
Start

Documaker

Documaker Server System
Reference
version 11.3

PUBLICATION COPYRIGHT NOTICE
Copyright © 2008 Skywire Software, L.L.C. All rights reserved.
Printed in the United States of America.
This publication contains proprietary information which is the property of Skywire Software or its subsidiaries. This
publication may also be protected under the copyright and trade secret laws of other countries.

TRADEMARKS
Skywire® is a registered trademark of Skywire Software, L.L.C.
Docucorp®, its products (Docucreate™, Documaker™, Docupresentment™, Docusave®, Documanage™, Poweroffice®,
Docutoolbox™, and Transall™) , and its logo are trademarks or registered trademarks of Skywire Software or its subsidiaries.
The Docucorp product modules (Commcommander™, Docuflex®, Documerge®, Docugraph™, Docusolve®, Docuword™,
Dynacomp®, DWSD™, DBL™, Freeform®, Grafxcommander™, Imagecreate™, I.R.I.S. ™, MARS/NT™, Powermapping™,
Printcommander®, Rulecommander™, Shuttle™, VLAM®, Virtual Library Access Method™, Template Technology™, and
X/HP™ are trademarks of Skywire Software or its subsidiaries.
Skywire Software (or its subsidiaries) and Mynd Corporation are joint owners of the DAP™ and Document Automation
Platform™ product trademarks.
Docuflex is based in part on the work of Jean-loup Gailly and Mark Adler.
Docuflex is based in part on the work of Sam Leffler and Silicon Graphic, Inc.
Copyright © 1988-1997 Sam Leffler.
Copyright © 1991-1997 Silicon Graphics, Inc.
Docuflex is based in part on the work of the Independent JPEG Group.
The Graphic Interchange Format© is the Copyright property of CompuServe Incorporated. GIFSM is a Service Mark property
of CompuServe Incorporated.
Docuflex is based in part on the work of Graphics Server Technologies, L.P.
Copyright © 1988-2002 Graphics Server Technologies, L.P.
All other trademarks, registered trademarks, and service marks mentioned within this publication or its associated software are
property of their respective owners.

SOFTWARE COPYRIGHT NOTICE AND COPY LIMITATIONS
Your license agreement with Skywire Software or its subsidiaries, authorizes the number of copies that can be made, if any,
and the computer systems on which the software may be used. Any duplication or use of any Skywire Software (or its
subsidiaries) software in whole or in part, other than as authorized in the license agreement, must be authorized in writing by
an officer of Skywire Software or its subsidiaries.

PUBLICATION COPY LIMITATIONS
Licensed users of the Skywire Software (or its subsidiaries) software described in this publication are authorized to make
additional hard copies of this publication, for internal use only, as long as the total number of copies does not exceed the total
number of seats or licenses of the software purchased, and the licensee or customer complies with the terms and conditions of
the License Agreement in effect for the software. Otherwise, no part of this publication may be copied, distributed,
transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by
any means, electronic, mechanical, manual, or otherwise, without permission in writing by an officer of Skywire Software or
its subsidiaries.

DISCLAIMER
The contents of this publication and the computer software it represents are subject to change without notice. Publication of
this manual is not a commitment by Skywire Software or its subsidiaries to provide the features described. Neither Skywire
Software nor it subsidiaries assume responsibility or liability for errors that may appear herein. Skywire Software and its
subsidiaries reserve the right to revise this publication and to make changes in it from time to time without obligation of
Skywire Software or its subsidiaries to notify any person or organization of such revision or changes.
The screens and other illustrations in this publication are meant to be representative, not exact duplicates, of those that appear
on your monitor or printer.

Skywire Software, L.L.C.
3000 Internet Boulevard
Suite 200
Frisco, Texas 75034
www.skywiresoftware.com

Phone: (U. S.)
(EMEA)

 972.377.1110
+44 (0) 1372 366 200

FAX: (U. S.)
(EMEA)

 972.377.1109
+44 (0) 1372 366 201

Support: (U. S.)
(EMEA)

866.4SKYWIRE
+44 (0) 1372 366 222
support@skywiresoftware.com

Notice

iii

Contents

Chapter 1, Introduction

2 System Overview

3 Rules Publishing Solution Overview

4 Document Automation Evolution

4 Stage 1 - paper automation

5 Stage 2 - workflow automation

6 Stage 3 - paperless information automation

7 Document Automation Goals

8 System Benefits

Chapter 2, Understanding the System

11 Processing Overview

14 Processing Options

15 Using Banner Processing

15 Enabling banner processing

15 Specifying banner forms and scripts

17 Banner form processing and multi-file print

18 Processing logic

19 DAL functions

19 Banner processing example

21 Using Multi-step Processing

21 Creating Transaction Records

22 File Summary

23 Processing Transactions

24 Output Files for GenPrint

24 Output Files for GenWIP

24 Output Files for GenArc

25 File Summary

27 Creating Print Spool Files

28 File Summary

29 Sending Incomplete Transactions to WIP

iv

30 File Summary

31 Archiving Transactions

32 File Summary

32 Rules Used in Multi-Step Processing

33 Restarting the GenData Program

33 RULCheckTransaction rule

34 RestartJob rule

34 INI options

35 Generating Batch Status Emails

37 Tracking Batch Page Statistics

37 Recipient Page Statistics

38 Batch Totals Summary File

38 Accessing totals in GenPrint

38 INI Options

39 Sample Log File

40 Default DFD Files

40 RCBStatsDtlDFD

42 RCBStatsTotDFD

43 Controlling GenTrn Processing

45 Using Single-step Processing

45 Creating and Processing Transaction Records

46 System Settings and Resources

47 Creating Print Files

48 File Summary

49 Using the MultiFilePrint Callback Function

50 Mapping Fields with XPath

51 Running Archive in Single-Step Processing

51 Running WIP in Single-step Processing

52 Rules Used in Single-step Processing

52 Archive

52 BatchingByRecipINI

52 BatchByPageCount

52 BuildMasterFormList

53 ConvertWIP

53 InitArchive

53 InitConvertWIP

53 InitPrint

53 InitSetRecipCache

v

53 NoGenTrnTransactionProc

53 PageBatchStage1InitTerm

54 PaginateAndPropogate

54 PrintFormset

54 ProcessQueue

54 StandardFieldProc

54 StandardImageProc

54 WriteNAFile

54 WriteOutput

54 WriteRCBWithPageCount

55 Single-step Processing Example

55 Base rules

56 Base form set rules

56 Base image rules

56 Base field rules

57 Using IDS to Run Documaker

58 Writing Unique Data into Recipient Batch Records

59 Optional formatting information

60 Example

62 BANNER.DAL

65 Using Class Recipients

67 Running Documaker Using XML Job Tickets

68 Handling 2-up Printing

68 2-up printing with single-page forms

69 2-up printing with multi-page forms

69 Changing the INI File

70 Creating the TWOUP control group

71 Creating the Added_Fonts control group

71 Changing the Recipient Batch DFD File

72 Rules Used for 2-up Printing

72 AddLine

72 AddTextLabel

72 ForceNoImages

72 GetRCBRec

72 InitMerge

72 InitPageBatchedJob

73 MergeAFP

73 ParseCommentExample

73 PrintData

73 ProcessRecord

vi

74 Placing the 2-up Rules in the JDT File

75 2-up Processing Example

75 2upbycnt.bat

75 2upstep1.ini

75 2upstep2.ini

75 2upstep3.ini

76 Running the GenData Program

76 Step 1 - Using the AFGJOB1.JDT file

77 Step 2 - Using the AFGJOB2.JDT file

78 Step 3 - Using the AFGJOB3.JDT file

79 Splitting Recipient Batch Print Streams

79 Splitting batches by sheet count

80 Creating PDF output

80 DAL functions

81 DeviceName

81 SetDeviceName

81 BreakBatch

82 UniqueString

82 Using DAL to Manipulate File Names

83 FileDrive

83 FilePath

83 FileName

84 FileExt

84 FullFileName

85 Assigning Printer Types Per Logical Batch Printer

87 Controlling WIP Field Assignments

90 Generating Email Notifications from GenWIP

91 Errors

93 Using Multi-mail Processing

93 Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files

94 Setting Up the FSISYS.INI File for Multi-mail Processing

96 Adding and Removing Pages

96 Using Custom Code

96 Adding pages

96 Removing pages

96 Using DAL Scripts

96 Adding pages

97 Removing pages

vii

98 Using IDS

98 Adding pages

98 Removing pages

99 Adding Indexes and Tables of Contents

100 Using Run-Time Options

100 GenData Command Line Options

100 GenPrint Command Line Options

101 GenTrn Command Line Options

101 Debugging Options

102 Noting font IDs of zero

102 Suppressing elapsed runtime messages

103 Grouping Print Batches

104 Controlling Console Logging

104 Logging INI File Names and Options in the TRACE File

105 Listing the Rules Executed

106 Analyzing DAL Performance

108 When Extract Files Exceed The Offset Limits

109 Controlling What is in the MultiFilePrint Log

111 Using INI Built-In Functions

111 ~GetEnv

112 ~Platform

112 ~OS

113 ~DALRUN
~DALVAR

113 ~Encrypted

114 ~ProcessID

115 ~WIPField

115 Accessing WIP Fields

116 Formatting arguments

118 Specifying locales

119 Using the ~Field function

120 Outputting WIP Field Data Onto the XML Tree

121 Using XML Files

121 Handling Overflow

122 Triggering Forms and Sections

123 Using XPath

123 XPath Syntax

viii

123 Axes

124 Symbols

124 Functions

125 Expressions

126 Using the XPath Testing Utility

126 Example 1

127 Example 2

127 Example 3

127 Example 4

127 Example 5

128 Example 6

128 Example 7

128 Example 8

129 Example 9

129 Example 10

130 Example XML File

Chapter 3, Implementing Your System

132 Why Use a Methodology?

133 Phase 1 - Define the requirements

133 Phase 2 - Create the detail forms requirements

133 Phase 3 - Build the Master Resource Library

133 Phase 4 - Install and configure the system

133 Phase 5 - Test the system

133 Phase 6 - Go live

134 Gathering Information

134 Understanding Your Niche

134 Understanding Your Organization

135 Roles and Responsibilities

Chapter 4, Setting Recipients and Copy Counts

138 Concepts

139 Key Files

139 Transaction Trigger Table

139 Trigger Levels

ix

139 Form Set Definition Table

140 Trigger Table Record Format

142 Specifying the Transaction Trigger Table

143 How Transaction Triggering Works

144 Section Level Triggers

146 Form Level Triggers

149 Master and Subordinate Sections

149 Marking Subordinate Sections

150 Marking Master Forms

151 Examples

152 Specifying Copy Counts and Sections

153 FORM.DAT file

153 SETRCPTB.DAT file

153 POL file

154 Using Transaction Codes

154 FORM.DAT file

154 SETRCPTB.DAT file

154 POL file

155 Setting Up Search Mask and Sections

155 FORM.DAT file

155 SETRCPTB.DAT file

156 POL File

157 Using the RECIPIF Rule

157 FORM.DAT file

157 SETRCPTB.DAT file

158 POL file

159 Using Automatic Overflow

159 FORM.DAT file

159 SETRCPTB.DAT file

159 POL file

161 Using Forced Overflow

161 FORM.DAT file

161 SETRCPTB.DAT file

161 POL file

162 Setting Search Masks and Recipients

162 FORM.DAT file

162 SETRCPTB.DAT file

162 POL file

x

163 Using the Set Recipient Table and Extract Files

164 Formatting Search Masks

164 Spaces

164 Commas

164 Tildes

165 Parentheses

165 Using the OR condition

165 Using the NOT condition

165 Using AND and OR conditions

166 Sorting Forms by Recipient

167 INI files

167 Sort tables

168 Summary

Chapter 5, Working with Fonts

172 Understanding Font Concepts

172 Font Terminology

173 National language terminology

175 How Characters are Represented

175 Bitmap Fonts

175 Scalable Fonts

176 TrueType

176 PostScript

176 How Computers and Printers Use Fonts

178 Using Code Pages

179 ASCII Code Pages

181 EBCDIC Code Pages

182 Character Sets

182 Determining Characters Used in a Printer Font

184 Code Page Names

187 Types of Fonts

187 Using Screen Fonts

187 Font Substitution in Windows

188 Installing Screen Fonts in Windows

188 Using Printer Fonts

188 AFP

188 Coded fonts

xi

188 Code pages

188 Character sets

188 Metacode

189 PCL

189 PostScript Fonts

189 TrueType Fonts

189 Adding Printer Fonts to a Font Cross-reference File

190 Using System Fonts

191 Font Cross-reference Files for Monotype Fonts

191 HPINTL.FXR, HPINTLSM.FXR

191 REL95.FXR, REL95SM.FXR

191 REL102.FXR, REL102SM.FXR

191 REL103.FXR, REL103SM.FXR

193 REL112.FXR
REL112SM.FXR

194 Using Custom Fonts

195 On AFP printers

196 On Xerox Metacode printers

196 On PCL printers

196 On PostScript printers

197 Using Font Cross-Reference Files

198 How FXR Settings Affect Display and Print Quality

199 Maintaining FXR Files

199 Choosing a Font Cross-reference File

201 International Language Support

201 Using the ANSI Code Page for PC Platforms

202 Using Code Page 37 for EBCDIC Platforms

203 Using International Characters

204 Converting Text Files from one Code Page to Another

205 Setting Up PostScript Fonts

208 Fonts for PDF Files

208 Importing PostScript Symbol Fonts

210 Font Naming Conventions

211 Using Font Manager

211 Starting Font Manager

211 From Image Editor

211 From Docucreate

212 Working with the Font List

xii

212 Selecting Fonts

213 Deselecting Fonts

213 Filtering the List of Fonts

214 Adding Fonts to a Font Set

216 Description tab

219 Dimensions tab

221 Printers tab

225 Other tab

225 Copying Font Information

226 Editing Font Information

227 Converting Fonts

229 Converting fonts from other vendors

229 Working with multiple printers

231 Deleting Fonts

232 Inserting Fonts

234 Inserting bitmap fonts and FXR files

235 Inserting PostScript and TrueType Fonts

238 Choosing Screen Fonts

240 Generating Files using Font Manager

240 Generating an FNT File

241 Generating an XRF File

241 Generating PFM Files from an FXR file

244 Mapping Fonts for File Conversions

Chapter 6, Setting Up Printers

246 AFP Printers

246 AFP INI Options

250 Using defaults for the Module and PrintFunc options

251 Using Documaker shading patterns instead of shaded
bitmaps

251 Printing highlight colors

252 Character set and code page font information

252 Outputting character set and code page information

253 Using multiple code pages

256 Using LLE records to link to external documents

258 AFP Printer Resources

258 FormDef

258 Fonts

xiii

258 Monotype fonts

258 Overlays

258 Page segments

258 AFP 2-up support

259 AFP Troubleshooting

259 Floating section limitations

259 Objects extending beyond the edges

259 Conflicts between page and form orientation

260 Multi-page FAP limitation

260 Printing rotated variable fields

260 AFP 240 dpi print problems

262 Including Documerge Form-level Comment Records

263 Metacode Printers

263 Required JSL INI Options

264 JDLName

264 JDEName

265 DJDEIden, DJDEOffset, and DJDESkip

265 JDLCode

265 JDLData

265 JDLHost

266 Additional Required INI Options

266 OutMode

266 ImageOpt

266 CompressMode

267 CompileInStream

268 Device

268 RelativeScan

268 Specifying Installable Functions

268 Using defaults for the Module and PrintFunc options

269 Optional INI Options

269 Setting the end of the report

269 Starting new pages

270 Adding an OFFSET command

270 Jogging pages

271 Specifying spot color

271 Chart performance and print quality

271 Optimizing Metacode print streams

272 Using a common font list

273 Setting a default paper size

273 Automatically sizing sections

274 Inline graphic performance and print quality

xiv

274 Adding color to charts

274 Using named paper trays

274 Specifying the printer model

274 Specifying the resolution

274 Displaying console messages

275 Stapling forms

276 Duplex switching

276 Using VSAM to store resources

276 PrintViewOnly

276 Caching files to improve performance

278 Using the loader

278 Using the Class option

279 Adding user-defined DJDE statements

279 Using third-party software to read Metacode files

279 Specifying the paper stock

281 Using Mobius Metacode Print Streams

282 Metacode Printer Resources

282 Fonts

282 Forms

282 Images

282 Logos

282 Metacode Limitations

282 Xerox images

282 HMI support

282 Changing the paper size on the 4235 printer

283 Xerox forms

283 Metacode Troubleshooting

283 Unexpected color output

283 Unexpected black and white output

284 Highlight color should match the PrinterInk option

284 LOG file orientation

284 Output catching up with the input

284 Printing rotated variables

285 Multi-page sections

286 Operator command, FEED, causes duplex problems

286 Line density errors

287 Output data length validation

287 Using Xerox Forms (FRMs)

288 BARRWRAP

288 Transferring Files from Xerox Format Floppies

289 PCL Printers

xv

289 PCL INI Options

292 Using defaults for the Module and PrintFunc options

292 Using PCL 6

293 Printing Under Windows

294 Using High-Capacity Trays 3 and 4 on HP 5SI Printers

295 Using a staple attachment

296 Overriding Paper Size Commands and Tray Selections

297 Using Simple Color Mode

297 Marking objects to print in color

298 Specifying the highlight color to use

298 Printing on different types of printers

298 Creating Compressed PCL Files

298 Bitmap compression

299 Adding Printer Job Level Comments

299 Adding Data for Imaging Systems

300 Limiting the Embedded PCL Fonts

300 PCL Printer Resources

300 Fonts

300 Overlays

301 PostScript Printers

301 PostScript INI Options

304 Using defaults for the Module and PrintFunc options

304 Avoiding a white outline around letters

304 Printing under Windows

305 Generating PostScript Files on z/OS

305 Creating Smaller PostScript Output

305 Bitmap compression

306 Adding DSC Comments

308 Stapling Forms

310 PostScript Printer Resources

310 Fonts

310 Overlays

310 PostScript Printer Definition (PPD) Files

311 Using the GDI Print Driver

311 How it works

313 GDI Printer Driver INI Options

315 Using defaults for the Module and PrintFunc options

316 Avoiding Problems with FAX Drivers

316 Batch Printing to Files

318 Using Pass-through Printing

xvi

320 Creating PDF Files

321 Creating RTF Files

321 Generating separate files

322 Adding or removing frames

322 Creating form fields

323 Setting margins

323 Removing the contents of headers and footers

324 Using the VIPP Print Driver

325 VIPP Resource Files

325 Converting bitmaps into VIPP image files

326 Converting FAP files into VIPP segment files

327 VIPP fonts

328 VIPP font encoding files

329 Managing VIPP Resources

332 VIPP INI Options

335 Setting up folders and projects

336 Overriding the list of libraries for projects

337 Setting up paper trays

338 Adding DSC comments

340 VIPP Limitations

340 Troubleshooting

340 VIPP known problems

342 Emailing a Print File

342 Creating EPTLIB print files for Documaker Workstation

343 Creating EPTLIB print files for Documaker Server

345 Creating PDF print files

345 Overriding attached files

345 Using email aliases

346 Choosing the Paper Size

347 US Standard Sizes

348 ISO Sizes

348 ISO A sizes

349 ISO B sizes

350 ISO C sizes

351 Japanese Standard Sizes

352 Printer Support for Paper Sizes

356 Paper Sizes for AFP Printers

358 Creating Print Streams for Docusave

358 Archiving AFP Print Streams

xvii

359 Archiving Metacode Print Streams

360 Archiving PCL Print Streams

360 Using DAL Functions

362 Adding TLE Records

363 Handling Multiple Paper Trays

363 For PCL printers

363 For PostScript printers

364 For GDI printers

365 For AFP printers

365 For Metacode printers

365 Including Tray Selections in a Print Stream Batch

Chapter 7, Setting Up Error Messages and Log Files

368 Overview

369 Configuring the Message System

369 Enabling and Disabling Messages

370 Logging INI Files and Options Used

370 Clearing Messages

370 Defining the Output Message Files

371 Initializing the Output Message Files

372 Turning Off Date Stamps

372 Controlling the Translation Process

373 DBLib Trace Messages

374 Creating Messages

374 Using the RPErrorProc and RPLogProc Functions

374 RP Struct

374 Message Types

375 Message Number

375 Assigning numbers to custom messages

376 Using Message Tokens

377 Setting Up Message Text

378 Message examples

378 Undefined tokens

378 Adding a new line

379 Determining where the message originated

380 Using the Message Token File

xviii

Chapter 8, Archiving and Retrieving Information

384 Terminology

384 Files and tables

384 Commit

384 Rollback

384 GenArc

384 AFEMAIN

384 CARFILE

384 APPIDX

384 TEMPIDX

385 CATALOG

385 RESTART

385 DFD

386 System Scenarios

386 Scenarios for OS/390 (MVS)

386 Scenarios for Windows 32-bit

387 Scenarios for UNIX

388 Archive and Retrieval Features

389 Processing Overview

389 DBASE IV

389 DB2

389 SQL server

389 Oracle

389 Files GenArc Uses

389 Input files

389 Output files

389 How the GenArc Program Works

392 Running GenArc

392 Logging archived transactions

392 Archiving to a database

393 Sorting records in a database

393 Preparing SQL

393 Command Line Options

393 INI

393 JOBID

393 DPASSWD

394 DUSERID

394 OPASSWD

xix

394 OUSERID

394 RESTART

394 SQLID

394 STOPREC

395 Using the Restart Option

397 Using GenArc with Documanage

399 Forcing folder updates

399 FSIUSER.INI sample

401 APPIDX.DFD sample

403 CARFILE.DFD sample

404 Using the Oracle ODBC Driver

404 CARFILE DFD

406 Creating the Database and Tables

409 Resolving Errors

410 Viewing Archives in Documanage

411 Using Multiple Simultaneous ODBC Connections

413 Using WIP and the Archive Index File

414 Formatting Archive Fields

414 Converting the case of key fields

414 Reformatting dates

415 Storing a constant value

416 Retrieving Archived Forms

416 Files the Archive Module Uses

416 Input files

416 Output files

416 Using the Archive Module

417 Retrieval Options

419 Working with Documanage

420 Using Documanage Data Type Support

421 Setting Up Automatic Category Overrides

422 Mapping Documaker Archive Fields to Documanage Properties

424 Using Next/Retrieve Cursor

425 Enhanced Documanage Document Extended Properties Support

Appendix A, Setting Up Archive/Retrieval Configurations

434 DB2 Server on OS/390 —Windows Client

xx

434 Configuring the Server

434 Getting the DB2 location name and LUNAME

435 Defining the SNA server’s APPC LU in VTAM

435 Defining the DB2 Application Major Node in VTAM

435 Setting Up the Windows 2000 Server (Middle Tier)

435 Installing and configuring Microsoft’s SNA Server

437 Installing and Configuring Microsoft’s SNA Server

438 Configuring SNA Server 4.0 SP3

440 Setting Up DB2 on a Windows 2000 Server

440 Installing DB2 on a Windows 2000 Server

440 Configure the DB2 instance

440 Defining an OS/390 node

441 Defining a system database entry

441 Updating TCP/IP values on the Windows 2000 server

441 Defining a database connection services entry

441 Installing and Configuring DB2 on a Windows 2000 Server

441 Defining an OS/390 system

441 Defining a DB2 instance

441 Defining an OS/390 database

441 Setting Up Universal Database on Windows 2000

441 Installing Universal Database

442 Configuring Universal Database

442 Updating TCP/IP-related Values on a Windows 2000 Server

443 Common DB2 Errors

443 Setting Up Clients

443 Defining a DB2/2000 node

444 Defining a system database entry

444 Updating TCP/IP-related values on a Windows client

444 Setting Up the INI Options for the DB2 Driver

446 DB2 Server on Windows — Windows Client

446 Setting up a DB2 Database on the Server

447 Setting Up a Client for DB2 VERSION 6.1

447 Archiving to a remote DB2 database using an ODBC driver

447 Setting up an ODBC data source

448 Setting up INI options for the ODBC driver

449 Archiving to a Remote DB2 Database Using the Native DB2
Driver

449 Setting up a DB2 database

449 Setting up the INI options for the DB2 driver

451 DB2 Server and Client on Windows

451 Setting Up a DB2 Database

xxi

451 Setting up an ODBC data source

451 Setting up INI options for ODBC

453 Archiving to a Local DB2 Database Using the Native DB2
Driver

453 Setting up the DB2 database

453 Setting up the INI options for the DB2 driver

455 SQL Server on Windows — ODBC Client on Windows

455 Setting Up a Client

455 Setting up the INI options for ODBC

457 IDS on Windows —DB2 Archive on z/OS

457 Setting Up the DB2 Archive on z/OS

458 Creating a z/OS Database

458 Updating TCP/IP Values on a Windows 2000 Server

Appendix B, System Files

462 Overview

464 Types of Files

464 BCH files

464 CAR files

464 DAT files

464 DBF files

464 DDT files

465 DFD files

465 Error files

465 Extract files

466 FAP files

466 Initialization files

466 JDT files

466 Log files

466 LOG files

466 MDX files

466 Transaction files

467 Resource Files

467 FSISYS.INI file

467 FSIUSER.INI file

467 FAPCOMP.INI

467 FORM.DAT file

xxii

470 SETRCPTB.DAT file

472 DFD files

473 TRNDFDFL.DFD file

473 RCBDFDFL.DFD file

473 APPIDX.DFD

474 .DDT files

475 .JDT files

475 Extract files

477 DFD File Format

477 Fields Group

478 Field Description Group

480 Files Created by the GenTrn Program

480 Transaction files

480 Error files

480 Log files

481 Files Created by the GenData Program

481 NAFILE.DAT file

481 POLFILE.DAT file

482 NEWTRN.DAT file

482 Batch files

482 MANUAL.BCH file

482 Error batch

482 Updated log, error, and message files

483 Files Created by the GenPrint Program

483 Spool files

483 Updated log and error files

484 Files Created by the GenWIP Program

484 WIP.DBF file

484 WIP.MDX file

484 00000001.DAT file

484 00000001.POL file

484 UNIQUE.DBF file

485 Files Used by the GenArc Program

485 APPIDX.DBF file

485 APPIDX.DFD file

485 ARCHIVE.CAR file

485 APPIDX.MDX file

485 APPIDX.DFD file

xxiii

Glossary

487 00000001.DAT File

487 00000001.POL File

488 AFP

488 ARCHIVE.CAR File

488 ARCHIVE.DBF File

488 ARCHIVE.DFD File

488 Base Product

488 .BCH Files

488 Batch Files

488 .CAR Files

489 Custom Solution

489 DAL

489 .DAT Files

489 .DBF Files

489 DDT Files

490 DESKJET.FXR File

490 .DFD Files

490 Distributed Resource Library

490 Duplex

490 ERRFILE.DAT

490 Error Batch

490 Error Files

491 External Database Editor

491 Extract Files

491 .FAP Files

491 FDB.DBF File

491 fetype

492 Field Database Editor

492 Fixed Data

492 Font Manager

492 Form

492 Form Set

492 Form Set Manager

493 FORM.DAT File

493 FSISYS.INI File

xxiv

493 FSIUSER.INI File

493 .FXR Files

493 GenArc Program

494 GenData Program

494 GenPrint Program

494 GenTrn Program

494 GenWIP Program

494 Help Editor

495 Image (Section)

495 Image Editor

495 .INI Files

495 INTL.FXR

495 INTLSM.FXR

495 .JDT Files

495 Library Manager

496 Log Files

496 .LOG Files

496 Logo Manager

496 MANUAL.BCH File

496 Master Resource Library

496 Metacode

496 .MDX Files

496 NAFILE.DAT File

497 NEWTRN.DAT File

497 Objects

497 Overflow

497 Page

497 PCL

497 POLFILE.DAT File

497 PostScript

498 Section

498 SETRCPTB.DAT File

498 Simplex

498 System Releases

498 System Patches

498 Table Editor

498 Transaction List

xxv

498 .TRN Files

499 TRNDFDFL.DFD File

499 UFSTSM.FXR File

499 UNIQUE.DBF File

499 Variable Data

499 WIP.DBF File

499 WIP.MDX

499 xBase

501 Index

xxvi

1

Chapter 1

Introduction

Welcome to the Documaker rules-based publishing
solution. This product consists of a complete set of
tools which provide solutions for all your form and
document processing needs. The system includes
these major components:

• Docucmaker Studio (and legacy Docucreate)

• Documaker Workstation

• Documaker Server

This manual serves as a reference to Documaker
Server. This chapter discusses the following topics:

• System Overview on page 2

• Rules Publishing Solution Overview on page 3

• Document Automation Evolution on page 4

• System Benefits on page 8

Chapter 1
Introduction

2

SYSTEM
OVERVIEW

Documaker Server is part of the Rules Publishing Solution, which also includes
Documaker Studio, Documaker Workstation, and reusable resource libraries.

Documaker Server uses resources you create using Documaker Studio to process
information and forms. This processing includes merging external data onto forms,
processing data according to rules you set up, creating print-ready files, archiving data
and forms, and, if applicable, sending incomplete forms to Documaker for completion
by a user.

Forms can be completed using Documaker when user input is required or, if all of your
information can be extracted from external data sources, you can set up Documaker
Server to process forms without requiring user input.

Documaker Server can create print-ready files for a variety of printer languages
including, AFP, PostScript, PCL, and Xerox Metacode printers. In addition, using
Docupresentment, the system can produce output in Adobe Acrobat PDF format.

The following topic discusses the entire Rules Publishing Solution, its purpose, its
underlying concepts and how it all works together to provide you with an enterprise-
level solution to meet your document creation, processing, and storage needs.

Rules Publishing Solution Overview

3

RULES
PUBLISHING

SOLUTION
OVERVIEW

Document automation is the basic concept underlying the system. An understanding of
document automation helps you understand the purpose of the Rules Publishing
Solution.

Document automation replaces paper documents with electronic media. Generally,
document automation is an integrated process within enterprise information systems.

The greatest challenge that document intensive industries face is the efficient
processing of forms and documents. Moving toward the era of electronic information
means finding workable solutions for the paper-to-electronic media replacement
process. New business directions include developing ways to automate document
handling processes, which extend beyond simply creating electronic output or print.

Document automation is rapidly becoming an integral part of today's business
environment. The Rules Publishing Solution creates a total business solution which
lets you automate both paper document processing and electronic document
management.

Let's examine document automation outside the Rules Publishing Solution to build a
knowledge base applicable to unique platforms. Then we can apply the basic concepts
to the Rules Publishing Solution.

Chapter 1
Introduction

4

DOCUMENT
AUTOMATION

EVOLUTION

Through the years, document automation has moved in concert with technological
evolution. The technological evolution has progressed from initial ideas and
applications about forms processing, to the integrated management of electronic
documents. The distinction between merely automating paper production and
permanently integrating electronic processing and management is critical to
understanding the technological evolution. This table shows the progression of
document automation in the current environment.

Stage 1 - paper
automation

Paper automation, enabled by the advent of computers and laser printers, is the first
stage of the document automation evolution. Most people think of the processing and
assembly of business correspondence and forms by computers as document
automation. While the computer does perform some information processing, this stage
of document automation evolution is still very paper intensive. It does not extend to
associated automated document workflow and procedures.

Stage Type of Automation Components

1 Paper Automation Business correspondence
Forms processing
Document assembly

2 Workflow Automation Electronic mail
Electronic data interchange
Electronic funds transfer
Integrated facsimile

3 Paperless Information
Automation

Cooperative processing
Enterprise indexing
Integrated section processing
Multimedia

Document Automation Evolution

5

Stage 2 - workflow
automation

Workflow automation, enabled by the proliferation of personal computers,
communication standards, Local Area Networks (LANs), Wide Area Networks (WANs),
and integrated FAX machines, is the second stage in the document automation
evolution. Workflow automation goes beyond information processing to the transfer of
digitized information across telecommunication lines. It eliminates many manual
procedures, often clerical in nature, from the workflow process.

Chapter 1
Introduction

6

Stage 3 - paperless
information automation

Paperless information automation combines multiple technologies across multiple
organizations, enterprises, and government entities. Information elements from
various sources are shared and are readily available in flexible electronic formats.
Paperless information automation enables you to reuse the information contained in
the documents. Electronic documents are much easier to track, maintain, update,
route, file, and retrieve.

Cooperative
Processing

Enterprise
Indexing

Image
Processing Multimedia

Paperless Information
Automation

Document Automation Evolution

7

DOCUMENT AUTOMATION GOALS

Document automation combines many elements of the evolutionary stages previously
discussed to accomplish these primary objectives:

• Eliminate paper

Paper consumes enormous resources. Document automation decreases the costs
associated with paper documents, and decreases the requirements for both long
term and short term storage, retrieval, and document distribution.

• Automate manual procedures

Automating manual procedures associated with document automation increases
efficiency, increases accuracy, and reduces costs. Repetitive and unnecessary
procedures are identified and eliminated.

• Automate system interfaces

Interfaces which allow exchange of data between automated systems eliminate
the need to manually enter data. Automated system interfaces also eliminate the
need to supplement automated processes with manual functions. Automated
system interfaces reduce errors, increase efficiency, and simplify the workflow.

As you can see, document automation encompasses many different technologies
which merge in a variety of ways. In the current business environment, there are many
single technologies and partial solutions which mimic document automation at first
glance. Keep in mind, a single solution using one technology is not document
automation. Document automation involves multiple technologies which help you
manage forms and documents, workflow, procedures, and other electronic media,
based on the needs and requirements of each individual organization or enterprise.

Chapter 1
Introduction

8

SYSTEM BENEFITS The system's cohesive design results in many benefits to the user. The system provides
a seamless interface to your existing systems by integrating document automation
technology with your current systems, and by offering you a customized computer
system with reusable resources. You can select modules to meet your specifications.

The system also provides you with the following advantages in your document
automation processing:

• Functional - The system's configuration meets a wide variety of document
processing needs. The system's expandable architecture utilizes technological
innovations to meet changing processing needs.

• Portable - The system's architecture allows core processing modules to operate on
multiple hardware platforms and in multiple operating environments. This design
gives the user control of the system configuration in order to meet individual
needs.

• Modular - The system's configuration lets you select modules to customize your
system. The modular design eases maintenance by segregating functions in
independent modules. A change in one module does not necessitate multiple
changes throughout the system. This modular design also improves performance
by eliminating unnecessary processing.

• Reusable - The biggest advantage in using the system is the reusability of
resources. Libraries are composed of customizable resource units such as
sections (sections) and rules, which can be reused. Reusing resources increases
efficiency and promotes consistency throughout your system and product.

• Easy to use - System components have a graphical user interface common to all
components. The system's seamless system interface provides transparent print
and data merge capabilities.

9

Chapter 2

Understanding the System

In Chapter 1, you were introduced to the system as a
whole. This chapter provides an overview of
Documaker Server.

As you review this chapter you will learn about the
programs that make up Documaker Server. Following
the overview, you will learn about the files used and
created by the system programs in both the multi- and
single-step processes.

This chapter contains the following topics:

• Processing Overview on page 11

• Processing Options on page 14

• Using Banner Processing on page 15

• Using Multi-step Processing on page 21

• Restarting the GenData Program on page 33

• Tracking Batch Page Statistics on page 37

• Generating Batch Status Emails on page 35

• Controlling GenTrn Processing on page 43

• Using Single-step Processing on page 45

• Using IDS to Run Documaker on page 57

• Writing Unique Data into Recipient Batch Records
on page 58

• Using Class Recipients on page 65

• Running Documaker Using XML Job Tickets on
page 67

• Handling 2-up Printing on page 68

• Splitting Recipient Batch Print Streams on page
79

Chapter 2
Understanding the System

10

• Assigning Printer Types Per Logical Batch Printer on page 85

• Controlling WIP Field Assignments on page 87

• Generating Email Notifications from GenWIP on page 90

• Using Multi-mail Processing on page 93

• Adding and Removing Pages on page 96

• Adding Indexes and Tables of Contents on page 99

• Using Run-Time Options on page 100

• Controlling What is in the MultiFilePrint Log on page 109

• Using INI Built-In Functions on page 111

• Outputting WIP Field Data Onto the XML Tree on page 120

• Using XML Files on page 121

• Using XPath on page 123

Processing Overview

11

PROCESSING
OVERVIEW

Documaker Server is designed to gather source data, process that data by applying
rules you define, merge the data onto pre-designed forms, and print the result. In
addition, Documaker Server can automatically check for incomplete data and send that
data to Documaker for completion. Documaker Server can also automatically archive
completed transactions which you can later view as needed.

The following illustration shows a high level view of Documaker Server:

NOTE: This illustration and the other illustrations in this chapter show a typical,
workstation-based system flow. Your system may be set up differently.
Furthermore, the system can be customized in many ways and can run on a
variety of platforms. For instance, if your source data is properly formatted,
you can bypass the GenTrn program. Or, you may choose to run the GenTrn,
GenData, and GenPrint programs on a host machine and then download the
information and use a system utility (FIXOFFS) to prepare it for use by the
GenWIP and GenArc programs running on a workstation. You could also run
the GenArc program on the host and only run the GenWIP program on a
workstation.

This illustration shows the main programs which make up Documaker Server and an
overall view of the processing cycle.

• GenTrn. The GenTrn program reads source data and uses system settings to create
transaction records. The source data is stored in extract files. Depending on the
operating system you use, this program has various names such as
GENTNW32.EXE for 32-bit Windows environments.

• GenData. The GenData program takes the transaction records created by the
GenTrn program and uses system settings and resources to apply processing rules
to those transactions.

Chapter 2
Understanding the System

12

The GenData program creates output files the GenPrint program can use. It also
creates files with incomplete transactions which the GenWIP program can use. The
GenWIP program creates from these files, output you can display and complete
using the WIP module of Documaker Workstation.

The output from the GenData program is also used by the GenArc program to
archive data. Depending on the operating system you use, this program has
various names such as GENDAW32.EXE for 32-bit Windows environments.

NOTE: The illustration on the preceding page and this overview discuss the standard
or multi-step processing flow of the system. By using specific rules you can
have the GenData program execute both the functions of GenTrn and GenPrint.
This is called single-step processing and can improve performance. To learn
more, see Using Single-step Processing on page 45.

• GenPrint. The GenPrint program takes information produced by the GenData
program and creates printer spool files for use with PCL, AFP, Metacode, and
PostScript compatible printers. In addition, If you have purchased
Docupresentment (IDS), the GenPrint program can also produce a Portable
Document File or PDF (Acrobat) output. Depending on the operating system, this
program has various names such as GENPTW32.EXE for 32-bit Windows
environments.

• GenWIP. The GenWIP program receives information about incomplete
transactions from the GenData program and processes that information so you can
use the WIP module of Documaker to display the form and fill in the missing
information. Once completed, you can print, archive, print and archive, delete, or
change the status of form sets using Documaker. Depending on the operating
system, this program has various names such as GENWPW32.EXE for 32-bit
Windows environments.

NOTE: When using Documaker Server, a transaction may be placed in WIP for
completion by a data entry operator. In these cases, you would first complete
the transaction before it is archived.

• GenArc. The GenArc program archives data so you can store the information
efficiently and retrieve it quickly. This program receives information from the
GenData program. Depending on the operating system, this program has various
names such as GENACW32.EXE for 32-bit Windows environments.

The previous illustration showed a high level view of Documaker Server which shows
you the main programs in the system and its processing cycle. These programs create
and use several types of files as they process information. The following illustration
shows this processing flow in greater detail, though not every possible system file is
included.

Processing Overview

13

Understanding how the information flows from one program to another and which files
are used and created is key to understanding Documaker Server. Here you can see all
of the files the system uses and creates during its processing cycle.

You can find information about all these files and programs in the Glossary. You can
also find examples of certain files in Appendix B, System Files on page 461. Let’s first
look at the GenTrn program and the files it uses and creates.

NOTE: You can run the GenData and GenPrint programs on z/OS (MVS) using
resources retrieved from Documanage (on a Windows server) via Library
Manager. For information on setting up the library in Documanage and setting
the INI options on z/OS to access this library, refer to the Documaker Studio
User Guide. See Using Documanage in Chapter 9, Managing Resources.

Chapter 2
Understanding the System

14

PROCESSING
OPTIONS

You can run Documaker Server as a multi- or single-step process. Variations of these
processes provide additional options such as AFP 2-up printing and multi-mail sorting.

Chapter 2 begins with a general overview of the system. From this point forward, we
will review specific processing options. The following topic discusses running the
system using the multi-step process. This topic is followed by a discussion of running
the system using the single-step processes. The remainder of the chapter provides
brief explanations of 2-up and multi-mail printing.

NOTE: To gain a complete understanding of the different features of the multi- and
single-step processes, it is important to read through both sections. Certain
information that is common to both processes is only described in the multi-
step section.

To help determine which option is best suited for a particular need, a brief description
of the run-time options and related processes are provided in the table below:

Process Description

2-Up Printing Two-up printing is a two-step process which passes input through
GenData three (3) times with a different JDT file each pass. This process
is similar to the single-step process in that GenData performs the work,
but the three passes through GenData actually represent two steps of
the multi-step process: processing the transactions and printing the
transactions. Two-up printing is AFP printer-specific. For more
information, see Handling 2-up Printing on page 68.

Banner The system lets you process banners at several points in the processing
cycle. Doing this involves using a simplified AFGJOB.JDT file. For more
information, see Using Banner Processing on page 15.

Multi-mail GenData groups transactions with the same multi-mail code into
selected print batches to be sorted and delivered to the same location.
For more information, see Using Multi-mail Processing on page 93.

Multi-step The system programs, GenTrn, GenData and GenPrint, each perform a
set of steps to read data, create output files and print. GenWIP and
GenArc are optional programs to complete incomplete transactions and
archive data for retrieval. For more information, see Using Multi-step
Processing on page 21.

Restarting
the system

You can set up the GenData program to restart itself at a particular
transaction if it encounters a failure. For more information, see
Restarting the GenData Program on page 33.

Single-step To enhance system performance, the steps of the GenTrn, GenData and
GenPrint programs are performed in one step by GenData. The GenWIP
and GenArc programs function the same as in the multi-step process. For
more information, see Using Single-step Processing on page 45.

Using Banner Processing

15

USING BANNER
PROCESSING

The system includes support for banner processing. Banner processing is supported at
these points in the processing cycle:

• Beginning of a batch

Before a transaction is processed

After a transaction is processed

• End of a batch

Banner processing is optional at each point. Banner processing can optionally include
FAP forms processing and DAL script processing.

You specify the FAP forms for banner processing in this manner:

;key1;key2;form name;

The forms must appear in the FORM.DAT file in DefLib. The associated sections
(images) for those forms and must reside in FormLib.

You can set up banner forms and scripts at a global level so they can be used by all print
batches. Individual recipient print batches can specify local forms or scripts to override
the global forms and scripts.

Keep in mind these limitations:

• This enhancement only affects the GenPrint program. Documaker Workstation has
a separate banner handling method, and does not support this method of banner
processing.

• Only the standard printer drivers, such as AFP, Metacode, PCL, and Postscript,
support batch banner processing. Avoid batch banner processing if you are using
another print driver.

• Banner pages are printed at the group level. As a result, this bypasses the custom
callback function named in the CallbackFunc option of the Print control group
since it is a form set-level callback.

NOTE: Version 10.1 added batch-level banner processing to multi-step mode. Version
10.2 added batch-level banner processing to single-step processing — printing
via GenData using the PrintFormset rule.

Enabling banner
processing

For performance reasons banner processing is, by default, disabled. You must enable
it using one or both of these INI options:

< Printer >

EnableTransBanner = True

EnableBatchBanner = True

Omitting either option disables the associated level of batch banner processing. Once
enabled, banner processing is in effect for the entire GenPrint run. You can, however,
disable banner processing for individual batches by specifying forms and scripts with
blank names.

Specifying banner forms
and scripts

You can globally specify forms and scripts for all batches, or locally for specific batches.
Use these INI options to specify global batch forms and scripts:

< Printer >

Chapter 2
Understanding the System

16

BatchBannerBeginForm = form name

BatchBannerBeginScript = script name

BatchBannerEndForm = form name

BatchBannerEndScript = script name

TransBannerBeginForm = form name

TransBannerBeginScript = script name

TransBannerEndForm = form name

TransBannerEndScript = script name

Specify form names as follows:

;KEY1;KEY2;Form name;

You must have an associated form line in the FORM.DAT file to match the specified
form. The sections (FAP files) for the forms are specified in the form lines in the
FORM.DAT file. You must include these FAP files in FormLib.

Store the banner forms in a separate and unique banner form group, defined by a
combination of Key1 and Key2. You can use the AddForm DAL function in a DAL script
to insert additional forms for banner processing. Place these additional forms and
sections in the same group as the initial banner form. Each form is printed separately
and after all banner forms are printed, the entire banner group is removed from the
document set. For these reasons, it is critical that you isolate the banner forms from the
rest of the transaction document set by specifying a Key1/Key2 combination that does
not otherwise occur within the document.

The FAP files assigned to the form (on the form line in the FORM.DAT file) must have
the recipient BANNER with a copy count of at least one. When banner forms are printed,
only sections assigned to the recipient BANNER with a non-zero copy count are printed.

Specify the DAL script names without a path or extension. For best results, store the
DAL scripts in your DAL libraries because they are easier to maintain. The system
automatically loads DAL libraries if you include these INI options:

< DALLibraries >

LIB = library1

LIB = library2

The DAL script libraries or files must reside in DefLib.

You can specify forms and scripts at the recipient batch level to override the global
specification. Here is an example of how you do this:

< Print_Batches >

BATCH1 = BATCH1.BCH

BATCH2 = BATCH2.BCH

< Batch1 >

BatchBannerBeginForm = form name

BatchBannerBeginScript = script name

BatchBannerEndForm = form name

BatchBannerEndScript = script name

TransBannerBeginForm = form name

TransBannerBeginScript = script name

TransBannerEndForm = form name

TransBannerEndScript = script name

You can specify some, none, or all of the forms and scripts for local override of the
default global forms and scripts.

Using Banner Processing

17

An individual batch can completely or partially disable banner processing if the forms,
script names, or both are blank, as shown here:

< Batch1 >

BatchBannerBeginForm =

BatchBannerBeginScript =

BatchBannerEndForm =

BatchBannerEndScript =

TransBannerBeginForm =

TransBannerBeginScript =

TransBannerEndForm =

TransBannerEndScript =

Banner form processing
and multi-file print

Use the RetainTransBeginForm option to make pre-transaction transaction banner
form processing compatible with multi-file printing. Banner forms print separately from
the rest of the document. When using multi-file printing with print drivers such as PDF
or RTF, banner forms do not appear in the output file. This options lets the banner form
appear in the same print file.

Banner pages are, by design, not considered part of the form set. A pre-transaction
banner page is designed to print separately, using data from the form set, but as if it
were not physically part of the form set. For that reason, when printing to a single-file-
per-transaction format such as PDF, RTF, XML, or HTML, and using the MultiFile print
callback method to produce separate files, the banner output is not included in the
output file.

It is possible to use pre-transaction banner forms as a way of producing a mailer sheet
for a form set. This works for true printed output, but if you are producing a PDF file, for
example, the banner (mailer page) does not appear within the PDF.

If, however, you use the RetainTransBeginForm option to retain the pre-transaction
banner form, the banner process proceeds as before, but the printing of the banner is
initially suppressed. The banner page is retained and remains inside the form set, as
the first form in the form set. When the form set is processed by the PDF driver to
produce the PDF file, the pre-transaction banner form (or mailer sheet) is then included
in the resulting PDF file.

Keep in mind however that the document is only temporarily modified during the print
step. The banner form is not included with the actual, intelligent form set when it is
archived. For instance, if the intelligent document format is used for archiving, the
mailer sheet does not appear as part of the form set, and will not print if retrieved from
archive. If, however, you archive the PDF output, then the mailer sheet will appear in
the PDF file.

You can place the RetainTransBeginForm option in the Printer control group as a global
setting or you can place it at the recipient batch level. A setting at the recipient batch
level overrides a setting in the Printer control group.

Here is an example of how you could set a global or default setting in the Printer control
group and override that setting for a particular recipient batch:

< Printer >

RetainTransBeginForm = Yes

... (other applicable options omitted - see the following note)

< Print_Batches >

Batch1 = BATCH1.BCH

Batch2 = BATCH2.BCH

Chapter 2
Understanding the System

18

< Batch1 >

RetainTransBeginForm = No

... (other applicable options omitted - see the following note)

NOTE: There are additional INI settings required for single- and multi-step
processing. For more information about single-step processing, see the
discussion of the PrintFormset rule in the Rules Reference.

For more information about multi-step processing, see the discussion of the
MultiFilePrint callback function in the Using the PDF Print Driver.

Processing logic Banner processing functions are part of the base system and are primarily located in
GenLib. The GenPrint program, however, first routes the processing to CusLib. This lets
you use the exit points in CusLib to create additional customized processing before,
after, or in place of, the calls to GenLib routines.

The processing sequence for banner processing (at any level) is as follows:

1 If a banner form is specified, it is created in the form set and the FAP files are
loaded.

2 If a banner DAL script is specified, it is executed.

3 For any banner form specified in step 1 or created during step 2, the following
steps take place:

any variable fields in the banner form that are still empty are updated, first
from matching GVM variables, such as fields in the recipient batch record,
then from matching DAL variables.

the form is printed.

4 If there were banner forms to process, after updating the fields and printing the
forms, the entire banner form group is removed from the form set.

NOTE: You can suppress the printing of the banner page by using the
SuppressBanner DAL function. This is useful when you need to combine
several transactions within the same transaction banner pages.

If there are registered comment record functions, each banner form in the form
group receives its own set of comment records. If the additional forms should
not receive their own comment records, add the sections for those forms to the
original form—do not add them as separate forms.

Option Description

RetainTransBeginForm Enter Yes if you want the system to include the transaction
banner form in the form set. The default it No.
If you are using the PDF, RTF, XML, or HTML print driver, this
means the banner pages will be included in each transaction’s
print file.

Using Banner Processing

19

DAL functions You can also use these DAL functions with banner processing. See the DAL Reference
for more information.

• RecipName. Returns the name, such as INSURED, AGENT, COMPANY, and so on, of
the recipient batch record of the transaction currently being printed.

• RecipBatch. Returns the name, such as BATCH1, BATCH2, ERROR, MANUAL, and so
on, of the recipient batch file being processed.

• SuppressBanner. Suppresses the current banner from printing. You can use this
function when you want to combine several transactions inside one set of banner
pages, based on a flag that the DAL script checks.

Banner processing
example

Assume you have these FAP files in your forms library (FormLib).

• btchbannr

• btctrail

• trnbannr

• trntrail

Here is an excerpt from the FSISYS.INI file:

< Printer >

 PrtType = PCL

 EnableTransBanner = TRUE

 EnableBatchBanner = TRUE

 BatchBannerBeginScript = PreBatch

 TransBannerBeginScript = PreTrans

 BatchBannerEndScript = PstBatch

 TransBannerEndScript = PstTrans

 BatchBannerBeginForm = ;BANNER;BATCH;BATCH BANNER;

 BatchBannerEndForm = ;BANNER;BATCH;BATCH TRAILER;

 TransBannerBeginForm = ;BANNER;TRANSACTION;TRANS HEADER;

 TransBannerEndForm = ;BANNER;TRANSACTION;TRANS TRAILER;

< DALLibraries >

 LIB = Banner

Here is an excerpt from the FORM.DAT file:

;BANNER;BATCH;Batch Banner;Batch Banner (Job\
Ticker);N;;btcbannr|D<BANNER(1)>;

;BANNER;BATCH;Batch Trailer;Batch Trailer (End\
Ticket);N;;btctrail|<BANNER(1)>;

;BANNER;TRANSACTION;Trans Trailer;Transaction Trailer (End\
Ticket);N;;trntrail|D<BANNER(1)>;

;BANNER;TRANSACTION;Trans Header;Transaction Banner\
Page;N;;trnbannr|D<BANNER(1)>;

Chapter 2
Understanding the System

20

Here is an example of the BANNER.DAL file in DefLib:

BeginSub PreBatch

#batch += 1

#trans = 0

rb = RecipBatch()

rn = RecipName()

EndSub

BeginSub PreTrans

#trans += 1

rb = RecipBatch()

rn = RecipName()

EndSub

These additions to the FORM.DAT and FSISYS.INI files plus file additions to the FormLib
and DefLib sub-directory would cause the following pages to be added to each batch:

 Batch Banner Page

 Transaction Banner Page

Company: Sampco
LOB: LB1
Policy: 1234567
Recip name: Insured
Recip batch: Batch1
Batch no.: 1
Trans no.: 1

Pages associated with the
transaction

Transaction Trailer

Repeat of the previous
pages—from Transaction
Banner page through the
Transaction Trailer page

Batch Trailer
(ending job ticket)

Using Multi-step Processing

21

USING MULTI-
STEP PROCESSING

This topic describes the standard, multi-step approach to processing. In a multi-step
processing scenario, the system takes these steps:

• Create the transaction records

• Process the transactions

• Create print spool files

• Send incomplete transactions to work-in-progress (WIP)

• Archive transactions

NOTE: Be sure to carefully read this topic even if you are using single-step processing.

CREATING TRANSACTION RECORDS

This illustration shows the files used and created by the GenTrn program as it creates
transaction records:

The GenTrn program takes the source data, which is stored in extract files, and creates
a list of the transactions, which is stored in the TRNFILE, or transaction file. This
transaction list is then used by the GenData program as it processes the transactions.

The GenTrn program uses settings in the FSISYS.INI and TRNDFDFL.DFD files to
determine how to process the transactions. These files provide the GenTrn program
with information about the format and structure of the extract file, such as how to
determine where each new record starts.

The GenTrn program also produces a log file of its activities, a message file, and an
error file which you can use to resolve any errors that occur.

Chapter 2
Understanding the System

22

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenTrn program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File Name
or Type

Default
Extension

File
Format Description

Input
Extract
files

.DAT text Contains the data you want to process.

FSISYS .INI text Initialization file which includes system
settings.

TRNDFDFL .DFD text Defines the attributes of the variable fields
in the TRNFILE.DAT file.

Output

TRNFILE .DAT text Serves as an index to the individual
transactions. Used by the GenData program
as it processes the source data in the extract
file.

Log file .DAT text Serves as a processing log for the GenTrn
program. The system records the
information by transaction.

Error file .DAT text Notes any errors and warnings encountered
by the GenTrn program as it created the
TRNFILE.DAT file. The system records the
information by transaction.

Message
file

.DAT text Contains errors and warnings.

Using Multi-step Processing

23

PROCESSING TRANSACTIONS

The following illustration shows the files used and created by the GenData program as
it processes transactions:

The GenData program uses the transaction list (TRNFILE) created by the GenTrn
program as it processes the source data stored in the extract files. The FSISYS.INI file
provides system setting information, such as whether or not it should stop processing
if it encounters errors, how to identify key fields in extract files, whether or not it should
check the output data size against the defined field length, and so on.

The files listed under System resources provide additional information such as:

• How to read the transaction file (TRNDFDFL.DFD)

• The forms, logos, and other resources to use when creating the form sets (RESLIB)

• What forms to use (FORM.DAT)

• Who to send the forms to (SETRCPTB.DAT)

• What processing rules to apply to the data (DDTs)

• What processing rules to apply to this job (JDTs)

• How the batch files are defined (RCBDFDFL.DFD)

Chapter 2
Understanding the System

24

NOTE: You can learn more about these files in Appendix B, System Files on page 461.

Output Files for GenPrint

The output files created by the GenData program include three types of files used by
the GenPrint program: Batch files, NAFILEs, and POLFILEs. Batch files list the
transactions which should be included in each batch print job. NAFILEs store section
and variable field information. POLFILEs define the form set the GenPrint program
should use for each transaction it processes.

Output Files for GenWIP

The GenWIP program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenData program creates
manual batch files specifically for the GenWIP program.

The GenData program creates manual batch files if it is unable to complete the
processing of a form set. Typically, this occurs if the form set is missing information.
The GenWIP program uses this file to create separate transactions which can then be
completed manually using the Entry module of Documaker Workstation. The data for
the separate transactions are stored in files with the extension DAT, such as
00000001.DAT, 00000002.DAT, and so on.

Output Files for GenArc

The GenArc program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenArc program uses the
NEWTRN files to tell it where to find data in the NAFILEs and which forms to use in the
POLFILEs.

Using Multi-step Processing

25

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenData program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name
or Type

Default
Extension

File
Format Description

Input Extract files text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNFILE DAT text Used as an index to the individual
transactions stored in the extract file.

TRNDFDFL DFD text Tells GenData how to read the TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the variable
fields in a batch file.

Resources (various) (various) Includes logos (.LOG), font cross
reference files (.FXR), sections (.FAP), and
so on.

Output

Batch files BCH text Indicates which transactions should be
included in a given batch job. Used by the
GenPrint program.

NAFILE DAT text Contains section and variable field
information. Used by the GenPrint,
GenWIP, and GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.
Used by the GenPrint, GenWIP, and
GenArc programs.

NEWTRN DAT text Tells the GenArc program where to find
data in the NAFILE and which forms to use
in the POLFILE.

Chapter 2
Understanding the System

26

Manual
batch files

BCH text Created if the form is incomplete. Used by
GenWIP to allow an operator to complete
the form in the Entry module of
Documaker.

Error batch
files

.BCH text Created if the system spots an error, such
as if the system spots an error and the
form is marked as host required. In
contrast to manual batch files, you cannot
correct these errors using the GenWIP
program. Instead, you must correct the
error in the extract file, change the flag to
operator required, or change the FAP file
and then process the transaction again.

ARCHIVE DFD text Tells the GenArc program how to store
archived data.

Log file DAT text Serves as a processing log. Created by the
GenTrn program, the GenData program
adds information to this file.

Error file DAT text Notes any errors encountered by the
GenData program. Created by the GenTrn
program, the GenData program adds
information to this file (as do the
GenPrint, GenWIP, and GenArc programs).

Message
file

.DAT text Contains errors and warnings.

File name
or Type

Default
Extension

File
Format Description

Using Multi-step Processing

27

CREATING PRINT SPOOL FILES

The following illustration shows the files used and created by the GenPrint program as
it creates print-ready files:

The GenPrint program receives batch files from the GenData program which tell it what
transactions to print, NAFILEs which tell it what data to print, and POLFILEs which tell
it which forms to print.

With this information, the GenPrint program creates print-ready files for AFP, Xerox
Metacode, PCL, or PostScript compatible printers. The GenPrint program serves as the
print engine for the system.

NOTE: In addition, the GenPrint program can also create PDF (Acrobat) if you have
purchased the PDF Print Driver. For more information about this product,
contact your sales representative.

Chapter 2
Understanding the System

28

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenPrint program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name
or Type

Default
Extension

File
Format Description

Input

Batch files BCH text Indicates which transactions should be
printed in a given batch. Used as trigger
files by the GenPrint program.

NAFILE DAT text Contains section and variable field
information.

POLFILE DAT text Defines the forms to use for each batch.

RCBDFDFL DFD text Defines the attributes of the variable
fields in a batch file.

Output

Print-ready
files

AFP, PCL,
XER, PST,
PDF*

AFP, PCL,
MetaCode,
PostScript,
or PDF*

Printer spool files which can be printed
on the printer of your choice.

* To produce PDF files, you must also have the PDF Print Driver.

Using Multi-step Processing

29

SENDING INCOMPLETE TRANSACTIONS TO WIP
The following illustration shows the files used and created by the GenWIP program as
it processes incomplete transactions:

The GenWIP program receives information from the GenData program about
incomplete transactions the GenData program found during its processing cycle. With
this information, the GenWIP program creates files the WIP module of Documaker can
read. Through the WIP module, data entry operators can complete the transactions by
entering the missing information.

The manual batch file tells the GenWIP program which transactions are incomplete and
should be included in work-in-progress (WIP).

Using the information in the manual batch files, the GenWIP program extracts the
information it needs from the NAFILE and POLFILE. With this information, it then
creates individual NA and POL files for each incomplete transaction. The GenWIP also
creates a WIP.DBF (database) file which contains information about the incomplete
transactions. The WIP.MDX file serves as an index to this file. Both the WIP.DBF and
WIP.MDX files are used by the WIP module of Documaker Workstation.

Chapter 2
Understanding the System

30

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenWIP program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File Name
or Type

Default
Extension

File
Format Description

Input
NAFILE DAT text Contains section and variable field

information.

POLFILE DAT text Defines the forms to use for each batch.

RCBDFDFL DFD text Defines the attributes of the variable fields
in the batch files.

Manual
batch

BCH text Indicates which transactions should be
included.

Output

WIP DBF Contains information about the incomplete
transactions extracted from the NAFILE and
POLFILE.

WIP MDX Serves as an index to the WIP.DBF file.

NA Files DAT text Contains the data (section and variable field
information) for a specific transaction.
These files are named numerically and each
file has a corresponding POL file.

POL Files POL text Defines the forms to use for a specific
transaction. These files are named
numerically and each file has a
corresponding NA file.

Using Multi-step Processing

31

ARCHIVING TRANSACTIONS

The following illustration shows the files used and created by the GenArc program as
it archives completed transactions:

The GenArc program receives information from the GenData program, using many of
the same files used by the GenWIP and GenPrint programs, such as the NAFILE and
POLFILE. These two files identify the data to archive. The NEWTRN file tells the GenArc
program where to find data in the NAFILE, which is created by the GenArc program.

In addition, the GenArc program also uses the ARCHIVE.DFD file which tells it how to
store the data.

With this information, the GenArc program creates DBF and CAR files. The DBF files
serve as an index to the CAR files, where the archived information is actually stored.
You can have multiple CAR files.

Chapter 2
Understanding the System

32

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenArc program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

RULES USED IN MULTI-STEP PROCESSING

Several rules are used to execute the programs of the multi-step process. For a
complete listing and description of these and other rules, see the Rules Reference.

File Name
or Type

Default
Extension

File
Format Description

Input
NAFILE DAT text Contains section and variable field

information.

POLFILE DAT text Defines the forms to use for each batch.

NEWTRN DAT text Tells the GenArc program where to find data
in the NAFILE and which forms to use in the
POLFILE.

APPIDX DFD text Tells the GenArc program how to store the
data.

Output
DBF files DBF text Serves as an index to the archived data in the

CAR files.

ARCHIVE CAR CAR Contains the archived forms.

Restarting the GenData Program

33

RESTARTING THE
GENDATA
PROGRAM

You can set up the GenData program to restart itself at a particular transaction if it
encounters a failure. To accomplish this, the system uses a restart file. You use INI
options to set up the restart file.

NOTE: This feature does not apply if you are using single-step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it
isolates the transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of
a GenData run, the system assumes a restart is necessary and will open and read the
file. The checkpoint information lets the system set internal pointers and output files
in such a way that it can begin at that transaction.

These rules are used to handle restarting the GenData program:

• RULCheckTransaction

• RestartJob

RULCheckTransaction
rule

The RULCheckTransaction rule is always the first base form set rule. It saves the
EXTRFILE offset, TRNFILE offset, NEWTRN offset, NAFILE offset, POLFILE offset, and
batch file offsets into a restart (RSTFILE) file.

These offsets are updated in the post process after a specific number of transactions.
You specify the number of transactions using the CheckCount option. You define the
Restart file and the and check count in the Restart control group:

< Restart >

RstFile =

CheckCount =

Here is an example:

;RULCheckTransaction;2;Always the first form set rule;

Option Description

RstFile Enter the name of the restart file. If you omit this option, the system uses
RSTFILE.RST (DD:RSTFILE for MVS) as the file name.
The system uses the DataPath option in the Data control group to
determine where to create the restart file. The default location is the
current working directory.

CheckCount Enter a number to specify the number of transactions to process before
updating the offsets. For instance, if you specify two hundred (200), the
system processes two hundred transactions, updates the offsets,
processes two hundred more transactions, and so on. The default is 100.
You can also use the /cnt command line option with the GenData program
to override the CheckCount option. Here is an example:

gendaw32 /cnt=10

Chapter 2
Understanding the System

34

RestartJob rule The RestartJob is always the first base rule. This rule opens the restart file (RSTFILE)
and resets the EXTRFILE, TRNFILE, NEWTRN, NAFILE, POLFILE, and batch files at the
broken transaction if the restart file exists. If the restart file does not exist, the
RestartJob rule is skipped.

NOTE: For more information on these rules, see the Rules Reference. You can also set
up the GenArc program to restart itself. For more information, see Using the
Restart Option on page 395.

Here is an example:

;RestartJob;1;Always the first base rule;

INI options To use the restart feature, you should also set the following INI options:

< GenDataStopOn >

BaseErrors = Yes

TransactionErrors = Yes

ImageErrors = Yes

FieldErrors = Yes

Generating Batch Status Emails

35

GENERATING
BATCH STATUS

EMAILS

You can set up the GenData program to check recipient batches and notify the print
operator via email as to when to expect output print files.

You use INI options to have the JobInit1 rule notify batch recipients about batch file
information. On Windows, Microsoft mail and the SMTP mail type is supported. On
UNIX, only the SMTP mail type is supported.

With the INI settings shown below, the GenData program can...

• Notify a user that a batch is not empty. For example, the GenData program can
send email notification if there are transactions in the error or manual batches or
both.

• Notify a user that a batch is empty. For example, it can send an email to the print
operator telling the operator not to expect a print file for processing.

• The notifications above can be skipped on per batch basis. For example, you can
have the GenData program skip batches that do not produce print files or produce
files that do not need to be printed.

• For each notification email you can specify a send to address, reply to address,
message body, optional attachment, and message subject.

• To each email you can optionally attach a recipient batch file.

• The notification email message can include variable data which comes from GVM
variables.

To use this feature, make sure you have your INI files set up as shown here. The new
control groups and options appear in bold and are documented in the following table.

< Print_Batches >

Batch1 = batch1.bch

Batch2 = batch2.bch

Batch2 = batch3.bch

Manual = manual.bch

Error = error.bch

< Batch1 >

Printer = Printer1

Notify = BchRecip1

...

< BatchNotify:BchRecip1 >

Empty = Yes

MailType = MSM

AttachBatchFile = Yes

SendTo = John Formaker

Subject = Batch 1 is empty

BodyTemplate = email.txt

...

< Mail >

MailType = MSM

; MailType = SMTP

< MailType:MSM >

Module = MSMW32

MailFunc = MSMMail

ReplyTo = replyto@docucorp.com

UserID = test

SuppressDlg = Yes

HiddenMsgSupport = Yes

Chapter 2
Understanding the System

36

Name = MS Exchange Settings

Recipient = test@oracle.com

Option Description

Batch1 control group

Notify Enter the name of INI control group where the notification options
are specified. In the example above, the control group name would
be BatchNotify:BchRecip1.

BatchNotify:BchRecip1 control group

Empty Enter Yes if you want the system to notify you if this batch is empty
or missing.
Enter No if you want the system to notify you if the batch is not
empty.

MailType Enter MSM to specify the mail type as Microsoft mail.
Enter SMTP to specify the mail type as SMTP. SMTP is the only
option for UNIX.

AttachBatchFile Enter Yes to attach the batch file if it exists and is not empty.
Enter No if you do not want the system to attach it.

SendTo Enter the name of the recipient or his or her email address.

Subject Enter the text you want the system to place in the email subject
line. For instance, you could enter Batch 1 is empty.

BodyTemplate Here you can specify a template file, such as email.txt, to use when
creating an email message. It has format:

data for item one <% //test1,%s %> and trailing
data

Tracking Batch Page Statistics

37

TRACKING BATCH
PAGE STATISTICS

The system lets you track job statistics that show you...

• Total pages

• Pages not including copy counts

• Printed sheets

• Sheets by tray (1 through 9)

You can compile these statistics by batch, recipient within each batch, and job totals.
You can also have the system write the totals to a recipient detail file, a batch summary
file, and the log file. Totals are written to the log file by default.

You can add recipient totals to the recipient batch records by adding the appropriate
global variables (GVMs) to the recipient batch file's Data Format Definition (DFD) file.
If you create the optional batch summary file, the batch page statistics will be available
to the GenPrint program via the batch total GVMs.

RECIPIENT PAGE STATISTICS

These statistics are captured for each recipient batch record written to the batch file:

Statistic GVM Description

Recipient RCB_NAME The current recipient name

Total Pages RCB_TOTAL The total recipient pages including non-print
(display only) pages

Total Pages -
No Copy

RCB_TOTAL_NC The total recipient pages not including copy
counts. Non-print (display-only) pages are
included.

Total Sheets RCB_SHEETS The total printed sheets for the transaction
(omits display-only pages)

Total Tray 1 RCB_TRAY1 The total printed sheets for Tray 1

Total Tray 2 RCB_TRAY2 The total printed sheets for Tray 2

Total Tray 3 RCB_TRAY3 The total printed sheets for Tray 3

Total Tray 4 RCB_TRAY4 The total printed sheets for Tray 4

Total Tray 5 RCB_TRAY5 The total printed sheets for Tray 5

Total Tray 6 RCB_TRAY6 The total printed sheets for Tray 6

Total Tray 7 RCB_TRAY7 The total printed sheets for Tray 7

Total Tray 8 RCB_TRAY8 The total printed sheets for Tray 8

Total Tray 9 RCB_TRAY9 The total printed sheets for Tray 9

Chapter 2
Understanding the System

38

BATCH TOTALS SUMMARY FILE

The system can write a summary record for each recipient within each batch and a total
summary record to the optional Batch Totals Summary file. To have the system create
this file, include the RCBStatsTot option in the Data control group and specify a file
name.

You can modify the summary total file layout using a custom DFD. Specify the name of
the custom DFD in the RCBStatsTotDFD option in the Data control group. If you omit the
RCBStatsTotDFD option, the default DFD file is used (see Default DFD Files on page 40).

If there are more that one recipient for a given batch file, a Total record is written. The
BATCH_RCB_NAME value is set to *** Total *** for the total file record. If a total record
exists, the total record is loaded by the GenPrint program.

Accessing totals in
GenPrint

If you set the RCBStats option in the RunMode control group to Yes and RCBStatsTot
option in the Data control group has a value, the GenPrint program loads the total
values for each batch. These values will then be available as GVM variables.

INI Options You use the following INI options to record statistics:

< RunMode >

RCBStats =

RCBTotals =

 < Data >

RCBStatDtlDFD =

RCBStatsTotDFD =

RCBStatsDtl =

RCBStatsTot =

Option Description

RCBStats Enter No if you do not want to execute statistics processing.
The default is Yes, unless the system is running under IDS. If IDS is
running Documaker Server, the default is No.

RCBTotals Enter No if you do not want the system to write recipient totals to the log
file. The default is Yes.

Option Description

RCBStatDtlDFD Enter a name for the RCB Statistics Detail File DFD. The system
defaults to an internal DFD entry.

RCBStatsTotDFD Enter a name for the RCB Statistics Total File DFD. The system
defaults to an internal DFD entry.

RCBStatsDtl Enter the name and path you want assigned to the detail log file.
The system will create this file if you include a value for this option.

RCBStatsTot Enter the name and path you want assigned to the total log file.
The system will create this file if you include a value for this option.

Tracking Batch Page Statistics

39

SAMPLE LOG FILE

Here is an example of a log file:

Batch Page Statistics

Batch(BATCH1):

- Total for Recipient(AGENT) in Batch(BATCH1):

 Pages : 9

 Pages(nc): 9

 Sheets : 6

 Tray1 : 2

 Tray2 : 2

 Tray3 : 0

 Tray4 : 2

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

- Total for Recipient(COMPANY) in Batch(BATCH1):

 Pages : 21

 Pages(nc): 21

 Sheets : 16

 Tray1 : 3

 Tray2 : 2

 Tray3 : 9

 Tray4 : 2

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

- Total for Recipient(INSURED) in Batch(BATCH1):

 Pages : 44

 Pages(nc): 44

 Sheets : 28

 Tray1 : 6

 Tray2 : 11

 Tray3 : 9

 Tray4 : 2

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

- Total for Batch(BATCH1):

 Pages : 74

 Pages(nc): 74

 Sheets : 50

 Tray1 : 11

 Tray2 : 15

 Tray3 : 18

 Tray4 : 6

 Tray5 : 0

Chapter 2
Understanding the System

40

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

Job Page Statistics:

 Pages : 74

 Pages(nc): 74

 Sheets : 50

 Tray1 : 11

 Tray2 : 15

 Tray3 : 18

 Tray4 : 6

 Tray5 : 0

 Tray6 : 0

 Tray7 : 0

 Tray8 : 0

 Tray9 : 0

DEFAULT DFD FILES

Here are examples of the DFD files:

RCBStatsDtlDFD < FIELDS >

 FIELDNAME = RCB_BATCH

 FIELDNAME = RCB_NAME

 FIELDNAME = RCB_TRANS

 FIELDNAME = RCB_TOTAL

 FIELDNAME = RCB_TOTAL_NC

 FIELDNAME = RCB_SHEETS

 FIELDNAME = RCB_TRAY1

 FIELDNAME = RCB_TRAY2

 FIELDNAME = RCB_TRAY3

 FIELDNAME = RCB_TRAY4

 FIELDNAME = RCB_TRAY5

 FIELDNAME = RCB_TRAY6

 FIELDNAME = RCB_TRAY7

 FIELDNAME = RCB_TRAY8

 FIELDNAME = RCB_TRAY9

< FIELD:RCB_BATCH >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 21

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 20

 KEY = Y

 REQUIRED = Y

< FIELD: RCB_NAME>

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 21

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 20

 KEY = Y

 REQUIRED = Y

< FIELD:RCB_TRANS >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 31

Tracking Batch Page Statistics

41

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 30

 KEY = N

 REQUIRED = N

< FIELD:RCB_TOTAL >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TOTAL_NC >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY1 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY2 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY3 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY4 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY5 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY6 >

 INT_TYPE = CHAR_ARRAY

Chapter 2
Understanding the System

42

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY7 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY8 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

< FIELD:RCB_TRAY9 >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 11

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 10

 KEY = N

 REQUIRED = N

RCBStatsTotDFD < FIELDS >

 FIELDNAME = BATCH_NAME

 FIELDNAME = BATCH_RCB_NAME

 FIELDNAME = BATCH_TOTAL

 FIELDNAME = BATCH_TOTAL_NC

 FIELDNAME = BATCH_SHEETS

 FIELDNAME = BATCH_TRAY1

 FIELDNAME = BATCH_TRAY2

 FIELDNAME = BATCH_TRAY3

 FIELDNAME = BATCH_TRAY4

 FIELDNAME = BATCH_TRAY5

 FIELDNAME = BATCH_TRAY6

 FIELDNAME = BATCH_TRAY7

 FIELDNAME = BATCH_TRAY8

 FIELDNAME = BATCH_TRAY9

Controlling GenTrn Processing

43

CONTROLLING
GENTRN

PROCESSING

Include the following control group and option in the FSISYS.INI file when you want the
GenTrn program to continue processing transactions when errors occur. By default, the
GenTrn program halts when it encounters an error.

NOTE: This control group and option is typically used if you are using XML extract files
and you do not want the GenTrn program to stop every time it encounters an
error. For any type of extract file, using this option detects missing Key1 and
Key2 information.

Here is an example of the control group and option:

< GenTranStopOn >

TransactionErrors = Parameter1;Parameter2;Parameter3;

Separate the parameters with semicolons (;).

The system records all errors and warnings it encounters during a processing run in the
ERRORFILE.DAT file. In addition, it writes the extract file records of the transaction in
error to the file you specify in Parameter2. This lets you inspect those transactions and
determine the best way to proceed.

Here are some examples. This option:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;No;

Is the same as:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;;

Both let the GenTrn program continue processing subsequent transactions when
errors occur. These options tell the GenTrn program to write the error transaction to a
file named ERRORTRANSACTION.DAT, stored in the \Extracts directory.

TransactionErrors = No; ErrorTransaction.dat;Yes;

This option lets the GenTrn program continue processing subsequent transactions
when errors occur. Since the path of the error transaction file was omitted, the system
uses the DataPath option in the Data control group in the FSISYS.INI file to find the file
so it can append any error transactions to the existing error transaction file.

Parameter Description

Parameter1 Enter No to turn the GenTranStopOn option off. The default is Yes.

Parameter2 Enter the name of the transaction file. To write out the error transaction,
enter the name of the file where you want the extract file records written.
If you omit the path, the system uses the DataPath option in the Data
control group in the FSISYS.INI file to determine where to locate this file.

Parameter3 The system only looks at this parameter if you entered a file name for
Parameter2.
Enter Yes to tell the system to append the error transactions
accumulated during this processing run to the file created in a prior run.
Enter No to tell the system to overwrite any existing file. If Parameter2
exists and you omit this parameter, the system defaults to No.
If you enter Yes, you must remove the file when necessary. Keep in mind
that over a series of processing runs, this file will expand in size.

Chapter 2
Understanding the System

44

TransactionErrors = No;;;

This option lets the GenTrn program continue processing subsequent transactions
when errors occur. It does not, however, write out error transactions.

When using this option, you may encounter these errors:

• Problem in loading the XML file. Syntax error.

GenTrn

Transaction Error Report - System timestamp: Mon Dec 16 13:42:27 2002

DM12041: Error: FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

 code1:<48>, code2:<0>

 msg:<XML Parse Error: The 15 chars before error=< <Key1>Comp1<>,
the 8 chars starting at error=</Key1c>

>>.

DM12041: Error : FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

 code1:<48>, code2:<0>

 msg:<mismatched tag at line 3 column 16>.

DM10293: Error: Error in <BuildTranRecs>: Unable to
<DXMLoadXMLRecs()>.

 Skip Transaction# <2>.

Warning: the specific info you see may not be the info for the error
transaction. It may be the info on the last complete transaction.

==> Warning count: 0

==> Error count: 3

• No problem in loading the file, however, Key1 is omitted in the transaction.

GenTrn

Transaction Error Report - System timestamp: Fri Dec 13 13:52:13 2002

DM1002: Error: Required INI definition omitted.

Cannot locate INI group <Key1Table> with value = defined.

DM15062: Error in BuildTrnRecs(): Unable to GENGetDocSetNames(pRPS).

Skip Transaction# <3>.

==> Warning count: 0

==> Error count: 2

Using Single-step Processing

45

USING SINGLE-
STEP PROCESSING

The single-step process improves the performance of your system by combining the
functions of GenTrn, GenData and GenPrint into one step performed by GenData. This
process is used when no intermediate steps are necessary.

The GenWIP and GenArc options are performed the same as in the multi-step process.
See Sending Incomplete Transactions to WIP on page 29 and Archiving Transactions on
page 31 for more information on the functions of the GenWIP and GenArc programs.

NOTE: When running in single-step mode, you can only produce a single print stream.
For instance, the most common method of print batching is to batch by
recipient, in single-step processing, however, you cannot produce separate
print streams for each recipient batch.

CREATING AND PROCESSING TRANSACTION RECORDS

In the multi-step process, the GenTrn program creates transaction records that are sent
to the GenData program for processing. In the single-step process, the GenData
program performs both of these actions in one step.

Chapter 2
Understanding the System

46

As shown in the illustration above, the GenData program processes transaction
records, originated from the source data, and creates various output files for print, WIP
or GenArc. By combining the functions of GenTrn and GenPrint into GenData, you
reduce the number of times the system needs to open and close files, thus enhancing
the overall performance of your system.

System Settings and Resources

The FSISYS.INI and the FSIUSER.INI file provide system setting information, such as
whether or not it should stop processing if it encounters errors, how to identify key
fields in extract files, whether or not it should check the output data size against the
defined field length, and so on.

The files listed under system resources provide additional information such as:

• How to read the transaction file (TRNDFDFL.DFD)

• The forms, logos, and other resources to use when creating the form sets (RESLIB)

• What forms to use (FORM.DAT)

• Who to send the forms to (SETRCPTB.DAT)

• What processing rules to apply to the data (DDTs)

• What processing rules to apply to this job (JDTs)

• How the batch files are defined (RCBDFDFL.DFD)

NOTE: You can learn more about these files in Appendix B, System Files on page 461.

Understanding the System The advantage of single-step processing is the improvement to performance. The
disadvantage is that it is much more difficult to correct errors because the system does
not create batch files at the end of each step. These batch files tell you what occurred
and help you spot and correct errors.

Using Single-step Processing

47

CREATING PRINT FILES

With the placement of specific rules, you can make the GenData program perform the
functions of the GenTrn and GenPrint programs. In other words, when GenData is
processing transactions files, it is also producing the print-ready files necessary to
print on AFP, Metacode, PCL, or Postscript printers.

As in the multi-step process, the GenData program creates these types of files:

• Batch files - list the transactions which should be included in each batch print job

• NAFILEs - store section and variable field information

• POLFILEs - define the form set the GenPrint program should use for each
transaction it processes

NOTE: When using single-step processing, you should clear all messages before each
processing run. For information on how to do this, see Clearing Messages on
page 370.

Chapter 2
Understanding the System

48

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenData program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input files and all of the output files.

File name
or Type

Default
Extension

File
Format Description

Input
Extract
files

text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNDFDFL DFD text Tells GenData how to read and write the
TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the variable fields
in a batch file.

Resources (various) (variou
s)

Includes logos (LOG), font cross reference
files (FXR), sections (FAP), and so on.

Output
Batch files BCH text Indicates which transactions should be

included in a given batch job.

NAFILE DAT text Contains section and variable field
information. Used by the, GenWIP, and
GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.
Used by the GenWIP and GenArc programs.

NEWTRN DAT text Tells the GenArc program where to find data
in the NAFILE and which forms to use in the
POLFILE.

Manual
batch files

BCH text Created if the form is incomplete. Used by
GenWIP to allow an operator to complete
the form in the Entry module.

Using Single-step Processing

49

USING THE MULTIFILEPRINT CALLBACK FUNCTION

The system includes a MultiFilePrint callback function designed for running the
GenData program in single-step mode. The log file is either a semicolon delimited text
file—the same as the file created by MultiFilePrint—or an XML file.

The layout of the XML file is as follows:

-

-

.\data\BATCH1.BCH

SAMPCO

LB1

1234567

T1

INSUREDS COPY

DATA\0rDcP7WxytE82ECp5jexhWXVqkjV840Vw_F-GykT_VMfd.PDF

-

.\data\BATCH2.BCH

SAMPCO

LB1

1234567

T1

COMPANY COPY

DATA\0v3l7pBdVqHceoRL5hf2xqjJ7WAMxiRVO9U70iFiXIcne.PDF

Error batch
files

.BCH text Created if the system spots an error, such as
if the system spots an error and the form is
marked as host required. In contrast to
manual batch files, you cannot correct these
errors using the GenWIP program. Instead,
you must correct the error in the extract file,
change the flag to operator required, or
change the FAP file and then process the
transaction again.

ARCHIVE DFD text Tells the GenArc program how to store
archived data.

Log file DAT text Serves as a processing log. Created by the
GenData program in the single-step
process.

Error file DAT text Notes any errors encountered by the
GenData program. Created by the GenData
program in the single-step process.

Message
file

.DAT text Intermediate file which contains log and
error messages. These messages are then
translated and written to either the
LOGFILE.DAT or ERRFILE.DAT files.

File name
or Type

Default
Extension

File
Format Description

Chapter 2
Understanding the System

50

You can use the INI options in the DocSetNames control group to determine which XML
elements are created. The values are the same as those written to a recipient batch or
transaction file.

The MultiFilePrint callback function should only be used with the PDF, RTF, HTML, and
XML print drivers. See also Controlling What is in the MultiFilePrint Log on page 109.

MAPPING FIELDS WITH XPATH

The GenTrn program and the NoGenTrnTransactionProc rule let you use the TRN_Fields
control group to map all of your fields with XPath. To let the system know you are using
the XML file, set the XMLTrnFields option in the TRN_File control group to Yes and also
set the XMLExtract option in the RunMode control group to Yes.

Here is an example:

< RunMode >

XMLExtract = Yes

< TRN_File >

XMLTrnFields= Yes

< TRN_Fields >

Company = !/Forms/Key1

LOB = !/Forms/Key2

PolicyNum = !/Forms/PolicyNum

RunDate = !/Forms/RunDate;DM-4;D4

NOTE: Use this format for the Trn_Fields control group options:

(Field in the Transaction DFD File) = XPath;Field Format

Be sure to include the leading exclamation mark (!). This tells the system to use an XML
path search but is not part of the actual search routine. Do not specify whether a field
is a key. The system does not support multiple (search) keys with the XML
implementation.

If you are selectively excluding transactions, in your exclude file, instead of an offset
and SearchMask, replace it with the XPath. Here is an example:

!/Forms[PolicyType="OLD"]

Using Single-step Processing

51

RUNNING ARCHIVE IN SINGLE-STEP PROCESSING

Using rules developed for archiving via Docupresentment, you can run the GenArc
program as part of single-step processing.

Use the InitArchive rule to check the INI options in the Trigger2Archive control group,
initialize the database, open the APPIDX.DFD and CAR files, and perform other steps to
initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Here is an example:

< Base Rules >

;InitArchive;1;;

< Base Form Set Rules >

;Archive;2;;

NOTE: For more information on these rules, see the Rules Reference.

RUNNING WIP IN SINGLE-STEP PROCESSING

You can use the InitConvertWIP and ConvertWIP rules to run the GenWIP program in
single-step mode.

Use the InitConvertWIP rule to perform the initialization necessary for the ConvertWIP
rule.

Use the ConvertWIP rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents of
the POLFILE.DAT and NAFILE.DAT files to new files with unique names.

You can then view these WIP records using Documaker Workstation or the WIP Edit
plug-in, which is part of the Docupresentment suite of products.

Here is an example:

< Base Rules >

;InitConvertWIP;1;;

< Base Form Set Rules >

;ConvertWIP;2;;

NOTE: For more information on these rules, see the Rules Reference.

Chapter 2
Understanding the System

52

RULES USED IN SINGLE-STEP PROCESSING

Specific rules are used to combine the execution and functionality of the GenTrn,
GenData, and GenPrint programs into a single step. To begin familiarizing yourself with
these rules, an alphabetical listing and brief description follows. You can find more
information in the Rules Reference.

Archive Use this form set level (level 2) rule after the InitArchive rule to unload the current form
set and convert field data for archive using the INI options in the Trigger2Archive
control group.

BatchingByRecipINI Use this form set level (level 2) rule to send transactions to a batch you specify based
on data in the extract file. To use this rule, you must include the BatchingByRecip
control group in your FSISYS.INI file with options similar to those shown below:

< BatchingByRecip >

 Batch_Recip_Def = default;"ERROR"

 Batch_Recip_Def = 4,1234567;"BATCH1";INSURED

 Batch_Recip_Def = true;"BATCH2";INSURED

 Batch_Recip_Def = True;"BATCH3";COMPANY | true;”BATCH2”;AGENT

You must also add the TWOUP control group and CounterTbl option to the FSISYS.INI
file.

BatchByPageCount Use this form set level rule to send a transaction to a specific batch based on the
number of pages produced by processing the transaction. The batch used is
determined by the PageRange option in the Batch control group.

In the example below; transactions that produce 1 to 7 pages are send to Batch1.
Transactions that produce 8 to 25 pages are send to Batch2. In addition, you must add
the TWOUP control group and CounterTbl option to the FSISYS.INI file.

< Batches >

Batch1 = .\data\Batch1

Batch2 = .\data\Batch2

Batch3 = .\data\Batch3

Error = .\data\Error

Manual = .\data\Manual

< Batch1 >

Printer = Batch1_PTR

...

PageRange = 1,7

< Batch2 >

Printer = Batch2_PTR

...

PageRange = 8,25

......

< TWOUP >

CounterTbl = .\data\counter.tbl

BuildMasterFormList Use this job level rule (level 1) to load the FORM.DAT file into an internal linked list
within the GenData program. You must include this rule in the AFGJOB.JDT file because
the RunSetRcpTbl rule is dependent on the list this rule creates.

Using Single-step Processing

53

ConvertWIP Use this form set level (level 2) rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents of
the POLFILE.DAT and NAFILE.DAT files to new files with unique names. You can then
view these WIP records using Documaker Workstation or the WIP Edit plug-in, which is
part of Docupresentment.

InitArchive Use this job level (level 1) to check the INI options in the Trigger2Archive control group,
initialize the database, open the APPIDX.DFD and CAR files, and perform other steps to
initialize archive.

InitConvertWIP Use this job level (level 1) rule to perform the initialization necessary for the
ConvertWIP rule.

InitPrint Use this job level (level 1) rule to load printer and recipient batch information. This rule
sets up PRTLIB data, initializes print options, and loads a table which contains page
totals for recipient batch files.

InitSetRecipCache Use this job level rule (level 1) to set the amount of cache the system uses to store
recipient information in memory. With this rule you can tell the system the amount of
memory to set aside and use for storing information in the Key1 and Key2 fields, often
used to store the company, line of business, and transaction codes. You can use this
rule to improve processing performance for complex forms. This rule has no affect on
the processing speed for static forms.

NOTE: If you omit this rule, the system does not set aside memory for the Key1 and
Key2 fields.

NoGenTrnTransactionPro
c

Use this form set level rule when you use the GenData program by itself to execute the
GenTrn and GenData steps. In the single-step processing environment, this rule
processes the extract file and creates the information normally created in both the
GenTrn and GenData steps. When combined with the InitPrint and PrintFormset rules,
it creates the output files normally created during the GenPrint step.

NOTE: Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes (multi-step processing).

PageBatchStage1InitTer
m

Use this job level rule (level 1) to create and populate a list of records which contain
page ranges and total page counts for each recipient batch file.

This rule is typically used for handling 2-up printing for AFP and compatible printers.

This rule creates a list (populated in another rule) to contain the recipient batch records
for a multi-mail transaction set. The rule then writes out the recipient records for the
final multi-mail transaction set and writes out the total page counts for each recipient
batch. You must add the TWOUP control group and CounterTbl option to the FSISYS.INI
file, as shown here:

< TwoUp >

CounterTbl = .\data\counter.tbl

Chapter 2
Understanding the System

54

PaginateAndPropogate Use this form set level (level 2) rule to paginate the form set and merge in or propagate
field data.

PrintFormset Use this form set level (level 2) rule when you run the GenData program by itself to
execute GenTrn and GenPrint processes. In the single-step processing environment,
this rule, when combined with the InitPrint rule, prints form sets.

NOTE: Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes (multi-step processing).

ProcessQueue Use this form set level (level 2) rule to process the queue you specify. This rule loops
through the list of functions for the queue you specify and then frees the queue when
finished.

StandardFieldProc This rule is a field level rule (level 4), which you must include in the AFGJOB.JDT file.
This rule is used when you are using the performance mode JDT and should be the first
field level rule. This rule tells the system to process each field on all of the sections
triggered by the SETRCPTB.DAT file. If you use the StandardFieldProc rule in your JDT,
you must also include the WriteNAFile rule.

StandardImageProc This rule is an section (image) level rule (level 3) which you must include in the
AFGJOB.JDT file. This rule is used when you are using the performance mode JDT and
should be the first section level rule. This rule tells the system to process each section
triggered by the SETRCPTB.DAT file.

WriteNAFile Use this form set level rule (level 2) to append the NAFILE.DAT file data records for the
current form set into an existing NAFILE.DAT file. When you use the
NoGenTrnTransactionProc rule, which replaces the RULStandardProc rule, you must
include the WriteNAFile rule to cause data (records) to be written to the NAFILE during
the GenData processing step. In addition, you must also include the WriteOutput rule
to cause data (records) to be written to the POLFILE.DAT and NEWTRN.DAT files during
the GenData processing step.

WriteOutput Use this form set level (level 2) rule to append the POLFILE.DAT file data records for the
current form set into an existing POLFILE.DAT file.

You also use this rule when you are using the GenData program by itself to execute the
GenTrn, GenData, and GenPrint processing steps.

If you use this rule, do not use the UpdatePOLFile rule.

WriteRCBWithPageCount Use this form set level rule (level 2) to write page counts for each recipient. This rule is
typically used for handling 2-up printing on AFP and compatible printers. To use this
rule, you must update the RCBDFDFL.DFD file with the following items:

< FIELDS >

FIELDNAME = CurPage

FIELDNAME = TotPage

FIELDNAME = AccumPage

FIELDNAME = MMFIELD

< FIELD:CurPage >

INT_TYPE = LONG

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

Using Single-step Processing

55

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:TotPage >

INT_TYPE = LONG

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:AccumPage >

INT_TYPE = LONG

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:MMFIELD >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 7

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 6

KEY = N

REQUIRED = N

SINGLE-STEP PROCESSING EXAMPLE

As stated earlier, the single-step process is performed by combining the execution and
functionality of the GenTrn, GenData, and GenPrint programs. This is done by placing
certain rules into a specialized JDT. The earlier illustration shows the input and output
files used by GenData to process transactions and print output files in one step. The
following file describes the JDT used to process the job and an example of the rules
used to combine the GenTrn, GenData, and GenPrint functions.

To make this happen, the NoGenTrnTransactionProc rule, along with other rules, are
placed in the JDT file as seen in the following sample file. An actual sample file can be
seen in the RPEX1 sample library.

Base rules The following base rules are designed for the performance mode.

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;1;***:--;

;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1;***:;

;SetErrHdr;1;***: Transaction: ***ACCOUNTNUM***;

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: Line of Business: ***LOB***;

;SetErrHdr;1;***: Run Date: ***RunDate***;

;SetErrHdr;1;***:--
;JobInit1;;;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;InitOvFlw;1;;

;SetOvFlwSym;1;SUBGROUPOVF,SUBGROUP,5;

;BuildMasterFormList;;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

Chapter 2
Understanding the System

56

The following rule is required to execute GenData and GenPrint as a single step.

;InitPrint;;;

Base form set rules The following base form set rules causes GenTrn and GenData to be combined into a
single step.

;NoGenTrnTransactionProc;;;

;ResetOvFlw;2;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

The following rules are required to execute GenData and GenPrint as a single step.

;PrintFormset;;;

;WriteOutput;;;

;WriteNaFile;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropogate;;;

;BatchingByRecipINI;;;

Base image rules The following base image rules apply to every image (section) in this base.

;StandardImageProc;3;Always the 1st image level rule;

Base field rules The following base field rules apply to every field in this base.

;StandardFieldProc;4;Always the 1st field level rule;

Using IDS to Run Documaker

57

USING IDS TO
RUN DOCUMAKER

If you have a license for both Documaker and Docupresentment, you can set up the
Internet Document Server (IDS) to run Documaker as a subordinate process. Web
clients communicate with IDS using queues. IDS communicates with Documaker via
XML files called job tickets and job logs.

This diagram illustrates the process:

IDS can start or stop Documaker Server as needed, without user interaction. One IDS
session controls one Documaker process. You can, however, implement multiple IDS
sessions and have multiple Documaker Server processes as well.

Keep in mind these limitations:

• You can only run Documaker in single step mode.

• You must run Documaker on Windows 2000 or higher.

• Different resource setups for Documaker are supported, but Documaker
processing restarts if resources are changed, eliminating the performance
benefits. This should not be a problem because it is unlikely multiple Documaker
Server setups will be used with a single IDS implementation. You can, however,
experience problems testing a system with multiple setups.

• During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

For more information, see the Internet Document Server Guide and the SDK Reference.

Web Client

IDS
Documaker

Server
(GenData)

VB\COM\
Java Client

XML Job
Ticket

XML Job
Log

Chapter 2
Understanding the System

58

WRITING UNIQUE
DATA INTO

RECIPIENT BATCH
RECORDS

The GenData program lets you add unique data to each recipient batch record before it
is written to the recipient batch files. The recipient batch record data and format is
defined by the GVM variable definitions in the RCBDFDFL.DAT file.

You can use this capability if you need to add...

• Address information or other field level information to the batch record, which is
typically unique for each recipient.

• Recipient information that is not handled by normal field mapping from the
transaction DFD to the recipient batch DFD.

• Cumulative or calculated information not available until the document is nearly
completed.

Understanding the System Before this feature was implemented in version 10.2, the recipient batch records were
identical except for the recipient code field which contains a unique identifier assigned
to a given recipient. If additional recipient data was required, you had to write a custom
rule.

Use the options in the RecipMap2GVM control group to set up this capability. Data that
can be added to the recipient batch record can be:

• Contents of a variable field on the specified section or form/section

• Constant value

• Data from an existing INI built-in functions, such as ~DALRun

• Data from a custom written INI function

Here is an example of the RecipMap2GVM control group:

< RecipMap2GVM >

Form =

Image =

Req =

Opt =

Option Description

Form (optional) Enter the name of the form.

Image Enter the name of the section (image). You can also enter a section name root.
A section name root is the first part of a name. For instance, MAILER is the root
name for sections with names such as MAILER A, MAILER_B, or MAILERS.

Req * A semicolon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value
- GVM variable name; INI built-in function

Writing Unique Data into Recipient Batch Records

59

Optional formatting
information

You can add optional formatting information as a parameter of the Opt INI option. This
formatting information is comprised of four items separated by commas.

Here are some formatting examples:

d,”1/4”, d, “4/4”

This converts an input date, mmddyyyy, into month name dd, yyyy, such as February
17, 2006.

n, nCAD, nUSD, “$zzz,zz9.99”

This converts an input numeric value in Canadian French format into a value in United
States format.

Keep in mind...

• For the Req option, if the data is missing an error occurs and the transaction is
send to the error batch.

• For the Opt option, if the data is missing the system stores an empty string in the
GVM variable.

• A RCB GVM variable cannot be restored to its original or default value after it has
been changed using this method.

• Any RCB GVM variable not assigned using this method retains the value originally
set during the transaction processing.

• Some RCB GVM variables should never be changed using this mapping technique.
These include:

TRN_Offset

NA_Offset

Opt * A semicolon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value
- GVM variable name; INI built-in function

* = Repeat for each GVM variable you are setting up.

Option Description

Item Description

Input fetypes D or d = date
N or n = number

Input format mask Date - see the FmtDate rule in the Rules Reference.
Number – see the FmtNum rule in the Rules Reference.

Output fetypes D or d = date
N or n = number

Output format mask Date - see the FmtDate rule in the Rules Reference.
Number – see the FmtNum rule in the Rules Reference.

Chapter 2
Understanding the System

60

POL_Offset

• If the section defined in the Image option in the RecipMap2GVM control group
does not name a section, the feature is disabled for all transactions.

• If the section defined in the Image option is missing from the form set being
processed, the GVM data is not changed. Depending on where the GVM data is
mapped, this could mean data from the prior transaction will still be in the GVM
variables.

• If there are multiple sections with the same name in the form set, the form
specified in the Form option is used to identify the section to use. If the Form
option is omitted, the first section found in the current form set is used.

• The system assumes the specified section contains all of the unique data except
for a constant value or data gathered from an INI built-in function.

• If more than one recipient is assigned to the section, all recipient batch records
receive the same added data.

Example This example creates a mailer cover page for each insured, agent, and/or company
recipient per transaction. The cover page is created using banner page processing
which occurs during GenPrint processing. Examples of the three different mailer cover
pages are as follows.

Writing Unique Data into Recipient Batch Records

61

Jill Smith
11111 Oak Circle
Suite 999
Smryna, FL 12345

Suzy Smith
Morris Fanelli
99934 Oak Circle
Suite 999
Smartburg, WI
99999

Insureds

Jill Smith

Martin Short Agent
963 Atlantic
Boulevard
Suite 1250
Miami, FL 30202

Suzy Smith

David Miller Agent
999 Green Dolphin
Street
Suite 1200
Miami, FL 30202

Suzy Smith

Company

Jill Smith

Sampco, Inc.
316 N.E. 3rd Avenue
Pompano Beach, FL
33333

Agents

Chapter 2
Understanding the System

62

This example assumes that the:

• Agent and company recipient batch files are sorted (agent number and company
name, respectively) before the GenPrint program runs. This sorting allows for the
creation of only one mailer cover page per unique agent and company.

• Unique information is contained on the form/section, Dec Page/Q1MDC1.

• The FSIUSER.INI file includes these control groups and options:

< RecipMap2GVM >

Form = Dec Page

Image = Q1MDC1

Opt = Name1;Insured Name;

Opt = Name2;Insured Name2;

Opt = Address1;Address Line1;

Opt = Address2;Address Line2;

Opt = CityCounty;prtvalue;

Opt = AgentName;Agent Name;

Opt = AgentID; Agent ID;

Opt = OfficeAddress;Office Address;

Opt = TownandState;Town And State;

< Printer >

PrtType = PCL

EnableTransBanner = True

EnableBatchBanner = False

TransBannerBeginScript= PreTrans

TransBannerEndScript = PstTrans

TransBannerBeginForm = ;BANNER;TRANSACTION;TRANS HEADER;

TransBannerEndForm = ;BANNER;TRANSACTION;TRANS TRAILER;

< DALLibraries >

LIB = Banner

BANNER.DAL The DefLib directory contains this DAL script:

* This script obtains the required unique data from the recipient

* batch record and stores it on the mailer form.

BeginSub PreTrans

blank_gvm = Pad(" ",41," ")

SetGVM("NameA" ,blank_gvm,,"C",41)

SetGVM("NameB" ,blank_gvm,,"C",41)

SetGVM("AddressA" ,blank_gvm,,"C",41)

SetGVM("AddressB" ,blank_gvm,,"C",41)

SetGVM("CityCounty1" ,blank_gvm,,"C",41)

If Trim(RecipName()) = "INSURED" Then

 SetGVM("NameA" ,GVM("Name1") ,,"C",41)

 SetGVM("NameB" ,GVM("Name2") ,,"C",41)

 SetGVM("AddressA" ,GVM("Address1") ,,"C",41)

 SetGVM("AddressB" ,GVM("Address2") ,,"C",41)

 SetGVM("CityCounty1" ,GVM("CityCounty"),,"C",41)

 GoTo exit:

End

last_agent_id = last_agent_id

If Trim(RecipName()) = "AGENT" Then

Writing Unique Data into Recipient Batch Records

63

 If last_agent_id != Trim(GVM("AgentID")) Then

 last_agent_id = Trim(GVM("AgentID"))

 SetGVM("NameA" ,GVM("AgentName") ,,"C",41)

 SetGVM("NameB" ,GVM("OfficeAddress") ,,"C",41)

 SetGVM("AddressA" ,GVM("TownandState") ,,"C",41)

 GoTo exit:

 Else

 SuppressBanner()

 GoTo exit :

 End

End

last_company_name = last_company_name

If Trim(RecipName()) = "COMPANY" Then

 If Trim(GVM("Company")) != last_company_name Then

 last_company_name = Trim(GVM("Company"))

 If Trim(GVM("Company")) = "SAMPCO" Then;

 SetGVM("NameA" ,"Sampco, Inc." ,,"C",41)

 SetGVM("NameB" ,"316 N.E. 3rd Avenue" ,,"C",41)

 SetGVM("AddressA" ,"Pompano Beach, FL 33333" ,,"C",41)

 GoTo exit:

 ElseIf Trim(GVM("Company")) = "FSI"

 SetGVM("NameA" ,"FSI Inc." ,,"C",41)

 SetGVM("NameB" ,"222 Newbury St." ,,"C",41)

 SetGVM("AddressA" ,"Northwest City, FL 99999" ,,"C",41)

 GoTo exit:

 End

 Else

 SuppressBanner()

 GoTo exit:

 End

End

exit:

EndSub

BeginSub PstTrans

EndSub

The RCBDFDFL.DAT file contains the following GVM variable definitions which are
defined in the RecipMap2GVM control group:

• Name1

• Name2

• Address1

• Address2

• CityCounty

• AgentName

• AgentID

• OfficeAddress

• TownAndState

Chapter 2
Understanding the System

64

Here are two recipient batch records from this example:

SAMPCOLB12234567SCOM1FLT1 B2199802232234567890 0 22560
******001 3724 452Jill Smith Morris
11111 Oak Circle Suite 999 Smyrna,
FL 12345 Martin Short Agent 963 Main Street,
Suite 1250 Miami, FL 30202

FSI CPP4234567FSIM1WIT1 B3199802234234567890 0 30360
******001 4667 565Suzy Smith Morris
99934 Oak Circle Suite 999 SmartBurg,
WI 99999 David Miller Agent 999 Main Street,
Suite 1200 Miami, FL 30202

Using Class Recipients

65

USING CLASS
RECIPIENTS

A class recipient identifies a recipient that represents one or more persons or entities.
For instance, in an insurance implementation, you might have a policy that has a
several recipients declared as an Additional Interest. Instead of declaring each as a
separate recipient with separate triggering logic, it is more convenient to declare a
single recipient name that represents all those of the same type or class. All members
of this class receive virtually identical copies of the document.

In this scenario, you do not have to do anything special to declare a class recipient in
your form definitions. Merely determine the appropriate title for this class of recipients
and define that name as you would a normal recipient that represents a single entity.

If you want all members of the class to receive identical copies of the document, use
the trigger for the recipient to assign a copy count to each form or section — where the
count equals the number of members in the class.

There are some limitations to using form copy counts to provide recipient copies. For
instance, this does not let you print unique information about each member of the class
recipient, as would be necessary on a mailer page, for instance.

NOTE: It is possible to handle this using trigger overflow processing to physically
trigger multiple copies of each form — one for each member, but a
disadvantage of this approach is that each item (form or section) triggered is
physically duplicated in the form set and therefore each requires data
processing. This means that if there are a large number of these duplicate
recipients, the throughput performance of transactions could be affected.

To handle this situation, the RecipMap2GVM feature can write additional batch records
for each member of a class recipient. The RecipMap2GVM feature lets you write unique
recipient information to each batch record.

With this method, only a minimal amount of additional processing occurs in the form
set mapping. Yet, because a separate batch record is written for each member, the
system prints a separate copy of the document for each member and you can use the
unique information saved in each batch record to provide a unique banner page, such
as a mailer, for each member in the print output.

To use the RecipMap2GVM feature, follow these steps:

1 Add a section to your form set definition and assign this section the name of your
class recipient. Normally, you would also flag this section as hidden, since you
would not want it to display or print. This purpose of this section is to hold the
unique information for each member of the class recipient.

2 Define a trigger for the section that uses overflow to generate as many copies of
the section as there are members in the data. The idea is to trigger an instance of
the section for each member recipient. Be sure to also declare and create the
appropriate overflow variable in the AFGJOB.JDT file you will use during data
mapping.

3 Create the section and add fields that map the data to be written to the batch
record for each member. Be sure to use the appropriate overflow variable for this
section in your rule mapping definitions. Also remember to assign the appropriate
section level rule to increment the overflow symbol after processing each section.

Chapter 2
Understanding the System

66

4 Set up your RecipMap2GVM INI control group and modify your RCBDFDFL.DFD
(Recipient Table DFD) file to include your unique data fields for the recipient batch
records. Specify the new section as the section required in the RecipMap2GVM
control group and set up each of the fields to map into your RCBDFDFL.DFD file
layout.

NOTE: See Writing Unique Data into Recipient Batch Records on page 58 for more
information on the RecipMap2GVM control group.

When you run the GenData program, your new section will trigger once for each
member recipient. During normal processing, the fields on each section will map (using
overflow variables) the unique data for each member. Because you have multiple
copies of the section triggered, the RecipMap2GVM feature creates a separate batch
record for each instance of the section. Therefore, you receive a separate record
representing each individual member of your class recipient.

When the GenPrint program runs, having a separate record for each class recipient in
the batch causes that transaction to print once for each member. And by using banner
page processing, you can take the unique information written into each batch record
and map that information to a mailer page, making the final output unique to each
member of the class.

Running Documaker Using XML Job Tickets

67

RUNNING
DOCUMAKER

USING XML JOB
TICKETS

You can run Documaker from another application using an XML job ticket. You receive
results in an XML job log file.

The layout of these files is the same as those used by IDS for running Documaker. See
Using IDS to Run Documaker on page 57 for more information.

The name of the job ticket is passed to the GenData program on the command line as

/jticket= parameter

The default name is JOBTICKET.XML.

To set this up replace the StandardJobProc rule with the TicketJobProc rule. Keep in
mind you must run Documaker in single step mode, since only the GenData program is
executed. See Using Single-step Processing on page 45 for more information.

You can specify the name of the resulting job log file using this command line
parameter:

/jlog=

The default is JOBLOG.XML.

Chapter 2
Understanding the System

68

HANDLING 2-UP
PRINTING

Two-up printing lets you print two transactions on the same page of single- and multi-
page forms. 2-up printing is a two-step process which passes input through GenData
three (3) times, using a different JDT file each time.

This process is similar to the single-step process in that GenData performs the work,
but the three passes through GenData actually represent two steps of the multi-step
process: processing the transactions and printing the transactions.

For more information and to see example JDT files, see Single-step Processing Example
on page 55.

NOTE: 2-up printing is only available for AFP printers.

There are several scenarios in which 2-up printing applies:

• 2-up printing with single-page forms

• 2-up printing with multi-page forms

The following illustrations describe these scenarios.

2-up printing with single-
page forms

This illustration shows how 2-up printing works when you use single-page forms, such
as some types of bills and statements.

In this scenario, the system merges the data for the first transaction onto the form and
then prints the form.

Batch file

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 5

Transaction 6

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

Handling 2-up Printing

69

2-up printing with multi-
page forms

This illustration shows how 2-up printing works when you use multi-page forms.

Changing the INI File

You must make the following changes in your FSISYS.INI file.

NOTE: Changes to the error and manual recipient batch control groups are not
necessary.

• You must include a Printer option in the recipient batch control groups for each
print file created. These printers must also be defined in the FSISYS.INI file.

• The recipient batch groups must have a FinalPrinter option. This option specifies
the printer to use for the final, merged file. This printer must also be defined in the
FSISYS.INI file.

page 2

100
.00

100

Services
rendered

Services

Transaction 1

Transaction 1

Transaction 1

Transaction 2

Transaction 2

Transaction 2

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

page 2

100
.00

100

Services
rendered

Services

page 3

100
.00

100

Services
rendered

Services

page 3

100
.00

100

Services
rendered

Services

page 2

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

BIll

100
.00

100

Services
rendered

Services

page 2

100
.00

100

Services
rendered

Services

page 1

page 2

page3

page 1

page 2

Batch file

page 3

100
.00

100

Services
rendered

Services

page 3

100
.00

100

Services
rendered

Services

page 3

Transaction 3

Transaction 3

Transaction 3

Transaction 4

Transaction 4

Transaction 4

page 1

page 2

page3

page 1

page 2

page 3

Chapter 2
Understanding the System

70

• The recipient batch groups must have a PageRange option for page count
batching. You specify this option as shown below:

PageRange = [min],[max]

If you do not specify min, the system uses zero (0). If you omit max, the system
uses (unsigned)-1 (all bits on). The min and max values are inclusive.

• You can also include in the recipient batch control groups a TwoUpStart option,
which can have any of these values (case is irrelevant):

L

Left

R

Right

This option specifies whether the merge process should associate the first Printer
option with the left or the right side of the page. The system only checks this
option when there are multiple Printer options present in the control group. If you
omit this option, the file specified in the first Printer option is used for the left side
of the page.

Here is an example of a recipient batch control group:

< Batch1 >

Printer = Printer1

Printer = Printer2

FinalPrinter = Printer3

PageRange = ,1

TwoUpStart = R

This splits single page transactions evenly between the files specified in the Printer1
and Printer2 control groups. The files specified in the Printer1 and Printer2 control
groups will then be merged into the file specified in the Printer3 control group. The file
specified in the Printer1 control group is used for the right page.

Creating the TWOUP
control group

You must create the TwoUp control group. This control group must contain the
CounterTbl option, which specifies the file name for the table that contains recipient
batch page counts.

The TwoUp control group can optionally contain the CounterDFD option, which
specifies the name of a DFD file. See the Rules Reference for information about this
DFD.

The TwoUp control group can optionally contain the LMargin, LShift, and RShift
options. Records on the left page will be shifted to the right by LShift - LMargin, and
records on the right page will be shifted to the right by RShift - RMargin. Amounts are
in FAP units (2400 per inch). If you omit these options, the system uses these defaults:

LMargin = 600

LShift = 1200

RShift = 16800

< TwoUp >

CounterTbl = data\counter.tbl

CounterDFD = deflib\counter.dfd

LMargin = 300

Handling 2-up Printing

71

LShift = 600

RShift = 15000

The first two options define the location of the files shown above.

The LMargin=300 option sets the left margin to 1/4 inch. The LShift=600 option shifts
the left page 1/2 inch from the left edge of the paper (1/4 inch beyond the left margin).
The RShift=15000 option shifts the right page 6 1/2 inches the left edge of the paper (6
inches from the left margin).

Creating the Added_Fonts
control group

You can optionally create the Added_Fonts control group. The options in this group
specify additional fonts to add to the AFP output file for text label records which may
be added during the merge process. Each option takes the form:

FontName =

Here is an example:

< Added_Fonts >

FontName = X0FATIN0

FontName = X0FAUNN8

This tells the system to include the fonts X0FATIN0 and X0FAUNN8 in the final output
file, regardless of whether they are present in the input files.

Changing the Recipient Batch DFD File

The recipient batch DFD file (RCBDFDFL.DAT) must have the following fields with the
given types. You can modify the field lengths—just make sure you set the EXT_LENGTH
option large enough to represent all of the pages in a multi-mail transaction set. Also
make sure you set the INT_LENGTH option larger by one than the EXT_LENGTH option.

Note that the field name is case sensitive. Also, for each of these fields, be sure to add
a FIELDNAME= line to the <FIELDS> line in the DFD file.

< FIELD:CurPage >

INT_Type = CHAR_ARRAY

INT_Length = 5

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 4

Key = N

Required = N

< FIELD:TotPage >

INT_Type = CHAR_ARRAY

INT_Length = 5

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 4

Key = N

Required = N

< FIELD:AccumPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

Chapter 2
Understanding the System

72

RULES USED FOR 2-UP PRINTING

The following descriptions will help familiarize you with the rules that are required to
perform the 2-up printing process. All of the rules listed in the topic, Rules Used in
Single-step Processing on page 52 are required for 2-up printing, plus these additional
rules:

NOTE: You can find more information in the Rules Reference.

AddLine Use this form set level (level 2) rule to add a line record, such as for OMR marks, to the
AFP record list built by the MergeAFP rule.

AddTextLabel Use this form set level (level 2) rule to add a text label record to the AFP record list built
by the MergeAFP rule.

ForceNoImages Use this section (image) level rule (level 3) to return the msgNO_MORE_IMAGES
message. This prevents errors if you have no section level rules.

GetRCBRec Use this form set (level 2) level rule to set the current recipient batch file. This rule
initializes the current recipient batch file, if necessary.

This rule also sets the first printer for current batch to be the current printer and
retrieves the next record from the current recipient batch file.

InitMerge Use this job level (level 1) rule to create a list of printers, batches, and buffers for the
comment (RCB) records. This rule also creates a list to hold AFP records and AFP fonts.
After the system finishes running the rule, it deletes everything the rule created.

NOTE: The recipient batch files are not used at this stage. The batch list must be
created beforehand so the system will know which print files belong together.
The skipping batch message is an artifact of the batch file loading process.

InitPageBatchedJob Use this job level (level 1) rule to open NA and POL files. This rule installs the section
level callback function for inserting recipient batch records into the AFP print stream as
AFP comment records.

When finished, this rule restores the original callback function and closes the NA and
POL files.

Handling 2-up Printing

73

MergeAFP Use this form set level (level 2) rule to initialize input files. This rule populates the AFP
record list, retrieves comment (RCB) records, and terminates the input files.

This rule also initializes output files, and writes out the AFP record list, adding end
page and end document records as necessary. The rule then terminates these output
files.

ParseCommentExample Use this form set level (level 2) rule to parse comment records into the GVM variable.

PrintData Use this form set (level 2) rule to print the form set. This rule is used for handling 2-up
printing on AFP and compatible printers.

NOTE: The section handler installed by the InitPageBatchedJob rule is called during
the printing stage. If you want to make any modifications to the recipient batch
record, you must do so before this point.

ProcessRecord Use this form set (level 2) rule to switch between print files as necessary when printing
2-up forms on an AFP printer. This rule updates the page count for current print file and
loads and merges the form set.

Chapter 2
Understanding the System

74

Placing the 2-up Rules in the JDT File

When you use the rules listed at the beginning of this topic to handle 2-up printing, you
must place them in the correct places and order in the AFGJOB.JDT file. Use the
following table as a guide to where to place these rules. You can insert other rules
before, between, or after the 2-up rules—just keep the 2-up rules in the order indicated
below with respect to one another.

Stage 1

Job level Insert the PageBatchStage1InitTerm rule after the
RULStandardJobProc and JobInit1 rules

Form set
level

List the form set level rules in this order:
WriteOutput
CreateRecordList
BatchByPageCount
PaginateAndPropogate
Place these rules after the RULStandardTransactionProc rule
and make sure any rule which changes page count appears
before these rules.

Stage 2

Job level Include these rules in this order:
InitPrint
InitPageBatchedJob
SetErrHdr
Do not include the RULStandardJobProc or JobInit1 rules in
this stage.

Form set
level

Include these rules in this order:
GetRCBRec
ProcessRecord
PrintData
Do not include the RULStandardTransactionProc rule in this
stage.

Section
(image)
level

There are no regulations on the order in which you can place
rules in this stage. Remember, however, that if there are no
section level rules, you must include the ForceNoImages rule
to avoid errors.

Stage 3

Job level Place the InitMerge rule anywhere after the
RULStandardJobProc rule.

Form set
level

Make sure the MergeAFP rule is the first rule called. Place
rules which add records or determine whether a page pair
should be printed after the MergeAFP rule.

Handling 2-up Printing

75

2-UP PROCESSING EXAMPLE

As stated earlier, 2-up printing is a two-step process which calls GenData three times
with different JDT files. These file excerpts show how to set up your batch and INI files:

2upbycnt.bat You can set up this batch file as follows:

@Echo Off

SetLocal

Echo Y|Del Data*.* >NUL

GenDaW32.Exe -INI=2upstep1.ini

If Not ErrorLevel 5 GoTo Step1NoError

 Echo "2Up Printing Failed in Step 1."

 GoTo Exit

:Step1NoError

GenDaW32.Exe -INI=2upstep2.ini

If Not ErrorLevel 5 GoTo Step2NoError

 Echo "2Up Printing Failed in Step 2."

 GoTo Exit

:Step2NoError

GenDaW32.Exe -INI=2upstep3.ini

If Not ErrorLevel 5 GoTo Step3NoError

 Echo "2Up Printing Failed in Step 3."

:Step3NoError

EndLocal

:Exit

2upstep1.ini You can set up this INI file as follows:

< Data >

 AfgJobFile = .\Def\AfgJob1.jdt

< Environment >

 FSISYSINI = .\fsisys.ini

2upstep2.ini You can set up this INI file as follows:

< Data >

 AfgJobFile = .\Def\AfgJob2.jdt

< Environment >

 FSISYSINI = .\fsisys.ini

2upstep3.ini You can set up this INI file as follows:

< Data >

 AfgJobFile = .\Def\AfgJob3.jdt

< Environment >

 FSISYSINI = .\fsisys.ini

Section
level

There are no stipulations on the order in which you must
place rules in this stage. Remember, however, that if there
are no section level rules, you must include the
ForceNoImages rule to avoid errors.

Chapter 2
Understanding the System

76

RUNNING THE GENDATA PROGRAM

The following pages provide illustrations and an example files for each time the
GenData program is run.

Step 1 - Using the
AFGJOB1.JDT file

The first execution of GenData uses the AFGJOB1.JDT file with the base and form set
rules shown in this example to create output files shown in the illustration.

<Base Rules>

;RULStandardJobProc;1;;

;SetErrHdr;1;***:--;

;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1;***:;

;SetErrHdr;1;***: Transaction: ***ACCOUNTNUM***;

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: Line of Business: ***LOB***;

;SetErrHdr;1;***: Run Date: ***RunDate***;

;SetErrHdr;1;***:--
;

;JobInit1;;;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;InitOvFlw;1;;

;SetOvFlwSym;1;SUBGROUPOVF,SUBGROUP,5;

;BuildMasterFormList;;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

Handling 2-up Printing

77

;ResetOvFlw;2;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

;WriteNaFile;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;WriteOutput;;;

;CreateRecordList;;

;BatchByPageCount;;

;PaginateAndPropogate;;;

<Base Image Rules>

;StandardImageProc;3;Always the 1st image level rule;

<Base Field Rules>

;StandardFieldProc;4;Always the 1st field level rule;

Step 2 - Using the
AFGJOB2.JDT file

The second execution of GenData uses the AFGJOB2.JDT file. This JDT file uses the base
and form set rules shown in this example to process the intermediate print files.

<Base Rules>

;InitPrint;;;

;InitPageBatchedJob;;;

;SetErrHdr;1;***:--
;SetErrHdr;1;***: BillPrint Data Generation (Base) ;

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: SubCompany:***SubCompany***;

;SetErrHdr;1;***: Account #: ***AC-KY-BA***;

;SetErrHdr;1;***:--

Chapter 2
Understanding the System

78

<Base Form Set Rules>

;GetRCBRec;;;

;ProcessRecord;;;

;PrintData;;;

<Base Image Rules>

;ForceNoImages;;;

Step 3 - Using the
AFGJOB3.JDT file

The third execution of GenData uses the AFGJOB3.JDT file. This JDT file uses base and
form set rules shown in this example to merge data intermediate print-ready files into
a print-ready file for an AFP printer.

<Base Rules>

;RULStandardJobProc;;;

;SetErrHdr;1;***:--;

;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1;***: SubCompany: ***SubCompany***;

;SetErrHdr;1;***: Account #: ***AC-KY-BA***;

;SetErrHdr;1;***:--;

;InitMerge;;;

<Base Form Set Rules>

;MergeAFP;;;

<Base Image Rules>

;ForceNoImages;;;

Splitting Recipient Batch Print Streams

79

SPLITTING
RECIPIENT BATCH

PRINT STREAMS

The GenPrint program and the PrintFormset rule (when running in single-step mode)
are designed to produce one print stream output file for each recipient batch. This print
stream output file includes all of the transactions in the recipient batch.

Sometimes, however, you may want to split the print stream output into multiple print
stream output files. For instance, you can use this feature to split your batches into files
that reflect the amount of paper you can load into your printer at one time.

You can use DAL scripts to set up criteria for splitting the output file to reflect almost
any scenario. For example, it can be based on a certain number of transactions, a
maximum number of sheets of paper, or on changes in variables in the recipient batch.

NOTE: Some types of print streams require one file per transaction, such as RTF, PDF,
and HTML. The typical way of handling this is via the multi-file print callback
method, but this feature provides an alternate method which gives you greater
control over the naming of the output file.

To do this you use the PrintFormset rule and these DAL functions:

• DeviceName

• SetDeviceName

• BreakBatch

• UniqueString

This rule and these DAL functions let you:

• Split recipient batches into multiple print stream files

• Assign names to those print stream files

For example, here are some things you can do:

Splitting batches by sheet
count

You can use these functions to split a batch based on the sheet count during the
GenPrint process. Once a batch reaches a certain number of sheets, you can tell the
system to:

• Finish processing the current transaction

• End the current print file. (If you are using a post-transaction or post batch banner
page, it will print before the file is closed.)

• Repeat this process when the next print file reaches the specified number of
sheets

You can use virtually any logic to decide when to break the batch. For instance, to break
based on sheet count, use the TotalSheets function to get the number of sheets to
maintain a counter across the transactions.

NOTE: Be sure to reset the sheet count variable in the pre-batch banner DAL script.

Chapter 2
Understanding the System

80

Here is an example of DAL script logic that might appear in a post-transaction banner
DAL script:

IF TotalSheets() > 16000

#COUNTER += 1

CurFile = DeviceName()

Drive = FileDrive(CurFile)

Path = FilePath(CurFile)

Ext = FileExt(CurFile)

RecipBatch = RecipBatch()

NewFile = FullFileName(Drive,Path,RecipBatch & #COUNTER,Ext)

SetDeviceName(NewFile)

BreakBatch()

END

NOTE: See Using DAL to Manipulate File Names on page 82 for information on using
DAL functions to manipulate file names.

Creating PDF output You can also modify the above script to unconditionally break the batch after each
transaction. Assuming you used the SetDeviceName function to assign a proper file
name, each recipient printed would receive a separate output file.

This is particularly useful for output types such as PDF, which require a separate file for
each transaction.

NOTE: You can also use the multi-file print callback method in GenPrint to get
separate files. Similarly, the single-step processing mode currently uses this
INI option:

< PrintFormset >

MultiFilePrint = Yes

to tell the system to generate separate files for each transaction. Single-step
mode automatically generates a unique file name and offers no way to override
that name. By using the BreakBatch and SetDeviceName functions, however,
you can control the names assigned to the files in single-step mode. To
emulate the action of the current code, use the UniqueString function.

DAL functions Here is a summary of the DAL functions you would use. Keep in mind...

• These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

• These print drivers are not supported: EPT, MDR, and GDI.

• All platforms are supported, but note that while UniqueString is supported on z/
OS, z/OS does not support long file names.

• Producing PDF files on z/OS requires a separate license. Contact your sales
representative for more information.

• Both multi-step and single-step processing are supported.

Splitting Recipient Batch Print Streams

81

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to
name the new print stream, you use the SetDeviceName procedure. To find the name
of the current device, you use the DeviceName function. If you need to create unique
file names, you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in the Rules Processor or Entry,
the BreakBatch and SetDeviceName functions are not applicable in Entry since
it does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and the Rules Processor.

DeviceName

Use this function to return the current output device file name, such as the name of the
current print stream output file.

Syntax DeviceName()

SetDeviceName

Use this procedure to set a new output device file name which will be used the next
time the output device is opened, assuming nothing overrides the name prior to that.

Syntax SetDeviceName(Device)

BreakBatch

Use this procedure to tell the Rules Processor to break the output print stream file for
the current recipient batch after processing the current recipient, including post
transaction banner processing.

Syntax BreakBatch()

The procedure is typically called in the transaction banner DAL script. You must use the
SetDeviceName function to specify a new device name. Otherwise, the new file has the
same name as the old file and overwrites its contents.

After the GenPrint program finishes processing the current transaction, it closes the
current output device file. This includes executing any post-batch banner processes. It
then continues processing the recipient batch.

If you have assigned a new output device file name using the SetDeviceName function,
the system will create and start writing to a new print stream file with that name. The
best place to call the BreakBatch function is in the post-transaction banner DAL script.

Chapter 2
Understanding the System

82

UniqueString

Use this function to return a 45-character globally unique string.

Syntax UniqueString()

Here is an example:

DataPath = GetINIString(,"Data","DataPath")

Drive = FileDrive(DataPath)

Path = FilePath(DataPath)

UniqueID = UniqueString()

Outputname = FullFileName(Drive,Path,UniqueID,".PDF")

SetDeviceName(Outputname)

USING DAL TO MANIPULATE FILE NAMES

Since you can use DAL functions to read tables and to set device names for output print
stream files, this feature further extends DAL functionality by letting you manipulate
file names.

For instance, you can get the components of a file name (drive, path, name, and
extension) and combine those into a full file name. For example, for computers running
Windows file names look like this:

For computers running OS/390, file names look like this:

In this z/OS example, the drive and extension are omitted, because they are not
applicable on z/OS and the parentheses enclosing member are part of the path.

To do this you use these DAL functions:

• FileDrive

• FilePath

• FileName

• FileExt

• FullFileName

All platforms are supported and both the Rules Processor and the Entry system are
supported.

Each platform will use platform specific logic to extract or assemble the components.
For example, UNIX uses forward slashes and OS390 uses DD names or partitioned
dataset names for the path and member names for name.

d: \mypath\ myfile .ext

Drive
Path Name

Extension

 DD:DEFLIB(member)

Drive
Path Name

Extension

Splitting Recipient Batch Print Streams

83

Here are descriptions of these functions:

FileDrive

Use this function to get the drive component of a file name.

Syntax FileDrive(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the drive component of that file name.

Here is an example:

MYDRIVE = FileDrive("d:\mypath\myfile.ext")

In this example, MYDRIVE would contain:

“d:”

FilePath

Use this function to get the path component of a file name.

Syntax FilePath(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the path component of that file name.

Here is an example:

MYPATH = FilePath("d:\mypath\myfile.ext")

In this example, MYPATH would contain:

“\mypath\”

FileName

Use this function to get the name component of a file name.

Syntax FileName(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the name component of that file name.

Here is an example:

MYNAME = FileName("d:\mypath\myfile.ext")

In this example, MYNAME would contain:

“myfile”

Chapter 2
Understanding the System

84

FileExt

Use this function to get the extension component of a file name.

Syntax FileExt(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the extension component of that file name.

Here is an example:

MYEXT = FileExt("d:\mypath\myfile.ext")

In this example MYEXT would contain:

“.ext”

FullFileName

Use this function to make the full file name.

Syntax FullFileName(“Drive”,”Path”,”Name”,”Ext”)

This function accepts a string containing the drive, path, name, and extension
components of a fully qualified file name, assembles them, and returns a string that
contains the full file name.

Here is an example:

MYFILENAME = FullFileName("d:","\mypath\","myfile",".ext")

In this example, MYFILENAME would contain:

“d:\mypath\myfile.ext”

NOTE: If, in this example, \mypath had no trailing slash, the FullFileName function
would have added it for you.

Here is a z/OS example:

FullFileName(,”DD:DEFLIB()”,”MEMBER”)

In this example, the result would be:

DD:DEFLIB(MEMBER)

Assigning Printer Types Per Logical Batch Printer

85

ASSIGNING
PRINTER TYPES

PER LOGICAL
BATCH PRINTER

Recipient batches often need to be sent to different types of printers. For example, you
could have a situation where you want to generate PDF files with one batch, email
another batch, and send the rest of the batches to a Metacode printer.

In addition, logical printers may also need different callback functions. For example,
one batch might print Metacode and need OMR marks created in a callback function
while another batch may need to be split by transaction using the MultiFilePrint
callback function.

NOTE: Before version 11.1, the print system only supported one type of printer and
only one type of callback per run. You made this assignment using the PrtType
option in the Printer control group.

You can optionally define for each logical printer a printer type and a callback function.
For instance, now the PrtType option in the Printer control group defines the default
type of printer while the CallbackFunc option defines the default callback function you
want to use.

Here is an example:

< Printer >

PrtType = XER ; Default

< Printers >

Printer = Printer1

Printer = Printer2

< Insured >

Printer = Printer1

< Agent >

Printer = Printer2

< Printer1 >

Port = Output1.XER

< Printer2 >

Port = Output2.PDF

CallbackFunc = RULMultiFilePrint

PrtType = PDF

When you define a callback function, such as shown below, you are defining the default
callback function for all defined logical printers:

< Print >

CallbackFunc = Mycallback

If, however, you do not want a specific logical printer to have a callback function, you
can disable the callback for that logical printer by leaving blank the CallbackFunc
option for that logical printer, as shown here:

< MyPrinter >

CallbackFunc =

To disable the default callback, define an empty callback name. Otherwise, the system
uses the default callback function.

Chapter 2
Understanding the System

86

You can also set these INI options using Documaker Studio’s Manage, System,
Settings option. Here is an example:

Keep in mind this applies to...

• A batch of transactions. Each transaction within that batch will print to a single
type of printer.

• Both single- and multi-step processing of transaction batches.

Single-step processing has limitations as compared to multi-step processing and this
feature does not remove those limitations. Single-step processing optimizes the
processing of transactions that do not require recipient batching. Single-step
processing is, therefore, intended for use with a single input batch of transactions for
a single recipient or a single transaction with one or more recipients, such as in real-
time processing.

While you can specify multiple printers and associate a different printer per recipient
batch, single-step processing can still only process a single recipient batch at a time.
Therefore, it is not possible to do the same type of multi-batch processing in single-
step as is done in multi-step processing. A given set of transactions can specify a single
recipient and you can map that recipient to a different type of printer.

Real-time transaction processing of single transactions may also benefit from this by
using the multi-file callback method to split output files, along with necessary logic to
create unique file names for each output file. When used in this manner, single-step
processing of a single, real-time transaction can call a different driver for each recipient
in the transaction.

Controlling WIP Field Assignments

87

CONTROLLING
WIP FIELD

ASSIGNMENTS

You can use options in the Trigger2WIP control group to set almost all of the WIP record
fields for each transaction.

NOTE: Do not try to set the ModifyTime, InUse, or the FormSetID fields of the WIP
record. The ModifyTime field is assigned by the system when a WIP record is
added or updated. If you need to save a date and time for the transaction, store
that information in the CreateTime field, using the hextime X format for the
destination as shown in one of the examples.

The InUse field is used internally to prevent multiple people from editing the
same transaction. Let the system manage this column.

The FormSetID is assigned by the system when a new WIP transaction is
created. Let the system handle this.

The Trigger2WIP control group defines which recipient batch (RCB) transaction fields
from the manual batch (those kicked to WIP) are mapped to the corresponding WIP
transaction record fields.

The options under the Trigger2WIP control group define the mappings as shown here:

RCBField represents one of the fields defined by the batch transaction record definition
(RCBDFDFL.DFD). WIPField represents a field defined in the WIP database.

NOTE: There may be an external WIP.DFD file that identifies the fields in a WIP record.
An external DFD file is not required if you are using the default WIP database
layout.

Note, although the normal mapping technique is to name a RCB field on the left side,
the left side can name any defined GVM (global variable member). Typically, the only
GVMs that exist during GenWIP processing are those defined in the RCB DFD file, but
custom applications or single-step WIP systems may have additional GVMs.

The changes in this release support this INI definition and also let you convert data or
define a constant value you want to map to a WIP field. For a data conversion, define
your INI options as shown here:

< Trigger2WIP >

RCBField = WIPField; input format ; output format;

The conversion information must appear on the right side of the INI option, after the
WIPField name definition. Separate it from the named variable with a semicolon. Here
is an example:

RunDate = CREATETIME;DD4;X

The first semicolon denotes the input format of the data. The second separates the
desired output format. In this example, the input format of DD4 means the source data
is a date field in the format D4, which is YYYYMMDD.

The contents of
this field...

...is copied into
this field< Trigger2WIP >

RCBField 1 = WIPField 1

RCBField 2 = WIPField 2

...

Chapter 2
Understanding the System

88

The output format X indicates you want to convert the date value to the internal
HEXTIME format used in the WIP CreateTime field.

NOTE: For more information selecting from the pre-defined date formats or defining
your own, see the Rules Reference.

Although conversions are often used to change date formats, you can also use them to
do additional formatting. The system supports a simple C style sprintf (%s) and
constant text formatting, like %s, %10.10s, %-38.38s, and so on. The system does not
support any of the other C style formats flags that assume non-text data or asterisk
(variable width) designations.

Here is an example:

EFFVALUE = APPData; ;(%s%%)

Suppose in this example, that EFFVALUE contains the text 10, the resulting value
mapped into the APPData field will read (10%).

NOTE: You must use two percent signs (%%) to represent a single percent sign in the
output. The system only supports a string %s type format. It does not support
numeric data formats of any type.

Normally, the left side of the INI option names a field from the RCB file definition. You
can also enter NULL as a keyword to mean there is no corresponding RCB data field to
associate with the WIP field. This lets you assign the constant data to the WIP field, as
shown here:

NULL = DESC; ;ABC123 HERE WE GO

This example shows how to assign the constant text ABC123 HERE WE GO into the DESC
field of the WIP record. NULL indicates there is no source variable to associate with this
destination field.

You can also use INI built-in functions to provide a constant value to map to the field.
For example:

NULL = CURRUSER; ;~GETENV USERNAME

INI built-in functions are preceded with a tilde (~). This example executes the GETENV
built-in INI function, which gets the environment variable USERNAME. If you assume
the variable contained the text TOM, the WIP variable CURRUSER would be assigned
TOM after execution of the built-in function.

These options show the defaults used if the Trigger2WIP control group does not
override the variables:

< AFG2WIP >

StatusCode = WIP

RecordType = NEW

UserID = DOCUCORP

Controlling WIP Field Assignments

89

The StatusCode option defines which INI option in the Status_CD control group to use
as the default WIP StatusCD field. Suppose you have the following Status_CD control
group defined.

< Status_CD

WIP =W

Assign =A

Quote =Q

BatchPrint =W

Archive =AR

Printed =P

This means a W would be assigned to the WIP StatusCD field (usually meaning a
normal WIP transaction).

The RecordType option defines which INI option to locate in the Record_Type control
group as the default setting for WIP RecType. Suppose you have these options defined:

< Record_Type >

New =00

Assign =01

Partial =02

New is the normal default for the AFG2WIP control group and would therefore map 00
into the WIP RecType field.

The UserID option defines which user should be assigned the WIP transactions in the
CURRUSER field. Unless this option is changed or the CURRUSER field assigned from
the Trigger2WIP control group, the system defaults this value to DOCUCORP.
DOCUCORP is one of the default users created in a default user database.

You would normally want to add an option to the AFG2WIP control group to name a
valid user in your company, otherwise, users will have to log in as DOCUCORP and
reassign the WIP to valid users later.

Chapter 2
Understanding the System

90

GENERATING
EMAIL

NOTIFICATIONS
FROM GENWIP

You can enable the GenWIP program to send email. The GenWIP program will generate
an email message by processing a message body template against variable data in the
manual batch. It then sends the message when the document is added to WIP.

NOTE: See also Emailing a Print File on page 342.

Email-specific data can be in the recipient batch read by the GenWIP program or in the
INI file. The system checks the recipient batch first. If the field is not present or blank,
the system then checks the INI option.

Below is a list of the fields the GenWIP program looks at to get email information. If you
want to include other fields, you can use the INI built-in function to accomplish this.

Email is enabled in the GenWIP program when there is both a send-to email address
and a subject or message body. The message body is expected to be in a separate file.
Email attachment files are also supported and are processed as template files the same
as the message body. You use these INI options to enable email processing:

< GenWIPEmail >

EnableEmailNotification=

MailMessageBody =

MailID =

MailSubject =

MailAttachment =

These field names to go into the RCBDFDFILE:

FIELDNAME = MAILID

FIELDNAME = MAILATTACHMENT_IN

FIELDNAME = MAILATTACHMENT_OUT

FIELDNAME = MAILSUBJECT

FIELDNAME = MAILIDFROMADDRESS

FIELDNAME = MAILMESSAGEBODY

Group: < FIELD:MAILID >entries:

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 51

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 50

KEY = N

REQUIRED = Y

Option Description

EnableEmailNotification Enter Yes.

MailMessageBody Enter the path and file name for the email template.

MailID The email address to send. This is optional if the MAILID is
omitted, you can send using this address.

MailSubject If the MAILSUBJECT is missing or blank, the system will use
the text you enter here as the Subject.

MailAttachment The name of the file to attach.

Generating Email Notifications from GenWIP

91

Group: < FIELD:MAILATTACHMENT_IN >entries:

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 129

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 128

KEY = N

REQUIRED = Y

Group: < FIELD:MAILATTACHMENT_OUT >entries:

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 129

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 128

KEY = N

REQUIRED = Y

Group: < FIELD:MAILMESSAGEBODY > entries:

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 129

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 128

KEY = N

REQUIRED = Y

Group: < FIELD:MAILSUBJECT > entries:

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 129

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 128

KEY = N

REQUIRED = Yes

Errors Here are the error messages that can appear:

Error Description

11226 Error in GENCreateEmail(): Unable to get <&Name&> does it exist in rcb dfd
file?\n

11227 Error in GENCreateEmail(): Unable to process template check file
<&filename&> for valid markup syntax\n

11228 Error in GENCreateEmail(): Unable to open file <&Name&>\n

11229 Error in GENCreateEmail(): Unable to QueryAPI <&apiname&> check for
valid path to DLL <&dllname&>\n

11230 Error in GENCreateEmail(): Unable to Logon to email server\n

11231 Error in GENCreateEmail(): Unable to set <&data&> check INI file for valid
<&inigroup&> <&inioption&>\n

11232 Error in GENCreateEmail(): Unable to get <&data&> check INI file for
<&inigroup&> <&inioption&>\n

Chapter 2
Understanding the System

92

11233 Error in GENCreateEmail(): failed to send e-mail <&userid&>
<&emailaddress&>\n

Error Description

Using Multi-mail Processing

93

USING MULTI-
MAIL PROCESSING

Multi-mail processing groups the transactions with the same multi-mail code into
selected print batches based on the number of pages defined in the PageRange INI
option. Multi-mail can only be handled as a 2-up process. In the INI example below, all
transactions with the same multi mail will be stored in a batch category:

batch1-less than five pages

batch2-five to nine pages

batch3-10 or more pages

The MM_FIELD option in the TRN_Field control group identifies position, length, type
of data and where the multi-mail code is located in the transaction record.

NOTE: The parameter has been named MM_FIELD in the above explanation, however
it can be given any name.

The BatchByPageCount rule in the AFGJOB.JDT file identifies the name in the TRN_Field
control group, as shown here:

BatchByPageCount;;MMFIELD=MM_FIELD;

Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files

You must make the following changes to the RCPDFDFL.DAT and TRNDFDFL.DAT files
for multi-mail processing:

< Fields >

 ::::::

FIELD:MMField

< FIELD:MMFIeld >

INT_Type = CHAR_ARRAY

INT_Length = 7

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 6

Key = N

Required = N

Chapter 2
Understanding the System

94

Setting Up the FSISYS.INI File for Multi-mail Processing

Here is an example of how the relevant control groups and options in your FSISYS.INI
file should look:

< Print_Batches >

P_Batch1 = .\data\Batch1

P_Batch2 = .\data\Batch2

P_Batch3 = .\data\Batch3

Error = .\data\Error

Manual = .\data\Manual

< P_Batch1 >

Printer = Batch1_PTR_1

Printer = Batch1_PTR_2

FinalPrinter = Batch1_PTR_F

PageRange = ,4 (controls which batch is used)

TwoUpStart = L

< P_Batch2 >

Printer = Batch2_PTR_1

Printer = Batch2_PTR_2

FinalPrinter = Batch2_PTR_F

PageRange = 5,9 (controls which batch is used)

TwoUpStart = L

< P_Batch3 >

Printer = Batch3_PTR_1

Printer = Batch3_PTR_2

FinalPrinter = Batch3_PTR_F

PageRange = 10,99 (controls which batch is used)

TwoUpStart = L

< TRN_FIELDS >

...

MM_Field = 326,6,N (defines where the multi-mail code

is found in each transaction)

The order of the page output on the final print file will produce 2-up printing depending
on how many intermediate printer files are specified. The output will look as follows:

< P_Batch2 >

Printer = Batch2_PTR_1 intermediate printer file

Printer = Batch2_PTR_2 intermediate printer file

FinalPrinter = Batch2_PTR_F intermediate printer file

PageRange = 5,9

TwoUpStart = L

transaction #1 mmcode 111 page 1transaction n mmcode 555 page 1

transaction #1 mmcode 111 page 2transaction n mmcode 555 page 2

transaction #1 mmcode 111 page ntransaction n mmcode 555 page 3

transaction #2 mmcode 126 page 1transaction n mmcode 555 page 4

transaction #2 mmcode 126 page 2transaction n mmcode 555 page 5

transaction #2 mmcode 126 page ntransaction n mmcode 555 page n

transaction #3 mmcode 222 page 1transaction x mmcode 865 page 1

transaction #3 mmcode 222 page 1transaction x mmcode 865 page 2

transaction #3 mmcode 222 page ntransaction x mmcode 865 page n

Using Multi-mail Processing

95

If you define only one printer and a final printer for a batch, the 2-up printing would
look as follows:

< P_Batch2 >

Printer = Batch2_PTR_1

FinalPrinter = Batch2_PTR_F

PageRange = 5,9

TwoUpStart = L

transaction #1 mmcode 111 page 1transaction # 1 mmcode 111 page 2

transaction #1 mmcode 111 page 3transaction # 1 mmcode 111 page 4

transaction #1 mmcode 111 page ntransaction # 2 mmcode 555 page 1

transaction #2 mmcode 555 page 2transaction # 2 mmcode 555 page 3

transaction #2 mmcode 555 page 4transaction # 2 mmcode 555 page n

transaction #3 mmcode 126 page 1transaction # 3 mmcode 126 page 2

transaction #3 mmcode 126 page 2transaction # 3 mmcode 126 page n

transaction #4 mmcode 222 page 1transaction # 4 mmcode 222 page 2

Chapter 2
Understanding the System

96

ADDING AND
REMOVING PAGES

You can add and remove blank pages or a FAP file to a form set. Typically, you would
add these pages so each printed page has a front and back.

This lets you change a simplex or mixed plex form set into a fully duplexed form set. For
instance, you can use this feature to create PDF files for mixed plex form sets that print
in a similar fashion to printers that support mixed plex.

You can access this functionality several ways:

• Using custom code

• Using DAL scripts

• Using Docupresentment rules (version 1.6 and higher)

NOTE: Typically, you use this feature to add blank pages just before the print step.
These additional pages are not actually part of the saved document.

If, however, if you added the blank pages before the batch steps that save
document information to the NA/POL files, the blank pages would become a
permanent part of the document layout.

USING CUSTOM CODE

Adding pages Use this API to call custom code to add blank pages:

DWORD _VMMAPI FAPAddBlankPages(

 VMMHANDLE objectH, /* form set or form handle */

 char FAR * sectionname) /* if NULL, "Blank Page" */

If the section name is NULL, a blank page is created when a dummy page is needed. If
the section name is not NULL, the section name is loaded when a dummy page is
needed. Omit the path and file extension when you enter sectionname.

Removing pages Use this API to call custom code to remove blank pages:

DWORD _VMMAPI FAPDelBlankPages(VMMHANDLE objectH)

/* formset or form handle */

USING DAL SCRIPTS

Adding pages Use this DAL function to add blank pages:

AddBlankPages()

or

AddBlankPages('FAPFile')

For example, you can use this function with the banner processing feature. First,
specify a DAL script that runs at the start of each transaction. The DAL script calls the
AddBlankPages function. This tells the system to convert each transaction to a fully
duplexed form set with blank pages added as needed.

Here is an example of the INI settings you would need:

Adding and Removing Pages

97

< Printer >

EnableTransBanner = True

TransBannerBeginScript = PreBatch

< DALLibraries >

Lib = BANNER

Here is an example of the BANNER.DAL script:

BeginSub PreBatch

AddBlankPages()

EndSub

Removing pages Use this DAL function to remove a page from a form set:

DelBlankPages()

For example, you can use this function with the banner processing feature. First,
specify a DAL script that runs at the start of each transaction. The DAL script calls the
DelBlankPages function. This tells the system to remove blank pages from each
transaction.

< Printer >

EnableTransBanner = True

TransBannerBeginScript = PreBatch

< DALLibraries >

Lib = BANNER

Here is an example of the BANNER.DAL script:

BeginSub PreBatch

DelBlankPages()

EndSub

Chapter 2
Understanding the System

98

USING IDS
For more information on the rules listed below see Using the Documaker Bridge.

Adding pages Use this IDS rule to add blank pages:

function = dpros2->DPRAddBlankPages

This IDS rule assumes the form set being used has been loaded by the Documaker
Bridge into the DSI variable, DPRFORMSET. If you are using this rule with a different
bridge, you may need to specify a different DSI variable that contains the form set.

To specify a FAP file to use for the dummy pages, add the name of that FAP file after the
form set variable name when you specify the IDS rule. Here is an example:

function = dpros2->DPRAddBlankPages,DPRFORMSET,FAPFile

Removing pages Use this IDS rule to remove blank pages:

function = dpros2->DPRDelBlankPages

This IDS rule assumes that the form set has been loaded by the Documaker Bridge into
the DSI variable, DPRFORMSET. If you are using this rule with a different bridge, you
may need to specify a different DSI variable.

To specify the FAP file being used for dummy pages, add the FAP file name after the
form set variable name when you specify the IDS rule. Omit the path and extension.
Here is an example:

function = dpros2->DPRAddBlankPages,MTCFORMSET

openfile DocumakerBridge.pdf

Adding Indexes and Tables of Contents

99

ADDING INDEXES
AND TABLES OF

CONTENTS

Using Documaker Studio or Image Editor, you can insert tables of contents, lists of
figures or indexes to your form sets. This makes it easier for users to navigate through
the various forms.

To use this feature, all sections must be loaded before the print operation executes.
Otherwise, the system will not have all the content available and will not be able to
create a complete table of contents, list of figures, or index. Since some print drivers
do not force the loading of all sections until necessary, this means you may have to
include an additional INI option.

For Documaker Server (GenPrint), you would include this option:

< RunMode >

DownloadFAP = Yes

Chapter 2
Understanding the System

100

USING RUN-TIME
OPTIONS

The system offers several ways you can customize the way it runs. The following topics
discuss these options.

GENDATA COMMAND LINE OPTIONS

The GenData program accepts several command line options. Command line options
are prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\rpex1\gendaw32 /ini=my.ini

The command line options are explained below:

GENPRINT COMMAND LINE OPTIONS

The GenPrint program accepts several command line options. Command line options
begin with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\rpex1\genptw32 /ini=my.ini

The command line options are explained below:

Option Description

CNT Overrides the number of transactions specified in the CheckCount option in the
Restart control group. This count specifies the frequency of updating offsets for
GenData restart processing.

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
current directory.

JDT Tells the program to use the specified AFGJOB.JDT file instead of the one
defined in the FSIUSER.INI or FSISYS.INI files.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

Option Description

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
current directory.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

Using Run-Time Options

101

GENTRN COMMAND LINE OPTIONS

The GenTrn program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\rpex1\genTnw32 /ini=my.ini

The command line options are explained below:

DEBUGGING OPTIONS

You can use the following options in the Debug_Switches control group to turn on or
off debugging options.

< Debug_Switches >

Debug_If_Rule = Yes

Enable_Debug_Options = Yes

Show_Debug_Options = Yes

LoadListFromTable = Yes

Option Description

B Tells the program to build only the transaction file.

F Tells the program to build only the filter extract file.

FB Tells the program to build only the filter extract and transaction files.

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
current directory.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

Option Description

Debug_If_Rule Set to Yes if you want to turn on the debug options for the IF
and DAL rules. The system places the debug data in the
LOGFILE.DAT file. Setting this option to Yes slows
performance.

Enable_Debug_Options Set this option to Yes to turn on all debug options.

Show_Debug_Options Set this option to Yes to make the
GEN_DEBUG_DebugSwitchSet function log the state (on or
off) of all debug options.

LoadListFromTable Set this option to Yes to make the
Gen_TabUtil_LoadListFromTable function log the contents of
any ASCII table it loads.

Chapter 2
Understanding the System

102

Noting font IDs of zero You can use the CheckZeroFontID option to tell the system to display a warning or error
message if the field being processed contains a font ID equal to zero (0).

Typically, this means no font was assigned during the mapping. Since the merging of
FAP and DDT files in version 11.0, the field definition should be complete at the time of
processing. So if you encounter a field with no font ID assigned, it probably means
some unusual situation has occurred — like the field was defined via an import method
but not actually defined on the FAP file where it resides.

Here is an example of the CheckZeroFontID option:

< RunMode>

CheckZeroFontID =

Suppressing elapsed
runtime messages

You can suppress the elapsed runtime message by setting the ElapsedTimeStamp
option to No. This turns off the elapsed runtime message for the error, log, and trace
files. Here is an example:

< Control >

ElapsedTimeStamp = No

NOTE: You can use the existing ErrorFileDateStamp and LogFileDateStamp options to
turn off the time stamp in the error and log files. The new ElapsedTimeStamp
option controls the elapsed runtime message.

Option Description

CheckZeroFontID Enter Yes (or Error) to have the system to issue an error message if
it encounters a font ID set to zero (0). If you enter Yes (or Error) and
the system encounters a font ID of zero, you get a message similar
to this:

DM30046: Error: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.

Enter Warn if you want the system to issue a warning message if it
encounters a font ID set to zero. If you enter Warn and the system
encounters a font ID of zero, you will get a message similar to this:

DM30046: Warning: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.

In either message, FLDNAME and IMGNAME are reflect the
appropriate field name and section (image) name.
The default is No, which means nothing is checked and no message
is issued.

Option Description

ElapsedTimeStamp Enter No to suppress the elapsed runtime message for the error,
log, and trace files. The default is Yes.

Using Run-Time Options

103

GROUPING PRINT BATCHES

If you want to group all of your print batches (BCH files) in one file, follow these steps:

1 Add two options to the FSISYS.INI file. In the RunMode control group, set the
AliasPrintBatches option to Yes. In the Data control group, add the BatchTable
option. Set this option as shown below:

BatchTable = <tablename>

If you omit the path, the system uses your entry in the DataPath option of the Data
control group.

2 Add a key to the RCBDFDFL.DFD file. In the Fields control group, add the following
option:

FieldName = BatchName

Add the option exactly as shown here. Do not substitute the desired batch name,
here or in any of the following steps.

3 Add a corresponding FIELD:BatchName control group. Note that the lengths you
specify in this group must be sufficient to hold the batch name (the option side of
the equations in the Print_Batches control group). In the Keys control group, add
the following option:

Key = BatchName

and add a corresponding KEY:BatchName control group, with these options:

FieldList = BatchName

Expression = BatchName

If you are using ASCII for the print batch, after you run the GenData program you must
sort the batch file using the BatchName field as the key. If you are using xBase or DB2,
you should be able to run the GenPrint program without this step.

NOTE: If you are using ASCII for the print batches, be sure to place the BatchName
field directly before the NA_Offset field in the RCBDFDFL.DFD file. And when
sorting, use the BatchName and NA_Offset fields together as the key.

This will help make sure the print output is identical to that produced with
multiple batches. If you are using xBase or DB2, you do not need these
additional instructions.

Chapter 2
Understanding the System

104

CONTROLLING CONSOLE LOGGING

When processing a large number of transactions, you can see how far along you are
without affecting performance by using the LogToConsole option. This option lets you
control how often the console is updated with progress information.

Using the LogToConsole option, you specify the number of transactions that should be
processed before that information is logged on the console. For instance, if your
processing run consisted of 10,000 transactions, you could set the option to log
progress on the console after every 1000 transactions are processed. Here is an
example:

< Control >

LogToConsole = 1000

LOGGING INI FILE NAMES AND OPTIONS IN THE TRACE FILE

You can log INI file names and options in the TRACE file during GenTrn, GenData,
GenPrint, GenArc, and Documaker Studio processing.

To turn on the logging of INI file names and options, include these INI options:

< Debug_Switches >

Enable_Debug_Options = Yes

INILib = Yes

For the GenTrn, GenData, GenPrint, and GenArc programs, you can include the /L
command line parameter to log these file names and options in the TRACE file.

NOTE: Logging the INI file names and options in the TRACE file replaces the writing of
the INI file names and options to the LOGFILE, as was done in prior to version
11.2.

Option Description

LogToConsole Enter the number of transactions you want the system to process before
it logs its progress on the console. For instance, enter 1000 to have the
system tell you each time it processes 1000 transactions.
If you leave this option blank or enter Yes, the system logs the
processing of each transaction on the console. If you enter a number,
such as 1000, the system will send a log message to the console each
time it processes that number of transactions.
Keep in mind that logging information to the console affects
performance. The more often the system logs information to the
console, the greater the affect.
Consider how many transactions you will process in the run and use that
number to determine appropriate progress benchmarks.
If you enter No, the system will not notify you of its progress.

Using Run-Time Options

105

LISTING THE RULES EXECUTED

Use the following INI options to tell the system to create a list of the Documaker Server
rules executed and the amount of time (in milliseconds) spent for each execution:.

< Debug_Switches >

Enable_Debug_Options = Yes

BaseRuleTime = Yes

FormSetRuleTime = Yes

ImageRuleTime = Yes

ImageFuncTime = Yes

FieldFuncTime = Yes

The rule timings are written to a standard debug trace file. Individual records are tab-
delimited with the following fields:

Turn off the time stamp associated with the rule timing options listed above, set the
PrintTimeStamp option to No.

< Debug_Switches >

PrintTimeStamp = No

Option Description

Enable_Debug_Options Enter Yes to turn on the logging service.

BaseRuleTime Enter Yes to report base or job-level (level 1) rules.

FormSetRuleTime Enter Yes to report form set-level (level 2) rules.

ImageRuleTime Enter Yes to report image-level (level 3) rules.

ImageFuncTime Enter Yes to report image functions.

FieldFuncTime Enter Yes to report field functions.

Field Description

Standard Log Trace
info

This field tells you the log entries data, time, and process ID. You
can omit this information using the PrintTimeStamp option (see
below).

Rule Type This field provides information like: Base Rule Forward, Base Rule
Reverse, and so on.

Time Spent Label The comment label for the Time Spent field:

Time Spent (sec)

Time Spent The time, in milliseconds, spent executing the rule.

Rule Name The name of the rule. Image functions use this format:

"Image Name"."Rule Name"

Field functions use this format:

"Image Name"."Field Name"."Rulename"

Chapter 2
Understanding the System

106

ANALYZING DAL PERFORMANCE

In addition to DAL profile information which includes the time spent per function (DAL
subroutine), the system places information into the TRACE file about the total time
spent in each function and number of times each function is called.

An example of this information is shown below. This example is from a GenData run
which processed 600 transactions. The total processing time was 23 seconds. Only the
beginning of the log is shown because of space considerations.

The log is sorted by the cumulative time spent in each script with longest running
scripts at the top. The log information appears in the trace file and is written out when
the program terminates.

You will find this information appears in the log:

Some scripts look like they are listed twice, but are not. For instance, in the example
below PostTrans_Prod() and PostTrans_Prod actually are the script that had a call to
PostTrans_Prod (all it had was “PostTrans_Prod()”) and the actual PostTrans_Prod
DAL subroutine.

When you analyze the log, keep these things in mind:

• The scripts you need to review are usually the scripts at the top of the log.

• Review any scripts that are executed more times than number of transactions in
the run. You can probably modify your implementation so the script is run no more
than once per transaction or once per job.

• Review the scripts that run the longest and see if they can be optimized. For
example, move assignment of variables outside the loop. Consider parts that can
be executed only when needed.

• Typically, scripts that take longer to run or receive a higher number of calls are
good candidates for review of either the script itself or the implementation.

• Clock resolution is set at one millisecond. If a script executes in less than one
millisecond, the time spent equals zero (0). Scripts that show a high number of
calls, even if the time is shown as zero (0), or a relatively small number are good
candidates for optimization.

Item Description

Executed XXX The number of times script was executed.

Cumulative
run time
X.XXX

The time in seconds dot milliseconds spent in this script and all scripts/
code that was executed from this script.

Compiled or
Non-compiled

Whether or not the script was compiled.

Name The name of the script or the actual script if it was not in an external file.

Using Run-Time Options

107

NOTE: The extra logging does affect total time spent executing the program being
analyzed and should not be turned on in a production environment or left on
when not needed.

Executed 600 times Cumulative run time 2.840 Non-compiled Script
PostTrans_Prod()

Executed 600 times Cumulative run time 2.824 Compiled Script
PostTrans_Prod

Executed 600 times Cumulative run time 2.451 Non-compiled Script
PREFILL_VARS()

Executed 600 times Cumulative run time 2.420 Compiled Script
PREFILL_VARS

Executed 600 times Cumulative run time 1.954 Compiled Script
DEFLIB\BarCode.DAL

Executed 534 times Cumulative run time 0.792 Compiled Script
DEFLIB\Delete_Images.DAL

Executed 1150 times Cumulative run time 0.784 Non-compiled Script
CALL("SERVPHONENUM")

Executed 1150 times Cumulative run time 0.737 Compiled Script
DEFLIB\SERVPHONENUM.DAL

Executed 600 times Cumulative run time 0.372 Non-compiled Script
COPYCOUNT()

Executed 1813 times Cumulative run time 0.359 Non-compiled Script
call("INSUREDNAME1")

Executed 1813 times Cumulative run time 0.312 Compiled Script
DEFLIB\INSUREDNAME1.DAL

Executed 600 times Cumulative run time 0.295 Compiled Script
COPYCOUNT

Executed 1180 times Cumulative run time 0.234 Non-compiled Script
call("INSUREDNAME2")

Executed 1200 times Cumulative run time 0.205 Non-compiled Script
call("BROKERNAMELIT")

Executed 1180 times Cumulative run time 0.203 Compiled Script
DEFLIB\INSUREDNAME2.DAL

Executed 567 times Cumulative run time 0.186 Non-compiled Script
Return ((?("POL.NUM.LIT")) & " " & (?("INS.POL.NUM")) &
(?("INS.POL.YREFF")))

Executed 1200 times Cumulative run time 0.186 Non-compiled Script
Call("DMGMERGESETID")

Executed 1137 times Cumulative run time 0.173 Non-compiled Script
call("POLEFFDATE")

Executed 534 times Cumulative run time 0.159 Non-compiled Script
MSGB03A()

Executed 534 times Cumulative run time 0.158 Non-compiled Script
MSGD12A1()

Executed 600 times Cumulative run time 0.158 Non-compiled Script
CALL("SERVADDR1DAL")

Executed 534 times Cumulative run time 0.142 Non-compiled Script
MSGS04A()

Executed 534 times Cumulative run time 0.141 Non-compiled Script
MSGB07B()

Executed 1137 times Cumulative run time 0.139 Non-compiled Script
call("POLEXPDATE")

Executed 534 times Cumulative run time 0.126 Non-compiled Script
MSGS09B()

Executed 1149 times Cumulative run time 0.126 Non-compiled Script
call("DUEDATE")

Chapter 2
Understanding the System

108

Executed 534 times Cumulative run time 0.126 Non-compiled Script
MSGB11A()

Executed 550 times Cumulative run time 0.126 Compiled Script
DEFLIB\UPDATESCANABLE.DAL

Executed 600 times Cumulative run time 0.125 Non-compiled Script
CALL("SERVADDR3DAL")

Executed 534 times Cumulative run time 0.125 Compiled Script
DEFLIB\WITHDRBILLDAY2.DAL

Executed 534 times Cumulative run time 0.125 Non-compiled Script
CALL("WITHDRBILLDAY2")

Executed 534 times Cumulative run time 0.125 Non-compiled Script
MSGM11A()

Executed 534 times Cumulative run time 0.124 Non-compiled Script
MSGD12A3()

Executed 1200 times Cumulative run time 0.124 Compiled Script
DEFLIB\DMGMERGESETID.DAL

Executed 534 times Cumulative run time 0.124 Non-compiled Script
MSGS08A()

Executed 1137 times Cumulative run time 0.123 Compiled Script
DEFLIB\POLEXPDATE.DAL

Executed 534 times Cumulative run time 0.111 Non-compiled Script
MSGC01A()

Executed 534 times Cumulative run time 0.111 Compiled Script MSGB03A

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGM07A()

Executed 570 times Cumulative run time 0.110 Non-compiled Script
call("COMPANYNAMELIT")

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGD10C()

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGM02A()

Executed 600 times Cumulative run time 0.110 Non-compiled Script
CALL("SERVADDR2DAL")

Executed 534 times Cumulative run time 0.110 Compiled Script MSGD12A1

Executed 534 times Cumulative run time 0.110 Non-compiled Script
MSGD10G()

Executed 600 times Cumulative run time 0.109 Non-compiled Script
CALL("DMGTOTALSHEETS")

WHEN EXTRACT FILES EXCEED THE OFFSET LIMITS

During GenTrn processing, offsets to individual transactions within the extract file are
written to the TRNFILE. A long integer is used to contain these offsets. The long integer
can have a value up to about 2,100,000,000 bytes or about 2 GB.

When the extract file offset number inside the TRNFILE is about to exceed the 2GB limit,
the GenTrn program gives you the following error message:

DM15065: Error in BuildTrnRecs(): Offset for extract file is
approaching 2GB limit.

If GenTrn processing is combined into GenData processing (using the
NoGenTrnTransactionProc rule in the AFGJOB.JDT file), and this situation is
encountered, the GenData program gives you the following error message:

DM30049: Error in <RULLoadXtrRecs>(): Offset for extract file is
approaching 2GB limit.

Controlling What is in the MultiFilePrint Log

109

CONTROLLING
WHAT IS IN THE

MULTIFILEPRINT
LOG

Use the MultiFileLogRecord option to control the content of the log file produced
during multi-file printing. For certain print drivers (PDF, RTF, XML, or HTML), you must
generate a separate print file for every transaction in a batch.

During this process, the system creates a log file to keep track of the print files it
creates. The MultiFileLogRecord option lets you control the contents of the log file
produced.

For multi-step processing using the multi-file callback function, you must change the
FSISYS.INI file as shown below:

< Print >

CallbackFunc = MultiFilePrint

MultiFileLog = {log file name and path}

MultiFileLogRecord = ~DALRUN MyScript.DAL

The system first looks for MultiFileLog option in the logical printer control group first,
such as Printer1, Printer2, Printer3, and so on. If not found, it then looks for this option
in the Print control group.

To control the information written to the MultiFileLog file, specify the name of the DAL
script, such as MyScript.DAL, in the MultiFileLogRecord option. The system will then
execute this script whenever a new output file needs to be created. If a string is
returned, the string is used instead of building the log record as a set of semicolon
delimited fields. If an empty string is returned, the current log record format is
produced.

NOTE: A linefeed is appended to the string before it is written to the log file.

The DAL script could be as simple as one that returns the string from the DAL function,
DeviceName. Here is an example:

RETURN(DeviceName())

NOTE: For more information about multi-step processing, see Using Multi-step
Processing on page 21 and the discussion of the MultiFilePrint callback
function in Using the PDF Print Driver.

For this processing mode You set the

Multi-step processing
(GenTrn, GenData, and GenPrint)

CallbackFunc option in the Print control group to
MultiFilePrint

Single-step processing
(GenData)

MultiFilePrint option in the PrintFormset control
group to Yes

Chapter 2
Understanding the System

110

In single-step processing (GenData), use the MultiFilePrint option in the PrintFormset
control group, as shown here:

< PrintFormset >

MultiFilePrint = Yes

LogFileType =

LogFile = {log file name and path}

MultiFileLogRecord = ~DALRUN MyScript.DAL

... (other applicable options omitted - see the following note)

The PrintFormset rule checks for the MultiFileLogRecord option and if a string is
returned, it uses the string instead of building the log record as a set of semicolon
delimited fields. If an empty string is returned, the current log record format is
produced.

If you set the LogFileType option to XML, the system generates a log file using XML and
ignores the MultiFileLogRecord option.

NOTE: There are additional INI settings required for single- and multi-step
processing. For more information about single-step processing, see the
discussion of the PrintFormset rule in the Rules Reference.

Using INI Built-In Functions

111

USING INI BUILT-
IN FUNCTIONS

You can use these INI built-in functions when running the system:

~GetEnv

~Platform

~OS

~DALRUN

~DALVAR

~Encrypted

~ProcessID

~WIPField

In addition, there are several functions you can use to retrieve information from WIP
records. See Accessing WIP Fields on page 115 for more information.

~GetEnv Here are examples which show how you can use the GetEnv function.

< MasterResource >

DefLib = ~Getenv MYDRIVE \mstrres\deflib\

This INI function recognizes a value that begins with a tilde (~). It then parses out the
next word and looks to see if a built-in function has been registered with that name,
such as getenv in the above example.

Once found, the function is called. It then parses the first word to get the environment
variable, such as MYDRIVE. Leave a space before and after the environment variable.

Finally, the function puts together the result of the environment data with the
remainder of the data line, as in \mstrres\deflib\.

So, if MYDRIVE=G:\APPS you would see G:\APPS\mstrres\deflib\.

NOTE: Before executing an application whose INI contains the GetEnv function, you
must initialize the operating system environment variables. For Windows 32-
bit, you enter on a command line:

Set EnvironmentVariable = Value

Here are some examples:

Set MyDrive=G:\APPS

Set UserID=MVF

Be sure to leave a space before and after the environment variable.

For this example, assume the environment contains USERID=(INITIALS) and the INI
contains:

< SignOn >

UserID = ~GetEnv USERID

The logon process picks up your user ID from an environment variable.

Chapter 2
Understanding the System

112

This method results in a very generic built-in function that does not assume what the
data represents. However, if you were using it to build file names, the environment
variables would have to be consistent in terms of whether they contained the final
backslash or not. In the above example, MYDRIVE=G:\APPS\ would produce an invalid
path because a double backslash would occur.

~Platform Use the ~Platform function to create multi-platform INI files. The possible return
values are: PC, and MVS. This lets you set up INI control groups and options that work
on either a PC or MVS platform. When the system executes this function, it replaces
~Platform with either PC or MVS, depending on the platform. Here is an example:

< Print_Batches >

P_Batch1 = < Config:~Platform > P_Batch1

P_Batch2 = < Config:~Platform > P_Batch2

P_Batch3 = < Config:~Platform > P_Batch3

Error = < Config:~Platform > Error

Manual = < Config:~Platform > Manual

< CONFIG:PC >

P_Batch1 = .\data\Batch1

P_Batch2 = .\data\Batch2

P_Batch3 = .\data\Batch3

Error = .\data\Error

Manual = .\data\Manual

< CONFIG:MVS >

P_Batch1 = DD:Batch1

P_Batch2 = DD:Batch2

P_Batch3 = DD:Batch3

Error = DD:Error

Manual = DD:Manual

NOTE: You can also use the File option in the INIFiles control group to load multiple
INI files. Place this control group and option in your FSIUSER.INI file. Here is an
example:

< INIFiles >

File = PC.INI

File = MVS.INI

You can assign any name as long as you include the INI extension. You can
have as many File options as needed. You can customize these files based on
the platform you are using.

~OS Use ~OS function to determine the current operating system environment. The
possible return values are: WIN32, HPUX, AIX, MVS, Sun, and OS1100.

Here is an example of the functions usage in the INI file. Be sure to include the space
after ~OS.

< DBHandler:DB2 >

BindFile = <DB2:~OS > bindfile =

< DB2:WIN32 >

BindFile = w32bin\DB2LIB.BND

This setup allows for the different bindfiles being specified for different operating
systems — compare with the ~Platform function which returns PC for Win32.

Using INI Built-In Functions

113

~DALRUN
~DALVAR

Use the DALRUN and DALVAR built-in functions to execute DAL scripts or get DAL
variable information you can use to complete INI options. For instance, you can use this
to map unique recipient information into batch records.

These functions are automatically registered when DAL is initialized. Several programs
can initialize DAL, such as the GenData and GenPrint programs, the AFEMAIN program
(including RACLIB/RACCO), Documaker Studio, Image Editor, and various utilities such
as ARCRET, ARCSPLIT, and DALRUN.

NOTE: If you try to use these functions in systems that do not initialize DAL, an
incorrect INI value is returned.

Here is an example:

< INIGroup >

Option1 = ~DALRUN MY.DAL

Option2 = ~DALVAL XYZ_VAL

If the program requests Option1, the script MY.DAL is executed and the resulting option
is assigned.

If the program requests Option2, the DAL variable XYZ_VAL is located and its contents
are assigned to the INI option.

~Encrypted Use this built-in function to place encrypted values in an INI file. To get the encrypted
value, you can execute the CRYRU utility. Here is an example of how you could use this
utility on Windows:

cryruw32.exe user1

The result would be something like this:

Encrypted string (2yz76tCkk0BRiPqLJLG00)

You then paste the value (2yz76tCkk0BRiPqLJLG00) into an INI file and use the
~ENCRYPTED INI function, as shown in this example:

< SignOn >

UserID = ~ENCRYPTED 2yz76tCkk0BRiPqLJLG00

When Documaker Server or IDS runs and gets the value of the UserID option in the
SignOn control group, it will get the real value USER1.

NOTE: The encryption method used is proprietary.

Keep in mind these limitations:

• Only Windows and UNIX platforms are supported.

• This feature has nothing to do with secure PDF or PDF encryption.

• Almost any INI option can be encrypted.

Chapter 2
Understanding the System

114

~ProcessID The ProcessID INI built-in function (~ProcessID) provides separate trace files for
different instances of Documaker Server/Documaker Bridge. This makes it easier to
find performance problems and to separate multiple instances.

Here is an example of how you would set up your INI files in Documaker Server or
Documaker Bridge to use the ProcessID built-in INI function:

< Data >

TraceFile = dprtrc~PROCESSID .log

Here is an example of an output trace file:

1. Tue May 25 21:27:26.489 2006 pid=00003896 SQInstallHandler: Info
from SQLGetInfo, DBName=<>, DBMS=<Oracle>, DBMS Version=<09.02.0010>

2. Tue May 25 21:27:26.489 2006 pid=00003896 SQInstallHandler: Info
from SQLGetInfo, DriverName=<SQORA32.DLL>, DriverVer=<09.02.0000>,
DriverODBCVer=<03.51>

3. Tue May 25 21:27:26.677 2006 pid=00003896 SQHandler (LOCATEREC):
ENTER

4. Tue May 25 21:27:26.677 2006 pid=00003896 SQBindParamData: calling
_SQLBindParameter, len = <10>, <JOB_ID> = <DEF_JOB_ID>

5. Tue May 25 21:27:26.677 2006 pid=00003896 select
STATUS,JOB_ID,COMM_RECS,LASTREC from SJSRPX1_ORA_RESTART where
JOB_ID = ?

6. Tue May 25 21:27:26.693 2006 pid=00003896 SQHandler (LOCATEREC):
SQLocate returned a row.

Using INI Built-In Functions

115

~WIPField Use this built-in INI function to tell the system to substitute a value in the INI file with
a value from the WIP record. This works with either Documaker Workstation (AFEMAIN)
or the WIP Edit plug-in.

For example, if you want the UserDict value to equal the value for ORIGUSER in the
current WIP record, you would set up the following option:

< Spell >

UserDict = ~WIPFIELD ORIGUSER

ACCESSING WIP FIELDS

You can access most standard WIP fields using the following built-in INI functions. For
instance, if you want to create an export file and a PDF file and have the names for these
files be identical except for the extension, you could use these function to create a
unique name for a file that does not depend on the current time, but rather on a time
that does not change, such as the create or modify time.

NOTE: You can access all of the WIP fields via DAL using the WIPFld function. And,
since DAL can be accessed via the ~DALRUN function (see page 113), you have
another method you can use to get those fields.

The system retrieves the Modify Time and Create Time from the WIP record. You can
use the ~DATE function to get the current date value. You can also include a parameter
to tell the system to format the date.

Function Returns the

~Key1 WIP Key1 field

~Key2 WIP Key2 field

~KeyID WIP KeyID field

~ORIGUSER Original WIP User ID field (the ID used to create the WIP)

~CREATETIME WIP Create Time field. You can format this option.

~MODIFYTIME WIP Modify Time field. You can format this option.

~ORIGFSID Original WIP form set ID.
Keep in mind when routing messages, the original form set ID is not
necessarily the same as the current form set ID.

~TRANCODE WIP Transaction Code field.

~DESC WIP Description field.

~DATE The current date value.

~USERID Currently logged in user ID.

~FIELD A field value from the form set.

Chapter 2
Understanding the System

116

Keep in mind that if you are trying to use the value as part of a file name, you should
only include characters that are valid in file names.

Here is an example of how to specify a date format:

~MODIFYTIME ;%m-%d-%Y;

Semicolons (:) begin and end the string that defines the date format. If you omit a
semicolon, you get the hexadecimal value of the date for ~MODIFYTIME and
~CREATETIME. For the ~DATE function, you get the format specified by the DateFormat
option in the Formats control group. This option defaults to:

%m/%d/%y

If you include the semicolon, but omit the format information after the semicolon, for
~MODIFYTIME and ~CREATETIME you get the format specified by the DateFormat
option in the Formats control group. This option defaults to:

%m/%d/%y.

Formatting arguments Format arguments consists of one or more codes. Begin each code with a percent sign
(%). Characters that do not begin with a percent sign are copied unchanged to the
output buffer.

Any character following a percent sign that is not recognized as a format code is copied
to the destination—so you can enter %% to include a percent sign in the resulting
output string.

You can choose from these format codes:

Code Description

%d Day of month as decimal number (01 - 31)

%H Hour in 24-hour format (00 - 23)

%I Hour in 12-hour format (01 - 12)

%m Month as decimal number (01 - 12)

%M Minute as decimal number (00 - 59)

%p Current locale's AM/PM indicator for 12-hour clock

%S Second as decimal number (00 - 59)

%y Year without century, as decimal number (00 - 99)

%Y Year with century, as decimal number

%A Weekday name, such as Tuesday

%b Abbreviated month name, such as Mar

%B Full month name, such as March

%j Day of year as decimal number (001 - 366)

%w Weekday as decimal number (0-6, with Sunday as 0)

Using INI Built-In Functions

117

Here are some examples:

%@xxx Specify language locale (where xxx is a 3-letter code that identifies one of
the supported languages. For example. A format of %@CAD%A might
produce mardi, the French word for Tuesday.

This format Will result in

%m-%d-%Y 01-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 01/01/09 at 11:57 PM

Code Description

Chapter 2
Understanding the System

118

Here are some additional format attributes for certain codes:

Specifying locales When you use %@xxx in the format string, the xxx represents a 3-letter code that
identifies one of the supported language locales.

Until a locale format code is encountered in the format string, the default locale
(typically USD which is US English) is used. Once a locale format code is found, the
locale specified remains in effect until another locale code is encountered.

For example, suppose the input date is 03-01-2009. This table shows the output from
various formats:

Code Description

Tells the system to suppress leading zeros for the following format codes. This
flag only affects these format codes:

%#d, %#H, %#I, %#j, %#m, %#M, %#S, %#w

For example, if %d outputs 01, using %#d will produce 1. Subsequent codes
are not affected unless they also have this flag.

> Tells the system to uppercase the resulting text. This flag only affects these
format codes:

%>p, %>A, %>b, %>B

For example, if %A results in Tuesday, using %>A will produce TUESDAY.
Subsequent codes are not affected unless they also have this flag.

< Tells the system to lowercase the resulting text. This flag affects only these
codes:

%<p, %<A, %<b, %<B

For example, if %b results in Mar, using %<b will produce mar. Subsequent
codes are not affected unless they also have this flag.

<> Tells the system to capitalize the first letter of the resulting text. This flag affects
only these codes:

%<>p, %<>A, %<>b, %<>B

For example, if %p results in AM, using %<>p will produce Am. Subsequent
codes are not affected unless they also have this flag.

This format Will result in

 “ %A, %B %d” “Monday, March 01”.

 “%@CAD%A %@CAD%A, %B %d” “lundi, mars 01”

“%A, %@CAD%B %d” “Monday, mars 01”

“%@CAD%A, %@USD%B %d” “lundi, March 01”

Using INI Built-In Functions

119

Using the ~Field function The ~Field function lets you use a quoted parameter string to name the specific field to
locate within the form set. The definition of the field can name a specific section, form,
and group (Key2 or Line of Business), separated by semicolons, that contains the field
requested. This lets you make sure you are retrieving a specific field occurrence within
the document.

Because object names, like fields, sections, forms, and groups, can sometimes contain
spaces or other special characters, you should enclose the entire definition in
quotation marks (“). You cannot quote individual elements of the search.

Here are some examples:

This is a valid definition for the ~Field function:

option = ~FIELD "Field;Section;Form;Group"

This is not a valid definition for the ~Field function:

option = ~FIELD "Field";"Section";"Form";"Group"

Chapter 2
Understanding the System

120

OUTPUTTING WIP
FIELD DATA ONTO

THE XML TREE

Documaker can export these WIP-related transaction fields onto the XML tree:

The XML print driver (print type XMP) includes WIP field data in the output when it is
generated from GenData's PrintFormset rule or the GenPrint program. You use the
Trigger2WIP control group to map the field information. This WIP field information is
included in the resulting XML tree under the DOCSET tag.

NOTE: The transaction batch record is defined by the DFD which is defined via the
RCBDFDFL setting. The mapped WIP fields must be defined in the WIP DFD file
or the internal WIP definition if an external DFD is not used.

Here is an example of the Trigger2WIP control group set up for field mapping:

< Trigger2WIP >

Company = Key1

LOB = Key2

PolicyNum = KeyID

TransactionType= TranCode

The output XML tree should have this format:

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT TYPE="RPWIP" VERSION="11.2">

<DOCSET NAME="">

<LIBRARY NAME="" CONFIG="Batch Processing">Batch
Processing</LIBRARY>

<ARCEFFECTIVEDATE>20061115</ ARCEFFECTIVEDATE>

<KEY1 NAME="COMPANY">SAMPCO</KEY1>

<KEY2 NAME="LOB">LB1</KEY2>

<KEYID NAME="PolicyNum">1234567</KEYID>

<TRANCODE NAME="TRANSACTIONTYPE">T1</TRANCODE>

<STATUSCODE NAME="STATUSCODE"/>

<DESC NAME="DESC"/>

. . .

</DOCSET>

</DOCUMENT>

Key1 Key2 KeyID

TranCode StatusCode Desc

GuidKey TrnName LocID

SubLocID Jurisdictn QueueID

Using XML Files

121

USING XML FILES You can use these rules to create an alternative data search method so you can do
direct XML mapping within Documaker Server:

NOTE: For more information on the new rules, see the Rules Reference.

The extract list and the XML tree are separate. Once the XML tree is loaded, it remains
loaded and can be searched by subsequent rules — just like any extract list.

The system supports a mix of these search methods:

• An XDB token reference such as ?TOKEN looked up in the XDB to get the actual
search text

• The legacy Offset,Mask method such as 10,HEADERREC)

• An XML search text, such as !/descendant::Item

In most cases, the XBD token reference will be the preferred method.

An XDB entry can return either a legacy offset/length search mask or an XML search
path. XML search masks must begin with an exclamation mark (!). The leading
exclamation mark is not actually sent to the search routine.

You can use text movement and formatting rules, like Move_It, MoveNum, FmtDate,
and FmtNumber, to do simple operations, but keep in mind some of the more
complicated options may not work.

For instance, Move_It supports a same record flag. This does not work in XML searches.
Likewise, Move_Num supports several binary input data types like BCD and you cannot
include those in XML at present.

More complicated rules that have multiple search criteria like SetAddr, SubExtractList,
and Concat do not work with XML files.

HANDLING OVERFLOW

The XML search infrastructure has position support.

/descendant::Forms/child::form[position()=2]/child::field1

The 2 in this case indicates you want the second form child. Since you would not want
to write the search to work with every explicit number, you must indicate where the
overflow variable fits into the equation, as shown here:

/descendant::Forms/child::form[position()=****]/child::field1

The system first scans the search to see if a replacement is needed for the overflow
value. In this case, it would insert the 2 (taken from the overflow variable value) and
then do the actual XML search.

Rule Description

UseXMLExtract Uses the extract list loaded by the transaction as the source of the XML
tree.

XMLFileExtract Assumes that the extract list contains the name of an external file
which is the source of the XML tree.

Chapter 2
Understanding the System

122

You can also handle overflow within overflow by specifying an overflow variable name
in the search. For instance, suppose you have multiple cars and each car can have
multiple drivers.

<car>

<driver>Tom<driver/>

<driver>Tim<driver/>

<car/>

<car>

<driver>Sally<driver/>

<car/>

If you had two overflow variables, one working for car and one for driver, you could
create a search like this:

/descendant::car[**carvar**]/child::driver[**drivevar**]

Where the system gets two overflow variables and insert them into the search text.

TRIGGERING FORMS AND SECTIONS

You can do simple triggering based upon the existence of a node. For example, this

/child::car

would trigger a form if car is a child of the root node. Referring back to the earlier
example, you could make it trigger two of the same forms because there are two cars.

The system supports value matching. So you can do the following:

/child::car[child::driver="Tom"]

Or, you can use the RecipIf rule to trigger a section with custom rule parameters, as
shown in this example:

A={!/child::car/child::driver 1,7}::if
(A='Tom')::return("^1^")::end::;

If there is such a value in that element in the XML file, the section would trigger. For this
to work, define the offset of the variable attribute as 1 and the length of the data you
want to compare.

You can also use XML search strings such as these:

This string Finds

!descendant::PolicyNumber The PolicyNumber value

!descendant::Forms/child::Form All forms

Using XPath

123

USING XPATH XML path locator (XPath) complies with the standard syntax specifications (W3C
standards) found in the XML Path Language, but differs in some regards because it was
developed to support the Rules Processor. Because this version of XPath has some
limitations, you should check the syntax using the XPATHW32 utility.

XPATH SYNTAX

Here are examples of the valid axes, function calls, signs, and operators to help you
understand and use the XPath syntax.

Axes

You have these axes:

When used, an axis is always followed by a context node name separated by two colons
(::). For example, the syntax descendant::para locates all para descendants of the
current context node.

Name Used to locate the

ancestor Ancestors of the current context node

ancestor-or-self Ancestors of the current context node and itself

parent Parents of the current context node

descendant Descendants of the current context node

descendant-or-self Descendants of the current context node and itself

attribute Attributes of the current context node

child Children of the current context node

following-sibling Following siblings of the current context node

following Context nodes that follow the current node

preceding-sibling Preceding siblings of the current context node

preceding Context nodes that precede the current node

self Self context node

Chapter 2
Understanding the System

124

Symbols

You can use these calculation operators:

Where !=, <, >, + can be used as calculation operators in function position(), such as,
[position()=2], [position()!=2], [3+i], [position()<5], and so on. The equals sign (=) is
also used for evaluations such as @Name=’Auto’.

You can use these symbols in a valid XPath:

Where the pair of brackets ([]) enclose a condition for evaluation, the at symbol (@) is
an abbreviation of the attribute, the asterisk (*) is used for a wild card search, and
others are used in a valid XPath, as shown below.

Functions

You can use these functions:

= != < > + -

/ // * :: [] @

Function Returns

concat(string, string, string… The concatenation of the strings

last() The last element in the selection

name() The name of the selected elements

node() The node names

position() The position of selected elements

text() The text of selected elements

string(object) The string from the context node

xml() The output buffer containing all descendents of the
specified element

Using XPath

125

Expressions

You can use abbreviated syntax with XPath. Here are the valid expressions:

Abbreviated syntax Full syntax

* child::*

para child::para

chapter/para child::chapter/child::para

para[1] child::para[position()=1]

/chapter/para[last()] /child::chapter/child::para[position()=last()]

text() child::text()

node() child::node()

para[@type] child::para[attribute::type]

para[@type="warning"] child::para[attribute::type="warning"]

para[@type="warning"][2+i] child::para[attribute::type="warning"][position()#2+i]

chapter[title] child::chapter[child::title]

chapter[title=’Introduction’] child::chapter[child::title="Introduction"]

doc//para child::doc/descendant-or-self::node()/child::para

@* attribute::*

@type attribute::type

[@name=’warning’] [attribute::name=’warning’]

//para /descendant-or-self::node()/child::para

. self::node()

.//para self::node/descendant-or-self::node()/child::para

.. parent::node()

../chapter parent::node()/child::chapter

../@type parent::node()/attribute::type

Chapter 2
Understanding the System

126

USING THE XPATH TESTING UTILITY

Here is the syntax of the XPATHW32 testing utility:

xpathw32 /f= xml file /e=starting node /x= search path

The /e parameter specifies the node where the search of the XPath starts. You can omit
this parameter if you want the search to start from the beginning. A pair of double
quotes is required to enclose the search mask. Here is an example:

xpathw32 /f=“d:\test\test.xml” /x=“Forms/Form/Car[@Name=’Car1’]/
text()”

This example searches the node Car with the attribute Name=“Car1”. It then retrieves
its text and returns a text string similar to this one:

Text string = Car 1 is Toyota

These examples illustrate some search paths most frequently used in Documaker RP
applications. Run the testing tool yourself for the answer.

Example 1 These examples search for a list of nodes with or without conditions. Keep in mind a
condition is always placed within brackets, as shown here: [condition].

This Returns

Forms/Form/Car A list of the Car nodes

Forms/Form/
Car[@*][position()<3]

The first two nodes in the Car node list

Forms/Form/
Car[@Name][position()>1]

A list of the Car nodes above the first element

Forms/Form/
Car[text()][position()!=2]

A list of the Car nodes, excluding the second one

Forms/Form/Car[Model] A list of Car nodes that have a child named Model

Forms/Form/Car/node() A list of children nodes under the Car nodes

Forms/Form/Car/Coverage[1] A list of first child Coverage under the Car nodes

Forms/Form/
Car[@Name=’Car1’]/Coverage

A list of nodes Coverage under Car1

Using XPath

127

Example 2 These examples search for the path for a single element:

Example 3 These examples search for a list of attributes:

Example 4 These examples search for a single attribute:

Example 5 These examples search for a list of text strings:

This Produces

Forms/Form/Car[@*][1] The first node of the Car list with any attributes

Forms/Form/Car[@Name][last()] The last node of the Car list with the attribute Name

Forms/Form/
Car[@Name=’Car1’]

The Car node with attribute name Car1

Forms/Form/
Car[Model=’Toyota’]

The Car node with a child Model that has a text string
of Toyota.

Forms/Form/
Car[Mode=’Nissan’]/
Coverage[3]

The third child node of Coverage under the parent
node Car that has a child named Model with a text
string of Nissan

This Produces

Forms/Form/
Car[Model=’Nissan’]/@*

A list of attributes of the Car node that have a Child
node named Model with a value of Nissan

Forms/Form/Car/@Name A list of the attribute Name that has a parent node of
Car

This Produces

Forms/Form/
Car[Model=’Honda’]/@*[1]

The first attribute of the Car node that has a child
named Model with a value of Honda

Forms/Form/Car
Model=’Honda’]/@Name

The attribute Name of the Car node that has a child
named Model with a value of Honda

Forms/Form/Car[1]/@Name The attribute Name of first Car node

This Produces

Forms/Form/Car/text() A list of text strings of Car nodes

Forms/Form/Car[Model]/text() A list of text strings of Car nodes which have children
named Model

Chapter 2
Understanding the System

128

Example 6 These examples search for a single text string:

NOTE: There are three types of returned lists: elements, attributes, and text. When a
list includes only one element, the structure returns a single element instead
of a list.

Example 7 These examples search for the name of elements:

Example 8 These examples concatenate text strings:

This Produces

Forms/Form/
Car[Model=’Toyota’]/text()

The text string of the Car node which has a child name
Model with a value of Toyota

Forms/Form/
Car[Model='Honda']/parent/
text()

The text string of the node Form which has a child
named Car that, in turn, has a child named Model with
a value of Honda

This Returns

//*[name()=’Car’] “Car” nodes

Forms/Form/
*[name()=’Car’][2]/text()

A text string of second “Car” nodes

This Returns

concat('Car1', 'and', 'Car2')" A string “Car1 and Car2”

concat(//Car[@Name='Car1'],
'and',//Car[@Name='Car3'],
'are imported cars.'))

A string “Toyata and Nissan are imported cars.”

Using XPath

129

Example 9 These examples search for strings:

Example 10 This examples returns a buffer that contains all descendants of the specified element:

Note that the XPath must point to a single element, such as Car[2] in the example.

This Returns

string(‘ 12345’) The string “ 12345”

string(//Car[2]/*[1]) The string of the first child of the second Car node

This Produces

xpathw32 /f=cars.xml /x="//Car[2]/xml() <Car Name=" Car2">Car 2 is Honda
<Model>Honda</Model>
<Coverage>Cover 4</Coverage>
<Coverage>Cover 5</Coverage>
<Coverage>Cover 6</Coverage>
</Car>

Chapter 2
Understanding the System

130

EXAMPLE XML FILE

Here is an example XML file (TEST.XML):

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample XML file generated by XML Spy v4.2 U (http://
www.xmlspy.com)-->

<Forms>

<Form>

<Car Name=" Car1">Car 1 is Toyata

<Model>Toyota</Model>

<Coverage>Cover 1</Coverage>

<Coverage>Cover 2</Coverage>

<Coverage>Cover 3</Coverage>

</Car>

<Car Name=" Car2">Car 2 is Honda

<Model>Honda</Model>

<Coverage>Cover 4</Coverage>

<Coverage>Cover 5</Coverage>

<Coverage>Cover 6</Coverage>

</Car>

<Car Name="Car3">Car 3 is Nissan

<Model>Nissan</Model>

<Coverage>Cover 7</Coverage>

<Coverage>Cover 8</Coverage>

<Coverage>Cover 9</Coverage>

</Car>

</Form>

</Forms>

131

Chapter 3

Implementing Your System

This chapter provides an overview of how a system is
implemented. Although implementations are typically
handled by the Professional Services Group and each
implementation differs, you can make your
implementation run more smoothly by understanding
the procedures and methodologies outlined here.

In general terms, a system implementation is a set of
structured procedures and processes our Business
Analysts follow to design, develop, and set up a
customized system for a particular client.

This chapter discusses...

• Why Use a Methodology? on page 132

• Gathering Information on page 134

• Roles and Responsibilities on page 135

Chapter 3
Implementing Your System

132

WHY USE A
METHODOLOGY?

When each system implementation is so unique and so configurable, why use a
methodology?

Because, a methodology allows for consistent handling of each specific
implementation. Consistency promotes efficiency. The smoother and more efficient a
system implementation is, the more satisfied you will be. Furthermore, it will be easier
to maintain and, if necessary, easier to modify the implemented system should your
needs change.

The system Implementation methodology is followed for each implementation project.
The methodology is designed to allow for project flexibility to accommodate the
various system customizations.

The System Implementation Methodology is comprised of these phases:

Phase 1 - Define Requirements

Phase 2 - Create Detail Forms Requirements

Phase 3 - Build the Master Resource Library

Phase 4 - Install and Configure the System

Phase 5 - Test the System

Phase 6 - Go Live

The methodology phases are cyclical. After completing Phase 6, Phase 1 begins again,
to continually evaluate the system and to incorporate product maintenance.

1

Define Requirements

2

Create Detail Forms
Requirements

6

Go Live

3

Build Master
Resource Library

5

Test the System

4

Install and Configure
System

Why Use a Methodology?

133

Because each system implementation is different, the time frame for completing each
phase varies. Here is a summary of the phases and the related tasks:

Phase 1 - Define the
requirements

Defining the requirements is the planning and definition phase of an implementation.
In this phase, your processing needs are defined. Your input is very important in
accurately identifying your needs.

The primary output of this phase is the Requirements Definition Documentation. This
document includes the project scope and schedule, information regarding the
technical and functional areas targeted for document automation, and the steps
outlining how the implementation will proceed.

Phase 2 - Create the detail
forms requirements

Creating the detail forms requirements involves specifying all forms to be converted
from paper to electronic forms, and determining how to automate the transferal of data
to the forms. Determining how to automate data transfer includes defining how the
data will be mapped, defining the data transfers from the source file to the forms, and
the form data format. This process requires mapping data in hierarchical succession:
form set, form, section, fields, field attributes, and field sequencing and navigation
logic.

Documaker Studio or the legacy Docucreate tools are often used during this phase. You
can learn more about these tools in the Documaker Studio User Guide or the
Docucreate User Guide.

Phase 3 - Build the Master
Resource Library

Building the Master Resource Library involves organizing and setting up the resources
to be used by your system. Here a complete library of reusable resources is set up. Your
users will select from these resources to complete their work activities.

A resource library is divided into these libraries: Section Library, Variable Data
Dictionary Library, and Rules Library. Each of these libraries contains files that store
different resource components. Depending on your system configuration and location,
you may have separate Distributed Resource Libraries, as a subset of the Master
Resource Library.

In addition to setting up the resources, this phase involves configuring forms sets, the
rules used for processing forms, and the system initialization files that determine how
your system operates. During this phase the base system is customized to meet your
needs. Customization can range from changing system functions to changing the
system interface.

Phase 4 - Install and
configure the system

During this phase, the various system modules are installed. After installing the
components, you test various aspects and functions of the system, such as printing and
archiving, using test scenarios and sample data. Adjustments are made if required to
the configuration files. If available, you should use real data for these initial tests.

Phase 5 - Test the system In Phase 5, system testing begins. Detailed test matrices are created, which are used
to test the entire system using real data. A test matrix is a listing of the functions,
conditions, and exceptions of the system you want to test. It’s important to have plenty
of real data you can use for testing purposes during this phase.

Phase 6 - Go live In Phase 6, the system is now ready for full production. The support personnel
assigned to the project will assist you with start up procedures and training.

Chapter 3
Implementing Your System

134

GATHERING
INFORMATION

At the beginning of any implementation, it is important to gather as much relevant
information as possible. This information helps ensure requirements are correctly
defined, future goals are taken into consideration, and the solution meets your needs
exactly.

UNDERSTANDING YOUR NICHE

Understanding your current and future industry positioning is integral in successfully
implementing a customized system. The system must suit your needs now, and expand
as your company grows. Knowing where you expect to take the company in the future
is important for defining a system.

The implemented system must be set up so it can grow as your company grows. The
system must also serve the your current needs. To define your current and future
needs, you will be asked questions about the your company’s goals, industry trends,
and company projections, such as:

• Do you expect a significant growth in revenue over the next five years? What is
your vision for the future?

• Do you expect to experience a reduction or increase in number of employees?

• Do you envision growth into other related or non-related industries?

• How far has the company grown (or downsized) in the past few years? Can you
detect industry trends based on past revenues, and financial status?

One of the greatest benefits of a system is its flexibility. Determining where you are and
where you expect to be in the future helps to make sure your system solves your
business problems today and tomorrow.

UNDERSTANDING YOUR ORGANIZATION

Understanding your organization is also important in fulfilling your needs. It helps to
understand the chain of command, and the responsibilities associated with each role
in your organization. To gather information about your organization, you will be asked
questions such as:

• Have you had previous experience with document automation? How would you
describe that experience positive?

• How many data entry operators do you have, and who and where are they?

• What percentage of total time do employees at each level spend on the system?

• Is there a specific organizational hierarchy or chain of command within the
company?

• What is your corporate culture? Is there a discreet division of labor at all levels, or
is there cross-training and information sharing?

You may also have documentation about your company, future company directions,
system flows and workflows, and other information which is important in mapping an
implementation strategy. This background information is important in defining the
best solution for your company.

Roles and Responsibilities

135

ROLES AND
RESPONSIBILITIES

There are many people involved in a system implementation project. A system
implementation project team is comprised of both Documaker Professional Services
personnel and personnel from your company. The team's goal is to provide a seamless
integrated solution for the your document automation needs.

You are an integral member of the system implementation team. With your knowledge
of your business needs, you can often be the navigator or guide during the
implementation process.

Documaker Professional Services personnel include:

BUSINESS ANALYST. Throughout the project the Business Analyst is responsible for
coordinating the project, creating the phase deliverables, and keeping apprised of the
status of all processes and subprocesses within the project.

PROJECT MANAGER. The project manager is involved in initial project analysis and
planning, and sizing of the system component development process. The project
manager is also responsible for creating the project schedule.

SYSTEM DEVELOPERS. The developers are primarily responsible for coding the system
components. Additionally, the programmers may provide analysis, and planning input
during the initial phases. Professional Services personnel are involved in
customization projects.

Chapter 3
Implementing Your System

136

137

Chapter 4

Setting Recipients and Copy
Counts

This chapter describes how you can specify recipients
for the individual forms that comprise your form sets
and how you can specify the number of copies each
recipient will receive.

In this chapter you will find information about:

• Concepts on page 138

• Key Files on page 139

• Trigger Table Record Format on page 140

• Specifying the Transaction Trigger Table on page
142

• How Transaction Triggering Works on page 143

• Form Level Triggers on page 146

• Master and Subordinate Sections on page 149

• Examples on page 151

• Summary on page 168

Chapter 4
Setting Recipients and Copy Counts

138

CONCEPTS In a manual form system, a data entry operator selects the forms that make up a
document set. Some forms may be mandatory and are always included. Others are
optional and must be specified by the operator.

The operator chooses forms by examining the data at hand and considering certain
conditions pertaining to that data. For instance, if the operator is creating insurance
policies, he or she would have to know:

• What company is this for?

• What line of business?

• What type of transaction is this?

• Does the agent need a copy?

• How many copies?

• What about the home office copy?

And so on. The answer to each question affects the makeup of the document set you
will assemble.

Documaker Server automates the tasks and selection decisions that an operator
makes. The set of forms to be printed, and the recipients of those forms, are selected
by executing a series of business rules that test the supplied data to see if certain
conditions are met.

As matching conditions are found in the data for a transaction, a form set can be
constructed, form by form, with all the proper recipients designated. This is the first
step in the assembly of a document set. Later, once the set of forms has been
determined, other business rules for each form and variable field can be executed to
begin to construct the output data, field by field, within each form.

NOTE: Docucreate includes the Form Set Manager, a tool you can use to set recipients
and copy counts. This chapter explains how the underlying files and settings
work. You can change these settings either by changing the files in a text editor
or by using the Form Set Manager. You can find more information about the
Form Set Manager in the Docucreate User Guide and in the tool’s on-line Help.

Key Files

139

KEY FILES Here is a discussion of the key files which the system uses to determine who gets what
form and how many copies it should print. You’ll also find information about important
concepts, such as form and section (image) level triggers.

TRANSACTION TRIGGER TABLE

The transaction trigger table (also known as the SETRECIP table, or SETRCPTB.DAT file)
is a text file used by Documaker Server to define the conditions under which certain
forms are included in form sets, and which recipients are to receive the forms. Each
record in the transaction trigger table defines a triggering condition for a form or
section and is referred to as a trigger record, or, more simply, a trigger.

Trigger Levels

There are two levels of trigger records: form level triggers which trigger forms, and
section level triggers which trigger sections within a form. section level triggers are
optional, since some forms automatically include all necessary sections. Also, form
level triggers can be optional, since a form can also be triggered by an section level
trigger.

NOTE: sections are defined by FAP files and are maintained using Documaker Studio
or Image Editor. A section may be an entire page, or a page segment. Forms can
be made up of many pages, each containing one or more sections.

FORM SET DEFINITION TABLE

The transaction trigger table works with the form set definition table (also known as
the FORM.DAT file) to define the required form set. Together they define many complex
inter-relationships and rules, and a number of powerful options by which forms and
sections can be triggered, and recipients defined.

In this chapter we will discuss the...

• Purpose of the transaction trigger table.

• Record layout of the transaction trigger table.

• Runtime setup options for the transaction trigger table.

• Rules under which the transaction trigger table program logic operates.

In addition, this chapter discusses several scenarios to illustrate many of the options
and variations used to trigger forms and sections.

Chapter 4
Setting Recipients and Copy Counts

140

TRIGGER TABLE
RECORD FORMAT

The transaction trigger table is a semi-colon delimited text file. Each record in the table
defines a form level or section level trigger condition. Each record contains the
following fields:

;GroupName1 (Company)

;GroupName2 (Line of Business)

;Form name

;Image name

;Transaction codes

;Recipient list

;Search mask 1 (Counter)

;Overflow field 1 (Occurrence flag)

;Overflow field 2 (Records per overflow image)

;Overflow field 3 (Records per first image)

;Recipient Copy count

;Search mask 2 (True/False)

;Custom rule;

NOTE: Semicolons are required as field separators, or placeholders. When values are
omitted from optional fields, one or more consecutive semicolons may appear.

The table describes each field.

Field Description

GroupName1 Matches the GroupName1 field in the form set definition table. In
an insurance industry application, this would typically contain the
Company code. <Key1Table> in the FSISYS.INI file.

GroupName2 Matches the GroupName2 field in the form set definition table. In
an insurance industry application, this would typically contain the
“line of business” code. <Key2Table> in the FSISYS.INI file.

Form name The name of the form, as specified in the form set definition table.
Note: Form names are descriptive, and do not correlate to any
physical file name.

Image name The name of a section (image) within a form, as specified in the
form set definition table. This name also correlates to a physical
section file (.FAP file) and often to a Data Definition Table file (.DDT
file).
Note: An section level trigger record requires an entry in this key
field; a form level trigger record must omit any value in this field.

Trigger Table Record Format

141

Transaction codes By including one or more transaction codes in this field, a form is
triggered only if the extract file record includes that transaction
code.
If no transaction code value is mapped from the extract data for a
transaction, the system considers all triggers eligible, regardless of
whether they specify a transaction code list.
Conversely, if a transaction code value is mapped from the data,
the system only considers those triggers that have the same value
to be eligible for evaluation.

Recipient list Lets you optionally specify certain recipients.

Search mask 1
(Counter)

Defines the criteria to determine when a form belongs in a form set
(or a section within a form). The criteria lets Documaker Server get
specific data from the extract file. One form (or section) is added for
every occurrence of the Search Mask per Transaction when the
overflow flag is set.

Occurrence
(overflow) Flag

Indicates the need to calculate overflow conditions. Enter zero (0)
for no overflow or 1 for overflow.
Also used for Master and Subordinate form and section level flags.
You can enter:
M=master (used on form level triggers)
S=subordinate (used on section level triggers)
F=tells the system to override any previous copy count settings
and use the copy count settings in this trigger file (used on form
level triggers). In essence, this flag tells the system that if this form
is already triggered, don't trigger it again—just modify the
previously triggered copy.

Records per
overflow image

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on the specified overflow form.

Records per first
image

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on a specific form before
overflowing to a new form.

Recipient copy
count

Specifies the number of copies a recipient receives.

Search Mask 2
(True/False)

Similar to Search Mask 1, but only one form will be triggered,
regardless of how many occurrences of the condition exists.

Custom Rule Available field for use with custom rules or search masks. Most
common custom rule is RECIPIF.

Field Description

Chapter 4
Setting Recipients and Copy Counts

142

SPECIFYING THE
TRANSACTION

TRIGGER TABLE

You specify the file name of the transaction trigger table (also known as the SETRECIP
table) in the FSISYS.INI file. For example:

< Data >

SetRcpTb = SETRCPTB.DAT

< MasterResource >

FormsetTrigger = SETRCPTB.DAT

The form set definition table is also specified in the FSISYS.INI file, in the following
control group:

< MasterResource >

FormDef = FORM.DAT

There are two form set level rules that relate to the transaction trigger table in the
AFGJOB.JDT file:

<Base Form Set Rules>

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

The LoadRcpTbl rule loads the entries from the SETRCPTB.DAT file for the current
GroupName1, GroupName2, and Transaction code. The RunSetRcpTbl rule runs all
entries in the transaction trigger table that pertain to the current GroupName1,
GroupName2, and Transaction code to generate the form set for the current
transaction.

For more information on these and other rules, see the Rules Reference.

How Transaction Triggering Works

143

HOW
TRANSACTION

TRIGGERING
WORKS

The transaction trigger table works with the extract file, TRN file (usually TRNFILE), and
the form set definition file (usually FORM.DAT). The TRNFILE contains a record for each
transaction passed to Documaker Server.

The record format for the TRNFILE varies by implementation; the format is specified by
a DFD (Data Format Definition) file. Each TRNFILE record contains a series of offsets
used when processing the transaction.

Offsets in a TRNFILE record define the location where:

• The transaction begins in the extract file

• Data for the transaction is stored in the NAFILE

• The form set for the transaction is stored in the POLFILE

• The TRN record itself begins (this offset is stored in the BCH file, so the entire
TRNFILE is not needed)

The form set definition file (FORM.DAT) defines the organization of sections within
forms and the organization of forms within form sets. The FORM.DAT is a semi-colon
delimited file; its format includes information about…

• Company

• Line of business

• Forms (form options)

• Sections (section options)

• Recipients

• Recipient section copy counts

The recipient table, also known as the transaction trigger table (usually
SETRCPTB.DAT), defines when to include a particular form section or recipient of a form
section in a form set. The recipient table contains information necessary to determine
if a condition exists to include a form. Conditions may be defined by a combination of
transaction types and search masks for the extract file as defined above.

Three of the first five transaction trigger fields (GroupName1, GroupName2, and
Transaction Code) must match some records within the extract file in order for the
trigger conditions to be evaluated. For example, if there are no records with the
transaction code specified in the trigger, that trigger will be skipped. If extract records
exist that match these three fields, the remaining fields of that trigger are evaluated.

It is not required to use all of the available fields in a transaction trigger record, but if
it is necessary to use multiple search masks and/or a custom rule, the following logic
applies when evaluating whether to trigger that form or section.

Chapter 4
Setting Recipients and Copy Counts

144

SECTION LEVEL TRIGGERS

Here are some examples of how the system evaluates triggers:

The system evaluates search mask 2 first. When this evaluation is performed, the
system also takes the copy count into consideration.

If the copy count is zero (0):

• If search mask 2 is true, evaluate search mask 1. If search mask 1 is true, turn on
the section based on the copy count (for instance, if the copy count is zero (0), then
turn on nothing). If false, turn off the section.

• If search mask 2 is false, then do nothing.

If the copy count is not zero:

• If search mask 2 is true, then evaluate search mask 1. If search mask 1 is true, turn
on the section based on the copy count (for instance, if the copy count is zero (0),
then turn on nothing). If false, turn off the section.

• If search mask 2 is false, turn off the section.

With these settings:

Copy Count Search Mask 1 Search Mask 2 The result is:

0 T T Turn off

0 T F Do nothing

0 F F Do nothing

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

With these settings:

Copy Count Search Mask 1 Custom Rule The result is

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

How Transaction Triggering Works

145

When search mask 1 and custom rule are specified, the system uses the custom rule
only. When the custom rule is evaluated:

• If true, turn on the section based on the copy count (for instance, if the copy count
is zero (0), then turn on nothing)

• If false, do not turn on the section.

The system evaluates search mask 2 first. When this evaluation is performed, the
system also takes the copy count into consideration.

If the copy count is zero (0):

• If search mask 2 is True, evaluate the custom rule. If the custom rule is True, turn
on the section based on the copy count (for instance, if the copy count is zero (0),
then turn on nothing). If false, turn off the section.

• If search mask 2 is false, then do nothing. The custom rule will be ignored. Leave
the section as is.

If the copy count is not zero:

• If search mask 2 is true, then evaluate the custom rule. If the custom rule is true,
turn on the section based on the copy count (for instance, if the copy count is zero
(0), then turn on nothing). If false, turn off the section.

• If search mask 2 is false, turn off the section.

Non 0 T T Turn On

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn on

With these settings:

Copy Count Search Mask 2 Custom Rule The result is

0 T T Turn off

0 T F Turn off

0 F F Do nothing

0 F T Do nothing

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

Chapter 4
Setting Recipients and Copy Counts

146

FORM LEVEL
TRIGGERS

Here are some examples:

At the form level, search mask 2 is evaluated first. It is unlike the section level in that
the copy count is not considered.

If search mask 2 is true, search mask 1 is evaluated:

• If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

• If false, do not trigger the form.

With these settings:

Copy Count Search Mask 1 Search Mask 2 The result is:

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

With these settings:

Copy Count Search Mask 1 Custom Rule The result is:

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn on

Form Level Triggers

147

When search mask 1 and custom rule are specified, the system uses the custom rule
only. When the custom rule is evaluated:

• If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

• If false, do not trigger the form.

At the form level, search mask 2 is evaluated first. It is unlike the section level in that
the copy count is not considered. If search mask 2 is true, the custom rule is evaluated:

• If true, trigger the form based on the copy count (for instance, if the copy count is
zero (0), then turn on nothing)

• If false, do not trigger the form.

With these settings:

Copy Count Search Mask 2 Custom Rule The result is:

0 T T Turn off

0 T F Turn off

0 F F Turn off

0 F T Turn off

Non 0 T T Turn on

Non 0 T F Turn off

Non 0 F F Turn off

Non 0 F T Turn off

Chapter 4
Setting Recipients and Copy Counts

148

If search mask 2 is false, do not trigger the form.

When a transaction trigger table entry is evaluated to be true or false, the effect varies
depending on the type of trigger. The following table explains the effects of form and
section level triggers:

Logic Form Level Trigger Section Level Trigger

True Turns on all sections in the form
for selected recipients with the
copy count specified in the copy
count field in the transaction
trigger table entry.
Turns on sections in the form for
non-selected recipients only if
those sections have a copy count
of at least 1 in the form set
definition table.

Turns on the specified section for the
selected recipients with the copy
count specified in the copy count field
in the transaction trigger table entry.
Turns on other sections in the form
with the same recipients with a copy
count of at least 1 in the form set
definition table.

False Does not turn on any images for
any recipients.

Turns off the specified image by
setting the copy count to zero (0) for
the selected recipients or does
nothing.

Master and Subordinate Sections

149

MASTER AND
SUBORDINATE

SECTIONS

The set recipient table contains both form and section (image) level triggers to handle
cases of conditional sections on forms. There are two flag options you can use in the
set recipient table (SETRECIP) for transaction triggering. These two flags, S and M, are
used to regulate the evaluation of section level triggers and are placed in the
Occurrence (overflow) flag field of form or section level triggers.

NOTE: When you are using master and subordinate triggering, keep in mind you
cannot evaluate multiple form level triggers. The system limits you to a single
form level trigger for a given group of sections. You can repeat the same
sections for another form level trigger.

MARKING SUBORDINATE SECTIONS

The S flag, called the subordinate flag, identifies the section as subordinate to the
parent or master form. The subordinate flag is enabled when you place an uppercase S
in the Occurrence flag field (which is the 8th semi-colon delimited field of each table
entry), and may be separated from the overflow flag (0 or 1) by a comma. As long as
there is an uppercase S character in the flags field, the section will be treated as a
subordinate. The S flag makes the section level trigger dependent on the successful
triggering of its parent form by the form level trigger for that form. If the parent form
was not triggered on its own account, such as if it was added because of an underlying
non-subordinate section being triggered, then all subordinate sections triggers are still
ignored.

The intended use of this flag is to eliminate redundant conditional logic at both the
section and form level, as well as to maintain a hierarchy of form and section with
respect to the inclusion of these entities into a form set. A subordinate section cannot
cause the inclusion of the parent form because if the form was not triggered then the
subordinate section triggers are never processed. The use of subordinate sections
lends itself largely to situations where you want to trigger a form based on some
condition, and then conditionally add sections to that form.

If the form was not triggered then all underlying section triggers can be ignored, which
eliminates unnecessary processing. The subordinate flag also eliminates processing
the same conditional logic over and over again since the logic is only performed once
at the form level.

Subordinate sections are subordinate to the master (or parent) form level trigger being
true or false, and not actually to the form being triggered. Therefore, it is probably not
a good idea to mix subordinate and non-subordinate sections under the same parent
form. If the form was triggered by a non-subordinate section, and not by its own
conditional, then all subordinate sections for that parent form will still be ignored,
despite the fact the form was triggered.

Chapter 4
Setting Recipients and Copy Counts

150

MARKING MASTER FORMS

The master form flag, uppercase M, works in a similar manner but on the form level. The
M flag is used only with form level triggers and is ignored if used with a section level
trigger. The M flag is used to signify a master form level trigger, causing all of the
section level triggers beneath the master form level trigger to be treated as if they were
subordinate section level triggers.

When you use the M flag with a form level trigger, it does not matter whether the
underlying section level triggers have the S flag—they will all be treated as if they did.
If effect, if the logic in a master form level trigger fails, the form does not trigger and all
of the form’s section level triggers are ignored. The next section illustrates transaction
triggering logic through specific examples.

Examples

151

EXAMPLES The transaction trigger table works with the form set definition table. The transaction
trigger table is usually named SETRCPTB.DAT and the form set definition table is
usually named FORM.DAT.

The FORM.DAT file defines which sections make up a form. There are many possible
combinations of sections that can constitute a form. A form can be comprised of a
single section or multiple sections. The FORM.DAT file also specifies which recipients
get which sections. It is possible to have a single form that is composed of four
sections, three of which are constant for all recipients, and one section that varies
depending on recipient.

Recipient and copy count information contained in the FORM.DAT is also included in
the SETRCPTB.DAT transaction trigger table, so it is important to understand how these
two tables work together. Designing the two tables independently can often cause
undesired results because one table is overriding the other in a manner that the user
did not anticipate. But if the two tables are designed to work together, many complex
forms with conditional sections and copy counts can be implemented.

In this topic, numerous examples of form set definition files and transaction trigger
tables are shown to illustrate some basic relationships between the form set definition
table file and the transaction trigger table file.

In each example, the FORM.DAT and SETRCPTB.DAT tables are shown along with the
resulting POL file generated by the GenData program. The POL file shows the final form
sets created by the GenData program and is used as an input file by the GenPrint
program (along with the NA file) to generate printed output.

You will find examples which discuss:

• Specifying Copy Counts and Sections on page 152

• Using Transaction Codes on page 154

• Setting Up Search Mask and Sections on page 155

• Using the RECIPIF Rule on page 157

• Using Automatic Overflow on page 159

• Using Forced Overflow on page 161

• Setting Search Masks and Recipients on page 162

• Using the Set Recipient Table and Extract Files on page 163

• Formatting Search Masks on page 164

• Sorting Forms by Recipient on page 166

Chapter 4
Setting Recipients and Copy Counts

152

SPECIFYING COPY COUNTS AND SECTIONS

One of the fields that is shared by both the transaction trigger table and the form set
definition table is the copy count. The copy count specifies the number of copies of an
section to be printed for a given recipient.

In the FORM.DAT file, there can be multiple copy counts—one for each recipient for
each section that makes up a form. However, in the SETRCPTB.DAT file, there is only
one copy count field for each entry. A single SETRCPTB.DAT entry can reference
multiple recipients however, so that one copy count field can be applied to more than
one recipient.

NOTE: You can also use GVM or DAL variables to set the copy count for a recipient. For
more information see the Docucreate User Guide or the Documaker Studio
User Guide.

The copy count is a typical interaction between the FORM.DAT and the SETRCPTB.DAT.
In this example, note from the FORM.DAT that the form DECPAGE is made up of the
sections PRUNAME, COMDEC1, COMDEC2, and COMDEC3. The other form in the
FORM.DAT is VARFLD, which is made up of one section VARFIELD.

All the sections that make up DECPAGE and VARFLD have individual copy counts
associated with each recipient. Note that the sections COMDEC2 and VARFIELD have
their copy counts set to zero (0) for each recipient. This means that the default copy
counts for these sections is zero (0), and if these forms are included in a form set, these
sections will not print for any of the listed recipients unless their copy counts are
changed by the SETRCPTB.DAT table.

Now looking at the SETRCPTB.DAT file, the first entry causes the form DECPAGE to be
loaded, provided the search mask criteria is true (which it is in this case). This first
entry is known as a form level trigger because the section name field has been left
blank. While the first SETRCPTB.DAT entry references only INSURED and AGENT in the
recipient list field, the form is also triggered for COMPANY as well because COMPANY
is listed in the FORM.DAT with a copy count of 1 for all sections that make up DEC PAGE
except COMDEC2. COMDEC2 is included in DEC PAGE for recipients INSURED and
AGENT because they are in the form level SETRCPTB.DAT entry recipients list field.

The second SETRCPTB.DAT line is a section level entry, referencing the section
COMDEC2 in the form DECPAGE. The purpose of this section level entry is to set the
copy count of the section COMDEC2 (which defaults to zero (0) in the FORM.DAT) so
that it will be included in or excluded from the DEC PAGE if the conditions in its
SETRCPTB.DAT entry are true (more on this in Example 3).

In this example, COMDEC2 has already been included for INSURED and AGENT by the
previous form level entry. If the conditions of this section level entry are true, the
section COMDEC2 will be included for recipient AGENT with a copy count of 1 (which in
this case is redundant since the previous form level entry already did this). However,
since the section level entry conditions are false, the copy count of COMDEC2 for
AGENT is set to zero (0). Looking at the POL file, COMDEC 2 only printed for INSURED,
because the copy count for AGENT was set to zero (0).

Examples

153

The final three SETRCPTB.DAT entries are all form level entries for VARFLD. Note that in
the FORM.DAT, VARFLD, which is composed of one section, VARFIELD has two
recipients, INSURED and COMPANY, both of which have copy counts of zero (0). The
three SETRCPTB.DAT entries for VARFLD each reference a different recipient in the
recipient list field and assign them copy counts. COMPANY gets 1 copy, INSURED gets
2 copies, and AGENT gets 3 copies. However, looking at the POL file, VARFLD printed
once for COMPANY and twice for INSURED, but it did not print at all for AGENT. This is
because, even though AGENT was included in the SETRCPTB.DAT entry, AGENT was
never an original recipient for VARFLD in the FORM.DAT.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|D<INSURED(0),COMPANY(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;T1;INSURED,AGENT;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;DEC
PAGE;COMDEC2;T1;AGENT;11,HEADERREC,11,SPCIALREC,25,Special;0;0;0;1;
;;;

;SAMPCO;LB1;VARFLD;;T1;COMPANY;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;VARFLD;;T1;INSURED;11,HEADERREC,96,~O;0;0;0;2;;;;

;SAMPCO;LB1;VARFLD;;T1;AGENT;11,HEADERREC,96,~O;0;0;0;3;;;;

POL file ;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 3234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 5234567

Chapter 4
Setting Recipients and Copy Counts

154

USING TRANSACTION CODES

In this example, the same environment as in the first example, Specifying Copy Counts
and Sections, is used. In this case, however, the second entry in the SETRCPTB.DAT has
been slightly modified. The transaction code field has been changed from T1 to T2 to
illustrate that not having the proper transaction code will cause that entry to be
skipped.

In this example, the SETRCPTB.DAT section level entry that references COMDEC2 is not
being evaluated because the transaction code field does not match the data contained
in the extract file. The result of skipping this entry is, unlike the previous example,
where COMDEC2 did not print for AGENT, in this example COMDEC2 prints for both
AGENT and INSURED.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|D<INSURED(0),COMPANY(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;T1;INSURED,AGENT;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;DEC
PAGE;COMDEC2;T2;AGENT;11,HEADERREC,11,SPCIALREC,25,Special;0;0;0;1;
;;;

;SAMPCO;LB1;VARFLD;;T1;COMPANY;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;VARFLD;;T1;INSURED;11,HEADERREC,96,~O;0;0;0;2;;;;

;SAMPCO;LB1;VARFLD;;T1;AGENT;11,HEADERREC,96,~O;0;0;0;3;;;;

POL file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 3234567

;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 5234567

Examples

155

SETTING UP SEARCH MASK AND SECTIONS

There are two search mask fields in the SETRCPTB.DAT table structure. The first search
mask is known as the counter search mask because it works with the overflow counters
that immediately follow it in the transaction trigger table format, provided that the
overflow flag is set.

The second search mask is known as the true/false search mask. Both search masks
can be used to set conditions to evaluate whether a set recipient entry should be
executed. In this example, the second SETRCBTP.DAT entry that references COMDEC2
has a multiple condition counter search mask.

NOTE: If you want the system to stop searching after it finds the first match, use the
true\false search mask instead of the counter search mask. If you place the
search mask in the counter search mask field, the system finds the first match
and then looks for multiple occurrences.

The first entry in the SETRCPTB.DAT table causes the form DEC PAGE to be triggered for
recipients INSURED and AGENT. All sections that make up DEC PAGE and have
INSURED and/or AGENT as recipients (from the FORM.DAT file) are triggered with a
copy count of 1 for each recipient. The second SETRCPTB.DAT entry is a section level
entry that references COMDEC2.

The search mask in this entry will obviously fail because the first condition looks for
HEADERREC at offset 11 and the second condition also looks at offset 11, but for
SPCIALREC. Both conditions cannot be true at the same time, so the search mask fails.
The result of this section level search mask failing is to set the copy count for the
recipients in the recipient list field, in this case AGENT, to zero (0).

Were the search mask true, AGENT would have been set to a copy count of 1 (which
would be no change, since AGENT already had a copy count of 1 for COMDEC2).

Looking at the POL file, COMDEC2 was printed only for INSURED because the copy
count of COMDEC2 for AGENT was set to zero (0) when the section level entry in the
SETRCPTB.DAT file failed.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC1|DS<INSURED(1),COMPANY(1),AGENT(1)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|D<INSURED(0),COMPANY(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;T1;INSURED,AGENT;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;DEC
PAGE;COMDEC2;T1;AGENT;11,HEADERREC,11,SPCIALREC,25,Special;0;0;0;1;
;;;

;SAMPCO;LB1;VARFLD;;T1;COMPANY;11,HEADERREC,96,~O;0;0;0;1;;;;

;SAMPCO;LB1;VARFLD;;T1;INSURED;11,HEADERREC,96,~O;0;0;0;2;;;;

;SAMPCO;LB1;VARFLD;;T1;AGENT;11,HEADERREC,96,~O;0;0;0;3;;;;

Chapter 4
Setting Recipients and Copy Counts

156

POL File ;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 3234567

;SAMPCO;LB1;DECPAGE;;R;;PRUNAME|D<INSURED,COMPANY,AGENT>/
COMDEC1|DS<INSURED,COMPANY,AGENT>/COMDEC2|DS<INSURED,>/
COMDEC3|DS<INSURED,COMPANY,AGENT>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<COMPANY>;

;SAMPCO;LB1;VARFLD;NEW FORM;RD;;VARFIELD|DN<INSURED(2),>;

\ENDDOCSET\ 5234567

Examples

157

USING THE RECIPIF RULE

The RECIPIF rule is the primary rule used in the custom rule field. There are other rules
which have been written for specific implementations that have been used in this field,
but the RECIPIF rule is a part of base. The RECIPIF rule allows for customized search
mask evaluations.

In this example, the RECIPIF rule is being used to evaluate two different conditions:

• does ‘1995’ exist beginning at offset 51 in records with HEADERREC beginning at
offset 11

• does ‘T1’ exist at offset 45 in records with FRMLSTREC beginning at offset 11

Looking at the entry in the SETRCPTB.DAT, notice that there are no search masks - only
the RECIPIF rule is being used. Following the Search Mask 2 field, the rule name
appears, and the rule itself appears in the following field. Each element of the rule is
separated by double colons (::).

The first RECIPIF statements assign variables to the search criteria. In this case, A is
assigned to the information appearing in the four characters beginning at offset 51 in
records with HEADERREC beginning at offset 11. And B is assigned to the information
appearing in the two characters beginning at offset 45 in records with FRMLSTREC
beginning at offset 11.

The next RECIPIF statement sets up the evaluation logic for the rule. What should A
equal? What should B equal? Should both conditions be true, or just one? In this case,
A should be ‘1995’ and B should be ‘T1’, and both need to be those values for the rule
to be evaluated as true. An OR condition could have been used, which would have been
true if either A or B matched their desired values.

The next RECIPIF statements set the return values. In this case, if A=‘1995’ and B=‘T1’,
then a ‘1’ is returned (note that the boolean ‘1’ is enclosed both in quotes and carats,
such as “^1^”). If those conditions are not met, then return a Boolean zero (0). These
return values can be reversed to return a zero (0) when the RECIPIF criteria is true and
a one (1) when false, should the need arise in a particular implementation. The last
RECIPIF entry is the END statement. Here is an example of the RECIPIF rule syntax:

;recipif;var1={offset,value offset,length}::var2={offset,value
offset,length} ::if((var1=‘var1value’) boolean
(var2=‘var2value’))::return(“^#^”)::else::return(“^#^”)::end::;

NOTE: There is a space between offset,value and offset,length.

FORM.DAT file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC1|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC2|DS<INSURED(0),COMPANY(0),AGENT(0)>/
COMDEC3|DS<INSURED(0),COMPANY(0),AGENT(0)>;

SETRCPTB.DAT file ;SAMPCO;LB1;DEC
PAGE;;;INSURED,AGENT;;0;0;0;1;;recipif;A={11,HEADERREC
51,4}::B={11,FRMLSTREC 45,2}::if((A='1995') AND
(B='T1'))::return("^1^")::else::return("^0^")::end::;

Chapter 4
Setting Recipients and Copy Counts

158

POL file ;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,AGENT>/
COMDEC1|DS<INSURED,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,AGENT>;

\ENDDOCSET\ 1234567

;SAMPCO;LB1;DEC PAGE;;R;;PRUNAME|D<INSURED,AGENT>/
COMDEC1|DS<INSURED,AGENT>/COMDEC2|DS<INSURED,AGENT>/
COMDEC3|DS<INSURED,AGENT>;

\ENDDOCSET\ 2234567

Examples

159

USING AUTOMATIC OVERFLOW

In some cases, there is information on a form that will repeat an unknown number of
times. For example, an auto insurance policy may contain a form that lists the vehicles
owned by the insured. The number of vehicles will vary from one insured to another, so
there is no way to know in advance how many lines will be needed on a form to list the
vehicles. Overflow exists to handle these situations.

There are two types of overflow in the transaction trigger table, forced and automatic.
In this example, automatic overflow is used. In automatic overflow, the system
automatically determines how many entries exist and inserts them in the form.

Looking at the SETRCPTB.DAT, there is only one section level entry, referencing the
section cgdcbd. Looking at the FORM.DAT, section cgdcbd has a default copy count of
zero (0), while all the other sections have a default copy count of one (1) for all
recipients. So, triggering the section cgdcbd will trigger the remaining sections that
make up the form CGDEC.

The SETRCPTB.DAT entry has a simple counter search mask and has the overflow field
(occurrence flag) set. The next two overflow-related fields are set to zero (0), so we
know that this is an automatic overflow situation.

When this SETRCPTB.DAT entry is executed, it will keep track of the number of records
that exist in the extract file that meet this criteria and automatically insert that number
of cgdcbd sections into the form CGDEC. Looking at the POL file in this example, many
cdgcbd sections were inserted into the form to reflect the number of entries in the
extract file that met the specified transaction trigger search criteria.

FORM.DAT file ;FSI;GL;CGDEC;General Liability
Declarations;RD;;cgdctp|FDSOX<INSURED(1),COMPANY(1)>/
cgdcbd|RDS<INSURED(0),COMPANY(0)>/
cgdcbt|RDS<INSURED(1),COMPANY(1)>/
cgdcft|RDSOY<INSURED(1),COMPANY(1)>;

SETRCPTB.DAT file ;FSI;GL;CGDEC;cgdcbd;T1;INSURED,COMPANY;11,CLSSCDREC;1;0;0;1;;;;

POL file ;FSI;GL;CGDEC;General Liability
Declarations;RD;;cgdctp|FDSOX<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|\

RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RD\

S<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<\

INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcft|RDSOY<INSURED,COMPANY>/cgdctp|RDSOX<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RD\

Chapter 4
Setting Recipients and Copy Counts

160

S<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbd|RDS<INSURED,COMPANY>/cgdcbd|RDS<\

INSURED,COMPANY>/cgdcbd|RDS<INSURED,COMPANY>/
cgdcbt|RDS<INSURED,COMPANY>/cgdcft|RDSOY<INSURED,COMPANY>;

\ENDDOCSET\ 5234567

Examples

161

USING FORCED OVERFLOW

In this example, forced overflow is used. Forced overflow differs from automatic
overflow in that there are a set number of overflow entries that can be placed on a given
form.

For example, if a form is designed to list all the vehicles owned by an insured, the form
designer might have a section that has room to list up to two vehicles. For insureds with
two or less vehicles, only that one section is needed. However, for insureds with more
than two vehicles, the designer has a separate add-on section to list the remaining
vehicles. Forced overflow is used in situations such as this.

In this example, there are two sections in the FORM.DAT that make up the form FCP
DEC. The first section, FCPDEC, is the main section, and the second section, FCPDEC2,
is the overflow section. Both sections have copy counts of zero (0), allowing the
SETRCPTB.DAT entries to control the copy counts.

The first SETRCPTB.DAT entry triggers the form for all recipients (in this case INSURED),
leaving the copy counts set to zero (0). The next entry sets FCPDEC’s copy count to 1 if
the search mask is true. The final SETRCPTB.DAT entry is the forced overflow entry. The
same search criteria is used, but the overflow (occurrence) flag is set.

The next two overflow fields specify how many entries are to be split among the two
sections. The records per overflow section (6 in this example), specifies how many
records will fit on the FCPDEC2 overflow section. The next field, records per first
section, specifies how many records will fit on the primary section FCPDEC (2 in this
example). So, FCPDEC2 will only be triggered if the search mask criteria is true and
there are more than 2 occurrences of this record type.

Looking at the POL file, FCPDEC2 was triggered twice, so there must have been at least
9 overflow records. The first two went on the first section FCPDEC, the next six on the
first FCPDEC2 section, and the remaining on the second FCPDEC2 section.

FORM.DAT file ;FSI;CPP;FCP DEC;FCPDEC OVERFLOW;RO;;FCPDEC|D<INSURED(0)>/
FCPDEC2|D<INSURED(0)>;

SETRCPTB.DAT file ;FSI;CPP;FCP DEC;;T1;INSURED;11,PREMLCREC;0;0;0;0;;;;

;FSI;CPP;FCP DEC;FCPDEC;T1;INSURED;11,PREMLCREC;0;0;0;1;;;;

;FSI;CPP;FCP DEC;FCPDEC2;T1;INSURED;11,PREMLCREC;1;6;2;1;;;;

POL file ;FSI;CPP;FCP DEC;FCPDEC OVERFLOW;RO;;FCPDEC|D<INSURED>/
FCPDEC2|D<INSURED>/FCPDEC2|D<INSURED>;

\ENDDOCSET\ 4234557

Chapter 4
Setting Recipients and Copy Counts

162

SETTING SEARCH MASKS AND RECIPIENTS

In this example, two transaction trigger table concepts are illustrated. First, notice that
there are two search masks in the SETRCPTB.DAT entries. Both the counter and true/
false search masks are being used. Also, in the recipient selection from the
SETRCPTB.DAT is used.

The FORM.DAT consists of a single form, OP654, made up of a single section, addr.
section addr is defined for three recipients, INSURED, COMPANY, and AGENT, all with
default copy counts of zero (0). In the SETRCPTB.DAT, there are two form level entries.
In the first entry, we are looking for ‘1995’ at offset 51 in records with HEADERREC at
offset 11 and 0 at position 20 in records with FRMLSTREC at offset 11.

If both of these conditions are true, OP654 is triggered for INSURED with a copy count
of 1. In the second entry, the same conditions apply for AGENT, with the exception of
looking for ‘1996’ in the counter search mask (rather than ‘1995’).

Notice in the POL file that form OP654 was triggered for INSURED only, indicating that
the second SETRCPTB.DAT entry failed. The second entry failed because ‘1996’ did not
appear at offset 51 in records with HEADERREC at offset 11. This example illustrates that
the two search masks work with a logical AND condition, since the true/false search
mask is true in both entries.

This example also illustrates letting the SETRCPTB.DAT control the copy counts for a
form. When the section OP654 was triggered for INSURED in the first entry, it was
triggered for all recipients. Since the default copy count for all recipients is zero (0),
and only INSURED was set to a copy count of 1 in the SETRCPTB.DAT entry, OP654 was
only printed for INSURED.

FORM.DAT file ;SAMPCO;LB2;OP654;First
Letter;RD;;addr|DS<INSURED(0),COMPANY(0),AGENT(0)>;

SETRCPTB.DAT file ;SAMPCO;LB2;OP654;;T1;INSURED;11,HEADERREC,51,1995;0;0;0;1;11;FRMLS
TREC,20,0;

;SAMPCO;LB2;OP654;;T1;AGENT;11,HEADERREC,51,1996;0;0;0;1;11,FRMLSTR
EC,20,0;

POL file ;SAMPCO;LB2;OP654;First Letter;RD;;addr|DS<INSURED,>;

\ENDDOCSET\ 6SAMPCO

;SAMPCO;LB2;OP654;First Letter;RD;;addr|DS<INSURED,>;

\ENDDOCSET\ 8SAMPCO

Examples

163

USING THE SET RECIPIENT TABLE AND EXTRACT FILES

Here are some hints on how to best use the set recipient table (SETRCPTB.DAT) and
extract files:

• Fewer triggers equals better performance. Each trigger is like a condition
statement for the system to evaluate. The more conditions the system has to
evaluate, the slower the processing cycle.

• Use the master (M) and subordinate (S) flags to avoid repetition.

The set recipient table contains both form and section level triggers to handle
cases of conditional sections on forms. A section level trigger can be used to
trigger a form. This is beneficial in situations where a conditional section can
trigger header and footer sections. If, however, you use it improperly, you will add
redundant conditional logic at both section and form level—which slows
performance.

There are two flags (S and M) which you can use to control the evaluation of
section level triggers and to maintain a hierarchy of form and section with respect
to the inclusion of these entities into a form set. The S flag, called the subordinate
flag, identifies the section as subordinate to the parent or master form level
trigger. If the form is not triggered, all underlying section triggers can be ignored,
which eliminates unnecessary processing. The subordinate flag also eliminates
processing the same conditional logic over and over again since the logic is only
performed once at the form level.

The master form flag (M) works in a similar manner but at the form level. When you
use the M flag with a form level trigger, it does not matter whether the underlying
section level triggers have an S flag—all will be treated as if they did. If the logic
in a master form level trigger fails, the form does not trigger and all of the form’s
section level triggers are ignored.

• Limit your use of the RecipIf rule.

The RecipIf rule is just like the IF rule except it is used in the SETRCPTB.DAT file.
The more conditions the system has to evaluate, the slower the processing cycle.
Avoiding the RecipIf rule often depends on the structure of the extract file.

The ideal situation is to trigger a form or section based on one search criteria. If
you want to trigger a form or section based on more than one search criteria, you
may need to use the RecipIf rule. The more conditions you have, the more
complicated the RecipIf rule will be. If the system has to look for a value in a given
range of data instead of at an exact location, you have to add a long and
complicated recipif. There is a price to pay for flexibility and it’s paid in
performance.

• Structure the data in your extract file to be read in the order that it will be
processed. This improves performance since the system will find the next piece of
data to process faster.

Chapter 4
Setting Recipients and Copy Counts

164

FORMATTING SEARCH MASKS

Here are some tips to keep in mind when formatting a search mask.

Spaces • You cannot have a space in any part of the search mask after the comma following
an offset unless you intend to search for that space in the extract file. For example,

"10,DATA"

is not the same as

"10, DATA"

In the second mask, the space is considered part of the search string.

• You cannot have spaces following DATA that you do not want to include in the
search. For example,

"10,DATA,20,DATA"

is not the same as

"10,DATA ,20,DATA"

In the latter, the space following the first word DATA is considered part of the
search text.

• You can have space following the numerical offset value. For example, “10 ,DATA”
is interpreted the same as “10,DATA”.

Commas You cannot search for data which contains a comma. For instance, you cannot have a
search mask of

"10,A,B"

where you expect to find

"A,B"

in your extract row.

You can, however, write the search mask to exclude every other possible character that
might occur between A at offset 10 and B at offset 12. For instance, you could create this
search mask:

"10,A,12,B,11,~+,11,~="

assuming that the only other possible combinations are A+B and A=B.

Tildes The tilde (~) represents a logical NOT of the search operation. The tilde must
immediately follow the comma—but remember that any space after the comma is
considered part of the search text.

For example, a search mask of

"10,~DATA"

is only true if “DATA” does not occur starting at offset 10.

To search for text that beings with a tilde, include two tildes in a sequence. For
example, “10,~~DATA” tells the system to search for “~DATA” beginning at offset 10.

If, however, the tilde is not the first character in the search text, you do not duplicate
the character. For instance, “10,DATA~” is all you have to enter to find “DATA~”
starting at offset 10.

Examples

165

Parentheses There is no way to search for text that begins with an open parenthesis. For instance, if
you use a search mask like

"10,(,20,DATA"

assuming that the open paren character would be at offset 10, you will not get the
results you want.

Using the OR condition The OR condition is defined as OFFSET,(DATA,DATA,DATA). You must include a comma
between the offset value and the open parenthesis. In addition, you cannot include
spaces between the comma and open parenthesis or the calculation will be
mishandled.

You can have any number of search text items inside the parenthesis as long as they
are separated by commas. Having only one search text inside the parenthesis is no
different than not using the OR condition. For example, “10,DATA” is the same as
“10,(DATA)” and “10,DATA,20,(MORE)” is the same as “10,DATA,20,MORE”.

Using the NOT condition You cannot use the tilde (NOT conditions) with OR condition data in any fashion. It
cannot be used outside the parentheses, as shown here

OFFSET,~(MORE,DATA)

nor can you include it inside the parentheses, as shown here

OFFSET,(~MORE,DATA)

The NOT condition is not supported with the OR search criteria.

Using AND and OR
conditions

You can include a mix of AND and OR conditions, but the result is an AND operation. In
other words, each individual search mask operation must evaluate to TRUE before the
result is assumed TRUE. Here is an example:

10,DATA,20,(MORE,DATA),

This statement will only be TRUE when “DATA” occurs starting at offset 10 and “MORE”
or “DATA” occur at offset 20.

Here are some additional examples:

10,(MORE),10,(DATA)

will never be TRUE since the text at offset 10 cannot be both “MORE” and “DATA”.

10,(MORE,DATA),10(SOME,DATA)

will only be TRUE when “DATA” occurs at offset 10. If the word “SOME” or “MORE”
occurs at offset 10, the other part of the condition would return FALSE and the result of
the entire statement would be FALSE. So, you can rewrite this statement simply as
“10,DATA”.

Chapter 4
Setting Recipients and Copy Counts

166

SORTING FORMS BY RECIPIENT

Use the SortFormsForRecip callback function to sort forms in a different order,
depending on recipient. This function reads the given sort table and sorts the forms by
recipient. A form identifier called a Document Type Number (DTN) tells the system how
to sort the forms. The DTN resides in the form description of the FORM.DAT file and
begins with a tilde (~).

Here is an example of how you can use Form Set Manager to specify a DTN in the
FORM.DAT file.

Keep in mind:

• This feature does not support running with the MultiFilePrint callback function.

• Use the DTN to identify the category of the form and to specify the assembly order
of the form.

• Form sets with identical DTNs are sorted and printed in the order that they are
triggered.

• When running in single-step mode, to preserve the order of the original forms
being triggered and the NA data being written, these rules must be set in this order
in the AFGJOB.JDT file:

;PrintFormset;;

;WriteOutput;;

;WriteNaFile;;

Otherwise, the POLFILE.DAT and NAFILE.DAT files will be out of sync.

• If a form should print for a particular recipient and it is omitted from the sort table,
the system warns you. For example, suppose Form1 with a DTN of 10 should be
printed for RECIPIENT1 but this form was not specified in the sort table. Here is an
example of the warning you would see in the error file:

Warning: Document <FORM1>, Description <One~10>

Recipient <RECIPIENT1> has no matching recipient codes in sort table.

Although these error messages do not stop the processing, the result will not be
sorted correctly.

The Form Description reads:
ABC~10.
The DTN is 10.

Examples

167

INI files Here is how you set up your INI file:

< Print >

 CallBackFunc= SortFormsForRecip

< Sort_Forms >

 TableName = ..\MstrRes\Table\sort.tbl

This tells the system to use a sort table called SORT.TBL.

Keep in mind, when using the SortFormsForRecip rule on UNIX platforms, you have to
enter the extract path with forward slashes, as shown here:

< Sort_Forms>

TableName = /mstrres/table/sort.tbl

Sort tables Here is an example of a sort table called SORT.TBL:

;*;10,20,30;

;CUSTOMER;10,30,20;

;AGENT,OFFICE;20,30,10;

The first line in the sort table defines the default sort order for all recipients not defined
in the sort table. The second and third lines are sort records. You set up a sort record
for each different sort order.

To set up a sort record, begin with a semicolon (;), followed by the recipient names
separated with commas (,). End the list of recipients with a semicolon (;). Here is an
example:

;Recipient1,Recipient2,Recipient3;

Next, and on the same line, list the DTNs associated with the form sets. Separate the
DTNs with commas (,) and end the list with a semicolon (;). Here is an example of a sort
record:

;Recipient1,Recipient2,Recipient3;10,20,30;

Based on the form sets and the SORT.TBL file shown above, here is an excerpt from the
resulting POLFILE.DAT file:

;SAMPCO;SMP;FORM1;One~10;R;;ImageA|D<CUSTOMER,AGENT,OFFICE>;

;SAMPCO;SMP;FORM1.1;Two~10;R;;IMAGEA2|D<CUSTOMER,AGENT,OFFICE>;

;SAMPCO;SMP;FORM2;Three~20;R;;IMAGEB|DS<CUSTOMER,AGENT,OFFICE>;

;SAMPCO;SMP;FORM3;Four~30;R;;IMAGEC|D<CUSTOMER,AGENT,OFFICE>;

\ENDDOCSET\ 1234567890

The print file for CUSTOMER will be in this order:

;SAMPCO;SMP;FORM1;One~10;R;;ImageA

;SAMPCO;SMP;FORM1.1;Two~10;R;;IMAGEA2

;SAMPCO;SMP;FORM3;Four~30;R;;IMAGEC

;SAMPCO;SMP;FORM2;Three~20;R;;IMAGEB

The print file for AGENT and OFFICE will be in this order:

;SAMPCO;SMP;FORM2;Three~20;R;;IMAGEB

;SAMPCO;SMP;FORM3;Four~30;R;;IMAGEC

;SAMPCO;SMP;FORM1;One~10;R;;ImageA

;SAMPCO;SMP;FORM1.1;Two~10;R;;IMAGEA2

Chapter 4
Setting Recipients and Copy Counts

168

SUMMARY This chapter explains the major principles illustrated in the previous examples and
reviews the triggering logic used by the transaction trigger table. Keep in mind that the
transaction trigger table cannot be viewed in isolation; it works with the form set
definition table, and both must be examined to predict triggering behavior. The form
set definition table defines the default recipients and copy counts for form sections.
The transaction trigger table may override some or all of the form set definition table
settings.

In the case of the copy count, the form set definition table defines a default copy count
for each recipient of each form section. A transaction trigger table entry defines a copy
count for one or more recipients. This transaction trigger table copy count may be the
same or different from that already defined in the form set definition table. When
evaluated, a transaction trigger table entry’s copy count will override the one already
defined for those recipients in the form set definition table for that form section.

A similar relationship exists between the form set definition table and the transaction
trigger table for recipients. The form set definition table defines the default recipients
for a form section. The transaction trigger table can be used to change the copy count
for those recipients. And if a transaction trigger table entry sets the copy count to zero
(0) for a particular recipient, it has the effect of removing that form section for that
recipient. Keep in mind that a recipient may not be included in a transaction trigger
entry unless that recipient has already been included for that form section in the form
set definition table.

For a transaction trigger table entry to be evaluated, three of the first five transaction
trigger fields (GroupName 1, GroupName 2, and Transaction Code) must match some
records within the extract file. For example, if there are no records with the transaction
code specified in the trigger, that trigger will be skipped. If extract records exist that
match these three fields, the remaining fields of that trigger are evaluated. A blank
transaction code field is treated as a wildcard, accepting any transaction code for the
trigger.

Of the two transaction trigger table search masks, the true/false mask is evaluated
first. Once an extract file record has been found that meets the true/false search mask
criteria, the counter search mask is evaluated next, if one is present. The counter and
true/false search masks work the same way when the overflow flag is not set. But when
the overflow flag is set, the counter search mask criteria search does not stop at the
first matching extract file record - the system will continue to search for all matching
extract file records.

When the system evaluates the counter or true/false mask, the system searches
through all the records in the extract file for the specified transaction. If any of the
transactions match the search criteria, the condition is considered true. If there are
multiple records with the same search criteria, the system will evaluate all of them. If
any of these records match the search criteria, the trigger condition is considered true.

For example, if Search Mask 2 is specified as 11,SPECIAL,20,5 and there are two records
containing SPECIAL at offset 11, the first one an A at offset 20 and the second one with
a 5 at offset 20, the system will evaluate both records and finding the second meets the
search criteria, the trigger condition is considered true. The system will stop searching
once a True condition is found, except in overflow situations. For overflow situations,
the system will not stop searching. Rather, it will keep searching and counting the
number of True conditions. The system will then trigger the number of sections or
forms based on that count.

Summary

169

When the custom rule RECIPIF is evaluated, the search is different than that used for
Search Masks 1 and 2 in that when the system only evaluates the first found record
which matches the search criteria. For example, if the custom rule is specified as
follows:

;Recipif;A={11,SPECIAL
51,4}::if(A=’1995’)::return(“^1^”)::else::return(“^0^”)::end::

There are two records in the extract file containing SPECIAL at offset 11. The first one
has 1994 at offset 51, and the other has 1995 at offset 51. When the system stops
searching once it finds the first record which matches the search criteria. In this case,
it evaluates the record contains 1994 and determines that the trigger condition is false.

When the overflow flag is set, the next two transaction trigger table entry fields,
records per overflow section and records per first section, are examined. If both of
these fields are set to zero (0), the system will automatically handle the overflow. If
these fields are used, they specify how many entries are to be split among the two
sections. The records per overflow section specifies how many records will fit on the
overflow section. The next field, records per first section, specifies how many records
will fit on the primary section.

At a minimum, a transaction trigger table entry must contain a GroupName1 value, a
GroupName2 value, a Form Name value, and a Copy Count value. A section level trigger
must also contain a section Name value. At a minimum, the three overflow fields must
be set to zero (0). A blank Transaction Code field acts as a wildcard, accepting any
transaction code. A blank Recipient List field will default to the recipients named in the
form set definition table. And the two Search Mask fields and the Custom Rule field
may be used as needed to produce the desired triggering results.

Chapter 4
Setting Recipients and Copy Counts

170

171

Chapter 5

Working with Fonts

A font is a collection of letters, symbols, and numbers
which share a particular design. The system provides a
tool, called Font Manager, which lets you organize sets
of fonts for section creation and printing needs.

NOTE: Both Documaker Studio and Docucreate
include a Font Manager.

This chapter provides general information on font
concepts and types and moves into the specifics of
setting up fonts and using Font Manager.

Topics included are as follows:

• Understanding Font Concepts on page 172

• Using Code Pages on page 178

• Types of Fonts on page 187

• Using System Fonts on page 190

• Using Font Cross-Reference Files on page 197

• International Language Support on page 201

• Setting Up PostScript Fonts on page 205

• Font Naming Conventions on page 210

• Using Font Manager on page 211

• Generating Files using Font Manager on page 240

• Mapping Fonts for File Conversions on page 244

NOTE: The system also includes several utilities you
can use to work with fonts. These utilities are
mentioned where appropriate throughout this
chapter and are discussed in detail in the
Docutoolbox Reference.

Chapter 5
Working with Fonts

172

UNDERSTANDING
FONT CONCEPTS

FONT TERMINOLOGY

The following is a glossary of some common typographic terms you may encounter
when working with fonts.

Typography is the art and technique of selecting and arranging type styles, point sizes,
line lengths, line spacing, character spacing, and word spacing for typeset
applications.

A typeface is a unique design of upper- and lower-case characters, numerals, and
special symbols. Times-Roman, Arial-Italic, Courier-Bold are examples of typefaces.

A font is the implementation, for a specific device, of one typeface. A font contains a
group of characters (letters, numbers, punctuation, and so on) which have a specific
form and size. As you can see below, a Courier font is one which is designed to look like
it was produced by a typewriter.

Courier fonts look like text produced by a typewriter.

A font family is family of related font typefaces. Times-Roman, Times-Bold, Times-
Italic, and Times-BoldItalic are typefaces which belong to the Times font family.

Font size refers to the vertical point size of a font, where a point is about 1/72 of an inch.

There are several other terms used to describe the characteristics of a font, including:

• Ascender

• Baseline

• Descender

The ascender is the portion of a lowercase character that extends above its main body,
as in the vertical stem of the character b.

The baseline is an imaginary line upon which the characters in a line of type rest.

The descender is the portion of a lowercase character that extends below the baseline,
as in y or g.

Kerning is the process of decreasing space between two characters for improved
readability, such as tucking a lowercase o under an uppercase T. A variation of kerning,
called tracking, involves decreasing the amount of space between all characters by a
specified percentage.

bcxy ascender

bcxy baseline

bcxy descender

Understanding Font Concepts

173

Leading is the amount of vertical space between lines of text. Leading (pronounced
ledding) is measured from baseline to baseline. On old hot-type printing presses, this
was done by inserting strips of lead between the cast type.

Fonts are measured in points. A point is a typographical unit of measure which equals

about 1/72 of an inch. For example, this is a 16 point font while the rest of the
line uses a 10 point font.

A pica is another typographical unit of measurement equal to 12 points. There are
about 6 picas in one inch.

A twip is yet another typographical unit of measurement equal to 1/20th of a point.
There are 1440 twips to one inch, 567 twips to one centimeter.

Pitch refers to the amount of horizontal space used for each character of fixed-width
fonts. This is often specified in characters-per-inch (CPI). Typically, 10-pitch equals 12
point, 12-pitch equals 10 point, and 15-pitch equals 8 point type, but some fonts use
other equivalencies.

Sans serif means without serifs and refers to a character (or typeface) that lacks serifs,
such as Arial or Helvetica.

A serif is an ornamental aspect of a character. A serif typeface is one whose characters
contain serifs (such as Times Roman or Courier).

Spacing can either be fixed or proportional. In a fixed font, such as Courier, every
character occupies the same amount of space. In a proportional font, such as Arial or
Times, characters have different widths.

Stroke weight refers to the heaviness of the stroke for a specific font. This is usually
indicated in font names by including words such as Light, Regular, Book, Demi, Heavy,
Black, and Extra Bold.

The style of a font is whether it is plain, bold, or italic.

National language
terminology

Here are some additional terms you may encounter when working with fonts and
supporting international languages.

National character handling is dependent on both the language used, and on the
country. In many cases, the language is used only in one country (such as Japanese in
Japan). In other cases, there is a national variant of the language (such as Canadian
French).

A code page is a table which defines the mapping in a computer of each of these
characters to a unique hexadecimal number, called a code point. There are three
families of code pages: EBCDIC, ASCII, and ISO.

A character set defines which characters must be supported for a specific language.

Single byte character sets (SBCS) are character sets which can be defined using a
single byte code point (code points range from 0 to 255). Most languages can be
defined using an SBCS.

Double byte character sets (DBCS) are character sets which contain so many characters
that they require two bytes to define the valid code point range. Languages which
require a DBCS are Japanese (Kanji), Korean, and Chinese (both Traditional and
Simplified). For example, the Kanji character set uses approximately 6,700 characters
out of a total of 65,000 valid code points provided by a DBCS code page.

Chapter 5
Working with Fonts

174

Multiple byte character sets (MBCS) use both single and double byte code points. This
is also referred as a combined code page. For example, the combined Japanese code
page 932 consists of a SBCS code page 897 and a DBCS code page 301. These code
pages use the Shift JIS encoding defined by the Japanese Industry Standard
Association, and contains Kanji, Hiragana, and Katakana characters.

Unicode is a character coding system designed to support the interchange, processing,
and display of the written texts of the diverse languages of the modern world. In its
current version (3.2), the Unicode standard contains over 95,000 distinct coded
characters derived from dozens of supported scripts. These characters cover the
principal written languages of the Americas, Europe, the Middle East, Africa, India,
Asia, and Pacifica. Support for Unicode is growing among operating systems, such as
Windows XP, and programming languages, such as Java.

NOTE: Beginning in version 10.2, the system includes support for Unicode. Specific
information on how to use Unicode is available in a separate document,
entitled Using Unicode. To receive this document, contact Documaker
Support.

Bi-directional (BIDI) languages or Extended SBCS languages are languages which
display text in a right-to-left manner and numbers in a left-to-right manner. Hebrew and
Arabic are BIDI languages.

ANSI is an acronym for the American National Standards Institute. The Windows ANSI
character set is based on code page ISO 8859-x plus additional characters based on an
ANSI draft standard.

ASCII is an acronym for the American Standard Code for Information Interchange. ASCII
is a 7-bit code that is a US national variant of ISO 646.

Program Integrated Information (PII) includes all text in messages, menus, and reports
which is displayed to the user. To provide national language support, all PII text must
be isolated for easy translation.

Enabled is a term used to indicate an application that has been altered to handle input,
display, and editing of double byte languages (such as Japanese) and bi-directional
languages (such as Arabic).

Translated is a term used to indicate an application which has been enabled and has
had its Program Integrated Information translated into the national language. A
translated application must also support various country settings, such as time, date,
currency, and sorting.

AFM is an extension used with Adobe® PostScript© font files. It stands for Adobe Font
Metrics. AFM files are text files that describe a PostScript font.

Understanding Font Concepts

175

HOW CHARACTERS ARE REPRESENTED

Fonts can use different methods of internally representing characters. Two categories
of representing characters in fonts are known as bitmap fonts and scalable fonts.

Bitmap Fonts

Bitmap fonts describe each character as a pattern of black dots. Bitmap fonts were
originally used for printer and screen devices because these devices were only capable
of drawing dots. Below is crude representation of how the certain letters could be
drawn as a series of dots in a 3x3 grid.

Essentially, this is what happens when a character is drawn to the screen or printed on
paper. Fortunately, screen and printer fonts use a whole lot more dots per inch so that
the distance between the dots becomes nearly invisible to the naked eye. By the way,
this is also the reason why printed text looks better that text on the screen. Printed text
often uses 300 or 600 dots per inch while your screen’s resolution might be 96 dots per
inch.

A different font file is required for each point size and different font files are required
for different device resolutions (VGA vs. Super-VGA monitors, 300 dpi vs. 600 dpi
printers).

Bitmap fonts are used primarily by printers. Bitmap fonts used by printers cannot be
used for displaying text on screens because there are different internal formats and
different resolutions. Printers which use bitmap fonts include HP® laser printers, IBM®
AFP printers, and Xerox® Metacode printers

Scalable Fonts

A scalable font can be scaled to any size needed. Characters of scalable fonts are
internally represented as outlines (a series of straight lines and curves). These outlines
can be scaled to allow characters to be rendered at different resolutions and point
sizes. For example, the letter O may be represented as outer and inner circular lines
whose interior is filled.

Two types of scalable fonts are TrueType and PostScript fonts.

Outlines Final Character

U I T H X O C L

Chapter 5
Working with Fonts

176

TrueType TrueType was designed and developed by Apple Computer and Microsoft for use on the
Macintosh computer and PCs running Microsoft Windows. TrueType provides a number
of advantages over bitmap fonts. TrueType is WYSIWYG (what you see is what you get).
The same font can be used with printers and video displays. Typically, TrueType font
files have a file extension of TTF.

PostScript PostScript fonts were designed and developed by Adobe Systems Incorporated.
PostScript fonts are a special implementation of a PostScript language program.
PostScript fonts are scalable fonts. PostScript fonts describe each character as a series
of straight-line and curved-line segments. These segments (also known as an outline)
along with a flexible coordinate structure allow PostScript fonts to be scaled easily and
used on different devices (video monitors and printers). PostScript printers support the
PostScript language and fonts. There are several types of PostScript fonts:

• PostScript Type 1

When someone refers to a PostScript font, this is the type of font most often
referred to. Typically, Type 1 font files have a file extension of PFB.

• PostScript Type 3

A Type 3 font is one whose behavior is determined entirely by the PostScript
language procedures built into the font. These fonts are typically larger files than
Type 1 fonts and do not take advantage of special algorithms built into the
PostScript interpreter for rendering characters. This usually results in inferior
output at small sizes and low resolution.

• PostScript Type 0

A Type 0 (zero) font is a composite font program that can contain several thousand
characters, accessed by multi-byte codes. They can be used for non-Roman
scripts, such as Japanese kanji.

• PostScript Multiple Master

Multiple master font programs are an extension of the Type 1 font format. Multiple
master font programs contain a wide variety of typeface variations, such as
multiple weights, character widths, and so on.

HOW COMPUTERS AND PRINTERS USE FONTS

What happens to make the letter A show up on the screen or print on a printer?

The key to remember is that computers and printers are not very smart. They really
don’t know anything about letters or punctuation characters.

When you press the letter A on the keyboard, the keyboard sends a number to
computer. On a PC, this number is usually 65 for the letter A. The computer uses this
number to produce the letter A. For simplicity, let’s assume you have a bitmap screen
font.

As stated before, bitmap fonts describe each character as a pattern of black dots. Let’s
assume these patterns are stored in the font as a series of slots where slot 0 is followed
by slot 1 which is followed by slot 2, and so on. For the number 65 (letter A), the
computer simply draws the pattern of dots stored in slot 65. When the bitmap is drawn
on the screen, we see what looks like the letter A.

Understanding Font Concepts

177

If you print the letter A with a bitmap font, the concept is essentially the same. The
printer receives the number 65 and prints the series of dots stored in slot 65 of the
printer font.

The numbers which the computer uses to represent characters are called code points.

Chapter 5
Working with Fonts

178

USING CODE
PAGES

A code page is a table which defines the mapping in a computer of each of these
characters to a unique hexadecimal number, called a code point. There are three
families of code pages: EBCDIC, ASCII, and ISO.

A code page is a table that defines how the characters in a language or group of
languages are encoded. A specific value is given to each character in the code page. For
example, in code page 850 the letter ñ (lowercase) is encoded as hex A4 (decimal 164),
and the letter Ñ (uppercase) is encoded as hex A5 (decimal 165). Of particular interest
are these code pages:

• Code Page 850

Code page 850 is also called the Latin-1, multilingual code page. This code page
supports the alphabetic characters of the Latin-1-based languages.

• Code Page 437

Code page 437 is the standard personal computer code page. The lower 128
characters are based on the 7-bit ASCII code. The upper 128 characters contain
characters from several European languages (including part of the Greek
alphabet) and various graphic characters. However, some of the accented
characters, such as those used in the Nordic countries, are not represented. The
missing characters are available in other code pages (code page 850 will usually
contain the desired characters). It contains characters required by 13 languages
used in approximately 40 countries.

• Code page 1004

Code page 1004 is the equivalent of the Windows ANSI code page. It contains more
international characters than the multilingual code page 850. This character set
contains all characters necessary to type all major (West) European languages.
This encoding is also the preferred encoding on the Internet.

ISO 8859-x character sets use code points 128 through 255 to represent national
characters, while the characters in the 32 to 127 range are those used in the US-ASCII
(ISO 646) character set. Thus, ASCII text is a proper subset of all ISO 8859-X character
sets.

The code points 128 through 159 are typically used as extended control characters, and
are not used for encoding characters. These characters are not currently used to
specify anything. This character set is also used by AmigaDOS, Windows, VMS (DEC
MCS is practically equivalent to ISO 8859-1) and (practically all) UNIX
implementations. MS-DOS normally uses a different character set and is not
compatible with this character set.

Using Code Pages

179

ASCII Code Pages

ASCII is an acronym for the American Standard Code for Information Interchange. ASCII
code pages are used on the PC platform. Code points below 32 for ASCII code pages are
considered control characters for internal uses. These code points are usually not
displayable characters. Code points from 32 to 127 are usually the same in ASCII code
pages and are used for English letters, numbers, and punctuation.

Where ASCII code pages differ is in the characters assigned to code points 128-255.
Code points 128-255 are used for international characters, math symbols, and so on.
The characters for these code points vary in other code pages.

The characters used in code points below 128 use the English letters, numbers, and
punctuation commonly found in ASCII code pages. The upper 128 code points are used
for characters from several European languages (including part of the Greek alphabet)
and various graphic characters. However, some of the accented characters, such as
those used in the Nordic countries, are not represented.

Code page 437 is known as the standard personal computer code page. These
characters were originally used in the original IBM PC. This code page is still used
today in U.S. English versions of DOS and Windows. The primary code page used for
these platforms is also known as the OEM code page.

Code page 850 is also called the multilingual code page. This code page supports many
of the characters of the Latin-based alphabet.

The following table shows code page 850. To determine the code point associated with
a character, use the numbers in the first row and column in the following table. For
example, the letter A has a code point of 65 (64 + 1) and the space character has a code
point of 32 (32 + 0).

Code Page 850

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32 ! “ # $ % & ‘ () * + , - . /

48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

64 @ A B C D E F G H I J K L M N O

80 P Q R S T U V W X Y Z [\] ^ _

96 ` a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { | } ~

128 Ç ü é â ä à å ç ê ë è ï î ì Ä Å

144 É æ Æ ô ö ò û ù ÿ Ö Ü ø £ Ø × ƒ

Chapter 5
Working with Fonts

180

There are many more ASCII code pages which are targeted for a specific country and or
language. For example, code page 863 is used for Canadian French.

Code page 1004 is the IBM equivalent of the Windows ANSI code page. It contains more
international characters than the multilingual code page 850. It contains characters
required by 13 languages used in approximately 40 countries. Windows uses the ANSI
code page to support most of the languages used in the Western Hemisphere and
Western Europe. Keystrokes are translated by Windows from the primary (OEM) code
page into the ANSI code page.

The following page shows the Windows ANSI code page. To determine the code point
associated with a character, use the numbers in the first row and column in the
following table. For example, the letter A has a code point of 65 (64 + 1) and the space
character has a code point of 32 (32 + 0).

160 á í ó ú ñ Ñ ª º ¿ ® ¬ ½ ¼ ¡ « »

176 Á Â À © ¢ ¥

192 ã Ã ¤

208 ð Ð Ê Ë È Í Î Ï ¦ Ì

224 Ó ß Ô Ò õ Õ μ þ Þ Ú Û Ù ý Ý ¯ ´

240 – ± ¾ ¶ § ÷ ¸ ° ¨ • ¹ ² ³

Code Page 1004 (ANSI Code Page)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32 ! “ # $ % & ‘ () * + , - . /

48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

64 @ A B C D E F G H I J K L M N O

80 P Q R S T U V W X Y Z [\] ^ _

96 ` a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { | } ~

128 € ‚ ƒ „ … † ç ˆ ‰ Š ‹ Œ Ž

144 ‘ ’ “ ” • – — ˜ ™ š › œ ž Ÿ

160 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯

Using Code Pages

181

EBCDIC CODE PAGES

EBCDIC is an acronym for the Extended Binary Coded Decimal Interchange Code.
EBCDIC code pages are used on mainframe (z/OS) and mini computers (AS400). There
are many EBCDIC code pages. EBCDIC code pages usually share the same code points
for English letters, numbers, and punctuation characters. However, EBCDIC code pages
use different code points than ASCII code pages for the same English letters, numbers,
and punctuation characters. Code points below 64 for EBCDIC code pages are
considered control characters for internal uses. These code points are usually not
displayable characters.

Code page 37 is an EBCDIC code page used on many z/OS and AS400 systems.
Although the code points are completely different, code page 37 shares most of the
same characters as code page 1004 (ANSI). The characters associated with code points
128-159 in the ANSI code page are not defined in code page 37.

NOTE: The system uses some undefined code points (below 64) in code page 37 to try
represent these characters. For maximum portability, avoid using code points
128-159 of the ANSI code page when composing forms.

The following page shows a table of code page 37. To determine the code point
associated with a character, use the numbers in the first row and column in the
following table. For example, the letter A has a code point of 193 (192 + 1) and the space
character has a code point of 64 (64 + 0).

176 ° ± ² ³ ´ μ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

192 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

208 Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

224 à á â ã ä å æ ç è é ê ë ì í î ï

240 ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Code Page 37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32

48

64 â ä à á ã å ç ñ ¢ . < (+ |

Chapter 5
Working with Fonts

182

CHARACTER SETS

You may have noticed that the largest code point shown in the earlier code page tables
is 255 (240 + 15). The reason for this is that 255 is the largest value which can fit into a
byte of memory. Code pages like this are said to have a single byte character set
(SBCS). Some Asian languages, like Japanese and Chinese, contain so many characters
that they must be represented by a double byte character set (DBCS) or a multiple byte
character set (MBCS).

NOTE: Prior to version 10.2, the system only supported SBCS code pages. Version
10.2 added support for many additional languages using Unicode.

Determining Characters Used in a Printer Font

The simplest way to determine what characters are contained in a printer font is to print
a FAP file which contains all possible code points. The system includes a FAP file you
can use for this purpose. This FAP file looks very similar to the code page tables shown
earlier in this chapter.

To print this FAP file in Image Editor, follow the steps below:

1 Start Image Editor.

2 Choose File, Open and select the Q1CDPG.FAP file, which is located in the
RPEX1\FORMS directory.

3 Choose Tools, Font Manager and highlight the font 11016 (this FAP file only uses
one font ID, 11016).

80 & é ê ë è í î ï ì ß ! $ *) ; ¬

96 - / Â Ä À Á Ã Å Ç Ñ ¦ , % _ > ?

112 ø É Ê Ë È Í Î Ï Ì ` : # @ ' = “

128 Ø a b c d e f g h I « » ð ý þ ±

144 ° j k l m n o p q r ª º æ ¸ Æ ¤

160 μ ~ s t u v w x y z ¡ ¿ Ð Ý Þ ®

176 ^ £ ¥ • © § ¶ ¼ ½ ¾ [] ¯ ¨ ´ ×

192 { A B C D E F G H I - ô ö ò ó õ

208 } J K L M N O P Q R ¹ û ü ù ú ÿ

224 \ ÷ S T U V W X Y Z ² Ô Ö Ò Ó Õ

240 0 1 2 3 4 5 6 7 8 9 ³ Û Ü Ù Ú

Using Code Pages

183

4 Click the Edit button. The Font Properties window appears. Click the Printers tab.

5 Change the AFP, PCL, or Xerox font file name to the font file name you want to test
and click Ok. Then click Close to exit Font Manager and save your changes.

6 Select File, Print. Print the FAP file using the printer driver which corresponds to
the printer font you are testing.

NOTE: Be sure to download fonts if you are testing a PCL font.

Chapter 5
Working with Fonts

184

CODE PAGE NAMES

One confusing thing about code pages is that different organizations have different
names for the same code pages. IBM, Microsoft, and the International Organization for
Standardization (ISO) all use different names for essentially the same code page. You
may hear a code page referred to by its IBM, Microsoft, or ISO name. For example, the
ANSI code page is the same as IBM code page 1004, Microsoft code page 1252, and ISO
code page 8859-1.

The following table shows a list of commonly used code pages. For more information,
see these books:

• Developing International Software, Second Edition - Microsoft Press

• National Language Design Guide Volume 2 - IBM

Code Pages

Language Country Windows OEM z/OS

U.S. English USA 1252 (ANSI) 437, 850 037

Western Hemisphere and Western Europe SBCS Code Pages

U.K. English UK 1252 (ANSI) 850, 437 ?

Brazilian Portuguese Brazil 1252 (ANSI) 850, 437 ?

Canadian French Canada 1252 (ANSI) 850, 863 ?

Danish Denmark 1252 (ANSI) 850 ?

Dutch Netherlands 1252 (ANSI) 850, 437 ?

Finnish Finland 1252 (ANSI) 850, 437 ?

French France 1252 (ANSI) 850, 437 ?

German Germany 1252 (ANSI) 850, 437 ?

Italian Italy 1252 (ANSI) 850, 437 ?

Norwegian Norway 1252 (ANSI) 850 ?

Portuguese Portugal 1252 (ANSI) 850, 860 ?

Spanish Spain 1252 (ANSI) 850, 437 ?

Swedish Sweden 1252 (ANSI) 850, 437 ?

Eastern Europe SBCS Code Pages

Russian Russia 1251 (Cyrillic) 866, 850 ?

Using Code Pages

185

Bosnian Bosnia ? 852, 850 ?

Croatian Croatia 1250 (Eastern
Europe)

852, 850 ?

Czech Czech 1250 (E.E.) 852, 850 ?

Estonian Estonia 1257 (Baltic) ? ?

Greek Greece 1253 (Greek) ? ?

Hungarian Hungary 1250 (E.E.) 852, 850 ?

Latvian Latvia 1257 (Baltic) ? ?

Lithuanian Lithuania 1257 (Baltic) ? ?

Polish Poland 1250 (E.E.) 852, 850 ?

Romanian Romania 1250 (E.E.) 852, 850 ?

Serbian-Latin Serbia 1250 (E.E.) 852, 850 ?

Slovak Slovak 1250 (E.E.) 852, 850 ?

Slovenian Slovenia 1250 (E.E.) 852, 850 ?

Turkish Turkey 1254 (Turkish) 857, 850 ?

Extended SBCS Code Pages

Arabic Arabic
speaking

1256 (Arabic) 864, 850,
437

?

Hebrew Israel 1255 (Hebrew) 862, 850,
437

?

Thai Thailand 874 874, 437 ?

Asian DBCS Code Pages

Japanese Japan 932 932, 942,
437, 850

?

Korean Korea 949 949, 850,
437

?

Simplified Chinese PRC,
Singapore

936 1381, 437,
850

?

Code Pages

Language Country Windows OEM z/OS

Chapter 5
Working with Fonts

186

Traditional Chinese Taiwan,
Hong Kong

950 938, 948,
437, 850
950, 437,
850

?
?

Code Pages

Language Country Windows OEM z/OS

Types of Fonts

187

TYPES OF FONTS The system uses screen and printer fonts for displaying and printing text on forms. The
Family field in the FXR contains the name of the screen font to use for displaying text
under Windows.

The Font File fields in the FXR contain the names of the printer fonts to use when
printing text. The FXR file provides attributes of the fonts and cross references the
various font file names and parameters for different printers. The FXR does not contain
any printer or screen fonts, only information about printer and screen fonts. FXR files
are referred to in this section but are discussed in detail in the section, Using Font
Cross-Reference Files on page 197.

USING SCREEN FONTS

Font Substitution in Windows

If the system cannot find a matching screen font using the information in the FXR, it will
attempt to substitute a different Windows font. For Windows, the system will
automatically try to substitute the following fonts for these missing fonts:

Separate INI file control groups are used for Windows 3.1x (16-bit) and Windows 32-bit
platforms for defining substitute font names. These control groups are named
WINDOWSUBS and WINDOW32SUBS, respectively. Here is an example of the
WINDOW32SUBS control group, which shows the defaults settings:

< Window32Subs >

 Univers = Arial

 Helv = Arial

 Letter Gothic = Courier New

 Courier = Courier New

 Tms Rms = Times New Roman

If this font is missing… The system will substitute this font…

Courier Courier New

Helv Arial

Letter Gothic Courier New

MICR Courier New (fixed pitch) or Arial (proportional)

OCR A Courier New (fixed pitch) or Arial (proportional)

OCR B Courier New (fixed pitch) or Arial (proportional)

Times Times New Roman

Times Roman Times New Roman

Tms Rms Times New Roman

Univers Arial

Chapter 5
Working with Fonts

188

 Times Roman = Times New Roman

 Times = Times New Roman

In this example, the system substitutes the native Windows 32-bit font, Times New
Roman, if the Times family font is not found. Likewise, it substitutes Courier New for
Letter Gothic and Arial for Univers. If you do not have a font installed which matches
the original or substituted fonts, a default font will be used instead (usually Courier).

Installing Screen Fonts in Windows

To avoid these font substitutions, you can install fonts into Windows using the Fonts
folder (usually located in the Control Panel). After opening the Fonts folder, select the
File, Install New Font option. The Add Fonts window appears and asks for the drive and
directory in which the new TrueType font files are located. When you finish selecting
the fonts you want to install, click Ok to install them.

For the system to correctly match the fonts installed under Windows, the family and
face name must be spelled exactly the same as they appear on the Names tab of the
Properties window for the font. Use FXR settings for FAP height, FAP width, and so on,
to customize the display of a font. For information on choosing one of these Windows
display fonts to match a printer font, see Choosing Screen Fonts on page 238.

USING PRINTER FONTS

The system supports printer fonts for AFP, Xerox Metacode, PCL, and PostScript
printers. Here is some background information you should know about each of these
print platforms.

AFP

AFP fonts are designed solely for IBM’s AFP printers. In AFP terminology, a font is
described by three components:

Coded fonts A coded font file contains references to specific character set and specific code page.
Coded font files always begin with the letter X, such as X0DATIN8.

Code pages In IBM AFP terminology, a code page file maps code points to an AFP character name in
a character set file. Code page files always begin with the letter T, such as T1DOC037.

Character sets A character set file contains the bitmap image of each character in the character set.
Character set files always begin with the letter C, such as C0FATIN8.240 or
C0FATIN8.300. The character set file name extension (240 or 300) indicates whether
the bitmap images are drawn at 240 or 300 dots per inch. Each character is given a
eight letter AFP character name. For example, the letter A has an AFP character name
of LA020000.

Metacode

Metacode fonts are designed solely for Xerox Metacode printers. Metacode fonts are
bitmap fonts. Typically, Metacode font files have a file extension of FNT, such as
FXTIN8.FNT. Characters are accessed by code points.

Types of Fonts

189

PCL

PCL is the Printer Control Language developed by Hewlett Packard for its LaserJet (and
compatible) printers. PCL bitmap fonts are used by the system. PCL bitmap fonts can
have any file name extension. The system provides PCL fonts with an extension of PCL,
such as FPTIN8.PCL. Like Metacode fonts, PCL characters are accessed by code points.

PostScript Fonts

PostScript fonts were designed and developed by Adobe Systems Incorporated.
PostScript fonts are actually a special implementation of a PostScript language
program. PostScript fonts are scalable fonts and there are several types of PostScript
fonts, PostScript Type 1 fonts are most common and are the only type supported by the
system. Typically, Type 1 font files have a file extension of PFB, such as COURIER.PFB.

Each character in a PostScript font has a PostScript character name. When used as a
screen font, the operating system associates code points in a code page with the
appropriate PostScript character names.

NOTE: The system uses the CODEPAGE.INI file to associate code points with the
appropriate PostScript characters.

TrueType Fonts

TrueType is a scalable font designed and developed by Apple Computer and Microsoft
for use on the Macintosh computer and on PCs running Microsoft Windows. TrueType
is WYSIWYG (what you see is what you get). The same font can be used with printers
and video displays. Typically, TrueType font files have a file extension of TTF.

Adding Printer Fonts to a Font Cross-reference File

Fonts are added to an FXR file using the system’s Font Manager. You can insert
TrueType, PCL, AFP, Xerox Metacode, certain FormMaker II files, and other FXR files
into a font cross-reference file. Font Manager is discussed in Using Font Manager on
page 211. For specific instructions on inserting a font into an FXR file, see Inserting
Fonts on page 232.

Chapter 5
Working with Fonts

190

USING SYSTEM
FONTS

Oracle Insurance has licensed for use and distribution with the system the following
Postscript and TrueType fonts from Monotype Imaging, Inc. (formerly Agfa):

• Albany

• Arial Black

• Arial Narrow

• Courier

• Letter Gothic

• Times

• Univers

• Univers Condensed

• DocuDings

• MICR

• OCRA

• OCRB

• ZIPCODE

Albany (an Arial clone), Arial Narrow, Arial Black, and DocuDings (a Wingdings clone)
are clones of commonly-used Windows fonts. The fonts are similar in appearance to the
corresponding Windows fonts and have the same character width attributes. In
addition, you can now use PCL, PostScript, AFP, and Metacode versions of these fonts
for printing.

NOTE: Although DocuDings is very similar to Wingdings, there are some differences.
For instance, code point 255 in Wingdings is the flying Windows symbol ().
The DocuDings font displays a blank space for code point 255. The other code
points (characters) are very similar in appearance but are not exact duplicates
to the Wingdings font.

The Monotype font sets include the Euro character ().

Using System Fonts

191

From these fonts, we have created fonts to use with AFP, PCL, and Xerox printers. These
fonts let you print nearly identical forms on any supported printer. We use the following
file naming convention for AFP, PCL, and Xerox printer fonts:

F T F1 F1 S P

For example, a 10 point bold Courier Xerox font would be named FXCOB0.FNT.

Font Cross-reference Files for Monotype Fonts

HPINTL.FXR,
HPINTLSM.FXR

These FXRs provide support for Hewlett Packard (PCL) internal fonts using ANSI code
page character sets instead using Monotype-based PCL downloadable fonts. The
HPINTLSM.FXR file is a subset of the font information contained in the HPINTL.FXR
file—SM indicates small.

REL95.FXR, REL95SM.FXR Use these FXRs if you intend to print on an AFP printer using Monotype fonts. These
FXRs specify new Monotype AFP coded fonts which use a new code page file. The
system uses code page 37 for EBCDIC platforms. These AFP fonts are based on this
standard. The REL95SM.FXR file is a subset of the font information contained in the
REL95.FXR file—SM indicates small.

REL102.FXR,
REL102SM.FXR

These FXRs are similar to the REL95 FXRs but also include these fonts: Univers
Condensed, MICR, OCRA, and OCRB.

REL103.FXR,
REL103SM.FXR

These FXRs are similar to the REL102 FXRs but also include these fonts: Albany, Arial
Black, Arial Narrow, and DocuDings. Be aware that the REL103SM.FXR file does not
include DocuDings or all of the point sizes of the Albany group (including bold and
italic), the Arial Narrow group (including bold and italic), and the Arial Black group
(including italic).

You can identify these fonts via their names. For example 18010 indicates a 10-point
Albany font. The initial 1 indicates Monotype, the 8 indicates Albany, the 0 indicates
normal type, and 10 is the point size.

F Standard Documaker system font

T

Printer type where
A = AFP, P = PCL, X = Xerox 0 degree, 9 = Xerox 90 degree, 1 = Xerox 180
degree, 2 = Xerox 270 degree

F1

Two-character family name where
AB = Albany, AL = Arial Black, AN = Arial Narrow, CO = Courier, HV = Helvetica,
LG = Letter Gothic, TI = Times, UN = Univers, UC = Univers Condensed, DD =
DocuDings, MI =MICR, OA=OCRA, OB=OCRB, ZP=ZIP code

S

Style where
B = Bold, I = Italic, O = Bold Italic, N = Normal/Medium

P

Point size where
1 - 9 = point sizes 1-9 and 0 = point size 10
A - Z = point sizes 11-36

Chapter 5
Working with Fonts

192

Arial Black fonts are indicated with a nine (9) and Arial Narrow fonts are indicated with
a zero (0). DocuDings are indicated with a 34. You can find detailed information on font
naming conventions in the Working with Fonts chapter of the Docucreate User Guide.

Below are the PostScript and TrueType fonts included in REL103SM.FXR:

PostScript Font PostScript Font Name

ALBB____.PFB Albany-Bold

ALBBI___.PFB Albany-BoldItalic

ALBIT___.PFB Albany-Italic

ALBR____.PFB Albany-Regular

AN______.PFB ArialNarrowMT

ANB_____.PFB ArialNarrowMT-Bold

ANBI____.PFB ArialNarrowMT-BoldItalic

ANI_____.PFB ArialNarrowMT-Italic

ARBLI___.PFB ArialMT-BlackItalic

ARIBL___.PFB ArialMT-Black

DOCUD___.PFB DocuDings

TrueType Font TrueType Font Name

ALB.TTF Albany AMT

ALBB.TTF Albany AMT Bold

ALBBI.TTF Albany AMT Bold Italic

ALBI.TTF Albany AMT Italic

ARBL.TTF Arial Black

ARBLIT.TTF Arial Black Italic

ARIALN.TTF Arial Narrow

ARIALNB.TTF Arial Narrow Bold

ARIALNBI.TTF Arial Narrow Bold Italic

ARIALNI.TTF Arial Narrow Italic

DOCUDING.TTF DocuDings

Using System Fonts

193

REL112.FXR
REL112SM.FXR

These files differ from the REL103.FXR and REL103SM.FXR files in that...

• The PDF417 fonts were added into the base FXR file.

• Character widths were corrected for font records previously created by importing
TrueType fonts.

• Font heights were corrected for the Times fonts so Windows will select the correct
screen font.

Chapter 5
Working with Fonts

194

USING CUSTOM FONTS

To the system, custom fonts are simply fonts which are not based on the ANSI code
page. This means that the font contains characters which have different code points or
which do not exist in the ANSI code page. If you cannot use the system’s Monotype
fonts (or at least ANSI code page based fonts), you will need to consider these possible
issues:

• Viewing Forms

Viewing forms may be the first problem since the characters in the original printer
font do not match the characters used in displaying text on the screen. This
problem will be seen during forms composition. This will also be a problem if the
you have licensed the Entry or Archive Retrieval modules. Keyboard entry
becomes a training issue as well. Under Windows, you must use 4-digit ALT key
sequences to prevent code point translation.

If possible, you should convert any custom fonts to TrueType fonts for Windows
and install the fonts into your operating system. If the font cross-reference file is
properly modified to specify these screen fonts, the system will display your forms
correctly. However, these characters may not display properly in Docucreate and
Documaker Workstation.

NOTE: The Xerox Font Center will convert a Xerox Metacode font into a PostScript or
TrueType font for a fee. They may convert AFP fonts as well. You can reach
them at 1-800-445-3668.

• PDF Incompatibility

In addition to the Entry and Archive module problem, PDF or Acrobat files created
for Internet archive retrieval use the ANSI code page for displaying forms.
Therefore, archived forms based on custom fonts may not display correctly when
retrieved through Docupresentment.

Using System Fonts

195

• Printing Forms

Another problem concerns using custom fonts on multiple (ASCII and EBCDIC)
platforms. The system performs ASCII/EBCDIC translation based on the
assumption that the ASCII code page is the ANSI code page and that the EBCDIC
code page is code page 37. The system also assumes that PCL, PostScript, and
Metacode printers use ASCII (hence ANSI) fonts. The system assumes AFP printers
use EBCDIC fonts. The following table shows when the system will translate text
(from FAP files) and variable data (from extract files) when printed under different
platforms and printers.

On AFP printers On a PC, text will be translated when printing to an AFP printer. Therefore, the code
points used in text or variable data on forms are very important. After these code points
are translated to the EBCDIC (code page 37), they must match the code points
associated with the desired characters in the AFP code page which will be used.

On EBCDIC platforms, such as z/OS, AS400, text is assumed to be EBCDIC and will not
be translated when you print to an AFP printer. The key to correct printing is to make
sure the text (FAP files) and variable data (extract files) use the code points associated
with the desired characters in the AFP code page you will use. Since FAP files are
created as ASCII files on a PC, they will need to be transferred to the EBCDIC platform.
Since you are using custom fonts, it is quite likely the file transfer software will not
perform the proper code point translation. In this case, you may need to upload the
files without translation and use the CPCNV utility to translate the files. This may
require defining a special code page in the CODEPAGE.INI file for the CPCNV utility to
use to do the proper translation.

See Determining Characters Used in a Printer Font on page 182 for help in determining
how code points will be associated with font characters.

Platform /
Printer

ASCII (Windows 32-bit)
ASCII FAP files and Extract data

EBCDIC (z/OS, AS400)
EBCDIC FAP files and Extract data

AFP ASCII to EBCDIC translation No translation

PCL No translation EBCDIC to ASCII translation

PostScript No translation EBCDIC to ASCII translation

Xerox
Metacode

No translation EBCDIC to ASCII translation

Chapter 5
Working with Fonts

196

On Xerox Metacode
printers

On a PC, text (code points) will not be translated when printing to a Metacode printer.

On EBCDIC platforms (z/OS, AS400), text is assumed to be EBCDIC and will be
translated to ASCII (ANSI code page) when printing to a Metacode printer. Therefore,
the EBCDIC code points used in text or variable data on forms are very important. Since
the FAP files are ASCII files created on a PC, they will need to be transferred to the
EBCDIC platform. Since you are using custom fonts, it is quite likely that the file transfer
software will not perform the proper code point translation. In this case, you may need
to upload the files without translation and use the CPCNV utility to translate the files.
This may require defining a special code page in the CODEPAGE.INI file for the CPCNV
utility to use to do the proper translation.

See Determining Characters Used in a Printer Font on page 182 for help in determining
how code points will be associated with font characters.

On PCL printers On a PC, text (code points) will not be translated when printing to a PCL printer. On
EBCDIC platforms (z/OS, AS400), PCL print is not currently supported.

On PostScript printers On a PC, text (code points) will not be translated when printing to a PostScript printer.
On EBCDIC platforms (z/OS, AS400), PostScript print is not currently supported.

Using Font Cross-Reference Files

197

USING FONT
CROSS-

REFERENCE FILES

The font cross-reference file lets you organize the fonts you use for display and
printing. The FXR provides the system with all the necessary font information. It does
not contain the actual font files; rather, it contains information about the font
attributes. Font attribute information includes formatting styles (bold, italic, and so
on), point size (10 point, 14 point, and so on), and font stroke weight (heavy, light, and
so on).

Understanding the System Storing the cross-reference information separately from the physical fonts affords
greater flexibility in printer and font usage. You can convert virtually any font for your
individual printer environment, provided you obtain appropriate license agreements
for the fonts.

Let's examine the organization of the font cross-reference file and the font files. The
illustration below depicts a font cross-reference file named REL103SM.FXR. This file
contains a single font set. It includes all the crucial information for each font in the font
set. The actual font files are physically separate from the font cross-reference file.

As shown above, the font files are distinct from the font cross-reference file. When you
work with the font cross-reference file you affect the stored font information. You do
not affect the separate and independent font files. The number of available fonts is
limited only by your needs and storage space. If you keep this organizational structure
in mind you can easily work with the font cross-reference file.

The font cross-reference file provides the names of your independent font files, but it
is more than a simple listing of fonts. The file contains crucial font attribute information
along with information specific to your printer types. The printer information is crucial
because sections are compiled based on your printer environment.

The font cross-reference file ends in the extension FXR (for font cross-reference). The
system includes these font cross-reference files:

FAP\MSTRRES\FMRES\DEFLIB\HPINTL.FXR

Font 1

Font 2

Font 3

Font 4

ID and File Name
Typeface and Family
Character Dimension
Printer Specific Info

Font 1

ID and File Name
Typeface and Family
Character Dimension
Printer Specific Info

Font 2

ID and File Name
Typeface and Family
Character Dimension
Printer Specific Info

Font 3

ID and File Name
Typeface and Family
Character Dimensions
Printer Specific Info

Font 4

Font Files

REL103SM.FXR

Font Cross-reference File

Chapter 5
Working with Fonts

198

FAP\MSTRRES\FMRES\DEFLIB\HPINTLSM.FXR

FAP\MSTRRES\FMRES\DEFLIB\REL103.FXR

FAP\MSTRRES\FMRES\DEFLIB\REL103SM.FXR

REL103SM.FXR - References Times (Roman), Courier, Univers and Univers Condensed
fonts for PostScript, AFP, Metacode, and PCL printers. This FXR file is pre-installed in
your system.

Additional PostScript fonts are also included in the REL103.FXR file. This FXR file
references standard and supplemental PostScript fonts and all font attributes. You can
use the supplemental installation disks to add fonts to your font set, and use the
REL103.FXR file as your font reference file, as your system’s disk space allows.

Keep in mind these points concerning the FXR file:

• Contains one font set

The font set is the specific group of fonts you choose to include in your font cross-
reference file. Each font cross-reference file contains a single font set. You assign
each font cross-reference file and font set a unique name. For example, you might
organize a font set for creating and printing accounting forms in a font cross-
reference file called ACCOUNT.FXR.

• Contains information on multiple fonts

A font set contains numerous fonts. For example, a font set might contain Times
New Roman fonts and Gothic fonts of multiple point sizes with bold and italic
attributes. A second font set might contain Courier fonts and Helvetica fonts, also
of multiple point sizes with bold, italic and regular attributes.

• Independent of your font files

The font cross-reference file works with the printer and window font files.
Remember that the font files are separate files from the font cross-reference file.

HOW FXR SETTINGS AFFECT DISPLAY AND PRINT QUALITY

Certain attributes in the FXR file affect how the system displays text. For example, when
the system displays text, it uses scalable font technology which exists in Adobe Type 1
Postscript fonts and TrueType fonts. All versions of Windows support TrueType fonts.
Windows 2000 also supports PostScript fonts.

These fonts are selected via the family name specified in our FXR, and scaled according
to point size, height and width parameters in the FXR. The fonts are spaced according
to the character widths specified in the FXR.

Once the font is selected, then it can be zoomed in and out, or additionally scaled as
required. Bitmap fonts do not have this scaling ability, which is why scalable fonts are
used for display purposes, rather than bitmap fonts.

This means that when the system displays text on the screen, it attempts to mirror how
it will look on paper. To achieve the same look on the screen as on paper, the
parameters in the FXR are critical. The more accurate the FXR is, the more likely the
display will mirror the printed document. The printed document is the standard for the
screen display.

Using Font Cross-Reference Files

199

Since the system includes Monotype TrueType and PostScript fonts which match its
printer fonts, if you install these Monotype fonts on a Windows system, what you see
on your screen will more closely match what you print out. The keys are to closely
match the printer’s fonts and to have the best possible information in the FXR file.

Creating a font cross-reference file is usually done by importing a printer font file using
Font Manager. Since the font cross-reference file is a representation of information
contained in the printer font file, modification of its fields usually does not affect the
printed output. However, modifying these FXR fields can improve the system’s ability
to display forms. See Choosing Screen Fonts on page 238 for help in selecting a screen
font similar to the printer font.

MAINTAINING FXR FILES

Use Font Manager to maintain FXR files. You can start this tool in Documaker Studio
using the Manage, System, Fonts option. You can start this tool from Docucreate
(choose Resources, Fonts) or from Image Editor (choose Tools, Font Manager). Font
Manager makes it easy to insert, edit, copy or delete font information in the FXR file.
Instructions for using Font Manager can be found in Using Font Manager on page 211.

Choosing a Font Cross-reference File

During library setup, you must choose either REL103.FXR or REL103SM.FXR as the font
cross-reference file for an AFP printer. You should also specify the PCL download font
file named REL103SM.FNT in the FntFile option of the Resource Library window.

If you have older versions of the AFP coded font and code page files installed in PSF or
PSF/2, you can use these versions to print to the same AFP printer. If you do not keep
the older AFP coded font and code page files installed, you must recompile AFP page
overlays for the current version using REL103.FXR or REL103SM.FXR.

Understanding the System This example shows you how the HPINTL.FXR and HPINTLSM.FXR files use PCL escape
sequences in the Setup Data field (on the Font Properties window) to use internal fonts
on a PCL printer. If you use Font Manager to edit a font in the HPINTL(sm).FXR file, you
will see the PCL escape sequence in this field.

For example, if you look at the Setup Data field for font ID 11036 (Times Roman Normal
36 point), you will see:

~(19U~(s1p36v0s0b5T

Where Represents

~ an escape character which must always start a PCL escape sequence

(19U the primary symbol set or code page (Windows 3.1 Latin 1 in this case)

~ the start of a second PCL escape sequence

(s1p the spacing of the font (proportional in this case)

36v the height of the font in point size (36 point in this case)

0s the style of the font (normal in this case)

Chapter 5
Working with Fonts

200

There are other values you can use for each of these sequences. For example, the
character or symbol set values used in HPINTL.FXR are:

19U for Windows 3.1 Latin 1

This symbol set matches the Windows ANSI code page and IBM code page 1004. You
can find a list of character set values in the HP manual entitled, PCL 5 Comparison
Guide.

Spacing values are (s1p for proportional fonts and (s0p for fixed pitch fonts.

• Point size values are placed before the v

• Font styles are 0s for normal, 1s for italic

• Font stroke weights are 0b for medium, 3b for bold

The typeface family values used in HPINTL.FXR are:

• 5T for Times Roman

• 3T for Courier

• 6T for Letter Gothic

• 52T for Univers

0b the stroke weight of the font (medium in this case)

5T the typeface family of the font (Times Roman in this case)

Where Represents

International Language Support

201

INTERNATIONAL
LANGUAGE

SUPPORT

Our goal for international language support is to support the languages you are most
likely to need. At the present, we consider these languages to be those used in the
Western Hemisphere and Western Europe.

If you need support for Far Eastern languages like Chinese, Japanese, or Korean or if
you need support for Eastern European languages, you must use version 10.2 or
higher. Contact Support to receive a copy of the document, Using Unicode, for more
information.

USING THE ANSI CODE PAGE FOR PC PLATFORMS

The Windows operating environment supports languages in these countries via a code
page known as the ANSI code page. Windows supports different keyboard mappings
for these countries by translating the key codes into ANSI code points. Therefore, even
though a keystroke for an international character generates different key codes on
English, Spanish, and French keyboards, a Windows application receives the same
ANSI code point.

Understanding the System We adopted these standards:

• The ANSI code page is the standard code page for all data files. The text contained
in FAP files is stored using the ANSI code page.

• The ANSI code page is the standard for the Monotype fonts included with the
system.

See Using International Characters on page 203 for more information.

By adopting these standards, you receive these benefits:

• Support for 13 languages used in approximately 40 countries

• Improved platform resource compatibility (Windows, UNIX, and z/OS).

• You only need one set of Monotype fonts—no need to create separate fonts for
each language

• Improved support of other Windows products, such as dictionaries, databases,
and so on.

The ANSI code page is used by the World Wide Web and UNIX computers, as well as the
Windows operating environment.

There are a few drawbacks to this approach. For instance, although all international
alphabetic characters in the Latin character set are supported in the ANSI code page,
certain symbols available in other code pages are not supported. These symbols
include mathematical, scientific, and line drawing symbols. Greek, Cyrillic, and Asian
characters are not supported either. And, in some cases, data files may have to be
converted to ANSI code page characters.

Chapter 5
Working with Fonts

202

USING CODE PAGE 37 FOR EBCDIC PLATFORMS

To support international languages on EBCDIC platforms, such as z/OS and AS400, we
use EBCDIC code page 37 as the standard EBCDIC code page. Code page 37 is the
native code page for many z/OS and AS400 systems. By using code page 37, you
receive these benefits:

• Code page 37 supports languages used in Europe and North and South America,
such as French, Spanish, Italian, German, Portuguese, and Danish.

• This reduces or eliminates the need to convert extract files containing
international characters on z/OS and AS400 platforms.

• This helps reduce or eliminate the need to convert resources before uploading to
EBCDIC platforms from Windows.

• Using code page 37 for EBCDIC platforms creates compatibility problems with
resources created in earlier versions. This only affects resources created in an
earlier version which contain international or desktop publishing characters.

• All characters defined in code page 37 are also contained in code page 1004, the
standard ASCII code page. There are, however, characters in code page 1004 which
are not in code page 37—mainly desktop publishing characters from code point
128 to 159. To support these characters, we use undefined code points in code
page 37 (code points below 64). For maximum portability, avoid using characters
not defined in code page 37.

AFP print output and resource files normally use EBCDIC characters. The other
supported printers, such as Metacode, PCL, and PostScript, normally use ASCII
characters.

NOTE: The current AFP code page file is called T1DOC037, the AFP code page for prior
versions was called T100ASC4. The current AFP coded font files are called
X0DA????.FNT, the AFP coded font files for prior releases were called
X0FA????.FNT. The AFP character set files are unchanged and can be used by
all versions.

Using International Characters

203

USING
INTERNATIONAL

CHARACTERS

One method for entering international characters is to install a country/language
specific version of Windows. These language-specific versions of Windows map
characters from the keyboard differently so that it is easier to enter characters common
to that language. In the simplest case, a single keystroke will generate an international
character.

For example, if you have a Canadian French version of Windows, pressing the slash
character (/) on a U.S. keyboard produces an e-acute letter (é). Many international
characters require a two-character keystroke combination. Again using the Canadian
French keyboard setup, you must press the left square bracket ([) followed by the
letter e to generate an e-circumflex letter (ê).

Having to install a special version of Windows would be difficult for those in the U.S.
who are trying to compose forms with French characters. Fortunately, there is a simpler
solution.

Using the numeric keypad on the right side of your keyboard, you can hold down the
ALT key and enter a three-digit number to enter an international character. For example,
if your primary (OEM) code page is 437 or 850, you can enter the letter ñ (lowercase)
by pressing the ALT key while you type 164 on the numeric keypad. When you release
the ALT key, the code point 164 will be generated by the keyboard, which Windows will
display as the letter ñ.

NOTE: If you look at the code page 1004 table you will see that on the ANSI code page
code point 164 is not the letter ñ. So why is the letter ñ being displayed?
Windows recognizes that a code point of 164 has been generated by the
keyboard and it is associated with the OEM code page (437 or 850). For this
code page, code point 164 maps to the letter ñ. In Windows, the code point
from the keyboard is translated from 164 to 241. A Windows program will
actually receive a keystroke code point of 241 instead and that code point will
display as the desired letter ñ.

You can also use the numeric keypad to enter ANSI code points directly. Using the
numeric keypad on the right side of your keyboard, you can press the ALT key and type
a four-digit number to key in an international character. For example, you can enter in
the letter ñ by pressing the ALT key and typing 0241 on the numeric keypad. Entering a
four-digit number beginning with a zero tells Windows you are entering a code point
for the ANSI code page. Therefore, Windows does not need to translate the code point
and passes the keystroke code point directly to the Windows application.

By standardizing on the ANSI code page, a document containing several languages can
be read and written by a number of people from different countries. The keystroke code
point translation lets Windows support many OEM code pages and keyboard settings.

NOTE: You can use any Windows text editor, such as Notepad, to edit resource files
since Windows also uses the ANSI code page.

Chapter 5
Working with Fonts

204

CONVERTING TEXT FILES FROM ONE CODE PAGE TO ANOTHER

There are two situations where you may need to convert text files from one code page
to another.

• If the customer’s data (extract) file is not in the ANSI code page and the file
contains international characters, you will need to convert the customer data file
to use the ANSI code page.

• If you need to upload system resource files, such as FAP, INI, and menu resource
(MEN.RES) files, which contain international characters to an EBCDIC platform,
such z/OS or AS400, and the file transfer software cannot convert ANSI code page
file to EBCDIC code page 37.

To convert a file from one code page to another, you can use the CPCNV code page
conversion utility. For more information, see the Docutoolbox Reference.

Setting Up PostScript Fonts

205

SETTING UP
POSTSCRIPT

FONTS

The system includes a standard font set with PostScript fonts. These fonts reside in the
FAP\MSTRRES\FMRES\DEFLIB\ directory with the sample forms included with
Documaker Studio and Docucreate. We devised naming conventions for the bitmap
printer fonts that are created from the PostScript fonts supported by the system.
PostScript fonts are easily converted to Xerox, AFP, and PCL formats.

NOTE: When you create bitmap printer fonts from PostScript fonts, follow the naming
convention outlined in the table below. This will make it easier to track and
identify those fonts.

A standard font has a six-character name. Each character indicates a specific piece of
data that describes the font. For example, you may take a PostScript font such as Times
(Roman), Bold (TIB___.PFB), convert the font to Metacode format, and change the
name to the standard FSI bitmap font name (FXTIOM). The font name characters
designate the following:

Character Definition

1 Converted PostScript fonts always begin with the letter F, indicating a
system supported font.

2 Indicates the printer platform associated with the converted font: X =
Xerox, A = AFP, P = PCL

3 and 4 Indicate the font family, such as Times Roman, Courier, and so on.
AB = Albany AL = Arial Black

AN = Arial Narrow CO = Courier
DD = DocuDings UC = Univers Condensed

LG = Letter Gothic MI = MICR

TI = Times (Roman)OA = OCRA

UN = Univers(al) OB = OCRB
ZP = ZIP code

5 Indicates the style of the font: N = Normal (no attributes), B = Bold, I =
Italic, O = Bold, Italic

6 Indicates the point size of the font. Use numbers 1 through 9 for point sizes
1 through 9.

0 (zero) = 10 point

A = 11 point

B = 12 point

C = 13 point--through--Z = 36 point

Chapter 5
Working with Fonts

206

This table lists PostScript fonts and their file names. The list shows the font names
before you create and name the fonts using the conventions in the previous table. Point
sizes are omitted in the names below. Use the table on the previous page to determine
the remaining font file name value for each corresponding font size.

Font File Name

Albany ALBR____.PFB

Arial Black ARIBL___.PFB

Arial Narrow AN______.PFB

Courier CO______.PFB

Courier Bold COB_____.PFB

Courier Bold Italic COBI____.PFB

Courier Italic COI_____.PFB

DocuDings DOCUD___.PFB

Letter Gothic LG______.PFB

Letter Gothic Bold LGB_____.PFB

Letter Gothic Bold Italic LGBSL___.PFB

Letter Gothic Italic LGSL____.PFB

MICR MT MICR____.PFB

OCRA MT OCRA____.PFB

OCRB MT OCRBMT__.PFB

Times Roman TIR_____.PFB

Times Roman Bold TIB_____.PFB

Times Roman Bold Italic TIBI____.PFB

Times Roman Italic TII_____.PFB

Univers UNM_____.PFB

Univers Bold UNB_____.PFB

Univers Bold Italic UNBI____.PFB

Univers Italic UNMI____.PFB

Univers-Condensed Bold UNCB____.PFB

Univers-Condensed Medium UNCM____.PFB

Setting Up PostScript Fonts

207

Remember that PostScript fonts are scaleable. You complete font file name by adding
the point size values when you convert the font. Here is an example:

CSBD__.PFB = CS Bookman Bold (any point size)

NOTE: AFM files are Adobe Font Metrics files which describe a PostScript font. These
files are used when you install PostScript fonts using Adobe Type Manager.

PostScript fonts reference code pages to define window and print characters. In turn,
the code page maps to specific characters in the character set. The PostScript fonts
included with Documaker Studio and Docucreate reference code page 1004, W1 and are
shown here:

Univers-Condensed Medium Italic UNCMI___.PFB

ZIPcode Barcode-Regular ZIPCODE_.PFB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32 ! " # $ % & ¢ () * + , - . /

48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

64 @ A B C D E F G H I J K L M N O

80 P Q R S T U V W X Y Z [\] ^ _

96 ` a b c d e f g h I j k l m n o

112 p q r s t u v w x y z { | } ~

128 € , ,, º † ‡ ˆ ‰ Š ‹ Œ Ž

144 ‘ ’ “ ” • – — ˜ ™ š › œ ž Ÿ

160 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯

176 ° ± ² ³ ´ μ ¶ . ¸ ¹ º » ¼ ½ ¾ ¿

192 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

208 Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

224 à á â ã ä å æ ç è é ê ë ì í î ï

240 ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Font File Name

Chapter 5
Working with Fonts

208

Bitmap fonts are a specific set of symbols or characters. The maximum number of
characters a set of bitmap fonts can reference is 256. Scaleable fonts, such as
PostScript fonts, may have more than 256 characters, but only 256 can be used at one
time. The system’s font structure is designed to use the standard code page 1004, W1.
Code pages are predefined in your system, and reside in the CODEPAGE.INI file in your
DEFLIB directory. The path is FAP\MSTRRES\FMRES\DEFLIB.

The characters in the code page include foreign language characters and mathematical
function characters. When you convert PostScript fonts using Font Manager, you
always select this code page (1004). You may, however, notice that the PostScript fonts
themselves support multiple code pages.

NOTE: If you want to use the internal printer fonts and you will print international
characters, your printer must have the character or symbol set named
Windows Latin 1 (also known as ANSI code page) on your printer. Be aware that
not all PCL printers support this character set.

FONTS FOR PDF FILES

When you are creating PDF files, keep in mind that the following PostScript fonts are
included with Adobe Acrobat Reader and do not have to be embedded.

Importing PostScript Symbol Fonts

You can select a code page when importing PostScript symbol fonts, such as Euro Sans
and ITD Zapf Dingbats, which contain characters that do not adhere to a standard
Windows code page.

In Font Manager (For both Documaker Studio and the legacy tools), select 9999,WD as
the code page when importing these types of PostScript fonts.

Fixed Pitch Fonts Proportional Fonts

Courier Helvetica

Courier-Bold Helvetica-Bold

Courier-Oblique Helvetica-Oblique

Courier-BoldOblique Helvetica-BoldOblique

Times-Roman

Times-Bold

Times-Italic

Times-BoldItalic

Symbol

ZapfDingbats

Setting Up PostScript Fonts

209

NOTE: For normal fonts, you should continue to select 1004,W1 as the code page.

If you import a PostScript font using code page 1004,W1 and the system produces a
font record with only a few non-zero character widths or produces an internal error, try
using code page 9999,WD to import the font.

For instance, importing Euro Sans and ITC Zapf Dingbats using code page 1004,W1
produces a font record where only the space and hard space characters (code points
32 and 160) contain non-zero character widths. Importing the same fonts using code
page 9999,WD produces a font record with non-zero character widths for virtually
every code point from 32 to 255.

When you use the PS2PCL utility to convert PostScript symbol fonts to PCL, specify the
symbol set by setting the /S parameter to WD. This tells the utility that these PostScript
fonts that contain characters that do not adhere to a standard Windows code page.

NOTE: When converting normal text fonts with the PS2PCL utility, continue to set the
/S parameter to W1.

Chapter 5
Working with Fonts

210

FONT NAMING
CONVENTIONS

When adding fonts to a font set, or when installing new fonts, you must give each font
a unique ID. Use this 5-digit naming convention:

For example, 11010 indicates Times (Roman) Regular 10 point, 11214 indicates Times
(Roman) Italic 14 point, and 16110 indicates Universal Bold 10 point.

NOTE: You may only use a font ID from 00001 to 32767 and the font ID must be
numeric not alphanumeric.

The… Indicates…

First digit the font provider:
1= Monotype
2= Adobe

Second digit

The standard FXR file (REL103SM) defines only
Times (Roman), Courier, and Univers. If you add
other fonts to your FXR, use these font code
naming conventions.

(DocuDings is included in 3)

the font type or font family:

1 = Times (Roman)
2 = Courier
3 = OCRA, OCRB, MICR, and ZIPcode*
5 = Letter Gothic
6 = Univers
7 = Univers Condensed
8=Albany
9=Arial Black
0=Arial Narrow

Third digit the font attributes
0= normal
1= bold
2= italic
3= bold, italic

Fourth and fifth digits the point size of the font,
such as 09 point, 12 point, and so on.

* The OCRA, OCRB, MICR, and ZIPcode fonts do not have bold or italic styles so the second
and third digits identify these fonts: 30 = OCRA, 31 = OCRB, 32 = MICR, 33 = ZIPcode, and
34 = DocuDings.

Using Font Manager

211

USING FONT
MANAGER

Font Manager provides an easy method for working with your font sets.

STARTING FONT MANAGER

From Image Editor Select Tools, Font Manager. The Font List appears. This window lists the fonts in the
font cross-reference file designated for the current library during library setup.

From Docucreate 1 Select the Resources menu, then select Fonts; or, click the Resources icon, then
click the Fonts icon on your desktop. The Open FAP Font Set window appears,
listing all the FXR files in the current library.

2 Highlight the FXR file you want to work with and click Ok. The Font List for the
selected FXR appears.

Chapter 5
Working with Fonts

212

WORKING WITH THE FONT LIST
The Font List gives you important information about your font set. The name of the
current font set is displayed in the window’s title bar. The Font List provides the names,
ID numbers, stroke weights, and point sizes of all the fonts currently in the font set. You
can view your fonts in the bottom of the Font List window.

To open the Font List from Image Editor, choose Tools, Font Manager. The Font List
window appears:

This window shows you fonts contained in the FXR file, as defined in your resource
library setup.

In addition to viewing the fonts, the Font List window gives you additional options for
organizing the font set. From the Font List window you insert, copy, delete, edit, and
convert fonts. When you select New, Copy or Edit, the Font List opens the Font
Properties window.

NOTE: The Description tab of the Font Properties window is the source of the
individual font information provided in the Font List.

Selecting Fonts

The Font List lets you select individual, multiple, or all of the fonts in your font list for
editing purposes.

1 To select a font, click on the desired font to highlight it. The font you select
displays in reverse video. Also, a sample of the font displays in the bottom
window.

Font set

Font ID

Font name

Stroke weight

Point size

Using Font Manager

213

2 Continue highlighting fonts in this manner. You can select as many fonts as you
want. When you select multiple fonts, your last font selection displays at the
bottom of the window.

3 To select all fonts in the font list, click Select All.

Deselecting Fonts

If, after selecting a font, you change your mind, just click it again to deselect it.

You can also use the Deselect All button to deselect all the selected fonts on the Font
List. This is particularly useful if you need to activate the New or Insert buttons. The
New and Insert buttons are not active if a font is selected. The Deselect All button
prevents you from having to scroll through the list of fonts to find a highlighted or
selected font near the bottom of the list.

Filtering the List of Fonts

The Filter List option lets you select fonts from the list based on specific criteria. The
more focused your font selection scope, the more efficiently you can work with the
fonts.

1 From the Font List window, click Filter List. The system displays the Filter Font List
window.

The selected fonts are shown
here.

A sample of the last font you
selected is shown here.

Chapter 5
Working with Fonts

214

2 Select one option to define your font selection filter criteria. See the following
table for a detailed description of the Filter Font List options and related entry
descriptions.

3 Click Ok in the Filter Font List window. The font list displays the selected fonts
based on your filter criteria.

Adding Fonts to a Font Set

Use the New button to add new fonts to the font set. The New button does not create a
font; rather, it just lets you add the font to the font set. If you add a font supplied by
another vendor, the vendor provides information about the font name and
characteristics.

To filter by Then

Range of
font IDs

In the entry fields, type the first and last font ID in the font range you
want to display. The font IDs you enter in the fields are included in the
range. For example, if you enter IDs 16010-16016, those two fonts,
plus all fonts in between the range IDs appear in the Font list.

Family Type the font family name you want to display, such as Universal or
Times. The system displays all fonts in the font family.

Face name Type the face name or font family name you want to. Font Manager
does not distinguish between font family and facename. Type the
same data in both the Family field, and the Facename field.

Description Type the font description as shown in the Font Properties window.
Here are some examples: Universal Medium or Courier Bold. The
selection list displays all point sizes for that font.

All Click All to see all fonts in the FXR file.

Using Font Manager

215

NOTE: Use New to manually add fonts to your font set. Use Insert to cross-reference
your collateral font information, and to add a font if you also have the printer
font file).

When you add a font, you must enter font description and dimension
information, whereas the Insert option automatically adds this information
based on the type of font you insert. You seldom use the New option unless
you decide to add new fonts to your font set.

To add a font to the current font set, the font must exist in your master resource library
font directory. From the Font Properties window, you specify the description,
dimensions and printer specific information for every font.

1 Start Font Manager by selecting the Font Manager icon from the system folder, or
by selecting Font Manager from the Image Editor Tools menu.

2 Select the appropriate font set. The Font List appears.

3 Click New. The Font Properties window appears.

NOTE: You cannot select the New button unless there are no fonts selected. Click
Deselect All to activate the New button.

Chapter 5
Working with Fonts

216

These options are available from each tab of the Font Properties window:

Description tab The Description tab contains general description information about the font. You
specify the typeface, family and other necessary information required for each font.

Option Description

Reset Reset reverts your most recent (unsaved) changes to their prior status. Your
changes are reset for that particular page without having to exit the property
window.

Like Like lets you select a Windows display font that most closely resembles an
available printer font. See Choosing Screen Fonts on page 238 for information
on this option.

Prev Prev displays the previous Prev font in the font list, and related information. If
you select Prev while the first font is displayed, you scroll to the last font in the
list.

Next Next displays the next font in the font list, and related information. If you select
Next while the last font is displayed, you scroll to the first font in the list.

Using Font Manager

217

Here is a discussion of the fields on this tab:

Field Description

Font ID When a font is imported into the FXR, it is assigned a unique font ID.
The system uses font IDs to track font usage. In addition, some
printers require that you refer to a font by its ID number instead of its
name. This value is generated when the printer font is imported into
the FXR but may be changed if needed. If you change this field, you
may need to change the Setup Data field for PCL Print to use the same
font ID.

Description Used in the font selection window in Font Manager.

Point Size A point is a typographical vertical measurement, 72 points are equal
to approximately 1 inch.
Point size is used similarly in PostScript printing. It does not affect
PCL, AFP, or Metacode printing.

Typeface A specific member of a typeface family, such as Times-Roman or
Times-Bold.
The typeface name helps determine the screen font to use for display
purposes.

Family A group of typefaces that share basic design characteristics and
encompass many size and style variations such as Courier or Times.
The family name helps determine the screen font used for displaying
text when running under Windows.

Style Upright or Italic
The style helps determine the screen font used for displaying text
when running under Windows.

Chapter 5
Working with Fonts

218

Remember, the Description tab provides information about the font file, and should
match the characteristics of the font. If you enter information which does not match the
font file, the font window display changes but the actual font characteristics in the font
file and the font print characteristics do not change. Only when you change the
PostScript font description do your changes affect both the window and print fonts
since you use a single font file for both window display and print.

To enter font description information follow these steps:

1 Enter the font ID in the Font ID field. The ID must be a unique one to five digit ID
(between 00001 and 32767). You must assign a unique ID to every font in the font
set. Notice that the title of the window displays the current font ID. The system
creates default IDs when you insert a font, based on the next available ID. See Font
Naming Conventions on page 210 for help in assigning a font ID.

2 Enter a description in the Description field. The description is the information that
the form designer sees when selecting a font from a font list. The description
should inform the form designer about the font type selection.

3 Select the desired point size in the Point Size field. The point size is the height of
the font. One point is equal to approximately 1/72 inch.

4 Type a typeface name in the Typeface field. Font Manager selects fonts using the
typeface name.

NOTE: Valid entries include the standard window display fonts of Courier, Helvetica,
and Times (Roman). Type these entries as Courier, Helv, or Tms Rmn. To use a
different font type, install the font from your operating system disks, or from
your font provider disk. The font name is a valid entry after you install it.

5 Type a family name in the Family field. A family name gives the broadest category
for the font, and is used to group fonts that are variations of a single design. Family
names include Courier, Times (Roman), and Helvetica.

NOTE: The family name, style, and stroke weight fields control which screen font is
displayed under Windows.

Stroke Wt. The lightness or darkness of the printed typeface, -7 = lightest, 0 =
medium, 7 = darkest.
The stroke weight helps determine the screen font used for displaying
text when running under Windows.

Orientation Portrait or Landscape. This field is not currently used.

Spacing Fixed or Proportional
The spacing helps determine the screen font used for displaying text
when running under Windows.

Field Description

Using Font Manager

219

6 Select the style in the Style field. Style is either upright or italic. Click the arrow to
the right of the field to see the available selections.

7 Select the stroke weight in the Stroke Wt field. Stroke weights range from Light to
Lightest (-1 through -7), Medium (0) and Bold to Boldest (+1 through +7). Click the
arrow to the right of the field to see the available font weight selections and
compare the thickness of the font characters.

8 Select either Portrait or Landscape Orientation.

9 Select either Fixed or Proportional Spacing. Fixed spacing means all the characters
have the same width. Proportional spacing means the character widths vary
according to the character design.

10 Select the Non-Text (Symbol) font field if the font you define is not alphanumeric.
This selection lets you read non-text fonts such as MICR fonts. MICR fonts are
symbol fonts such as those appearing on the bottom of your bank checks. The
MICR font format allows scanners to read the data and translate symbols into
alphanumeric characters. Here is an example:

NOTE: Remember, changes made in these steps change only the window display of
bitmap fonts. These changes do not alter the way the font prints.

Dimensions tab The Dimensions tab lets you enter dimensions for the font. You identify the exact
character cell dimensions for the font, including height, width, and baseline. When you
use Copy or Insert, these dimensions are filled in for you from the font file.

Here is a discussion of the fields on the Dimensions tab:

Chapter 5
Working with Fonts

220

Remember, the Dimensions tab provides information about the font file. Information
on this window should match the characteristics in the font file. If you enter dimension
information which does not match the actual font file, only the bitmap font window
display changes. The actual dimensions of the font in the font file do not change, nor
do print dimensions of the font change.

1 To enter font dimensions information, click Dimensions. Enter the height in the
FAP Height field.

NOTE: Enter character height in FAP units. A FAP unit is equal to 1/2400 of an inch.
Therefore, if the character height is one inch, you enter 2400.

2 Enter the width in the FAP Width field.

3 Enter the baseline in the FAP Baseline field. The baseline is the bottom position of
the characters (excluding the tail), in relation to the lines of text above and below
it.

Field Description

FAP Height largest font character height (in FAP units, 2400 dots/inch)
The font height affects the size of text displayed when running under
Windows.

FAP Width largest font character width (in FAP units)
The font width affects the width of text displayed when running under
Windows.

FAP Baseline largest font character base line (in FAP units)
The baseline is measured from the top of the largest character to the
imaginary line that the character appears to rest on.
The font baseline affects the positioning of text displayed when
running under Windows.

FXR File In the DOS/PC environment, the font file name has the extension FNT.
This field is not currently used.

FON File In the DOS/PC environment, the font width table file name has the
extension FON.
This field is not currently used.

Code Page Under Windows, the system uses the ANSI code page. Normally, this
field is set to 1004 or is left blank.

Width Table The width table is calculated from the printer font file and is used to
determine character spacing when displaying text. Fixed pitch fonts
use the same width for each character. The width is measured in FAP
units (2400 to an inch).

Using Font Manager

221

4 Enter the name of the FXR file in the FXR File field. The FXR file is the file used by
the font.

5 Enter an FON file in the FON File field. The FON file is a window font used by an
earlier version of the system called FormMaker II. The FON file is the font width
table. This table defines the character widths and character sets for each bitmap
font. Use this option only for bitmap fonts.

6 If you want to change the window display width of a character, highlight the
character in the Width Table and click Change. This window appears:

7 Select a new width for the character and click Ok. You return to the Font Properties
window. Click Ok in the Font Properties window. You return to the Font List
window.

NOTE: Remember, changes made in these steps change only the window display of
bitmap fonts. These changes do not alter the way the font prints.

Printers tab The Printers tab lets you enter printer-specific information for PCL, AFP, Metacode, and
PostScript printers. The Other tab lets you enter the same kind of information for
printers other than those mentioned above. Here are short descriptions of PCL, AFP,
Metacode, and PostScript:

Baseline position

Baseline Tail

Printer Description

PCL Print Control Language (PCL), designed and developed by Hewlett Packard,
incorporates commands in compact escape sequence codes that are
embedded in the print data stream.

AFP Advanced Function Printing (AFP), developed by IBM for its Print Services
Facility (PSF), is a print server language that generates data streams of
objects. The data streams merge with print controls and system commands,
to generate IPDS (Intelligent Printer Data Stream). The IPDS is then sent to
an IPDS-compatible printer.

Chapter 5
Working with Fonts

222

1 To enter printer-specific information for PCL, AFP, Metacode, or Postscript
printers, click Printers.

2 You only need to make entries into the fields for the printer you use.

Metacode Metacode, developed by Xerox, is the native language of its Centralized
Printing Systems. Metacode contains code that defines printing functions
to the hardware. Metacode lets you position data via page addressing and
to specify multiple fonts and data orientations.

PostScript PostScript, developed by Adobe Systems, is a page description language
that translates or describes a document from a computer composition
system to a raster output printing system. PostScript describes pages at a
high level as a series of abstract graphic objects.

Printer Description

Type Field Enter the…

PCL

Using Font Manager

223

Font File

Setup
Data

Font file name, including the .PCL extension.
For printing to PCL printers, this PCL bitmap font must be
located in the FONTLIB master resource directory so that
it may be downloaded to the printer if requested.
For printing to PostScript printers, this PostScript Type 1
font must be located in the FONTLIB master resource
directory so that it may be downloaded to the printer if
requested.
For printing to AFP printers, this file name must be the
name of an AFP coded font file installed on the printer.
For printing to Metacode printers, this file name must be
the name of a Xerox font installed on the printer.

Actual PCL printer sequence required to select a font.
Normally, the setup data must appear in this format:
~(11018X where 11018 is the Font ID. The font ID must
match the font ID you defined on the Description tab. The
X must be uppercase.
Your setup data may differ if you are using internal printer
fonts. Check your printer manual and the online Help for
the proper setup data sequence for internal printer fonts.

AFP

Coded
Font File

Font file name. AFP font file names do not have an
extension.

Metacode

Font File Font file name (limited to six characters for Metacode
printers). No extension.

Rotated
Font Files

File names or 90, 180 and 220 degree fonts separated by
semicolons, such as FNT90;FNT180;FNT270

Postscript

Type Field Enter the…

Chapter 5
Working with Fonts

224

3 Beside each type of printer listed on the Printers tab is an Advanced button you
can use to enter additional information. Click the Advanced button to display the
Printer Specific window.

4 Enter the Font File and Setup Data information. Most of the other fields (Typeface
ID, Char Set Name, Font Index, Other, Options, and Flag) are not used in the base
system. The Char Set ID field is used for PostScript fonts. Click Ok.

Font
Name
Font
Name

Char Set
ID

Font file name, including the .PFB extension.
Name of the font, such as Times-Roman. Font Manager
fills this field when you insert a PostScript font. The font
name also appears in the font .AFM file. All type 1
PostScript fonts require two files for each font family
name: .AFM and .PFB. For more specific information about
these files, talk with your support representative.

A character set (also known as a symbol set) identifies the
set of symbols provided by the font.
Some printers require that you refer to a character set by
its ID number instead of its name.
Used by PostScript printing to build an internal code
page. Use W1 for the ANSI code page. This value should
match the character set ID specified in the CODEPAGE.INI
file. For instance, if you enter 1004 as the code page on
the Printers tab, enter W1 here.

Codepage Char Set ID
1004 W1
863 CF
850 PM
437 PC
37 Z1

Type Field Enter the…

Using Font Manager

225

NOTE: The HPINTL.FXR and HPINTLSM.FXR files use PCL escape sequences in the
Setup Data field to use internal fonts on a PCL printer. If you use Font Manager
to edit a font in the HPINTL(sm).FXR file, you will see the PCL escape sequence
in this field.

Other tab The Other tab can be used for custom implementations of printers other than PCL, AFP,
Metacode, or PostScript. You do not need to enter information in these fields.

Copying Font Information

The Copy button lets you copy a font and assign a new font identification number or
other necessary information. Copy duplicates a font that is in your current font set. You
can then open the Font Properties window and change the ID number or other
descriptive information associated with the copied font.

NOTE: Image Editor gives you a quick way to change all the fonts in an section (FAP
file). For example, suppose you have a section designed with Helvetica Regular
10 point (font ID 16010) and you want to change all text using this font to Times
(Roman) 10 point (font ID 17010). You can quickly do this by selecting the Edit,
Font Change option.

To copy a font, follow these steps:

1 Start Font Manager by selecting Font Manager from the system folder, or by
selecting Font Manager from the Image Editor Tools menu.

2 Select the appropriate font set. The Font List appears.

Chapter 5
Working with Fonts

226

3 Click on the font you want to copy to highlight it and click Copy. The Font
Properties window appears.

4 The system automatically assigns the next number in the list. To change the
number to a different font ID, click on the newly added font, then click the Edit
button.

5 Edit any other font information as necessary. When finished, click Ok.

Editing Font Information

The Edit button gives you a way to edit the information about fonts and printers.

1 Start Font Manager by selecting Font Manager from the system folder, or by
selecting Font Manager from the Image Editor Tools menu.

2 Select the appropriate font set. The Font List appears.

Using Font Manager

227

3 Highlight the font you want to edit information for and click Edit. The Font
Properties window appears.

4 Edit any font information as necessary and click Ok.

Converting Fonts

Converting fonts lets you modify fonts so you can use the same font for different types
of printers. If you want to use the fonts on AFP, PCL, and Xerox printers, you can convert
the standard fonts that are included with the system. The standard fonts are PostScript
fonts supported only by PostScript printers in pre-converted format. You can also
convert fonts for your different printers.

Before you convert fonts, make sure the font files reside in your master resource
library. PostScript fonts are loaded in the FAP\MSTRRES\FMRES\DEFLIB directory of
your system. If you want to convert other fonts, make sure you load the font files into
your font directory. Check with your system supervisor for assistance.

Follow these steps to convert a font:

1 From the Font List window, select the font you want to convert, and click Convert.
The Font Conversion window appears.

Chapter 5
Working with Fonts

228

2 The window shows information about the current font, such as font ID, description,
point size, and so on. This information also appears on the Description tab of the
Font Properties window.

3 In the Convert From field, click the option associated with the font type you want
to convert.

4 If you are converting a PostScript font, enter 1004 or an appropriate code page in
the Codepage field.

NOTE: If a font file appears in the Convert To field, the font may already be converted.
Click Skip to display the next font in the list. By selecting Skip or Cancel, you
will not overwrite the converted font.

5 In the Convert From field, accept or type the font file name in the Font File field.
Remember that you use the pre-converted font file name.

6 In the Convert To field, click the option for the font type to which you want to
convert. If you convert to an AFP font, enter 1004 in the Codepage field.

NOTE: If you are converting to an AFP font, your font file name has to have an
extension of 300. Also files entered in convert from and convert to should have
a file extension.

Note too that the system adds character set and code page names when
importing AFP fonts into a new FXR file. To add this information to an existing
FXR file, you must re-create the FXR file.

7 In the Convert To field, enter the new font file name in the Font File field.

8 Click Ok to convert the font, or click Skip to stop the conversion. When you select
Ok, the system creates a copy of the font in your font directory, and retains a copy
of the original pre-converted font.

Using Font Manager

229

NOTE: If you selected multiple fonts to convert, information pertaining to the next
font displays when you select Skip.

Converting fonts from
other vendors

If you purchase additional fonts from a third party vendor, you must convert the fonts
for use on your printers. You must also install the fonts onto your computer and
printers. Copying the new, converted fonts onto your hard drive lets the system display
them accurately on screen.

NOTE: Your resource library setup tells Image Editor where your font files and your
cross-reference files reside.

There are several legal issues to be aware of before converting fonts from other
vendors. Font vendors generally copyright the fonts they create. You can legally
convert fonts only if the font vendor grants permission.

The converted font is bound by the same copyright restrictions that apply to the
original font. For example, if your license does not permit you to use the font on more
than one computer at a time, then you are not permitted to use the converted font on
more than one computer at a time. In addition, it may be a copyright violation to copy
converted fonts to other platforms running on the same computer.

Working with multiple
printers

If you are working in a multi-printer environment, your combination of printers and
specific printing needs dictates your options and entries. You may also need to run the
font conversion utility to convert fonts to various printer platforms. You should convert
the fonts you want to use for each printer, then define the font on the appropriate
printer Font Properties window.

The system includes several font cross-reference files. The REL103SM.FXR file contains
all information for Courier, Univers, and Times (Roman) fonts for PCL, AFP, Metacode
and PostScript printers.

The DESKJET.FXR provides font information for HP Deskjet printers. Unless you use
only Deskjet printers at your company, your system uses the REL103SM.FXR file. The
following tables list the font file names used in the standard font cross-reference file.

If you are working in a multiple printer environment, follow these steps:

1 Load the font files into the system.

2 If the fonts are from a specific printer, copy the font files to the master resource
library where you store your fonts, such as FAP\MSTRRES\FMRES\DEFLIB\.

3 Select the font to convert; then select Convert. The Font Conversion window
appears.

4 Convert the font to a specific printer platform, following the conversion steps
outlined in Converting Fonts on page 227.

5 Copy the converted font to your printer.

6 Compare the font names with the printer font names.

Repeat these steps for each font you select for use by multiple printers.

Chapter 5
Working with Fonts

230

Description PCL font file Metacode font file AFP font file

Courier

7 pt COM_ _7_X.SFP COM7X X042107C

8 pt COM_ _8_X.SFP COM8X X042108C

10 pt COM_ _10X.SFP COM10X X0421001

12 pt COM_ _12X.SFP COM12X X04210BC

Courier Bold

7 pt COB_ _7_X.SFP COB7X X044107C

8 pt COB_ _8_X.SFP COB8X X044108C

10 pt COB_ _10X.SFP COB10X X044100C

12 pt COB_ _12X.SFP COB12X X04410BC

Courier Italic

7 pt COO_ _7_X.SFP COO7X X043107C

8 pt COO_ _8_X.SFP COO8X X043108C

10 pt COO_ _10X.SFP COO10X X043100C

12 pt COO_ _12X.SFP COO12X X04310BC

Courier Bold Italic

 7 pt COBO_ 7_X.SFP COBO7X X045107C

8 pt COBO_ 8_X.SFP COBO8X X045108C

10 pt COBO_ 10X.SFP COBO10X X045100C

Helvetica

 6 pt HV_ _ _ 6_X.SFP HV6X X0H2106

7 pt HV_ _ _ 7_X.SFP HV7X X0H2107C

12 pt HV_ _ _ 12X.SFP HV12X X0H210BC

14 pt HV_ _ _ 14X.SFP HV14X X0H210DC

16 pt HV_ _ _ 16X.SFP HV16X X0H210FC

24 pt HV_ _ _ 24X.SFP HV24X X0H210NC

Helvetica Bold

 6 pt HVB_ _6_X.SFP HVB6X X0H4106C

Using Font Manager

231

Here is an example which shows how to convert and add a single font (Times (Roman),
Normal, 18 point) from the PostScript font set, for an AFP, PCL, and Metacode printer.

Let’s assume this is the font name (found in the FAP font directory): (TIR___.PFB).

1 Insert the PostScript font into your FXR file.

2 Open the Font Conversion utility within the Font List window. Then convert the font
to AFP, PCL, and Metacode format in this sequence. See Converting Fonts on page
227 for specific conversion steps. Refer to each respective printer manual for font
file naming convention guidelines.

3 Copy the appropriate converted font file to the associated printer.

Deleting Fonts

The Delete option lets you exclude a font from your font set. If you delete a font, it is
not deleted from the system. The font is simply no longer available in the font set.

12 pt HVB_ _12X.SFP HVB12X X0H410BC

14 pt HVB_ _14X.SFP HVB14X X0H410DC

16 pt HVB_ _16X.SFP HVB16X X0H410FC

18 pt HVB_ _18X.SFP HVB18X X0H410HC

Helvetica Italic

 6 pt HVO_ _6_X.SFP HVO6X X0H3106C

12 pt HVO_ _12X.SFP HVO12X X0H310BC

14 pt HVO_ _14X.SFP HVO14X X0H310DC

16 pt HVO_ _16X.SFP HVO16X X0H310FC

Helvetica Bold Italic

 6 pt HVBO_ 6_X.SFP HVBO6X X0H5106C

12 pt HVBO_ 12X.SFP HVBO12X X0H510BC

14 pt HVBO_ 14X.SFP HVBO14X X0H510DC

16 pt HVBO_ 16X.SFP HVBO16X X0H510FC

Helvetica Symbol

Symbol 10 pt. SY_ _ _ 10X.SFP SY10X Not available

Description PCL font file Metacode font file AFP font file

Chapter 5
Working with Fonts

232

NOTE: If you compose a section with a font which is later deleted from the font set,
you must revise the section. You can verify that all the fonts within a section
are valid fonts in the current font set by using the Font Check tool, available
from the Image Editor Tool menu.

Follow these steps to delete a font:

1 From the Font List, highlight the font or fonts you want to delete.

2 Click Delete. A confirmation message appears.

3 Click Yes to confirm or No to cancel.

Inserting Fonts

Use Insert to quickly add font information to your font set files. Insert lets you add
multiple font information or individual font information to the font set or FXR file. If
necessary, you can edit font information to change the font ID, typeface, family, and
printer specific information. (Use New to manually add fonts to your font set; use Insert
to automatically add font information.) You can also use Insert to add fonts to your font
set. Using Insert is quicker and more efficient since you do not have to manually enter
the specific characteristics of each font as you do with the New option.

To insert fonts, click Insert in the Font List window to display the Insert Fonts window.

NOTE: Insert is active only if no font is selected. If the Insert button is not active, click
the Deselect All button to make sure no fonts are selected. This will activate
the Insert button.

1 Click the font type or the fonts you want to insert. You can insert multiple fonts.
The following is a brief description of the several font types that are available:

Using Font Manager

233

2 Click Ok. Depending on the fonts or font type you selected, either an open fonts or
load font window will appear:

Font Type Description

AFP font This option lets you select an AFP coded file to import. AFP character
set files begin with the letter X, such as X0DATIN8.FNT. A coded font
file contains references to a specific character set and a specific code
page. The corresponding character set and code page files must be in
the same directory as the coded font file to import it. The font
information imported from the AFP font is assigned a font ID which is
one greater than the largest font ID contained in the font cross-
reference file (FXR).

FAP font
set (FXR)

Inserts font information stored in another system font set. Cross-
reference files usually end with an FXR file extension. Once you select
an import FXR file, you will see a list of the fonts referenced in the file.
You can import any or all of the fonts contained in the file.

FormMaker
II font XRF*
(AFP)

Inserts a FormMaker II cross-reference file and the associated AFP
bitmap fonts into the cross-reference file (FXR) you are currently
using.

FormMaker
II font XRF*
(PCL
bitmap
fonts)

Inserts a FormMaker II PCL cross-reference file and the associated
PCL bitmap fonts into the cross-reference file (FXR) you are currently
using. You retain the original FormMaker II PCL cross-reference file.

FormMaker
II screen
font def.*
(FON)

Inserts a single FormMaker II window font. Use this option only when
a printer font is not available.

PCL bitmap
font

Inserts a PCL bitmap font. The font information imported from the PCL
font will be assigned a font ID which is one greater than the largest
font ID contained in the font cross-reference file (FXR).

PostScript
font

Inserts a PostScript scaleable font.

TrueType
font

Inserts a TrueType scaleable font.

Xerox
Metacode
fonts

Inserts a Xerox bitmap font. The font information imported from the
Metacode font will be assigned a font ID starting at one greater than
the largest font ID contained in the font cross-reference file (FXR).

*These font file formats are from FormMaker II DOS System.

Chapter 5
Working with Fonts

234

3 Select the file you want to open or load. If the file is in a different directory or
folder, use the Drives and Folders fields to find the file. Click Ok.

NOTE: There is a Windows Network button available in this window; use it to map
network drives.

4 To continue with inserting bitmap fonts and FXR files, follow the instructions
below. To finish inserting PostScript and TrueType fonts, see Inserting PostScript
and TrueType Fonts on page 235.

Inserting bitmap fonts
and FXR files

Once you open a FormMaker II XRF file (AFP or PCL) or an FXR file, the Font List window
appears.

Here is a summary of your options:

Using Font Manager

235

Keep in mind...

• If you select a font ID already present in your font cross-reference file, the system
will give you the option of replacing the existing font, or assigning the imported
font an ID at the end of the font list.

• The font information imported is assigned a font ID which is one greater than the
largest font ID contained in the font cross-reference file.

• You may need to modify the font ID, typeface, family, and printer specific
information for the bitmap fonts after they have been inserted into your current
FXR.

• If you install fonts supplied by an outside vendor, you may need to copy those font
files to the proper directory in your resource library, such as:

C:\FAP\MSTRRES\FMRES\DEFLIB\

Remember, the master resource setup tells Image Editor the directory location of your
fonts and your FXR file.

Inserting PostScript and
TrueType Fonts

To insert PostScript and TrueType fonts into an FXR file, you must have these files and
INI options:

To Click

Choose all fonts in the FXR or XRF file Select All

Deselect all fonts currently selected Deselect All

Choose specific fonts in the FXR or XRF file The specific fonts

Insert selected fonts into your font set Ok

File name Description

IFW32.DLL Intellifont Runtime DLL Postscript, TrueType font reader
You must store this file in the system’s DLL directory.

IF.FNT Intellifont Typeface Index file
Store this file in the directory specified in the DEFLib option in the
FMRes control group. See below for more information.

UIF.SS Intellifont Symbol Set file
Store this file in the directory specified in the DEFLib option in the
FMRes control group. See below for more information.

UMT.SS MicroType Symbol Set file
Store this file in the directory specified in the DEFLib option in the
FMRes control group. See below for more information.

Chapter 5
Working with Fonts

236

Follow these steps to insert PostScript and TrueType fonts:

1 Open your font cross-reference file and click Insert. Select the font type in the
Insert Fonts window. The system shows you the appropriate Load Font File
window. If you select a PostScript font from the Insert Fonts window, the Load
PostScript Font File window appears.

NOTE: The insertion procedure is the same for both font types.

UTT.SS TrueType Symbol Set file
Store this file in the directory specified in the DEFLib option in the
FMRes control group. See below for more information.

PLUGIN.TYQ Intellifont Plugin and Typeface Library file
Store this file in the directory specified in the DEFLib option in the
FMRes control group. See below for more information.

PLUGIN.TTF TrueType Plugin and Typeface Library file
Store this file in the directory specified in the DEFLib option in the
FMRes control group. See below for more information.

CODEPAGE.INI List of code pages
Store this file in the directory specified in the DEFLib option in the
FMRes control group. See below for more information.

For example, if your INI file contained this option:

< FMRes >

DEFLib = c:\fap\fonts

the system would look for these files (IF.FNT, UIF.SS, UMT.SS, UTT.SS, and so on) in the
C:\FAP\FONTS directory. If you omit the DEFLib option, the system looks for these files
in the ..\MSTRRES\FMRES\DEFLIB\ directory.

File name Description

Using Font Manager

237

2 Select the file you want to insert and click Ok. The Import Using [font name]
window appears.

Because PostScript and TrueType fonts are scalable fonts, you can select the point
sizes you want to import. See Font Terminology on page 172 for help understanding
this window’s fields.

3 Select 1004 in the Codepage field. The system displays the characters associated
with the code page in the Character Set field. See Using Code Pages on page 178
for information about various code pages.

4 Click the font you want to insert.

5 Select any changes you want to make in the Style, Stroke, and Spacing fields.

6 In the Point field, use the scroll arrows to select the font point size you want to
include in the font set and click Insert. The font point size appears to the left of the
Point Sizes field. Repeat this step for each point size you want to include in your
font set.

NOTE: To select the point size, enter -1 in the point field of the Import Using (font
name) window. Then click Insert. The system tells you that you have entered
an illegal character in a numeric only field and asks you to correct the entry
before continuing. Click Ok in the message. The system will then fill in the point
values in the Point Sizes field for you.

7 Click Ok to include the various font point sizes in your font set. The font
information imported from the PostScript or TrueType font is assigned a font ID
starting at one greater than the largest font ID contained in the font cross-
reference file (FXR).

8 Image Editor redisplays the Font List. You can insert additional fonts in your font
set if necessary.

Chapter 5
Working with Fonts

238

CHOOSING SCREEN FONTS

After inserting fonts into the FXR, or if your company uses fonts other than those
distributed with the system, you can use the Like button in the Font Properties window
to select screen fonts which more closely resemble the printer fonts.

Follow these steps to choose a screen font:

1 Open the FAP font set in Font Manager to display the Font List window.

2 Select a font in the font list and click Edit. The system displays the Font Properties
window.

The FXR file contains the names of the screen and printer fonts to use. When you insert
fonts into the FXR, the Font File fields on the Printers tab display the names of the
printer fonts to use. The Family field on the Description tab contains the name of the
Windows screen font to use based on the printer font file you inserted into the FXR. This
means the Family field may not contain the name of a valid Windows screen font.

3 Click Like to display the Font window.

NOTE: Using the Like option can affect GDI printing which creates output based on
what appears on the screen.

Using Font Manager

239

C

The Font window lists the Windows screen fonts installed on your computer.

4 Select the Windows display font that most closely resembles the printer font and
make any necessary adjustments to the style and size. Click Ok to return to the
Font Properties window. The screen font you selected will be displayed in the
Family field and the style and size will be set for the font. This affects any object to
which you can assign a font ID.

5 Click Ok in the Font Properties window to apply these changes and close the
window. You can elect to save the changes to your FXR file when you select Close
in the Font List window.

Understanding the System If you plan to use your modified FXR file to create FAP files, be sure to make the FXR file
available to anyone working with the FAP files. Keep in mind that those users will also
need the same fonts installed on their systems.

Chapter 5
Working with Fonts

240

GENERATING FILES
USING FONT

MANAGER

Use Font Manager’s File, Generate menu option to quickly generate FNT, XRF, and PFM
files. FNT files are used to download fonts to a PCL or PostScript printer. XRF files are
FormMaker II font cross-reference files. PFM files are Docuflex font format files.

GENERATING AN FNT FILE

The Generate FNT File option lets you automatically generate an FNT file for
downloading fonts to a PCL or PostScript printer. Follow these steps to generate an FNT
file:

1 Select the Resources, Fonts option from the system menu or click on the Fonts
icon. The Open FAP Font Set window appears.

2 Select the font set you want to generate an FNT file for and click Ok. The Font List
window appears.

3 Drag the screen to the right to display the Font Manager window. Then select File,
Generate, FNT File. The Generate Font Download File window appears.

4 Check the name in the File name field. The system defaults to the name of the font
cross-reference file with the FNT extension. Make any necessary changes.

5 Select either PCL or Postscript for the type of font to generate.

6 Select Permanent fonts or Selected fonts as necessary. This does not apply to
Postscript fonts.

Your permanent, selected, and temporary font choices are defined in this table:

Fonts Description

Temporary
fonts

Downloaded PCL fonts that are deleted during a printer reset. A
printer can be reset via a command in a PCL print stream or from the
console. Temporary fonts are deleted from memory when the printer
is reset or turned off. This field has no effect on PostScript fonts.

Permanent
fonts

Downloaded PCL fonts that remain in the system during a printer
reset. Permanent fonts are deleted from memory when the printer is
turned off. Permanent fonts are not deleted during a printer reset.
This field has no effect on PostScript fonts.

Selected
fonts

Selected fonts lets you select specific font IDs to build the FNT file. If
you leave this field unchecked, the system includes all font IDs in the
FXR file.

Generating Files using Font Manager

241

7 Click Ok.

GENERATING AN XRF FILE

With Font Manager you can use a FAP font set to generate a FormMaker II XRF file. To
begin, open Font Manager by selecting Resources, Font. The Open FAP Font Set
window appears.

1 Select the font set you want to work with and click Ok. The system displays the
Font List window.

2 Drag the screen to the right to display the Font Manager window; then select File,
Generate, XRF File. The Generate FormMaker II XRF File window appears.

3 Enter a name for the XRF file in the File Name field; be sure you have the file path
set to the library you want. You can use the Windows Network button if you need
to map a drive path. Click Ok to generate the XRF file.

4 The system displays a confirmation message stating that the XRF file generated
successfully.

GENERATING PFM FILES FROM AN FXR FILE

Font Manager can generate Docuflex font format files, known as PFM files. These files
are listed in the font section of Docuflex INI files and are used when converting a
document from one format to another.

To create a PFM file, select Resources, Fonts to start Font Manager. The system
displays the Open FAP Font Set window.

1 Select a font cross reference file (FXR) and click Ok. The Font List window appears.

2 Drag the screen to the right to display the Font Manager window; then select File,
Generate, PFM Files. The following window appears.

Chapter 5
Working with Fonts

242

3 Enter the destination directory for the PFM files in the Directory field. Use the
Browse button to change the destination directory.

4 Enter the name of the INI file in the INI File field, or use the Browse button to select
an INI file.

5 In the PFMs to Generate field, select which type of PFM files for which printer type
to generate.

6 If you want to use all the fonts in the FXR file, leave the Selected Fonts Only field
unchecked and click Ok. Font Manager generates the PFM files.

7 If you only want to generate PFM files for specific fonts, click the Selected Fonts
Only field then click Ok. The system displays a list of the fonts in the FXR file:

8 Select the fonts and click Ok. The system displays a message confirming that the
PFM files were successfully generated.

A PFM file is generated for a particular printer type and information for that font goes
in the font record. For example, in the REL95SM.FXR file there are 68 fonts, but there is
only setup data for all 68 fonts for the AFP printer. There is XMC and PCL information
for only 64 of the fonts, so there could be a maximum of 64 PFM files of the XMC and
PCL printer types for that FXR file.

Generating Files using Font Manager

243

The name of each PFM file is determined from the setup data in the font record for each
printer type. For example, in REL95SM.FXR for font number 11012, the XMC font is
FXTINB.PFM, the AFP font is X0DATINB.PFM, and the PCL font is FPTINB.PFM.

When Font Manager generates the PFM files, it also creates an extract file which is, by
default, called ISI.INI. You can insert the contents of this file into your Docuflex INI files
as one of the FontSection control groups. The extract files are placed in the same
directory as the generated PFM files.

NOTE: If the ISI.INI file exists, the system appends the font section information in the
existing file. If you do not include a path for the ISI.INI file, the system creates
or updates the file in the directory from which you ran Font Manager, such as
..\FAP\DLL.

Here's a sample ISI.INI file:

[XMC Font Section] Fonts=64 FontThreshold=70000

Font1=E:\LIBRS\FMRES\DEFLIB\FXTIN6.pfm; 11006 Times-Roman 6 point

Font2=E:\LIBRS\FMRES\DEFLIB\FXTIN8.pfm; 11008 Times-Roman 8 point

Font3=E:\LIBRS\FMRES\DEFLIB\FXTIN0.pfm; 11010 Times-Roman 10 point

Font4=E:\LIBRS\FMRES\DEFLIB\FXTINB.pfm; 11012 Times-Roman 12 point

Font5=E:\LIBRS\FMRES\DEFLIB\FXTIND.pfm; 11014 Times-Roman 14 point

When you use these PFMs to read or write FAP files in the Docuflex system, be sure to
use the accompanying extract files in the FontSection control groups in the Docuflex INI
files. The numbers after the semicolons are used by the system to identify font
numbers in FAP records.

Chapter 5
Working with Fonts

244

MAPPING FONTS
FOR FILE

CONVERSIONS

When converting a file from one format to another, you may need to convert the fonts
used in the document. You can use INI control groups and options to map fonts in a
source document to the fonts you want to use in the destination document. For
instance, if you are converting an RTF file into a FAP file, you can use the following
control group:

< RTFFontMAP >

Arial = Swiss

This tells the system to convert all Arial fonts into Swiss fonts. Use this control group
when converting DCD files into FAP files:

< FontFamilyMatching >

Arial = Swiss

Place these control groups and options in the FAPCOMP.INI file.

RTF and DCD files contain font information about the generic font families used. For
example, Arial and Univers, both san serif proportional fonts, belong to a generic font
family called Swiss.

The RTF and DCD converters in the system use the RTFFontMap and
FontFamilyMatching control groups to assign a font when other means of mapping
fonts from the RTF or DCD file fails.

In Windows environments, there are several generic font families, as shown in this
table:

Family Description

Decorative Specifies a novelty font, such as Old English.

Dontcare Specifies a generic family name. This name is used when information about
a font does not exist or does not matter. The default font is used.

Modern Specifies a monospace font with or without serifs. Monospace fonts are
usually modern fonts, such as Pica, Elite, and Courier New.

Roman Specifies a proportional font with serifs, such as Times New Roman.

Script Specifies a font that is designed to look like handwriting, such as Script and
Cursive.

Swiss Specifies a proportional font without serifs, such as Arial.

245

Chapter 6

Setting Up Printers

The system supports printing on a variety of printers
ranging from network laser printers to high volume
production printers. This chapter describes how to set
up the system to print on this wide array of printers.

In this chapter you will find information on the
following topics:

• AFP Printers on page 246

• Metacode Printers on page 263

• PCL Printers on page 289

• PostScript Printers on page 301

• Using the GDI Print Driver on page 311

• Using Pass-through Printing on page 318

• Creating PDF Files on page 320

• Creating RTF Files on page 321

• Using the VIPP Print Driver on page 324

• Emailing a Print File on page 342

• Choosing the Paper Size on page 346

• Creating Print Streams for Docusave on page 358

• Handling Multiple Paper Trays on page 363

For each type of printer, this chapter discusses set up
issues, printer resources, special features,
performance considerations, troubleshooting, and
more.

Chapter 6
Setting Up Printers

246

AFP PRINTERS IBM created the Advanced Function Printing (AFP) language. The data streams
produced by Documaker applications for AFP printers are called Mixed Object
Document Content Architecture (MO:DCA) data streams. MO:DCA data streams are
sometimes referred to as AFP data streams (AFPDS).

You must have a program such as IBM’s Print Services Facility (PSF) to convert AFP data
stream into the printer’s native language. PSF is the umbrella software that brings the
AFP resources (created by AFP or system utilities) together in one print job and sends
it to the printer.

NOTE: All system print drivers support 24-bit color graphics. If you printer does not
support color, the print driver will automatically convert the color graphics into
monochrome graphics. Keep in mind that for the best performance you should
avoid color graphics.

AFP INI OPTIONS

You define the necessary printer options for the system to produce AFP data streams.
These options specify how the system creates AFP output. Most of the AFP-related
options are found in a PrtType:XXX control group, where XXX indicates the different
printer types. PrtType:AFP is a common control group name used to contain AFP
settings. The most common AFP printer options are shown below (default values are
bold):

Option Values Description

Device Any file or
device name

The name of the file or device (LPT1) where
the AFP data stream should be written. This
setting is ignored by the GenPrint program
but is used by Documaker Studio and other
system programs.

Module AFPPRT The name of the program module which
contains the system’s AFP print driver. See
also the discussion of the Class option.
See also Using defaults for the Module and
PrintFunc options on page 250.

PrintFunc AFPPrint The name of the program function that is the
main entry point into the system’s AFP print
driver.
See also Using defaults for the Module and
PrintFunc options on page 250.

Resolution 240/300 The dots per inch (dpi) resolution of the
printer which receives the AFP data stream

SendOverlays Yes/No Set to Yes if you created AFP overlays for
each FAP file

AFP Printers

247

ChartResolution 120/150/
240/300

Used when printing charts as inline bitmap
graphics on an AFP printer that does not
have graphics (GOCA) support. Defaults to
one-half of the Resolution option setting.

LandscapeSupport Yes/No Although not required for printing, you can
set this option to Yes if your printer supports
landscape medium maps. Generally, AFP
printers using cut-sheet paper do not
support landscape medium maps.

SplitText Yes/No Used to minimize the print differences
between 240 and 300 dpi printing.

SplitPercent 0 to 100 (50) Percentage of the width of the space
character used to determine when the
rounding error between 240 and 300 dpi
printing has caused a significant difference
and the text string should be split into
smaller strings.

FudgeWidth any number
(0)

Can be used when building page overlays for
sections smaller than a page.

GraphicSupport 0, 1, 2, 3 0 = no graphics (GOCA) support
1 = inline bitmap graphics support
2 = GOCA charts support
3 = inline bitmap graphics and GOCA charts
support

PageNumbers Yes/No Set to Yes to turn on form or form set page
numbering

PrintViewOnly Yes/No If set to Yes, the view only sections will print.
This does not apply to entry only sections,
which are never printed. Entry only sections
are usually worksheets. If the section is
marked as hidden and view only, it will not
print.

PrePrintedPaper Yes,Disabled Determines if the check box which lets you
print or not print pre-printed objects
appears on the Print window. Also
determines the default for this check box—
checked or unchecked. You must add this
option to the INI file if you want the check
box to appear on the Print window.
The default for this option includes the
checkbox on the Print window and leaves it
unchecked. All objects except fields can be
designated as pre-printed on the object’s
Properties window.

Option Values Description

Chapter 6
Setting Up Printers

248

Class (first three
characters of
the Module
option)

Specifies the printer classification, such as
AFP, PCL, XER, PST, or GDI. If you omit this
option, the system defaults to the first three
letters from the Module option.
Some internal functions expect a certain
type of printer. For instance, all 2-up
functions require an AFP printer. The
internal functions check the Class option to
make sure the correct printer is available
before continuing.

OnDemandScript Use this option to add comments to the print
stream. This lets you handle archiving using
OnDemand.
Enter the name of the DAL script you want
the system to run. This DAL script creates
the On Demand records and adds them as
comments.
The AddComment function is also used in
DAL scripts to add OnDemand command
records. For more information about this and
other functions, see the DAL Reference.

TLEScript Enter the name of the DAL script to execute
to add Tagged Language Element (TLE)
records to the print stream.
See Adding TLE Records on page 362 for
more information.

TLESeparator Enter the character you want to use to
separate the key and value portions of the
TLE comment string.

TLEEveryPage Yes/No Optional. If you enter Yes, the TLE DAL script
will be executed at the start of every page. If
you enter No, the TLE DAL script is executed
at the start of every form set. The default is
No.

PaperSize 0, 1, 2, 3, 98 Use this option to set a default paper size
when converting AFP print streams using the
Internet Document Server or the MRG2FAP
utility.
Enter zero (0) for letter size (default)
Enter1 for legal size
Enter2 for A4 size
Enter3 for executive size
Enter 98 for a custom size

Option Values Description

AFP Printers

249

DocusaveScript Use this option to add comments to the print
stream. This lets you handle archiving using
Docusave.
Enter the name of the DAL script you want
the system to run. This DAL script creates
the Docusave records and adds them as
comments.

SendColor Yes/No Enter Yes to send color information to the
printer. AFP highlight color printing on
printers from Xerox and Oce is supported.
Make sure the objects you want to print in
color (text, lines, shades, and so on) are set
to print in color. The Print in Color option is
on the Color Selection window. You can
display this window by clicking the Color
button on the object’s Properties window.

NamedColors Use this option to tell the system to use only
specific AFP named colors. For example, if
you wanted all highlight (non-black) colors
mapped to blue, you would set the
NamedColors option to blue.
To allow the mapping of the colors you
assigned to the objects in the FAP file to
multiple colors, separate each color with a
semicolon (;). For example, to use red, blue,
and magenta, set the NamedColors option
as shown here:

NamedColors = red;blue;magenta

The order you list the colors does not matter.

SkipChartColorChange Yes/No Enter Yes to suppress color changes
normally done to enhance 3D bar charts.

SuppressLogoUnload Yes/No Enter Yes to suppress the unloading of
graphics (LOG) files during a conversion of
AFP files to FAP (or PDF) format. The default
is No.

ReplaceBitmap LIGHT,
LIGHTER,
LIGHTEST,
MEDIUM,
DARK,
DARKER,
DARKEST,
NOSHADE,
SOLID,
HORIZONTAL
, VERTICAL,
DIAGRIGHT,
DIAGLEFT,
HATCH, or
DIAGHATCH

Enter the name of the bitmap you want to
replace followed by one of the replacement
patterns.
The default is LIGHT.
Keep in mind your entry must be in all caps.
See Using Documaker shading patterns
instead of shaded bitmaps on page 251 for
more information.

Option Values Description

Chapter 6
Setting Up Printers

250

There are some additional options you can use to print inline graphics (LOG files). Be
aware that not all AFP printers support these settings. You’ll find these options in the
AFP control group.

Using defaults for the
Module and PrintFunc

options

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDI.

These defaults keep you from having to enter the Module and PrintFunc names in your
INI file. For example, if you want to generate AFP print files, you can specify these INI
options:

< Printer >
PrtType = MYAFP

< PrtType:MYAFP >
Class = AFP

And the system will default these options for you:

< PrtType:MYAFP >
Module = AFPPRT
PrintFunc = AFPPrint

DisplayCodedFont Yes/No Enter No to include the character set/code
page combinations in the AFP font list,
instead of the coded fonts. The defaults is
Yes, which tells the system to include the
coded fonts.
See Outputting character set and code page
information on page 252 for more
information.

AFP Options Values Description

OutputHalfRes Yes/No Scales the bitmap loaded from the graphic to half
resolution in memory before writing the output.

DoubleOutputRes Yes/No Does not change the bitmap loaded from the
graphic, but would tell the printer to double its
resolution when printed. This lets the system load
graphics that are half resolution already.

SuppressZeroData Yes/No Suppresses data containing a series of zeros
(white space in the bitmap).

TrimWhiteSpace Yes/No Suppresses data containing zeros (white space) at
the right edge of the bitmap.

MultiLinesPerCommand Yes/No Tries to combine AFP commands into fewer
records when printing the bitmap. You cannot use
this option with the SuppressZeroData option.

Option Values Description

AFP Printers

251

Using Documaker
shading patterns instead

of shaded bitmaps

You can replace the shading bitmaps in AFP files with Documaker’s internal FAP
shading patterns. Using Documaker’s internal FAP shading patterns results in smaller
and more efficient FAP files and you will have more flexibility in choosing patterns.

To use Documaker FAP shading patterns, include the ReplaceBitmap INI option, as
shown here:

< PrtType:AFP >
ReplaceBitmap =

NOTE: The system ignores this option if the AFP output file being loaded is one
generated by Documaker because it automatically replaces shading bitmaps
from internally-generated AFP files with FAP shading patterns when
appropriate.

The system replaces all occurrences of the bitmap you specify with the shading pattern
you choose. The system places the replacement shading pattern in the same location
as the AFP bitmap. To replace multiple bitmaps, repeat the ReplaceBitmap option as
necessary.

The bitmap patterns that are replaced must be named in bytes 10-17 of the Begin Image
(D3 A8 7B) AFP structured field and the bitmap name listed in the ReplaceBitmap
option must match the bitmap name in the Begin Image structured field. All Begin
Image structured fields encountered that have names that match the name in the
ReplaceBitmap option are replaced.

NOTE: While the system does support color text, color bitmaps are not supported by
the AFP loader of the MRG2FAP utility.

Printing highlight colors The system supports AFP highlight color printing on printers from Xerox and Oce. Like
other color printer support, the SendColor option must be set to Yes and the objects,
such as text, lines, and shades must be set to Print In Color.

The RGB (red,green,blue) color setting for each FAP object is mapped to the closest AFP
named color. The names of the available colors are as follows: blue, red, magenta,
green, cyan, yellow, dark_blue, orange, purple, dark_green, dark_cyan, mustard, gray,
and brown.

You use the NamedColors option in the AFP printer group to specify certain AFP named
colors. For example, if you wanted all FAP (non-black) colors to be mapped to brown,
you would use this INI option:

NamedColors = brown

To let the system map FAP colors to multiple colors, separate each color with a
semicolon (;). For example, to use all of the default AFP named colors except brown,
you would use this INI option:

NamedColors = Red;Blue;Magenta;Green;Cyan;Yellow

Chapter 6
Setting Up Printers

252

NOTE: The order in which you name the colors does not matter. In addition, the
LOG2PSEG and FAP2OVL utilities include a /C=color parameter, where color is
the one of the named AFP colors.

Character set and code
page font information

When loading AFP, the system uses the information in the Character Set and Code Page
Font fields in the FXR file instead of using the font information contained in the
IBMXREF.TBL.

The AFP loader expects the AFP file's Map Coded Font (MCF) structured fields to contain
references to AFP coded fonts. However, MCF structured fields can contain character
set and code page information instead of the coded font information the FXR file
requires.

Before version 11.2, for MCF structured fields that contained character set and code
page information instead of coded fonts, you had to manually set up the IBMXREF.TBL
file to resolve the character set/code page information to coded fonts in the FXR file.

Since the system includes character set and code page information in the FXR file, the
AFP loader first checks the FXR file for this information and, if it exists, uses it. If the
information does not exist, the AFP loader loads the information from the IBMXREF.TBL
file.

Outputting character set
and code page

information

You can output the AFP character set and code page combination instead of the coded
font in the font list when you generate normalized AFP files. If you want the character
set/code page combinations to be output in the AFP font list, instead of the coded
fonts, you must add the DisplayCodedFont option, as shown here:

< PrtType:AFP >
DisplayCodedFont = No

Keep in mind the FXR file must contain the character set and code page entries in the
AFP font record for this option to work. If you set the INI option to No and the character
set and code page entries are not in the FXR file, the font list in the AFP file will contain
only the coded fonts.

NOTE: The AFP output record can only contain either coded fonts or character set/
code page entries — it cannot contain a combination. It will default to coded
fonts for all if the font for one or more objects does not contain character set/
code page entries.

AFP Printers

253

Using multiple code
pages

You can use multiple code pages for creating AFP output. While the standard 37 code
page is the default code page, alternate code pages are frequently used for fonts set
up for them. Here is a summary of the new font definition files which were created to
let you specify code pages:

Here are the general syntax rules for all new font definition files:

• A semicolon (;) in the first column of any of these files will cause the line to be
treated as a comment statement and ignored.

• Section headers within files are enclosed either in brackets (<> or []) with no
spaces and must not be removed or changed.

• All values are case insensitive.

• If a parameter value is invalid and a default value exists, it will be substituted.

• All parameters are positional.

• Blanks are allowed between parameter values.

• The question mark (?) is used in some areas as a single wildcard character.

• If the resource file exists in DEFLIB directory and contains valid data conforming to
these specifications, it will be loaded and used.

• If bad data is encountered in the file, either the offending record is ignored or a
warning is issued. If the file is considered corrupt or invalid enough, it may not be
used at all.

CODED.FNT FILE. This file specifies which AFP code page and AFP font character set
make up the coded font. The CODED.FNT file is necessary for basic multiple code page
support.

When creating this file, keep these rules in mind:

• The coded font name and both parameters are required.

• A question mark (?) can be used as the wild-card character only for the second
character in the coded font name and for any character of the character set name.
This allows all the character rotations of the coded fonts to be handled with one
entry for searching.

• After the coded font name, the character set name must be listed first, followed by
the code page name.

• The character set and code page must be separated by a comma.

File Description

CODED.FNT The coded font definitions. This file specifies which AFP code page and
AFP font character set make up the coded font.

CPDEF.FNT The code page definitions. This file maps each AFP code page to a
Windows character set.

CPGID.CP The code page map file. This file contains the character identifiers (and
associated EBCDIC hexadecimal code points) for an IBM code page and
maps them to character identifiers (and associated ASCII code points) for
a Windows ANSI or SYMBOL character set.

Chapter 6
Setting Up Printers

254

Here is an example of this file:

X?COL8=C?420080,T1000850

X?COL7=C?420070,T1000850

;Core

X?H210AC=C?H200A0,T1V10500

X?H210FC=C?H200F0,T1V10500

;FormMaker Fonts

X?FA????=C?FA????,T100ASC4

X?DA????=C?FA????,T1DOC037

X0P09X12=C0P09X12,T1DOC037

X0P12X16=C0P12X16,T1DOC037

CPDEF.FNT FILE . This file maps each AFP code page name to its code page global
identifier (CPGID) and to a Windows character set. If you do not have at least one valid
entry in this file for each code page you want to use, the system uses the default code
page.

When creating this file, keep these rules in mind:

• Parameters must be separated by a comma.

• AFP code page name and code page identifier are required.

• If you create your own code page, you must assign it a unique code page identifier.
Leading zeros are invalid.

• Code Page Global Identifier (CPGID) attribute's possible values: IBM-defined
CPGID or your own defined CPGID between 65280 and 65534, inclusively. This
value matches the name of a code page map file.

• For each CPDEF.FNT entry, you must have a corresponding code page map file with
the same name as the CPGID.

• Windows character set attribute's possible values: ANSI or SYMBOL.

Here is an example of this file:

<CODEPG>

;codepage = cpgid,wincp

;*****Put User-defined/Custom code pages Here *****

T100ASC4=361,ANSI

T1DOC037=37,ANSI

T1OMR=5280,ANSI

T1POSTBC=5280,ANSI

;******* End User-defined/Custom code pages ******

T1000259=259,SYMBOL

T1000290=290,ANSI

T1000293=293,ANSI

T1000310=310,ANSI

DEFAULT=361,ANSI

CPGID.CP (CODE PAGE MAP FILE) . You must have a separate CPGID.CP file for each AFP
code page entry in the CPDEF.FNT file. Each code page map file contains the character
identifiers (and associated EBCDIC hexadecimal code points) for an IBM code page and
maps them to character identifiers (and associated ASCII code points) for a Windows
ANSI or SYMBOL character set. Code page map files are necessary for basic multiple
code page support.

AFP Printers

255

NOTE: The actual file name is not CPGID.CP, but rather the CPGID value from the
CPDEF.FNT file with an extension of CP. For instance, in the CPDEF.FNT
example, the first two lines are:

T100ASC4=361,ANSI

T1DOC037=37,ANSI

So, since those two entries are in the CPDEF.FNT file, that means that there
must be code page map files with named 361.CP and 37.CP.

Also, if these two entries are in the CPDEF.FNT file, but the corresponding
361.CP and 37.CP code page map files are not in DEFLIB, the translations for
those fonts will not be correct.

When creating this file, keep these rules in mind:

• Parameters must be separated by blanks.

• All four parameters are required.

• “NOMATCH” means there is not a matching character in the Windows character
set.

Here is an example of this file:

(395.cp for the T1000395 code page mapped to the Windows ANSI character set):

;T1000395 to ANSI

SP010000 40 SP010000 20

LA150000 42 LA150000 E2

LA170000 43 La170000 E4

LA130000 44 LA130000 E0

SP180000 8B SP180000 BB

SM560000 8C SM560000 89

SA000000 8D SP100000 2D

LI510000 8E NOMATCH 00

LI570000 8F NOMATCH 00

SM190000 90 SM190000 B0

LJ010000 91 LJ010000 6A

LF510000 A0 NOMATCH 00

;;;;;;;; ; SD150000 5E

;;;;;;;; ; SD130000 60

Chapter 6
Setting Up Printers

256

Using LLE records to link
to external documents

For AFP files, LLE (Link Logical Element) records let you link internal or external
documents into the AFP presentation space. For example when you are creating a PDF
file, you might want to include in the text hotspots that link to a URL. These hotspots,
when clicked, open that document.

NOTE: The LLE records are for use with text fields.

Place the LLE record immediately before the BPT – Begin Presentation Text record.
Then, following the BPT record, you can have any number of PTX records containing a
TRN (Transparent Data) control sequence, followed by a terminating EPT – End
Presentation Text.

Here is an example of the LLE format:

In the above example, the text fields /N and http://xyz.com would be encoded as hex
EBCDIC. For example a source link such as:

00 05 02 /N

would be encoded as...

00 05 02 61 D5

The FAP library does not use the name (link source) member of the FAPLINK, therefore
it is used for feature steering.

Element Description

5A

00 32 record length

D3B490 LLE

00 Flags

00 00 reserved

01 Navigation Link Type

00 reserved

00 05 triplet length including this value

02 Link Source specification

/N source text limited by triplet size) See below explanation of /N

00 11 triplet length including this value) 0x11 (17 decimal (2+1+14)

03 Link Target specification

http://xyz.com target text limited by triplet size

AFP Printers

257

By specifying a /N (NEXT) as the source name, the system applies the current instance
of the LLE to the first occurrence of a PTX record containing a TRN (Transparent Data)
control sequence record. Once the LLE link information has been applied to that
particular PTX FAPOBJECT, the system clears the LLE status so subsequent PTX records
are rendered as non-hyperlinked text.

By default the LLE is applied to all subsequent PTX / TRN records until either an LLE is
encountered with a /C as its source link to enable the clearing of the active instance of
the LLE, or to use a normal valid LLE to supersede the prior usage.

If you are not using a /N or /C, you may use the source name area of the LLE for a brief
descriptive label.

NOTE: The system does not support the use of the attribute link type or internal target
links within FAP and therefore PDF documents.

The system only supports the conversion of LLE records in FAPSTEXT objects
and linking to external documents.

Chapter 6
Setting Up Printers

258

AFP PRINTER RESOURCES

FormDef The system uses copy groups from its own FormDef named F1FMMST.DAT. Each copy
group in a FormDef contains information about paper size, duplex, tray selection, jog,
orientation, and so on. The FormDef must be available to PSF to print AFP data streams.
You can use the AFPFMDEF utility to create or modify the FormDef.

Fonts AFP fonts are designed solely for AFP printers. For more information about fonts, see
Working with Fonts on page 171. In IBM AFP terminology, a font is described by three
components:

CODED FONT. A coded font file contains references to specific character set and specific
code page. Coded font files always begin with the letter X, such as X0DATIN8.

CODE PAGE. In IBM AFP terminology, a code page file maps code points to an AFP
character name in a character set file. Code page files always begin with the letter T,
such as T1DOC037.

CHARACTER SET. A character set file contains the bitmap graphic of each character in the
character set. Character set files always begins with the letter C (such as C0FATIN8.240
or C0FATIN8.300). The character set file name extension (240 or 300) indicates
whether the bitmap graphics are drawn at 240 or 300 dots per inch.

Monotype fonts Oracle Insurance has licensed for use and distribution with its systems, fonts from
Monotype Imaging, Inc. The system includes both 240 and 300 dpi AFP fonts.

Overlays Use the FAP2OVL utility to create AFP overlays from FAP files. The OVLCOMP utility also
lets you create AFP overlays from FAP files. These overlays must be available to PSF to
print AFP data streams when the SendOverlays option is set to Yes.

Page segments Use the LOG2PSEG utility to create AFP page segments from graphics (LOG files). These
page segments must be available to PSF to print AFP data streams.

NOTE: For information on system utilities, see the Docutoolbox Reference.

AFP 2-up support The system include rules you can use to generate and merge print streams for AFP
printing for printers that support 2-up printing. See Handling 2-up Printing on page 68
in the Documaker Server System Reference for more information.

AFP Printers

259

AFP TROUBLESHOOTING

Floating section
limitations

The system lets you compose a page from several sections. The system also lets you
create overlays for these sections. There is one limitation when you print these
sections on a landscape page. Overlays on a landscape page can only be placed
vertically on the page. Overlays on a landscape page cannot be placed horizontally on
the page.

This means, in your SetOrigin rule, you cannot specify any non-zero, positive number
for the X-relative displacement. Create your FAP files accordingly, but keep in mind that
they can be moved down but not across. This limitation exists only for AFP overlays,
and only in landscape mode.

Objects extending
beyond the edges

Another type of error can occur if the overlay for a custom-sized section is too small for
the objects (text, lines, graphics, and so on) contained within it. If the AFP overlay’s
page size is too small, objects may be clipped to the page size, printed as solid black
rectangles, or trigger error messages.

Documaker Studio and Image Editor offer an Auto-size option which you can use to
make sure the custom-sized section is large enough to contain all objects placed within
it. Use this feature to prevent most custom page size problems.

Be careful placing text at the extreme left edge of the section because it may cause
errors that the Auto-size option cannot detect. For instance, suppose you have this text
label positioned on the left edge of the FAP file (left offset = 0):

When printed, black rectangles or an error message may appear instead of the text.

This can occur because some of the characters in the italic font (Times New Roman)
have a negative left offset. This means that the characters print to the left of where they
would normally start. A negative left offset may be easier to understand by looking at
these characters:

Notice how the bottom of the f goes under the e. This is an example of a negative left
offset. Because it is positioned to the left of where it would normally start, the
character is now positioned off the left edge of the overlay.

This kind of detailed character information is not stored in the FXR file so Documaker
Studio and Image Editor have no way to know there may be a problem. You can,
however, move the text labels in the FAP file to correct the problem.

Conflicts between page
and form orientation

If you create a custom-sized page, be aware of any conflict between page orientation
and the form orientation. If the form orientation is not the same as the page
orientation, the page will not print according to the page orientation, but will follow the
form’s orientation.

NOTE: This happens only in case of custom size pages. Standard size pages obey the
page orientation.

Beneficiary

ef

Chapter 6
Setting Up Printers

260

Multi-page FAP limitation There is a problem when a landscape, multi-page FAP has different page sizes on each
page. All pages of a multi-page FAP file should be the same size. As a workaround, use
Documaker Studio or Image Editor to correct the page sizes. After saving the FAP file,
you can then generate proper AFP overlays.

Printing rotated variable
fields

Here is a list of field options you can specify in the NAFILE.DAT file:

Some of these options require the FAP field attributes to be available at runtime, since
the DDT file does not include the necessary information. Use the CheckImageLoaded
rule to make sure this information is available.

AFP 240 dpi print
problems

Due to differences in resolution on 240 and 300 dpi printers, a text string may print with
slightly different lengths. One example where this may be noticeable is when the text
is printed inside of a boxed region. Another example where this may be noticeable is
when a text area contains an embedded variable field.

To minimize the print differences between 240 and 300 dpi printing, use the SplitText
option. Make sure these options are in your printer PrtType:xxx control group:

< PrtType:AFP >

SplitText = Yes/No (default is No)

SplitPercent = ### (% of space-width as max rounding error)

Resolution = ### (default is 300)

If you set the SplitText option to Yes, each text string is checked to see if it needs to be
split into sections for printing. The SplitPercent value helps determine when a text
string must be split into sections for printing.

The SplitPercent option sets the percentage of the width of the space character to use
as the maximum amount of rounding error that can accumulate in a string before it is
broken into sections.

Option Description

E Error

M Manual

P Protected

G Global scope (entire form set)

F Form scope

H Hidden field – a dummy field, not displayed or printed

N Nonprintable field (displayed, not printed)

C Send-copy-to field (receives current recipient name at print time)

9 Rotated 90 degrees

8 Rotated 180 degrees

7 Rotated 270 degrees

AFP Printers

261

The SplitPercent value is from zero (0) to 100. Do not enter a value greater than 100. For
example, if you set the SplitPercent option to 75, the string is broken into sections if
the accumulated rounding error is greater than 75% of the width of the space
character. This value is set to 50 by default.

NOTE: Using 50 as the SplitPercent value is a good trade-off between the appearance
and the performance impact on the GenPrint program and print spool size.
Setting the SplitPercent option to a smaller value gives you a more accurate
printout but slows the GenPrint program, increases the size of the print spool,
and increases the amount of time it takes to print.

The Resolution option determines the rounding error. Most FXRs are built using 300
dpi fonts. This causes rounding errors when the FXR is used for printing to a 240 dpi
printer. If you omit the Resolution option, the system uses the default setting of 300.

You need to know whether the FXR you are using was built by importing 300 dpi fonts
or 240 dpi fonts. The standard FXRs are built using 300 dpi fonts. When an FXR is built
using 300 dpi fonts, there are rounding errors when printing to a 240 dpi printer.

Here are some examples of options to use in different situations:

• If your font cross-reference (FXR) file was built from 300 dpi fonts and your printer
resolution is 240 dpi, set the options as shown here:

< PrtType:AFP >

SplitText = Yes

SplitPercent = 50

Resolution = 240

• If your font cross-reference file was built from 240 dpi fonts and your printer
resolution is 300 dpi, set the options as shown here:

< PrtType:AFP >

SplitText = Yes

SplitPercent = 50

Resolution = 300

• If your font cross-reference file was built from 300 dpi fonts and your printer
resolution is 300 dpi, you do not need to set the SplitText option.

• If your font cross-reference file was built from 240 dpi fonts and your printer
resolution is 240 dpi, you do not need to set the SplitText option.

Chapter 6
Setting Up Printers

262

INCLUDING DOCUMERGE FORM-LEVEL COMMENT RECORDS

You can include Documerge form-level comments in AFP print streams produced by
Documaker. You may want to include form-level comments if you have a reprint utility
program that needs information about a form before it can reprint it.

To include form-level comment records, add the FormNameCR option in your AFP
printer control group and set it to Yes, as shown here:

< PrtType:AFP >
FormNameCR = Yes
Module = AFPPRT
PrintFunc = AFPPrint
SendOverlays = Yes,Enabled
...

Here is an example of the AFP records in an AFP print stream which includes the
Documerge form level comment (NOP) records:

000,Begin,Document,29,
001, Data,NOP,84,%%%DMGFORMBEG%%% DEC PAGE 00001
AFP Docucorp 000001
002, Map,Medium Map,16,PLUD
...
033, End,Page,16,
034, Data,NOP,84,%%%DMGFORMEND%%% DEC PAGE 00001
AFP Docucorp 000001
035, Data,NOP,84,%%%DMGFORMBEG%%% LETTER 00001
AFP Docucorp 000002
036, Begin,Page,16,
...
053, End,Page,16,
054, Data,NOP,84,%%%DMGFORMEND%%% LETTER 00001
AFP Docucorp 000002
173,End,Document,16,
000,Begin,Document,29,
001, Data,NOP,84,%%%DMGFORMBEG%%% OP714 00001
AFP Docucorp 000001
002, Map,Medium Map,16,PLUO
...

Metacode Printers

263

METACODE
PRINTERS

The Metacode language is the native mode language for Xerox 4000 and 9000 series
printers. This language is superior to printing using line data with Xerox Laser Printing
Systems (LPS). The advantages of using Metacode over line data printing include
support for portrait and landscape text on the same page, support for different fonts on
the same line, precise text positioning, and text justification. In addition, Metacode lets
you merge multiple forms onto a single page.

NOTE: All system print drivers support 24-bit color graphics. If you printer does not
support color, the print driver will automatically convert the color graphics into
monochrome graphics. Keep in mind that for the best performance you should
avoid color graphics.

Required JSL INI Options

The system does not require you to use a special JSL on your printer to print its
Metacode output. The Xerox Metacode printer driver is configurable based on options
to produce Metacode which match your existing JSL settings. Here is an example of the
PrtType:XER control group which contains these options:

< PrtType:XER >

DJDEIden = A'@@@DJDE'

DJDEOffset = 0

DJDESkip = 8

OutMode = BARR

ImageOpt = No

CompressMode = LIN

JDEName = META

JDLCode = NONE

JDLData = 0,255

JDLHost = IBMONL

JDLName = CBA

PaperSize = 0

Device = dummy.txt

RelativeScan = Yes

Several of these options are based on the comparable parameter values in the settings
of the printer's JSL. A JSL may contain many JDLs from which to choose, or there may be
multiple JSLs compiled into multiple JDLs.

Chapter 6
Setting Up Printers

264

A portion of a JDL may look like the following:

 CBA: JDL;

 T1: TABLE CONSTANT=X'121212121212121212';

 T2: TABLE CONSTANT=X'13131313131313131313';

 T3: TABLE CONSTANT=X'FFFF26FFFF';

 C1: CRITERIA CONSTANT=(0,9,EQ,T1);

 C2: CRITERIA CONSTANT=(0,10,EQ,T2);

 C3: CRITERIA CONSTANT=(1,5,EQ,T3);

 VOLUME HOST=IBMONL;

 LINE DATA=(0,255);

 IDEN PRE=A'@@@DJDE',

 OFF=0,

 SKIP=8;

 ROFFSET TEST=C1;

 RSTACK TEST=C2,DELIMITER=YES,PRINT=NONE;

 RPAGE TEST=C3,SIDE=NUFRONT,WHEN=NOW;

 /* 8.5 x 11 job */

 USA1: JDE; /* JOB can be used in place of JDE */

 OUTPUT PAPERSIZE=USLETTER;

 /* 8.5 x 14 job */

 META: JOB;

 VOLUME CODE=NONE

 /* Default job */

 DFLT: JDE;

 VOLUME CODE=EBCDIC

 END;

Here are the required options which are based on settings in the printer’s JSL file.

JDLName Represents the name of the JDL to use. The following table shows the relevant JSL
statement for the earlier example and the proper option to use based on the JSL
example.

JDEName Represents the name of the job to use. A JDL may contain many jobs (JDEs) from which
to choose. This JDE must contain a VOLUME CODE=NONE statement. The following
table shows the relevant JSL statements for the earlier example and the proper option
to use based on the JSL example.

JSL statement CBA: JDL;

INI option JDLName = CBA

JSL statements

META: JOB;
VOLUME CODE=NONE

INI option JDEName = META

Metacode Printers

265

DJDEIden, DJDEOffset,
and DJDESkip

Represent the IDEN statement of the JDL. The value of the DJDEIden setting is a string
constant. The types of string constants supported are ASCII (A'string'), EBCDIC
(E'string'), Character ('string'), and Hex (X'string'). Octal, H2, and H6 strings are not
supported.

Strings containing repeat counts, embedded hex values, and upper/lower case toggles
are not supported. The following table shows the relevant JSL statements for the earlier
example and the options to use based on the JSL example.

JDLCode Represents the type of input format expected by the Xerox printer. Character
translation occurs as necessary. Currently, the supported code types are EBCDIC,
ASCII, NONE (same as ASCII), BCD, H2BCD, H6BCD, IBMBCD, and PEBCDIC. User-
defined code translations are not supported.

Referring to the sample JSL, if the printer is normally started with STA DLFT,CBA then
the JDLCode option must be set to CODE = EBCDIC. The system’s option must contain
the value of the CODE statement for the printer's normal operation. This table shows
the relevant JSL statements for the earlier example and the proper option to use based
on the JSL example.

JDLData Represents the starting position and length of the print line data within an input data
record. The LINE statement contains a DATA entry that holds these values. This table
shows the relevant JSL statement for the earlier example and the proper option to use
based on the JSL example.

JDLHost Represents whether the printer is normally in an on-line or off-line state. Currently, the
only values we accept for this option are IBMONL (on-line) and IBMOS (off-line). The
following table shows the relevant JSL statement for the earlier example and the proper
option to use based on the JSL example.

JSL statements

IDEN PRE=A'@@@DJDE',
 OFF=0,
 SKIP=8;

INI options

DJDEIden = A'@@@DJDE'
DJDEOffset = 0
DJDESkip = 8

JSL statements

DFLT: JDE;
VOLUME CODE=EBCDIC

INI option JDLCode = EBCDIC

JSL statement LINE DATA=(0,255);

INI option JDLData = 0,255

JSL statement VOLUME HOST=IBMONL;

INI option JDLHost = IBMONL

Chapter 6
Setting Up Printers

266

Additional Required INI Options

Below are the additional required options not based on the printer’s JSL file.

OutMode The OutMode option indicates the output format for the Metacode data stream
generated by Documaker applications.

Use BARR, if the Metacode output is to be transmitted to the Xerox printer via BARR
SPOOL hardware and software. When using the BARR setting, a length byte is placed
at the start and end of each Metacode record.

Use BARRWORD, if the Metacode output is to be transmitted to the Xerox printer via
BARR SPOOL hardware and software. BARRWORD should be used only if the Xerox
printer can handle records longer than the 255 characters.

Use PCO, if the output is transmitted to the Xerox printer via PCO hardware and
software (from Prism). When using the PCO setting, a 4-byte length field is placed at
the start of each Metacode record.

NOTE: The PCO interface has not been tested, but should work.

Use JES2, if the Environment option is set to MVS.

Use MRG4, if you will transmit the Metacode output to the mainframe using
Commcommander or if you will archive it in Docusave (see Creating Print Streams for
Docusave on page 358 for more information).

Use LAN4235, if the output is generated for a Xerox 4235 printer attached to a network.

Here is an example:

OutMode = BARR

ImageOpt The ImageOpt option specifies if the graphics are being saved on Xerox printer as IMG
files or as FNT files.

To use IMG files, the printer needs a special GVG or GHO hardware installed. Also, in
the JSL you have to specify GRAPHICS = YES.

If you are using IMG files, vectors, in-line bitmaps or want to print charts, set the
ImageOpt option to Yes; otherwise set it to No. Here is an example:

ImageOpt = No

If the system detects a problem when you are printing in-line bitmaps and vectors, it
will display a message that tells you the type of graphic and image name. If the graphic
is an in-line bitmap, it includes the name.

NOTE: Metacode printers have a limit of 16 IMG files on a page.

CompressMode The CompressMode option compresses bitmaps output as inline graphics, such as
charts and graphics with the inline graphics flag set. There are four compression
modes available, which you can specify using the CompressMode option in the
PrtType:XER control group:

• CompressMode = UNC

Metacode Printers

267

• CompressMode = ENC

• CompressMode = HTN

• CompressMode = LIN

UNC is the uncompressed or raw bitmap mode. If none is specified, the system defaults
to HTN mode.

To demonstrate the effects of Metacode graphics compression, the following chart
shows the GenPrint program run times and file sizes with the different compression
options for a test environment containing in-line images.

Which compression method yields the smallest file size or the quickest compression
time depends on the graphic bitmaps you are printing. In general, HTN or LIN
compression provides the best results. HTN generally does best with graphics which
contain more filled-in or shaded areas, while LIN performs better with graphics which
contain more line art. Experiment with your sections to determine the best
compression method.

The results of compression can be dramatic, as the table shows. The uncompressed
print-ready file is over nine megabytes in size, while the compressed file size ranges
from 18% to 25% of the uncompressed file. However, keep in mind that while the
reduced file sizes save disk space and reduce transmission times, these files must be
decompressed by the printer at print time, which is done automatically by the print
controller.

CompileInStream The CompileInStream option determines whether the FAP files have been loaded. If set
to Yes, the print driver compiles the print stream using FAP files. Make sure the
DownloadFAP option in the RunMode control group is set to Yes. If set to No, pre-
compiled MET files are used.

The print driver creates the print stream using pre-compiled Metacode files. Use the
FAP2MET utility to create pre-compiled Metacode files. The GenPrint program loads
pre-compiled Metacode members from the PMETLIB PDS under z/OS. On other
platforms, the PMetLib option specifies the directory which contains the pre-compiled
MET files. If you do not set this option, the system uses the setting for the FormLib
option in the MasterResource control group.

Test GenPrint time File size

No charts (ImageOpt=No) 182 seconds (3:02) 697,599

UNC – uncompressed 309 seconds (5:09) 9,011,058

LIN compression 290 seconds (4:50) 1,589,226

ENC compression 301 seconds (5:01) 2,248,302

HTN compression 296 seconds (4:56) 1,831,050

Chapter 6
Setting Up Printers

268

NOTE: To use FRM files in your Metacode print stream, set the CompileInStream INI
option to No in the Xerox printer control group. Using FRM files enhances
performance in high volume situations that use a repeated background form
on every page.

Device This is the name of the file or device, such as LPT1, where the Metacode print stream
should be written. This option is ignored by the GenPrint program but should not be left
blank or omitted. For instance, you could enter dummy.txt.

RelativeScan When set to Yes, the RelativeScan option tells the system to consolidate all records in
the print stream. When set to No, this option tells the system to omit Relative Scan
records when consolidating records. If you are using GenPrint version 9.0 or higher you
will probably want to leave this option at its default setting (Yes) for maximum
optimization.

Specifying Installable Functions

For the Xerox print driver, you must specify the following set of installable functions in
the PrtType:XER control group:

OutputFunc = XEROutput

OutMetFunc = XEROutMet

InitFunc = XERInit

TermFunc = XERTerm

Module = XERW32

PrintFunc = XERPrint

Using defaults for the
Module and PrintFunc

options

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDI.

These defaults keep you from having to enter the Module and PrintFunc names in your
INI file. For example, if you want to generate XER print files, you can specify these INI
options:

< Printer >
PrtType = MYXER

< PrtType:MYAFP >
Class = XER

And the system will default these options for you:

< PrtType:MYAFP >
Module = XERPRT
PrintFunc = XERPrint

Metacode Printers

269

Optional INI Options

Setting the end of the
report

Use the JDLRStack option to set the criteria which signals an end of report condition to
the printer. In the JDL sample listed earlier, the RSTACK statement performed a criteria
test named C2. The C2 test checks a specific part of each input line against the string
named T2. If the string T2 matches an input data record at position zero (0) for a length
of 10 bytes, an end of report condition is signaled. Only CONSTANT criteria using an EQ
operator are supported.

Setting the JDLRStack option is optional. If your printer is used for both Metacode and
text file print jobs, you must set this option. Using the JDL sample listed earlier, the
option should be:

Starting new pages Use the JDLRPage option to set the criteria which signals a jump to front side of a new
sheet to the printer. In the JDL sample listed earlier, the RPAGE statement performed a
criteria test named C3. The C3 test checks a specific part of each input line against the
string named T3. If the string T3 matches an input data record at position zero (0) for
length of 5 bytes, a jump to new sheet condition is signaled because of the
SIDE=NUFRONT statement. Only CONSTANT criteria using an EQ operator are
supported. For the JDLRPage option to work properly, the SIDE=NUFRONT and
WHEN=NOW statements must be used as a part of the RPAGE settings in the JSL file.

Setting the JDLRPage option is optional. If the print job contains duplex pages
alternating with simplex (one-sided) pages, this option provides a way to leave blank
the backsides of certain pages. Using the JDL sample listed earlier, the option should
be:

The Metacode print driver automatically places the SIDE=NUFRONT statement on all
front pages when operating in duplex mode. This lets the system support print stream
sorting facilities such as Mobius InfoPak. Also, the SIDE=NUBACK statement is now
added to blank back pages when in duplex mode.

These statements eliminate the need for the ADDPAGES utility which some systems
used with Mobius InfoPak support. Without this functionality the first page of an
output may print on the back of a previous output.

You will need to add the SIDE=NUFRONT statement on all front pages printed, not only
those pages that specify a tray change. This is necessary to handle the end of job
condition where the last page prints on the front and is moved by InfoPak.

JSL statements

T2: TABLE CONSTANT=X'13131313131313131313';
C2: CRITERIA CONSTANT=(0,10,EQ,T2);
RSTACK TEST=C2,DELIMITER=YES,PRINT=NONE;

INI option JDLRStack = 0,10,EQ,X'13131313131313131313'

JSL statements

T3: TABLE CONSTANT=X'FFFF26FFFF';
C3: CRITERIA CONSTANT=(1,5,EQ,T3);
RPAGE TEST=C3,SIDE=NUFRONT,WHEN=NOW;

INI option JDLRPage = 1,5,EQ,X'FFFF26FFFF'

Chapter 6
Setting Up Printers

270

Also, the system will now add a SIDE=NUBACK statement for pages that start on the
back side of the page, leaving the front side blank.

NOTE: You cannot configure these statements. The system automatically enters them
into the print stream. You do not need to add SIDE=NUFRONT and
SIDE=NUBACK statements to your Xerox printer control group (PrtType:XER).

Adding an OFFSET
command

Prior to version 11.3, the first Metacode print stream the system produced would
include this statement:

DJDE SIDE=NUFRONT,END

while the remaining print streams the system produced would include this statement:

DJDE SIDE=(NUFRONT,OFFSET),END

This means the first Metacode print stream will not have a statement which includes
the OFFSET command.

If your printer requires the OFFSET command to be in all statements, including the first
DJDE statement, add the DJDEForceOffsetEnd option to your INI file, as shown here:

< PrtType:XER >

CodeDef = dcascii9

Device = X.MET

DJDEIden = E'$$XEROX'

DJDEOffset = 0

DJDESkip = 8

DJDEForceOffsetEnd = Yes

Jogging pages Use the JDLROffset option to set the criterion that tells the printer to initiate a page
offset in the output bin. This option has not been fully implemented.

In the JDL sample, the ROFFSET statement performed a criteria test named C1. The C1
test checks a specific part of each input line against the string named T1. If the string
T1 matches an input data record at position zero (0) for length of 9 bytes, a page offset
is initiated. Only CONSTANT criteria using an EQ operator are supported.

Setting the JDLROffset option is optional. Using the JDL sample listed earlier, the option
should be:

Option Description

DJDEForceOffsetEnd Enter Yes to make sure there is an OFFSET command in every
DEJDE statement, including the DJDE statement for the first print
stream.
The default is No, which omits the OFFSET command from the
DJDE statement in the first Metacode print stream.
Only set this option to Yes if you must include the OFFSET
command for your printer. Most printers do not require OFFSET in
the first DJDE statement.

JSL statements

T1: TABLE CONSTANT=X'121212121212121212';
C1: CRITERIA CONSTANT=(0,9,EQ,T1);
ROFFSET TEST=C1;

Metacode Printers

271

You can also jog form sets by transaction instead of by batch. In some situations, this
can make manual assembly easier. To do this, set the OffsetLevel option to Formset, as
shown here:

< PrtType:XER >

OffsetLevel = Formset

This adds an additional 'OFFSET' parameter to the SIDE=NUFRONT command, which
tells the printer to jog after each transaction.

Specifying spot color Use the PrinterInk option to specify the color of ink loaded on a Xerox highlight color
printer. You can set this option to one of the following colors:

Blue Red Green Ruby Violet Brown

Gray Cardinal Royal Cyan Magenta

Blue is the default if you omit this option. This option is used with the SendColor
option. If you set the SendColor option to Yes, be sure to also set the PrinterInk option.
Here is how you would specify cyan as the color of the ink stored on the printer:

PrinterInk = cyan

Chart performance and
print quality

By default, charts are rendered at 150 dpi (dots per inch) in a Metacode print stream.
This setting typically provides for a smaller print stream and optimal performance from
the GenPrint program.

Charts are scaled by the printer to their proper size and are printed as 300 dpi bitmaps.
Because fewer dots are used at these lower dpi settings, you may notice some loss of
detail in the printed output and effects such as:

• The circle which makes up the pie chart is less precise

• The lines used in a chart are thicker

Test charts printed to see if the loss of detail is acceptable. In general, horizontal and
vertical lines scale with little or no loss of precision. Arcs and diagonal lines may lose
some detail.

To disable rendering charts at 150 dpi, add the following option to the Xerox printer
control group, usually named PrtType:XER:

ChartResolution = 300

The only other acceptable value for this option is 150. This option does not affect
graphics printed as inline graphics.

Optimizing Metacode
print streams

The GenPrint program lets you produce optimized Metacode print streams. You may
want to consider using optimization if your Metacode output causes the printer to cycle
down (wait) while printing.

This condition can occur when Metacode records cannot be transferred fast enough to
the printer. Optimization helps remedy this situation by combining Metacode print
records into larger and fewer records. Reducing the number of records that must be
transmitted reduces the amount of time needed to spool the Metacode print stream to
the printer. The cost is decreased GenPrint performance. You can also use the METOPT
utility to optimize normal (non-optimized) Metacode output. For more information on
this utility, see the Docutoolbox Reference.

INI option JDLROffset = 0,9,EQ,X'121212121212121212'

Chapter 6
Setting Up Printers

272

To have the GenPrint program produce optimized Metacode output streams, add this
FSISYS.INI option to have the GenPrint program sort and consolidate records to create
more efficient print streams:

< PrtType:XER >

Optimize = Yes

The Optimize option defaults to No, which tells the GenPrint program to run without
sorting and consolidating records.

You can enable some extra error checking during optimization. If optimization
encounters critical errors, such as the inability to find or open a file, it will notify you
and stop immediately. It can report actual or potential non-critical problems it
encounters while it runs. For instance, if optimization finds Metacode records that may
prevent the file from printing, it can warn you.

To have optimization notify you if it spots potential problems, add the following option
to your PrtType:XER control group:

< PrtType:XER >

ValidLevel = 0 (default)

Enter zero (0) to tell the utility not to report non-critical problems. Enter one (1) to tell
the utility to report warnings for non-critical problems, but continue optimizing. Enter
two (2) to tell the utility to report warnings for non-critical problems and attempt to fix
the problems. Enter three (3) to tell the utility to report warnings for non-critical
problems and exit immediately.

Regardless of the option you choose, if you receive any warnings, be sure to closely
check both the original and, if applicable, the optimized file.

Using a common font list The METOPT utility and the Metacode print driver let you use common font lists at the
beginning of a Metacode print stream. A common font list names all of the Xerox fonts
that will be used by the print job.

By knowing all of the fonts up front, the Metacode driver can issue a single DJDE FONTS
command once at the beginning of the job and avoid issuing DJDE FONTS commands
on subsequent pages. This helps some Metacode printers print jobs at their highest
rated speed.

In the CommonFonts control group, you will see a list of options similar to these:

< CommonFonts >

Names = 28

Name1 = FORMSX

Name2 = FXUNBD

Name3 = FXUNN6

Name4 = FXCON6

Name5 = FXUNN8

Name6 = FXUNN0

Name7 = FXUNBH

...

Name28 = FXUNI0

The first option, Names, defines the number of font name entries that follow. The
following options specify the Xerox fonts which will be used in the print job.

Metacode Printers

273

NOTE: The format used for the CommonFonts control group is the same as that used
by Documerge. Therefore, if you used this in Documerge, you can copy that INI
control group into your Documaker INI file.

To use common font lists, you must use the METOPT utility or use the Metacode print
driver and have the following INI options in the Xerox print group:

< PrtType:XER >

Optimize = Yes

MaxFonts =

If the number of fonts in your common font list exceeds the MaxFonts value, the system
outputs the MaxFonts number of fonts in the DJDE FONTS command. The DJDE FONTS
command will contain the names of the fonts used on that page plus additional fonts
from the common fonts list until the MaxFonts number of fonts is reached.

If the system encounters a page that uses a font not specified in the common fonts list
(or the prior DJDE FONTS command to be more precise), it issues a new DJDE FONTS
command which appends to the common font list the new fonts for that page.

Setting a default paper
size

Use the PaperSize option to set a default paper size when converting Metacode print
streams using the Internet Document Server or the MRG2FAP utility.

< PrtType:XER >

PaperSize = 0

Automatically sizing
sections

You can have the system automatically size FAP files converted from Metacode files,
(usually Documerge EDL members). This lets you create the FAP files as custom sized
sections that are the minimum size required to contain all of the converted objects from
the Metacode file.

To have the system automatically size the FAP files, include this INI option in the Xerox
printer group you are using to convert the Metacode file:

< PrtType:XER >

Option Description

Optimize To use common font lists, set this option to Yes.

MaxFonts Set this option to the maximum number of fonts your printer can handle in
a single DJDE command. This number will vary based upon the printer's
memory and configuration. The maximum value is 99 and the default is 20.

Enter Description

zero (0) for letter size (default)

1 for legal size

2 for A4 size

3 for executive size

98 for a custom size

Chapter 6
Setting Up Printers

274

AutoSize = Yes

If you omit this option, the system creates full page size sections.

Keep in mind...

• The system will not automatically size the section if the converted Metacode file
results in a multi-page section.

• If the section is automatically sized and the result is a custom sized section, the
Metacode loader does not try to determine if the section is landscape and does not
rotate landscape objects.

Inline graphic
performance and print

quality

Graphics at 75, 100, or 150 dpi, printed using inline graphics, are scaled by the printer
to their proper size and printed as 300 dpi bitmaps. Because fewer dots are used at
these lower dpi settings, you may notice some loss of detail in the printed output and
effects such as:

• Arcs and circles are less precise

• The lines used in a graphic are thicker

Test LOG files printed as inline graphics to see if the loss of detail is acceptable. In
general, horizontal and vertical lines scale with little or no loss of precision. Arcs and
diagonal lines may lose some detail.

To avoid scaling inline graphic LOG files, use Documaker Studio or Logo Manager to
scale your graphics to 300 dpi. Most graphics are normally 300 dpi and most graphics
are not printed as inline graphics.

Adding color to charts Use the ColorCharts option to print the graphic portion of the chart in color.

ColorCharts = Yes

This option is used with the SendColor and PrinterInk options.

Using named paper trays By default, Metacode output specifies the main tray for pages that use Tray 1. The AUX
tray is specified for all other trays. If you have named trays in your JSL, specify these
named trays in your options. An example of this option is shown here:

Tray1 = ONE1

Tray2 = TWO2

Tray3 = THREE3

Tray4 = FOUR4

Specifying the printer
model

Use the PrinterModel option to specify the particular printer model you are using.
There may be subtle differences between printer models that can affect the output sent
to the printer. Currently, only the 3700 printer requires this setting. An example of this
option is shown here:

PrinterModel = 3700

Specifying the resolution Use the Resolution option to specify the printer's dots per inch resolution. Currently,
only 300 dpi is supported, which is also the default.

Resolution = 300

Displaying console
messages

Use the OTextString option to display a message on the printer console. The text you
specify is sent before the print job starts. For example, this lets you display the
message, Put BLUE paper in tray 1 before a print job starts. Here is an example:

Metacode Printers

275

OTextString = “Put BLUE paper in tray 1”

The system also supports multiple OTEXT messages in the Metacode print driver at a
print batch level. Additionally, the system lets OTEXT messaging generate multiple
messages per print batch. To turn on multiple OTEXT messaging, add this option to the
FSISYS.INI file

< PrtType:XER >

MultipleOText = Yes

The default is No.

This tells the system to ignore the OTextString value in the PrtType control group and
instead use the ones found in the appropriate print batch group.

For example, if you have three print batches, called BATCH1, BATCH2, and BATCH3,
under each separate batch group, put required number of sequential messages for that
batch:

< BATCH1 >

...

OTextString1 = "Batch 1 OText String1"

OTextString2 = "Batch 1 OText String2"

OTextString3 = "Batch 1 OText String3"

< BATCH2 >

...

OTextString1 = "Batch 2 OText String1"

OTextString2 = "Batch 2 OText String2"

OTextString3 = "Batch 2 OText String3"

< BATCH3 >

...

OTextString1 = "Batch 3 OText String1"

OTextString2 = "Batch 3 OText String2"

OTextString3 = "Batch 3 OText String3"

Keep in mind that the index tags OTextStringX (where X is a number) must start with
one (1) and be sequential. The system stops writing OTEXT records to the batch when
it finds a tag that is out of sequence. Here is an example:

OTextString1 = "Batch 3 Otext String 1"

OTextString3 = "Batch 3 Otext String 3"

In this example, only the first one would display on the screen, because OTextString2
is not encountered next.

Stapling forms Some Metacode printers include a stapling feature. The system supports this feature,
but it has not been tested and is not warranted.

Using this feature, forms printed on certain Metacode printers can be stapled if you
specify a StapleJDEName option in the PrtType control group. This causes a new JDE to
be specified on forms that need to be stapled.

It is assumed that the Staple JDE option has the same settings as the normal JDE
specified except for the additional STAPLE command. You specify which forms should
be stapled using the Form Set Manager, which is part of Docucreate or via Documaker
Studio.

Chapter 6
Setting Up Printers

276

This option only affects implementations which print to Metacode printers with the
optional stapling feature. For more information on this feature, see the Docucreate
User Guide. An example of this option is shown here:

StapleJDEName = JDESTP

Duplex switching In earlier versions of the system, a Metacode print stream began and continued as a
simplex job until the system encountered a page that needed to be duplex. At that
point, the duplexing option was turned on. From that point forward, the print stream
remained in duplex mode. For performance reasons, the system did not switch out of
duplex mode. Research showed that for most cases, this was the most efficient way to
drive the printer.

If, however, you are directing the printer output stream to a value-added process, you
may want to include the actual duplex selection information with each form set.
Without the commands to specify the duplex state, some value-added processes may
not work properly. By setting the DJDELevel option to Formset, each form set will
include a duplex command which specifies either simplex or duplex mode (DJDE
DUPLEX=YES or NO always appears at the beginning of every new form set). A value
other than Formset causes the duplex commands to be output as before. Here is an
example:

DJDELevel = Formset

Using VSAM to store
resources

The system lets you store DDT files, precompiled Metacode resources, NA and POL
files, and transaction trigger files in VSAM KSDS (Virtual Storage Access Method/Key
Sequence Data Set) data sets. If you use this feature, you must set the following
options in the VSAM control group in the FSISYS.INI file:

< VSAM >

DDTVSAM = DD:DDTVSAM DDT files

METVSAM = DD:PMETVSAM PreCompiled Metacode files

VSAMRCPTB = DD:SETRCPVS Transaction Trigger file

VSAMNA = DD:NAFILE NA and POL files

For more information on implementing VSAM support under z/OS, see Optimizing
Performance in the Documaker Server Installation Guide.

PrintViewOnly If set to Yes, this option tells the system to print the view only sections. The default is
No. This does not apply to entry only sections, which are never printed. Entry only
sections are usually worksheets. If the section is marked as hidden and view only, it
will not print.

Caching files to improve
performance

The following options let you minimize the opening and closing of frequently used PDS
members by retaining, or caching, file handles and file data. In many cases the default
values are sufficient, but for specific cases in which you use many different sections,
you may need to increase these caching values to improve performance.

Here are the options you can customize:

< Control >

CacheFAPFiles =

RuleFilePool =

LogCaching =

CacheMethod =

Metacode Printers

277

MET files contain pre-compiled Metacode information produced by the FAP2MET
utility. The GenPrint program loads MET members from the PMETLIB PDS under z/OS.
On other platforms, the PMetLib option specifies the directory containing the pre-
compiled MET files.

If not set, the system uses the setting for the FormLib option in the MasterResource
control group. The CacheFiles option keeps frequently used MET members available for
re-use. This option is placed in the PrtType:XER control group in the FSISYS.INI file, as
shown here:

< PrtType:XER >

CacheFiles = 100 (default is 100)

InitFunc = XERInit

TermFunc = XERTerm

Caching statistics for FAP files, DDT files and Xerox resources such as pre-compiled
Metacode files (PMETs) and forms (FRMs) are collected and can be placed in the
LOGFILE.DAT file. These statistics show the following information:

Option Description

CacheFAPFiles Specifies the number of FAP files to keep available for re-use without
re-loading them from disk. The default is 100.

RuleFilePool Specifies the number of DDT files to keep available for re-use without
re-loading them from disk. The default is 100.

LogCaching Enter No if you do not want the system to log caching statistics. The
default is Yes.

CacheMethod Use to set the type of caching method. You can choose from LFU (least
frequently used), LRU (least recently used), or LFUO (least frequently
used optimized). LFUO is the default.

Item Description

Method The caching method you are using (LFUO, LFU, or LRU).

Size The size of the caches. The default is 100.

Hits The number of times the system tried to load a resource from the cache and
found it there.

Misses The number of times the system tried to load a resource from the cache and
did not find it there.

Total The combined hits and misses. This represents the number of times the
system tried to load a resource from the cache.

Purges The number of times the system had to remove a resource from the cache to
put another resource into the cache. The system decides which resource to
remove based on the method. If you are using LFUO or LFU, the least
frequently used resource is removed. If you are using LRU, the least recently
used resource is removed.

Chapter 6
Setting Up Printers

278

Using the loader The system lets you load print-ready Metacode files. For this feature to work, the print-
ready Metacode file must have the same extension as the Ext option in the Loader:MET
control group in the FAPCOMP.INI file. Here is an example:

< Loader:MET >

Desc = Xerox Metacode (*.MET)

Ext = .MET

LoadFunc = XERLoadMet

Module = XERW32

< Loaders >

Loader = MET

Along with the Metacode loader feature, another INI option is required in the
PrtType:XER control group. The DefaultFont option defines the default font to use to
indicate the names of any graphics in the print-ready Metacode file.

The graphics do not display in Image Editor when the print-ready Metacode file is
opened. Instead the name of the graphic appears, in the default font, and the space
taken by the graphic is indicated. In addition, the default font is also used for
displaying any text that references a font not present in the font cross-reference file.

To set the default font, enter the name of a Xerox font file contained in the font cross-
reference file as shown here:

< PrtType:XER >

DefaultFont = FXTIN8

If there are any graphics in the MET file, the system requires a LOGO.DAT file in the
FormLib directory so it can display graphics properly for all rotations. The LOGO.DAT
file, which is a semicolon-delimited file, should look similar to this:

[file name for 0° rotation];[file name for 90° rotation];[file name
for 180° rotation];[file name for 270° rotation];

Here are a few points to keep in mind when using this feature:

• The PrtType settings must match the setting used to produce the print-ready
Metacode file.

• Rotated text will not display properly.

• Blank pages are created for simplex forms printed in duplex mode.

• This feature slows the printing of large print-ready files (more than 100 pages).

• If there is a reference to a FRM file in the MET file, the system cannot display the
MET file.

• The system cannot display charts and graphics.

Using the Class option You can use the following INI option to specify the printer classification, such as AFP, PCL,
XER, PST, or GDI. If you omit this option, the system defaults to the first three letters from
the Module option.

< PrtType:XER >

Class = XER

Some internal functions expect a certain type of printer. For instance, all 2-up functions
require an AFP printer. The internal functions check the Class option to make sure the
correct printer is available before continuing.

Metacode Printers

279

Adding user-defined DJDE
statements

You can place the AdditionalDJDE option anywhere in the PrtType:XER control group.
Each AdditionalDJDE value represents a distinct and separate DJDE statement, given
verbatim. You can include as many AdditionalDJDE statements as needed. All of the
located AdditionalDJDE statements are inserted into the print stream. You can also
specify the batch in which to output the DJDE statement. Here is an example:

< PrtType:XER >

AdditionalDJDE = "BATCH1";FEED=COVER,;

InitFunc = XERInit

...

AdditionalDJDE = "BATCH1";STOCKS=BLUE,;

...

AdditionalDJDE = JDL=DPLJDL,JDE=STRTON,;

The first two occurrences only apply to the BATCH1 batch. The third occurrence has no
batch specified, so this DJDE statement is written to all print batches.

Keep in mind that these user-defined DJDE statements are placed after the BEGIN DJDE
record and before the other DJDEs that are always inserted, such as FONTS. Make sure
the DJDE syntax is correct and that the new DJDE records do not interfere with the ones
automatically inserted into the print stream by the system.

Also, it is very important that you follow the correct syntax when coding the INI line. If
you enter an invalid batch name, no corresponding batch will be found and the DJDE
line will be ignored or not output in any batch. And, if the DJDE syntax is incorrect, the
printer will issue error messages or unpredictable print results may occur.

Using third-party
software to read

Metacode files

If you use third-party software to read Documaker-produced Metacode files and that
software needs the DJDE, RSTACK, and RPAGE commands to begin with a carriage
control value other than the default value of 0x01, you can use the DJDECarrControl
option to handle this. You simply enter a value in the form of a string constant. These
string constants are supported:

• ASCII (A'string')

• EBCDIC (E'string')

• character ('string')

• hex (X'string')

NOTE: The character string produces an EBCDIC string, same as E'string'.

The default value is 1 (X'01'). Here is an example:

< PrtType:XER >

DJDECarrControl = X'09'

Keep in mind that any carriage control value will be accepted and no attempt is made
to make sure a valid carriage control is used.

Specifying the paper
stock

Using Documaker Studio you can specify what paper stock the form should print on.
This will help users who have more than nine types of paper stocks. Here is an example
of the INI options you could set up:

< PaperStockIDs >
PaperStockID = Drilled

Chapter 6
Setting Up Printers

280

PaperStockID = 20lb
...(and so on)

< PaperStockID:Drilled >
Description = 3-hole paper

< PaperStockID:20lbW >
Description = 20lb White Paper
DJDE = DJDE name

Once you have set up the appropriate PaperStockID options, you will see those options
available via Studio's Form manager. Just open a form and select the appropriate paper
stock in the Paper Stock field on the Properties tab, as shown here:

Your selection is reflected in the POL file produced by the GenData program. In this
example, the form called DEC PAGE has a paper stock ID of Drilled.

;SAMPCO;LB1;DEC
PAGE;||FORMPAPERSTOCK=Drilled||;R;;QPRUNA|DL(3360,18600)<AGENT,COMP
ANY,INSURED>

In the Metacode printer control group, you must set the TrayUsePaperStockID option
to Yes, as shown here:

< PrtType:XER >
TrayUsePaperStockID = Yes

If the TrayUsePaperStockID option is set to Yes, the Metacode print driver takes the
form’s PaperStockID and tries to find the DJDE INI option for it in the INI file when it
emits the tray command.

Keep in mind...

• The paper stock selection applies to the entire form

• Only the Metacode print driver uses the paper stock selection

• Only Documaker Studio lets you select the paper stock

Click here to choose the paper
stock.

Metacode Printers

281

USING MOBIUS METACODE PRINT STREAMS

You can use Mobius to archive Metacode print streams and also use Docupresentment
to retrieve archived Metacode print streams and produce or present PDF files.

You can retrieve the archived Metacode print streams using Mobius' ViewDirect APIs.
The ViewDirect APIs are built to communicate with the Mainframe Mobius Archive via
TCP/IP. If you license the Mobius' ViewDirect APIs, you can write a custom rule to
retrieve your archived Metacode print streams.

To do this, include these options in your FAPCOMP.INI file (for Image Editor) or your
FSISYS.INI file (for Studio and the MRG2FAP utility):

< PrtType:XER >

OutMode = MOBIUS

< Loader:MOBIUS >

Desc = Mobius Metacode files (*.MET)

Func = XERLoadMobius

Module = XEROS2

< Loaders >

Loader = MOBIUS

< Control >

Mobius = XER

Where XER is the printer control group that contains the Mobius Metacode information.

To use the Mobius Metacode loader in Docupresentment, use the same
MTCLoadFormset rule you would use to load a Documerge Metacode print stream.

To specify a Mobius Metacode print stream, instead of a Documerge print stream, the
Xerox printer control group must include this INI option:

< PrtType:XER >

OutMode = MOBIUS

Metacode print streams retrieved from a Mobius archive have a special record blocking
scheme and use special comment records to indicate the fonts used. This version adds
support for reading Metacode print streams retrieved from a Mobius archives.

Use XERLoadDocuMerge as the loader function. It checks for an OutMode setting of
MRG2, MRG4, or ELIXIR. You must add MOBIUS to the list of allowed OutMode settings
and you must add your Mobius comment checking to XERLoadMet, when the OutMode
option is set to MOBIUS.

NOTE: The loader functions convert a particular type of file, such as a PCL print
stream, a Metacode print stream, an RTF file, and so on, into an internally
formatted file. Once converted, the system can then do a variety of things with
that file, like display it in Studio, print it on a supported printer, or save it as
another type of file, such as a FAP file, RTF file, or a print stream file.

The loader included in this version can also be used in other Documaker
products. For instance, Studio can use it to load Mobius Metacode, then
display, modify, and save the result as a FAP file or print to a supported printer.
It can also be used by the METDUMP utility to dump information about the
Mobius Metacode print stream.

Chapter 6
Setting Up Printers

282

METACODE PRINTER RESOURCES

A number of resources are used in the printing process. These resources generally
reside on the printer’s disk drive.

Fonts Xerox fonts are ASCII fonts. Xerox fonts are not scalable and do not rotate. There is one
font file for each rotation and different files are required for different sizes. The file
extension is FNT and file names are up to six characters long. Oracle Insurance has
licensed for use and distribution with its systems, fonts from Monotype Imaging, Inc.
Xerox fonts for all four rotations are included.

Forms Xerox forms are precompiled electronic files containing static text, boxes, graphics,
and so on, ready to be merged with variable data. Forms always have the extension
FRM. Like fonts, the maximum file name is six characters. You use the FAP2FRM utility
to create Xerox forms from FAP files.

Images Xerox images are large bitmaps or raster patterns that are stored in a special file
format. These images are merged onto the forms which are then merged with the
variable data. The file extension is IMG and the maximum file name is six characters.

NOTE: You must install a GVG hardware card on the printer to print IMG files. You can
use the LOG2IMG utility to create Xerox images from LOG files. For more
information on this utility, see the Docutoolbox Reference.

Logos Logos are small bitmaps stored in a different format than IMG files. The extension is
LGO and the file name is six characters long. You can only use Xerox logos inside a FRM
file. You cannot invoke them directly in the data stream.

NOTE: These LGO files are quite different than the graphics (.LOG) files used in
Documaker Studio and Logo Manager. Documaker software does not use
Xerox LGO files.

METACODE LIMITATIONS

Xerox images The maximum number of images and inline graphics per page is 16.

HMI support HMI (horizontal motion index) is supported for zero (0) and 270 degree rotated text on
portrait forms only. HMI combines separate text labels which are positioned on the
same line and which use the same font into a single Metacode record. FAP files with
justified paragraphs can benefit from this feature. Use the FAP2MET utility to
implement HMI into pre-compiled MET files.

Changing the paper size
on the 4235 printer

You can not easily change paper sizes in one job. Each job is controlled by a JDE. If you
need to pull paper from bins of different sizes, you have to call a different JDE each time
you change from one paper size to another. This is similar to staple support. There is
no code to invoke different JDEs for change of paper size.

Metacode Printers

283

Xerox forms If a Xerox form (FRM file) contains more than 48 blocks (each block is 512 bytes), your
printer may not have enough memory to print it.

The CD (Character Dispatcher) memory is divided into three regions. The first region
loads all fonts used on a page. The second region is used for TL/DLs which contain
inline Metacode (may only be variable data if you use an FRM). The third region loads
the TL/DLs from an FRM file, if one is being used for the page.

If you have version 2 of the printer software, your printer supports eight TL/DL buffers
of 3K each (same as 48 blocks of 512 bytes each) for inline Metacode. With version 3.5
of the printer software, the limit was increased to 16 buffers of 3K each.

NOTE: Our testing shows that with version 3.5, TL/DLs from FRMs (the third region of
CD memory) are still limited to 8 TL/DL buffers of 3K each (same as 48 blocks
of 512 bytes each).

Typically, Xerox 9700 and 9790 printers still have the older release installed. If so, you
may want to upgrade to version 3.5. The Xerox 4000 series printers (4050, 4850, and
so on) always come with version 3.5 or higher.

When you are not using FRM files in a print stream, the system does not use the CD
memory reserved for FRM files.

METACODE TROUBLESHOOTING

Unexpected color output Even though you set the SendColor option set to No, you still get color output when
printing. This occurs when:

• You specified Print in color for some elements of the FAP file

• You precompiled the FAP files with the /C option on FAP2MET

• A SUB INK command was issued on the printer

If ink substitution occurred because of an operator command, such as SUB INK BLUE
(or RED or GREEN), the colored components of the precompiled MET file will be brought
in with color attribute turned on and printed with color. This happens regardless of how
you set the SendColor option. To print in black and white, either re-run the FAP2MET
utility with no /C flag, or use the END command to cancel ink substitution on the printer.

Unexpected black and
white output

Even though you set the SendColor option to Yes, you still get black and white output
when printing. Use this checklist to make sure you have done everything to print in
color:

• Make sure you specified Print in color for the color elements in your FAP file, such
as text, shaded areas, lines, and so on.

• Make sure you precompiled the FAP files with the /C option on FAP2MET;

• If you are using precompiled FAP files, make sure you compiled those FAPs using
the FAP2CFA utility.

• Make sure you run the GenPrint program with the SendColor option set to Yes.

Chapter 6
Setting Up Printers

284

Highlight color should
match the PrinterInk

option

The PrinterInk option causes a DJDE ILIST command which specifies the highlight color
to use. If a different highlight color is installed on the printer, the printer follows the
procedure specified in the ABNORMAL statement in the JDL and JDE loaded. The
ABNORMAL procedure specifies whether the job should continue, abort, or stop. If no
ABNORMAL procedure is declared, the default is for the printer to stop so a new ink
cartridge can be loaded. Besides the ABNORMAL statement, the printer operator can
override the ink setting using the SUB command (for example, SUB INK BLUE or SUB
INK CURRENT).

LOG file orientation To print a portrait section which contains a graphic on a landscape form using pre-
compiled MET files, set the LoadFAPBitmap option to Yes. This is necessary because
the graphic name must change from the portrait (zero degrees) name to the landscape
(270 degrees) name.

Output catching up with
the input

If your printer cycles down and displays a message stating that the output caught up
with the input, it indicates the average number of records per physical page is greater
than the maximum number of records that can be transferred across the channel in the
time allowed for a page.

This situation causes the printer to cycle down so it can buffer more pages before it
continues. This table shows the maximum average number of records that can be
transferred across the channel in time to support the printer running at rated speed:

To resolve this problem, you need to optimize the Metacode print stream. For more
information, see Optimizing Metacode print streams on page 271.

Printing rotated variables Here is a list of field options you can specify in the NAFILE.DAT file:

Printer Maximum Records Per Page

4050 285

4090 155

DP96 149

41/4635 105

DP180 78

Option Description

E Error

M Manual

P Protected

G Global scope (entire form set)

F Form scope

H Hidden field (such as a dummy field, neither displayed nor printed)

Metacode Printers

285

NOTE: For legacy MRLs, some of these options require the FAP field attributes to be
available at runtime because the DDT file does not include the necessary
information. You can use the CheckImageLoaded rule to make sure this
information is available.

There are no DDT files in MRLs created using Documaker Studio

Multi-page sections When you use multi-page FAP files and pre-compiled MET files, you must use the
EjectPage rule. This rule enables the printing of multi-page sections. Here are the steps
to apply the rule in Image Editor:

1 Open the FAP file in Image Editor.

2 Select Format, Image Properties and then click the Load DDT button.

Image Editor detects that the image contains multiple pages and inserts into the DDT
file as many EjectPage rules as there are pages.

You must have a variable field on each page. The variable field can be a dummy field
that is hidden.

NOTE: Documaker Studio automatically handles EjectPages for you.

When you implement multi-page FAP files and pre-compiled MET files, keep these
requirements in mind:

• Only multi-page FAP files are applicable.

• Multi-page FAP files cannot be mixed with single page FAP files on the same form.
The system cannot easily determine the page number in this case.

• The multi-page FAP file came from Documaker Studio or Image Editor and
therefore there is only one section per page, hence, each page on the form has an
section list that contains one and only one section.

• The index of the page on which that section resides within that form is the number
of the page.

• Multi-page sections can be duplexed by setting the form to either Front (long edge
binding) or Short bind (short edge binding). Internally created sections will be set
to Rolling for the remaining pages.

N Nonprintable field (displayed, not printed)

C Send-copy-to field (receives current recipient name at print time)

9 Rotated 90 degrees

8 Rotated 180 degrees

7 Rotated 270 degrees

Option Description

Chapter 6
Setting Up Printers

286

NOTE: If a form begins with a rolling duplex option, the print drivers begin printing on
the blank back page of the previous form. Any form that starts with rolling and
begins a form set is treated as the front page of a rolling set.

Operator command,
FEED, causes duplex

problems

If you enter an operator command to specify an input tray—because for instance, one
paper tray is empty and while you refill it you want the printing to continue using
another tray—you can no longer select trays from DJDEs in the job stream. Instead, you
will get messages which tell you tray selection was suspended by an operator override.

All paper feed from that point forward, will be from the tray specified in the operator
command. This can cause duplex jobs to print incorrectly if you have completed
printing on a front page and the next page should print from a different tray.

To correct this situation, enter a FEED=MAIN command. This command tells the printer
to switch to tray 1 and enables tray selection through DJDE commands so the next
paper selection command is obeyed.

Line density errors As the speed of the printer increases, there is less and less time available to the
character dispatcher to form the scan line and send it to the image generator. Here is
some information on how this affects the various Xerox printers:

• Since the 4135 printer is the fastest of the Xerox printers using the older CD/IG, the
chances of running out of time and causing a line density error are greatest with
this model.

• The Xerox 4050 and 4850 printers are too slow for this to be a problem. These
printers allow more fetches from the font memory per scan line.

• The Xerox 4635 printer's image generation module has been revamped to such an
extent that Xerox almost guarantees there will never be a line density exceeded
error on a 4635 printer.

• The 4235 printer is slow and works quite differently than the centralized printers.

• If a job works fine on a 9790 printer but fails on a 4135, the number of character
fetches is likely on the borderline of failure.

If you experience line density problems, check your FAP files for the following:

• Text superimposed on shaded areas.

• Large number of text lines with small fonts.

• Large number of horizontal lines whose thickness is measured in an odd number
of dots. If you change the thickness of a horizontal line from three dots to two or
four dots (0.01" to .006666" or 0.013333"—24 FAP units to 16 or 32 FAP units), it
reduces the character count from two to one.

The Xerox line drawing font has three horizontal line drawing characters which
specify lines with thicknesses of two, four, and eight dots (.006666", .013333"
and .0 26666" or 16, 32, and 64 FAP units). Odd thicknesses require the printer to
overlay or overlap multiple lines.

• Large number of small boxes, many of which have common boundaries. On paper
it looks like one line. Actually, there may be two or more character fetches for the
same black dots. Create these kinds of boxes by drawing lines rather than boxes.

Metacode Printers

287

Output data length
validation

Metacode printer JSL specifies the length of data that can be received. This data length
must match the value output into the Metacode print stream. You specify the data
length in the JSL as shown here:

LINE DATA = (0,213)

You specify the data length in the PrtType:XER control group in the FSISYS.INI file, as
shown here:

< PrtType:XER >

JDLData = 0,213

In this example, the JSL specifies a maximum data length of 213, so the INI option has
a matching value. The maximum length value is also used in the Metacode print driver
to make sure no more than the specified amount of data is output in any Metacode
record. If the amount of data to be emitted in the record exceeds this amount, an error
message such as the following appears:

Record Length 214 is too long - maximum length is 213.

NOTE: Under z/OS, Metacode output files are VB datasets. The JCL specifies a
maximum length of a record (LRECL). If an attempt is made to write a record
longer than the LRECL value, the write will fail and an error message appears.

Be advised that under z/OS, with VB datasets, the LRECL size includes a 4-byte
record length, known as the RDW. The RDW is implicitly added to the front of
each variable length record. Therefore, you should set the LRECL value for the
Metacode output dataset to a number equal to the JSL maximum length plus
four to account for the RDW bytes at the front of the record. For the above
example, set the LRECL of the Metacode output file to 217.

Using Xerox Forms (FRMs)

The system lets you use Xerox form (FRM) resources when you print to Xerox Metacode
printers. FRMs are printer resident resources that contain static full-page images. The
system can use FRMs during the print process.

You can convert frequently used static full-page images into FRMs using the FAP2FRM
utility. To indicate an image is resident on the printer as a FRM file, use the Form Set
Manager. The Printer Resident field indicates the image is a pre-compiled resource
resident on the printer—as opposed to a pre-compiled resource that needs to be
downloaded to the printer. For more information on the Form Set Manager and the
Printer Resident field, see the Docucreate User Guide.

Here are some guidelines for using Xerox forms (FRMs):

• Create one FAP file per page. If there is a text area, do not put variable data within
the text area.

• The image size must be one of the standard paper sizes, such as US Letter, Legal,
A4, or Executive.

• Because Xerox printers can only accept file names up to six characters in length,
the image name can be up to six character long. If, however, it is a multi-page FAP
file, the name can consist of no more than four characters to accommodate the
two-character number added by the FAP2FRM utility. Here are some examples:
TEST01.FRM for the first page, TEST02.FRM for the second, and so on.

Chapter 6
Setting Up Printers

288

• Use the FAP2FRM utility to convert FAP files into FRM files. For multi-page FAP
files, create multiple FRM files. The names are appended with two-digit numeric
suffixes.

• On workstations, store the FRM files in the same directory as the FAP files. On z/
OS, keep them in a PDS attached to the PFRMLIB DD name. On AS400 systems, use
the FRMFile option in the Data control group to specify to store the FRM files.

• Use the Printer Resident field in the Form Set Manager to mark individual forms as
printer resident. After you do this, the FORM.DAT file contains the V image option
which indicates the image is resident on the printer. When you run the GenPrint
program, a DJDE FORMS=fname command is inserted for the corresponding
images. The remainder of the images are printed by inline Metacode, possibly
using precompiled MET files.

• Install the FRM files on the Xerox printer using the XERDNLD utility. Copy the
resulting *.DAT files to the printer. To make sure the forms are installed on the
printer, use the SAMPLE console command to print the form files.

BARRWRAP

The BARRWRAP utility converts Metacode output from JES2 format into BARR format.

The BARR interface attachment for Metacode printers requires that the Metacode print
stream files contain BARR specific information. The BARRWRAP utility adds this
information to an existing Metacode print stream file, which lets you print the output
file via the BARR interface.

After you run the utility on a Metacode file, 76 1A FF 00 is added at the beginning of the
file. This tells BARR the file is a Metacode file. A byte denoting the record length is also
added at the beginning and end of each record in the file.

Use this utility when you test the GenPrint program on z/OS. If the z/OS system is not
directly channel-attached to the Xerox printer, you must download the print streams to
an OS\2 system—use no ASCII translation, but do use CRLF. Then, using BARRWRAP,
the print stream is packaged to successfully pass through BARR/SPOOL.

NOTE: Occasionally, the binary data contained in a Metacode file has a sequence of
hex bytes (x’0D0A’) which could be misinterpreted as a carriage return/line
feed. This is true particularly for charts and other inline graphics. Convert such
data streams using the BARRWRAP utility on the z/OS platform before you
download them with the no ASCII and no CRLF (binary) options.

Transferring Files from Xerox Format Floppies

Resources saved on a 5 1/4-inch floppy, using FLOPPY SAVE file.ext, are saved in a
special Xerox format. For use in the system, or for transferring to a 4235 printer, you
must convert these resources into DOS format. You can use the following software
packages to perform this required conversion:

• FloppyCopy by Lytrod Software – Inexpensive, easy to use

• Elixir – More expensive, but includes additional features.

• LaserLinx – No longer marketed.

PCL Printers

289

PCL PRINTERS Hewlett-Packard created the Printer Control Language (PCL) to provide a way for
application programs to control a range of printer features across a wide array of
printing devices.

The PCL language has evolved over time. For the most part, system-produced PCL
output will run on any printer that supports PCL 5 or PCL 6. There are separate drivers
for these two versions of the PCL language.

To support color printing, the printer must support PCL 5c, which contains color
extensions. To support more than two paper trays, the printer must support PCL 5e.

NOTE: All system print drivers support 24-bit color graphics. The PXL (PCL 6) driver
supports monocolor, 8-bit color (256 color), and 24-bit color graphics.

If your printer does not support color, the print driver will automatically
convert the color graphics into monochrome graphics. Keep in mind that for
the best performance you should avoid color graphics.

PCL INI OPTIONS

You must define the necessary printer options for the GenPrint program to produce PCL
output. These options specify PCL output and are located in a PrtType:xxx control
group, such as PrtType:PCL for PCL 5 or PrtType:PXL for PCL 6. Common PCL printer
options are shown below, with default values in bold:

 Option Values Description

Device any file or
device name

The name of the file or device (LPT1) where the
PCL print stream should be written. This setting
is ignored by the GenPrint program but is used by
Studio, Image Editor, and other Documaker
system programs.

Module PCLW32 The name of the program module which contains
the PCL print driver. See also the Class option.
For PCL6, enter PXLW32.
See also Using defaults for the Module and
PrintFunc options on page 268.

PrintFunc PCLPrint The name of the program function that is the
main entry point into the PCL print driver.
For PCL6, enter PXLPrint.
See also Using defaults for the Module and
PrintFunc options on page 268.

Resolution 300 The dots per inch resolution of the printer which
will receive the PCL data stream.

SendOverlays Yes/No Set to Yes if you created PCL overlays for each
FAP file.
This option is not supported for PCL 6.

Chapter 6
Setting Up Printers

290

OverlayPath any directory Set to the directory containing the PCL overlays
for each FAP file. The default is the FormLib
option of the MasterResource control group.
Here is an example:

< MasterResource >

FormLib = <CONFIG:Batch Processing>

FormLib = <CONFIG:Batch Processing>

FormLib = ./forms/

This option is not supported for PCL 6.

OverlayExt any file
extension
(OVL)

The file extension of the PCL overlays.
This option is not supported for PCL 6.

PageNumbers Yes/No Set to Yes to enable form or form set page
numbering.

SendColor Yes/No

Enabled/
Disabled/
Hidden

Set to Yes to enable color printing.
Enabled = Option appears in the Print window
and is active (available to be checked).
Disabled = Option appears in the Print window
but is grayed out (not available to be checked).
Hidden = Option does not appear in the Print
window.

HighlightColor Yes/No Set this option and the SendColor option to Yes
to use simple color mode. See Using Simple
Color Mode on page 297 for more information.
This option is not supported for PCL 6.

DownloadFonts Yes/No Set to Yes to enable downloading of PCL fonts.
For PCL6, you must enter Yes because internal
font selection is not supported.

TemplateFields Yes/No Set to Yes to test print Xs in variable fields.

FitToWidth Yes/No Not supported by either PCL print driver.

AdjLeftMargin Yes/No Automatically adjusts the left margin to
compensate for the 1/4-inch left margin added
by PCL printers.
Yes = Automatically adjust the left margin. Forms
print exactly as they appear on screen (default).
No = Do not adjust the left margin. Forms may
not print correctly on PCL printers after
performing a retrieve function.
This option is not supported for PCL 6.

 Option Values Description

PCL Printers

291

SelectRecipients Yes/No
Enabled/
Disabled/
Hidden

Set to No to disable the ability to select
recipients.
Enabled = Appears in the Print window and is
active (available to be checked).
Disabled = Appears in the Print window but is
grayed out (not available to be checked).
Hidden = Does not appear in the Print window.

PrintViewOnly Yes/No If set to Yes, the view only sections will print. This
does not apply to entry only sections, which are
never printed. Entry only sections are usually
worksheets. If the section is marked as hidden
and view only, it will not print.

PrePrintedPaper Yes,Disabled Determines if the check box which lets you print
or not print pre-printed objects appears on the
Print window. Also determines the default for
this field—checked or unchecked. You must add
this option to the INI file if you want the field to
appear on the Print window.
The default includes the field on the Print
window and leaves it unchecked. All objects
except fields can be marked pre-printed on the
object’s Properties window.

Class (first three
characters of
the Module
option)

Specifies the printer classification, such as AFP,
PCL, XER, PST, or GDI. If you omit this option, the
system defaults to the first three letters from the
Module option.
Some internal functions expect a certain type of
printer. For instance, all 2-up functions require
an AFP printer. The internal functions check the
Class option to make sure the correct printer is
available before continuing.

StapleBin Set this option to the PCL printer escape
sequence that selects the bin that contains the
staple attachment. Use a tilde character (~) in
place of the binary escape character.
This option is not supported for PCL 6.

PJLCommentScript To add PJL comments to a PCL print stream, enter
the name of the DAL script you want the system
to run. This DAL script creates the control strings
and adds them as ASCII comments.
This option is not supported for PCL 6.

PJLCommentOn batch/formset Use this option to add PJL comment records to
the beginning of every form set or batch.
This option is not supported for PCL 6.

 Option Values Description

Chapter 6
Setting Up Printers

292

NOTE: The default FAPCOMP.INI file should include the PrtType:GDI control group
and options in addition to the PrtType:PCL or PrtType:PXL control group.

Using defaults for the
Module and PrintFunc

options

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDI.

These defaults keep you from having to enter the Module and PrintFunc names in your
INI file. For example, if you want to generate PCL print files, you can specify these INI
options:

< Printer >
PrtType = MYPCL

< PrtType:MYAFP >
Class = PCL

And the system will default these options for you:

< PrtType:MYAFP >
Module = PCLPRT
PrintFunc = PCLPrint

Using PCL 6

PCL 6 is a stack-based protocol (similar to PostScript) composed of attributes and
operators that let you define paths, clip paths, pens, brushes, fonts, raster patterns,
and so on. PCL6 also supports 16-bit character codes which makes it a better choice for
supporting Unicode than PCL 5.

The PCL 6 driver lets you download both PCL bitmap fonts and TrueType fonts. You
must specify the TrueType font file name in the Font File entry of the PCL printer section
in the font cross-reference (FXR) file.

To turn on Unicode support, check the Unicode Character Widths field when you insert
a TrueType font into the FXR file. Unicode support lets you use additional characters
and languages supported by the TrueType font.

OutputBin Enter the printer escape sequence to select the
normal output bin (for non-stapled forms) if non-
stapled forms are being sent to the wrong bin.
This option is not supported for PCL 6.

 Option Values Description

PCL Printers

293

Keep in mind...

• The PCL 6 driver supports PCL bitmap fonts so you can use master resource
libraries (MRLs) designed for PCL 5. Just remember to make the appropriate
changes to your INI options.

• When printing using a TrueType font, only the characters used on the form are
downloaded into the print stream. This reduces the size of print stream files,
particularly if the TrueType font includes support for Asian languages.

In comparison to the PCL 5 printer driver, the PCL 6 driver has these limitations:

• No overlay support

• No support for a separate downloadable font file which contains multiple PCL
fonts

• No internal printer font support

• Less paper tray support, no INI options to specify which PCL commands to use

• No INI options to specify PCL commands to output bin or staple bin

• No highlight color support

• No comment script support

Printing Under Windows

Windows XP/2000 does not recognize printer ports such as LPT1. If you are using
Windows XP/2000, you must change the PrtType control group in the FSIUSER.INI file
to reflect the print server name and print device. Here is an example:

< PrtType:PCL >

Device = \\FSISRV03\\OPTRA1

Click here to turn on Unicode
support.

Chapter 6
Setting Up Printers

294

Using High-Capacity Trays 3 and 4 on HP 5SI Printers

The system defines document attributes in a device-independent fashion. In prior
versions, PCL support was based on options available to PCL 5 and similarly configured
printers. The newer HP 5SI printer offers additional capabilities which depend upon (at
least somewhat) commands that exist in PCL 5e. To add to the confusion, HP is not
always consistent with its own terminology. Here is how the system treated PCL in prior
versions:

NOTE: The ability to define trays or use the Tray# option is not supported for PCL 6.

The terms for the current version are shown below, with changes highlighted:

The command ~&l5H (first high-capacity tray) is supported by PCL 5, but the hardware
is not typically found on HP printers. The command ~&l20H requires PCL 5e.

System
term PCL command PCL term HP 4 term HP 4si term HP 5si term

Tray 1
(Main)

~&l1H Tray 2
(upper)

PC Tray Upper tray Tray 2 (upper
drawer)

Tray 2
(Aux)

~&l4H Tray 3
(lower)

MP Lower tray Tray 3 (lower
drawer)

Tray 3
(Man)

~&l2H Manual
feed

Tray 1 Manual feed Tray 1 (manual
side feed)

Tray 4
(Env)

~&l3H Envelope
feed

Tray 1 Manual feed Tray 1 (manual
side feed)

n/a ~&l5H HCI, first
tray

LC Tray n/a First tray of HCI

n/a ~l20H HCI,
second
tray

n/a n/a Second tray of
HCI

System
term PCL command PCL term HP 4 term HP 4si term HP 5si term

Tray 1
(Main)

~&l1H Tray 2
(upper)

PC Tray Upper tray Tray 2 (upper
drawer)

Tray 2
(Aux)

~&l4H Tray 3
(lower)

MP Lower tray Tray 3 (lower
drawer)

Tray 3 ~&l5H HCI, first
tray

LC Tray n/a First tray of HCI

Tray 4 ~l20H HCI,
second
tray

n/a n/a Second tray of
HCI

PCL Printers

295

You can use these INI options:

< PrtType:PCL >

Tray1 = pcl command sequence (default is ~&l1H)

Tray2 = pcl command sequence (default is ~&l4H)

Tray3 = pcl command sequence (default is ~&l5H)

Tray4 = pcl command sequence (default is ~&l20H)

Keep in mind the paper size overrides the tray selection.

NOTE: See also for Handling Multiple Paper Trays on page 363 more information.

If you depend on the prior sequence, you can return to the original operation by
specifying:

< PrtType:PCL >

Tray3 = ~&l2H

Tray4 = ~&l3H

NOTE: The tilde (~) represents the escape character and is translated internally. The
third character in each sequence shown is a lowercase L.

Using a staple
attachment

In your PCL printer group, usually PrtType:PCL, add the StapleBin option to use a staple
attachment on your PCL printer.

Set the StapleBin option to the PCL printer escape sequence that selects the output bin
which contains the staple attachment. Use a tilde (~) in place of the binary escape
character.

Here is an example:

~&l2G (tilde, ampersand, lower case l, 2, upper case G)

This example shows the escape sequence used to select an optional lower (rear)
output bin that may have a staple attachment. Check with your printer manual for the
escape sequence you should use.

The OutputBin option should contain the printer escape sequence needed to select the
normal output bin (for non-stapled forms). Using the OutputBin option is not necessary
unless you notice the non-stapled forms are being sent to the wrong output bin. This
INI option is only necessary when you have both stapled and non-stapled forms in the
same print batch.

Chapter 6
Setting Up Printers

296

Overriding Paper Size Commands and Tray Selections

You can include additional PCL 5 printer commands which you can use to override both
the paper size and the tray selection. For instance, you can use this technique to get an
envelope feeder to work.

NOTE: Before the release of version 11.1, you could only specify the PCL 5 command
for the system to emit when a form is specified to use a certain paper tray (for
more information, see Using High-Capacity Trays 3 and 4 on HP 5SI Printers on
page 294).

When you include a PCL paper (page) size command, the system does not emit its own
paper (page) size PCL command based on the form's page size. This lets you use a page
size the system does not support.

For example, suppose you want to print on #10 business envelopes (41/8 inch by 9½
inch) using an optional envelope feeder on your PCL printer. The PCL command to

select a paper (page) size for printing COM-10 (Business 41/8 x 9½ inches) is shown
here:

~&l81A

The PCL command to feed an envelope from an optional envelope feeder is shown here:

~&l6H

If your system contained a form for printing on an envelope and the form was specified
to print from tray 4, you would use this INI setting:

< PrtType:PCL >

...

Tray4 = ~&l81A~&l6H

Because some characters are hard to distinguish, refer to this table for an explanation
of the characters shown for the Tray4 field, in order:

Character Description

~ A tilde

& An ampersand

l A lowercase L

8 The numeral eight (8)

1 The numeral one (1)

A An uppercase A

~ A tilde

& An ampersand

l A lowercase L

6 The numeral six (6)

PCL Printers

297

The PCL 5 Technical Reference manual contains information on PCL commands used to
select paper trays and paper sizes. You can get a copy of the PCL 5 Technical Reference
manual by going to www.hp.com and entering the phrase PCL technical reference in the
search window.

NOTE: When printing envelopes, you may want to design your form (section) in
landscape mode. When printing on PCL printers, there are unprintable margins

on the left/right edge of ¼ inch and top/bottom edge of 1/6 inch. These
unprintable margins apply when printing envelopes. Remember to account for
these unprintable margins when designing your form (section).

Using Simple Color Mode

The PCL print driver supports PCL simple color mode in addition to full RGB color
support. PCL simple color mode uses a 3-plane CMY palette. The 3-plane CMY palette
contains these indexed colors:

0 - White

1 - Cyan

2 - Magenta

3 - Blue

4 - Yellow

5 - Green

6 - Red

7 - Black

To specify highlight color printing for PCL, include these INI options:

< PrtType:PCL >

SendColor = Yes

HighlightColor = Yes

Marking objects to print
in color

For any object, such as lines, boxes, or text, select the Print in Color option on the Color
Selection window if you want the object to print in a color other than black. Keep in
mind...

• If the object is black and is not marked as Print in color, the system prints the
object using a black color index.

• If the object has a color other than blank and is marked as Print in color, the system
prints it using a highlight color index.

• Charts print in black, although you can print chart labels in the highlight color.

H An uppercase H

When writing PCL commands as an INI setting, the tilde (~) is used as a substitute for the
PCL escape character (x1B).

Character Description

www.hp.com

Chapter 6
Setting Up Printers

298

Specifying the highlight
color to use

You can use these INI options to specify the PCL color commands to use for printing the
black and highlight colors. The default values are shown here:

< PrtType:PCL >

HighlightColorCmd = ~*v3S

HighlightBlackCmd = ~*v7S

Note that the tilde (~) is used in place of the PCL escape character (hex 1B) and that the
number used in the command corresponds to the color indexes specified earlier, such
as 3=Blue and 7=Black.

To use a different highlight color, include the HighlightColorCmd option. To use a
different black color, specify the HighlightBlackCmd option.

Printing on different
types of printers

Printing black and white, highlight color, and full color print streams on black and
white, highlight color, and full color PCL printers will produce varying results.

You can usually send a color PCL print stream to a black and white PCL printer without
any problem—everything comes out black and white. PCL printers usually ignore any
commands they do not understand.

If, however, you send a highlight color PCL print stream to a full color PCL printer, the
results may be slightly different than if you had sent the print stream to a highlight
color printer.

Bitmap graphics in a highlight color print stream may print as cyan on a full color
printer. Bitmaps are a sequence of binary data—zeros (0) and ones (1)—so the zeros
may print as white, while the ones may print as cyan. On a highlight color printer, the
bitmap is printed as expected using the black or highlight color.

If you send a full color PCL print stream to a highlight color printer, your results may
vary based on the printer model and printer settings.

Creating Compressed PCL Files

You can create compressed PCL files using Documaker. This capability is typically used
with IDS because Windows does not let you print files that are a mixture of simplex and
duplex pages from Acrobat. The whole document has to be printed the same way. IDS,
however, lets you print a file to a local PCL printer which preserves the file’s duplex
information.

Use these options, which call the PRTZCompressOutPutFunc function, to compress an
output file, such as a PCL print batch file:

< PrtType:PCL >

OutputMod = PRTW32

OutputFunc = PRTZCompressOutputFunc

NOTE: The output is compressed, regardless of the file’s extension. You must
decompress the file before you can print it.

Bitmap compression The PCL print driver also supports bitmap compression. To disable bitmap
compression, add the following INI option to the PCL printer control group:

< PrtType:XXX >
Compression = No

PCL Printers

299

Adding Printer Job Level Comments

Printer Job Language (PCL) comments are supported by some PCL printers (not PCL 6).
One type of command lets you add a comment to your PCL print stream. The PJL
comment does not affect printing but can pass information to other products that look
for specific information in PJL comment records, such as an imaging system.

NOTE: Imaging products can be used to archive PCL print streams. These products
often require a control record at the beginning of the PCL print stream. These
options and DAL functions let you create that control record.

To add PJL comments, add the following INI option to the PCL print group:

< PrtType:PCL >

PJLCommentScript = imaging.DAL

The PJLCommentScript option specifies the DAL script you want to run. This DAL script
creates a control string and adds it as an ASCII comment. Here is an example of the DAL
script:

* Add imaging comment - use default APPIDX record.

Comment = AppIdxRec()

AddComment(Comment,1)

Return(‘Finished!’)

Notice the use of the second parameter to the AddComment DAL function. The 1
indicates the string should be an ASCII string. If you omit this parameter, the system
converts the string into an EBCDIC string.

You can also use the PJLComment option to tell the system to add PJL comments to the
beginning of every form set or print batch. Here is an example:

< PrtType:PCL >

PJLCommentScript = imaging.DAL

PJLCommentOn = formset

Adding Data for Imaging Systems

The PCL print driver can add free form text or data at the beginning of a batch or each
form set within the batch. This can help you interface with imaging systems such as
RightFax.

Use the TEXTScript INI option to specify the DAL script you want to run. This DAL script
creates a free form data or text buffer and adds it to the print stream.

Here is an example of the DAL script:

* Populate the PCL stream comment with these values from RCBDFD

faxnum = trim(GVM('FaxNumber'))

faxname = trim(GVM('FaxName'))

AddComment('<TOFAXNUM:' & faxnum & '>',1)

AddComment('<TONAME:' & faxname & '>',1)

Return

Chapter 6
Setting Up Printers

300

Notice the use of the second parameter to the AddComment DAL function. The 1
indicates the string should be an ASCII string. If you omit this parameter, the system
converts the string into an EBCDIC string. You can also use the TEXTCommentOn option
to tell the system to add free form text or data to the beginning of every form set or print
batch. Here is an example:

< PrtType:PCL >

TEXTScript = imaging.DAL

TEXTCommentOn = formset

Limiting the Embedded PCL Fonts

When using the PCL Print Driver with the GenPrint program, you can force the PCL Print
Driver to create print streams that contain only those fonts used in the document. To
have the PCL Print Driver only embed the fonts used, include these INI options in your
PCL printer control group:

< PrtType:PCL >

...

InitFunc = PCLInit

TermFunc = PCLTerm

DownloadFonts= Yes

...

PCL PRINTER RESOURCES

A number of resources are used in the printing process. These resources reside in
directories specified in the MasterResource control group.

Fonts The system supports PCL bitmap fonts. These fonts reside in the directory specified in
the FontLib option in the MasterResource control group when you set the
DownloadFonts option to Yes. The system includes utilities for creating PCL fonts from
PostScript, TrueType, Xerox, or AFP fonts.

Overlays Use the OVLCOMP utility to create PCL overlays from FAP files. These overlays must
reside in the directory specified in the OverlayPath option in the MasterResource
control group when you set the SendOverlays option to Yes.

NOTE: Because the PCL 6 driver supports PCL bitmap fonts, you can use master
resource libraries (MRLs) designed for PCL 5. Just remember to make the
appropriate changes to your INI options.

PostScript Printers

301

POSTSCRIPT
PRINTERS

Adobe Systems created the PostScript language. It is an interpretive programming
language with powerful graphics capabilities. For the most part, system-produced
PostScript output will run on any printer that supports PostScript Level 2.

NOTE: The PostScript print driver supports monocolor, 4-bit, 8-bit, and 24-bit color
bitmaps. If you printer does not support color, the print driver will
automatically convert the color graphics into monochrome graphics. Keep in
mind that for the best performance you should avoid color graphics.

POSTSCRIPT INI OPTIONS

You must define the necessary printer related options for the GenPrint program to
produce PostScript output. These options specify PostScript output and are located in
a PrtType:xxx control group, such as PrtType:PST. Common PostScript printer options
are shown below, with default values in bold:

Option Values Description

Device any file or
device name

The name of the file or device (LPT1) where the
PCL print stream should be written. This
setting is ignored by the GenPrint program but
is used by Documaker Studio, Image Editor,
and other system programs.

Module PSTW32 The name of the program module which
contains the PostScript print driver. See also
the Class option.
See also Using defaults for the Module and
PrintFunc options on page 304.

PrintFunc PSTPrint The name of the program function that is the
main entry point into the PostScript print
driver.
See also Using defaults for the Module and
PrintFunc options on page 304.

Resolution 300 The dots per inch resolution of the printer
which will receive the PostScript data stream.

SendOverlays Yes/No Set to Yes if you have created PostScript
overlays for each FAP file.
See also Creating Smaller PostScript Output
on page 305.

DSCHeaderComment Use to specify PostScript Document Structure
Convention (DSC) comments you want added
to the header portion of the generated
PostScript print stream.
You can include as many DSCHeaderComment
options as are necessary.
See Adding DSC Comments on page 306 for
more information.

Chapter 6
Setting Up Printers

302

OverlayPath any directory Set to the directory which contains the
PostScript overlays for each FAP file. The
default is the FormLib option of the
MasterResource control group.
Instead of using the above control groups and
options, you could use the following options:

< MasterResource >

OverlayPath = <CONFIG:Batch
Processing> OverlayPath =

< CONFIG:Batch Processing >

OverlayPath = .\PstOvl\

The default is the FormLib directory pointed to
by the FormLib option in the MasterResource
control group., as shown here:

< MasterResource >

FormLib = <CONFIG:Batch
Processing> FormLib =

< CONFIG:Batch Processing >

FormLib = ./forms/

OverlayExt any file
extension
(OVL)

The file extension of the PostScript overlays.

PageNumbers Yes/No Set to Yes to enable form or form set page
numbering.

SendColor Yes/No

Enabled/
Disabled/
Hidden

Set to Yes to enable color printing.
Enabled = Option appears in the Print window
and is active (available to be checked).
Disabled = Option appears in the Print window
but is grayed out (not available to be checked).
Hidden = Option does not appear in the Print
window

DownloadFonts Yes/No Set to Yes to enable downloading of PostScript
fonts.
See also Creating Smaller PostScript Output
on page 305.

PrinterModel file name (omit
extension)

Contains the name of the PostScript Printer
Definition (PPD) file. This file contains
information about printer-specific features.
This file must be in the directory specified by
the DefLib option of the FMRES control group.

TemplateFields Yes/No Set to Yes to test print Xs in variable fields

FitToWidth Yes/No Not supported by the PostScript print driver

Option Values Description

PostScript Printers

303

PrintViewOnly Yes/No If set to Yes, the view only sections will print.
This does not apply to entry only sections,
which are never printed. Entry only sections
are usually worksheets. If the section is
marked as hidden and view only, it will not
print.

PrePrintedPaper Yes,Disabled Determines if the check box which lets you
print or not print pre-printed objects appears
on the Print window. Also determines the
default for this check box—checked or
unchecked. You must add this option to the INI
file if you want the check box to appear on the
Print window.
The default for this option includes the
checkbox on the Print window and leaves it
unchecked. All objects except fields can be
designated as pre-printed on the object’s
Properties window.

Class (first three
characters of
the Module
option)

Specifies the printer classification, such as
AFP, PCL, XER, PST, or GDI. If you omit this
option, the system defaults to the first three
letters from the Module option.
Some internal functions expect a certain type
of printer. For instance, all 2-up functions
require an AFP printer. The internal functions
check the Class option to make sure the
correct printer is available before continuing.

LanguageLevel Level1
Level2

Level2 is the default setting and is required for
complex printing tasks, such as duplexing,
tray selection, and so on.
Only use Level1 if your printer only supports
PostScript Level 1 language features.

StapleOn
StapleOff

see
description

These options work in a similar fashion to the
Tray# options which let you specify PostScript
commands directly as a quoted string or to
look up the PostScript commands to use in
your printer's PPD file.
For detailed information, see Stapling Forms
on page 308.

SelectRecipients Yes/No
Enabled/
Disabled/
Hidden

Enabled = Option appears in the Print window
and is active (available to be checked).
Disabled = Option appears in the Print window
but is grayed out (not available to be checked).
Hidden = Option does not appear in the Print
window.

Option Values Description

Chapter 6
Setting Up Printers

304

Using defaults for the
Module and PrintFunc

options

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDI.

These defaults keep you from having to enter the Module and PrintFunc names in your
INI file. For example, if you want to generate PST print files, you can specify these INI
options:

< Printer >

PrtType = MYPST

< PrtType:MYAFP >

Class = PST

And the system will default these options for you:

< PrtType:MYAFP >

Module = PSTPRT

PrintFunc = PSTPrint

Avoiding a white outline
around letters

On some highlight color printers, such as the Xerox DocuTech/DocuPrint 180 Highlight
Color printer, if you print black text on a colored shaded area, the black text is printed
with a white outline around the letters. To eliminate the white outline, add the
SetOverprint option to your PostScript printer INI control group and set it to Yes.

Printing under Windows

Windows XP/2000 does not recognize printer ports such as LPT1. Change the PrtType
control group in the FSIUSER.INI file to reflect the print server name and print device.
Here is an example:

< PrtType:PST >

Device = \\FSISRV03\\OPTRA1

SetOverprint Enter Yes if you are using a highlight color
printer, such as the Xerox DocuTech/
DocuPrint 180 Highlight Color printer, and you
want to remove the white outline that appears
around black letters printed on a highlight
color background.
If you are using pre-compiled overlays, be sure
to re-create the overlays after you set this
option to Yes.
If you still see a small white outline around the
characters in your printed output, your printer
may need to be re-calibrated. Contact your
printer vendor to fine tune your printer
calibration.

Option Values Description

PostScript Printers

305

Generating PostScript Files on z/OS

You can generate PostScript output files on z/OS systems with an updated (version
11.0 or later) PSTLIB. Be sure to include these settings in your FSISYS.INI file to print
PostScript on z/OS:

< Printer >

PrtType = PST

< PrtType:PST >

Module = PSTW32

Printfunc = PSTPrint

SendOverlays = (Yes or No)

SendColor = (Yes or No)

DownloadFonts = (Yes or No)

Creating Smaller PostScript Output

The PostScript print driver automatically downloads (embeds) only the fonts that are
needed. This results in smaller output files.

NOTE: To produce a PostScript print stream that only downloads (embeds) the
minimum set of fonts required by the PostScript print stream, you cannot use
overlays.

All PostScript fonts referenced in the FXR file are downloaded if the
SendOverlays option is set to Yes because the system does not know which
fonts are used by the overlays.

You must set these PostScript INI options as shown to tell the PostScript print driver to
download the minimum set of fonts required by a print stream:

< PrtType:PST >
DownloadFonts = Yes
SendOverlays = No

If you are running the GenPrint program, you will need to tell GenPrint to load the FAP
files (instead of overlays) by using the DownloadFAP option:

< RunMode >
DownloadFAP = Yes

Bitmap compression The PostScript print driver supports bitmap compression. Compression is enabled by
default. To disable compression, add this option to the PostScript printer control
group:

< PrtType:XXX >
Compression = No

Color bitmaps are compressed in JPEG format.

Monocolor bitmaps are compressed using Run Length Encoding (RLE) compression. If
compression or color is disabled, 4-bit and 8-bit color bitmaps are printed as
monocolor bitmaps. For compatibility with previous releases, 24-bit color bitmaps are
printed in color when compression is disabled and color is enabled.

Chapter 6
Setting Up Printers

306

PostScript print streams with bitmap compression are often smaller and may be
produced faster than PostScript print streams without bitmap compression. PostScript
print streams with compressed multi color bitmaps will see the greatest reduction in
terms of file size and time to produce.

The 4-bit and 8-bit color bitmaps printed in color with compression will likely produce
larger print streams than 4-bit and 8-bit color bitmaps which have been converted to
monocolor (black and white) bitmaps.

Keep in mind:

• For any bitmap to print in color, you must make sure the bitmap (LOG) is marked
as Print in Color in the FAP file. Also make sure you set the SendColor option to Yes
in the PCL or PostScript printer control group before printing.

• When using Forms Integrity Manager (FIM) to compare a version 11.2 or later
PostScript print stream with bitmap compression against an older PostScript print
stream without bitmap compression, FIM will report that some bitmaps are not
identical. Older PostScript print streams without bitmap compression generated
the bitmap data in multiple streams while the newer compressed bitmaps are
always generated within a single stream. In this case, FIM will report the older
print streams contains multiple Overlay Images entries while the new print
streams contain a single Overlay Images entry. Also, FIM may report differences in
some attributes (height, width, raster size, and so on) of Overlay Images and
Variable Images due to differences in how bitmaps are emitted.

Adding DSC Comments

Use the DSCHeaderComment option to specify the PostScript Document Structure
Convention (DSC) comments you want added to the header portion of the generated
print stream. You can include as many DSCHeaderComment options as are necessary.

This example shows how, in addition to specifying PostScript commands in the Tray#
options, you can also include DSC comments you want added to the header portion of
the generated PostScript print stream:

< PrtType:PST >

 Device = test.ps

 DownloadFonts = Yes,Enabled

 DSCHeaderComment = %%DocumentMedia:Media1 612 792 75 (White)
(Tray1)

 DSCHeaderComment = %%+ Media2 612 792 75 (White) (Tray2)

 DSCHeaderComment = %%+ Media3 612 792 75 (White) (Tray3)

 DSCHeaderComment = %%+ Media4 612 792 75 (White) (Tray4)

 LanguageLevel = Level2

 Module = PSTW32

 PageNumbers = Yes

 PrinterModel = XDP92C2

 PrintFunc = PSTPrint

 Resolution = 300

 SendColor = No,Enabled

 Tray1 = "<< /MediaType (Tray1)/MediaColor(White) /MediaWeight
75>>

setpagedevice"

 Tray2 = "<< /MediaType (Tray2)/MediaColor(White) /MediaWeight
75>>

setpagedevice"

PostScript Printers

307

 Tray3 = "<< /MediaType (Tray3)/MediaColor(White) /MediaWeight
75>>

setpagedevice"

 Tray4 = "<< /MediaType (Tray4)/MediaColor(White) /MediaWeight
75>>

setpagedevice"

 SendOverlays = Yes,Enabled

The DSC header comments are added at the beginning of the generated PostScript
print stream as shown here:

%!PS-Adobe-3.0

%%Title: INSUREDS COPY

%%Creator: FormMaker PostScript Driver

%%CreationDate: Thu Apr 04 17:50:57 2002

%For: INSURED

%%Pages: (atend)

%%DocumentData: Clean7Bit

%%DocumentSuppliedResources: font (atend)

%%DocumentMedia:Media1 612 792 75 (White) (Tray1)

%%+ Media2 612 792 75 (White) (Tray2)

%%+ Media3 612 792 75 (White) (Tray3)

%%+ Media4 612 792 75 (White) (Tray4)

%%EndComments

Chapter 6
Setting Up Printers

308

Stapling Forms

Use the StapleOn and StapleOff INI options in the PostScript printer control group to
control staple support. These options work in a similar fashion to the Tray# INI options
which let you specify PostScript commands directly as a quoted string or to look up the
PostScript commands to use in your printer's PPD file.

Here is an example. Suppose you have seven forms in the form set and all but one
(Form D) are to be stapled. There are two recipients who are to receive these forms as
shown in this table:

The INSURED recipient’s forms print as:

The AGENT recipient’s forms print as:

Form Staple? Recipients

A Yes INSURED, AGENT

B Yes INSURED

C Yes INSURED, AGENT

D No INSURED, AGENT

E Yes INSURED

F Yes INSURED, AGENT

G Yes INSURED, AGENT

Form A
Form B
Form C

(stapled together)

Form D Form E
Form F
Form G

(stapled together)

Form A
Form C

(stapled together)

Form D Form F
Form G

(stapled together)

PostScript Printers

309

By default, the PostScript print driver will use these commands:

< PrtType:PST >

...

StapleOn = "<</Staple 3 >> setpagedevice"

StapleOff = "<</Staple 0 >> setpagedevice"

You can override PostScript staple commands by providing an alternate PostScript
command to use via the StapleOn and StapleOff options in your PostScript printer
control group.

You can issue PostScript staple commands in these forms:

• A quoted string containing the PostScript commands. The quoted string should
contain the appropriate PostScript commands for turning stapling on or off. Here
is an example:

StapleOn = "1 dict dup /Staple 0 put setpagedevice"

• A UI keyword from a PPD file. UI keywords represent features that commonly
appear in a user interface (UI). They provide the code to invoke a user-selectable
feature within the context of a print job, such as the selection of an input tray or
manual feed. The entries of UI keywords are surrounded by these structure
keywords:

*OpenUI/*CloseUI or *JCLOpenUI/*JCLCloseUI

Here is an example of an OpenUI structure for XRXFinishing:

*OpenUI *XRXFinishing/Finishing: PickOne

*OrderDependency: 60.0 AnySetup *XRXFinishing

*DefaultXRXFinishing: None

*XRXFinishing None/None: "

1 dict dup /Staple 0 put setpagedevice"

*End

*XRXFinishing Single_Portrait_Staple/Single Portrait Staple: "

2 dict dup /Staple 3 put

 dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(SinglePortrait) put

 put setpagedevice"

*End

*XRXFinishing Single_Landscape_Staple/Single Landscape Staple: "

2 dict dup /Staple 3 put

 dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(SingleLandscape) put

 put setpagedevice"

*End

*XRXFinishing Dual_Portrait_Staple/Dual Portrait Staple: "

2 dict dup /Staple 3 put

 dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(DualPortrait) put

 put setpagedevice"

*End

*XRXFinishing Dual_Staple/Dual Landscape Staple: "

2 dict dup /Staple 3 put

Chapter 6
Setting Up Printers

310

 dup /StapleDetails 2 dict dup /Type 1 put dup /StapleLocation
(DualLandscape) put

 put setpagedevice"

*End

*?XRXFinishing: "(Unknown) = flush"

*CloseUI: *XRXFinishing

A PostScript Printer Definition (PPD) file is supplied with a PostScript printer. This file
contains information about printer-specific features. You specify the PPD file you want
to use in the PrinterModel option in your PostScript printer control group (just the file
name, no drive, path, or file extension). If the PrinterModel option contains the name
of a PPD file, this file must be in the directory specified in the DefLib option in the
FMRes control group.

This example shows a PostScript printer group that uses a PPD file for a DocuPrint 65
printer (XRD60651.PPD) and specifies StapleOn and StapleOff options using keyword
settings from the PPD file:

< PrtType:PST >

...

PrinterModel = XRD60651

StapleOn = *XRXFinishing Single_Portrait_Staple/Single Portrait
Staple:

StapleOff = *XRXFinishing None/None:

POSTSCRIPT PRINTER RESOURCES

A number of resources participate in the total printing process. They reside in
directories specified in the MasterResource control group.

Fonts The system supports PostScript Type 1 fonts. These fonts must reside in the directory
specified in the FontLib option in the MasterResource control group when the
DownloadFonts option is set to Yes.

Overlays Use the OVLCOMP utility to create PostScript overlays from FAP files. These overlays
must reside in the directory specified in the OverlayPath option in the MasterResource
control group when the SendOverlays option is set to Yes.

PostScript Printer
Definition (PPD) Files

A PostScript Printer Definition (PPD) file is supplied with a PostScript printer. This file
contains information about printer-specific features. If the PrinterModel option
contains the name of a PPD file, this file must be in the directory specified in the DefLib
option in the FMRES control group.

Using the GDI Print Driver

311

USING THE GDI
PRINT DRIVER

Oracle Insurance developed a Graphics Device Interface (GDI) print driver because it
provides many opportunities for Windows platform users. For example, by using a GDI
driver, you can now fax, since fax drivers can be installed into Windows as a GDI
Windows printer driver.

Also, printing using GDI lets you print to printers that do not support any of the printer
languages the system supports, such as inkjet printers. To make this driver even more
useful, it includes the ability to scale output, which lets you shrink the printed output
to the size of the paper.

The advantages of using the Graphics Device Interface (GDI) include:

• Ability to print to any printer attached via a Windows print driver

• Ability to print to any fax machine attached via a Windows print driver

• Ability to scale edge to edge forms to print within the printable area defined by the
Windows print driver.

The disadvantages of using the Graphics Device Interface (GDI) include:

• Print quality is often poorer

• Inability to print a mixture of portrait and landscape forms

• Inability to print a mixture of simplex and duplex forms

• Inability to address the same printable area available when using our native print
drivers.

NOTE: If you do not specify the option for sending color to a GDI printer, the system
converts color (4-, 8-, or 24-bit) graphics into monochrome before sending
them to the printer driver. Depending on the bitmap, this conversion from color
to monochrome may not yield acceptable results. Be sure to consider your
printers capabilities when you are creating graphics.

If you elect to send color, including color graphics, to a GDI printer that does
not support color, the printer driver determines what to do. Some ignore the
color commands (printing in black), and some apply a gray-scale adjustment
to the output to simulate the color changes. Some GDI printer drivers cannot
accept color commands at all. If printing to your Windows-attached printer
causes a program fault, or print failure, try turning off the Send Color option via
the system’s Print window and sending the output again.

How it works Most Windows applications print using the Windows GDI application programming
interface. Essentially, the application uses commands similar to display commands to
send print commands to the operating system. Windows, in turn, sends the commands
to the currently installed Windows printer driver.

NOTE: Printer manufacturers provide Windows printer drivers for their printers. These
come on install disks from the manufacturer, or sometimes ship with Windows
itself. Other types of drivers (such as fax drivers) can be installed as Windows
printer drivers.

Chapter 6
Setting Up Printers

312

When a Windows program talks to the operating system using GDI, printer commands
are not emitted in the native language of the printer by the program. The program
prints to Windows, and Windows then prints to the installed printer driver.

The printer driver then produces the native printer language commands, including the
bitmap font definitions. If the printer driver belongs to a PCL printer, the print driver
issues PCL commands, including fonts. In contrast, our PCL printer modules produce
the PCL commands and fonts.

When you use our GDI driver, a Windows print driver will use the Windows screen fonts
to print the document with its goal being to make the document look like it does on
your screen.

Understanding the System In Documaker implementations, users typically decide what fonts they want to use and
then install those fonts on the production printer. Documaker applications try to make
the screen look like the printed output, not the other way around. Information from the
production printer fonts is loaded into the font cross-reference file. The system uses
this information to try to represent the printer fonts on screen. The system can also
convert production printer fonts into PCL bitmap fonts. The PCL fonts the system
produces look like the fonts used on your production printer.

GDI print quality, by definition, is based on the fonts used for display. The attributes
which describe fonts in the font cross-reference file determine which screen fonts are
used. The screen fonts used determine what you see on the screen and how GDI printed
output will look.

So, the key to improving GDI print is to improve the fonts used in the display system.
Some of this can be improved by making sure the font’s character widths and family
name is correct. There are INI options for improving the screen font substitutions, if
names cannot be matched up.

For the best results, you should use exact matching screen fonts. The system comes
with a set of TrueType fonts that match the printer fonts included with the system.
Install and use these fonts for best results.

NOTE: If you are instead working backward from existing production fonts, as is often
the case, either an approximation must take place, or you have to find screen
fonts built from the printer fonts.

Using the GDI Print Driver

313

GDI PRINTER DRIVER INI OPTIONS

You define the necessary printer options to print using the GDI printer driver. These
options specify GDI output and are located in a PrtType:xxx control group, such as
PrtType:GDI. Common GDI options are shown below, with default values in bold:

Option Values Description

Device any file or device
name

Not used by the GDI print driver.

Module GDIW32 The name of the program module which
contains the system’s GDI print driver. See also
the Class option.
See also Using defaults for the Module and
PrintFunc options on page 315.

PrintFunc GDIPrint The name of the program function that is the
main entry point into the system’s GDI print
driver.
See also Using defaults for the Module and
PrintFunc options on page 315.

Resolution 300 Not used by the GDI print driver.

SendOverlays Yes/No Not used by the GDI print driver.

OverlayPath any directory Not used by the GDI print driver.

OverlayExt any file extension
(OVL)

Not used by the GDI print driver.

PageNumbers Yes/No Set to Yes to enable form or form set page
numbering.

SendColor Yes/No

Enabled/
Disabled/Hidden

Set to Yes to enable color printing.
Enabled = Option appears in the Print window
and is active (available to be checked).
Disabled = Option appears in the Print window
but is grayed out (not available to be checked).
Hidden = Option does not appear in the Print
window

DownloadFonts Yes/No Not used by the GDI print driver.

FitToWidth Yes/No Scale pages to fit on the paper. This option will,
if necessary, reduce the size of the page. It will
not increase it.

TemplateFields Yes/No Set to Yes to test print Xs in variable fields.

Chapter 6
Setting Up Printers

314

Include these options in your FSISYS.INI file (for Documaker Workstation) and
FAPCOMP.INI files (for Docucreate).

In addition, you can add the following INI setting to automatically select landscape
mode when printing any of the specified sections:

< VBPrtOptions >

Landscape = (list of landscape sections)

SelectRecipients Yes/No
Enabled/
Disabled/Hidden

Enabled = Option appears in the Print window
and is active (available to be checked).
Disabled = Option appears in the Print window
but is grayed out (not available to be checked).
Hidden = Option does not appear in the Print
window.

PrintViewOnly Yes/No If set to Yes, the view only sections will print.
This does not apply to entry only sections,
which are never printed. Entry only sections are
usually worksheets. If the section is marked as
hidden and view only, it will not print.

PrePrintedPaper Yes,Disabled Determines if the check box which lets you
print or not print pre-printed objects appears
on the Print window. Also determines the
default for this check box—checked or
unchecked. You must add this option to the INI
file if you want the check box to appear on the
Print window.
The default for this option includes the
checkbox on the Print window and leaves it
unchecked. All objects except fields can be
designated as pre-printed on the object’s
Properties window.

Class (first three
characters of the
Module option)

Specifies the printer classification, such as
AFP, PCL, XER, PST, or GDI. If you omit this
option, the system defaults to the first three
letters from the Module option.
Some internal functions expect a certain type
of printer. For instance, all 2-up functions
require an AFP printer. The internal functions
check the Class option to make sure the correct
printer is available before continuing.

SuppressDlg Yes/No Set to Yes to suppress the Windows Print
window.

GDIDevice Specifies the Windows printer name. Click
Start, Settings, Control Panel, Printers to see a
list of the printers you can choose from.
If you set the SuppressDlg option to Yes and
leave this option blank, the system suppresses
the Print window and automatically prints to
the default printer.

Option Values Description

Using the GDI Print Driver

315

Beside the Landscape option, list the sections you want printed landscape. Separate
each section with a comma.

Users can override this option at print time.

Understanding the System If you do not set the SuppressDlg option to Yes, the Windows Print window appears
when you use the print device to spool the job. If you omit the SuppressDlg option or
set it to No, the user can select which Windows print device to spool the output
through. By setting this option to Yes, the Windows Print window (not the system's
Printer window which normally appears first), will be automatically completed for the
user.

If you set the SuppressDlg option to Yes, the default Windows printer is used unless
the GDIDevice option specifies a printer. You can use the GDIDevice option to name a
specific Windows print device for spooling the raw output. The name you specify must
match one of the installed printers. You can see these printer names by going to the
Control Panel and clicking the Printers icon.

If you misspell the printer name or specify one not installed for the GDIDevice option,
the system will send the output to the default printer device or you will get an error and
printing will stop. On Windows, an incorrect setting sends the raw output to spool to
the default printer device.

Don't confuse the SuppressDlg option with the SuppressDialog option in the Printer
control group in the FSISYS.INI file. The SuppressDialog option suppresses the
system's internal Printer Selection window—the one that names which PrtType:XXX
group from the INI file you wish to use. The SuppressDlg option suppresses the
operating system’s (Windows 32-bit) Printer Selection window.

Using defaults for the
Module and PrintFunc

options

Default values for the Module and PrintFunc options in the PrtType:xxx control group
are provided when you use a standard print type name or print class, such as AFP, PCL,
PDF, PST, VPP, XER, XMP, or GDI.

These defaults keep you from having to enter the Module and PrintFunc names in your
INI file. For example, if you want to generate GDI print files, you can specify these INI
options:

< Printer >

PrtType = MYGDI

< PrtType:MYAFP >

Class = GDI

And the system will default these options for you:

< PrtType:MYAFP >

Module = GDIPRT

PrintFunc = GDIPrint

Chapter 6
Setting Up Printers

316

AVOIDING PROBLEMS WITH FAX DRIVERS

Use the FullSupport option to prevent problems with FAX drivers which can occur when
you are printing from Documaker Workstation or PPS.

The GDI driver first looks for this INI option in the control group whose name reflects
the Windows print driver, such as HP LaserJet 4050 Series PS.

If the FullSupport option is set to Yes, the GDI driver assumes the Windows print driver
contains full print support and can handle form sets with mixed simplex and duplex
forms (some FAX drivers crash when presented these kinds of forms).

Here is an example:

< HP LaserJet 4050 Series PS >

FullSupport = Yes

If not found there, the GDI driver looks for the FullSupport option in the control group
for the printer type, such as PrtType:GDI. If you place the FullSupport option in the
PrtType:GDI control group, it serves as a default for all GDI printers. Putting the option
in for specific devices overrides this default.

BATCH PRINTING TO FILES

You can use the GDI print driver to print to a file by adding the PrintToFile option in your
GDI printer control group. This lets you direct output to the path and file you specify —
equivalent to checking the Print to File field on the Print window.

< PtrType:GDI >
PrintToFile = Yes

In the GenPrint program, output print file names for each batch are specified using the
Port INI option. When you use the GenPrint program with most Documaker print
drivers, the Port option determines the name of the print stream created for each batch.

Normally, the GDI print driver prints directly to a Windows print driver and does not
create files written to disk. By setting the PrintToFile option to Yes in your GDI printer
control group, the GDI print driver creates a print stream for each batch based on the
names specified in the Port options — just like the other Documaker print drivers.

Because the Documaker GDI print driver is not designed for batch print, these
additional GDI print options are recommended when you set the PrintToFile to Yes:

< PtrType:GDI >
...

SuppressDialog = Yes
GDIDevice = (Windows printer name)
FullSupport = Yes

Option Description

PrintToFile Enter Yes to have the GDI print driver use the Port options as the output
print file names for each batch when running GenPrint. The default is No.

Using the GDI Print Driver

317

This feature is limited to using the GDI driver with GenPrint (multi-step batch print) to
produce output print files and is limited to simple GenPrint (batch print) environments.

Keep in mind that all normal GDI print limitations (fidelity, tray selection, duplexing,
and so on) apply, plus the following:

• Banner page processing may not work.

• Cannot use the SetDeviceName and BreakBatch DAL functions.

• Callback functions may not work.

• Single step processing does not work correctly (all transactions are printed to a
single file).

• Multiple driver routers may not work.

• Printing from Studio or Image Editor may work but the Device setting will be used
to create the file. Printing from Documaker Workstation may not work.

• Printing to fax drivers, email drivers, and so on may not work and other types of
print or print features not previously discussed may not work.

In other words, trying to use PrintToFile option with anything except GenPrint running
in a simple batch mode using a normal Windows print driver is not supported.

Option Description

SuppressDialog Enter Yes to suppress the Windows Print window from appearing.

GDIDevice Enter the name of the Windows print driver you want to use.

FullSupport Enter Yes to tell the Windows driver to fully support duplexing, tray
selection, and so on.

Chapter 6
Setting Up Printers

318

USING PASS-
THROUGH
PRINTING

There are some problems which occur when you print to LPT1 on Windows platforms.
One problem occurs if you run Netware Client 32 for Windows 95. Although you can
open LPT1 from the system, you may receive errors when printing large amounts of
data. Downloading PCL fonts usually causes this.

Another problem occurs when a print queue adds additional printer commands to
system-created print jobs. This causes invalid output to be sent to the printer. The HP
5si print driver can cause this problem. Another problem affects other software which
redirects printers and expects all print output to use the Windows GDI mechanism.

Documaker includes a GDI print driver that uses Windows-native calls for printing,
which is how most applications print under Windows. However, the Windows system
print drivers have problems handling some system printing requirements, such as
enhanced font selection, the ability to combine duplexing with landscape forms, and
so on.

To solve these problems, our print drivers can produce the commands for controlling
the printer while still using an installed Windows printer device. To use this feature,
leave the Device field blank on the Print window, where you select the printer driver
you want to use.

Normally, the Device field contains the name of the device (LPT1) or the name of the file
(D:\OUTPUT.PCL) the system should print to. When you leave this field blank, you tell
the print driver you want to print through an installed printer device. After you click Ok,
the Windows Print window appears so you can select which printer device to send the
print job.

This printer device must be associated with a printer supported by the system’s print
driver. If you have a printer device available that is associated with a printer not
supported by the system’s print driver, the results are unpredictable. For example, if
you select PCL as the system printer type (print driver), but choose a printer device
associated with an AFP printer, the AFP printer will not understand the PCL output and
will print garbage.

Leave this field blank

Using Pass-through Printing

319

Unlike the GDI driver, our print drivers control the printed output. The Windows Print
window is the standard print window provided by Windows. Documaker applications
cannot control or change this window. In addition, since our print driver is controlling
the printer, most of the options on the Windows Print window will be ignored. The only
options you can use are:

• Select a printer device.

• Select the Cancel button and the print process is canceled.

• Check the Print to File field and the system will print the document to the file you
specify.

NOTE: Not all Windows print drivers support pass-through printing. If you receive an
error while printing in this manner, you are probably using a Windows print
driver that does not support pass-through printing.

Chapter 6
Setting Up Printers

320

CREATING PDF
FILES

Adobe Systems created the Portable Document Format (PDF). It is the native file format
of the Adobe Acrobat family of products. The original PDF file format was version 1.0.

The system produces PDF files which adhere to PDF file format version 1.3 (or version
1.4 if 128-bit encryption is used). This version supports compression and page-at-a-
time downloading. With page-at-a-time downloading (byte-serving), a web server
sends only the requested page of information to the user, not the entire PDF document.

NOTE: When you use Acrobat Reader to view a PDF document, you do not have to do
anything to make it download a page at a time. Acrobat Reader and the web
server handle this for you.

If you want the entire PDF document to continue downloading in the
background while you view the first page in Acrobat Reader, choose File,
General Preferences and select the Allow Background Download of Entire File
option.

For additional information about creating PDF files with Documaker applications,
please refer to the following documents:

For See

Docupresentment Please see the Internet Document Server User Guide for
more information on PDF support.

Documaker Server
(z/OS)

Please see the additional configuration steps in the
Documaker Server Installation Guide.

For all other products and
for general PDF information

Please see Using the PDF Print Driver.

Creating RTF Files

321

CREATING RTF
FILES

The RTF print driver lets you create a medium-fidelity export of the contents of a form
set in a format you view or edit with most popular word processors. The email print
driver uses this capability to email form sets. See Emailing a Print File on page 342 for
more information.

To use the RTF print driver, you need these INI settings:

< Printers >

PrtType = RTF

< PrtType:RTF >

Module = RTFW32

PrintFunc = RTFPrint

You will also need to specify an output device name on the Print window.

NOTE: The RTF print driver does not support graphics (bitmaps), charts, or bar codes.

Generating separate files You can generate separate files for each transaction when you choose RTF (or PDF)
from WIP or batch print.

The name of the files will have a rolling number appended to the end of the name that
starts the process and is filled in on the Print window. This is automatically handled
and you do not have to set INI options to get the WIP or batch print to work as long as
your PrtType name is PrtType:RTF.

There are several INI options you can use to override the naming process and also
name other print drivers that require this unique handling.

< BatchPrint >

NoBatchSupport = RTF

PreLoadRequired= RTF

These are the default settings and cannot be overridden. However, you can specify
other PrtType print driver definitions you want to fall into these same categories.

Also, you can name PrtType specific items under the BatchPrint control group to
override the normal Device naming option. Here is an example:

< BatchPrint >

PDF = ~HEXTIME .PDF

RTF = ~HEXTIME -~KeyID .RTF

Any batch print sent to PrtType:PDF (picking PDF on the Print window) will override the
name and store the current hexadecimal date and time, such as BCF09CA4.PDF, which
is an eight-character name, as the name of each transaction's output.

Option Description

NoBatchSupport Indicates that the named PrtType items, separated by semicolon,
do not really support batch transactions and require special
handling.

PreLoadRequired Lets you specify all the PrtType items, separated by semicolon, that
should be forced to load the form set prior to the starting print.
Most print drivers don't require this special requirement, but some,
such as PDF do.

Chapter 6
Setting Up Printers

322

Also, you can combine INI built-in calls as shown in the RTF example. Here any WIP or
batch print sent to RTF will name the files using the HEXTIME and the KeyID from the
WIP transaction. This will result in names similar to this: BCF099A4-123456.RTF

Note that you must leave a space after the built-in INI function name for it to work
properly. That space will not appear in the resulting output name.

Adding or removing
frames

By default, the RTF print driver uses frames to replicate the look of a document. If you
do not want the frames, which print as boxes around the various document objects, to
appear, set the WriteFrames option to No.

< PrtType:RTF >

WriteFrames =

For instance, you can use the RTF driver to print form sets to an RTF file. Once the RTF
file is created, you can then open it in a word processor. To avoid having frames in the
file, you would set this option to No.

Creating form fields You can use the RTF print driver to convert variable fields into RTF form fields. For
example, a variable address field is converted into an RTF form field. The format of the
field is retained. If, for example, the address field contained all uppercase characters,
this would be reflected in the corresponding RTF form field.

To print form fields, include this INI option:

< PrtType:RTF >

AllowInput = Yes

NOTE: This works with print types RTF and RTF_NoFrame.

You may also need to include the WordTimeFormats and WordDateFormats control
groups. You can use these control groups in case you are using a time or date format
that has no equivalent in Word. The following groups and options let you map a
Documaker format to a Word format.

< WordTimeFormats >

hh:mm XM =

< WordDateFormats >

bD/bM/YY =

To the left of the equals sign, you list the Documaker format used on the section. To the
right, you list the Word format you want to use.

Creating RTF Files

323

Setting margins The RTF print driver produces margins by calculating what is required and putting the
result in the RTF output. You can, however, set minimum required margins using the
RTF print type control group.

You must set the minimum required margins in FAP units (2400 dots per inch). Here are
the default settings:

< PrtType:RTF >

MinTopMargin = 400

MinLeftMargin = 600

MinRightMargin = 600

MinBottomMargin= 400

Margin values specified in the INI file override those set in the FAP file if the page
margins in the FAP file are smaller.

NOTE: The changes in the margins are noticeable when you open the document in an
application such as Microsoft Word. You will see the left and right margins
shifting based on what you specified in the INI file. The top and bottom margins
(seen on the left side of the page) will also vary based on what you specified in
the INI file.

Removing the contents of
headers and footers

Use these options to remove the contents, including graphics and text, from headers
and footers when creating RTF files:

< PrtType:RTF >

EmptyFooters = Yes

EmptyHeaders = Yes

Option Description

EmptyHeaders Enter Yes to remove the contents from any headers in the file. This
includes both text and graphics. The default is No.

EmptyFooters Enter Yes to remove the contents from any footers in the file. This
includes both text and graphics. The default is No.

Chapter 6
Setting Up Printers

324

USING THE VIPP
PRINT DRIVER

Variable Data Intelligent PostScript PrintWare (VIPP) was created by Xerox in the early
1990s to enable high-performance variable data printing on PostScript devices. VIPP is
based on PostScript and works by extending the PostScript programming language.
VIPP can be used on any PostScript compatible printer, including Xerox and third-party
network, workgroup, and production devices that have been licensed for VIPP.

VIPP is supported on these devices:

• DocuPrint NPS (monochrome and color)

• DocuPrint N-series

• DocuSP (Document Services Platform) controllers, including iGen3

• DocuColor, EFI, and Creo controllers, (including iGen3)

The Documaker VIPP print driver requires that you have VIPP version 5.3 or later
installed on your printer’s controller.

NOTE: Contact your Xerox representative to see if your specific printer supports VIPP
and to obtain VIPP licensing and installation of the latest VIPP version. To use
the Documaker VIPP print driver, any supported device must have a local file
system you can access to transfer resource files. Check with your Xerox
representative for any limitations or considerations when using VIPP on your
specific printer. For example, DocuColor systems may have limited or no
support for stapling, duplexing, and paper tray (media) selection. In addition,
older models of DocuTech and DocuPrint printers may have limited or no
support for caching resource files.

The Documaker VIPP print driver produces native mode VIPP output. Native mode
refers to files composed solely of VIPP commands. VIPP commands are used to place
text, lines, boxes, shades, and graphics directly on the page. Native mode is the default
VIPP mode.

A VIPP print job can refer to external resource files such as fonts, TIFF and JPEG
graphics files, and page overlays (segments).

VIPP provides a mechanism called VIPP Projects that lets you manage all of the
resources needed for a VIPP print job.

VIPP Projects allow you to organize the resources of a job under a single name (the
project) and group the jobs by family (the folder).

A folder is a collection of projects that share some common features. For example, you
may decide to create one folder for each customer, each division, or each line of
business. Within each folder, you could define multiple projects. A folder can contain
common resources (company logo, standard boilerplate page segments, and so on)
that are shared by the projects within the folder. The projects will contain resources
that are unique to the project. You can also have resources that are global across all
projects and folders.

Having multiple folders and projects provide a great deal of flexibility in how you
organize and share your resources. Folders and projects can even provide the logical
grouping of the physical resources used by the job at one or more steps during in the
job life cycle (development, testing, production, and so on).

This is a sample structure:

Using the VIPP Print Driver

325

Folder A – Dallas Division

Project 1

Project 2

Project 3

Folder B – Atlanta Division

Project 1

Project 2

Project 3

Folder C – Silver Springs Division

Project 1

Project 2

Project 3

VIPP Resource Files

The resource files referenced by a Documaker VIPP job are:

• Pictures (images) in TIFF or JPEG format

• Overlays (segments) in VIPP format

• PostScript fonts

• Font encoding tables

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names.

Converting bitmaps into
VIPP image files

VIPP supports bitmap files in TIFF and JPEG format. The Documaker VIPP print driver
assumes that mono-color (1 bit per pixel) graphics have been converted into TIFF
format and multi-color (more than 1 bit per pixel) graphics have been converted into
JPEG format.

Scanned images are usually converted into multi-color graphics even though the
images can appear to be black and white. There are a number of ways to convert your
graphics into TIFF and JPEG files as expected by the VIPP print driver.

• Use Logo Manager. Choose the File, Save As option. On the Save As window, select
VIPP image files (*.*) in the Save as Type field. Selecting VIPP image files tells the
system to create a TIFF file or a JPEG file, based on the number of colors used in the
graphic.

• Use the Conversion Wizard in Documaker Studio. Choose the Manage, Conversion
option from the main menu. Select VIPP image files as the Final Conversion File
Type. Selecting VIPP image files tells the system to create a TIFF file or a JPEG file,
based on the number of colors used in the graphic.

• Use Docutoolbox RP. Choose the File, Convert, Logos option from the main menu.
Select VIPP image files as the output file type. Selecting VIPP image files tells the
system to create either a TIFF file or a JPEG file, based on the number of colors used
in the graphic.

• Use the LOG2VIPP utility. The utility creates a TIFF file or a JPEG file based on the
number of colors used in the graphic. See the Docutoolbox Reference for details.

Chapter 6
Setting Up Printers

326

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to
make sure the resource file names are lower case before they are transferred
to the UNIX workstation console attached to the VIPP printer.

Converting FAP files into
VIPP segment files

VIPP supports pre-compiled printer overlays (called segments). A segment is a VIPP
native mode or a PostScript fragment intended to be reproduced once or several times
at specific locations on one or more pages. You can use the OVLCOMP utility to convert
Documaker FAP files into VIPP segment files.

Here is an example of the syntax for this utility. For more information, see the
Docutoolbox Reference:

OVLCOMP /I=fapfile /X=fxrfile /L=VPPW32 /F=VPPPrint /U=VPP /C

You will need a FSISYS.INI file in the directory that you run the OVLCOMP utility from.
Within the FSISYS.INI file, you should have a VIPP printer group defined. For example,
below is a subset of the INI settings you might find in a VIPP printer group.

< PrtType:VPP >

Module = VPPW32

OverlayExt = .seg

PrintFunc = VPPPrint

SendOverlays = Yes,Enabled

You can specify the overlay (segment) extension you want to use by including the
OverlayExt option in your VIPP printer control group and telling OVLCOMP the name of
your VIPP printer group (/U=VPP). Use the same OverlayExt setting in your VIPP printer
control group when producing a VIPP print stream that uses overlays (segments). If you
omit the OverlayExt option, the default file extension for an overlay is .ovl.

Another way to create VIPP overlays (segments) is to use the Conversion wizard in
Documaker Studio. Select the Compile Sections (FAPs) to Print Files option and choose
Section to VIPP as the conversion type.

You can also use Docutoolbox RP to create VIPP overlays (segments) by choosing the
File, Convert, FAP to VIPP option.

Parameter Description

/I Enter the name of the FAP file. Omit the extension.

/X Enter the name of the FXR file. Omit the extension.

/L For the VIPP print driver, enter VPPW32.

/F For the VIPP print driver, enter VPPPrint. Case is important when using this
parameter, therefore, you must enter it exactly as shown here:
/F=VPPPrint

/U (Optional) Enter the name of your VIPP printer group. Here is an example:
 /U=VPP

/C (Optional) Include this parameter if you want to use color.

Using the VIPP Print Driver

327

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to
make sure the resource file names are lower case before they are transferred
to the UNIX workstation console attached to the VIPP printer.

VIPP fonts VIPP supports PostScript fonts as VIPP resources. While VIPP supports any font type
(Type 1, Type 3, and composite) supported by the PostScript interpreter, Documaker
only supports Type 1 PostScript fonts. The PostScript fonts you use must be defined in
your font cross-reference (FXR) file.

If you are using a base FXR file, like REL103.FXR or REL110.FXR, the base PostScript
fonts are already set up for you in the FXR file. The same PostScript fonts used for
printing with the Documaker PostScript print driver are also used with the Documaker
VIPP print driver.

If you are using a custom FXR file and you have not set up your FXR file for printing
PostScript, then you will need to add the PostScript fonts to your FXR file. You can use
the Import option for the Font manager to import PostScript fonts into your FXR file. The
primary fields used by the PostScript and VIPP print drivers are the Codepage field on
the Dimensions tab, and the Font File, Font Name, and Char Set ID fields in the
PostScript section of the Properties tab.

Here are examples of the Dimensions and Properties tabs in Documaker Studio for a
font record in your FXR file:

On the Dimensions tab, you
must modify this field to use
the VIPP print driver

Here are the fields on the
Properties tab you must
modify to use the VIPP
print driver.

Field Enter…

Codepage Under Windows, the system uses the ANSI code page. Normally, this field
is set to 1004 or is left blank.

Chapter 6
Setting Up Printers

328

The Working with Fonts chapter in the Docucreate User Guide (and other manuals)
contains more detailed information on how to add PostScript fonts to your FXR file.

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to
make sure the resource file names are lower case before they are transferred
to the UNIX workstation console attached to the VIPP printer.

VIPP font encoding files A PostScript font is a collection of characters. Each character in a PostScript font has a
PostScript-assigned name. For example, the dollar sign ($) character has a PostScript
name of “/dollar”. While PostScript fonts use PostScript-assigned names for each
character, PostScript (and VIPP) print streams use a byte value to represent each
character. For example, the dollar sign ($) is usually represented by a value of 24 hex.
An encoding table is used to match a byte value (24 hex) with the character name (“/
dollar”) contained within a PostScript font.

This table shows the relationship between the hex byte value, the equivalent decimal
value, the PostScript character name, and the actual printed character using the
standard ASCII encoding table.

Font File The PostScript Type 1 font file name, including the .PFB extension. Font
Manager fills this field when you insert a PostScript font.

Font Name The full font name, such as Times-Roman. Font Manager fills this field
when you insert a PostScript font.

Char Set ID A character set (also known as a symbol set) identifies the set of symbols
provided by the font. It is used by PostScript printing to build an internal
code page. Use W1 for the fonts that use the standard Windows ANSI
code page. The character set ID and code page values should match
those specified in the CODEPAGE.INI file.
Code page 1004 and Char Set ID W1 are used for fonts that use the
standard Windows ANSI code page.
Code page 9998 and Char Set ID WD are used for DocuDings (Wingdings
clone) font.
Code page 9999 and Char Set ID MI are used for the base MICR font.

Field Enter…

Hex value Decimal value PostScript name Character

20 32 /space

24 36 /dollar $

2A 42 /asterisk *

30 48 /zero 0

41 65 /A A

Using the VIPP Print Driver

329

VIPP font encoding files serve a similar purpose as the Documaker CODEPAGE.INI file
and the Codepage and Char Set ID settings in the font cross-reference file. The
Documaker VIPP print driver uses the Codepage setting for each font in the font cross-
reference to determine the name of the encoding file to use. The Documaker VIPP print
driver appends the letters cp to the value of the code page setting for each font in the
font cross-reference to determine the name of the VIPP font encoding file. Therefore, if
a font has a Codepage setting of 1004, then the Documaker VIPP print driver will use a
VIPP font encoding file called cp1004.

These VIPP encoding files are provided to correspond to the code pages used by the
base Documaker font cross-reference files:

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to
make sure the resource file names are lower case before they are transferred
to the UNIX workstation console attached to the VIPP printer.

Managing VIPP Resources

Documaker VIPP print jobs use external resources for VIPP images, segments, fonts,
and encoding files. By using external resources, the amount of time needed to produce
a VIPP print stream is greatly reduced (as well as the size of the print job). Because the
resources are not part of the job, the VIPP resources must be deployed to the controller
(often a Sun workstation) that houses the VIPP software and ultimately drives the
printer.

You will need some means of transferring VIPP resource files to the controller for the
VIPP printer such as:

• Windows FTP command line utility

• Third- party FTP file transfer utility

• VIPP Manage (contact Xerox for more information)

You will need to log on with root access onto the controller. For some controllers, you
can use the following user ID and password.

61 97 /a A

7A 122 /z z

File Description

cp1004 The VIPP encoding file used for fonts that use the standard Windows ANSI
code page. Most text fonts will use this.

cp9998 The VIPP encoding file used for the DocuDings font (clone of Wingdings).

cp9999 The VIPP encoding file used for the base MICR font.

Hex value Decimal value PostScript name Character

Chapter 6
Setting Up Printers

330

User ID: root
Password: service!

Contact your Xerox representative if you need help logging onto the controller for your
VIPP printer.

As mentioned earlier, VIPP lets you organize the resources required by a VIPP job under
a hierarchy of folders and projects. A folder is a collection of projects that share some
common features. For example, you can decide to create one folder for each customer,
each division, or each line of business. Within each folder, you could define multiple
projects. A folder can contain common resources (company logo, standard boilerplate
page segments, and so on) that are shared by the projects within the folder. The
projects will contain resources that are unique to the project. You can also have
resources that global across all projects and folders.

When VIPP is installed on the controller for your printer, VIPP is configured with a file
called xgfunix.run (stored in the /usr/xgf/src directory). The xgfunix.run file contains
VIPP commands that determine the VIPP resource directories.

By default, VIPP is configured with the following VIPP projects repository (collection of
VIPP resources and projects):

The root path for xgfc will be /usr/xgfc on controllers that use UNIX systems.

In the xgfunix.run file, you might see a SETPPATH (VIPP command) that looks like this:

[(/usr/xgfc/$$FOLDER./$$PROJECT./) % project local paths
 (/usr/xgfc/$$FOLDER./fshared/) % project folder shared paths
 (/usr/xgfc/gshared/) % project global shared paths
 (/usr/xgfc/fontlib/) % project access to font lib
 (/usr/xgf/encoding/) % project access to standard encoding
 (/usr/xgf/gshared/) % project global shared path
 (/opt/XRXnps/resources/ps/mislib/) % project access to DocuSP
resource list
] SETPPATH

The $$FOLDER. and $$PROJECT. strings are placeholders for project folders and
project names. In the example listed earlier, $$FOLDER would be represented by the
projects folder and $$PROJECT could be represented by projectA, projectB, or projectC.

Project paths are divided into these three levels of hierarchy or scope:

• Local scope — paths that contain both $$FOLDER and $$PROJECT. These libraries
will hold resources that pertain only to the project. In the example listed earlier,
usr/xgfc/projects/projectA would have a local scope.

\fshared

\projectA

\projectB

\projectC

\xgfc

\gshared

\projects

parent of folder

global-level shared resources

folder-level shared resources

local resources for individual projects
(to be created)

Using the VIPP Print Driver

331

• Folder scope — paths that contain only $$FOLDER. These libraries will hold
project libraries and resources shared by projects belonging to the same folder. In
the example listed earlier, usr/xgfc/projects/fshared would have a folder scope.

• Global scope — paths that contain neither $$FOLDER nor $$PROJECT. These
libraries will hold resources shared by all projects. In the example listed earlier,
usr/xgfc/gshared would have a global scope.

When a resource is present with the same name in more than one folder (scope), VIPP
uses the following order of precedence to determine which resource file to use:

• Local scope folder

• Folder scope

• Global scope

Even the simple default VIPP repository gives you a lot of flexibility in how you manage
your VIPP resources.

As you recall, Documaker LOG files are converted to VIPP image files (TIFF or JPEG files).
Let’s say that some of your LOG files are unique to projectA while others are shared by
projectA, projectB, and projectC.

The TIFF or JPEG files that are unique to projectA could be stored in a local scope folder
such as usr/xgfc/projects/projectA.

The TIFF or JPEG files that are shared between projectA, projectB, and projectC could
be stored in a folder scope folder such as usr/xgfc/projects/fshared.

Similarly, Documaker FAP files are converted to VIPP segment files. Again, some of
your FAP files are unique to projectA while others are shared by projectA, projectB, and
projectC.

Like the VIPP image files, the VIPP segment files that are unique to projectA could be
stored in a local scope folder such as usr/xgfc/projects/projectA while the VIPP
segment files that are shared between projectA, projectB, and projectC could be stored
in a folder scope folder such as usr/xgfc/projects/fshared.

Finally, you have the PostScript fonts and the font encoding resources to consider.
Perhaps your company has established standards on the use of the PostScript fonts
and font encoding. As a result, you only need one set of PostScript fonts and font
encoding files for all projects to use. In that case, you could place your PostScript fonts
and font encoding files in a global scope folder such as usr/xgfc/gshared.

In the section entitled VIPP INI Settings, you will see how you can define the folder
name (“$$FOLDER.”) and project name (“$$PROJECT.”) used to represent the
directories containing the VIPP resources required by the VIPP print streams produced
from the Documaker VIPP print driver. You also see how to set up your own list of
libraries containing VIPP resources.

NOTE: All VIPP resource files stored on the VIPP console that are referenced by a
Documaker VIPP job must have lower case file names. It is usually easier to
make sure the resource file names are lower case before they are transferred
to the UNIX workstation console attached to the VIPP printer.

Chapter 6
Setting Up Printers

332

VIPP INI Options

Here are the INI options and settings commonly-used with the VIPP print driver:

Option Values Description

Device any file or
device name

The name of the file or device (LPT1) where
the VIPP print stream should be written. This
setting is ignored by the GenPrint program
but is used by Studio, the Image Editor, and
other system programs.
The default is the first three letters of the
entry for the Module option, such as VPP.

Module VPPW32 The name of the program module that
contains the VIPP print driver. See also the
Class option.
The default is PCLW32, but you must enter
VPPW32 to use the VIPP print driver.

PrintFunc VPPPrint The name of the program function that is the
main entry point into the VIPP print driver.
The default is PCLPrint, but you must enter
VPPPrint. Case is important when using this
option, therefore, you must enter it exactly as
shown here:

VPPPrint

Resolution 300 The dots per inch resolution of the printer that
will receive the PostScript data stream.
The default is zero (0) which tells the system
to let the print driver to determine the
resolution. The VIPP print driver defaults to
300 dpi.

SendOverlays Yes/No Set to Yes if you have created VIPP overlays
(segments) for each FAP file.

CacheFiles any number,
zero or
higher

Set to enable the caching of VIPP segments
and images. The first x number of VIPP
segments and images in the print job are
cached. The default is zero (0).

CacheLogos Yes/No Set to enable the caching of VIPP images if
CacheFiles is also enabled. The default is No.

Some default settings are determined by the program performing the print operation. The
defaults in this table refer to printing from the GenPrint program. The defaults when
printing from other applications, such as Documaker Workstation, may differ.

Using the VIPP Print Driver

333

DSCHeaderComment Use to specify PostScript Document Structure
Convention (DSC) comments you want added
to the header portion of the generated VIPP
print stream.
You can include as many
DSCHeaderComment options as are
necessary.
See Adding DSC comments on page 338 for
more information.

OverlayExt any file
extension

The file extension of the VIPP overlays
(segments). The default is .ovl.

PageNumbers Yes/No Set to Yes to enable form or form set page
numbering.
The default is No.

SendColor Yes/No
Enabled/
Disabled/
Hidden

Set to Yes to enable color printing.
Enabled = Option appears in the Print window
and is active (available to be checked).
Disabled = Option appears in the Print
window but is grayed out (not available to be
checked).
Hidden = Option does not appear in the Print
window.

HighlightColor Yes/No Set to Yes to enable highlight color support.
The default is No.
If you set this option to Yes, you must also set
the SendColor option to Yes.

DownloadFonts Yes/No Set to Yes to embed (download) PostScript
fonts within the VIPP print stream.
Set to No if you have loaded the PostScript
fonts onto the VIPP controller.
The default is Yes but you will get better
performance if you set this option to No.

TemplateFields Yes/No Set to Yes to test print Xs in variable fields

Class (first three
characters of
the Module
option)

Specifies the printer classification, such as
AFP, PCL, XER, PST, GDI, or VPP. If you omit
this option, the system defaults to the first
three letters from the Module option.
Some internal functions expect a certain type
of printer. For instance, all 2-up functions
require an AFP printer. The internal functions
check the Class option to make sure the
correct printer is available before continuing.

Option Values Description

Some default settings are determined by the program performing the print operation. The
defaults in this table refer to printing from the GenPrint program. The defaults when
printing from other applications, such as Documaker Workstation, may differ.

Chapter 6
Setting Up Printers

334

SelectRecipients Yes/No
Enabled/
Disabled/
Hidden

This only applies to the Documaker
Workstation/PPS systems.
Enabled = Option appears in the Print window
and is active (available to be checked).
Disabled = Option appears in the Print
window but is grayed out (not available to be
checked).
Hidden = Option does not appear in the Print
window.

Tray#
(where # is a number
from 1 to 9)

Media string Specifies a media string in the form of:
 MediaType:MediaColor:MediaWeight

See Setting up paper trays on page 337 for
more details.

Folder Directory
name

Name of the high level directory (folder)
under which a project may appear. See
Setting up folders and projects on page 335
for more details.

Project Directory
Name

Name of the directory where local resources
for a project will reside. See Setting up folders
and projects on page 335 for more details.

ProjectPath Fully
qualified
directory
path

Each ProjectPath setting defines a path that
will be used to define a SETPPATH command
that overrides the one found in the
xgfunix.run file found on the VIPP controller.
The path defined by the first ProjectPath
setting will be the first directory searched for
VIPP resources. If the resource is not found,
the path defined by the second ProjectPath
will be searched next (and so on).
See Overriding the list of libraries for projects
on page 336 for more information.

Option Values Description

Some default settings are determined by the program performing the print operation. The
defaults in this table refer to printing from the GenPrint program. The defaults when
printing from other applications, such as Documaker Workstation, may differ.

Using the VIPP Print Driver

335

Setting up folders and
projects

VIPP uses a configuration file named xgfunix.run (stored in the /usr/xgf/src directory)
to define a list of libraries (directories) for projects. In the xgfunix.run file, you might
see a SETPPATH (VIPP command) that looks like this:

[(/usr/xgfc/$$FOLDER./$$PROJECT./) % project local paths

 (/usr/xgfc/$$FOLDER./fshared/) % project folder shared paths

 (/usr/xgfc/gshared/) % project global shared paths

 (/usr/xgfc/fontlib/) % project access to font lib

 (/usr/xgf/encoding/) % project access to standard encoding

 (/usr/xgf/gshared/) % project global shared path

 (/opt/XRXnps/resources/ps/mislib/) % project access to DocuSP
resource list

] SETPPATH

SETPPATH is a VIPP command that defines a list of libraries (directories) for projects.
The $$FOLDER. and $$PROJECT. strings are placeholders for project folders and
project names.

You can use the projects directory for your main folder or create your folder directory.
The name of the directory for your local project resources can be anything you wish.

Let’s say you wanted to create a series of projects for the head office. Your VIPP
projects repository might look like this:

Of course, you would need to create the head-office directory along with the
subdirectories for the fshared, monthly-report, quarterly-report, and annual-report on
the VIPP controller. And you would need to transfer the VIPP resource files (images,
segments, fonts, and so on) into the appropriate directories.

However, before you can produce one of the reports for the head office, you will need
to tell the Documaker VIPP print driver which VIPP folder and project names this report
will use. You do this by specifying the Folder and Project options in your VIPP printer
control group.

\fshared

\monthly-report

\quarterly-report

\annual-report

\xgfc

\gshared

\head-office

parent of folder

global-level shared resources

folder-level shared resources

local resources for the monthly, quarterly,
and annual reports

Chapter 6
Setting Up Printers

336

Using the example described earlier, let’s say you want to produce a monthly report for
the head office. In that case, you would use the following Folder and Project settings:

< PrtType:VPP >

Folder = head-office

Project = monthly-report

Overriding the list of
libraries for projects

As mentioned before, VIPP uses a configuration file called xgfunix.run (stored in the /
usr/xgf/src directory) to define a list of libraries (directories) for projects.

In the xgfunix.run file, you might see a SETPPATH (VIPP command) that looks like this:

[(/usr/xgfc/$$FOLDER./$$PROJECT./) % project local paths

 (/usr/xgfc/$$FOLDER./fshared/) % project folder shared paths

 (/usr/xgfc/gshared/) % project global shared paths

 (/usr/xgfc/fontlib/) % project access to font lib

 (/usr/xgf/encoding/) % project access to standard encoding

 (/usr/xgf/gshared/) % project global shared path

 (/opt/XRXnps/resources/ps/mislib/) % project access to DocuSP
resource list

] SETPPATH

If you wanted to override the list of project paths with a different set, you can do so by
using a series of ProjectPath INI options. Each ProjectPath option defines a path that
will be used to define a SETPPATH command that overrides the one found in the
xgfunix.run file found on the VIPP controller. The path defined by the first ProjectPath
option will be the first directory searched for VIPP resources. If the resource is not
found, the path defined by the second ProjectPath will be searched next (and so on).

The following ProjectPath settings would produce the same list of paths as described
earlier:

< PrtType:VPP >

ProjectPath = /usr/xgfc/$$FOLDER./$$PROJECT./

ProjectPath = /usr/xgfc/$$FOLDER./fshared/

ProjectPath = /usr/xgfc/gshared/

ProjectPath = /usr/xgfc/fontlib/

ProjectPath = /usr/xgf/encoding/

ProjectPath = /usr/xgf/gshared/

ProjectPath = /opt/XRXnps/resources/ps/mislib/

When defining your own list of project paths, keep in mind:

• In the Local scope category, $$PROJECT must immediately follow $$FOLDER.

Option Description

Folder The Folder option contains the name of the high level directory (folder)
under which a project may appear.
The value set in the Folder option is substituted automatically as the
$$FOLDER string in the SETPPATH statement found in the xgfunix.run file
on the VIPP controller.

Project The Project option contains the name of the directory where local resources
for a project will reside.
The value set in the Project option is substituted automatically as the
$$PROJECT string in the SETPPATH statement found in the xgfunix.run file
on the VIPP controller.

Using the VIPP Print Driver

337

• A path containing $$PROJECT without $$FOLDER is not allowed.

• If present, $$FOLDER and $$PROJECT must appear only once in each path.

• No additional path components are allowed after $$PROJECT.

• A path ending by $$FOLDER is invalid.

• There must be at least one path for each category.

• There may be several paths in each category but they must be defined and
grouped by category (local, folder, global) in the SETPPATH list.

• A folder or project name must appear only once in the trees of directories covered
by SETPPATH.

• When a resource is present with the same name in more than one scope, the order
of precedence is: local, folder, global.

• To improve cross-platform portability, Xerox recommends that FOLDER and
PROJECT names do not contain more than 32 characters, and only use the
characters “a” to “z”, “0” to “9”, “.” (dot), “-” (dash) and “_” (underscore).

Setting up paper trays The type of media (paper) stored in each paper tray needs to be defined in terms of its
MediaType, MediaColor, and MediaWeight.

The MediaType can be named Plain, Transparency, Drilled, and so on

The MediaColor can be any color such as White, Green, Blue, GoldenRod, and so on

The MediaWeight is measured in grams per square meter. Usually, the media weight is

set to 75 g/m2 (equivalent to 20 lb. paper).

When designing your form set, you may have specified that certain forms use a specific
paper tray to make sure the proper paper (pre-printed forms, colored paper, perforated
paper, and so on) was used.

To make sure these forms print on the desired type of paper, you must define a unique
MediaType, MediaColor, and MediaWeight combination for the paper tray. This
information must be set up on both the printer and in the TRAY# INI settings in your
VIPP printer control group.

For example, let’s say that on your printer, you defined a type of paper will be stored in
TRAY1 as having a MediaType of Plain, a MediaColor of Green, and a MediaWeight of

75 g/m2.

For your form set to print from that paper tray, you would add the following INI option
to your VIPP printer control group:

< PrtType:VPP >

Tray1 = Plain:Green:75

The Tray# INI settings expect a string in the form of:

MediaType:MediaColor:MediaWeight

You can specify any of the media attributes as null or omit them. When any of the media
attributes are omitted or specified as null, those attributes are ignored in the following
media selections. This example ignores MediaType.

Tray1 = null:Green:75

Chapter 6
Setting Up Printers

338

If the trailing media attributes are omitted, you can omit the trailing colon (:), as shown
in this example:

Tray2 = Plain::

or

Tray2 = Plain:

or

Tray2 = Plain

When any of the media attributes such as type, color, or weight are omitted, the last
specification or the default value for that attribute remains in effect. Because it may be
difficult for you to know the value of the attribute that remains in effect, omitting or
media attributes as null should be used with caution.

Finally, the TRAY# INI settings can also be specified with just a tray number from 1 to 9.
For example, Tray5=1 maps output for tray 5 to tray 1. The system checks the INI option
for overriding Tray1 before it checks the setting for Tray2 and so on.

Because of this, do not specify a tray number less than the tray you are overriding. For
example, you should not use a setting of Tray5=6.

< PrtType:VPP >

Tray1 = Plain:White:75

Tray2 = Plain:Yellow:75

Tray3 = Plain:Pink:75

Tray4 = Drilled:White:75

Tray5 = 1

Tray6 = 1

Adding DSC comments For paper tray selection to work properly on DocuPrint NPS printers, it may be
necessary to also include some DSC comments at the beginning of your VIPP print
stream.

Use the DSCHeaderComment INI option to specify PostScript Document Structure

Convention (DSC) comments you want added to the header portion of the generated
VIPP print stream. You can include as many DSCHeaderComment options as are
necessary.

This example shows how, in addition to specifying media commands in the Tray#
options, you can also include DSC comments you want added to the header portion of
the generated VIPP print stream:

< PrtType:VPP >

DSCHeaderComment = %%DocumentMedia:Media1 612 792 75 (White) (Plain)
DSCHeaderComment = %%+ Media2 612 792 75 (Yellow) (Plain)
DSCHeaderComment = %%+ Media3 612 792 75 (Pink) (Plain)
DSCHeaderComment = %%+ Media4 612 792 75 (White) (Drilled)
Tray1 = Plain:White:75
Tray2 = Plain:Yellow:75
Tray3 = Plain:Pink:75
Tray4 = Drilled:White:75

The form of the DocumentMedia DSC comment is:

% Key: <Tag Name> <Width> <Height> <Weight> <Color> <Type>

Using the VIPP Print Driver

339

The DSC header comments are added at the beginning of the generated VIPP print
stream, as shown here:

%!

%%Title: INSURED

%%Creator: Documaker VIPP Driver

%%CreationDate: Wed Jul 13 11:55:34 2005

%%DocumentMedia:Media1 612 792 75 (White) (Plain)

%%+ Media2 612 792 75 (Yellow) (Plain)

%%+ Media3 612 792 75 (Pink) (Plain)

%%+ Media4 612 792 75 (White) (Drilled)

%%EndComments

Item Description

Tag Name Any unique name, ignored by VIPP

Width The width of paper stock, measured in 1/72” units

Height The height of paper stock, measured in 1/72” units

Color The color of paper stock. You can enter any alphanumeric string.

Type The type of paper stock. You can enter any alphanumeric string.

Chapter 6
Setting Up Printers

340

VIPP Limitations

The VIPP language does not support Unicode. As a result, the VIPP print driver can not
be used as a Unicode print driver.

Troubleshooting Here are some troubleshooting scenarios:

Scenario 1 A VIPP job stops printing before the last page with the following error message:

ERROR: VIPP_unable_to_locate; OFFENDING COMMAND: filename.ext

Flushing: rest of job (to end-of-file) will be ignored

Where filename.ext is the name of a VIPP resource file.

This error occurs if the VIPP print job references a VIPP resource file (PostScript font,
font encoding table, VIPP segment overlay, VIPP bitmap image) that cannot be found.

Make sure you have loaded the missing file onto the VIPP controller and placed it in a
folder defined for your VIPP project. See Managing VIPP Resources on page 329 for
more information.

Scenario 2 A VIPP job stops printing before the last page, usually with the following error
message:

ERROR: undefined
OFFENDING COMMAND: Selected pages 0 n

Where n is the page volume limit for that device.

If VIPP is installed without a production license file, then the VIPP program will run in
demonstration mode. Demonstration mode is a full-featured version of the VIPP
software, however page volume limitations are imposed. The page volume limits are
device-dependant and varies between 10 and 200 pages.

On some DocuColor printers, the error does not appear. Instead, jobs simply stop when
the demonstration limit is reached. The limit is 57 or 200 pages and depends upon the
DocuColor printer model.

Contact your Xerox representative about getting a VIPP license to run VIPP in full
production mode.

Scenario 3 If you are not getting the correct characters printing, check the code page setting in the
FXR file for the font. For most fonts that use the Windows code page, the code page
setting in the font record should be set to 1004.

VIPP known problems At the time this documentation was written, version 5.3 was the latest version of VIPP.
Here are some known problems with VIPP version 5.3:

• When caching is used in a VIPP print job, some VIPP segments and images may not
print in the correct location or at all, or may cause a fatal system error on the
printer. This is a known issue on some printers, such as older model DocuTech and
DocuPrint printers. You can remove the CacheFiles INI option and reproduce your
print job without using caching.

Or, you can open a console window on the printer's workstation, login with root
access and type (or ask your Xerox analyst or engineer to do so):

/opt/XRXnps/bin/setimagepath -f 0

This will disable VIPP caching for all print jobs.

Using the VIPP Print Driver

341

• There is a VIPP bug when using a vector object to draw a circle and the line width
exceeds a certain size (noticeable at 1/6 inch or higher). The outside edge of the
circle does not draw completely around the border of the circle. The Xerox says it
will be fixed in the next VIPP release (after version 5.3).

• There is a problem when using Univers Condensed Bold and Italic fonts on
DocuPrint or DocuTech 65 printers. When printing a line of text using the Univers
Condensed Bold font followed by a second line of text using the Univers
Condensed Italic font, some of characters in the second line may print using the
Univers Condensed Bold font (instead of the Univers Condensed Italic font). This
bug reported to Xerox but will not be fixed.

NOTE: The SPAR problem was analyzed by Xerox’s VIPP and DocuSP development
staffs who determined the problem lies in the Adobe PS decomposer. The
problem was tested against the latest DT/DP75/90 product release and the
fonts printed correctly, indicating the problem has been corrected by Adobe.
Unfortunately, the DT65 is, according to Xerox, at its end of life and no further
software support will be provided for this product.

Chapter 6
Setting Up Printers

342

EMAILING A PRINT
FILE

The system lets you set up an RTF (Rich Text Format) print driver which lets you create
a print-ready file that you can email to another user. The recipients can immediately
print the file.

NOTE: If you have the Internet Document Server, you can also use the included PDF
print driver to create print-ready files you can email.

You install the email print driver (EPTLIB) by setting up INI options so the system will
know how to use the driver. Since EPTLIB is essentially a wrapper for a real print driver,
the INI options must also include a reference to the actual print driver the system will
use to create the print-ready file, such as the PDFLIB or PCLLIB. There are also INI
options for the email processing, in addition to the regular email INI options.

Creating EPTLIB print files
for Documaker

Workstation

The INI options for EPTLIB are as follows:

< Printers >

PrtType = EPT

This option lets the system know that EPTLIB is a print driver so it will include it on the
Print window when you print from Documaker Workstation.

You can use the PrtType:EPT control group to further customize the email print driver.
For instance, you can add subject and message information and use the email address
book when printing from Documaker Workstation using the EPT print driver. This lets
you select print, choose form set (form or page), then select the EPT print type.

The system would then display the email address book. You select the recipients and
a window appears into which you can enter the subject and message text. You then
choose to send or cancel the message.

Here is an example of the INI options you would set up:

< PrtType:EPT >

Device =

Filename = EPTFILE.RTF

InitFunc = EPTInit

KeepFile = No

Message = Please respond ASAP

Module = EPTW32

PrintFunc = EPTPrint

PrtType = RTF

RecipFunc = CSTSetMailRecipgvm

RecipMod = CSTW32

Recipient =

Subject = New Application

TermFunc = EPTTerm

KeepFile = No

Emailing a Print File

343

Creating EPTLIB print files
for Documaker Server

Set up your INI options as shown here:

< Printer >

PrtType = EPT

< PrtType:EPT >

Module = EPTW32

PrintFunc = EPTPrint

InitFunc = EPTInit

TermFunc = EPTTerm

These options tell the system which functions to call to execute the printing process.

PrtType = RTF

This tells the EPTLIB print driver which real print driver to use to create the print-ready
file. If omitted, it defaults to the RTF print driver (Rich Text Format).

FileName = EPTFILE.RTF

This option gives the name of the output file to create. This is only used if the Device
Name field is empty in the GUI print window (the batch file name is used for GenPrint).
If the device name is empty and the FileName option is omitted, a temporary file name
is used. Use a file name with an extension that matches the print driver type, such as
RTF. For GenPrint, the file name is the name of the print batch.

KeepFile = No

The KeepFile option tells EPTLIB whether or not to keep the output file after it has been
emailed. The default is No.

< Print >

CallbackFunc = MultiFilePrint

MultiFileLog = data\rtflog.dat

These options tell the system to divide large RTF files into smaller RTF files. If you omit
these options, you will be able to view the first transaction, but not the following ones.

The RTFLOG.DAT file stores the information that defines which RTF file contains which
transaction for which batch.

Recipient = Email Recipient

Subject = File from Documaker User

Message = PDF file attached

Use these INI options to set mail settings for EPTLIB. The Subject and Message options
specify the Subject line and Message text for the email message. For the Recipient
option, you can either include the actual email recipient or you can specify a field name
where the system can go to look up the recipient. Here are some examples:

Recipient = Stephen Petersen; send to internal email recipient

Recipient = spetersen@oracle.com; send to Internet email address

Recipient = Fieldname:ADDRESS2; use text in ADDRESS2 field

If the email system cannot resolve recipients, or if you leave the Recipient option blank,
an email address window appears so you can select an email address from the address
book. The field lookup is a feature of the default recipient function in EPTLIB, which you
can replace using these INI options:

RecipMod = CSTW32

RecipFunc = CSTSetMailRecip

These options tell the system which module and function to use to determine the
recipient. Omit these options and the system uses EPTLIB’s default recipient function.

Chapter 6
Setting Up Printers

344

The CSTSetMailRecip function displays a window which shows the subject and
message text and lets you edit this text. This window also lets you provide the email
recipient for Documaker Workstation. Documaker Server lets you use these functions
to set up recipients:

RecipMod = CUSW32

RecipFunc = CUSSetMailRecip

or

RecipFunc = CUSSetMailRecipGVM

The recipient functions have the following syntax:

DWORD _VMMAPI EPTDefSetRecipient(VMMHANDLE objectH,

 char FAR * recip,

 size_t len);

The return value should be SUCCESS or FAILURE. If FAILURE, then the message is not
sent and FAILURE is returned from EPTPrint. To set the recipient function without INI
options, use the EPTSetRecipFunc function:

EPTRECIPFUNC _VMMAPI EPTSetRecipFunc(EPTRECIPFUNC newfunc);

Call it with the address of the recipient function:

EPTSetRecipFunc(func);

The EPTSetRecipFunc function returns the previous installed function, which can be
used to set it back.

Function Description

CUSSetMailRecip This function finds the print recipient and looks up the
recipient in the RECIP_MAIL control group to get the email
address of the recipient. Here is an example:

< RECIP_MAIL >

AGENT = myagent@sampco.com

COMPANY = support@sampco.com

CUSSetMailRecipGVM This function finds the recipient in a global variable, the name
of which is defined in this INI option:

< PrtType:EPT >

Recipient = EAddress

Instead of using EAddress as the recipient name, the system
uses it as the variable name to look up to find the recipient
name. This global variable can have any name.

Parameter Description

objectH The object being printed (form set, form, or page)

recip The recipient buffer

len Length of the buffer, currently 80 characters

Emailing a Print File

345

Creating PDF print files If you are creating PDF files, use these INI options:

< Printers >

PrtType = PDF

< PrtType:PDF >

Module = PDFW32

PrintFunc = PDFPrint

Keep in mind that when the PDF driver is called from the EPT driver, the current printer
control group remains PrtType:EPT, not PrtType:PDF. Therefore, unless you add PDF-
specific options, the system uses the INI settings it finds for PrtType:EPT.

Many print options, such as the DownloadFonts option, are set before the system calls
EPT, which then redirects the print to another driver. So, to have the system use the
correct PDF options, set your PrtType:EPT control group to look like this:

< PrtType:EPT >

PrtType = PDF

DownloadFonts = [PrtType:PDF] DownloadFonts =

SendColor = [PrtType:PDF] SendColor =

This way, if you change the options in the PrtType:PDF control group, those changes
are automatically picked up in the PrtType:EPT control group.

Overriding attached files Keep in mind that the EPT (email print) driver can use the FSRSetFileAttachment API.
This lets you create custom hooks to override the attached file and handle situations
where you need to remove the attached file but still send the message.

Using email aliases Multiple recipient addresses are not supported with the EPT PrtType. If you need to
send an email to, for instance, all agents, use an Email Application Server, such as
Microsoft Exchange (MailType = MSM) or ccMail (MailType = CCM). With these
products you can define an alias to represent a group of email addresses. You cannot
set the MailType option to SMTP unless your SMTP server understands aliases.

Email Application Servers usually run on top of an SMTP service and let you manage
email messaging more efficiently. When using an application such as Exchange, you
can create a group (such as TestGroup) and you can specify the group name when you
specify the Recipient option.

For example, if you set the MailType option to MSM in the Mail control group and you
have this defined for the Recipient option:

< PrtType:EPT >

Recipient = TestGroup

This option is sent to the Exchange server which converts the alias (TestGroup) into its
SMTP equivalent value, such as a list of email address similar to this:

hbean@oracle.com;jgaramond@oracle.com;tbottle@oracle.com...

The result is a message sent to the entire group represented by TestGroup.

NOTE: To use this feature, you must set up email-related INI options. These options
are discussed in the Documaker Workstation Supervisor Guide.

Chapter 6
Setting Up Printers

346

CHOOSING THE
PAPER SIZE

The system supports a variety of paper sizes including US and international sizes. The
following tables show the paper sizes you can choose from:

• US Standard Sizes on page 347

• ISO Sizes on page 348

• Japanese Standard Sizes on page 351

You can also find the following related information in this topic:

• Printer Support for Paper Sizes on page 352

• Paper Sizes for AFP Printers on page 356

NOTE: Please note that the NA file stores the actual section height and width for
custom sized sections. This information is stored in the SIZE entry in the
NAFILE.DAT file. Here is an example:

\NA=q1snam,LN=1,DUP=LB,SIZE=3360x18600,TRAY=U,X=600,Y=600...

The height and width are in FAP units (2400 per inch).

In Studio you use the Size property to specify the page size for a section. There is also
a Size property at the form level.

If, for a section, you choose Custom, the system defaults to the size of paper that will
best contain the custom section, but you must tell it what paper is installed on your
printer. For sections small enough to fit on letter size paper, the system defaults to
letter.

NOTE: This affects section printing from Documaker Studio and Image Editor but has
no effect on Form Set Manager or Form (FOR) definitions.

For a section, you can choose
from the available standard
page sizes or choose Custom
here.

Choosing the Paper Size

347

US STANDARD SIZES

These paper sizes are commonly used in the United States and Canada. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are
approximate.

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

US letter 0 20400 x 26400 216 × 279 8½ x 11

US legal 1 20400 x 33600 216 × 356 8½ x 14

US executive 3 17400 x 25200 190 × 254 7¼ 10½

US ledger 4 40800 x 26400 432 x 279 17 x 11

US tabloid 5 26400 x 40800 279 × 432 11 x 17

US statement 6 13200 x 20400 140 x 216 5½ x 8½

US folio 7 20400 x 31200 216 x 330 8½ x 13

US fanfold 8 35700 x 26400 378 x 279 147⁄ 8 x 11

Custom 98 any x any any x any any x any

Chapter 6
Setting Up Printers

348

ISO SIZES

The International Organization for Standardization (ISO) paper sizes, which are based
on the earlier Deutsche Industrie Norm (DIN) sizes, are used throughout the world
except in Canada, the United States, and Japan. There are three main series of paper
sizes: A, B, and C.

ISO A sizes The A series of sizes are typically used for correspondence, books, brochures, and
other printed materials. This diagram shows most of the various A sizes. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are
approximate.

A0

A7

A6 A5

A4 A3

A2 A1

(roughly 49 inches)

(roughly 66 inches)

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

ISO A0 20 79464 x 112345 841 x 1189 331⁄ 8 x 46¼

ISO A1 21 56125 x 79464 594 x 841 233⁄ 8 x 331⁄ 8

ISO A2 22 39685 x 56125 420 x 594 16½ x 233⁄ 8

ISO A3 23 28063 x 39685 297 x 420 11¾ x 16½

Choosing the Paper Size

349

ISO B sizes The B series of sizes are designed primarily for posters, wall charts, and similar items
where the difference between each A size represents too large a jump. The height and
width are in FAP units (2400 per inch), millimeters, and inches. The inch dimensions are
approximate.

ISO A4 2 19842 x 28063 210 x 297 8¼ x 11¾

ISO A5 25 13984 x 19842 148 x 210 57⁄ 8 x 8¼

ISO A6 26 9921 x 13984 105 x 148 41⁄ 8 x 57⁄ 8

ISO A7 27 6992 x 9921 74 x 105 27⁄ 8 x 41⁄ 8

ISO A8 28 4913 x 6992 52 x 74 2 x 27⁄ 8

ISO A9 29 3496 x 4913 37 x 52 1½ x 2

ISO A10 30 2457 x 3496 26 x 37 1 x 1½

ISO 2A 32 112345 x 158927 1189 x 1682 46¾ x 66¼

ISO 4A 34 158927 x 224690 1682 x 2378 66¼ x 935⁄ 8

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

ISO B0 40 94487 x 133605 1000 x 1414 391⁄ 8 x 551⁄ 8

ISO B1 41 66802 x 94487 707 x 1000 277⁄ 8 x 391⁄ 8

ISO B2 42 47244 x 66802 500 x 707 195⁄ 8 x 277⁄ 8

ISO B3 43 33354 x 47244 353 x 500 137⁄ 8 x 195⁄ 8

ISO B4 44 23622 x 33354 250 x 353 97⁄ 8 x 137⁄ 8

ISO B5 45 16630 x 23622 176 x 250 7 x 97⁄ 8

ISO B6 46 11811 x 16630 125 x 176 5 x 7

ISO B7 47 8315 x 11811 88 x 125 3½ x 5

ISO B8 48 5858 x 8315 62 x 88 2½ x 3½

ISO B9 49 4157 x 5858 44 x 62 1¾ x 2½

ISO B10 50 2929 x 4157 31 x 44 1¼ x 1¾

Chapter 6
Setting Up Printers

350

ISO C sizes The C series of sizes are designed for making envelopes and folders to take the A series
of sizes. The height and width are in FAP units (2400 per inch), millimeters, and inches.
The inch dimensions are approximate.

The DL size is for a sheet 1/3 of the A4 size. This is the most common size of envelope.

ISO 2B 52 133605 x 188974 1414 x 2000 55¾ x 78¾

ISO 4B 54 188974 x 267209 2000 x 2828 78¾ x 111¼

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

ISO C0 60 86645 x 122550 917 x 1297 361⁄ 8 x 51

ISO C1 61 61228 x 86645 648 x 917 25½ x 36

ISO C2 62 43275 x 61228 458 x 648 18 x 25½

ISO C3 63 30614 x 43275 324 x 458 12¾ x 18

ISO C4 64 21638 x 30614 229 x 324 9 x 12¾

ISO C5 65 15307 x 21638 162 x 229 63⁄ 8 x 9

ISO C6 66 10772 x 15307 114 x 162 4½ x 63⁄ 8

ISO C7 67 7653 x 10772 81 x 114 3¼ x 4½

ISO C8 68 5386 x 7653 57 x 81 2¼ x 3¼

ISO C9 69 3779 x 5386 40 x 57 15⁄ 8 x 2¼

ISO C10 70 2646 x 3779 28 x 40 11⁄ 8 x 15⁄ 8

ISO DL 71 10394 x 20787 110 × 220 41⁄ 3 x 82⁄ 3

Choosing the Paper Size

351

JAPANESE STANDARD SIZES

Japan has its own standard paper sizes, called the Japan Industrial Standard (JIS). The
JIS A series is identical in size to the ISO A series. The JIS B series, however, does not
match the ISO B series. There is no equivalent to the ISO C series. This table shows the
JIS paper sizes. The height and width are in FAP units (2400 per inch), millimeters, and
inches. The inch dimensions are approximate.

Code

Width x Height

Name FAP units Millimeters Inches (approximate)

JIS B0 80 97322 x 137573 1030 x 1456 40½ x 57¼

JIS B1 81 68787 x 97322 728 x 1030 28¾ x 40½

JIS B2 82 48661 x 68787 515 x 728 20¼ x 28¾

JIS B3 83 34393 x 48661 364 x 515 14¼ x 20¼

JIS B4 84 24283 x 34393 257 x 364 101⁄ 8 x 14¼

JIS B5 85 17197 x 24283 182 x 257 7¼ x 101⁄ 8

JIS B6 86 12094 x 17197 128 x 182 5 x 7¼

JIS B7 87 8598 x 12094 91 x 128 3½ x 5

JIS B8 88 6047 x 8598 64 x 91 2½ x 3½

JIS B 89 4252 x 6047 45 x 64 1¾ x 2½

JIS B10 90 3024 x 4252 32 x 45 1¼ x 1¾

Chapter 6
Setting Up Printers

352

PRINTER SUPPORT FOR PAPER SIZES

This table outlines the various paper sizes supported by the different print drivers. The
table includes information for the PDF, RTF, HTML, Metacode, PCL 5, PCL 6, GDI,
PostScript, and AFP print drivers. The PDF, RTF, HTML, and Metacode print drivers
support all paper sizes.

Paper size
PDF, RTF, HTML,
and Metacode PXL1 PCL2 GDI2 PST3 AFP4

US letter X X X X X X

US Legal X X X X X X

US executive X X X X X X

US ledger X X X X X X

US tabloid X Y US letter X X X

US statement X JIS B5 US executive X X X

US folio X US legal US legal X X X

US fanfold X US ledger US ledger X X X

ISO 4A X Y US letter US letter US letter C

ISO 2A X Y US letter US letter US letter C

ISO A0 X Y US letter US letter X C

ISO A1 X Y US letter US letter X C

ISO A2 X Y US letter US letter X C

ISO A3 X X X X X X

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on.
If paper size matching is not turned on, the behavior depends upon the specific driver. To turn on
paper size matching, use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper
sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 356 for more information.

Choosing the Paper Size

353

ISO A4 X X X X X X

ISO A5 X X X X X X

ISO A6 X X X X X X

ISO A7 X ISO A6 ISO C5 ISO A6 X C

ISO A8 X ISO A6 ISO C5 ISO A6 X C

ISO A9 X ISO A6 ISO C5 ISO A6 X C

ISO A10 X ISO A6 ISO C5 ISO A6 X C

ISO 4B X Y US letter US letter US letter C

ISO 2B X Y US letter US letter US letter C

ISO B0 X Y US letter US letter X C

ISO B1 X Y US letter US letter X C

ISO B2 X Y US letter US letter X C

ISO B3 X Y US letter US letter X C

ISO B4 X JIS B4 US ledger X X X

ISO B5 X JIS B5 X X X X

ISO B6 X JIS B6 ISO C5 X X X

ISO B7 X ISO A6 ISO C5 ISO A6 X C

ISO B8 X ISO A6 ISO C5 ISO A6 X C

Paper size
PDF, RTF, HTML,
and Metacode PXL1 PCL2 GDI2 PST3 AFP4

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on.
If paper size matching is not turned on, the behavior depends upon the specific driver. To turn on
paper size matching, use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper
sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 356 for more information.

Chapter 6
Setting Up Printers

354

ISO B9 X ISO A6 ISO C5 ISO A6 X C

ISO B10 X ISO A6 ISO C5 ISO A6 X C

ISO C0 X Y US letter US letter X C

ISO C1 X Y US letter US letter X C

ISO C2 X Y US letter US letter X C

ISO C3 X Y US letter X X C

ISO C4 X JIS B4 US ledger X X C

ISO C5 X X X X X C

ISO C6 X JIS B6 ISO C5 X X C

ISO C7 X ISO A6 ISO C5 ISO A6 X C

ISO C8 X ISO A6 ISO C5 ISO A6 US letter C

ISO C9 X ISO A6 ISO C5 ISO A6 US letter C

ISO C10 X ISO A6 ISO C5 ISO A6 US letter C

ISO DL X X X X X X

JIS B0 X Y US letter US letter X C

JIS B1 X Y US letter US letter X C

JIS B2 X Y US letter US letter X C

JIS B3 X Y US letter US letter X C

Paper size
PDF, RTF, HTML,
and Metacode PXL1 PCL2 GDI2 PST3 AFP4

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on.
If paper size matching is not turned on, the behavior depends upon the specific driver. To turn on
paper size matching, use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper
sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 356 for more information.

Choosing the Paper Size

355

JIS B4 X X X US fanfold X X

JIS B5 X X X X X X

JIS B6 X X X X X X

JIS B7 X ISO A6 ISO C5 ISO A6 X C

JIS B8 X ISO A6 ISO C5 ISO A6 X C

JIS B9 X ISO A6 ISO C5 ISO A6 X C

JIS B10 X ISO A6 ISO C5 ISO A6 X C

Paper size
PDF, RTF, HTML,
and Metacode PXL1 PCL2 GDI2 PST3 AFP4

Sizes marked with an X are fully supported by the corresponding driver.
Sizes marked with a Y are supported by sending the paper dimensions in millimeters to the printer.
Sizes that refer to another size substitute the referred size when paper size matching is turned on.
If paper size matching is not turned on, the behavior depends upon the specific driver. To turn on
paper size matching, use this INI option:

< PrtType:XXX >

PaperSizeMatching = Yes

1 When paper size matching is not turned on, the PCL 6 (PXL) driver sends the paper dimensions in
millimeters to the printer.
2 When paper size matching is not turned on, these drivers substitute US letter.
3 This driver does not use paper size matching. US letter is substituted for the unsupported paper
sizes
4 Sizes marked with a C are supported, but are commented out of the AFP formdef source file called
F1FMMST.DAT, See Paper Sizes for AFP Printers on page 356 for more information.

Chapter 6
Setting Up Printers

356

PAPER SIZES FOR AFP PRINTERS

The AFP formdef source file (F1FMMST.DAT) contains support for the following paper
sizes, but since this file contains support for so many paper sizes, its size could affect
printer performance. To limit the effect, some of the paper sizes are commented out, as
shown in this table:

NOTE: The F1FMMST.DAT and F1FMMST.FDF files can be found in the FMRES master
resource library (MRL).

The commented source line begins with an asterisk (*). To add support for another
paper size, you open the F1FMMST.DAT file and delete the asterisk at the beginning of
each line that references the paper size you want to add.

Size Commented out?

Letter No

Legal No

Executive No

Ledger Yes

Tabloid Yes

Statement Yes

Folio Yes

Fanfold Yes

ISO A3 Yes

ISO A4 No

ISO A5 Yes

ISO A6 Yes

ISO B4 Yes

ISO B5 Yes

ISO B6 Yes

ISO DL Yes

JIS B4 Yes

JIS B5 Yes

JIS B6 Yes

Choosing the Paper Size

357

Because the AFP formdef is composed on medium map names that specify page
orientation, paper size, tray selection, and duplex settings, there are 31 groups of
medium map settings. Each of these groups contains the 57 possible paper sizes. So,
for each paper size you add, there are 31 sources lines you must uncomment to fully
support a paper size for all orientations, trays, and duplex settings.

After you uncomment the lines that reference the paper size you want to add, run the
AFPFMDEF utility to rebuild your AFP formdef file with the new information. For more
information on this utility, see the Docutoolbox Reference.

Chapter 6
Setting Up Printers

358

CREATING PRINT
STREAMS FOR

DOCUSAVE

Docusave can archive AFP, Metacode, and PCL print streams that are in a Docusave-
compatible format and contain special records used to index the archive.

For AFP and Metacode, you use the OutMode option in the PrtType:AFP or XER control
group to tell the GenPrint program to create a Metacode or AFP print stream in a
Docusave-compatible record format. You can choose between these Docusave-
compatible formats: JES2 and MRG4.

For PCL, the process is similar but there is not OutMode option to set. You include
comment records in the print streams to index the archive. You can use a DAL script to
add those comment records.

For details, see...

• Archiving AFP Print Streams on page 358

• Archiving Metacode Print Streams on page 359

• Archiving PCL Print Streams on page 360

ARCHIVING AFP PRINT STREAMS

Set the OutMode option to MRG4 to produce a print stream for Docusave from non-z/
OS platforms.

Here is an example:

< PrtType:AFP >

OutMode = MRG4

When you set the OutMode option to MRG4, the GenPrint program creates print stream
records with a 4-byte sequence that precedes them. This sequence defines the record
lengths. Records are grouped into blocks with one or more records in each block. Both
records and blocks have a 4-byte sequence that precedes them, defining their length.

These length indicators are formed by taking the high-order byte of length followed by
the low-order byte of length followed by two bytes of zeros.

The maximum number that can be displayed is a 16-bit quantity. The value in each
includes the length of the structure itself. A one-byte data record in its own block would
have five for the record length and nine for the block length. This table shows what a
3-byte record would look like:

Byte offset Value (Hex) Meaning

0 00 Block length high-order

1 0B Block length low-order

2 00 Always 0

3 00 Always 0

4 00 Record length high-order

5 07 Record length low-order

6 00 Always 0

Creating Print Streams for Docusave

359

In addition to using the OutMode option, you must include comment records in the
print streams to index the archive. You can use a DAL script to add comment records
into the print stream. Use the DocusaveScript option in the PrtType:AFP control group
to have the system execute a DAL script at the times when Docusave comments can be
added to the print streams.

To add Docusave comments to an AFP print stream, you must add the DocusaveScript
option and the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record. Here is
an example:

< PrtType:AFP >

DocusaveScript = Docusave.DAL

OutMode = MRG4

ARCHIVING METACODE PRINT STREAMS

Set the OutMode option to JES2 to produce print streams under z/OS. Here is an
example:

< PrtType:XER >

OutMode = JES2

When you set the OutMode option to JES2, the GenPrint program creates print stream
records that are native to a mainframe environment.

Also include comment records in the print streams to index the archive. You can use a
DAL script to add comment records into the print stream. Use the DocusaveScript
option in the PrtType:XER control group to have the system execute a DAL script at the
times when Docusave comments can be added to the print streams.

To add Docusave comments to a Metacode AFP print stream, add the DocusaveScript
option and the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record. Here is
an example:

< PrtType:XER >

DocusaveScript = Docusave.DAL

OutMode = JES2

7 00 Always 0

8 31 ‘1’

9 32 ‘2’

10 33 ‘3’

Byte offset Value (Hex) Meaning

Chapter 6
Setting Up Printers

360

ARCHIVING PCL PRINT STREAMS

NOTE: Docusave is adding support for archiving PCL 5 print streams. In anticipation of
Docusave's PCL archive capability, Documaker version 10.2 and later can
produce PCL 5 print streams with the necessary Docusave comment
information.

You must include comment records in the print streams to index the archive. You can
use a DAL script to add comment records into the print stream. Use the DocusaveScript
option in the PrtType:PCL control group to have the system execute a DAL script when
Docusave comments can be added to the print stream.

To add Docusave comments to an PCL print stream, add the DocusaveScript option and
the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record.

Here is an example:

< PrtType:PCL >

DocusaveScript = DOCUSAVE.DAL

Here is an example of what the DOCUSAVE.DAL file might look like:

* Add DocuSave Comment - use default: APPIDX record!

COMMENT = AppIdxRec()

PRINT_IT(COMMENT)

ADDDOCUSAVECOMMENT(COMMENT)

RETURN('FINISHED!')

NOTE: PCL 6 print streams cannot be archived into Docusave.

USING DAL FUNCTIONS

For all types of print streams, you can use these DAL functions to create archive keys
to use with Docusave.

Function Description

AddDocusaveComment Adds a Docusave comment string to the print stream

AddComent Adds a comment string to the print stream

AppIdxRec Gets an archive record based on APPIDX.DFD and
Trigger2Archive INI settings

HaveGVM Verifies if a GVM variable exists

SetGVM Updates the contents of a GVM variable

GVM Gets the contents of a GVM variable

MajorVersion Gets the system’s major version number

Creating Print Streams for Docusave

361

For more information on these functions, see the DAL Reference.

MinorVersion Gets the system’s minor version number

PrinterClass Gets the type of print being produced

PrinterGroup Gets the name of the print group being used

Print_It Debug tool to print a string to the console

Function Description

Chapter 6
Setting Up Printers

362

ADDING TLE
RECORDS

You can add TLE (Tag Logical Element) records into AFP print streams which can be
used by some 3rd-party archive systems to archive AFP print streams in a manner
similar to archiving AFP or Metacode print streams in Docusave.

You must include comment records in the print streams to index the archive. You can
use a DAL script to add comment records into the print stream. Use the TLEScript option
in the PrtType:AFP control group to name the DAL script to execute when TLE records
can be added into the print stream. The DAL script should call the AddComment
function to add a string as a TLE comment record.

The TLE comment string must include a key and a value. Separate these components
with a special character. This character can be any printable character as long as it is a
unique character not found in the key or value portion of the comment string.

For example, you might build a comment string using a colon (:) as a separator as in the
following example:

PolicyNum:7SAMPCO

The key portion of the string is PolicyNum, the value portion of the string is 7SAMPCO,
and the separator character is a colon (:).

Here is an example of what TLE DAL script might look like:

cidlabel = 'PolicyNum'

clientid = GVM("PolicyNum")

colon = ':'

AddComment (cidlabel & colon & clientid);

RETURN('FINISHED!')

Notice that the key portion remains constant (PolicyNum) while the value portion
changes based on the contents of the GVM variable, PolicyNum.

Add these options to the PrtType:AFP control group to enable TLE record support:

< PrtType:AFP >

 TLEScript = TLE.DAL

 TLEEveryPage= No

 TLESeparator= :

Option Description

TLEScript Enter the name of the DAL script to execute.

TLESeparator Enter the character you want to use to separate the key and value
portions of the TLE comment string.

TLEEveryPage Optional. If you enter Yes, the TLE DAL script will be executed at the
start of every page. If you enter No, the TLE DAL script will be executed
at the start of every form set. The default is No.

Handling Multiple Paper Trays

363

HANDLING
MULTIPLE PAPER

TRAYS

You can set up PCL, PostScript, GDI, AFP, and Metacode print drivers to support up to
nine paper trays. Setting up nine tray printer support for the various types of printers
is outlined below.

NOTE: You can also use the Form Set Manager to specify tray settings. See the
Docucreate User Guide for more information.

For PCL printers You can override PCL tray commands by providing an alternate PCL command to use.
Here are the default PCL INI settings:

< PrtType:PCL >

Tray1 = ~&l1H

Tray2 = ~&l4H

Tray3 = ~&l5H

Tray4 = ~&l20H

Tray5 = ~&l21H

Tray6 = ~&l22H

Tray7 = ~&l23H

Tray8 = ~&l24H

Tray9 = ~&l25H

When writing PCL commands as an INI setting, the tilde (~) is used as a substitute for
the PCL escape character (x1B).

For PostScript printers You can override PostScript tray commands by providing an alternate PostScript
command to use. You issue PostScript tray commands in these forms:

• A quoted string containing the PostScript commands. The quoted string should
contain the appropriate PostScript commands for selecting a paper tray. Here is an
example:

Tray1 = "statusdict /lettertray get exec”

• A tray number from 1 to 9. You can use tray numbers to map non-existent trays. For
example, Tray5=1 maps output for tray 5 to tray 1. The system checks the INI
setting for overriding Tray1 before it checks the setting for Tray2 and so on.
Because of this, do not specify a tray number less than the tray you are overriding.
For example, you should not use a setting of Tray5=6.

• A UI keyword from a PPD file. UI keywords represent features that commonly
appear in a user interface (UI). They provide the code to invoke a user-selectable
feature within the context of a print job, such as the selection of an input tray or
manual feed. The entries of UI keywords are surrounded by these structure
keywords:

*OpenUI/*CloseUI or *JCLOpenUI/*JCLCloseUI

Here is an example of an OpenUI structure for MediaColor:

*OpenUI *MediaColor: PickOne

*OrderDependency: 30 AnySetup *MediaColor

*DefaultMediaColor: white

*MediaColor white: "1 dict dup /MediaColor (white) put setpagedevice"

*MediaColor clear: "1 dict dup /MediaColor (clear) put setpagedevice"

*MediaColor blue: "1 dict dup /MediaColor (blue) put setpagedevice"

*MediaColor buff: "1 dict dup /MediaColor (buff) put setpagedevice"

*MediaColor green: "1 dict dup /MediaColor (green) put setpagedevice"

Chapter 6
Setting Up Printers

364

*MediaColor goldenrod: "1 dict dup /MediaColor (goldenrod) put
setpagedevice"

*MediaColor pink: "1 dict dup /MediaColor (pink) put setpagedevice"

*MediaColor yellow: "1 dict dup /MediaColor (yellow) put
setpagedevice"

*?MediaColor: "

save

currentpagedevice /MediaColor

{get} stopped

{pop pop (white)} {dup null eq {pop (white)} if} ifelse

= flush

restore

"

*End

*CloseUI: *MediaColor

Input media (paper trays) are often selected on PostScript printers by specifying
PageSize, MediaColor, MediaWeight, and MediaType. In the above example, media
(paper) colors were defined for white, clear, blue, and so on. If you wanted to specify
that the paper assigned to tray 5 uses blue paper, you could use one of these INI
settings:

Tray5 = *MediaColor blue:

or

Tray5 = "1 dict dup /MediaColor (blue) put setpagedevice"

The first uses the UI keyword in the PPD file while the second uses the actual PostScript
commands in a quoted string. When you use the UI keyword in an INI setting, always
include the beginning asterisk (*) and the terminating colon (:).

Here are the default PostScript INI settings:

< PrtType:PST >

; UI keyword is used if PPD is specified and keyword is found.

; Otherwise, quoted string is used.

Tray1="0 statusdict /setpapertray get exec" or Tray1=*InputSlot
Upper:

Tray2="1 statusdict /setpapertray get exec" or Tray2=*InputSlot
Lower:

Tray3="2 statusdict /setpapertray get exec" or Tray3=*InputSlot
Manual:

Tray4="3 statusdict /setpapertray get exec" or Tray4=*InputSlot
Envelope:

; Make trays 5 through 9 use the PostScript commands for tray 1

Tray5=1

Tray6=1

Tray7=1

Tray8=1

Tray9=1

For GDI printers You can override the GDI tray commands by specifying an alternate paper tray to use.
Here are the default GDI INI settings:

< PrtType:GDI >

Tray1 = 1

Tray2 = 2

Tray3 = 3

Tray4 = 4

Handling Multiple Paper Trays

365

Tray5 = 1

Tray6 = 1

Tray7 = 1

Tray8 = 1

Tray9 = 1

For AFP printers You can override the AFP tray commands by specifying an alternate paper tray to use.
Here are the default AFP INI settings:

< PrtType:AFP >

Tray1 = 1

Tray2 = 2

Tray3 = 3

Tray4 = 4

Tray5 = 1

Tray6 = 1

Tray7 = 1

Tray8 = 1

Tray9 = 1

For Metacode printers You can override the Metacode tray commands by specifying an alternate tray name to
use. Here are the default Metacode INI settings:

< PrtType:XER >

Tray1 = MAIN

Tray2 = AUX

Tray3 = AUX

Tray4 = AUX

Tray5 = AUX

Tray6 = AUX

Tray7 = AUX

Tray8 = AUX

Tray9 = AUX

INCLUDING TRAY SELECTIONS IN A PRINT STREAM BATCH

To include the header with the tray selection in a print stream batch, the first section
written or triggered to the batch must have a tray, such as Tray 1 or Tray 2, listed in its
FORM.DAT file. Otherwise, the information is not written to that batch print stream.
Here is an example of header information from a PostScript print stream that had these
INI options:

< PrtType:PST >

Tray1 =*InputSlot Upper:

Tray2 =*InputSlot Lower:

Here is the example header:

GenericDict begin

%%BeginSetup

%%BeginFeature: *Duplex

false statusdict /setduplexmode get exec false statusdict /settumble
get exec

%%EndFeature

%%BeginFeature: *InputSlot Upper

0 statusdict /setpapertray get exec

%%EndFeature

Chapter 6
Setting Up Printers

366

367

Chapter 7

Setting Up Error Messages
and Log Files

This chapter discusses the how the system creates
error and log messages and describes how you can
customize these messages to meet your company’s
needs.

In this chapter, you will find information about...

• Overview on page 368

• Configuring the Message System on page 369

• Creating Messages on page 374

• Using the Message Token File on page 380

Chapter 7
Setting Up Error Messages and Log Files

368

OVERVIEW The message system is enabled by default. Without making any modifications, it is
fully functional. Each executed system program (GenTrn, GenData, GenPrint, and so
on) appends output messages to the appropriate log or error file.

When an error or log message occurs, the system writes the information to a token file
named MSGFILE.DAT. A second step converts or translates the output into log and error
files, which are typically named LOGFILE.DAT and ERRFILE.DAT.

By default, this translation step occurs before each program’s termination so the
system is compatible with earlier versions. You can, however, delay this step and
execute it manually using the TRANSLAT utility (see the Docutoolbox Reference for
more information). This lets you translate the message and error information after all
system programs have completed their processing cycle for a given batch run.

NOTE: Typically, you will want to use system defaults as you implement your system.
This lets you spot errors after each processing step. Once your system is
implemented and is running without error, you may want to delay the
translation process to improve performance. See Controlling the Translation
Process on page 372 for more information.

Delaying the translation process can sometimes improve throughput performance—
especially in batch implementations that typically run without errors.

This translation process, delayed or not, gives you flexibility in the type of options you
can use; increases the amount of information that can be generated; and lets you
control message formatting and language.

Configuring the Message System

369

CONFIGURING THE
MESSAGE SYSTEM

As with most system features, you can configure the messaging system. Typically you
use INI options in the FSISYS.INI file (or whatever your INI file is named) to configure
the message system.

For example, you can turn off or on the log and error files, assign different output file
names or directories, and so on. As mentioned earlier, you can also configure the
message translation process to occur during normal system processing or as a final,
separate step.

The system automatically prefixes an error code before each error message. Each code
begins with the two-character identifier. Here is an example:

DM10825: Warning in TextMergeParagraph(): Rule used in image that
does not have any text areas. Image name is <q1snam>. Processing will
continue

ENABLING AND DISABLING MESSAGES

Messages output from system programs fall into two categories—log and error
messages. Unless specifically turned off via INI options, the message system produces
both error and log files.

Error messages contain information about the problems encountered during the
execution of the program. The generation of error information cannot be disabled. It is
possible to not translate the results into an actual error file, instead the informational
tokens output by the programs are written to a message token file named
MSGFILE.DAT.

Log messages are a different matter. This type of message is informational, but not
generally tied to the success or failure of the job. In general, these messages are
transactional in nature—meaning that they provide information about each
transaction as it proceeds through the processing cycle.

You can suppress the log information output by the programs. The LogTransactions
option enables or disables the generation of log messages:

< Control >

LogTransactions = Yes

The LogTransactions options defaults to Yes. To disable the logging of messages, set
it to No. By disabling this option, you suppress the informational tokens written to the
intermediate file and prevent the translation of the log file.

When you set the LogTransactions option to No, system programs do not output the
informational tokens, so you cannot generate the log file even if you use the TRANSLAT
utility.

NOTE: For more information on the TRANSLAT utility, see the Docutoolbox Reference.

Chapter 7
Setting Up Error Messages and Log Files

370

Logging INI Files and Options Used

By default, the GenTrn, GenData, GenPrint, and GenArc programs log the INI files being
used. This tells you which files were used and if they were opened successfully. To turn
off the logging of INI file names in the LOGFILE, make the following change in your INI
files:

< Control >

LogINIFileNames = No

You can also log which INI options are being used. This feature is turned off by default.
To turn on the logging of INI options, use this INI option:

< Control >

LogINIOptions = Yes

You can also use the /L command line parameter to log the INI options being used. For
example, if you are running on a Windows 32-bit system, you would use this command
to tell the GenData program to log the INI options used to the LOGFILE:

gendaw32 /L

CLEARING MESSAGES

If you are using single-step processing, you can use the following INI option to delete
all MSGFILE.DAT, ERRFILE.DAT, and LOGFILE.DAT files before the system begins the
single step process.

< GenData >

ClearMsgFile = Yes

The default is No.

DEFINING THE OUTPUT MESSAGE FILES

Several files are used by the message system. You identify the output files and their
locations with these INI options:

< Data >

ERRFile = errfile.dat

LOGFile = logfile.dat

MSGFile = msgfile.dat

TranslationFile = translat.ini

NOTE: The values for the LOGFile and ERRFile options are probably already set
correctly if you are upgrading your system from an earlier version.

The values you specify for each option identify the file name for that option. You can
also specify a directory path for each file. If you omit the path and include only the file
name, the setting for the DataPath option is used as the default location for these files.

Option Description

ERRFile Identifies the file which contains the error messages.

Configuring the Message System

371

Initializing the Output Message Files

In a standard implementation, the GenTrn program is the first program run in the batch
process. As the first program, it re-initializes the data files by first deleting the existing
data files.

If your implementation does not use the GenTrn program, you ether have to set up the
implementation to manually delete these files or you must include an additional INI
option.

The ErrorFileOpenMode option lets you tell system programs to delete old message
files before beginning its processing cycle. Here is an example of this option:

< Control >

ErrorFileOpenMode = Create

If you set this option to Create, the system deletes existing files and creates new ones
for the processing run. If you leave this option blank or enter any other value, the
system appends information onto existing files.

LOGFile Identifies the file which contains the log messages.

MSGFile Identifies the message token file the system programs produce.

TranslationFile Contains the message text. Normally defaults to TRANSLAT.INI. Use
this option to specify the file name and location.
Unlike the other files, the TRANSLAT.INI file is static—it does not
change during the batch process and is not considered a data file. This
file’s location does not default to DataPath option as do the other files.
In the MVS environment, the DefLib option identifies the TRANSLAT.INI
file’s default location if you do not specify a path in the TranslationFile
option.

Option Description

Chapter 7
Setting Up Error Messages and Log Files

372

Turning Off Date Stamps

You can turn off date stamps in batch processing error and log files using these INI
options:

< Control >

ErrorFileDateStamp = No

LogFileDateStamp = No

Entering No to turn off these options can be of use when regression testing.

Use this option to disable date stamps in the batch trace file:

< Debug_Switches >

PrintTimeStamp = No

Controlling the Translation Process

By default, the GenTrn program deletes the old message file at the beginning of its
execution and starts a new file with output information. All other programs, such as
GenData, GenWIP, and so on, append information to the end of the message file
created by the GenTrn program.

The default translation options are set so the log and error files are created after each
system program executes. You can, however, set the ImmediateTranslate option to No
to delay the translation process until all system programs finish processing—at the
end of the batch process.

Here is an example:

< Control >

ImmediateTranslate = No

Once processing stops, you can then use the TRANSLAT utility to translate the
messages. By delaying the translation process and only executing it once per batch
cycle, you can reduce job throughput times.

NOTE: If you set the ImmediateTranslate option to No, the system will not create the
ERRFILE.DAT file.

Option Description

ErrorFileDateStamp Enter No to disable date stamps in error files. The default is Yes.

LogFileDateStamp Enter No to disable the date stamp in log files. The default is Yes.

Option Description

PrintTimeStamp Enter No to disable date stamps in the batch trace file. The default is
Yes.

Configuring the Message System

373

DBLib Trace Messages

DBLib-related trace (or log) messages are written to the trace file. The name of this file
defaults to trace but you can set it to another file name using the TraceFile option:

< Data >

TraceFile = xxxxx

We recommend you use the default name of trace.

NOTE: Before version 11.0, DBLib-related logging messages were written to the file
indicated by this option:

< Data >

DBLogFile = (file name)

The default was DBLOGFLE.DAT.

Keep in mind, all types of tracing, including DBLib tracing, slow performance. You
should only activate DBLib tracing during development and testing or if requested by
Documaker support personnel.

In the Rules Processor, the trace file for DBLIB log messages is the default logging file.
You can activate DBLib tracing by specifying these INI options in the FSISYS.INI file:

< Debug_Switches >

Enable_Debug_Options = Yes

DBLib = Yes

In IDS, the default logging file is the DPRTRC.LOG file DBLIB log messages. You can
enter the INI options in the DAP.INI file or the MRL-specific INI file.

Chapter 7
Setting Up Error Messages and Log Files

374

CREATING
MESSAGES

System messages fall into these categories:

• Log messages

• Error messages

Log messages record information about the processing run. These messages are
informative rather than diagnostic. Types of information that fall into this category
include transaction IDs that are processed; the start, ending and elapsed time of the
run; transaction counts and statistics; and the program description that is producing
the information.

Error messages are also informative, but usually help diagnose problems encountered
during the processing run. These messages include such things as invalid data
recognition; improper options; input/output errors; and resource validation.

The way these messages are produced is exactly the same. In general, the only real
distinction between these two message classes is the destination file to which each is
written.

USING THE RPERRORPROC AND RPLOGPROC FUNCTIONS

Use these two functions when you specify information to be output to the log or error
files. You can use these functions to install the custom error and log procedures called
from within these functions. The system lets the calling function provide the details of
a message without having to specify the exact formatted text.

Here is an example:

RPErrorProc(pRPS, (WORD)EMIT_WARNING, (DWORD)10012,

"OutBuff", pRPS->OutBuff,

"Image", IMAGENAME(pRPS->CurrentFapImageH),

LASTERRORTOKEN);

RPLogProc(pRPS, (WORD)EMIT_MESSAGE, (DWORD)10775,

LASTERRORTOKEN);

Each parameter is discussed below:

RP Struct The first parameter represents the pointer to the RP Struct active during the run.

Message Types The second parameter identifies the type of message being reported. There are these
classes of messages:

The message system recognizes the type of message if you use one of the above
defines. Use the EMIT_??? keywords for this parameter and do not rely upon the
underlying numeric value. This lets you later change these values or add new values
and recompile without invalidating the meaning of a particular message.

Class Description

EMIT_MESSAGE Indicates the resulting information is simply a message.

EMIT_WARNING Indicates the information is a warning to the user.

EMIT_ERROR Indicates an error has been encountered by the program.

Creating Messages

375

Message Number Use this parameter to specify the message number to associate with the output data.
Message numbers fall within the range of 100 to 1,000,000.

Message numbers are associated with the TRANSLAT.INI file. This file contains all the
static text for each message. Later, the static text is merged with the variable
information to produce the messages written into the log or error files. This table
shows the range categories for messages:

Within the reserved range, there are sub-ranges for each library (DLL) and program:

This gives each program or DLL one thousand possible messages. We reserve the first
five hundred thousand numbers for base system use (0 - 499,999). If a library
eventually exceeds the 1000 messages currently assigned, we will assign an additional
range. Likewise, this reserves enough numbers to allow for new libraries and programs
which may be added in the future.

Assigning numbers to
custom messages

The range 500,000 to 999,999 is for customization messages, which are generally
added when you customize your system. Although you can use previously defined
messages, it is better to assign an unused number within the custom range for each
message you add.

Range Description

100 to 9999 Used for general messages, universally shared

10000 to 499999 Reserved range for Documaker base system messages

500000 to 999999 Can be used for custom messages

Range Library or Program

10000 to 10999 RULLIB

11000 to 11999 GENLIB

12000 to 12999 RPLIB

13000 to 13999 RCBLIB

14000 to 14999 A2WBLIB

15000 to 15999 GenTrn

16000 to 16999 GenData

17000 to 17999 GenPrint

18000 to 18999 GenArc

19000 to 19999 GenWIP

20000 to 20999 CUSLIB (Base)

Chapter 7
Setting Up Error Messages and Log Files

376

This makes sure the intended meaning of an existing message is not changed in case
someone modifies the text of the assumed custom message in the external file. In
addition, if you develop a numbering system for the custom range, you can provide
additional debugging information through the message number.

USING MESSAGE TOKENS

The remaining parameters passed to the RPErrorProc or RPLogProc functions are
variables which represent token-data pairs used to define the content of the message.

In this example, there are two pairs of token-data.

RPErrorProc(pRPS, (WORD)EMIT_WARNING, (DWORD)10012,

"OutBuff", pRPS->OutBuff,

"Image", IMAGENAME(pRPS->CurrentFapImageH),

LASTERRORTOKEN);

There are several points to remember about tokens which will become apparent as you
examine the TRANSLAT.INI file—the file that contains the rest of the message text.

• The message text from the TRANSLAT.INI file does not have to use all, or for that
matter any, of the tokens output from a particular function. This means you can
output more information (in token-data format) than would normally be required
in the message. This information, however, might prove useful to a programmer
during closer examination of the message file.

• Token names live forever. This means that a token logged earlier in the session can
be referenced by messages that occur later. For instance, if an early message
outputs a token (with a value) named ID, any message text translated after that
point may refer to ID and receive that same value.

• Token names are reusable. You should reuse token names whenever it makes
sense. For instance, each time a function is required to emit the section (image)
name, use the same token name. This conserves space in the token list (because
a new entry does not have to be created) and if subsequent messages rely upon
the last known value of a given token, it is more likely to be correct.

Token Description

OutBuff Represents a token name. The data for that token is defined in
pRPS->OutBuff.

Image A second token name, with appropriate data text following. Token
and data must be character text. Therefore, if the data to be
represented is anything other than text, it must be converted
before you call the message function.

LASTERRORTOKEN Not really a single token, but rather is a macro that contains several
token-data pairs. These pairs identify the source module name and
the line number of the statement being compiled. The last
component of LASTERRORTOKEN is a NULL pointer used by the
internal message formatter to recognize the end of the Token-Data
pairs.

LASTERRORTOKEN must be the last variable passed to both the
RPErrorProc and RPLogProc functions.

Creating Messages

377

• Tokens are not case sensitive. A token named Image can be referred to as IMAGE,
Image, image, ImageE, and so on.

Also note, that the example refers to one-word tokens. Although, this is the most
efficient use of space, tokens can be longer and include spaces. The only character you
cannot use in a token is the ampersand (&)—ampersands are used in defining the
static message text. For instance, you can define a token such as One A Day, but you
cannot define a token such as Will Not&Work.

Understanding the System Legacy systems expected the fourth parameter to be a string representing a format.
This format string might be the complete message or contain flags indicating where
subsequent variables will be substituted—such as %d, %s, %X, and so on.

The RPErrorProc or RPLogProc functions distinguish how these remaining parameters
are handled (legacy or new) by first determining if the Message Type and Message
Number parameters are values expected by the new functionality.

The new use of the functions does not require a format string. Instead, the variables
represent token-data pairs until the LASTERRORTOKEN is encountered.

SETTING UP MESSAGE TEXT

Message output from system programs is typically destination bound to the error or
log files. All static message text is isolated into an external file for easy maintenance.
The static portion of all messages is contained in the TRANSLAT.INI file.

NOTE: The INI designation is one of convenience, since the TRANSLAT.INI file is not
intended to be used like a conventional INI file. INI references intended for
other program functionality do not work when placed in this file. Likewise, you
cannot add static message text intended for the log or error files into the
FSISYS.INI or FSIUSER.INI files.

The TRANSLAT.INI file associates a message number with the static text for each
message. Each entry takes the form:

AA99999 = message text

The numeric value is the message number which defines the text associated with the
message. You can prefix the message number with a two-character alpha code, such as
AA.

All messages must have a unique message number. You must make sure the proper
message number is referenced in the code.

Chapter 7
Setting Up Error Messages and Log Files

378

Message examples Here are some examples:

10529 = Error in rundate(): Unable to GENFmtDate(<&RunDate&>,,).

10536 = Error in lookup(): Missing Key offset in lookup.

20261 = \nProcessing Batch:<&Name&> File:<&File&> Port:<&Print&>

There are several points to note in these messages.

• Each line specifies a unique message number and associates the static text
portion of the message with that number.

• The words bounded on each end with an ampersand (&) are token placeholders for
value replacement (see message numbers 10529 and 20261). This is where the
token-data pairs passed to the RPErrorProc and RPLogProc functions are matched
and substituted into the static text. For example, assume the following statement
is in the code of one of the system programs.

RPErrorProc(pRPS, (WORD)EMIT_ERROR, (DWORD)10529,

"RunDate", “April 1, 1999”,

LASTERRORTOKEN);

This would cause message number 10529, shown above, to print this text in the
log file.

Error in rundate(): Unable to GENFmtDate(<April 1, 1999>,,).

• Since token names are identified between ampersand characters, two ampersand
characters together (&&) signals that the output text is to contain a single
ampersand character.

Undefined tokens Messages in the TRANSLAT.INI file can have any number of token replacements. If,
however, a token is undefined when the messages are translated, the token name is
left in the text. So, if you view the log or error file and find a message which includes a
word bounded by ampersands, it means one of these things:

• The token is misspelled in the TRANSLAT.INI file.

• The token is misspelled in the code that called the RPLogProc or RPErrorProc
function.

• The token and data was not included in the parameters to the message functions.

• This is not a token and was intended to print in this manner. Either it is data
associated with a token or two ampersands were included at each end of the word
in the static message text.

The first place to begin diagnosing this type of result is by examining the text included
for the message in the TRANSLAT.INI file.

Adding a new line In message number 20261, you can see the use of another format convention. The \n in
the text is translated as a new line character. This causes the following text to print on
the next line. The layout of the TRANSLAT.INI file requires that all of the text for each
message must fit onto a single line. Using \n in text expands your formatting
possibilities.

Creating Messages

379

Determining where the
message originated

Examine message number 10536. This message does not contain any tokens.
Therefore there is no variable text that is required to print within this message.

The fact that the message does not contain any tokens does not mean that no tokens
were output from the system program when the RPErrorProc function was called. In
fact, there are at least two tokens associated with this message.

LASTERRORTOKEN is the last required parameter to calls to the RPErrorProc and
RPLogProc functions. This macro defines the FSIFileName and FSILineNumber tokens.
If you include the FSIFileName token in the message text, the name of the module that
contained the code calling the RPErrorProc or RPLogProc function is substituted into
the message. Likewise, FSILineNumber is substituted with the source line number of
the statement calling the RPLogProc or RPErrorProc function.

This information can be quite useful if you are trying to determine what code is issuing
a particular message. All you have to do is edit the message and include
&FSILFileName& and &FSILineNumber& into the message text defined in the
TRANSLAT.INI file.

Chapter 7
Setting Up Error Messages and Log Files

380

USING THE
MESSAGE TOKEN

FILE

While a system program is running and emitting information, the token-data pairs are
written to the message file (MSGFILE.DAT). Typically, you do not have to examine the
message file. The translation process that produces the error file and log file will do
that for you and will make the final text more readable.

On occasion, however, examining the file reveals more information than is provided by
the translation process. For instance, if you see a particular message in the error file
and want to know where in the code this message originated, you can do one of two
things.

You could edit the TRANSLAT.INI file to add the FSILineNumber and FSIFileName
tokens to the message. Then, by rerunning the translation process, you would get the
additional message information. (See Determining where the message originated on
page 379 for more information)

Or, if you know what you are looking for, you could peek into the message file and
locate the information more readily. Here is an excerpt from a message token file.

T DestField/PREM PAY INCEPTION

T Image/qmdc2

T FSIFileName/..\C\rulbsfl.c

T FSILineNumber/364

E 10010

T FSIFileName/..\C\rcbbatpr.c

T FSILineNumber/418

E 13027

T FSIFileName/..\C\rulbsfs.c

T FSILineNumber/185

L 10775

T ID/3234567

T GrpName1/SAMPCO

T GrpName2/LB1

T GrpName3/

T Buff/T1

T FSIFileName/..\C\gentrans.c

T FSILineNumber/1187

L 11190

The first character on the line is a letter code which designates the meaning of the line.
Valid codes are shown here:

The token-data pairs for a given message will occur in the file on lines before the E or L
lines. Knowing this, you can see that the excerpt from the message file shown above
contains the information for four different messages.

Code Description

E Followed by a message number bound for the error file. (error or warning)

L Followed by a message number bound for the log file. (informational)

T Followed by a token-data pair, separated by a forward slash (/).

Using the Message Token File

381

The first message number occurs at the line that contains E 10010. This is a message
bound for the error file. Four tokens are defined before translation:

• DestField

• Image

• FSIFileName

• FSILineNumber

This means that if the message text for 10010 contains any of these tokens the
appropriate data will be substituted. Remember, however, if the message refers to a
token that has not been defined prior to this point, the token will be left in the output
text to indicate a problem might have occurred.

The next message number occurs at the line that contains E 13027. This too is a
message bound for the error file. Notice that two tokens occur between the location of
the first and second message—FSIFileName and FSILineNumber. These use the same
token names used before, however, now their data values are different.

Also note that although only two additional token (changes) occurred before message
13027, four tokens are defined. If you could look into the program memory at this
moment, you would see that the token list has these values:

All tokens remain active after they have been translated. Tokens that are reused are
updated with new values, but no tokens are removed until the translation process is
complete.

Therefore, it is permissible (but at this point not likely) that a message can use tokens
output by a prior message. This is why it is important to reuse token names when it
makes sense, such as when all references to an section’s (image) name should use the
same token.

Continuing with the examination of the message file excerpt, the next message is
identified via the line that reads, L 10775. This is a message bound for the log file, not
the error file. It too redefines the FSIFileName and FSILineNumber tokens, as do all
messages that use LASTERRORTOKEN.

Token Value

DestField PREM PAY INCEPTION

Image qmdc2

FSIFileName ..\C\rcbbatpr.c

FSILineNumber 418

Chapter 7
Setting Up Error Messages and Log Files

382

The last message in this example is defined by the line, L 11190. Five new tokens were
introduced before this message. Peeking into program memory again, the token list
now looks something like this:

Note that the most recent values for FSIFileName and FSILineNumber are reflected.
Also note that the tokens previously defined still exist. Finally, note that one of the
tokens appears to have no data (GrpName3) and is therefore blank. This is permissible.

Token Value

Buff T1

DestField PREM PAY INCEPTION

GrpName1 SAMPCO

GrpName2 LB1

GrpName3

ID 3234567

Image qmdc2

FSIFileName ..\C\gentrans.c

FSILineNumber 1187

383

Chapter 8

Archiving and Retrieving
Information

The GenArc program lets you store completed form
sets for later retrieval. The GenArc program can be run
as an independent program or from within the
Documaker system using the archive and retrieval
options.

When you run the archive module, the information the
system uses to compose the form sets is compressed
and stored in an archive file along with certain
indexing information.

Once the form set information has been archived,
those form sets can be regenerated by retrieving the
form set information from the archive file. The archive
index file is used to aid in the retrieval of particular
form set information through the use of keys. These
keys can be set to meaningful search criteria such as
policy or account numbers, claim or invoice numbers,
company names, customer names, and so on.

This chapter includes information on the following
topics:

• Terminology on page 384

• System Scenarios on page 386

• Archive and Retrieval Features on page 388

• Processing Overview on page 389

• Running GenArc on page 392

• Using WIP and the Archive Index File on page 413

• Retrieving Archived Forms on page 416

• Working with Documanage on page 419

Chapter 8
Archiving and Retrieving Information

384

TERMINOLOGY The GenData program creates the NEWTRN file (which contains one record for every
transaction to be processed), the NAFILE (which contains section and variable field
information and possibly some in-line data), the POLFILE (which contains form and
section inclusion information) and the recipient batch files, such as BATCH1, BATCH2,
and so on (which look similar to the NEWTRN file).

The GenArc process accepts as input the NEWTRN, NAFILE and POLFILE files and
archives this data. Here are some terms you need to be familiar with:

Files and tables The term file refers to a non-database data structure, such as a flat file, while the term
table refers to data structures within some database management system, such as
DB2, SQL Server, and so on. However, the terms file and table might be used
interchangeably in this chapter.

Commit The term commit is a database term which means to make table changes permanent.
As data is written to tables, the data is not really made permanent until a commit is
performed. Before performing a commit, if you determine that you really don’t want to
make the changes to the table, you can perform a rollback which will undo any table
changes you have made since the last commit point. The GenArc program performs
periodic commits based on an INI value you set.

Rollback The term rollback is a database term which means to undo any table changes that have
been made since the last commit point. As table rows are inserted, deleted and
updated, these changes do not become permanent until a commit is performed.

GenArc The program name for the process which performs batch archive. The program names
vary slightly, depending on the operating system you are running. For example, the
GenArc program on Windows is called GENACW32.EXE.

AFEMAIN The program name for the Processing System. The AFEMAIN program contains a
graphical user interface. It lets you enter key information and retrieve a list of archived
form sets you can display. The program name may vary slightly, depending on the
operating system platform you are using. For example, on Windows it is called
AFEMNW32.EXE.

CARFILE Compressed Archive File. The CARFILE may also be referred to as the ARCHIVE file. The
GenArc program compresses the NAFILE/POLFILE data for each transaction and writes
archives this data to the CARFILE. The GenArc program writes one or more records to
the CARFILE for each transaction it archives.

APPIDX Application Index. The GenArc program archives indexing information to the APPIDX
file. The GenArc program writes one record to the APPIDX file for each transaction it
archives.

TEMPIDX Temporary Application Index. The TEMPIDX file is used as a temporary storage for
records to be added to the Application Index file. The TEMPIDX file is used only when
the GenArc program is archiving to a DBASE IV database. TEMPIDX is not used by the
GenArc program when archiving to DB2, SQL Server, Oracle, or other databases.

Terminology

385

CATALOG Refers to the CATALOG file. As the GenArc program archives data to the CARFILE and
the APPIDX, it connects the CARFILE and APPIDX files with a key (by default called
ARCKEY). Part of this key is a field called the CATALOGID. The GenArc program
generates a unique CATALOGID (timestamp) each time it runs and writes this
CATALOGID to the CATALOG file. The GenArc program writes one record to the
CATALOG file for each GenArc run.

RESTART The Restart table. The Restart table describes whether a GenArc run was successful or
if the run failed. The GenArc program writes one record to the Restart table for each
distinct GenArc run. GenArc runs are made distinct by passing the GenArc program a
parameter called JOBID.

DFD Data Format Definition. A DFD file is used to describe the fields a file’s records are
composed of. DFD files have a particular format and are frequently used to map the
layout of system-related data files. The archive-related files defined above all have
default DFD files that describe their layout.

Chapter 8
Archiving and Retrieving Information

386

SYSTEM
SCENARIOS

You can run the batch archive GenArc program, on a variety of platforms. This program
creates and indexes the archived copy of the form set and its corresponding data.

You use Documaker’s Archive module to retrieve, display, and print archived form sets
from their workstations. The Archive module runs under various Windows 32-bit
operating systems such as Windows 2000 and Windows XP. The following tables
describe the various platforms and types of archives you can create and access.

NOTE: If your company has needs not covered below, contact your sales
representative.

Scenarios for OS/390
(MVS)

Scenarios for Windows
32-bit

Server

Operating system OS/390 OS/390

Database DB2 8.1 Oracle 8.1.7 or higher

Communications SNA 6.2 SNA 6.2

Client

Operating system Windows 32-bit Windows 32-bit

Database DB2 for Windows 7.2 na

Product SNA Server 6.2 SNA Server 6.2

Communications DDCS 2.3.2 DDCS 2.3.2

Archive (Documaker Workstation) Yes Yes

Server

Operating system Window
s

Window
s

Windows Windows Windows

Database DB2 8.1 xBase SQL Server
7.0

Sybase Oracle
8.1.7

Communications na na ODBC ODBC ODBC

Client

Operating system Windows Windows Windows Windows Windows

Database DB2 8.1 xBase SQL Server 7.0. Sybase Oracle 8.1.7

Communications ODBC na ODBC ODBC ODBC

Archive (Documaker
Workstation)

Yes Yes Yes Yes Yes

System Scenarios

387

Scenarios for UNIX

The DB2 database uses DB2LIB on if you are running the UNIX version of the GenArc
program. If you are archiving to UNIX from the Windows version of the GenArc program,
the system uses ODBC as the database communications layer.

You can also retrieve to Windows using DB2LIB or ODBC from tables created from the
UNIX version of the GenArc program.

For Oracle databases, the UNIX processes use ORALIB as the communications client to
the Oracle database server so the UNIX version of the GenArc program uses ORALIB.
The Oracle database server can reside on UNIX/Linux or on Windows and you can set
up ORALIB to communicate with the Oracle database server.

After the tables are populated by the UNIX version of the GenArc program, Windows
applications such as AFEMAIN can retrieve archived form sets using ODBC as the Oracle
database client communication layer.

Server

Operating
system

AIX version 5 or higher Linux (x86) Kernel
version 2.4.21

Solaris 9 or higher

Database DB2 8.1 or higher
Oracle 8.1.7 or higher
xBase

DB2 8.1 or higher
xBase

DB2 8.1 or higher
Oracle 8.1.7 or higher
xBase

Communications na na no

Client

Operating
system

Windows Windows Windows

Database DB2 8.1 DB2 8.1
Oracle

Communications ODBC see below ODBC

Archive
(Documaker
Workstation)

Yes see below Yes

Chapter 8
Archiving and Retrieving Information

388

ARCHIVE AND
RETRIEVAL
FEATURES

Regardless of the platform being used, the system has many features, including:

• Multiple media support

The archive and index files can be automatically or manually divided into separate
files which may be stored on multiple storage devices. This allows for the
segregation of archive data chronologically to improve search and retrieval
performance. Also, as archive files grow in size, they are not limited by the physical
space available on a single drive. This feature also lets you easily copy older
archive files to long-term media for storage without inhibiting the retrieval
capabilities.

• Stability and redundancy

The archive files are designed to be reliable. Indexing information is stored
redundantly in separate files so that the index can be regenerated independently
in the event of index corruption. There are a variety of archive utilities you can use
to repair archive files damaged by user error or hardware failure.

• Flexible indexing

The archive index can be configured to use certain field keys within the data,
allowing for retrieval based on the specified keys. This lets you design your archive
system to store information for later retrieval using the most relevant data fields.

• Network-ready

The system lets you use both local and network drives for storing of archive files.
The archive files are independent, so archive files can be split up over
combinations of local and network drives. The system keeps track of where
specific files are stored, so users do not need to know the physical or logical file
storage locations.

• Unattended operation

If configured to do so, the archive module can be executed as part of the batch
process. This allows data to be archived automatically.

• Restarting the archival process

Should the archive process get interrupted, you can easily restart the GenArc program
and have it automatically begin where it was interrupted. You can also use command
line options to process a specified range of transactions or a specific job if you are
running the GenArc program on multiple computers simultaneously.

Processing Overview

389

PROCESSING
OVERVIEW

The GenArc program can archive form set data to files and/or Database Management
Systems (DBMS). By default (if the INI file is not configured otherwise), the GenArc
program archives form set data to a DBASE IV DBMS (actually a combination – APPIDX
is DBASE IV file and CARFILE is a flat file). Below is a list containing some of the DBMS
systems the GenArc program can archive to.

NOTE: For information on the various INI option settings, see the appropriate
installation manual for your operating system and the technical
documentation.

DBASE IV The APPIDX, TEMPIDX and CATALOG files are created as DBASE IV files. This results in
the GenArc program creating DBF and MDX database files for the APPIDX, TEMPIDX and
CATALOG and a CAR file (non-DBASE IV) for the CARFILE. The restart option is not
available for DBASE IV archive.

DB2 The APPIDX, ARCHIVE, CATALOG and RESTART files are all created as DB2 tables.
GenArc communication to DB2 can be done through either the DB2’s native API or
DB2’s ODBC interface. The restart option is available for DB2 archive.

SQL server The APPIDX, ARCHIVE, CATALOG and RESTART files are all created as SQL Server
tables. SQL Server is an ODBC-compliant DBMS. The restart option is available for SQL
Server archive.

Oracle The APPIDX, ARCHIVE, CATALOG, and RESTART files are all created as Oracle tables.
Oracle is an ODBC-compliant DBMS. The restart option is available for Oracle archive.

FILES GENARC USES

Input files • NEWTRN file

• NAFILE file

• POLFILE file

Output files • Compressed Archive (CAR) file

• Application Index file

• Catalog file

• Restart file

HOW THE GENARC PROGRAM WORKS

Below is a brief description of how GenArc processing is performed. Most of the restart
information has been omitted but is covered in Using the Restart Option on page 395.

1 Store the command line parameters, load INI files, and check and update the
Restart table.

Chapter 8
Archiving and Retrieving Information

390

the GenArc program parses and stores any command line parameters passed to it.
INI files are read and loaded. The Status column of the Restart table is checked (if
archiving to a DBMS, not DBASE IV) to determine if the previous GenArc run by this
JOBID (DEFAULT_JOB_ID by default) was successful or whether it failed. If the last
GenArc run was successful the Status column of the Restart row is initialized to
Failed.

2 Get a CATALOGID and then check and update the CATALOG table.

the GenArc program gets a timestamp from the system and constructs a 10-
character CATALOGID. The CATALOG table is checked to make sure this
CATALOGID is not already in the table. If the CATALOGID is already in the table, the
GenArc program gets additional timestamps, until it finds one that is not already
in the table. Once it has a unique CATALOGID, the GenArc program constructs a
row containing this CATALOGID (CATALOGID column) and writes this row to the
CATALOG table so future runs of the GenArc program will not be able to use this
CATALOGID.

3 Read the NEWTRN file, get form set data from the NAFILE and POLFILE, then
combine and compress the information.

The NEWTRN file is opened and the first record (transaction) is read. The NEWTRN
record contains offset values into the NAFILE and POLFILE for the transaction. The
GenArc program uses these offset values to retrieve the NAFILE data and POLFILE
data for the transaction and it then combines and compresses this data.

4 Construct the ARCKEY, construct and archive the rows to the ARCHIVE table.

An eight-character sequential number (which will be incremented for each
transaction) is appended with the 10-character CATALOGID to form an 18-character
ARCKEY. This ARCKEY will be unique for each transaction. A record (or row) is
constructed to be written to the ARCHIVE table. This row (whose columns are
described by the CARFILE DFD file) contains the ARCKEY and the combined and
compressed NAFILE/POLFILE data (CARDATA column). If the CARDATA is too large
to fit on a single row, additional rows are constructed—each row will have the
same ARCKEY but will have an incremented Sequence Number (SEQ_NUM
column). The constructed rows are archived to the ARCHIVE table.

5 Construct and archive the rows to the APPIDX table.

The index information for the transaction is gathered and a row is constructed to
be written to the APPIDX table. This row (whose columns are described by the
APPIDX DFD file) contains the ARCKEY used to construct the row for the ARCHIVE
table above, as well as other information, such as Company, Line of Business,
PolicyNumber, and so on (columns identified in the INI group Trigger2Archive).
Once this APPIDX row is constructed it is archived to the APPIDX table. Only one
record is written to the APPIDX table for each transaction.

6 Repeat the process, update the Restart table, issue messages, and terminate
processing.

Processing Overview

391

Steps 3 through 5 are repeated until all the NEWTRN records have been read. Once
all the NEWTRN records have been read and the archiving is complete for all
transactions, the Status column of the Restart table row, which was set to failed in
step 1, is updated to reflect that the GenArc run was successful. The GenArc
program issues console messages indicating how may transactions were read,
archived, in error, and rolled back. The GenArc program then terminates
processing.

Chapter 8
Archiving and Retrieving Information

392

RUNNING GENARC The name of the GenArc program and how you run it varies somewhat depending on the
operating system you are using. The concepts are the same, though, for all operating
systems. For our example let’s assume you are running the GenArc program on
Windows 2000. To run the GenArc program on Windows 2000, you enter a command
like this:

C:FAP\MSTRRES\RPEX1\genacw32

Notice the command includes the program name (GENACW32) and it’s full path—from
the RPEX1 master resources directory. This command starts the GENACW32 program
(GENACW32.EXE) and attempts to locate a FSIUSER.INI file in the c:\fap\mstrres\rpex1
directory.

The GenArc program messages will look something like the sample below if you have
the LogToConsole option set as shown here:

< Control >

LogToConsole = Yes

Here are the sample messages:

--- GenArc ---

==> Processing: TransactionId-GroupName1-GroupName2-GroupName3-
TransactionType

==> Processing: 1234567-SAMPCO-LB1--T1

==> Processing: 2234567-SAMPCO-LB1--T1

==> Processing: 5SAMPCO-SAMPCO-LB2--T1

==> Processing: 6SAMPCO-SAMPCO-LB2--T1

==> Processing: 7SAMPCO-SAMPCO-LB2--T1

==> Processing: 8SAMPCO-SAMPCO-LB2--T1

==> Processing: 9SAMPCO-SAMPCO-LB2--T1

==> Processing: 4234567-FSI-CPP--T1

==> Processing: 5234567-FSI-GL--T1

==> Transactions Read : 9

==> Transactions Archived : 9

==> Transactions In Error : 0

==> Transactions Rolled Back: 0

==> Warning count: 0

==> Error count: 0

Elapsed Time: 2 seconds

--- GenArc Completed ---

Logging archived
transactions

If you want the GenArc program to produce a log of the archived transactions, include
the following INI option in the ArcRet control group:

< ArcRet >

ExportIndex = <file name>.

Be sure to include the full path and file name of the log file. If you omit the ExportIndex
option, the system does not create the log file.

Archiving to a database The system lets you archive information to a database, such as DB2, as an alternative
to archiving to flat files (CAR files). You use the ArchiveMem option in the FSISYS.INI
file to enable database archiving, as shown here:

< Archival >

ArchiveMem = Yes

Running GenArc

393

NOTE: When running on z/OS, the GenArc program sets the ArchiveMem option to Yes
if it was not in the FSISYS file and produces a warning. This prevents an error
(running with non-VSAM NA and POL files) or an abend (running with VSAM NA
and POL files) which will occur if the ArchiveMem option is set to No.

Sorting records in a
database

Use the DefaultTag option to specify the default tag in ODBC and DB2. This tag is then
used by the ORDER BY clause in the SQL database to sort records.

< DBTable:MYTABLE >

DefaultTag =

For the DefaultTag option, enter the name of the key from the DFD file.

Keep in mind this only works with ODBC and DB2. It does not work with xBase files.

Preparing SQL Add the AlwaysSQLPrepare option to make sure the ODBC driver always performs the
_SQLPrepare() function. Here is an example:

< DBHandler:ODBC >

AlwaysSQLPrepare = Yes

Omitting this option can the S1010 0 [Oracle][ODBC]Function sequence error.

COMMAND LINE OPTIONS

The GenArc program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example of starting the
GenArc program with command line options:

C:FAP\MSTRRES\RPEX1\genacw32 /ini=my.ini /jobid=tuesday1

The command line options are explained below:

INI Use the INI command line option to tell the GenArc program to open and read a
FSIUSER.INI file other than the one in the current directory.

JOBID (Abbreviation: J)

Use the JOBID command line option to associate a Job Identifier with this particular run
of the GenArc program. By default the GenArc program associates a run with the
identifier, DEF_JOB_ID. This identifier (either the default identifier or the identifier
specified with the JOBID option) is used when the Restart row in the Restart table is
searched for and/or updated. Using JOBID allows for concurrent runs of the GenArc
program.

DPASSWD (Abbreviation: DP)

Use the DPASSWD command line option to indicate the password to be used when
connecting to a DB2 database management system (DBMS). Use this option along with
the DUSERID option. You can also specify the DPASSWD option in the INI file as shown
below:

< DBHandler:DB2 >

Passwd = xxxxxxxx

Chapter 8
Archiving and Retrieving Information

394

DUSERID (Abbreviation: DU)

Use the DUSERID command line option to indicate the User ID to use when connecting
to a DB2 database management system. Use this option along with the DPASSWD
option. You can also specify the DUSERID option in the INI file as shown below:

< DBHandler:DB2 >

UserID = xxxxxxxx

OPASSWD (Abbreviation: OP)

Use the OPASSWD command line option to indicate the password to be used when
connecting to an ODBC-compliant database management system. Use this option
along with the OUSERID option. You can also specify the OPASSWD option in the INI
file as shown below:

< DBHandler:ODBC >

Passwd = xxxxxxxx

OUSERID (Abbreviation: OU)

Use the OUSERID command line option to indicate the password to be used when
connecting to an ODBC-compliant database management system. Use this option
along with the OPASSWD option. You can also specify the OPASSWD option in the INI
file as shown below:

< DBHandler:ODBC >

UserID = xxxxxxxx

RESTART (Abbreviation: R)

Use the RESTART command line option to tell the GenArc program to start processing
with the n’th record in the NEWTRN file. The GenArc program will skip n-1 NEWTRN
records and begin with the n’th record. When you use the RESTART command line
option you are explicitly restarting the GenArc program.

SQLID (Abbreviation: SQL)

Use the SQLID command line option to tell the GenArc program to perform a SET
CURRENTSQLID=SQLID at initialization time. You can also specify the SQLID option in
the INI file as shown below:

< DBHandler:DB2 >

CurrentSQLID = xxxxxxxx

STOPREC (Abbreviation: S)

Use the STOPREC command line option to tell the GenArc program to stop processing
on the n’th NEWTRN record.

Running GenArc

395

Using the Restart Option

The Restart option is only available if you are archiving both APPIDX and ARCHIVE data
into a database management system. The Restart option is not available if you are
using DBASE IV, which is the default archive method.

If the GenArc program detects an error during its processing, it can skip the transaction
in error and continue processing with the next transaction in the NEWTRN.DAT file. The
INI option listed below tells the GenArc program whether it should terminate
processing when it encounters errors:

< GenArcStopOn >

DBErrors = No

The default value for the DBErrors option is Yes, which means the GenArc program
stops processing when it receives an error. If you set the DBErrors option to No, the
GenArc program tries to skip the transaction in error and then continues with the next
transaction in the NEWTRN.DAT file.

Below is a brief description of how the GenArc program performs restart processing.
The description below does not include all of the information provided in How the
GenArc Program Works on page 389 but all of that information applies to restart
processing as well.

1 Check the command line for parameters, load INI files, and then check and update
the Restart table.

The GenArc program parses and stores any command line parameters passed to it.
INI files are read and loaded. If the JOBID parameter was passed, the GenArc
program will attempt to locate a row in the Restart table whose JOB_ID column
equals the JOBID value. If the GenArc program cannot locate a row whose JOB_ID
column matches the JOBID value passed in, the GenArc program issues an error
message and terminates.

If the RESTART parameter was passed, this is an explicit restart, meaning we are
supposed to restart on the n’th record of the NEWTRN.DAT file (skipping the first
n-1 records).

If the RESTART parameter was not passed, either the prior run of the GenArc
program was successful (and there is no need to try to restart) or the prior run was
unsuccessful but the operator made some change since encountering the error
that should allow the GenArc program to continue where it left off (implicit restart).

2 Determine the restart point and check the Restart table.

If this is an explicit restart, the GenArc program simply skips the first n-1 records
of the NEWTRN file and reads the n’th record. It begins the archiving process with
that record.

If this is either a no restart or an implicit restart, the GenArc program first locates
the appropriate row of the Restart table (based on the JOBID described in Step 1).
The GenArc program then checks the Status column of the Restart table to
determine if the previous GenArc run by this JOBID was successful or whether it
failed. If the last GenArc run was successful the Status column of the Restart row
is initialized to Failed.

Chapter 8
Archiving and Retrieving Information

396

If the last GenArc run failed, the COMM_RECS column is checked to see how may
transactions were committed during the prior GenArc run. The GenArc program
also retrieves the value of the LASTREC column – this column contains the actual
NEWTRN record for the last successful transaction. If the value of COMM_RECS is,
for example, X, the GenArc program then skips to the x’th record in the
NEWTRN.DAT file and compares the NEWTRN record with the value of the LASTREC
column – if the values do not match, the GenArc program issues an error message
indicating there is a consistency problem and terminates processing. If the values
of the x’th NEWTRN record and the LASTREC column do match, the GenArc
program positions itself to the x+1’th NEWTRN record and will begin the archiving
process with that record.

3 Archive form sets and then perform regular commits.

Before beginning the actual archive processing of the NEWTRN records, the
GenArc program checks the INI file to determine how often to perform commits to
the DBMS tables. The GenArc program checks the INI option listed below:

< ArcRet >

CommitEvery = 10

The default value for the CommitEvery option is 10. This value tells the GenArc
program to perform a commit every 10 transactions.

Once the GenArc program is positioned to the appropriate NEWTRN record where
it is to begin processing, it processes each NEWTRN record. Processing means the
NAFILE and POLFILE data are combined and compressed and archived to the
ARCHIVE table, an index record is constructed and is archived to the APPIDX table.

Also, the Restart table is updated: the COMM_RECS column receives the NEWTRN
record number—the record number of the most recently archived NEWTRN
transaction—and the LASTREC column receives a full copy of the actual NEWTRN
record itself. If at any time GenArc processing fails, a rollback is performed which
will restore all the GenArc tables to the last point of consistency, which is the last
commit point.

4 Finish processing the NEWTRN.DAT file and then update the Restart table.

The archiving and committing process described in step 3 is performed until all of
the NEWTRN records have been processed. When the final NEWTRN record is
processed, the Status column of the Restart table is updated from F (failed) to S
(successful) and a final commit is performed to make the last few table changes
permanent.

The GenArc program issues messages indicating how many transactions were
read from the NEWTRN.DAT file, how may transactions were skipped (if this was a
restart), how many transactions were successfully archived, how may transactions
were in error and how many transactions were rolled back. The sum of the number
of transactions skipped, archived, in error and rolled back should equal the
number of transactions read.

Running GenArc

397

USING GENARC WITH DOCUMANAGE

You can use Documanage to archive files created from the GenArc program. This is
done using the PO Handler. Set up the Documanage Administrator in this order:

• Map to database

• Business tables

• Cabinets

• Document types

• Authorities

The user-defined table contains a record for each folder in the cabinet. The OT_Docs
table includes one record for each document in the folder.

What happens when a transaction is archived:

1 The PO Handler searches the cabinet for a folder that matches the transaction
data. The FolderBy option in the Cabinet control group defines the fields used to
identify the correct folder.

2 If the folder exists, the data needed to create the document is checked into the
folder. A folder is created if a matching folder was not found. Creating the folder
adds a record to the table that defines the cabinet. Adding the document adds a
record to the OT_Docs table. The document is named by the fields defined in the
NameDocBy INI option. The document appears by this name in Documanage.

When you display a transaction using the Entry system:

1 Folders are searched based on the fields defined in the FolderBy option. If a folder
exists, the documents in the folder that match the type are searched. If no
documents match, the folder is ignored. The document type is defined in the
FileType option in the Cabinet control group. The system then creates a row in the
Formset Selection window for each document where the folder has matching
properties and document types.

2 When you select a document, the body of the document (CARDATA) is extracted
into a temporary file. The data is then retrieved into the ARCHIVE record and the
form set is displayed.

Cabinet

Folder A

Folder B

Document A

Document B

Defined in a user-defined table

Defined in the OT_Docs table

Chapter 8
Archiving and Retrieving Information

398

Here are examples of the INI options you use. These options set all archive tables to
use the PO Handler:

< DBTable:APPIDX >

DBHandler = PO

< DBTable:ARCHIVE >

DBHandler = PO

These options set up the PO Handler:

< DBHandler:PO >

UserID = EZPOWER

Password = EZPOWER

Cabinet = ARCCAB

Domain = FSI

The Cabinet option contains all of the fields in all tables. You would use the Domain
option if you are executing Documaker Workstation or the GenArc program in a
different domain than the server machine.

Here are the options for the cabinet:

< PO:ARCCAB >

FileType = dap

FolderBy = KEY1,KEY2,KEYID

NameDocBy = KEY1,KEYID,TRANCODE

Use this control group to map the DFD fields to the OT_Docs fields. For instance, this
example assumes that the AddedOn option is in the OT_Docs table:

< POField2Document >

AddedOn = CreateTime

Use this control group to map the OT_Docs fields to the DFD fields:

< PODocument2Field >

CreateTime = AddedOn

This control group is required for the GenArc program. The Restart table is not
supported by Documanage:

< Archival >

ArchiveMem = Yes

UseRestartTable = No

Option Description

FileType Use this option to define the file types that can be placed in the folder.

FolderBy Use this option to define the fields you want the system to use to sort the
document into the various folders. For instance, if you enter
Key1,Key2,KeyID, the system places documents which have the same
data in these fields in the same folder.

NameDocBy Use this option to tell the system which field contains the document
name. If you omit this field, the systems uses ARCKEY.

Running GenArc

399

These field names are reserved in the Documanage/PO Handler environment:

Other fields are associated with the folder unless you specify otherwise in the
PODocument2Field or POField2Document control group.

Here are samples of the FSIUSER.INI, APPIDX.DFD, and CARFILE.DFD files:

NOTE: Make sure you use upper- and lowercase correctly in DFD and INI files.

Forcing folder updates You can now use the ForceFolderUpdate option to force folder updates when the folder
already exists. This lets Documanage Folder Update Authorities, when set to No,
prevent duplicate archive entries from being sent to the Documanage archive
repository.

Here is an example of the ForceFolderUpdate option:

< PO:Prod >

FileType = PROD

FolderBy = DOC_TYPE_CODE,DOC_NUM,DOC_REV_NUM

NameDocBy = DOC_TYPE_CODE,DOC_NUM,DOC_REV_NUM

ForceFolderUpdate = Yes

The default is No.

FSIUSER.INI sample < Archival >

 ArchiveMem = Yes

 UseRestartTable = No

< ArcRet >

 AppIdx = ARC\APPIDX

 AppIdxDFD = DefLib\AppIdx.Dfd

 ArcPath = [CONFIG:Batch Processing] ARCPath =

 Arrangement = Stack

 CARFile = ARCHIVE

 CARFileDFD = .\DEFLIB\ODBC\carfile.dfd

 CARPath = [CONFIG:Batch Processing] CARPath =

 Catalog = ARC\CATALOG

 ExactMatch = No

 Key1 = Company

 Key2 = Lob

Field Description

CARData This field must be present in the CARFILE DFD file. Never folder on this field.
Should never be in the DB table under Documanage only in the DFD. Must
be defined in the CARFILE.DFD as a BLOB. Always associated with the
document.

ARCKey This field is the archive key. It must be in both the APPIDX.DFD and
CARFILE.DFD files. Required in the table under Documanage.

DESC (optional) The document description. By default, this field is associated
with document.

RunDate (optional) The document’s run date. By default, this field is associated with
document.

Chapter 8
Archiving and Retrieving Information

400

 KeyID = Policynum

 LBLimit = 500

 TempIdx = ARC\Temp

< Config:Batch Processing >

 ARCPath = ARC\

 BaseDef =

 CARPath = arc\

 CompLib = COMPLIB\

 DALFile =

 DefLib = DEFLIB\

 FntFile = REL95SM.fnt

 FontLib = ..\fmres\deflib\

 Form7x =

 FormDef = FORM.DAT

 FormFile =

 FormLib = FORMS\

 FormsetTrigger = SETRCPTB.DAT

 HelpLib = help\

 LogoFile =

 TableLib = table\

 WIPPath = wip\

 XrfFile = REL95SM

< Configurations >

 Config = Batch Processing

< Control >

 XrfExt = .FXR

< DBHandler:PO >

 Cabinet = RPEX1

 Domain = FSI

 PassWord = astros3

 UserID = erm

< DBTable:APPIDX >

 DBHandler = PO

< DBTable:ARCHIVE >

 DBHandler = PO

< DefaultTextArea >

 Chars = 10

 Font = 16010

 Lines = 2

< DefaultVarField >

 Font = 12010

 Length = 1

 Type = x

< Environment >

 FSISYSINI = .\FSISYS.INI

 FSITemp = TEMP

< MasterResource >

 BaseDef = [CONFIG:Batch Processing] BaseDef =

 CompLib = [CONFIG:Batch Processing] CompLib =

 DalFile = <CONFIG:Batch Processing> DalFile =

 DDTFile = [CONFIG:Batch Processing] DDTFile =

 DDTLib = [CONFIG:Batch Processing] DDTLib =

 DefLib = [CONFIG:Batch Processing] DefLib =

 DictionaryFile = [CONFIG:Batch Processing] DictionaryFile =

 FieldBaseFile = [CONFIG:Batch Processing] FieldBaseFile =

Running GenArc

401

 FntFile = [CONFIG:Batch Processing] FntFile =

 FontLib = [CONFIG:Batch Processing] FontLib =

 Form7x = [CONFIG:Batch Processing] Form7x =

 FormDef = [CONFIG:Batch Processing] FormDef =

 FormFile = [CONFIG:Batch Processing] FormFile =

 FormLib = [CONFIG:Batch Processing] FormLib =

 FormsetTrigger = [CONFIG:Batch Processing] FormsetTrigger =

 HelpLib = [CONFIG:Batch Processing] HelpLib =

 LbyLib = [CONFIG:Batch Processing] LbyLib =

LogoLib = [CONFIG:Batch Processing] LogoLib =

 LogoFile = [CONFIG:Batch Processing] LogoFile =

 TableLib = [CONFIG:Batch Processing] TableLib =

 XrfFile = [CONFIG:Batch Processing] XrfFile =

> PO:RPEX1 >

 FileType = DAP

 FolderBy = Company,Lob,Policynum

 NameDocBy = ARCKEY

< PODocument2Field >

 CreateTime = AddedOn

< POField2Document >

 AddedOn = CreateTime

< SignOn >

 UserID = FORMAKER

< WIPData >

 File = Wip\Wip

 Path = [CONFIG:Batch Processing] WIPPath =

APPIDX.DFD sample < FIELDS >

 FIELDNAME = UNIQUE_ID

 FIELDNAME = Company

 FIELDNAME = Lob

 FIELDNAME = Policynum

 FIELDNAME = RunDate

; FIELDNAME = InvFlag

; FIELDNAME = ClaimFl

 FIELDNAME = ARCKEY

 FIELDNAME = FormsetId

 FIELDNAME = RECNUM

 FIELDNAME = CONFIG

< FIELD:UNIQUE_ID >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 26

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 26

 KEY = Y

 REQUIRED = Y

< FIELD:Company >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 6

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 6

 KEY = Y

 REQUIRED = Y

< FIELD:Lob >

 INT_TYPE = CHAR_ARRAY

Chapter 8
Archiving and Retrieving Information

402

 INT_LENGTH = 3

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 3

 KEY = Y

 REQUIRED = Y

< FIELD:Policynum >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 7

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 7

 KEY = Y

 REQUIRED = Y

< FIELD:RunDate >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 8

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 8

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:InvFlag >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 1

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 1

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:ClaimFl >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 1

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 1

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:ARCKEY >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 18

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 18

 INT_PRECISION = 0

 KEY = Y

 REQUIRED = Y

< FIELD:FormsetId >

 EXT_TYPE = NOT_PRESENT

 EXT_LENGTH = 0

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 8

 INT_PRECISION = 0

Running GenArc

403

 KEY = N

 REQUIRED = Y

< FIELD:RECNUM >

 EXT_TYPE = NOT_PRESENT

 EXT_LENGTH = 0

 EXT_PRECISION = 0

 INT_TYPE = LONG

 INT_LENGTH = 4

 INT_PRECISION = 0

 KEY = N

 REQUIRED = Y

< FIELD:CONFIG >

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 10

 EXT_PRECISION = 0

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 10

 INT_PRECISION = 0

 KEY = Y

 REQUIRED = Y

< KEYS >

 KEYNAME = UNIQUE_ID

 KEYNAME = Company

 KEYNAME = Lob

 KEYNAME = Policynum

< KEY:Company >

 EXPRESSION = Company

 FIELDLIST = Company

< KEY:Lob >

 EXPRESSION = Lob

 FIELDLIST = Lob

< KEY:PolicyNum >

 EXPRESSION = Policynum

 FIELDLIST = Policynum

< KEY:UNIQUE_ID >

 EXPRESSION = UNIQUE_ID

 FIELDLIST = UNIQUE_ID

CARFILE.DFD sample < FIELDS >

 FIELDNAME = ARCKEY

 FIELDNAME = SEQ_NUM

 FIELDNAME = CONT_FLAG

 FIELDNAME = TOTAL_SIZE

 FIELDNAME = CARDATA

< FIELD:ARCKEY >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 18

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 18

 KEY = N

 REQUIRED = N

< FIELD:SEQ_NUM >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 5

 EXT_TYPE = CHAR_ARRAY

Chapter 8
Archiving and Retrieving Information

404

 EXT_LENGTH = 5

 KEY = N

 REQUIRED = N

< FIELD:CONT_FLAG >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 1

 EXT_TYPE = CHAR_ARRAY

 EXT_LENGTH = 1

 KEY = N

 REQUIRED = N

< FIELD:Total_Size >

 INT_Type = LONG

 INT_Length = 4

 EXT_Type = LONG

 EXT_Length = 4

 Key = N

 Required = N

< FIELD:CARData >

 INT_Type = BLOB

 INT_Length = 8

 EXT_Type = BLOB

 EXT_Length = 8

 Key = N

 Required = N

< Keys >

 KeyName = ARCKEY

 KeyName = SEQ_NUM

 KeyName = CAR_KEY

< KEY:ARCKey >

 Expression = ARCKEY+SEQ_NUM

 FieldList = ARCKEY,SEQ_NUM

< KEY:SEQ_NUM >

 Expression = SEQ_NUM

 FieldList = SEQ_NUM

< KEY:CAR_Key >

 Expression = ARCKEY

 FieldList = ARCKEY

Using the Oracle ODBC Driver

The Oracle ODBC driver is supported on all Windows platforms. The DFD and INI files
shown on previous pages require special consideration when using the Oracle driver.
Here are samples of CARFILE.DFD and FSIUSER.INI files.

CARFILE DFD To use a library using the Oracle ODBC driver, you must use an Oracle Insurance-
supplied CARFILE DFD file that differs from the standard (internal) DFD definition. The
supplied CARFILE.DFD file is located in the sample RPEX1 resources in the directory:

..\DEFLIB\ODBC_ORA\CARFILE.DFD

The contents of the CARFILE.DFD are listed below:

; CARFILE.DFD - this DFD is to be used when referencing a library or
; archive with the Oracle ODBC driver.

< FIELDS >

FIELDNAME = ARCKEY

FIELDNAME = SEQ_NUM

Running GenArc

405

FIELDNAME = CONT_FLAG

FIELDNAME = TOTAL_SIZE

FIELDNAME = CARDATA

< FIELD:ARCKEY >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 18

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 18

KEY = N

REQUIRED = N

< FIELD:SEQ_NUM >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 5

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 5

KEY = N

REQUIRED = N

< FIELD:CONT_FLAG >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 1

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 1

KEY = N

REQUIRED = N

< FIELD:TOTAL_SIZE >

INT_TYPE = LONG

INT_LENGTH = 4

EXT_TYPE = DOUBLE

EXT_LENGTH = 4

KEY = N

REQUIRED = N

< FIELD:CARDATA >

INT_TYPE = BLOB

INT_LENGTH = 252

EXT_TYPE = BLOB

EXT_LENGTH = 252

KEY = N

REQUIRED = N

< KEYS >

KEYNAME = ARCKEY

KEYNAME = SEQ_NUM

KEYNAME = CAR_KEY

< KEY:ARCKEY >

EXPRESSION = ARCKEY+SEQ_NUM

FIELDLIST = ARCKEY,SEQ_NUM

< KEY:SEQ_NUM >

EXPRESSION = SEQ_NUM

FIELDLIST = SEQ_NUM

< KEY:CAR_KEY >

EXPRESSION = ARCKEY

FIELDLIST = ARCKEY

To use the supplied CARFILE.DFD file, do the following:

1 Copy the CARFILE.DFD file into the directory where you store other DFD files, such
as the \DefLib directory.

Chapter 8
Archiving and Retrieving Information

406

2 Make the system use the CARFILE.DFD file by adding this entry into the INI file:

 < ArcRet >

 CARFileDFD = ..\DEFLIB\CARFILE.DFD

Creating the Database and Tables

Use these INI options to tell Library Manager to create a library using the Oracle ODBC
driver and to load resources from that library:

< MasterResource >

DALFile = LBYI

DDTFile = LBYI

FormFile = LBYI

LOGOFile = LBYI

< LibraryManager >

LBYLOGFile = LBYLOG

< Library:LBYI >

DBTable = LBYD

< DBTable:LBYI >

DBHandler = ODBC

< DBTable:LBYD >

DBHandler = ODBC

UniqueTag = ARCKEY+SEQ_NUM

< DBTable:LBYLOG >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

UniqueTag = CATALOGID

< DBHandler:ODBC >

Server = LBYSQL

Qualifier = LBYSQL

CreateTable = Yes

CreateIndex = No

UserID = userid

Passwd = password

Debug = No

< ODBC_FileConvert >

LBYI = DAP102_LBYI

LBYD = DAP102_LBYD

LBYLOG = DAP102_LBYLOG

A description of the above INI options follows:

Option Description

MasterResource control group

DALFile Enter the name of the library from which you want the system to retrieve
DAL scripts and DAL script libraries.

Running GenArc

407

DDTFile Enter the name of the library from which you want the system to retrieve
DDT files.
If you define this option, the system expects to find all DDT files there,
including the MASTER.DDT file. You can use the following option to
exclude the MASTER.DDT file from being located in the library:

< RunMode >

MasterDDTNotInLibrary = Yes

The only advantage to having an external MASTER.DDT file is if your
setup creates the MASTER.DDT file on the fly, before a transaction is run.
If that is the case, it is easier to manipulate if it is outside of the library.

FormFile Enter the name of the library from which you want the system to retrieve
FAP files.

LOGOFile Enter the name of the library from which you want the system to retrieve
LOG (logo) files.

LibraryManager control group

LBYLOGFile Enter the name of the library log file. The library log contains information
about resources that are added to, deleted from, or updated in the
library. The LBYLOGFile does not have to use the same type of DB handler
as the library index and data portions.

Library:LBYI control group

DBTable Enter the name of the data component of the library. In this example, the
names LBYI and LBYD are used to emphasize that one table, LBYI,
represents the library index and one table, LBYD represents the library
data. You can use up to eight characters to give these tables any name
you like. See the ODBC_FileConvert control group if you need to map
these eight-character names to longer table names.

DBTable:LBYI control group

DBHandler Tells the system to access the LBYI table using the data base handler
named ODBC. Because of this INI value, the system expects to find an INI
control group named DBHandler:ODBC. Microsoft's SQL Server is an
ODBC-compliant database.

DBTable:LBYD control group

DBHandler Tells the system to access the LBYD table using the data base handler
named ODBC. Because of this INI value, the system expects to find an INI
control group named DBHandler:ODBC.

UniqueTag In this example, ARCKEY+SEQ_NUM specifies that the columns ARCKEY
and SEQ_NUM can be combined to represent a unique tag for the table.
This unique tag is only used for internal purposes. If you do not specify a
unique tag for this table, and a column with the name UNIQUE_ID does
not exist within the table, you receive warning messages indicating that
there is no unique tag defined.

DBTable:LBYLOG control group

Option Description

Chapter 8
Archiving and Retrieving Information

408

DBHandler Tells the system to access the LBYLOG table using the data base handler
named ODBC. Because of this INI value, the system expects to find an INI
control group named DBHandler:ODBC.

DBTable:CATALOG control group

DBHandler Tells the system to access the CATALOG table using the data base
handler named ODBC. The CATALOG table is used to temporarily store
CATALOGID values used to construct an ARCKEY.

UniqueTag This specifies that the column CATALOGID represents a unique tag for
this table. This unique tag is only used for internal purposes. If you do not
specify a unique tag for this table, and a column with the name
UNIQUE_ID does not exist within the table, you receive warning
messages indicating that there is no unique tag defined.

DBHandler:ODBC control group

Server Specifies the name of the ODBC data source for this database handler,
such as LBYSQL. You must also define an ODBC data source with this
name.

Qualifier Specifies the name of the database for this database handler, such as
LBYDBASE. If you omit this option, the database set up as the default
database for the LBYSQL ODBC data source is used.

CreateTable Specifies the system should create any tables Library Manager needs,
that do not already exist, at run time.

CreateIndex Specifies the system should create any database indexes it needs, that
do not already exist. Always set this option to No.

UserID Enter the user ID to use when connecting to the data base management
system.

Passwd Enter the password to use when connecting to the data base
management system.

Debug Enter Yes to turn on tracing for the Documaker ODBC DB handler. Enter
No or omit this option except in troubleshooting situations.

ODBC_FileConvert control group
This INI control group lets you map table names of eight characters or less to table names
longer than eight characters. The table names you specify must follow the table naming
conventions for the data base management system.

LBYI Specifies the name of the table referenced in several INI locations as LBYI
on the data base management system.

LBYD Specifies the name of the table referenced in several INI locations as
LBYD on the data base management system.

LBYLOG Specifies the name of the table referenced in several INI locations as
LBYLOG on the data base management system.

Option Description

Running GenArc

409

Resolving Errors

If the GenArc program produces an error similar to the following example, it indicates
the INT_Length or EXT_Length (or both) options in the CARData control group have not
been set in the CARFILE.DFD file:

Error:

====

GenArc

Transaction Error Report - System timestamp: Fri Sep 07 02:07:33 2001

-->Transaction: 1234567

Error in RPFAPErrorNotify(): FAP library error:
area:<..\C\dxmerror.c

Jun 16 2001 12:44:04

400.101.002

DXMSetLastError>, code:<2>, code:<2>, msg<Invalid object handle was
passed>.

An example of the correct INI settings is shown in the FSIUSER.INI sample on page 399.

Chapter 8
Archiving and Retrieving Information

410

VIEWING ARCHIVES IN DOCUMANAGE

You can use the ARCVIEW utility to view Documaker archive files checked into the
Documanage archive system. This utility only runs under 32-bit Windows.

To use this utility, follow these steps:

1 Register the Documanage file extension (DPA) in Windows so the operating
system will automatically use the ARCVIEW utility to view these files.

2 Set the FSIPATH environment variable to point to the directory where the INI file
for the AFEMAIN program is stored. Here is an example:

FSIPath = d:\rpex1

NOTE: The AFEMAIN program is the executable file for Documaker Workstation.

3 Place a menu file, similar to the MEN.RES file used by Documaker Workstation, be
in the directory specified by the FSIPath option. The name of the menu file should
be ARCVIEW.RES.

NOTE: You can edit this file to remove functionality you do not want to include.

4 Edit the FILETYPES.INI file on the computer where the Documanage server runs.
Add the DPA file extension to the list of file types to view with the ARCVIEW.EXE
program. This causes the Documanage client to use the viewer registered in
Windows instead of the default Documanage viewer.

You can now click on Documaker archive files in Windows Explorer to display them.

Running GenArc

411

USING MULTIPLE SIMULTANEOUS ODBC CONNECTIONS

The system supports multiple simultaneous ODBC connections via different ODBC
drivers. This will, for instance, let you connect at the same time to multiple:

• Databases on an SQL server

• Databases on an SQL server and Excel spreadsheet databases

• Access databases and Excel spreadsheet databases

• Access databases

• Excel spreadsheet databases

• Databases for which you have an ODBC-compliant driver

The system does not support multiple different DB2 databases using native DB2
drivers. Support is limited to ODBC-compliant data bases.

NOTE: Keep in mind the ODBC_FileConvert and ODBC_FieldConvert control groups
are global and affect all of the handlers.

For example, to access a database on a SQL Server and in a Microsoft Excel
spreadsheet simultaneously, you first set up the ODBC Data Sources Administrator
panel as illustrated and these INI options:

< DBHandler:DBSQL >

Class = ODBC

Server = SQL Server

< DBHandler:DBEXCEL >

Class = ODBC

Server = MS Excel

The database handler name is limited to 22 characters.

Chapter 8
Archiving and Retrieving Information

412

For the table you want to open using the appropriate handler add this INI option:

< DBTable:MYTABLE >

DBHandler = DBSQL

Debug INI option can be specified under each of the DBHandler:XXX control group.

If you use the name of the ODBC handler in the appropriate DAL function, you can omit
the DBTable:XXX control group. For more information on DAL functions and setting up
database handlers for Excel databases, see the DAL Reference.

Using WIP and the Archive Index File

413

USING WIP AND
THE ARCHIVE

INDEX FILE

Since the Archive module supports custom application archive index files, you must
create an application archive index record from a WIP record. The following example
shows a standard application archive index file.

The Archive option in the AFEProcedures control group defines the DLL and the function
name to call when converting a WIP record into an archive record. The standard DLL is
AFEW32 and the standard function is called AFEWip2ArchiveRecord. Here is an
example of the standard DLL and function:

< AFEProcedures >

Archive = AFEW32-> AFEWip2ArchiveRecord

The AFEWip2ArchiveRecord function uses options in the AFEWip2ArchiveRecord
control group. Options in the AFEWip2ArchiveRecord control group are:

Archive Field Name = WIP Field Name

Where ARCHIVE FIELD NAME is the actual field name from archive DFD file and WIP
FIELD NAME is the field name from WIP file. This means that data from WIP record field
WIP FIELD NAME would be copied into archive record field ARCHIVE FIELD NAME.

For a base application archive index file, this control group and options are as follows:

< AFEWIP2ArchiveRecord >

 KEY1 = KEY1

 KEY2 = KEY2

 KEYID = KEYID

 RECTYPE = RECTYPE

 CREATETIME = CREATETIME

 ORIGUSER = ORIGUSER

 CURRUSER = CURRUSER

 MODIFYTIME = MODIFYTIME

 FORMSETI = FORMSETID

 TRANCODE = TRANCODE

 STATUSCODE = STATUSCODE

 FROMUSER = FROMUSER

 FROMTIME = FROMTIME

 TOUSER = TOUSER

 TOTIME = TOTIME

 DESC = DESC

 INUSE = INUSE

 ARCKEY = ARCKEY

 APPDATA = APPDATA

 RECNUM = RECNUM

 RUNDATE = RUNDATE

 INVFLAG = INVFLAG

 CLAIMFL = CLAIMFL

Chapter 8
Archiving and Retrieving Information

414

FORMATTING
ARCHIVE FIELDS

The system lets you format data values that will be mapped to the archive index record
from the Trigger2Archive control group. Normally, this group is defined like this:

< Trigger2Archive >

Key1 = Company

Key2 = LOB

KeyID = TransID

RunDate = RunDate

NOTE: These same options in the ArcRet control group are used for searching the key
fields in the archive index file.

Where the value on the left of the equals sign designates an archive index field (defined
in APPIDX.DFD) and the value on the right represents a GVM variable normally
associated with the NEWTRN record (defined by the TRNDFDFL.DFD). These options are
used by the GenArc program to add the Key1, Key2, and KeyID information to the
archive index file.

You can have the system format these archive fields in several ways:

• Preserving the case of values in the key fields

• Formatting dates

• Storing a constant value

Converting the case of
key fields

By default, the system converts the case of information in the Key1, Key2, and KeyID
fields to uppercase when it archives a record. It does this to reduce the amount of time
it takes to find a record during a search. You can, however, use the CaseSensitiveKeys
option to preserve the case of the Key1, Key2, and KeyID values as entered. For
example, this option

< Archival >

CaseSensitiveKeys = Yes

Tells the system to preserve the case of the Key1, Key2, and KeyID fields as entered. If
you enter No or omit the CaseSensitiveKeys option, the system convert the values for
these options to uppercase before it archives the record.

Reformatting dates You can do optional date reformatting and assign a constant data value not associated
with a GVM. Here is an example of date reformatting:

RUNDATE = TRANDATE;D1-4;D4

You still are associating the archive index field with a GVM variable normally loaded
from the NEWTRN record. Separated by a semicolon, you can define the date format of
the input variable and specify a different format for the final value after the second
semicolon.

In this example, the RUNDATE field is to be set from the TRANDATE field from the
NEWTRN record. Note the first D that follows the semicolon indicates you want a date
conversion. This example converts the data from format 1-4 (MM-DD-YYYY) to format
D4 (YYYYMMDD) before storing it in the RUNDATE field of the archive index.

NOTE: Always use YYYYMMDD to store your run date in the archive.

Formatting Archive Fields

415

Storing a constant value Here is an example of how you store a constant value instead of associating the field
with a GVM variable from the NEWTRN record.

USERID = NULL; ;TOM

Keep in mind that NULL is a keyword and is not interpreted as the name of a GVM
variable associated with any record. When using NULL, the system skips to the final
destination format section (the second semicolon) and places whatever value is
defined there in the resulting archive index field. In this case, that value is TOM.

Since this method assumes there will be a constant text value defined after the second
semicolon, you can also use INI built-in functions to provide this value. For instance,
consider this example.

USERID = NULL; ; ~GETENV USERNAME

This is similar to the previous example except it uses the GetEnv (Get Environment
Variable) INI function to get the value associated with USERNAME from the
environment to supply the field value.

Chapter 8
Archiving and Retrieving Information

416

RETRIEVING
ARCHIVED FORMS

Once the form set information has been archived, you can re-create those form sets by
retrieving the form set information from the archive file, as long as you have access to
the resource library which contains the forms. You do this using the Archive module of
Documaker.

NOTE: The Archive module of Documaker can also archive form sets. For more
information, see the Documaker User Guide. The following information is
provided here so you can have a basic understanding of the retrieval process.

FILES THE ARCHIVE MODULE USES

The Archive module (the AFEMAIN program) uses the archive index file to aid in the
retrieval of form set information through the use of keys. You can define these keys to
provide meaningful search criteria such as account or policy numbers, company
names, or customer names.

Input files • Compressed Archive (CAR) file

• Application Index file

• Catalog file

• Restart file

• Resource file such as FAPLIB, DEFLIB, and so on

Output files None.

USING THE ARCHIVE MODULE

To retrieve a document from archive using the Archive module, you select the Retrieve,
Formset option. The Retrieve Document window appears.

You can configure the Retrieve Document window using these FSISYS.INI settings:

< Group1 >

Title1 = Company

Retrieving Archived Forms

417

Title2 = Line of Business

Title3 = Policy #

Title4 = Run Date

Title5 = Invoice Only

Title6 = Claim Only

Title7 = Policy # Date St Tr Description

NOTE: Title5 and Title6 are not used in the base Documaker Workstation system, but
are available if you choose to customize your installation. If you remove these
options from the FSISYS.INI file, the system does not display those fields.

Retrieval Options

If you click the Options button on the Retrieve Document window, the Retrieval Options
window appears, as shown below.

This window is shown with default text. If you want to change these default values, add
values to DlgTitles and ArcRet control groups as follows:

Beside this DlgTitles option Enter the title for the…

RetOptionsDlgTitle window (Retrieve options in this example)

RetrOptionsPrintOnly Print only field

RetrOptionsOnlyEntry Display only field

RetrOptionsStackOnly Stack only mode field

Chapter 8
Archiving and Retrieving Information

418

The options in the ArcRet control group define only the default settings for fields users
can change actual values by checking or unchecking the fields on the window.

For this ArcRet option Enter…

Arrangement StackOnly. If StackOnly mode is on, the system shows one
form at a time and the Stack, Tile, and Cascade options are
available. In this mode DisplayPrintOnly is set to Yes
DisplayOnlyEntry is set to No and cannot be changed.

DisplayPrintOnly Yes. This setting displays only the forms in the form set
defined as Print Only, along with variable data forms
included in the form set. These forms do not contain
manually-entered data.

DisplayOnlyEntry No. This setting displays only forms containing variable data.
The system will omit reference forms.

Working with Documanage

419

WORKING WITH
DOCUMANAGE

If you use Documanage as part of your archiving solution, you may want to use
Documanage data types when mapping archive index data. You may also want to
categorize the documents you archive.

These topics discuss how to do these tasks.

• Using Documanage Data Type Support on page 420

• Setting Up Automatic Category Overrides on page 421

• Mapping Documaker Archive Fields to Documanage Properties on page 422

• Using Next/Retrieve Cursor on page 424

• Enhanced Documanage Document Extended Properties Support on page 425

Chapter 8
Archiving and Retrieving Information

420

USING DOCUMANAGE DATA TYPE SUPPORT

Pulling Documaker archive documents (DPA files) into Documanage lets you use
Documanage-supported data types when mapping the Documaker archive index data
into the Documanage folder and document properties tables.

This lets you search, query, and present the data through Documanage clients such as
Documanage Workstation and Documanage Bridge-based clients. For example, you
can store Documaker date/time data as Documanange date/time data types and
enable the use of date ranges and calendar functionality in web page design and for
sorting and searching Documaker archive documents. Data mining and reporting can
also benefit from better data representation and storage.

The DMIA DBHandler (DMILIB module: [DBHandler:DMIA]) used with the GenArc
program and other Documaker Server archive processes lets you use additional
Documanage Data Types in Documanage Folder fields instead of only supporting the
varchar or char data types.

Keep in mind...

• The date/time data types must be in either a Documaker D4 string format:

 YYYYMMDDHHMMSS

The hours, minutes, and seconds (HHMMSS) are optional. For example, the
D4 format can be sent in as:

20070131 (Jan. 31, 2007)

2007013113 (Jan. 31, 2007 1PM)

200701311330 (Jan. 31, 2007 1:30PM)

20070131133055 (Jan. 31, 2007 1:30:55 PM)

Or in a Documanage client-supported string format:

YYYY-MM-DD HH:MM:SS.msec

The hours, minutes, seconds and milliseconds (HH:MM:SS.msec) are
optional. For example, the Documanage format can be sent in as:

2007-01-31

2007-01-31 13

2007-01-31 13:30

2007-01-31 13:30:55

2007-01-31 13:30:55.800

• Documaker’s Archive Application Index Data Format Definition file (APPIDX.DFD)
fields must remain as CHAR_ARRAY for the INT_TYPE and EXT_TYPE with the
appropriate INT_LENGTH and EXT_LENGTH values for representing the data in
string format.

Working with Documanage

421

SETTING UP AUTOMATIC CATEGORY OVERRIDES

You can categorize DPA documents from Documaker Server Archive into Documanage.
This makes it easier to do searches and queries when retrieving via Documanage
Bridge. It also provides more flexibility in using Extended Document Properties (XDPs),
which allows for different XDPs in the different document categories so transactions
can store different relative data in the XDPs.

You can use input data to set the Documanage document's Category property during
archival via the Documaker Server Archive interface (DMIA). The default value for this
property comes from the FileType INI option during archival, but you can also
dynamically override the default with input data using this INI option:

< POField2Document >

ObjectClass = AppIdx_Field

During retrieval, the Category Document property can be loaded into the Documaker
AppIdx_Field using this INI option:

< PODocument2Field >

AppIdx_Field = ObjectClass

Extended Document Properties (XDPs) are based on the Category value set during
ingestion. Mappings to XDPs only occur if the XDP for the Document Category exists by
name. Otherwise, they are ignored and no error is generated. This allows different data
to be populated into the XDPs based on the category used.

Here is an example of how you would override the default document category of DPA
with the APPIDX.DFD field value of the field FormSet:

< DMIA:RPEX2ARC >

; FileType is the default Category/ObjectClass value

FileType = DAP

< PODocument2Field >

; Category/ObjectClass is overridden by the value in the AppIdx

; field FormSet

FormSet = ObjectClass

< POField2Document >

; Category/ObjectClass is overridden by the value in the AppIdx

; field FormSet

ObjectClass = FormSet

Keep in mind the APPIDX.DFD field used to override the document Category in the INI
options POField2Document and PODocument2Field can not be used to also set other
folder or document properties. For instance, in the example another entry for FormSet
can not be used to map FormSet to another folder or document or XDP field.

Chapter 8
Archiving and Retrieving Information

422

MAPPING DOCUMAKER ARCHIVE FIELDS TO DOCUMANAGE
PROPERTIES

When mapping Documaker archive field names to Documanage Folder and Extended
Document Properties, you can use DB Field Name values. This lets you modify the
Folder Property Name and Extended Document Property Name values in Documanage
Server to effect changes to applications that use these values for input field/control
labels without requiring reconfiguring your Documaker to Documanage interface
setup.

You can map Documaker archive index data to either the Documanage Folder Property
Name field and the Documanage Extended Document Property Name field (default
behavior as previously provided) or to the Documanage DB Field Name, which is the
database column name, based on the MapByDBName option.

< DMIA:cabinetname >

MapByDBName =

You can also use these new control groups for even more control over mapping:

• DMIA_FieldConvert_cabinetname

• DMIA_FieldConvert

NOTE: The DMIA_FieldConvert_cabinetname control group overrides any entries in
the DMIA_FieldConvert control group.

Also, all filter and order by syntax generated and submitted to the Documanage Server
and used in SQL statements now uses qualified column names instead of the
Documanage Folder Property and Extended Document Property names to avoid
requiring the DB column name to be the same as the Property Name.

Here are some examples:

Example 1 The Documaker archive index (AppIdx) fields QTY and PreTaxAmt are mapped to
Documanage Field or Extended Document Property name Quantity and Pretax Amount.
All other Documaker archive index fields map to the same named Field and Extended
Document Property names with a test for the name with spaces as they exist and then
for spaces replaced with underscores (case-insensitive):

< DMIA:RPEX2ARC >

MayByDBName = No

< DMIA_FieldConvert >

QTY = Quantity

PreTaxAmt = Pretax Amount

Option Description

MapByDBName Enter Yes to map to Documanage DB Field Names values for both
Folder Properties and Extended Document Properties. The default is
No, which instead maps them to the Folder Property Names and
Extended Document Property Names (Display Names).

Working with Documanage

423

Example 2 The Documaker archive index fields QTY and PreTaxAmount are mapped to
Documanage DB Field Name Quantity and PreTax_Amount. All other Documaker
archive index fields map to the same named DB Field Name (case-insensitive):

< DMIA:RPEX2ARC >

MayByDBName = Yes

< DMIA_FieldConvert >

QTY = Quantity

PreTaxAmt = Pretax Amount

Chapter 8
Archiving and Retrieving Information

424

USING NEXT/RETRIEVE CURSOR

Documanage supports a next/retrieve cursor for use by the ARCRET utility when
accessing data from Documanage.

The ARCRET utility lets you retrieve records from archive and produce files. You can
then send these files to plug-in functions to print or migrate the archive records or to
test the archive retrieval results.

NOTE: The ARCRET utility’s /REV parameter is only applicable to an archive stored in
xBase.

Understanding the System This eliminates the need to use the /BQ option for a Documanage archive. The previous
(before version 11.3) interface to Documanage did not support retrieving documents
while sequentially reading the index. The /BQ option told the system to queue batches
of records into memory before attempting to retrieve each associated documents. This
could be memory intensive and affected performance. With version 11.3 and higher, the
system can retrieve the associated document while reading the index rows.

Working with Documanage

425

ENHANCED DOCUMANAGE DOCUMENT EXTENDED PROPERTIES
SUPPORT

You can populate Documanage Extended Document Properties (XDPs) using
Documaker Server archive indexed data. There are no limits to the number, sizes, and
data types you can use at the document level. This lets you use XDPs when you are
directly archiving to Documanage.

NOTE: Before version 11.1, only Documanage Basic Document Properties could only
be used for user data and the number, size and type of data available was
limited.

To use this feature, you must...

• Create the extended document properties in Documanage in the proper document
categories

• Set up the GenArc program to map to them.

• Add the names you use for the XDP fields into GenArc's application index file
(APPIDX.DFD).

• Set up Documaker Server to capture extract data to populate into the XDP fields.

The fields are propagated during GenTrn processing from the XML extract file to the
TRNFILE. During GenData processing, the fields are populated from the TRNFILE to the
NEWTRN file. Then, during GenArc processing, the fields are populated from the
NEWTRN file to the APPIDX structure and into the Documanage XDP fields.

The field names added to the APPIDX.DFD file must have the exact same names as
those set up in Documanage's Category Extended Properties. Here are some examples:

• PolicyDate

• PolicyType

• FormSet

• Number

• FinalDate

• Amount

• PreTaxAmt

• QTY

• Percentage

• Ratio

• Overage

• Specifier

For the appropriate fields to end up in the structure mapped by GenArc's APPIDX.DFD
file, those fields must be propagated from the NEWTRN.DAT file. This file is created
during GenData processing and is mapped using the TRNDFDFL.DFD file.

Chapter 8
Archiving and Retrieving Information

426

For the appropriate fields to exist in the NEWTRN file, those fields must be propagated
from the TRNFILE. This file is created during GenTrn processing and is mapped by the
TRNDFDFL.DFD file.

The TRNFILE is populated with data which is usually retrieved from the extract file. This
data is mapped using the INI options in the Trn_Fields control group or by using the
Ext2GVM rule in the AFGJOB.JDT file.

NOTE: Documanage Extended Document Properties is not supported by Docusave so
the Stacked DPA feature will not propagate the XML header data in the DPA
files into Documanage's XDP fields.

To handle the propagation of these fields, you must include additional information in
these files:

• FSISYS.INI file or the AFGJOB.JDT file or both

• TRNDFDFL.DFD file

• APPIDX.DFD file

• Extract file

Here are some examples of the additional information required in these files:

FSISYS.INI file Here is an excerpt from the FSISYS.INI file:

< Trn_Fields >

SYM = 1,3,N

POL = 4,7,N

EffectiveDate = 25,6,N;DB;D4

Module = 38,2,N

State = 43,2,N

Trn_Type = 45,2,N

Company = 35,3,N

LOB = 40,3,N

SentToManualBatch = 47,2,N

Branch = 49,2,N

RunDate = 51,14,N

DueDate = 100,8,N

Cust_Num = 87,10,N

PKG_Offset = 97,10,N

TRN_Offset = 107,10,N

X_Offset = 117,10,N

NA_Offset = 127,10,N

POL_Offset = 137,10,N

TokenLen = 118,316,N

; PolicyDate = 51,14,N

PolicyType = 45,2,N

FormSet = 38,2,N

< Trigger2Archive >

Key1 = COMPANY

Key2 = LOB

KeyID = POL

Customer = customer

RunDate = RUNDATE

Working with Documanage

427

DueDate = DueDate

TokenLen = TOKENLEN

PolicyDate = PolicyDate

PolicyType = PolicyType

FormSet = FormSet

Number = Number

FinalDate = FinalDate

Amount = Amount

PreTaxAmt = PreTaxAmt

Qty = QTY

Percentage = Percentage

Ratio = Ratio

Overage = Overage

Specifier = Specifier

< Trn_File >

MaxExtRecLen = 750

BinaryExt = N

TRNDFDFL.DFD file Here is an excerpt from the TRNDFDFL.DFD file:

< FIELDS >

FIELDNAME = sym

FIELDNAME = pol

FIELDNAME = EffectiveDate

FIELDNAME = module

FIELDNAME = state

FIELDNAME = trn_type

FIELDNAME = company

FIELDNAME = lob

FIELDNAME = SentToManualBatch

FIELDNAME = branch

FIELDNAME = RunDate

FIELDNAME = DueDate

FIELDNAME = cust_num

FIELDNAME = customer

FIELDNAME = PKG_Offset

FIELDNAME = TRN_Offset

FIELDNAME = X_Offset

FIELDNAME = NA_Offset

FIELDNAME = POL_Offset

FIELDNAME = TOKENLEN

FIELDNAME = PolicyDate

FIELDNAME = PolicyType

FIELDNAME = FormSet

FIELDNAME = Number

FIELDNAME = FinalDate

FIELDNAME = Amount

FIELDNAME = PreTaxAmt

FIELDNAME = QTY

FIELDNAME = Percentage

FIELDNAME = Ratio

FIELDNAME = Overage

FIELDNAME = Specifier

< FIELD:PolicyDate >

INT_TYPE = CHAR_ARRAY

Chapter 8
Archiving and Retrieving Information

428

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 23

KEY = N

REQUIRED = Y

< FIELD:PolicyType >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 31

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 30

KEY = N

REQUIRED = Y

< FIELD:FormSet >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 41

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 40

KEY = N

REQUIRED = Y

< FIELD:Number >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 11

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:FinalDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 23

KEY = N

REQUIRED = N

< FIELD:Amount >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 16

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:PreTaxAmt >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 16

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:QTY >

Working with Documanage

429

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 6

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 5

KEY = N

REQUIRED = N

< FIELD:Percentage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 9

KEY = N

REQUIRED = N

< FIELD:Ratio >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 9

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 8

KEY = N

REQUIRED = N

< FIELD:Overage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 11

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:Specifier >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 2

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 1

KEY = N

APPIDX.DFD file Here is an excerpt from the APPIDX.DFD file:

[FIELDS]

FIELDNAME=KEY1

FIELDNAME=KEY2

FIELDNAME=KEYID

FIELDNAME=customer

FIELDNAME=RUNDATE

FIELDNAME=DueDate

FIELDNAME=INVFLAG

FIELDNAME=CLAIMFL

FIELDNAME=ARCKEY

FIELDNAME=FORMSETID

FIELDNAME=TOKENLEN

FIELDNAME = PolicyDate

FIELDNAME = PolicyType

FIELDNAME = FormSet

FIELDNAME = Number

Chapter 8
Archiving and Retrieving Information

430

FIELDNAME = FinalDate

FIELDNAME = Amount

FIELDNAME = PreTaxAmt

FIELDNAME = QTY

FIELDNAME = Percentage

FIELDNAME = Ratio

FIELDNAME = Overage

FIELDNAME = Specifier

< FIELD:PolicyDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 24

KEY = N

REQUIRED = Y

< FIELD:PolicyType >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 30

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 30

KEY = N

REQUIRED = Y

< FIELD:FormSet >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 40

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 40

KEY = N

REQUIRED = Y

< FIELD:Number >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:FinalDate >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 24

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 24

KEY = N

REQUIRED = N

< FIELD:Amount >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 15

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 15

KEY = N

Working with Documanage

431

REQUIRED = N

< FIELD:PreTaxAmt >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 15

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 15

KEY = N

REQUIRED = N

< FIELD:QTY >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 5

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 5

KEY = N

REQUIRED = N

< FIELD:Percentage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 9

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 9

KEY = N

REQUIRED = N

< FIELD:Ratio >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 8

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 8

KEY = N

REQUIRED = N

< FIELD:Overage >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 10

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 10

KEY = N

REQUIRED = N

< FIELD:Specifier >

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 1

EXT_TYPE = CHAR_ARRAY

EXT_LENGTH = 1

KEY = N

REQUIRED = N

NOTE: DATE type data must be passed in a format that is accepted by Documanage
Server or in a Documaker Server D4 format (YYYYMMDD).

Chapter 8
Archiving and Retrieving Information

432

AFGJOB.JDT file Here is an excerpt from the AFGJOB.JDT file:

;Ext2Gvm;2;11,TOTAL1REC 147,4,Number;

;Ext2Gvm;2;11,TOTAL1REC 25,24,PolicyDate;

;Ext2Gvm;2;11,TOTAL1REC 49,23,FinalDate;

;Ext2Gvm;2;11,TOTAL1REC 143,15,Amount;

;Ext2Gvm;2;11,TOTAL1REC 158,10,PreTaxAmt;

;Ext2Gvm;2;11,TOTAL1REC 168,4,QTY;

;Ext2Gvm;2;11,TOTAL1REC 172,3,Percentage;

;Ext2Gvm;2;11,TOTAL1REC 175,8,Ratio;

;Ext2Gvm;2;11,TOTAL1REC 183,6,Overage;

;Ext2Gvm;2;11,TOTAL1REC 189,1,Specifier;

Extract file Here is an excerpt from a single record in a flat extract file:

SCOREMOVEDHEADERREC00000030194 SCOM1FP GAT1I1B119950123 804-345-8789
041594 REMOVEDOOO 20000223 MAMTEST TOKEN LENGTH TEST TOKEN LENGTH
TEST TOKEN LENGTH TEST TOKEN LENGTH TEST TOKEN LENGTH ARCCAB DAP
SubTypeTest1 TitleTest1 TEST DESCRIPTION 1 19950124 Complete
UserFlag1Test1 UserFlag2Test1 Keyword1Test1 Keyword2Test1 X

SCOREMOVEDTOTAL1RECP00002005-01-01 12:00:00.001 2006-01-01
12:00:00.999 Comprehensive FullLine 1000000.00 1228.98 2 1001.1 98.76
B X

433

Appendix A

Setting Up Archive/
Retrieval Configurations

This section outlines several commonly-used archive/
retrieval scenarios. Click on a scenario to quickly go to
that discussion:

• DB2 Server on OS/390 —Windows Client on page
434

• DB2 Server on Windows — Windows Client on
page 446

• DB2 Server and Client on Windows on page 451

• SQL Server on Windows — ODBC Client on
Windows on page 455

• IDS on Windows —DB2 Archive on z/OS on page
457

• Creating a z/OS Database on page 458

NOTE: Windows refers to 32-bit Windows operating
systems, such as Windows 2000 or Windows
XP.

We recommend that you only use uppercase
for table and column names when storing
information in a database. For instance, avoid
CustomerName, Customername, or
customername and instead use
CUSTOMERNAME.

Database management systems (DBMS) vary
in how they handle case issues so it is best to
standardize on uppercase. With version 11.2,
all column names must be in uppercase.

Appendix A
Setting Up Archive/Retrieval Configurations

434

DB2 SERVER ON
OS/390 —

WINDOWS CLIENT

For this scenario, assume you are running DB2 version 6.1 on OS/390 version 2. For the
DB2 client, assume you are running Windows 2000 or Windows XP.

The DB2 Distributed Data Facility is an optional part of the DB2 product on OS/390.
The Distributed Data Facility must be configured and running for the DB2 client (on 32-
bit Windows) to communicate with the DB2 Server (on OS/390).

CONFIGURING THE SERVER

Getting the DB2 location
name and LUNAME

You can use the PRTLOGMP DB2 utility to print a report that lists the communication
record of the DB2 Bootstrap Dataset. In the communication record you can find the DB2
location and LU name for that DB2 subsystem. The location and LU name are needed
when configuring the SNA Server and DB2 on the 2000 Server.

Here is an example of the JCL used to run PRTLOGMP is shown follows, along with the
communication record portion of the output from the PRTLOGMP utility.

//* COPY JOBCARD HERE …

//*

//S1 EXEC PGM=DSNJU004

//SYSUT1 DD DSN=TDB1.BSDS01,DISP=SHR

//SYSPRINT DD SYSOUT=*

**** DISTRIBUTED DATA FACILITY ****

COMMUNICATION RECORD

15:35:33 OCTOBER 12, 1999

LOCATION=USFSIMVSTDB1 LUNAME=DB2TDB1 PASSWORD=(NULL)

DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED

SUCCESSFULLY

DB2 Client

DB2 Client

DB2 Client

Windows 2000 Server

OS/390
Host

DB2 version 6.1 on
OS/390 version 2

DB2 Server on OS/390 —Windows Client

435

Defining the SNA server’s
APPC LU in VTAM

The following Switched Major Node (SNA) is contained in SYS1.VTAMLST(SW0E40C):

* *

*

* VTAM SWITCHED MAJOR NODE

* FOR MICROSOFT SNA SERVER COMMUNICATIONS

*

* *

*

SW0E40C VBUILD TYPE=SWNET,MAXGRP=3,MAXNO=30

*

CP00010 PU ADDR=40,CPNAME=CL00010, X

DISCNT=NO,MAXDATA=16384,USSTAB=USSFSIS, X

MAXPATH=1,MAXOUT=7,PASSLIM=7, X

VPACING=7,PACING=7,SSCPFM=USSSCS

*

CL00010 LU LOCADDR=0.

Defining the DB2
Application Major Node in

VTAM

The following Application Major Node is contained in SYS1.VTAMLST(DB2TDB1A):

* *

*

* VTAM APPLICATION NODE FOR DB2

*

* *

DB2TDB1A VBUILD TYPE=APPL

DB2TDB1 APPL APPC=YES, X

ATNLOSS=ALL, X

AUTH=(ACQ), X

AUTOSES=1, X

DMINWNL=25,X

DMINWNR=25, X

DSESLIM=50, X

MODETAB=, X

SECACPT=ALREADYV, X

SRBEXIT=YES, X

SYNCLVL=SYNCPT, X

VERIFY=NONE, X

VPACING=2

Setting Up the Windows 2000 Server (Middle Tier)

Installing and configuring
Microsoft’s SNA Server

To set up the middle tier, first install Microsoft SNA Server version 4,with Service Pack
3 applied, onto a server running Windows 2000 Server. Then Install SNA Server into its
own domain called USR04SNA.

Here are the steps for installing the SNA Server:

1 Insert the install CD into CD drive. Select Start, Run and enter this command:

e:\sna40\i386\setup.exe

Go through the normal set up process. Enter this server domain information:

Appendix A
Setting Up Archive/Retrieval Configurations

436

Click Ok when finished.

2 Choose Primary Configuration Server. Then choose Named Pipe, TCP/IP, IPX/SPX.

3 Choose IPX/SPX Directory Service. Then choose Bindery (Netware 3.x, 4.x, 5.x or
6.x) and SNA Server Subdomain (USR04SNA).

4 Next, use the Microsoft SNA Server Manager to make the following definitions. To
start this tool select Start, Programs, Microsoft SNA Server (Common), Manager.
Then right click the SNA Server you created in the first three steps. Choose Insert,
Link Services. From the Insert Link Services window select your adapter and
protocol (DLC 802.2 Link Service).

5 Select and right click the SNA Server you configured (USRSRV04). Select
Properties.

The control point configured here is for incoming connections only and is not used
for this outgoing connection to OS/390. You should, however, configure it. Use the
Network Name (P390) and Control Point name (CL00010). Accept the defaults on
the Server Configuration tab.

NOTE: The network name matches the value of the NETID parameter in the VTAM
startup parameters in SYS1. VTAMLST(ATCSTR00). The control point name
(CL00010) here matches the value of the CPNAME parameter of the VTAM
Switched Major Node on OS/390, in SYS1.VTAMLST(SW0E40C).

6 Select and right click on Connections under the SNA Server you configured. Move
to APPC and select Local LU. The Local LU Alias can be whatever you want but in
this scenario it’s the same as the LU Name (CL00010).

Enter the network name (P390). Enter an LU Name that matches the control point
name used above (CL00010). Click the Advanced tab. Check Member Of Outgoing
Local APPC LU Pool. Make sure that the LU 6.2 Type is set to Independent then
click Ok.

7 Select and right click on Connections under the SNA Server you configured. Move
to APPC and select Remote LU. Use the Connection List to select your connection
(ETH2MVS). The LU Alias can be whatever you want but in this scenario it’s the
same as the LU Name (DB2TDB1) — remember this is the remote LU Name.

Enter the network name (P390) and LU Name (DB2TDB1) and uninterpreted name
(DB2TDB1). Click the Option tab. Accept the defaults. The PLU for DB2 | OS/390 is
independent to support parallel sessions. Click Ok.

In this field Enter

Domain your domain name

Account your account user name

Password (leave blank)

Confirm Password (leave blank)

DB2 Server on OS/390 —Windows Client

437

NOTE: Remote LU Name here should match the APPL name of the DB2 application
major node in SYS1.VTAMLST(DB2TDB1A). Note that the member name
(DB2TDB1A) cannot be the same as the APPL name (DB2TDB1) within it.

8 Move to Configured Users, right click, select Insert, and click on User. Highlight
Everyone and click Add. Go back to the SNA Manager window where you should
now see Everyone under Configured Users. Right click on Everyone, choose
Properties and then click the APPC Defaults tab.

Click the list for Local APPC LU and choose (CL00010). Click the list for the Remote
APPC LU and choose (DB2TDB1).

9 Move down to APPC Modes, right click, select Insert, APPC, and click on Mode
Definition. Enter the mode name (IBMRDB). Click the Limits tab. Enter the Parallel
Session Limit (10), Minimum Contention Winner Limit (3), Partner Minimum
Contention Winner Limit (3), and Automatic Activation Limit (2). Accept the
defaults on the Characteristics tab and click Ok.

10 Move to CPIC Symbolic Names, right click, select Insert, APPC. Click on CPIC
Symbolic Name. This name can be anything you want but it must later match
something in DB2 on Windows 2000. This name is case sensitive.

For this scenario, use DB2CPIC (in all caps). Choose Conversation Security (Same),
Mode Name (IBMRDB). Click the Partner Information tab. In the Partner TP Name
area click SNA Service TP (in hex) and enter 07F6C4C2. In the Partner LU Name
area click Alias and enter Partner LU alias (DB2TDB1). Click Ok.

The CPIC Symbolic Name (DB2CPIC) must match the destination name when you
define the node entry in DB2 on the Windows 2000 Server (see the following
section).

Installing and Configuring Microsoft’s SNA Server

For this scenario, you should install Microsoft SNA Server version 4, with Service Pack
3 applied, onto a Server running Windows 2000 Server. Install SNA Server into its own
domain and call the domain USR04SNA.

Follow these steps to install SNA Server 4.0 SP3:

1 Insert the install CD into CD-ROM drive. Go to Start, Run and enter:

e:\sna40\i386\setup.exe

Then click Ok. Go through the normal set up process.

2 Choose Primary Configuration Server. Then choose Named Pipe, TCP/IP, IPX/SPX.

3 Choose IPX/SPX Directory Service. Then choose Bindery (Netware 3.x, 4.x, 5.x or
6.x).

4 Choose SNA Server Subdomain (USR04SNA).

5 Next, set up this server domain information:

Appendix A
Setting Up Archive/Retrieval Configurations

438

Click Ok.

Configuring SNA Server 4.0 SP3

The following definitions are made using the Microsoft SNA Server Manager tool. To
start this tool select Start, Programs, Microsoft SNA Server, Manager.

1 Right click the server you created. Choose Insert, Link Services. From the Insert
Link Services window select your adapter and protocol (DLC 802.2 Link Service).
Click Add. The properties window for that protocol appears. Click Ok.

2 Expand the server. Right click on SNA Service and choose Properties. The control
point configured here is for incoming connections only and is not used for this
outgoing connection to OS/390.

You should, however, configure it. Enter the network name (P390) and control
point name (DL00010). The comment field is optional. Click Ok.

NOTE: The network name matches the value of the NETID parameter in the VTAM
startup parameters in SYS1.VTAMLST(ATCSTR00). The control point name
(DL00010) matches the value of the CPNAME parameter of the VTAM Switched
Major Node on OS/390, in SYS1.VTAMLST(SW0E40D).

3 Highlight SNA Service and on the right hand side of the screen click the
Connections tab. Right click the Connections tab. Choose Insert, APPC, Local LU.
The Local LU Alias can be set to is whatever you want but for this scenario set it to
the LU Name (DL00010). Enter the LU Alias (DL00010). If you tab to the next field
the network name and LU name automatically appear in those fields. If this
information does not appear, enter P390 as the network name and DL00010 as the
LU Name. The comment is optional. Click the Advanced tab. Check Member of
Default Outgoing Local APPC LU Pool. Make sure Independent is selected for the
section LU 6.2 type. Click Ok.

4 Right click the Connections tab and choose Insert, Connection, 802.2.

5 On the General tab, enter a name for your connection, such as ETH2MVS. Choose
SNADLC1 (or whatever the option may be) for the link service. The Comment is
optional. In the Remote End section, choose Host System. In the Allowed
Directions section, choose Outgoing Calls. In the Activation section choose On
Server Startup.

6 On the Address tab, enter your remote network address, such as 10005A6EA879.
Set the Remote SAP Address to 0x04.

Field Enter

Domain your domain name

Account your account user name

Password (leave blank)

Confirm Password (leave blank)

DB2 Server on OS/390 —Windows Client

439

7 On the System Identification tab, make sure the following information is filled in.
In the Local Node Name section, the network name should be P390, the control
point name should be DL00010, and the local node ID should be 05D FFFFF. In the
XID Type section, Format 3 should be selected.

In the Remote Node Name section, the network name should be P390 and the
control point name should be USS3270. Make no changes on the 802.2 DLC tab.
Click Ok.

NOTE: The Remote LU Name should match the APPL name of the DB2 application
major node in SYS1.VTAMLST(DB2TDB1A). Note that the member name
(DB2TDB1A) cannot be the same as the APPL name (DB2TDB1) within it.

8 Right click on APPC Modes. Choose Insert, APPC, Mode Definition. On the General
tab, enter a mode name, such as IBMRDB. The Comment field is optional. On the
Limits tab, enter 10 for the parallel session Limit. Enter 3 for the minimum
contention winner limit. Enter 3 for the partner minimum contention winner limit.
Enter 2 for the automatic activation limit. Leave the Characteristics, Partners, and
Compression tabs as is. Click Ok.

9 Highlight SNA Service. Right click the Connections tab on the right side of your
screen. Choose Insert, APPC, Remote LU. On the General tab, choose ETH2MVS.
The LU alias can be whatever you want but in this scenario it’s DB2TDB1. Make
sure the following information is in these fields:

On the Options tab, choose IBMRDB for the implicit incoming mode. Leave
everything else as is. Click Ok.

10 Move to Configured Users, right click, select Insert, and click on User. Highlight
Everyone and click Add. Everyone appears in the Add Names box. Click Ok. Go to
the SNA Manager Window where you should now see Everyone under Configured
Users. Right click on Everyone, choose Properties, and then click the APPC
Defaults tab. Choose DL0010 as the local APPC LU. Then choose DB2TDB1 as the
remote APPC LU. Click Ok.

11 Move to CPIC Symbolic Names, right click, select Insert, select APPC, and click CPIC
Symbolic Name. This name must match something in DB2 on the Windows 2000
server and is case sensitive. For this scenario, enter DB2CPIC.

Field Entry

Network Name P390

LU Name same as your alias DB2TDB1

Uninterpreted
Name

same as your alias DB2TDB1

Comment optional

Appendix A
Setting Up Archive/Retrieval Configurations

440

12 Choose Same as the Conversation Security and IBMRDB as the mode name. The
Comment field is optional. Click the Partner Information tab. In the Partner TP
Name area, click SNA Service TP (in hex) and enter 07F6C4C2. In the Partner LU
Name area, click Alias and enter Partner LU alias (DB2TDB1). Click Ok.

NOTE: The CPIC symbolic name (DB2CPIC) must match the destination name when
you define the node entry in DB2 on the Windows 2000 Server. This is
discussed further in the following topic.

Setting Up DB2 on a Windows 2000 Server

On the Windows 2000 Server, this scenario assumes DB2 version 8.1 for Windows is
installed with version 2.3.2 of the Distributed Database Connection Services.

Installing DB2 on a
Windows 2000 Server

Follow these steps:

1 Insert the installation CD and go to Start, Run. Then enter the following command,
substituting the appropriate drive letter for the CD drive:

e:\setup /I=LANGUAGE

Where LANGUAGE represents the two-character country code for your language
(for example, EN for English).

Click Ok.

2 The installation routine asks if you would like to view the read me file. If not, click
Next.

3 Check IBM Database 2, select the Server option, and check Distribution Database
Connection Services (DDCS). Then select the Multi-User gateway option. Click
Next.

4 Choose Try and Buy Only for both options then click Next.

5 Choose Full installation and click Next. Accept the default destination directory
and drive letter and click Install. The installation routine asks if you want to reboot:

Yes, reboot

OR

No, wait to reboot

Choose one of these options and click Finish.

All of the following definition descriptions were performed using DB2’s Database
Director. To start this tool choose Start, Programs, DB2 For Windows, Database
Director.

Configure the DB2
instance

Click the plus sign (+) to the left of the Database Managers icon to expand it. Then right
click on the DB2 icon and choose Configure. On the Protocols tab, enter db2inst1 in the
Service Name field. Click Ok.

Defining an OS/390 node Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the Node Directory icon, then
choose Directory Entry, Catalog.

DB2 Server on OS/390 —Windows Client

441

Enter a Node Name (OS/390), an optional comment, choose the protocol type (APPC)
and the destination name (DB2CPIC), and then choose the security type (Program).
Click Ok.

Defining a system
database entry

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the System Database Directory
icon, then choose Directory Entry, Catalog.

On the General tab, choose Type for the Remote radio button. Click the Remote tab and
enter the database name (ARCDB) and alias (ARCDB). Choose Node from the list (OS/
390). Do not click the box labeled DDCS or Back level Database. Click Ok.

Updating TCP/IP values
on the Windows 2000

server

The next step is to update TCP/IP-related values on the Windows 2000 server. For
information on how to do this, see Updating TCP/IP values on the Windows 2000 server
on page 441.

Defining a database
connection services entry

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the Database Connection
Services Directory icon, then choose Directory Entry, Catalog.

Choose Database (ARCDB). For Target Database, enter the location name for the DB2
subsystem on OS/390.

Installing and Configuring DB2 on a Windows 2000 Server

This scenario assumes DB2 for Windows was installed and DB2 Server was at version
8.1.

All of the following definition descriptions were performed using DB2’s Control Center
tool. To start this tool choose Start, Programs, DB2 for Windows, Administration Tools,
Control Center.

Defining an OS/390
system

Right click on Systems and choose Add. On the Add System window, click the drop
down arrow for the operating system. Choose MVS/ESA, and enter P390 for the system
name. Click Apply. A confirmation message appears. Click Close.

Defining a DB2 instance Expand the Host System (P390) you created in the previous topic. Right click on
Instances and choose Add. Enter names such as DB2TDB1 as a remote instance and
DB2 as a destination name. Choose APPC as the protocol. In the Security Section of this
window, choose Same and click Apply. A confirmation message appears. Click Close.

Defining an OS/390
database

Expand out the newly created Instance from the previous section (DB2TDB1). Right
click on Databases and choose Add. Enter a database name and alias, such as ARCDB,
and click Apply. A confirmation message appears. Click Close.

Setting Up Universal Database on Windows 2000

Installing Universal
Database

This involves installing Universal Database (UDB) version 6.1 EE:

1 On the Welcome window, click Next. Then select the DB2 Enterprise Edition option
and click Next. Then click Custom.

2 Select the components you need. Make sure the Destination folder is correct and
click Next. The Configure DB2 Services window appears.

Appendix A
Setting Up Archive/Retrieval Configurations

442

3 Make sure there is a DB2 instance (DB2) and an Administration Server
(DB2DAS00) then click Next.

4 Check the user name and password for the Administration Server.

username = dbadmin

password = (password)

Click Next.

5 On the Start Configuring Files window, click Next. Then decide if you want to
restart your computer and click Finish.

Configuring Universal
Database

Follow these steps to configure UDB version 6.1 EE:

1 Choose Start, Programs, DB2 for Windows, Client Configuration Assistant.

2 Click Add Database if you have just installed. Click Add to add databases if you
have already created databases. The Add Database Smart Guide appears.

3 On the Source tab (step 1), choose the Manually Configure a Connection to a DB2
Database option and click Next.

4 On the Protocol tab (step 2), choose TCP/IP as the protocol. Select OS/390 as the
target operating system. Click Next.

5 On the TCP/IP tab (step 3), set the following fields:

Click Next.

6 On the Database tab (step 4), set the following fields:

Click Next.

7 On the ODBC tab (step 5), check the Register this Database for ODBC option. Then
select the appropriate data source. Click Done.

Updating TCP/IP-related Values on a Windows 2000 Server

Follow these steps to update TCP/IP values on a Windows 2000 Server.

In this field Enter

Host Name os390

Port Number 446

Service Name (leave blank)

In this field Enter

Location Name USDCIOS39DSN1

Database Alias ARCDB

Comment (optional)

DB2 Server on OS/390 —Windows Client

443

1 Enter these lines into the services file (c:\winnt\system32\drivers\etc\services):

db2inst1 3702/tcp # db2 port

db2insti 3703/tcp # db2 port interrupt

2 Go to Programs, Start, Settings, Control Panel, System and choose the
Environment tab. Enter a system variable called DB2COMM and set its value to
APPC, TCP/IP.

This indicates the communication protocols DB2 will use — APPC talks to the OS/
390 Host and TCP/IP talks to the Windows clients.

3 Add a system variable called DB2CODEPAGE and set its value to 850.

4 Reboot your system to apply these changes.

COMMON DB2 ERRORS

Here is a list of some common DB2 errors:

SETTING UP CLIENTS

This scenario assumes DB2 for Windows version 8.1 is installed and the Distributed
Database Connection Services is at version 2.3.2.

All of the following definition descriptions were performed using DB2’s Database
Director. To start this tool choose Start, Programs, DB2 For Windows, Database
Director.

Defining a DB2/2000
node

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the Nodes Directory icon, then
choose Directory Entry, Catalog.

Error Description

SQL30073 “119C”
Parameter value “” is not
Supported

This is a problem with CCSID or code page. Select Start,
Control Panel, System, and click the Environments tab.
Enter a system variable called DB2CODEPAGE and set
the value to 850.
You must reboot for the change to take affect.

SQL30081N A communication
error has been detected

This problem is related to the SNA Connectivity
parameters.

Protocol specific error 9 First look at the CPIC symbolic destination name and
make sure everything is correct. Also check the Partner
LU and Local LU definitions. If you change any of these
parameters only a stop and restart of SNA Server is
required.

Protocol specific error 1 The first thing to look at is the Link. Make sure it has
started and you have a valid connection to the host.

Protocol specific error 2 Look at your LU definitions for both the Local LU and
Partner LU. Make sure they are correctly defined.

Appendix A
Setting Up Archive/Retrieval Configurations

444

Enter a node name (NT04), an optional comment, and choose the protocol type (TCP/
IP). For the host name, enter your server name and for the service name enter
DB2INST1. Click Ok.

Defining a system
database entry

Click the plus sign (+) to the left of the DB2 icon to expand it, then click the plus sign to
the left of the Directories icon to expand it. Double-click the System Database Directory
icon, then choose Directory Entry, Catalog.

On the General tab, choose Remote for Type. Click the Remote tab and enter the
database name (ARCDB) and alias (ARCDB). Choose Node from the list (NT04).

Do not click the boxes labeled DDCS or Back Level Database. Click Ok.

Updating TCP/IP-related
values on a Windows

client

Follow these steps so the system can update TCP/IP related values on a Windows
client:

1 So the system can find the host name (see Configuring SNA Server 4.0 SP3 on page
438), make this entry in the hosts file (c:\windows\system32\drivers\etc\hosts):

10.8.10.211 USRSRV04

The left indicates the IP address of the server and right indicates the host name.

2 Enter these lines in the services file (c:\windows\system32\drivers\etc\services):

db2inst1 3702/tcp # db2 port

db2insti 3703/tcp # db2 port interrupt

3 Go to Programs, Settings, Control Panel, System, and click the Environment tab.
Enter a system variable called DB2COMM and set its value to TCP/IP. This indicates
the communication protocols DB2 will use (TCP/IP) to talk to the Windows Server.
Also add a system variable called DB2CODEPAGE and set its value to 850. Reboot
your system to apply these changes.

Setting Up the INI Options for the DB2 Driver

Here are the INI options for the DB2 driver:

< Archival >

ArchiveMem = Yes

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

< DBHandler:DB2 >

BindFile = c:\rel10\fap400\w32bin\db2lib.bnd

Database = ARCDB

CreateTable = Yes

CreateIndex = No

UserID = (OS/390 user ID)

PassWd = (OS/390 password)

< DBTable:APPIDX >

DBHandler = DB2

< DBTable:ARCHIVE >

DBHandler = DB2

DB2 Server on OS/390 —Windows Client

445

< DBTable:CATALOG >

DBHandler = DB2

< DBTable:RESTART >

DBHandler = DB2

< DB2_FileConvert >

APPIDX = DAP102_APP_R1

Archive = DAP102_ARC_R1

Catalog = DAP102_CAT_R1

Restart = DAP102_RES_R1

< Trigger2Archive >

Company = Company

LOB = Lob

PolicyNum = PolicyNum

RunDate = RunDate

These table names are examples of the names you can use.

Appendix A
Setting Up Archive/Retrieval Configurations

446

DB2 SERVER ON
WINDOWS —

WINDOWS CLIENT

For this scenario, assume you have a DB2 (version 6.1) Universal Database set up on a
Windows 2000 server.

SETTING UP A DB2 DATABASE ON THE SERVER

Follow these steps to set up a DB2 Database on the server.

1 Go to Start, Programs, DB2 for Windows, Administration Tools, Control Center. The
Control Center window appears. Expand Systems and you should see a server
name such as ARCDB6.

If so, go to step 3. If the server name is not listed, go to step 2.

2 Right click on Systems and choose Add. The Add System window appears. This is
where you set up the system information DB2 uses to find the location of the
database you are going to archive to.

Go to the Protocol field and select Named Pipe. The Protocol Parameters area
changes, now displaying a Computer Name field. Click Refresh to retrieve
information about the local system. The server name appears under the System
Name field. If you click on that name the system places it in the System Name field.
Fill in other pertinent information. The Comment field is optional. Click Apply when
finished.

A confirmation message appears. Click Close. This should take you back to the
Control Center window. The server name should now be listed under Systems. Go
to step 3.

Windows Client

Windows Client

Windows Client

DB2 Universal Database
(version 6.1)

Windows 2000
Server

DB2 Server on Windows — Windows Client

447

3 Expand the system name. You will now see Instances listed. Right click on
Instances and choose Add. Click Refresh. This retrieves a list of instances on the
server.

Choose DB2. Enter DB2 in the Instance Name field. The Comment field is optional.
Click Apply. A confirmation message appears. Click Close. This should take you
back to the Control Center window. The DB2 instance should now be listed under
Instances.

4 Expand DB2. You will see Databases listed, right click on Databases and choose
Create, New. The Create Database Smartguide window appears.

5 Enter the name of the new database (such as ARCDB6) in the Database Name field
and the Database Alias field. The Comment field is optional. Click Done. This takes
you back to the Control Center window. The newly created database will be listed
under Databases.

Setting Up a Client for DB2 VERSION 6.1

This topic discusses archiving to a DB2 version 6.1 database (Universal Database) on a
Window 2000 Server using an ODBC driver and the native DB2 driver.

Archiving to a remote DB2
database using an ODBC

driver

Follow these steps to set up a DB2 remote database on Windows 2000 Server:

1 Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
The Control Center window appears. Right click on Systems, then choose Add.

2 An Add System window appears. This is where you set up the system information
DB2 uses to find the location of the database (Windows 2000 Server). Click
Refresh and the server name should appear in the box below the System Name
field. Click the server name and the server information appears in the fields. Click
Apply. A confirmation message appears. Click Close.

3 You are now back to the Control Center window again. Make sure the new system
name appears when you expand Systems. If the new system name is listed under
Systems then expand that out also. You should then find Instances listed under
your system name. Right click on Instances and choose Add.

4 An Add Instance window will appear. Click Refresh. This will retrieve a list of
instances on your local system. Choose DB2 if it is not already in the Remote
Instance field. Click Apply. A confirmation message appears. Click Close.

5 Expand Instances and expand DB2. There will be Databases listed under the DB2
instance, right click and choose Add.

6 An Add Database window appears. Click Refresh to retrieve the names of
databases currently set up on the server. Choose the correct database from the
list, such as ARCDB6. Enter the name of the database in the Alias field. The
Comment field is optional. Click Apply. A confirmation message appears. Click
Close. Expand Databases and make sure the new database appears.

Setting up an ODBC data
source

Follow these steps to set up an ODBC data source using Windows 2000:

1 Go to Start, Settings, Control Panel, ODBC. You are now viewing User Data
Sources.

Appendix A
Setting Up Archive/Retrieval Configurations

448

2 Click Add to add an IBM DB2 ODBC driver. The Create New Data Source window
appears.

3 Choose IBM DB2 ODBC Driver. Click Finish. The ODBC IBM DB2 Driver – Add
window appears.

4 Click the down arrow in the Data Source Name field, choose the correct database
name, such as ARCDB6. The Description field is optional, but it should be there if
you specified it when you created the database. Click Ok. The User Data Sources
tab of the ODBC Data Source Administrator window appears. Make sure your new
data source is there, along with its corresponding driver, then click Ok.

Setting up INI options for
the ODBC driver

Follow these steps to set up the INI options specific to the ODBC driver:

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:ODBC >

CreateTable = Yes

CreateIndex = No

Debug = No

Server = (such as ARCDB6–the newly-created data source name.)

BLOBSupportForDB2ODBC =

UserID = (Windows user ID)

Passwd = (Windows password)

Use the BLOBSupportForDB2ODBC option to tell the Archive/Retrieval programs
the version of DB2 being accessed can support BLOB (Binary Large Object) data
types. This INI option, along with specifying BLOB as the data type for the CARData
field in the CARFILE.DFD file, tells the Archive/Retrieval programs to process the
field as a BLOB. If you omit this option or set it to No, the Archive/Retrieval
programs translate any CARFILE.DFD data type request of BLOB to LONG
VARCHAR.

2 The DBTable:XXX control groups determine what tables are used by looking at the
ArcRet control group. The ArcRet control group should look like the one shown
here:

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

ExactMatch = No

Key1 = Company

Key2 = Lob

KeyID = PolicyNum

3 For all the tables listed above, add these control groups:

< DBTable:APPIDX >

DBHandler = ODBC

< DBTable:ARCHIVE >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

< DBTable:RESTART >

DB2 Server on Windows — Windows Client

449

DBHandler = ODBC

4 The ODBC_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >

APPIDX = FSIV100_APPIDX

Archive = FSIV100_ARCHIVE

Catalog = FSIV100_CATALOG

Restart = FSIV100_RESTART

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

Archiving to a Remote DB2 Database Using the Native DB2 Driver

Follow these steps to archive to a remote DB2 database using DB2’s native driver.
These steps assume you are using Windows 2000.

Setting up a DB2
database

First set up a DB2 database:

1 Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center appears, right click on Systems, then choose Add. An Add
System window appears.

2 On the Add System window you set up system information DB2 uses to find the
location of the database (Windows 2000 Server). Click Refresh and the server
name should appear below the System Name field. Click the server name and the
server information appears in the fields. Click Apply. A confirmation message
appears. Click Close. You return to the Control Center window.

3 Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that out also. You should find
Instances listed under your system name. Right click on Instances and choose
Add. An Add Instance window will appear.

4 Click Refresh to retrieve a list of instances on your local system. Choose DB2 if it
is not already in the Remote Instance field. Click Apply. A confirmation message
appears. Click Close.

5 Expand Instances and expand DB2.There will be Databases listed under the DB2
instance, right click and choose Add. An Add Database window appears.

6 Click Refresh to retrieve the names of databases are currently set up on the server.
Choose the correct database from the list, such as ARCDB6. Enter the name of the
database in the Alias field. The Comment field is optional. Click Apply. A
confirmation message appears. Click Close. Expand Databases to make sure the
new database appears.

Setting up the INI options
for the DB2 driver

Follow these steps to add the INI setting the native DB2 driver will use:

1 Set up the DBHandler:DB2 control group as shown below.

< DBHandler:DB2 >

BindFile = c:\rel10\fap400\w32bin\db2lib.bnd

CreateTable = Yes

Appendix A
Setting Up Archive/Retrieval Configurations

450

CreateIndex = No

Database = (such as ARCDB6, a remote database name)

UserID = (Windows 2000 user ID)

Passwd = (Windows 2000 password)

2 The DBTable:XXX control groups determine what tables are used by looking at the
ArcRet control group, which should look like the following.

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

3 For all the tables listed above, add the following control groups:

< DBTable:RESTART >

DBHandler = DB2

< DBTable:CATALOG >

DBHandler = DB2

< DBTable:APPIDX >

DBHandler = DB2

< DBTable:ARCHIVE >

DBHandler = DB2

4 Make sure the DB2_FileConvert control group contains the table names of each
table to be created. Here is an example, your table names may differ:

< DB2_FileConvert >

APPIDX = DAP102_APP_R1

Archive = DAP102_ARC_R1

Catalog = DAP102_CAT_R1

Restart = DAP102_RES_R1

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

DB2 Server and Client on Windows

451

DB2 SERVER AND
CLIENT ON
WINDOWS

This topic discusses archiving to a local DB2 version 6.1 database using an ODBC driver
and the native DB2 driver.

SETTING UP A DB2 DATABASE

This scenario shows how to archive to a DB2 database using an ODBC driver on
Windows 2000.

1 Go to Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center appears, right click on Systems, then choose Add. An Add
System window appears.

2 On the Add System window you set up system information DB2 uses to find the
location of the database (local Windows 2000). Go to the Protocol field and click
the down arrow, select Named Pipe. The Protocol Parameters area changes,
displaying the Computer Name field. Type in the computer’s network name here
and click Retrieve.

The program retrieves information about the local system. Once that information
is retrieved you will see names in the System Name and Remote Instance fields.
Click Apply. A confirmation message appears. Click Close. You return to the
Control Center window.

3 Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that also. You should then find
Instances listed under your system name. Right click Instances and choose Add.

4 An Add Instance window will appear. Click Refresh. You will see a list of instances
on your local system. Choose DB2 and click Apply. A confirmation message
appears. Click Close.

5 Expand Instances and expand DB2. You will see Databases listed, right click and
choose Add. The Add Database window appears.

6 Enter the name of the new database, such as ARCDBL, in the Database Name field
and the Alias field. The Comment Field is optional. Click Apply. A confirmation
message appears. Click Close. Expand Databases and make sure that the new
database appears.

Setting up an ODBC data
source

This scenario uses Windows 2000.

1 Choose Start, Settings, Control Panel, ODBC. You are now viewing User Data
Sources. Click Add to add an IBM DB2 DBC driver. The Create New Data Source
window appears

2 Choose IBM DB2 ODBC Driver. Click Finish. The ODBC IBM DB2 Driver - Add
window appears.

3 Click the down arrow in the Data Source Name field and choose the correct
database name. The Description field is optional, but should appear if you
specified it when you created the database. Click Ok. The User Data Sources tab of
the ODBC Data Source Administrator window appears. Make sure that your newly
created data source is there and its corresponding driver is correct then click Ok.

Setting up INI options for
ODBC

Follow these steps to set up the INI options specific to ODBC:

Appendix A
Setting Up Archive/Retrieval Configurations

452

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:ODBC >

CreateTable = Yes

CreateIndex = No

Debug = No

Server = (such as ARCDBL – The data source name)

BLOBSupportForDB2ODBC =

UserID = (Windows user ID)

Passwd = (Windows password)

Use the BLOBSupportForDB2ODBC option to tell the Archive/Retrieval programs
the version of DB2 being accessed can support BLOB (Binary Large Object) data
types. This INI option, along with specifying BLOB as the data type for the CARData
field in the CARFILE.DFD file, tells the Archive/Retrieval programs to process the
field as a BLOB. If you omit this option or set it to No, the Archive/Retrieval
programs translate any CARFILE.DFD data type request of BLOB to LONG
VARCHAR.

2 Use the DBTable:XXX control groups to determine what tables are used by looking
at the ArcRet control group. Here is an example:

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CarPath =

Catalog = CATALOG

RestartTable = RESTART

3 For all the tables listed above, add these control groups:

< DBTable:APPIDX >

DBHandler = ODBC

< DBTable:ARCHIVE >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

< DBTable:RESTART >

DBHandler = ODBC

4 Use the ODBC_FileConvert control group to list the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >

APPIDX = FSIV100_APPIDX

Archive = FSIV100_ARCHIVE

Catalog = FSIV100_CATALOG

Restart = FSIV100_RESTART

5 Set the Archival control group as shown here.

< Archival >

ArchiveMem = Yes

DB2 Server and Client on Windows

453

Archiving to a Local DB2 Database Using the Native DB2 Driver

Setting up the DB2
database

This scenario uses Windows 2000.

1 Select Start, Programs, DB2 For Windows, Administration Tools, Control Center.
Once the Control Center window appears, right click on Systems, then choose Add.
The Add System window appears.

2 On the Add System window you set up system information DB2 uses to find the
location of the database (local Windows 2000). Go to the Protocol field and click
the down arrow, select Named Pipe. The Protocol Parameters area then displays a
Computer Name field. Enter the computer’s network name and click Retrieve.

The program retrieves information about the local system. Once that information
appears, you see names in the System Name and Remote Instance fields. Click
Apply. A confirmation message appears. Click Close. The Control Center window
appears.

3 Make sure the new system name appears when you expand Systems. If the new
system name is listed under Systems, expand that also. You should then find
Instances listed under your system name. Right click Instances and choose Add.
The Add Instance window appears.

4 Click Refresh to retrieve a list of instances on your local system. Choose DB2 and
click Apply. A confirmation message appears. Click Close.

5 Expand Instances and expand DB2. You will see Databases listed, right click and
choose Create, New. The Create Database Smartguide window appears.

6 Enter the name of the new database (ARCDBL) in the New Database Name field and
the Database Alias field. The Comment Field is optional. Click Done.

This should take you back to the Control Center window. Expand Databases if it is
not already. Your new database should be listed.

Setting up the INI options
for the DB2 driver

Be sure to set up the following INI options for the native DB2 driver.

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:DB2 >

BindFile = d:\rel10\fap400\w32bin\db2lib.bnd

CreateTable = Yes

CreateIndex = No

Debug = No

Database = (such as ARCDBL – Local database name)

UserID = (Windows user ID)

Passwd = (Windows password)

2 Use the DBTable:XXX control groups to determine what tables are used by looking
at the ArcRet control group, which should look like the following.

< ArcRet >

AppIdxDFD = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

Appendix A
Setting Up Archive/Retrieval Configurations

454

3 For all the tables listed above, add the following control groups:

< DBTable:CATALOG >

DBHandler = DB2

< DBTable:APPIDX >

DBHandler = DB2

< DBTable:ARCHIVE >

DBHandler = DB2

< DBTable:RESTART >

DBHandler = DB2

4 The DB2_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< DB2_FileConvert >

APPIDX = DAP102_APP_R1

Archive = DAP102_ARC_R1

Catalog = DAP102_CAT_R1

Restart = DAP102_RES_R1

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

SQL Server on Windows — ODBC Client on Windows

455

SQL SERVER ON
WINDOWS —

ODBC CLIENT ON
WINDOWS

This scenario sets up a database in SQL Server using Microsoft SQL Server version 7.0.

1 Go to Start, Programs, Microsoft SQL Server 7.0 SQL Enterprise Manager. The
Server Manager window appears, SQL 7.0 should already be expanded and there
will be server names that appear below, choose the correct server and expand it.

2 Highlight the Databases folder, right click and choose New Database. Type in the
database name, such as ARCDB7, and select a data device. There is a size specified
to the right of this field and the device should have a size greater than zero. Click
the Create Now button.

3 If no login has been defined, highlight the Logins folder under the server and right
click. Choose New Login. Type in a login name and a password. Click the Permit
field next to the database you would like the login to default to. Then click Add.
Confirm your password and click Ok.

SETTING UP A CLIENT

Follow these instructions to set up a Windows client and an ODBC data source using
Windows 2000.

1 Select Start, Settings, Control Panel, ODBC. The User Data Sources window
appears. Click Add to add a new SQL Server data source. The Create New Data
Source window appears.

2 Choose SQL Server. Click Finish. The ODBC SQL Server Setup window appears.
Enter the following information:

3 Click Options and enter the database name, such as ARCDB7, you will be archiving
to in the Database Name field. Click Ok. The Data Sources window appears.

4 Make sure the new data source name appears with the correct driver specified. If
all is correct, click Ok.

Setting up the INI options
for ODBC

1 Set up the DBHandler:ODBC control group as shown below.

< DBHandler:ODBC >

CreateTable = Yes

CreateIndex = No

Debug = No

Server = (such as ARCDB7 - This is the data source name)

UserID = (SQL Server user ID)

Passwd = (SQL Server password)

The user ID and password must be set up in SQL Server. For more information see
SQL Server on Windows — ODBC Client on Windows on page 455.

In this field Enter

Data Source Name This is your database name.)

Description (optional)

Server (This will drop down and the server should be listed.)

Appendix A
Setting Up Archive/Retrieval Configurations

456

2 In the DBTable:XXX control groups, determine what tables are used by looking at
the ArcRet control group, which should look like the one shown here:

< ArcRet >

AppIdxDfd = Deflib\AppIdx.dfd

AppIdx = APPIDX

CARFile = ARCHIVE

CARPath =

Catalog = CATALOG

RestartTable = RESTART

For all the tables listed above, add the following control groups:

< DBTable:APPIDX >

DBHandler = ODBC

< DBTable:ARCHIVE >

DBHandler = ODBC

< DBTable:CATALOG >

DBHandler = ODBC

< DBTable:RESTART >

DBHandler = ODBC

3 Add these INI options for DFD files for these tables:

< ArcRet >

CARFileDFD = carfile.dfd

RestartDFD = restart.dfd

DFD files can specify the full file name, otherwise they are located in the directory
specified in the DefLib option:

< MasterResource >

DefLib = subdirectory

4 The ODBC_FileConvert control group contains the table names of each table to be
created. Here is an example, your table names may differ:

< ODBC_FileConvert >

APPIDX = FSIV100_APPIDX

Archive = FSIV100_ARCHIVE

Catalog = FSIV100_CATALOG

Restart = FSIV100_RESTART

These table names are examples of the names you can use.

5 Set the Archival control group as shown here:

< Archival >

ArchiveMem = Yes

IDS on Windows —DB2 Archive on z/OS

457

IDS ON WINDOWS
—DB2 ARCHIVE

ON Z/OS

This scenario features Docupresentment’s Internet Document Server (IDS) running on
a Windows 32-bit computer and communicating with a DB2 archive residing on a z/OS
machine.

To illustrate this scenario, you should download the setup executable to install
Docupresentment 10.2 (IDS version 1.8). You can do this from the Support web site:

http://www.oracle.com/skywiresoftware/index.html

Follow these steps:

1 From the Support site, register, log in, and then click on product installations.

2 Select the current version for Windows 32-bit operating systems.

Refer to these documents for installation and configuration information:

Internet Document Server Guide

SDK Reference

SETTING UP THE DB2 ARCHIVE ON Z/OS
Refer to these documents for information on configuring a DB2 archive on z/OS:

• Documaker Server Installation Guide

• Documaker Server System Reference

http://www.oracle.com/skywiresoftware/index.html

Appendix A
Setting Up Archive/Retrieval Configurations

458

CREATING A Z/OS
DATABASE

To create a database, you must be an administrator on the machine you are creating
the database on. Follow these instructions:

1 Click Add Database once you enter into the Client Configuration Assistant. On Tab
1 (Source), choose the Manually Configure a Connection to a DB2 Database option.
Click Next.

2 On Tab 2 (Protocol), choose TCP/IP as the protocol and z/OS as the target
operating system. Click Next.

3 On Tab 3 (TCP/IP), enter os390 in the Hostname field. The Port number defaults to
446. Enter db2ins 1 in the Service Name field. Click Next.

4 On Tab 4 (Target Database), enter the database name, such as USDCIOS39DSN1,
in the Location Name field. Click Next.

5 On Tab 5 (Alias), enter ARCDB (or your database name on the mainframe) in the
DBAlias field. The DBAlias field gets the first part of the location name from the
previous tab. The Description field is optional. Click Next.

6 On Tab 6 (ODBC), check the Register this Database for ODBC field. Then select the
data source. Click Done.

7 The system asks if you want to test your connection, click the Test Connection
button. Then enter your user ID and password and click Ok. A window should
appear with a message similar to this one:

The Connection test was successful.

Database product= DB2 OS/390 7.0

SQL authorization ID= akb

Database alias = ARCDB

To close this window and proceed, click OK.

Click Add to add another database or click Close to exit the Client Configuration
Assistant.

Updating TCP/IP Values on a Windows 2000 Server

Follow these steps to update TCP/IP-related values on a Windows 2000 server:

1 So that the host name you entered can be found, add this entry in the host file

(c:\winnt \system32 \drivers \etc \hosts):

10.8.10.210 WIN2000A_1

The value on the left is the IP address of the Windows 2000 Server. The value on
the right is the host name for that Windows 2000 Server.

2 Add these lines in the services file (c:\winnt\system32\drivers\etc\services):

db2inst1 446/tcp #db2 port

db2insti 447/tcp #db2 port interrupt

3 Go to Start, Settings, Control Panel, System, and choose the Environment tab.
Enter a system variable called DB2COMM and set its value to:

APPC,TCP/IP

This specifies the communication protocols DB2 will use —APPC to talk to the z/
OS host and TCP/IP to talk to Windows 2000 clients.

Creating a z/OS Database

459

Also add a system variable called DB2CODEPAGE and set its value to:

850

4 Reboot Windows 2000 for the system variable to take effect.

Appendix A
Setting Up Archive/Retrieval Configurations

460

461

Appendix B

System Files

This appendix includes samples of the various files
used by and created by the system. For each file you
will find a definition, including information on the tools
you can use to modify the files, and a sample of the
files.

The sample files are based on the base system. If you
or Oracle Insurance’s staff have customized your
system, your files may differ.

For information on file formats, consult the technical
documentation, which is located on your distribution
CD and on Oracle Insurance’s web site.

This appendix discusses these topics:

• Overview on page 462

• Types of Files on page 464

• Resource Files on page 467

• Files Created by the GenTrn Program on page 480

• Files Created by the GenData Program on page
481

• Files Created by the GenPrint Program on page
483

• Files Created by the GenWIP Program on page 484

• Files Used by the GenArc Program on page 485

Appendix B
System Files

462

OVERVIEW The files discussed in this appendix are arranged in the following order:

Types of files:

• BCH files

• DAT files

• DBF files

• DDT files

• DFD files

• Error files

• Initialization (INI) files

• JDT files

• Log files

• LOG files

• MDX files

• Transaction files

Resource files

• FSISYS.INI

• FSIUSER.INI

• FORM.DAT

• SETRECPTB.DAT

• DFD files

• DDT files

• JDT files

• Extract files

Files created by the GenTrn program as it gathers information:

• TRNFILE.DAT

• LOGFILE.DAT

• ERRFILE.DAT

• MSGFILE.DAT

Files created by the GenData program to make print-ready files:

• NAFILE.DAT

• POLFILE.DAT

• NEWTRN.DAT

• Batch files (*.bch)

Overview

463

• MANUAL.BCH

• Updated log and error files

• Spool files

• MSGFILE.DAT

Files used by the GenWIP program for processing incomplete transactions

• WIP DBF

• WIP.MDX

• 00000001.DAT

• 00000001.POL

Files used by and created by the GenArc program for archiving information:

• APPIDX.DBF

• ARCHIVE.CAR

• APPIDX.MDX

• APPIDX.DFD

Appendix B
System Files

464

TYPES OF FILES There are several types of files used in the system. These file types are defined below.

BCH files The GenData program creates files with the extension BCH, called batch files, which list
the transactions to be included in each batch, as specified in your FSISYS.INI file
settings. Batch files are used as trigger files by the GenPrint and GenWIP programs.
Batch files indicate which transactions should be printed in a given batch job. The
GenPrint program uses batch files to print completed forms. The GenData program also
creates manual batch files which record incomplete transactions. These manual batch
files are used by the GenWIP program.

CAR files The GenArc program creates compressed archive (CAR) files in which it stores NAFILEs,
POLFILEs, and archived forms and data. An example of a generated CAR file is
ARCHIVE.CAR. You can have multiple CAR files. The GenArc program also creates the
APPIDX.DBF file which serves as an index to the archived information stored in the CAR
file.

DAT files Data table (DAT) files define various information the system uses as it processes
information. All DAT are text files which have the extension DAT. Some DAT files are
comma-delimited text files. You can edit DAT files using an text editor.

In many cases, there are tools, such as Form Set Manager, which you can use to edit
specific DAT files. For example, the FORM.DAT file tells the system how the various
forms are organized in the form set. The SETRCPTB.DAT file contains information about
the recipients of a form and the conditions which determine whether or not a form is
included in a form set or sent to a recipient. You can edit these files using the Form Set
Manager.

The NAFILE.DAT file contains the variable data generated by the GenData program.
This file, along with the POLFILE.DAT file, tell the GenPrint program what to print. This
file also tells the GenWIP and GenArc programs what to place into WIP and what to
archive.

The GenWIP program also creates DAT files for each incomplete transaction it must
process. These files are numbered sequentially and for each file there is a
corresponding POL file which contains information about the forms to use.

DBF files Database files (DBF) are used in several places in the system. For each DBF file, there
is a corresponding MDX file which serves as its index. Examples of DBF files are
FDB.DBF, which is created by the Field Database Editor; ARCHIVE.DBF, which is created
by the GenArc program; and WIP.DBF, which is created by the GenWIP program.

NOTE: The UNIQUE.DBF file contains the last number for WIP file that was created.
Whenever a WIP file is created, a number is generated to uniquely identify it to
make sure no WIP file is overwritten.

DDT files The data definition table (DDT) file tells the GenData program, what rules it should use
as it processes the data. You can edit DDT files using a text editor or by using the Image
Editor.

In the DDT file you store semi-colon-delimited information which defines the source
and target fields, field length and offsets, rules to apply to the field, and optional
parameters for the rules.

Types of Files

465

DFD files Data format definition (DFD) files define to the system the database file formats of the
files generated by the system. Many common system files are stored in database
format. For example, the transaction file, the new transaction, application index, and
recipient batch files are all stored in database format. These database files can be in a
variety of formats, including Xbase, DB/2, ODBC, and standard sequential files, such
as flat text files. The record structure defined in the DFDs remains independent,
regardless of the type of database being used—although there are occasionally
exceptions for some database specific records.

The GenData program uses TRNDFDFL.DFD to read the TRNFILE which contains the
actual transactions GenTrn creates.

Error files The GenTrn program produces an error file to note any transactions it could not process
correctly. The other programs, such as GenData, GenPrint, GenWIP, and GenArc,
update this file as they perform their processing activities. This file will help you
discover and correct any processing errors you may encounter. Errors may be caused
by incorrect or missing data. The system records the error information by transaction.
You can view this file using a text editor.

The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required so the transaction will be added to the manual batch file, or change the FAP
file and then process the transaction again.

Extract files Extract files are typically text files which contain the data the system processes. Extract
files are created by another program, typically a database program, in a format the
system can read. The text file format provides a standard interface into the system. For
example, your data may be stored in a DB/2 or VSAM database from which you extract
the data you want the system to process.

You can customize the system to read almost any type of file layout. The GenTrn
program first reads the extract file and, using that extract data and TRNDFDFL.DFD file,
creates transaction files (TRN files) the GenData program can use as it applies the
processing rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE: For use on an z/OS platform, the extract file must be converted to EBCDIC
format if the file contains international characters. See Working with Fonts on
page 171, for more information on international characters.

Docucreate includes a sample extract file, called EXTRFILE.DAT, which serves as an
example of the type of file the base system can read. You can use this file to experiment
with the base system and determine how you want to set up your system. Typically, a
complete test library is provided with the system. You can use this library to test your
installation.

You can use the OpSystem option to specify the origination platform of an extract file:

< RunMode >

OpSystem =

If you enter OS400, the system loads an EBCDIC conversion table which handles binary
number conversions for source extract files originating from an IBM AS/400 system.

Appendix B
System Files

466

FAP files The information which defines each section (image) is stored in a FAP file. FAP files are
text files with the extension FAP. You can edit FAP files using a text editor, but they are
most commonly created and edited using Documaker Studio or Image Editor. The FAP
file defines the section while the FORM.DAT file defines the sections which comprise a
form and form set.

Initialization files Initialization (INI) files are used by the system to set system parameters and to enable
or disable system features. Some examples of system INI files are: FSISYS.INI and
FSIUSER.INI. For example, the FSISYS.INI file contains information the GenTrn program
uses to determine when a new record starts and other information about the extract
files the GenTrn program processes. The FSIUSER.INI file contains information specific
to each user, such as the location of files and so on.

JDT files The job definition table (JDT) file is a text file which tells the system which rules to use
as it processes a specific job. Rules defined in the JDT file are run before the system
runs rules assigned to specific fields. An example of a JDT file is the AFGJOB.JDT file.

Log files When you run GenTrn, the program creates log files which record, by transaction, each
transaction the program processes. These files have a DAT extension. You can review
these log files using any text editor.

LOG files Graphics, such as scanned signatures or logos, are stored as LOG files in the system.
You use Documaker Studio or Logo Manager to view, manage, and manipulate LOG
files.

MDX files The various system programs create MDX files which serve as indexes to the database
files (.DBF files). For example, the GenWIP program creates the WIP.DBF file and the
corresponding WIP.MDX file to record the incomplete transactions which were not
printed.

The Field Database editor creates the FDB.MDX file to serve as an index to the FDB.DBF
file which contains common variable field definitions.

Transaction files The GenTrn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This format
is defined in the TRNDFDFL.DFD file. The GenData program uses the TRNDFDFL.DFD file
to read the information in the TRN file as it processes the information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define
the location of the transaction data. For instance, the offsets in a TRN file tell the
GenData program where the transaction begins in the extract file, where the data for
the transaction is stored in the NAFILE.DAT file, and where the form set for the
transaction is stored in the POLFILE.DAT file.

Resource Files

467

RESOURCE FILES Resource files are used by the various programs which comprise Documaker Server.
These files provide information these programs use to know how to read extract files,
how to create print-ready files, which rules to apply, which recipients receive copies of
which forms, and so on.

The resource files include:

• FSISYS.INI

• FSIUSER.INI

• FAPCOMP.INI

• FORM.DAT

• SETRCPTB.DAT

• DFD files

• DDT files

• JDT files

• Extract files

FSISYS.INI file The FSISYS.INI file is one of the initialization (INI) files used by the system to set
parameters and to enable or disable features. For example, the FSISYS.INI file contains
information the GenTrn program uses to determine when a new record starts and other
information about the extract files the GenTrn program processes. You can see
examples of this file in the RPEX1 sample resources.

FSIUSER.INI file The FSIUSER.INI file is one of the initialization (INI) files used by the system to set
system parameters. For example, the FSIUSER.INI file contains information specific to
each user, such as the location of files and so on. If there are common settings in the
FSISYS.INI and FSIUSER.INI files, the system looks at both, but uses the settings in the
FSIUSER.INI file. You can see examples of this file in the RPEX1 sample resources.

FAPCOMP.INI The FAPCOMP.INI is an initialization (INI) file used by the Docucreate tools to set
parameters or turn on or off features. For example, this INI file contains the control
groups which let you map font families so that if you import an RTF file, the fonts are
changed automatically. You can see an example of this file in the FAP\DLL directory.

FORM.DAT file The FORM.DAT file specifies the forms currently being used in the system. The various
elements of the FORM.DAT file specify the print order of the forms, duplex or simplex
options, recipient batch information, establish a link between a system form name and
the sections associated to it, and descriptive information.

This file, also known as the Form Set Definition Table, contains information about the
KEY fields, such as company, line of business, and policy number plus information
about each section in the form, its recipients, and the form set itself.

The information is stored in semi-colon-delimited format and you can edit this file
using the legacy Form Set Manager or a text editor. The information that comprises
individual sections is stored in a FAP file.

Appendix B
System Files

468

The following table describes the syntax of each record of the FORM.DAT file.

NOTE: Some of these options may not apply or may be changed given the
specifications for a custom implementation.

;<FLD1>;<FLD2>;<SYS NAME>;<DESC>;<FORM OPT>;<not used>;|

[<RECP1>(<CPY1>),...,<RECPn>(<CPYn>)]/.../<IMG
FILNn>|;

Record Description

<FLD1> Used to categorize the forms, such as company. (length 20)

<FLD2> Used to categorize the forms, such as line of business. (length 20)

<SYSNAME> The name of the form used by the system and in tables. (length 20)

<DESC> Used to describe the form. (length 30)

<FORM OPT> Optional. Used for form options. (length 5)
B - Indicates forms printed on certain Metacode printers can be
stapled.
D - Indicates this form is a Dec. page.
F - Indicates the form size is fixed and not selectable
G - Indicates the form is legal size
H - Indicates the form is hidden from view but data can still be
embedded on the form for later use.
I - Indicates the form is A4
J - Indicates the form is executive size
K- Indicates the form is landscape
M - Indicates these forms can be repeated.
N - Indicates the form is not required and should not display initially.
The user has to add this form using the Form Selection window. The
system assumes the form is required (see R) by default.
O - Indicates overflow. A duplicate form generates to accommodate
information which would not fit on the original form.
P - Indicates that the form is a pull form.
R - Used for default forms. Forms with this option are displayed
initially.
S - Indicates that this form is a Sub. Dec. page.
X - Indicates that this form is a Master Dec. page
Z - Line print (- z - z - z - z-)

<not used> Not currently assigned a value. Can be used in custom development.

 Section file name stored in the master resource library, such as
CU54A

Resource Files

469

 These section options indicate:
A - the section has no variable fields and is a print only form.
B - the section is duplex and is on the back page.
C - the section is for data entry and should not be printed.
D - the section is for data entry and should be printed.
E - the section is for viewing only and not for data entry.
F - the section is duplex and is on the front page.
G - the section should be printed on letter size paper (the default)
H - the section is not for data entry but should be printed.
I - the section will print on standard European paper.
J - the section will print on Executive paper (7.25”x10.5”).
888K - the section will print landscape.
L, 2 - the section prints on paper tray 2 (lower)
N - the section is an inline FAP file
O - the section is copied onto additional pages
P - the section is a template
Q - the section is hidden and will not print.
R - a rolling section which prints on both sides of the paper.
S - the section stays on the same page and doesn’t flow onto two
forms.
T - short binding. The section prints on both sides of the paper and
duplexes in flip chart fashion.
U, 1- the section prints on paper tray 1 (upper).
V - the section is a pre-compiled resource that is resident on the
printer.
W - the section can grow. Size is not fixed.
X - the section is a header which appears at the top of the page.
Y - the section is s a footer which appears at the bottom of the page.
Z - this is a flash section and is not used in pagination calculations
0 (zero) - a variable text merge is created
3 - paper tray 3
4 - paper tray 4
5 - paper tray 5
6 - paper tray 6
7 - paper tray 7
8 - paper tray 8
9 - paper tray 9

<RECP> Contains the name of all possible recipients in which this form can be
included. Example: Insured, Home Office, Agent, and so on.

<CPY> Contains the default number of copies printed for a given recipient.

Appendix B
System Files

470

Here is an excerpt from the FORM.DAT file included with the base application in the
RPEX1 sample resources. This excerpt shows the first three forms in the SAMPCO form
set, DEC PAGE, LETTER, and LETTER2:

;SAMPCO;LB1;DEC PAGE;X;R;;sname|D<INSURED(1),COMPANY(1),AGENT(1) >/
cmdec1|DS<INSURED(1),COMPANY(1),AGENT(1)>/cmdec2|DS<INSURED(1),
COMPANY(1),AGENT(1)>/cmdec3|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;LETTER;;RD;;sname|D<INSURED(1),COMPANY(1),AGENT(1) >/
fmlt2a|DS<INSURED(1),COMPANY(1),AGENT(1)>/fmlt2b|DS<INSURED(1),
COMPANY(1),AGENT(1)>/sal1|DS<INSURED(1),COMPANY(1),AGENT(1)>;

;SAMPCO;LB1;LETTER2;Second Letter;RD;;sname|D<INSURED(1),
COMPANY(1),AGENT(1)>/fmlt2a|DS<INSURED(1),COMPANY(1),AGENT(1)>/
b3002|DS<INSURED(1),COMPANY(1),AGENT(1)>/
ba3006|DS<INSURED(1),COMPANY(1),AGENT(1)>/
ba3020|DS<INSURED(1),COMPANY(1),AGENT(1)>/
sal1|DS<INSURED(1),COMPANY(1),AGENT(1)>;

You can see other examples of this file in the RPEX1 sample resources.

SETRCPTB.DAT file The SETRCPTB.DAT file is used with the FORM.DAT file to build form sets and specify
recipients given specific transaction types and other dependent conditions. It is also
used to describe overflow conditions.

This file, also known as the Form Set Trigger table, contains information which tells the
GenData program the recipients of a form set and tells the program which recipients
receive which forms or sections.

You can define conditions using the Form Set Manager or by editing the SETRCPTB.DAT
file in a text editor.

The following table describes each record in a SETRCPTB.DAT file. You can see
examples of this file in the sample resources.

NOTE: Some of these options may not apply or may be changed depending on how
your system was implemented.

This table explains the syntax of this file:

;COMPANY;LOB;FORM NAME;IMAGE NAME;TRANS CODE;

RECP LIST; SEARCH MASK;OCCURRENCE (overflow) FLAG; RECS/FIRST IMAGE;

RECS/OVERFLOW IMAGE;RECIP. COPY COUNT; CONDITION;(CRLF)

Field Purpose

COMPANY Company name as defined in the form set definition file
(FORM.DAT) and the transaction record (TRNDFDFL.DFD)

LOB Line of business as defined in the FORM.DAT and TRNDFDFL.DFD

FORM NAME Form name as defined in the FORM.DAT file

IMAGE NAME Section (image) name as defined in the FORM.DAT file. Section
name is included only when you want to set conditions on a
particular section in a form.

Resource Files

471

GroupName1 Matches the GroupName1 field in the FORM.DAT file. In an
insurance industry application, this would typically contain the
company code. <Key1Table> in the FSISYS.INI file.

GroupName2 Matches the GroupName2 field in the FORM.DAT file. In an
insurance industry application, this would typically contain the line
of business code. <Key2Table> in the FSISYS.INI file.

Form name The name of the form, as specified in the FORM.DAT file. Note: Form
names are descriptive, and do not correlate to any physical file
name.

Image name The name of a section (image) within a form, as specified in the
FORM.DAT file. This name also correlates to a physical section file
(FAP file) and, in legacy implementations, to a Data Definition Table
file (DDT file).
Note: A section level trigger record requires an entry in this key
field; a form level trigger record must omit any value in this field.

Transaction codes By including one or more transaction codes in this field, a form is
triggered only if the extract file record includes that transaction
code.
If no transaction code value is mapped from the extract data for a
transaction, the system considers all triggers eligible, regardless of
whether they specify a transaction code list.
Conversely, if a transaction code value is mapped from the data, the
system only considers those triggers that have the same value to
be eligible for evaluation.

Recipient list Allows the optional specification of certain recipients.

Search mask 1
(Counter)

Defines the criteria to determine when a form belongs in a form set
(or a section within a form). The criteria lets Documaker Server get
specific data from the extract file. One form (or section) is added for
every occurrence of the search mask per transaction when the
overflow flag is set.

Occurrence
(overflow) Flag

Indicates the need to calculate overflow conditions. Valid entries
are: 0=No overflow and 1=Overflow
Also used for Master and Subordinate form and section level flags.
Valid entries: M=master (used on form level triggers) and
S=subordinate (used on section level triggers)
F=tells the system to override any previous copy count settings and
use the copy count settings in this trigger file (used on form level
triggers)
You can choose these options for the occurrence Flag field from a
drop-down pick list on the Transaction window.

Records per
overflow image

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on the specified overflow form.

Records per first
image

(Used by overflow) Specifies the number of records matching the
Counter Search Mask that will fit on a specific form before
overflowing to a new form.

Field Purpose

Appendix B
System Files

472

Here is an excerpt from the SETRCPTB.DAT file included with the base application in the
/mstrres/rpex1/deflib/ directory. This excerpt shows the recipients for the first three
forms in the SAMPCO form set, DEC PAGE, LETTER, and LETTER2:

;SAMPCO;LB1;DEC PAGE;;T1;INSURED,COMPANY,AGENT;11,HEADERREC,96,
~O;0;1;0;1;;

;SAMPCO;LB1;LETTER;;T1;AGENT,COMPANY,INSURED;11,FRMLSTREC,25,1;0;1;
0;1;;

;SAMPCO;LB1;LETTER2;;T1;INSURED,COMPANY,AGENT;11,FRMLSTREC,27,1;O;1
;0;1;;

DFD files There are several database files, meaning that these files are written and read via calls
to Oracle Insurance’s DBLIB database software library. These database files can be in
several formats, including Xbase (dBase), DB/2, and flat text. Not all database files
require a corresponding DFD file because their record structure is coded in the
software modules that access them. For instance, here is a list of Oracle Insurance’s
database files:

• transaction files

• new transaction files

• recipient batch files

• manual batch files

• application index files

• WIP files

• help files

• table files

Only these files require an external DFD file:

• transaction files

• new transaction files

• recipient batch files

• manual batch files

• application index files

Recipient copy
count

Specifies the number of copies a recipient receives.

Search Mask 2
(True/False)

Similar to Search Mask 1, but only one form will be triggered,
regardless of how many occurrences of the condition exists.

Custom Rule Available field for use with custom rules or search masks. Most
common custom rule is RecipIf.

Custom Rule
Parameters

Specifies parameters for the selected custom rule.

Field Purpose

Resource Files

473

The WIP file may optionally have an external DFD. If there is no external WIP DFD file,
the internal record structure as coded in the program is used. The help and table files
do not support the use of external DFD files.

Of the database files that require external DFD files, only three actual DFD files are
needed:

• a transaction file DFD (TRNDFDFL.DFD)

• a recipient batch file DFD (RCBDFDFL.DFD)

• an application index file DFD (APPIDX.DFD)

The transaction file DFD is used by both the transaction file and the new transaction
file. The recipient batch file DFD is used by both the recipient batch files and the
manual batch files. The application index file DFD is used by the application index file.
You can see examples of all these files in the RPEX1 sample resources.

TRNDFDFL.DFD file The TRNDFDFL.DFD file tells the GenData program how to read the TRN file. If
necessary, you can edit this text file in a text editor. The TRNDFDFL, is used by the
GenTrn, GenData, GenArc, and GenWIP programs.

The GenTrn program writes out the transaction file using the TRNDFDFL. The GenData
program reads the transaction file and writes out the new transaction file using the
TRNDFDFL file. And the GenArc and GenWIP programs read the new transaction file
using the TRNDFDFL file.

You can define the name of the TRNDFDFL file in the Data control group of the
FSISYS.INI file, as shown below:

< Data >

TrnDfdFile = trndfdfl.dfd

RCBDFDFL.DFD file The RCBDFDFL.DFD file, or recipient batch file DFD, is used by the GenData, GenPrint,
and GenWIP programs. If necessary, you can edit this text file in a text editor.

The GenData program writes the recipient and manual batch files using the
RCBDFDFL.DFD file. The GenPrint program reads the recipient batch files using the
RCBDFDFL.DFD file. The GenWIP program reads the manual batch files using the
RCBDFDFL.DFD file.

You can set the name of the RCBDFDFL.DFD file in the Data control group of the
FSISYS.INI file, as shown below:

< Data >

RcbDfdFile = rcbdfdfl.dfd

APPIDX.DFD The APPIDX.DFD file, or application index file, is used by the GenArc program and the
Archive module of Documaker Workstation. The GenArc program writes out the
application index file using the APPIDX.DFD. While Documaker Workstation’s Entry
module reads the application index file using APPIDX.DFD. If necessary, you can edit
this text file in a text editor.

You can set the name of the APPIDX.DFD file in the ArcRet control group in the
FSIUSER.INI file, as shown below:

< ArcRet >

 AppIdxDfd = appidx.dfd

Appendix B
System Files

474

However, the APPIDX.DFD name does not have to be set as shown above, provided the
system is running in a Windows environment. If the APPIDX.DFD name is not specified
as shown, the system automatically appends a DFD extension to the APPIDX name
specified in the same group, as shown below:

< ArcRet >

AppIdx = AppIdx

This will not work in an environment that does not support file name extensions, such
as z/OS.

.DDT files The Data Definition Table (DDT) is used to map data from a source record to fields in a
form. The DDT file tells the GenData program what rules it should use as it processes
the data. You can edit DDT files using a text editor or by using the Image Editor.

In the DDT file you store semi-colon-delimited information which defines the source
and target fields, field length and offset, rules to apply to the field, and optional
parameters for the rules.

You can see examples of DDT files in the RPEX1 sample resources. The following table
explains the structure of this file:

;A;B;sfld;sofst;slen;dfld;dfinx;dlen;fm;frule;data;f1;f2;f3;f4;x;y;
fontID

Element Size Description

A index into File Definition Table (FDT)

B source record Index

sfld 17 source record field name

sofst offset of field in source record

slen length of field in source record

dfld 17 destination field name

dfinx destination field index

dlen length of destination field

fm 17 format mask

frule field level rule

data 1024 data field used by a field level rule

f1 2 not required flag

f2 2 host required flag

f3 2 operator required flag

f4 2 optional required flag

Resource Files

475

.JDT files The job definition table (JDT) file is a text file which tells the system which rules to use
as it processes a specific job. Rules defined in the JDT file are run before the system
runs rules assigned to specific fields.

An example of a JDT file is the AFGJOB.JDT file, which you can see in the RPEX1 sample
resources. You can also see examples of JDT files, including the performance JDT file
used with single-step processing in the topic, Single-step Processing Example on page
55.

Extract files Extract files are typically text files which contain the data the system processes. Extract
files are created by another program, typically a database program, in a format the
system can read. The text file format provides a standard interface into the system. For
example, your data may be stored in a DB/2 or VSAM database from which you extract
the data you want to process in the system in text format.

You can customize the system to read almost any type of file layout. The GenTrn
program first reads the extract file and, using that extract data and TRNDFDFL.DFD file,
creates transaction files (TRN files) the GenData program can use as it applies the
processing rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE: For use on a z/OS platform, the extract file must be converted to EBCDIC format
if the file contains international characters. See Working with Fonts on page
171, for more information on international characters.

Extract data can be in the form of a flat file, a VSAM file, or it can come directly from a
database. The important thing is that the data is organized and presented in a manner
that makes it efficient to process. While the system is very flexible, there are things you
can do to minimize the need for customizations and to maximize the speed at which the
system identifies and processes the data.

Here are some general guidelines to follow when you design an extract file:

• The basic entity of the data is the transaction. Data for transactions is stored in
multiple rows.

• To speed the identification of a transaction entity, make the first record for each
transaction a general information row.

x x coordinate for the location of the field, in FAP units (2400 per
inch)

y y coordinate for the location of the field, in FAP units (2400 per
inch)

fontID ID of the font

Appendix B
System Files

476

• Each record should have a standard key structure. Here is an example of a
minimum key structure:

Sequence numbers are not required. In some cases they are nice to have to keep
track of which occurrence has been passed. It is, however, not a requirement that
you sequence repeating records.

• To make testing easier, use a flat ASCII or EBCDIC extract file. By eliminating
packed data fields, you can more easily view the contents of an extract file using
standard text editors.

• Speed processing by keeping the extract file as small as possible—minimize the
occurrence of repeated information in subsequent records.

• When possible, structure the data in the extract file so the system can read it in the
order it should be processed. The less the system has to search for data, the faster
it will process the data.

• Keep all related information in one record if possible, to minimize complexity of
rules. For example, the layout should look something like this:

• When information occurs multiple times (occurs clauses) in records, structure the
extract file to contain one record for each occurrence. For example, when multiple
forms are present on a policy or multiple meters are present on a bill, structure the
information into individual records per entity (form, meter, and so on). This
increases the likelihood that you can use base system overflow and mapping
features to process the data.

NOTE: For overflow, the system first determines the maximum number of lines it can
print on a page. When this number is exceeded, the system automatically
inserts overflow pages as necessary. If overflow is dependent upon custom
conditions to determine line counts, you will need custom code.

• Design records that will recur or overflow to have specific identifiers to sequence
the records and to have key identifiers for overflow requirements within one
record. This helps to minimize processing time and rule complexity. This is not a
requirement, but may ease custom rule complexity with a point of reference.

Include this key Which is

Transaction Identifier unique to each transaction

Record Type Identifier for each record type

Record Counter a sequence number

Record Name Layout

GENERALINFO account number, type transaction

ADDRESSINFO client name, address, phone

Resource Files

477

• It is a good idea to have a header record which contains all global identifiers for a
transaction, such as COMPANY, LINE OF BUSINESS, and TRANSACTION. You can
then use this header record as the trigger to each transaction and as the basis for
building the correct form set.

• When you build a header record, place all of the key fields for WIP, Archive, and
the batch sorting fields in this record. This makes it easier for the system to
perform searches and simplifies the building of the DFD records used to define the
key architecture.

• Where possible, place all conditional data triggers for a form in one record. This
may eliminate the need for the RECIPIF rule in the SETRCPTB.DAT file when
triggering records. By reducing usage of this rule, you can improve system
performance.

NOTE: You can find additional performance considerations for MVS systems in the
Installation Guide.

• To maximize performance, provide sub totals and totals for groups of information
in the extract data. This eliminates the need for system calculations via DAL scripts
or custom rules and speeds performance.

• Provide any data in the extract file that would require the use of the TblLkUp,
LookUp, SetState rules. This also improves performance and simplifies your
master resource libraries.

• For Year 2000 compliance, make sure all date fields in the extract file are in 4-digit
year format, preferably in YYYYMMDD format. (For the Archive application index
file, APPIDX.DFD, the rundate field retrieved from the extract file must be in this
format).

Docucreate includes a base extract file, called EXTRFILE.DAT, which serves as an
example of the type of file the base system can read. You can use this file to experiment
with the base system and determine how you want to set up your system.

You can see examples of this file in the sample resources.

DFD File Format

The DFD file contains two control groups. The Fields control group lists all the fields in
the record structures and the order those fields appear in the storage media. The fields
are automatically stored internally in the same order they appear externally. The
second group describes each field. This description includes an external and internal
definition of the field where applicable.

Fields Group The Fields control group appears as follows:

< Fields >

FIELDNAME =

FIELDNAME =

FIELDNAME =

...where FIELDNAME lists the name of the field. This is the name used by applications
to reference data in a DFD record. The order of the FIELDNAME options dictates the
order these fields are in, where applicable, on the storage media and how are they are
stored in memory.

Appendix B
System Files

478

FIELDNAME has a maximum length of 26 characters, except when using Xbase. Using
Xbase, the maximum length is 10 characters.

Field Description Group The Field Description control group has the following format:

< xxxxxx >

 EXT_TYPE=

 EXT_LENGTH=

 EXT_PRECISION=

 INT_TYPE=

 INT_LENGTH=

 INT_PRECISION=

 KEY=

 REQUIRED=

...where xxxxxx is name of field as listed in the Fields control group.

EXT_TYPE Data format of field on storage media Possible formats are:

NOT_PRESENT not present in this record

SIGNED_CHAR a signed char

CHAR char

CHAR_ARRAY NULL terminated string

CHAR_ARRAY_NO_NULL_TERM character array not NULL
terminated

SHORT 16-bit signed integer

UNSIGNED_SHORT 16-bit unsigned integer

LONG 32-bit signed integer

UNSIGNED_LONG 32-bit unsigned integer

FLOAT float single precision

DOUBLE double precision

LONG_DOUBLE long double precision

DATESTAMP a FSI date/time field

TIMESTAMP a FSI time stamp

VARCHAR variable length character
array

Resource Files

479

The external record definition must match the actual records written to or read from the
database. The internal record definition is provided for easier programming use.

The options can appear in any order. The system records any errors encountered while
loading a field in the log file.

EXT_LENGTH: Length of field on storage media. Valid for data types
CHAR_ARRAY and CHAR_ARRAY_NO_NULL_TERM only. Ignored
for all other data types.

EXT_PRECISION: Number of digits after decimal point. Valid for data types FLOAT,
DOUBLE, and LONG_DOUBLE only. It is ignored for all other data
types.

INT_TYPE: Same as EXT_TYPE.

INT_LENGTH: Same as EXT_LENGTH except one additional byte is added to
length to store null termination byte.

INT_PRECISION: Same as EXT_PRECISION.

KEY: Indicates if this field is a key field. Y indicates it is a key field. All
other values, or if field is not present, indicates field is not a key
field. This field is only used for DB/2 and indicates that the field is
required.

REQUIRED: Indicates if this field is required in order for a record to be stored
on or retrieved from a storage media. Y indicates it is required. All
other values, or if field is not present, indicates field is not
required. If KEY=Y, the field is required regardless of the value of
this option.

Appendix B
System Files

480

FILES CREATED BY
THE GENTRN

PROGRAM

The GenTrn program reads data in an extract file and creates transaction records which
in turn are processed by the GenData program. The main file created by the GenTrn
program is the TRN file which, along with the TRNDFDFL.DFD file, tells the GenData
program which transactions to process.

The GenTrn program creates these files as it reads in the extract file and uses the
resource files:

• Transaction files

• Error files

• Log files

Transaction files The GenTrn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This format
is defined in the TRNDFDFL.DFD file. The GenData program uses the TRNDFDFL.DFD file
to read the information in the TRN file as it processes the information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define
the location of the transaction data. For instance, the offsets in a TRN file tell the
GenData program where the transaction begins in the extract file, where the data for
the transaction is stored in the NAFILE.DAT file, and where the form set for the
transaction is stored in the POLFILE.DAT file.

Error files The GenTrn program produces this file to note any transactions it could not process
correctly. This file will help you discover and correct any processing errors you may
encounter. The most common errors are caused by incorrect or missing data. The
information is recorded by transaction. You can view this file using a text editor. You
can see examples of this file in the RPEX1 sample resources.

Log files When you run GenTrn, the program creates log files which record by transaction each
transaction the program processes. You can review these log files using any text editor.
You can see examples of this file in the sample resources.

Files Created by the GenData Program

481

FILES CREATED BY
THE GENDATA

PROGRAM

The GenData program takes information created by the GenTrn program and applies
processing rules to those transactions and data. The GenData program creates batch
files, the NAFILE.DAT, and the POLFILE.DAT file for the GenPrint program. It also creates
a manual batch file (MANUAL.BCH) for the GenWIP program. The output from the
GenData program is also used by the GenArc program to archive forms and data.

The GenData program creates the following files:

• NAFILE.DAT

• POLFILE.DAT

• NEWTRN.DAT

• Batch files (*.bch)

• MANUAL.BCH

• Updated error and log files

NAFILE.DAT file The GenData program creates an NAFILE.DAT file, commonly referred to as the NA file,
in which it stores section and variable field information. The GenPrint program uses
this file, along with the POLFILE.DAT file, which is also produced by the GenData
program to print the forms.

If the data is incomplete and GenData cannot complete the form, it creates a manual
batch file. The GenWIP program then creates separate DAT and POL files for each
incomplete transaction. These files provide the entry system with the information it
needs to open the form so a data entry operator can add the missing data. This is a
semi-colon-delimited text file. You can see examples of this file in the RPEX1 sample
resources.

POLFILE.DAT file The POLFILE.DAT file, commonly referred to as the POL file, defines the form set used
for a specific transaction. The GenData program creates this file which is used by the
GenPrint, GenWIP, and GenArc programs. For instance, if the data is complete, GenData
creates an NA file and a POL file. These files are used by GenPrint, along with the batch
files, to produce the print-ready file.

If the data is incomplete and GenData cannot prepare the form for printing, it creates a
manual batch file. The GenWIP program then creates separate files for each transaction
to provide the entry system with the information it needs to open the form so a data
entry operator can add the missing data. This is a semi-colon-delimited text file. You
can see examples of this file in the RPEX1 sample resources.

NOTE: You can use the MaxPolLineLength option to control the output line length
when writing out POL file records. The default is 255. You can set it to shorter
lengths when testing to more easily view the file in a text editor.

< Control >

MaxPolLineLength = 80

Choose a length between 40 to 4000 bytes.

Appendix B
System Files

482

NEWTRN.DAT file The GenData program creates the NEWTRN.DAT file. This file tells the GenArc program
where to find data in the NAFILE.DAT file and which forms to use in the POLFILE.DAT
file. You can see examples of this file in the RPEX1 sample resources.

Batch files The GenData program creates files with the extension BCH, called batch files, list the
transactions to be included in each batch, as specified in your FSISYS.INI file settings.
Batch files are used as trigger files by the GenPrint and GenWIP programs. Batch files
indicate which transactions should be printed in a given batch job. The GenPrint
program uses batch files to print completed forms. The GenData program also creates
manual batch files which record incomplete transactions. These manual batch files are
used by the GenWIP program.

MANUAL.BCH file The GenData program creates this file if it is unable to complete the processing of a
form set. Typically, this occurs because the forms are missing information. This file is
then used by the GenWIP program so a data entry operator can manually complete the
form and resubmit it for processing.

Error batch The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required, or change the FAP file and then process the transaction again.

Updated log, error, and
message files

As the GenData program processes information, it updates the log, error, and message
files. You can review these files in a text editor to review when transactions were
processed or to resolve errors.

Files Created by the GenPrint Program

483

FILES CREATED BY
THE GENPRINT

PROGRAM

The GenPrint program takes information produced by the GenData program and
creates a printer spool file for use with PCL, AFP, Metacode, and PostScript printers.
Specifically, the GenData program produces batch files, an NAFILE.DAT, and a
POLFILE.DAT file which the GenPrint program uses to create printed forms

The GenPrint program creates the following files:

• Spool files

• Updated log and error files

Spool files The spool files are print-ready files the GenPrint program creates from information
received from the GenData program and from resource files.

Updated log and error
files

As the GenPrint program processes information, it updates the log and error files. You
can review these files in a text editor to review when transactions were processed or to
resolve errors.

Appendix B
System Files

484

FILES CREATED BY
THE GENWIP

PROGRAM

The GenWIP program receives information about incomplete transactions from the
GenData program. This information is stored in manual batch (MANUAL.BCH) files. The
GenWIP program then creates separate files for each incomplete transaction. The data
for these incomplete transactions is stored in a file with the extension DAT, such as
00000001.DAT. The corresponding form set information is stored in a file with the
extension POL, such as 00000001.POL.

The GenWIP program also creates the WIP.DBF file, a database file which contains
records of all the incomplete transactions extracted from the NAFILE.DAT file produced
by the GenData program. The WIP.MDX file, also created by the GenWIP program
serves as an index to the WIP.DBF file.

This gives the entry program the information it needs to display the form so you can fill
in the missing information and complete the form in Documaker Workstation. Once
completed, you can resubmit the form for processing by the GenData program.

The GenWIP program uses these files as it prepares incomplete transactions for further
processing with the entry system.

• WIP DBF

• WIP.MDX

• 00000001.DAT files

• 00000001.POL files

• UNIQUE.DBF

WIP.DBF file The WIP.DBF file contains information about the incomplete transactions which the
GenWIP program extracted from the NAFILE.DAT and POLFILE.DAT file created by the
GenData program. The WIP.MDX file serves as an index to this file.

WIP.MDX file This file serves as an index to the WIP.DBF file.

00000001.DAT file Using the MANUAL.BCH file produced by the GenData program. The GenWIP program
creates from the NAFILE.DAT file, a separate data file for each incomplete transaction.
These files are numbered and have the extension DAT. In essence, they are like the
NAFILE.DAT except there is only one transaction per file.

00000001.POL file Using the MANUAL.BCH file produced by the GenData program, the GenWIP program
creates from the POLFILE.DAT file, a separate POL file for each incomplete transaction.
These files are numbered to correspond with their matching data file and contain
information about the form set on which the system should place the data. In essence,
they are like the POLFILE.DAT except there is only one form set per file.

UNIQUE.DBF file The UNIQUE.DBF file contains the last number for WIP file that was created. Whenever
a WIP file is created, a number is generated to uniquely identify it to make sure no WIP
file is overwritten. You should not modify, rename, or delete this file. The highest
number it will generate for WIP files is FFFFFFFF, which is 4,294,967,295. After this
number, the counter resets to 00000001.

The GenWIP program uses this information to create separate data and form
information files for the incomplete transaction information it receives from the
GenData program.

Files Used by the GenArc Program

485

FILES USED BY THE
GENARC

PROGRAM

The GenArc program archives forms and data so you can store the information
efficiently and retrieve it quickly. This program receives information stored in the
APPIDX.DFD. Using this information, the GenArc program creates CAR files to store the
information and forms and a DBF files which serves as an index to the data in the CAR
files. The GenArc program can create multiple CAR files, as needed.

The GenArc program uses and creates these files as if archives information:

• APPIDX.DBF

• APPIDX.DFD

• ARCHIVE.CAR

• APPIDX.MDX

APPIDX.DBF file The APPIDX.DBF file is created by the GenArc program and contains records about the
archive information stored in the ARCHIVE.CAR file.

APPIDX.DFD file The GenData program creates this file to tell the GenArc program how to store data and
forms to be archived. The actual information is stored in ARCHIVE.CAR files.

ARCHIVE.CAR file The GenArc program creates CAR files in which it stores archived forms and data. An
example of a generated CAR file is ARCHIVE.CAR. You can have multiple CAR files.

APPIDX.MDX file This file serves as an index to the APPIDX.DBF file.

APPIDX.DFD file The APPIDX.DFD file, or application index file, is used by the GenArc program and the
Entry module. The GenArc program writes out the application index file using the
APPIDX.DFD. While the entry module reads the application index file using the
APPIDX.DFD file.

You can set the name of the APPIDX.DFD file in the ArcRet control group in the
FSIUSER.INI file, as shown below:

< ArcRet >

 AppIdxDfd = AppIdx.Dfd

However, the APPIDX.DFD name does not have to be set as shown above, provided the
system is running in a Windows environment. If the APPIDX.DFD name is not specified
as shown, the system automatically appends a DFD extension to the APPIDX name
specified in the same group, as shown below:

< ArcRet >

AppIdx = AppIdx

This will not work in an environment that does not support file name extensions, such
as z/OS systems.

Appendix B
System Files

486

487

Glossary

All components of the system use specific
terminology. We suggest you familiarize yourself with
these terms before you begin using the system. The
following terms include definitions of system tools and
files as well as commonly-used terms.

NOTE: The Data control group in the FSISYS.INI file
lets you specify many of the file names you
want to use. For instance, by modifying the
settings in this group, you can change the
name of the error file (ERRFILE.DAT) to any file
name you want. In this manual, we refer to the
default names for these files.

00000001.DAT File Using the MANUAL.BCH file produced by the GenData
program, the GenWIP program creates from the
NAFILE.DAT file, a separate data file for each
incomplete transaction. These files are numbered and
have the extension DAT. In essence, they are like the
NAFILE.DAT except there is only one transaction per
file.

See also 0000001.POL and the GenWIP Program on
page 494.

00000001.POL File Using the MANUAL.BCH file produced by the GenData
program, the GenWIP program creates from the
POLFILE.DAT file, a separate POL file for each
incomplete transaction. These files are numbered to
correspond with their matching data file and contain
information about the form set on which the system
should place the data. In essence, they are like the
POLFILE.DAT except there is only one form set per file.

See also 0000001.DAT and the GenWIP Program on
page 494.

Glossary

488

AFP Advanced Function Printing (AFP), developed by IBM, is a print server language that
generates data streams of objects. The data streams merge with print controls and
system commands to generate Intelligent Printer Data Stream (IPDS). Your system
then sends the IPDS to the AFP printer for printing. The GenPrint program can create
spool files for AFP printers.

ARCHIVE.CAR File See .CAR Files on page 488.

ARCHIVE.DBF File The ARCHIVE.DBF file is created by the GenArc program and contains records about the
archive information stored in the ARCHIVE.CAR file.

ARCHIVE.DFD File The GenData program creates this file to tell the GenArc program how to store data and
forms to be archived. The actual information is stored in ARCHIVE.CAR files.

Base Product Any executable modules, source code, resource libraries, and documentation and help
delivered to you from the Support Services Group within the normal system release
and update cycle are considered part of the base product. All executable modules,
source code, resource libraries, and documentation and help which were changed or
customized by your internal development team, a third-party development team, or the
Professional Services staff, are custom solutions.

.BCH Files The GenData program creates files with the extension BCH, called batch files, which list
the transactions to be included in each batch. Batches are specified in your FSISYS.INI
file settings. Batch files are used as trigger files by the GenPrint and GenWIP programs.
Batch files indicate which transactions should be printed in a given batch job. The
GenPrint program uses batch files to print completed forms. The GenData program also
creates manual batch files which record incomplete transactions. These manual batch
files are used by the GenWIP program. Error batch files contain transactions which
cannot be processed by the system. Batch files are comma-delimited TEXT files.

See also MANUAL.BCH File on page 496.

Batch Files See .BCH Files on page 488.

.CAR Files The GenArc program creates CAR files in which it stores archived forms and data. An
example of a generated CAR file is ARCHIVE.CAR. You can have multiple CAR files. The
GenArc program also creates DBF files which serve as an index to the archived
information stored in the CAR file.

489

Custom Solution All executable modules, source code, resource libraries, and documentation and help
which were changed or customized by your internal development team, a third-party
development team, or Oracle Insurance’s Professional Services staff, are considered to
be a custom solution. Any executable modules, source code, resource libraries, and
documentation and help delivered to you from the Support Services Group, within the
normal system release cycle, are considered part of the base product.

DAL Document Automation Language (DAL) is the language you use when you tell the
system how to calculate variable fields. This calculation is also called a script. When
you select calculation options for a variable field, you can choose one of the following:

DAL CALC. Recalculates the value of all fields each time a user tabs to a new field in the
section.

DAL SCRIPT. Recalculates the value of the fields to which you assign the script only
when a user tabs out of that field

NOTE: You can find detailed information about DAL in the DAL Reference.

.DAT Files Data table (DAT) files define various information the system uses as it processes
information. All DAT are text files which have the extension DAT. Some DAT files are
comma-delimited text files. You can edit DAT files using a text editor.

In many cases, there are graphical tools, such as Form Set Manager, which you can use
to edit specific DAT files. For example, the FORM.DAT file tells the system how the
various forms are organized in the form set. The SETRCPTB.DAT file contains
information about the recipients of a form and the conditions which determine whether
or not a form is included in a form set or sent to a recipient. You can edit these files
using the Form Set Manager.

The NAFILE.DAT file contains the variable data generated by the GenData program. This
file, along with the POLFILE.DAT file, tell the GenPrint program what to print. This file
also tells the GenWIP and GenArc programs what to place into WIP and what to archive.
These files can only be edited with a text editor.

The GenWIP program also creates DAT files for each incomplete transaction it must
process. These files are numbered sequentially and for each file there is a
corresponding POL file which contains information about the forms to use.

.DBF Files Database files (DBF) are used in several places in the system. For each DBF file, there
is a corresponding MDX file which serves as its index. Examples of DBF files are
FDB.DBF, which is created by the Field Database Editor; ARCHIVE.DBF, which is created
by the GenArc program; and WIP.DBF, which is created by the GenWIP program.

See also Field Database Editor on page 492 and External Database Editor on page 491.

DDT Files The data definition table (DDT) file tells the GenData program what rules it should use
as it processes the data. You can edit DDT files using a text editor or by using the Image
Editor.

Glossary

490

In the DDT file you store comma-delimited information which defines the source and
target fields, field length and offset, rules to apply to the field, and optional parameters
for the rules.

See also .JDT Files on page 495.

DESKJET.FXR File This font cross reference file provides information about internal HP fonts for HP
Deskjet and compatible printers.

.DFD Files Data field definition (DFD) files define to the system the file formats of the files
generated by the system.

An example of a DFD file is the TRNDFDFL file which the GenTrn program creates. The
GenData program uses this file to read the TRNFILE which contains the actual
transactions GenTrn creates.

Distributed Resource
Library

A Distributed Resource Library provides a decentralized repository into which you can
place compiled items you select from your master resource library. A distributed
resource library provides a unique and customized library of reusable resources for
specific users at various locations in your organization. A distributed resource library
contains a section (image) library, a variable data dictionary library, a rules library, and
a system library.

See also Master Resource Library on page 496.

Duplex A form printed on both the front and back sides of a sheet of paper is printed in duplex
mode.

See also Simplex on page 498.

ERRFILE.DAT The GenTrn program creates this file to note any transactions it could not process
correctly. The other programs, such as GenData, GenPrint, GenWIP, and GenArc,
update this file as they perform their processing activities. This file will help you
discover and correct any processing errors you may encounter. Common errors are
caused by incorrect or missing data. The system records error information by
transaction. You can view this file using a text editor.

Error Batch The GenData program creates error batch files if it spots an error. In contrast to manual
batch files, you cannot correct these errors using the GenWIP program. Instead, you
must, for instance, correct the error in the extract file, change the flag to operator
required, or change the FAP file and then process the transaction again.

Error Files See ERRFILE.DAT on page 490.

491

External Database
Editor

The External Database Editor provides you with an easy-to-use tool for creating and
maintaining information about the extract file being used. The data in the file can be
automatically merged onto a form’s variable fields using the External Database Editor.
The External Database Editor can import DDF, DFD, DBF, and COBOL copy book files.
The tool defines customer data or transaction file data, which provides you with a
greater ability to apply and modify data, and increase the ease of reusing resources.

See also Field Database Editor on page 492.

Extract Files Extract files are typically text files which contain the data the system processes. Extract
files are created by another program, typically a database program, in a format the
system can read. The text file format provides a standard interface into the system. For
example, your data may be stored in a DB/2 or VSAM database from which you extract
the data you want to process in the system in text format.

You can customize the system to read almost any type of file layout. The GenTrn
program first reads the extract file and, using that extract data and TRNDFDFL.DFD file,
creates transaction files (TRN files) the GenData program can use as it applies the
processing rules and creates batch files, the NAFILE.DAT, and the POLFILE.DAT file.

NOTE: For use on an MVS platform, the extract file must be converted to EBCDIC
format if the file contains international characters.

The system includes a base extract file, called EXTRFILE.DAT, which serves as an
example of the type of file the base system can read. You can use this file to experiment
with the base system and determine how you want to set up your system.

.FAP Files The information which defines each section is stored in a FAP file. FAP files are text files
with the extension FAP. You can edit FAP files using a text editor, but they are most
commonly created and edited using Image Editor. The FAP file defines the section while
the FORM.DAT file defines the sections which comprise a form and form set.

See also Image Editor on page 495.

FDB.DBF File The FDB.DBF file is a database file created by the Field Database Editor which contains
a record for each unique variable field you create in the Image Editor. You can add
records (variable fields) using the Field Database Editor or as you create sections using
Image Editor. The FDB.MDX file serves as an index to this file.

See also Field Database Editor on page 492.

fetype An fetype defines the field format type. You can have an input and an output fetype. For
example, an input fetype with the fmtnum rule tells the system where the decimal goes
in the number. The output fetype tells the system how to format the output amount. An
fetype can consist of either one or four characters.

For more information, see the Rules Reference.

Glossary

492

Field Database Editor The Field Database Editor provides you with an easy way to store common variable
field information to make setting up and creating FAP files faster and more consistent.
When you use this tool, you create a file named FDB.DBF. This file contains a record for
each unique variable field name, and is indexed in ascending order.

Use this tool to ensure consistency in forms sets. For example, if you have a Name
variable field on a form, you can pull the attributes for that field into the form from the
Field Database Editor. The database contains such information as the name of the field,
font, type of variable field, and so on.

See also External Database Editor on page 491.

Fixed Data Fixed data is the same on every copy of the form. This includes items such as logos,
headers and titles. This information remains constant regardless of the data entry.

Font Manager Font Manager is used to organize fonts and font sets. A font is a collection of letters,
symbols, and numbers that share a particular design. A font set is a collection of fonts
you choose to group together for your section and printing needs. The font set
information is stored in the font cross reference file (FXR file) which is created by Font
Manager. Font Manager lets you make sure your documents print the same way on
different printers.

A well organized font set makes section creation quick and efficient. Forms composers
need a variety of fonts for text and field creation. Font Manager does not change the
actual printer fonts. This tool is used for defining the appropriate characteristics (bold,
size, and so on) about the font so the fonts used to create a particular form set are
consistent and easily accessible to the forms composers.

Form A form is a single document containing one or more pages or sections. Most forms
contain multiple pages that are usually printed on both sides of a single sheet (duplex).
Some forms are printed only on one side (simplex). Typical forms include insurance
policies, tax returns, and mortgage documents.

A form includes two types of data: fixed and variable.

• Fixed data is the same on every copy of the form. This includes items such as
logos, headers and titles. This information remains constant regardless of the data
entry.

• Variable data may differ from form to form. This includes items such as individuals'
names, addresses, and policy numbers. This information relates to the specific
data processed on each form.

Form Set A form set is a group of logically related forms required to process a single transaction.
A form set may contain one or many forms. You can group forms any way you want as
you create form sets.

Form Set Manager This tool helps you group the individual sections and forms you create using Image
Editor into a set of related forms. This information is stored in the form set definition
table. The Entry module uses the form set definition table to control the data entry,
print, work-in-process, and archive/retrieval functions for related forms and sections.

493

The system stores the form set information in a semi-colon delimited file named
FORM.DAT. This file includes information about the company, line of business, forms,
each section in the form, and the names of the person, organization, or entity who
receives a copy of each section of the form. Specific information about the recipients of
a form is stored in the Set Recipient table which is stored in the SETRCPTB.DAT file.

FORM.DAT File This file, also known as the Form Set Definition table, contains information about the
key fields, such as company, line of business, and policy number, plus information
about each section in the form, its recipients, and the form set itself. The information
is stored in semicolon-delimited format and you can edit this file using Form Set
Manager or a text editor. The information that comprises the individual sections is
stored in a FAP file.

FSISYS.INI File The FSISYS.INI file is a one of the initialization (INI) files used by the system to set
system parameters and to enable or disable system features. For example, the
FSISYS.INI file contains information the GenTrn program uses to determine when a new
record starts and other information about the extract files the GenTrn program
processes.

NOTE: The Data control group in the FSISYS.INI file lets you specify many of the file
names you want to use in Documaker Server. For instance, by modifying the
settings in this group, you can change the name of the error file (ERRFILE.DAT)
to any file name you want. In this manual, we refer to the default names for
these files.

FSIUSER.INI File The FSIUSER.INI file is one of the initialization (INI) files used by the system to set
system parameters. For example, the FSIUSER.INI file contains information specific to
each user, such as the location of files and so on.

.FXR Files Font cross-reference (FXR) files are used by the system so you can make sure your
documents print the same way, regardless of which printer you choose. These files
contain information about the various fonts you use and their equivalents on various
printers.

The system includes several font cross-reference files. You can edit and create font
cross-reference files using the Font Manager.

GenArc Program The GenArc program archives forms and data so you can store the information
efficiently and retrieve it quickly. This program receives information stored in the
APPIDX.DFD file from the GenData program. Using this information, the GenArc
program creates CAR files to store the information and forms and DBF files which serve
as an index to the data in the CAR files. The GenArc program can create multiple CAR
files, as needed.

Depending on the operating system you use, this program has various names such as
genacw32.exe for 32-bit Windows environments.

Glossary

494

GenData Program The GenData program takes information created by the GenTrn program and applies
processing rules to those transactions and data. The GenData program creates batch
files, the NAFILE.DAT, and the POLFILE.DAT file for the GenPrint program. It also creates
a manual batch file for the GenWIP program. The output from the GenData program is
also used by the GenArc program to archive forms and data.

Depending on the operating system you use, this program has various names such as
gendaw32.exe for 32-bit Windows environments.

GenPrint Program The GenPrint program takes information produced by the GenData program and
creates a printer spool file for use with PCL, AFP, Metacode, and PostScript printers.
Specifically, the GenData program produces batch files, an NAFILE.DAT, and a
POLFILE.DAT file which the GenPrint program uses to create printed forms.

Depending on the operating system you use, this program has various names such as
genptw32.exe for 32-bit Windows environments.

GenTrn Program The GenTrn program reads data in an extract file and creates transaction records which
in turn are processed by the GenData program. The main file created by the GenTrn
program is the TRN file which, along with the TRNDFDFL.DFD file, tells the GenData
program which transactions to process.

Depending on the operating system you use, this program has various names such as
gentnw32.exe for 32-bit Windows environments.

GenWIP Program The GenWIP program receives information about incomplete transactions from the
GenData program. This information is stored in manual batch files. The GenWIP
program then creates separate files for each incomplete transaction. The data for these
incomplete transactions is stored in a file with the extension DAT, such as
00000001.DAT. The corresponding form set information is stored in a file with the
extension POL, such as 00000001.POL.

The GenWIP program also creates the WIP.DBF file, a database file which contains
records of all the incomplete transactions extracted from the NAFILE.DAT file produced
by the GenData program. The WIP.MDX file, also created by the GenWIP program,
serves as an index to the WIP.DBF file.

This gives the Entry module the information it needs to display the form so you can fill
in the missing information and complete the form. Once completed, you can resubmit
the form for processing by the GenData program.

Depending on the operating system you use, this program has various names such as
genwpw32.exe for 32-bit Windows environments.

Help Editor The Help Editor is a tool you can use to create user specific help records that are
accessible from a variable field during form entry time. You can easily create a help file
which contains records for the variable fields on a form. Each help record usually
contains an explanation of a description for entering correct data into a variable field.
Help files reside in the resource library.

495

Image (Section) A section is a group of text or graphics or both that make up a form or a section of a
form. You create sections using Documaker Studio or Image Editor. Each section is
stored in a separate file, so you can reuse sections in several forms and form sets.
Multiple sections can comprise a single form. For instance, a three-page form with text
and graphics, printed on both sides of each page, could contain a total of six sections.
Some examples of sections include an insurance policy declaration page, the return
portion of a bill, and page one of a 1040 Federal tax return form.

You may choose to create a single page containing multiple sections, especially if you
develop a page with graphics.

Image Editor The Image Editor lets you create documents, forms, and sections that become part of
an electronic form or document. It is a full-featured design tool with an easy to learn
and use graphical user interface. With Image Editor, you have complete control and
flexibility in managing and creating your section. The section and objects that you
create are stored in the resource library's section library. Each section is stored in a file
with the extension, FAP. Sections are also referred to as FAPs.

.INI Files Initialization (INI) files are used by the system to set system parameters and to enable
or disable system features. Some examples of system INI files are: FSISYS.INI and
FSIUSER.INI. For example, the FSISYS.INI file contains information the GenTrn program
uses to determine when a new record starts and other information about the extract
files the GenTrn program processes. The FSIUSER.INI file contains information specific
to each user, such as the location of files and so on.

INTL.FXR This font cross reference file includes international characters for producing forms in
languages other than English.

INTLSM.FXR A smaller version of the INTL.FXR font cross reference file, this file includes
international characters for producing forms in languages other than English.

.JDT Files Job Definition Table (JDT) files tell the system which rules to use as it processes a
specific job. Rules defined in the JDT file are run before the system runs rules assigned
to specific fields. An example of a JDT file is the AFGJOB.JDT file.

See also DDT Files on page 489.

Library Manager The Library Manager lets you manage documents and logos while maintaining the
versions, revisions, and integrity of the sections you are developing. You may want to
set up a library for a specific client or form set. You can store all sections and logos in
a resource library. The storage consists of a listing of the section or logo, as well as a
snap shot of the section.

When you set up a library, you must define the locations of the library and storage files.
Entries made during library setup are automatically saved back to the FSIUSER.INI file
when you exit the setup window.

Glossary

496

Log Files When you run GenTrn, the program creates log files which record by transaction each
transaction the program processes. You can review these log files using any editor.

.LOG Files Logos and other graphics, such as scanned signatures, are stored as LOG files in the
system. You use Logo Manager to manage and manipulate LOG files. You can view
these files using Logo Manager.

Logo Manager Once you create a graphic object such as a logo or a scanned signature, you can edit it
using Logo Manager. This tool lets you resize, reverse, rotate, crop, and otherwise
manipulate an section to fit your needs. The system stores these graphic files as LOG
files.

MANUAL.BCH File The GenData program creates this file if it is unable to complete the processing of a
form set. Typically, this occurs because the forms are missing information. This file is
then used by the GenWIP program so a data entry operator can manually complete the
form and resubmit it for processing.

See also Batch Files on page 488 and the GenWIP Program on page 494.

Master Resource
Library

Master resource libraries provide a central repository into which you can place all
reusable resources such as sections, fonts, graphic files, data definitions, processing
rules, and processing procedures. A master resource library contains an section library,
a variable data dictionary library, a rules library, and a system library.

See also Distributed Resource Library on page 490.

Metacode A printer definition language developed by Xerox. Metacode is the native language of
Xerox’s Centralized Printing Systems. The GenPrint program can create spool files for
Metacode printers.

.MDX Files The various system programs create MDX files which serve as indexes to the database
files (.DBF files). For example, the GenWIP program creates the WIP.DBF file and the
corresponding WIP.MDX file to record the incomplete transactions which were not
printed.

The Field Database Editor creates the FDB.MDX file to serve as an index to the FDB.DBF
file which contains common variable field definitions.

NAFILE.DAT File The GenData program creates an NAFILE.DAT file, commonly referred to as the NA file,
in which it stores section and variable field information. The GenPrint program uses
this file, along with the POLFILE.DAT file, which is also produced by the GenData
program to print the forms.

If the data is incomplete and GenData cannot complete the form, it creates a manual
batch file. The GenWIP program then creates separate DAT and POL files for each
incomplete transaction. These files provide the entry system with the information it
needs to open the form so a data entry operator can add the missing data. This is a
comma-delimited text file.

497

NEWTRN.DAT File The GenData program creates the NEWTRN.DAT file. This file tells the GenArc and
GenWIP programs where to find data in the NAFILE.DAT file and which forms to use in
the POLFILE.DAT file. This is a comma-delimited text file.

Objects Objects are the individual items which comprise your section. Examples of objects are
boxes, bar codes, lines, graphics, and text. All objects have unique attributes within the
section. Attributes include items such as position, size, font type, and color.
Documaker Studio and Image Editor let you easily create the various objects which
comprise an section.

Overflow Overflow refers to a situation where there is not enough room on the form for all of the
data you need to enter. In this situation, you want to have the system automatically
place the additional data onto another form or another copy of the same form. The
system includes features which let you do this.

For instance, suppose you have a form which records automobiles and the drivers of
the automobiles. The form has room to record four different automobiles and drivers.
In most cases this will suffice but, in some situations, you need to include information
about additional automobiles and drivers. Using the overflow features, you can handle
this situation automatically.

Page Pages are the printed result of an section or a group of sections. You can have one
section per page, several sections per page, or even an section that spans several
pages. You determine the size of a page based on the size of your printed output. With
Documaker Studio or Image Editor, you can design forms for any size page your printer
can print.

PCL PCL (Printer Control Language) is a printer definition language developed by the
Hewlett-Packard company. The GenPrint program can create spool files for PCL
printers.

POLFILE.DAT File The POLFILE.DAT file, commonly referred to as the POL file, defines the form set used
for a specific transaction. The GenData program creates this file which is used by the
GenPrint, GenWIP, and GenArc programs. For instance, if the data is complete, GenData
creates an NA file and a POL file. These files are used by GenPrint, along with the batch
files, to produce the print-ready file.

If the data is incomplete and GenData cannot prepare the form for printing, it creates a
manual batch file. The GenWIP program then creates separate files for each transaction
to provide the entry system with the information it needs to open the form so a data
entry operator can add the missing data. This is a semicolon-delimited text file.

PostScript PostScript is a printer definition language developed by Adobe Systems which you can
use on various printers. The GenPrint program can create spool files for PostScript
printers.

Glossary

498

Section A section (image) is a group of text or graphics or both that make up a form or a section
of a form. You create sections using Documaker Studio or Image Editor. Each section is
stored in a separate file, so you can reuse sections in several forms and form sets.
Multiple sections can comprise a single form. For instance, a three-page form with text
and graphics, printed on both sides of each page, could contain a total of six sections.
Some examples of sections include an insurance policy declaration page, the return
portion of a bill, and page one of a 1040 Federal tax return form.

You may choose to create a single page containing multiple sections, especially if you
develop a page with graphics.

SETRCPTB.DAT File This file, also known as the Form Set Trigger table, contains information which tells the
GenData program which recipients receive which forms or sections.

This file also contains the information the GenData program needs to determine
whether or not to include or exclude a form. You can define conditions using Form Set
Manager or by editing the SETRCPTB file in a text editor.

Simplex A form printed on only one side of a sheet of paper is printed in simplex mode.

See also Duplex on page 490.

System Releases To continually improve and support the product, software enhancements and
corrections are organized into regularly scheduled system releases. Releases are
noted with a major and minor version number, such as 10.3 or 11.0.

System Patches In certain situations, and on a case by case basis, a correction to the current system
release can be made available as a system patch. Corrections to the prior release are
handled on a case by case basis, and are made available only as system patches.

Table Editor The Table Editor lets you create a table of data used to automatically fill a variable field
during form data entry. Tables make the entry process quicker and more efficient for
the end user. Users can choose from data options within a table format rather than
keying information. Using tables reduces data entry errors and increases speed. In the
Table Editor, you can create and edit table files, tables, and table entries. Tables are
stored in the resource library.

Transaction List The GenTrn program creates the transaction list which is used by the GenData program
as an index to the data in the extract file. The transaction list is stored in the TRN File.

.TRN Files The GenTrn program creates transaction or TRN files which contains a record for each
transaction. The record format for the TRN file can vary to meet your needs. This format
is defined in the TRNDFDFL.DFD file. The GenData program uses the TRNDFDFL.DFD file
to read the information in the TRN file as it processes the information.

Each record in a TRN file contains a series of offsets or pointers. These offsets define
the location of the transaction data. For instance, the offsets in a TRN file tell the
GenData program where the transaction begins in the extract file, where the data for
the transaction is stored in the NAFILE.DAT file, and where the form set for the
transaction is stored in the POLFILE.DAT file.

499

TRNDFDFL.DFD File The TRNDFDFL.DFD file tells the GenData program how to read the TRN file. If
necessary, you can edit this text file in a text editor.

UFSTSM.FXR File This is a font cross reference file which provides Times (Roman), Courier, and
Univers(al) fonts for Xerox, AFP, PostScript, and PCL printers. This font cross reference
file is automatically installed when you install Docucreate.

UNIQUE.DBF File The UNIQUE.DBF file contains the last number for the WIP file that was created.
Whenever a WIP file is created, a number is generated to uniquely identify it to make
sure no WIP file is overwritten. You should not modify, rename, or delete this file. The
highest number it will generate for WIP files is FFFFFFFF, which is 4,294,967,295. After
this number, the counter resets to 00000001.

The GenWIP and GenArc programs use this information to create separate data and
form information files for the incomplete transactions received from the GenData
program and for the individual forms stored in archive.

See also 00000001.DAT File on page 487 and 00000001.POL File on page 487.

Variable Data Variable data may differ from form to form. This includes items such as individuals'
names, addresses, and policy numbers. This information relates to the specific data
processed on each form.

WIP.DBF File The WIP.DBF file contains information about the incomplete transactions which the
GenWIP and GenArc programs extracted from the NAFILE.DAT and POLFILE.DAT file
created by the GenData program. The WIP.MDX file serves as an index to this file.

See also the GenWIP Program on page 494.

WIP.MDX This file serves as an index to the WIP.DBF file.

xBase A generic term for industry-standard dBase IV file format.

Glossary

500

 501

Index

Symbols

& (ampersand) 377

.BCH files 464

.CAR files 464

.DAT files 464

.DBF files 464

.DDT files 464, 474

.DFD files 465

.FAP files 466

.INI files 466

.JDT files 466, 475

.LOG files 466

.MDX files 466

~Encrypted 113

~GetEnv function 111

~OS function 112

~Platform function 112

~WIPField built-in function 115

Numerics

00000001.DAT file 484

00000001.POL file 484

2-up printing
overview 68
rule order 74

Index

502

A

A4
PaperSize option 248, 273

ABNORMAL statements 284

Access databases 411

Acrobat Reader
included fonts 208

AddBlankPages function 96

AddComment function 299, 300

AddDocusaveComment function 359

Added_Fonts control group 71

AddedOn option 398

AddForm function
banner forms 16

adding
fonts to the font set 214
printer fonts to the FXR file 189
tables of contents and indexes 99

AdditionalDJDE option 279

AddLine rule 72

ADDPAGES utility 269

AddTextLabel rule 72

AdjLeftMargin option 290

Adobe Acrobat 2

AFEMAIN program
defined 384
viewing archives 410

AfeProcedures control group 413

AFEW32 413

AFEWIP2ArchiveRecord 413

AfeWIP2ArchiveRecord control group 413

AFG2WIP control group 89

AFGJOB.JDT file 466, 475
and 2-up printing 74

AFM files 174

AFP
comment records 72
fonts 188, 234
record list and the AddTextLabel rule 72
using custom fonts 195

AFP control group 250

AFP printers
fonts 258
form-level comments 262
handling multiple trays 363
highlight color printing 251
INI options 246
overlays 258
page segments 258
paper size 248
resources 258
setting up 246
TLE records 362
troubleshooting 259

AFPFMDEF utility 258

AIX
archive/retrieval scenarios 387

AliasPrintBatches option 103

AllowInput option 322

AlwaysSQLPrepare option 393

ampersands
in messages 378

ancestor 123

ANSI code page
for PC platforms 201

APPIDX file
defined 384

APPIDX.DBF file 485

APPIDX.DFD file 473, 485

APPIDX.MDX file 485

application index file 473

archive
creating print streams for Docusave 358
features 386
field names 422
retrieval 416
TLE records 362
transaction log 392

archive index file
and WIP 413

503

Archive rule 51, 52

ARCHIVE.CAR file 485

ArchiveMem option 392, 398

archiving
transactions 31

ArcRet control group 392, 417

ARCRET utility 424

ARCVIEW utility 410

ASCII
code pages 179

Asian languages
PCL 6 293

Auto-size option 259

B

banner form processing
multi-file print 17

banner forms
groups 16

banner processing
custom callback function 15
overview 15

BARR
format 288
interface attachment 288

BARR SPOOL
OutMode option 266

BARRWRAP utility 288

BaseErrors option 34

baseline 220

BaseRuleTime option 105

Batch control group 52

batch files 482
and single-step processing 46
grouping 103
page statistics 37

BatchBannerBeginForm option 16

BatchBannerBeginScript option 16

BatchBannerEndForm option 16

BatchBannerEndScript option 16

BatchByPageCount rule 52

BatchingByRecip control group 52

BatchingByRecipINI rule 52

BatchPrint control group 321

BatchTable option 103

bitmap compression
PCL print driver 298
PostScript printer driver 305

bitmap fonts
defined 175
inserting 234

bitmaps
compression for Metacode printers 266
highlight color printers 298
Metacode LGO files 282
scaling 250
Xerox images 282

black rectangles 259

blank pages 269

boxes, WriteFrame option 322

BreakBatch function 81

BuildMasterFormList rule 52

built-in functions 111

business envelopes 296

byte-serving 320

C

Cabinet option 398

CacheFAPFiles option 277

CacheFiles option 277

CacheMethod option 277

callback functions
InitPageBatchedJob rule 72

CallbackFunc option 85
RTF driver 343

Index

504

CARData control group 409

CARFILE
defined 384

CARFILE.DFD file 405

case toggles 265

CaseSensitiveKeys option 414

CATALOG file
defined 385

CD/IG 286

Character Set field 252

character sets
defined 182
determining characters used in a printer font 182

Character Width field 221

ChartResolution option
AFP printers 247
Metacode printers 271

charts
BARRWRAP utility 288
compression for Metacode printers 266
printing on Metacode printers 266
rendering on Metacode printers 271
using the Metacode loader 278

CheckCount option 33

CheckImageLoaded rule
rotated variable fields 260

CheckZeroFontID option 102

child 123

Class option 411
AFP printers 248
GDI driver 314
Metacode printers 278
PCL printers 291
PostScript printers 303

class recipient 65

ClearMsgFile option 370

CMY palette 297

Code Page Font field 252

code pages
ASCII code pages 179
code page 1004 178, 180
code page 37 181
code page 437 178
code page 850 178, 179
code page names 184
converting text files from one code page to another

204
EBCDIC code pages 181
for EBCDIC platforms 202
using the ANSI code page for PC platforms 201

CODE statement 265

CODEPAGE.INI file
and PostScript fonts 189, 236
and the Char Set ID field 224
and the CPCNV utility 195, 196
defined 208

ColorCharts option 274

colors
for charts 274
PCL support for 289
printing 251
simple color mode 297
specifying ink for Metacode printers 271
troubleshooting for Metacode printers 283

column names 433

COMM_RECS column
restarting GenArc 396

commas
in search masks 164

comment records 18

commit
defined 384

505

CommitEvery option 396

CommonFonts control group 273

CompileInStream option 267

Compression option 305

CompressMode option 266

concepts
setting recipients and copy counts 138

configuring
the message system 369
the system 132

console
logging information 104

console messages 274

controlling the message translation process 372

converting
fonts from other vendors 229
system fonts 227
text files from one code page to another 204

ConvertWIP rule 51, 53

copy counts
DAL and GVM variables 152
example 152
setting 137, 138

copying
fonts 225

Counter field 141, 471

counter search mask 155

CounterDFD option 70

CounterTbl option 52, 53, 70

CreateIndex option 408

CreateTable option 408

CreateTime field 88

CreateTime option 398

creating
print spool files (multi-step processing) 27
transaction records (multi-step processing) 21
transaction records (single-step processing) 45

creating messages 374

CRYRU utility 113

CSTSetMailRecip function 344

CUSSetMailRecipGVM function 344

custom callback function in banner processing 15

custom fonts 194

Custom Rule field 141

custom rules
field 472

D

DAL
analyzing performance 106

DAL functions
manipulating file names 82

DAL scripts
and extract files 477
banner processing 16
creating print streams for Docusave 359
splitting print streams 79

DALFile option 406

DALLibraries control group 16, 97

DALRUN built-in function 113

DALVAR built-in function 113

data
length validation 287

Data control group
print batches 103

data definition table
defined 464
file format 474

data format definition files 465

data table files 464

database
archiving to 392

database files 464, 472

DataPath option 103
and message files 370
and the TRANSLAT.INI file 371

date stamps
turning off 372

Index

506

DB Field Name values 422

DB2
databases 411

dBase 499

DBErrors option 395

DBHandler option 407, 408, 412

DBLib tracing 373

DBLogFile option 373

DBTable option 407

DCD files
mapping fonts 244

DDTFile option 407

Debug option 408, 412

Debug_If_Rule option 101

Debug_Switches control group 101

DefaultTag option 393

defining
output message files 370

DefLib option
and the TRANSLAT.INI file 371
PostScript printers 302, 310

DelBlankPages function 97

deleting
fonts 231

descendant 123

Description tab
fonts 216, 218

Deselect All option
fonts 213

DestField token 381

Device field 318

Device option 268
AFP printers 246
GDI driver 313
PCL printers 289
PostScript printers 301

DeviceName function 81

DFD file
defined 385

DFD files 472
and 2-up printing 71
format 477

Dimensions tab
fonts 219

DisplayCodedFont option 250, 252

DJDE command 279

DJDE statements
user-defined 279

DJDECarrControl option 279

DJDEForceOffsetEnd option 270

DJDEIden option 265

DJDELevel option 276

DJDEOffset option 265

DJDESkip option 265

DlgTitles control group 417

DocSetNames control group 50

Documaker Server
resource files 467
running via IDS 57
system benefits 8
system overview 2
understanding the system 9

Documanage
categorizing documents 421
data types 420
Extended Document Properties 425
mapping Documaker archive fields 422
Next/Retrieve cursor 424
using resources in GenData and GenPrint 13
using with GenArc 397
viewing archives 410

Document Type Number 166

Docupresentment 2
PDF support 320

Docusave
creating print streams 358
retrieving form sets 416

DocusaveScript option 249, 359

dots per inch
Resolution option 246

DoubleOutputRes option
AFP printers 250

DownloadFAP option 99, 305
and the CompileInStream option 267

507

DownloadFonts option 300
emailing forms 345
GDI driver 313
PCL printer resources 300
PCL printers 290
PostScript printers 302, 310

DPA files
viewing 410

DPASSWD command line option 393

DPRAddBlankPages rule 98

DPRDelBlankPages rule 98

DSCHeaderComment option
PostScript printers 301

duplex
adding and removing pages 96
and simplex on Metacode printers 269
compressed PCL files 298
printing multi-page FAP files 285
switching modes 276

DUSERID command line option 394

E

EBCDIC 465

EBCDIC platforms
and code pages 181
using Code Page 37 202

editing
fonts 226

EjectPage rule
multi-page FAP files 285

ElapsedTimeStamp option 102

email
aliases 345
GenWIP 90
sending a print-ready file 342

Email Application Servers 345

embedded hex values 265

embedding fonts 208

EMIT_ERROR type 374

EMIT_MESSAGE type 374

EMIT_WARNING type 374

EmptyFooters option 323

EmptyHeaders option 323

Enable_Debug_Options option 101, 104, 373

EnableEmailNotification option 90

EnableTransBanner option 97

encrypted values 113

end of report conditions 269

envelope feeders 296

EPTLIB 342

EPTSetRecipFunc function 344

ERRFile option 370

ERRFILE.DAT file 368
and the ImmediateTranslate option 372

error batch 482

error codes 369

error files 465, 480
turning off the date stamp 372

error messages
configuring 369
creating 374
defining the output file 370
delaying the translation process 372
determining where a message originates 380
disabling 369
formatting 378
initializing output files 371
message tokens 376
negative left offsets 259
overview 368
setting up static text 377

ErrorFileDateStamp option 102

ErrorFileOpenMode option 371

errors
correcting 46
using GenArc with Documanage 409

Index

508

European paper 469

examples
copy counts and sections 152
of form set definition files and transaction trigger

tables 151
RECIPIF rule 157
search mask and sections 155
setting search masks and recipients 162
transaction code 154

Excel spreadsheet databases 411

executive
PaperSize option 248, 273

executive paper 469

ExportIndex option 392

Expression option 103

Ext option
Metacode printers 278

EXT_Length option 71, 409

Extended Binary Coded Decimal Interchange Code 181

Extended Document Properties (XDPs) 421

extract files
and code pages 204
defined 465
guidelines for 475
layout of 476
NoGenTrnTransactionProc rule 53
offset limits 108
XML files 121

EXTRACT.DAT file 465

F

FAP files
adding and removing 96
mapping fonts 244

FAP2CFA utility 283

FAP2FRM utility 282, 287

FAP2MET utility 267, 277, 282, 283

FAP2OVL utility 258

FAPAddBlankPages 96

FAPCOMP.INI file 467
mapping fonts 244
Metacode loader 278

FAPDelBlankPages 96

FAX drivers 316

fax, drivers 311

FEED command 286

FIELD
BatchName control group 103

Field Description control group 478

FieldErrors option 34

FieldFuncTime option 105

FieldList option 103

fields
mapping with XPath 50

Fields control group 477
grouping print batches 103

file names
DAL functions 82

File option
INIFiles control group 112

file summary
GenArc program 32
GenData program (multi-step processing) 25
GenData program (single-step processing) 48
GenPrint program (multi-step processing) 28
GenTrn program (multi-step processing) 22
GenWIP program (multi-step processing) 30

509

FileDrive function 82

FileExt function 82

FileName function 82

FilePath function 82

files
.CAR files 464
.DAT files 464
.DBF files 464
.DDT files 464, 474
.DFD files 465
.FAP files 466
.JDT files 466
.LOG files 466
.MDX files 466
00000001.DAT file 484
00000001.POL file 484
APPIDX.DBF file 485
APPIDX.DFD file 473, 485
APPIDX.MDX file 485
ARCHIVE.CAR file 485
batch files 482
BCH files 464
created by the GenData program 481
created by the GenTrn program 480
created by the GenWIP program 484
DFD file format 477
DFD files 472
error batch files 482
error files 465, 480
extract files 465, 475
FORM.DAT file 139, 467
formats of 461
FSISYS.INI file 467
FSIUSER.INI file 467
initialization files 466
JDT files 475
log files 466, 480
MANUAL.BCH file 482
NAFILE.DAT file 481
NEWTRAN.DAT file 482
POLFILE.DAT file 481
RCBDFDFL.DFD file 473
recipient and copy count files 139
resource files 467
SETRCPTB.DAT file 470

system files 461
transaction files 466, 480
TRNDFDFL.DFD file 473
types of 464
UNIQUE.DBF file 484
updated log and error files 482, 483
used by the GenArc program 485
WIP.DBF file 484
WIP.MDX file 484

FileType option 398

filter list 213

FinalPrinter option
and 2-up printing 69

FitToWidth option
GDI driver 313
PCL printers 290
PostScript printers 302

floating section limitations 259

FolderBy option 397

folders
updating 399

FON files 221

font cross-reference files
adding printer fonts 189
AFP printer resolution 261
choosing 199
for Monotype fonts 191
GDI drivers 312
generating 241
inserting 234

Font List window 234

Font Manager
choosing screen fonts 238
generating files 240
starting 199, 211
using 211
using FXR files 199

Font Properties window 199
using Like to select screen fonts 238

FontFamilyMatching control group 244

FontLib option
PCL printers 300
PostScript printers 310

Index

510

fonts
adding system fonts 214
AFP 188
available font types 232
bitmap fonts 175
character width 221
common font lists 272
converting 227
converting fonts from other vendors 229
copying 225
custom fonts 194
deleting 231
Description tab 216, 218
Deselect All option 213
Dimensions tab 219
editing 226
embedding 300
families 218
filter list 213
fixed 219
FON files 221
font IDs 218
Font List window 212
font substitution in Windows 187
FXR files 221
FXR files for Monotype fonts 191
generating FNT files 240
generating PFM files 241
generating XRF files 241
how computers and printers use fonts 176
IDs equal to zero 102
inserting 232
inserting bitmap fonts 234
inserting FXR files 234
inserting PostScript fonts 235
installing screen fonts in Windows 188
Metacode 188
Monotype fonts 190
naming conventions 210
PCL 189
point size 218
PostScript 176, 189
PostScript printers 310
printer fonts 188
proportional 219

resetting 216
scalable fonts 175
screen fonts 187
selecting 212
setting up 171
styles 219
terminology 172
True Type 176
typefaces 218
using the Font Manager 211

footer 469

footers
in RTF files 323

ForceFolderUpdate option 399

ForceNoImages rule 72

form level triggers 139, 146

Form Name field 471

Form name field 140

Form option 58

form set definition table 139, 467
examples 151
summary 168

Form Set Manager 138, 275

form set trigger table 470

form sets
adding and removing pages 96
PrintFormset rule 54

FORM.DAT file 139, 467
banner processing 15, 19
examples 151
marking forms printer resident 288
single-step processing 52

format
DFD files 477
trigger table record 140

FormDef, AFP resources 258

FormFile option 407

form-level comments 262

FormLib option
PostScript printers 302
pre-compiled MET files 267, 277

FormMaker II XRF files
generating 241

511

FormNameCR option 262

forms
background 268
marking master forms 150
requirements 132
triggering in XML files 122

FormSetID field 87

FormSetRuleTime option 105

frames
WriteFrame option 322

FRM files
CompileInStream option 268

FRMFile option 288

FSIFileName taken 379

FSIFileName token 381

FSILineNumber token 379, 381

FSIPATH environment variable 410

FSISYS.INI file 467
and 2-up printing 69
banner processing 19, 20
grouping print batches 103
single-step processing 46

FSIUSER.INI file 467
INIFiles control group 112
single-step processing 46

FSRSetFileAttachment API 345

FudgeWidth option
AFP printers 247

FullFileName function 82

FullSupport option 316, 317

functions
built-in INI functions 111

FXR File field 221

FXR files
affect on display and print quality 198
choosing FXR files 199
choosing screen fonts 238
insert 234
inserting 234

G

GDI driver
handling multiple trays 363
INI options 313
Netware Client 32 for Windows 95 318
troubleshooting 318

GDIDevice option 314, 317
and the Device option 315

GEN_DEBUG_DebugSwitchSet function 101

Gen_TabUtil_LoadListFromTable function 101

GenArc program
.CAR files 464
and Documanage 425
APPIDX.DBF file 485
APPIDX.DFD file 485
APPIDX.MDX file 485
ARCHIVE.CAR file 485
archiving transactions 31
command line options 393
description 12
file summary 32
files used 485
output files 24
running 392
single-step processing 51
system scenarios 386
using with Documanage 397

Index

512

GenData program
.BCH files 464
.DDT files 464
batch files 482
command line options 100
description 11
error batch files 465, 482
file summary (multi-step processing) 25
file summary (single-step processing) 48
files created 481
MANUAL.BCH file 482
NAFILE.DAT file 464, 481
NEWTRAN.DAT file 482
processing transactions (multi-step processing) 23
restarting 33
TRNDFDFL.DFD file 473
updated log and error files 482, 483

GenDataStopOn control group 34

Generate Font Download File window 240

Generate FormMaker II XRF File window 241

GenPrint program
accessing batch totals 38
banner processing 15
command line options 100
creating print spool files (multi-step processing) 27
creating print streams for Docusave 358
description 12
embedding fonts 300
file summary (multi-step processing) 28
output files from GenData (multi-step processing)

24

GenTranStopOn control group 43

GenTrn
controlling processing 43

GenTrn program
and single-step processing 45
command line options 101
creating transaction records for multi-step

processing 21
description 11
error files 465, 480
file summary (multi-step processing) 22
files created 480
initializing message files 371
log files 466, 480
transaction files 466, 480
TRNDFDFL file 473

GenWIP program
.DAT files 464
00000001.DAT file 484
00000001.POL file 484
description 12
field assignments 87
file summary (multi-step processing) 30
files created 484
generating emails 90
output files from GenData (multi-step processing)

24
sending incomplete transactions to WIP 29
UNIQUE.DBF file 484
WIP.DBF file 484
WIP.MDX file 484

GETENV INI function 88

GetEnv INI function 415

GetRCBRec rule 72

GHO hardware 266

GOCA charts support 247

going live 132

graphics
compression for Metacode printers 266
orientation 284
rendering 274
using the Metacode loader 278

Graphics Device Interface (GDI) print driver 311

GraphicSupport option
AFP printers 247

513

GroupName1 field 140, 471

GroupName2 field 140, 471

GVG hardware card 266, 282

H

H2 strings 265

H6 strings 265

header 469

header records
and extract files 477

headers
in RTF files 323

hidden 469

highlight color printing
AFP 251

HighlightBlackCmd option 298

HighlightColor option 290

HighlightColorCmd option 298

horizontal motion index 282

HPINTL.FXR file 191

HPINTLSM.FXR file 191

HP-UX
archive/retrieval scenarios 387

I

IBMXREF.TBL file 252

IDEN statement 265

IDS
running Documaker Server 57
trace file 373

image level triggers 139, 144

Image Name field 140, 471

Image option 58

ImageErrors option 34

ImageFuncTime option 105

ImageOpt option
Metacode printers 266

ImageRuleTime option 105

imaging systems 299
adding PJL comments 299

ImmediateTranslate option 372
and ERRFILE.DAT 372

implementation methodologies 132

implementing your system 131

indexes
adding 99

InfoPak 269

INI built-in functions 111

INI command line option 393

INI files
changes for 2-up printing 69
logging 370
using multiple 112

INI options
logging 370

INIFiles control group 112

INIGroup control group 113

INILib option 104

InitArchive rule 51, 53

InitConvertWIP rule 51, 53

InitFunc option 300
RTF driver 343

initialization files 466

InitMerge rule 72

InitPageBatchedJob rule 72

InitPrint rule 53
and the NoGenTranTransactionProc rule 53

InitSetrecipCache rule 53

ink color 271

inkjet printers 311

inline graphics
and the CompressMode option 266
BARRWRAP utility 288
LOG files 250

Insert Fonts window 232

inserting
bitmap fonts 234
fonts 232
FXR files 234
PostScript fonts 235

Index

514

installable functions 268

installing
screen fonts in Windows 188
the system 132

INT_LENGTH option 71

INT_Length option 409

international language support 201

Internet Document Server (IDS)
compressed PCF files 298
paper size 248, 273

InUse field 87

ISI.INI file 243

J

JDEName option 264

JDLCode option 265

JDLData option
defined 265
Metacode printers 287

JDLHost option 265

JDLName option 264

JDLRPage option 269

JDLRStack option 269

JDLs
setting up Metacode printers 263

JES2 format 288, 358

job definition table 466, 475

JOBID command line option 393

JOBID parameter
restarting GenArc 395

jogging pages 270

JSLs
setting up Metacode printers 263

jump to new sheet condition 269

K

KEY
BatchName control group 103

key fields
and extract files 477

Key1
CaseSensitiveKeys option 414

KeyID
CaseSensitiveKeys option 414

L

landscape 469
AFP limitations 259
graphic orientation 284

Landscape option
GDI driver 314

LandscapeSupport option
AFP printers 247

language
international language support 201
national language terminology 173
using international characters 203

LanguageLevel option 303

LASTERRORTOKEN token 376, 379

LASTREC column
restarting GenArc 396

LBYD option 408

LBYI option 408

LBYLOG option 408

LBYLOGFile option 407

legal
PaperSize option 248, 273

letter
PaperSize option 248, 273

letter size paper 469

Like button 216

limitations
floating sections 259
multi-page FAPs 260

line density errors 286

LINE statement 265

lists of figures
adding 99

515

Load PostScript Font File window 236

Loader:Met control group 278

LoadFAPBitmap option 284

LoadListFromTable option 101

log files
configuring 369
creating log messages 374
defined 466
defining the output file 370
delaying the translation process 372
determining where a message originates 380
disabling 369
formatting 378
GenTrn program 480
initializing output files 371
message tokens 376
of archived transactions 392
overview 368
setting up static text 377
turning off the date stamp 372

LOG2PSEG utility 258

LogCaching option 277

LOGFile option 370

LOGFILE.DAT file 368

LogFileDateStamp option 102

logging messages 373

logical printers 85

LogINIFileNames option 370

LogINIOptions option 370

Logo Manager 274, 282

LOGO.DAT file
printing MET files 278

LOGOFile option 407

LogToConsole option 104, 392

LogTransactions option 369

LookUp rule
and extract files 477

LRECL values 287

M

Mail control group 345

MailAttachment option 90

MailID option 90

MailMessageBody option 90

MailSubject option 90

MailType option 345

MANUAL.BCH file 482

Map Coded Font (MCF) fields 252

MapByDBName option 422

margins
added by PCL printers 290
setting minimum 323

marking
master forms 150
subordinate sections 149

Master and Subordinate Sections 149

master flag
and performance 163

master forms
marking 150

master resource libraries
implementation 132

MasterDDTNotInLibrary option 407

MasterResource control group
PCL resources 300
pre-compiled MET files 267

MaxFonts option 273

MaxPolLineLength option 481

MergeAFP rule 73

message information 342

Message option
RTF driver 343

message token file
using 380

message token files
defining the output file 370
overview 369

Index

516

messages
assigning message numbers 375
clearing 370
configuring 369
creating 374
defining output message files 370
determining where the originated 379
formatting 378
initializing output message files 371
message numbers and static text 377
types 374
using tokens 376

MET files
and multi-page FAP files 285

Metacode
fonts 188

Metacode printers
creating print streams for Docusave 358
data length validation 287
end of report conditions 269
handling multiple trays 363
JSL INI options 263
resources 282
setting up 263
troubleshooting 283

METDUMP utility 281

methodologies for implementation 132

METOPT utility
common font lists 273

Mixed Object Document Content Architecture data
streams 246

Mobius
InfoPak 269
ViewDirect APIs 281

ModifyTime field 87

Module option
AFP printers 246
GDI driver 313
PCL printers 289
PostScript printers 301
RTF driver 343

Monotype fonts 258
FXR files 191
using system fonts 190

MRG2FAP utility
paper size 248, 273

MRG4 format 358

MSGFile option 370

MSGFILE.DAT file 368, 380

msgNO_MORE_IMAGES message 72

MTCLoadFormset rule 281

multi-file print callback method 79

MultiFileLog option
RTF driver 343

MultiFileLogRecord option 109

MultiFilePrint callback function 49, 166

MultiFilePrint option
controlling the log 109

MultiLinesPerCommand option
AFP printers 250

multi-mail transaction
and the EXT_LENGTH option 71

multi-mail transactions
PageBatchStage1InitTerm rule 53

multi-page FAP files
and pre-compiled MET files 285
creating multiple FRM files 288
limitations 260

multi-page forms
and 2-up printing 69

MVS
archive/retrieval scenarios 386

MVS file format 465

N

NAFILE.DAT file 464, 481
and the WriteNAFile rule 54
rotated variable fields 260

NamedColors option 249, 251

NameDocBy INI option 397

NameDocBy option 398

negative left offset 259

New option
fonts 214

517

NEWTRAN.DAT file 482

NEWTRN file
Restart option 394

NEWTRN.DAT file
and the WriteNAFile rule 54

next/retrieve cursor 424

NoBatchSupport option 321

NoGenTrnTransactionProc rule 53
and the WriteNAFile rule 54
mapping fields 50

non-stapled forms
and stapled forms 295

NOT conditions
in search masks 165

NUBACK statements 269

NUFRONT statements 269

O

objects
negative left offset 259

Occurrence flag 141, 471

occurs clauses 476

Octal strings 265

ODBC
archive/retrieval scenarios 386
multiple connections 411

ODBC_FieldConvert control group 411

ODBC_FileConvert control group 411

offset, negative left 259

OMR marks
and the AddLine rule 72

OnDemand command records 248

OnDemandScript option 248

OPASSWD command line option 394

OpSystem option 465

Opt option 58, 59

Optimize option 273

OR conditions
in search masks 165

Oracle
archive/retrieval scenarios 386, 387
ODBC driver 404

ORDER BY clause 393

OT_Docs table 397, 398

OTextString option 274

OUSERID command line option 394

OutBuff token 376

OutMode option
AFP printers 359
Metacode printers 266
Mobius 281
print streams for Docusave 358

output files
for the GenArc program (Docusave) 24
for the GenPrint program (multi-step processing) 24
for the GenWIP program (multi-step processing) 24

OutputBin option 292, 295

OutputFunc option 298

OutputHalfRes option 250

OutputMod option 298

overflow
and class recipients 65
defined 476
XML files 121

Overflow flag 141, 471

OverlayExt option
GDI driver 313
PCL printers 290
PostScript printers 302

OverlayPath option
GDI driver 313
PCL printers 290, 300
PostScript printers 302, 310

overlays
AFP resources 258
landscape pages 259
multi-page FAP files 260

OVLCOMP utility
and PCL resources 300
and PostScript resources 310

Index

518

P

page segments 258

page-at-a-time downloading 320

PageBatchStage1InitTerm rule 53

PageNumbers option
AFP printers 247
GDI driver 313
PCL printers 290
PostScript printers 302

PageRange option 52
and 2-up printing 70

pages
adding and removing 96
jogging 270
numbering 313
starting new pages 269
total 37

paper size
overriding commands 296

paper sizes
changing on Metacode printers 282

paper trays
Metacode printers 274
on HP 5si printers 294
PCL support for 289
switching 286

PaperSize option 248, 273

PaperStockID option 279

parent 123

parentheses
in search masks 165

pass-through printing 318, 319

Passwd option 408

PCL
custom fonts 196
fonts 189
simple color mode 297

PCL printers
adding PJL comments 299
bitmap fonts 300
compressed PCL 298
handling multiple trays 363
INI options 289
mixing simplex and duplex 298
overlays 300
PCL version 5, 5c, and 5e 289
PCL version 6 292
resources 300
setting up 289
simple color mode 297
using a staple attachment 295

PCO interface
OutMode option 266

PDF
incompatibilities 194

PDF files
creating 320
fonts 208

PDF format 2

PDF417 fonts 193

PDS members
caching 276

performance
caching PDS members 276
reducing job throughput 372
SplitPercent option 261

PFM files
generating 241

PJLComment option 299

PJLCommentOn option 291

PJLCommentScript option 291, 299

platforms
multiple INI files 112

PMetLib option
and the CompileInStream option 267
Metacode printers 277

519

PMETLIB PDS 267

PO Handler 397

PODocument2Field control group 399

POField2Document control group 399

point sizes 218

POLFILE.DAT file 481
and the WriteNAFile rule 54

Port option 316

portrait graphic
orientation 284

PostScript
custom fonts 196
fonts 176, 189
inserting fonts 235

PostScript fonts
included with Acrobat Reader 208

PostScript printers
handling multiple trays 363
INI options 301
PPD files 302, 310
resources 310
setting up 301
Type 1 fonts 310

PreLoadRequired option 321

PrePrintedPaper option
AFP printers 247
GDI driver 314
PCL printers 291
PostScript printers 303

print 321

print batches
banner processing 15
grouping 103

Print Services Facility 246

print spool files
creating (multi-step processing) 27

print streams
splitting recipient batch 79

Print window
and the Device field (GDI printing) 318, 319
and the PrePrintedPaper option 303
and the PrePrintedPaper option (AFP) 247
and the PrePrintedPaper option (GDI) 314
and the PrePrintedPaper option (PCL) 291
and the PrePrintedPaper option (PostScript) 303
and the SelectRecipients option 291, 314
and the SendColor option 290, 302, 313
suppressing 314

Print_Batches control group 103
banner forms 16

printer console messages 274

printer drivers
banner processing 15

Printer Job Language (PCL) comments 299

Printer option
and 2-up printing 69, 70

Printer Resident field 287

PrinterInk option
and the ColorCharts option 274
spot colors 271
troubleshooting 284

PrinterModel option 310
Metacode printers 274
PostScript printers 302, 310

printers
adding fonts to the FXR file 189
AFP fonts 188
configuring trays 363
default printer 314
determining characters used in a printer font 182
Metacode fonts 188
PCL bitmap fonts 189
PostScript fonts 189
using custom fonts 195
using printer fonts 188

PrintFormset rule 54, 120
and the NoGenTranTransactionProc rule 53
splitting recipient batch print streams 79

Index

520

PrintFunc option
AFP printers 246
GDI driver 313
PCL printers 289
PostScript printers 301
RTF driver 343

printing
2-up 68
PrintFormset rule 54
under Windows NT 293

PrintTimeStamp option 105, 372

PrintToFile option 316

PrintViewOnly option
AFP printers 247, 291
GDI driver 314
Metacode printers 276
PostScript printers 303

ProcessID built-in INI function 114

processing
transactions (multi-step processing) 23
transactions (single-step processing) 45

processing overview 11

ProcessQueue rule 54

proportional fonts 219

PRTLIB data 53

PrtType option 85
RTF driver 343

PrtType:AFP control group 246

PrtType:XER control group
installable functions 268
required options 263

PRTZCompressOutPutFunc function 298

Q

Qualifier option 408

queues
ProcessQueue rule 54

R

RCBDFDFL.DAT file
and 2-up printing 71

RCBDFDFL.DFD file 473
and the WriteRCBWithPageCount rule 54
grouping print batches 103

RCBStatDtlDFD option 38

RCBStats option 38

RCBStatsDtl option 38

RCBStatsTot option 38

RCBStatsTotDFD option 38

RCBTotals option 38

RecipBatch function 19

RecipFunc option
RTF driver 343

recipient batch (RCB) transaction fields 87

recipient batch DFD file
and 2-up printing 71

recipient batch file 85, 473

recipient batch records
PageBatchStage1InitTerm rule 53
unique data 58

Recipient copy count field 141

Recipient list field 141

Recipient option
and email aliases 345
RTF driver 343

recipients
class recipients 65
Copy Count field 472
key files 139
List field 471
mapping information 113
selecting 138
setting 137

RECIPIF rule
and extract files 477
and performance 163
example 157

521

RecipMap2GVM control group 58

RecipMap2GVM INI control group 66

RecipMod option
RTF driver 343

RecipName function 19

records
maximum number (Metacode) 284

Records per first image field 141, 471

Records per overflow image field 141, 471

RecordType option 89

REL112.FXR 193

REL112SM.FXR 193

REL95.FXR file 191

REL95SM.FXR file 191

RelativeScan option 268

repeat counts 265

ReplaceBitmap option 249, 251

Req option 58, 59

requirements definition 132

reserved message ranges 375

resetting
fonts 216

Resolution option
AFP printers 246
GDI driver 313
Metacode printers 274
PCL printers 289
PostScript printers 301
rounding errors 261

resource files 467

resources
for single-step processing 46

Restart control group 33

restart file 33

Restart option 394, 395

Restart table
defined 385

RestartJob rule 34

RetainTransBeginForm option 17, 18

Retrieval
options 417

Retrieval Options window 417

Retrieve Document window 416

RightFax 299

rollback
defined 384
restarting GenArc 396

rotated variable fields 260

rounding errors
SplitPercent option 260

RP Struct 374

RPAGE command 279

RPErrorProc function 374

RPLogProc function 374

RSTACK command 279

RstFile option 33

RTF
margins 323
print driver 321, 342
separate files 321
WriteFrames option 322

RTF files
mapping fonts 244

RTFFontMAP control group 244

RULCheckTransaction rule 33

RuleFilePool option 277

rules
for 2-up printing 72
for single-step processing 52
listing those executed 105
order for 2-up printing 74
used in multi-step processing 32

rules processing
using international characters 203

Rules Processor
trace file 373

Rules Publishing Solution
system overview 3

RULStandardProc rule
and the WriteNAFile rule 54

Index

522

Run Length Encoding (RLE) compression 305

RunMode control group
checking font IDs 102
DownloadFAP option 99
grouping print batches 103
mapping fields with XPath 50

RunSetRcpTbl rule
and the BuildMasterFormList rule 52

S

scalable fonts 175

scaling output 311

screen fonts
choosing 238
GDI drivers 312
installing in Windows 188
using 187

Search Mask 1 field 141, 471

Search Mask 2 field 141, 472

search masks
and recipients 162
example 155
formatting 164
RECIPIF rule 157

section level triggers 139, 144

sections
marking subordinate sections 149
master and subordinate 149
tokens 376, 381
triggering in XML files 121, 122

selecting
fonts 212

SelectRecipients option
GDI driver 314
PCL printers 291
PostScript printers 303

self 123

SendColor option 251
AFP printers 249
and the ColorCharts option 274
and the PrinterInk option 271
emailing forms 345
GDI driver 313
PCL printers 290
PostScript printers 302
troubleshooting 283

SendOverlays option
AFP printers 246
GDI driver 313
PCL printers 289, 300
PostScript printers 301, 310

sequence numbers
and extract files 476

Server option 408, 411

set recipient table
and performance 163

SetDeviceName function 81

SetOrigin rule
floating sections 259

SetOverprint option 304

SETRCPTB.DAT file 470
and the StandardFieldProc rule 54
and the StandardImageProc rule 54
examples 151

SETRECIP table
defined 139
specifying 142

SetState rule
and extract files 477

setting
fonts 171

setting up
error messages and log files 367
message text 377
printers 245
recipients and copy counts 137
transaction trigger tables 142

Setup Data field
example 199

523

short binding 469

Show_Debug_Options option 101

sibling 123

SIDE statements 269

simple color mode 290, 297

simplex
adding and removing pages 96
and duplex on Metacode printers 269
compressed PCL files 298
switching modes 276

single-page forms
and 2-up printing 68

singles-step processing
example 55

single-step processing
clearing messages 370
overview 45
WriteOutput rule 54

SkipChartColorChange option 249

skipping batch message 72

SortFormsForRecip callback function 166

sorting records 393

SplitPercent option
240 dpi print problems 260
defined 247

SplitText option
240 dpi print problems 260
defined 247

SQL Server
archive/retrieval scenarios 386

SQLID command line option 394

StandardFieldProc rule 54
and the WriteNAFile rule 54

StandardImageProc rule 54

StandardJobProc rule 67

staple attachments
and PCL printers 295

StapleBin option 291, 295

StapleJDEName option 275

StapleOff option 303, 308

StapleOn option 303, 308

stapling forms
Metacode 275
PostScript 308

start new page 269

statistics processing 38

Status column
restarting GenArc 395, 396

StatusCode option 89

STOPREC command line option 394

SUB INK commands 283

subject information 342

Subject option
RTF driver 343

subordinate flags
and performance 163

subordinate sections
marking 149
overview 149

SuppressBanner function 19

SuppressDialog option 317
and the SuppressDlg option 315

SuppressDlg option
and the SuppressDialog option 315
GDI print driver 314

SuppressLogoUnload option 249

SuppressZeroData option
AFP printers 250
and the MultiLinesPerCommand option 250

Sybase
archive/retrieval scenarios 386

system files 461

system implementation methodology 132

system overview 11

system resource files
uploading 204

system scenarios
GenArc 386

system settings
multi-step processing 46

Index

524

T

table names 433

tables
defined 384

Tag Logical Element (TLE) records 362

TblLkUp rule
and extract files 477

TEMPIDX file
defined 384

TemplateFields option
GDI driver 313
PCL printers 290
PostScript printers 302

TermFunc option 300
RTF driver 343

terminology
fonts 172

testing
the system 132

text files
converting from one code page to another 204

TEXTCommentOn option 300

TEXTScript option 299

TicketJobProc rule 67

tildes
in search masks 164

TL/DL buffers 283

TLEEveryPage option 248, 362

TLEScript option 248, 362

TLESeparator option 248, 362

token-data pairs 376, 378, 380

trace files
ProcessID built-in INI function 114

TraceFile option 373

transaction codes 471
example 154

Transaction codes field 141

transaction files 466, 480

transaction records
creating for multi-step processing 21
creating for single-step processing 45

transaction trigger table
defined 139
examples 151
how it works 143
specifying 142
summary 168

TransactionErrors option 34
GenTrn processing 43

transactions
archiving 31
log of archived 392
logging 104
processing (multi-step processing) 23

TransBannerBeginForm option 16

TransBannerBeginScript option 16, 97

TransBannerEndForm option 16

TransBannerEndScript option 16

transferring files
from Xerox format disks 288

TRANSLAT utility 368, 372

TRANSLAT.INI file
defining the output message file 371
determining where messages originate 379
formatting messages 378
message numbers 375
message tokens 376
setting up message text 377

translating messages 372

TranslationFile option 370

trays
configuring printer trays 363
for the HP 5SI printer 294
Metacode printers 274
overriding commands 296
selecting 365
troubleshooting 286

trigger levels
defined 139

trigger records
levels 139

525

Trigger Table Record Format 140

Trigger2Archive control group 51, 53, 414

Trigger2WIP control group 87, 120

triggering logic 168

triggers
and performance 163
form level 146
section level 144

TrimWhiteSpace option
AFP printers 250

TRN files 466, 480

Trn_Fields control group 50

TRNDFDFL.DFD file 473

true/false search mask 155

TrueType fonts 176
Asian languages 293
description 189
inserting 235

TWOUP control group 52, 53

TwoUp control group 70

TwoUpStart option 70

U

Unicode 292

unique data
adding 58

UNIQUE.DBF file 484

UniqueString function 82

UniqueTag option 407, 408

UNIX
archive/retrieval scenarios 387

updated log and error files 482, 483

UpdatePOLFile rule
and the WriteOutput rule 54

uppercase 433

UseRestartTable option 398

UserID option 89, 113, 408

UseXMLExtract rule 121

using
ANSI code page for PC platforms 201
custom fonts 194
Font Manager 211
printer fonts 188
screen fonts 187

V

value-added processes 276

variable fields
in text areas 260
rotated 260

VB datasets 287

VBPrtOptions control group 314

ViewDirect APIs 281

Virtual Storage Access Method 276

VSAM control group 276

W

white outlines 304

white space
suppressing 250

Windows
archive/retrieval scenarios 386
font substitution 187
installing screen fonts 188
PostScript printers 304
printer ports 293
selecting screen fonts 238
using the ANSI code page 201

WIP
and the archive index file 413
transaction fields 120

Index

526

WIP Edit plug-in
WIPField built-in function 115

WIP RecType field 89

WIP StatusCD field 89

WIP.DBF file 484

WIP.DFD files 87

WIP.MDX file 484

WordDateFormats control group 322

WordTimeFormats control group 322

WriteFrames option 322

WriteNAFile rule
and the StandardFieldProc rule 54
described 54

WriteOutput rule 54

X

Xbase 499
archive/retrieval scenarios 386
DFD files 465, 472
maximum length 478

XDPs 425

XERDNLD utility 288

XERLoadDocuMerge loader function 281

Xerox
3700 printers 274
4000 printers 263
4050 printers 286
4135 printers 286
4235 printers 266, 282, 286
4635 printers 286
4850 printers 286
9000 printers 263
9700 printers 283
9790 printers 283, 286
fonts 282
format floppies 288
forms 282, 287
forms and memory 283
highlight color printers 271
images 282
JSL INI options 263
Laser Printing Systems 263
line drawing font 286
logos 282
setting up Metacode printers 263
using custom fonts 196

XML 50
job tickets 67
path locator 123

XML files
as extract files 121

XML print driver 120

XMLExtract option 50

XMLFileExtract rule 121

XMLTrnFields option 50

XPath 123
mapping fields 50

XPATHW32 utility 123, 126

XRF files
generating 241
inserting 234

527

Y

Year 2000 compliance
and extract files 477

Z

z/OS
generating PostScript output 305

Index

528

	Start
	Notice
	Contents
	Introduction
	2 System Overview
	3 Rules Publishing Solution Overview
	4 Document Automation Evolution
	4 Stage 1 - paper automation
	5 Stage 2 - workflow automation
	6 Stage 3 - paperless information automation
	7 Document Automation Goals

	8 System Benefits

	Understanding the System
	11 Processing Overview
	14 Processing Options
	15 Using Banner Processing
	15 Enabling banner processing
	15 Specifying banner forms and scripts
	17 Banner form processing and multi-file print
	18 Processing logic
	19 DAL functions
	19 Banner processing example

	21 Using Multi-step Processing
	21 Creating Transaction Records
	22 File Summary

	23 Processing Transactions
	24 Output Files for GenPrint
	24 Output Files for GenWIP
	24 Output Files for GenArc
	25 File Summary

	27 Creating Print Spool Files
	28 File Summary

	29 Sending Incomplete Transactions to WIP
	30 File Summary

	31 Archiving Transactions
	32 File Summary

	32 Rules Used in Multi-Step Processing

	33 Restarting the GenData Program
	33 RULCheckTransaction rule
	34 RestartJob rule
	34 INI options

	35 Generating Batch Status Emails
	37 Tracking Batch Page Statistics
	37 Recipient Page Statistics
	38 Batch Totals Summary File
	38 Accessing totals in GenPrint
	38 INI Options

	39 Sample Log File
	40 Default DFD Files
	40 RCBStatsDtlDFD
	42 RCBStatsTotDFD

	43 Controlling GenTrn Processing
	45 Using Single-step Processing
	45 Creating and Processing Transaction Records
	46 System Settings and Resources

	47 Creating Print Files
	48 File Summary

	49 Using the MultiFilePrint Callback Function
	50 Mapping Fields with XPath
	51 Running Archive in Single-Step Processing
	51 Running WIP in Single-step Processing
	52 Rules Used in Single-step Processing
	52 Archive
	52 BatchingByRecipINI
	52 BatchByPageCount
	52 BuildMasterFormList
	53 ConvertWIP
	53 InitArchive
	53 InitConvertWIP
	53 InitPrint
	53 InitSetRecipCache
	53 NoGenTrnTransactionProc
	53 PageBatchStage1InitTerm
	54 PaginateAndPropogate
	54 PrintFormset
	54 ProcessQueue
	54 StandardFieldProc
	54 StandardImageProc
	54 WriteNAFile
	54 WriteOutput
	54 WriteRCBWithPageCount

	55 Single-step Processing Example
	55 Base rules
	56 Base form set rules
	56 Base image rules
	56 Base field rules

	57 Using IDS to Run Documaker
	58 Writing Unique Data into Recipient Batch Records
	59 Optional formatting information
	60 Example
	62 BANNER.DAL

	65 Using Class Recipients
	67 Running Documaker Using XML Job Tickets
	68 Handling 2-up Printing
	68 2-up printing with single-page forms
	69 2-up printing with multi-page forms
	69 Changing the INI File
	70 Creating the TWOUP control group
	71 Creating the Added_Fonts control group

	71 Changing the Recipient Batch DFD File
	72 Rules Used for 2-up Printing
	72 AddLine
	72 AddTextLabel
	72 ForceNoImages
	72 GetRCBRec
	72 InitMerge
	72 InitPageBatchedJob
	73 MergeAFP
	73 ParseCommentExample
	73 PrintData
	73 ProcessRecord
	74 Placing the 2-up Rules in the JDT File

	75 2-up Processing Example
	75 2upbycnt.bat
	75 2upstep1.ini
	75 2upstep2.ini
	75 2upstep3.ini

	76 Running the GenData Program
	76 Step 1 - Using the AFGJOB1.JDT file
	77 Step 2 - Using the AFGJOB2.JDT file
	78 Step 3 - Using the AFGJOB3.JDT file

	79 Splitting Recipient Batch Print Streams
	79 Splitting batches by sheet count
	80 Creating PDF output
	80 DAL functions
	81 DeviceName
	81 SetDeviceName
	81 BreakBatch
	82 UniqueString
	82 Using DAL to Manipulate File Names
	83 FileDrive
	83 FilePath
	83 FileName
	84 FileExt
	84 FullFileName

	85 Assigning Printer Types Per Logical Batch Printer
	87 Controlling WIP Field Assignments
	90 Generating Email Notifications from GenWIP
	91 Errors

	93 Using Multi-mail Processing
	93 Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
	94 Setting Up the FSISYS.INI File for Multi-mail Processing

	96 Adding and Removing Pages
	96 Using Custom Code
	96 Adding pages
	96 Removing pages

	96 Using DAL Scripts
	96 Adding pages
	97 Removing pages

	98 Using IDS
	98 Adding pages
	98 Removing pages

	99 Adding Indexes and Tables of Contents
	100 Using Run-Time Options
	100 GenData Command Line Options
	100 GenPrint Command Line Options
	101 GenTrn Command Line Options
	101 Debugging Options
	102 Noting font IDs of zero
	102 Suppressing elapsed runtime messages

	103 Grouping Print Batches
	104 Controlling Console Logging
	104 Logging INI File Names and Options in the TRACE File
	105 Listing the Rules Executed
	106 Analyzing DAL Performance
	108 When Extract Files Exceed The Offset Limits

	109 Controlling What is in the MultiFilePrint Log
	111 Using INI Built-In Functions
	111 ~GetEnv
	112 ~Platform
	112 ~OS
	113 ~DALRUN ~DALVAR
	113 ~Encrypted
	114 ~ProcessID
	115 ~WIPField
	115 Accessing WIP Fields
	116 Formatting arguments
	118 Specifying locales
	119 Using the ~Field function

	120 Outputting WIP Field Data Onto the XML Tree
	121 Using XML Files
	121 Handling Overflow
	122 Triggering Forms and Sections

	123 Using XPath
	123 XPath Syntax
	123 Axes
	124 Symbols
	124 Functions
	125 Expressions

	126 Using the XPath Testing Utility
	126 Example 1
	127 Example 2
	127 Example 3
	127 Example 4
	127 Example 5
	128 Example 6
	128 Example 7
	128 Example 8
	129 Example 9
	129 Example 10

	130 Example XML File

	Implementing Your System
	132 Why Use a Methodology?
	133 Phase 1 - Define the requirements
	133 Phase 2 - Create the detail forms requirements
	133 Phase 3 - Build the Master Resource Library
	133 Phase 4 - Install and configure the system
	133 Phase 5 - Test the system
	133 Phase 6 - Go live

	134 Gathering Information
	134 Understanding Your Niche
	134 Understanding Your Organization

	135 Roles and Responsibilities

	Setting Recipients and Copy Counts
	138 Concepts
	139 Key Files
	139 Transaction Trigger Table
	139 Trigger Levels

	139 Form Set Definition Table

	140 Trigger Table Record Format
	142 Specifying the Transaction Trigger Table
	143 How Transaction Triggering Works
	144 Section Level Triggers

	146 Form Level Triggers
	149 Master and Subordinate Sections
	149 Marking Subordinate Sections
	150 Marking Master Forms

	151 Examples
	152 Specifying Copy Counts and Sections
	153 FORM.DAT file
	153 SETRCPTB.DAT file
	153 POL file

	154 Using Transaction Codes
	154 FORM.DAT file
	154 SETRCPTB.DAT file
	154 POL file

	155 Setting Up Search Mask and Sections
	155 FORM.DAT file
	155 SETRCPTB.DAT file
	156 POL File

	157 Using the RECIPIF Rule
	157 FORM.DAT file
	157 SETRCPTB.DAT file
	158 POL file

	159 Using Automatic Overflow
	159 FORM.DAT file
	159 SETRCPTB.DAT file
	159 POL file

	161 Using Forced Overflow
	161 FORM.DAT file
	161 SETRCPTB.DAT file
	161 POL file

	162 Setting Search Masks and Recipients
	162 FORM.DAT file
	162 SETRCPTB.DAT file
	162 POL file

	163 Using the Set Recipient Table and Extract Files
	164 Formatting Search Masks
	164 Spaces
	164 Commas
	164 Tildes
	165 Parentheses
	165 Using the OR condition
	165 Using the NOT condition
	165 Using AND and OR conditions

	166 Sorting Forms by Recipient
	167 INI files
	167 Sort tables

	168 Summary

	Working with Fonts
	172 Understanding Font Concepts
	172 Font Terminology
	173 National language terminology

	175 How Characters are Represented
	175 Bitmap Fonts
	175 Scalable Fonts
	176 TrueType
	176 PostScript

	176 How Computers and Printers Use Fonts

	178 Using Code Pages
	179 ASCII Code Pages
	181 EBCDIC Code Pages
	182 Character Sets
	182 Determining Characters Used in a Printer Font

	184 Code Page Names

	187 Types of Fonts
	187 Using Screen Fonts
	187 Font Substitution in Windows
	188 Installing Screen Fonts in Windows

	188 Using Printer Fonts
	188 AFP
	188 Coded fonts
	188 Code pages
	188 Character sets

	188 Metacode
	189 PCL
	189 PostScript Fonts
	189 TrueType Fonts
	189 Adding Printer Fonts to a Font Cross-reference File

	190 Using System Fonts
	191 Font Cross-reference Files for Monotype Fonts
	191 HPINTL.FXR, HPINTLSM.FXR
	191 REL95.FXR, REL95SM.FXR
	191 REL102.FXR, REL102SM.FXR
	191 REL103.FXR, REL103SM.FXR
	193 REL112.FXR REL112SM.FXR

	194 Using Custom Fonts
	195 On AFP printers
	196 On Xerox Metacode printers
	196 On PCL printers
	196 On PostScript printers

	197 Using Font Cross-Reference Files
	198 How FXR Settings Affect Display and Print Quality
	199 Maintaining FXR Files
	199 Choosing a Font Cross-reference File

	201 International Language Support
	201 Using the ANSI Code Page for PC Platforms
	202 Using Code Page 37 for EBCDIC Platforms

	203 Using International Characters
	204 Converting Text Files from one Code Page to Another

	205 Setting Up PostScript Fonts
	208 Fonts for PDF Files
	208 Importing PostScript Symbol Fonts

	210 Font Naming Conventions
	211 Using Font Manager
	211 Starting Font Manager
	211 From Image Editor
	211 From Docucreate

	212 Working with the Font List
	212 Selecting Fonts
	213 Deselecting Fonts
	213 Filtering the List of Fonts
	214 Adding Fonts to a Font Set
	216 Description tab
	219 Dimensions tab
	221 Printers tab
	225 Other tab

	225 Copying Font Information
	226 Editing Font Information
	227 Converting Fonts
	229 Converting fonts from other vendors
	229 Working with multiple printers

	231 Deleting Fonts
	232 Inserting Fonts
	234 Inserting bitmap fonts and FXR files
	235 Inserting PostScript and TrueType Fonts

	238 Choosing Screen Fonts

	240 Generating Files using Font Manager
	240 Generating an FNT File
	241 Generating an XRF File
	241 Generating PFM Files from an FXR file

	244 Mapping Fonts for File Conversions

	Setting Up Printers
	246 AFP Printers
	246 AFP INI Options
	250 Using defaults for the Module and PrintFunc options
	251 Using Documaker shading patterns instead of shaded bitmaps
	251 Printing highlight colors
	252 Character set and code page font information
	252 Outputting character set and code page information
	253 Using multiple code pages
	256 Using LLE records to link to external documents

	258 AFP Printer Resources
	258 FormDef
	258 Fonts
	258 Monotype fonts
	258 Overlays
	258 Page segments
	258 AFP 2-up support

	259 AFP Troubleshooting
	259 Floating section limitations
	259 Objects extending beyond the edges
	259 Conflicts between page and form orientation
	260 Multi-page FAP limitation
	260 Printing rotated variable fields
	260 AFP 240 dpi print problems

	262 Including Documerge Form-level Comment Records

	263 Metacode Printers
	263 Required JSL INI Options
	264 JDLName
	264 JDEName
	265 DJDEIden, DJDEOffset, and DJDESkip
	265 JDLCode
	265 JDLData
	265 JDLHost

	266 Additional Required INI Options
	266 OutMode
	266 ImageOpt
	266 CompressMode
	267 CompileInStream
	268 Device
	268 RelativeScan

	268 Specifying Installable Functions
	268 Using defaults for the Module and PrintFunc options

	269 Optional INI Options
	269 Setting the end of the report
	269 Starting new pages
	270 Adding an OFFSET command
	270 Jogging pages
	271 Specifying spot color
	271 Chart performance and print quality
	271 Optimizing Metacode print streams
	272 Using a common font list
	273 Setting a default paper size
	273 Automatically sizing sections
	274 Inline graphic performance and print quality
	274 Adding color to charts
	274 Using named paper trays
	274 Specifying the printer model
	274 Specifying the resolution
	274 Displaying console messages
	275 Stapling forms
	276 Duplex switching
	276 Using VSAM to store resources
	276 PrintViewOnly
	276 Caching files to improve performance
	278 Using the loader
	278 Using the Class option
	279 Adding user-defined DJDE statements
	279 Using third-party software to read Metacode files
	279 Specifying the paper stock

	281 Using Mobius Metacode Print Streams
	282 Metacode Printer Resources
	282 Fonts
	282 Forms
	282 Images
	282 Logos

	282 Metacode Limitations
	282 Xerox images
	282 HMI support
	282 Changing the paper size on the 4235 printer
	283 Xerox forms

	283 Metacode Troubleshooting
	283 Unexpected color output
	283 Unexpected black and white output
	284 Highlight color should match the PrinterInk option
	284 LOG file orientation
	284 Output catching up with the input
	284 Printing rotated variables
	285 Multi-page sections
	286 Operator command, FEED, causes duplex problems
	286 Line density errors
	287 Output data length validation
	287 Using Xerox Forms (FRMs)
	288 BARRWRAP
	288 Transferring Files from Xerox Format Floppies

	289 PCL Printers
	289 PCL INI Options
	292 Using defaults for the Module and PrintFunc options
	292 Using PCL 6
	293 Printing Under Windows
	294 Using High-Capacity Trays 3 and 4 on HP 5SI Printers
	295 Using a staple attachment

	296 Overriding Paper Size Commands and Tray Selections
	297 Using Simple Color Mode
	297 Marking objects to print in color
	298 Specifying the highlight color to use
	298 Printing on different types of printers

	298 Creating Compressed PCL Files
	298 Bitmap compression

	299 Adding Printer Job Level Comments
	299 Adding Data for Imaging Systems
	300 Limiting the Embedded PCL Fonts

	300 PCL Printer Resources
	300 Fonts
	300 Overlays

	301 PostScript Printers
	301 PostScript INI Options
	304 Using defaults for the Module and PrintFunc options
	304 Avoiding a white outline around letters
	304 Printing under Windows
	305 Generating PostScript Files on z/OS
	305 Creating Smaller PostScript Output
	305 Bitmap compression

	306 Adding DSC Comments
	308 Stapling Forms

	310 PostScript Printer Resources
	310 Fonts
	310 Overlays
	310 PostScript Printer Definition (PPD) Files

	311 Using the GDI Print Driver
	311 How it works
	313 GDI Printer Driver INI Options
	315 Using defaults for the Module and PrintFunc options

	316 Avoiding Problems with FAX Drivers
	316 Batch Printing to Files

	318 Using Pass-through Printing
	320 Creating PDF Files
	321 Creating RTF Files
	321 Generating separate files
	322 Adding or removing frames
	322 Creating form fields
	323 Setting margins
	323 Removing the contents of headers and footers

	324 Using the VIPP Print Driver
	325 VIPP Resource Files
	325 Converting bitmaps into VIPP image files
	326 Converting FAP files into VIPP segment files
	327 VIPP fonts
	328 VIPP font encoding files

	329 Managing VIPP Resources
	332 VIPP INI Options
	335 Setting up folders and projects
	336 Overriding the list of libraries for projects
	337 Setting up paper trays
	338 Adding DSC comments

	340 VIPP Limitations
	340 Troubleshooting
	340 VIPP known problems

	342 Emailing a Print File
	342 Creating EPTLIB print files for Documaker Workstation
	343 Creating EPTLIB print files for Documaker Server
	345 Creating PDF print files
	345 Overriding attached files
	345 Using email aliases

	346 Choosing the Paper Size
	347 US Standard Sizes
	348 ISO Sizes
	348 ISO A sizes
	349 ISO B sizes
	350 ISO C sizes

	351 Japanese Standard Sizes
	352 Printer Support for Paper Sizes
	356 Paper Sizes for AFP Printers

	358 Creating Print Streams for Docusave
	358 Archiving AFP Print Streams
	359 Archiving Metacode Print Streams
	360 Archiving PCL Print Streams
	360 Using DAL Functions

	362 Adding TLE Records
	363 Handling Multiple Paper Trays
	363 For PCL printers
	363 For PostScript printers
	364 For GDI printers
	365 For AFP printers
	365 For Metacode printers
	365 Including Tray Selections in a Print Stream Batch

	Setting Up Error Messages and Log Files
	368 Overview
	369 Configuring the Message System
	369 Enabling and Disabling Messages
	370 Logging INI Files and Options Used

	370 Clearing Messages
	370 Defining the Output Message Files
	371 Initializing the Output Message Files
	372 Turning Off Date Stamps
	372 Controlling the Translation Process
	373 DBLib Trace Messages

	374 Creating Messages
	374 Using the RPErrorProc and RPLogProc Functions
	374 RP Struct
	374 Message Types
	375 Message Number
	375 Assigning numbers to custom messages

	376 Using Message Tokens
	377 Setting Up Message Text
	378 Message examples
	378 Undefined tokens
	378 Adding a new line
	379 Determining where the message originated

	380 Using the Message Token File

	Archiving and Retrieving Information
	384 Terminology
	384 Files and tables
	384 Commit
	384 Rollback
	384 GenArc
	384 AFEMAIN
	384 CARFILE
	384 APPIDX
	384 TEMPIDX
	385 CATALOG
	385 RESTART
	385 DFD

	386 System Scenarios
	386 Scenarios for OS/390 (MVS)
	386 Scenarios for Windows 32-bit
	387 Scenarios for UNIX

	388 Archive and Retrieval Features
	389 Processing Overview
	389 DBASE IV
	389 DB2
	389 SQL server
	389 Oracle
	389 Files GenArc Uses
	389 Input files
	389 Output files

	389 How the GenArc Program Works

	392 Running GenArc
	392 Logging archived transactions
	392 Archiving to a database
	393 Sorting records in a database
	393 Preparing SQL
	393 Command Line Options
	393 INI
	393 JOBID
	393 DPASSWD
	394 DUSERID
	394 OPASSWD
	394 OUSERID
	394 RESTART
	394 SQLID
	394 STOPREC
	395 Using the Restart Option

	397 Using GenArc with Documanage
	399 Forcing folder updates
	399 FSIUSER.INI sample
	401 APPIDX.DFD sample
	403 CARFILE.DFD sample
	404 Using the Oracle ODBC Driver
	404 CARFILE DFD

	406 Creating the Database and Tables
	409 Resolving Errors

	410 Viewing Archives in Documanage
	411 Using Multiple Simultaneous ODBC Connections

	413 Using WIP and the Archive Index File
	414 Formatting Archive Fields
	414 Converting the case of key fields
	414 Reformatting dates
	415 Storing a constant value

	416 Retrieving Archived Forms
	416 Files the Archive Module Uses
	416 Input files
	416 Output files

	416 Using the Archive Module
	417 Retrieval Options

	419 Working with Documanage
	420 Using Documanage Data Type Support
	421 Setting Up Automatic Category Overrides
	422 Mapping Documaker Archive Fields to Documanage Properties
	424 Using Next/Retrieve Cursor
	425 Enhanced Documanage Document Extended Properties Support

	Setting Up Archive/Retrieval Configurations
	434 DB2 Server on OS/390 -Windows Client
	434 Configuring the Server
	434 Getting the DB2 location name and LUNAME
	435 Defining the SNA server’s APPC LU in VTAM
	435 Defining the DB2 Application Major Node in VTAM
	435 Setting Up the Windows 2000 Server (Middle Tier)
	435 Installing and configuring Microsoft’s SNA Server

	437 Installing and Configuring Microsoft’s SNA Server
	438 Configuring SNA Server 4.0 SP3
	440 Setting Up DB2 on a Windows 2000 Server
	440 Installing DB2 on a Windows 2000 Server
	440 Configure the DB2 instance
	440 Defining an OS/390 node
	441 Defining a system database entry
	441 Updating TCP/IP values on the Windows 2000 server
	441 Defining a database connection services entry

	441 Installing and Configuring DB2 on a Windows 2000 Server
	441 Defining an OS/390 system
	441 Defining a DB2 instance
	441 Defining an OS/390 database

	441 Setting Up Universal Database on Windows 2000
	441 Installing Universal Database
	442 Configuring Universal Database

	442 Updating TCP/IP-related Values on a Windows 2000 Server

	443 Common DB2 Errors
	443 Setting Up Clients
	443 Defining a DB2/2000 node
	444 Defining a system database entry
	444 Updating TCP/IP-related values on a Windows client
	444 Setting Up the INI Options for the DB2 Driver

	446 DB2 Server on Windows - Windows Client
	446 Setting up a DB2 Database on the Server
	447 Setting Up a Client for DB2 VERSION 6.1
	447 Archiving to a remote DB2 database using an ODBC driver
	447 Setting up an ODBC data source
	448 Setting up INI options for the ODBC driver

	449 Archiving to a Remote DB2 Database Using the Native DB2 Driver
	449 Setting up a DB2 database
	449 Setting up the INI options for the DB2 driver

	451 DB2 Server and Client on Windows
	451 Setting Up a DB2 Database
	451 Setting up an ODBC data source
	451 Setting up INI options for ODBC
	453 Archiving to a Local DB2 Database Using the Native DB2 Driver
	453 Setting up the DB2 database
	453 Setting up the INI options for the DB2 driver

	455 SQL Server on Windows - ODBC Client on Windows
	455 Setting Up a Client
	455 Setting up the INI options for ODBC

	457 IDS on Windows -DB2 Archive on z/OS
	457 Setting Up the DB2 Archive on z/OS

	458 Creating a z/OS Database
	458 Updating TCP/IP Values on a Windows 2000 Server

	System Files
	462 Overview
	464 Types of Files
	464 BCH files
	464 CAR files
	464 DAT files
	464 DBF files
	464 DDT files
	465 DFD files
	465 Error files
	465 Extract files
	466 FAP files
	466 Initialization files
	466 JDT files
	466 Log files
	466 LOG files
	466 MDX files
	466 Transaction files

	467 Resource Files
	467 FSISYS.INI file
	467 FSIUSER.INI file
	467 FAPCOMP.INI
	467 FORM.DAT file
	470 SETRCPTB.DAT file
	472 DFD files
	473 TRNDFDFL.DFD file
	473 RCBDFDFL.DFD file
	473 APPIDX.DFD
	474 .DDT files
	475 .JDT files
	475 Extract files
	477 DFD File Format
	477 Fields Group
	478 Field Description Group

	480 Files Created by the GenTrn Program
	480 Transaction files
	480 Error files
	480 Log files

	481 Files Created by the GenData Program
	481 NAFILE.DAT file
	481 POLFILE.DAT file
	482 NEWTRN.DAT file
	482 Batch files
	482 MANUAL.BCH file
	482 Error batch
	482 Updated log, error, and message files

	483 Files Created by the GenPrint Program
	483 Spool files
	483 Updated log and error files

	484 Files Created by the GenWIP Program
	484 WIP.DBF file
	484 WIP.MDX file
	484 00000001.DAT file
	484 00000001.POL file
	484 UNIQUE.DBF file

	485 Files Used by the GenArc Program
	485 APPIDX.DBF file
	485 APPIDX.DFD file
	485 ARCHIVE.CAR file
	485 APPIDX.MDX file
	485 APPIDX.DFD file

	Glossary

	Introduction
	System Overview
	Rules Publishing Solution Overview
	Document Automation Evolution
	Stage 1 - paper automation
	Stage 2 - workflow automation
	Stage 3 - paperless information automation
	Document Automation Goals

	System Benefits

	Understanding the System
	Processing Overview
	Processing Options
	Using Banner Processing
	Enabling banner processing
	Specifying banner forms and scripts
	Banner form processing and multi-file print
	Processing logic
	DAL functions
	Banner processing example

	Using Multi- step Processing
	Creating Transaction Records
	File Summary

	Processing Transactions
	Output Files for GenPrint
	Output Files for GenWIP
	Output Files for GenArc
	File Summary

	Creating Print Spool Files
	File Summary

	Sending Incomplete Transactions to WIP
	File Summary

	Archiving Transactions
	File Summary

	Rules Used in Multi-Step Processing

	Restarting the GenData Program
	RULCheckTransaction rule
	RestartJob rule
	INI options

	Generating Batch Status Emails
	Tracking Batch Page Statistics
	Recipient Page Statistics
	Batch Totals Summary File
	Accessing totals in GenPrint
	INI Options

	Sample Log File
	Default DFD Files
	RCBStatsDtlDFD
	RCBStatsTotDFD

	Controlling GenTrn Processing
	Using Single- step Processing
	Creating and Processing Transaction Records
	System Settings and Resources

	Creating Print Files
	File Summary

	Using the MultiFilePrint Callback Function
	Mapping Fields with XPath
	Running Archive in Single-Step Processing
	Running WIP in Single-step Processing
	Rules Used in Single-step Processing
	Archive
	BatchingByRecipINI
	BatchByPageCount
	BuildMasterFormList
	ConvertWIP
	InitArchive
	InitConvertWIP
	InitPrint
	InitSetRecipCache
	NoGenTrnTransactionPro c
	PageBatchStage1InitTer m
	PaginateAndPropogate
	PrintFormset
	ProcessQueue
	StandardFieldProc
	StandardImageProc
	WriteNAFile
	WriteOutput
	WriteRCBWithPageCount

	Single-step Processing Example
	Base rules
	Base form set rules
	Base image rules
	Base field rules

	Using IDS to Run Documaker
	Writing Unique Data into Recipient Batch Records
	Optional formatting information
	Example
	BANNER.DAL

	Using Class Recipients
	Running Documaker Using XML Job Tickets
	Handling 2-up Printing
	2-up printing with single- page forms
	2-up printing with multi- page forms
	Changing the INI File
	Creating the TWOUP control group
	Creating the Added_Fonts control group

	Changing the Recipient Batch DFD File
	Rules Used for 2-up Printing
	AddLine
	AddTextLabel
	ForceNoImages
	GetRCBRec
	InitMerge
	InitPageBatchedJob
	MergeAFP
	ParseCommentExample
	PrintData
	ProcessRecord
	Placing the 2-up Rules in the JDT File

	2-up Processing Example
	2upbycnt.bat
	2upstep1.ini
	2upstep2.ini
	2upstep3.ini

	Running the GenData Program
	Step 1 - Using the AFGJOB1.JDT file
	Step 2 - Using the AFGJOB2.JDT file
	Step 3 - Using the AFGJOB3.JDT file

	Splitting Recipient Batch Print Streams
	Splitting batches by sheet count
	Creating PDF output
	DAL functions
	DeviceName
	SetDeviceName
	BreakBatch
	UniqueString
	Using DAL to Manipulate File Names
	FileDrive
	FilePath
	FileName
	FileExt
	FullFileName

	Assigning Printer Types Per Logical Batch Printer
	Controlling WIP Field Assignments
	Generating Email Notifications from GenWIP
	Errors

	Using Multi- mail Processing
	Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
	Setting Up the FSISYS.INI File for Multi-mail Processing

	Adding and Removing Pages
	Using Custom Code
	Adding pages
	Removing pages

	Using DAL Scripts
	Adding pages
	Removing pages

	Using IDS
	Adding pages
	Removing pages

	Adding Indexes and Tables of Contents
	Using Run-Time Options
	GenData Command Line Options
	GenPrint Command Line Options
	GenTrn Command Line Options
	Debugging Options
	Noting font IDs of zero
	Suppressing elapsed runtime messages

	Grouping Print Batches
	Controlling Console Logging
	Logging INI File Names and Options in the TRACE File
	Listing the Rules Executed
	Analyzing DAL Performance
	When Extract Files Exceed The Offset Limits

	Controlling What is in the MultiFilePrint Log
	Using INI Built- In Functions
	~GetEnv
	~Platform
	~OS
	~DALRUN ~DALVAR
	~Encrypted
	~ProcessID
	~WIPField
	Accessing WIP Fields
	Formatting arguments
	Specifying locales
	Using the ~Field function

	Outputting WIP Field Data Onto the XML Tree
	Using XML Files
	Handling Overflow
	Triggering Forms and Sections

	Using XPath
	XPath Syntax
	Axes
	Symbols
	Functions
	Expressions

	Using the XPath Testing Utility
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10

	Example XML File

	Implementing Your System
	Why Use a Methodology?
	Phase 1 - Define the requirements
	Phase 2 - Create the detail forms requirements
	Phase 3 - Build the Master Resource Library
	Phase 4 - Install and configure the system
	Phase 5 - Test the system
	Phase 6 - Go live

	Gathering Information
	Understanding Your Niche
	Understanding Your Organization

	Roles and Responsibilities

	Setting Recipients and Copy Counts
	Concepts
	Key Files
	Transaction Trigger Table
	Trigger Levels

	Form Set Definition Table

	Trigger Table Record Format
	Specifying the Transaction Trigger Table
	How Transaction Triggering Works
	Section Level Triggers

	Form Level Triggers
	Master and Subordinate Sections
	Marking Subordinate Sections
	Marking Master Forms

	Examples
	Specifying Copy Counts and Sections
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Transaction Codes
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Setting Up Search Mask and Sections
	FORM.DAT file
	SETRCPTB.DAT file
	POL File

	Using the RECIPIF Rule
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Automatic Overflow
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using Forced Overflow
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Setting Search Masks and Recipients
	FORM.DAT file
	SETRCPTB.DAT file
	POL file

	Using the Set Recipient Table and Extract Files
	Formatting Search Masks
	Spaces
	Commas
	Tildes
	Parentheses
	Using the OR condition
	Using the NOT condition
	Using AND and OR conditions

	Sorting Forms by Recipient
	INI files
	Sort tables

	Summary

	Working with Fonts
	Understanding Font Concepts
	Font Terminology
	National language terminology

	How Characters are Represented
	Bitmap Fonts
	Scalable Fonts
	TrueType
	PostScript

	How Computers and Printers Use Fonts

	Using Code Pages
	ASCII Code Pages
	EBCDIC Code Pages
	Character Sets
	Determining Characters Used in a Printer Font

	Code Page Names

	Types of Fonts
	Using Screen Fonts
	Font Substitution in Windows
	Installing Screen Fonts in Windows

	Using Printer Fonts
	AFP
	Coded fonts
	Code pages
	Character sets

	Metacode
	PCL
	PostScript Fonts
	TrueType Fonts
	Adding Printer Fonts to a Font Cross-reference File

	Using System Fonts
	Font Cross-reference Files for Monotype Fonts
	HPINTL.FXR, HPINTLSM.FXR
	REL95.FXR, REL95SM.FXR
	REL102.FXR, REL102SM.FXR
	REL103.FXR, REL103SM.FXR
	REL112.FXR REL112SM.FXR

	Using Custom Fonts
	On AFP printers
	On Xerox Metacode printers
	On PCL printers
	On PostScript printers

	Using Font Cross- Reference Files
	How FXR Settings Affect Display and Print Quality
	Maintaining FXR Files
	Choosing a Font Cross-reference File

	International Language Support
	Using the ANSI Code Page for PC Platforms
	Using Code Page 37 for EBCDIC Platforms

	Using International Characters
	Converting Text Files from one Code Page to Another

	Setting Up PostScript Fonts
	Fonts for PDF Files
	Importing PostScript Symbol Fonts

	Font Naming Conventions
	Using Font Manager
	Starting Font Manager
	From Image Editor
	From Docucreate

	Working with the Font List
	Selecting Fonts
	Deselecting Fonts
	Filtering the List of Fonts
	Adding Fonts to a Font Set
	Description tab
	Dimensions tab
	Printers tab
	Other tab

	Copying Font Information
	Editing Font Information
	Converting Fonts
	Converting fonts from other vendors
	Working with multiple printers

	Deleting Fonts
	Inserting Fonts
	Inserting bitmap fonts and FXR files
	Inserting PostScript and TrueType Fonts

	Choosing Screen Fonts

	Generating Files using Font Manager
	Generating an FNT File
	Generating an XRF File
	Generating PFM Files from an FXR file

	Mapping Fonts for File Conversions

	Setting Up Printers
	AFP Printers
	AFP INI Options
	Using defaults for the Module and PrintFunc options
	Using Documaker shading patterns instead of shaded bitmaps
	Printing highlight colors
	Character set and code page font information
	Outputting character set and code page information
	Using multiple code pages
	Using LLE records to link to external documents

	AFP Printer Resources
	FormDef
	Fonts
	Monotype fonts
	Overlays
	Page segments
	AFP 2-up support

	AFP Troubleshooting
	Floating section limitations
	Objects extending beyond the edges
	Conflicts between page and form orientation
	Multi-page FAP limitation
	Printing rotated variable fields
	AFP 240 dpi print problems

	Including Documerge Form-level Comment Records

	Metacode Printers
	Required JSL INI Options
	JDLName
	JDEName
	DJDEIden, DJDEOffset, and DJDESkip
	JDLCode
	JDLData
	JDLHost

	Additional Required INI Options
	OutMode
	ImageOpt
	CompressMode
	CompileInStream
	Device
	RelativeScan

	Specifying Installable Functions
	Using defaults for the Module and PrintFunc options

	Optional INI Options
	Setting the end of the report
	Starting new pages
	Adding an OFFSET command
	Jogging pages
	Specifying spot color
	Chart performance and print quality
	Optimizing Metacode print streams
	Using a common font list
	Setting a default paper size
	Automatically sizing sections
	Inline graphic performance and print quality
	Adding color to charts
	Using named paper trays
	Specifying the printer model
	Specifying the resolution
	Displaying console messages
	Stapling forms
	Duplex switching
	Using VSAM to store resources
	PrintViewOnly
	Caching files to improve performance
	Using the loader
	Using the Class option
	Adding user-defined DJDE statements
	Using third-party software to read Metacode files
	Specifying the paper stock

	Using Mobius Metacode Print Streams
	Metacode Printer Resources
	Fonts
	Forms
	Images
	Logos

	Metacode Limitations
	Xerox images
	HMI support
	Changing the paper size on the 4235 printer
	Xerox forms

	Metacode Troubleshooting
	Unexpected color output
	Unexpected black and white output
	Highlight color should match the PrinterInk option
	LOG file orientation
	Output catching up with the input
	Printing rotated variables
	Multi-page sections
	Operator command, FEED, causes duplex problems
	Line density errors
	Output data length validation
	Using Xerox Forms (FRMs)
	BARRWRAP
	Transferring Files from Xerox Format Floppies

	PCL Printers
	PCL INI Options
	Using defaults for the Module and PrintFunc options
	Using PCL 6
	Printing Under Windows
	Using High-Capacity Trays 3 and 4 on HP 5SI Printers
	Using a staple attachment

	Overriding Paper Size Commands and Tray Selections
	Using Simple Color Mode
	Marking objects to print in color
	Specifying the highlight color to use
	Printing on different types of printers

	Creating Compressed PCL Files
	Bitmap compression

	Adding Printer Job Level Comments
	Adding Data for Imaging Systems
	Limiting the Embedded PCL Fonts

	PCL Printer Resources
	Fonts
	Overlays

	PostScript Printers
	PostScript INI Options
	Using defaults for the Module and PrintFunc options
	Avoiding a white outline around letters
	Printing under Windows
	Generating PostScript Files on z/OS
	Creating Smaller PostScript Output
	Bitmap compression

	Adding DSC Comments
	Stapling Forms

	PostScript Printer Resources
	Fonts
	Overlays
	PostScript Printer Definition (PPD) Files

	Using the GDI Print Driver
	How it works
	GDI Printer Driver INI Options
	Using defaults for the Module and PrintFunc options

	Avoiding Problems with FAX Drivers
	Batch Printing to Files

	Using Pass- through Printing
	Creating PDF Files
	Creating RTF Files
	Generating separate files
	Adding or removing frames
	Creating form fields
	Setting margins
	Removing the contents of headers and footers

	Using the VIPP Print Driver
	VIPP Resource Files
	Converting bitmaps into VIPP image files
	Converting FAP files into VIPP segment files
	VIPP fonts
	VIPP font encoding files

	Managing VIPP Resources
	VIPP INI Options
	Setting up folders and projects
	Overriding the list of libraries for projects
	Setting up paper trays
	Adding DSC comments

	VIPP Limitations
	Troubleshooting
	VIPP known problems

	Emailing a Print File
	Creating EPTLIB print files for Documaker Workstation
	Creating EPTLIB print files for Documaker Server
	Creating PDF print files
	Overriding attached files
	Using email aliases

	Choosing the Paper Size
	US Standard Sizes
	ISO Sizes
	ISO A sizes
	ISO B sizes
	ISO C sizes

	Japanese Standard Sizes
	Printer Support for Paper Sizes
	Paper Sizes for AFP Printers

	Creating Print Streams for Docusave
	Archiving AFP Print Streams
	Archiving Metacode Print Streams
	Archiving PCL Print Streams
	Using DAL Functions

	Adding TLE Records
	Handling Multiple Paper Trays
	For PCL printers
	For PostScript printers
	For GDI printers
	For AFP printers
	For Metacode printers
	Including Tray Selections in a Print Stream Batch

	Setting Up Error Messages and Log Files
	Overview
	Configuring the Message System
	Enabling and Disabling Messages
	Logging INI Files and Options Used

	Clearing Messages
	Defining the Output Message Files
	Initializing the Output Message Files
	Turning Off Date Stamps
	Controlling the Translation Process
	DBLib Trace Messages

	Creating Messages
	Using the RPErrorProc and RPLogProc Functions
	RP Struct
	Message Types
	Message Number
	Assigning numbers to custom messages

	Using Message Tokens
	Setting Up Message Text
	Message examples
	Undefined tokens
	Adding a new line
	Determining where the message originated

	Using the Message Token File

	Archiving and Retrieving Information
	Terminology
	Files and tables
	Commit
	Rollback
	GenArc
	AFEMAIN
	CARFILE
	APPIDX
	TEMPIDX
	CATALOG
	RESTART
	DFD

	System Scenarios
	Scenarios for OS/390 (MVS)
	Scenarios for Windows 32-bit
	Scenarios for UNIX

	Archive and Retrieval Features
	Processing Overview
	DBASE IV
	DB2
	SQL server
	Oracle
	Files GenArc Uses
	Input files
	Output files

	How the GenArc Program Works

	Running GenArc
	Logging archived transactions
	Archiving to a database
	Sorting records in a database
	Preparing SQL
	Command Line Options
	INI
	JOBID
	DPASSWD
	DUSERID
	OPASSWD
	OUSERID
	RESTART
	SQLID
	STOPREC
	Using the Restart Option

	Using GenArc with Documanage
	Forcing folder updates
	FSIUSER.INI sample
	APPIDX.DFD sample
	CARFILE.DFD sample
	Using the Oracle ODBC Driver
	CARFILE DFD

	Creating the Database and Tables
	Resolving Errors

	Viewing Archives in Documanage
	Using Multiple Simultaneous ODBC Connections

	Using WIP and the Archive Index File
	Formatting Archive Fields
	Converting the case of key fields
	Reformatting dates
	Storing a constant value

	Retrieving Archived Forms
	Files the Archive Module Uses
	Input files
	Output files

	Using the Archive Module
	Retrieval Options

	Working with Documanage
	Using Documanage Data Type Support
	Setting Up Automatic Category Overrides
	Mapping Documaker Archive Fields to Documanage Properties
	Using Next/Retrieve Cursor
	Enhanced Documanage Document Extended Properties Support

	Setting Up Archive/ Retrieval Configurations
	DB2 Server on OS/390 - Windows Client
	Configuring the Server
	Getting the DB2 location name and LUNAME
	Defining the SNA server’s APPC LU in VTAM
	Defining the DB2 Application Major Node in VTAM
	Setting Up the Windows 2000 Server (Middle Tier)
	Installing and configuring Microsoft’s SNA Server

	Installing and Configuring Microsoft’s SNA Server
	Configuring SNA Server 4.0 SP3
	Setting Up DB2 on a Windows 2000 Server
	Installing DB2 on a Windows 2000 Server
	Configure the DB2 instance
	Defining an OS/390 node
	Defining a system database entry
	Updating TCP/IP values on the Windows 2000 server
	Defining a database connection services entry

	Installing and Configuring DB2 on a Windows 2000 Server
	Defining an OS/390 system
	Defining a DB2 instance
	Defining an OS/390 database

	Setting Up Universal Database on Windows 2000
	Installing Universal Database
	Configuring Universal Database

	Updating TCP/IP-related Values on a Windows 2000 Server

	Common DB2 Errors
	Setting Up Clients
	Defining a DB2/2000 node
	Defining a system database entry
	Updating TCP/IP-related values on a Windows client
	Setting Up the INI Options for the DB2 Driver

	DB2 Server on Windows - Windows Client
	Setting up a DB2 Database on the Server
	Setting Up a Client for DB2 VERSION 6.1
	Archiving to a remote DB2 database using an ODBC driver
	Setting up an ODBC data source
	Setting up INI options for the ODBC driver

	Archiving to a Remote DB2 Database Using the Native DB2 Driver
	Setting up a DB2 database
	Setting up the INI options for the DB2 driver

	DB2 Server and Client on Windows
	Setting Up a DB2 Database
	Setting up an ODBC data source
	Setting up INI options for ODBC
	Archiving to a Local DB2 Database Using the Native DB2 Driver
	Setting up the DB2 database
	Setting up the INI options for the DB2 driver

	SQL Server on Windows - ODBC Client on Windows
	Setting Up a Client
	Setting up the INI options for ODBC

	IDS on Windows -DB2 Archive on z/OS
	Setting Up the DB2 Archive on z/OS

	Creating a z/OS Database
	Updating TCP/IP Values on a Windows 2000 Server

	System Files
	Overview
	Types of Files
	BCH files
	CAR files
	DAT files
	DBF files
	DDT files
	DFD files
	Error files
	Extract files
	FAP files
	Initialization files
	JDT files
	Log files
	LOG files
	MDX files
	Transaction files

	Resource Files
	FSISYS.INI file
	FSIUSER.INI file
	FAPCOMP.INI
	FORM.DAT file
	SETRCPTB.DAT file
	DFD files
	TRNDFDFL.DFD file
	RCBDFDFL.DFD file
	APPIDX.DFD
	.DDT files
	.JDT files
	Extract files
	DFD File Format
	Fields Group
	Field Description Group

	Files Created by the GenTrn Program
	Transaction files
	Error files
	Log files

	Files Created by the GenData Program
	NAFILE.DAT file
	POLFILE.DAT file
	NEWTRN.DAT file
	Batch files
	MANUAL.BCH file
	Error batch
	Updated log, error, and message files

	Files Created by the GenPrint Program
	Spool files
	Updated log and error files

	Files Created by the GenWIP Program
	WIP.DBF file
	WIP.MDX file
	00000001.DAT file
	00000001.POL file
	UNIQUE.DBF file

	Files Used by the GenArc Program
	APPIDX.DBF file
	APPIDX.DFD file
	ARCHIVE.CAR file
	APPIDX.MDX file
	APPIDX.DFD file

	Glossary
	00000001.DAT File
	00000001.POL File
	AFP
	ARCHIVE.CAR File
	ARCHIVE.DBF File
	ARCHIVE.DFD File
	Base Product
	.BCH Files
	Batch Files
	.CAR Files
	Custom Solution
	DAL
	.DAT Files
	.DBF Files
	DDT Files
	DESKJET.FXR File
	.DFD Files
	Distributed Resource Library
	Duplex
	ERRFILE.DAT
	Error Batch
	Error Files
	External Database Editor
	Extract Files
	.FAP Files
	FDB.DBF File
	fetype
	Field Database Editor
	Fixed Data
	Font Manager
	Form
	Form Set
	Form Set Manager
	FORM.DAT File
	FSISYS.INI File
	FSIUSER.INI File
	.FXR Files
	GenArc Program
	GenData Program
	GenPrint Program
	GenTrn Program
	GenWIP Program
	Help Editor
	Image (Section)
	Image Editor
	.INI Files
	INTL.FXR
	INTLSM.FXR
	.JDT Files
	Library Manager
	Log Files
	.LOG Files
	Logo Manager
	MANUAL.BCH File
	Master Resource Library
	Metacode
	.MDX Files
	NAFILE.DAT File
	NEWTRN.DAT File
	Objects
	Overflow
	Page
	PCL
	POLFILE.DAT File
	PostScript
	Section
	SETRCPTB.DAT File
	Simplex
	System Releases
	System Patches
	Table Editor
	Transaction List
	.TRN Files
	TRNDFDFL.DFD File
	UFSTSM.FXR File
	UNIQUE.DBF File
	Variable Data
	WIP.DBF File
	WIP.MDX
	xBase

	Index
	Symbols
	& (ampersand) 377
	.BCH files 464
	.CAR files 464
	.DAT files 464
	.DBF files 464
	.DDT files 464, 474
	.DFD files 465
	.FAP files 466
	.INI files 466
	.JDT files 466, 475
	.LOG files 466
	.MDX files 466
	~Encrypted 113
	~GetEnv function 111
	~OS function 112
	~Platform function 112
	~WIPField built-in function 115

	Numerics
	00000001.DAT file 484
	00000001.POL file 484
	2-up printing

	A
	A4
	ABNORMAL statements 284
	Access databases 411
	Acrobat Reader
	AddBlankPages function 96
	AddComment function 299, 300
	AddDocusaveComment function 359
	Added_Fonts control group 71
	AddedOn option 398
	AddForm function
	adding
	AdditionalDJDE option 279
	AddLine rule 72
	ADDPAGES utility 269
	AddTextLabel rule 72
	AdjLeftMargin option 290
	Adobe Acrobat 2
	AFEMAIN program
	AfeProcedures control group 413
	AFEW32 413
	AFEWIP2ArchiveRecord 413
	AfeWIP2ArchiveRecord control group 413
	AFG2WIP control group 89
	AFGJOB.JDT file 466, 475
	AFM files 174
	AFP
	AFP control group 250
	AFP printers
	AFPFMDEF utility 258
	AIX
	AliasPrintBatches option 103
	AllowInput option 322
	AlwaysSQLPrepare option 393
	ampersands
	ancestor 123
	ANSI code page
	APPIDX file
	APPIDX.DBF file 485
	APPIDX.DFD file 473, 485
	APPIDX.MDX file 485
	application index file 473
	archive
	archive index file
	Archive rule 51, 52
	ARCHIVE.CAR file 485
	ArchiveMem option 392, 398
	archiving
	ArcRet control group 392, 417
	ARCRET utility 424
	ARCVIEW utility 410
	ASCII
	Asian languages
	Auto-size option 259

	B
	banner form processing
	banner forms
	banner processing
	BARR
	BARR SPOOL
	BARRWRAP utility 288
	BaseErrors option 34
	baseline 220
	BaseRuleTime option 105
	Batch control group 52
	batch files 482
	BatchBannerBeginForm option 16
	BatchBannerBeginScript option 16
	BatchBannerEndForm option 16
	BatchBannerEndScript option 16
	BatchByPageCount rule 52
	BatchingByRecip control group 52
	BatchingByRecipINI rule 52
	BatchPrint control group 321
	BatchTable option 103
	bitmap compression
	bitmap fonts
	bitmaps
	black rectangles 259
	blank pages 269
	boxes, WriteFrame option 322
	BreakBatch function 81
	BuildMasterFormList rule 52
	built-in functions 111
	business envelopes 296
	byte-serving 320

	C
	Cabinet option 398
	CacheFAPFiles option 277
	CacheFiles option 277
	CacheMethod option 277
	callback functions
	CallbackFunc option 85
	CARData control group 409
	CARFILE
	CARFILE.DFD file 405
	case toggles 265
	CaseSensitiveKeys option 414
	CATALOG file
	CD/IG 286
	Character Set field 252
	character sets
	Character Width field 221
	ChartResolution option
	charts
	CheckCount option 33
	CheckImageLoaded rule
	CheckZeroFontID option 102
	child 123
	Class option 411
	class recipient 65
	ClearMsgFile option 370
	CMY palette 297
	Code Page Font field 252
	code pages
	CODE statement 265
	CODEPAGE.INI file
	ColorCharts option 274
	colors
	column names 433
	COMM_RECS column
	commas
	comment records 18
	commit
	CommitEvery option 396
	CommonFonts control group 273
	CompileInStream option 267
	Compression option 305
	CompressMode option 266
	concepts
	configuring
	console
	console messages 274
	controlling the message translation process 372
	converting
	ConvertWIP rule 51, 53
	copy counts
	copying
	Counter field 141, 471
	counter search mask 155
	CounterDFD option 70
	CounterTbl option 52, 53, 70
	CreateIndex option 408
	CreateTable option 408
	CreateTime field 88
	CreateTime option 398
	creating
	creating messages 374
	CRYRU utility 113
	CSTSetMailRecip function 344
	CUSSetMailRecipGVM function 344
	custom callback function in banner processing 15
	custom fonts 194
	Custom Rule field 141
	custom rules

	D
	DAL
	DAL functions
	DAL scripts
	DALFile option 406
	DALLibraries control group 16, 97
	DALRUN built-in function 113
	DALVAR built-in function 113
	data
	Data control group
	data definition table
	data format definition files 465
	data table files 464
	database
	database files 464, 472
	DataPath option 103
	date stamps
	DB Field Name values 422
	DB2
	dBase 499
	DBErrors option 395
	DBHandler option 407, 408, 412
	DBLib tracing 373
	DBLogFile option 373
	DBTable option 407
	DCD files
	DDTFile option 407
	Debug option 408, 412
	Debug_If_Rule option 101
	Debug_Switches control group 101
	DefaultTag option 393
	defining
	DefLib option
	DelBlankPages function 97
	deleting
	descendant 123
	Description tab
	Deselect All option
	DestField token 381
	Device field 318
	Device option 268
	DeviceName function 81
	DFD file
	DFD files 472
	Dimensions tab
	DisplayCodedFont option 250, 252
	DJDE command 279
	DJDE statements
	DJDECarrControl option 279
	DJDEForceOffsetEnd option 270
	DJDEIden option 265
	DJDELevel option 276
	DJDEOffset option 265
	DJDESkip option 265
	DlgTitles control group 417
	DocSetNames control group 50
	Documaker Server
	Documanage
	Document Type Number 166
	Docupresentment 2
	Docusave
	DocusaveScript option 249, 359
	dots per inch
	DoubleOutputRes option
	DownloadFAP option 99, 305
	DownloadFonts option 300
	DPA files
	DPASSWD command line option 393
	DPRAddBlankPages rule 98
	DPRDelBlankPages rule 98
	DSCHeaderComment option
	duplex
	DUSERID command line option 394

	E
	EBCDIC 465
	EBCDIC platforms
	editing
	EjectPage rule
	ElapsedTimeStamp option 102
	email
	Email Application Servers 345
	embedded hex values 265
	embedding fonts 208
	EMIT_ERROR type 374
	EMIT_MESSAGE type 374
	EMIT_WARNING type 374
	EmptyFooters option 323
	EmptyHeaders option 323
	Enable_Debug_Options option 101, 104, 373
	EnableEmailNotification option 90
	EnableTransBanner option 97
	encrypted values 113
	end of report conditions 269
	envelope feeders 296
	EPTLIB 342
	EPTSetRecipFunc function 344
	ERRFile option 370
	ERRFILE.DAT file 368
	error batch 482
	error codes 369
	error files 465, 480
	error messages
	ErrorFileDateStamp option 102
	ErrorFileOpenMode option 371
	errors
	European paper 469
	examples
	Excel spreadsheet databases 411
	executive
	executive paper 469
	ExportIndex option 392
	Expression option 103
	Ext option
	EXT_Length option 71, 409
	Extended Binary Coded Decimal Interchange Code 181
	Extended Document Properties (XDPs) 421
	extract files
	EXTRACT.DAT file 465

	F
	FAP files
	FAP2CFA utility 283
	FAP2FRM utility 282, 287
	FAP2MET utility 267, 277, 282, 283
	FAP2OVL utility 258
	FAPAddBlankPages 96
	FAPCOMP.INI file 467
	FAPDelBlankPages 96
	FAX drivers 316
	fax, drivers 311
	FEED command 286
	FIELD
	Field Description control group 478
	FieldErrors option 34
	FieldFuncTime option 105
	FieldList option 103
	fields
	Fields control group 477
	file names
	File option
	file summary
	FileDrive function 82
	FileExt function 82
	FileName function 82
	FilePath function 82
	files
	FileType option 398
	filter list 213
	FinalPrinter option
	FitToWidth option
	floating section limitations 259
	FolderBy option 397
	folders
	FON files 221
	font cross-reference files
	Font List window 234
	Font Manager
	Font Properties window 199
	FontFamilyMatching control group 244
	FontLib option
	fonts
	footer 469
	footers
	ForceFolderUpdate option 399
	ForceNoImages rule 72
	form level triggers 139, 146
	Form Name field 471
	Form name field 140
	Form option 58
	form set definition table 139, 467
	Form Set Manager 138, 275
	form set trigger table 470
	form sets
	FORM.DAT file 139, 467
	format
	FormDef, AFP resources 258
	FormFile option 407
	form-level comments 262
	FormLib option
	FormMaker II XRF files
	FormNameCR option 262
	forms
	FormSetID field 87
	FormSetRuleTime option 105
	frames
	FRM files
	FRMFile option 288
	FSIFileName taken 379
	FSIFileName token 381
	FSILineNumber token 379, 381
	FSIPATH environment variable 410
	FSISYS.INI file 467
	FSIUSER.INI file 467
	FSRSetFileAttachment API 345
	FudgeWidth option
	FullFileName function 82
	FullSupport option 316, 317
	functions
	FXR File field 221
	FXR files

	G
	GDI driver
	GDIDevice option 314, 317
	GEN_DEBUG_DebugSwitchSet function 101
	Gen_TabUtil_LoadListFromTable function 101
	GenArc program
	GenData program
	GenDataStopOn control group 34
	Generate Font Download File window 240
	Generate FormMaker II XRF File window 241
	GenPrint program
	GenTranStopOn control group 43
	GenTrn
	GenTrn program
	GenWIP program
	GETENV INI function 88
	GetEnv INI function 415
	GetRCBRec rule 72
	GHO hardware 266
	GOCA charts support 247
	going live 132
	graphics
	Graphics Device Interface (GDI) print driver 311
	GraphicSupport option
	GroupName1 field 140, 471
	GroupName2 field 140, 471
	GVG hardware card 266, 282

	H
	H2 strings 265
	H6 strings 265
	header 469
	header records
	headers
	hidden 469
	highlight color printing
	HighlightBlackCmd option 298
	HighlightColor option 290
	HighlightColorCmd option 298
	horizontal motion index 282
	HPINTL.FXR file 191
	HPINTLSM.FXR file 191
	HP-UX

	I
	IBMXREF.TBL file 252
	IDEN statement 265
	IDS
	image level triggers 139, 144
	Image Name field 140, 471
	Image option 58
	ImageErrors option 34
	ImageFuncTime option 105
	ImageOpt option
	ImageRuleTime option 105
	imaging systems 299
	ImmediateTranslate option 372
	implementation methodologies 132
	implementing your system 131
	indexes
	InfoPak 269
	INI built-in functions 111
	INI command line option 393
	INI files
	INI options
	INIFiles control group 112
	INIGroup control group 113
	INILib option 104
	InitArchive rule 51, 53
	InitConvertWIP rule 51, 53
	InitFunc option 300
	initialization files 466
	InitMerge rule 72
	InitPageBatchedJob rule 72
	InitPrint rule 53
	InitSetrecipCache rule 53
	ink color 271
	inkjet printers 311
	inline graphics
	Insert Fonts window 232
	inserting
	installable functions 268
	installing
	INT_LENGTH option 71
	INT_Length option 409
	international language support 201
	Internet Document Server (IDS)
	InUse field 87
	ISI.INI file 243

	J
	JDEName option 264
	JDLCode option 265
	JDLData option
	JDLHost option 265
	JDLName option 264
	JDLRPage option 269
	JDLRStack option 269
	JDLs
	JES2 format 288, 358
	job definition table 466, 475
	JOBID command line option 393
	JOBID parameter
	jogging pages 270
	JSLs
	jump to new sheet condition 269

	K
	KEY
	key fields
	Key1
	KeyID

	L
	landscape 469
	Landscape option
	LandscapeSupport option
	language
	LanguageLevel option 303
	LASTERRORTOKEN token 376, 379
	LASTREC column
	LBYD option 408
	LBYI option 408
	LBYLOG option 408
	LBYLOGFile option 407
	legal
	letter
	letter size paper 469
	Like button 216
	limitations
	line density errors 286
	LINE statement 265
	lists of figures
	Load PostScript Font File window 236
	Loader:Met control group 278
	LoadFAPBitmap option 284
	LoadListFromTable option 101
	log files
	LOG2PSEG utility 258
	LogCaching option 277
	LOGFile option 370
	LOGFILE.DAT file 368
	LogFileDateStamp option 102
	logging messages 373
	logical printers 85
	LogINIFileNames option 370
	LogINIOptions option 370
	Logo Manager 274, 282
	LOGO.DAT file
	LOGOFile option 407
	LogToConsole option 104, 392
	LogTransactions option 369
	LookUp rule
	LRECL values 287

	M
	Mail control group 345
	MailAttachment option 90
	MailID option 90
	MailMessageBody option 90
	MailSubject option 90
	MailType option 345
	MANUAL.BCH file 482
	Map Coded Font (MCF) fields 252
	MapByDBName option 422
	margins
	marking
	Master and Subordinate Sections 149
	master flag
	master forms
	master resource libraries
	MasterDDTNotInLibrary option 407
	MasterResource control group
	MaxFonts option 273
	MaxPolLineLength option 481
	MergeAFP rule 73
	message information 342
	Message option
	message token file
	message token files
	messages
	MET files
	Metacode
	Metacode printers
	METDUMP utility 281
	methodologies for implementation 132
	METOPT utility
	Mixed Object Document Content Architecture data streams 246
	Mobius
	ModifyTime field 87
	Module option
	Monotype fonts 258
	MRG2FAP utility
	MRG4 format 358
	MSGFile option 370
	MSGFILE.DAT file 368, 380
	msgNO_MORE_IMAGES message 72
	MTCLoadFormset rule 281
	multi-file print callback method 79
	MultiFileLog option
	MultiFileLogRecord option 109
	MultiFilePrint callback function 49, 166
	MultiFilePrint option
	MultiLinesPerCommand option
	multi-mail transaction
	multi-mail transactions
	multi-page FAP files
	multi-page forms
	MVS
	MVS file format 465

	N
	NAFILE.DAT file 464, 481
	NamedColors option 249, 251
	NameDocBy INI option 397
	NameDocBy option 398
	negative left offset 259
	New option
	NEWTRAN.DAT file 482
	NEWTRN file
	NEWTRN.DAT file
	next/retrieve cursor 424
	NoBatchSupport option 321
	NoGenTrnTransactionProc rule 53
	non-stapled forms
	NOT conditions
	NUBACK statements 269
	NUFRONT statements 269

	O
	objects
	Occurrence flag 141, 471
	occurs clauses 476
	Octal strings 265
	ODBC
	ODBC_FieldConvert control group 411
	ODBC_FileConvert control group 411
	offset, negative left 259
	OMR marks
	OnDemand command records 248
	OnDemandScript option 248
	OPASSWD command line option 394
	OpSystem option 465
	Opt option 58, 59
	Optimize option 273
	OR conditions
	Oracle
	ORDER BY clause 393
	OT_Docs table 397, 398
	OTextString option 274
	OUSERID command line option 394
	OutBuff token 376
	OutMode option
	output files
	OutputBin option 292, 295
	OutputFunc option 298
	OutputHalfRes option 250
	OutputMod option 298
	overflow
	Overflow flag 141, 471
	OverlayExt option
	OverlayPath option
	overlays
	OVLCOMP utility

	P
	page segments 258
	page-at-a-time downloading 320
	PageBatchStage1InitTerm rule 53
	PageNumbers option
	PageRange option 52
	pages
	paper size
	paper sizes
	paper trays
	PaperSize option 248, 273
	PaperStockID option 279
	parent 123
	parentheses
	pass-through printing 318, 319
	Passwd option 408
	PCL
	PCL printers
	PCO interface
	PDF
	PDF files
	PDF format 2
	PDF417 fonts 193
	PDS members
	performance
	PFM files
	PJLComment option 299
	PJLCommentOn option 291
	PJLCommentScript option 291, 299
	platforms
	PMetLib option
	PMETLIB PDS 267
	PO Handler 397
	PODocument2Field control group 399
	POField2Document control group 399
	point sizes 218
	POLFILE.DAT file 481
	Port option 316
	portrait graphic
	PostScript
	PostScript fonts
	PostScript printers
	PreLoadRequired option 321
	PrePrintedPaper option
	print 321
	print batches
	Print Services Facility 246
	print spool files
	print streams
	Print window
	Print_Batches control group 103
	printer console messages 274
	printer drivers
	Printer Job Language (PCL) comments 299
	Printer option
	Printer Resident field 287
	PrinterInk option
	PrinterModel option 310
	printers
	PrintFormset rule 54, 120
	PrintFunc option
	printing
	PrintTimeStamp option 105, 372
	PrintToFile option 316
	PrintViewOnly option
	ProcessID built-in INI function 114
	processing
	processing overview 11
	ProcessQueue rule 54
	proportional fonts 219
	PRTLIB data 53
	PrtType option 85
	PrtType:AFP control group 246
	PrtType:XER control group
	PRTZCompressOutPutFunc function 298

	Q
	Qualifier option 408
	queues

	R
	RCBDFDFL.DAT file
	RCBDFDFL.DFD file 473
	RCBStatDtlDFD option 38
	RCBStats option 38
	RCBStatsDtl option 38
	RCBStatsTot option 38
	RCBStatsTotDFD option 38
	RCBTotals option 38
	RecipBatch function 19
	RecipFunc option
	recipient batch (RCB) transaction fields 87
	recipient batch DFD file
	recipient batch file 85, 473
	recipient batch records
	Recipient copy count field 141
	Recipient list field 141
	Recipient option
	recipients
	RECIPIF rule
	RecipMap2GVM control group 58
	RecipMap2GVM INI control group 66
	RecipMod option
	RecipName function 19
	records
	Records per first image field 141, 471
	Records per overflow image field 141, 471
	RecordType option 89
	REL112.FXR 193
	REL112SM.FXR 193
	REL95.FXR file 191
	REL95SM.FXR file 191
	RelativeScan option 268
	repeat counts 265
	ReplaceBitmap option 249, 251
	Req option 58, 59
	requirements definition 132
	reserved message ranges 375
	resetting
	Resolution option
	resource files 467
	resources
	Restart control group 33
	restart file 33
	Restart option 394, 395
	Restart table
	RestartJob rule 34
	RetainTransBeginForm option 17, 18
	Retrieval
	Retrieval Options window 417
	Retrieve Document window 416
	RightFax 299
	rollback
	rotated variable fields 260
	rounding errors
	RP Struct 374
	RPAGE command 279
	RPErrorProc function 374
	RPLogProc function 374
	RSTACK command 279
	RstFile option 33
	RTF
	RTF files
	RTFFontMAP control group 244
	RULCheckTransaction rule 33
	RuleFilePool option 277
	rules
	rules processing
	Rules Processor
	Rules Publishing Solution
	RULStandardProc rule
	Run Length Encoding (RLE) compression 305
	RunMode control group
	RunSetRcpTbl rule

	S
	scalable fonts 175
	scaling output 311
	screen fonts
	Search Mask 1 field 141, 471
	Search Mask 2 field 141, 472
	search masks
	section level triggers 139, 144
	sections
	selecting
	SelectRecipients option
	self 123
	SendColor option 251
	SendOverlays option
	sequence numbers
	Server option 408, 411
	set recipient table
	SetDeviceName function 81
	SetOrigin rule
	SetOverprint option 304
	SETRCPTB.DAT file 470
	SETRECIP table
	SetState rule
	setting
	setting up
	Setup Data field
	short binding 469
	Show_Debug_Options option 101
	sibling 123
	SIDE statements 269
	simple color mode 290, 297
	simplex
	single-page forms
	singles-step processing
	single-step processing
	SkipChartColorChange option 249
	skipping batch message 72
	SortFormsForRecip callback function 166
	sorting records 393
	SplitPercent option
	SplitText option
	SQL Server
	SQLID command line option 394
	StandardFieldProc rule 54
	StandardImageProc rule 54
	StandardJobProc rule 67
	staple attachments
	StapleBin option 291, 295
	StapleJDEName option 275
	StapleOff option 303, 308
	StapleOn option 303, 308
	stapling forms
	start new page 269
	statistics processing 38
	Status column
	StatusCode option 89
	STOPREC command line option 394
	SUB INK commands 283
	subject information 342
	Subject option
	subordinate flags
	subordinate sections
	SuppressBanner function 19
	SuppressDialog option 317
	SuppressDlg option
	SuppressLogoUnload option 249
	SuppressZeroData option
	Sybase
	system files 461
	system implementation methodology 132
	system overview 11
	system resource files
	system scenarios
	system settings

	T
	table names 433
	tables
	Tag Logical Element (TLE) records 362
	TblLkUp rule
	TEMPIDX file
	TemplateFields option
	TermFunc option 300
	terminology
	testing
	text files
	TEXTCommentOn option 300
	TEXTScript option 299
	TicketJobProc rule 67
	tildes
	TL/DL buffers 283
	TLEEveryPage option 248, 362
	TLEScript option 248, 362
	TLESeparator option 248, 362
	token-data pairs 376, 378, 380
	trace files
	TraceFile option 373
	transaction codes 471
	Transaction codes field 141
	transaction files 466, 480
	transaction records
	transaction trigger table
	TransactionErrors option 34
	transactions
	TransBannerBeginForm option 16
	TransBannerBeginScript option 16, 97
	TransBannerEndForm option 16
	TransBannerEndScript option 16
	transferring files
	TRANSLAT utility 368, 372
	TRANSLAT.INI file
	translating messages 372
	TranslationFile option 370
	trays
	trigger levels
	trigger records
	Trigger Table Record Format 140
	Trigger2Archive control group 51, 53, 414
	Trigger2WIP control group 87, 120
	triggering logic 168
	triggers
	TrimWhiteSpace option
	TRN files 466, 480
	Trn_Fields control group 50
	TRNDFDFL.DFD file 473
	true/false search mask 155
	TrueType fonts 176
	TWOUP control group 52, 53
	TwoUp control group 70
	TwoUpStart option 70

	U
	Unicode 292
	unique data
	UNIQUE.DBF file 484
	UniqueString function 82
	UniqueTag option 407, 408
	UNIX
	updated log and error files 482, 483
	UpdatePOLFile rule
	uppercase 433
	UseRestartTable option 398
	UserID option 89, 113, 408
	UseXMLExtract rule 121
	using

	V
	value-added processes 276
	variable fields
	VB datasets 287
	VBPrtOptions control group 314
	ViewDirect APIs 281
	Virtual Storage Access Method 276
	VSAM control group 276

	W
	white outlines 304
	white space
	Windows
	WIP
	WIP Edit plug-in
	WIP RecType field 89
	WIP StatusCD field 89
	WIP.DBF file 484
	WIP.DFD files 87
	WIP.MDX file 484
	WordDateFormats control group 322
	WordTimeFormats control group 322
	WriteFrames option 322
	WriteNAFile rule
	WriteOutput rule 54

	X
	Xbase 499
	XDPs 425
	XERDNLD utility 288
	XERLoadDocuMerge loader function 281
	Xerox
	XML 50
	XML files
	XML print driver 120
	XMLExtract option 50
	XMLFileExtract rule 121
	XMLTrnFields option 50
	XPath 123
	XPATHW32 utility 123, 126
	XRF files

	Y
	Year 2000 compliance

	Z
	z/OS

	Go to Oracle Insurance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

