Developer's Guide for Oracle Help
11g Release 2 (11.1.2.0.0)
E16280-01
May 2011
Oracle Fusion Middleware Developer's Guide for Oracle Help, 11g Release 2 (11.1.2.0.0)
E16280-01
Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Himanshu Marathe
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Fusion Middleware Developer's Guide for Oracle Help explains how to use Oracle Help to develop and display HTML-based help systems for Java applications and for web applications.
This document is intended for authors who wish to create a single help system that can be displayed both in a Java environment and in a web environment.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, refer to Oracle Help Technologies at http://www.oracle.com/technetwork/topics/index-083946.html
.
The following text conventions are used in this document:
Convention	Meaning
boldface | Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. |
italic | Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. |
monospace | Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. |
Oracle Help Release 11.1.2.0.0 includes many features that help you create and manage help systems for your application. In the current release, Oracle Help includes Oracle Help for Java, Oracle Help for the Web – Rich Client, and Oracle Help for the Web – UIX. Oracle Help also supports Oracle Fusion Middleware 11g Release 2 (11.1.2.0.0).
This part describes an overview of the Oracle Help. It contains the following chapters:
This chapter provides an introduction to Oracle Help.
This chapter describes the user interface components of Oracle Help for Java.
This chapter describes the user interface components of Oracle Help for Web.
The Oracle Help technologies provide the means for developing and displaying HTML-based help systems for Java applications and for web applications. Authors can create a single help system that can be displayed—without modification—both in a Java environment, using Oracle Help for Java (OHJ); and in a web environment, using Oracle Help for the Web. Alternatively, you can just use Oracle Help for Java if you only need help in a Java environment, or you can just use Oracle Help for the Web if you only need help in a web environment. Oracle Help for the Web is available in two versions: Oracle Help for the Web – Rich Client and Oracle Help for the Web – UIX.
Throughout this guide, Oracle Help is used when the comments apply to both Oracle Help for Java and Oracle Help for the Web. OHJ is used when the comments apply only to Oracle Help for Java. OHW is used when the comments apply only to Oracle Help for the Web.
This chapter includes the following sections:
Oracle Help for Java is a set of Java components, a Java API, and a file formats specification for developing and displaying HTML-based help content in a Java environment. OHJ is designed primarily for displaying help for Java applications, although it can also be implemented as a standalone document viewer for use in a Java environment.
The Oracle Help for Java Developer's Kit (OHJDK) includes the OHJ technology plus tools and documentation for developing context-sensitive help for Java applets and applications. This includes the following:
For more information about OHJ features, see Chapter 2, "Oracle Help for Java User Interface".
Oracle Help for the Web, also known as Oracle Help for the Web – Rich Client (OHW-RC) because of its rich interface, delivers HTML-based Help content in a Web environment. It uses the Oracle Application Developer Framework (ADF), which is based on the Java Server Faces (JSF) technology, to build a user interface that follows Oracle's Browser Look And Feel Plus (BLAF+) behaviors and guidelines.
The Oracle Help for the Web can be used in many different situations:
Oracle Help for the Web includes the following:
Besides being used for the internal JDeveloper help system itself, JDeveloper includes the Oracle Help for Java runtime library, so if you are developing Java applications with JDeveloper, it is easy to include OHJ as the Java help system technology. For more information, see Chapter 12, "Introduction to Oracle Help for Java Developer's Kit".
JDeveloper does not include the Oracle Help for the Web. You can obtain it, and the complete Oracle Help for Java development kit, from the Oracle Technology Network (OTN).
As a service to our customers and the software community, Oracle provides Oracle Help software and support for free. This includes both Oracle Help for Java and Oracle Help for the Web.
Oracle Help is available for free and may be redistributed as the help system for your application. For full information, see the license distributed with the release.
Post your questions on the Oracle Help Technologies Forum on the Oracle Technology Network.
The Oracle Help for Java (OHJ) user interface has two main parts, Help Navigator window and Help Topic window. The Help Navigator window includes controls for finding topics and the Help Topic window displays HTML content.
Users can dock the windows, so they appear as panes in a single window, as shown in Figure 2-2, or undock them so they appear in separate windows as shown in Figure 2-1.
This chapter describes the OHJ user interface components in the following sections:
The OHJ Help Topic windows (or topic panes, when docked) display HTML content. Figure 2-3 shows topic windows with different types of HTML content.
The default HTML display component included in the OHJDK is a special implementation of the ICEbrowser from ICEsoft Technologies, Inc. For more information about the browser and its supported technologies, see http://www.icesoft.com
. You may use and redistribute this component free of charge if it is used as part of a help system using OHJ. This HTML display component supports the following:
You do not have to use the default HTML display. You can replace it with a different HTML display component. Or, if your application and the help system run as an applet in a Web browser, you can use a browser window as the topic window. Consequently, the display capabilities for your implementation of OHJ rely on the HTML display you chose to embed in the system.
The navigator window is a tabbed control for navigating and finding topics in the help system. By default, the navigator window contains tabs for a Contents, Index, and Search. Authors can control several characteristics of the navigator window simply by setting parameters for the help system. For example, you can change the labels on the tabs and add icons. You could also display multiple tables of contents, for example, one for product help and one for a tutorial. For a more complex system, a Java programmer can create custom tabs, and the author can add them to the navigator window.
This topic contains the following sections:
The Contents tab displays topics in a hierarchical tree. The contents and structure of the tree are specified by the author. Multiple file formats are supported for defining the tree.
When a user double-clicks a topic title in the table of contents, that topic is displayed in the topic window. The user may also open a topic in a new, additional, topic window by selecting a button on the toolbar, or by selecting a command from the right-click context menu.
The table of contents view has the following features:
The Index tab displays an alphabetical list of keywords associated with topics. The keywords are defined by the help author, and, like the table of contents, multiple file formats are supported for specifying the list.
Figure 2-5 numbered callouts identify the following user interface components:
Keyword list: As the user types, the first keyword in the list that matches the typed letters is selected. As more letters are typed, a more accurate selection is made. Alternatively, the user can simply select a keyword from this list.
The index provides many useful features:
The Search tab displays a text field where the user can enter text, then select Search. The titles of topics whose content contains that word or phrase are listed in the Results list at the bottom of the tab. When the user double-clicks a title, that topic appears in the topic window.
Figure 2-6 numbered callouts identify the following user interface components:
Users can set the following options when performing a search:
Search tab provides many useful features:
The search database is generated when authoring the help system. The OHJDK and as other authoring tools that support OHJ include a utility for generating this database, called the Text Search Indexer. The search database uses an Oracle-defined file format. This search database is always used when you implement it on the client. You can also implement your own search on a server. For example, if you store your topics in an Oracle database, you can use the database's text processing capabilities to perform the search.
For more information about Text Search Indexer, see Chapter 11, "Using the Text Search Indexer".
Note: An Oracle database is not required to use OHJ. |
Users can mark topics in a helpset as favorites using the Favorites Navigator, similar to the Favorites functionality in web browsers.
Users can identify and manage favorite topics from a helpset:
Users can access Favorites navigator functionality from the Tools menu of Help Topic window, which displays an Add Favorites dialog, or by right-clicking a favorite in the Favorites navigator.
Note: Unlike Contents, Search, or Index, the Favorites navigator is displayed by invoking the methodenableFavoritesNavigator() URL, which specifies a file, favorites.xml , to contain favorites information. For more information, see Section 13.4, "Adding the Favorites Tab or Custom Tab" |
Among other features, the OHJ API enables you to customize the default OHJ user interface. For example, you can program custom tabs, also called navigators, in Java and add them to the navigator window. Figure 2-8 shows a custom tab Product Education.
A collection of help topics, with their associated control files, is called a helpset. Helpsets can be merged at runtime; multiple authors can create multiple helpsets that are seamlessly merged after authoring completed. Similarly, new components can be added to a user's help system without having to rework the entire system.
Several features support merged helpsets:
When this implementation is used, the Contents and the Index tabs show only items from the helpset that is selected from the list. The Search text searches only for items in the selected helpset.
Oracle Help for Java and Oracle Help for the Web, both support the merging of TOC files from multiple helpsets to create one tree. The TOC that results from merging multiple tables is essentially the result of laying all trees on top of one another. If multiple TOCs contain identical nodes (nodes that have the same text and target topic Id), then these nodes are combined into one node that has all original nodes' children.
Consider the scenario when you have two helpsets that make use of toc1.xml
and toc2.xml
:
toc1.xml
toc2.xml
Figure 2-10 shows the TOC that results from merging toc1.xml
and toc2.xml
. You can see that there is only one node for 2
because the target is 2_topic
for both the <tocitem
> items with text=2
. The same applies for the node with text=2.2
.
This example assumes that the <view>
elements defining the Contents navigators for the helpsets do not have titles. If a <view>
for a Contents navigator includes a <title>
, then this title is used as a parent node to all <tocitem>
items defined by the toc.xml
file. For more information, see Chapter 5, "Metadata Files".
Oracle Help for Java (OHJ) features, not otherwise mentioned in this Oracle Help Guide, include the following features:
OHJ has the following accessibility features:
http://www.freedomscientific.com
. OHJ has the following internationalization features:
charset
of the HTML file, using the IANA character set encoding names (when using the default ICEbrowser HTML display component). The OHJ Help system is implemented using Java Foundation Class (JFC) Swing components.
OHJ has an open, pluggable architecture. That means that you can substitute your own components for default components such as the search facility or the HTML display component. In addition, components such as the Navigator tabs and the HTML display can be embedded into an application's user interface, to provide completely integrated help.
All OHJ application class files, control files, and content files can be encapsulated and compressed into JAR (Java Archive) files. It is not necessary to unJAR these files to run the help system.
The Oracle Help for the Web (OHW) user interface provides the same features as that of OHJ. However, as OHW is a Web application, there are some differences in appearance and behavior.
Figure 3-1 shows OHW in a Web browser.
Figure 3-1 numbered callouts identify the following user interface components:
.hs
file). With the exception of the branding area, these elements are configured in the helpset file. OHW and OHJ use the exact same file formats, including the helpset file. That means that one can take an existing OHJ help system and deploy it as an OHW system, without changing any of the existing control files.
For more information about deploying OHW system, see Chapter 16, "Deploying OHW Demo File".
The top area of the rich client contains a helpset switcher (where applicable), a quick search control, a View menu that enables users to manipulate areas on the page, and a toolbar.
Figure 3-2 numbered callouts identify the following user interface components:
combineBooks
parameter, in the ohwconfig.xml
file, is set to false
. oracle.help.navigator.searchNavigator.SearchNavigator
. A Collapse Pane button is also available to hide the toolbar and maximize the Topic Pane.
The Contents Navigator displays topics in a hierarchical tree. The contents and structure of the tree shows the merged data from the table of contents views in the loaded helpsets. Users can expand or collapse branches of the tree and select leaves (and branches that have associated topics). When a leaf or branch associated with a topic is selected, the topic is displayed in the Topic Pane on the right. A scroll bar, if required, appears when necessary.If the Table of Contents in the Contents Navigator is not visible, use the View menu in the global toolbar to navigate to the tab.
The Contents Navigator is always synchronized with the topic displayed in the Topic Pane. For example, if you click a link in a topic and jump to another topic, the new topic is automatically highlighted in the Contents tab.The state of the Contents tab is maintained even when a user switches between navigators. For example, if a user selects a topic and switches to the Index navigator and back (without opening any other topic), the selected topic, scroll position, and expansion state of the tree remain unchanged. This works with the auto-synchronization functionality.The context menu provides a list of command menu items to control visibility and navigation of the helpset. The items are:
Note: The functions provided by the first three context menu items are also available through the global toolbar. For more information, see Section 3.1, "OHW Global Toolbar". |
The Index Navigator displays a sorted list of keywords, in a hierarchy of two levels. A keyword can be associated with multiple topics. The hierarchy is indicated by indented child items.
Figure 3-4 numbered callouts identify the following user interface components:
The Search Navigator provides a user interface for constructing a full-text search query. The user may enter multiple words for the search string.
Figure 3-5 numbered callouts identify the following user interface components:
You can also use the * wildcard character in your search string. Note that the support for the * wildcard character is available in between and in the end of the search string, but not in the beginning of the search string. For example, John*Doe
and John*
are valid search strings, *Doe
is an invalid search string.
The Oracle Help for the Web includes the Oracle Help Full Text Search indexer that adds word position information into the IDX files. The Oracle Help Full Text Search indexer enables exact phrase searches and improves the result ranking mechanism (giving more points if the search terms are found near to each other). To search for an exact phrase, place the phrase in double quotes. For example, "John Doe"
.
Oracle Help for the Web can also read IDX files created with previous versions of the Oracle Help Indexer, and enables you to use both old and new IDX files together, if required. Using an IDX file created with the new indexer, of a previous OHJ or OHW release, is not supported and raises a SearchException
exception to be logged stating that the IDX version is not supported.
Note: The IDX files created with Oracle Help Full Text Search indexer are not backward compatible. The indexer gives an error if you use an IDX file created with the current indexer, with an old version of Oracle Help for the Web. |
The Topic pane displays the HTML help content.
The Topic pane has its own toolbar to manipulate the currently displayed topic. Figure 3-6 numbered callouts identify the following user interface components:
OHW features, not otherwise mentioned in this Oracle Help Guide, include the following.
The About OHW feature displays information about the OHW help system, Oracle copyright information, and the OHW build you are using.
Note: Oracle Help for Java supports the About OHW feature using the request query parameteraboutOHW . |
To view the About OHW page, the user must navigate to the following URL:
http://localhost:<port_number>/<help ohw-rcf context-root>/faces/helppages/main.jspx?config=OHW+Servlet+1&aboutOHW=true
Upon navigating to this URL, the Topic pane displays the current OHW build information along with copyright information.
Users can bookmark a page, and the same topic is displayed when navigating to the bookmark. Users can also save a URL link and send the link by email. The following points must be noted for Bookmarking feature:
A bookmark from OHW can display the same topic view in OHW given the topic ID, group, and locale. However, as OHW bookmarks have many other parameters besides the ones that are supported, the state of all navigators may not be restored.
OHW URLs indexed by search engines continue to link to valid help content.
Users can view the current topic in a single pane layout by altering the URL.
For example:
topicId
http://localhost:7101/help-ohw-rcf-context-root/ohguide/?topic=ohg_about_about_html&linkHelp=false
vtTopicFile
http://localhost:7101/help-ohw-rcf-context-root/ohguide/?vtTopicFile=ohguide/ohg_about_about.html&linkHelp=false
This part describes the Oracle Help file formats. It contains the following chapters:
This chapter provides an introduction to Oracle Help file formats.
This chapter describes the metadata files used in Oracle Help. These include helpset files and map files.
This chapter describes the information files used in Oracle Help. These include Table of Contents file, Index file, Search Index file, and Link file.
This chapter describes the topic files used in Oracle Help.
This chapter describes the configuration files of Oracle Help for Web.
Oracle Help for Java (OHJ) and Oracle Help for the Web (OHW) both use the following kinds of files:
In addition to the above files, OHW uses a configuration file to configure the servlet filter. For more information, see Chapter 8, "Oracle Help for the Web Configuration File".
The Oracle Help file formats are based on the JavaHelp™ specification. For more information about differences between Java Help and Oracle Help file formats, see Appendix A, "Oracle Help and JavaHelp File Formats".
When you use helpsets, you do not have to use specific extensions for the names of the associated control files, but you must ensure that the correct file name and extensions are used when the file is referenced.
Table 4-1 shows conventional (but not required) extensions for the helpset-related file formats. It also shows where these files are referenced, so you ensure that the correct name and extension are used.
Table 4-1 OHJ and OHW Files
Type of File | Conventional Extension | Referenced By |
---|---|---|
Helpset |
| In OHJ, the calls from the Java program that launches the help. In OHW, from the configuration file: <books> <helpSet location="filename.hs" /> </books> |
Helpset used as a subhelpset |
| Master helpset file in <subhelpset location="filename.hs"/> |
Map |
| Helpset file in <maps> <mapref>filename.xml</mapref> </maps> |
TOC |
| Helpset file in <maps> <view> <data engine="oracle.help.engine.XMLTOCEngine">filename.xml</data> </view> |
Keyword Index |
| Helpset file in <view> <data engine="oracle.help.engine.XMLIndexEngine">filename.xml</data> </view> |
Link |
| Helpset file in <links> <linkref>filename.xml</linkref> </links> |
Search Index |
| Helpset file in <view> <data engine="oracle.help.engine.SeearchEngine">filename.idx</data> </view> |
Metadata files provide information about the structure and operation of the help system:
The helpset file is an XML file with .hs
extension that organizes project-level information about the helpset. For example, it points to other control files to be used for the helpset, including map, table of contents, index, associative links, and search. These references are used, in part to define the set of navigational views that Oracle Help uses to construct the user interface.
The helpset file consists of the following elements and their child elements:
The contents of a helpset file are entirely contained within a single <helpset>
element.That is, a helpset file must begin with <helpset>
and end with </helpset>
. Only one <helpset>
element is allowed in a helpset file.
The <title>
element assigns a name to the helpset, for example:
Under certain conditions, this title is displayed in the Oracle Help user interface as the name of the helpset. For example, it is displayed in the dropdown list of helpsets when Oracle Help is implemented to display a list of merged helpsets, instead of concatenating them.
The <maps>
element points to one or more map files, which are used to map topic IDs to topic files. The <maps>
element has the following child elements:
Table 5-1 <maps> Child Elements
Element | Description |
---|---|
| The location of a map file for this book. When multiple map files are specified, they are merged. Each
|
| The ID (defined in the map file) of a topic that is used in some cases as the default topic for the helpset. That is, if no topic is specified when OHJ is launched, this topic is displayed by default. The
The |
For example:
The <wintype>
element defines the characteristics of one or more windows that can be used by OHJ to display topics, including size, screen placement, text color, and background color. For more information about how this looks in the OHJ user interface, see Section 2.1, "OHJ Topic Windows".
Note: OHW does not recognize<wintype> element. This information is also ignored if topics are displayed directly in a web browser. |
The helpset file can have any number of <wintype>
sections; one for each window type. The <wintype>
tag has one valid attribute:
default
– If true
, the current window type is the default window type to be used if a topic file does not designate a window type. If false
, this window type is not a default and is not used unless explicitly listed in the map file. When the default attribute is not present, its value is assumed to be false
. The <wintype>
element can have the following child elements:
Table 5-2 <wintype> Child Elements
Element | Description |
---|---|
| The name of this window type. This name is used to associate topics with the window type. If multiple windows are defined in a helpset, they must have unique names. |
| The height of the window. A numeric value indicates a distance in pixels. A numeric value followed by a percent sign (%) indicates a percentage of the visible screen. |
| The width of the window in pixels. A numeric value indicates a distance in pixels. A numeric value followed by a percent sign (%) indicates a percentage of the visible screen. |
| The horizontal position of the window. A numeric value indicates a distance in pixels. A negative value indicates distance between the right edge of the window and the right edge of the screen. A numeric value followed by a percent sign (%) indicates a percentage of the visible screen. |
| The vertical position of the window in pixels. A numeric value indicates a distance in pixels. A negative value indicates distance between the bottom edge of the window and the bottom of the screen. A numeric value followed by a percent sign (%) indicates a percentage of the visible screen. |
| The six-digit hexadecimal RGB value of the foreground color of the text in the window. A preceding # on the value may be present, but is ignored. For any single topic, a foreground color specified in the HTML topic file or CSS overrides this value. |
| The six -digit hexadecimal RGB value of the foreground color of the links in the window. A preceding # on the value may be present but is ignored. For any single topic, a link color specified in the HTML topic file or CSS overrides this value. |
| The six -digit hexadecimal RGB value of the background color of the window. A preceding # on the value may be present but is ignored. For any single topic, a background color specified in the HTML topic file or CSS overrides this value. |
| Text that appears in the title bar of the window. |
| Defines the buttons to display in the window's toolbar. A five-digit hexadecimal value which is the sum of one or more of the following:
A preceding # on the value may be present, but it is ignored. |
Note that attributes specified in HTML topic content files always take precedence over attributes specified in the <wintype>
section of the helpset.
The following <wintype>
element defines a window to be used for tutorial topics:
This example defines the following:
The <links>
element points to one or more link files, which are used to associate multiple targets with link IDs. For more information about links, see Section 6.5, "Link File".
The <links>
element has the following child element:
Table 5-3 <links> Child Elements
Element | Description |
---|---|
< | The location of a map file for this book. When multiple map files are specified, they are merged. Each
|
For example:
The <view>
element specifies how Oracle Help should render navigational views. A navigational view is a representation of the data in the navigation control files (such as TOC, index, and search) plus the user interface controls for navigating through them. Oracle Help includes Java classes to render standard types of views. Each type of view is presented on its own accordian panel: by default, the Contents, Index, and Search panels.
A helpset can include multiple views of each type. That is, the user interface can display multiple TOC tabs, Index tabs, and so forth. Oracle Help can also merge views of the same type. It does this by merging all views of the same type that have the same label. Views with the same type and label are merged as follows:
The <view>
element can have the following child elements:
Table 5-4 <view> Child Elements
Element | Description |
---|---|
| The label displayed on the navigator tab in the user interface. This label is optional. If no label is provided, Oracle Help uses Contents, Index, and Search for the appropriate tabs. The
|
| A title for the view. This title appears in different places in the different navigational views:
The title tag supports the following attribute:
|
| The name of the Java class to be used as the user interface for this view. The following types are provided with the default implementation: oracle.help.navigator.tocNavigator.TOCNavigator oracle.help.navigator.keywordNavigator.KeywordNavigator oracle.help.navigator.searchNavigator.SearchNavigator If JavaHelp types are specified, Oracle Help maps these correctly to Oracle Help types. |
| The path to the data used by this view, in other words, to the pertinent navigational control file, such as table-of-contents file, index file, or search file. The contents of this element can be a file name or a URL. The
|
In the following example, two TOC tabs are created, one labeled User's Guide and the other labeled Reference. They both use the XML file format for the table of contents (specified in the <data>
element), but they have different values in the <label>
element. If both of the labels were the same, the TOC files, ug_toc.xml
and ref_toc.xml
, would be combined into a single TOC, and it would be shown in a single tab.
In the following example code, only one Contents tab is created, even though the two views use different file formats (XML compared to HHC) and different data engines. That is because the label and the type are the same. One advantage of this feature is that you can merge help systems using the old format with help systems using the new one without compromising the way the tabs are presented.
The next example shows one view each for a table of contents, an index, and a search. They do not have labels, so Oracle Help creates three tabs with the default labels, Contents, Index, and Search. Each view contains a <title>
element with the value User's Guide. This produces the following results:
ug_toc.xml
table of contents file appear under a single top-level node called User's Guide. This feature is useful when you merge several helpsets. It helps to keep the user oriented by reducing the number of top-level nodes in the table of contents and by showing the sources of topics found when using the index and search.
The following tables lists valid engine values for each view type:
Table 5-5 View Type: oracle.help.navigator.tocNavigator.TOCNavigator
Engine | Description |
---|---|
| Oracle Help XML table of contents (extension of JavaHelp TOC) |
| Microsoft HTMLHelp 1.x table of contents |
| Table of contents from previous versions of OHJ |
Table 5-6 View Type: oracle.help.navigator.keywordNavigator.KeywordNavigator
Engine | Description |
---|---|
| Oracle Help XML keyword index (extension of JavaHelp keyword index) |
| Microsoft HTMLHelp keyword index. |
| Keyword index from previous versions of OHJ |
The <subhelpset>
element is used to include other helpsets with the one defined in this helpset file. The views from combined subhelpsets are merged in the same way multiple views are merged in a single helpset. That is, subhelpset views with the same <type>
and <label>
are merged. For more information, see Section 5.1.6, "The <view> Element".
The <subhelpset>
element supports the following attributes:
location
– Specifies the URL of the helpset to be merged. class
– [optional] A class whose location is the base location for the subhelpset file. Any path information in the location attribute is relative to this base location. Oracle Help assumes that subhelpsets may not always be present. For example, a master helpset for a suite of products may have a subhelpset for each product in the suite: product A, product B, and product C. The user might initially install just product A. At a later time, the user might install product C. Subhelpsets aid in this situation, because you can specify subhelpsets that are loaded if they are found, and are ignored if they are not found.
The following listing shows a sample helpset with all of the sections discussed above, including five views: two tables of contents, two keyword indexes, and a text search.
The map file is an XML file that associates IDs with files. The primary use of the map file is to define topic IDs and associate them with topic files. You can also associate topic IDs (and thereby the topics) with any window types defined in <wintype>
elements in the helpset file. These IDs are used in the table of contents files, in index files, and in the API for context-sensitive calls.
The map file can also be used to define image IDs and associate them with image files. You can use these image IDs to display images next to tab labels (specified in <view>
elements in the helpset file). They can also be used to display images next to items in the table of contents specified in <tocitem>
elements in the table of contents file.
The following table describes the elements used in the map file:
Table 5-8 Map File Elements
Element | Description |
---|---|
| Defines the mappings. The |
| An ID and its associations. The
|
In the following example, the map IDs topic_1
and topic_2
are not associated with window types and therefore use the helpset's default window type. The map IDs topic_3
and topic_4
map to topic files displayed in the window defined by the intro
window type. Map ID topic_5.tsk
displays File_5.html
in the window defined by the task window type. Map ID topic_5.cncpt
displays the same topic file (File_5.html
) in a different window type (concept
). The association between URL
and wintype
is be used when linking from topic to topic using URLs instead of topic IDs. For example, if a topic had a hard-coded target to File_5.html
, clicking the link would display the HTML content in a task
window type.
This scheme allows authors to assign window types to HTML files and to also override those associations by linking to an alternate topic ID. For example, for topic-to-topic links, TOC links, index links, and hard-coded links to File_5.html
, the author might use topic_5.tsk
, but for links from a tutorial, the author might use topic_5.cncpt
. By keeping this information in the map file, the author has one central repository for managing these assignments.
Help information files contain information about the content of the help system. The information includes:
The Table of Contents (TOC) file is an XML file that describes the content and layout of the table of contents, and it is typically rendered as the Contents tab. Note that each helpset jar file must have one Table of Contents file.
If a helpset jar file contains several child helpsets, use the master Table of Contents file to control the content and layout of parent helpset's table of contents.
Table 6-1 describes the elements used in the table of contents file:
Table 6-1 TOC File Elements
Element | Description |
---|---|
| Defines the table of contents. This element contains
|
| Defines a table of contents entry. A
|
The following example shows a short table of contents file:
This definition produces the following TOC hierarchy:
A master table of contents file controls the TOC structure of all child helpsets, and manages other table of contents files. You must declare the master table of contents before declaring helpset files.
To use a master table of contents, you must first configure the Oracle Help for the Web configuration file.
The following example shows a code extract from the configuration file:
In the above example, the following code declares a master table of contents helpset file:
<helpSet id="master" location="master/src/helpset/master.hs"/>
Note that the master table of contents helpset file must be declared first before any other helpset files.
The entry for master table of contents helpset looks similar to any other TOC entry, as shown in the following code extract example of master.hs
file.
This master table of contents XML file looks similar to any other toc.xml
file, but it contains <tocfile>
elements. The <tocfile>
elements define the location of child table of contents XML files, as shown in the following example.
Note that the master table of contents file controls the structure of the content, you must define your content through helpset files.
The index file is an XML file that describes the content and layout of the index. It is typically rendered as the Index tab.
Table 6-2 describes the elements used in the index file.
Table 6-2 Index File Elements
Element | Description |
---|---|
| Defines the index. It can contain |
| Defines an index item that appears in the keyword list. Nesting index_item_1 within index_item_2 defines index_item_1 to be hierarchically contained within index_item_2, listed and indented below index_item_2 in the index. Oracle Help currently supports only two levels of keywords. The index view collapses any nesting beyond two levels. If an index item has multiple topics associated with it, the topics should be listed as index entries defined in The
|
| Defines an index entry displayed in the topics list when the parent index item is selected in the index list. This tag uses the following attribute:
|
This example defines a very short index file:
The file in the example above produces this index list:
If a user selects Adding a new sheet to a workbook
from that list, a list of the following topics is displayed:
This topic list appears at the bottom of the index pane, as opposed to indented topics, Adding an icon to a sheet
and Adding an icon to a workbook
, which appears in the keyword list at the top of the index pane.
Selecting a keyword that does not have index entries but has a directly associated target (for example, Adding an item to a sheet
) displays the same text in the topics list as it does in the keyword list. Because of the way Oracle Help displays the index, it is a better practice never to use targets in the <indexitem>
tags. Instead, always use the <indexentry>
tags to specify topics associated with an <indexitem>
-- even when there's only one target for a keyword.
In other words, the following code:
...is better than the following code:
The search index file is used when a user performs a text search in Oracle Help, ordinarily from the Search tab. This file uses a proprietary binary format. Any third-party help authoring tool that supports Oracle Help should be able to generate this file. In addition, the OHJDK includes two utilities that generate a search index file:
The link file is an XML file that defines link IDs and associates them with multiple topic IDs (which are defined in the map file). A link ID, or a link keyword, can be used with the alink
protocol in a topic file to display a list of links to the topics associated with the ID. In other words, associative links make it possible to associate an HTML link with multiple targets. The user can then choose which target to follow.
Table 6-3 describes the elements used in the link file:
Table 6-3 Link File Elements
Element | Description |
---|---|
| Defines the link file. The |
| Defines the associative link. The
|
| Defines an entry in the list of links displayed when an associative link is clicked. This element supports the following attributes:
|
The following example defines two associative links:
Using the first link ID from that example, you could define a link dogs
. When a user selected the dogs link, the following list of links would be displayed:
Clicking About Dogs
would display the topic mapped to the about_dogs
ID in the map file.
Topic files are HTML files that contain the content for a help topic. The features supported in the HTML files depend on the browser (or HTML display component) used to display them.
The HTML display component that ships with OHJ is an Oracle-modified version of the ICEbrowser from ICEsoft Technologies, Inc. Versions 5.01 and later of the ICEbrowser are compliant with the HTML 4.0 standard and can display tables and frames also runs Java applets. However, the standard ICEbrowser does not support several features important for a full-featured help system. Therefore, under license from ICEsoft Technologies, Oracle has modified the ICEbrowser to support conventions developed by Oracle to provide the following features:
For these features to work in OHJ, you must use the default ICEbrowser version of OHJ. If you substitute a different HTML display component, these features will not work. Also, if you display your HTML topic files directly in a web browser, that browser will not recognize the protocols and metadata documented on this page; therefore these features will not work.
OHW does support these features. However, the process is different than in OHJ. An Oracle Help for the Web help system can be viewed in any current web browser, and those browsers do not directly support these conventions. Therefore, these custom features are processed in the OHW servlet on the web server and are streamed to users' browsers as standard HTML links and as browser-specific JavaScript.
The target of an HTML
link can be specified using either a URL (as with standard HTML links), anchor links, or by using the Oracle Help topicid
protocol, along with a topic ID specified in the helpset's map file. For example:
When the Getting Started
link is clicked, Oracle Help references the map file and jumps to the HTML file associated with the link's topic ID.
The topicid
protocol also supports anchor links. For example:
When the Getting Started
link is clicked, Oracle Help references the map file and jumps to the advanced
anchor position in HTML file associated with the link's topic ID.
An associative link is a link that is associated with multiple targets. When the user selects an associative link in a topic, a list of all topics associated with the link is displayed, and the user can choose a topic from the list.
Oracle Help supports associative links through the Oracle Help alink
protocol, along with the link file that specifies the associative links for the helpset. For example, an associative link that displays all topics associated with the "worksheet" keyword is specified as follows:
Oracle Help uses the associative link keyword to search the link file (or files) and display a pop-up window with a list of related topics. The feature is particularly useful when link files from multiple helpsets are merged.
For example, select this link
to display a list of associative links defined as follows:
For more information about link file, see Section 6.5, "Link File".
Oracle Help for Java support links for custom protocols through the Oracle Help custom
protocol. For example, a link that uses a custom protocol named myProtocol
is specified as follows:
Defining custom protocols is a powerful way for your help system to call back into your application. You can handle such links in your application by registering a CustomProtocolHandler
with your Help instance. Create an implementation of oracle.help.CustomProtocolHandler
and register it with your oracle.help.Help
instance through the registerCustomProtocolHandler
method. For the example link, you would register an instance of your CustomProtocolHandler
using the string myProtocol
as the first argument to the registerCustomProtocolHandler
method.
When Oracle Help for Java encounters custom protocol links, it searches for a CustomProtocolHandler
registered with the Help
object using the identifier myProtocol
. If one is found, the handleValue(String value)
method of the CustomProtocolHandler
is invoked, passing myValue
as the value.
Popups are supported through the Oracle Help popup
protocol. For example:
The keyword that follows the popup
protocol is a topic ID, as specified in the helpset's map file. When the pop-up link is clicked, the contents of the file associated with the topic ID is displayed in a lightweight pop-up window.
For example:
Oracle Help topic IDs are maintained in the map file, and when Oracle Help must reference a topic ID, it uses the data from the map file. However, you can specify topic IDs in the topics file themselves and then use the Helpset Authoring Wizard to generate a map file from that information. To define a topic ID in a topic file, insert a META tag with the following syntax:
where topic_id_name
specifies the topic ID to be used in the map file.
Note: Third-party authoring tools may use the META tag for generating map files |
For more information about Helpset Authoring Wizard, see Chapter 10, "Helpset Authoring Wizard".
The helpset file can contain a WinType section where you can define one or more named windows with characteristics such as size, position, and background color. You can associate topics (and topic IDs) with these window types in the map file so that whenever the topic is displayed, it is displayed in the specified window.
Note: Window Types are available for OHJ only. |
If you plan to use the Helpset Authoring Wizard, you can associate a window type with a topic in the topic file itself. and must also specify a topic ID in the topic-id
META tag for the topic. Then the wizard uses the information from both META tags to generate the map file.
To associate a window with a topic in a topic file, insert a META tag with the following syntax:
where window_name
is the name of a window defined in the helpset file.
Note:
|
If your helpset uses a simple convention to map between topic IDs and map files, you may be able to significantly enhance Oracle Help's memory usage and startup time with dynamic mapping.
Oracle Help supports an engine attribute on the <mapref>
subelement of the helpset's <maps>
area. By setting the engine attribute, one can use a custom engine to parse the map file and create an object used to map between topic IDs and files. In fact, by using certain engines, you may actually eliminate the map file altogether.The engine attribute is optional, so if it goes unspecified, Oracle Help expects the location attribute to be set on the <mapref>
, and the map file is parsed and stored in the same manner as it was in older versions of Oracle Help.However, Oracle Help supports two engines that support certain common conventions for mediating between topic IDs and files:
oracle.help.engine.XMLMapFixedConventionEngine
oracle.help.engine.XMLMapConventionEngine
If those two engines do not satisfy your needs for dynamic mapping, you can write a custom implementation of oracle.help.engine.DataEngine
.
In many cases, for a filename of myfile.html
, the corresponding topic ID is just myfile_html
. If your map file is long and redundant list of obvious topic mappings of this form, you must set the engine attribute on <mapref>
to oracle.help.engine.XMLMapFixedConventionEngine
.
While using Oracle Help, setting the engine to this value makes your old map file expendable. However, if your help content may be viewed using an older version of Oracle Help, you should keep your old map file around so that the older versions of Oracle Help can fall back to the standard mechanism of topic mapping.
If you are concerned about the help system's memory usage and startup time, it is strongly recommended that you use this new engine. Doing so implies that your map file is never read, and therefore its contents are not stored in the memory. However, there is one caveat to the engine's use:
All help content (HTML files) must reside in the same directory as the helpset file. In addition, any subhelpsets must also reside in the same directory as the master helpset file. Subdirectories for subhelpsets are not permitted because the help system is not able to find your content unless it is in the same directory as the master helpset. However, different helpsets may reside in different directories.:
In the following example, the map IDs topic_1
and topic_2
are not associated with window types and therefore use the helpset's default window type. The map IDs topic_3
and topic_4
map to topic files that are displayed in the window defined by the intro window type. Map ID topic_5.tsk
displays File_5.html
in the window defined by the task window type. Map ID topic_5.cncpt
displays the same topic file (File_5.html
) in a different window type (concept
). Note also that the association between URL
and wintype
is used when linking from topic to topic using URLs instead of topic IDs. For example, if a topic had a hard-coded target to File_5.html
, clicking the link would display the HTML content in a task window type.
This scheme allows authors to assign window types to HTML files and to also override those associations by linking to an alternate topic ID. For example, for topic-to-topic links, TOC links, index links, and hard-coded links to File_5.html
, the author might use topic_5.tsk
, but for links from a tutorial, the author might use topic_5.cncpt
. By keeping this information in the map file, the author has one central repository for managing these assignments.
If on your <mapref>
element you set engine to be oracle.help.engine.XMLMapConventionEngine
you may define your own topic name convention in your map file. For example, consider the following <maps>
definition in a helpset:
The XMLMapConventionEngine
supports the standard mechanisms for setting up topic ID and window type mappings. However, it also supports the new <topicNameConvention>
element.
If using the XMLMapConventionEngine
, your map.xml
may resemble the following:
The idea of the <topicNameConvention>
is simple.You simply specify how your topic IDs are structured. If you set the urlBase
attribute on the <topicNameConvention>
, all help content files are assumed to be located at that URL. If all of your topic IDs begin with a string that is not a part of the filename or extension, you can specify a value for <text>
at the beginning of the convention. Then you must specify either the <filename/>
or the <extension/>
to indicate whether the filename or extension appears first in your topic name convention. Then you can specify the <text> that separates the filename and extension. Either the <filename/>
or the <extension/>
should follow to indicate whether the filename or extension appears second in the convention. A final <text>
may be specified if all topic IDs end with some text that is not part of the filename or extension.
According to the above topic name convention, the topic ID of beginningTextmyfile_htmlendingText
would resolve to the file http://www.example.org/help/myfile.html
. If the urlBase
attribute was unspecified, it would be assumed that myfile.html
is in the same directory as the helpset file.
If you want to set up some standard topic mappings and window types in your map file but still use the topic name convention provided by the XMLMapFixedConventionEngine
, you could define a topicNameConvention
in your map file as follows:
In the above convention and the XMLMapFixedConventionEngine
, the text that separates the filename and extension can appear multiple times in the topic ID. For example, consider the topic my_file_html
. The engines assume that the separator between filename and extension is actually the last appearance of the "_" character in the topic ID. Therefore, the topic resolves to my_file.html
.
Dynamic mapping of topic IDs to files can result in great improvements in your help system performance. However, context sensitive help calls to specific topics may take a long time to resolve if your library includes many helpsets.
The fundamental reason for this is that the convention-based mapping engines return URLs for topic IDs even if the URLs do not resolve to anything. Because of this, context sensitive help calls go through each helpset in the library and check whether the URLs generated by the engines actually resolve.
In the worst case, for a single context sensitive help call, the help system attempts to connect to as many URLs as there are helpsets in your library. However, Oracle Help provides a simple remedy to alleviate the problem. If you set an engine
on your <mapref>
element, you may also set the engineParams
attribute.
If you use the XMLMapConventionEngine
or the XMLMapFixedConventionEngine
, you may want to set engineParams
to be a space-separated list of prefixes for the topics in your helpset. For example, if all topics in your helpset begin with either oh
or help,
your mapref
would look like the following:
Setting engineParams
for either of the convention-based engines ensures that the helpset only tries to resolve topics if they start with a valid prefix, preventing an attempted connection to an URL. Failure to set engineParams
does not break your help system, but performance will not be optimal.
The Oracle Help for the Web configuration file is an XML file that defines a OHW configuration. This configuration controls all adjustable features of the OHWservlet. A typical name for this file is ohwconfig.xml
, but it can have any name, if that name is specified as the value of the configFileName
initialization parameter for the servlet. The OHW demonstration files uses ohwconfig.xml
.
The configuration file consists of the following elements and their child elements:
The <helpConfiguration>
element is the top-level element in the help configuration file. All of the elements of the configuration, described below, should appear between the <helpConfiguration>
tag and the </helpConfiguration>
tag. The helpConfiguration
element has two attributes, version
and debugMode
.
You must always set the version
attribute of helpConfiguration
element. For Oracle Help for the Web, the value of the attribute should be 2.0
.
For example:
<helpConfiguration version="2.0">
Enable debug mode by setting debugMode="true"
on the <helpConfiguration>
element in ohwconfig.xml
. This allows helpsets to be loaded in debug mode, where malformed helpsets are skipped over. The debug text is displayed along with the branding information in the upper left corner of the screen and in the title bar of the browser. The debug text indicates how many malformed helpsets have been skipped over while running the application.
If there are no malformed helpsets, following message is displayed in the branding area, also shown in Figure 8-1:
There could be many reasons for a malformed helpset. The following are some common reasons:
id
attribute is missing id
attribute is a duplicate id location
attribute is missing location
points to an invalid location When you deploy the help system, a WARNING message is logged to indicate that debug mode is being used. Whenever a helpset is skipped over, a SEVERE message is logged (instead of throwing an exception), and the log message displays the id
and location
attributes of the helpset that was skipped over. By default, the log messages are logged through System.err
stream and are displayed in the developer environment's console window. If you're using JDeveloper, the messages are logged in the Log window and a log file is created at <
JDEV_HOME
>
\jdeveloper\system
version
\DefaultDomain\servers\DefaultServer\logs\DefaultDomain.log
.
For example:
Let's assume you enabled the debugMode
as follows:
Then, if you changed the location of your ohguide
helpset to ohguide_new
directory, but forgot to update the corresponding path in ohwconfig.xml
:
The following message is displayed in the branding area, also shown in Figure 8-2:
The <brandings>
element specifies the product branding text or image that appears above the tab bar. The <brandings>
does not have any attributes, and is a placeholder for all brandings information.
The <brandings>
element can contain only one element described in the following table. If no branding information is specified, the default branding text is used.
Table 8-1 <brandings> Child Elements
Element	Description
Renders branding information from attribute information and can be specified to work with certain locales. This element supports the following attributes:	
OHW narrows the locale used, but does not expand it. For instance, if you specified a locale	
Renders branding information from a	
OHW narrows the locale used, but does not expand it. For instance, if you specified a locale	
For example:	
or	
or	
When implementing internationalization, you can avoid having to translate ohwconfig.xml	
by using these best practices for helpsets that require translation:	
<brandingFromResource>	
to reference a bundle that is translated for all locales, instead of putting the branding information directly into ohwconfig.xml	
. Because the branding information comes from a standard Java resource bundle, the bundle can be translated as part of the regular translation process. <controlFileEncoding>	
. Use the same encoding for all control files in a given localized helpset. The encoding specified in the helpset file is used to read in all of the control files. Note: If you are using an old version of OHJ, the helpset may not recognize an XML declaration and so may require<controlFileEncoding> to be set.	
You can specify a single locale or multiple locales in the <locales>	
section of the ohwconfig.xml	
file. The locales section has one or more tags specifying a single locale in the system. These tags are either of type <locale>	
element or <localeFromFile>	
element. As the names suggest, the <locale>	
element specifies the locale inline, whereas the <localeFromFile>	
element delegates the declaration of the locale to an external file. The external file, in turn, contains a single <locale>	
element.	
Table 8-2 <locales> Child Element	
Element	Description
---	---
The	
Specifies the ISO language, country, and (optionally) variant codes that is used to construct a Java Locale for locale-sensitive operations. Also specifies the Java-supported encoding name for the character set encoding of the Oracle Help control files (for example, ISO8859_1). The first This element supports the following attributes:	
The	
For example:	
The <books>	
element specifies the content to be displayed in Oracle Help for the Web. The <books>	
element can contain any number of helpsets. Helpsets are also called as books.	
The <books>	
element can contain the following elements:	
Table 8-3 <books> Child Elements	
Element	Description
---	---
A helpset to include in this instance of OHW. This element has the following attributes:	
For example:	
The <helpSet>	
elements can contain zero or more <contentLocation>	
elements for situation when help topic files are located in locations other than those expected by Oracle Help.	
By default OHW automatically processes help topic files that are located in the same locations as helpset (.hs	
) files.	
In helpsets, OHW processes help topic HTML files:	
.hs	
file and subdirectories under that location If you have help topic files in some other location, you must use the <contentLocation>	
element to point to that location.	
The <contentLocation>	
element has the attribute baseURI	
. It represents a URI to the root location of a set of help content, using a path that is either absolute or relative.	
The <contentLocation>	
element can be a child of <helpSet>	
(which are themselves children of <books>	
). A <helpSet>	
can contain zero or more <contentLocation>	
elements.	
This element is needed because, unlike plain HTML files, Oracle Help help topic files must be processed by the servlet to be displayed. Therefore, it is necessary to explicitly list the locations where help topic files referenced in the helpset reside, if they are not in the default locations. This can happen if your helpset includes a subhelpset in another location or even on another web server or if your context sensitive map file contains references to help topic files located elsewhere on the same server or on a different server.	
Absolute Path Content Locations	
If you know the absolute path of content location, you can specify the absolute path.	
For example, if OHW is configured with a local helpset, myHelpSet.hs	
, that references a subhelpset on another server, http://www.myCompany.com/help/remoteHelpSet.hs	
, the configuration file should contain:	
This configuration informs OHW that the local myHelpSet.hs	
file references help content on that server. For example, http://www.myCompany.com/help/remoteHelpSet.hs	
.	
OHW thus processes help topic files both in the same location as myHelpSet.hs	
and in the remote location.	
Relative Path Content Locations	
If you do not know the absolute path of the content location, you can specify a relative content location. These locations are relative to the configuration file, not the helpset file, and must be terminated with a trailing slash.	
For example, to specify a content location that is under images	
directory, which is located in the same directory as the configuration file, you could declare the following:	
To specify a content location pointing to an images directory that is located one directory below the configuration file, you can declare the following:	
The location is relative to the helpset. If the helpset is inside a JAR file, the JAR file is evaluated as a directory when resolving the relative path. For instance, assume these directory paths:	
The <baseURI>	
value would be:	
This sample of the section of a configuration file specifies an English and Japanese configuration file.	
If you have many localized helpsets all using the same images, CSS stylesheets, or other resources, OHW can support the sharing of these resources across the helpsets. Typically, shared resources exist in a separate directory, usually below any subdirectories holding the localized helpeset information. For instance, the following is a typical directory structure for using shared resources:	
Since OHW by default can only access directories that are underneath the .hs	
file. Thus to make the shared directory available to OHW, you must define a content location for this directory. For best results, use a relative content location for this task.	
OHW supports relative paths when dealing with resources, and appropriately converts these paths to the correct paths at runtime. To make use of shared resources, an HTML file can point to the resource using a relative path. For example, if you have an HTML file in the ./en	
directory to point to a shared image resource, the HTML file should contain the following code:	
If you have the content location defined, OHW fixes this path so that it works at runtime. You can also use relative paths within the control files for your helpset. For example, you could define the following code in your map file that is located in the ./en	
directory:	
Finally, if your localized helpset is contained in a JAR file, then the JAR file is counted as a directory when specifying the relative path. Thus, if all helpset files are contained in a JAR under the ./en	
directory, and you want to point to a shared image resource, the HTML file should contain this code:	
The extra ..	
in above code is required because the JAR file counts as a directory.	
The <parameters>	
element specifies the values of various other OHW parameters. These parameters are all case-insensitive.	
Table 8-4 <parameters> Child Elements	
Element	Description
---	---
If	
If	
If	
When combineBooks	
is true	
, only navigators of the same type and with the same label are merged into the same navigator, for example the Index tab. That can lead to unintended results if you have set useLabelInfo	
to true	
. For example, if one helpset has overridden the default Index label with Keyword Index and left another with the default, the indexes won't be merged in the same tab. You can change this by setting the labels to be the same (in the helpset file for a helpset) or by setting useLabelInfo	
to false	
in the configuration file.	
For example:	
Other important parameters include:	
Table 8-5 <parameters> Keyword Child Elements	
Element	Description
---	---
The number of keywords to show on one page. The default value is	
The number of topics to show on one page. The default value is	
The number of search results to show on one page. The default value is	
These elements are used to support performance tuning or specify nondefault error, state, or locale handling.	
Table 8-6 <parameters> Performance Child Elements	
Element	Description
---	---
The maximum number of threads that OHW can use to perform searches. Default value is If you presume that many users would be connected to the help system and using the search feature at the same time, you can increase the value of maxSearchThreads to more than 10, however it is not recommended. If the help system does not respond during search, verify that the index file (
When a topic is not found, OHW displays this topic instead. The value of this parameter is a topic ID. OHW provides a standard error page if no value is set.	
Specifies the state manager OHW should use. If set to	
OHW uses the specified locale determiner to select a localized helpset based on a user request. OHW provides a default locale determiner that uses browser settings to determine the locale if no value is set.	
The number of active localized helpsets to be kept in memory simultaneously. The default value is	
The optional <navigatorAliases>
element enables you to use classnames in your helpset file that do not correspond to the classnames of the navigators in OHW. Alias registrations are done through the use of the <alias>
element. The <alias>
elements are contained within a single <navigatorAliases>
element, and has the following attributes:
name
- The name to use as the alias. value
- The value this alias should map to. For example:
Note: The tree-based TOC Navigator of OHW uses theoracle.help.web.navigator.tocNavigator.TOCTreeNavigator class name. |
OHW supports links for custom protocols through the Oracle Help custom protocol. For information about custom protocol links in OHJ, see Section 7.3, "Custom Protocol Links."
In order to handle custom protocol links in OHW, clients must register Custom Protocol Converters in the ohwconfig.xml
file for each custom protocol used in their help content. The syntax in the ohwconfig.xml
file looks like this:
Users may write their own implementations of CustomProtocolConverter
. However, OHW includes the ConfigurableCustomProtocolConverter
, which is configurable using parameters set in ohwconfig.xml
. The supported parameters are:
In an HTML topic file, authors could use the standard Oracle Help custom protocol syntax. For example:
OHW processes all custom:
links and run them through the Custom Protocol Converter registered for that custom protocol name.
The link in the above example would be replaced with:
In OHJ, it is a popular convention to use custom:external:
to launch a link in a new browser window. In OHW, the built-in CustomProtocolConverter
for the external protocol enables the links to work without the users having to explicitly register a converter.
OHW supports the <locale>
tag in the OHW configuration file, which defines a single instance of a locale that OHW supports. The <locale>
tag specifies the ISO language, country, and (optionally) variant codes that are used to construct a Java Locale for locale-sensitive operations. It also specifies the Java-supported encoding name for the character set encoding of the Oracle Help control files (for example, ISO8859_1). The first <locale>
element listed is the default locale.
In OHW, the loading of helpsets is handled in a different manner. The OHW-RC as an RCF application may have a screen with 50 components, with Definition Text content, specified in a single file within its own helpset. To avoid loading all helpsets and reduce the lag that this would cause when a user simply opens that screen, preloading of a selected helpset is desirable.
So, for OHW-RC, the configuration file supports an optional attribute for the <locale>
tag, which is called preload
. The possible values that this attribute can take are NONE
, ALL
, and TOPICMAP
. If not specified, its value defaults to NONE
.
The behaviors of each value are:
Table 8-7 Preload Value Behavior
Preload Value | Initial Start of OHW | When Topic is Accessed | When UI is Accessed |
---|---|---|---|
| No action required. | Load the topic map until the requested topic is found. | Load all views and navigators in the selected helpset. |
| Load all helpsets in the locale (which initializes all views and navigators) and also load all topic maps. | Access from cache. | Access from cache. |
| Load only the topic maps for all helpsets in the locale. | Access from cache. | Load all views and navigators in the selected helpset. |
For example, the configuration file could look like this:
This part contains information on authoring Oracle Help systems. It contains the following chapters:
This chapter provides an introduction to Oracle Help authoring.
This chapter describes how to use the Oracle Help for Java authoring wizard to convert help systems created using other formats.
This chapter describes how to use the text search indexer.
Oracle Help does not include a complete authoring environment. While it is fairly straightforward to author a help system without using an authoring tool, you may prefer to use a tool that supports Oracle Help directly, such as Adobe RoboHelp, Quadralay WebWorks, or AuthorIT Software Corporation's AuthorIT.
Because Oracle Help's file formats are based on JavaHelp file formats, you could also start with any authoring tool that creates JavaHelp systems. However, you have to add features specific to Oracle Help manually. Oracle Help also supports the control file formats from Microsoft's HTML Help, so you could start with a help authoring tool that supports HTML Help. Again, you have to add any Oracle Help-specific features manually.
OHJ and OHW use the same file formats, so you can author a help system one time and display it without modification.
This topic contains the following sections:
The basic steps for authoring an Oracle Help help system are as follows:
Two authoring utilities are included with Oracle Help for Java. You can use these tools to help author an Oracle Help system if you do not have an authoring tool that supports Oracle Help. Follow the links below for more information on each:
As part of the embedded Help feature in OHW-RC, each component in an application can have multiple levels of Help associated with it that get triggered on a certain user gesture. The levels of help are:
Each of these levels can be any arbitrary HTML content. Definition and Instructions Text are collectively referred to as Embedded Help Content. Full Help content is the content that appears as a separate topic in a Help window.
<div>
with the hardcoded style class name definition
. The title
attribute, if present, represents the topic ID of the Definition Text. Note that only plain text can be entered here, HTML content is not processed for this <div>
tag. For example, <div>
with the hardcoded style class name instructions
. The title
attribute, if present, represents the topic ID of the Instructions Text. For example, Definition and Instructions Text content for a topic are to be specified using typical HTML in a topic file as follows:
The <div>
tags for the Definition Text and Instruction Text appear within the HTML body. It is required that the content for the both these levels of Help is specified in the same file. If either of them is not available in the same file, the content is assumed to be undefined.
Help authors specify the Definition Text and Instruction Text content for a topic ID in an existing topic HTML file. Here is a sample topic named topic1.html
.
Note:
|
The Helpset Authoring Wizard, also known as OHJ Authoring Wizard, generates certain control files used by Oracle Help. The functionality of the authoring wizard is limited: it is primarily intended to be used to convert help systems created using other formats, not to be a full-featured help authoring tool. For example, you can use the helpset wizard to create an Oracle Help system from files generated by an old release of RoboHelp HTML which did not yet support Oracle Help.The current version of the wizard can generate a helpset file, a search index file, and a map file. It also converts certain JavaScript pop-up links to the Oracle Help format. However, the wizard does not currently convert RoboHelp HTML associative links to their Oracle Help equivalents (despite the option being present).
When you install OHJ on Windows, a batch file and an initialization file for starting the wizard are generated, using the path into which you installed OHJ. A shortcut for starting the wizard is also added to the Windows Start menu. Select this shortcut to start the wizard. Alternatively, you can issue the following command at the command prompt:
For example, if you have installed OHJ in D:\ohelp
folder, you can run the wizard with the following command:
When you run the above command, you are greeted with a Welcome screen of OHJ Authoring Wizard. Click Next to continue.
The first step of the OHJ Authoring Wizard is to create a helpset (.hs
) file. You may also open an existing helpset file, and edit it later. For more information about helpsets, see Section 5.1, "Helpset File".
Use the following information to enter data in each field of the HelpSet File page:
Field | Description |
---|---|
Create a new Oracle Help for Java HelpSet File | Select the option to create a helpset file. |
Open an existing Oracle Help for Java HelpSet File | Select the option if you have a helpset file ready and want to edit it. |
File | Click Browse and select the helpset file you want to edit. |
When you are done, click Next to continue.
The Select Source and Target page of OHJ Authoring Wizard enables you to choose the authoring tool and the browser to display the help files.
Use the following information to enter data in each field of the Select Source and Target page:
Field | Description |
---|---|
Choose the authoring tool | Select the authoring tool used to create the help files. |
Choose the HTML browser | Select the browser you want to use to display the html files. |
When you are done, click Next to continue.
The Specify Directory page of OHJ Authoring Wizard enables you to choose the directory containing the html files and other control files.
Use the following information to enter data in each field of the Specify Directory page:
Field | Description |
---|---|
Directory | Click Browse and select the source directory of the html files. If you have specified an existing helpset file, the field is not available for editing and displays the directory location of the helpset file. |
Include Subdirectories | Select the checkbox to include subdirectories of the selected Directory. |
HelpSet Title | Specify the title of the helpset file |
When you are done, click Next to continue.
The Define Views page of OHJ Authoring Wizard enables you to define views in the OHJ Help Navigator window. You can create views for table of contents, keyword index, and define custom views.
Field | Description |
---|---|
New | Creates a new view and adds the name of the view in Current Views list. |
Delete | Deletes the selected view from the Current Views list. |
When you are done, click Next to continue.
OHJ Authoring Wizard enables you to create multiple views in your help. By default, no views are defined. To define a new view, click New. Figure 10-6 shows the fields available in the Define Views page of the wizard when a new view is created.
Use the following information to enter data in each field of the Define Views page:
Field | Description |
---|---|
View Type | Select the view type of new view defined. You can choose the view type as OHJ TOC Navigator, OHJ Keyword Navigator, OHJ Search Navigator, or define a custom navigator. |
Data Engine | Select the data engine for the new view. You can choose the engine as HHC Engine, HHK Engine, XML TOC Engine, XML Index Engine, TOC Engine, TOK Engine, Search Engine; or define a custom data engine. |
Data Location | Click Browse and select the location of the control file. |
Tab Label | Select the checkbox and enter the label of the tab displayed in OHJ Help Navigator window. |
View Title | Select the checkbox and enter the title of the view. |
You can define a custom view if the available views do not meet your requirements.
To create a custom view type, select Custom from the View Type dropdown list of Define Views page. The Define the Custom Type dialog appears.
Use the following information to enter data in each field of the Define Views page:
Field | Description |
---|---|
Identifying Name | Specify the unique name of the view. |
Navigator Subclass | Specify the name of the Java class. The class must be a subclass of oracle.help.navigator.Navigator . |
You can define a custom data engine if the available data engines do not meet your requirements.
To create a custom data engine, select Custom from the Data Engine dropdown list of Define Views page. The Define the Custom Data Engine dialog appears.
Use the following information to enter data in each field of the Define Views page:
Field | Description |
---|---|
Identifying Name | Specify the unique name of the data engine. |
DataEngine Subclass | Specify the name of the Java class. The class must be a subclass of oracle.help.dataengine.DataEngine . |
The Full-Text Search View page of OHJ Authoring Wizard enables you to create a Search View and generate a full-text search index for the help.
To create a full-text search index, select the Generate a full text search index for the HelpSet checkbox.
Use the following information to enter data in each field of the Full Text Search View page:
Field | Description |
---|---|
Generate a full text search index for the HelpSet | Select the checkbox to create a full-text search index. |
Specify the character set encoding | Select the desired character set encoding from the dropdown list. By default, Western Europe (ISO 8859-1) is selected. |
Enable case-sensitive searches | Select the checkbox to allow case sensitive search feature in your help. |
Enable searches for numbers | Select the checkbox to allow numeric search feature in your help. |
When you are done, click Next to continue.
The Map File page of OHJ Authoring Wizard enables you to create a map file for your help and associate unique topic ids with your help topics.
Use the following information to enter data in each field of the Full Text Search View page:
Field | Description |
---|---|
Do not include map file | Specifies that you do not want to provide a map file. This option is helpful if your help is not a context-sensitive help. |
Create a Map file using the <meta> tag information in each HTML file | Specifies to create a map file from <meta> tags. Some help authoring tools (such as RoboHelp) insert topic-ids in meta tags in the HTML file. This wizard option finds the meta tags and creates a map file from them |
Create a Map file using tool generated aliases (.ali) or header (.h) files | Specifies to create a map file from generated aliases or header files. Click Browse to specify the map file name and location. |
Include an existing Map file | Specifies to use an existing map file. Click Browse to specify the map file name and location. |
When you are done, click Next to continue.
The Associative Links page of OHJ Authoring Wizard enables you to convert the associative links defined in the existing help system to it's own associative link protocol.
Use the following information to enter data in each field of the Associative Links page:
Field | Description |
---|---|
Convert associative links to use OHJ ICEbrowser protocol | Specifies to convert all associative links into ICEbrowser supported alink protocol. |
Convert associative links to a hard coded list of links | Specifies to convert all associative links into hard coded list of links. |
Delete all associative links | Specifies to remove all associative links from the help pages. |
When you are done, click Next to continue.
The Popup Windows page of OHJ Authoring Wizard enables you to convert the popup window links defined in the existing help system to it's own popup link protocol.
Use the following information to enter data in each field of the Popup Windows page:
Field | Description |
---|---|
Convert popup windows to use the OHJ ICEbrowser protocol | Specifies to convert all popup window links into ICEbrowser supported protocol. |
Delete all popup windows | Specifies to remove all popup window links from the help pages. |
When you are done, click Next to continue.
The Window Types page of OHJ Authoring Wizard enables you to define window types. By default, no window types are defined. When you define a new window type, you can configure the window's identity, it's placement on the screen, color attributes, and the toolbar buttons available on the window.
Use the following information to enter data in each field of the Define Window Type page:
Field | Description |
---|---|
New | Creates a new window type and adds the name of the window in Window Types list. |
Delete | Deletes the selected window type from the Window Types list. |
To define a new window type, click New and configure its attributes. You can configure following attributes:
The Identity tab of the Define Window Types page enables you to define the window name and title.
Use the following information to enter data in each field of the Identity tab of the Define Window Type page:
Field | Description |
---|---|
Name | Specifies the unique window name. |
Title | Specifies the window title. |
Use this Window Type if none is specified | Select the checkbox to make the window as default window. |
The Placement tab of the Define Window Types page enables you to configure the window size and position on the screen.
Use the following information to enter data in each field of the Placement tab of the Define Window Type page:
Field | Description |
---|---|
Height | Specifies the windows height, and choose the desired unit as pixels or percent. |
Width | Specifies the windows width, and choose the desired unit as pixels or percent. |
X Position | Specifies the windows X coordinate, choose the desired unit as pixels or percent, and direction as from left or from right. |
Y Position | Specifies the windows Y coordinate, choose the desired unit as pixels or percent, and direction as from top or from bottom. |
The Style tab of the Define Window Types page enables you to configure the window colors, text and background.
Use the following information to enter data in each field of the Style tab of the Define Window Type page:
Field | Description |
---|---|
Text Foreground Color | Specifies the hexadecimal color code of text in the window. To choose a color, click Choose and select your desired text color. |
Link Foreground Color | Specifies the hexadecimal color code of link text in the window. To choose a color, click Choose and select your desired link text color. |
Page Background Color | Specifies the hexadecimal color code of page background in the window. To choose a color, click Choose and select your desired page background color. |
The Toolbar Buttons tab of the Define Window Types page enables you to configure the toolbar buttons available in the Help Topic window.
Use the following information to enter data in each field of the Toolbar Buttons tab of the Define Window Type page:
Field | Description |
---|---|
Show the default set of buttons | Select the checkbox to show the default set of toolbar buttons. By default, all toolbar buttons are available. To customize toolbar buttons, clear the checkbox. |
Navigator Button | Select the checkbox to add the Navigator toolbar button in the window. The Navigator button enables you to open the Help Navigator window. |
Search Button | Select the checkbox to add the Search toolbar button in the window. The Search button enables you to search for a text across the help pages. |
Print Button | Select the checkbox to add the Print toolbar button in the window. The Print button enables you to print a topic. |
Forward and Back Buttons | Select the checkbox to add the Forward and Backward toolbar buttons in the window. The Forward and Backward buttons allow you to navigate to previously opened topics, and return back to current topic. |
Dock and Undock Buttons | Select the checkbox to add the Dock and Undock toolbar buttons in the window. The Dock and Undock buttons allow you to dock and undock the Help Topic and Help Navigator windows. |
The Finish page of the OHJ Authoring Wizard creates the helpset according to options selected in the wizard.
Use the following information to enter data in each field of the Finish HelpSet page:
Field | Description |
---|---|
Base Name | Specify the base name of the help set. The base name is without the file name extension, and defines the name of control files. For example, if the base name is myproject , the control files are named as myproject.hhc , myproject.hhk , myproject.idx , and so on. |
Create backup copies | Specifies to create backup copies of the updated files. The files are saved with .bak extension. |
Do not create backup copies | Specifies not to create backup copies of the updated files. |
When you are done, click Finish to generate the helpset file.
A Java-based text search indexer is included with Oracle Help for Java. The indexer generates the .idx
files used for text searches within Oracle Help. Two versions of the Text Search Indexer are provided, one for Japanese content and another for non-Japanese content.
This topic contains the following sections:
The Text Search Indexer requires Java5 Standard Edition or later. Performance is greatly enhanced if you leave the Java JIT (Just In Time Compiler) on. Also ensure that you increase the heap size of the Java Virtual Machine to maximum.
Follow these steps to run the indexer:
help
indexer-version
.jar
in your CLASSPATH. [-l=locale] [-e=charset] dirnameindexfilename
where,
Argument | Description |
---|---|
-l=locale | The optional (but recommended) locale parameter is specified using the two-letter ISO 639 language codes and ISO 3166 country codes. The format is language_COUNTRY or language_COUNTRY_VARIANT . If the locale is not supplied, the system default locale is used. |
-e=charset | The optional (but recommended) charset parameter is the name of the Java-supported character set encoding for the HTML files that are being indexed. If the encoding is not supplied, the default character set encoding of the current system default locale is used. If supplied, the value must be a Java supported character set encoding names; for Java SE, see http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html |
dirname | The base directory that contains the HTML files you want to index. The indexer indexes all of the files under this directory (and its subdirectories, if any). |
indexfilename | The name of the index file to be generated. |
For example, java -mx64m oracle.help.tools.index.Indexer -l=en_US -e=8859_1 D:\MyHTMLFiles myIndex.idx
The above command sets the Locale to language: English, country: Unites States, encoding: 8859_1
, and indexes the D:\MyHTMLFiles
directory creating the myIndex.idx
file.
Follow these steps to run the indexer:
help
indexer-version
.jar
in your CLASSPATH. [-e=charset] dirnameindexfilename
where,
Argument | Description |
---|---|
-e=charset | The optional (but recommended) charset parameter is the name of the Java-supported character set encoding for the HTML files that are being indexed. If the encoding is not supplied, the default character set encoding of the current system default locale is used. If supplied, the value must be a Java supported character set encoding names; for Java SE, see http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html . |
dirname | The base directory that contains the HTML files you want to index. The indexer indexes all of the files under this directory (and its subdirectories, if any). |
indexfilename | The name of the index file to be generated. |
For example,java -mx64m oracle.help.tools.index.JapaneseIndexer -e=MS932 D:\MyHTMLFiles myIndex.idx
The above command runs the JapaneseIndexer with the encoding set to MS932
, and indexes the D:\MyHTMLFiles
directory, creating the myIndex.idx
file.
This part contains information on using Oracle Help for Java Developer's Kit. It contains the following chapters:
This chapter provides an introduction to Oracle Help for Java Developer's Kit.
This chapter describes how to add an OHJ help to an application .
This chapter describes how to enable context-sensitive help in an application.
This chapter provides information on deploying OHJ help.
The Oracle Help for Java Developer's Kit (OHJDK) is a set of Java components and an API for developing and displaying HTML-based help content in a Java environment. It includes the Oracle Help for Java (OHJ) engine and additional tools necessary for implementing context-sensitive help in Java applets and applications.The Oracle Help for Java engine is a full-featured Java-based help system for Java applications and applets. It provides pure Java components for navigating and displaying context-sensitive help. Oracle Help for Java is available for free, and may be redistributed as the help system for your application (see the license distributed with the release).Oracle Help for Java supports help content in several file formats, including extensions of the JavaHelp and Microsoft's HTML Help standards. If you are authoring help content without using a help authoring tool, it is recommended that you read about Oracle Help file formats. If you are using a third party help authoring system that supports OHJ, refer to the documentation provided.
The Oracle Help for Java runtime library, ohj.jar
, is distributed as part of JDeveloper. Developers integrating Oracle Help for Java with their applications can modify their project settings to add the Oracle Help for Java library as a dependency. The full Oracle Help for Java release including sample code, helpset authoring wizard, indexer, and demos is available at no cost from the Oracle Help page on Oracle Technology Network at:
The Oracle Help for Java Developer's Kit (OHJDK) is a set of Java components and an API for developing and displaying HTML-based help content in a Java environment. It includes the Oracle Help for Java (OHJ) engine and additional tools necessary for implementing context-sensitive help in Java applets and applications.
This section describes the contents of the OHJDK and tells how to set up for developing OHJ help systems. It contains the following subsections:
The following steps describe OHJDK installation process:
C:\Program Files\ohelp
location. For Solaris and UNIX, run the binary file to start the installation wizard. The OHJDK includes the compiled libraries for the OHJ engine, and libraries for the authoring tools and demonstrations. These libraries are distributed in JAR (Java ARchive) format. The OHJDK also includes documentation, including this document.
The files are discussed in the following sections:
These files contain binary files for the OHJ engine implementation and its dependencies. You must redistribute these files with your product application.
The following JAR files contain the implementation for the Helpset Authoring Wizard and the Text Search Indexer. These files are not intended for distribution with your product application.
Table 12-2 OHJ Authoring Tools
File | Contents |
---|---|
| Helpset Authoring Wizard implementation. Authors can run the Helpset Authoring Wizard using batch files created in the bin directory of their OHJDK installation. |
| OHJ Text Search Indexer implementation. Authors can use the Full-Text Search Indexer to process and create Oracle Help search index (|
The following JAR file contains the demonstration programs distributed with the OHJDK. This file is not intended for distribution with your product application.
Table 12-3 OHJ Demonstration JAR File
File | Contents |
---|---|
| Demonstration binaries and source code, plus sample documentation in HTML and the Oracle Help control file formats. |
To run the demonstration programs, execute the batch files located in the bin
subdirectory of your OHJDK installation. The OHJ installer for Windows adds shortcuts to the Windows Start Menu. The sample content used by the demo programs is located in the demodoc
subdirectory.
When integrating OHJ with your application, it may be helpful for you to examine the source code for the demonstration programs (located in the help
demo-version_num
.jar
file. The following demos are particularly helpful:
Table 12-4 OHJ Demonstration Files
File | Contents |
---|---|
(OHJ Features Demo) | Sample Java code that illustrates the following features:
|
(Context-Sensitive Help Demo) | Sample Java code that illustrates the following features:
|
The following documentation is included with the OHJDK:
Table 12-5 OHJ Documentation
Document | Content | Location in OHJDK release |
---|---|---|
OHJ API Reference Documentation | Reference documentation for the OHJ Application Programming Interface (API), provided as JavaDoc. | The doc/javadoc subdirectory of the OHJDK installation. To view the API documentation, open the |
Oracle Help Guide | This document | The doc subdirectory of the OHJDK installation. |
To develop with the OHJDK, you must add the OHJ engine libraries and toolkit dependencies to your environment class path.
For example:
SET
command in your autoexec.bat
file. setenv
command to set an environment variable for your shell. Consult the documentation for your Java Virtual Machine (JVM) and operating system to determine how to set the CLASSPATH variable.
This section tells how to integrate OHJ with your product application. It contains the following sections:
These steps are explained in more detail in the following sections.
The basic steps for adding OHJ to an application are:
Help
object. Help
object with help content, as follows: Book
objects that represent your help data. Book
objects to the Help
object. The Help
object is the main entry point for Oracle Help for Java. It includes methods for adding help content, showing the OHJ navigator window, and displaying specific topics. There are several options that can only be set at the time the Help object is constructed.
The boolean
combineBooks
parameter in the Help
object constructor determines how OHJ displays multiple Books
, or HelpSets
. If the boolean combineBooks
parameter is set to true
, OHJ merges all author-defined views that have the same type and label. For example, if multiple books include a Keyword Index view with the same label, OHJ displays one keyword index navigator tab with a merged, sorted list of keywords. If the combineBooks
parameter is set to false, the views from each book are displayed separately, and the end user can select which book to display using a drop-down list in the OHJ navigator window.
The versions of the Help object constructor are summarized below. For more information on API documentation of oracle.help.Help
, see Section 12.2.2, "Contents of an OHJDK Release".
Table 13-1 Help() Constructors
Constructor | Description |
---|---|
| Creates an instance of the |
| Creates an instance of the Parameters:
|
| Creates an instance of the Parameters:
|
| Creates an instance of the Help object using the specified Parameters:
|
After creating a Help
object, you must add one or more Book
objects to it. A Book
object encapsulates a collection, or "book," of help content.
The HelpSet book implementation handles the preferred Oracle Help file formats, as documented in Oracle Help File Formats. These files include the helpset file, which defines the characteristics of the help system.
The following sections describe how to add the help sets, and other optional features:
The Table 13-2 lists HelpSet()
constructors:
Table 13-2 HelpSet() Constructors
Constructor | Description |
---|---|
| Constructs a Parameters:
|
| Use this constructor when you know only the path to the helpset file relative to your application implementation. Parameters:
|
For more information, see the API documentation for oracle.help.library.helpset.HelpSet
.
After you have constructed a Book
instance using the HelpSet
constructors, you must add the Book
to your Help
instance. This is accomplished by calling the following method on the Help
instance:
Table 13-3 addBook() Constructors
Constructor | Description |
---|---|
| This method adds a Parameters:
|
You have the option of adding a Favorites tab or a custom tab after the help object is constructed and before the Navigator window is displayed:
enableFavoritesNavigator(URL)
. For more information on API documentation of oracle.help.Help.enableFavoritesNavigator(URL), see Section 12.2.2, "Contents of an OHJDK Release", or find this code in PreviewHelpSet.java
for an example: oracle.help.navigator.Navigator
in Section 12.2.2, "Contents of an OHJDK Release". A single instance of the Help
object should be created and help data should be added at application startup. You should use this single instance of the Help
object throughout the application session. It is not efficient to create unique Help
objects each time the user requests help in your application.
Instruct your Help
instance to show the OHJ navigator window by calling the showNavigatorWindow()
method. Some versions of this method take additional parameters to show the navigator window with a specified navigator tab selected (for example, Contents, Index, Search, and so on).
Table 13-4 showNavigatorWindow() Constructors
Constructor | Description |
---|---|
| Shows the navigator window with the first tab of the first book selected. Parameters:
|
| Shows the navigator window with the associated set of navigators from the given book displayed. Parameters:
|
| Shows the navigator window with a specific navigator tab selected. Use this method to show a specific navigator from a specific book. Parameters:
|
Instruct your Help
instance to show a specific help topic by calling the showTopic()
method and providing the topic ID and the Book
instance for that topic. Some versions of this method take additional parameters to specify how the topic should be displayed.
Table 13-5 showTopic() Constructors
Constructor | Description |
---|---|
| Shows the given topic from the given book in a currently existing topic window. If no topic windows currently exist, a new topic window is created with the default size and position. Parameters:
|
| Shows the given topic from the given book. If Parameters:
|
| Shows the given topic from the given book. If Parameters:
|
Exceptions are thrown by the showTopic()
method when an error is encountered when trying to display a topic. For example, if you attempt to display a topic ID which is not in the map file, a TopicDisplayException
is thrown. By catching the TopicDisplayException
, you have the opportunity to act when an error occurs. In the following example, an author-defined error topic is displayed when TopicDisplayException
is thrown.
For example:
Disposing of the Help
object frees OHJ resources. You should dispose of the Help
object when you no longer need the help engine. Typically, this would be done at end of the user's application session. Disposing closes all files and frees memory used by the Help
object. To dispose of the Help
object, call the dispose()
method:
Table 13-6 dispose() Constructors
Constructor | Description |
---|---|
| Dispose of the help system. This method frees up all resources used by the help system. Applications should call this method when they do not need help anymore. You should not call any methods on the |
The dispose()
method eliminates any references to objects held by the OHJ classes, but not other references that you have created from your application to Help objects.
Therefore, after you call dispose()
you should eliminate any references to OHJ objects (Help
or Book
objects) in your application code. This allows the Java garbage collection process to free the OHJ objects.
A context-sensitive help topic is one that is associated with a context in a product's user interface and which can be launched from that context. For example, a context-sensitive help system may contain topics that describe the product's menus and dialog boxes. When a user requests help for one of those controls, the appropriate topic for that control is displayed.
Oracle Help for Java provides mechanisms for associating help topics with user interface controls and for launching context-sensitive help when the user presses the F1 key or selects Help from a right-click context menu. OHJ also provides an API for explicitly displaying the help topic associated with a component.
To provide context-sensitive help for an application, the help system source must include one or more map files and you must add the appropriate help code to your application code, as described in these sections:
A context-sensitive help system must include one or more map files that map topic IDs to help topics. Ideally, the map file is created by the help author, not the programmer. OHJ supports two kinds of map files:
When an OHJ system is implemented using a HelpSet, the map file must use the XML file format, also the recommended format for Oracle Help systems. For more information about the map file, see Section 5.2, "Map Files".
You may want to define a set of Java constants in your application code that map to topic IDs in the map file. When using OHJ methods that require topic IDs (such as Help.showTopic()
), you can use the constant variable names instead of using explicit topic IDs from the map file. This helps you avoid changing code in several places if topic IDs in the map file are changed later. This is particularly useful when help authors are responsible for maintaining map files.
The standard Java toolkits (AWT and Swing) do not include built-in mechanisms for associating help topics with components. However, OHJ provides a generic way to implement context-sensitive help in Java applications, using the OHJ CSHManager
class. This help manager provides a way to associate help topics with user interface components and to enable F1 and right-click context-sensitive help.
OHJ's CSHManager
class provides a generic way to associate help topics with user interface controls and to launch context-sensitive help when the end user presses the F1 key or selects Help from a right-click context menu. OHJ also provides an API for explicitly displaying the help topic associated with a component.
The following sections provide an introduction to using CSHManager
:
You should create an instance of the CSHManager
class before creating user interface components. The CSHManager
constructor is summarized in Table 14-1.
If you only have one Book
of help content, you may want to use the setDefaultBook()
method to define it as the default book for context-sensitive help. This enables you to call the addComponent()
method without entering the book
parameter.
Table 14-2 setDefaultBook() Constructors
Constructor | Description |
---|---|
| Sets the specified Parameters:
|
If you have more than one Book
, the default Book
is only used for those components for which you have not assigned a specific Book
. In a multiple Book
help system, you should, in general, assign specific Books
to your components.
Use the addComponent()
method to associate topic IDs, as defined in the map file, with Java user interface components. You can call one of the versions of this method for each component that requires context-sensitive help.
Table 14-3 addComponent() Constructors
Constructor | Description |
---|---|
| Registers a component with the help manager.The default Parameters:
|
| Registers a component with the help manager. The provided book is used for looking up the topicId. For components registered using this method, Parameters:
|
| The default Parameters:
|
| Registers a component with the help manager. The provided book is used for looking up the Parameters:
|
Call the showHelpForComponent()
method on the CSHManager
when you explicitly want to display the help topic associated with a component. For example, to launch context-sensitive help when the user presses a Help button in a dialog box, you could call this method in the button's event handler.
The following sections describe how to deploy an OHJ help system with your product:
Since OHJ is a Java application (or applet), it must run in a Java Virtual Machine (JVM). That means that you must ensure that your users have an appropriate JVM installed. If you are using OHJ as help for a Java application, that application must also run in a virtual machine, so it is likely that the JVM is being distributed with your application.
The following JAR (Java ARchive) files must be redistributed as part of your product install. These files contain the OHJ engine implementation and its dependencies. For more information about these files, see Section 12.2.2, "Contents of an OHJDK Release".
help
version_num
.jar
oracle_ice.jar
Java based applications are often distributed in JAR format. You may want to include your Help content as a JAR file in your distribution, as HTML content files are significantly reduced in size by JAR compression.
To create JAR files, use the JAR tool that is distributed with your Java Development Kit. If you are using a third party help authoring system that supports OHJ, it may also be able to perform this task.
Special care should be given to the organization of files and their assigned paths within the JAR archives. The directory structure within your help JAR file must match the directory structure for your product implementation JAR files. Your help content should be after the location of the implementation class that you use as a reference point.
For example,
If your product implementation JAR includes classes with the following directory structure,
then your help JARs should contain the matching paths so that the help content is below the product implementation classes in the shared directory structure:
To create a Book
object with help content loaded from a JAR file, the help JAR file and implementation JAR files must be on the system CLASSPATH. If you have organized the JAR files as described, then you know the location of the help content is relative to the location of your implementation classes on the CLASSPATH.
Thus, you use the versions of the HelpSet
constructors that accept a Java class and a relative path from that class.
For example, if you have two JAR files, construct the helpset
object using the following code:
This part contains information on using Oracle Help for Web. It contains the following chapters:
This chapter describes how to deploy OHW demo files. If you are new to OHW, it is recommended to deploy the demo file before you start deploying your own help system
This chapter describes the OHW deployment process.
This chapter describes how to implement a context-sensitive OHW help in a web application.
This chapter describes the ADF Rich client help providers and how OHW could be used as a help provider.
This chapter describes how to deploy OHW demo file on Oracle WebLogic Server.
The OHW demo EAR file contains all class libraries that you require to view the demo and try out the release. It includes sample helpsets, OHW servlet file, and XML configuration files. You can deploy the demo file to experience the OHW interface, or replace the existing helpsets and add your own.
The following sections help you understand the demo file, deploy and test the sample helpset in your environment:
The OHW demo file is available in two variants: ohw-rcf-demo-thin.ear
and ohw-rcf-demo-thick.ear
.
The ohw-rcf-demo-thick.ear
contains ADF, JSF and JSTL libraries preconfigured for deployment. The file is recommended if you are not using a supported application server or JDeveloper, or if you are using a supported application server but do not have the libraries installed. For more information about supported application servers, see the "Certification Information" page on OTN.
The ohw-rcf-demo-thin.ear
does not contain ADF, JSF and JSTL libraries, hence it is required that the libraries must be installed on the application server before deployment. JDeveloper is required for this demo file. For more information on how to deploy libraries, see Section 16.2, "Installing the OHW Demo EAR File on Standalone Oracle WebLogic Server".
Note: Do not deploy bothohw-rcf-demo-thin.ear and ohw-rcf-demo-thick.ear on Oracle WebLogic Server as they would conflict when you run the demo EAR files. |
Both OHW demo EAR files, ohw-rcf-demo-thin.ear
and ohw-rcf-demo-thick.ear
, contain two OHW sample helpsets along with their help topics, helpset file, and control files. They also contain ohwconfig.xml
which is needed to configure OHW.
When extracted into a directory, the OHW demo file extracts files into their respective name directories, ohw-rcf-demo-thin
and ohw-rcf-demo-thick
. The EAR file contains a WAR file and a META-INF
directory, which contains the application.xml
file. The WAR file contains all helpset directories along with their help topics, helpset file, and control files.
Table 16-1 describes the files and directories in OHW demo EAR files.
Table 16-1 OHW-RC Demo Files and Directories
File | Description |
---|---|
| Java EE application file. The file is available in |
| Web module containing two helpsets: The helpsets directory exists in the respective WAR files (|
| Contains configuration and deployment information that affects OHW thin and thick clients. The files are available in |
The following library files are available for thick clients only:
| OHW library files required for deployment. The files are available in |
| OHW configuration file. The file is available in |
Before you start the demo file installation, verify that ADF, JSF, and JSTL libraries are installed in Oracle WebLogic Server. For more information, see Section 17.2, "Verifying OHW Library Files".
After the library verification, installing the demo EAR file is a very simple process:
ohw-rcf-demo-thick.ear
. This file includes OHW library files and sample helpsets. ohw-rcf-demo-thick.ear
file, or in the Current Location, browse and select the EAR file. Click Next to continue.
The deployment wizard, after successful deployment, returns you to the Settings page of ohw-rcf-demo-thick.ear
. If there are errors while deploying the file, you are navigated to Deployment home page where the errors are listed in red text.
To install the demo file on Oracle JDeveloper, follow these steps:
ohw-rcf-demo-thin.ear
. This file includes OHW and sample helpsets. ohw-rcf-demo-thin.ear
file. From the File menu, select New. In the New Gallery dialog, select Applications under General category, and then select Application from EAR File from the Items list. ohw-rcf-demo-thin.ear
file. You may also change the application name and the location of application. Click Next to continue. If you are deploying the demo application for the first time, select ohw-rcf-demo-thin from the submenu, and follow these steps:
If you have deployed the demo application before and want to continue using the same settings, you can choose ohw-rcf-demo-thin to IntegratedWebLogicServer from the submenu.
JDeveloper starts the deployment process and the status of the deployment is reflected in the Log window. When the application is successfully deployed, JDeveloper prompts with Deployment finished
message in the Log window.
After successful deployment of demo file, open your browser and navigate to the following URL:
If you have installed the OHW demo EAR file using Oracle WebLogic Administration Console, use the following URL:
If you have installed the OHW demo EAR file using Oracle JDeveloper, use the following URL:
For more information on user interface of OHW, see Chapter 3, "Oracle Help for the Web User Interface".
Once help authors have finished creating the help contents, then OHW administrator must modify the Web configuration to deploy those help contents using OHW.
You can deploy OHW in multiple ways. However, there are certain tasks that are common to all deployment modes. This chapter describes those common tasks that are a prerequisite for further steps.
If you are new to OHW, you may start with deploying the demo file. For more information, see Chapter 16, "Deploying OHW Demo File". The demo EAR file includes all files needed to deploy the sample helpsets immediately.
If you are creating a new OHW helpset, the following sections help you understand the OHW deployment process and describe the steps required to create and deploy your own OHW help system.
Unless configuration files have already been created and the application server configured, the OHW administrator must perform these tasks to deploy an OHW help system:
The following requirements must be verified for OHW:
Table 17-1 OHW Deployment Minimum Requirements
Requirement | Description |
---|---|
Application Server | The OHW requires a Java EE 1.5 compatible application server that could support Java Servlet, JSP and JSF. Oracle WebLogic Server, standalone or integrated with JDeveloper, is recommended as it requires minimal configuration effort. For more information abot supported application servers, see Application Servers section in "Certification Information" on OTN. |
Client | The client receives only HTML, and all it requires is a web browser to display and view the OHW help content. The web browser must have JavaScript support enabled. OHW is supported in Microsoft Internet Explorer 7, Microsoft Internet Explorer 8, Mozilla FireFox 2, Mozilla FireFox 3, Apple Safari, and Google Chrome. For more information about supported browsers, see the ADF Faces and Data Visualizations section in "Release Notes - JDeveloper 11g" on OTN. |
Rich ADF Faces | OHW needs Rich ADF Faces libraries and their dependencies to be available. The application server should also be configured for ADF-based applications by installing the correct JAR files or by running the ADF Runtime Installer using Oracle JDeveloper. For more information, see the online help of Oracle WebLogic Application Console. |
The application server where you deploy the OHW help files, must be configured to support Rich ADF Faces, because OHW depends on that technology.
If you are using Oracle WebLogic Server, review your Oracle WebLogic Application Console and confirm that following libraries are also deployed:
adf.oracle.domain(1.0,11.1.1.2.0)
) jsf(1.2,1.2.9.0)
) jstl(1.2,1.2.0.1)
) The libraries are listed on Deployment page of Oracle WebLogic Application Console. If the libraries are not installed, extend your WebLogic domain using Oracle WebLogic Configuration Wizard to include Oracle JRF libraries. After including Oracle JRF libraries, restart your Oracle WebLogic Server and the libraries would be listed in Deployments page of Oracle WebLogic Application Console. For more information about extending a domain, see Oracle Fusion Middleware Administrator's Guide.
If you are not using Oracle WebLogic Server, ensure that all ADF, JSF and JSTL library JAR files are copied in \WEB-INF\lib
directory of WAR deployment file. You can download the library files from OTN, or copy them from the demo file. The libraries are available in ohw-rcf-demo-thick\ohw-rcf-demo-thick\WEB-INF\lib
directory of ohw-rcf-demo-thick.ear
file.
There are some files needed to be installed on the server to make OHW working. The details about this will be shown in different possible deployment of OHW topics.
The OHW distributable components consist of JAR files like ohw-rcf.jar
, ohw-share.jar
, help-share.jar
, and ohw-rcf-webapp.zip.
The ohw-rcf-webapp.zip
contains the helppages
directory, which contains installable files like jspx (XML style of a JSF page) that are needed to run OHW properly.
All artifacts are available on OTN for download.
Before you start deploying the OHW helpset, there are some files that must be created or modified to configure OHW correctly. The following information helps you understand the XML configuration files:
application.xml
: A manifest of all web modules that run under a given Java EE application. It points to each web module of each product that is deployed. The name and location of application.xml
is fixed by the Java EE standard. The file is available in <OHW_HOME>\META-INF\
directory.
web.xml
: Sets the initialization parameters for the OHW components, including the location of the OHW configuration file. There is one instance of web.xml
for each web module. The file is available in <OHW_HOME>\<OHW_deployment_name>\WEB-INF\
directory. There is a minimum set of parameters must be set to assure all prerequisites for OHW are loaded and initialized correctly:
The following example shows a sample web.xml
file:
ohwconfig.xml
(default file name): Specify which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. For information about this configuration file, see Chapter 8, "Oracle Help for the Web Configuration File". The name and location of this file is set as a OHW-RC front servlet initialization parameter, which is handled differently for each servlet container. The ohwConfigFileURL
initialization parameter could take a path that contains {%some_parameter}
tokens. The token's value is resolved from Java System.getProperty
calls. Always consult the servlet container documentation for current and complete information. The file is available in <OHW-RC_HOME>\<OHW-RC_deployment_name>\helpsets
directory. Note that you can also specify ohwConfigURL
using the prop
system property. For example, in web.xml
, the ohwConfigURL
would be configured as:
In adf-settings.xml,
the ohwConfigURL
would be configured as:
trinidad-config.xml
: Specify the configuration for the Trinidad and ADF Rich components. It specifies the skinning option to be used in OHW. The file is available in <OHW_HOME>\<OHW_deployment_name>\WEB-INF\
directory. faces-config.xml
: This is the JSF configuration file. The file is available in <OHW_HOME>\<OHW_deployment_name>\WEB-INF\
directory. You must add the ADF Faces render kit information in this file:
The instructions in this section helps you create the directory structure required for OHW help system, add your custom helpset files in the correct location, create or modify the configuration files, and deploy the help system on application server.
The instructions in this section also assume that you have installed the OHW demo EAR file and you have a knowledge of the demo EAR file's directory structure. If you have not installed the demo file, install it following instructions in Chapter 16, "Deploying OHW Demo File".
Follow these steps to set up your OHW help system:
Set up the directory structure as following:
For example:
Create your own helpset directory. Place all your help files in or under <OHW_HOME>\<OHW_deployment_name>\helpsets\<custom_helpset_directory>
directory, including the helpset file, topic files, and the other control files (index, table of contents, and so on). Also, place any JAR files here, if you are using JAR files for your helpset. You can use JARred and unJARred helpsets together in the same deployment.
Update and configure the configuration file. Copy the demo EAR's ohwconfig.xm
l from ohw-rc-thick-demo\ohw-rc-thick-demo\helpsets
directory and save it in your <OHW_HOME>\<OHW_deployment_name>\helpsets
directory. Edit the file according to your requirement:
<books></books>
section to direct it to your helpset. For example: <books></books>
section. If removed, the helpsets would not appear in the helpset switcher dropdown list of the OHW user interface. If you have only one <helpSet>
element in the <books></books>
section, the helpset switcher is not available. <brandings></brandings>
section to display your own brand. For example: For more information about ohwconfig.xml
file behaviors you can configure, see Chapter 8, "Oracle Help for the Web Configuration File".
ohw-rc-thick-demo\ohw-rc-thick-demo\helppages
directory to your <OHW_HOME>\<OHW_deployment_name>
directory. <OHW_HOME>\<OHW_deployment_name>\WEB-INF\lib
directory. File Name | Location |
---|---|
JSF library file (jsf-1.2.war) | <JDEV_HOME>\wlserver_10.3\common\deployable-libraries |
JSTL library file (jstl-1.2.war) | <JDEV_HOME>\wlserver_10.3\common\deployable-libraries |
ADF library files (adf-richclient-api-11.jar , adf-richclient-impl-11.jar) | <JDEV_HOME>\oracle_common\modules\oracle.adf.view_11.1.1 |
faces-config.xml
and trinidad-config.xml
to configure JSF and JSTL support in OHW. Copy the XML files from ohw-rc-thick-demo\ohw-rc-thick-demo\WEB-INF
directory and save them in in <OHW_HOME>\<OHW_deployment_name>\WEB-INF
directory. The faces-config.xml
is the JSF configuration file where you register a JSF application's resources and define the page-to-page navigation rules. The trinidad-config.xml
enables you to configure ADF Faces features. Like faces-config.xml
, the trinidad-config.xml
file has a simple XML structure that enables you to define element properties using the JSF Expression Language (EL) or static values.
weblogic.xml
from ohw-rc-thick-demo\ohw-rc-thick-demo\WEB-INF
directory and save it in your <OHW_HOME>\<OHW_deployment_name>\WEB-INF
directory. Then, edit the file to your requirements. web.xml
from ohw-rc-thick-demo\ohw-rc-thick-demo\WEB-INF
directory and save it in <OHW_HOME>\<OHW_deployment_name>\WEB-INF
directory. Then, edit it to your requirements: <display-name></<display-name>
and <description></description>
section to display your custom helpset name. For example: <servlet-name>
element under <servlet>
element to change your URL used to access OHW. For more information about changing the access URL, see Section 17.6, "Changing the OHW-RC Access URL" . Compress the <OHW-RC_deployment_name>
directory into a WAR file.
application.xml
from ohw-rc-thick-demo\META-INF
directory and save it in <OHW-RC_HOME>\META-INF
directory. Then, edit the file to your requirements. In this file, provide the web module name of each product that you want to deploy. You may also Specify the WAR file name, created in step 9, in <web-uri></web-uri>
element. If you want to change the access URL of the application, update the <context-root><context-root>
element. For more information, see Section 17.6.2, "Changing the access URL to another name".
<OHW_HOME>
directory into a EAR file. http://<hostname>:<port>/<OHW-RC_deployment_name>/ohguide/
, where <hostname>
is the name of the system on which Oracle WebLogic Server is installed. The first page of the demo help system displays in the browser. If there are multiple helpsets, use the dropdown list in the toolbar to select a helpset, then click the helpset switcher to display the TOC and index from the selected helpset only. The text search searches only for items in the selected helpset.
The URL to access OHW is http://<hostname>:<port>/mymodule/ohguide/
, where <hostname>
is the name of the system on which OHW and Oracle WebLogic Server are installed.
You can change this URL in the following ways:
To change the help at the end of the URL, edit web.xml
in <OHW_HOME>\<OHW_deployment_name>\WEB-INF
.
The <servlet-mapping>
parameter <url-pattern>
specifies the URL used to access OHW. For example, if you change <url-pattern>
from the default /help/*
to /onlinereference/*
, the URL used to access OHW would become http://<hostname>:<port>/mymodule/onlinereference/
.
For example:
To change the access URL for your application , edit the <context-root>
element entry under <web>
element in application.xm
l, located in <OHW_HOME>\META-INF
:
For example, if you want the OHW access URL to be http://<hostname>:<port>/jdeveloper/help/
, modify the root element:
One of the ways that OHW can be deployed is to have it as a standalone Web application. To deploy OHW as a standalone application, an OHW WAR file, containing all files needed to run the OHW, must be copied into a separate deployment directory in the application server that has a dedicated context path.
The OHW administrator must perform some primary tasks, and then go on to deploy the OHW help system as a standalone Web application, as follows. To know more about the tasks, see Chapter 17, "Understanding OHW Deployment".
The Oracle WebLogic Server and other servlet containers allow OHW modules to be compressed as WAR (Web ARchive) files, which are then deployed as an EAR (Enterprise ARchive) file, which wraps any WAR and JAR (Java ARchive) files and the OHW installable files. One way to do this is to create WAR or EAR files using the standard Java JAR utility.
Then the OHW WAR or EAR file must be extracted by the application server so that the Web client can access the OHW pages. You may consult the relevant application server guidelines on how to deploy WAR or EAR files.
Another way is to manually create the Web application using a web developer studio like Oracle JDeveloper Studio, include the ohw-rcf.jar
, ohw-share.jar
, help-share.jar
in the library path, and extract the ohw-rcf-webapp.zip
to the public html
directory.
After all files have been put in the right locations, the OHW administrator still must modify some configuration files to make OHW work:
web.xml
file to include JSF and Trinidad parameters. For example:
web.xml
to support OHW front servlets and JSF filter. For example:
helpsets
directory, create the file and directory as described in steps 1, 2, and 3 of Section 17.5, "Configuring OHW to Display Custom Helpsets". If created, modify ohwconfig.xml
, and edit the help content as required. It specifies which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. The name and location of this file is set as the ohwConfigFileURL
servlet initialization parameter, which is handled differently for each servlet container. The ohwConfigFileURL parameter is defined in web.xml
to specify param-value
.
For information about this configuration file, see Chapter 8, "Oracle Help for the Web Configuration File".
If you want to provide the help content outside of the applcation's EAR file, you must configure the web.xml
file. In the <param-value>
element, you can use a variable to define the path of ohwconfig.xml
using the following syntax:
When OHW finds a variable (for example, {%yourVariableName}
) in the path, it looks for the Java system property of the same name (yourVariableName
), and then replaces the value of the variable with the value defined in Java system property. You can define Java system property in your Oracle WebLogic Server startup scripts.
Support for Ctrl+N Shortcut to Open a New Help Window
You can configure web.xml
to open a new browser window when a users Ctrl+N shortcut. Add the following code in web.xml
to enable the shortcut support:
Support for Partial Page Navigation
To improve performance, you can enable partial page navigation support in OHW. By default, the support is disabled in ADF Faces application, but you can enable it in your helpset by adding the following code in web.xml
:
One way to deploy the OHW is to make it co-exist with your Web application. The Web application could be a JSF, ADF, or JSP application or any Java EE Web application. OHW then could be deployed as one of the Web projects within the existing application.
When you deploy OHW as part of an existing web application, the web application and OHW help system, both, share the same web.xml
. This could limit the fine tuning of OHW help system and may cause conflict with your application. It is recommended that you deploy OHW separately from your web application, and then link the help system with your application. For more information, see Section 17.7, "Deploying OHW as a Standalone Web Application". If your application is using ADF Faces, you may use helpTopicId
attribute on the ADF Faces components for an ADF application. For more information, see Section 19.1, "Integrating Online Help With ADF Faces Application".
Extract the ohw-rcf-webapp.zip
to the public_html
folder (or the web application root directory) of the existing Web application.
Copy the ohw-rcf.jar
, ohw-share.jar
, help-share.jar
files to the application's WEB-INF/lib
folder, or to the defined library folder. If you are developing in JDeveloper, remember to add these jars to your project (Project Properties > Libraries and Classpath).
After all files have been put in the right locations, the OHW administrator must modify some configuration files to make OHW work:
web.xml
file to include JSF and Trinidad parameters if it does not exist. For example:
web.xml
to support OHW front servlets and JSF filter. Since the OHW is part of existing application, the OHW administrator must ensure that the load-on-startup
ordering is maintained in the right sequence.
For example:
ohwconfig.xml
, and edit the help content as needed. If you have not created helpsets or ohwconfig.xml
file, create them as described in steps 1, 2, and 3. The ohwconfig.xml
file specifies which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. The name and location of this file is set as the ohwConfigFileURL
servlet initialization parameter (defined in web.xml
), which is handled differently for each servlet container. For information about this configuration file, see Chapter 8, "Oracle Help for the Web Configuration File".
OHW supports the deployment of multiple help instances (a single help instance may contain multiple helpsets) in a single Web application or enterprise application. One of the main reasons for providing this support is to minimize the changes needed when upgrading from a OHW configuration. The deployment of multiple help instances for OHW is achieved by providing an OHW front servlet that forwards the request to the JSF servlet.
You must modify the web.xml
file of your application to add servlet mapping to the OHW front servlets.
Here is an example of the changes that must be done to the web.xml
file, to support the deployment of multiple help instances for OHW:
In the above sample code, there are two OHW front servlets called product1
and product2
. Each servlet can load a different OHW configuration file that determines the set of books and views shown in the user interface. The product1
servlet is mapped to URL pattern of /product1/*
. So, if you specified a URL mapped to the rich OHW context root that has product1
at the end portion of the URL, it is re-routed to this servlet. Similarly, the product2
is mapped to the URL pattern of /product2/*
.
Once you have successfully deployed OHW in the application server, you can connect to any OHW front servlet you have configured, using a URL similar to the following:
The above URL calls the servlet product1
that loads the OHW configuration file from /helpsets/product1/ohwconfig.xml
and is redirected to a URL like this:
OHW can also process locale and group information appended to the URL (similar to OHW).
Oracle Help for the Web (OHW) provides a context-sensitive help mechanism that launches help topics that are associated with some context in the Web application user interface. Typically, help topics are written to describe the function of a particular page, table, or input field in a Web application. When a user requests help for a user interface control—for example, by clicking a Help button—the appropriate topic for that context (or control) is displayed.
To provide context-sensitive help for a Web application, the help system must include one or more map files, and the appropriate help code must be added to the application code.
The following sections describe how to implement context-sensitive help using OHW:
OHW context-sensitive help systems rely on one or more map files that map topic IDs to help topic HTML files. In a helpset, the map file is saved in XML file format as map.xml
.
The map file is usually created by the help author. As a Web application developer, when associating Web application controls with context-sensitive topics you must use the topic IDs specified in the author's map file. Thus, you will have to coordinate your efforts with the help author.
Here is a sample map file in XML format:
The target
attribute specifies a unique ID for the associated HTML file within a helpset. The url
attribute specifies the location of the file to associate with the ID. The wintype
attribute is optional; it specifies the name of a window type that the topic will be displayed in. For more information about the elements used in the map file, see Section 5.2, "Map Files".
Applications that rely on OHW for context-sensitive help request the context-sensitive topics via specially formulated URLs to the OHW servlet. Any user interface control with a URL destination (links, images, etc.) can be associated with a context-sensitive topic.
When creating a link to OHW for context-sensitive help, you can either use the URL destination for the front main page, which is a tripane-layout UI with the Contents, Index, and Search navigators on the left side, or you can create a URL destination for displaying a topic in tripane-layout UI using the topic ID. You can also specify a locale and a group in the URL destination.
The URL to the front main page is simply the URL to the OHW servlet:
where, <server>
is the name of your server running the servlet container, <port>
is the port used by the servlet container, and <servlet mapping>
is the servlet mapping set up in the web.xml
file for the OHW servlet (oracle.help.web.rich.OHWServlet
).
For example, in the web.xml
, it has the following servlet definition and servlet mapping:
In this example, the URL to the front main page is:
When a user requests help for a user interface control that is linked to the front main page, the OHW tripane-layout main page will be displayed in the user's browser, showing the Contents, Index, and Search navigators on the left side.
To create the URL for linking to a topic, add a topic parameter to the URL of the OHW servlet. The value of the topic parameter is the topic ID of the help topic:
For example, the following URL requests the topic associated with the topic ID topic_1
:
When implementing context-sensitive links to OHW, you may also wish to use JavaScript to open the link in a secondary window rather than replace the main application page.
When a user requests help for a user interface control that is linked to a topic ID, OHW displays the tripane-layout UI with the topic file shown in the Topic Navigator (the right side), and Contents Navigator is shown in the left side with the topic highlighted in the TOC tree.
When you link to any OHW page, including topic pages or front pages, you can include a locale and a group in the URL of the OHW servlet with the locale and group query parameter.
The topic syntax is:
and the front page syntax is:
If you specify the locale, OHW switches to the localized helpset if it is available, and will keep using the specified locale until it is overridden or removed. If the specified localized helpset is not available, the parameter is ignored.
For example:
For more information about locale and group, see Chapter 8, "Oracle Help for the Web Configuration File".
If you have an ADF Faces application and wish to incorporate online help into your application, ADF Faces, also known as ADF Rich Client, provides an easy way to do that. You can create an online help system with help topics which are integrated with components of the application.
This chapter describes how to configure OHW as a help provider, lists other ADF Rich Client help providers, and also describes how to use HelpTopicId attribute to associate help topics with your application.
This chapter contains the following sections:
When you integrate a help topic with an ADF Faces component, a help icon (a blue circle with a question mark) appears with the component. When you click the help icon, the related help topic appears in a new window, as shown in Figure 19-1.
Integrating an online help with an application is an easy process, descibed in the following steps:
For more information about integrating online help with an application, see "Displaying Help for Components" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
ADF Rich Client Faces includes a variety of help providers. You can use a combination of the different help providers or create your own help provider class. You can also use OHW as a help provider.
You need to perform the following tasks in order to set up OHW as a Help Provider in an ADF Rich Client application:
Deploy OHW as a web application:
web.xml
file in this deployment. helpTopicId
, specify the ID you want to display with your OHW instance. Copy the helpsets into a direcotry under your <application_root>/public_html
folder. For example, let's name this directory helpsets
.
adf-settings.xml
file. .adf/META-INF/
directory. Under that directory you can find the adf-settings.xml
file. If the .adf/META-INF
directory is not present, create the META-INF
directory under the ViewController/src
directory. adf-settings.xml
; for example: In this adf-settings.xml
file:
adf-settings.xml
file, the class has to be OHWHelpProvider
. ohwConfigFileURL
property to point to your /helpsets/ohwconfig.xml
. Note that you created the helpsets
directory in Step 3. Note: You can also specifyohwConfigURL using the prop system property. For example, in web.xml , the ohwConfigURL would be configured as: <param-name>ohwConfigFileURL</param-name> <param-value>file:///{%prop}/help/ohwconfig.xml</param-value> In <property> <property-name>ohwConfigFileURL</property-name> <value>file:///{%prop}/help/ohwconfig.xml</value> </property> The |
ohwconfig.xml
file. baseURI
property specifies the server host, the context root, and the OHW servlet instance of the RCF application that you deployed in Step 1. To associate a help topic with an ADF component, you must assign the help topic's unique id as the HelpTopicId attribute's value. The HelpTopicId attribute is available in the Appearance section of Property Inspector.
Before associating a help topic with a component, ensure that you have registered a help provider with your application. To register OHW as a help provider, see Section 19.2, "Registering OHW-RC as an ADF Rich Client Help Provider".
For more information about HelpTopicId attribute, see "Displaying Help for Components" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Two common ADF Rich Client help providers are ResourceBundleHelpProvider
and ELHelpProvider
. The ResourceBundleHelpProvider
help provider allows you to display help in your ADF Faces application that is defined in resource bundles. These resource bundles are containers of your help files, control files, graphics, and other related files. The ELHelpProvider
help provider allows you to display help text in your ADF Faces application that is defined in the XLIFF files. The XLIFF files get converted into maps, or create a managed bean that contains a map of help text strings. Note that ELHelpProvider
does not create help files, but helps you connect those files to the ADF Faces application.
For more information about these and other help providers, see "Displaying Help for Components" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
The Oracle Help file formats are based on the JavaHelp specification. Oracle Corporation has extended the JavaHelp file definitions to support additional features. The differences are summarized in the following sections:
These conventions apply to the following tables:
For more information about this file, see Section 5.1, "Helpset File".
Table A-1 Helpset Elements
Element | Attribute | Origin | Supported By |
---|---|---|---|
| - | JH | OH & JH - Differences as shown below |
- |
| JH | JH only | |
|---|---|---|
| JH | JH only |
| - | JH | OH & JH |
| - | JH | OH & JH |
| - | JH | JH & OH (in some circumstances) |
| - | JH | OH & JH - Differences as shown below |
- |
| JH | OH & JH | |
|---|---|---|
| OH | OH only |
| - | OH | OH only |
- |
| OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
| - | OH | OH only |
- |
| OH | OH only |
| - | JH | OH & JH - Differences as shown below |
| - | JH | JH only |
| - | JH | OH & JH |
- |
| OH | OH only |
| - | OH | OH only |
- |
| OH | OH only (TOC view only) |
| - | JH | OH & JH |
| - | JH | OH & JH - Differences as shown below |
- |
| OH | OH only | |
|---|---|---|
| JH | OH & JH |
| - | OH | OH only |
- |
| OH | OH only |
- |
| OH | OH only |
For more information about this file, see Section 6.1, "Table of Contents File".
For more information about this file, see Section 6.3, "Index File".
Table A-4 Index File Elements
Element | Attribute | Origin | Supported By |
---|---|---|---|
| - | JH | OH & JH - Differences as shown below |
- |
| JH | JH only | |
|---|---|---|
| JH | JH only |
| - | JH | OH & JH - Differences as shown below |
- |
| JH | OH & JH | |
|---|---|---|
| JH | OH & JH |
| - | OH | OH only |
- |
| OH | OH only |
- |
| OH | OH only |
This file is unique to Oracle Help. For more information, see Section 6.4, "Search Index File".
This file is unique to Oracle Help. For more information, see Section 6.5, "Link File".
This file is unique to Oracle Help. For more information, see Chapter 8, "Oracle Help for the Web Configuration File".
A characteristic of how Java handles modal windows causes a problem when trying to display a context-sensitive help topic for a modal window. A modal window is one that does not allow focus to be shifted away from it. A nonmodal window is one that allows focus to be switched to another window.
OHJ provides a workaround for this problem, as discussed in the following sections:
If a user requests help from a nonmodal window, it is possible to switch back and forth between the help window and the window requesting help. However, this is not possible when requesting help from a modal window. In Java, a modal window blocks access to all other windows created by the Java Virtual Machine, except yet another modal window. Thus, if help is requested from a modal window, OHJ must display help in a modal help window. Then, because OHJ is itself shown in a modal window, the user must close the help window to return to the application.
When help is requested, OHJ determines whether the active window is modal. If it is, then it re-parents the normal OHJ topic windows and the OHJ navigator window into a new modal window. That new window appears in the foreground of the user's display, and the user can interact with it; in fact, they must interact with it if only to close the modal help window. Given the coarse implementation of modality in Java, this is the only solution that will work for all of the Java Virtual Machines currently supported by OHJ.
In order for the OHJ workaround to work, OHJ must be able to track the currently active window. Use the registerClientWindow()
method to register each window (Frame or Dialog) you create with the Help object.
Table B-1 registerClientWindow() Method
Constructor | Description |
---|---|
| Window instances registered with the Help object are tracked. If the active window is a modal dialog and help is requested, the Help object will take special action so that the help windows are not blocked by the active modal dialog. Parameters:
|
If you registered your Window objects using Help.registerClientWindow()
, you must also unregister them. When you know that a Window will no longer be active, you should unregister the window with the Help object using the unregisterClientWindow()
method. It is important to note that failure to unregister Window instances may result in the window not being garbage collected.
Table B-2 unregisterClientWindow() Method
Method | Description |
---|---|
| Clients should unregister each Window instance they registered with the Parameters:
|
Older versions of OHJ used a helpbook file and a HelpBook
object. Helpbooks are still supported in current versions of OHJ; however, it is preferable in current versions to use helpsets (helpset file and HelpSet
object).
If you are still using helpbook file and object, and do not wish to use helpsets, the following sections provide helpbook specific information.
If you are using helpbooks, you must ensure that file name and extensions are correct. OHJ and OHW look in a specified directory for files with file name extensions that correspond to the supported file formats, including TOC, TOK, HHC, HHK, OHT, and IDX. For more information about correct file name and extansions, see Section 4.1, "File Name Extensions"
When you use helpsets, you don't have to use specific extensions for the names of the associated control files.
If you want to add a helpbook in OHJ, you must first create a Help
object. For more information, see Section 13.2, "Constructing the Help Object".
Note: When an OHJ system is implemented using a HelpBook, the map file must use the OHT file format. HelpBooks and OHT files are legacies from early versions of OHJ and are no longer recommended, but they are still supported by OHJ. For more information about the map file, see Section 5.2, "Map Files". |
After creating a Help
object, you must add one or more Book
objects to it. A Book
object encapsulates a collection, or a book of help content.
This HelpBook
book implementation handles legacy OHJ file formats. The HelpBook class examines a directory, identifies files with known extensions, and adds them to the help system.
The following sections describe how to add the helpbooks, and other optional features:
For more information, see the API documentation for oracle.help.library.helpset.HelpSet
.
The HelpBook
format is directory based. Use its constructors to specify the location of the directory containing the help content (HTML topic files).
Table C-1 HelpBook() Constructors
Constructor | Description |
---|---|
| Create a Parameters:
|
| Create a Parameters:
|
Once you have constructed a Book
instance using the HelpBook or HelpSet
constructors, you must add the Book
to your Help
instance. This is accomplished by calling the following method on the Help
instance:
Table C-2 addBook() Constructors
Constructor | Description |
---|---|
| This method adds a Parameters:
|
While configuring Oracle Help for the Web configuration file (ohwconfig.xml
) for locale, you can specify a single locale or multiple locales in the <locales>
section.
For more information on configuration file, see Chapter 8, "Oracle Help for the Web Configuration File".
The <books>
element specifies the content to be displayed in Oracle Help for the Web. The <books>
element can contain any number of helpbooks, or a combination of helpsets and helpbooks. Helpsets and helpbooks are also called as books.
Table C-3 describes the <helpbook>
child element:
Table C-3 <books> Child Elements
Element | Description |
---|---|
| The helpbook to include in this instance of OHW. This element has the following attributes:
|
For example:
The <helpbook>
elements can contain zero or more <contentLocation>
elements for situation when help topic files are located in locations other than those expected by Oracle Help.
For more information about other child elements of <books>
, see Section 8.3.1, "<books> Child Elements".
By default OHW automatically processes help topic files that are located in the same locations as helpbook base directories.
In helpbooks, OHW processes help topic HTML files:
If you have help topic files in some other location, you must use the <contentLocation>
element to point to that location.
The <contentLocation>
element has the attribute baseURI
. It represents a URI to the root location of a set of help content, using a path that is either absolute or relative.
The <contentLocation>
element can be a child of <helpbook>
. A <helpbook>
can contain zero or more <contentLocation>
elements.
This element is needed because, unlike plain HTML files, Oracle Help help topic files must be processed by the servlet in order to be displayed. Therefore, it is necessary to explicitly list the locations where help topic files referenced in the helpbook reside, if they are not in the default locations. This can happen if your helpset includes a subhelpset in another location or even on another web server or if your context sensitive map file contains references to help topic files located elsewhere on the same server or on a different server.
For more information, see Section 8.3.2, "The <contentLocation> Element".
Oracle Help for the Web – UIX (OHW-UIX) is a Java servlet and a file formats specification for developing and delivering HTML-based help content in a web environment. OHW-UIX can be used to provide context-sensitive help for web applications or as means for processing and displaying structured views of independent HTML content on the web. With OHW-UIX, a user needs only a web browser to navigate and view help content. The processing takes place on the server, through the OHW-UIX servlet. Because the help content is managed on a server and displayed in any number of web browsers, many users have access to a single installation of the help.
OHW-UIX is the previous version of Oracle Help for the Web. If you are creating a new help system, it is recommended that you create the help system using Oracle Help for the Web, instead of choosing OHW-UIX. You should use OHW-UIX if you are building applications with Oracle's ADF UIX technology.
OHW-UIX includes the following:
The OHW-UIX user interface includes all features available in OHJ's Java user interface, but they are rendered as HTML in users' browsers. Features include a table of contents, index, and text search.
The help content files and control files (the same HTML and XML files that are used in OHJ) can be stored on the same server as the servlet or can be spread out over multiple servers in different locations.
The Oracle Help for the Web – UIX (OHW-UIX) user interface provides the same features as that of Oracle Help for Java (OHJ). However, since OHW-UIX is a web application, there are some differences in appearance and behavior.
OHW-UIX help system is recommended if you are building applications with Oracle ADF UIX technology. If you are not using ADF UIX technology, you must use Oracle Help for the Web – Rich Client help system. For more information, see Chapter 3, "Oracle Help for the Web User Interface".
Figure D-1 numbered callouts identify the following user interface components:
With the exception of the branding area, these elements are configured in the helpset file. OHW-UIX and OHJ use the exact same file formats, including the helpset file. That means that you can take an existing OHJ help system and deploy it as an OHW-UIX system, without changing any of your existing control files. OHW-UIX uses the same directives from the helpset file to construct its user interface as are used by OHJ to configure its user interface. To deploy a help system as an OHW-UIX system, you must configure and deploy a servlet container, and you must add an OHW-UIX configuration file. The branding information is specified in this file, among other configuration parameters.
For more information about deploying OHW-UIX system, see Section D.3, "Understanding OHW-UIX Deployment".
Comparing OHW-UIX Tabs with OHJ Tabs
The standard tabs (also called Navigators) in OHW-UIX are Contents, Index, Search, and View Topic. The Contents, Index, and Search tabs correspond to the same tabs that appear in an OHJ navigation window for a helpset. The View Topic tab takes the place of the topic window in OHJ.The OHW-UIX navigators remember their state for the current user. That means that if you switch from one tab to another, or follow a series of links from a topic, the previously visited tabs retain their contents. For example, if you perform a search in the Search tab and then follow several links from one of the topics found in your search, when you return to the Search tab, your most recent search criteria and results are displayed. This is not a surprising feature for an application that resides on a local system (such as OHJ), but it is an important feature for a web application, where the application runs on a server and can be accessed by many remote users at the same time.The following topics describe the OHW-UIX user interface elements in more detail, including comparisons to OHJ:
In contrast to OHJ, which shows the Table of Contents (TOC) as a tree, the OHW-UIX TOC displays the hierarchy of a help system as a sequence of pages. Each page shows one node in the hierarchy, and that page can list both, topics and child nodes (that is, nodes that fall under the current node). When you select a topic title, OHW-UIX switches to the View Topic tab, where the contents of that topic are displayed. When you click the title of a node in the Contents tab, the page is refreshed to show the listing for that node. When you navigate through a hierarchy, the navigation trail, or breadcrumbs, is shown as a set of links at the top of the page. This provides a quick way to navigate back to a previous level in the hierarchy.
The OHW-UIX keyword index is also slightly different from the one in OHJ. As in OHJ, the OHW-UIX index has a text field labelled Go to where you can enter words you want to find in the index. In contrast to OHJ, you must select Go or press the Enter key before the associated words are displayed. OHW-UIX displays only 10 items at a time, but it also has controls for navigating through the entire list of items that match what was entered in the Go To field. If there is no entry in the Go To field, you can navigate through the entire keyword list.
When you select an item from the list of keywords, the page is refreshed with a list of topics associated with the selected keyword. This is equivalent to the list of found topics at the bottom of the OHJ Index tab. When you select an item from the list, OHW-UIX switches to the View Topic tab, where the topic is displayed.
The Topics for page in the index has navigation links at the top of the page, similar to the one described for the table of contents. However, this link always takes you back to the list of keywords.
The OHW-UIX text search is similar to the index. You enter a word or phrase in the Search text field, press Enter, and OHW-UIX displays a list of associated topics. The first ten items are displayed (the list is sorted by rank), and you can navigate through further items in the list. In Advanced Search mode, you can also specify options for your search, like case sensitivity, match all words, match any words, or use a boolean expression.
As in the index, when you select an item from the list of topics found, the topic is displayed in the View Topic tab.
Topics in OHW-UIX are displayed in the View Topics tab. This navigator supports several special features from OHJ, including topic ID links, associative links, and popups. In OHJ, these features were processed by the ICEbrowser display engine. In OHW-UIX they work in any browser. For more information about these features, see Chapter 7, "Topic Files".
To locate the topic in Table of Contents, click Locate in 'Contents'. To take a print of the topic, click Printable Page. A new printable page is created without navigation tabs, help title, and helpset switcher.
This chapter describes how to deploy OHW-UIX demo file on Oracle WebLogic Server.
The OHW-UIX demo EAR file contains the class libraries that you must view the demo and try out the release. It includes sample helpsets, OHW-UIX servlet file, and XML configuration files. You can deploy the demo file to experience the OHW-UIX interface, or replace the existing helpsets and add your own.
The following sections help you understand the demo file, deploy and test the sample helpset in your environment, and optionally add your own helpset for testing and deployment:
The OHW-UIX demo file, ohw-uix-demo.ear
, contains three OHW-UIX sample helpsets along with their help topics, helpset file, and control files. It also contains ohwconfig.xml
which is needed to configure OHW-UIX.
The OHW demo EAR file extracts files into the ohw-uix-demo
directory. The EAR file, when extracted, contains an ohw-uix-demo.war
file and creates the META-INF
directory, which contains the application.xml
file. The ohw-uix-demo.war
when extracted into ohw-uix-demo
directory contains the helpsets directories along with their help topics, helpset file, and control files.
Table D-1 describes the files and directories in OHW-UIX demo file.
Table D-1 OHW-UIX Demo Files
Directory Location | Description |
---|---|
| Java EE application: a simple OHW-UIX application. The file is available in |
| A web module containing three helpsets: The helpsets directory exists in the |
| The UIX installable resource files. The |
| Contains configuration and deployment information that affects OHW-UIX. The file ise available in |
| OHW-UIX configuration file. The file is available in |
Installing the demo EAR file is a very simple process:
ohw-uix-demo.ear
. This file includes OHW-UIX and sample helpsets. ohw-uix-demo.ear
file, and click Next. The deployment wizard, after successful deployment, returns you to the Settings page of ohw-uix-demo.ear
. If there are errors while deploying the file, you are navigated to Deployment home page where the errors are listed in red text.
To install the demo file on Oracle JDeveloper, follow these steps:
ohw-uix-demo.ear
. This file includes OHW-UIX and sample helpsets. ohw-uix-demo.ear
file. From the File menu, select New. In the New Gallery dialog, select Applications under General category, and then select Application from EAR File from the Items list. ohw-uix-demo.ear
file. You may also change the application name and the location of application. Click Next to continue. ohw-uix-demo
project. From the Application menu, select Deploy. Then from the submenu, select ohw-uix-demo, to, and then select IntegratedWLSConnection. JDeveloper starts the deployment process and the status of the deployment is reflected in the Log window. When the application is successfully deployed, JDeveloper prompts with Deployment finished
message in the Log window.
After successful deployment of ohw-uix-demo.ear
, open your browser and navigate to the following URL:
For example:
If you have installed Oracle WebLogic Server on your local system , you can open the demo help file with the following URL:
The URL automatically changes to http://localhost:7101/ohw-uix-demo/help/state?navSetId=ohguide&navId=0&destination=
and the help opens with Table of Contents view. For more information on user interface of OHW-UIX, see Section D.1, "OHW-UIX User Interface".
Help authors create help content using the authoring tools of their choice. Help authors usually also create the Oracle Help control files that are needed for deploying the help content as OHW-UIX help systems. OHW-UIX administrators typically perform all tasks necessary to deploy a helpset.
Because both help authors and OHW-UIX administrators may want to perform deployments for testing or production, demo deployment files are provided. You can download the latest demo files from OTN.
If you are new to OHW-UIX, you may start with deploying the demo ohw-uix-demo.ear
file. For more information, see Section D.2.1, "Understanding the OHW-UIX Demo File". The demo EAR file includes the files needed to deploy the sample helpsets immediately.
If you are creating a new OHW-UIX helpset, the following sections help you understand the OHW-UIX deployment process and describe the steps required to create and deploy your own OHW-UIX help system.
Unless configuration files have already been created and the application server configured, the OHW-UIX administrator needs to perform these tasks to deploy an OHW-UIX help system:
Verify all requirements and dependencies before beginning any deployment:
Table D-2 OHW-UIX Deployment Minimum Requirements
Requirement | Description |
---|---|
Servlet Container | OHW-UIX requires a JavaEE 1.5 compatible application server. Oracle WebLogic Server, standalone or integrated with JDeveloper, is recommended as it requires minimal configuration effort. |
Client | The client receives only HTML, and all it requires is a web browser to display and view the OHW-UIX help content. The web browser must have JavaScript support enabled. OHW-UIX is supported on Microsoft Internet Explorer 7, Microsoft Internet Explorer 8, Mozilla FireFox 2, Mozilla FireFox 3, Apple Safari, and Google Chrome. |
UIX | OHW-UIX is a UIX application. |
UNIX Only:X Server | On Unix, the servlet container must be configured to connect to an X server in order for dynamic image generation to succeed. |
Before you start deploying the OHW-UIX helpset, there are some files that must be modified to configure OHW-UIX correctly. The following information helps you understand the XML configuration files:
application.xml
: A manifest of all web modules that run under a given Java EE application. It points to each web module of each product that is deployed. Oracle recommends using two instances of application.xml
: The name and location of application.xml
is fixed by the Java EE standard. In OHW-UIX, the file must be located <OHW-UIX_HOME>\META-INF
directory.
web.xml
: Sets the initialization parameters for the servlet, including the location of the OHW-UIX configuration file. There is one instance of web.xml
for each web module. If OHW-UIX configuration files are located and named in a uniform manner, then this file should be the same for all OHW-UIX web modules. The file must be located in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF\
directory. ohwconfig.xml
(default file name): Specify which helpsets to display and how to present them. You can also specify locales, branding information, and various other settings. For information about the configuration file, see Chapter 8, "Oracle Help for the Web Configuration File". The name and location of this file is set as a servlet initialization parameter, which is handled differently for each servlet container. The file must be located in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>
directory. The instructions in this section helps you create the directory structure required for OHW-UIX help system, add your custom helpset files in the correct location, create or modify the configuration files, and deploy the help system on application server.
The instructions in this section also assume that you have installed the OHW-UIX demo EAR file and you have a knowledge of the demo EAR file's directory structure. If you have not installed the demo file, install it following instructions in Section D.2.1, "Understanding the OHW-UIX Demo File".
Follow these steps to set up OHW-UIX help system:
For example:
<OHW-UIX_HOME>\<OHW-UIX_deployment_name>\helpsets\<custom_helpset_directory>
directory, including the helpset file, topic files, and the other control files (index, table of contents, and so on). Also, place any JAR files here, if you are using JAR files for your helpset. You can use JARred and unJARred helpsets together in the same deployment. ohwconfig.xml
from ohw-uix-demo\ohw-uix-demo\helpsets
directory and save it in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\helpsets
directory. Then, update and configure the configuration file: <books></books>
section to direct it to your helpset. For example: <books></books>
section. If removed, the helpsets would not appear in the helpset switcher dropdown list of the OHW-UIX user interface. If you have only one <helpSet>
element in the <books></books>
section, the helpset switcher is not available. <brandings></brandings>
section to display your own brand. For example: ohw-uix-demo\ohw-uix-demo\cabo
direcrtory to <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\cabo
, and library files from ohw-uix-demo\ohw-uix-demo\WEB-INF\lib
directory to <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF\lib
directory. uix-config.xml
from ohw-uix-demo\ohw-uix-demo\WEB-INF
directory and save it in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF
directory. Then, edit the file to your requirements. web.xml
from ohw-uix-demo\ohw-uix-demo\WEB-INF
directory and save it in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF
directory. Then, edit it to your requirements: <display-name></<display-name>
and <description></description>
section to display your custom helpset name. For example: <servlet-name>
element under <servlet>
element to change your URL used to access OHW-UIX. For more information about changing the access URL, see Changing the OHW-UIX Access URL. Compress the <OHW-UIX_deployment_name>
directory into a WAR file.
application.xml
from ohw-uix-demo\META-INF
directory and save it in <OHW-UIX_HOME>\META-INF
directory. Then, edit it to your requirements. In this file, you provide the web module name of each product that you deploy. Specify the WAR file name, created in step 7, in <web-uri></web-uri>
element. If you want to change the access URL of the application, update the <context-root></context-root>
element. For more information, see Section D.3.4, "Changing the OHW-UIX Access URL". <OHW-UIX_HOME>
directory into a EAR file. http://<hostname>:<port>/<OHW-UIX_deployment_name>/help/
, where <hostname>
is the name of the system on which OHW-UIX and Oracle WebLogic Server are installed. The first page of the demo help system displays in the browser. If there is more than one helpset, use the dropdown list in the toolbar to select a helpset, then click the helpset switcher to display the TOC and index from the selected helpset only. The text search searches only for items in the selected helpset.
The URL to access OHW-UIX is http://<hostname>:<port>/mymodule/help/
, where <hostname>
is the name of the system on which OHW-UIX and Oracle WebLogic Server are installed.
You can change this URL in the following ways:
To change the help at the end of the URL, edit web.xml
in <OHW-UIX_HOME>\<OHW-UIX_deployment_name>\WEB-INF
.
The <servlet-mapping>
parameter <url-pattern>
specifies the URL used to access OHW-UIX. For example, if you change <url-pattern>
from the default /help/*
to /onlinereference/*
, the URL used to access OHW-UIX would become http://<hostname>:<port>/mymodule/onlinereference/
.
For example:
To change the access URL for your application , edit the <context-root>
element entry under <web>
element in application.xm
l, located in <OHW-UIX_HOME>\META-INF
:
For example, if you want the OHW-UIX access URL to be http://<hostname>:<port>/jdeveloper/help/
, modify the root element:
When new versions of OHW-UIX and UIX are released, be sure to check the OHW-UIX and UIX download pages for the latest download and install instructions before upgrading your OHW-UIX installation.
WEB-INF/lib
directory. WEB-INF/lib
directory, and also replace the UIX installable resource files (distributed in uix2-install.zip
) by unpacking them into the cabo
directory. To test your upgrade, restart the servlet container and point your browser to http://<hostname>:<port>/ohw-uix-demo/help/
, or wherever you have mapped the OHW-UIX application.
Oracle Help for the Web – UIX (OHW-UIX) provides a context-sensitive help mechanism that launches help topics that are associated with some context in the web application user interface. Typically, help topics are written to describe the function of a particular page, table, or input field in a web application. When a user requests help for a user interface control—for example, by selecting a Help button—the appropriate topic for that context, or control, is displayed.
To provide context-sensitive help for a web application, the help system must include one or more map files and the appropriate help code must be added to the application code.
The following sections describe how to implement context-sensitive help using OHW-UIX:
OHW-UIX context-sensitive help systems rely on one or more map files that map topic IDs to help topic HTML files. In a helpset, the map file is in XML file format.
The map file is usually created by the help author. As a web application developer, when associating web application controls with context-sensitive topics you must use the topic IDs specified in the author's map file. Thus, you must coordinate your efforts with the help author.
Here's a sample map XML file:
The attribute target specifies a unique ID for the associated HTML file within a helpset. The attribute url specifies the location of the file to associate with the ID. The wintype attribute is optional; it specifies the name of a window type that the topic would be displayed in. For more information about the elements used in the map file, see Section 12.2.2, "Contents of an OHJDK Release".
Applications that rely on OHW-UIX for context-sensitive help request the context-sensitive topics through specially formulated URLs to the OHW-UIX servlet. Any user interface control with a URL destination (links, images, and so on) can be associated with a context-sensitive topic.
When creating a link to OHW-UIX for context-sensitive help, you can either use the URL destination for the front page (with the Contents, Index, and Search navigators), or you can create a URL destination for a topic using the topic ID. You can also specify a locale in the URL destination.
The URL to the front page is simply the URL to the OHW-UIX servlet:
where <server>
is the name of your server running the servlet container, <port>
is the port used by the servlet container, and <servlet mapping>
is the servlet mapping set up in the web.xml
file for the OHW-UIX servlet (by default this is ohw-uix/help/
). For example:
When a user requests help for a user interface control that is linked to the front page, OHW-UIX is displayed in the user's browser, showing the first page of the help system (usually a table of contents).
To create the URL for linking to a topic, add a topic parameter to the URL of the OHW-UIX servlet. The value of the topic
parameter is the topic ID of the help topic:
For example, the following URL requests the topic associated with the topic ID topic_1
:
When implementing context-sensitive links to OHW-UIX, you may also want to use JavaScript to open the link in a secondary window rather than replace the main application page.
When a user requests help for a user interface control that is linked to a topic ID, OHW-UIX displays the file associated with the topic ID in a window page that does not include the OHW-UIX navigators (tabs). However, the topic page has a link to the front page of the help system should the user want to access the main help.
When you link to any OHW-UIX page, including topic pages or front pages, you can include a locale in the URL of the OHW-UIX servlet with the locale
query parameter.
The topic syntax is:
and the front page syntax is:
If you specify the locale, OHW-UIX switches to the localized helpset if it is available, and keeps using the specified locale until it is overidden or removed. If the specified localized helpset is not available, the parameter is ignored.
For example:
For more information about locale, see Chapter 8, "Oracle Help for the Web Configuration File".
UIX is an Oracle technology for creating web applications. UIX provides mechanisms that make it easy to provide context-sensitive help through OHW-UIX. With UIX, you can implement context-sensitive help programmatically using the UIX Java API, or declaratively using the UIX language (an XML language).
Note: UIX is not shipped with current release of JDeveloper, but if you want to use UIX, download JDeveloper 10.1.2 or any earlier release from OTN archives. More information about theuix-config.xml file is available in the JDeveloper online help. |
The HelpProvider
architecture in UIX provides a generic context-sensitive help mechanism. OHW-UIX provides context-sensitive help for UIX applications through a specific implementation of HelpProvider
called the OracleHelpProvider
.
To use the OracleHelpProvider
, you must register OHW-UIX with the application, then specify the context-sensitive help links through databinding.
The first step in using the OracleHelpProvider
is to register your OracleHelpProvider
instance (i.e., OHW-UIX) with the UIX Configuration object. In UIX, the HelpProvider
appears as a special UIX DataProvider that can be used for databinding. It is special in that you do not require to declare it in your UIX page, it is available in all pages once you register your HelpProvider
with the Configuration object.
In UIX, you can use the uix-config.xml
file and ApplicationConfiguration
API to create a set of configuration objects without writing a line of code, and update configuration properties in the field without recompiling code.
To register OHW-UIX with your application, modify the uix-config.xml
file to point UIX to an instance of the OHW-UIX servlet.
Here is a sample uix-config.xml
file:
The <help-provider>
element allows configuration of a help provider. The only supported syntax at this time is a contained <ohw-servlet-url>
element. The ohw-servlet-url
must contain an URL that points to an installation of OHW-UIX. Once you've set this property, all uiXML and UIX Java pages have access to two data providers: ui:helpTopics
and ui:helpSystem
.
In UIX, if you want to use Java code to create your Configuration object but want to use the default properties defined in the uix-config.xml
file, you would use the following code:
To register OHW with your application programmatically in UIX, see the following sample code.
The HelpProvider
sets up two special data objects (helpTopics
and helpSystem
in the UIX UI Components namespace).
The HelpProvider
sets up two data providers—ui:helpTopics
and ui:helpSystem
. Here, ui
is used as the prefix for the UIX UI namespace. They are used for databinding the destination attribute of links or buttons (or any control that has a destination) from which you want to connect to the help system.
After registering OHW-UIX with your UIX-based application, you can then specify context-sensitive help declaratively using the data objects ui:helpTopics
and ui:helpSystem
.
Databinding a Destination to the Front Page
Using declarative UIX, a destination can be created for the front page by using the special frontPage key for the ui:helpSystem
data object. For example:
When a user requests help for a user interface control that is linked to the front page, OHW-UIX is displayed in the user's browser, showing the first page of the help system.
Note: The first page of the help system is defined as the first navigator declared in the.hs file and the first book defined in the OHW-UIX configuration file (ohwconfig.xml or another name specified by the configFileName initialization parameter for the servlet). Typically the first navigator of the first book is a table of contents. |
Databinding a Destination to a Topic
To show a topic, use the unique topic ID as the key for the ui:helpTopics
data object. For example:
At runtime, UIX uses the OracleHelpProvider
instance to resolve the value of these destinations. The OracleHelpProvider
automatically returns a destination that includes JavaScript to launch help in a separate, smaller browser window. This window has a link to the front page of the help system should the user want to access the main help.
When upgrading from OHW-UIX to OHW-RC, the helpsets contents may remain unchanged, however, there are two things you must do to use OHW-RC:
WEB-INF/lib
directory. web.xml
file under the WEB-INF/
directory. The best way to do this is to get the web.xml
from the OHW-RC demo bundle and copy the servlet and resource definitions and mappings. There are three major parts required in a web.xml
for OHW-RC:
You must define an OHW-RC Filter and map it to the Faces servlet.
The existing OHW-UIX servlet definitions must be changed to use the OHW-RC class oracle.help.web.rich.OHWServlet
. The following steps describe how to change existing OHW servlet definitions:
ohw-config.xml
for a OHW-UIX servlet instance, define OHW_UIX servlets with <init-param>
named ohwConfigFileURL
. <load-on-startup>
parameter. OHW-RC supports multiple OHW-RC instances in one Web application. Here is an example which deploys two OHW-RC instances in a web.xml
:
 Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved. |