or failed (a non-zero value).

Menu Replacement

FWMLoadNewMenu function

The FWMLoadNewMenu function that can be called from a menu resource to switch the menu. The name of the
new menu file should be specified in the optional message area to the right of a menu-item definition.

Example:
MENUITEM "Conversion" 42 "GUIOS2->FWMLoadNewMenu" "conv.res"

AFE Procedure Hooks
In programming terms, a hook is a method of gaining (or giving) control at or over a particular event during an
application’s execution. A hook procedure is a program function that is called by an activated hook.

A hook procedure is installed (and the hook activated) by assigning a value to a hook option in the INI file. Each
hook provided in AFE is designed to give access to a specific situation.

Although hooks are registered via the INI file, not all hooks procedures have the same programming
requirements. In many cases, different hooks require entirely different procedure prototypes. Additionally, some
are expected to return certain values to indicate success or failure.

 Page 60 of 146

INI Options

Most hooks within the AFE Entry module are defined via INI options. Although some hooks require specific
definitions that differ from others, all hooks registered by INI have one format option in common. The common
element is the DLL->FunctionName reference to identify a DLL name and an exported function name to call.

Since each hook does not expect the same INI option syntax, the specific registration requirements will be
included in the hook description provided in this document.

Hook Prototypes

Not all hooks require the same function prototype; however, most use one of several basic prototypes. Within the
hook descriptions provided in this document, the prototype requirements will be identified. If a special prototype
is used, it will be defined in the hook description.

FAPUSER

This prototype definition can be found in the header file fapuser.h. The prototype takes the following form.
typedef FAPDW (FAPAPIPTR FAPUSERPROC)(FAPDW dwMessage,
 FAPDW dwFAPHab,
 FAPDW dwFAPHwnd,
 FAPDW dwObjectIdentifier,
 FAPDW dwObjectType,
 FAPDW dwInputFlag1,
 FAPDW dwInputFlag2,
 FAPDW dwInputFlag3,
 char FAR * lpszObjectName,
 char FAR * lpszFormatType,
 char FAR * lpszFormat,
 char FAR * lpszEditData,
 char FAR * lpszInputBuffer,
 char FAR * lpszOutputBuffer,
 FAPDW dwOutputBufferMaxSize,
 FAPDW FAR * lpdwOutputFlag1,
 FAPDW FAR * lpdwOutputFlag2,
 FAPDW FAR * lpdwOutputFlag3);

Since this is a common prototype, it is also generic. The large number or parameters evolved over time to ensure
that enough basic information could be passed to each function to perform its task. Since the prototype serves as
a generic definition, the specific value referenced (or contained) by each parameter may differ with each hook
procedure. In fact, it is common for parameters to be omitted or unavailable, indicated by values set to NULL or
zero.

The description of each hook procedure that uses the FAPUSER prototype will include the definition and
expected use of the parameters that the hook supplies.

TSTOS2->UserTest is a test function exported from the specified DLL that conforms to the FAPUSER
prototype. In many cases, this function may be used to test that a hook is activating properly by displaying a
window containing some of the information passed to the function. However, please note that this function has
no idea what it should do with any messages passed to it and always return SUCCESS.

FAPHANDLER

Generally, this prototype is used by hook functions related to Docucorp object message handling. Exceptions to
this rule will be noted in the specific hook description. This prototype is defined in FAPFORM.H and takes the
following form:

 Page 61 of 146

typedef DWORD (_VMMAPIPTR FAPHANDLER)(VMMHANDLE objectH,
 DWORD msgno,
 FAPPARM p1,
 FAPPARM p2);

The objectH parameter usually represents a VMMHANDLE to a FAPOBJECT. Each FAPOBJECT (defined in
FAPFORM.H and structures defined in FAPDEF.H) has a registered message handler that acts similar to the way
window procedures handle messages for a window. In some cases, hooks are used to replace these handlers
overriding the default functionality and in other cases, only subsets of an object's messages are passed to a
specific hook procedure.

The msgno parameter contains the specific message number being passed to the function. Each type of message
used by FAPOBJECTs must be unique. There is a list of pre-defined messages in FAPFORM.H, but this list may
be extended by defining your own messages with FAP_MSGUSER + n, where n represents some number greater
than zero.

The remaining parameters may contain values to be used by the functions and are specific to the message number
being passed. The variable type FAPPARM is a redefinition of the union FSIPARM that contains several
variable types that might be received. FSIPARM is defined in FSI.H and takes the following form:

typedef FSIPARMTYPE _FSIPARM
{
 VMMHANDLE vmmh;
 VOID FAR *ptr;
 FAPPFN fn;
 DWORD dw;
 WORD w;
 BYTE b;
} FSIPARM;

Included in the union definition are references for VMMHANDLEs and FAPPFNs. A FAPPFN is a pointer to a
void function. If the value represents some other function prototype, an appropriate cast will be required to call
the procedure or assign it to another variable.

INI Settings
[AfeProcedures]
AFERetDisplLstHook = AFEOS2->AFERetDisplayList
AFERetriB4AppendgToLstHook = DLL->FunctionName
AFERetriOkButtonHook = DLL->FunctionName
Archive = AFEOS2->AFEWip2ArchiveRecord
Archive2WIP = AFEOS2->AFEArchive2WipKeys
AutoKeyID = TRNOS2->TRNAutoKeyIDUsrFunc
BannerProc = TRNOS2->TRNSetBannerFormInfo
BUTTON1 = TRNOS2->TRNAutoNextKey
BUTTON2 = AFEOS2->AFEPersonalEdit
BUTTON3 = TSTOS2->UserTest
CheckUserEntry = DLL->FuncName
Complete = DLL->FuncName
EntryFormset = DLL->FuncName
IndexName = CUSOS2->CUSGetArcIdxName
Init = DLL->FuncName
Parse = DLL->FuncName
PostEdit = DLL->FuncName
PreEdit = DLL->FuncName
Term = DLL->FuncName
WindowProc = DLL->FuncName
Security = AFEOS2->AFESecurityFunc
Wip2Archive = AFEOS2->AFEWip2ArchiveKeys

Functions and Hooks

 Page 62 of 146

Function/Hook Result

AFE Append to Record Hook This hook will be called immediately before a new record is added to the
static list, after the OK button on the Retrieve window is pressed.

AFE Archive List Hook This function is primarily responsible for retrieving records from the archive
database and adding them to a static list that will be displayed for archive
retrieval.

AFE Archive Record Selected Hook This hook will be called immediately after the OK button from the Retrieve
window is pressed.

AFE Check Form Set Data Hook This hook is called before a new WIP entry can be created to allow the
function to check form set data.

AFE Complete Form Set Hook This hook is called at three points in the Complete action taken by the user
thus allowing customized features to be added to Complete.

AFE Entry Form Set Hook A form set appears on the user’s screen and a series of functions are
performed. For instance, the form set is filtered by removing any forms
that are not selected and Required forms are checked for inclusion. This
hook was created to allow customization within this process.

AFE Form Selection Buttons Hook Buttons on Form Selection window.

AFE Initialization Hook This hook is called any time the INI settings are loaded. Usually this
occurs when the program starts and when master resources are changed.

AFE Parse Command Line Hook This hook is called to allow the command line parameters to be parsed
and used in custom code rather than base code.

AFE Post Edit Hook This hook is called before a form set is saved (unloaded), assigned to
another user, completed, or deleted.

AFE Pre Edit Hook This hook is called after a form set has been loaded successfully and
before the Entry module can begin.

AFE Termination Hook This hook is called when the Entry module is exiting.

AFE Window Procedure Hook This hook is designed to let a custom function intercept messages that
arrive at the main application's window procedure.

AFEArchive2WipKeys Translates the archive Key1, Key2, and KeyID fields into the
corresponding WIP fields.

AFESecurityFunc Verifies a user has access rights to enter the program

AFEWip2Archive Translates the WIP Key1, Key2, and KeyID fields into the corresponding
Archive fields.

AFEWip2ArchiveRecord Creates the archive index record from a WIP record.

AppIdxRec

Use this function to get an archive
record based on APPIDX.DFD and
Trigger2Archive INI settings.

Syntax:
AppIdxRec ()

Example:
Comment = AppIdxRec()
AddComment(Comment)

CUSGetArcIdxName

Use this function to get an archive record based on APPIDX.DFD and
Trigger2Archive INI settings.

 Page 63 of 146

CUSGetArcIdxName Obtains the archive index name of a specific WIP record.

TRNAutoKeyIDUsrFunc Auto-Fill Key ID on Form Selection window.

TRNSetBannerFormInfo Set banner page information.

Transactions
Form sets may be created with different requirements. One way of delineating the purpose of a form set is by
identifying it with a Transaction Type. Several different transaction types are supported by the base system
including, “New Business”, “Renewal”, “Quote” and “Endorsement”. Each of these transaction types will change
(or specify) certain criteria about the form set selection process. The Documaker Workstation Supervisor Guide
details customizing WIP transaction code and for more specific information on these base functions, refer the
TRNLIB section of the API Documentation.

INI Definition

Any number of transaction types may be defined by the user. Each may have a special custom function or they
may share the same custom function. The following example demonstrates two transaction registrations.

[Transactions]
01 = ;NB;New Business;TRNOS2->TRNNew;
02 = ;QU;Quote;TRNOS2->TRNNew;

The left side of the equation is used only to delineate each item. The right size of the definition includes the
transaction code (2 characters); followed by the transaction type name; followed by the standard definition for
DLL and function name.

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more information on the
FAPHANDLER prototype, see the FAPHANDLER section. You can use the following parameters:

Parameter Description

ObjectH The handle of the current form set.

Msgno A requested operation message number. Currently, only the FAP_MSGINIT
message is sent.

p1 Is a union. p1.ptr will be NULL or contain a pointer to a BOOL variable type. If a valid
pointer is passed, the custom function should set the BOOL to TRUE if the form set
should enforce a unique KeyID, otherwise it should be set to FALSE. (Some
applications allow duplicate keys on certain transaction types.)

p2 Is a union. p2.ptr is a pointer the TRANSREC structure associated with the form set.
This structure is defined in AFELIB.H. By examining this structure for the transaction
name, it is possible to have several transactions share the same custom function.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

A custom transaction function should use care when manipulating the form set passed as a parameter. In most
cases, the user is working with the Form Selection window when this hook is called.

 Page 64 of 146

DAL Functions and Procedures
The Document Automation Language (DAL) is a scripting language that enhances form data collection during
form entry or during the execution of the Docucorp Batch Processing. Through DAL, it is possible to access and
change the values contained within form fields. A DAL calculation may perform mathematical operations, call
functions, create variables, or even call other DAL calculations.

DAL is also extensible. Through installable script language functions and procedures, it is possible to create new
or replace existing DAL functions and procedures.

This document will explain some of the steps necessary to install DAL procedures, but for a complete
explanation about programming for DAL, you should refer to the DAL Reference.

INI Registration

It is possible to create and register additional procedures and functions for DAL. Once registered, DAL will
automatically call a routine each time a script reference to the routine’s name is encountered. It is actually
possible to override an existing built-in routine by registering another one with the same name.

Although there is an internal API that can be called to register DAL routines, INI registration is also supported
by the AFE Entry module.

[DALFunctions]
KeyWord = DLL->FuncName1
KeyWord2 = DLL->FuncName2

The example above demonstrates INI registration of two DAL functions. Any number of functions can be
registered in this manner.

The value to the left of the equal sign represents the DAL “verb”, or keyword, that will be used in DAL scripts
when the specified function should be called. Valid DAL keywords may not contain a space. Some special
symbols are permitted but not mathematical symbols or parentheses. Case is not important on DAL keywords.

After the equal sign, the standard DLL->FuncName convention is used to name a DLL to load and an exported
function to call. Remember that case is usually important when naming DLL exported functions.

The routines named in these INI options are registered after the internal “built-in” functions. When a keyword is
registered a second time, the latter registration will override the first. This makes it possible to substitute your
own functionality for internally defined DAL functions and procedures.

DAL Function Prototype

There are very few requirements for creating built-in functions or procedures. First, a routine must conform to
this prototype:

DALERR_CODE _VMMAPI function(DALMODETYPE mode);
This prototype defines the procedure as being exported and of type _VMMAPI. The return type,
DALERR_CODE, is a long value that will represent one of the internal error numbers.

The parameter, DALMODETYPE, is an enumerated value that identifies how the routine was called. A value of
DALMODE_FUNCTION indicates a return value is expected and DALMODE_PROCEDURE means no return
value is expected. Generally, a routine is created to be either a function or procedure. A function returns a value,
while a procedure does not. The language syntax requires that values returned by functions be used as parameters
to other routines or acted upon by operators. Conversely, procedures must be “stand-alone” statements and
cannot be used as function parameters or other expressions. This distinction is necessary to help prevent possible
errors by users (Re. script writers).

It is possible to write a routine that can serve as both a function and procedure. In this event, the mode parameter
should be checked near the end of the routine to determine whether to push a result onto the DAL stack. If called
as a function, this result is returned to be used in the calling expression.

 Page 65 of 146

A routine should return DALERR_SUCCESS to indicate a successful completion. Any other value is interpreted
as the error number to send to the currently registered error handler.

Specific requirements and information on building DAL functions and procedures is covered in a
separate document detailing the DAL Reference.

Edit Functions
By assigning edit functions to a variable field, you can have the system execute specific functions before (pre-
edit) or after (post-edit) a data entry user enters data into the field or both.

Prototypes

The edit function must follow the FAPUSERPROC prototype can be found in the FAPUSER.H file. The
FAPUSERPROC is a generic function prototype used by the system. The following function prototype is true for
edit functions:

FAPDW FAPAPI EditProc(FAPDW msg, // FAP_MSGPREEDIT/FAP_MSGPOSTEDIT
 FAPDW dwFAPHab, // Anchor block
 FAPDW dwFAPHwnd, /* Window handle of client
 FAPDW fieldH, /* Field handle */
 FAPDW FAPObjType, /* Value is FAP_OBJFIELD
 FAPDW flag, /* FAPFIELD.flag = FFLAG_* values
 defined in FAPFORM.H. */
 FAPDW Required, /* FAPFIELD.required */
 FAPDW Scope, /* FAPFIELD.scope =
 SCOPE_LOCAL_IMAGE
 SCOPE_GLOBAL_FORM
 SCOPE_GLOBAL_FORMSET */
 char FAR * Name, /* FAPFIELD.name */
 char FAR * FEType, /* FAPFIELD.fetype[0] =
 C Custom
 x Alphanumeric
 k Int'l Alphanumeric
 a Alphabetic
 i Int'l Alphabetic
 X Uppercase Alphanumeric
 K Int'l Uppercase Alphanumeric
 A Uppercase Alphabetic
 I Int'l Uppercase Alphabetic
 n Numeric
 y (Y)es or (N)o
 m X or space
 d Date format
 t Table only
 M Multi-line text
 B Bar code
 T Time format
 &FAPFIELD.fetype[1] =
 language. If null then
 neutral. Otherwise is a
 UTL_LOCALE_* value defined
 In UTLFMT.H. */
 char FAR * Format, /* FAPFIELD.format */
 char FAR * EditData, /* Data defined by your custom
 edit function. This value is
 supplied by the user at form

 Page 66 of 146

 composition time on the field
 properties edit tab's data
 prompt. */
 char FAR * inBuf, // PPS Entry buffer (same as out)
 char FAR * outBuf, // PPS Entry buffer (same as in)
 FAPDW outBufSize, // PPS Entry buffer size
 FAPDW FAR * outFlg1, // Not used
 FAPDW FAR * outFlg2, // Not used
 FAPDW FAR * outFlg3);// Not used

Pre-Edit Functions

When you assign a pre-edit function to a variable field, the system executes that function before the user enters
new information in the field. For example, you can assign a pre-edit procedure that inserts default information
into the field. For a pre-edit function, the message sent is FAP_MSGPREEDIT.

Post-Edit Functions

The system applies post-edit functions after the data entry user finishes entering data in the field. For example,
you might assign a post-edit procedure to tell the system to create a cover letter using the name and address
entered into the variable field. For a post-edit function, the message sent is FAP_MSGPOSTEDIT.

Image Functions
By assigning image functions to an image, you can have the system execute specific functions when an image is
opened, closed, or both.

Prototypes

The image function must follow the FAPUSERPROC prototype that can be found in the FAPUSER.H file. The
FAPUSERPROC is a generic function prototype used by the system. The following function prototype is true for
image functions:

FAPDW FAPAPI ImageProc(FAPDW msg, // FAP_MSGOPEN/FAP_MSGCLOSE
 FAPDW dwFAPHab, // Anchor block
 FAPDW dwFAPHwnd, // Window handle of client
 FAPDW imageH, // Image handle
 FAPDW FAPObjType, // Value is FAP_OBJIMAGE
 FAPDW dwInputFlag1, // Not used
 FAPDW dwInputFlag2, // Not used
 FAPDW dwInputFlag3, // Not used
 char FAR * Name, // IMAGENAME(imageH)
 char FAR * FEType, // Not used
 char FAR * Format, // Not used
 char FAR * EditData, /* Data defined by your custom
 image function. This value is
 supplied by the user at form
 composition time on the image
 properties edit tab's data
 prompt. */
 char FAR * inBuf, // Not used
 char FAR * outBuf, // Not used
 FAPDW outBufSize, // Not used
 FAPDW FAR * outFlg1, // Not used
 FAPDW FAR * outFlg2, // Not used
 FAPDW FAR * outFlg3);// Not used

 Page 67 of 146

Open Functions

When you assign an open function to an image, the system executes that function when that image gets a
FAP_MSGOPEN message. The image will broadcast the FAP_MSGOPEN to all of its children then call the
custom open function. For example, you can assign an open procedure that inserts default information into
several fields on an image.

Close Functions

When you assign a close function to an image, the system executes that function when that image gets a
FAP_MSGCLOSE message. The image will call the custom close function then broadcast the
FAP_MSGCLOSE to all of its children.

Export Formats
A list of available export formats can be defined in the INI file. If more than one method is supported, the
program will prompt the user to select the method that should be used.

No default values are assumed, however the standard function, TRNExport(), may be activated in the base
system.

INI Definition

Any number of export methods may be defined by the user.
[ExportFormats]
01 = ;xx;Export;TRNOS2->TRNExport;

The left side of the equation is used only to delineate each item. The first place holder on the right size of the
definition not used. The second is the export method name and is followed by the standard definition for DLL
and function name.

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more information on the
FAPHANDLER prototype, see the FAPHANDLER section. You can use the following parameters:

Parameter Description

ObjectH The handle of the current form set.

msgno A requested operation message number. Currently, only the FAP_MSGINIT
message is sent.

p1 Is a union. p1.ptr will be a pointer the AFEDATA structure used by AFE. This
structure contains most (if not all) of the global data necessary to manipulate the
form sets in use by the Entry module. Even if you are familiar with AFELIB and how
the Entry module works, you should use care when manipulating the data within this
structure.

p2 Is a union. p2.dw is a HWND value of the window that initiated the call.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

A custom transaction function should use care when manipulating the form set passed as a parameter. In most
cases, the user is engaged with the Complete Form Set window when this hook is called.

 Page 68 of 146

Import Formats
A list of available import formats can be defined in the INI file. If more than one import method is supported, the
program will prompt the user to select the import method that should be used.

No default values are assumed, however two standard functions may be activated in the base system:
TRNImport() and TRNSelImport().

INI Definition

Any number of import methods may be defined by the user. The following example demonstrates two import
method registrations.

[ImportFormats]
01 = ;xx;Standard;TRNOS2->TRNImport;
02 = ;yy;Selective;TRNOS2->TRNSelImport;

The left side of the equation is used only to delineate each item. The first place holder on the right size of the
definition not used. The second is the import method name and is followed by the standard definition for DLL
and function name.

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more information on the
FAPHANDLER prototype, see the FAPHANDLER section. You can use the following parameters:

Parameter Description

ObjectH The handle of the current form set.

msgno A requested operation message number. Currently, only the FAP_MSGINIT
message is sent.

p1 Is a union. p1.ptr will be a pointer the AFEDATA structure used by AFE. This
structure contains most (if not all) of the global data necessary to manipulate the
form sets in use by the Entry module. Even if you are familiar with AFELIB and how
the Entry module works, you should use care when manipulating the data within this
structure.

p2 Is a union. p2.dw is a HWND value of the window that initiated the call.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

A custom transaction function should use care when manipulating the form set passed as a parameter. In most
cases, the user is engaged with the Form Selection window when this hook is called.

Document Set Procedures
The documents set files read and write code can be replaced through INI options that specify what function to
call when certain operations are requested.

Documents set files include the NA, POL and PKG files. Default functionality is provided for reading and
writing these files as ordinarily DOS files if another INI option is not provided. These functions can be
overridden to achieve an alternate method of reading and writing this information.

 Page 69 of 146

INI Settings

Two separate group definitions are used to distinguish between document files in archive mode and non-archive
mode. This was designed in a manner to assist those that might require their archived information to be retrieved
from another location or in different manner than WIP files. The WIP group is [AFEDSProcedures] while the
archive group is [AFEDSArchiveProcedures].

[AFEDSProcedures]
APPEND = DSOS2->DSDefAppendBuffer
CLOSE = DSOS2->DSDefCloseBuffer
CREATE = DSOS2->DSDefCreateBuffer
FIRST = DSOS2->DSDefFirstBuffer
NEXT = DSOS2->DSDefNextBuffer
OPEN = DSOS2->DSDefOpenBuffer

[AFEDSArchiveProcedures]
APPEND = DSOS2->DSDefAppendBuffer
CLOSE = DSOS2->DSDefCloseBuffer
CREATE = DSOS2->DSDefCreateBuffer
FIRST = DSOS2->DSDefFirstBuffer
NEXT = DSOS2->DSDefNextBuffer
OPEN = DSOS2->DSDefOpenBuffer

Functions

Function Result

DSDefAppendBuffer Appends a buffer of data to the current file.

DSDefCloseBuffer Closes the current file.

DSDefCreateBuffer This hook is called to create a new or truncate an existing file for writing.

DSDefFirstBuffer Return the first buffer of data from the current file.

DSDefNextBuffer Return the next buffer of data from the current file.

DSDefOpenBuffer Opens an existing file.

Timed Service Functions
TMRLIB (Timer library) is a base library used to register and call service functions at specified time intervals.
The Timer library was designed to work with most of the desktop applications created by Docucorp, especially
Documaker Workstation. This document will specifically focus on the use of TMRLIB within Documaker
Workstation while identifying areas that may differ when used by other programs.

AFEMAIN is the starting point for most Processing System programs. The AFEDATA structure, used by
AFELIB, is supplied as a parameter to any timed functions registered by this program. Control over many
aspects of the program’s environment is available, including any currently selected form set and WIP record,
with access to the current AFEDATA structure.

Other programs may use TMRLIB that do not use an AFEDATA structure. These programs can register an
application specific pointer (to any type of data) that will be passed to registered timed functions. In theory,
these functions will know what that data pointer references and how to use it.

Several Docucorp libraries are referenced by TMRLIB, but the interaction with these is designed to be limited
preventing dependence upon any particular version of our products. Although TMRLIB was not created until
version 9.0, it should be possible to use TMRLIB in prior versions of the software (recompiling may be
necessary). Registered service functions should do their own version checking of system libraries or other
libraries when a specific functionality is required.

 Page 70 of 146

History

On occasion, the Professional Services Group has been required to provide an interface between the Documaker
Workstation system and an external program/event. Usually, this interface involved writing a daemon program to
periodically check for these “events” and react when they were detected. The daemon programs either used an
operating system timer or simply polled (in a loop) waiting for a specific event to occur.

Historically, Docucorp daemon programs start Documaker Workstation with command line parameters
identifying what must be done. Once the task completes, the user must exit Documaker Workstation to reactivate
the daemon program that then waits for another event.

Implementing a solution using this method did not lend itself to base support. To become a useful base feature,
we needed to remove the requirement for the daemon program and simply make Documaker Workstation wait
for the necessary event to occur. This eliminates starting and exiting the program repeatedly which is extremely
time consuming. In some cases, program startup delay might allow other workstations waiting to act on the same
event (such as a file appearing in an import subdirectory) to conflict over the task.

Another objection to the daemon program method is that it usually requires making changes to Documaker
Workstation (AFEMAIN.EXE). Typically, these changes involved customizing the parameter list handling to
call the necessary operations. By changing a base program in this manner, users cannot readily upgrade when
newer version becomes available.

Finally, if the event or task that requires a response must occur within Documaker Workstation itself, this
daemon program approach cannot easily provide a solution.

Goals

The primary goal of TMRLIB is to make it possible to implement the functionality of the daemon program
without changing AFEMAIN.EXE or even writing that third program.

The skeletal framework is built around “timed” calls to service functions rather than simple polling. This will
allow the program to continue to run and check for required events as a background operation.

Since base support cannot anticipate what type or number of events each customer might require, these service
functions will be registered via entries in the INI file. This should not require any modifications to base libraries
or programs under normal circumstances.

In addition, a filtering capability is included to allow the registration of a service function to indicate what “state”
the program should be in before being called. State will encompass whether a form set is loaded or not and
whether the user is engaged in open windows or menus.

Finally, this implementation should make it possible to maintain the customer’s upgrade path with minimal
effort.

Timed vs. Timer

To avoid confusion, those functions called by this library will be referred to as “service” functions -- not timers.

True timers are a limited resource on most operating systems (OS). Because of this fact, all service functions that
are registered and called by this library will share a single timer. Multiple service functions sharing the same time
interval requirement will be called in the sequence order that they occur when retrieving INI file options.

INI Settings

Timed service functions must be registered. Registration is accomplished by adding lines to an INI group that
conforms to the following prototype.

[TIMERFUNCS]
REF = ;STATE;URGENCY;SECONDS;DLLNAME->FuncName;\DATA

 Page 71 of 146

The semicolons (;) are a required part of each registration statement. The DATA element is optional. If you
include it, precede it with a backslash (\).

REF

REF is simply a placeholder to distinguish each entry under the INI group, TIMERFUNCS. Each registered
function should have a different REF value. The actual value is not used by TMRLIB. In most cases, you may
wish to use simple ASCII numbering, such as 01=, 02=, 03=, and so on, to distinguish each service function line.

Although the REF value is not used by TMRLIB, remember that INI files are sorted when loaded. If
the sequence of the service functions is important, the REF values should be established in a manner
that will not be changed when sorted.

STATE

The first Placeholder STATE is a mode or state of program flag. The STATE (in combination with URGENCY)
indicates at what point during processing it is valid to call the service function. This indicator only applies to
service function calls triggered by the timer. Initialization and termination affects all registered service functions
regardless of the setting indicated on the registration line.

This valid values for this flag and their meanings are:

� 0= Desktop closed (No form set is currently loaded or in view)

� 1= Desktop open (A form set is currently loaded and in view)

� 2= Call any time (Use with caution)

The desktop is considered “opened” when a form set is currently being viewed and/or entry is active, otherwise
the desktop is considered “closed”.

The desktop is considered opened when any form contained within the current form set, (retrieved by
FAPFormset) has a FAPWINDOW associated with it.

If a service function should only be called when the desktop is closed, assign ‘0’ as the STATE. Note however,
even if the desktop is closed, service function registered at STATE level 0 will not be called if the URGENCY
requirement is not satisfied. In Documaker Workstation, STATE level 0 might be used to implement features like
automatic import, or automatic WIP edit.

Use STATE level 1 when a service function should only be called while the desktop is opened. (Remember, this
means that a FAPWINDOW is associated with a form in the current form set.) Note however, service functions
are not called if the URGENCY requirement is not satisfied. In Documaker Workstation, STATE level 1 might
be used to implement a feature like auto-save to WIP.

STATE level 2 should be used with discretion. Any service function using STATE level 2 will be called whether
the desktop is opened or closed as long as the URGENCY requirement is satisfied. Service functions registered
as STATE level 2 should probably not attempt to alter current forms or change the form set management. Doing
so might cause the program to crash and burn.

Since STATE level 2 is active whether the desktop is opened or closed, this setting should only be used to
implement features that do not hinder user operations and do not rely upon form set management.

 Page 72 of 146

URGENCY

Once the STATE setting has been satisfied, the URGENCY flag will be evaluated. URGENCY represents how
“timely” the call to the service function should be enforced. This setting may skip or delay the call if the user is
engaged with an open window or menu. This indicator only applies to service function calls triggered by the
timer. Initialization and termination calls all registered service functions regardless of the setting indicated on the
registration line.

This valid values for this flag and their meanings are:

� 0 = Not Urgent (okay to bypass if window or menu is open)

� 1 = Rush (call as soon as possible after window or menu is not open)

� 2 = Urgent (call even if window or menu is open – use with caution)

TMRLIB subclasses the main window of the application and looks for messages that indicate the menu
is active. In addition, all child windows associated with the application window are scanned to
determine if any of them are windows. These two tasks are used to determine when URGENCY should
be enforced.

A setting of zero (0) indicates that the call to the service function should be skipped if a window or menu
controlled by the program is open. Skipping the call means that the service function will not activate again until
the registered time interval's next elapses.

URGENCY setting equal to one (1) will call the service function if no window or menu is active. However, this
setting will delay the call, rather than skip it, if a window or menu is open.

Delayed service functions are evaluated approximately every second (based upon the system timer) to determine
when the call can safely go through. Delaying the call means the interval between when the call finally goes
through and the next standard interval registered with the function may be reduced.

Also note, however, that time interval is not accumulated. If the delay causes the function to miss two or three
time intervals, it will only be called once when the URGENCY is finally satisfied.

Use URGENCY level 2 with discretion. This setting will call the service function without regard for whether a
window or menu is active. Service functions registered with an URGENCY level 2 should probably not attempt
to alter current forms or change the form set management. Doing so might cause the program to crash and burn.

Since the user might be interacting with a window, this setting should only be used to implement features that do
not affect or hinder user operations. In addition, these functions should probably not open windows. Imagine the
user’s frustration, if while completing the Print window, the program suddenly switches to another task or
window.

SECONDS

The SECONDS placeholder is a time-out value that designates (in seconds) how often the service function
should be called. SECONDS can be any value from 1 to 32767. (The maximum value exceeds nine hours). Any
line that contains a SECONDS value equal to zero (0) will be skipped.

Although, the time-out value is designated in seconds, the actual time is only approximated. This is covered in
more detail later in this document.

 Page 73 of 146

Internally, two “time” values are maintained. One of these values is used exclusively to test when
STATE level 2 functions should be called. Remember, STATE level 2 functions are called whether the
desktop is opened or closed.

STATE levels 0 and 1 use a second time value maintained by TMRLIB. Only those functions satisfied by the
current STATE flag (desktop opened or closed) will be called when the proper time interval has elapsed. When
the desktop is opened or closed, the second time value is reset to zero. This guarantees that the time interval
associated with a function must elapse before being called when the desktop state changes.

Calling a service function too frequently may slow program performance.

DLLNAME->FuncName

The placeholder, DLLNAME->FuncName, is the standard FSI method used to identify a DLL to load and an
exported function to call. DLLNAME should be a valid DLL name and FuncName much match a name that can
be “queried” from that DLL. Only functions named in a DLLs export list can be referenced by TMRLIB.

As mentioned previously, the function identified by this option must conform to the FAPHANDLER function
prototype.

\DATA

This registration member is optional. DATA should only be declared if the service function requires it. There is
no format requirements established for the data line other than it must begin with a backslash (\).

Function specific DATA is attached, as a string of ASCII characters, to the FSITIMERREC structure associated
with the registration line. It is the service functions responsibility to verify the existence or validity of the line.

The leading backslash will not appear in the data member of the structure.

Example Registrations

Theoretically, there is no limit to the number of functions that you can register. Each can have it's own values for
each of the registration parameters.

The more service functions that are registered, the greater the possibility that program performance will
be adversely affected.

[TIMERFUNCS]
A=;0;0;60;TMROS2->TMRTimerTest1;
02=;1;1;30;TMROS2->TMRTimerTest2;
CHECK=;2;2;300;TMROS2->TMRTimerTest3;

This example registers three timed service functions. None of them has specified any function specific data to
associate with the service function record.

 Page 74 of 146

TMRTimerTest1 will be called approximately every 60 seconds while the desktop is closed and the user is not
engaged in a window or menu selection. If a window or menu is open at the timed interval, the function will be
skipped until the next 60-second interval elapses.

TMRTimerTest2 will be called approximately every 30 seconds while the desktop is open and the user is not
engaged in a window or menu selection. However, if a window or menu is open, the function will be delayed
(not skipped) until the window or menu closes.

Approximately each second skipped functions are re-evaluated. When the program is satisfied that a window or
menu is no longer open, the call will be made, regardless of whether the current time matches the registered
interval. If multiple intervals elapse during the delay, only one call will be made to the function. Once a
successful call has been made, the testing for this function’s time interval returns to normal.

TMRTimerTest3 will be called approximately every five minutes whether the desktop is opened or closed and
without regard to whether the user is engaged in a window.

As mentioned in the discussion of the last topic, the semicolons (;) are essential to distinguish the parts of the
registration line. If a line cannot be parsed correctly, an error message will be displayed and the line skipped.

Each of these registration lines has a different REF values -- “A=”, “02=”, and “CHECK=”. These
names are used simply to illustrate that the values are not important as long as they are unique. You
could just as easily use “A=”, “B=”, “C=” or “1=”, “2=”, “3=”.

Also, note that after loading the INI file into memory the actual order of the list will be ‘02’, then ‘A’
and finally ‘CHECK’ because INI files are sorted during loading. In this example, each function is
independent of the others and the sorted order does not affect the program.

In this example, all three functions are in the same DLL, namely TMROS2, but this is not a requirement.

This example also demonstrates functions registered at STATE levels 0, 1 and 2 and URGENCY levels 0, 1, and
2. This is not a requirement. STATE levels and URGENCY levels can be mixed and matched to meet the service
functions’ requirements.

If necessary, you can register multiple service functions at the same STATE and URGENCY level -- even with
the same time interval. Unless the DATA area is used by the service function to distinguish what action to take, it
is not usually wise to register the same DLLName->FuncName more than once.

Multiple Platforms

Remember [WINDOWSUBS] or [WINDOW32SUBS] entries may have to be added if the INI file is used by
workstations operating on more than one platform. For instance, suppose a function is located in MINEOS2.DLL
for OS/2 and MINEWIN.DLL for Windows. The correct INI entries might look like this:

[TIMERFUNCS]
01=;0;0;60;MINEOS2->MyFunction;
[WINDOWSUBS]
MINEOS2 = MINEWIN.DLL

Before attempting to load MINEOS2, all FSI programs will substitute the appropriate name from the
[WINDOWSUBS] group. Establishing an INI file in this manner will make it useable by each supported
environment. The same method is used for WIN32 programs using [WINDOW32SUBS].

Adding entries under [WINDOWSUBS] or [WINDOW32SUBS] is not usually necessary if the DLL that is
being called is a FSI “base” DLL. The appropriate names for these DLLs for each platform are pre-registered for
you.

 Page 75 of 146

Timed Service Function Prototype

All service functions called by TMRLIB must conform to the FAPHANDLER function prototype. For more
information on the FAPHANDLER prototype, see the FAPHANDLER section. This prototype takes the
following form:

typedef DWORD (_VMMAPIPTR FAPHANDLER)(VMMHANDLE memH,
 DWORD msgno,
 FAPPARM p1,
 FAPPARM p2);

Please note that this prototype is being used for convenience. The internal structures maintained for service
functions are not true FAPOBJECTs and do not receive “broadcast” messages as other FAPOBJECTs do. This
prototype contains the necessary parameters for service functions and we did not deem it necessary to make a
new prototype name.

Your function definition should look something like the following (taken from TMRLIB).
DWORD _VMMAPI TMRTimerTest1(VMMHANDLE tmrH,
 DWORD msg,
 FAPPARM p1,
 FAPPARM p2)

The parameters passed to the service function have the following meanings:

Parameter Description

VMMHANDLE tmrH This variable will be the service function’s VMMHANDLE in the timer list. This handle
is not a descendant of FAPOBJECT. The handle references the FSITIMERREC
structure that defines the service function being called. Normally you will not need to
address this structure unless the function requires implementation specific “data”,
which is an element in the structure. To reference this structure it will be necessary to
include TMRLIB.H.

DWORD msg The requested operation message number. The following FAP messages are passed
in the message parameter for the following operations.

FAP_MSGINIT
This message is sent to service functions to perform initialization (if required).

FAP _MSGTERMINATE
This message is sent to indicate that service functions should release all memory
and resources that may be in use.

FAP_MSGRUN
This message is sent when it is time for the service function to executes its task.

The definition of and implementation rules for these values is covered later in this
section under the topic ???.

FAPPARM p1 This variable contains the handle of the main (client) window. Use (HWND)p1.dw to
retrieve this value. Note, the HWND cast is necessary because a window handle is a
32-bit value under Windows 32-bit, but only a 16-bit value under Windows. Using the
cast will eliminate compiler warnings.

FAPPARM p2 This variable contains a pointer to program specific data. The pointer can be
retrieved by referencing this parameter as p2.ptr.

In Documaker Workstation, this pointer will be the AFEDATA structure. This value
can be retrieved in the following manner.

PAFEDATA pdata = (PAFEDATA)p2.ptr;
The AFEDATA structure is defined in AFELIB.H. This structure contains most (if not
all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care in manipulating the data within this structure.

 Page 76 of 146

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result. A non-successful return to the
FAP_MSGINIT message will result in the service function being disabled.

Messages

As shown in the prototype section, there are three distinct messages passed to time service functions.

While the service function is being called, all other actions in the program are suspended. The function
must return to allow processing to continue. Failure to return will cause the program to appear “dead”.

FAP_MSGINIT

This message is sent to all registered service functions at the time TMRLIB is initialized -- regardless of the
current STATE or URGENCY variables.

If a value other than SUCCESS (0) is returned, the function is removed from the timer list and will not be called
again.

Receiving this message is an indication that any initialization steps required to set up the function for timed
callback may be performed. Initialization steps might include allocating memory, loading INI settings, variable
initializations, and so on.

If SUCCESS is returned, the service function will be called each time the SECONDS values have elapsed and
the STATE and URGENCY flags are satisfied.

FAP_MSGTERMINATE

This message is sent to all registered service functions (that returned SUCCESS during initialization) when
TMRLIB is terminated. This may be due to program exit or due to some action (user or program) requesting that
timers be terminated. Each function is called regardless of the STATE or URGENCY settings.

The value returned by the service function in response to this message is ignored.

Receiving this message is an indication that any termination steps required to end the service function’s
operation be performed. Termination steps might include closing files, freeing used memory or resources, closing
windows, and so on.

After termination, it is possible for the service function to be called again with FAP_MSGINIT to re-initialize the
service function.

FAP_MSGRUN

Upon receipt of this message, the service function can perform the action for which it was designed. The value
returned from the service function is ignored.

Receiving this message is an indication that the STATE and URGENCY values associated with the service
function have been satisfied and the appropriate time (SECONDS) has elapsed.

: Those functions that use URGENCY level 1 may have been delayed. This can be detected (if
necessary) by checking the “activate” structure member associated with the service function.

 Page 77 of 146

Considerations

Time is relative.

There is no assurance -- even when using a true OS timer -- that your function will be called on a precisely timed
basis. This means that you should not expect to estimate how much time has elapsed simply based upon the time
interval registered with the service function. If you need time information, you should use a clock function that
returns the actual time-of-day.

The primary reason you cannot depend upon a precise time is that OS timers rely upon OS messages. If a
program function spends excessive time doing a task without checking the program’s message loop, the timer
message will be delayed.

Keep this last point in mind. If your service functions take a long time to operate, it may interfere with
the normal operation of the program. By returning quickly, you help to ensure that other functions,
waiting on an “event” or message, will have their turn to act.

TMRLIB creates an actual OS timer that is activated approximately once each second. When the timer message
is received, the service function list is checked to determine whether each function needs to be called using the
current desktop state and the registered time interval (SECONDS) as filters. In addition, any service function that
has been delayed -- due to an URGENCY state -- will be evaluated.

This STATE and URGENCY variables are intended to give writers of service functions some assurance that the
manipulation of the form set (or potential form set) is safe and that the program is in a state that will allow the
function to perform safely.

URGENCY level 2, however, remains active at all times. Service functions registered with this level may be
called whether the user is actively engaged with menu options or windows. Be careful when writing a level 2
service function.

In addition to the possible delay caused by supporting STATE and URGENCY levels, service functions are
called in a sequential fashion. If it is determined that more than one function needs to be called during a timer
message, each service function must complete (and return) before the next can be called.

The number of service functions registered and the length of time it takes for each to complete its task
can adversely affect program performance.

Timing Example
[TIMERFUNCS]
01=;0;0;30;MINEOS2->TMRTimerTest1;
02=;1;0;60;MINEOS2->TMRTimerTest2;

The following analysis uses the example registrations shown above. These examples use URGENCY level 0
which means that the service functions can be skipped (entirely) if the open window and menu test fails.

If the user has not opened the desktop and is not engaged in a menu option window, the function
TMRTimerTest1 will be called approximately every 30 seconds. As long as the desktop remains closed, the
second function will not be called.

 Page 78 of 146

Now, assume 25 seconds pass without opening a form set. The user then opens the Form Selection window,
spends 10 seconds mulling it over and finally cancels the window. Because the window was opened when the 30-
second time interval occurred, the service function was not called. It will be another 25 seconds before the next
evaluation is made to determine whether to run the function.

While the desktop is opened, the first service function will not be called. However, the countdown for the second
service function will be activated. Approximately each 60 seconds (if a menu or window is not active), the
second function will be called.

If after 59 seconds the user opens the Print window -- fiddles around for two seconds and then cancels -- it will
take another 59 seconds before the second service function is checked again. On the other hand, if only 50
seconds have elapsed, the user opens the Print window for 9 seconds and then cancels. The 60-second timer will
be able to execute the function TMRTimerTest2.

 Page 79 of 146

Function and Hook Reference

 Page 80 of 146

AddComment
Use this function to add a comment to the print stream. Products like Docucorp’s Docusave and IBM’s
OnDemand use comments in the print stream as an archive key. The AddComment DAL function should only be
called from a script loaded via the DocuSaveScript option specified in the AFP or Metacode printer control
group. Calling AddComment from GenData will result in an INTERNAL ERROR being returned from DAL.

Syntax:
AddComment (Comment, Convert)

Parameter Description Required?

Comment A string to be written as a comment in the print stream Yes

Convert 0 means convert string to EBCDIC (default)

1 means convert string to ASCII

2 means do not convert string

For Docusave, you will always want EBCDIC comments.

No

Example:

Here are some examples:
AddComment(‘This is an example’)
AddComment(@('INSURED NAME',,, GROUPNAME()))

 Page 81 of 146

AFE Append Record Hook
AFERetriB4AppendgToLstHook

This hook will be called immediately before a new record is added to the static list, after the OK button on the
Retrieve window is pressed. The hook is expected to return a SUCCESS (O) or a FAILURE (a non-zero
number). A FAILURE will cause the record not to be added to the list and a SUCCESS will cause the record to
be added to the list. The type definition and prototype for this hook are listed below.

Type Definition
typedef int (_VMMAPIPTR AFERETRIOKBUTTONHOOK)(GUIHWND hwnd,PAFEDATA pdata);

Syntax
extern int _VMMAPI AnyFunctionName(GUIHWND hwnd, PAFEDATA pdata);

Parameter Description

hwnd The handle to the window which calls the function AFERetDisplayList.

pdata A pointer to the AFEDATA structure used by AFE. This structure contains most (if not
all) of the global data necessary to manipulate the form sets in use by the Entry
module. The values entered into Key1, Key2 and KeyID on the Retrieve window are
stored in the WIP record structure that is a member of the pdata structure (pdata-
>WIP). The search on the database is base on those values.

INI Definition
[AfeProcedures]
AFERetriB4AppendgToLstHook = DLL->FunctionName

The (DLL) is the DLL where the function hook is. The (FunctionName) is the function name of the hook. For
more information on this subject, read the section above on: “How does Documaker Workstation locate external
procedures”.

Important Information

To avoid memory errors, the memory location allocated for the WIP record should not be freed. That process
will be taken care off after returning from the hook.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 82 of 146

AFE Archive List Hook
AFERetDisplLstHook

This hook will replace the AFERetDisplayList() function. The replaced function is primarily responsible for
retrieving records from the archive database and adds them to a static list. The prototype and type definition of
this function is listed below.

Type Definition
typedef int (_VMMAPIPTR AFERETRIDISPLHOOK)(GUIHWND hwnd,
PAFEDATA pdata,
VMMHANDLE AppListH,
 BOOL bFirst);

Syntax
extern int _VMMAPI AnyFunctionName(GUIHWND hwnd,
 PAFEDATA pdata,
VMMHANDLE AppListH,
BOOL bFirst);

Parameter Description

Hwnd The handle to the window which calls the function AFERetDisplayList.

Pdata A pointer to the AFEDATA structure used by AFE. This structure contains most (if
not all) of the global data necessary to manipulate the form sets in use by the Entry
module. The values entered into Key1, Key2 and KeyID on the Retrieve window are
stored in the WIP record structure that is a member of the pdata structure (pdata-
>WIP). The search on the database is base on those values.

AppListH A static pointer. This pointer points to the list of records display at the Retrieve
window. To avoid a memory leak, AppListH should be destroyed every time a new
list is built.

Bfirs Serves as a guild to the previous parameter. Since this function can be called more
than one time to build a list, (bFirst), a Boolean, tells the function when it is been
called for the first time during the process of building the current list.

INI Definition
[AfeProcedures]
AfeRetDisplLstHook = DLL->FunctionName

The (DLL) is the DLL where the function hook is. The (FunctionName) is the function name of the hook. For
more information on this subject, read the section above on: “How does Documaker Workstation locate external
procedures”.

Important Information

To avoid memory errors, the memory location allocated for the WIP record should not be freed. That process
will take place after returning from the hook.

 Page 83 of 146

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 84 of 146

AFE Archive Record Selected Hook
AFERetriOkButtonHook

This hook will be called immediately after the OK button from the Retrieve window is pressed. The hook is
expected to return a SUCCESS (O) or a FAILURE (a non-zero number). A FAILURE will cause the process to
return to the window, and a SUCCESS will cause the process to continue normally. The type definition and
prototype for this hook are listed below.

Type Definition
typedef int (_VMMAPIPTR AFERETRIOKBUTTONHOOK)(GUIHWND hwnd, PAFEDATA pdata);

Syntax
extern int _VMMAPI AnyFunctionName(GUIHWND hwnd, PAFEDATA pdata);

Parameter Description

hwnd The handle to the window which calls the function AFERetDisplayList.

pdata A pointer to the AFEDATA structure used by AFE. This structure contains most (if not
all) of the global data necessary to manipulate the form sets in use by the Entry
module. The values entered into Key1, Key2 and KeyID on the Retrieve window are
stored in the WIP record structure that is a member of the pdata structure (pdata-
>WIP). The search on the database is base on those values.

INI Definition
[AfeProcedures]
AFERetriOkButtonHook = DLL->FunctionName

The (DLL) is the DLL where the function hook is. The (FunctionName) is the function name of the hook. For
more information on this subject, read the section above on: “How does Documaker Workstation locate external
procedures”.

Important Information

To avoid memory errors, the memory location allocated for the WIP record should not be freed. That process
will take place after returning from the hook.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 85 of 146

AFE Check Form Set Data Hook
CheckUserEntry

This hook is called before a new WIP entry can be created. No default value is assumed for this option.

INI Definition
[AFEProcedures]
CheckUserEntry = DLL->FuncName

Syntax
int _VMMAPI func(HWND hwnd, char *Key1, char *Key2, char *KeyID,
 char *Desc, VMMHANDLE formsetH, PAFEDATA pdata);

Parameter Description

hwnd The handle to the Form Selection window or zero.

Key1 A pointer to a NULL terminated string that represents the Key1 value.

Key2 A pointer to a NULL terminated string that represents the Key2 value.

KeyID A pointer to a NULL terminated string that represents the KeyID value.

Desc A pointer to a NULL terminated string that represents the WIP description.

FormsetH A handle to the current form set.

Pdata A pointer to the AFEDATA structure used by AFE. This structure contains most (if not
all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result. A non-successful return prevents
the WIP from being created.

 Page 86 of 146

AFE Complete Form Set Hook
Complete

Support for this hook began in July, 1996. There is no default for this option.

When the user takes the “Complete” action, this is an indication that the form set should be examined for valid
entries. Upon a successful field check, the Complete Form Set window appears, this lets the user print, export,
and archive the form set.

This hook is called at three points in this process. This lets the system add the customized features to Complete.

INI Definition
[AFEProcedures]
Complete = DLL->FuncName

Syntax

This function must conform to the FAPUSER prototype. For more information on the FAPUSER prototype, see
the FAPUSER section. You can use the following parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are
passed in the dwMessage parameter for the following operations, and should be
handled accordingly in a custom procedure. Please note that although FAP message
numbers are being used, there is no FAPOBJECT that initiates or receives the
action.

FAP_MSGINIT
This message is sent before any internal verification of the form set data and before
the Complete window appears.

FAP _MSGRUN
This message is sent after the user has pressed OK on the Complete window and
before the default functionality is executed.

FAP_MSGTERMINATE
This message is sent after the Complete window has been removed and the user
chose OK.

DwFAPHab The program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the
Docucorp programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window. Only on the message, FAP_MSGRUN, will
this handle represent the Complete window.

DwObjectIdentifier Not used.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that contains the user ID of the current

 Page 87 of 146

operator.

LpszTranCode A pointer to a NULL terminated string that contains the Transaction Code associated
with the WIP record.

lpszKey1 A pointer to a NULL terminated string that contains the Key1 field value associated
with the WIP record.

lpszKey2 A pointer to a NULL terminated string that contains the Key2 field value associated
with the WIP record. Note that in a multi-select situation (PPS) only the first Key2
value is provided.

LpszInputBuffer A pointer to a NULL terminated string that contains the current KeyID field value
associated with the WIP record.

LpszKeyID A pointer to a text buffer that should receive the output KeyID from this function. If
this value is NULL, no output string is expected. On input, a non-NULL value will
represent the last KeyID returned from your hook procedure. A difference between
the input KeyID and the one represented in this string means that the user changed
the original KeyID.

DwOutputBufferMaxSize Not used.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module works,
you should use care when manipulating the data within this structure.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether each operation succeeded.

In response to the message, FAP_MSGINIT, a non-successful return will cause the complete function to return
unsuccessful. The custom function should tell the user what error occurred and what to do next.

In response to the message, FAP_MSGRUN, a non-successful return will not execute the default functionality
associated with the OK action and the window will remain active. It is possible for a custom function to remove
the window manually if so desired.

The response to the message FAP_MSGTERMINATE does not affect the completion process in any way, as it is
sent after the default functionality has executed.

 Page 88 of 146

AFE Entry Form Set Hook
EntryFormset

Support for this hook began in April, 1996. No default INI value is assumed for this option.

A form set appears on the user’s screen and a series of functions are performed. For instance, the form set is
filtered by removing any forms that are not selected and “Required” forms are checked for inclusion. This hook
was created to allow customization within this process.

Three calls (with separate messages) are made to the hook each time a form set is loaded.

INI Definition
[AFEProcedures]
EntryFormset = DLL->FuncName

Syntax

This function must conform to the FAPUSER prototype. For more information on the FAPUSER prototype, see
the FAPUSER section. You can use the following parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are
passed in the dwMessage parameter for the following operations, and should be
handled accordingly in a custom procedure.

FAP_MSGCREATE
This message is sent before any internal verification of the form set is performed. In
this state, the form set may contain more forms than the user selected and will not
have filtered out forms that should not be displayed.

FAP _MSGOPEN
This message is sent after the form set has been prepared and before loading the
images. At this point, only those forms that remain will be loaded or displayed.

FAP_MSGRUN
This message is sent after the form set is loaded and before the form set begins
display for Entry.

DwFAPHab Not used.

DwFAPHwnd Not used.

DwFormsetH Handle of the current form set.

DwObjectType Is FAP_OBJFORMSET.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID Not used.

LpszTranCode Not used.

lpszKey1 Not used.

 Page 89 of 146

lpszKey2 Not used.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module works,
you should use care when manipulating the data within this structure.

LpszOutputBuffer Not used.

DwOutputBufferMaxSize Not used.

LpdwOutputFlag1 Not used.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether each operation succeeded. For
each message, a non-successful return prevents the form set from being displayed.

 Page 90 of 146

AFE Form Selection Buttons Hook
BUTTONx

Supported after July 1996, three buttons can be activated on the Form Selection window when associated with
custom functions. No default INI value is assumed for these buttons. Any button that does not have a registered
function is hidden from view when the Form Selection window appears.

These buttons may be used for any activity related to form selection. Two standard procedures are provided in
the base product that may be used. TRNAutoNextKey() will remove any existing KeyID and request a new
KeyID from the AutoKeyID function. AFEPersonalEdit() will activate the “Personal Form Selection” window
and allow the user to specify a subset of forms to display as a personal Key1-Key2 combination.

INI Definition
[AFEProcedures]
BUTTON1 = TRNOS2->TRNAutoNextKey
BUTTON2 = AFEOS2->AFEPersonalEdit
BUTTON3 = TSTOS2->UserTest

Note that you do not have to define any or all of these buttons. You may activate BUTTON3 without activating
buttons 1 or 2, and so on.

Syntax

This function must conform to the FAPUSER prototype. For more information on the FAPUSER prototype, see
the FAPUSER section. You can use the following parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are
passed in the dwMessage parameter for the following operations, and should be
handled accordingly in a custom procedure. Please note that although FAP message
numbers are being used, there is no FAPOBJECT that initiates or receives the
action.

FAP_MSGINIT
Perform initialization, if necessary. Assign custom button text (default text is button
name).

FAP _MSGRUN
Button was activated by user. Perform task.

FAP_MSGTERMINATE
Perform termination and cleanup, if necessary.

DwFAPHab The program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the
Docucorp programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window. In all cases, this should be the handle of the
Form Selection window.

DwChildID The ID of a child control on the window that initiated the call or zero if no child ID is
available.

DwObjectType Not used.

DwInputFlag1 Not used.

 Page 91 of 146

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that contains the User ID of the current
operator.

LpszTranCode A pointer to a NULL terminated string that contains the Transaction Code associated
with the WIP record.

lpszKey1 A pointer to a NULL terminated string that contains the Key1 field value associated
with the WIP record.

lpszKey2 A pointer to a NULL terminated string that contains the Key2 field value associated
with the WIP record. Note that in a multi-select situation (PPS) only the first Key2
value is provided.

LpszKeyID A pointer to a NULL terminated string that contains the current KeyID field value
associated with the WIP record.

LpszOrigKeyID A pointer to a NULL terminated string that contains the original KeyID. A difference
between the input KeyID and the one represented in this string means that the user
changed the original KeyID. No output string is expected from the custom function.

DwOutputBufferMaxSize Represents the maximum size of the output buffer for the previous parameter.
however, any value copied to the char FAR *lpszOutputBuffer is ignored.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module works,
you should use care when manipulating the data within this structure.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded. In
response to the message FAP_MSGINIT, a non-successful return will cause the button to be hidden from view
and deactivated.

The parameters provided to this hook function includes all the current WIP information required to understand
how the user constructed (or is constructing) the form set. A custom function may or may not use the information
provided.

 Page 92 of 146

AFE Initialization Hook
Init

This hook is called any time the INI settings are loaded. Usually this occurs at the program start and when master
resources change. There is no default for this option.

INI Definition
[AFEProcedures]
Init = DLL->FuncName

Syntax
int _VMMAPI func(HAB hab, PAFEDATA pdata);

Parameter Description

hab The program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the
Docucorp programming environment, both definitions serve the same purpose.

Pdata A pointer to the AFEDATA structure used by AFE. This structure contains most (if not
all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

Remarks

The function should return SUCCESS (0) or FAIL (not zero) to indicate the result of the operation.

This hook is called after loading INI values so variables in the AFEDATA structure will reflect current settings.

Note that this function can be called more than once in a session. A custom function that only wants to be called
once should keep track of this fact or remove the INI setting after being called the first time.

 Page 93 of 146

AFE Parse Command Line Hook
Parse

This hook is called to allow the command line parameters to be parsed and used in custom code rather than base
code. The actual values can be found in AFEData->argv. With this hook, system values can be changed based on
parameter values.

INI Definition
[AFEProcedures]
Parse = DLL->FuncName

Syntax
DWORD _VMMAPI CUSParse(AFEDATA *AFEData);

Parameter Description

AFEData Contains the current AFEDATA structure. This should contain all material that is
needed for information as well as values for changing.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded.

A call to this function is an indication that Operations are reliant on command line parameters being translated
into values or actions.

The effects of the parsing are determined by the return value. Returning SUCCESS will indicate that the program
should continue. Returning FAIL will halt program execution. For example, if a password is expected on the
command line, program execution can be halted when a password is not found by returning FAIL.

 Page 94 of 146

AFE Post Edit Hook
PostEdit

This hook is called before a form set is saved (unloaded), assigned to another user, completed, or deleted. No
default value is assigned to this option.

Although this function would appear to be the counterpart of the PREEDIT hook, it can be called in many more
circumstances. A custom function should check the AFEDATA structure to determine in what mode the form set
is being treated -- AFEACTION_UPDATE, AFEACTION_DELETE, or AFEACTION_COMPLETE.

INI Definition
[AFEProcedures]
PostEdit = DLL->FuncName

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more information on the
FAPHANDLER prototype, see the FAPHANDLER section. You can use the following parameters:

Parameter Description

ObjectH The handle of the current form set.

msgno A requested operation message number. Currently, only the FAP_MSGPOSTEDIT
message is sent.

p1 Is a union. p1.dwr will be the AFEDATA structure value action.

p2 Is a union. p2.ptr is a pointer to the AFEDATA structure used by AFE. This structure
contains most (if not all) of the global data necessary to manipulate the form sets in
use by the Entry module. Even if you are familiar with AFELIB and how the Entry
module works, you should use care when manipulating the data within this structure.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result. However, only before the form set
being saved will a non-successful return prevent the action from being taken.

 Page 95 of 146

AFE Pre Edit Hook
PreEdit

This hook is called after a form set has been loaded successfully and before Entry can begin. No default value is
assumed for this option.

The AFEDATA structure should be queried to determine in what mode the form set has been opened --
AFEACTION_CREATE, or AFEACTION_UPDATE.

INI Definition
[AFEProcedures]
PreEdit = DLL->FuncName

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more information on the
FAPHANDLER prototype, see the FAPHANDLER section. You can use the following parameters:

Parameter Description

ObjectH The handle of the current form set.

msgno A requested operation message number. Currently, only the FAP_MSGPREEDIT
message is sent.

p1 Is a union. p1.ptr will be a pointer the AFEDATA structure used by AFE. This
structure contains most (if not all) of the global data necessary to manipulate the
form sets in use by the Entry module. Even if you are familiar with AFELIB and how
the Entry module works, you should use care when manipulating the data within this
structure.

p2 Is a union. p2.ptr is a pointer to the TRANSREC structure associated with the form
set.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result. A non-successful return indicates
that the form set should not be edited.

 Page 96 of 146

AFE Termination Hook
Term

This hook is called when the Entry module is exiting. A custom function should release any resources or memory
that were allocated during program execution when this hook is called. There is no default for this hook.

INI Definition
[AFEProcedures]
Term = DLL->FuncName

Syntax
int _VMMAPI func(HAB hab, PAFEDATA pdata);

Parameter Description

hab Is the program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the
Docucorp programming environment, both definitions serve the same purpose.

pdata A pointer to the AFEDATA structure used by AFE. This structure contains most (if not
all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

Remarks

The return value from this call is ignored. This hook is called before releasing the AFEDATA structure members.

 Page 97 of 146

AFE Window Procedure Hook
WindowProc

This hook is designed to let a custom function intercept messages that arrive at the main application's window
procedure. There is no default for this hook.

A custom procedure has first use of incoming messages and can indicate whether the default message handling
should continue.

INI Definition
[AFEProcedures]
WindowProc = DLL->FuncName

Syntax

This function should conform to the WNDSUBPROC typedef prototype. This definition is as follows:
DWORD _VMMAPI func(HWND hwnd, MMSG msg, MPARAM1 mp1, MPARAM2 mp2,
 MRESULT *result, VOID *data);

Parameter Description

hwnd The window handle (usually) passed to the WNDPROC.

msg The window message indicator passed to the WNDPROC.

mp1 The first window parameter passed to the WNDPROC.

mp2 The second window parameter passed to the WNDPROC.

result A pointer to a long value that should contain the value to return if further processing
is not to continue.

data A pointer to the AFEDATA structure used by AFE. This structure contains most (if
not all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

Remarks

The function should return SUCCESS (0) if the custom function handled the message and no further processing
is to continue. A non-zero return means that default processing should continue on the message.

When SUCCESS is returned the result assigned by the custom function will be returned to the caller.

 Page 98 of 146

AFEArchive2WipKeys
Archive2WIP

In most instances, the archive file structures will be based upon the WIP file structures in use by the program.
Since the Entry module supports the ability to customize archive files, two hooks are provided to translate the
Key1, Key2, and KeyID components typically used by the WIP and Archive/Retrieval system.

ARCHIVE2WIP is called to translate the archive Key1, Key2, and KeyID fields into the corresponding WIP
fields. Another hook, WIP2ARCHIVE, exists to translate in the other direction.

There is no default for this hook, therefore you must register this function or archive retrieval cannot be
accomplished.

If a custom procedure is not provided for AFE, the procedure AFEArchive2WipKeys() must be defined to
perform this task.

INI Definition
[AFEProcedures]
Archive2WIP = AFEOS2->AFEArchive2WipKeys

Syntax
int _VMMAPI AFEArchive2WipKeys(char * inKey1,
 char * inKey2,
 char * inKeyId,
 char * outKey1,
 char * outKey2,
 char * outKeyId);

The parameters of this function should be self-explanatory. The input versions of Key1, Key2, and KeyID are
represented in the first three parameters. The translated versions of these fields should be copied to the
corresponding out fields.

Parameter Description

inKey1 Input Key1 from Archive.

inKey2 Input Key2 from Archive.

InKeyID Input KeyID from Archive.

outKey1 Output Key1 for WIP. The inKey1 value should be translated into this field.

outKey2 Output Key2 for WIP. The inKey2 value should be translated into this field.

OutKeyID Output KeyID for WIP. The InKeyID value should be translated into this field.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

As the name should imply, this function should convert archive key field information into WIP key field
information.

 Page 99 of 146

AFESecurityFunc
Security

This hook is called to verify a user has access rights to enter the program and when the user logs out of the
program. The default function, AFESecurityFunc(), is used if no security value is defined.

INI Definition
[AFEProcedures]
Security = AFEOS2->AFESecurityFunc

Syntax

This function must conform to the FAPUSER prototype. For more information on the FAPUSER prototype, see
the FAPUSER section. You can use the following parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are
passed in the dwMessage parameter for the following operations, and should be
handled accordingly in a custom procedure.

FAP_MSGINIT
This message indicates that a user wants to log into the program.

FAP _MSGTERMINATE
This message indicates that a user wants to log out of the program.

DwFAPHab Is the program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the
Docucorp programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window.

DwObjectIdentifier Not used.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that represents any known user ID. This value
may have been obtained as a parameter from the program’s command line or the
result of querying the value for the UserID option in the SignOn control group.

LpszFormatType Not used.

LpszFormat Not used.

LpszFileName A pointer to a NULL terminated string that represents a file name obtained by
combining the values for Path and File options in the UserInfo control group.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most
if not all of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

 Page 100 of 146

LpszOutputBuffer A pointer to a USERREC structure that should be filled by the custom function.

DwOutputBufferMaxSize Is the size of the USERREC structure.

LpdwOutputFlag1 Not used.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the requested operation
succeeded.

On FAP_MSGINIT (logon), a non-successful return will prevent the user from obtaining access to the program.

After a successful logon attempt, the “userlistH” member of the AFEDATA structure is examined. This member
is a VMM list containing all user records (USERREC structures) that report to this current user (including this
user).

If it has not been assigned data by the custom function, the user file is examined for the data. If no user file is
found, only the current user record is added to the reports to list.

 Page 101 of 146

AFEWip2Archive
Wip2Archive

In most instances, the archive file structures will be based upon the WIP file structures in use by the program.
Since the Entry module supports the ability to customize archive files, two hooks are provided to translate the
Key1, Key2, and KeyID components typically used by the WIP and Archive/Retrieval systems.

WIP2ARCHIVE is called to translate the Key1, Key2, and KeyID fields into the corresponding archive key
fields. Another hook, ARCHIVE2WIP, exists to translate in the other direction.

There is no default for this hook, therefore you must register this function or archive retrieval cannot be
accomplished.

If a custom procedure is not provided for AFE, the procedure AFEWip2ArchiveKeys() must be defined to
perform this task.

INI Definition
[AFEProcedures]
Wip2Archive = AFEOS2->AFEWip2ArchiveKeys

Syntax
int _VMMAPI AFEWip2ArchiveKeys(char * inKey1,
 char * inKey2,
 char * inKeyId,
 char * outKey1,
 char * outKey2,
 char * outKeyId);

The parameters of this function should be self-explanatory. The input versions of Key1, Key2, and KeyID are
represented in the first three parameters. The translated versions of these fields should be copied to the
corresponding out fields.

Parameter Description

inKey1 Input Key1 from WIP.

inKey2 Input Key2 from WIP.

InKeyID Input KeyID from WIP.

outKey1 Output Key1 for Archive. The inKey1 value should be translated into this field.

outKey2 Output Key2 for Archive. The inKey2 value should be translated into this field.

OutKeyID Output KeyID for Archive. The InKeyID value should be translated into this field.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result. As the name should imply, this
function should convert WIP key field information into Archive key field information

 Page 102 of 146

AFEWip2ArchiveRecord
Archive

Since the Entry module supports custom Archive Index files, a hook is provided to create the archive index
record from a WIP record. No default INI definition is assumed, therefore this function must be registered or
archiving cannot be accomplished.

If a custom procedure is not provided for AFE, the procedure AFEWip2ArchiveRecord() must be defined to
perform this task. This function uses another INI group to map the fields from the WIP record to the fields of an
archive record.

INI Definition
[AFEProcedures]
Archive = AFEOS2->AFEWip2ArchiveRecord

Syntax
int _VMMAPI AFEWip2ArchiveRecord(PAFEDATA pdata,
 VMMHANDLE wipdfdH,
 void FAR *wiprec,
 VMMHANDLE arcdfdH,
 void FAR *arcrec);

Parameter Description

Pdata A pointer the AFEDATA structure defined in AFELIB.H. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module works,
you should use care when manipulating the data within this structure.

wipdfdH A handle to the data file definition (DFD) file that identifies all the fields and their
types used in a WIP record.

wiprec A record buffer that contains the current WIP information.

arcdfdH A handle to the DFD file that identifies all the fields and their types used in an archive
index record.

arcrec An index record buffer that is the destination of the converted information.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

This function is called any time a WIP record is to be converted to an archive index record. This function should
limit its activities to that described since not all calls will result in an actual archive file or index record being
written or retrieved.

 Page 103 of 146

AppIdxRec
Use this function to get an archive record based on APPIDX.DFD and Trigger2Archive INI settings.

Syntax:
AppIdxRec ()

Example:
Comment = AppIdxRec()
AddComment(Comment)

 Page 104 of 146

CUSGetArcIdxName
IndexName

This function is only supported in version 9.0 or greater of the Development System/Docucreate.

The Entry module supports the ability to customize archive files. In addition to the other hooks that support
translation of information between the WIP and archive systems, this hook is used to return the index file name
used for archiving (or retrieving) a specific WIP record.

There is no default for this function. A standard function, CUSGetArcIdxName(), is provided as a basis for
defining custom index names.

INI Definition
[AFEProcedures]
INDEXNAME = CUSOS2->CUSGetArcIdxName

Syntax
DWORD _VMMAPI CUSGetArcIdxName(VMMHANDLE dfdH,
 void * record,
 char * outIdxName,
 size_t stFileNameSz);

Parameter Description

DfdH A DB type handle to a DFD file that defines the data record.

Record A data buffer that contains current record information.

OutIdxName An output buffer that should receive the file name of an index file to use.

StFileNameSz The maximum size of the output field, outIdxName.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

The custom procedure attached to this hook may used the WIP record passed or any other information available
to determine what index file name to return.

 Page 105 of 146

DSDefAppendBuffer
Append

This hook is called to append a buffer of data to the current file that was opened by a call to Open or Create.

Document set files includes the NA, POL and PKG files. Default functionality is provided for reading and
writing these files as ordinarily DOS files if another INI option is not provided. These functions can be
overridden to achieve an alternate method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between reading document files in archive mode and non-
archive mode. This was designed in a manner to assist those that might require their archived information to be
retrieved from another location or in different manner than WIP files.

[AFEDSProcedures]
APPEND = DSOS2->DSDefAppendBuffer
[AFEDSArchiveProcedures]
APPEND = DSOS2->DSDefAppendBuffer

Syntax
DWORD _VMMAPI DSDefAppendBuffer(char *buffer, BOOL eof);

Parameter Description

Buffer Represents the NULL terminated text data that should be written.

eof Will be TRUE to indicate that buffered data should be “flushed” to make sure it is
written before CLOSE is called.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded.

This function should write the data to the current file at the current offset. Since DSLIB uses text information
rather than binary, you must translate the information if the specified file is not in that format.

You must determine what task to perform to write to the requested file. You must also maintain a link to the
current open file since no handle or pointer is provided as a parameter.

 Page 106 of 146

DSDefCloseBuffer
Close

This hook is called to close the current file that was opened by a call to Open or Create.

Generally, at the end of file use or if an error occurs after successfully opening the specified file, DSLIB will call
the registered CLOSE function.

Document set files includes the NA, POL and PKG files. Default functionality is provided for reading and
writing these files as ordinarily DOS files if another INI option is not provided. These functions can be
overridden to achieve an alternate method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between closing document files in archive mode and non-archive
mode. This was designed in a manner to assist those that might require their archived information to be retrieved
from another location or in different manner than WIP files.

[AFEDSProcedures]
CLOSE = DSOS2->DSDefCloseBuffer
[AFEDSArchiveProcedures]
CLOSE = DSOS2->DSDefCloseBuffer

Syntax
DWORD _VMMAPI DSDefCloseBuffer(void);

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded.

A call to this function is an indication that any currently open file be closed. You must determine what task to
perform to close the requested file. You must also maintain a link to the current open file since no handle or
pointer is provided as a parameter.

 Page 107 of 146

DSDefCreateBuffer
Create

This hook is called to create a new or truncate an existing file for writing.

Document set files includes the NA, POL and PKG files. Default functionality is provided for reading and
writing these files as ordinarily DOS files if another INI option is not provided. These functions can be
overridden to achieve an alternate method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between creating document files in archive mode and non-
archive mode. This was designed in a manner to assist those that might require their archived information to be
retrieved from another location or in different manner than WIP files.

[AFEDSProcedures]
CREATE = DSOS2->DSDefCreateBuffer
[AFEDSArchiveProcedures]
CREATE = DSOS2->DSDefCreateBuffer

Syntax
DWORD _VMMAPI DSDefCreateBuffer(char *filename);

Parameter Description

Filename The requested name of a file to create with any required path and extension applied
(if system defined).

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded.

A call to this function is an indication that the requested file should be opened for writing. Nothing will be read
from this file. You must determine what task to perform to “create” the requested file. You must also determine
what and how to maintain a link to the current open file since no handle or pointer is returned to the calling
function.

Generally, at the end of file use or if an error occurs after successfully opening the specified file, DSLIB will call
the registered CLOSE function.

 Page 108 of 146

DSDefFirstBuffer
First

This hook is called to return the first buffer of data from the current file that was opened by a call to Open.

Document set files includes the NA, POL and PKG files. Default functionality is provided for reading and
writing these files as ordinarily DOS files if another INI option is not provided. These functions can be
overridden to achieve an alternate method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between reading document files in archive mode and non-
archive mode. This was designed in a manner to assist those that might require their archived information to be
retrieved from another location or in different manner than WIP files.

[AFEDSProcedures]
FIRST = DSOS2->DSDefFirstBuffer
[AFEDSArchiveProcedures]
FIRST = DSOS2->DSDefFirstBuffer

Syntax
DWORD _VMMAPI DSDefFirstBuffer(char *buffer, size_t buffersize);

Parameter Description

Buffer Represents where the data should be placed after reading.

Buffersize Indicates the maximum size of buffer.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded. A
return value of FAIL is assumed to mean EOF, since the file must have been opened successfully before making
this call. Returning FAIL also means that no data was placed in the buffer.

This hook function should seek to the beginning of the current file (if necessary) and read the first buffersize
bytes. Since DSLIB expects to receive text information rather than binary, you must translate the information if
the specified file is not in that format. The buffer should be NULL terminated at the end of the text data that was
read.

You must determine what task to perform to seek and read the requested file. You must also maintain a link to
the current open file since no handle or pointer is provided as a parameter.

 Page 109 of 146

DSDefNextBuffer
Next

This hook is called to return the next buffer of data from the current file that was opened by a call to Open.

Document set files includes the NA, POL and PKG files. Default functionality is provided for reading and
writing these files as ordinarily DOS files if another INI option is not provided. These functions can be
overridden to achieve an alternate method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between reading document files in archive mode and non-
archive mode. This was designed in a manner to assist those that might require their archived information to be
retrieved from another location or in different manner than WIP files.

[AFEDSProcedures]
NEXT = DSOS2->DSDefNextBuffer
[AFEDSArchiveProcedures]
NEXT = DSOS2->DSDefNextBuffer

Syntax
DWORD _VMMAPI DSDefNextBuffer(char *buffer, size_t buffersize);

Parameter Description

Buffer Represents where the data should be placed after reading.

Buffersize Indicates the maximum size of buffer.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded. A
return value of FAIL is assumed to mean EOF, since the file must have been opened successfully before making
this call. Returning FAIL also means that no data was placed in the buffer.

This hook function should begin reading of the current file at the current offset and read the next buffersize bytes.
Since DSLIB expects to receive text information rather than binary, you must translate the information if the
specified file is not in that format. The buffer should be NULL terminated at the end of the text data that was
read.

You must determine what task to perform to read the requested file. You must also maintain a link to the current
open file since no handle or pointer is provided as a parameter.

 Page 110 of 146

DSDefOpenBuffer
Open

This hook is called to open an existing file for reading.

Document Set files includes the NA, POL and PKG files. Default functionality is provided for reading and
writing these files as ordinarily DOS files if another INI option is not provided. These functions can be
overridden to achieve an alternate method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between opening document files in archive mode and non-
archive mode. This was designed in a manner to assist those that might require their archived information to be
retrieved from another location or in different manner than WIP files.

[AFEDSProcedures]
OPEN = DSOS2->DSDefOpenBuffer
[AFEDSArchiveProcedures]
OPEN = DSOS2->DSDefOpenBuffer

Syntax
DWORD _VMMAPI DSDefOpenBuffer(char *filename);

Parameter Description

Filename The requested name of a file to open with any required path and extension applied (if
system defined).

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded.

A call to this function is an indication that the requested file should be opened for reading. Nothing is written to
this file. You must determine what task to perform to open the requested file. You must also determine what and
how to maintain a link to the current open file since no handle or pointer is returned to the calling function.

Generally, at the end of file use or if an error occurs after successfully opening the specified file, DSLIB will call
the registered CLOSE function.

 Page 111 of 146

GVM
Use this function to get the contents of a GVM variable.

Syntax:
GVM (VarName, Instance)

Parameter Description Required?

VarName String containing the name of the GVM variable Yes

Instance Instance number of the GVM variable (default = 1) No

Example:

Here is an example:
IF (HaveGVM(‘Company’))
 AddComment(GVM(‘Company’))
END

 Page 112 of 146

HaveGVM
Use this function to see if a GVM variable exists.

Syntax:
HaveGVM (VarName, Instance)

Parameter Description Required?

VarName String containing the name of the GVM variable Yes

Instance Instance number of the GVM variable (default = 1) No

Example:

Here is an example:
IF (HaveGVM(‘Company’))
 AddComment(GVM(‘Company’))
END

 Page 113 of 146

LBYCARRetrieveFile
RetrieveFile

INI Definition
[VCS]
RetrieveFile = LBYOS2->LBYCARRetrieveFile

Syntax
LONG _VMMAPI LBYCARRetrieveFile(void * indexrec,
 char *libname,
 char *filename,
 char *sequence);

Parameter Description

Indexrec An index record; use this to get version #, user ID, and so on, if any of this
information is needed.

libname Library to store file in.

filename File to save to or retrieve from.

sequence A key identifying the file being saved/retrieved. In Save, this can be set to whatever
key the lower level code returns. The key will be saved, and passed into later calls to
Retrieve.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 114 of 146

LBYCARRetrieveMemFile
RetrieveMemFile

INI Definition
[VCS]
RetrieveMemFile = LBYOS2->LBYCARRetrieveMemFile

Syntax
LONG _VMMAPI LBYCARRetrieveMemFile(void * indexrec,
 char *libname,
 char *filename,
 char *sequence);

Parameter Description

indexrec An index record; use this to get version #, user ID, and so on, if any of this
information is needed.

libname Library to store file in.

filename File to save to or retrieve from.

sequence A key identifying the file being saved or retrieved. In Save, this can be set to
whatever key the lower level code returns. The key will be saved, and passed into
later calls to Retrieve.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 115 of 146

LBYCARSaveFile
SaveFile

INI Definition
[VCS]
SaveFile = LBYOS2->LBYCARSaveFile

Syntax
LONG _VMMAPI LBYSaveFile(void *indexrec,
 char *libname,
 char *filename,
 char *key)

Parameter Description

indexrec An index record; use this to get the version number, user ID, and so on, if any of this
information is needed.

libname Library to store file in.

filename File to save to or retrieve from.

key A key identifying the file being saved or retrieved. In Save, this can be set to
whatever key the lower level code returns. The key will be saved, and passed into
later calls to Retrieve.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 116 of 146

LMGLBYCheckin
CheckIn

Called when user wants to put back changes.

INI Definition
[VCS]
Checkin = LMGOS2->LMGLBYCheckin

Syntax
LONG _VMMAPI LMGLBYCheckin(HWND hwnd,
 char * type,
 char * subtype,
 char * filename);

Parameter Description

Hwnd An input parameter that is the parent/owner window handle.

type An input parameter

Subtype An input parameter.

Filename An input parameter.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 117 of 146

LMGLBYCheckout
CheckOut

Called when user wants to get a writeable copy of a file, and lock it.

INI Definition
[VCS]
Checkout = LMGOS2->LMGLBYCheckout

Syntax
LONG _VMMAPI LMGLBYCheckout(HWND hwnd,
 char * type,
 char * retfullname,
 char * path,
 char * ext,
 char * name,
 char * pszBtn,
 char * pszTitle);

Parameter Description

hwnd An input parameter that is the parent/owner window handle.

type An input parameter. The list of files will be filtered based on the file type given. The
type can be any LBY_TYPE_xxx define.

retfullname An input/output parameter.

If "retfullname" is provided and is not empty, it will be used as a file name to extract
the data into. If it is not provided or is an empty string, "path", "ext", and the actual
name of the file selected will be used to put together a full path/file name for storing
the record in.

If "retfullname" is provided, the resulting path/file name will be copied into it.

In other words, if you're supplying a temporary name in "retfullname", you could pass
in "name" to find out what the actual name of the file was.

path Optional input parameter.

ext Optional input parameter.

name An optional input/output parameter.

If "name" is provided, the name of the file will be copied into it.

pszBtn An input parameter for the text on button.

pszTitle An input parameter for the text in the title bar.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 118 of 146

LMGLBYInit
Init

This is called once, during program initiation.

INI Definition
[VCS]
Init = LMGOS2->LMGLBYInit

Syntax
LONG _VMMAPI LMGLBYInit (void);

There are no parameters for this function

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 119 of 146

LMGLBYReInit
ReInit

Called whenever the master-resource settings have changed. Gives the VCS code a chance to reinitialize itself.
(The LBY code needs to, because paths and file names for the LBY databases may have changed.)

INI Definition
[VCS]
ReInit = LMGOS2->LMGLBYReInit

Syntax
LONG _VMMAPI LMGLBYReInit (void);

There are no parameters of this function

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 120 of 146

LMGLBYSelect
Select

INI Definition
[VCS]
Select = LMGOS2->LMGLBYSelect

Syntax
LONG _VMMAPI LMGLBYSelect(HWND hwnd,
 char * type,
 char * retname,
 char * pszBtn,
 char * pszTitle,
 USHORT id,
 BOOL bAllVersions);

Parameter Description

hwnd An input parameter that is the parent/owner window handle.

type An input parameter

Retname An output parameter.

pszBtn An input parameter for the text on the button.

pszTitle An input parameter for text in the title bar

id An input parameter for optional, ID of window

BAllVersions An input parameter. True to show "all ver" btn

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 121 of 146

LMGLBYTerm
Term

This is called once, during program term.

INI Definition
[VCS]
Term = LMGOS2->LMGLBYTerm

Syntax
LONG _VMMAPI LMGLBYTerm (void);

There are no parameters for this function

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 122 of 146

LMGLBYUnlock
Unlock

Called when user wants to cancel changes to a file and release it.

INI Definition
[VCS]
Unlock = LMGOS2->LMGLBYUnlock

Syntax
LONG _VMMAPI LMGLBYUnlock(HWND hwnd,
 char * type,
 char * subtype,
 char * filename);

Parameter Description

Hwnd An input parameter that is the parent/owner window handle.

type An input parameter

Subtype An input parameter.

Filename An input parameter.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 123 of 146

LMGLBYView
View

Called when user wants to select a file and get a read-only copy of it.

INI Definition
[VCS]
View = LMGOS2->LMGLBYView

Syntax
LONG _VMMAPI LMGLBYView(HWND hwnd,
 char * type,
 char * retfullname,
 char * path,
 char * ext,
 char * name,
 char * pszBtn,
 char * pszTitle);

Parameter Description

Hwnd An input parameter that is the parent/owner window handle.

type An input parameter. The list of files will be filtered based on the file type given. The
type can be any LBY_TYPE_xxx define.

Retfullname An input/output parameter. If "retfullname" is provided and is not empty, it will be
used as a file name to extract the data into. If it is not provided or is an empty string,
"path", "ext", and the actual name of the file selected will be used to put together a
full path/file name for storing the record in. If "retfullname" is provided, the resulting
path/file name will be copied into it.

In other words, if you're supplying a temporary name in "retfullname", you could pass
in "name" to find out what the actual name of the file was.

Path Optional input parameter.

ext Optional input parameter.

Name An optional input/output parameter. If "name" is provided, the name of the file will be
copied into it.

PszBtn An input parameter for the text on the button.

PszTitle An input parameter for text on the title bar.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

 Page 124 of 146

MajorVersion
Use this function to get the system’s major version number.

Syntax:
MajorVersion ()

Example:
#MAJOR = MajorVersion ()

 Page 125 of 146

MinorVersion
Use this function to get the system’s minor version number.

Syntax:
MinorVersion ()

Example:
VERS = MajorVersion() & ‘.’ & MinorVersion()

 Page 126 of 146

PrinterClass
Use this function to determine the type of print stream being generated.

Syntax:
PrinterClass()

Example:
IF (PrinterClass() = ‘AFP’) THEN
 AddComment(AppIdxRec())
END

 Page 127 of 146

PrinterGroup
Use this function to determine the group name in the INI file being used to generate the print stream.

Syntax:
PrinterGroup()

Example:
ScriptName = GETINISTRING(, PrinterGroup(), ‘DocuSaveScript’)

 Page 128 of 146

PRINT_IT
Use this function to print a string to the console.

Syntax:
PRINT_IT (Text)

Parameter Description Required?

Text String to be printed to the console Yes

Example:

Here is an example:
IF (HaveGVM(‘Company’))
 PRINT_IT(GVM(‘Company’))
END

 Page 129 of 146

SetGVM
Use this function to update the contents of a GVM variable. You can also use this function to create a GVM
variable

Syntax:
SetGVM (VarName, VarData, Instance, VarType, VarSize)

Parameter Description Required?

VarName String containing the name of the GVM variable Yes

VarData Data to store in the GVM variable Yes

Instance Instance number of the GVM variable (default = 1) No

VarType Type of GVM variable to create:

‘C’ = Character array

'S' = Short

'L' = Long

'F' = Float

'D' = Double

'Q' = Long Double

No

VarSize Number of bytes to reserve when creating GVM variable No

Example:

Here are some examples:
IF (HaveGVM(‘Company’))
 SetGVM(‘Company’, ‘My Company’)
END
IF (HaveGVM(‘My Variable’) = 0)
 SetGVM(‘My Variable’, ‘My Data’, ‘C’, 50)
END

 Page 130 of 146

TMRTimers
Programs that use a .RES file for menu definition can start and stop “automatic” functions by adding a menu
item to the .RES file, identifying the entry point function of TMRLIB. This option could be chosen manually by
the user or enable automatically with the “Startup” menu ID defined in the INI file. Any menu ID value
designated in the INI executes when the program begins.

To add this option to an existing menu system, edit the proper “menu”.RES file and add the following line:
MENUITEM “Timed functions”, 2001 “TMROS2->TMRTimers” “Start/Stop auto-
timer”

The menu item and description strings can say whatever you want. The menu ID must not conflict with any other
IDs.

Placement of this menu item among the other items is not important. However, you probably place it “out of the
way” since the users will probably not need access to the option very frequently.

By default, TMRLIB will attempt to place a checkmark next to the menu item when the timer is activated. Then
checkmark will be removed when the timer is stopped.

Documaker Workstation automatically starts and stops timer functions beginning with version 9.0, therefore this
menu option will not be required in that environment.

 Page 131 of 146

TMRInit
This function attempts to initialize and all registered service functions. Each DLL is loaded and the service
functions queried. Those that load successfully will receive the message FAP_MSGINIT. Parameters to this
function provide the application HAB (or HINSTANCE under Windows); the handle to the main application
windows; and a pointer to any application specific data that needs to be passed to all service functions. Under
PPS/Entry, the data pointer will address the AFEDATA structure.

The function returns SUCCESS (0) if initializations complete without error.

 Page 132 of 146

TMRTerm
This function will send the FAP_MSGTERM message to all service functions. The OS timer is disabled and then
released.

After this call, service functions will no longer be called.

 Page 133 of 146

TMRSetAppData
This function will store the application specific data pointer for use by service functions. Under Documaker
Workstation, this pointer must reference the AFEDATA structure.

 Page 134 of 146

TMRAppData
This function will return the application specific data pointer for use by service functions. Under Documaker
Workstation, this pointer must reference the AFEDATA structure.

 Page 135 of 146

TMRSetHwnd
This function will store the application's main window handle for use by service functions.

 Page 136 of 146

TMRHwnd
This function will return the application's main window handle for use by service functions.

 Page 137 of 146

TMRSetHab
This function will store the application HAB (or HINSTANCE for Windows) for use by service functions.

 Page 138 of 146

TMRHab
This function will return the application HAB (or HINSTANCE for Windows) for use by service functions.

 Page 139 of 146

TMRIsDesktopUp
FAPFormset() is used to retrieve the current form set. If there is a form set and a form within that form set has a
FAPWINDOW structure associated with it, this function will return TRUE. Otherwise, the function returns
FALSE.

 Page 140 of 146

TMRIsDialogUp
All child windows associated with the application main window (returned by TMRHwnd()) will be scanned to
determine if a window is present. If a window is found, TRUE is returned. Otherwise, the function returns
FALSE.

The existence of a window usually means that the user is involved with data entry or some other functionality.

 Page 141 of 146

TMRTimerTest1
This is a test function and may be used by any application to test the timer. The function will display a window
that includes information about internal settings.

 Page 142 of 146

TMRTimerTest2
This is a test function and may be used by any application to test the timer. The function will display a window
that includes information about internal settings.

 Page 143 of 146

TMRTimerTest3
This is a test function and may be used by any application to test the timer. The function will display a window
that includes information about internal settings.

 Page 144 of 146

TRNAutoKeyIDUsrFunc
AutoKeyID

This hook is called to provide, verify, or release KeyIDs for WIP transactions. This optional feature must be
enabled via INI settings. This feature first became available in July 1996.

Custom versions of this function can return any value that satisfies the KeyID requirements.

The standard function, TRNAutoKeyIDUsrFunc(), can be used to return sequential numbers generated in a table
via another function.

INI Definition
[AfeProcedures]
AutoKeyID = TRNOS2->TRNAutoKeyIDUsrFunc

Syntax

This function must conform to the FAPUSER prototype. For more information on the FAPUSER prototype, see
the FAPUSER section. You can use the following parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are
passed in the dwMessage parameter for the following operations, and should be
handled accordingly in a custom procedure. Please note that although FAP message
numbers are being used, there is no FAPOBJECT that initiates or receives the
action.

FAP_MSGNEXT
Get a new unused KeyID if the current one is not valid. This message is sent any
time the Form Selection window is (re)initialized.

FAP _MSGUPDATE
Release the KeyID. Its use was aborted. This message is sent if the Form Selection
window is canceled while creating a new form set or the form set is not saved to
WIP. This message will be sent if the WIP is deleted without archiving. This message
will also be sent any time the user manually changes the KeyID. This might occur if
WIP is edited and the KeyID is changed by user action.

FAP_MSGDELETE
Form set was archived. KeyID may be deleted. This message will only be sent when
the form set has been archived.

FAP_MSGSELECT
Verify that the current KeyID is valid for situation. This message is sent when the OK
action is taken on the Form Selection window. This message is also sent any time
the Transaction Code, Key1, or Key2 selections change. This should make it
possible for a custom function to generate specific Ids based upon this information (if
desired).

DwFAPHab The program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an or Windows platform. Within the Docucorp
programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window. You should not assume a particular window
handle is being passed because this function can be called from multiple locations

 Page 145 of 146

within AFE.

dwChildID The ID of a child control on the window that initiated the call or zero if no child ID is
available.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that contains the user ID of the current
operator.

LpszTranCode A pointer to a NULL terminated string that contains the Transaction Code associated
with the WIP record.

lpszKey1 A pointer to a NULL terminated string that contains the Key1 field value associated
with the WIP record.

lpszKey2 A pointer to a NULL terminated string that contains the Key2 field value associated
with the WIP record. Note that in a multi-select situation (PPS) only the first Key2
value is provided.

LpszInputBuffer A pointer to a NULL terminated string that contains the current KeyID field value
associated with the WIP record.

LpszKeyID A pointer to a text buffer that should receive the output KeyID from this function. If
this value is NULL, no output string is expected. On input, a non-NULL value will
represent the last KeyID returned from your hook procedure. A difference between
the input KeyID and the one represented in this string means that the user changed
the original KeyID.

DwOutputBufferMaxSize Represents the maximum size of the output buffer for the previous parameter.

pAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module works,
you should use care when manipulating the data within this structure.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the operation succeeded. Upon a
successful return, the value contained in char FAR * lpszOutputBuffer (if not NULL) will be copied as the new
KeyID of choice.

The parameters provided to this function includes all the current WIP information required to understand how the
user constructed (or is constructing) the form set. A custom function may or may not use the information
provided.

 Page 146 of 146

TRNSetBannerFormInfo
Set Banner Information

If specified, a banner page is printed for every recipient in each form set. No default INI option definition is
assumed, therefore one must be provided to enable the functionality.

The standard function, TRNSetBannerFormInfo(), is available for use and uses additional INI groups and options
to determine what is printed on the banner page.

In addition to filling the banner page, the standard function will search the remaining form set and fill in the field
information on any PULL forms defined. A PULL form is a representation that an externally maintained form
should be included in the form set. When the form set is printed, a separate page is printed for each PULL form
and usually indicates what form should be replacing that page.

INI Definition
[AFEProcedures]
BannerProc = TRNOS2->TRNSetBannerFormInfo

Syntax

This function must conform to the FAPHANDLER prototype. For more information on the FAPHANDLER
prototype, see the FAPHANDLER section. You can use the following parameters:

Parameter Description

ObjectH The handle of the form that represents the banner page.

msgno Message FAP_MSGINIT. Receiving this message means that all banner information
should be applied to the form handle passed.

p1 This parameter is passed as NULL and should not be used.

p2 This parameter is passed as NULL and should not be used.

Remarks

This function should return SUCCESS (0) or FAIL (non-zero) to indicate the result of the operation.

Any information from any source may be placed on the banner form. Note that the PULL form functionality
should be performed if compatibility is to be maintained.

