
Start

Documaker

Working with XML Files

version 11.3

PUBLICATION COPYRIGHT NOTICE
Copyright © 2008 Skywire Software, L.L.C. All rights reserved.
Printed in the United States of America.
This publication contains proprietary information which is the property of Skywire Software or its subsidiaries. This
publication may also be protected under the copyright and trade secret laws of other countries.

TRADEMARKS
Skywire® is a registered trademark of Skywire Software, L.L.C.
Docucorp®, its products (Docucreate™, Documaker™, Docupresentment™, Docusave®, Documanage™, Poweroffice®,
Docutoolbox™, and Transall™) , and its logo are trademarks or registered trademarks of Skywire Software or its subsidiaries.
The Docucorp product modules (Commcommander™, Docuflex®, Documerge®, Docugraph™, Docusolve®, Docuword™,
Dynacomp®, DWSD™, DBL™, Freeform®, Grafxcommander™, Imagecreate™, I.R.I.S. ™, MARS/NT™, Powermapping™,
Printcommander®, Rulecommander™, Shuttle™, VLAM®, Virtual Library Access Method™, Template Technology™, and
X/HP™ are trademarks of Skywire Software or its subsidiaries.
Skywire Software (or its subsidiaries) and Mynd Corporation are joint owners of the DAP™ and Document Automation
Platform™ product trademarks.
Docuflex is based in part on the work of Jean-loup Gailly and Mark Adler.
Docuflex is based in part on the work of Sam Leffler and Silicon Graphic, Inc.
Copyright © 1988-1997 Sam Leffler.
Copyright © 1991-1997 Silicon Graphics, Inc.
Docuflex is based in part on the work of the Independent JPEG Group.
The Graphic Interchange Format© is the Copyright property of CompuServe Incorporated. GIFSM is a Service Mark property
of CompuServe Incorporated.
Docuflex is based in part on the work of Graphics Server Technologies, L.P.
Copyright © 1988-2002 Graphics Server Technologies, L.P.
All other trademarks, registered trademarks, and service marks mentioned within this publication or its associated software are
property of their respective owners.

SOFTWARE COPYRIGHT NOTICE AND COPY LIMITATIONS
Your license agreement with Skywire Software or its subsidiaries, authorizes the number of copies that can be made, if any,
and the computer systems on which the software may be used. Any duplication or use of any Skywire Software (or its
subsidiaries) software in whole or in part, other than as authorized in the license agreement, must be authorized in writing by
an officer of Skywire Software or its subsidiaries.

PUBLICATION COPY LIMITATIONS
Licensed users of the Skywire Software (or its subsidiaries) software described in this publication are authorized to make
additional hard copies of this publication, for internal use only, as long as the total number of copies does not exceed the total
number of seats or licenses of the software purchased, and the licensee or customer complies with the terms and conditions of
the License Agreement in effect for the software. Otherwise, no part of this publication may be copied, distributed,
transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by
any means, electronic, mechanical, manual, or otherwise, without permission in writing by an officer of Skywire Software or
its subsidiaries.

DISCLAIMER
The contents of this publication and the computer software it represents are subject to change without notice. Publication of
this manual is not a commitment by Skywire Software or its subsidiaries to provide the features described. Neither Skywire
Software nor it subsidiaries assume responsibility or liability for errors that may appear herein. Skywire Software and its
subsidiaries reserve the right to revise this publication and to make changes in it from time to time without obligation of
Skywire Software or its subsidiaries to notify any person or organization of such revision or changes.
The screens and other illustrations in this publication are meant to be representative, not exact duplicates, of those that appear
on your monitor or printer.

Skywire Software, L.L.C.
3000 Internet Boulevard
Suite 200
Frisco, Texas 75034
www.skywiresoftware.com

Phone: (U. S.)
(EMEA)

 972.377.1110
+44 (0) 1372 366 200

FAX: (U. S.)
(EMEA)

 972.377.1109
+44 (0) 1372 366 201

Support: (U. S.)
(EMEA)

866.4SKYWIRE
+44 (0) 1372 366 222
support@skywiresoftware.com

Notice

iii

Contents

Chapter 1, Introduction

2 Overview

3 Setting Up the XML Add-On

4 Setting Up Documaker Workstation

4 Setting Up the XML Export Format

5 Setting Up the XML Import Format

5 Setting Up the XML Message Format

6 Setting Up Docupresentment

8 Using the Parser

8 Byte order marks

9 XML File Format

10

Chapter 2, Importing and Exporting XML Files with Documaker
Workstation

12 Modifying INI Files

12 Setting up the XML export format

12 Setting up the XML import format

13 Creating an XML Export File

15 Example Documaker XML File Format

19 Form options

20 Importing a Documaker XML File

21 Transforming XML Files

21 Appending output transformations

Chapter 3, Importing and Exporting XML Files with Documaker
Server

33 Using the File Option

33 Using the INI Option

iv

34 Using the SCH Option

34 Using the GVM Option

Chapter 4, Using XML Extract Files

36 Mapping Formatted Data from Extract Files

38 Searching an XML Extract File

39 Handling Overflow

40 Triggering Forms and Images

40 Using the ElementText option

41 Using XPath

41 XPath Syntax

41 Axes

42 Symbols

42 Functions

43 Expressions

44 Using the XPath Testing Utility

44 Example 1

45 Example 2

45 Example 3

45 Example 4

45 Example 5

46 Example 6

46 Example 7

46 Example 8

47 Example 9

47 Example 10

48 Example XML File

Chapter 5, Using DAL XML Functions and XPath

50 Scenarios

50 Scenario 1

50 Scenario 2

51 Using XML Built-in Functions

51 LoadXMLList

51 DestroyList

v

51 GetListElem

51 IsXMLError

52 XMLFind

52 XMLFirst

52 XMLNext

52 XMLGetCurName

53 XMLGetCurText

53 XMLFirstAttrib

53 XMLNextAttrib

53 XMLAttrName

53 XMLAttrValue

54 XMLNthText

54 XMLNthAttrName

54 XMLNthAttrValue

55 Using the XML Path Locator

55 Axes

55 Function calls

55 Operators or signs

55 Expressions

56 Element list

56 Attribute list

56 Text list

57 Text string

Chapter 6, Additional Ways to Use XML and Documaker Server

60 Mapping Fields with XPath

61 Referencing DAL and GVM Using XML

63 Running Documaker Server Using an XML Job Ticket

64 Creating Multiple Print Files Using the PrintFormset Rule

Chapter 7, Using IDS to Run Documaker Server

66 Overview

67 Setting Up IDS

67 DOCSERV.INI file

67 DAP.INI file

vi

67 RPEX1.INI file

68 Setting up multiple IDS servers

69 Setting Up Documaker Server

69 FSISYS.INI or FSIUSER.INI file

69 AFGJOB.JDT file

70 Naming Conventions for Output Files

71 Controlling Documaker Server

73 INI options

73 Returns

73 Error messages

Chapter 8, Frequently Asked Questions

94 Is XML the same as HTML?

94 Who developed the XML parser?

94 What is an XML tag?

94 What is an XML attribute?

95 What is a schema?

95 What XML standards are accepted by Skywire Software
software?

96 Are ampersands (&) and octothorpes (#) supported in XML
files?

96 What tag names cannot be used in XML?

97 How do you send an XML input file to Documaker?

97 How do you export an XML file from Documaker Workstation?

97 What are the Unicode capabilities of XML?

98 How do you set up Docupresentment to use XML?

99 Can the SOAP standard be used with Docupresentment?

100 How can Docupresentment run Documaker using XML job-
tickets?

101 Can you use DAL with XML files?

101 Scenario 1

102 Scenario 2

102 Are triggers set the same way when you use XML files in
Documaker?

103 Can you use the Concat rule with XML?

103 Can you use the SetAddr rule with XML?

103 Can you use the PrintIf rule with XML?

104 How does Documaker deal with empty tags in XML files?

104 How are overflows defined?

vii

105 How do you handle overflow within overflow using XML?

105 Can you use the LoadExtractData and UseXMLExtract rules
in single-step mode?

105 Which version of XML does Transall support?

105 How do you write HTML pages to output XML via
Docupresentment?

106 What are some common XML-related errors?

107 Index

viii

1

Chapter 1

Introduction

Full support for XML in Documaker products was
introduced in version 10.2. This support provides a
variety of features for...

• Importing and Exporting XML Files with
Documaker Workstation on page 11

• Importing and Exporting XML Files with
Documaker Server on page 27

• Using XML Extract Files on page 35

• Using DAL XML Functions and XPath on page 49

• Additional Ways to Use XML and Documaker
Server on page 59

• Using IDS to Run Documaker Server on page 65

• Frequently Asked Questions on page 93

This chapter includes information on these topics:

• Overview on page 2

• Setting Up the XML Add-On on page 3

• XML File Format on page 9

Introduction

2

OVERVIEW XML (Extensible Markup Language) is a simple, flexible, text format language used
primarily for data exchange. It is a structured language containing a definition of the
data as well as the data itself. Here are a couple of links you may find useful:

www.w3c.org/XML

www.w3.org/TR/xpath

Originally developed to meet the challenges of large-scale electronic publishing, XML
is also playing an increasingly important role in the exchange of a wide variety of data
on the web and elsewhere. An example XML file is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<book isbn="0123456789">

 <title>

 Hound of the Baskervilles

 </title>

 <author>Arthur Conan Doyle</author>

 <character>

 <name>Sherlock Holmes</name>

 <friend-of>Dr Watson</friend-of>

 <since>1850-10-04</since>

 <qualification>extrovert genius</qualification>

 </character>

 <character>

 <name>Dr Watson</name>

 <friend-of>Inspector LeStrade</friend-of>

 <since>1866-08-22</since>

 <qualification>brash medic</qualification>

 </character>

</book>

http://www.w3c.org/XML
http://www.w3.org/TR/xpath

Setting Up the XML Add-On

3

SETTING UP THE
XML ADD-ON

With the XML add-on, you can import and export XML files while using Documaker
Workstation and you can send and receive XML messages. Setting up the new import
and export capabilities is similar to setting up any import/export file format.

To import and export XML files in Documaker Workstation, you use these XML add-on
functions:

NOTE: The ability to work with XML files is included in Documaker Workstation, but
must be purchased separately by PPS users. You must also have a
Docupresentment license to use the messaging features in the
WXMEntryHookExtXMLLoad and WXMImportXMLArchive functions because
they call Docupresentment files.

To use the XML add-on, you must first set up the import, export, and messaging
functions. If applicable, you then set up Docupresentment.

Function This function lets you...

WXMImportXML Import data from an XML file into a form set.

WXMExportXML Export data from a form set to an XML file.

WXMEntryHookExtXMLLoad Send messages from the system to any type of message
server.

WXMImportXMLArchive Send messages from the system to any type of message
server.

Introduction

4

SETTING UP DOCUMAKER WORKSTATION

To use the import and export functions, you must also add this control group and
options to your FSISYS.INI or FSIUSER.INI file:

< XML_Imp_Exp >

Ext = .xml

File = export

Path = c:\fap\mstrres\SAMPCO

SuppressDlg = No

AppendedExport = No

Follow the instructions below to complete the import, export, and messaging setup.

Setting Up the XML Export Format

Follow these steps to set up the XML export format:

1 Open the FSISYS.INI file in the resource library for which you want to use export
files. You can use any text editor to open this file.

2 Locate the ExportFormats control group. Most text editors have a find or search
function you can use to quickly find this group heading. Then add the following
line:

This assumes 09 is not already being used. Here is an example:

< ExportFormats >

09=;XM;XML Export;WXMW32->WXMExportXML

Option Description

Ext (Optional) Enter the extension for the output files. The default is XML.)

File (Optional) Enter a file name, such as XMLEXP. If you omit this option the
system prompts the user to enter the file name.

Path (Optional) Enter the path, such as \xmlfile. If you omit this option, the
system defaults to the current directory.

SuppressDlg (Optional) Enter Yes to suppress the File Selection window. The default
is No.

For this export format Enter...

XML 09=;XM;XML Export;WXMW32->WXMExportXML

Setting Up the XML Add-On

5

Setting Up the XML Import Format

Follow these steps to set up the XML import format:

1 Open the FSISYS.INI file in the resource library for which you want to use export
files. You can use any text editor to open this file.

2 Locate the ImportFormats control group. Most text editors have a find or search
function you can use to quickly find this group heading. Then add the following
line:

This assumes 09 is not already being used. Here is an example:

< ImportFormats >

09=;XM;XML Import;WXMW32->WXMImportXML

Setting Up the XML Message Format

To send a message from Documaker Workstation to a message handling program such
as IDS or MQSeries, you must add an option to either the ImportFormats or
AFEProcedures control groups.

One example of sending and receiving a message from Documaker Workstation to a
message handling program is to retrieve an archived record from Documaker
Workstation via Docupresentment. You can do this two ways:

• Set it up as an import hook by adding the WXMImportXMLArchive function to
ImportFormats control group.

< ImportFormats >

07=;XR;XML Import from IDS;WXMW32->WXMImportXMLArchive

(This assumes 07 is not already being used.)

• Set it up as an entry hook by specifying the WXMEntryHookExtXMLLoad function
as the parameter for EntryFormset option in the AFEProcedures control group.

< AFEProcedures >

EntryFormset = WXMW32->WXMEntryHookExtXMLLoad

For this import format Enter...

XML 09=;XM;XML Import;WXMW32->WXMImportXML

Introduction

6

SETTING UP DOCUPRESENTMENT

If you are using Docupresentment as the message server, you must also add the INI
options shown below to let Documaker Workstation retrieve an archived record from
Docupresentment and load data into a form set before any data is entered by a user.

The archived record is retrieved using the Key1, Key2 and KeyID entered on the New
Form Set window. For this to happen, you must set up the following request type in the
DOCSERV.INI file for Docupresentment:

< ReqType:GetXML>

 function = atcw32->ATCLogTransaction

 function = atcw32->ATCLoadAttachment

 function = atcw32->ATCUnloadAttachment

 function = dprw32->DPRSetConfig

 function = dprw32->DPRLocateOneRecord,Key1,Key2,KeyID

 function = dprw32->DPRRetrieveFormset

 function = dprw32->DPRPrint

 function = dprw32->DPRProcessTemplates

 function = atcw32->ATCSendFile, DOCC_XML, SENDBACKPAGE, TEXT

You can use any name for the archive library, as long as the same MRL name is used in
Documaker Workstation.

You can set up this feature as an entry or import hook:

< AFEProcedures >

EntryFormset = WXMOS2->WXMEntryHookExtXMLLoad

or

< ImportFormats >

07=;XR;XML Import from IDS;WXMW32->WXMImportXMLArchive

If you set it up as an entry or import hook, you must also set up these INI options:

< XML_Imp_Exp >

DSIUseNTUserID =

DSIVARS =

DSIIgnoreTimeoutError =

DSIAttachedVarFile =

DSIImportLevel =

DSITimeout =

DSIReqType =

DSIRecordDFD =

Option Description

DSIUseNTUserID (Optional) Set this option to Yes to use the NT user ID. The
default is No. This gives you a way to pass the NT user ID in the
queue instead of the normal DMWS ID.

DSIVARS (Optional) Enter variable;value, where variable is the variable
name and value is its value. This lets you identify a constant
list of variables to be sent in the queue.

DSIIgnoreTimeoutError (Optional) Enter Yes to continue processing if a timeout
occurs. The default is No. This gives you a way to ignore a
timeout when waiting on a return queue.

Setting Up the XML Add-On

7

If the request for an XML file comes back with an error, as opposed to a time-out, IDS
displays an error message.

DSIAttachedVarFile (Optional) The default is DOCC_XML. Set this option to the
attachment name if it differs from DOCC_XML. This gives you a
way to specify the variable name the XML file is attached to.

DSIImportLevel (Optional) This option is typically used by programmers. Enter
2 if you want the hook to operate on the FAP_MSGOPEN level.
Enter 3 if you want it to operate on the FAP_MSGRUN level. The
default is 2.

DSITimeout (Optional) Enter the number of milliseconds you want for the
time-out. The default is 60000 milliseconds or 60 seconds.

DSIReqType (Optional) Enter the name of the request type of the message
placed in the queue. The default is GETXML.

DSIRecordDFD (Optional) Enter the name of a DFD file. The system tries to
match variable fields sent in the request to field values in this
DFD file. It then attaches the DFD record to the end of the
message.

Option Description

Introduction

8

Using the Parser

The system uses the Expat XML parser, which was originally developed for Netscape.
It is a third-party library. You cannot plug in your own parser. Here are some links if you
want more information on Expat:

http://expat.sourceforge.net/

http://sourceforge.net/projects/expat/

The Expat parser supports these encodings:

• UTF-8

• ISO-8859-1

• US-ASCII

You should be able to use any of these encodings to pass information to
Docupresentment, DSI APIs, or Documaker. Docupresentment sends back UTF-8.

Byte order marks Some XML editors and software add the Byte Order Mark (BOM) to the beginning of the
XML file, starting at offset 1. For example, if your XML file has UTF-8 encoding, the first
three bytes of your XML file would contain...

EE BB BF

If, however, you open this file in a browser, you will not see this information.
Furthermore, not all text editors display these values file. One sure way to find out if
your XML file includes the BOM is to view the file using the Type DOS command.

The GenData program can handle XML files which include the BOM, but you must allow
for this offset went you define the SeachMask option. Here are some examples:

If the BOM is included for UTF-8, define the SearchMask option as shown here:

< ExtractKeyField >

SeachMask = 4,<?xml

If the BOM is not included, define the SearchMask option as shown here:

< ExtractKeyField >

SeachMask = 1,<?xml

If you define the SearchMask option incorrectly, the GenData program will not create
transaction trigger records.

http://expat.sourceforge.net/
http://sourceforge.net/projects/expat/

Setting Up the XML Add-On

9

XML FILE FORMAT

Here is an example of the format of the XML file the system creates:

Form set
global data

Group

Form

Multi-page image

Multi-line field

Form global
fields

Recipient
information

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT TYPE="RPWIP" VERSION="10.2">

<DOCSET NAME="">

<FIELD NAME="POLICY NBR">P1234-1</FIELD>

<FIELD NAME="RENEWAL NBR">1234-2</FIELD>

<FIELD NAME="AGENT'S NBR">6789</FIELD>

<FIELD NAME="EFFECT DATE">10/1/02</FIELD>

<FIELD NAME="EXPIRE DATE">10/1/03</FIELD>

<FIELD NAME="INSURED NAME">John A. Doe</FIELD>

<FIELD NAME="ADDR1">2345 Anystreet</FIELD>

<FIELD NAME="CITY">Anytown</FIELD>

<FIELD NAME="STATE">GA</FIELD>

<FIELD NAME="ZIP CODE">30339</FIELD>

<FIELD NAME="BUSINESS DESC1">Business</FIELD>

<FIELD NAME="BUSINESS DESC2">Personal</FIELD>

<FIELD NAME="BUSINESS DESC3">Property</FIELD>

<FIELD NAME="DATE">09/27/02</FIELD>

<GROUP NAME="" NAME1="DOCUCORP PACKAGE"
NAME2="PROFESSIONAL INSURANCE">

<FORM NAME="Professional Dec">

<DESCRIPTION>Professional Declarations
</DESCRIPTION>

<FIELD NAME="FORM LINE1">Form Letter</
FIELD>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/
>

<RECIPIENT NAME="HOME OFFICE"
COPYCOUNT="1"/>

<RECIPIENT NAME="INSURED"
COPYCOUNT="1"/>

<SHEET>

<PAGE>

<SECTION NAME="profdec"/>

</PAGE>

</SHEET>

</FORM>

<FORM NAME="Form Letter">

<DESCRIPTION>Form Letter</DESCRIPTION>

<RECIPIENT NAME="AGENT" COPYCOUNT="1"/
>

<RECIPIENT NAME="HOME OFFICE"
COPYCOUNT="1"/>

<RECIPIENT NAME="INSURED"
COPYCOUNT="1"/>

<SHEET>

<PAGE>

<SECTION NAME="let~tbl">

<FIELD
NAME="Coverage">Automobile</FIELD>

<FIELD NAME="Extra">

<P><FONT SIZE="12"
FACE="Univers ATT"

Page

Multi-page form

Image local
fields

Introduction

10

Keep in mind...

• DAPOPTIONS should have a value of M for multi-page FAP images. There are other
FAP image options, but only M is applicable in XML.

Use DAPINSTANCE to provide a page number for multi-page FAP images. If the
image does not span multiple pages, omit the DAPINSTANCE value.

• When you have multiple XML transactions within a single file, separate each
transaction with a line feed. This is a requirement of Documaker software, not the
XML parser.

• Although you do not have to include line feeds inside the XML for a transaction,
Docucorp suggests you add a line feed after each element tag. This makes it easier
to read the file and helps in debugging your XML. A message like

Line 255, column 8, syntax is incorrect

is easier to diagnose than

Line 1, column 156780, syntax is incorrect.

<PAGE>

<SECTION NAME="let~tbl">

<DAPINSTANCE VALUE="2"/>

<DAPOPTIONS VALUE="M"/>

</SECTION>

</PAGE>

</SHEET>

</FORM>

</GROUP>

</DOCSET>

</DOCUMENT>

Indicates a
second page

11

Chapter 2

Importing and Exporting
XML Files with Documaker
Workstation

This chapter tells you how to set up your system to
import and export XML files while using Documaker
Workstation (PPS).

These topics are discussed:

• Modifying INI Files on page 12

• Creating an XML Export File on page 13

• Example Documaker XML File Format on page 15

• Importing a Documaker XML File on page 20

• Transforming XML Files on page 21

NOTE: To import and export XML files in PPS, you
must purchase a separate license for this add-
on feature. Contact your sales representative
for more information.

Importing and Exporting XML Files with Documaker Workstation

12

MODIFYING INI
FILES

To import and export XML files into Documaker Workstation, you must make sure the
following control group and options are in your FSISYS.INI file:

< XML_Imp_Exp >

Ext = .xml

File = export

Path = c:\fap\mstrres\SAMPCO

SuppressDlg = No

AppendedExport = No

Setting up the XML export
format

Locate the ExportFormats control group and add this line under that control group:

< ExportFormats >

09=;XM;XML Export;WXMW32->WXMExportXML;

NOTE: This example assumes that 09 is not already being used in this control group.

Setting up the XML import
format

Locate the ImportFormats control group and add this line:

< ImportFormats >

09=;XM;XML Import;WXMW32->WXMImportXML;

NOTE: This example assumes that 09 is not already being used in this control group.

Option Description

Ext (Optional) Enter the extension for the output files. The default is
XML.

File (Optional) Enter a file name, such as XMLEXP. If you omit this
option the system prompts you to enter the file name.

Path (Optional) Enter the path, such as \xmlfile. If you omit this option,
the system defaults to the current directory.

SuppressDlg (Optional) Enter Yes to suppress the File Selection window. The
default is No.

AppendedExport Enter Yes to append the current exported transaction to the last
one. The default is No.

Creating an XML Export File

13

CREATING AN XML
EXPORT FILE

To create an XML export file, follow these steps:

1 Start Documaker Workstation (PPS). Select the File, New option.

2 Complete the Form Selection window and press Ok.

3 Enter data on the forms and complete the form set using the File, Complete option.

4 Next, check the Print and Export Data fields. Then click XML Export and Ok.

Importing and Exporting XML Files with Documaker Workstation

14

5 Print the form set.

6 Export the data to an XML file.

If the SuppressDlg option is set to No under the XML_Imp_Exp control group, the
system displays this window:

The name that appears in the File Name field is the one you specified in the File
option in the XML_Imp_Exp control group. If you left that option blank, enter a file
name here.

Example Documaker XML File Format

15

EXAMPLE
DOCUMAKER XML

FILE FORMAT

The XML file created from Documaker Workstation (PPS) should look similar to the file
excerpts shown below.

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT TYPE="RPWIP" VERSION="10.3">

 <DOCSET NAME="">

 <FXRFILE NAME="rel102sm"/>

 <GROUP NAME="" NAME1="DOCUCORP PACKAGE" NAME2="VERSION 103">

 <FORM NAME="Tersub - Basic" OPTIONS="R">

 <DESCRIPTION>Tersub - Basic Paragraph Assem</DESCRIPTION>

 <FIELD NAME="FIELDTwo">8:30 AM</FIELD>

 <FIELD NAME="FIELDThree">5:30PM</FIELD>

 <RECIPIENT NAME="AGENT" COPYCOUNT="1" CODE="" SEQUENCE="1"/>

 <RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1" CODE=""

 SEQUENCE="2"/>

 <RECIPIENT NAME="INSURED" COPYCOUNT="1" CODE="" SEQUENCE="3"/>

 :

 </FORM>

 </GROUP>

 </DOCSET>

</DOCUMENT>

This table lists the system-generated tag names and attributes and gives an
explanation of each.

Tag Name Attribute Explanation

?xml The XML declaration line

DOCUMENT TYPE The Documaker Standard Header. The attribute Type is hard-coded to be exported as
RPWIP.

VERSION The version of the software being used.

DOCSET NAME The name of the document set that contains all forms required to process a single
transaction, which is usually the FORM.DAT file.

GROUP NAME1,
NAME2, NAME3

The key names used in the FORM.DAT file to group a set of common forms, such as
Key1 = Company, Key2 = LOB, and so on.

FORM NAME The name of a single document containing one or more pages and options that define
the form. See Form options on page 19 for more information.

DESCRIPTION (Optional) A user-defined description of the form.

FIELD NAME (Optional) A field tag can be at the document, form, or section level, depending on the
field scope. Fields tags at the...
- Document level will be populated to all identically named variable fields in all images
and all forms in a form set.
- Form level will be populated to all identically named variable fields in all images in
the current form.
- Section level will be populated only to the variable field within a single section/
image.

RECIPIENT NAME The name used to identify who receives a copy or copies of a form set, or any part of a
form set.

Importing and Exporting XML Files with Documaker Workstation

16

<SHEET>

 <PAGE>

 <SECTION NAME="parasem">

 <FIELD NAME="FIELD">

 <P ALIGN="CENTER">

 Sample Text

 </P>

 <P STYLE="margin-left: 2.00in">

 Sample text left margin is 2 inches sample text

 </P>

 :

 </PAGE>

</SHEET>

COPYCOUNT The number of copies for a particular recipient

CODE Not required.

SEQUENCE (Optional) The order in which the recipient copies print.

Tag Name Attribute Explanation

Tag Name Attribute Explanation

SHEET Used to identify if the form pages are simplex or duplex.

PAGE Indicates a single sheet of paper.

SECTION NAME Indicates a segment of a page or an entire page. (Image Name)

FIELD NAME (Optional) The field tag at the section level is data that will be populated only to the variable
field within a single section/image.

P (Optional) Indicates a paragraph in a text area or multi-line field. P is used when paragraph
attributes are needed.

BR (Optional) Indicates a paragraph break. BR is used when there are no attributes for a paragraph.

ALIGN (Optional) Indicates the justification, such as Left, Center, or Right.

STYLE (Optional) Indicates the indentation, such as a 2-inch left margin or a 1-inch hanging indent
margin.

FONT STYLE (Optional) Indicates the point size of the font used.

FACE (Optional) Indicates the font family name.

COLOR (Optional) Indicates the font color.

Example Documaker XML File Format

17

<P>

 Skywire Software’s customer and technical support personnel

 are available to answer any questions you may having concerning

 your systems. You can call them between the hours of

 <INPUT NAME="FIELDTwo" VALUE="8:30 AM" SIZE="7" MAXLENGTH="25"

 ACCESSKEY="F"/>

 :

 </P>

<P>

<UL TYPE="CIRCLE">

 Sample Text</
FONT>

 Sample Text</
FONT>

</P>

B (Optional) Indicates bold text.

I (Optional) Indicates italicized text.

U (Optional) Indicates underlined text.

Tag Name Attribute Explanation

Tag Name Attributes Explanation

INPUT NAME (Optional) Indicates the name of an embedded variable field.

VALUE (Optional) Contains the data in the variable field.

SIZE (Optional) Indicates the length of the data.

MAXLENGTH (Optional) Indicates the length of the variable field.

ACCESSKEY (Optional) Specifies the scope of the field. Enter G (global), F (form global), or L (image local)

Importing and Exporting XML Files with Documaker Workstation

18

UL TYPE (Optional) Indicates an unordered bullet list, such as one using symbol bullets. The type of
bullet can be circle, square, or disc.
When importing text areas and multi-line fields from an XML file, the system modifies the
default bullet size to match that used in Image Editor and Entry. This size is one-third of the
font size. This only affects imported XML files which contain unordered bullet lists.

OL TYPE (Optional) Indicates an ordered bullet list, such as a numbered list or an outline. The type can
be:
- Arabic number (1, 2, 3, and so on)
- Upper case letter (A, B, C, and so on)
- Lower case letter (a, b, c, and so on)
- Upper case Roman numeral (I, II, III, IV, and so on)
- Lower case Roman numeral (i, ii, iii, iv, and so on)

LI (Optional) Indicates a bullet list item.

Tag Name Attributes Explanation

Example Documaker XML File Format

19

Form options You can choose from these form options:

To indicate the form Enter this code

Is to be stapled B

Was completed C

Is a dec page D

Is an entry form with required fields E

Is fixed (non-selectable) F

Is legal size G

Is hidden H

Is A4 size I

Is executive size J

Is in landscape K

Can be copied (multiple copies are allowed) M

Should not be defaulted to the display N

Is an overflow form O

Is a pull form P

Is required R

Is a sub dec - program policy S

Was user selected U

Is a master dec - program policy X

Was system generated Y

Should contain a line of Zs (z-z-z-z-z...) Z

Importing and Exporting XML Files with Documaker Workstation

20

IMPORTING A
DOCUMAKER XML

FILE

Follow these steps to import a Documaker XML file:

1 Start Documaker Workstation (PPS). Select the File, New option. The Form
Selection window appears. From the Form Selection window, click Import.

2 Click XML Import as the format.

3 Select the XML file you want to import.

4 Complete the Forms Selection window and click Ok.

Your form set should be populated with data from your XML import file.

Transforming XML Files

21

TRANSFORMING
XML FILES

You can export an XML file with XSLT transformation. This lets you transform the output
XML file into another format, such as HTML or text. The final output format is
determined by the XSLT template you choose.

The system transforms an export file with the XSLTW32.EXE program using the XSL
template you specified with the XSLTName option.

To enable the export, add this option to the ExportFormats control group:

< ExportFormats >

01 =;Mx;Export with XSL;WXMW32->WXMExportWithXSL

Then add these options:

< ExportWithXSL >

XSLTName =

Executable =

Debug =

NOTE: The default control group used by the WXMExportWithXSL rule is the
ExportWithXSL control group. If you specify another control group and one of
its options are missing, the system uses the values from the ExportWithXSL
control group.

You can define several INI options in the ExportFormats control group if you want to
display multiple output processing options, each with its own XSL template. Here is an
example:

< ExportFormats >

01 =;M1;Export with XSL;WXMW32->WXMExportWithXSL

02 =;M2;Export with XSL;WXMW32->WXMExportWithXSL

Each option listed under the ExportFormats control group requires a matching
ExportWithXSL control group:

< ExportWithXSL:M1 >

XSLTName =

Executable =

Debug =

< ExportWithXSL:M2 >

XSLTName =

Executable =

Debug =

Appending output
transformations

You can append multiple XSLT output transformations to the same file using this INI
option:

Option Description

XSLTName The full or relative path and name of the XSLT template.

Executable (Optional) The full path and name of the program. If omitted, the system
looks for the XSLTW32.EXE program in the directory where the
AFEMNW32.EXE program is located.

Debug (Optional) Enter Yes to leave temporary files in place.

Importing and Exporting XML Files with Documaker Workstation

22

< ExpFile_CD >

AppendedExport = Yes

This example transforms an XML export into a semicolon-delimited output file you can
import into Excel. It also uses the XSLTW32.EXE program for the transformation.

First, you need these INI options:

< ExportFormats >

01 =;M1;Export with XSL;WXMW32->WXMExportWithXSL

< ExportWithXSL:M1 >

XSLTName = x:\rp\mstrres\aeic\xsl\output1.xsl

Executable =

Debug = No

And this XSL style sheet:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="text" encoding="ISO-8859-1" />

<!-- global variables -->

<xsl:template match="/">

<xsl:call-template name="process"/>

</xsl:template>

<xsl:template name="process">

<xsl:variable name="semicolon" select="';'"/>

<xsl:variable name="root" select="DOCUMENT/DOCSET"/>

<xsl:variable name="policy" select="$root/

FIELD[@NAME='POLICY']"/>

<xsl:variable name="insnam" select="$root/

FIELD[@NAME='INSNAM']"/>

<xsl:variable name="insnam2" select="$root/

FIELD[@NAME='INSNAM2']"/>

<xsl:variable name="insad1" select="$root/

FIELD[@NAME='INSAD1']"/>

<xsl:variable name="insad2" select="$root/

FIELD[@NAME='INSAD2']"/>

<xsl:variable name="inszip" select="$root/

FIELD[@NAME='INSZIP']"/>

<xsl:variable name="agent" select="$root/

FIELD[@NAME='AGENT']"/>

<xsl:variable name="effdte" select="$root/

FIELD[@NAME='EFFDTE']"/>

<xsl:variable name="expdte" select="$root/

FIELD[@NAME='EXPDTE']"/>

<xsl:variable name="cddesc" select="$root/

FIELD[@NAME='CDDESC_BUSDSC']"/>

<xsl:variable name="premo_prop" select="$root/

FIELD[@NAME='PREMO_PROP']"/>

<xsl:variable name="advprem" select="$root/

FIELD[@NAME='ADVPREM']"/>

<xsl:variable name="totpre" select="$root/

FIELD[@NAME='TOTPRE']"/>

<xsl:variable name="galmt" select="$root/

FIELD[@NAME='GALMT']"/>

Transforming XML Files

23

<xsl:variable name="prcolmt" select="$root/

FIELD[@NAME='PRCOLMT']"/>

<xsl:variable name="pailmt" select="$root/

FIELD[@NAME='PAILMT']"/>

<xsl:variable name="perocc" select="$root/

FIELD[@NAME='PEROCC']"/>

<xsl:variable name="fdlmt" select="$root/

FIELD[@NAME='FDLMT']"/>

<xsl:variable name="medlmt" select="$root/

FIELD[@NAME='MEDLMT']"/>

<xsl:value-of select="concat($policy, $semicolon)"/>

<xsl:value-of select="concat($insnam, $semicolon)"/>

<xsl:value-of select="concat($insnam2, $semicolon)"/>

<xsl:value-of select="concat($insad1, $semicolon)"/>

<xsl:value-of select="concat($insad2, $semicolon)"/>

<xsl:value-of select="concat($inszip, $semicolon)"/>

<xsl:value-of select="concat($agent, $semicolon)"/>

<xsl:value-of select="concat($effdte, $semicolon)"/>

<xsl:value-of select="concat($expdte, $semicolon)"/>

<xsl:value-of select="concat($cddesc, $semicolon)"/>

<xsl:value-of select="concat($premo_prop, $semicolon)"/>

<xsl:value-of select="concat($advprem, $semicolon)"/>

<xsl:value-of select="concat($totpre, $semicolon)"/>

<xsl:value-of select="concat($galmt, $semicolon)"/>

<xsl:value-of select="concat($prcolmt, $semicolon)"/>

<xsl:value-of select="concat($pailmt, $semicolon)"/>

<xsl:value-of select="concat($perocc, $semicolon)"/>

<xsl:value-of select="concat($fdlmt, $semicolon)"/>

<xsl:value-of select="concat($medlmt, $semicolon)"/>

<xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

And this XML export file:

<?xml version="1.0" encoding="UTF-8" ?>

- <DOCUMENT TYPE="RPWIP" VERSION="10.3">

- <DOCSET NAME="">

<FIELD NAME="POLICY">A108</FIELD>

<FIELD NAME="INSNAM">SAM MALONE</FIELD>

<FIELD NAME="INSNAM2">CHEERS, INC.</FIELD>

<FIELD NAME="NEW">X</FIELD>

<FIELD NAME="INSAD1">123 MAIN ST</FIELD>

<FIELD NAME="INSAD2">SUITE 100</FIELD>

<FIELD NAME="INSCTY">ATLANTA</FIELD>

<FIELD NAME="INSST">GA</FIELD>

<FIELD NAME="INSZIP">23033</FIELD>

<FIELD NAME="AGENT">12345</FIELD>

<FIELD NAME="AGYNAM">Docucorp Insurance Agency</FIELD>

<FIELD NAME="AGYAD1">2727 Paces Ferry Road S.E.</FIELD>

<FIELD NAME="AGYAD2">Suite II-900</FIELD>

<FIELD NAME="AGYCTY">Atlanta</FIELD>

<FIELD NAME="AGYST">GA</FIELD>

<FIELD NAME="AGYZIP">30339</FIELD>

<FIELD NAME="PRMSTE">GA</FIELD>

<FIELD NAME="EFFDTE">07/05/2003</FIELD>

Importing and Exporting XML Files with Documaker Workstation

24

<FIELD NAME="EXPDTE">07/05/2004</FIELD>

<FIELD NAME="TERM">366 DAYS</FIELD>

<FIELD NAME="CDDESC_BUSDSC">BAR & GRILL</FIELD>

<FIELD NAME="PREMO_PROP">12,000.00</FIELD>

<FIELD NAME="ADVPREM">12,000.00</FIELD>

<FIELD NAME="FEEDESC1">Policy Tax</FIELD>

<FIELD NAME="FEEDESC1 TAX">3%</FIELD>

<FIELD NAME="FEEAMT1">360.00</FIELD>

<FIELD NAME="FEEDESC2">Stamping Fee</FIELD>

<FIELD NAME="FEEAMT2">250.00</FIELD>

<FIELD NAME="OTHCHG">610.00</FIELD>

<FIELD NAME="TOTPRE">12,610.00</FIELD>

<FIELD NAME="CSIGNEDLOC">Atlanta, GA</FIELD>

<FIELD NAME="SIGNED DATE">07/30/2003</FIELD>

<FIELD NAME="SIGNED TIME">09:25:18</FIELD>

<FIELD NAME="OPINIT">DOCUCORP</FIELD>

<FIELD NAME="SIGNATURE">Authorized Representative</FIELD>

<FIELD NAME="GALMT">1,000,000</FIELD>

<FIELD NAME="PRCOLMT">1,000,000</FIELD>

<FIELD NAME="PAILMT">1,000,000</FIELD>

<FIELD NAME="PEROCC">1,000,000</FIELD>

<FIELD NAME="FDLMT">1,000,000</FIELD>

<FIELD NAME="MEDLMT">1,000,000</FIELD>

- <GROUP NAME="" NAME1="American Equity" NAME2="INTERLINE">

- <FORM NAME="FS100 10-2000">

<DESCRIPTION>Schedule of Forms/End</DESCRIPTION>

<FIELD NAME="FORM DESC LINE">Forms Applicable - INTERLINE</FIELD>

<FIELD NAME="FORM DESC LINE #003">A100J 02-1999 Policy Jacket -

AEIC</FIELD>

<FIELD NAME="FORM DESC LINE #004">A100 03-1997 Common Policy Dec -

AEIC</FIELD>

<FIELD NAME="FORM DESC LINE #005">A101 03-1997 Minimum Earned

Premium Endt</FIELD>

<FIELD NAME="FORM DESC LINE #006">A104 10-1998 Service of Suit</

FIELD>

<FIELD NAME="FORM DESC LINE #007">IL0017 11-1998 Common Policy

Conditions</FIELD>

<FIELD NAME="FORM DESC LINE #008">IL0021 04-1998 Nuclear Energy

Liab Excl Endt</FIELD>

<FIELD NAME="FORM DESC LINE #010">Forms Applicable - GENERAL

LIABILITY</FIELD>

<FIELD NAME="FORM DESC LINE #012">CL150 01-2000 General Liab

Coverage Part</FIELD>

<FIELD NAME="FORM DESC LINE #013">L003 03-1997 Amendment of Premium

Condition</FIELD>

<FIELD NAME="FORM DESC LINE #014">L005 01-2000 Contractual Liab

Limitation</FIELD>

<FIELD NAME="FORM DESC LINE #015">L007 07-1998 Ded Liab Ins-w/Costs

per Claim</FIELD>

<FIELD NAME="FORM DESC LINE #016">L150 01-2000 Additional

Exclusions</FIELD>

<FIELD NAME="FORM DESC LINE #017">CG0001 07-1998 Comm General Liab

Cov Form</FIELD>

<FIELD NAME="FORM DESC LINE #018">CG2160 09-1998 Excl - Year 2000

Computer Prob</FIELD>

Transforming XML Files

25

<RECIPIENT NAME="EXTRA COPY" COPYCOUNT="1" />

<RECIPIENT NAME="GENERAL AGENT" COPYCOUNT="1" />

<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1" />

<RECIPIENT NAME="ORIGINAL" COPYCOUNT="1" />

<RECIPIENT NAME="RETAIL AGENT" COPYCOUNT="1" />

- <SHEET>

- <PAGE>

<SECTION NAME="FORMSCHA" />

</PAGE>

</SHEET>

</FORM

</DOCSET>

</DOCUMENT>

The output file looks like this:

A108;SAM MALONE;CHEERS, INC.;123 MAIN ST;SUITE 100;23033;12345;07/

05/2003;07/05/2004;; 12,000.00;

12,000.00;;1,000,000;1,000,000;1,000,000;1,000,000;1,000,000;1,000,
000;

You can import this file into an Excel spreadsheet.

Importing and Exporting XML Files with Documaker Workstation

26

27

Chapter 3

Importing and Exporting
XML Files with Documaker
Server

To import and export XML files in Documaker Server,
you use the ImportXMLFile and ImportXMLExtract
rules. These rules work similar to the other import
rules, such as ImportFile.

For more information on these rules, see

• ImportXMLExtract on page 28

• ImportXMLFile on page 31

Keep in mind that importing XML is not the same as
using an XML file as your extract file. Import assumes
you are using a specific file layout that describes your
document in a predefined manner.

Importing and Exporting XML Files with Documaker Server

28

 ImportXMLExtract

Use this form set rule (level 2) to import a file which consists of one or more XML
transactions into the GenData program for processing. Using this file, the GenData
program creates the recipient batch, NAFile, POLFile, and NewTrn files that you can
print, archive, or both using the GenPrint and GenArc programs.

You append multiple export files to create the import XML file. The export files are
created using the Documaker Workstation XML Export option. This illustration shows
an example file comprised of export files appended to one another:

Syntax ImportXMLExtract;;;

NOTE: You can only use this rule for single-step processing.

Transaction 1
<?xml version="1.0"?>

<Document Type="Docucorp Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Docucorp Insurance"></Library>

<Key1 Name=”Company”>DocuInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1010j</TransactionID>

…

…

Transaction 2
<?xml version="1.0"?>

<Document Type="Docucorp Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Docucorp Insurance"></Library>

<Key1 Name=”Company”>DocuInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1110j</TransactionID>

…

…

Transaction 3
<?xml version="1.0"?>

<Document Type="Docucorp Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Docucorp Insurance"></Library>

<Key1 Name=”Company”>DocuInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1210j</TransactionID>

…

…

29

Although there are no parameters for this rule keep in mind:

• Create a simplified AFGJOB.JDT file when you use this rule. For instance, omit these
rules:

LoadRcpTbl

LoadExtractData

RunSetRcpTbl

CreateGlbVar

LoadDDTDefs

InitOvFlw

SetOvFlwSym

ResetOvFlw

NOTE: For information on these and other rules, see the Rules Reference.

• Use the NoGenTrnTransactionProc rule because the XML file has no transaction
information on the first line.

• Place the ImportXMLExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a form
set.

• In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

• In the TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing.

• Define the XMLTags2GVM control group in your FSISYS.INI file as shown here:

< XMLTags2GVM >

GVM = XMLTag, (Req/Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Req or Opt to specify whether it is required or optional. If it is
required and is not present in the XML file, processing will terminate. Here is an
example:

< XMLTags2GVM >

Key1 = Key1, Req

Key2 = Key2, Req

KeyID = TransactionID, Opt

Example Assume you have the following items defined in your master resource library. See XML
File Format on page 9 for an example of an import file in the standard XML file format.

Here is an example of the INI options you need in your FSISYS.INI file:

< Data >

AFGJOBFile = .\deflib\afgjob.jdt

ExtrFile = .\extract\extrfile.xml

Importing and Exporting XML Files with Documaker Server

30

< ExtractKeyField >

SearchMask = 1,<?xml

< Key1Table >

XML = XML

< Key2Table >

XML = XML

< KeyIDTable >

XML = XML

< Trigger2Archive >

Key1 = Key1

Key2 = Key2

KeyID = KeyID

RunDate = RunDate

< TRN_Fields >

Key1 = 3,3,N

Key2 = 3,3,N

KeyID = 3,3,N

< TRN_File >

BinaryExt = N

MaxExtRecLen= 175

< XMLTags2GVM >

Key1 = Key1,Req

Key2 = Key2,Req

KeyID = TransactionID,Opt

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLExtract;;;

…

…

31

 ImportXMLFile

Use this form set rule (level 2) to import an XML file which specifies a Documaker
Server document layout. The XML document must conform to the Documaker Standard
XML format.

NOTE: Importing an XML document in this manner does not let you map additional
XML information other than that specified in the Documaker Standard XML
format.

Syntax ;ImportXMLFile;;option;

There are several ways to specify the import file in the option parameter:

Keep in mind:

• Create a simplified AFGJOB.JDT file when you use this rule. For instance, omit these
rules:

LoadRcpTbl

LoadExtractData

RunSetRcpTbl

CreateGlbVar

LoadDDTDefs

InitOvFlw

SetOvFlwSym

ResetOvFlw

Option Description

FILE Enter the name and path of the import file.

INI Enter the INI control group and option in which the import file is defined.
Separate the control group and option with a comma.

SCH Enter the search criteria and the file name data, separated by a space.
The name of the file, including its path, that you want to import should be
contained in the record in the file indicated by the ExtrFile option in the Data
control group.
The search criteria are one or more comma delimited data pairs, offsets and
character string, used as the search mask for finding the record in the
specified file.
The file name data is a comma delimited data pair that defines the offset and
length of the file name in the record defined by the search criteria parameter.

GVM Enter the global variable name (GVM) that contains the file name and path
information.

Importing and Exporting XML Files with Documaker Server

32

NOTE: For information on these and other rules, see the Rules Reference.

• Use the NoGenTrnTransactionProc rule because the XML file has no transaction
information on the first line.

• Place the ImportXMLExtract rule in the Base Form Set Rules section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a form
set.

• In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

• In the TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing.

• Define the XMLTags2GVM control group in your FSISYS.INI file as shown here:

< XMLTags2GVM >

GVM = XMLTag, (Req/Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Req or Opt to specify required or optional. If it is required and is
not present in the XML file, processing terminates. Here is an example:

< XMLTags2GVM >

Key1 = Key1, Req

Key2 = Key2, Req

KeyID = TransactionID, Opt

Example These examples show the different ways you can define the import file when you use
this rule. Assume you have the following items defined in your master resource library.
For an example of the standard XML file format, see XML File Format on page 9. Here
are sample INI settings in your FSISYS.INI file:

< Data >

 AFGJOBFile = .\deflib\afgjob.jdt

 ExtrFile = .\extract\dummy.dat

< ExtractKeyField >

 SearchMask = 1,XML_FILE_NAME

< Key1Table >

 XML = xml

< Key2Table >

 XML = xml

< KeyIDTable >

 XML = xml

< Trigger2Archive >

 Key1 = Key1

 Key2 = Key2

 KeyID = KeyID

 RunDate = RunDate

< TRN_Fields >

 Key1 = 1,3,N

 Key2 = 5,5,N

 KeyID = 10,4,N

< TRN_File >

33

 BinaryExt = N

 MaxExtRecLen = 175

< XMLTags2GVM >

 Key1 = Key1,Req

 Key2 = Key2,Req

 KeyID = TransactionID,Opt

Here is a sample of the DUMMY.DAT file, pointed to by the ExtrFile option in the Data
control group in your FSISYS.INI file.

0 1

1 5

XML_FILE_NAME This is a dummy extract file.

Using the File Option

This example imports the F_FILE.XML file from the \export directory. Using this file, the
GenData program creates the recipient batch, NA, POL, and NewTrn files needed for
GenPrint and GenArc processing.

Here is an excerpt from a sample AFGJOB.JDT file using the File option:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;;File=.\Export\F_File.xml;

…

Using the INI Option

This example imports the F_INI.XML file from the \export directory. Using this file, the
GenData program creates the recipient batch, NA, POL, and NewTrn files needed for
GenPrint and GenArc processing.

In addition to the INI options defined previously, you must also include the this option:

< Import_Data >

Import_File = .\Export\F_File.xml\

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;INI=Import_Data,Import_File;

…

Importing and Exporting XML Files with Documaker Server

34

Using the SCH Option

This example imports XML files (F_SCH1.XML, F_SCH2.XML, and F_SCH3.XML) based
on the content of a line in the file pointed to by the ExtrFile option in the Data control
group. Using these files, the GenData program creates the recipient batch, NA, POL,
and NewTrn files needed for GenPrint and GenArc processing.

This INI option differs from the one defined in the assumed MRL definition:

< Data >

ExtrFile = .\extract\F_Sch.DAT

Here is an excerpt from the F_SCH.DAT file in the \extract directory which contains an
entry (path and file name) for each XML file to import:

XML_FILE_NAME .\export\F_SCH1.xml

XML_FILE_NAME .\export\F_SCH2.xml

XML_FILE_NAME .\export\F_SCH3.xml

…

NOTE: This option lets you import and process multiple XML files because of the way
the file name and path are specified—one file per entry in the file specified in
the ExtrFile option in the Data control group.

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;2;SCH=1,XML_FILE_Name 15,19

Using the GVM Option

This example imports data from a XML file based on file name contained in the GVM
variable called Import_File. Using this file, the GenData program creates the recipient
batch, NA, POL, and NewTrn files needed for GenPrint and GenArc processing.

Any valid GVM variable can be used no matter how it is created or assigned.

This example creates the GVM variable, ImportXMLFile_GVM, by including this INI
option and adding its definition to the TRNDFDFL.DFD file:

< GentrnDummyFields >

ImportXMLFile_GVM = .\export\F_GVM.xml

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;;GVM=ImportXMLFile_GVM

35

Chapter 4

Using XML Extract Files

You can set up Documaker Server to use extract files in
XML format. To do so, you must first set up the system,
see Setting Up the XML Add-On on page 3 for more
information.

NOTE: During setup, keep in mind the SuppressDlg
option is not applicable for XML extract files.
This option only applies when you are
importing and exporting XML files.

Once you have set up the XML Add-On, you can use
these rules to create an alternative data search
method so you can do direct XML mapping within the
Documaker Server:

This chapter contains information on these topics:

• Mapping Formatted Data from Extract Files on
page 36

• Searching an XML Extract File on page 38

• Handling Overflow on page 39

• Triggering Forms and Images on page 40

• Mapping Formatted Data from Extract Files on
page 36

Rule Description

UseXMLExtract Uses the extract list loaded by the
transaction as the source of the XML
tree.

XMLFileExtract Assumes the extract list contains the
name of an external file which is the
source of the XML tree.

For more information, see the Rules Reference.

Using XML Extract Files

36

MAPPING
FORMATTED DATA

FROM EXTRACT
FILES

You can map data with XML markup directly into multi-line variable fields. This lets you
specify...

• End of paragraph or end of line syntax (including CR/LF)

• Text formatting

• Paragraph attributes

• Bullets

and so on. Whatever is supported in Skywire Software standard XML file format for text
areas is now supported for multi-line fields.

This feature is designed for data mapping from an XML extract file into a multi-line
variable field in a FAP file. The data on the XML node (element and its descendants)
being mapped must comply with the standard Skywire Software XML format.

This feature adds new syntax for XPath, which is not W3C standard XPath syntax. When
XPath is specified, you can append the following:

 .xml()

and it will return a string of XML for data mapping.

Data mapping is done by supporting the mapped data that contains the XML string —
just as if it had been loaded from a file on disk.

Keep in mind...

• The data must start with element named FIELD.

• If the text area can possibly overflow to next page, set the Can Grow and Can Span
Pages attributes as desired on the multi-line field. Also determine whether to set
the Can Grow attribute on the image. In most cases, you should choose to include
the TextMergeParagraph rule to defer formatting of text areas until embedded
fields are mapped. In addition, you can use the CanSplitImage rule when you are
not using the Can Span options and want the image to break across pages if the
position of the image on the page warrants this action.

• You cannot have other FAP objects below the multi-line field on the same image.
When these are pushed down, extra pages can be created.

• You should include the CheckImageLoaded rule when mapping multi-line variable
fields, unless the FAP files are loaded via INI options

Here is an example of an XML extract file:

<?xml version="1.0" encoding="UTF-8"?>

<My_Extract_Data>

<FIELD><P>First line of data.</P><P>End of <U>field</U>
data.</P></FIELD>

<KeyInfo PolicyNumber="APV 10003" State="OH" LOB="Auto"
AgencyCode="5432" PrintType="Duplex" PrintAgentCopy="False"
System_Date="06/02/2003"/>

<Print_Header>

....

Based on the example, this XPath syntax returns the text highlighted above in red:

/descendant::My_Extract_Data/FIELD.xml()

Mapping Formatted Data from Extract Files

37

Since the XML string returned from XPath can exceed the 1K limit of regular data
mapping, the Move_It rule was enhanced to handle the mapping of an unlimited size
of data (but limited to available memory).

Using the Move_It rule To get the desired result, you must add the B flag to the Move_It rule format mask. Here
is an example DDT line using both examples from above:

;0;0;FIELD;0;1024;FIELD;0;1024;B;move_it;!/
descendant::My_Extract_Data/FIELD.xml();N;N;N;N;3715;2899;11010;

Using XML Extract Files

38

SEARCHING AN
XML EXTRACT

FILE

Keep in mind the extract list and the XML tree are separate. Once the XML tree is
loaded, it remains loaded and can be searched by subsequent rules — just like any
extract list.

The system lets you use these search methods:

• An XDB token reference such as ?TOKEN looked up in the XDB to get the actual
search text

• The legacy Offset,Mask method such as 10,HEADERREC)

• An XML search text, such as !/descendant::Item

In most cases, the XBD token reference will be the preferred method.

An XDB entry can return either a legacy offset/length search mask or an XML search
path. XML search masks must begin with an exclamation mark (!). The leading
exclamation mark is not actually sent to the search routine.

You can use text movement and formatting rules, like Move_It, MoveNum, FmtDate,
and FmtNumber, to do simple operations, but keep in mind some of the more
complicated options may not work.

For instance, Move_It supports a same record flag. This does not work in XML searches.
Likewise, Move_Num supports several binary input data types like BCD and you cannot
include those in XML at present.

More complicated rules that have multiple search criteria like SetAddr, SubExtractList,
and Concat do not work with XML files.

Handling Overflow

39

HANDLING
OVERFLOW

The XML search infrastructure has position support.

/descendant::Forms/child::form[position()=2]/child::field1

The 2 in this case indicates you want the second form child. Since you would not want
to write the search to work with every explicit number, you must indicate where the
overflow variable fits into the equation, as shown here:

/descendant::Forms/child::form[position()=****]/child::field1

The system first scans the search to see if a replacement is needed for the overflow
value. In this case, it would insert the 2 (taken from the overflow variable value) and
then do the actual XML search.

You can also handle overflow within overflow by specifying an overflow variable name
in the search. For instance, suppose you have multiple cars and each car can have
multiple drivers.

<car>

<driver>Tom<driver/>

<driver>Tim<driver/>

<car/>

<car>

<driver>Sally<driver/>

<car/>

If you had two overflow variables, one working for car and one for driver, you could
create a search like this:

/descendant::car[**carvar**]/child::driver[**drivevar**]

Where the system gets two overflow variables and insert them into the search text.

Using XML Extract Files

40

TRIGGERING
FORMS AND

IMAGES

You can do simple triggering based upon the existence of a node. For example, this

/child::car

would trigger a form if car is a child of the root node. Referring back to the earlier
example, you could make it trigger two of the same forms because there are two cars.

The system supports value matching. So you can do the following:

/child::car[child::driver="Tom"]

Or, you can use the RecipIf rule to trigger an image with custom rule parameters, as
shown in this example:

A={!/child::car/child::driver 1,7}::if
(A='Tom')::return("^1^")::end::;

If there is such a value in that element in the XML file, the image would trigger. For this
to work, define the offset of the variable attribute as 1 and the length of the data you
want to compare.

You can also use XML search strings such as these:

Using the ElementText
option

Note that when the XPath specifies an element node such as

//BookStore/Book

it returns the element handle and either its element text or its first attribute value if
there is no element text. If you want to use this to map a field, you can use the
ElementText INI option to better control what XPath returns. For instance, here is an
excerpt from an XML file:

...

< BookStore >

< Book Category = "Fiction"> </Book>

...

Since there is no text for the element/node Book in this excerpt, this XPath statement
returns the first attribute value, which equals Fiction.

//BookStore/Book

With the ElementText option set to Yes, which is the default, nothing is returned. If you
set this option to No, the first attribute is returned. Here is an example of the
ElementText option:

< XPath >

ElementText = Yes

This string Finds

!descendant::PolicyNumber The PolicyNumber value

!descendant::Forms/child::Form All forms

Using XPath

41

USING XPATH XML path locator (XPath) complies with the standard syntax specifications (W3C
standards) found in the XML Path Language, but differs in some regards because it was
developed to support the Rules Processor. Because this version of XPath has some
limitations, you should check the syntax using the XPATHW32 utility.

XPATH SYNTAX

Here are examples of the valid axes, function calls, signs, and operators to help you
understand and use the XPath syntax.

Axes

You have these axes:

When used, an axis is always followed by a context node name separated by two colons
(::). For example, the syntax descendant::para locates all para descendants of the
current context node.

Name Used to locate the

ancestor Ancestors of the current context node

ancestor-or-self Ancestors of the current context node and itself

parent Parents of the current context node

descendant Descendants of the current context node

descendant-or-self Descendants of the current context node and itself

attribute Attributes of the current context node

child Children of the current context node

following-sibling Following siblings of the current context node

following Context nodes that follow the current node

preceding-sibling Preceding siblings of the current context node

preceding Context nodes that precede the current node

self Self context node

Using XML Extract Files

42

Symbols

You can use these calculation operators:

Where !=, <, >, + can be used as calculation operators in function position(), such as,
[position()=2], [position()!=2], [3+i], [position()<5], and so on. The equals sign (=) is
also used for evaluations such as @Name=’Auto’.

You can use these symbols in a valid XPath:

Where the pair of brackets ([]) enclose a condition for evaluation, the at symbol (@) is
an abbreviation of the attribute, the asterisk (*) is used for a wild card search, and
others are used in a valid XPath, as shown below.

Functions

You can use these functions:

= != < > + -

/ // * :: [] @

Function Returns

concat(string, string, string… The concatenation of the strings

last() The last element in the selection

name() The name of the selected elements

node() The node names

position() The position of selected elements

text() The text of selected elements

string(object) The string from the context node

xml() The output buffer containing all descendents of the
specified element

Using XPath

43

Expressions

You can use abbreviated syntax with XPath. Here are the valid expressions:

Abbreviated syntax Full syntax

* child::*

para child::para

chapter/para child::chapter/child::para

para[1] child::para[position()=1]

/chapter/para[last()] /child::chapter/child::para[position()=last()]

text() child::text()

node() child::node()

para[@type] child::para[attribute::type]

para[@type="warning"] child::para[attribute::type="warning"]

para[@type="warning"][2+i] child::para[attribute::type="warning"][position()#2+i]

chapter[title] child::chapter[child::title]

chapter[title=’Introduction’] child::chapter[child::title="Introduction"]

doc//para child::doc/descendant-or-self::node()/child::para

@* attribute::*

@type attribute::type

[@name=’warning’] [attribute::name=’warning’]

//para /descendant-or-self::node()/child::para

. self::node()

.//para self::node/descendant-or-self::node()/child::para

.. parent::node()

../chapter parent::node()/child::chapter

../@type parent::node()/attribute::type

Using XML Extract Files

44

USING THE XPATH TESTING UTILITY

Here is the syntax of the XPATHW32 testing utility:

xpathw32 /f= xml file /e=starting node /x= search path

The /e parameter specifies the node where the search of the XPath starts. You can omit
this parameter if you want the search to start from the beginning. A pair of double
quotes is required to enclose the search mask. Here is an example:

xpathw32 /f=“d:\test\test.xml” /x=“Forms/Form/Car[@Name=’Car1’]/
text()”

This example searches the node Car with the attribute Name=“Car1”. It then retrieves
its text and returns a text string similar to this one:

Text string = Car 1 is Toyota

These examples illustrate some search paths most frequently used in Documaker RP
applications. Run the testing tool yourself for the answer.

Example 1 These examples search for a list of nodes with or without conditions. Keep in mind a
condition is always placed within brackets, as shown here: [condition].

This Returns

Forms/Form/Car A list of the Car nodes

Forms/Form/
Car[@*][position()<3]

The first two nodes in the Car node list

Forms/Form/
Car[@Name][position()>1]

A list of the Car nodes above the first element

Forms/Form/
Car[text()][position()!=2]

A list of the Car nodes, excluding the second one

Forms/Form/Car[Model] A list of Car nodes that have a child named Model

Forms/Form/Car/node() A list of children nodes under the Car nodes

Forms/Form/Car/Coverage[1] A list of first child Coverage under the Car nodes

Forms/Form/
Car[@Name=’Car1’]/Coverage

A list of nodes Coverage under Car1

Using XPath

45

Example 2 These examples search for the path for a single element:

Example 3 These examples search for a list of attributes:

Example 4 These examples search for a single attribute:

Example 5 These examples search for a list of text strings:

This Produces

Forms/Form/Car[@*][1] The first node of the Car list with any attributes

Forms/Form/Car[@Name][last()] The last node of the Car list with the attribute Name

Forms/Form/
Car[@Name=’Car1’]

The Car node with attribute name Car1

Forms/Form/
Car[Model=’Toyota’]

The Car node with a child Model that has a text string
of Toyota.

Forms/Form/
Car[Mode=’Nissan’]/
Coverage[3]

The third child node of Coverage under the parent
node Car that has a child named Model with a text
string of Nissan

This Produces

Forms/Form/
Car[Model=’Nissan’]/@*

A list of attributes of the Car node that have a Child
node named Model with a value of Nissan

Forms/Form/Car/@Name A list of the attribute Name that has a parent node of
Car

This Produces

Forms/Form/
Car[Model=’Honda’]/@*[1]

The first attribute of the Car node that has a child
named Model with a value of Honda

Forms/Form/Car
Model=’Honda’]/@Name

The attribute Name of the Car node that has a child
named Model with a value of Honda

Forms/Form/Car[1]/@Name The attribute Name of first Car node

This Produces

Forms/Form/Car/text() A list of text strings of Car nodes

Forms/Form/Car[Model]/text() A list of text strings of Car nodes which have children
named Model

Using XML Extract Files

46

Example 6 These examples search for a single text string:

NOTE: There are three types of returned lists: elements, attributes, and text. When a
list includes only one element, the structure returns a single element instead
of a list.

Example 7 These examples search for the name of elements:

Example 8 These examples concatenate text strings:

This Produces

Forms/Form/
Car[Model=’Toyota’]/text()

The text string of the Car node which has a child name
Model with a value of Toyota

Forms/Form/
Car[Model='Honda']/parent/
text()

The text string of the node Form which has a child
named Car that, in turn, has a child named Model with
a value of Honda

This Returns

//*[name()=’Car’] “Car” nodes

Forms/Form/
*[name()=’Car’][2]/text()

A text string of second “Car” nodes

This Returns

concat('Car1', 'and', 'Car2')" A string “Car1 and Car2”

concat(//Car[@Name='Car1'],
'and',//Car[@Name='Car3'],
'are imported cars.'))

A string “Toyata and Nissan are imported cars.”

Using XPath

47

Example 9 These examples search for strings:

Example 10 This examples returns a buffer that contains all descendants of the specified element:

Note that the XPath must point to a single element, such as Car[2] in the example.

This Returns

string(‘ 12345’) The string “ 12345”

string(//Car[2]/*[1]) The string of the first child of the second Car node

This Produces

xpathw32 /f=cars.xml /x="//Car[2]/xml() <Car Name=" Car2">Car 2 is Honda
<Model>Honda</Model>
<Coverage>Cover 4</Coverage>
<Coverage>Cover 5</Coverage>
<Coverage>Cover 6</Coverage>
</Car>

Using XML Extract Files

48

EXAMPLE XML FILE

Here is an example XML file (TEST.XML):

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample XML file generated by XML Spy v4.2 U (http://
www.xmlspy.com)-->

<Forms>

<Form>

<Car Name=" Car1">Car 1 is Toyata

<Model>Toyota</Model>

<Coverage>Cover 1</Coverage>

<Coverage>Cover 2</Coverage>

<Coverage>Cover 3</Coverage>

</Car>

<Car Name=" Car2">Car 2 is Honda

<Model>Honda</Model>

<Coverage>Cover 4</Coverage>

<Coverage>Cover 5</Coverage>

<Coverage>Cover 6</Coverage>

</Car>

<Car Name="Car3">Car 3 is Nissan

<Model>Nissan</Model>

<Coverage>Cover 7</Coverage>

<Coverage>Cover 8</Coverage>

<Coverage>Cover 9</Coverage>

</Car>

</Form>

</Forms>

49

Chapter 5

Using DAL XML Functions
and XPath

The DAL XML API extends existing DAL functionality so
Documaker Server applications can access a specified
XML document and retrieve XML data via a DAL script.

This chapter discusses:

• Scenarios on page 50

• Using XML Built-in Functions on page 51

• Using the XML Path Locator on page 55

Using DAL XML Functions and XPath

50

SCENARIOS There are two scenarios in which you would use DAL XML API functions:

Scenario 1 A Documaker Server program, such as GenData, loads an XML document and extracts
the XML tree at the transaction level using the XMLFileExtract rule. This rule creates a
list type DAL variable with a default name of %extract and pushes it onto the DAL stack.

Then you can call other XML API functions in a DAL script to access the XML tree and
extract XML data.

Here are examples of the form set and image rules you would add and a DAL script that
would call the XML API functions.

• Add this in the AFGJOB.JDT file:

;XMLFileExtract;2;File=.\deflib\test.xml

The rule loads the XML file and creates a list type DAL variable to pass the XML tree
to the XML API function.

• Add this in your DDT file:

;0;0;DALXMLSCRIPT;0;9;DALXMLSCRIPT;0;9;;DAL;Call("TEST.DAL");N;N;N;
N;4792;19444;11010;

TEST.DAL is the name of the DAL script file.

• Here is an example of the DAL script:

%listH=XMLFind(%extract, “Forms”, “Form”);

#rc=XMLFirst(%listH);

if #rc=0

return(“Failed to XMLFirst”);

end

aStr=XMLGetCurText(%listH);

return(aStr);

%listH denotes a list type DAL variable. #rc denotes an integer type DAL variable.
aStr denotes a string type DAL variable.

Scenario 2 You can also load the XML document and create the XML tree at a specific image field
by calling the LoadXMLList rule from a DAL script. You must set the calling procedure
in the DDT file as shown in Scenario 1.

Here is an example of DAL script file:

%xListH=LoadXMLList("test.xml");

%listH=XMLFind(%xListH,"Forms","Form/@*");

aStr=XMLNthAttrValue(%listH,2);

#rc=DestroyList(%xListH);

return(aStr);

Using XML Built-in Functions

51

USING XML
BUILT-IN

FUNCTIONS

The DAL XML API function are registered in keywords, called built-in functions. A DAL
XML built-in function performs an operation on a set of parameters and returns a DAL
variable in one of the three types: list, integer, or string.

NOTE: A list type DAL variable always begins with a percent sign (%) and an integer
type DAL variable always begins with an octothorpe (#). Floating decimal
numbers begin with a dollar sign ($). A string type DAL variable does not begin
with a leading symbol.

Here are brief descriptions of the DAL XML built-in functions:

LoadXMLList %xListH=LoadXMLList(filename);

This function loads a XML document and extracts a XML tree. The only required input
parameter is the XML document file name. This function returns the XML tree in the list
type DAL variable.

For an example, see the DAL script in scenario 2.

DestroyList #rc=DestroyList(%xListH);

This function destroys the XML tree created by LoadXMLList. The input parameter is a
list type DAL variable that passes the XML tree handle. This function returns one (1) for
success or zero (0) for failure. The return DAL variable is of integer type.

For an example, see the DAL script in scenario 2.

GetListElem aStr=GetListElem(%xListH, SrchCriteria);

This function has two input parameters. The first is a list type DAL variable that passes
the XML tree handle. The second is a string type DAL variable that passes the search
criteria.

The search criteria can be a node name, followed by up to five pairs of attribute names
and values. If success, it returns a text string which contains the first element that
matches the search criteria.

This example returns the text of the first matched element node Form with the attribute
name ID and value Agent.

%xListH=LoadXMLList(“test.xml”);

aStr= GetListElem(%xListH, “Form”, “ID”, “Agent”);

return(aStr);

IsXMLError IsXMLError;

This function checks the list for error status. The input parameter is a list type DAL
variable that passes the XML tree handle. This function returns one (1) if there no errors
occur or zero (0) if errors do occur.

Using DAL XML Functions and XPath

52

XMLFind Result=XMLFind(%xListH, srchnode, xpath);

This function locates the XML path from the extracted XML tree and returns a list of
matched elements to a list type DAL variable or a matched text to a string type DAL
variable, depending on the search request.

This function has three input parameters. The first is a list type DAL variable passed
from either the XMLFileExtract rule or the LoadXMLList built-in function. The second is
a string type DAL variable that passes a node name from which the search starts. The
third is also a string type DAL variable that passes the XML location. If you omit the
second parameter, the search starts from the root of the XML tree.

Result can be a list type or a string type DAL variable.

For an example, see the next section.

XMLFirst #rc=XMLFirst(%listH);

This function takes one input parameter, a list type DAL variable. The variable can be
either a XML tree or a list of extracted elements. In any cases, it sets the current pointer
to the first element in the specified list. This function returns one (1) for success or zero
(0) for failure.

This example returns text from the last element in the list.

aStr="Text not found!";

%xListH=LoadXMLList("test.xml");

%listH=XMLFind(%xListH,"Forms","Form[text()]");

#rc=XMLFirst(%listH);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName(%listH);

#rc=XMLNext(%listH);

goto loop:

endloop:

#rc=DestroyList(%xListH);

return(aStr);

XMLNext #rc=XMLNext(%listH);

This function is similar to XMLFirst. It sets the current pointer to the next node or
element in the specified list and returns one (1) for success or zero (0) for failure.

For an example, see XMLFirst.

XMLGetCurName aStr=XMLGetCurName(%listH);

This function takes one input parameter of the list type. It can be either an XML tree or
a list of elements. It returns the element name from the current element. The return
value is the string type.

For an example see XMLFirst.

Using XML Built-in Functions

53

XMLGetCurText aStr=XMLGetCurText(%listH);

This function is similar to XMLGetCurName. It returns the text from the current element.
The return value is the string type. The message is similar to that from the
XMLGetCurName function.

For an example see XMLFirst.

XMLFirstAttrib rc=XMLFirstAttrib(%listH);

This function has one input parameter of a list type variable. It can be an element or
attribute list. This function sets the attribute pointer to the first attribute for the current
element in the element list or to the first attribute element in the attribute list.

If the input is an element list, use these functions to retrieve the attribute name and
value:

• XMLAttrName

• XMLAttrValue

If the input is an attribute list, use these functions to retrieve attribute name and value:

• XMLNthAttrName

• XMLNthAttrValue

For examples, see XMLAttrName and XMLNthAttrName.

XMLNextAttrib rc=XMLNextAttrib(%listH);

This function is similar to XMLFirstAttrib. It sets the current attribute pointer to the next
attribute for the current element in the list or to the next attribute element in the
attribute list.

For an example, see XMLAttrName and XMLNthAttrName.

XMLAttrName aStr=XMLAttrName(%listH);

This function takes a list type DAL variable of input parameter. It returns the name of
the current attribute pointed to by the XMLFirstAttrib and XMLNextAttrib functions.

The example returns the second attribute name of the first Form is the list.

aStr="Attribute not found!";

%xList=LoadXMLList("test.xml");

%listH=XMLFind(%xList,"Forms","Form");

#rc=XMLFirst(%listH);

#rc=XMLFirstAttrib(%listH);

#rc=XMLNextAttrib(%listH);

if #rc > 0

aStr=XMLAttrName(%listH);

end

#rt=DestroyList(%xList);

return(aStr);

XMLAttrValue aStr=XMLAttrValue(%listH);

This function is similar to XMLAttrName. It returns the value of the current attribute
pointed to by the XMLFirstAttrib and XMLNextAttrib functions.

For an example, see XMLAttrName. Use XMLAttrValue to replace XMLAttrName.

Using DAL XML Functions and XPath

54

XMLNthText aStr=XMLNthText(%listH,#index);

This function has two input parameters. One is a list type DAL variable that passes a
text list. The other is an integer type DAL variable that passes an index number. It
returns the nth text value indicated by the index number.

In this example, LoadXMLList returns a text list and XMLNthText gets the first text.

AStr=”Text not found”;

%xList=LoadXMLList("test.xml");

%listH=XMLFind(%xList,"Forms","Form/text()");

aStr=XMLNthtext(%listH, 1);

#rt=DestroyList(%xList);

return(aStr);

XMLNthAttrName aStr=XMLNthAttrValue(%listH,#index);

This function has two input parameters. One is a list type DAL variable that passes an
attribute list. The other is a integer type DAL variable that passes an index number. It
returns the nth attribute name indicated by the index number.

In this example, XMLFind returns a list of attributes and XMLNthAttrName returns the
name of the first attribute in the list.

aStr="Attribute not found!";

%xList=LoadXMLList("test.xml");

%listH=XMLFind(%xList,"Forms","Form/@*");

aStr=XMLNthAttrName(%listH, 1);

end

#rt=DestroyList(%xList);

return(aStr);

XMLNthAttrValue aStr=XMLNthAttrValue(%list,#index);

This function is similar to XMLNthAttrName. It returns the nth attribute value indicated
by the index number.

For an example, see XMLNthAttrName. Use XMLNthAttrValue to replace
XMLNthAttrName.

Using the XML Path Locator

55

USING THE XML
PATH LOCATOR

The XMLFind function is called the DAL XML path locator or DAL XPath. It is a limited
version of the XML path and does not cover all aspects defined in the W3C literature.

Refer to W3C recommendations for the description of XPointer and XPath syntax. You
can use the XPATHW32 testing tool to verify the applicable specifications of Skywire
Software’s DAL XPath. Run the XPATHW32 program to get the syntax.

Below is a summary of XML path specifications for DAL XPath:

Axes These axes apply:

Function calls You can use these function calls:

Operators or signs You can use these operators or signs:

Expressions You can use abbreviated syntax, as this table shows:

ancestor ancestor-or-self attribute

child descendant descendant-or-self

following following-sibling parent

preceding preceding-sibling self

last() position() node()

text() name(node-set) string(object)

concat(string, string, string…)

= != < > + - / // * :: []

For... Use this abbreviation:

child::* *

child::para para

child::chapter/child::para chapter/para

child::para[position()=1] para[1]

/child::chapter/child::para[position()=last()] /chapter/para[last()]

child::text() text()

child::node() node()

child::para[attribute::type] para[@type]

child::para[attribute::type="warning"] para[@type="warning"]

child::para[attribute::type="warning"][position()=2] para[@type="warning"][2]

Using DAL XML Functions and XPath

56

XMLFind locates the XML path from the extract XML tree and returns a valid DAL
variable result. It requires three input parameters, a list type DAL variable and two
string type variables. They in turn pass in an XML tree, a node name from which the
search starts, and XML path location for searching.

If you omit the second parameter, the search starts from the root. The return DAL
variable Result can be either list type or string type, depending on XML path.

Here are some examples that result in different return values:

Element list %elemListH=XMLFind(%extract, , “descendant::Form[@ID=Agent]”);

In this example, DAL XPath selects the Form element descendants that have an
attribute with name ID and value Agent from the extract XML tree (root), and returns an
element list.

Attribute list %attrListH=XMLFind(%extract, “Forms”, “Form/@type=’warning’”);

In this example, DAL XPath returns an attribute list that collects type attributes with
value warning for Form children of current context node Forms.

Text list %TextListH= XMLFind(%extract, “Forms”, “Form/text()”);

In this example, DAL XPath returns a text list that contains all text nodes of Form
children of current context node Forms.

child::chapter[child::title] chapter[title]

child::chapter[child::title="Introduction"] chapter[title="Introduction"]

child::doc/descendant-or-self::node()/child::para doc//para

attribute::* @*

attribute::type @type

/descendant-or-self::node()/child::para //para

self::node() .

self::node/descendant-or-self::node()/child::para .//para

parent::node() ..

parent::node()/child::chapter ../chapter

parent::node()/attribute::type ../@type

For... Use this abbreviation:

Using the XML Path Locator

57

Text string aStr=XMLFind(%extract, Forms, “string(Form[2])”);

It returns the text of second child Form of the current context node Forms.

aStr=XMLFind(%extract, “Forms”, “concat(“Get form 2 text: ”,
“Form[2])”);

It returns the concatenation of the text string Get form 2 text: , and the text of the
second child Form of current context node Forms.

aStr=XMLFind(%extract, “Forms”, “name()”);

It returns the name of current context node.

Using DAL XML Functions and XPath

58

59

Chapter 6

Additional Ways to Use XML
and Documaker Server

This chapter describes other ways you can use XML
and Documaker Server.

This chapter discusses:

• Mapping Fields with XPath on page 60

• Referencing DAL and GVM Using XML on page 61

• Running Documaker Server Using an XML Job
Ticket on page 63

• Creating Multiple Print Files Using the
PrintFormset Rule on page 64

Additional Ways to Use XML and Documaker Server

60

MAPPING FIELDS
WITH XPATH

The GenTrn program and the NoGenTrnTransactionProc rule let you use the TRN_Fields
control group to map all of your fields with the XPath. To let the system know you are
using the XML file, set the XMLTrnFields option in the TRN_File control group to Yes and
also set the XMLExtract option in the RunMode control group to Yes.

Here is an example:

< RunMode >

XMLExtract = Yes

< TRN_File >

XMLTrnFields= Yes

< TRN_Fields >

Company = !/Forms/Key1

LOB = !/Forms/Key2

PolicyNum = !/Forms/PolicyNum

RunDate = !/Forms/RunDate;DM-4;D4

NOTE: Use this format for the Trn_Fields options:

(Field in the Transaction DFD File) = XPath;Field Format

Be sure to include the leading exclamation mark (!). This tells the system to use an XML
path search but is not part of the actual search routine. Do not specify whether a field
is a key. The system does not support multiple (search) keys with the XML
implementation.

If you are selectively excluding transactions, in your exclude file, instead of an offset
and SearchMask, replace it with the XPath. Here is an example:

!/Forms[PolicyType="OLD"]

Referencing DAL and GVM Using XML

61

REFERENCING
DAL AND GVM

USING XML

The system lets you reference the GVM and DAL expressions before it rebuilds XPath
search masks. The format is as follows:

=XXX(expression)

where XXX is one of the supported ways of finding data from a symbol, such as DAL or
GVM.

Here are the standard access methods:

• =(“expression”) returns the value of a DAL symbol represented by expression

Here is an example:

!/Forms/Data1[Data2="**=("dalVar")**"]/Data3

dalVar is a DAL symbol. If the value of this variable is Two, the system resolves the
expression and returns the following XPath search mask:

!/Forms/Data1[Data2="Two"]/Data3

• =(expression) returns the value of a DAL variable named in the expression which
contain a name of another DAL variable.

Here is an example:

!/Forms/Data1[Data2="**=(dalVar2)**"]/Data3

If you assign dalVar2 equal to another DAL variable called dalVar which holds a
value of Two, here is the result:

!/Forms/Data1[Data2="Two"]/Data3

• =DAL(“expression”) returns the value of a DAL script named by expression.

Here is an example:

!/Forms/Data1[Data2="**=DAL("test.dal")**"]/Data3

The system runs the named DAL script and returns the value as a result of that run.
If test.dal returns a value of Three, the expression is resolved and this XPath
search mask is the result:

!/Forms/Data1[Data2="Three"]/Data3

• =GVM(“expression”) returns the value of a GVM symbol named by the expression.

Here is an example:

!/Forms/Data1[Data2="**=GVM("gvmVar")**"]/Data3

gvmVar is a GVM symbol. If the value for this symbol is One, the system resolves
the expression and returns this XPath search mask:

!/Forms/Data1[Data2="One"]/Data3

Additional Ways to Use XML and Documaker Server

62

• =GVM(expression) returns the DAL or GVM variable named in the expression
which contains a name of another GVM variable.

Here is an example:

!/Forms/Data1[Data2="**=GVM(dalVar)**"]/Data3

dalVar is a DAL variable. If dalVar was assigned a value equal to another GVM
variable called gvmVar and the value for this variable is One, here is the result:

!/Forms/Data1[Data2="One"]/Data3

!/Forms/Data1[Data2="**=GVM(gvmVar2)**"]/Data3

gvmVar2 is a GVM variable. If gvmVar2 was assigned a value equal to another GVM
variable called gvmVar and the this variable holds a value of One, here is the
result:

!/Forms/Data1[Data2="One"]/Data3

• =() Retrieves the contents of a DAL variable that is, by default, the root name of the
source name of the current DDT field.

Here is an example:

!/Forms/TestGVM[GVMField="**=()**"]/Data

Assume, current DDT field has destination name dalVar #003 and also source
name dalVar #003 and the content of this DAL variable, dalVar, is One, the system
resolves the expression and returns this XPath search mask:

!/Forms/TestGVM[GVMField="One"]/Data

If you have GVM, DAL, or other symbols in the XPath, you may want to know what
symbolic data you are referencing. Use these INI options to have the system write the
symbol and its referred data into the log file:

< Debug_Switches >

Enable_Debug_Options = Yes

XPath = Yes

Running Documaker Server Using an XML Job Ticket

63

RUNNING
DOCUMAKER

SERVER USING AN
XML JOB TICKET

Now you can run Documaker Server from another application using an XML job ticket.
You receive results in an XML job log file.

The layout of these files is the same as those used by IDS for running Documaker
Server. See Using IDS to Run Documaker Server on page 65 for more information.

The name of the Job ticket is passed to the GenData program on the command line as

/jticket= parameter

The default name is JOBTICKET.XML.

To set this up replace the StandardJobProc rule with the TicketJobProc rule. Keep in
mind you must run Documaker Server in single step mode, since only the GenData
program is executed.

You can specify the name of the resulting job log file using this command line
parameter:

/jlog=

The default is JOBLOG.XML.

Additional Ways to Use XML and Documaker Server

64

CREATING
MULTIPLE PRINT
FILES USING THE

PRINTFORMSET
RULE

The PrintFormset rule lets you create multiple print files when you run the GenData
program in single-step mode.

NOTE: When running in multi-step mode, use the MultFilePrint callback functionality.

To use this feature, add these options to PrintFormset control group:

< PrintFormset >

MultiFilePrint = Yes

LogFileType = XML

LogFile = (log file name and path)

The log file that is created is either a semicolon-delimited text file, formatted like the
file created by the MultiFilePrint callback function or an XML file. Here is an example of
the layout of the XML file:

 <?xml version="1.0" encoding="UTF-8" ?>

- <LOGFILE>

- <TRANSACTION INSTANCE="1">

 <BATCH NAME="Logical Batch Name">.\data\BATCH1.BCH</BATCH>

 <GROUP1 NAME="Company">SAMPCO</GROUP1>

 <GROUP2 NAME="Lob">LB1</GROUP2>

 <TRANSACTIONID NAME="PolicyNum">1234567</TRANSACTIONID>

 <TRANSACTIONTYPE NAME="TransactionType">T1</TRANSACTIONTYPE>

 <RECIPIENT NAME="INSURED">INSUREDS COPY</RECIPIENT>

 <FILE>DATA\0rDcP7WxytE8ECp5jexhWXVqkV840Vw_F-GykT_VMfd.PDF</FILE>

 </TRANSACTION>

- <TRANSACTION INSTANCE="2">

 <BATCH NAME="Logical Batch Name">.\data\BATCH2.BCH</BATCH>

 <GROUP1 NAME="Company">SAMPCO</GROUP1>

 <GROUP2 NAME="Lob">LB1</GROUP2>

 <TRANSACTIONID NAME="PolicyNum">1234567</TRANSACTIONID>

 <TRANSACTIONTYPE NAME="TransactionType">T1</TRANSACTIONTYPE>

 <RECIPIENT NAME="COMPANY">COMPANY COPY</RECIPIENT>

 <FILE>DATA\0v3l7pBdVqHceoRL5hf2xqjJ7WMxiRVO9U70iFiIcne.PDF</FILE>

 </TRANSACTION>

</LOGFILE>

Use the options in the DocSetNames control group to determine which XML elements
are created. The values in this control group are the same as those written to a recipient
batch or TRN file.

Option Description

MultiFilePrint Set this option to Yes to allow multiple file print.

LogFileType Specifies the type of the log file. Enter XML for an XML file. Any other
entry results in a text file.

LogFile Specifies the name of the log file. Include the full path. If you omit the
path, the system uses DATAPATH. If you omit this option, the system
creates a file named TMP.LOG. If you enter XML in the LogFileType
option and a different extension here, the system uses XML.

65

Chapter 7

Using IDS to Run Documaker
Server

This chapter tells you how to set up IDS and
Documaker Server so IDS can run Documaker Server as
a subordinate process.

This chapter discusses:

• Overview on page 66

• Setting Up IDS on page 67

• Setting Up Documaker Server on page 69

• Controlling Documaker Server on page 71

Using IDS to Run Documaker Server

66

OVERVIEW When using IDS to run Documaker Server, web clients communicate with IDS using
queues. IDS communicates with Documaker Server via XML files called job tickets and
job logs, as shown below.

IDS can start or stop Documaker Server as needed, without user interaction. One IDS
session controls one Documaker Server process. You can, however, implement
multiple IDS sessions and have multiple Documaker Server processes as well.

The ServerBaseProc rule replaces the RULStandardJobProc rule and lets IDS run
Documaker Server as a separate, stay alive process. This means Documaker Server
only has to start once and IDS can continue even if Documaker Server fails. See
ServerBaseProc on page 89 for more information.

Keep in mind these limitations:

• You can only run Documaker Server in single step mode. Consult the Documaker
Server System Reference for more information on single step processing.

• You must run Documaker on Windows XP or Windows 2000.

• If any IDS transaction specifies a different resource setup, the Documaker Server
process will automatically re-initialize to change to those resources. Such
resource changes can affect the overall performance of the system.

• During processing, some INI options can be changed by the client. Since some
Documaker Server rules use static variables and store INI values in memory, it is
possible that a client will be unable to change an INI option if those Documaker
Server rules are used. To handle these situations, you must restart Documaker
Server.

Web Client

IDS
Documaker

Server
(GenData)

VB\COM\
Java Client

XML Job
Ticket

XML Job
Log

Setting Up IDS

67

SETTING UP IDS To set up IDS so that it will run Documaker Server, you will need to make the following
changes in the following INI files:

DOCSERV.INI file Make these changes in the DOCSERV.INI file, or the INI file the IDS is configured to use.
Here is an example of how to add a request type for Documaker Server:

< ReqType:RPD >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = rpdw32->RPDCheckRPRun

function = rpdw32->RPDCreateJob

function = rpdw32->RPDProcessJob

If necessary, you can add two more request types, one to check if Documaker Server is
running and one to stop Documaker Server. Here is an example:

< ReqType:CHECK >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = rpdw32->RPDCheckRPRun

< ReqType:STOP >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = rpdw32->RPDStopRPRun

You will also need to add the following IDS rule to the ReqType:INI control group:

 function = rpdw32->RPDStopRPRun

DAP.INI file Add a configuration option for a the master resource library you will use. Here is an
example which is based on the RPEX1 master resource library:

< Configurations >

CONFIG = RPEX1

< Config:RPEX1 >

INIFile = RPEX1.INI

RPEX1.INI file Make these changes in the RPEX1.INI file (or the INI file you are using for your
configuration):

< IDSServer >

ExtrPath = e:\fap\mstrres\rpex1\extract\

PrintPath = e:\fap\mstrres\rpex1\data\

WaitForStart = 60

SleepingTime = 500

MaxWaitTime = 120

GENSemaphoreName = gendata

RPDSemaphoneName = rpdrunrp

PrintFileCacheTime = 7200

TextFileCacheTime = 7200

< RPDRunRP >

Executable = e:\rel101\shipw32\gendaw32.exe

Directory = e:\fap\mstrres\rpex1\

Using IDS to Run Documaker Server

68

UserINI = e:\fap\mstrres\rpex1\fsiuser.ini

BaseLocation = http://10.8.10.69/fap/mstrres/rpex1/data/

< Printer >

PrtType = PDF

< Debug >

RPDProcessJob = Yes

Setting up multiple IDS
servers

The semaphores used by IDS and Documaker Server are global for a computer, so if you
need multiple IDS processes on the same computer, each IDS process and subordinate
Documaker Server process should use different semaphore names.

The semaphore names are generated automatically by IDS for each additional IDS
instance. These names are passed to Documaker Server as command line parameters.
No user intervention is usually needed.

To specify the own naming conventions for these semaphores, do so by changing these
INI options:

< IDSServer >

GENSemaphoreName =

RPDSemaphoreName =

Keep in mind the names must be unique for a computer, so two IDS servers will have
to use two different INI files specifying semaphore names.

Setting Up Documaker Server

69

SETTING UP
DOCUMAKER

SERVER

The first step is to set up Documaker Server to run in a single step mode. See the
Documaker Server System Reference for more information

Keep in mind these considerations...

• If the Documaker Server executables and DLLs are located on the network, the
start time for Documaker Server can be significant. Keep in mind, however, that
the start time only affects the first transaction. Subsequent transactions will
process much more quickly. If the start time exceeds 10 seconds, consider
changing the WaitForStart option to a higher value.

• All of the standard Documaker Server performance-related INI options are
available even when IDS runs Documaker Server as a subordinate process. For
best results, optimize Documaker Server’s performance before using it with IDS.

• Documaker Server will run fastest if the resource files for Documaker Server, as
well as input and output files, are physically located on the computer where IDS
and Documaker Server are running.

In addition, you will need to make changes to your FSISYS.INI or FSIUSER.INI files and
to your AFGJOB.JDT file.

FSISYS.INI or FSIUSER.INI
file

Be sure to turn off all Documaker Server stop options, as shown here:

< GenDataStopOn >

 BaseErrors = No

 TransactionErrors = No

 ImageErrors = No

 FieldErrors = No

Also, add the following control groups and options:

< IDSServer >

SleepingTime = 500

GENSemaphoreName = gendata

RPDSemaphoneName = rpdrunrp

< Debug >

RULServerJobProc = Yes

< PrintFormsSet >

MultiFilePrint = Yes

LogFileType = XML

LogFile = .\data\printlog.xml

AFGJOB.JDT file Change the base rule from RULStandardBaseProc, as shown here:

<Base Rules>

;RULServerJobProc;1;;

...

The ServerBaseProc rule replaces the RULStandardJobProc rule and lets IDS run
Documaker Server as a separate, stay alive process. This means Documaker Server
only has to start once and IDS can continue even if Documaker Server fails.

Using IDS to Run Documaker Server

70

Naming Conventions for Output Files

The output files from Documaker Server use the names generated by the IDS rules and
submitted to Documaker Server in the job ticket file. If you need different names,
provide them in the IDS request. In this case, you must make sure the names are
unique or else they will be overwritten. The names generated by IDS can consist of up
to 45 characters and are similar to the names generated by the DPRPrint rule in IDS.

The directory where the output files are created is determined in this manner:

• If the file name and path was provided, the system uses that information.

• If the file name was provided, but the path was omitted, the system looks for the
path in the PRINTPATH attachment variable.

• If the path is not in the PRINTPATH attachment variable, the system looks for the
PrintPath INI option in the IDSServer control group.

• If no path was specified in the PrintPath INI option, the system places the output
file in the current directory.

The extension of the output files is determined in this manner:

• If the name and extension was provided in the attachment, the system uses that
information.

• If the name and extension were omitted, the system generates a name and uses
the printer type as the extension for the print output files. For other files, the
system looks for the FileExt option in the IDSServer control group to find the
extension. The default is DAT.

Controlling Documaker Server

71

CONTROLLING
DOCUMAKER

SERVER

To control Documaker Server via IDS, use these IDS rules:

• RPDCheckAttachments - Checks the required input attachment variables and INI
options before starting the GenData program.

• RPDCheckRPRun - Makes sure Documaker Server is running. If Documaker Server
is not running, this rule starts it.

• RPDCreateJob - Finds the attachment variables for each of the values in the job
ticket and adds them to the XML tree. The XML tree is added to the RPDJobTicket
DSI variable so the next rule can use it.

• RPDProcessJob - Gets the XML tree from the RPDJobTicket variable and writes it to
a file. This file is used as the job ticket which triggers the Documaker Server
process.

• RPDStopRPRun - Receives the current process ID from the DSI variable
RPDRunProcess and then terminates Documaker Server.

Using IDS to Run Documaker Server

72

 RPDCheckAttachments

Use this rule to check the required input attachment variables and INI options before
starting the GenData program.

Syntax _DSIEXPORT DWORD _DSIAPI RPDCheckAttachments (DSIHANDLE hdsi,

char * pszParms,

ULONG ulMsg,

ULONG ulOptions)

Parameters

This rule runs before the RPDCheckRPRun rule. Using this rule, ReqType becomes:

< ReqType:RPD >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = irlw32->IRLCopyAttachment

function = dprw32->DPRSetConfig

function = RPDW32->RPDCheckAttachments

function = RPDW32->RPDCheckRPRun

function = RPDW32->RPDCreateJob

function = RPDW32->RPDProcessJob

The expected attachment variables are checked only if they are in the RPDAttachments
control group. Here is an example:

< RPDAttachments >

Variable = ReqType

Variable = Config

Variable = PrintBatches

Variable = ExtrFile

If the ExtrFile option is required, the rule checks to see if it exists. Keep in mind the
ExtrFile option includes a full path. If you omit the path, the system uses the path
specified in the ExtrPath option as the default path.

This rule also checks these options in the RPDRunRP control group:

< RPDRunRP >

Executable = d:\RP\Mstrres\gendaw32.exe

Directory = d:\RP\Mstrres\rpex1\

UserINI = fsiuser

If the UserINI option does not include a drive letter, the system will look at the Directory
option to find the path, so the full UserINI name becomes:

d:\RP\Mstrres\rpex1\fsiuser.ini

Parameter Description

DSIHANDLE hInstanceDSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Controlling Documaker Server

73

In other cases, you can set the UserINI option, as shown here:

Directory = d:\ProgIDS\RP\Mstrres\Validate\W32exe\

UserINI = fsiuser

So the full UserINI name becomes:

d:\ProgIDS\RP\Mstrres\Validate\W32exe\fsiuser.ini

This rule also makes sure the USERINI.INI file exists. For UNIX, if the first byte is “/”,
the system looks at the UserINI option for the full path, for example:

UserINI = /ProgIDS/RP/Mstrres/Deflib

Otherwise, the system uses the path specified in the Directory option. Keep in mind
that if you omit the UserINI option, the system uses the FSIUSER.INI file instead.

INI options < RPDAttachments >

Variable = ReqType

Variable = Config

Variable = PrintBatches

Variable = ExtrFile

< IDSServer >

ExtrPath = d:\fap\mstrres\rpex1\extract\

< RPDRunRP >

Executable = d:\rel101\rps100\shipw32\gendaw32.exe

Directory = d:\fap\mstrres\rpex1\

UserINI = fsiuser

Returns Success or failure.

Error messages
Message Description

RPD0001 Can not locate variable #VARIABLE,# in the attachment list at
#LOCATION,#.

RPD0004 Can not add variable #VARIABLE,# to attachment at #LOCATION,#.

RPD0007 File #FILENAME,# does not exists. Failed to #LOCATION,#.

RPD0009 The INI option #INIOPTION,# could not be located in the group
#INIGROUP,#.

Using IDS to Run Documaker Server

74

 RPDCheckRPRun

Use this rule to make sure Documaker Server is running. If Documaker Server is not
running, this rule starts it.

Syntax _DSIEXPORT DWORD _DSIAPI RPDCheckRPRun (DSIHANDLE hdsi,

char * pszParms,

ULONG ulMsg,

ULONG ulOptions)

Parameters

To determine if Documaker Server is running, the rule looks at the CONFIG value. If the
CONFIG value is not the same as it was in the previous run, this rule stops and then
restarts Documaker Server.

On the RUNF message, this rule looks to see if a Documaker Server process exists and
starts one if needed. On the RUNR message, this rule stops the Documaker Server
process if there was an error.

On DSI_MSGRUNF, this rule first checks to see if Documaker Server is running by
detecting the gendata semaphore created by RULServerBaseProc rule. If the
semaphore does not exist, Documaker Server is not running. This rule then starts
Documaker Server and creates a semaphore called rpdrunrp.

This lets Documaker Server check the status of the IDS by detecting the existence of
the semaphore. It also lets Documaker Server terminate normally in case IDS stops.

To handle situations where you have multiple master resource libraries (MRLs), the
rule checks the CONFIG value for every job process to see if a new MRL is requested. If
the CONFIG value changes, the rule stops the current Documaker Server process and
starts another one which uses the new MRL.

On DSI_MSGRUNR, this rule terminates Documaker Server if errors occur.

Input attachment
variables

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

CONFIG The configuration for the master resource library (MRL). See also the
DPRSetConfig rule and the setup with multiple master resource directories.

Controlling Documaker Server

75

Output DSI variables

INI options You can use these INI options:

< RPDRunRP >

Executable =

Directory =

UserINI =

< IDSServer >

GENSemaphoreName =

RPDSemaphoreName =

Returns Success or failure.

Error messages

Variable Description

RPDRunProcess This value is the process ID for the Documaker Server process.

RPDSemaphoreName The semaphore name from the RPDSemaphore INI option.

GENSemaphoreName The semaphore name from the GENSemaphore INI option.

RPDRunSemaphore Stores the RPDSemaphore handle.

RPDJobLogName The name of the job log file name to use.

RPDJobTicketName The name of the job ticket file name to use.

Option Description

RPDRunRP control group

Executable The name and path of the program you want to execute, such as
d:\rpsetup\gendaw32.exe.

Directory The path to the master resource library, where you want to run
Documaker Server.

UserINI (Optional) The name and path of the INI file you want to use. The
default is the FSIUSER.INI located in the directory specified by
the Directory option.

IDSServer control group

GENSemaphoreName The name of the semaphore. The default is gendata.

RPDSemaphoreName The name of the semaphore. The default is rpdrunrp.

Message Description

RPD0001 Cannot locate variable #VARIABLE,# in the attachment list at
#LOCATION,#.

RPD0004 Cannot add variable #VARIABLE,# to attachment at #LOCATION,#.

Using IDS to Run Documaker Server

76

RPD0008 The call by #LOCATION,# to API #APINAME,# failed.

RPD0009 The INI option #INIOPTION,# can not be located in the group
#INIGROUP,#.

RPD0010 Cannot create DSI variable #VARIABLE,#. #LOCATION,# failed.

Message Description

Controlling Documaker Server

77

 RPDCreateJob

Use this rule to find the attachment variables for each of the values in the job ticket and
add them to the XML tree. The XML tree is added to the RPDJOBTICKET DSI variable so
the next rule can use it.

Keep in mind that the RPDCreateJob rule always adds the DbLogFile XML element to
the job ticket. If a value for this element is not in the job ticket, a unique file name is
generated and added. If an attachment variable or INI option is present but set to a
blank value, the RPDCreateJob rule does not add the DbLogFile element.

Syntax _DSIEXPORT DWORD _DSIAPI RPDCreateJob (DSIHANDLE hdsi,

char * pszParms,

ULONG ulMsg,

ULONG ulOptions)

Parameters

On DSI_MSGRUNF, this rule creates the XML document for the job ticket that triggers
the job processing. You should direct your results to designated directories and use
unique file names, especially if you want to support multiple MRL setups, multiple
Documaker Server processes, or multiple job processes.

You can change INI options via attachment variables. These changes are added onto
the XML tree so Documaker Server can update the INI options in memory.

On DSI_MSGRUNR, this rule processes the XML document of the job log, and all values
of the XML tree are added to the output attachment.

Input attachment
variables

You can use these input attachment variables:

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

ExtrFile Extract file name and path. This is a required input file.

MsgFile (Optional) Message file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was
omitted, the system uses the PrintPath defined in the IDSServer
control group. If the file name is omitted, the system creates a 46-
byte unique file name.

ErrFile (Optional) Error file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was
omitted, the system uses the PrintPath defined in the IDSServer
control group. If the file name is omitted, the system creates a 46-
byte unique file name.

Using IDS to Run Documaker Server

78

LogFile (Optional) Log file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was
omitted, the system uses the PrintPath defined in the IDSServer
control group. If the file name is omitted, the system creates a 46-
byte unique file name.

DBLogFile (Optional) DB log file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was
omitted, the system uses the PrintPath defined in the IDSServer
control group. If the file name is omitted, the system creates a 46-
byte unique file name.

NAFile (Optional) NA file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was
omitted, the system uses the PrintPath defined in the IDSServer
control group. If the file name is omitted, the system creates a 46-
byte unique file name.

POLFile (Optional) POL file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was
omitted, the system uses the PrintPath defined in the IDSServer
control group. If the file name is omitted, the system creates a 46-
byte unique file name.

NewTrn (Optional) NewTrn file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was
omitted, the system uses the PrintPath defined in the IDSServer
control group. If the file name is omitted, the system creates a 46-
byte unique file name.

PrintBatchPath The default path for print batches.

PrintBatches The number of batches to print. If you enter zero or you do not
enter this variable, no print batch information is updated. Your
entry cannot exceed the number of printers listed in the
PrinterInfo control group in the FSISYS.INI file.

PrintBatchesX The name of a print batch, where X denotes the number of the
print batch, continuing from one to PrintBatches. If omitted, the
system creates a 46-byte unique name for the print batch. A print
batch can have a full path. If it does not have a path, PrintPath is
used. If PrintPath is omitted, the system uses the path specified in
the PrintPath option in the Data control group.

BatchFiles The number of batch files. If you enter zero or omit this option, no
batch file information is updated. Your entry should not exceed
the number of batch files listed in the Print_Batches control group
in the FSISYS.INI file.

BatchFilesX The name of the batch file. X denotes the number of the batch file,
counting from one to the maximum. If you omit this option, the
system creates a 46-byte unique name for the batch file.
You can include a full path. If you omit the path, the system uses
the PrintPath. If the PrintPath is omitted, the system uses the path
specified in the PrintPath option in the IDSServer control group.

Variable Description

Controlling Documaker Server

79

Output DSI variables

Input DSI variables

Output attachment
variables

INIOptions The number of other INI options to update.

INIOptionsX.Group The INI group name you want to update.

INIOptionsX.Option The INI option name you want to update.

INIOptionsX.Value The value of the INI option you want to update. X indicates the
number of INI options, counting from one to the maximum.

Variable Description

Variable Description

RPDJOBTICKET Job ticket variable. Its value is a XML document handle for the job
ticket.

Variable Description

RPDJOBLOG Job log variable. Returns an XML document handle for the job log.

Variable Description

ExtrFile Extract file name and path.

MsgFile Message file name and path.

ErrFile Error file name and path.

LogFile Log file name and path.

DBLogFile DB log file name and path.

NAFile NA file name and path.

POLFile Pol file name and path.

NewTrn NewTrn file name and path.

PrinterX Name and path of print batches. X denotes the number of the print batches
from one to the maximum.

BatchX The name and path of the batch files. X denotes the number of batch files,
from one to the maximum.

Results Success or an error code from the IDS rules.

RPResults An error code from Documaker Server: 0=Success, 4=Warning, 8 or
16=Failure.

Using IDS to Run Documaker Server

80

Note that the input attachments for PrintBatchX should be in the same order as those
for PrinterX, as defined in the PrintInfo control group in the FSISYS.INI file. Also keep in
mind that PrinterX and BatchX are option names you define in the PrintInfo and
Print_Batches control groups.

INI options < IDSServer >

PrintPath =

PrintFileCacheTime =

TextFileCacheTime =

< Printer >

PrtType =

< RPDRunRP >

BaseLocation =

Returns Success or failure.

Error messages

Option Description

IDSServer control group

PrintPath Used as a default path for print batches and the rest of the output
files.

PrintFileCacheTime The length of time, in seconds, you want the system to store the
print files. At expiration time, the system removes the print batch
files. The default is 1800 (30 minutes). Note that only print files
with the 46-byte unique name created by the system are cached.

TextFileCacheTime The length of time, in seconds, you want the system to store the
text files. At expiration time, the system removes the text files. The
default is 1800 (30 minutes). Note that only text files with the 46-
byte unique name created by the system are cached.

Printer control group

PrtType The type of print batch file. Your entry must be consistent with the
control group defined in the FSISYS.INI file. For instance, if you set
up a PrtType:PDF control group there, enter PDF here.

RPDRunRP control group

BaseLocation The URL to the output data directory. Your entry must be consistent
with the PrintPath or other defined data path.

Message Description

RPD0002 Cannot create #TAGNAME,# at #LOCATION,#.

RPD0003 Cannot create DSI variable #VARIABLE,# at #LOCATION,#.

Controlling Documaker Server

81

RPD0004 Cannot add variable #VARIABLE,# to attachment at #LOCATION,#.

RPD0005 Cannot locate DSI variable #VARIABLE,# at #LOCATION,#.

RPD0006 DSI variable #VARIABLE,# does not contain valid data. Failed to
#LOCATION,#.

Message Description

Using IDS to Run Documaker Server

82

 RPDProcessJob

Use this rule to get the XML tree from the DSI variable RPDJobTicket and write it to a
file written on the RUNF message. On the RUNR message, this rule waits for the job log
file. The job log file is located in the same directory and is loaded as an XML file on the
RUNR message.

Syntax _DSIEXPORT DWORD _DSIAPI RPDProcessJob (DSIHANDLE hdsi,

char * pszParms,

ULONG ulMsg,

ULONG ulOptions)

Parameters

The IDS variable RPDJobLog is created with the XML job log. The RPDJobLog variable
and the XML tree associated with it is destroyed in this rule on the TERM message.

You can set the maximum amount of time to wait using the MaxWaitTime option. On
the RUNR message, this rule also removes the job log file from disk. You can also
control the removal of the job log file with the RPDProcessJob INI option. This option is
for debugging purposes only.

On DSI_MSGRUNF, this rule receives the XML document handle from the DSI variable
RPDJobTicket, and writes the XML tree into the JOBTICKET.XML file specified in the
Directory option.

On DSI_MSGRUNR, this rule waits until it receives the job log file (JOBLOG.XML), from
Documaker Server. You specify how long the system should wait using the
SleepingTime INI option. If the waiting time exceeds the limit, the rule stops
Documaker Server.

The system locates a job log placed in the directory specified in the Directory INI
option. The job log file is loaded into an XML document so the XML tree can be written
out in attachments. Whether the JOBLOG.XML file should be removed, depends on your
entry in the RPDProcessJob INI option.

Input IDS variables

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

RPDJobTicket A job ticket variable. It returns the XML document handle for the job
ticket.

Controlling Documaker Server

83

Output files

Output DSI variables

INI options < RPDRunRP>

Directory =

< IDSServer >

MaxWaitTime =

SleepingTime =

WaitForStart =

< Debug >

RPDProcessJob =

Return values Success or failure.

File Description

JOBTICKET.XML A job ticket, which is a trigger for the Documaker Server process. It
contains request information and information used to update INI
options.

Variable Description

RPDJobLog The job log variable. Its value is an XML document handle for the job
log.

Option Description

RPDRunRP control group

Directory Enter the path where you want to load and unload the
JOBTICKET.XML and JOBLOG.XML files.

IDSServer control group

MaxWaitTime Enter, in seconds, the maximum length of time you want IDS to wait
for the JOBLOG.XML file. The default is 60 seconds.

SleepingTime Enter the time, in milliseconds, to specify how often IDS should check
for a job ticket. The default is 1000 (1 second).

WaitForStart The length of time IDS should wait for Documaker Server to start
before assuming Documaker Server is not running. The default is 10
seconds. Adjust this value if the Documaker Server requires more
time to start. If Documaker Server does not start within the allotted
time, this rule returns an error and stops processing.

Debug control group

RPDProcessJob Enter Yes to keep the JOBLOG.XML file. Enter No to remove it.

Using IDS to Run Documaker Server

84

Error messages
Message Description

RPD0003 Cannot create the DSI variable #VARIABLE,# at #LOCATION,#.

RPD0004 Cannot add the variable #VARIABLE,# to attachment at #LOCATION,#.

RPD0005 Cannot locate the DSI variable #VARIABLE,# at #LOCATION,#.

RPD0006 The DSI variable #VARIABLE,# does not contain valid data. Failed to
#LOCATION,#.

RPD0007 The file #FILENAME,# does not exist. Failed to #LOCATION,#.

RPD0008 The call by #LOCATION,# to API #APINAME,# failed.

RPD0009 The INI option #INIOPTION,# cannot be located in the group
#INIGROUP,#.

Controlling Documaker Server

85

 RPDStopRPRun

Use this rule to stop Documaker Server. To do so, you need to execute the request type
STOP as described in the topic, Setting Up IDS on page 67.

This rule is also used as an INIT/TERM rule and is registered on IDS under the
ReqType:INI control group. You can use this rule to make sure that when IDS stops,
Documaker Server also stops.

Syntax _DSIEXPORT DWORD _DSIAPI RPDStopRPRun (DSIHANDLE hdsi,

char * pszParms,

ULONG ulMsg,

ULONG ulOptions)

Parameters

This rule receives the current process ID from the DSI variable RPDRunProcess and
then terminates Documaker Server.

Return values Success or failure.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Using IDS to Run Documaker Server

86

 RULServerBaseProc

When you use IDS to run Documaker Server, this rule replaces the
RULStandardBaseProc rule and is registered as RULServerJobProc.

Syntax ;RULServerBaseProc;;;

Insert this rule in the AFGJOB.JDT file as the first rule.

This rule looks for a job ticket file in the current working directory and loads it as an
XML file. All of the values on the XML tree are added to or updated in the INI options.
After Documaker Server finishes processing, the rule checks the status. If there are
errors, it returns a no more bases return code on the next iteration. This terminates
Documaker Server.

This rule uses a polling technique—sleep a while and check for the file existence—
which you can configure using INI options. The rule loads the job ticket and sets INI
options used when running subsequent rules. On the post message, this rule creates a
job log XML tree and writes it to disk. If any necessary values are missing from the XML
job ticket, these values are generated and changed (or appended) in the INI context.

On RP_PRE_PROC_B, this rule creates a semaphore (gendata), which makes it possible
for the IDS RPDCheckRPRun rule to detect the status of Documaker Server when the
next processing job starts.

This rule stays in waiting status and checks for the existence of job ticket file
(JOBTICKET.XML) and the rpdrunrp semaphore. As soon as the job ticket file is
detected, this rule loads it onto the XML tree and uses the contents of the XML tree to
update INI options in memory.

If the rule does not detect the rpdrunrp semaphore, the rule terminates Documaker
Server by returning a msgNO_MORE_BASES return code. It also creates a GVM variable
(DSISERV) so the CUSInitPrint rule can re-initialize printers after the job process is
complete. This GVM variable can be used by any of the Documaker Server rules to
detect if the Documaker Server is running under IDS, if different logic is needed.

On RP_POST_PROC_B, the rule writes out the job log file and removes the job ticket
file. If the RULServerJobPRoc option is set to Yes, a copy of the file will be obtained for
debugging purposes.

INI options Use these INI options with this rule:

< Data >

DataPath =

ExtrFile =

MsgFile =

ErrFile =

LogFile =

DBLogFile =

NAFile =

POLFile =

NewTrn =

< PrinterInfo >

Printer =

< Printer >

Port =

< Print_Batches >

Controlling Documaker Server

87

Batch1 = batch1.bch

< IDSServer >

SleepingTime =

GENSemaphoreName =

RPDSemaphoreName =

< Debug >

RULServerJobProc =

< PrintFormSet >

MultiFilePrint =

LogFileType =

LogFile =

Option Description

Data control group

DataPath Used as the default path if you omit PrintPath.

ExtrFile Enter the name and path of the extract file.

MsgFile Enter the name and path of the message file.

ErrFile Enter the name and path of the error file.

LogFile Enter the name and path of the log file.

DBLogFile Enter the name and path of the DB log file.

NAFile Enter the name and path of the NA file.

POLFile Enter the name and path of the POL file.

NewTrn Enter the name and path of the NewTrn file.

PrinterInfo control group

Printer Enter the designated printers for print batches.

Printer control group

Port Enter the name of the print batch file for each designated
printer. Note the group name is defined by the printer option in
the PrinterInfo control group.

Print_Batches control group

Batch1 Then name of the batch file.

IDSServer control group

SleepingTime Enter the amount of time in milliseconds you want the system to
wait before it checks for a job ticket. The default is 1000 (1
second).

GENSemaphoreName Enter the name of the semaphore. The default is gendata.

RPDSemaphoreName Enter the name of the semaphore. The default is rpdrunrp.

Using IDS to Run Documaker Server

88

Input file JOBTICKET.XML

Output file JOBLOG.XML

Debug control group

RULServerJobProc Enter Yes if you want errors appended to the ErrFile, the
LogTrace file to record the trace, and the JobLog file to be
renamed and saved.

PrintFormSet control group

MultiFilePrint Enter Yes to generate multiple print files which use 46-byte
unique names.
To identify which recipients are in which print batch, enter No or
omit this option.This causes the PrintFormSet rule to save the
printer for the print batch along with its recipient information.
The RULServerBaseProc rule then adds three new tags for each
print batch file and adds them to the JOBLOG.XML file.
For example, for the print batch file on PRINTER1, the system
creates these new tags:

<PRINTER1RECIP>Insured</PRINTER1RECIP>

<PRINTER1CODE>001</PRINTER1CODE>

<PRINTER1DESC>Insured Copy</PRINTER1DESC>

LogFileType Specify the type of print log file, such as XML or TEXT.

LogFile Enter the name and path of the print log file. If you omit the
extension, the system uses the LogFileType option to determine
the extension.

Option Description

Controlling Documaker Server

89

 ServerBaseProc

When you use IDS to run Documaker Server, this rule replaces the RULStandardJobProc
rule.

Syntax ;ServerBaseProc;;;

Insert this rule in the AFGJOB.JDT file as the first rule.

This rule looks for a job ticket file in the current working directory and loads it as an
XML file. All of the values on the XML tree are added to or updated in the INI options.
After Documaker Server finishes processing, the rule checks the status. If there are
errors, it returns a no more bases return code on the next iteration. This terminates
Documaker Server.

This rule uses a polling technique—sleep a while and check for the file existence—
which you can configure using INI options. The rule loads the job ticket and sets INI
options used when running subsequent rules. On the post message, this rule creates a
job log XML tree and writes it to disk. If any necessary values are missing from the XML
job ticket, these values are generated and changed (or appended) in the INI context.

On RP_PRE_PROC_B, this rule creates a semaphore (gendata), which makes it possible
for the IDS RPDCheckRPRun rule to detect the status of Documaker Server when the
next processing job starts.

This rule stays in waiting status and checks for the existence of job ticket file
(JOBTICKET.XML) and the rpdrunrp semaphore. As soon as the job ticket file is
detected, this rule loads it onto the XML tree and uses the contents of the XML tree to
update INI options in memory.

If the rule does not detect the rpdrunrp semaphore, the rule terminates Documaker
Server by returning a msgNO_MORE_BASES return code. It also creates a GVM variable
(DSISERV) so the CUSInitPrint rule can re-initialize printers after the job process is
complete. This GVM variable can be used by any of the Documaker Server rules to
detect if the Documaker Server is running under IDS, if different logic is needed.

On RP_POST_PROC_B, the rule writes out the job log file and removes the job ticket
file. If the RULServerJobPRoc option is set to Yes, a copy of the file will be obtained for
debugging purposes.

INI options < Data >

DataPath =

ExtrFile =

MsgFile =

ErrFile =

LogFile =

DBLogFile =

NAFile =

POLFile =

NewTrn =

< PrinterInfo >

Printer =

< Printer >

Port =

< Print_Batches >

Batch1 = batch1.bch

< IDSServer >

Using IDS to Run Documaker Server

90

SleepingTime =

GENSemaphoreName =

RPDSemaphoreName =

< Debug >

RULServerJobProc =

< PrintFormSet >

MultiFilePrint =

LogFileType =

LogFile =

Option Description

Data control group

DataPath Used as the default path if you omit PrintPath.

ExtrFile Enter the name and path of the extract file.

MsgFile Enter the name and path of the message file.

ErrFile Enter the name and path of the error file.

LogFile Enter the name and path of the log file.

DBLogFile Enter the name and path of the DB log file.

NAFile Enter the name and path of the NA file.

POLFile Enter the name and path of the POL file.

NewTrn Enter the name and path of the NewTrn file.

PrinterInfo control group

Printer Enter the designated printers for print batches.

Printer control group

Port Enter the name of the print batch file for each designated
printer. Note the group name is defined by the printer option in
the PrinterInfo control group.

Print_Batches control group

Batch1 Then name of the batch file.

IDSServer control group

SleepingTime Enter the amount of time in milliseconds you want the system to
wait before it checks for a job ticket. The default is 1000 (1
second).

GENSemaphoreName Enter the name of the semaphore. The default is gendata.

RPDSemaphoreName Enter the name of the semaphore. The default is rpdrunrp.

Debug control group

Controlling Documaker Server

91

Input file JOBTICKET.XML

Output file JOBLOG.XML

RULServerJobProc Enter Yes to get a copy of the job ticket file before the system
removes it.

PrintFormSet control group

MultiFilePrint Enter Yes to generate multiple print files which use 46-byte
unique names.
To identify which recipients are in which print batch, enter No or
omit this option.This causes the PrintFormSet rule to save the
printer for the print batch along with its recipient information.
The RULServerBaseProc rule then adds three new tags for each
print batch file and adds them to the JOBLOG.XML file.
For example, for the print batch file on PRINTER1, the system
creates these new tags:

<PRINTER1RECIP>Insured</PRINTER1RECIP>

<PRINTER1CODE>001</PRINTER1CODE>

<PRINTER1DESC>Insured Copy</PRINTER1DESC>

LogFileType Specify the type of print log file, such as XML or TEXT.

LogFile Enter the name and path of the print log file. If you omit the
extension, the system uses the LogFileType option to determine
the extension.

Option Description

Using IDS to Run Documaker Server

92

93

Chapter 8

Frequently Asked Questions

This chapter provides answers to commonly asked
questions.

Frequently Asked Questions

94

Is XML the same as HTML?

No. XML is primarily a data exchange format and contains the data definitions and the
data. HTML can contain data and layout, however the definitions of the data are not
defined in tags (such as <author>) as they are in XML. These tags are defined in a
schema.

To portray XML data in a page layout an XSL (Extensible Stylesheet Language) file is
required. This would contain information such as position, fonts, and so on.

The benefits of XML over HTML are that it is becoming an industry standard accepted
format for data transfer and it has a more defined structure. When an XML file has a
valid structure it is known as being well formed.

Who developed the XML parser?

The system uses the Expat XML parser, which was originally developed for Netscape.
It is a third-party library. You cannot plug in your own parser. Here are some links if you
want more information on Expat:

http://expat.sourceforge.net/

http://sourceforge.net/projects/expat/

What is an XML tag?

XML tags are created like HTML tags. There is a start tag and a closing tag.

<TAG>content</TAG>

The closing tag uses a slash after the opening bracket. The text between the brackets
is called an element. Keep in mind...

• Tags are case sensitive.

• Starting tags always need a closing tag.

• All tags must be nested properly.

• Comments can be used in the same way as HTML, for instance <!--Comments-->

Empty tags can be defined as <TAG/>. Empty tags do not require a closing tag.

What is an XML attribute?

Elements in XML can use attributes. The syntax is:

<element attribute-name=”attribute-value”>…</element>

The value of an attribute needs to be quoted, even if it contains only numbers. For
example:

<car color = “red”>Volvo</car>

The same entry could be defined without using attributes:

<car>

<brand>Volvo</brand>

<color>red</color>

</car>

http://expat.sourceforge.net/
http://sourceforge.net/projects/expat/

95

What is a schema?

A schema is a map of the structure of the data. This is presented in an XML type layout.
Using the sample XML file on the previous page the schema for this would be as shown
below.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.yourco.org//XMLSchema">

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="author" type="xs:string"/>

 <xs:element name="character" minOccurs="0"
maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="friend-of" type="xs:string"
minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="since" type="xs:date"/>

 <xs:element name="qualification" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

What XML standards are accepted by Skywire Software software?

XML standards are set and defined by the W3C organization (www.w3c.org). This is a
consortium of over 450 organizations that set and define common standards and
protocols in use on the World Wide Web. Skywire Software products use the XML 1.0
standard and will support the following encoding:

• UTF-8

• ISO-8859-1

• US-ASCII

You should be able to use any of these encodings to pass information to
Docupresentment, DSI APIs or Documaker Server. Docupresentment sends back UTF-
8.

http://www.w3c.org

Frequently Asked Questions

96

Are ampersands (&) and octothorpes (#) supported in XML files?

Yes, however some characters must be defined as entity references or character
references. For instance, you can use octothorpes in XML files as shown here:

<message>Use #1 before using #2</message>

Entity references begin with an ampersand (&) and end with a semicolon (;). These are
predefined codes within the XML specification for commonly used characters. Here are
some examples:

Character references begin with an ampersand and an octothorpe (&#) and end with a
semicolon (;) . These are used for characters which are not commonly used and do not
already have entity references pre-defined.

Here are some examples:

Refer to the W3C (www.w3c.org) for more information on special characters.

What tag names cannot be used in XML?

There are a number of restrictions for tag names. These include:

• No tag names can start with xml.

• Tag names cannot start with underscores or numbers.

• Names cannot contain semicolons (:).

• There cannot be a space after the opening < character.

Reserved words are defined by the W3C. Some of the words that cannot be used
include:

Character In XML

& &

“ "

‘ '

> >

< <

Character In XML

é é

í í

ü ü

If Typeswitch Item Node

http://www.w3c.org

97

For a full list of reserved words refer to the W3C (www.w3c.org).

How do you send an XML input file to Documaker?

You can use these two rules to send an XML file to Documaker:

• XMLFileExtract - Used when you point to a flat file which contains references to
multiple XML files. For example, this method can be used if the key information is
in the flat file and the triggering and variable data is in the XML file.

• UseXMLExtract - Used when you have one XML file containing all transactions.

See the Rules Reference for more information.

How do you export an XML file from Documaker Workstation?

To configure the import and export capabilities of Documaker Workstation:

1 Open the FSISYS.INI file in the resource library for which you want to use export
files. You can use any text editor to open this file.

2 Locate the ExportFormats control group. Add the following line:

XML =09=;XM;XML Export;WXMW32->WXMExportXML

Here is an example, which assumes 09 is not already being used.

< ExportFormats >

09=;XM;XML Export;WXMW32->WXMExportXML

What are the Unicode capabilities of XML?

The Documaker and Docupresentment XML parser supports the following encodings:
UTF-8, ISO-8859-1, and US-ASCII. The input XML file must use one of these encodings
or should not specify an encoding at all. Here is an example of an XML header that
specifies UTF-8 encoding:

<?xml version="1.0" encoding="UTF-8" ?>

If you do not specify an encoding, the system uses an encoding of ISO-8859-1. You can
find more information on encoding standards in the Using Unicode Support manual
located at:

http://www.skywiresoftware.com/Support/

Element Attribute Comment Child

Text Processing-
instruction

ID Key

http://www.w3c.org
http://www.skywiresoftware.com/Support/

Frequently Asked Questions

98

How do you set up Docupresentment to use XML?

If you are using Docupresentment as the message server, you must also add the INI
options shown below to let Documaker Workstation retrieve an archived record from
Docupresentment and load data into a form set before any data is entered by a user.

The archived record is retrieved using the Key1, Key2, and KeyID entered on the New
Form Set window. For this to happen, you must set up the following request type in the
DOCSERV.INI file for Docupresentment:

< ReqType:GetXML >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRLocateOneRecord,Key1,Key2,KeyID

function = dprw32->DPRRetrieveFormset

function = dprw32->DPRPrint

function = dprw32->DPRProcessTemplates

function = atcw32->ATCSendFile, DOCC_XML, SENDBACKPAGE, TEXT

You can use any name for the archive library, as long as the same MRL name is used in
Documaker Workstation. You can set up this feature as an entry or import hook:

< AFEProcedures >

EntryFormset = WXMOS2->WXMEntryHookExtXMLLoad

or

< ImportFormats >

07=;XR;XML Import from IDS;WXMW32->WXMImportXMLArchive

If you set it up as an entry or import hook, you must also set up these INI options:

< XML_IMP_EXP >

DSIUseNTUserID =

DSIVars =

DSIIgnoreTimeoutError =

DSIAttachedVarFile =

DSIImportLevel =

DSITimeout =

DSIReqType =

DSIRecordDFD =

Option Description

DSIUseNTUserID Set this option to Yes to use the NT user ID. The default is
No. This gives you a way to pass the NT user ID in the queue
instead of the normal DMWS ID.

DSIVars Enter variable;value, where variable is the variable name
and value is its value. This lets you identify a constant list of
variables to be sent in the queue.

DSIIgnoreTimeoutError Enter Yes to continue processing if a timeout occurs. The
default is No. This gives you a way to ignore a timeout when
waiting on a return queue.

99

If the request for an XML file comes back with an error, as opposed to a time out,
Docupresentment displays an error message.

Can the SOAP standard be used with Docupresentment?

Docupresentment version 1.7 added a new open and documented queue control
message format based on XML and the evolving SOAP standard. The XML message
format is supported by the MSMQ and MQSeries queues, but is not supported by the
generic queue system that ships with the base Docupresentment product. The base
product queues use a proprietary message format.

You can find more information on the XML and SOAP on the W3C WEB site:

http://www.w3.org/

You can also find information about SOAP messages with attachments at:

http://www.w3.org/tr/soap-attachments

NOTE: Skywire Software will follow the evolving standards of SOAP and UDDI and
move toward universal messaging. The first version of the DSI message format
is based on XML and complies with many of the initial standards for SOAP
message envelopes. Later versions will move transactions and servers toward
fuller SOAP and UDDI compliance.

Skywire Software has used message queuing as a means of serializing requests and
responses between loosely coupled clients and servers without requiring one-to-one
connections. MQ Series has evolved into a standard program-to-program message bus
for integrating loosely coupled applications.

DSIAttachedVarFile The default is DOCC_XML. Set this option to the attachment
name if it differs from DOCC_XML. This gives you a way to
specify the variable name the XML file is attached to.

DSIImportLevel This option is typically used by programmers. Enter 2 if you
want the hook to operate on the FAP_MSGOPEN level. Enter
3 if you want it to operate on the FAP_MSGRUN level. The
default is 2.

DSITimeout Enter the number of milliseconds you want for the time-out.
The default is 60000 milliseconds or 60 seconds.

DSIReqType Enter the name of the request type of the message placed
in the queue. The default is GETXML.

DSIRecordDFD Enter the name of a DFD file. The system tries to match
variable fields sent in the request to field values in this DFD
file. It then attaches the DFD record to the end of the
message.

Option Description

http://www.w3.org/
http://www.w3.org/tr/soap-attachments

Frequently Asked Questions

100

Docupresentment includes the client and server sides of the DSI (document server
interface) system and of the DQM (document queuing and messaging) system. These
interface layers help manage connections between multiple simultaneous clients and
multiple simultaneous servers. The DQM layer provides a logical abstract layer over the
physical process of accessing the queue, so one implementation can support and
switch between multiple queuing systems. This layer supports these models:

• A generic system that ships with Docupresentment (handled by DCBLIB)

• Support for Microsoft MSMQ (handled by MQLIB)

• Support for IBM MQ Series (handled by QSRLIB)

The DSI system provides a logical abstract layer over the physical process of
assembling, delivering, and parsing of a message, so the initiator of the message does
not have to know the physical format of the message, and is insulated from internal
software changes to the message format between product versions.

For instance, you can use the DSI messaging client with Documaker Workstation so
Documaker Workstation can work with

• External systems via either MQ Series or MSMQ messaging middleware.

• Docupresentment as a bridge to a legacy system to retrieve data for import.

The first ability means second is optional. You can also use your own internal programs
and interface using MQSeries.

The advantage of having a logical abstract layer is that it lets you deploy applications
for different message queuing systems without requiring program changes. Only
minimal setup changes are required to test or deploy the same application with a
different queuing system. By abstracting the message format, applications are
insulated from internal changes to the message format and can use the Skywire
Software APIs to correctly assemble or disassemble messages.

The disadvantage of message format abstraction is that non-Skywire Software
applications might be required to use Skywire Software APIs to communicate with
Skywire Software applications.

On some platforms, it may not be practical to invoke these APIs. The proprietary nature
of the original message format further complicates the issue.

If you are integrating with Docupresentment as the server, the message format
documentation is not necessary. If, however, you are integrating with another
application, the message format may be needed if you do not use Docupresentment
APIs and you can communicate via MQSeries.

For additional information on SOAP and Docupresentment, see the Internet Document
Server Guide.

How can Docupresentment run Documaker using XML job-tickets?

If you have a license for both Documaker and Docupresentment (also known as the
Internet Document Server or IDS), you can set up Docupresentment to run Documaker
as a subordinate process. Web clients communicate with Docupresentment using
queues. Docupresentment communicates with Documaker via XML files called job
tickets and job logs.

This diagram illustrates the process:

101

IDS can start or stop Documaker as needed, without user interaction. One IDS session
controls one Documaker process. You can, however, implement multiple IDS sessions
and have multiple Documaker processes as well. Keep in mind these limitations:

• You can only run Documaker in single step mode.

• You must run Documaker on Windows NT, Windows XP, or Windows 2000.

• Different resource setups for Documaker are supported, but Documaker
processing restarts if resources are changed, eliminating the performance
benefits. This should not be a problem because it is unlikely multiple Documaker
setups will be used with a single Docupresentment implementation. You can,
however, experience problems testing a system with multiple setups.

• During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

For more information, see the Internet Document Server Guide and the SDK Reference.

Can you use DAL with XML files?

You can use DAL XML API functions to let Documaker applications access specified XML
documents and retrieve XML data via a DAL script. There are two scenarios in which you
would use DAL XML API functions:

Scenario 1 A Documaker program, such as GenData, loads an XML document and extracts the XML
tree at the transaction level using the XMLFileExtract rule. This rule creates a list type
DAL variable with a default name of %extract and pushes it onto the DAL stack.

Then you can call other XML API functions in a DAL script to access the XML tree and
extract XML data.

Here are examples of the form set and image rules you would add and a DAL script that
would call the XML API functions.

Add this in the AFGJOB.JDT file:

;XMLFileExtract;2;File=.\deflib\test.xml

The rule loads the XML file and creates a list type DAL variable to pass the XML tree to
the XML API function.

Web Client

IDS
Documaker

Server
(GenData)

VB\COM\
Java Client

XML Job
Ticket

XML Job
Log

Frequently Asked Questions

102

Add this in your DDT file:

;0;0;DALXMLSCRIPT;0;9;DALXMLSCRIPT;0;9;;DAL;Call("TEST.DAL");N;N;N;
N;4792;19444;11010;

TEST.DAL is the name of the DAL script file. DALXMLSCRIPT is the name of the variable
field in the FAP file.

Here is an example of the DAL script:

%listH=XMLFind(%extract, “Forms”, “Form”);

#rc=XMLFirst(%listH);

if #rc=0

return(“Failed to XMLFirst”);

end

aStr=XMLGetCurText(%listH);

return(aStr);

%listH denotes a list type DAL variable. #rc denotes an integer type
DAL variable.

aStr denotes a string type DAL variable.

Scenario 2 You can also load the XML document and create the XML tree at a specific image field
by calling the LoadXMLList rule from a DAL script. You must set the calling procedure
in the DDT file as shown in Scenario 1.

Here is an example of DAL script file:

%xListH=LoadXMLList("test.xml");

%listH=XMLFind(%xListH,"Forms","Form/@*");

aStr=XMLNthAttrValue(%listH,2);

#rc=DestroyList(%xListH);

return(aStr);

For more information, see the DAL Reference.

Are triggers set the same way when you use XML files in
Documaker?

No, triggers are set differently when you use XML. The XML file should contain the
names of the forms to trigger.

If the FORM.DAT has all recipients set to zero copy counts, then those forms will be
removed from the form set. The recipient copy count should be set in the FORM.DAT
file. For example, based on

<car>

<driver>Tom<driver/>

<driver>Tim<driver/>

<car/>

<car>

<driver>Sally<driver/>

<car/>

You can do simple triggering based on the existence of a node. For example, this

/child::car

would trigger a form if car is a child of the root node. You could make it trigger two of
the same forms because there are two cars.

The system supports value matching. So you can do the following:

103

/child::car[child::driver="Tom"]

Or, you can use the RecipIf rule to trigger an image with custom rule parameters, as
shown in this example:

A={!/child::car/child::driver 1,7}::if

(A='Tom ')::return("^1^")::end::;

If there is such a value in that element in the XML file, the image would trigger. For this
to work, define the offset of the variable attribute as 1 and the length of the data you
want to compare.

For more information, see the Documaker Server System Reference.

Can you use the Concat rule with XML?

You cannot use the Concat rule with XML files. Instead, use a DAL script. Here is an
example:

;0;0;CITYSTATEZIP;0;30;CITYSTATEZIP;0;30;;DAL;csz=@("ADDR-CITY")&',
'&@("ADDR-STATE")&' '&@("ADDR-ZIP")::Return
csz)::;;N;N;N;N;135;1972;16010;

See the DAL Reference for more information.

Can you use the SetAddr rule with XML?

You cannot use the SetAddr rules with XML files. Instead, use the RemoveWhiteSpace
rule to remove the white space from between fields. This rule works similarly to the
SetAddr rules, but is not address specific.

See the Rules Reference for more information.

Can you use the PrintIf rule with XML?

You cannot use the PrintIf rule with XML files. Instead, use a DAL script. Here is an
example:

;0;0;COMPANY;0;8;COMPANY;0;8;;DAL;if (@("PRINTIFSUB")="A")THEN
ANSWER1="Accident":: elseif (@("PRINTIFSUB")="C")THEN ANSWER1=
"Casualty"::end::return (ANSWER1)::;N;N;N;N;11292;919;12010;

See the DAL Reference for more information.

Frequently Asked Questions

104

How does Documaker deal with empty tags in XML files?

Documaker and Docupresentment use the same XML loading routine. The XML loading
routine does not care whether you define all of the fields that might occur in a FAP file,
nor does it care whether if field data is missing, so no error is produced when you load
an XML file with missing field tags.

Just make sure the XML file you are loading is valid according to Documaker’s XML
standards.

If, however, you export the form set, you may get similar same results — if the FAP files
were loaded, the empty fields are written into the XML file with no data. If the FAP files
are not loaded, the system only includes those fields created during the run — which
is usually limited to just the fields with data.

The entries you can use to indicate empty tags are:

<SingleTag />

<EmptyTags></EmptyTags>

<SpacedOut > </SpacedOut>

<NulEval ># \NoSuchObject #</NulEval>

How are overflows defined?

When you define the SetOvFlow rule in the AFGJOB.JDT file, use the XML tag shown
here:

;SetOvFlwSym;1;covsym,xml,1;

When you define the IncOvSym rule in the DDT file, use the XML tag, shown here:

;IncOvSym;covsym,xml;

If an image contains XML data on the same level, use the !descendant parameter
instead of XPath:

<name>

<fielda>

<fieldb>xxxxx<\fieldb>

<fieldc>yyyyy<\fieldc>

<\fielda>

<\name>

The data for <fieldb> and <fieldc> are on the same level so you cannot use an XPath of:

!\name\fielda\fieldb[**ovsym**]

!\name\fielda\fieldc[**ovsym**]

You would have to use:

!descendant::fieldb[**ovsym**]

!descendant::fieldc[**ovsym**]

105

How do you handle overflow within overflow using XML?

Use the SetRecipFromImage rule with the XML overflow variable to get this to work.

Image A (which overflows will trigger image B using the SetRecipFromImage rule)

Image B (which overflows will trigger image C using the SetRecipFromImage rule)

and so on...

See the Rules Reference for more information.

Can you use the LoadExtractData and UseXMLExtract rules in single-
step mode?

When running in single- or two-step mode, omit the LoadExtractData rule. Including it
makes the GenData program enter a processing loop.

You can use the UseXMLExtract rule in single-step, two-step, or multi-step mode. When
you use this rule in multi-step mode, place it after the LoadExtractData rule. In single-
step or two-step mode, place it after the NoGenTrnTransactionProc rule.

You do not have to use the UseXMLExtract rule with the LoadExtractData rule when
running in single-step or two-step mode.

Which version of XML does Transall support?

XML version 1.0 is compliant with Transall. Transall version 10.2 (20011101) supports
both reading and writing XML files.

How do you write HTML pages to output XML via Docupresentment?

Modify the RECIPS.HTM page to add an XML option to the drop-down box on the page.
Here is an example:

 Output file type:

<SELECT NAME="PRTTYPE">

<OPTION> PDF

<OPTION> XML

</SELECT>

Then modify the DAP.INI file to make sure the PrtType control group is set to XML and
not PDF, as follows:

< Printer >

PrtType = XML

Frequently Asked Questions

106

What are some common XML-related errors?

Here is a list of common errors reported to Skywire Software Support concerning XML,
Documaker, and Docupresentment:

Problem Solution

I get an error message when trying the InitQueue method of the
DSICoAPI library. In the trace file this information is reported:

1. Mon Nov 12 08:34:13 2001 DUTLoadLibrary error.
Cannot load DCBW32.DLL (DCBW32.DLL).Error:

2. Mon Nov 12 08:34:13 2001 * DUTDefErrorExit

3. Mon Nov 12 08:34:13 2001 * Cannot QueryProcAddr
<0> <0> DCBSysInit

This is caused by the security settings on the
server sharing.
Revise these settings and provide users with
access to all areas with content.

I have installed the iPPS 3.0 with IDS 1.8 and Documaker 10.2 on a
sandbox server. While trying to log into the site, I get:

Error Code: 429

Error Description: ActiveX component can't create
object

Error Source: iEntryServer.ValidateUser

If I enter an invalid user name and password, the system correctly
tells me that the user did not validate against the database.

Skywire Software R&D and Support recommend
you keep iPPS 3.0 and IDS 1.7 paired together,
until testing in IDS 1.8 has completed.

I have a display problem in the Blackline version. The system is not
correctly merging the XML file with the style sheet
(TEXTMERGE.XSL).

Some features were added to the style sheet that
require MSXML 3.0 to work properly.
After installing MSXML 3.0, which installed the
MSXML3.DLL, and un-registering the
MSXML.DLL, the Blackline feature should work
properly.

XML files are delete periodically, before another process can pick
them up.

For XML, you have to include TimeOut option in
the HTMLFileCache control group. Enter the
timeout value in seconds.

I need to write a DAL script to do conditional triggering using native
XML.

Use the UseXMLExtract or XMLFileExtract rule to
load the XML file and extract the XML tree at the
transaction level. As part of this process, the
system creates a list type DAL variable with a
default name of %extract.

The XML data does not get mapped if the value within the element
starts on a new line with leading spaces.

A single exclamation mark (!) removes the
leading white space. To keep the space, use two
exclamation marks (!!).

 107

Index

Symbols

!descendant parameter 104

A

ampersands
in XML files 96

ancestor 41

attributes 94

B

Byte Order Mark 8

C

character references 96

child 41

Concat rule
and XML 103

108

D

DAL
and XML 101
expressions 61

DAPINSTANCE 10

DAPOPTIONS 10

Debug option 21

descendant 41

DFD files
DSIRecordDFD option 7

DOCSERV.INI file
setting up a message server 6

Documaker Server
running through IDS 101

Docupresentment 3

DSIAttachedVarFile option 7, 99

DSIIgnoreTimeoutError option 6, 98

DSIImportLevel option 7, 99

DSIRecordDFD option 6, 7, 99

DSIReqType option 7, 99

DSITimeout option 7, 99

DSIUseNTUserID option 6, 98

DSIVARS option 6

DSIVars option 98

E

elements 94

ElementText option 40

Enable_Debug_Options option 62

encodings 8

entity references 96

EntryFormset option 5, 6

Executable option 21

Expat XML parser 8, 94

export files 13

ExportFormats control group 97
setting up export formats 4, 5

Ext option 4

Extensible Stylesheet Language 94

extract files
XML files 38

ExtractKeyField control group 8

F

fields
mapping 40

file formats
XML 15

File option 4

forms
triggering in XML files 40

FSISYS.INI file
configuring export options 4, 5

G

GVM
expressions 61

H

HTML
compared to XML 94

I

IDS
using XML 98

IDs
DSIUseNTUserID option 6

images
triggering in XML files 39, 40

109

ImportXMLExtract rule
defined 28

ImportXMLFile rule
defined 31

ISO-8859-1 8, 95

L

LoadExtractData rule
and XML 105

M

mapping fields 40

message servers
setting up 6

messaging 5

N

NoGenTrnTransactionProc rule
and XML 105

O

octothorpes
in XML files 96

overflow
and XML 105
XML files 39

P

parent 41

Path option 4

PrintIf rule
and XML 103

R

referencing symbolic data 62

RemoveWhiteSpace rule
and XML 103

RULServerBaseProc rule
defined 86

S

schema 94, 95

SeachMask option 8

self 41

ServerBaseProc rule
defined 89

SetAddr rules
and XML 103

SetOvFlow rule
and XML 104

SetRecipFromImage rule
and XML 105

sibling 41

SOAP 99

SuppressDlg option 4, 14

T

tags 94
names of 96

Index

110

timeouts
DSIIgnoreTimeoutError option 6
DSITimeout option 7

Transall
and XML 105

triggers
and XML 102

U

UDDI 99

Unicode
and XML 97

US-ASCII 8, 95

user IDs
DSIUseNTUserID option 6

UseXMLExtract rule
and XML 105
overview 35
XML input files 97

UTF-8 8, 95

W

WXMEntryHookExtXMLLoad function 3, 5

WXMExportXML function 3

WXMImportXML function 3

WXMImportXMLArchive function 3, 5

X

XML
and DAL 101
and overflow 104, 105
and Transall 105
and triggers 102
and Unicode 97
common errors 106
compared to HTML 94
defined 2
empty tags 104
export format 4
import format 5
job tickets 100
message format 5
parser 94
path locator 41
reserved words 96
standards 95

XML extract files
mapping data 36

XML files
as extract files 35
creating an export file 13
file format 15
importing 20
transforming 21

111

XML fle format 15

XML parser 8

XML_IMP_EXP control group 4, 6

XMLFileExtract rule 35, 97

XPath 41
search masks 61

XPath option 62

XPATHW32 utility 41, 44

XSLT templates 21

XSLTName option 21

Index

112

	Start
	Notice
	Contents
	Introduction
	2 Overview
	3 Setting Up the XML Add-On
	4 Setting Up Documaker Workstation
	4 Setting Up the XML Export Format
	5 Setting Up the XML Import Format
	5 Setting Up the XML Message Format

	6 Setting Up Docupresentment
	8 Using the Parser
	8 Byte order marks

	9 XML File Format
	10

	Importing and Exporting XML Files with Documaker Workstation
	12 Modifying INI Files
	12 Setting up the XML export format
	12 Setting up the XML import format

	13 Creating an XML Export File
	15 Example Documaker XML File Format
	19 Form options

	20 Importing a Documaker XML File
	21 Transforming XML Files
	21 Appending output transformations

	Importing and Exporting XML Files with Documaker Server
	33 Using the File Option
	33 Using the INI Option
	34 Using the SCH Option
	34 Using the GVM Option

	Using XML Extract Files
	36 Mapping Formatted Data from Extract Files
	38 Searching an XML Extract File
	39 Handling Overflow
	40 Triggering Forms and Images
	40 Using the ElementText option

	41 Using XPath
	41 XPath Syntax
	41 Axes
	42 Symbols
	42 Functions
	43 Expressions

	44 Using the XPath Testing Utility
	44 Example 1
	45 Example 2
	45 Example 3
	45 Example 4
	45 Example 5
	46 Example 6
	46 Example 7
	46 Example 8
	47 Example 9
	47 Example 10

	48 Example XML File

	Using DAL XML Functions and XPath
	50 Scenarios
	50 Scenario 1
	50 Scenario 2

	51 Using XML Built-in Functions
	51 LoadXMLList
	51 DestroyList
	51 GetListElem
	51 IsXMLError
	52 XMLFind
	52 XMLFirst
	52 XMLNext
	52 XMLGetCurName
	53 XMLGetCurText
	53 XMLFirstAttrib
	53 XMLNextAttrib
	53 XMLAttrName
	53 XMLAttrValue
	54 XMLNthText
	54 XMLNthAttrName
	54 XMLNthAttrValue

	55 Using the XML Path Locator
	55 Axes
	55 Function calls
	55 Operators or signs
	55 Expressions
	56 Element list
	56 Attribute list
	56 Text list
	57 Text string

	Additional Ways to Use XML and Documaker Server
	60 Mapping Fields with XPath
	61 Referencing DAL and GVM Using XML
	63 Running Documaker Server Using an XML Job Ticket
	64 Creating Multiple Print Files Using the PrintFormset Rule

	Using IDS to Run Documaker Server
	66 Overview
	67 Setting Up IDS
	67 DOCSERV.INI file
	67 DAP.INI file
	67 RPEX1.INI file
	68 Setting up multiple IDS servers

	69 Setting Up Documaker Server
	69 FSISYS.INI or FSIUSER.INI file
	69 AFGJOB.JDT file
	70 Naming Conventions for Output Files

	71 Controlling Documaker Server
	73 INI options
	73 Returns
	73 Error messages

	Frequently Asked Questions
	94 Is XML the same as HTML?
	94 Who developed the XML parser?
	94 What is an XML tag?
	94 What is an XML attribute?
	95 What is a schema?
	95 What XML standards are accepted by Skywire Software software?
	96 Are ampersands (&) and octothorpes (#) supported in XML files?
	96 What tag names cannot be used in XML?
	97 How do you send an XML input file to Documaker?
	97 How do you export an XML file from Documaker Workstation?
	97 What are the Unicode capabilities of XML?
	98 How do you set up Docupresentment to use XML?
	99 Can the SOAP standard be used with Docupresentment?
	100 How can Docupresentment run Documaker using XML job- tickets?
	101 Can you use DAL with XML files?
	101 Scenario 1
	102 Scenario 2

	102 Are triggers set the same way when you use XML files in Documaker?
	103 Can you use the Concat rule with XML?
	103 Can you use the SetAddr rule with XML?
	103 Can you use the PrintIf rule with XML?
	104 How does Documaker deal with empty tags in XML files?
	104 How are overflows defined?
	105 How do you handle overflow within overflow using XML?
	105 Can you use the LoadExtractData and UseXMLExtract rules in single-step mode?
	105 Which version of XML does Transall support?
	105 How do you write HTML pages to output XML via Docupresentment?
	106 What are some common XML-related errors?

	Introduction
	Overview
	Setting Up the XML Add-On
	Setting Up Documaker Workstation
	Setting Up the XML Export Format
	Setting Up the XML Import Format
	Setting Up the XML Message Format

	Setting Up Docupresentment
	Using the Parser
	Byte order marks

	XML File Format

	Importing and Exporting XML Files with Documaker Workstation
	Modifying INI Files
	Setting up the XML export format
	Setting up the XML import format

	Creating an XML Export File
	Example Documaker XML File Format
	Form options

	Importing a Documaker XML File
	Transforming XML Files
	Appending output transformations

	Importing and Exporting XML Files with Documaker Server
	Using the File Option
	Using the INI Option
	Using the SCH Option
	Using the GVM Option

	Using XML Extract Files
	Mapping Formatted Data from Extract Files
	Searching an XML Extract File
	Handling Overflow
	Triggering Forms and Images
	Using the ElementText option

	Using XPath
	XPath Syntax
	Axes
	Symbols
	Functions
	Expressions

	Using the XPath Testing Utility
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10

	Example XML File

	Using DAL XML Functions and XPath
	Scenarios
	Scenario 1
	Scenario 2

	Using XML Built-in Functions
	LoadXMLList
	DestroyList
	GetListElem
	IsXMLError
	XMLFind
	XMLFirst
	XMLNext
	XMLGetCurName
	XMLGetCurText
	XMLFirstAttrib
	XMLNextAttrib
	XMLAttrName
	XMLAttrValue
	XMLNthText
	XMLNthAttrName
	XMLNthAttrValue

	Using the XML Path Locator
	Axes
	Function calls
	Operators or signs
	Expressions
	Element list
	Attribute list
	Text list
	Text string

	Additional Ways to Use XML and Documaker Server
	Mapping Fields with XPath
	Referencing DAL and GVM Using XML
	Running Documaker Server Using an XML Job Ticket
	Creating Multiple Print Files Using the PrintFormset Rule

	Using IDS to Run Documaker Server
	Overview
	Setting Up IDS
	DOCSERV.INI file
	DAP.INI file
	RPEX1.INI file
	Setting up multiple IDS servers

	Setting Up Documaker Server
	FSISYS.INI or FSIUSER.INI file
	AFGJOB.JDT file
	Naming Conventions for Output Files

	Controlling Documaker Server
	INI options
	Returns
	Error messages

	Frequently Asked Questions
	Is XML the same as HTML?
	Who developed the XML parser?
	What is an XML tag?
	What is an XML attribute?
	What is a schema?
	What XML standards are accepted by Skywire Software software?
	Are ampersands (&) and octothorpes (#) supported in XML files?
	What tag names cannot be used in XML?
	How do you send an XML input file to Documaker?
	How do you export an XML file from Documaker Workstation?
	What are the Unicode capabilities of XML?
	How do you set up Docupresentment to use XML?
	Can the SOAP standard be used with Docupresentment?
	How can Docupresentment run Documaker using XML job-tickets?
	Can you use DAL with XML files?
	Scenario 1
	Scenario 2

	Are triggers set the same way when you use XML files in Documaker?
	Can you use the Concat rule with XML?
	Can you use the SetAddr rule with XML?
	Can you use the PrintIf rule with XML?
	How does Documaker deal with empty tags in XML files?
	How are overflows defined?
	How do you handle overflow within overflow using XML?
	Can you use the LoadExtractData and UseXMLExtract rules in single- step mode?
	Which version of XML does Transall support?
	How do you write HTML pages to output XML via Docupresentment?
	What are some common XML-related errors?

	Index
	Symbols
	!descendant parameter 104

	A
	ampersands
	ancestor 41
	attributes 94

	B
	Byte Order Mark 8

	C
	character references 96
	child 41
	Concat rule

	D
	DAL
	DAPINSTANCE 10
	DAPOPTIONS 10
	Debug option 21
	descendant 41
	DFD files
	DOCSERV.INI file
	Documaker Server
	Docupresentment 3
	DSIAttachedVarFile option 7, 99
	DSIIgnoreTimeoutError option 6, 98
	DSIImportLevel option 7, 99
	DSIRecordDFD option 6, 7, 99
	DSIReqType option 7, 99
	DSITimeout option 7, 99
	DSIUseNTUserID option 6, 98
	DSIVARS option 6
	DSIVars option 98

	E
	elements 94
	ElementText option 40
	Enable_Debug_Options option 62
	encodings 8
	entity references 96
	EntryFormset option 5, 6
	Executable option 21
	Expat XML parser 8, 94
	export files 13
	ExportFormats control group 97
	Ext option 4
	Extensible Stylesheet Language 94
	extract files
	ExtractKeyField control group 8

	F
	fields
	file formats
	File option 4
	forms
	FSISYS.INI file

	G
	GVM

	H
	HTML

	I
	IDS
	IDs
	images
	ImportXMLExtract rule
	ImportXMLFile rule
	ISO-8859-1 8, 95

	L
	LoadExtractData rule

	M
	mapping fields 40
	message servers
	messaging 5

	N
	NoGenTrnTransactionProc rule

	O
	octothorpes
	overflow

	P
	parent 41
	Path option 4
	PrintIf rule

	R
	referencing symbolic data 62
	RemoveWhiteSpace rule
	RULServerBaseProc rule

	S
	schema 94, 95
	SeachMask option 8
	self 41
	ServerBaseProc rule
	SetAddr rules
	SetOvFlow rule
	SetRecipFromImage rule
	sibling 41
	SOAP 99
	SuppressDlg option 4, 14

	T
	tags 94
	timeouts
	Transall
	triggers

	U
	UDDI 99
	Unicode
	US-ASCII 8, 95
	user IDs
	UseXMLExtract rule
	UTF-8 8, 95

	W
	WXMEntryHookExtXMLLoad function 3, 5
	WXMExportXML function 3
	WXMImportXML function 3
	WXMImportXMLArchive function 3, 5

	X
	XML
	XML extract files
	XML files
	XML fle format 15
	XML parser 8
	XML_IMP_EXP control group 4, 6
	XMLFileExtract rule 35, 97
	XPath 41
	XPath option 62
	XPATHW32 utility 41, 44
	XSLT templates 21
	XSLTName option 21

	Go to Skywire Software's web site

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

