

35 Using the Active Data Service with an Asynchronous Backend

This chapter provides information on registering an asynchronous backend to provide real-time data updates to ADF Faces components.

This chapter includes the following sections:

	
Section 35.1, "About the Active Data Service"

	
Section 35.2, "Process Overview for Using Active Data Service"

	
Section 35.3, "Implement the ActiveModel Interface in a Managed Bean"

	
Section 35.4, "Pass the Event Into the Active Data Service"

	
Section 35.5, "Register the Data Update Event Listener"

	
Section 35.6, "Configure the ADF Component to Display Active Data"

35.1 About the Active Data Service

The Fusion technology stack includes the Active Data Service (ADS), which is a server-side push framework that allows you to provide real-time data updates for ADF Faces components. You bind ADF Faces components to a data source and ADS pushes the data updates to the browser client without requiring the browser client to explicitly request it. For example, you may have a table bound to attributes of an ADF data control whose values change on the server periodically, and you want the updated values to display in the table. You can create a Java bean to implement the ActiveModel interface and register it as an event listener to notify the component of a data event from the backend, and the component rerenders the changed data with the new value highlighted, as shown in Figure 35-1.

Figure 35-1 Table Displays Updated Data as Highlighted

[image: Changed data is shown in blue highlight]

35.1.1 Active Data Service Use Cases and Examples

Using ADS is an alternative to using automatic partial page rendering (PPR) to rerender data that changes on the backend as a result of business logic associated with the ADF data control bound to the ADF Faces component. Whereas automatic PPR requires sending a request to the server (typically initiated by the user), ADS enables changed data to be pushed from the data store as the data arrives on the server. Also, in contrast to PPR, ADS makes it possible for the component to rerender only the changed data instead of the entire component. This makes ADS ideal for situations where the application needs to react to data that changes periodically.

To use this functionality, you must configure the application to use ADS. If your application services do not support ADS, then you also need to create a proxy of the service so that the components can display the data as it updates in the source.

Any ADF Faces page can use ADS. However, you can configure only the following ADF Faces components to work with active data:

	
activeCommandToolbarButton

	
activeImage

	
activeOutputText

	
table

	
Note:

Do not use filtering on a table that will be using active data. Once a table is filtered at runtime, active data cannot be displayed. Currently, ADS supports table components with the outputText component contained within a column; other components are not supported inside the table column.

	
tree

	
treeTable

	
DVT graph, gauge, and geographical map components

For details about the active data service framework and important configuration information, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

35.2 Process Overview for Using Active Data Service

To use ADS, you can optionally configure your application to determine the method of data transport, as well as other performance options.

Before you begin:

Complete the following tasks:

	
Implement the logic to fire the active data events asynchronously from the data source. For example, this logic might be a business process that updates the database, or a JMS client that gets notified from JMS.

	
The Active Data framework does not support complicated business logic or transformations that require the ADF runtime context, such as a user profile or security. For example, the framework cannot convert an ADF context locale-dependent value and return a locale-specific value. Instead, you need to have your data source handle this before publishing the data change event.

	
Before users can run the ADF Faces page with ADS configured for the application, they must disable the popup blocker for their web browser. Active data is not supported in web browsers that have popup blockers enabled.

To use the Active Data Service:

	
Optionally, configure ADS to determine the data transport mode, as well as to set other configurations, such as a latency threshold and reconnect information. Configuration for ADS is done in the adf-config.xml file.

For details about configuring ADS, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Create a backing bean that implements the ActiveModel interface and register it as the listener for active data events from your backend.

	
Create a class that extends the BaseActiveDataModel API to pass the Event object to the ADS framework.

	
Register a data change listener for data change events from the backend.

	
In the web page, configure the ADF Faces component to capture and display the pushed data by adding an expression to name the managed bean that implements the the ADF component that you use to capture and display the pushed data.

35.3 Implement the ActiveModel Interface in a Managed Bean

Create a backing bean that contains the active model implementation as its property. This class uses an ADS decorator class to wrap the JSF model. This class should also implement a callback from the backend that will push data into the ADS framework.

You need to create a Java class that subclasses one of the following ADS decorator classes:

	
ActiveCollectionModelDecorator class

	
ActiveDataModelDecorator class (for use with graphs)

	
ActiveGeoMapDataModelDecorator class

	
ActiveGaugeDataModelDecorator class

These classes are wrapper classes that delegate the active data functionality to a default implementation of ActiveDataModel. The ActiveDataModel class listens for data change events and interacts with the Event Manager.

Specifically, when you implement the ActiveModel interface, you accomplish the following:

	
Wraps the JSF model interface. For example, the ActiveCollectionModelDecorator class wraps the CollectionModel class.

	
Generates active data events based on data change events from the data source.

To implement the ActiveModel interface, you need to implement methods on your Java class that gets the model to which the data is being sent and registers itself as the listener of the active data source (as illustrated in Example 35-1):

	
Create a Java class that extends the decorator class appropriate for your component.

Example 35-1 shows a StockManager class that extends ActiveCollectionModelDecorator. In this case, the data is displayed for an ADF Faces table component.

	
Implement the methods of the decorator class that will return the ActiveDataModel class and implement the method that returns the scalar model.

Example 35-1 shows an implementation of the getCollectionModel() method that registers with an existing asynchronous backend. The method returns the list of stocks collection from the backend.

	
Implement a method that creates application-specific events that can be used to insert or update data on the active model.

Example 35-1 shows the onStockUpdate() callback method from the backend, which uses the active model (an instance of ActiveStockModel) to create ActiveDataUpdateEvent objects to push data to the ADF Faces component.

Example 35-1 Extend the Decorator Class

package sample.oracle.ads;

import java.util.List;
import sample.backend.IBackendListener;
import sample.bean.StockBean;
import sample.oracle.model.ActiveStockModel;

import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;
import oracle.adf.view.rich.model.ActiveCollectionModelDecorator;
import oracle.adf.view.rich.model.ActiveDataModel;

import oracle.adfinternal.view.faces.activedata.ActiveDataEventUtil;

import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.SortableModel;

// 1. This example wraps the existing collection model in the page and implements
// the ActiveDataModel interface to enable ADS for the page.

public StockManager extends ActiveCollectionModelDecorator implements
 IBackendListener
{
 // 2. Implement methods from ADF ActiveCollectionModelDecorator class to
 // return the model.
 @Override
 public ActiveDataModel getActiveDataModel()
 {
 return stockModel;
 }

 @Override
 protected CollectionModel getCollectionModel()
 {
 if(collectionModel == null)
 {
 // connect to a backend system to get a Collection
 List<StockBean> stocks = FacesUtil.loadBackEnd().getStocks();
 // make the collection become a (Trinidad) CollectionModel
 collectionModel = new SortableModel(stocks);
 }

 return collectionModel;
 }

 // 3. Implement a callback method to create active data events and deliver to
 // the ADS framework.

 /**
 * Callback from the backend to push new data to our decorator.
 * The decorator itself notifies the ADS system that there was a data change.
 *
 * @param key the rowKey of the updated Stock
 * @param updatedStock the updated stock object
 */
 @Override
 public void onStockUpdate(Integer rowKey, StockBean stock)
 {
 ActiveStockModel asm = getActiveStockModel();

 // start the preparation for the ADS update
 asm.prepareDataChange();

 // Create an ADS event, using an _internal_ util.
 // This class is not part of the API
 ActiveDataUpdateEvent event = ActiveDataEventUtil.buildActiveDataUpdateEvent(
 ActiveDataEntry.ChangeType.UPDATE, // type
 asm.getCurrentChangeCount(), // changeCount
 new Object[] {rowKey}, // rowKey
 null, //insertKey, null as we don't insert stuff
 new String[] {"value"}, // attribute/property name that changes
 new Object[] { stock.getValue()} // the payload for the above attribute
);

 // Deliver the new Event object to the ADS framework
 asm.notifyDataChange(event);

 }

 /**
 * Typesafe caller for getActiveDataModel()
 * @return
 */
 protected ActiveStockModel getActiveStockModel()
 {
 return (ActiveStockModel) getActiveDataModel();
 }

 // properties
 private CollectionModel collectionModel; // see getCollectionModel()...
 private ActiveStockModel stockModel = new ActiveStockModel();
}

Register the class as a managed bean in the faces-config.xml file. Example 35-2 shows the bean StockManager is registered. Defining the managed bean allows you to specify the managed bean in an expression for the ADF Faces component's value property.

Example 35-2 Register as a Managed Bean

...
<managed-bean>
 <managed-bean-name>stockManager</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.view.feature.rich.StockManager
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

35.3.1 What You May Need to Know About Read Consistency

Using active data means that your component has two sources of data: the active data feed and the standard data fetch. Because of this, you must make sure your application maintains read consistency.

For example, say your page contains a table and that table has active data enabled. The table has two methods of delivery from which it updates its data: normal table data fetch and active data push. Say the back end data changes from foo to bar to fred. For each of these changes, an active data event is fired. If the table is refreshed before those events hit the browser, the table will display fred because standard data fetch will always get the latest data. But then, because the active data event might take longer, some time after the refresh the data change event would cause foo to arrive at the browser, and so the table would update to display foo instead of fred for a period of time. Therefore, you must implement a way to maintain the read consistency.

To achieve read consistency, the ActiveDataModel has the concept of a change count, which effectively timestamps the data. Both data fetch and active data push need to maintain this changeCount object by monotonically increasing the count, so that if any data returned has a lower changeCount, the active data event can throw it away. Example 35-3 shows how you can use your implementation of the ActiveDataModel class to maintain read consistency.

35.4 Pass the Event Into the Active Data Service

You need to create a class that extends BaseActiveDataModel class to pass the event created by your managed bean. The ActiveDataModel class listens for data change events and interacts with the Event Manager. Specifically, the methods you implement do the following:

	
Optionally, starts and stops the active data and the ActiveDataModel object, and registers and unregisters listeners to the data source.

	
Manages listeners from the Event Manager and pushes active data events to the Event Manager.

Example 35-3 shows the notifyDataChange() method of the model passes the Event object to the ADS framework, by placing the object into the fireActiveDataUpdate() method.

Example 35-3 Pass the Event Object into ADS

import java.util.Collection;

import java.util.concurrent.atomic.AtomicInteger;

import oracle.adf.view.rich.activedata.BaseActiveDataModel;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;

public class ActiveStockModel extends BaseActiveDataModel
{

 // -------------- API from BaseActiveDataModel ----------

 @Override
 protected void startActiveData(Collection<Object> rowKeys,
 int startChangeCount)
 {
 /* We don't do anything here as there is no need for it in this example.
 * You could use a listenerCount to see if the maximum allowed listerners
 * are already attached. You could register listeners here.
 */
 }

 @Override
 protected void stopActiveData(Collection<Object> rowKeys)
 {
 // same as above... no need to disconnect here
 }

 @Override
 public int getCurrentChangeCount()
 {
 return changeCounter.get();
 }

 // -------------- Custom API -----------

 /**
 * Increment the change counter.
 */
 public void prepareDataChange()
 {
 changeCounter.incrementAndGet();
 }

 /**
 * Deliver an ActiveDataUpdateEvent object to the ADS framework.
 *
 * @param event the ActiveDataUpdateEvent object
 */
 public void notifyDataChange(ActiveDataUpdateEvent event)
 {
 // Delegate to internal fireActiveDataUpdate() method.
 fireActiveDataUpdate(event);
 }

 // properties
 private final AtomicInteger changeCounter = new AtomicInteger();
}

35.5 Register the Data Update Event Listener

You need to register a data change listener for data change events from the backend. Example 35-4 shows the listener bean StockBackEndSystem is registered in the faces-config.xml file. Note that for this example, expression language is used to inject a listener to the backend.

Example 35-4 Register the Data Update Event Listener

...
<managed-bean>
 <managed-bean-name>backend</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.backend.StockBackEndSystem
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>listener</property-name>
 <value>#{stockManager}</value>
 </managed-property>
</managed-bean>

35.6 Configure the ADF Component to Display Active Data

ADF components that display collection-based data can be configured to work with ADS and require no extra setup in the view layer. Once the listener is registered, you can use ADS to stream the data to the view layer. For example, imagine that your JSPX page uses a table component to display stock updates from a backend source on which you register a listener.

Example 35-5 shows the expression language used on the table component value attribute to receive the pushed data.

Example 35-5 Display the Active Data

...
<f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout topHeight="50px" id="psl1">
 <f:facet name="top">
 <af:outputText value="Oracle ADF Faces goes Push!" id="ot1"/>
 </f:facet>
 <f:facet name="center">
 <!-- id="af_twocol_left_full_header_splitandstretched" -->
 <af:decorativeBox theme="dark" id="db2">
 <f:facet name="center">
 <af:panelSplitter orientation="horizontal"
 splitterPosition="100" id="ps1">
 <f:facet name="first">
 <af:outputText value="Some content here." id="menu"/>
 </f:facet>
 <f:facet name="second">
 <af:decorativeBox theme="medium" id="db1">
 <f:facet name="center">
 <af:table value="#{stockManager}" var="row"
 rowBandingInterval="0"
 id="table1" emptyText="No data...">
 <af:column sortable="false" headerText="Name"
 id="column1">
 <af:outputText value="#{row.name}" id="outputText1"/>
 </af:column>
 <af:column sortable="false"
 headerText="Value...." id="column2">
 <af:outputText value="#{row.value}"
 id="outputText2" />
 </af:column>
 </af:table>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
</f:view>

3 Getting Started with ADF Faces and JDeveloper

This chapter describes how to use JDeveloper to declaratively create ADF Faces applications.

This chapter includes the following sections:

	
Section 3.1, "About Developing Declaratively in JDeveloper"

	
Section 3.2, "Creating an Application Workspace"

	
Section 3.3, "Defining Page Flows"

	
Section 3.4, "Creating a View Page"

	
Section 3.5, "Creating EL Expressions"

	
Section 3.6, "Creating and Using Managed Beans"

	
Section 3.7, "Viewing ADF Faces Javadoc"

3.1 About Developing Declaratively in JDeveloper

Using JDeveloper 11g with ADF Faces and JSF provides a number of areas where page and managed bean code is generated for you declaratively, including creating EL expressions and automatic component binding. Additionally, there are a number of areas where XML metadata is generated for you declaratively, including metadata that controls navigation and configuration.

At a high level, the development process for an ADF Faces view project usually involves the following:

	
Creating an application workspace

	
Designing page flows

	
Designing and creating the pages using either JavaServer Pages (JSPs) or Facelet pages

	
Deploying the application. For more information about deployment, see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework. If your application uses ADF Faces with the ADF Model layer, the ADF Controller, and ADF Business Components, see the "Deploying Fusion Web Applications" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Ongoing tasks throughout the development cycle will likely include the following:

	
Creating managed beans

	
Creating and using EL expressions

	
Viewing ADF Faces source code and Javadoc

JDeveloper also includes debugging and testing capabilities. For more information, see the "Testing and Debugging ADF Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

3.2 Creating an Application Workspace

The first steps in building a new application are to assign it a name and to specify the directory where its source files will be saved. You can either create an application that just contains the view layer, or you can add an ADF Faces project to an existing application.

	
Note:

This document covers only how to create the ADF Faces project in an application, without regard to the business services used or the binding to those services. For information about how to use ADF Faces with the ADF Model layer, the ADF Controller, and ADF Business Components, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about using ADF Faces with the ADF Model layer and EJBs and JPA, see Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

3.2.1 How to Create an ADF Faces Application Workspace

You create an application workspace using the Create Application wizard.

To create an application:

	
In the JDeveloper main menu, choose File > New.

The New Gallery opens, where you can select different application components to create.

	
Select Applications > Custom Application.

	
In the Create Custom Application dialog, set a name, directory location, and package prefix of your choice and click Next.

	
In the Name Your Project page, you can optionally change the name and location for your view project. On the Project Features tab, shuttle ADF Faces Components to Selected. The necessary libraries and metadata files for ADF Faces will be added to your project. Click Next.

	
In the Configure Java Settings page, optionally change the package name, Java source path, and output directory for any Java classes you might create. Click Finish.

	
Tip:

You can also add ADF Faces to an existing project (for example, a view project in a JEE Web Application). To do so:
	
Right-click the project and choose Project Properties.

	
In the Project Properties dialog, select Features, then click the Add (green plus) icon, and shuttle ADF Faces to the Selected pane.

3.2.2 What Happens When You Create an Application Workspace

When you create an application workspace using the Custom template, and the select ADF Faces for your project, JDeveloper creates a project that contains all the source and configuration files needed for an ADF Faces application. Additionally, JDeveloper adds the following libraries to your project:

	
JSF 2.0

	
JSTL 1.2

	
JSP Runtime

Once the projects are created for you, you can rename them. Figure 3-1 shows the workspace for a new ADF Faces application.

Figure 3-1 New Workspace for an ADF Faces Application

[image: JDeveloper workspace contains projects and files]

JDeveloper also sets configuration parameters in the configuration files based on the options chosen when you created the application. In the web.xml file, these are configurations needed to run a JSF application (settings specific to ADF Faces are added when you create a JSF page with ADF Faces components). Example 3-1 shows the web.xml file generated by JDeveloper when you create a new Java EE application.

Example 3-1 Generated web.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
</web-app>

Configurations required for specific ADF Faces features are covered in the respective chapters of this guide. For example, any configuration needed in order to use the Change Persistence framework is covered in Chapter 32, "Allowing User Customization on JSF Pages." For comprehensive information about configuring an ADF Faces application, see Appendix A, " ADF Faces Configuration."

3.3 Defining Page Flows

Once you create your application workspace, often the next step is to design the flow of your UI. As with standard JSF applications, ADF Faces applications use navigation cases and rules to define the page flow. These definitions are stored in the faces-config.xml file. JDeveloper provides a diagrammer through which you can declaratively define your page flow using icons.

Figure 3-2 shows the navigation diagram created for a simple page flow that contains two pages: a DisplayCustomer page that shows data for a specific customer, and an EditCustomer page that allows a user to edit the customer information. There is one navigation rule that goes from the display page to the edit page and one navigation rule that returns to the display page from the edit page.

Figure 3-2 Navigation Diagram in JDeveloper

[image: Setting navigation in JDeveloper]

	
Note:

If you plan on using Oracle ADF Model data binding and the ADF Controller, then you use ADF task flows to define your navigation rules. For more information, see the "Getting Started With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Best Practice:

The ADF Controller extends the JSF default controller. While you can technically use the JSF controller and ADF Controller in your application, you should use only one or the other.

With the advent of JSF 2.0, you no longer need to create a navigation case for simple navigation between two pages. If no matching navigation case is found after checking all available rules, the navigation handler checks to see whether the action outcome corresponds to a view ID. If a view matching the action outcome is found, an implicit navigation to the matching view occurs. For more information on how navigation works in a JSF application, see the Java EE 6 tutorial (http://download.oracle.com/javaee/index.html).

3.3.1 How to Define a Page Flow

You use the navigation diagrammer to declaratively create a page flow using Facelets or JSPX pages. When you use the diagrammer, JDeveloper creates the XML metadata needed for navigation to work in your application in the faces-config.xml file.

Before you begin:

It may be helpful to have an understanding of page flows. For more information, see Section 3.3, "Defining Page Flows."

To create a page flow:

	
In the Application Navigator, double-click the faces-config.xml file for your application. By default, this is in the Web Content/WEB-INF node of your project.

	
In the editor window, click the Diagram tab to open the navigation diagrammer.

	
If the Component Palette is not displayed, from the main menu choose View > Component Palette. By default, the Component Palette is displayed in the upper right-hand corner of JDeveloper.

	
In the Component Palette, use the dropdown menu to choose JSF Diagram Objects.

The components are contained in two accordion panels: Components and Diagram Annotations. Figure 3-3 shows the Component Palette displaying JSF navigation components.

Figure 3-3 Component Palette in JDeveloper

[image: Component Palette contains navigation items]

	
Select the component you wish to use and drag it onto the diagram.

JDeveloper redraws the diagram with the newly added component.

	
Tip:

You can also use the overview editor to create navigation rules and navigation cases by clicking the Overview tab. Press F1 for details on using the overview editor to create navigation.
Additionally, you can manually add elements to the faces-config.xml file by directly editing the page in the source editor. To view the file in the source editor, click the Source tab.

Once the navigation for your application is defined, you can create the pages and add the components that will execute the navigation. For more information about using navigation components on a page, see Chapter 20, "Working with Navigation Components."

3.3.2 What Happens When You Use the Diagrammer to Create a Page Flow

When you use the diagrammer to create a page flow, JDeveloper creates the associated XML entries in the faces-config.xml file. Example 3-2 shows the XML generated for the navigation rules displayed in Figure 3-2.

Example 3-2 Navigation Rules in faces-config.xml

<navigation-rule>
 <from-view-id>/DisplayCustomer</from-view-id>
 <navigation-case>
 <from-outcome>edit</from-outcome>
 <to-view-id>/EditCustomer</to-view-id>
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/EditCustomer</from-view-id>
 <navigation-case>
 <from-outcome>back</from-outcome>
 <to-view-id>/DisplayCustomer</to-view-id>
 </navigation-case>
</navigation-rule>

3.4 Creating a View Page

From the page flows you created during the planning stages, you can double-click the page icons to create the actual JSF page files. You can choose to create either a Facelets page or a JSP page. Facelet pages use the extension *.jsf. Facelets is a JSF-centric declarative XML view definition technology that provides an alternative to using the JSP engine.

If instead you create a JSP page for an ADF Faces application, you create an XML-based JSP document, which uses the extension *.jspx. Using an XML-based document has the following advantages:

	
It simplifies treating your page as a well-formed tree of UI component tags.

	
It discourages you from mixing Java code and component tags.

	
It allows you to easily parse the page to create documentation or audit reports.

	
Best Practice:

Use Facelets to take advantage of the following:
	
The Facelets layer was created specifically for JSF, which results in reduced overhead and improved performance during tag compilation and execution.

	
Facelets is considered the primary view definition technology in JSF 2.0.

	
Some future performance enhancements to the JSF standard will only be available with Facelets.

ADF Faces provides a number of components that you can use to define the overall layout of a page. JDeveloper contains predefined quick start layouts that use these components to provide you with a quick and easy way to correctly build the layout. You can choose from one, two, or three column layouts, and then determine how you want the columns to behave. For example, you may want one column's width to be locked, while another column stretches to fill available browser space. Figure 3-4 shows the quick start layouts available for a two-column layout with the second column split between two panes. For more information about the layout components, see Chapter 9, "Organizing Content on Web Pages."

Figure 3-4 Quick Layouts

[image: You can choose from a number of quick layouts]

	
Best Practice:

Creating a layout that works correctly in all browsers can be time consuming. Use a predefined quick layout to avoid any potential issues.

Along with adding layout components, you can also choose to apply a theme to the chosen quick layout. These themes add color styling to some of the components used in the quick start layout. To see the color and where it is added, see Appendix D, "Quick Start Layout Themes." For more information about themes, see Chapter 28, "Customizing the Appearance Using Styles and Skins"

When you know you want to use the same layout on many pages in your application, ADF Faces allows you to create and use predefined page templates. When creating templates, the template developer can not only determine the layout of any page that will use the template, but can also provide static content that must appear on all pages, as well as create placeholder attributes that can be replaced with valid values for each individual page.

For example, ADF Faces ships with the Oracle Three-Column-Layout template. This template provides areas for specific content, such as branding, a header, and copyright information, and also displays a static logo and busy icon, as shown in Figure 3-5.

Figure 3-5 Oracle Three Column Layout Template

[image: Oracle Three Column Layout template]

Whenever a template is changed, for example if the layout changes, any page that uses the template will also be automatically updated. For more information about creating and using templates, see Section 10.4, "Using Page Templates."

	
Best Practice:

Use templates to ensure consistency and so that in the future, you can easily update multiple pages in an application.

At the time you create a JSF page, you can also choose to create an associated backing bean for the page. Backing beans allow you to access the components on the page programmatically. For more information about using backing beans with JSF pages, see Section 3.4.4, "What You May Need to Know About Automatic Component Binding."

	
Best Practice:

Create backing beans only for pages that contain components that must be accessed and manipulated programmatically. Use managed beans instead if you need only to provide additional functionality accessed through EL expressions on component attributes (such as listeners).

You can also choose to have your page available for display in mobile devices. Once your page files are created, you can add UI components and work with the page source.

3.4.1 How to Create JSF Pages

You create JSF pages (either JSP or Facelets) using the Create JSF Page dialog.

Before you begin:

It may be helpful to have an understanding of the different options when creating a page. For more information, see Section 3.4, "Creating a View Page."

To create a JSF page:

	
In the Application Navigator, right-click the directory where you would like the page to be saved, and choose New. In the New Gallery, expand the Web Tier node, select JSF/Facelets and then Page, and click OK.

OR

From a navigation diagram, double-click a page icon for a page that has not yet been created.

	
Complete the Create JSF Page dialog. For help, click Help in the dialog. For more information about the Managed Bean tab, which can be used to automatically create a backing bean and associated bindings, see Section 3.4.4, "What You May Need to Know About Automatic Component Binding."

	
Note:

While a Facelets page can use any extension you'd like, a Facelets page must use the .jsf extension to be customizable. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."

3.4.2 What Happens When You Create a JSF Page

When you use the Create JSF Page dialog to create a JSF page, JDeveloper creates the physical file and adds the code necessary to import the component libraries and display a page. The code created depends on whether or not you chose to create a JSPX or Facelets page.

Example 3-3 shows a Facelets page when it is first created by JDeveloper.

Example 3-3 Declarative Facelets Page Source Created by JDeveloper

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<f:view xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <af:document title="untitled1.jsf" id="d1">
 <af:form id="f1"></af:form>
 </af:document>
</f:view>

Example 3-4 shows a .jspx page when it is first created by JDeveloper.

Example 3-4 Declarative JSPX Page Source Created by JDeveloper

<?xml version='1.0' encoding='UTF-8'?><jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="untitled1" id="d1">
 <af:form id="f1"></af:form>
 </af:document>
 </f:view>
</jsp:root>

If you chose to use one of the quick layouts, then JDeveloper also adds the components necessary to display the layout. Example 3-5 shows the generated code when you choose a two-column layout, where the first column is locked and the second column stretches to fill up available browser space, and you also choose to apply themes.

Example 3-5 Two-Column Layout

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="untitled2" id="d1">
 <af:form id="f1">
 <af:panelStretchLayout startWidth="100px" id="psl1">
 <f:facet name="start"/>
 <f:facet name="center">
 <!-- id="af_twocol_left_sidebar_stretched" -->
 <af:decorativeBox theme="dark" id="db1">
 <f:facet name="center">
 <af:decorativeBox theme="medium" id="db2">
 <f:facet name="center"/>
 </af:decorativeBox>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

If you chose to automatically create a backing bean using the Managed Bean tab of the dialog, JDeveloper also creates and registers a backing bean for the page, and binds any existing components to the bean. Example 3-6 shows the code created for a backing bean for a page.

Example 3-6 Declarative Backing Bean Source Created by JDeveloper

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;

public class MyFile {
 private RichForm f1;
 private RichDocument d1;

 public void setF1(RichForm f1) {
 this.f1 = f1;
 }

 public RichForm getF1() {
 return f1;
 }

 public void setD1(RichDocument d1) {
 this.document1 = d1;
 }

 public RichDocument getD1() {
 return d1;
 }
}

	
Tip:

You can access the backing bean source from the JSF page by right-clicking the page in the editor, and choosing Go to and then selecting the bean from the list.

Additionally, JDeveloper adds the following libraries to the view project:

	
ADF Faces Runtime 11

	
ADF Common Runtime

	
ADF DVT Faces Runtime

	
ADF DVT Faces Databinding Runtime

	
ADF DVT Faces Databinding MDS Runtime

	
Oracle JEWT

JDeveloper also adds entries to the web.xml file. Example 3-7 shows the web.xml file created once you create a JSPX page.

Example 3-7 Code in the web.xml File After a JSF Page is Created

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.PARTIAL_STATE_SAVING</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <description>If this parameter is true, there will be an automatic check of
 the modification date of your JSPs, and saved state will be discarded when JSP's
 change. It will also automatically check if your skinning css files have changed
 without you having to restart the server. This makes development easier, but adds
 overhead. For this reason this parameter should be set to false when your
 application is deployed.</description>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <description>Whether the 'Generated by...' comment at the bottom of ADF Faces
 HTML pages should contain version number information.</description>
 <param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_SKIP_XML_INSTRUCTIONS</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_SKIP_COMMENTS</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_DECORATORS</param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfTagDecorator
 </param-value>
 </context-param>
 <context-param>
 <param-name>
 javax.faces.FACELETS_RESOURCE_RESOLVER
 </param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfFaceletsResourceResolver
 </param-value>
 </context-param>
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>org.apache.myfaces.trinidad.webapp.ResourceServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <servlet-class>oracle.adf.view.faces.bi.webapp.GraphServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>BIGAUGESERVLET</servlet-name>
 <servlet-class>oracle.adf.view.faces.bi.webapp.GaugeServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MapProxyServlet</servlet-name>
 <servlet-class>oracle.adf.view.faces.bi.webapp.MapProxyServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <url-pattern>/servlet/GraphServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGAUGESERVLET</servlet-name>
 <url-pattern>/servlet/GaugeServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MapProxyServlet</servlet-name>
 <url-pattern>/mapproxy/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/bi/*</url-pattern>
 </servlet-mapping>
 <mime-mapping>
 <extension>swf</extension>
 <mime-type>application/x-shockwave-flash</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>amf</extension>
 <mime-type>application/x-amf</mime-type>
 </mime-mapping>
</web-app>

	
Note:

The Facelets context parameters are only created if you create a Facelets page.

In the faces-config.xml file, when you create a JSF page, JDeveloper creates an entry that defines the default render kit (used to display the components in an HTML client) for ADF Faces, as shown in Example 3-8.

Example 3-8 Generated faces-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<faces-config version="2.0" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 </application>
</faces-config>

An entry in the trinidad-config.xml file defines the default skin used by the user interface (UI) components in the application, as shown in Example 3-9.

Example 3-9 Generated trinidad-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>fusionFx</skin-family>
 <skin-version>v2</skin-version>
</trinidad-config>

When the page is first displayed in JDeveloper, it is displayed in the visual editor (accessed by clicking the Design tab), which allows you to view the page in a WYSIWYG environment. You can also preview your page in a browser window by clicking the Preview tab, or view the source for the page in the source editor by clicking the Source tab. The Structure window located in the lower left-hand corner of JDeveloper, provides a hierarchical view of the page.

3.4.3 What You May Need to Know About Updating Your Application to Use the Facelets Engine

JSF 2.0 web applications can run using either the Facelets engine or JSP servlet engine. By default, documents with the *.jsf and *.xhtml extensions are handled by the Facelets engine, while documents with the *.jsp and *.jspx extensions are handled by the JSP engine. However, this behavior may be changed by setting the javax.faces.FACELETS_VIEW_MAPPINGS context parameter in the web.xml file. Because ADF Faces allows JSP pages to be run with the Facelets engine, you may decide that you want an existing application of JSP pages to use the Facelets engine. To do that, insert the code shown in Example 3-10 into your web.xml page.

Example 3-10 web.xml Code for Running Both JSP and Facelets Pages Using the Facelets Engine

<context-param>
 <param-name>javax.faces.FACELETS_VIEW_MAPPINGS</param-name>
 <!-- Map both *.jspx and *.jsf to the Facelets engine -->
 <param-value>*.jsf; *.jspx</param-value>
 </context-param>

 <context-param>
 <param-name>javax.faces.FACELETS_SKIP_COMMENTS</param-name>
 <param-value>true</param-value>
 </context-param>

 <context-param>
 <param-name>javax.faces.FACELETS_DECORATORS</param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfTagDecorator
 </param-value>
 </context-param>

 <context-param>
 <param-name>
 javax.faces.FACELETS_RESOURCE_RESOLVER
 </param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfFaceletsResourceResolver
 </param-value>
 </context-param>

You then must redeploy your ADF Faces libraries.

Note that if you do change your application to use the Facelets engine, then your application will use JSF partial state saving, which is not currently compatible with ADF Faces. You will need to explicitly add the entry shown in Example 3-11.

Once this incompatibility is resolved (as we expect to happen in future releases), you should re-enable partial state saving by removing the entry. Check your current release notes at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html for the latest information on partial state saving support.

Example 3-11 Add this web.xml Code When Using Facelets Engine

 <context-param>
 <param-name>javax.faces.PARTIAL_STATE_SAVING</param-name>
 <param-value>false</param-value>
 </context-param>

	
Note:

When you switch from the servlet engine to the Facelets engine, you may find certain parts of your application do not function as expected. For example, if you have any custom JSP tags, these tags will need to be reimplemented to work with the Facelets engine. For more information, refer to the ADF Faces release notes.

3.4.4 What You May Need to Know About Automatic Component Binding

Backing beans are managed beans that contain logic and properties for UI components on a JSF page (for more information about managed beans, see Section 3.6, "Creating and Using Managed Beans"). If when you create your JSF page you choose to automatically expose UI components by selecting one of the choices in the Page Implementation option of the Create JSF Page dialog, JDeveloper automatically creates a backing bean (or uses a managed bean of your choice) for the page. For each component you add to the page, JDeveloper then inserts a bean property for that component, and uses the binding attribute to bind component instances to those properties, allowing the bean to accept and return component instances.

Specifically, JDeveloper does the following when you use automatic component binding:

	
Creates a JavaBean using the same name as the JSP or JSPX file, and places it in the view.backing package (if you elect to have JDeveloper create a backing bean).

	
Creates a managed bean entry in the faces-config.xml file for the backing bean. By default, the managed bean name is backing_<page_name> and the bean uses the request scope (for more information about scopes, see Section 5.6, "Object Scope Lifecycles").

	
Note:

JDeveloper does not create managed bean property entries in the faces-config.xml file. If you wish the bean to be instantiated with certain property values, you must perform this configuration in the faces-config.xml file manually. For more information, see Section A.3.1, "How to Configure for ADF Faces in faces-config.xml."

	
On the newly created or selected bean, adds a property and accessor methods for each component tag you place on the JSP. JDeveloper binds the component tag to that property using an EL expression as the value for its binding attribute.

	
Deletes properties and methods for any components deleted from the page.

Once the page is created and components added, you can then declaratively add method binding expressions to components that use them by double-clicking the component in the visual editor, which launches an editor that allows you to select the managed bean and method to which you want to bind the attribute. When automatic component binding is used on a page and you double-click the component, skeleton methods to which the component may be bound are automatically created for you in the page's backing bean. For example, if you add a command button component and then double-click it in the visual editor, the Bind Action Property dialog displays the page's backing bean along with a new skeleton action method, as shown in Figure 3-6.

Figure 3-6 Bind Action Property Dialog

[image: Bind action property dialog to bind to method.]

You can select from one these methods, or if you enter a new method name, JDeveloper automatically creates the new skeleton method in the page's backing bean. You must then add the logic to the method.

	
Note:

When automatic component binding is not used on a page, you must select an existing managed bean or create a new backing bean to create the binding.

For example, suppose you created a JSF page with the file name myfile.jspx. If you chose to let JDeveloper automatically create a default backing bean, then JDeveloper creates the backing bean as view.backing.MyFile.java, and places it in the \src directory of the ViewController project. The backing bean is configured as a managed bean in the faces-config.xml file, and the default managed bean name is backing_myfile.

Example 3-12 shows the code on a JSP that uses automatic component binding, and contains form, inputText, and commandButton components.

Example 3-12 JSF Page Code with Automatic Component Binding

<f:view>
 <af:document id="d1" binding="#{backing_myfile.d1}">
 <af:form id="f1" binding="#{backing_myfile.f1}">
 <af:inputText label="Label 1" binding="#{backing_MyFile.it1}"
 id="inputText1"/>
 <af:commandButton text="commandButton 1"
 binding="#{backing_MyFile.cb1}"
 id="cb1"/>
 </af:form>
 </af:document>
</f:view>

Example 3-13 shows the corresponding code on the backing bean.

Example 3-13 Backing Bean Code Using Automatic Component Binding

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;
import oracle.adf.view.rich.component.rich.input.RichInputText;
import oracle.adf.view.rich.component.rich.nav.RichCommandButton;

public class MyFile {
 private RichForm f1;
 private RichDocument d1;
 private RichInputText it1;
 private RichCommandButton cb1;

 public void setForm1(RichForm f1) {
 this.form1 = f1;
 }

 public RichForm getF1() {
 return f1;
 }

 public void setD1(RichDocument d1) {
 this.d1 = d1;
 }

 public RichDocument getD1() {
 return d1;
 }

 public void setIt1(RichInputText it1) {
 this.inputText1 = inputText1;
 }

 public RichInputText getInputText1() {
 return inputText1;
 }

 public void setCb1(RichCommandButton cb1) {
 this.commandButton1 = commandButton1;
 }

 public RichCommandButton getCb1() {
 return cb1;
 }

 public String cb1_action() {
 // Add event code here...
 return null;
 }
}

Example 3-14 shows the code added to the faces-config.xml file to register the page's backing bean as a managed bean.

Example 3-14 Registration for a Backing Bean

<managed-bean>
 <managed-bean-name>backing_MyFile</managed-bean-name>
 <managed-bean-class>view.backing.MyFile</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

	
Note:

Instead of registering the managed bean in the faces-config.xml file, if you are using Facelets, you can elect to use annotations in the backing bean for registration. For more information about using annotations in managed and backing beans, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/java/index.html.

In addition, when you edit a Java file that is a backing bean for a JSF page, a method binding toolbar appears in the source editor for you to bind appropriate methods quickly and easily to selected components in the page. When you select an event, JDeveloper creates the skeleton method for the event, as shown in Figure 3-7.

Figure 3-7 You Can Declaratively Create Skeleton Methods in the Source Editor

[image: JDeveloper Source editor]

Once you create a page, you can turn automatic component binding off or on, and you can also change the backing bean to a different Java class. Open the JSP in the visual Editor and from the JDeveloper menu, choose Design > Page Properties. Here you can select or deselect the Auto Bind option, and change the managed bean class. Click Help for more information about using the dialog.

	
Note:

If you turn automatic binding off, nothing changes in the binding attributes of existing bound components in the page. If you turn automatic binding on, all existing bound components and any new components that you insert are bound to the selected backing bean. If automatic binding is on and you change the bean selection, all existing bindings and new bindings are switched to the new bean.

You can always access the backing bean for a JSF page from the page editor by right-clicking the page, choosing Go to, and then choosing the bean from the list of beans associated with the JSP.

3.4.5 How to Add ADF Faces Components to JSF Pages

Once you have created a page, you can use the Component Palette to drag and drop components onto the page. JDeveloper then declaratively adds the necessary page code and sets certain values for component attributes.

	
Tip:

For detailed procedures and information about adding and using specific ADF Faces components, see Part IV, "Using Common ADF Faces Components".

	
Note:

You cannot use ADF Faces components on the same page as MyFaces Trinidad components (tr: tags) or other Ajax-enabled library components. You can use Trinidad HTML tags (trh:) on the same page as ADF Faces components, however you may experience some browser layout issues. You should always attempt to use only ADF Faces components to achieve your layout.
Note that your application may contain a mix of pages built using either ADF Faces or other components.

To add ADF Faces components to a page:

	
In the Application Navigator, double click a JSF page to open it in the editor.

	
If the Component Palette is not displayed, from the menu choose View > Component Palette. By default, the Component Palette is displayed in the upper right-hand corner of JDeveloper.

	
In the Component Palette, use the dropdown menu to choose ADF Faces.

	
Note:

If you have chosen to create a Facelets page, then only a subset of ADF Faces components are available to use. You may need to use standard JSF components instead. These are available by selecting JSF from the dropdown menu.

	
Tip:

If the ADF Faces page is not available in the Component Palette, then you need to add the ADF Faces tag library to the project.
For a JSPX file:

	
Right-click inside the Component Palette and choose Edit Tab Libraries.

	
In the Customize Component Palette dialog, shuttle ADF Faces Components to Selected Libraries, and click OK.

For a Facelets file:

	
Right-click the project node and choose Project Properties.

	
Select JSP Tag Libraries to add the ADF Faces library to the project. For additional help, click Help or press F1.

The components are contained in five accordion panels: General Controls (which contains components like buttons, icons, and menus), Text and Selection, Data Views (which contains components like tables and trees), Menus and Toolbars, Layout, and Operations.

Figure 3-8 shows the Component Palette displaying the general controls for ADF Faces.

Figure 3-8 Component Palette in JDeveloper

[image: You can drop ADF Faces components from palette]

	
Select the component you wish to use and drag it onto the page.

JDeveloper redraws the page in the visual editor with the newly added component. In the visual editor, you can directly select components on the page and use the resulting context menu to add more components.

	
Tip:

You can also drag and drop components from the palette into the Structure window or directly into the code in the source editor.
You can always add components by directly editing the page in the source editor. To view the page in the source editor, click the Source tab at the bottom of the window.

3.4.6 What Happens When You Add Components to a Page

When you drag and drop components from the Component Palette onto a JSF page, JDeveloper adds the corresponding code to the JSF page. This code includes the tag necessary to render the component, as well as values for some of the component attributes. Example 3-15 shows the code when you drop an Input Text and a Button component from the palette.

Example 3-15 JDeveloper Declaratively Adds Tags to a JSF Page

<af:inputText label="Label 1" id="it1"/>
<af:commandButton text="commandButton 1" id="cb"/>

	
Note:

If you chose to use automatic component binding, then JDeveloper also adds the binding attribute with its value bound to the corresponding property on the page's backing bean. For more information, see Section 3.4.4, "What You May Need to Know About Automatic Component Binding."

When you drop a component that contains mandatory child components (for example a table or a list), JDeveloper launches a wizard where you define the parent and also each of the child components. Figure 3-9 shows the Table wizard used to create a table component and the table's child column components.

Figure 3-9 Table Wizard in JDeveloper

[image: Table wizard used to create ADF Faces tables]

Example 3-16 shows the code created when you use the wizard to create a table with three columns, each of which uses an outputText component to display data.

Example 3-16 Declarative Code for a Table Component

<af:table var="row" id="t1">
 <af:column sortable="false" headerText="col1" id="c1">
 <af:outputText value="#{row.col1}" id="ot1"/>
 </af:column>
 <af:column sortable="false" headerText="col2" id="c2">
 <af:outputText value="#{row.col2}" id="ot2"/>
 </af:column>
 <af:column sortable="false" headerText="col3" id="c3">
 <af:outputText value="#{row.col3}" id="ot3"/>
 </af:column>
</af:table>

3.4.7 How to Set Component Attributes

Once you drop components onto a page you can use the Property Inspector (displayed by default at the bottom right of JDeveloper) to set attribute values for each component.

	
Tip:

If the Property Inspector is not displayed, choose View > Property Inspector from the main menu.

Figure 3-10 shows the Property Inspector displaying the attributes for an inputText component.

Figure 3-10 JDeveloper Property Inspector

[image: You can set property values in the Property Inspector]

The Property Inspector has sections that group similar properties together. For example, the Property Inspector groups commonly used attributes for the inputText component in the Common section, while properties that affect how the component behaves are grouped together in the Behavior section. Figure 3-11 shows the Behavior section of the Property Inspector for an inputText component.

Figure 3-11 Behavior Section of the Property Inspector

[image: Properties that affect component behavior]

To set component attributes:

	
Select the component, in the visual editor, in the Structure window, or by selecting the tag directly in the source editor.

	
In the Property Inspector, expand the section that contains the attribute you wish to set.

	
Tip:

Some attributes are displayed in more than one section. Entering or changing the value in one section will also change it in any other sections. You can search for an attribute by entering the attribute name in the search field at the top of the inspector.

	
Either enter values directly into the fields, or if the field contains a dropdown list, use that list to select a value. You can also use the dropdown to the right of the field, which launches a popup containing tools you can use to set the value. These tools are either specific property editors (opened by choosing Edit) or the Expression Builder, which you can use to create EL expressions for the value (opened by choosing Expression Builder). For more information about using the Expression Builder, see Section 3.5, "Creating EL Expressions." This popup also displays a description of the property, as shown in Figure 3-12.

Figure 3-12 Property Tools and Help

[image: Property Tools and Help]

3.4.8 What Happens When You Use the Property Inspector

When you use the Property Inspector to set or change attribute values, JDeveloper automatically changes the page source for the attribute to match the entered value.

	
Tip:

You can always change attribute values by directly editing the page in the source editor. To view the page in the source editor, click the Source tab at the bottom of the window.

3.5 Creating EL Expressions

You use EL expressions throughout an ADF Faces application to bind attributes to object values determined at runtime. For example, #{UserList.selectedUsers} might reference a set of selected users, #{user.name} might reference a particular user's name, while #{user.role == 'manager'} would evaluate whether a user is a manager or not. At runtime, a generic expression evaluator returns the List, String, and boolean values of these respective expressions, automating access to the individual objects and their properties without requiring code.

At runtime, the value of certain JSF UI components (such as an inputText component or an outputText component) is determined by its value attribute. While a component can have static text as its value, typically the value attribute will contain an EL expression that the runtime infrastructure evaluates to determine what data to display. For example, an outputText component that displays the name of the currently logged-in user might have its value attribute set to the expression #{UserInfo.name}. Since any attribute of a component (and not just the value attribute) can be assigned a value using an EL expression, it's easy to build dynamic, data-driven user interfaces. For example, you could hide a component when a set of objects you need to display is empty by using a boolean-valued expression like #{not empty UserList.selectedUsers} in the UI component's rendered attribute. If the list of selected users in the object named UserList is empty, the rendered attribute evaluates to false and the component disappears from the page.

In a typical JSF application, you would create objects like UserList as a managed bean. The JSF runtime manages instantiating these beans on demand when any EL expression references them for the first time. When displaying a value, the runtime evaluates the EL expression and pulls the value from the managed bean to populate the component with data when the page is displayed. If the user updates data in the UI component, the JSF runtime pushes the value back into the corresponding managed bean based on the same EL expression. For more information about creating and using managed beans, see Section 3.6, "Creating and Using Managed Beans." For more information about EL expressions, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/java/index.html.

	
Note:

When using an EL expression for the value attribute of an editable component, you must have a corresponding set method for the that component, or else the EL expression will evaluate to read-only, and no updates to the value will be allowed.
For example, say you have an inputText component (whose ID is inputText1) on a page, and you have it's value set to #{myBean.inputValue}. The myBean managed bean would have to have get and set method as follows, in order for the inputText value to be updated:

 public void setIt1(RichInputText inputText1) {
 this.inputText1 = inputText1;
 }

 public RichInputText getInputText1() {
 return inputText1;
 }

Along with standard EL reachable objects and operands, ADF Faces provides EL function tags. These are tags that provide certain functionality that you can use within an EL expression. The format tags can be used to add parameters to String messages, and the time zone tags can be used to return time zones. For information about the format tags, see Section 3.5.2, "How to Use the EL Format Tags." For information about the time zone tags, see Section 11.5.3, "What You May Need to Know About Selecting Time Zones Without the inputDate Component."

3.5.1 How to Create an EL Expression

You can create EL expressions declaratively using the JDeveloper Expression Builder. You can access the builder from the Property Inspector.

Before you begin

It may be helpful to have an understanding of EL expressions. For more information, see Section 3.5, "Creating EL Expressions."

To use the Expression Builder:

	
In the Property Inspector, locate the attribute you wish to modify and use the right most dropdown menu to choose Expression Builder.

	
Create expressions using the following features:

	
Use the Variables dropdown to select items that you want to include in the expression. These items are displayed in a tree that is a hierarchical representation of the binding objects. Each icon in the tree represents various types of binding objects that you can use in an expression.

To narrow down the tree, you can either use the dropdown filter or enter search criteria in the search field. The EL accessible objects exposed by ADF Faces are located under the adfFacesContext node, which is under the JSF Managed Beans node, as shown in Figure 3-13.

Figure 3-13 adfFacesContext Objects in the Expression Builder

[image: adfFacesContext properties]

	
Tip:

For more information about these objects, see the ADF Faces Javadoc.

Selecting an item in the tree causes it to be moved to the Expression box within an EL expression. You can also type the expression directly in the Expression box.

	
Use the operator buttons to add logical or mathematical operators to the expression.

Figure 3-14 shows the Expression Builder dialog being used to create an expression that binds to the value of a label for a component to the label property of the explorer managed bean.

Figure 3-14 The Expression Builder Dialog

[image: Expression Builder Dialog]

	
Tip:

For information about using proper syntax to create EL expressions, see the Java EE 6 tutorial at http://download.oracle.com/javaee/index.html.

3.5.2 How to Use the EL Format Tags

ADF EL format tags allow you to create text that uses placeholder parameters, which can then be used as the value for any component attribute that accepts a String. At runtime, the placeholders are replaced with the parameter values.

For example, say the current user's name is stored on a managed bean, and you want to display that name within a message as the value of an outputText component. You could use the formatString tag as shown in Example 3-17.

Example 3-17 Using the formatString Tag to Display a Message with a Parameter

<af:outputText value="#{af:formatString('The current user is: {0},
 someBean.currentUser)}" />

In this example, the formatString tag takes one parameter whose key "0," resolves to the value someBean.currentUser.

There are two different types of format tags available, formatString tags and formatNamed tags. The formatString tags use indexed parameters, while the formatNamed tags use named parameters. There are four tags for each type, each one taking a different number of parameters (up to 4). For example, the formatString2 tag takes two indexed parameters, and the formatNamed4 tag takes four named parameters.

When you use a formatNamed tag, you set both the key and the value. Example 3-18 shows a message that uses the formatNamed2 tag to display the number of files on a specific disk. This message contains two parameters.

Example 3-18 Using the formatNamed2 Tag to Display a Message

<af:outputText value="#{af:formatNamed2(
 'The disk named {disk}, contains {fileNumber} files', 'disk', bean.disk, 'fileNumber', bean.fileNumber)}" />

3.5.3 How to Use EL Expressions Within Managed Beans

While JDeveloper creates many needed EL expressions for you, and you can use the Expression Builder to create those not built for you, there may be times when you need to access, set, or invoke EL expressions within a managed bean.

Example 3-19 shows how you can get a reference to an EL expression and return (or create) the matching object.

Example 3-19 Resolving an EL Expression from a Managed Bean

public static Object resolveExpression(String expression) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression,
 Object.class);
 return valueExp.getValue(elContext);
 }

Example 3-20 shows how you can resolve a method expression.

Example 3-20 Resolving a Method Expression from a Managed Bean

public static Object resloveMethodExpression(String expression,
 Class returnType,
 Class[] argTypes,
 Object[] argValues) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 MethodExpression methodExpression =
 elFactory.createMethodExpression(elContext, expression, returnType,
 argTypes);
 return methodExpression.invoke(elContext, argValues);
 }

Example 3-21 shows how you can set a new object on a managed bean.

Example 3-21 Setting a New Object on a Managed Bean

public static void setObject(String expression, Object newValue) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression,
 Object.class);

 //Check that the input newValue can be cast to the property type
 //expected by the managed bean.
 //Rely on Auto-Unboxing if the managed Bean expects a primitive
 Class bindClass = valueExp.getType(elContext);
 if (bindClass.isPrimitive() || bindClass.isInstance(newValue)) {
 valueExp.setValue(elContext, newValue);
 }
}

3.6 Creating and Using Managed Beans

Managed beans are Java classes that you register with the application using various configuration files. When the JSF application starts up, it parses these configuration files and the beans are made available and can be referenced in an EL expression, allowing access to the beans' properties and methods. Whenever a managed bean is referenced for the first time and it does not already exist, the Managed Bean Creation Facility instantiates the bean by calling the default constructor method on the bean. If any properties are also declared, they are populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best handled at the front end. For a more complete description of how managed beans are used in a standard JSF application, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/java/index.html.

	
Best Practice:

Use managed beans to store only bookkeeping information, for example the current user. All application data and processing should be handled by logic in the business layer of the application.

In a standard JSF application, managed beans are registered in the faces-config.xml configuration file.

	
Note:

If you plan on using Oracle ADF Model data binding and ADF Controller, then instead of registering managed beans in the faces-config.xml file, you may need to register them within ADF task flows. For more information, refer to the "Using a Managed Bean in a Fusion Web Application" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

3.6.1 How to Create a Managed Bean in JDeveloper

You can create a managed bean and register it with the JSF application at the same time using the overview editor for the faces-config.xml file.

Before you begin

It may be helpful to have an understanding of managed beans. For more information, see Section 3.6, "Creating and Using Managed Beans."

To create and register a managed bean:

	
In the Application Navigator, open the faces-config.xml file.

	
In the editor window, click the Overview tab.

	
In the overview editor, click the Managed Beans tab.

Figure 3-15 shows the editor for the faces-config.xml file used by the ADF Faces demo that contains the File Explorer application.

Figure 3-15 Managed Beans in the faces-config.xml File

[image: The JSF Configuration Editor shows all the managed beans]

	
Click the Add icon to add a row to the Managed Bean table.

	
In the Create Managed Bean dialog, enter values. Click Help for more information about using the dialog. Select the Generate Class If It Does Not Exist option if you want JDeveloper to create the class file for you.

	
Note:

When determining what scope to register a managed bean with or to store a value in, keep the following in mind:
	
Always try to use the narrowest scope possible.

	
If your managed bean takes part in component binding by accepting and returning component instances (that is, if UI components on the page use the binding attribute to bind to component properties on the bean), then the managed bean must be stored in request or backingBean scope. If it can't be stored in one of those scopes (for example, if it needs to be stored in session scope for high availability reasons), then you need to use the ComponentReference API. For more information, see Section 3.6.3, "What You May Need to Know About Component Bindings and Managed Beans."

	
Use the sessionScope scope only for information that is relevant to the whole session, such as user or context information. Avoid using the sessionScope scope to pass values from one page to another.

For more information about the different object scopes, see Section 5.6, "Object Scope Lifecycles."

	
You can optionally add managed properties for the bean. When the bean is instantiated, any managed properties will be set with the provided value. With the bean selected in the Managed Bean table, click the New icon to add a row to the Managed Properties table. In the Property Inspector, enter a property name (other fields are optional).

	
Note:

While you can declare managed properties using this editor, the corresponding code is not generated on the Java class. You must add that code by creating private member fields of the appropriate type, and then by choosing the Generate Accessors menu item on the context menu of the code editor to generate the corresponding get and set methods for these bean properties.

3.6.2 What Happens When You Use JDeveloper to Create a Managed Bean

When you create a managed bean and elect to generate the Java file, JDeveloper creates a stub class with the given name and a default constructor. Example 3-22 shows the code added to the MyBean class stored in the view package.

Example 3-22 Generated Code for a Managed Bean

package view;

public class MyBean {
 public MyBean() {
 }
}

You now must add the logic required by your page. You can then refer to that logic using an EL expression that refers to the managed-bean-name given to the managed bean. For example, to access the myInfo property on the my_bean managed bean, the EL expression would be:

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the faces-config.xml file. Example 3-23 shows the managed-bean element created for the MyBean class.

Example 3-23 Managed Bean Configuration on the faces-config.xml File

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

3.6.3 What You May Need to Know About Component Bindings and Managed Beans

To avoid issues with managed beans, if your bean needs to use component binding (through the binding attribute on the component), you must store the bean in request scope. (If your application uses the Fusion technology stack, then you must store it in backingBean scope. For more information, see the "Using a Managed Bean in a Fusion Web Application" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.) However, there may be circumstances where you can't store the bean in request or backingBean scope. For example, there may be managed beans that are stored in session scope so that they can be deployed in a clustered environment, and therefore must implement the Serializable interface. When they are serializable, managed beans that change during a request can be distributed to other servers for fail-over. However, ADF Faces components (and JSF components in general) are not serializable. So if a serialized managed bean attempts to access a component using component binding, the bean will fail serialization because the referenced component cannot be serialized. There are also thread safety issues with components bound to serialized managed beans because ADF Faces components are not thread safe.

When you need to store a component reference to a UI component instance in a backing bean that is not using request or backingBean scope, you should store a reference to the component instance using the Trinidad ComponentReference API. The UIComponentReference.newUIComponentReference() method creates a serializable reference object that can be used to retrieve a UIComponent instance on the current page. Example 3-24 shows how a managed bean might use the UIComponentReference API to get and set values for a search field.

Example 3-24 Session Scoped Managed Bean Uses the UIComponentReference API

...
private ComponentReference<UIInput> searchField;
...
public void setSearchField(UIInput searchField)
{
 if(this.searchField == null)
 this.searchField = ComponentReference.newUIComponentReference(searchField);
}

public UIInput getSearchField()
{
 return searchField ==null ? null : searchField.getComponent();
}
....

Keep the following in mind when using the UIComponentReference API:

	
The API is thread safe as long as it is called on the request thread.

	
The ADF Faces component being passed in must have an ID.

	
The reference will break if the component is moved between naming containers or if the ID on any of the ancestor naming containers has changed.

For more information about the UIComponentReference API, see the Trinidad JavaDoc.

3.7 Viewing ADF Faces Javadoc

Often, when you are working with ADF Faces, you will need to view the Javadoc for ADF Faces classes. You can view Javadoc from within JDeveloper.

3.7.1 How to View ADF Faces Source Code and Javadoc

You can view the ADF Faces Javadoc directly from JDeveloper.

To view Javadoc for a class:

	
From the main menu, choose Navigate > Go to Javadoc.

	
In the Go to Javadoc dialog, enter the class name you want to view. If you don't know the exact name, you can either begin to type the name and JDeveloper will provide a list of classes that match the name. ADF Faces components are in the oracle.adf.view.rich package.

	
Tip:

When in a Java class file, you can go directly to the Javadoc for a class name reference or for a JavaScript function call by placing your cursor on the name or function and pressing Ctrl+D.

33 Adding Drag and Drop Functionality

This chapter describes how to add drag and drop functionality to your pages, which allows users to drag the values of attributes or objects from one component to another, or allows users to drag and drop components.

This chapter includes the following sections:

	
Section 33.1, "About Drag and Drop Functionality"

	
Section 33.2, "Adding Drag and Drop Functionality for Attributes"

	
Section 33.3, "Adding Drag and Drop Functionality for Objects"

	
Section 33.4, "Adding Drag and Drop Functionality for Collections"

	
Section 33.5, "Adding Drag and Drop Functionality for Components"

	
Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component"

	
Section 33.7, "Adding Drag and Drop Functionality to a Calendar"

	
Section 33.8, "Adding Drag and Drop Functionality for DVT Graphs"

	
Section 33.9, "Adding Drag and Drop Functionality for DVT Gantt Charts"

33.1 About Drag and Drop Functionality

The ADF Faces framework provides the ability to drag and drop items from one place to another on a page. In most cases, drag and drop can easily be implemented by added the appropriate tags to the source and target and implementing code in a managed bean. Drag and drop provides users with the GUI experience that is expected in web applications. For example, in the File Explorer application, you can drag a file from the Table tab and drop it into another directory folder, as shown in Figure 33-1.

Figure 33-1 Drag and Drop in the File Explorer Application

[image: You can drag a file to another directory folder]

In this scenario, you are actually dragging an object from one collection (Folder0) and dropping it into another collection (Folder2). This is one of the many supported drag and drop scenarios. ADF Faces supports the following scenarios:

	
Dragging an attribute value from one component instance and copying it to another. For example, a user might be able to drag an outputText component onto an inputText component, which would result in the value of the text attribute of the outputText component becoming the value of the text attribute on the inputText component.

	
Dragging the value of one object and dropping it so that it becomes the value of another object. For example, a user might be able to drag an outputText component onto another outputText component, which would result in an array of String objects populating the text attribute of the second outputText component.

	
Dragging an object from one collection and dropping it into another, as shown in Figure 33-1.

	
Dragging a component from one place on a page to another. For example, a user might be able to drag an existing panelBox component to a new place within a panelGrid component.

	
Dragging an activity in a calendar from one start time or date to another.

	
Dragging a component into or out of a panelDashboard component.

	
Dragging a marker in a DVT scatter or bubble graph to change its value.

	
Dragging an object from a DVT Gantt chart to another component.

When users click on a source and begin to drag, the browser displays the element being dragged as a ghost element attached to the mouse pointer. Once the ghost element hovers over a valid target, the target component shows some feedback (for example, it becomes highlighted). If the user drags the ghost element over an invalid target, the cursor changes to indicate that the target is not valid.

When dragging attribute values, the user can only copy the value to the target. For all other drag and drop scenarios, on the drop, the element can be copied (copy and paste), moved (cut and paste), or linked (creating a shortcut for a file in a directory in which the link is a reference to the real file object).

The component that will be dragged and that contains the value is called the source. The component that will accept the drop is called the target. You use a specific tag as a child to the source and target components that tells the framework to allow the drop. Table 33-1 shows the different drag and drop scenarios, the valid source(s) and target(s), and the associated tags to be used for that scenario.

Table 33-1 Drag and Drop Scenarios

	Scenario	Source	Target
	
Dragging an attribute value

	
An attribute value on a component

	
An attribute value on another component, as long as it is the same object type

	
Tag: attributeDragSource

	
Tag: attributeDropTarget

	
Dragging an object from one component to another

	
Any component

	
Any component

	
Tag: attributeDragSource

	
Tag: dropTarget

	
Dragging an item from one collection and dropping it into another

	
table, tree, and treeTable components

	
table, tree, and treeTable components

	
Tag: dragSource

	
Tag: collectionDropTarget

	
Dragging a component from one container to another

	
Any component

	
Any component

	
Tag: componentDragSource

	
Tag: dropTarget

	
Dragging a calendar activity from one start time or date to another

	
calendarActivity object

	
calendar component

	
Tag: None needed

	
Tag: calendarDropTarget

	
Dragging a panelBox component into a panelDashboard component.

	
panelBox component

	
panelDashboard component

	
Tag: componentDragSource

	
Tag: dataFlavor

	
Dragging a panelBox component out of a panelDashboard component.

	
panelBox component in a panelDashboard component

	
Any component

	
Tag: componentDragSource

	
Tag: dropTarget

	
Dragging a marker in a DVT graph

	
graph component

	
graph component

	
Tag: dragSource

	
Tag: dropTarget

	
Dragging an object from a DVT Gantt chart and dropping it on another component

	
Gantt chart

	
Any component

	
Tag: dragSource

	
Tag: dropTarget

You can restrict the type of the object that can be dropped on a target by adding a dataFlavor tag. This helps when the target can accept only one object type, but the source may be one of a number of different types. The dataFlavor tag also allows you to set multiple types so that the target can accept objects from more than one source or from a source that may contain more than one type. Both the target and the source must contain the dataFlavor tag, and the values must be the same in order for the drop to be successful.

	
Note:

Drag and drop functionality is not supported between windows. Any drag that extends past the window boundaries will be canceled. Drag and drop functionality is supported between popup windows and the base page for the popup.
Also note that drag and drop functionality is not accessible; that is, there are no keyboard strokes that can be used to execute a drag and drop. Therefore, if your application requires all functionality to be accessible, you must provide this logic. For example, your page might also present users with a method for selecting objects and a Move button or menu item that allows them to move those selected objects.

33.1.1 Additional Functionality for Drag and Drop

You may find it helpful to understand other ADF Faces features before you implement drag and drop. Following are links to other sections that may be useful for implementing drag and drop.

	
Managed beans: You may be using managed beans for your code. For information about using managed beans, see Section 3.6, "Creating and Using Managed Beans."

	
Events: Table and tree components fire both server-side and client-side events that you can have your application react to by executing some logic. For more information, see Chapter 6, "Handling Events."

33.2 Adding Drag and Drop Functionality for Attributes

You add drag and drop functionality for attributes by defining one component's attribute to be a target and another component's attribute to be a source.

	
Note:

The target and source attribute values must both be the same data type. For example, attribute drag and drop is available when both the source and target are of type String. If they are both of type number, they both use the same converters.

The following procedure assumes you have your target and source components already on the JSF page.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.2, "Adding Drag and Drop Functionality for Attributes."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality for attributes:

	
In the Component Palette, from the Operations panel, drag and drop an Attribute Drop Target as a child to the target component.

	
In the Insert Attribute Drop Target dialog, use the Attribute dropdown to select the attribute that will be populated by the drag and drop action. This dropdown list shows all valid attributes on the target component.

	
From the Component Palette, drag and drop an Attribute Drag Source as a child to the component that can provide a value for the target.

	
In the Insert Attribute Drag Source dialog, use the Attribute dropdown to select the attribute whose value will be used to populate the target attribute. This dropdown list shows all valid attributes on the source component.

33.3 Adding Drag and Drop Functionality for Objects

When you want users to be able to drag things other than attribute values, or you want users to be able to do something other than copy attributes from one component to another, you use the dropTarget tag. Additionally, use the DataFlavor object to determine the valid Java types of sources for the drop target. Because there may be several drop targets and drag sources, you can further restrict valid combinations by using discriminant values. You also must implement any required functionality in response to the drag and drop action.

For example, suppose you have an outputText component and you want the user to be able to drag the outputText component to a panelBox component and have that component display an array, as shown in Figure 33-6.

Figure 33-2 Dragging and Dropping an Array Object

[image: Drag and drop an object]

The outputText component contains an attributeDragSource tag. However, because you want to drag an array (and not just the String value of the attribute), you must use the dropTarget tag instead of the attributeDropTarget tag. Also use a dataFlavor tag to ensure that only an array object will be accepted on the target.

You can also define a discriminant value for the dataFlavor tag. This is helpful if you have two targets and two sources, all with the same object type. By creating a discriminant value, you can be sure that each target will accept only valid sources. For example, suppose you have two targets that both accept an EMPLOYEE object, TargetA and TargetB. Suppose you also have two sources, both of which are EMPLOYEE objects. By setting a discriminant value on TargetA with a value of alpha, only the EMPLOYEE source that provides the discriminant value of alpha will be accepted.

You also must implement a listener for the drop event. The object of the drop event is called the transferable, which contains the payload of the drop. Your listener must access the transferable object, and from there, use the DataFlavor object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object. More details about this listener are covered in the procedure in Section 33.9.1, "How to Add Drag and Drop Functionality for a DVT Component".

33.3.1 How to Add Drag and Drop Functionality for a Single Object

To add drag and drop functionality, first add tags to a component that define it as a target for a drag and drop action. Then implement the event handler method that will handle the logic for the drag and drop action. Last, you define the sources for the drag and drop.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.3, "Adding Drag and Drop Functionality for Objects."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

You will need to complete this task:

	Create the source and target components on the page.

To add drag and drop functionality:

	
In the JSF page that contains the target, add a dropTarget tag as a child to the target component by dragging and dropping a Drop Target tag (located in the Operations panel) from the Component Palette.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 5).

For information about using managed beans, see Section 3.6, "Creating and Using Managed Beans."

	
Tip:

You can also intercept the drop on the client by populating the clientDropListener attribute. For more information, see Section 33.3.3, "What You May Need to Know About Using the ClientDropListener."

	
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object. This selection will be used to create a dataFlavor tag, which determines the type of object that can be dropped onto the target, for example a String or a Date. Multiple dataFlavor tags are allowed under a single drop target to allow the drop target to accept any of those types.

	
Tip:

To specify a typed array in a DataFlavor tag, add brackets ([]) to the class name, for example, java.lang.Object[].

	
In the Structure window, select the dropTarget tag. In the Property inspector, select a value for the actions attribute. This defines what actions are supported by the drop target. Valid values can be COPY (copy and paste), MOVE (cut and paste), and LINK (copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

Example 33-1 shows the code for a dropTarget component inserted into an panelBox component that takes an array object as a drop target. Note that because an action was not defined, the only allowed action will be COPY.

Example 33-1 JSP Code for a dropTarget tag

<af:panelBox text="PanelBox2">
 <f:facet name="toolbar"/>
 <af:dropTarget dropListener="#{myBean.handleDrop}">
 <af:dataFlavor flavorClass="java.lang.Object[]"/>
 </af:dropTarget>
</af:panelBox>

	
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction object, which is the action that will be performed when the source is dropped. Valid return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK, and were set when you defined the target attribute in Step 5. This method should check the DropEvent event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction object it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected.

The method must also check for the presence for each dataFlavor object in preference order.

	
Tip:

If your target has more than one defined dataFlavor object, then you can use the Transferable.getSuitableTransferData() method, which returns a List of TransferData objects available in the Transferable object in order, from highest suitability to lowest.

The DataFlavor object defines the type of data being dropped, for example java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as created in Step 3.

	
Tip:

To specify a typed array in a DataFlavor object, add brackets ([]) to the class name, for example, java.lang.Object[].
DataFlavor objects support polymorphism so that if the drop target accepts java.util.List, and the transferable object contains a java.util.ArrayList, the drop will succeed. Likewise, this functionality supports automatic conversion between Arrays and Lists.

If the drag and drop framework doesn't know how to represent a server DataFlavor object on the client component, the drop target will be configured to allow all drops to succeed on the client.

Example 33-2 shows a private method that the event handler method calls (the event handler itself does nothing but call this method; it is needed because this method also needs a String parameter that will become the value of the outputText component in the panelBox component). This method copies an array object from the event payload and assigns it to the component that initiated the event.

Example 33-2 Event Handler Code for a dropListener

public DnDAction handleDrop(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();
 Object[] drinks = dropTransferable.getData(DataFlavor.OBJECT_ARRAY_FLAVOR);

 if (drinks != null)
 {
 UIComponent dropComponent = dropEvent.getDropComponent();

// Update the specified property of the drop component with the Object[] dropped
 dropComponent.getAttributes().put("value", Arrays.toString(drinks));

 return DnDAction.COPY;
 }
 else
 {
 return DnDAction.NONE;
 }
 }

	
Add a clientAttribute tag as a child to the source component by dragging a Client Attribute (located in the Operations panel), from the Component Palette. This tag is used to define the payload of the source for the event. Define the following for the clientAttribute tag in the Property Inspector:

	
Name: Enter any name for the payload.

	
Value: Enter an EL expression that evaluates to the value of the payload. In the drinks example, this would resolve to the Array that holds the different drink values.

	
Drag and drop an Attribute Drag Source (located in the Operations panel), from the palette as another child to the source component. In the Insert Attribute Drag Source dialog, use the dropdown list to select the name defined for the clientAttribute tag created in the previous step. Doing so makes the value of the clientAttribute tag the source's payload. Example 33-3 shows the code for an outputText component that is the source of the drag and drop operation.

Example 33-3 JSP Code for a Drag Source

<af:outputText value="Drag to see drinks">
 <af:clientAttribute name="drinks" value="#{myBean.drinks}"/>
 <af:attributeDragSource attribute="drinks"/>
</af:outputText>

33.3.2 What Happens at Runtime

When performing a drag and drop operation, users can press keys on the keyboard (called keyboard modifiers) to select the action they wish to take on a drag and drop. The drag and drop framework supports the following keyboard modifiers:

	
SHIFT: MOVE

	
CTRL: COPY

	
CTRL+SHIFT: LINK

When a user executes the drag and drop operation, the drop target first determines that it can accept the drag source's data flavor value. Next, if the source and target are collections, the framework intersects the actions allowed between the drag source and drop target and executes the action (one of COPY, MOVE, or LINK) in that order from the intersection. When there is only one valid action, that action is executed. When there is more than one possible action and the user's keyboard modifier matches that choice, then that is the one that is executed. If either no keyboard modifier is used, or the keyboard modifier used does not match an allowed action, then the framework chooses COPY, MOVE, LINK in that order, from the set of allowed actions.

For example, suppose you have a drop target that supports COPY and MOVE. First the drop target determines that drag source is a valid data flavor. Next, it determines which action to perform when the user performs the drop. In this example, the set is COPY and MOVE. If the user holds down the SHIFT key while dragging (the keyboard modifier for MOVE), the framework would choose the MOVE action. If the user is doing anything other than holding down the SHIFT key when dragging, the action will be COPY because COPY is the default when no modifier key is chosen (it is first in the order). If the user is pressing the CTRL key, that modifier matches COPY, so COPY would be performed. If the user was pressing the CTRL+SHIFT keys, the action would still be COPY because that modifier matches the LINK action which is not in the intersected set of allowed actions.

	
Note:

Because information is lost during the roundtrip between Java and JavaScript, the data in the drop may not be the type that you expect. For example, all numeric types appear as double objects, char objects appear as String objects, List and Array objects appear as List objects, and most other objects appear as Map objects. For more information, see Section 6.4.3, "What You May Need to Know About Marshalling and Unmarshalling Data.".

33.3.3 What You May Need to Know About Using the ClientDropListener

The dropTarget tag contains the clientDropListener attribute where you can reference JavaScript that will handle the drop event on the client. The client handler should not take any parameters and returns an AdfDnDContext action. For example, if the method returns AdfDnDContext.ACTION_NONE the drop operation will be canceled and no server call will be made; if the method returns AdfDnDContext.ACTION_COPY, a copy operation will be allowed and a server call will be made which will execute the dropListener method if it exists.

For example, suppose you want to log a message when the drop event is invoked. You might create a client handler to handle logging that message and then returning the correct action so that the server listener is invoked. Example 33-4 shows a client handler that uses the logger to print a message.

Example 33-4 clientDropListener Handler

<script>
/**
 * Shows a message.
 */
function showMessage()
{
 AdfLogger.LOGGER.logMessage(AdfLogger.ALL, "clientDropListener handler,
 copying...");
 return AdfDnDContext.ACTION_COPY;
}
</script>

33.4 Adding Drag and Drop Functionality for Collections

You use the collectionDropTarget and dragSource tags to add drag and drop functionality that allows users to drag an item from one collection (for example, a row from a table), and drop it into another collection component such, as a tree. For example, in the File Explorer application, users can drag a file from the table that displays directory contents to any folder in the directory tree. Figure 33-3 shows the File0.doc object being dragged from the table displaying the contents of the Folder0 directory to the Folder3 directory. Once the drop is complete, the object will become part of the collection that makes up Folder3.

Figure 33-3 Drag and Drop Functionality in the File Explorer Application

[image: Drag a file to a directory]

As with dragging and dropping single objects, you can have a drop on a collection with a copy, move, or copy and paste as a link (or a combination of the three), and use dataFlavor tags to limit what a target will accept.

When the target source is a collection and it supports the move operation, you may also want to also implement a method for the dragDropEndListener attribute, which is referenced from the source component and is used to clean up the collection after the drag and drop operation. For more information, see Section 33.4.2, "What You May Need to Know About the dragDropEndListener".

33.4.1 How to Add Drag and Drop Functionality for Collections

To add drag and drop functionality for collections, instead of using the dropTarget tag, you use the collectionDropTarget tag. You then must implement the event handler method that will handle the logic for the drag and drop action. Next, you define the source for the drag and drop operation using the dragSource tag.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.4, "Adding Drag and Drop Functionality for Collections."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

You will need to complete this task:

	Create the source and target components on the page.

To add drag and drop functionality:

	
Add a collectionDropTarget tag as a child to the target collection component by dragging a Collection Drop Target from the Component Palette.

	
In the Insert Collection Drop Target dialog, enter an expression for the dropListener attribute that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).

	
In the Property Inspector, set the following:

	
actions: Select the actions that can be performed on the source during the drag and drop operation.

If no actions are specified, the default is COPY.

	
modelName: Define the model for the collection.

The value of the modelName attribute is a String object used to identify the drag source for compatibility purposes. The value of this attribute must match the value of the discriminant attribute of the dragSource tag you will use in a Step 6. In other words, this is an arbitrary name and works when the target and the source share the same modelName value or discriminant value.

	
In the managed bean inserted into the EL expression in Step 2, implement the handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction. This method should use the DropEvent to get the Transferable object and from there get the RowKeySet (the rows that were selected for the drag). Using the CollectionModel obtained through the Transferable object, the actual rowData can be obtained to complete the drop. The method should then check the DropEvent to determine whether it will accept the drop or not. If the method accepts the drop, it should perform the drop and return the DnDAction it performed -- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK, otherwise it should return DnDAction.NONE to indicate that the drop was rejected.

Example 33-5 shows the event handler method on the CollectionDnd.java managed bean used in the collectionDropTarget demo that handles the copy of the row between two tables.

Example 33-5 Event Handler Code for a dropListener for a Collection

public DnDAction handleDrop(DropEvent dropEvent)
{
 Transferable transferable = dropEvent.getTransferable();
 // The data in the transferable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, "DnDDemoModel");
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 // Get the model for the dragged component.
 CollectionModel dragModel = transferable.getData(CollectionModel.class);
 if (dragModel != null)
 {
 // Set the row key for this model using the row key from the transferable.
 Object currKey = rowKeySet.iterator().next();
 dragModel.setRowKey(currKey);

 // And now get the actual data from the dragged model.
 // Note this won't work in a region.
 DnDDemoData dnDDemoData = (DnDDemoData)dragModel.getRowData();

 // Put the dragged data into the target model directly.
 // Note that if you wanted validation/business rules on the drop,
 // this would be different.
 // getTargetValues() is the target collection used by the target component
 getTargetValues().add(dnDDemoData);
 }
 return dropEvent.getProposedAction();
 }
 else
 {
 return DnDAction.NONE;
 }
}

	
In the Component Palette, from the Operations panel, drag and drop a Drag Source as a child to the source component.

	
With the dragSource tag selected, in the Property Inspector set the actions, discriminant, and any dragDropEndListener as configured for the target. For instance, the dragSource tag may appear similar to the following:

<af:dragSource actions="MOVE" discriminant="DnDDemoModel
dragDropEndListener="#{collectionDnD.endListener}"/>

33.4.2 What You May Need to Know About the dragDropEndListener

There may be cases when after a drop event, you have to clean up the source collection. For example, if the drag caused a move, you may have to clean up the source component so that the moved item is no longer part of the collection.

The dragSource tag contains the dragDropEndListener attribute that allows you to register a handler that contains logic for after the drag drop operation ends.

For example, if you allow a drag and drop to move an object, you may have to physically remove the object from the source component once you know the drop succeeded. Example 33-6 shows a handler for a dragDropEndListener. attribute

Example 33-6 Handler for dragDropEndListener

public void endListener(DropEvent dropEvent)
{
 Transferable transferable = dropEvent.getTransferable();

 // The data in the transferrable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, "DnDDemoModel");
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 Integer currKey = (Integer)rowKeySet.iterator().next();

 // Remove the dragged data from the source model directly.
 // getSourceValues() represents a collection object used by the source
 // component
 Object removed = getSourceValues().remove(currKey.intValue());
 }
 // Need to add the drag source table so it gets redrawn.
 // The drag source component needs to be partially refreshed explicitly, while
 // drop target component automatically refreshed and displayed.
 AdfFacesContext.getCurrentInstance().addPartialTarget(dropEvent.getDragComponent());

33.5 Adding Drag and Drop Functionality for Components

You can allow components to be moved from one parent to another, or you can allow child components of a parent component to be reordered. For example, Figure 33-4 shows the darker panelBox component being moved from being the first child component of the panelGrid component to the last.

Figure 33-4 Drag and Drop Functionality Between Components

[image: You can drag and drop components]

	
Note:

If you want to move components into or out of a panelDashboard component, then you need to use procedures specific to that component. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component."

33.5.1 How to Add Drag and Drop Functionality for Components

Adding drag and drop functionality for components is similar for objects. However, instead of using the attributeDragSource tag, use the componentDragSource tag. As with dragging and dropping objects or collections, you also must implement a dropListener handler.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.5, "Adding Drag and Drop Functionality for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality:

	
From the Operations panel of the Component Palette, drag and drop a Drop Target as a child to the target component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).

	
With the dropTarget tag still selected, in the Property Inspector, select a valid action set for the actions attribute.

	
In the managed bean referenced in the EL expression created in Step 2 for the dropListener attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

If the method accepts the drop, it should perform the drop and return the DnDAction it performed -- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK, otherwise it should return DnDAction.NONE to indicate that the drop was rejected

This handler method should use the DropEvent event to get the transferable object and its data and then complete the move or copy, and reorder the components as needed. Once the method completes the drop, it should return the DnDAction it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected.

Example 33-7 shows the handleComponentMove event handler on the DemoDropHandler.java managed bean used by the componentDragSource JSF page in the demo application.

Example 33-7 Event Handler Code for a dropListener That Handles a Component Move

public DnDAction handleComponentMove(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();
 UIComponent movedComponent = dropTransferable.getData
 (DataFlavor.UICOMPONENT_FLAVOR);
 if ((movedComponent != null) &&
 DnDAction.MOVE.equals(dropEvent.getProposedAction()))
 {
 UIComponent dropComponent = dropEvent.getDropComponent();
 UIComponent dropParent = dropComponent.getParent();
 UIComponent movedParent = movedComponent.getParent();
 UIComponent rootParent = null;
 ComponentChange change = null;

 // Build the new list of IDs, placing the moved component after the dropped
 //component.
 String movedLayoutId = movedParent.getId();
 String dropLayoutId = dropComponent.getId();

 List<String> reorderedIdList = new
 ArrayList<String>(dropParent.getChildCount());

 for (UIComponent currChild : dropParent.getChildren())
 {
 String currId = currChild.getId();

 if (!currId.equals(movedLayoutId))
 {
 reorderedIdList.add(currId);
 if (currId.equals(dropLayoutId))
 {
 reorderedIdList.add(movedLayoutId);
 }
 }
 }

 change = new ReorderChildrenComponentChange(reorderedIdList);
 rootParent = dropParent;
 // apply the change to the component tree immediately
 // change.changeComponent(rootParent);

 // redraw the shared parent
 AdfFacesContext.getCurrentInstance().addPartialTarget(rootParent);

 return DnDAction.MOVE;
 }
 else
 {
 return DnDAction.NONE;
 }
}

	
Add a componentDragSource tag to the source component by dragging and dropping a Component Drag Source from the Component Palette as a child of the source component. For instance, the componentDragSource tag may appear similar to the following:

<af:componentDragSource discriminant="col2"/>

33.6 Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

By default the panelDashboard component supports dragging and dropping components within itself. That is, you can reorder components in a panelDashboard component without needing to implement a listener or use additional tags. However, if you want to be able to drag a component into a panelDashboard component, or to drag a component out of a panelDashboard component, you do need to use tags and implement a listener. Because you would be dragging and dropping a component, you use the componentDragSource tag when dragging into the panelDashboard. However, because the panelDashboard already supports being a drop target, you do not need to use the dropTarget tag. Instead, you need to use a dataFlavor tag with a discriminant. The tag and discriminant notify the framework that the drop is from an external component.

Dragging a component out of a panelDashboard is mostly the same as dragging and dropping any other component. You use a dropTarget tag for the target and the componentDragSource tag for the source. However, you must also use the dataFlavor tag and a discriminant.

33.6.1 How to Add Drag and Drop Functionality Into a panelDashboard Component

Because the panelDashboard component has built-in drag and drop functionality used to reorder panelBox components within the dashboard, you need not use a dropTarget tag, but you do need to use a dataFlavor tag with a discriminant and implement the dropListener. In that implementation, you need to handle the reorder of the components.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

Before you begin:

	
Create a panelDashboard component. For more information, see Section 9.7, "Arranging Contents in a Dashboard."

	
Create another component outside of the panelDashboard that contains panelBox components. For more information about panelBox components, see Section 9.8.3, "How to Use the panelBox Component."

To add drag and drop functionality into a panelDashboard component:

	
In the Structure window, select the panelDashboard component that is to be the target component.

	
In the Property Inspector, for DropListener, enter an expression that evaluates to a method on a managed bean that will handle the drop event (you will create this code in Step 6).

	
In the Component Palette, from the Operations panel, drag a Data Flavor and drop it as a child to the panelDashboard component.

	
In the Insert Data Flavor dialog, enter javax.faces.component.UIComponent.

	
In the Property Inspector, set Discriminant to a unique name that will identify the components allowed to be dragged into the panelDashboard component, for example, dragIntoDashboard.

	
In the managed bean referenced in the EL expression created in Step 2 for the dropListener attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction of NONE, because the panelDashboard handles the positioning of its child components.

This handler method should use the dropEvent.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR) to get the transferable object and its data. Once the method completes the drop, you can use the org.apache.myfaces.trinidad.change.ReorderChildrenComponent Change method to preserve the new ordering of the children and the dropEvent.getDropSiteIndex() method to get the location at which the user wants the dragged component. You can also use the dashboardComponent.prepareOptimizedEncodingOfInsertedChild() method to animate the drop of the component.

Example 33-8 shows the move event handler and helper methods on the DemoDashboardBean.java managed bean used by the dashboard JSF page in the ADF Faces demo application.

Example 33-8 Handler for DropListener on a panelDashboard Component

public DnDAction move(DropEvent e)
{
 UIComponent dropComponent = e.getDropComponent();
 UIComponent movedComponent = e.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR);
 UIComponent movedParent = movedComponent.getParent();
 // Ensure that we are handling the re-order of a direct child of the panelDashboard:
 if (movedParent.equals(dropComponent) && dropComponent.equals(_dashboard))
 {
 // Move the already rendered child and redraw the side bar since the insert indexes have
 // changed:
 _moveDashboardChild(e.getDropSiteIndex(), movedComponent.getId());
 }
 else
 {
 // This isn't a re-order but rather the user dropped a minimized side bar item into the
 // dashboard, in which case that item should be restored at the specified drop location.
 String panelKey = _getAssociatedPanelKey(movedComponent);
 if (panelKey != null)
 {
 UIComponent panelBoxToShow = _dashboard.findComponent(panelKey);
 // Make this panelBox rendered:
 panelBoxToShow.setRendered(true);

 int insertIndex = e.getDropSiteIndex();

 // Move the already rendered child and redraw the side bar since the insert indexes have
 // changed and because the side bar minimized states are out of date:
 _moveDashboardChild(insertIndex, panelKey);

 // Let the dashboard know that only the one child should be encoded during the render phase:
 _dashboard.prepareOptimizedEncodingOfInsertedChild(
 FacesContext.getCurrentInstance(),
 insertIndex);
 }
 }

 return DnDAction.NONE; // the client is already updated, so no need to redraw it again
}

 private void _moveDashboardChild(int dropIndex, String movedId)
 {
 // Build the new list of IDs, placing the moved component at the drop index.
 List<String> reorderedIdList = new ArrayList<String>(_dashboard.getChildCount());
 int index = 0;
 boolean added = false;

 for (UIComponent currChild : _dashboard.getChildren())
 {
 if (currChild.isRendered())
 {
 if (index == dropIndex)
 {
 reorderedIdList.add(movedId);
 added = true;
 }

 String currId = currChild.getId();
 if (currId.equals(movedId) && index < dropIndex)
 {
 // component is moved later, need to shift the index by 1
 dropIndex++;
 }

 if (!currId.equals(movedId))
 {
 reorderedIdList.add(currId);
 }
 index++;
 }
 }

 if (!added)
 {
 // Added to the very end:
 reorderedIdList.add(movedId);
 }

 // Apply the change to the component tree immediately:
 ComponentChange change = new ReorderChildrenComponentChange(reorderedIdList);
 change.changeComponent(_dashboard);

 // Add the side bar as a partial target since we need to redraw the state of the side bar items
 // since their insert indexes are changed and possibly because the side bar minimized states
 // are out of date:
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_sideBarContainer);
 }

	
In the Component Palette, from the Operations panel, drag a Component Drag Source and drop it as a child to the panelBox component that will be the source component.

	
In the Property Inspector, set Discriminant to be the same value as entered for the Discriminant on the panelDashboard in Step 5.

33.6.2 How to Add Drag and Drop Functionality Out of a panelDashboard Component

Implementing drag and drop functionality out of a panelDashboard component is similar to standard drag and drop functionality for other components, except that you must use a dataFlavor tag with a discriminant.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

How to add drag and drop functionality out of a panelDashboard component:

	
In the Component Palette, from the Operations panel, drag and drop a Drop Target as a child to the target component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 5) and enter javax.faces.component.UIComponent as the FlavorClass.

	
With the dropTarget tag still selected, in the Property Inspector, select MOVE as the value action attribute.

	
In the Structure window, select the dataFlavor tag and in the Property Inspector, set Discriminant to a unique name that will identify the panelBox components allowed to be dragged into this component, for example, dragOutOfDashboard.

	
In the managed bean referenced in the EL expression created in Step 2 for the dropListener attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This handler method should use the DropEvent event to get the transferable object and its data and then complete the move and reorder the components as needed. Once the method completes the drop, it should return a DnDAction of NONE.

You can use the dashboardComponent.prepareOptimizedEncodingOfDeletedChild() method to animate the removal of the panelBox component.

Example 33-9 shows the handleSideBarDrop event handler and helper methods on the oracle.adfdemo.view.layout.DemoDashboardBean.java managed bean used by the dashboard JSF page in the demo application.

Example 33-9 Event Handler Code for a dropListener That Handles a panelBox Move Out of a panelDashboard Component

public DnDAction handleSideBarDrop(DropEvent e)
{
 UIComponent movedComponent = e.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR);
 UIComponent movedParent = movedComponent.getParent();

 // Ensure that the drag source is one of the items from the dashboard:
 if (movedParent.equals(_dashboard))
 {
 _minimize(movedComponent);
 }

 return DnDAction.NONE; // the client is already updated, so no need to redraw it again
}

 private void _minimize(UIComponent panelBoxToMinimize)
 {
 // Make this panelBox non-rendered:
 panelBoxToMinimize.setRendered(false);

 // If the dashboard is showing, let's perform an optimized render so the whole dashboard doesn't
 // have to be re-encoded.
 // If the dashboard is hidden (because the panelBox is maximized), we will not do an optimized
 // encode since we need to draw the whole thing.
 if (_maximizedPanelKey == null)
 {
 int deleteIndex = 0;
 List<UIComponent> children = _dashboard.getChildren();
 for (UIComponent child : children)
 {
 if (child.equals(panelBoxToMinimize))
 {
 _dashboard.prepareOptimizedEncodingOfDeletedChild(
 FacesContext.getCurrentInstance(),
 deleteIndex);
 break;
 }

 if (child.isRendered())
 {
 // Only count rendered children since that's all that the panelDashboard can see:
 deleteIndex++;
 }
 }
 }

 RequestContext rc = RequestContext.getCurrentInstance();
 if (_maximizedPanelKey != null)
 {
 // Exit maximized mode:
 _maximizedPanelKey = null;

 _switcher.setFacetName("restored");
 rc.addPartialTarget(_switcher);
 }

 // Redraw the side bar so that we can update the colors of the opened items:
 rc.addPartialTarget(_sideBarContainer);
 }

	
In the Component Palette, from the Operations panel, drag and drop a Component Drag Source as a child of the source panelBox component within the panelDashboard component.

	
In the Property Inspector, set Discriminant to be the same value as entered for the Discriminant on the dataFlavor tag for the target component in Step 4.

33.7 Adding Drag and Drop Functionality to a Calendar

The calendar includes functionality that allows users to drag the handle of an activity to change the end time. However, if you want users to be able to drag and drop an activity to a different start time, or even a different day, then you implement drag and drop functionality. Drag and drop allows you to not only move an activity, but also to copy one.

33.7.1 How to Add Drag and Drop Functionality to a Calendar

You add drag and drop functionality by using the calendarDropTarget tag. Unlike dragging and dropping a collection, there is no need for a source tag; the target (that is the object to which the activity is being moved, in this case, the calendar) is responsible for moving the activities. If the source (that is, the item to be moved or copied), is an activity within the calendar, then you use only the calendarDropTarget tag. The tag expects the transferable to be a CalendarActivity object.

However, you can also drag and drop objects from outside the calendar. When you want to enable this, use dataFlavor tags configured to allow the source object (which will be something other than a calendarActivity object) to be dropped.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.7, "Adding Drag and Drop Functionality to a Calendar."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality to a calendar:

	
In the Component Palette, from the Operations panel, drag and drop a Calendar Drop Target as a child to the calendar component.

	
In the Insert Calendar Drop Target dialog, enter an expression for the dropListener attribute that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).

	
In the Property Inspector, set Actions. This value determines whether the activity (or other source) can be moved, copied, or copied as a link, or any combination of the three. If no action is specified, the default is COPY.

	
In the managed bean inserted into the EL expression in Step 2, implement the handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction. The DnDAction is the action that will be performed when the source is dropped. Valid return values are COPY, MOVE, and LINK, and are set when you define the actions attribute in Step 3. This method should use the DropEvent to get the transferable object, and from there, access the CalendarModel object in the dragged data and from there, access the actual data. The listener can then add that data to the model for the source and then return the DnDAction it performed: DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK; otherwise, the listener should return DnDAction.NONE to indicate that the drop was rejected.

The drop site for the drop event is an instance of the oracle.adf.view.rich.dnd.CalendarDropSite class. For an example of a drag and drop handler for a calendar, see the handleDrop method on the oracle.adfdemo.view.calendar.rich.DemoCalendarBean managed bean in the ADF Faces demo application.

	
If the source for the activity is external to the calendar, drag a Data Flavor and drop it as a child to the calendarDropTarget tag. This tag determines the type of object that can be dropped onto the target, for example a String or a Date object. Multiple dataFlavor tags are allowed under a single drop target to allow the drop target to accept any of those types.

	
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object.

	
Tip:

To specify a typed array in a dataFlavor tag, add brackets ([]) to the class name, for example, java.lang.Object[].

33.7.2 What You May Need to Know About Dragging and Dropping in a Calendar

For dragging and dropping activities within a calendar, users can drag and drop only within a view. That is, users can drag an activity from one time slot to another in the day view, but cannot cut an activity from a day view and paste it into a month view.

When the user is dragging and dropping activities in the day or week view, the calendar marks the drop site by half-hour increments. The user cannot move any all-day or multi-day activities in the day view.

In the week view, users can move all-day and multi-day activities, however, they can be dropped only within other all-day slots. That is, the user cannot change an all-day activity to an activity with start and end times. In the month view, users can move all-day and multi-day activities to any other day.

33.8 Adding Drag and Drop Functionality for DVT Graphs

You can configure drag and drop for the DVT bubble and scatter graphs, which allows the user to change the value of a marker by repositioning it. When you want users to be able to drag and drop in a graph, you use the dragSource and dropTarget tags. Additionally, you use the DataFlavor object to determine the valid Java type of the sources for the drop target, in this case a GraphSelection object. You also must implement any required functionality in response to the drag and drop action.

For example, you might have a scatterGraph component and you want the user to be able to drag a human scatter marker to adjust the performance rating of an employee, as shown in Figure 33-6.

Figure 33-5 Dragging and Dropping an Object

[image: Drag and drop an object]

The scatterGraph component contains both a dragSource tag and a dropTarget tag. You also use a dataFlavor tag to determine the type of object being dropped.

You also must implement a listener for the drop event. The object of the drop event is called the transferable, which contains the payload of the drop. Your listener must access the transferable object, and from there, use the DataFlavor object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object.

33.8.1 How to Add Drag and Drop Functionality for a DVT Graph

To add drag and drop functionality, first add source and target tags to the graph. Then implement the event handler method that will handle the logic for the drag and drop action. For information about what happens at runtime, see Section 33.3.2, "What Happens at Runtime."

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.8, "Adding Drag and Drop Functionality for DVT Graphs."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality:

	
In the Component Palette, from the Operations panel, drag a Drop Target tag and drop it as a child to the graph component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 6).

	
In the Insert Data Flavor dialog, enter oracle.adf.view.faces.bi.component.graph.GraphSelection, which is the class for the object that can be dropped onto the target. This entry will be used to create a dataFlavor tag, which determines the type of object that can be dropped onto the target.

	
In the Property Inspector, set a value for Discriminant, if needed. A discriminant is an arbitrary string used to determine which source can drop on the target. For example, suppose you have two graphs that both accept an GraphSelection object, GraphA and GraphB. You also have two sources, both of which are GraphSelection objects. By setting a discriminant value on GraphA with a value of alpha, only the GraphSelection source that provides the discriminant value of alpha will be accepted.

	
In the Structure window, select the dropTarget tag. In the Property inspector, select MOVE as the value for Actions.

	
In the Component Palette, from the Operations panel, drag and drop a Drag Source as a child to the graph component.

	
With the dragSource tag selected, in the Property Inspector set MOVE as the allowed Action and add any needed discriminant, as configured for the dataFlavor tag.

	
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction object, which is the action that will be performed when the source is dropped, in this case DnDAction.MOVE. This method should check the DropEvent event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction object it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected. The method must also check for the presence of the dataFlavor object, in this case oracle.adf.view.faces.bi.component.graph.GraphSelection.

33.9 Adding Drag and Drop Functionality for DVT Gantt Charts

When you want users to be able to drag and drop between Gantt charts and other components, you use the dragSource and dropTarget tags. Additionally, you use the DataFlavor object to determine the valid Java types of sources for the drop target. You also must implement any required functionality in response to the drag and drop action. Both the projectGantt and schedulingGantt components support drag and drop functionality.

For example, suppose you have an projectGantt component and you want the user to be able to drag one timeline to a treeTable component and have that component display information about the timeline, as shown in Figure 33-6.

Figure 33-6 Dragging and Dropping an Object

[image: Drag and drop an object]

The projectGantt component contains a dragSource tag. And because the user will drag the whole object and not just the String value of the output text that is displayed, you use the dropTarget tag instead of the attributeDropTarget tag.

You also use a dataFlavor tag to determine the type of object being dropped. On this tag, you can define a discriminant value. This is helpful if you have two targets and two sources, all with the same object type. By creating a discriminant value, you can be sure that each target will accept only valid sources. For example, suppose you have two targets that both accept an TaskDragInfo object, TargetA and TargetB. Suppose you also have two sources, both of which are TaskDragInfo objects. By setting a discriminant value on TargetA with a value of alpha, only the TaskDragInfo source that provides the discriminant value of alpha will be accepted.

You also must implement a listener for the drop event. The object of the drop event is called the transferable, which contains the payload of the drop. Your listener must access the transferable object, and from there, use the DataFlavor object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object.

33.9.1 How to Add Drag and Drop Functionality for a DVT Component

To add drag and drop functionality, first add tags to a component that define it as a target for a drag and drop action. Then implement the event handler method that will handle the logic for the drag and drop action. Last, you define the sources for the drag and drop. For information about what happens at runtime, see Section 33.3.2, "What Happens at Runtime." For information about using the clientDropListener attribute, see Section 33.3.3, "What You May Need to Know About Using the ClientDropListener."

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.9, "Adding Drag and Drop Functionality for DVT Gantt Charts."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality:

	
In the Component Palette, from the Operations panel, drag a Drop Target tag and drop it as a child to the target component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 6).

	
Tip:

You can also intercept the drop on the client by populating the clientDropListener attribute. For more information, see Section 33.3.3, "What You May Need to Know About Using the ClientDropListener".

	
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object. This selection will be used to create a dataFlavor tag, which determines the type of object that can be dropped onto the target. Multiple dataFlavor tags are allowed under a single drop target to allow the drop target to accept any of those types.

	
Tip:

To specify a typed array in a DataFlavor tag, add brackets ([]) to the class name, for example, java.lang.Object[].

	
In the Property Inspector, set a value for Discriminant, if needed. A discriminant is an arbitrary string used to determine what sources of the type specified by the dataFlavor will be allowed as a source.

	
In the Structure window, select the dropTarget tag. In the Property inspector, select a value for Actions. This defines what actions are supported by the drop target. Valid values can be COPY (copy and paste), MOVE (cut and paste), and LINK (copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

Example 33-10 shows the code for a dropTarget component that takes a TaskDragInfo object as a drop source. Note that because COPY was set as the value for the actions attribute, that will be the only allowed action.

Example 33-10 JSP Code for a dropTarget tag

<af:treeTable id="treeTableDropTarget"
 var="task" value="#{projectGanttDragSource.treeTableModel}">
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name">
 <af:outputText value="#{task.taskName}"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource">
 <af:outputText value="#{task.resourceName}"/>
 </af:column>
 <af:column headerText="Start Date">
 <af:outputText value="#{task.startTime}"/>
 </af:column>
 <af:column headerText="End Date">
 <af:outputText value="#{task.endTime}"/>
 </af:column>
 <af:dropTarget actions="COPY"
 dropListener="#{projectGanttDragSource.onTableDrop}">
 <af:dataFlavor flavorClass= "oracle.adf.view.faces.bi.component.gantt.TaskDragInfo"/>
 </af:dropTarget>
</af:treeTable>

	
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction object, which is the action that will be performed when the source is dropped. Valid return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK, and were set when you defined the target attribute in Step 5. This method should check the DropEvent event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction object it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected.

The method must also check for the presence for each dataFlavor object in preference order.

	
Tip:

If your target has more than one defined dataFlavor object, then you can use the Transferable.getSuitableTransferData() method, which returns a List of TransferData objects available in the Transferable object in order, from highest suitability to lowest.

The DataFlavor object defines the type of data being dropped, for example java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as created in Step 3.

	
Tip:

To specify a typed array in a DataFlavor object, add brackets ([]) to the class name, for example, java.lang.Object[].
DataFlavor objects support polymorphism so that if the drop target accepts java.util.List, and the transferable object contains a java.util.ArrayList, the drop will succeed. Likewise, this functionality supports automatic conversion between Arrays and Lists.

If the drag and drop framework doesn't know how to represent a server DataFlavor object on the client component, the drop target will be configured to allow all drops to succeed on the client.

Example 33-11 shows a handler method that copies a TaskDragInfo object from the event payload and assigns it to the component that initiated the event.

Example 33-11 Event Handler Code for a dropListener

public DnDAction onTableDrop(DropEvent evt)
{
 // retrieve the information about the task dragged
 DataFlavor<TaskDragInfo> _flv = DataFlavor.getDataFlavor(TaskDragInfo.class, null);
 Transferable _transferable = evt.getTransferable();

 // if there is no data in the transferable, then the drop is unsuccessful
 TaskDragInfo _info = _transferable.getData(_flv);
 if (_info == null)
 return DnDAction.NONE;

 // find the task
 Task _draggedTask = findTask(_info.getTaskId());
 if (_draggedTask != null) {
 // process the dragged task here and indicate the drop is successful by returning DnDAction.COPY
 return DnDAction.COPY;
 }
 else
return DnDAction.NONE;
}

	
In the Component Palette, from the Operations panel, drag and drop a Drag Source as a child to the source component.

	
With the dragSource tag selected, in the Property Inspector set the allowed Actions and any needed discriminant, as configured for the target.

Part VI

Completing Your View

Part VI contains the following chapters:

	
Chapter 28, "Customizing the Appearance Using Styles and Skins"

	
Chapter 29, "Internationalizing and Localizing Pages"

	
Chapter 30, "Developing Accessible ADF Faces Pages"

	
Chapter 31, "Creating Custom ADF Faces Components"

	
Chapter 32, "Allowing User Customization on JSF Pages"

	
Chapter 33, "Adding Drag and Drop Functionality"

	
Chapter 34, "Using Different Output Modes"

	
Section 35, "Using the Active Data Service with an Asynchronous Backend"

28 Customizing the Appearance Using Styles and Skins

This chapter describes how you customize the appearance of your application by changing component style attributes or by using ADF skins.

This chapter includes the following sections:

	
Section 28.1, "About Customizing the Appearance Using Styles and Skins"

	
Section 28.2, "Changing the Style Properties of a Component"

	
Section 28.3, "Enabling End Users to Change an Application's ADF Skin"

28.1 About Customizing the Appearance Using Styles and Skins

You can customize the appearance of ADF Faces and ADF Data Visualization components using an ADF skin that you apply to the application or by applying CSS style properties directly to an ADF Faces or ADF DVT component if the component exposes a style-related property (styleClass or inlineStyle). Choosing the latter option means that you override style properties defined in your application's ADF skin for the component. You might do this when you want to change the style for an instance of a component on a page rather than for all components throughout the application or you want to programmatically set styles conditionally. For example, you want to display text in red only under certain conditions. For more information, see Section 28.2, "Changing the Style Properties of a Component."

An ADF skin is a type of CSS file where you define CSS style properties based on the Cascading Style Sheet (CSS) specification for the component for which you want to customize the appearance. The ADF skin defines rules that determine how to apply CSS style properties to specific components or groups of components. The end user's browser interprets these rules and overrides the browser's default settings. Figure 28-1 and Figure 28-2 demonstrate the result that applying ADF skins can have on the appearance of the ADF Faces and ADF Data Visualization components that appear in your application. Figure 28-1 shows a page from the File Explorer application with the simple ADF skin applied.

Figure 28-1 Index Page Using the Simple Skin

[image: Simple Skin in the File Explorer Application]

Figure 28-2 shows the same page from the same application with the fusion ADF skin applied.

Figure 28-2 Index Page Using the Fusion ADF Skin

[image: Index Page Using the Fusion ADF Skin]

The File Explorer application provides several ADF skins to customize the appearance of the application. You can view the source files for these ADF skins and the File Explorer application. For more information, see Section 2.1, "About the ADF Faces Demonstration Application."

It is beyond the scope of this guide to explain the concept of CSS. For extensive information on style sheets, including the official specification, visit the World Wide Web Consortium's web site at:

http://www.w3.org/

It is also beyond the scope of this guide to describe how to create, modify, or apply ADF skins to your application. For more information, see the Oracle Fusion Middleware Skin Editor User's Guide for Oracle Application Development Framework.

If you create multiple ADF skins, you can configure your application so that end users choose the ADF skin that they want the application to use. For more information, see Section 28.3, "Enabling End Users to Change an Application's ADF Skin."

28.1.1 Customizing the Appearance Use Cases and Examples

You can customize an ADF skin to serve a number of purposes. For example, you might define properties in an ADF skin so that the application highlights a data row rendered by an ADF Faces table component after an end user selects it to provide feedback, as illustrated in Figure 28-3.

Figure 28-3 ADF Skin Properties in an ADF Table Component

[image: ADF Skin Properties in an ADF Table Component]

Use ADF skin properties to define behavior and appearance that you cannot specify using only CSS or that is dependent on component properties and, as a result, is not feasible to define using CSS. For example, ADF Faces supports animation in browsers where CSS 3 animations are not available. If you want to configure the duration of an animation, use an ADF skin property to do so. Example 28-1 shows how an ADF skin property defines the duration that an ADF Faces carousel component displays the spin animation to be 500 milliseconds long.

Example 28-1 Using an ADF Skin Property to Specify Length of Spin Animation

af|carousel {
 -tr-spin-animation-duration: 500;
}

28.1.2 Additional Functionality for Customizing the Appearance

You may find it helpful to understand other ADF Faces features and non-ADF Faces features before you decide to customize the appearance of your application. The following links provide more information that may be useful to know:

	
Using parameters in text: You can use the ADF Faces EL format tags if you want the text displayed in a component to contain parameters that will resolve at runtime. For more information, see Section 3.5.2, "How to Use the EL Format Tags."

	
Internationalization and localization: The ADF skin that you create to apply to your application can be customized as part of a process to internationalize and localize ADF Faces pages. For more information about this process, see Chapter 29, "Internationalizing and Localizing Pages."

	
Accessibility: The ADF skin that you create to apply to your application can be customized as part of a process to make your ADF Faces pages accessible. For more information about this process, see Chapter 30, "Developing Accessible ADF Faces Pages."

28.2 Changing the Style Properties of a Component

You can adjust the look and feel of any component at design time by changing the component's style-related properties, inlineStyle and styleClass, both of which render on the root DOM element. Any style-related property (inlineStyle or styleClass) you specify at design time overrides the comparable style specified in the application's ADF skin for that particular instance of the component. Any value you specify for a component's inlineStyle property overrides a value set for the styleClass attribute.

The inlineStyle attribute is a semicolon-delimited string of CSS styles that can set individual attributes, for example, background-color:red; color:blue; font-style:italic; padding:3px. The styleClass attribute is a CSS style class selector used to group a set of inline styles. The style classes can be defined using an ADF public style class, for example, .AFInstructionText, sets all properties for the text displayed in an af:outputText component.

Given a specific selector, you can get style properties for a custom component by creating a class for a renderer. For more information, see Section 31.4.7, "How to Create a Class for a Renderer."

	
WARNING:

Do not use styles to achieve stretching of components. Using styles to achieve stretching is not declarative and, in many cases, will result in inconsistent behavior across different web browsers. Instead, you can use the geometry management provided by the ADF Faces framework to achieve component stretching. For more information about layouts and stretching, see Section 9.2.1, "Geometry Management and Component Stretching."

28.2.1 How to Set an Inline Style

Set an inline style for a component by defining the inlineStyle attribute. You can use inline style to specify the style of a component for that instance of the component. For more information, see Section 9.3, "Arranging Contents to Stretch Across a Page."

Before you begin:

It may be helpful to have an understanding of how the inlineStyle attribute relates to other attributes. For more information, see Section 28.2, "Changing the Style Properties of a Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 28.1.2, "Additional Functionality for Customizing the Appearance."

To set an inline style:

	
Set the inlineStyle attribute of the component to the inline style you want to use.

	
If you use the Property Inspector to set a style, you can select the style features you want from dropdown lists, as shown in Figure 28-4.

Figure 28-4 Setting an inlineStyle Attribute

[image: Setting an inlineStyle Attribute]

JDeveloper adds the corresponding code for the component to the JSF page. Example 28-2 shows the source for an af:outputText component with an inlineStyle attribute.

Example 28-2 InlineStyle in the Page Source

<af:outputText value="outputText1"
 inlineStyle="color:Red; text-decoration:overline;"/>

	
You can use an EL expression for the inlineStyle attribute itself to conditionally set inline style attributes. For example, if you want the date to be displayed in red when an action has not yet been completed, you could use the code similar to that in Example 28-3.

Example 28-3 EL Expression Used to Set an inlineStyle Attribute

<af:outputText value="#{row.assignedDate eq
 null?res['srsearch.unassignedMessage']:row.assignedDate}"
 inlineStyle="#{row.assignedDate eq null?'color:rgb(255,0,0);':''}"/>

	
The ADF Faces component may have other style attributes not available for styling that do not register on the root DOM element. For example, for the af:inputText component, set the text of the element using the contentStyle property, as shown in Example 28-4.

Example 28-4 Using the contentStyle Property

<af:inputText value="outputText1"
 contentStyle="color:Red;"/>

28.2.2 How to Set a Style Class

You can define the style for a component using a style class. You create a style class to group a set of inline styles. Use the styleClass attribute to reference the style class.

Before you begin:

It may be helpful to have an understanding of how the styleClass attribute relates to other attributes. For more information, see Section 28.2, "Changing the Style Properties of a Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 28.1.2, "Additional Functionality for Customizing the Appearance."

To set a style using a style class:

	
Set the styleClass attribute of the component to the style class you want to use.

Example 28-5 shows an example of a style class being used in the page source.

Example 28-5 Page Source for Using a Style Class

<af:outputText value="Text with a style class"
 styleClass="overdue"/>

	
You can also use EL expressions for the styleClass attribute to conditionally set style attributes. For example, if you want the date to be displayed in red when an action has not yet been completed, you could use code similar to that in Example 28-3.

28.3 Enabling End Users to Change an Application's ADF Skin

You can configure your application to enable end users select an alternative ADF skin. You might configure this functionality when you want end users to render the application's page using an ADF skin that is more suitable for their needs. For example, you want your application to use an ADF skin with features specific to a Japanese locale when a user's browser is Japanese. An alternative example is where you want your application to use an ADF skin that is configured to make your application's pages more accessible for users with disabilities.

Figure 28-5 shows how you might implement this functionality by configuring a component (for example, af:commandMenuItem) to allow end users to change the ADF skin the application uses at runtime. Configure the component on the JSF page to set a scope value that can later be evaluated by the skin-family property in the trinidad-config file.

Figure 28-5 Changing an Application's ADF Skin

[image: Changing an Application’s ADF Skin]

28.3.1 How to Enable End Users Change an Application's ADF Skin

You enable end users change an application's ADF skin by exposing a component that allows them to update the value the skin-family property in the trinidad-config file.

Before you begin:

It may be helpful to have an understanding of how the changes that you make can affect functionality. For more information, see Section 28.3, "Enabling End Users to Change an Application's ADF Skin."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 28.1.2, "Additional Functionality for Customizing the Appearance."

To enable end users change an application's ADF skin:

	
Open the main JSF page where you want to configure the component(s) that you use to set the skin family.

	
Configure a number of components (for example, af:commandMenuItem components) that allow end users to choose one of a number of available ADF skins at runtime, as shown in Figure 28-5.

Example 28-6 shows how you configure af:commandMenuItem components that allow end users to choose available ADF skins at runtime, as shown in Figure 28-5. Each af:commandMenuItem component specifies a value for the actionListener attribute. This attribute passes an actionEvent to a method (skinMenuAction) on a managed bean named skins if an end user clicks the menu item.

Example 28-6 Using a Component to Set the Skin Family

<af:menu text="Change Skin" id="skins" binding="#{backing_ChangeSkin.skins}">
 <af:commandMenuItem text="blafplus-rich" id="skin1"
 binding="#{backing_ChangeSkin.skin1}" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily}"/>
 <af:commandMenuItem id="skin2" text="blafplus-medium" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='blafplus-medium'}"/>
 <af:commandMenuItem id="skin3" text="fusion" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='fusion'}"/>
 <af:commandMenuItem id="skin4" text="fusion-projector" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='fusion-projector'}"/>
 <af:commandMenuItem id="skin5" text="simple" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='simple'}"/>
 <af:commandMenuItem id="skin6" text="skin1" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='skin1'}"/>
 </af:menu>

	
Write a method (for example, skinMenuAction) on a managed bean named skins to store the value of the ADF skin selected by the end user. Example 28-7 shows a method that takes the value the end user selected and uses it to set the value of skinFamily in a managed bean. The method in Example 28-7 also invokes a method to reload the page after it sets the value of skinFamily.

Example 28-7 Managed Bean Method to Change ADF Skin

 public void skinMenuAction(ActionEvent ae)
 {
 RichCommandMenuItem menuItem = (RichCommandMenuItem)ae.getComponent();

 // Invoke another managed bean method to set the value of skinFamily
 setSkinFamily(menuItem.getText());

 // Invoke a method to reload the page. The application reloads the page
 // using the newly-selected ADF skin.
 reloadThePage();
 }

	
In the Application Navigator, double-click the trinidad-config.xml file.

	
In the trinidad-config.xml file, write an EL expression to dynamically evaluate the skin family:

<skin-family>#{skins.skinFamily}</skin-family>

28.3.2 What Happens at Runtime: Changing an Application's ADF Skin

At runtime, the end user uses the component that you exposed to select another ADF skin. In our example, this is one of a number of af:commandMenuItem components. This component submits the value that the end user selected to a managed bean that, in turn, sets the value of a managed bean property (skinFamily). At runtime, the <skin-family> property in the trinidad-config file reads the value from the managed bean using an EL expression.

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide for Release 11.1.2.0.0

Part I Getting Started with ADF Faces

1 Introduction to ADF Faces

	1.1 About Oracle ADF Faces
	1.2 ADF Faces Framework
	1.3 ADF Faces Components

2 ADF Faces Demo Application

	2.1 About the ADF Faces Demonstration Application
	2.2 Downloading and Installing the ADF Faces Demo Application

3 Getting Started with ADF Faces and JDeveloper

	3.1 About Developing Declaratively in JDeveloper
	3.2 Creating an Application Workspace
	3.2.1 How to Create an ADF Faces Application Workspace
	3.2.2 What Happens When You Create an Application Workspace

	3.3 Defining Page Flows
	3.3.1 How to Define a Page Flow
	3.3.2 What Happens When You Use the Diagrammer to Create a Page Flow

	3.4 Creating a View Page
	3.4.1 How to Create JSF Pages
	3.4.2 What Happens When You Create a JSF Page
	3.4.3 What You May Need to Know About Updating Your Application to Use the Facelets Engine
	3.4.4 What You May Need to Know About Automatic Component Binding
	3.4.5 How to Add ADF Faces Components to JSF Pages
	3.4.6 What Happens When You Add Components to a Page
	3.4.7 How to Set Component Attributes
	3.4.8 What Happens When You Use the Property Inspector

	3.5 Creating EL Expressions
	3.5.1 How to Create an EL Expression
	3.5.2 How to Use the EL Format Tags
	3.5.3 How to Use EL Expressions Within Managed Beans

	3.6 Creating and Using Managed Beans
	3.6.1 How to Create a Managed Bean in JDeveloper
	3.6.2 What Happens When You Use JDeveloper to Create a Managed Bean
	3.6.3 What You May Need to Know About Component Bindings and Managed Beans

	3.7 Viewing ADF Faces Javadoc
	3.7.1 How to View ADF Faces Source Code and Javadoc

Part II Understanding ADF Faces Architecture

4 Using ADF Faces Client-Side Architecture

	4.1 About Using ADF Faces Architecture
	4.2 Listening for Client Events
	4.2.1 How to Listen for Client Events

	4.3 Adding JavaScript to a Page
	4.3.1 How to Use Inline JavaScript
	4.3.2 How to Import JavaScript Libraries
	4.3.3 What You May Need to Know About Accessing Client Event Sources

	4.4 Instantiating Client-Side Components
	4.4.1 How to Configure a Component to for a Client-Side Instance
	4.4.2 What Happens When You Set clientComponent to true

	4.5 Locating a Client Component on a Page
	4.5.1 What You May Need to Know About Finding Components in Naming Containers

	4.6 Accessing Component Properties on the Client
	4.6.1 How to Set Property Values on the Client
	4.6.2 What You May Need to Know About Setting Properties on the Client
	4.6.3 How to Unsecure the disabled Property
	4.6.4 What Happens at Runtime: How Client Properties Are Set on the Client

	4.7 Using Bonus Attributes for Client-Side Components
	4.7.1 How to Create Bonus Attributes
	4.7.2 What You May Need to Know About Marshalling Bonus Attributes

	4.8 Understanding Rendering and Visibility
	4.8.1 How to Set Visibility Using JavaScript
	4.8.2 What You May Need to Know About Visible and the isShowing Function

	4.9 JavaScript Library Partitioning
	4.9.1 How to Create a JavaScript Feature
	4.9.2 How to Create JavaScript Partitions
	4.9.3 What Happens at Runtime: JavaScript Partitioning

5 Using the JSF Lifecycle with ADF Faces

	5.1 About Using the JSF Lifecycle and ADF Faces
	5.2 Using the Immediate Attribute
	5.2.1 How to Use the Immediate Attribute

	5.3 Using the Optimized Lifecycle
	5.3.1 What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle
	5.3.2 What You May Need to Know About Using an LOV Component and the Optimized Lifecycle

	5.4 Using the Client-Side Lifecycle
	5.5 Using Subforms to Create Sections on a Page
	5.6 Object Scope Lifecycles
	5.7 Passing Values Between Pages
	5.7.1 How to Use the pageFlowScope Scope Within Java Code
	5.7.2 How to Use the pageFlowScope Scope Without Writing Java Code
	5.7.3 What Happens at Runtime: How Values are Passed

6 Handling Events

	6.1 About Events and Event Handling
	6.1.1 Events and Partial Page Rendering
	6.1.2 Client-Side Event Model

	6.2 Using ADF Faces Server Events
	6.2.1 How to Handle Server-Side Events

	6.3 Using JavaScript for ADF Faces Client Events
	6.3.1 How to Use Client-Side Events
	6.3.2 How to Return the Original Source of the Event
	6.3.3 How to Use Client-Side Attributes for an Event
	6.3.4 How to Block UI Input During Event Execution
	6.3.5 How to Prevent Events from Propagating to the Server
	6.3.6 How to Indicate No Response is Expected
	6.3.7 What Happens at Runtime: How Client-Side Events Work
	6.3.8 What You May Need to Know About Using Naming Containers

	6.4 Sending Custom Events from the Client to the Server
	6.4.1 How to Send Custom Events from the Client to the Server
	6.4.2 What Happens at Runtime: How Client and Server Listeners Work Together
	6.4.3 What You May Need to Know About Marshalling and Unmarshalling Data

	6.5 Executing a Script Within an Event Response
	6.6 Using ADF Faces Client Behavior Tags
	6.6.1 How to Use the scrollComponentIntoViewBehavior Tag

	6.7 Using Polling Events to Update Pages
	6.7.1 How to Use the Poll Component

7 Validating and Converting Input

	7.1 About ADF Faces Converters and Validators
	7.1.1 ADF Faces Converters and Validators Use Cases and Examples
	7.1.2 Additional Functionality for ADF Faces Converters and Validators

	7.2 Conversion, Validation, and the JSF Lifecycle
	7.3 Adding Conversion
	7.3.1 How to Add a Converter
	7.3.2 How to Set Attributes on a Converter
	7.3.3 What Happens at Runtime

	7.4 Creating Custom JSF Converters
	7.4.1 How to Create a Custom JSF Converter
	7.4.2 What Happens When You Use a Custom Converter

	7.5 Adding Validation
	7.5.1 How to Add Validation
	7.5.1.1 Adding ADF Faces Validation
	7.5.1.2 Using Validation Attributes
	7.5.1.3 Using ADF Faces Validators

	7.5.2 What Happens at Runtime
	7.5.3 What You May Need to Know About Multiple Validators

	7.6 Creating Custom JSF Validation
	7.6.1 How to Create a Backing Bean Validation Method
	7.6.2 What Happens When You Create a Backing Bean Validation Method
	7.6.3 How to Create a Custom JSF Validator
	7.6.4 What Happens When You Use a Custom JSF Validator

8 Rerendering Partial Page Content

	8.1 About Partial Page Rendering
	8.2 Enabling Partial Page Rendering Declaratively
	8.2.1 How to Enable Partial Page Rendering
	8.2.2 What You May Need to Know About Using the Browser Back Button
	8.2.3 What You May Need to Know About PPR and Screen Readers

	8.3 Enabling Partial Page Rendering Programmatically
	8.3.1 How to Enable Partial Page Rendering Programmatically

	8.4 Using Partial Page Navigation
	8.4.1 How to Use Partial Page Navigation
	8.4.2 What You May Need to Know About PPR Navigation

Part III Creating Your Layout

9 Organizing Content on Web Pages

	9.1 About Organizing Content on Web Pages
	9.1.1 Additional Functionality for Layout Components

	9.2 Starting to Lay Out a Page
	9.2.1 Geometry Management and Component Stretching
	9.2.2 Nesting Components Inside Components That Allow Stretching
	9.2.3 Using Quick Start Layouts
	9.2.4 Tips for Using Geometry-Managed Components
	9.2.5 How to Configure the document Tag

	9.3 Arranging Contents to Stretch Across a Page
	9.3.1 How to Use the panelStretchLayout Component
	9.3.2 What You May Need to Know About Geometry Management and the panelStretchLayout Component

	9.4 Using Splitters to Create Resizable Panes
	9.4.1 How to Use the panelSplitter Component
	9.4.2 What You May Need to Know About Geometry Management and the panelSplitter Component

	9.5 Arranging Page Contents in Predefined Fixed Areas
	9.5.1 How to Use the panelBorderLayout Component to Arrange Page Contents in Predefined Fixed Areas

	9.6 Arranging Content in Forms
	9.6.1 How to Use the panelFormLayout Component
	9.6.2 What You May Need to Know About Using the group Component with the panelFormLayout Component

	9.7 Arranging Contents in a Dashboard
	9.7.1 How to Use the panelDashboard Component
	9.7.2 What You May Need to Know About Geometry Management and the panelDashboard Component

	9.8 Displaying and Hiding Contents Dynamically
	9.8.1 How to Use the showDetail Component
	9.8.2 How to Use the showDetailHeader Component
	9.8.3 How to Use the panelBox Component
	9.8.4 What You May Need to Know About Disclosure Events

	9.9 Displaying or Hiding Contents in Accordion Panels and Tabbed Panels
	9.9.1 How to Use the panelAccordion Component
	9.9.2 How to Use the panelTabbed Component
	9.9.3 How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components
	9.9.4 What You May Need to Know About Geometry Management and the showDetailItem Component
	9.9.5 What You May Need to Know About showDetailItem Disclosure Events

	9.10 Displaying Items in a Static Box
	9.10.1 How to Use the panelHeader Component
	9.10.2 How to Use the decorativeBox Component
	9.10.3 What You May Need to Know About Geometry Management and the decorativeBox Component

	9.11 Displaying a Bulleted List in One or More Columns
	9.11.1 How to Use the panelList Component
	9.11.2 What You May Need to Know About Creating a List Hierarchy

	9.12 Grouping Related Items
	9.12.1 How to Use the panelGroupLayout Component
	9.12.2 What You May Need to Know About Geometry Management and the panelGroupLayout Component

	9.13 Separating Content Using Blank Space or Lines
	9.13.1 How to Use the spacer Component
	9.13.2 How to Use the Separator Component

10 Creating and Reusing Fragments, Page Templates, and Components

	10.1 About Reusable Content
	10.1.1 Reusable Components Use Cases and Examples
	10.1.2 Additional Functionality for Reusable Components

	10.2 Common Functionality in Reusable Components
	10.2.1 Page in Request Scope
	10.2.2 Access to Child Components for Customization

	10.3 Using Page Fragments
	10.3.1 How to Create a Page Fragment
	10.3.2 What Happens When You Create a Page Fragment
	10.3.3 How to Use a Page Fragment in a JSF Page
	10.3.3.1 Adding a Page Fragment Using the Component Palette
	10.3.3.2 Adding a Page Fragment Using the Application Navigator

	10.3.4 What Happens at Runtime: Resolving Page Fragments

	10.4 Using Page Templates
	10.4.1 How to Create a Page Template
	10.4.2 What Happens When You Create a Page Template
	10.4.3 How to Create JSF Pages Based on Page Templates
	10.4.4 What Happens When You Use a Template to Create a Page
	10.4.5 What Happens at Runtime: How Page Templates Are Resolved
	10.4.6 What You May Need to Know About Page Templates and Naming Containers

	10.5 Using Declarative Components
	10.5.1 How to Create a Declarative Component
	10.5.2 What Happens When You Create a Declarative Component
	10.5.3 How to Deploy Declarative Components
	10.5.4 How to Use Declarative Components in JSF Pages
	10.5.5 What Happens When You Use a Declarative Component on a JSF Page
	10.5.6 What Happens at Runtime

	10.6 Adding Resources to Pages
	10.6.1 How to Add Resources to Page Templates and Declarative Components
	10.6.2 What Happens at Runtime: Adding Resources to the Document Header

Part IV Using Common ADF Faces Components

11 Using Input Components and Defining Forms

	11.1 About Input Components and Forms
	11.1.1 Input Component Use Cases and Examples
	11.1.2 Additional Functionality for Input Components and Forms

	11.2 Defining Forms
	11.2.1 How to Add a Form to a Page
	11.2.2 How to Add a Subform to a Page
	11.2.3 How to Add a Reset Button to a Form

	11.3 Using the inputText Component
	11.3.1 How to Add an inputText Component
	11.3.2 How to Add the Ability to Insert Text into an inputText Component

	11.4 Using the Input Number Components
	11.4.1 How to Add an inputNumberSlider or an inputRangeSlider Component
	11.4.2 How to Add an inputNumberSpinbox Component

	11.5 Using Color and Date Choosers
	11.5.1 How to Add an inputColor Component
	11.5.2 How to Add an InputDate Component
	11.5.3 What You May Need to Know About Selecting Time Zones Without the inputDate Component

	11.6 Using Selection Components
	11.6.1 How to Use Selection Components
	11.6.2 What You May Need to Know About the contentDelivery Attribute on the SelectManyChoice Component

	11.7 Using Shuttle Components
	11.7.1 How to Add a selectManyShuttle or selectOrderShuttle Component
	11.7.2 What You May Need to Know About Using a Client Listener for Selection Events

	11.8 Using the richTextEditor Component
	11.8.1 How to Add a richTextEditor Component
	11.8.2 How to Add the Ability to Insert Text into a richTextEditor Component
	11.8.3 How to Customize the Toolbar

	11.9 Using File Upload
	11.9.1 How to Use the inputFile Component
	11.9.2 What You May Need to Know About Temporary File Storage

12 Using Tables and Trees

	12.1 About Tables, Trees, and Tree Tables
	12.1.1 Table and Tree Use Cases and Examples
	12.1.2 Additional Functionality for Tables and Trees

	12.2 Common Functionality in Tables and Trees
	12.2.1 Displaying Data in Rows and Nodes
	12.2.2 Content Delivery
	12.2.3 Row Selection
	12.2.4 Editing Data in Tables, Trees, and Tree Tables
	12.2.5 Using Popup Dialogs in Tables, Trees, and Tree Tables
	12.2.6 Accessing Client Table, Tree, and Tree Table Components
	12.2.7 Geometry Management and Table, Tree, and Tree Table Components

	12.3 Using the Table Component
	12.3.1 Columns and Column Data
	12.3.2 Formatting Tables
	12.3.3 Formatting Columns
	12.3.4 How to Display a Table on a Page
	12.3.5 What Happens When You Add a Table to a Page
	12.3.6 What Happens at Runtime: Data Delivery
	12.3.7 What You May Need to Know About Programmatically Enabling Sorting for Table Columns
	12.3.8 What You May Need to Know About Performing an Action on Selected Rows in Tables
	12.3.9 What You May Need to Know About Dynamically Determining Values for Selection Components in Tables

	12.4 Adding Hidden Capabilities to a Table
	12.4.1 How to Use the detailStamp Facet
	12.4.2 What Happens at Runtime: Disclosing Row Data

	12.5 Enabling Filtering in Tables
	12.5.1 How to Add Filtering to a Table

	12.6 Displaying Data in Trees
	12.6.1 How to Display Data in Trees
	12.6.2 What Happens When You Add a Tree to a Page
	12.6.3 What Happens at Runtime: Tree Component Events
	12.6.4 What You May Need to Know About Programmatically Expanding and Collapsing Nodes
	12.6.5 What You May Need to Know About Programmatically Selecting Nodes

	12.7 Displaying Data in Tree Tables
	12.7.1 How to Display Data in a Tree Table

	12.8 Passing a Row as a Value
	12.9 Displaying Table Menus, Toolbars, and Status Bars
	12.9.1 How to Add a panelCollection with a Table, Tree, or Tree Table

	12.10 Exporting Data from Table, Tree, or Tree Table
	12.10.1 How to Export Table, Tree, or Tree Table Data to an External Format
	12.10.2 What Happens at Runtime: How Row Selection Affects the Exported Data

	12.11 Accessing Selected Values on the Client from Components That Use Stamping
	12.11.1 How to Access Values from a Selection in Stamped Components.
	12.11.2 What You May Need to Know About Accessing Selected Values

13 Using List-of-Values Components

	13.1 About List-of-Values Components
	13.1.1 Additional Functionality for List-of-Values Components

	13.2 Creating the ListOfValues Data Model
	13.2.1 How to Create the ListOfValues Data Model

	13.3 Using the inputListOfValues Component
	13.3.1 How to Use the InputListOfValues Component

	13.4 Using the InputComboboxListOfValues Component
	13.4.1 How to Use the InputComboboxListOfValues Component

14 Using Query Components

	14.1 About Query Components
	14.1.1 Query Component Use Cases and Examples
	14.1.2 Additional Functionality for the Query Components

	14.2 Creating the Query Data Model
	14.2.1 How to Create the Query Data Model

	14.3 Using the quickQuery Component
	14.3.1 How to Add the quickQuery Component Using a Model
	14.3.2 How to Use a quickQuery Component Without a Model
	14.3.3 What Happens at Runtime: How the Framework Renders the quickQuery Component and Executes the Search

	14.4 Using the query Component
	14.4.1 How to Add the Query Component

15 Using Popup Dialogs, Menus, and Windows

	15.1 About Popup Dialogs, Menus, and Windows
	15.1.1 Popup Dialogs, Menus, Windows Use Cases and Examples
	15.1.2 Additional Functionality for Popup Dialogs, Menus, and Windows

	15.2 Declaratively Creating Popups
	15.2.1 How to Create a Dialog
	15.2.2 How to Create a Panel Window
	15.2.3 How to Create a Context Menu
	15.2.4 How to Create a Note Window
	15.2.5 What Happens at Runtime: Popup Component Events
	15.2.6 What You May Need to Know About Dialog Events

	15.3 Declaratively Invoking a Popup
	15.3.1 How to Declaratively Invoke a Popup Using the af:showPopupBehavior Tag
	15.3.2 What Happens When You Use af:showPopupBehavior Tag to Invoke a Popup

	15.4 Programmatically Invoking a Popup
	15.4.1 How to Programmatically Invoke a Popup
	15.4.2 What Happens When You Programmatically Invoke a Popup

	15.5 Displaying Contextual Information in Popups
	15.5.1 How to Create Contextual Information

	15.6 Controlling the Automatic Cancellation of Inline Popups
	15.6.1 How to Disable the Automatic Cancellation of an Inline Popup
	15.6.2 What Happens When You Disable the Automatic Cancellation of an Inline Popup

	15.7 Resetting Input Fields in a Popup
	15.7.1 How to Reset the Input Fields in a Popup
	15.7.2 What Happens When You Configure a Popup to Reset Its Input Fields

16 Using Menus, Toolbars, and Toolboxes

	16.1 About Menus, Toolbars, and Toolboxes
	16.1.1 Menu Components Use Cases and Examples
	16.1.2 Additional Functionality for Menu and Toolbar Components

	16.2 Using Menus in a Menu Bar
	16.2.1 How to Create and Use Menus in a Menu Bar

	16.3 Using Toolbars
	16.3.1 How to Create and Use Toolbars
	16.3.2 What Happens at Runtime: How the Size of Menu Bars and Toolbars are Determined
	16.3.3 What You May Need to Know About Toolbars

17 Using a Calendar Component

	17.1 About Creating a Calendar Component
	17.1.1 Calendar Use Cases and Examples
	17.1.2 Additional Functionality for the Calendar

	17.2 Creating the Calendar
	17.2.1 Calendar Classes
	17.2.2 How to Create a Calendar

	17.3 Configuring the Calendar Component
	17.3.1 How to Configure the Calendar Component
	17.3.2 What Happens at Runtime: Calendar Events and PPR

	17.4 Adding Functionality Using Popup Components
	17.4.1 How to Add Functionality Using Popup Components

	17.5 Customizing the Toolbar
	17.5.1 How to Customize the Toolbar

	17.6 Styling the Calendar
	17.6.1 How to Style Activities
	17.6.2 What Happens at Runtime: Activity Styling
	17.6.3 How to Customize Dates

18 Using Output Components

	18.1 About Output Text, Image, Icon, and Media Components
	18.1.1 Output Components Use Case and Examples
	18.1.2 Additional Functionality for Output Components

	18.2 Displaying Output Text and Formatted Output Text
	18.2.1 How to Display Output Text
	18.2.2 What You May Need to Know About Allowed Format and Character Codes in the outputFormatted Component

	18.3 Displaying Icons
	18.3.1 How to Display Icons

	18.4 Displaying Images
	18.4.1 How to Display Images

	18.5 Using Images as Links
	18.5.1 How to Use Images as Links

	18.6 Displaying Images in a Carousel
	18.6.1 How to Create a Carousel
	18.6.2 What You May Need to Know About the Carousel Component and Different Browsers

	18.7 Displaying Application Status Using Icons
	18.8 Playing Video and Audio Clips
	18.8.1 How to Allow Playing of Audio and Video Clips

19 Displaying Tips, Messages, and Help

	19.1 About Displaying Tips and Messages
	19.1.1 Messaging Components Use Cases and Examples
	19.1.2 Additional Functionality for Message Components

	19.2 Displaying Tips for Components
	19.2.1 How to Display Tips for Components

	19.3 Displaying Hints and Error Messages for Validation and Conversion
	19.3.1 How to Define Custom Validator and Converter Messages for a Component Instance
	19.3.2 How to Define Custom Validator and Converter Messages for All Instances of a Component
	19.3.3 How to Display Component Messages Inline
	19.3.4 How to Display Global Messages Inline

	19.4 Grouping Components with a Single Label and Message
	19.4.1 How to Group Components with a Single Label and Message

	19.5 Displaying Help for Components
	19.5.1 How to Create Resource Bundle-Based Help
	19.5.2 How to Create XLIFF-Based Help
	19.5.3 How to Create Managed Bean Help
	19.5.4 How to Use JavaScript to Launch an External Help Window
	19.5.5 How to Create a Java Class Help Provider
	19.5.6 How to Access Help Content from a UI Component
	19.5.7 What You May Need to Know About Combining Different Message Types

20 Working with Navigation Components

	20.1 About Navigation Components
	20.1.1 Navigation Components Use Cases and Examples
	20.1.2 Additional Functionality for Navigation Components

	20.2 Common Functionality in Navigation Components
	20.3 Using Buttons and Links for Navigation
	20.3.1 How to Use Command Buttons and Command Links
	20.3.2 How to Use Go Buttons and Go Links
	20.3.3 What You May Need to Know About Using Partial Page Navigation

	20.4 Configuring a Browser's Context Menu for Command Links
	20.4.1 How to Configure a Browser's Context Menu for Command Links
	20.4.2 What Happens When You Configure a Browser's Context Menu for Command Links

	20.5 Using Buttons or Links to Invoke Functionality
	20.5.1 How to Use a Command Component to Download Files
	20.5.2 How to Use a Command Component to Reset Input Fields

	20.6 Using Navigation Items for a Page Hierarchy
	20.6.1 How to Create Navigation Cases for a Page Hierarchy

	20.7 Using a Menu Model to Create a Page Hierarchy
	20.7.1 How to Create the Menu Model Metadata
	20.7.2 What Happens When You Use the Create ADF Menu Model Wizard
	20.7.3 How to Bind the navigationPane Component to the Menu Model
	20.7.4 How to Use the breadCrumbs Component with a Menu Model
	20.7.5 How to Use the menuBar Component with a Menu Model
	20.7.6 What Happens at Runtime
	20.7.7 What You May Need to Know About Using Custom Attributes

	20.8 Creating a Simple Navigational Hierarchy
	20.8.1 How to Create a Simple Page Hierarchy
	20.8.2 How to Use the breadCrumbs Component
	20.8.3 What You May Need to Know About Removing Navigation Tabs

	20.9 Using Train Components to Create Navigation Items for a Multistep Process
	20.9.1 How to Create the Train Model
	20.9.2 How to Configure Managed Beans for the Train Model
	20.9.3 How to Bind to the Train Model in JSF Pages

Part V Using ADF Data Visualization Components

21 Introduction to ADF Data Visualization Components

	21.1 About ADF Data Visualization Components
	21.1.1 Graph Component Use Cases and Examples
	21.1.2 Gauge Component Use Cases and Examples
	21.1.3 Pivot Table Use Cases and Examples
	21.1.4 Geographic Map Use Cases and Examples
	21.1.5 Thematic Map Component Use Cases and Examples
	21.1.6 Gantt Chart Component Use Cases and Examples
	21.1.7 Hierarchy Viewer Component Use Cases and Examples
	21.1.8 Additional Functionality for Data Visualization Components

	21.2 Common Functionality in Data Visualization Components
	21.2.1 Content Delivery
	21.2.2 Automatic Partial Page Rendering (PPR)
	21.2.3 Image Formats for Graph and Gauge Components
	21.2.4 Embedded Fonts for Graph and Gauge Components
	21.2.5 Graph and Gauge Context Menus
	21.2.6 Screen Reader Support
	21.2.7 Text Resources from Application Resource Bundles

	21.3 Providing Data for ADF Data Visualization Components

22 Using Graph Components

	22.1 About the Graph Component
	22.1.1 End User and Presentation Features
	22.1.1.1 Graph Layout
	22.1.1.2 Sizing
	22.1.1.3 Data Marker Selection
	22.1.1.4 Context Menus
	22.1.1.5 Reference Areas/Line and Alerts
	22.1.1.6 Hide and Show Series
	22.1.1.7 Drilling
	22.1.1.8 Annotations
	22.1.1.9 Popup Support
	22.1.1.10 Time Selector
	22.1.1.11 Bi-directional Support
	22.1.1.12 Drag and Drop
	22.1.1.13 Screen Reader Support

	22.1.2 Graph Component Use Cases and Examples
	22.1.3 Additional Functionality for Graph Components

	22.2 Using the Graph Component
	22.2.1 Graph Type Data Requirements
	22.2.2 Configuring Graphs
	22.2.3 How to Add a Graph to a Page
	22.2.4 What Happens When You Add a Graph to a Page
	22.2.5 How to Create a Graph Using Tabular Data
	22.2.6 What You May Need to Know About Flash and PNG Image Formats
	22.2.7 Editing Graphs in the Visual Editor and Property Inspector

	22.3 Customizing Graph Display Elements
	22.3.1 Changing Graph Size and Style
	22.3.1.1 How to Specify the Size of a Graph at Initial Display
	22.3.1.2 How to Provide for Dynamic Resizing of a Graph
	22.3.1.3 How to Use a Specific Style Sheet for a Graph

	22.3.2 Changing Graph Background, Plot Area, and Title
	22.3.2.1 How to Customize the Background and Plot Area of a Graph
	22.3.2.2 How to Specify Titles and Footnotes in a Graph

	22.3.3 How to Customize Graph Axes and Labels
	22.3.3.1 How to Specify the Title, Appearance, and Scaling of an Axis
	22.3.3.2 How to Specify Scrolling on an Axis
	22.3.3.3 How to Control the Appearance of Tick Marks and Labels on an Axis
	22.3.3.4 How to Format Numbers on an Axis
	22.3.3.5 How to Set Minimum and Maximum Values on a Data Axis

	22.3.4 Customizing Graph Legends
	22.3.5 Customizing Tooltips in Graphs

	22.4 Formatting Graph Text, Colors, and Data Values
	22.4.1 Formatting Text in Graphs
	22.4.1.1 How to Globally Set Graph Font Using a Skin

	22.4.2 Specifying Transparent Colors for Parts of a Graph
	22.4.3 Using Gradient Special Effects in Graphs
	22.4.3.1 How to Add Gradient Special Effects to a Graph
	22.4.3.2 What Happens When You Add a Gradient Special Effect to a Graph

	22.4.4 Formatting Data Values in Graphs
	22.4.4.1 How to Format Categorical Data Values
	22.4.4.2 How to Format Numerical Data Values
	22.4.4.3 What You May Need to Know About Automatic Scaling and Precision

	22.5 Customizing the Appearance of Series and Groups of Data
	22.5.1 Changing the Color, Style, and Display of Graph Data Values
	22.5.1.1 How to Specify the Color and Style for Individual Series Items
	22.5.1.2 How to Control the Number of Different Colors Used for Series Items
	22.5.1.3 How to Enable Hiding and Showing Series Items

	22.5.2 Changing the Appearance of Pie Graphs
	22.5.2.1 How to Customize the Overall Appearance of Pie Graphs
	22.5.2.2 How to Customize an Exploding Pie Slice

	22.5.3 Changing the Appearance of Lines in Graphs
	22.5.3.1 How to Display Either Data Lines or Markers in Graphs
	22.5.3.2 How to Change the Appearance of Lines in a Graph Series

	22.5.4 Customizing Pareto Graphs
	22.5.5 Customizing Scatter Graph Series Marker Data Values
	22.5.6 Customizing Graph Marker Shapes
	22.5.7 Adding Reference Lines or Areas to Graphs
	22.5.7.1 How to Create Reference Lines or Areas During Design
	22.5.7.2 What Happens When You Create Reference Lines or Areas During Design
	22.5.7.3 How to Create Reference Lines or Areas Dynamically

	22.6 Animating Graphs
	22.6.1 How to Configure Graph Components to Display Active Data
	22.6.2 How to Specify Animation Effects for Graphs

	22.7 Adding Interactive Features to Graphs
	22.7.1 Providing Interactive Capability for Graphs
	22.7.1.1 How to Provide Marker and Legend Dimming
	22.7.1.2 How to React to Changes in the Zoom and Scroll Levels

	22.7.2 Providing an Interactive Time Axis for Graphs
	22.7.2.1 How to Define a Relative Range of Time Data for Display
	22.7.2.2 How to Define an Explicit Range of Time Data for Display

	22.7.3 Adding Alerts and Annotations to Graphs
	22.7.4 Creating Drillable Graphs
	22.7.5 How to Add Drag and Drop to Graphs
	22.7.6 How to Add Popups to Graphs
	22.7.7 How to Configure Graph Context Menus

23 Using Gauge Components

	23.1 About the Gauge Component
	23.1.1 End User and Presentation Features of Gauge Components
	23.1.2 Gauge Component Use Cases and Examples
	23.1.3 Additional Functionality of Gauge Components

	23.2 Using the Gauge Component
	23.2.1 Configuring Gauges
	23.2.2 How to Add a Gauge to a Page
	23.2.3 What Happens When You Add a Gauge to a Page
	23.2.4 How to Create a Gauge Using Tabular Data
	23.2.5 What You May Need to Know About Flash and PNG Image Formats
	23.2.6 Using Gauges in Tables

	23.3 Configuring Gauge Display Elements
	23.3.1 How to Configure Gauge Thresholds
	23.3.2 How to Customize Gauge Labels
	23.3.3 How to Customize Gauge Indicators and Tick Marks
	23.3.4 How to Specify the Layout of Gauges in a Gauge Set
	23.3.5 What You May Need to Know About Configuring Gauge Set Display

	23.4 Formatting Gauge Style Elements
	23.4.1 How to Change Gauge Size and Apply CSS Styles
	23.4.2 Specifying Transparency for Gauge Elements
	23.4.3 How to Format Gauge Text and Use Text Resources

	23.5 Formatting Numeric Data Values in Gauges
	23.5.1 How to Format Numeric Data Values in Gauges
	23.5.2 What You May Need to Know About Automatic Scaling and Precision

	23.6 Adding Gauge Special Effects and Animation
	23.6.1 How to Add Gradient Special Effects to a Gauge
	23.6.2 What Happens When You Add a Gradient Special Effect to a Gauge
	23.6.3 How to Add Interactivity to Gauges
	23.6.4 Animating Gauges
	23.6.5 How to Specify Animation Effects for Gauges
	23.6.6 How to Configure Gauges to Display Active Data

	23.7 Using Custom Shapes for Gauges
	23.7.1 How to Use Prebuilt Custom Shapes Styles
	23.7.2 How to Use a Custom Shapes Graphic File
	23.7.3 What You May Need to Know About Supported SVG Features

24 Using Pivot Table Components

	24.1 About the Pivot Table Component
	24.1.1 End User and Presentation Features of Pivot Table Components
	24.1.1.1 Pivot Filter Bar
	24.1.1.2 Pivoting
	24.1.1.3 Editing Data Cells
	24.1.1.4 Sorting
	24.1.1.5 Drilling
	24.1.1.6 On Demand Data Scrolling
	24.1.1.7 Sizing

	24.1.2 Pivot Table and Pivot Filter Bar Component Use Cases and Examples
	24.1.3 Additional Functionality for the Pivot Table Component

	24.2 Using the Pivot Table Component
	24.2.1 Configuring Pivot Tables
	24.2.2 How to Add a Pivot Table to a Page
	24.2.3 What Happens When You Add a Pivot Table to a Page

	24.3 Using Stamping in Pivot Tables
	24.3.1 How to Configure Header and Data Cells as Stamps
	24.3.2 What You May Need to Know About Using var and varStatus Properties

	24.4 Using a Pivot Filter Bar with a Pivot Table
	24.4.1 How to Associate a Pivot Filter Bar with a Pivot Table

	24.5 Customizing Pivot Table Cell Content
	24.5.1 How to Create a CellFormat Object for a Data Cell
	24.5.2 How to Change Cell Format
	24.5.3 How to Create Stoplight and Conditional Formatting in a Pivot Table

	24.6 Using Selection in Pivot Tables
	24.7 Updating Pivot Tables with Partial Page Rendering
	24.8 How to Export from a Pivot Table

25 Using Map Components

	25.1 About Map Components
	25.1.1 End User and Presentation Features of Maps
	25.1.1.1 Geographic Map End User and Presentation Features
	25.1.1.2 Thematic Map End User and Presentation Features

	25.1.2 Map Component Use Cases and Examples
	25.1.3 Additional Functionality for Map Components

	25.2 Using the Geographic Map Component
	25.2.1 Configuring Geographic Map Components
	25.2.2 How to Add a Geographic Map to a Page
	25.2.3 What Happens When You Add a Geographic Map to a Page

	25.3 Customizing Geographic Map Display Attributes
	25.3.1 How to Adjust the Map Size
	25.3.2 How to Specify Strategy for Map Zoom Control
	25.3.3 How to Customize and Use Map Selections
	25.3.4 How to Customize the Map Legend

	25.4 Customizing Geographic Map Themes
	25.4.1 How to Customize Zoom Levels for a Theme
	25.4.2 How to Customize the Labels of a Map Theme
	25.4.3 How to Customize Color Map Themes
	25.4.4 How to Customize Point Images in a Point Theme
	25.4.5 What Happens When You Customize the Point Images in a Map
	25.4.6 How to Customize the Bars in a Bar Graph Theme
	25.4.7 What Happens When You Customize the Bars in a Map Bar Graph Theme
	25.4.8 How to Customize the Slices in a Pie Graph Theme
	25.4.9 What Happens When You Customize the Slices in a Map Pie Graph Theme

	25.5 Adding a Toolbar to a Geographic Map
	25.5.1 How to Add a Toolbar to a Map
	25.5.2 What Happens When You Add a Toolbar to a Map

	25.6 Using Thematic Map Components
	25.6.1 Configuring Thematic Maps
	25.6.2 What You May Need to Know About Prebuilt Base Maps
	25.6.3 Using the Layer Browser
	25.6.4 How to Add a Thematic Map to a Page
	25.6.5 What Happens When You Add a Thematic Map to a Page
	25.6.6 What You May Need to Know About Flash and PNG Image Formats

	25.7 Customizing Thematic Map Display Attributes
	25.7.1 How to Customize Thematic Map Labels
	25.7.2 How to Configure Tooltips to Display Data
	25.7.3 How to Format Numeric Data Values in Area and Marker Labels

	25.8 Adding Interactivity to Thematic Maps
	25.8.1 How to Configure Selection and Action Events in Thematic Maps
	25.8.2 How to Add Popups to Thematic Map Areas and Markers
	25.8.3 How to Configure Animation Effects
	25.8.4 How to Add Drag and Drop to Thematic Map Components

26 Using Gantt Chart Components

	26.1 About Gantt Chart Components
	26.1.1 End User and Presentation Features
	26.1.1.1 Scrolling, Zooming, and Panning
	26.1.1.2 Selection
	26.1.1.3 How to Navigate to a Specific Date in a Gantt Chart- Navigation and Display
	26.1.1.4 How to Control the Visibility of Columns in the Table Region
	26.1.1.5 Navigating in a Gantt Chart
	26.1.1.6 How to Display Data in a Hierarchical List or a Flat List
	26.1.1.7 How to Change the Gantt Chart Time Scale
	26.1.1.8 Server-Side Events

	26.1.2 Gantt Chart Component Use Cases and Examples
	26.1.3 Additional Functionality for Gantt Chart Components

	26.2 Using Gantt Chart Components
	26.2.1 Data for a Project Gantt Chart
	26.2.2 Data for a Resource Utilization Gantt Chart
	26.2.3 Data for a Scheduling Gantt Chart
	26.2.4 Gantt Chart Tasks
	26.2.5 Configuring Gantt Charts
	26.2.6 How to Add a Gantt Chart to a Page
	26.2.7 What Happens When You Add a Gantt Chart to a Page

	26.3 Customizing Gantt Chart Legends, Toolbars, and Context Menus
	26.3.1 How to Customize a Gantt Chart Legend
	26.3.2 Customizing Gantt Chart Toolbars
	26.3.3 Customizing Gantt Chart Context Menus

	26.4 Working with Gantt Chart Tasks and Resources
	26.4.1 How to Create a New Task Type
	26.4.2 How to Specify Custom Data Filters
	26.4.3 How to Add a Double-Click Event to a Task Bar

	26.5 Specifying Nonworking Days, Read-Only Features, and Time Axes
	26.5.1 Identifying Nonworking Days in a Gantt Chart
	26.5.1.1 How to Specify Weekdays as Nonworking Days
	26.5.1.2 How to Identify Specific Dates as Nonworking Days

	26.5.2 How to Apply Read-Only Values to Gantt Chart Features
	26.5.3 Customizing the Time Axis of a Gantt Chart
	26.5.3.1 How to Create and Use a Custom Time Axis

	26.6 Printing a Gantt Chart
	26.6.1 Print Options
	26.6.2 Action Listener to Handle the Print Event

	26.7 Using Gantt Charts as a Drop Target or Drag Source

27 Using Hierarchy Viewer Components

	27.1 About Hierarchy Viewer Components
	27.1.1 End User and Presentation Features
	27.1.1.1 Layouts
	27.1.1.2 Navigation
	27.1.1.3 Tilt Panning
	27.1.1.4 Control Panel
	27.1.1.5 Printing
	27.1.1.6 Bi-directional Support
	27.1.1.7 Disable Features
	27.1.1.8 State Management

	27.1.2 Hierarchy Viewer Use Cases and Examples
	27.1.3 Additional Functionality for Hierarchy Viewer Components

	27.2 Using Hierarchy Viewer Components
	27.2.1 Configuring Hierarchy Viewer Components
	27.2.2 How to Add a Hierarchy Viewer to a Page
	27.2.3 What Happens When You Add a Hierarchy Viewer to a Page
	27.2.4 What You May Need to Know About How HTML Rendering

	27.3 Managing Nodes in a Hierarchy Viewer
	27.3.1 How to Specify Node Content
	27.3.2 How to Configure the Controls on a Node
	27.3.3 How to Specify a Node Definition for an Accessor
	27.3.4 How to Associate a Node Definition with a Particular Set of Data Rows
	27.3.5 How to Specify Ancestor Levels for an Anchor Node

	27.4 Using Panel Cards
	27.4.1 How to Create a Panel Card
	27.4.2 What Happens at Runtime When a Panel Card Component Is Rendered

	27.5 Configuring Navigation in a Hierarchy Viewer
	27.5.1 How to Configure Upward Navigation in a Hierarchy Viewer
	27.5.2 How to Configure Same-Level Navigation in a Hierarchy Viewer
	27.5.3 What Happens When You Configure Same-Level Navigation in a Hierarchy Viewer

	27.6 Customizing the Appearance of a Hierarchy Viewer
	27.6.1 How to Adjust the Size of a Hierarchy Viewer
	27.6.2 How to Include Images in a Hierarchy Viewer
	27.6.3 How to Configure the Display of the Control Panel
	27.6.4 How to Configure the Display of Links and Labels

	27.7 Adding Interactivity to a Hierarchy Viewer Component
	27.7.1 How to Configure Node Selection Action
	27.7.2 How to Configure a Hierarchy Viewer to Invoke a Popup Window
	27.7.3 How to Configure a Hierarchy View Node to Invoke a Menu

	27.8 Adding Search to a Hierarchy Viewer
	27.8.1 How to Configure Searching in a Hierarchy Viewer
	27.8.2 What You May Need to Know About Configuring Search in a Hierarchy Viewer

Part VI Completing Your View

28 Customizing the Appearance Using Styles and Skins

	28.1 About Customizing the Appearance Using Styles and Skins
	28.1.1 Customizing the Appearance Use Cases and Examples
	28.1.2 Additional Functionality for Customizing the Appearance

	28.2 Changing the Style Properties of a Component
	28.2.1 How to Set an Inline Style
	28.2.2 How to Set a Style Class

	28.3 Enabling End Users to Change an Application's ADF Skin
	28.3.1 How to Enable End Users Change an Application's ADF Skin
	28.3.2 What Happens at Runtime: Changing an Application's ADF Skin

29 Internationalizing and Localizing Pages

	29.1 About Internationalizing and Localizing ADF Faces Pages
	29.1.1 Internationalizing and Localizing Pages Use Cases and Examples
	29.1.2 Additional Functionality for Internationalizing and Localizing Pages

	29.2 Using Automatic Resource Bundle Integration in JDeveloper
	29.2.1 How to Set Resource Bundle Options
	29.2.2 What Happens When You Set Resource Bundle Options
	29.2.3 How to Create an Entry in a JDeveloper-Generated Resource Bundle
	29.2.4 What Happens When You Create an Entry in a JDeveloper-Generated Resource Bundle

	29.3 Manually Defining Resource Bundles and Locales
	29.3.1 How to Define the Base Resource Bundle
	29.3.2 How to Edit a Resource Bundle File
	29.3.3 How to Register Locales and Resource Bundles in Your Application
	29.3.4 How to Use Resource Bundles in Your Application
	29.3.5 What You May Need to Know About ADF Skins and Control Hints

	29.4 Configuring Pages for an End User to Specify Locale at Runtime
	29.4.1 How to Configure a Page for an End User to Specify Locale
	29.4.2 What Happens When You Configure a Page to Specify Locale
	29.4.3 What Happens at Runtime When an End User Specifies a Locale

	29.5 Configuring Optional ADF Faces Localization Properties
	29.5.1 How to Configure Optional Localization Properties

30 Developing Accessible ADF Faces Pages

	30.1 About Accessibility Support In ADF Faces
	30.1.1 ADF Faces Accessibility Support Use Cases and Examples
	30.1.2 Additional Information for Accessibility Support in ADF Pages

	30.2 Configuring Accessibility Support In ADF Faces
	30.2.1 Accessibility Support Guidelines at Sign-In
	30.2.2 How to Configure Accessibility Support in trinidad-config.xml

	30.3 Specifying Component-Level Accessibility Properties
	30.3.1 ADF Faces Component Accessibility Guidelines
	30.3.2 Using ADF Faces Table Components in Screen Reader Mode
	30.3.3 Data Visualization Components Accessibility Guidelines
	30.3.4 How to Define Access Keys for an ADF Faces Component
	30.3.5 How to Define Localized Labels and Access Keys

	30.4 Creating Accessible Pages
	30.4.1 How to Use Partial Page Rendering
	30.4.2 How to Use Scripting
	30.4.3 How to Use Styles
	30.4.4 How to Use Page Structures and Navigation
	30.4.5 How to Use Images and Tables
	30.4.6 How to Use WAI-ARIA Landmark Regions

	30.5 Running Accessibility Audit Rules
	30.5.1 How to Create and Run an Audit Profile

31 Creating Custom ADF Faces Components

	31.1 About Custom ADF Faces Components
	31.1.1 Developing a Custom Component with JDeveloper
	31.1.2 An Example Custom Component

	31.2 Setting Up the Workspace and Starter Files
	31.2.1 How to Set Up the JDeveloper Custom Component Environment
	31.2.2 How to Add a Faces Configuration File
	31.2.3 How to Add a MyFaces Trinidad Skins Configuration File
	31.2.4 How to Add a Cascading Style Sheet
	31.2.5 How to Add a Resource Kit Loader
	31.2.6 How to Add a JavaServer Pages Tag Library Descriptor File
	31.2.7 How to Add a JavaScript Library Feature Configuration File
	31.2.8 How to Add a Facelets Tag Library Configuration File

	31.3 Developing for the Client-Side
	31.3.1 How to Create a JavaScript File for a Component
	31.3.2 How to Create a Javascript File for an Event
	31.3.3 How to Create a JavaScript File for a Peer
	31.3.4 How to Add a Custom Component to a JavaScript Library Feature Configuration File

	31.4 Developing for the Server-Side
	31.4.1 How to Create a Class for an Event Listener
	31.4.2 How to Create a Class for an Event
	31.4.3 Creating the Component
	31.4.4 How to Create a Class for a Component
	31.4.5 How to Add the Component to the faces-config.xml File
	31.4.6 How to Create a Class for a Resource Bundle
	31.4.7 How to Create a Class for a Renderer
	31.4.8 How to Add the Renderer to the faces-config.xml File
	31.4.9 How to Create JSP Tag Properties
	31.4.10 How to Configure the Tag Library Descriptor
	31.4.11 How to Create a Resource Loader
	31.4.12 How to Create a MyFaces Trinidad Cascading Style Sheet

	31.5 Deploying a Component Library
	31.5.1 How to Deploy a Component Library

	31.6 Adding the Custom Component to an Application
	31.6.1 How to Configure the Web Deployment Descriptor
	31.6.2 How to Enable JavaScript Logging and Assertions
	31.6.3 How to Add a Custom Component to JSF Pages
	31.6.4 What You May Need to Know About Using the tagPane Custom Component

32 Allowing User Customization on JSF Pages

	32.1 About User Customization
	32.1.1 User Customization Use Cases and Examples

	32.2 Implementing Session Change Persistence
	32.2.1 How to Implement Session Change Persistence
	32.2.2 What Happens When You Configure Your Application to Use Change Persistence
	32.2.3 What Happens at Runtime: How Changes are Persisted
	32.2.4 What You May Need to Know About Using Change Persistence on Templates and Regions

33 Adding Drag and Drop Functionality

	33.1 About Drag and Drop Functionality
	33.1.1 Additional Functionality for Drag and Drop

	33.2 Adding Drag and Drop Functionality for Attributes
	33.3 Adding Drag and Drop Functionality for Objects
	33.3.1 How to Add Drag and Drop Functionality for a Single Object
	33.3.2 What Happens at Runtime
	33.3.3 What You May Need to Know About Using the ClientDropListener

	33.4 Adding Drag and Drop Functionality for Collections
	33.4.1 How to Add Drag and Drop Functionality for Collections
	33.4.2 What You May Need to Know About the dragDropEndListener

	33.5 Adding Drag and Drop Functionality for Components
	33.5.1 How to Add Drag and Drop Functionality for Components

	33.6 Adding Drag and Drop Functionality Into and Out of a panelDashboard Component
	33.6.1 How to Add Drag and Drop Functionality Into a panelDashboard Component
	33.6.2 How to Add Drag and Drop Functionality Out of a panelDashboard Component

	33.7 Adding Drag and Drop Functionality to a Calendar
	33.7.1 How to Add Drag and Drop Functionality to a Calendar
	33.7.2 What You May Need to Know About Dragging and Dropping in a Calendar

	33.8 Adding Drag and Drop Functionality for DVT Graphs
	33.8.1 How to Add Drag and Drop Functionality for a DVT Graph

	33.9 Adding Drag and Drop Functionality for DVT Gantt Charts
	33.9.1 How to Add Drag and Drop Functionality for a DVT Component

34 Using Different Output Modes

	34.1 About Using Different Output Modes
	34.1.1 Output Mode Use Cases

	34.2 Displaying a Page for Print
	34.2.1 How to Use the showPrintablePageBehavior Tag

	34.3 Creating Emailable Pages
	34.3.1 How to Create an Emailable Page
	34.3.2 How to Test the Rendering of a Page in an Email Client
	34.3.3 What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable Pages

35 Using the Active Data Service with an Asynchronous Backend

	35.1 About the Active Data Service
	35.1.1 Active Data Service Use Cases and Examples

	35.2 Process Overview for Using Active Data Service
	35.3 Implement the ActiveModel Interface in a Managed Bean
	35.3.1 What You May Need to Know About Read Consistency

	35.4 Pass the Event Into the Active Data Service
	35.5 Register the Data Update Event Listener
	35.6 Configure the ADF Component to Display Active Data

Part VII Appendixes

A ADF Faces Configuration

	A.1 About Configuring ADF Faces
	A.2 Configuration in web.xml
	A.2.1 How to Configure for JSF and ADF Faces in web.xml
	A.2.2 What You May Need to Know About Required Elements in web.xml
	A.2.3 What You May Need to Know About ADF Faces Context Parameters in web.xml
	A.2.3.1 State Saving
	A.2.3.2 Debugging
	A.2.3.3 File Uploading
	A.2.3.4 Resource Debug Mode
	A.2.3.5 User Customization
	A.2.3.6 Enabling the Application for Real User Experience Insight
	A.2.3.7 Assertions
	A.2.3.8 Profiling
	A.2.3.9 Dialog Prefix
	A.2.3.10 Compression for CSS Class Names
	A.2.3.11 Test Automation
	A.2.3.12 UIViewRoot Caching
	A.2.3.13 Themes and Tonal Styles
	A.2.3.14 Partial Page Rendering
	A.2.3.15 Partial Page Navigation
	A.2.3.16 JavaScript Partitioning
	A.2.3.17 Framebusting
	A.2.3.18 Suppressing Auto-Generated Component IDs
	A.2.3.19 ADF Faces Caching Filter
	A.2.3.20 Configuring Native Browser Context Menus for Command Links
	A.2.3.21 Session Timeout Warning
	A.2.3.22 JSP Tag Execution in HTTP Streaming

	A.2.4 What You May Need to Know About Other Context Parameters in web.xml

	A.3 Configuration in faces-config.xml
	A.3.1 How to Configure for ADF Faces in faces-config.xml

	A.4 Configuration in adf-config.xml
	A.4.1 How to Configure ADF Faces in adf-config.xml
	A.4.2 Defining Caching Rules for ADF Faces Caching Filter
	A.4.3 Configuring Flash as Component Output Format

	A.5 Configuration in adf-settings.xml
	A.5.1 How to Configure for ADF Faces in adf-settings.xml
	A.5.2 What You May Need to Know About Elements in adf-settings.xml
	A.5.2.1 Help System
	A.5.2.2 Caching Rules

	A.6 Configuration in trinidad-config.xml
	A.6.1 How to Configure ADF Faces Features in trinidad-config.xml
	A.6.2 What You May Need to Know About Elements in trinidad-config.xml
	A.6.2.1 Animation Enabled
	A.6.2.2 Skin Family
	A.6.2.3 Time Zone and Year
	A.6.2.4 Enhanced Debugging Output
	A.6.2.5 Page Accessibility Level
	A.6.2.6 Language Reading Direction
	A.6.2.7 Currency Code and Separators for Number Groups and Decimal Points
	A.6.2.8 Formatting Dates and Numbers Locale
	A.6.2.9 Output Mode
	A.6.2.10 Number of Active PageFlowScope Instances
	A.6.2.11 File Uploading
	A.6.2.12 Custom File Uploaded Processor
	A.6.2.13 Client-Side Validation and Conversion

	A.6.3 What You May Need to Know About Configuring a System Property

	A.7 Configuration in trinidad-skins.xml
	A.8 Using the RequestContext EL Implicit Object
	A.9 Performance Tuning

B Message Keys for Converter and Validator Messages

	B.1 About ADF Faces Default Messages
	B.2 Message Keys and Setter Methods
	B.3 Converter and Validator Message Keys and Setter Methods
	B.3.1 af:convertColor
	B.3.2 af:convertDateTime
	B.3.3 af:convertNumber
	B.3.4 af:validateByteLength
	B.3.5 af:validateDateRestriction
	B.3.6 af:validateDateTimeRange
	B.3.7 af:validateDoubleRange
	B.3.8 af:validateLength
	B.3.9 af:validateRegExp

C Keyboard Shortcuts

	C.1 About Keyboard Shortcuts
	C.2 Tab Traversal
	C.2.1 Tab Traversal Sequence on a Page
	C.2.2 Tab Traversal Sequence in a Table

	C.3 Shortcut Keys
	C.3.1 Accelerator Keys
	C.3.2 Access Keys
	C.3.3 Shortcut Keys for Common Components
	C.3.4 Shortcut Keys for Screen Reader Mode
	C.3.5 Shortcut Keys for Rich Text Editor Component
	C.3.6 Shortcut Keys for Table, Tree, and Tree Table Components
	C.3.7 Shortcut Keys for Table, Tree, and Tree Table Components in Screen Reader Mode
	C.3.8 Shortcut Keys for Data Visualization Components
	C.3.9 Shortcut Keys for Calendar Component
	C.3.10 Shortcut Keys for Calendar Component in Screen Reader Mode

	C.4 Default Cursor or Focus Placement
	C.5 The Enter Key

D Quick Start Layout Themes

E Code Samples

	E.1 Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"
	E.1.1 The adf-js-partitions.xml File

	E.2 Samples for Chapter 31, "Creating Custom ADF Faces Components"
	E.2.1 Event Code for JavaScript
	E.2.2 Example Tag Library Descriptor File Code

Part IV

Using Common ADF Faces Components

Part IV contains the following chapters:

	
Chapter 11, "Using Input Components and Defining Forms"

	
Chapter 12, "Using Tables and Trees"

	
Chapter 13, "Using List-of-Values Components"

	
Chapter 14, "Using Query Components"

	
Chapter 15, "Using Popup Dialogs, Menus, and Windows"

	
Chapter 16, "Using Menus, Toolbars, and Toolboxes"

	
Chapter 17, "Using a Calendar Component"

	
Chapter 18, "Using Output Components"

	
Chapter 19, "Displaying Tips, Messages, and Help"

	
Chapter 20, "Working with Navigation Components"

29 Internationalizing and Localizing Pages

This chapter describes how to configure JSF pages or an application to display text in the correct language of a user's browser.

This chapter includes the following sections:

	
Section 29.1, "About Internationalizing and Localizing ADF Faces Pages"

	
Section 29.2, "Using Automatic Resource Bundle Integration in JDeveloper"

	
Section 29.3, "Manually Defining Resource Bundles and Locales"

	
Section 29.4, "Configuring Pages for an End User to Specify Locale at Runtime"

	
Section 29.5, "Configuring Optional ADF Faces Localization Properties"

29.1 About Internationalizing and Localizing ADF Faces Pages

Internationalization is the process of designing and developing products for easy adaptation to specific local languages and cultures. Localization is the process of adapting a product for a specific local language or culture by translating text and adding locale-specific components. A successfully localized application will appear to have been developed within the local culture. JDeveloper supports easy localization of ADF Faces components using the abstract class java.util.ResourceBundle to provide locale-specific resources.

When your application will be viewed by users in more than one country, you can configure your JSF page or application to use different locales so that it displays the correct language for the language setting of a user's browser. For example, if you know your page will be viewed in Italy, you can localize your page so that when a user's browser is set to use the Italian language, text strings in the browser page appear in Italian.

ADF Faces components may include text that is part of the component, for example the af:table component uses the resource string af_table.LABEL_FETCHING for the message text that displays in the browser while the af:table component fetches data during the initial load of data or while the user scrolls the table. JDeveloper provides automatic translation of these text resources into 28 languages. These text resources are referenced in a resource bundle. If you set the browser to use the language in Italy, any text contained within the components will automatically be displayed in Italian.

For any text you add to a component, for example if you define the label of an af:commandButton component by setting the text attribute, you must provide a resource bundle that holds the actual text, create a version of the resource bundle for each locale, and add a <locale-config> element to define default and support locales in the application's faces-config.xml file. You must also add a <resource-bundle> element to your application's faces-config.xml file in order to make the resource bundles available to all the pages in your application. Once you have configured and registered a resource bundle, the Expression Language (EL) editor will display the key from the bundle, making it easier to reference the bundle in application pages.

To simplify the process of creating text resources for text you add to ADF components, JDeveloper supports automatic resource bundle synchronization for any translatable string in the visual editor. When you edit components directly in the visual editor or in the Property Inspector, text resources are automatically created in the base resource bundle. For more information, see Section 29.2, "Using Automatic Resource Bundle Integration in JDeveloper."

	
Note:

Any text retrieved from the database is not translated. This document explains how to localize static text, not text that is stored in the database.

29.1.1 Internationalizing and Localizing Pages Use Cases and Examples

Assume, for example, that you have a page with a title of My Purchase Requests. Rather than set the literal string, My Purchase Requests, as the value of the af:panelPage component's title attribute, you bind the value of the title attribute to a key in the UIResources resource bundle. The UIResources resource bundle is registered in the faces-config.xml file for the application, as shown in Example 29-1.

Example 29-1 Resource Bundle Element in JSF Configuration File

<resource-bundle>
 <var>res</var>
 <base-name>resources.UIResources</base-name>
</resource-bundle>

The resource bundle is given a variable name (in this case, res) that can then be used in EL expressions. On the page, the title attribute of the af:panelPage component is then bound to the myDemo.pageTitle key in that resource bundle, as shown in Example 29-2.

Example 29-2 Component Text Referencing Resource Bundle

<af:panelPage text="#{res['myDemo.pageTitle']}

The UIResources resource bundle has an entry in the English language for all static text displayed on each page in the application, as well as for text for messages and global text, such as generic labels. Example 29-3 shows the keys for the myDemo page.

Example 29-3 Resource Bundle Keys for the myDemo Page Displayed in English

#myDemo Screen
myDemo.pageTitle=My Purchase Requests
myDemo.menubar.openLink=Open Requests
myDemo.menubar.pendingLink=Requests Awaiting customer
myDemo.menubar.closedLink=Closed Requests
myDemo.menubar.allRequests=All Requests
myDemo.menubar.newLink=Create New Purchase Request
myDemo.selectAnd=Select and
myDemo.buttonbar.view=View
myDemo.buttonbar.edit=Edit

Note that text in the banner image and data retrieved from the database are not translated.

Example 29-4 shows the resource bundle version for the Italian (Italy) locale, UIResources_it. Note that there is not an entry for the selection facet's title, yet it was translated from Select to Seleziona automatically. That is because this text is part of the ADF Faces table component's selection facet.

Example 29-4 Resource Bundle Keys for the myDemo Page Displayed in Italian

#myDemo Screen
myDemo.pageTitle=Miei Ticket
myDemo.menubar.openLink=Ticket Aperti
myDemo.menubar.pendingLink=Ticket in Attesa del Cliente
myDemo.menubar.closedLink=Ticket Risolti
myDemo.menubar.allRequests=Tutti i Ticket
myDemo.menubar.newLink=Creare Nuovo Ticket
myDemo.selectAnd=Seleziona e
myDemo.buttonbar.view=Vedere Dettagli
myDemo.buttonbar.edit=Aggiorna

29.1.2 Additional Functionality for Internationalizing and Localizing Pages

You may find it helpful to understand other ADF Faces features before you internationalize or localize your application. Additionally, once you have internationalized or localized your application, you may find that you need to add functionality such as accessibility or render ADF Faces components from right to left. Following are links to other functionality that you can use.

	
Using parameters in text: You can use the ADF Faces EL format tags if you want the text displayed in a component to contain parameters that will resolve at runtime. For more information, see Section 3.5.2, "How to Use the EL Format Tags."

	
Pseudo-classes: ADF skins support a number of pseudo-classes that you can use to change how an application renders in a particular locale. For example, the :rtl pseudo-class renders ADF Faces components from right to left. This may be useful if your application is localized into languages, such as Arabic and Hebrew, that read from right to left. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Accessibility: You can make the pages in your application accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Global resource strings: The default resource bundle stores the global resource strings that ADF Faces components support and the resource strings that are specific to individual components. For information about these resource strings, see the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors.

29.2 Using Automatic Resource Bundle Integration in JDeveloper

By default, JDeveloper supports the automatic creation of text resources in the default resource bundle when editing ADF Faces components in the visual editor. To treat user-defined strings as static values, disable Automatically Synchronize Bundle in the Project Properties dialog, as described in Section 29.2.1, "How to Set Resource Bundle Options".

Automatic resource bundle integration can be configured to support one resource bundle per page or project, or multiple shared bundles.

You can edit translatable text strings using any one of the following methods:

	
In the Structure window, right-click the component for which you want to enter translatable text strings. Choose Select Text Resource for followed by the translatable item for which you want to enter text. For example, Figure 29-1 shows the context menu that appears when you right-click an af:inputText component.

Figure 29-1 Adding Text to a Component

[image: Adding Text to a Component]

	
From the text input window, choose Select Text Resource to launch the Select Text Resource dialog, as shown in Figure 29-2. The dialog can also be accessed by right-clicking the component and choosing Select Text Resource for, or from the Property Inspector, by clicking the icon to the right of a translatable property and selecting Select Text Resource.

Figure 29-2 Select Text Resource Dialog

[image: Select Text Resource Editor]

	
From the text input window, select Expression Builder to launch the Expression Builder dialog. The dialog can also be accessed from the Property Inspector by clicking the icon to the right of a translatable property and selecting Expression Builder.

	
In the Property Inspector, enter a valid expression language string for a translatable property.

	
Note:

JDeveloper only writes strings to a resource bundle that you enter using one of the previously-listed methods.

29.2.1 How to Set Resource Bundle Options

After you have created a project, you can set resource bundle options in the Project Properties dialog.

Before you begin:

It may help to understand how JDeveloper manages resource bundles. For more information, see Section 29.2, "Using Automatic Resource Bundle Integration in JDeveloper."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To set resource bundle options for a project:

	
In the Application Navigator, double-click the project.

	
In the Project Properties dialog, select Resource Bundle to display the resource bundle options, as shown in Figure 29-3.

Figure 29-3 Project Properties Resource Bundle dialog

[image: Project Properties Resource Bundle.]

	
If you want JDeveloper to automatically generate a default resource file, select Automatically Synchronize Bundle.

	
Select one of the following resource bundle file options:

	
One Bundle Per Project - configured in a file named <ProjectName>.properties.

	
One Bundle Per File - configured in a file named <FileName>.properties.

	
Multiple Shared Bundles.

	
Select the resource bundle type from the dropdown list:

	
XML Localization Interchange File Format (XLIFF) Bundle

	
List Resource Bundle

	
Properties Bundle

	
Click OK.

29.2.2 What Happens When You Set Resource Bundle Options

JDeveloper generates one or more resource bundles of a particular type based on the selections that you make in the resource bundle options part of the Project Properties dialog, as illustrated in Figure 29-3. It generates a resource bundle the first time that you invoke the Select Text Resource dialog illustrated in Figure 29-2.

Assume, for example, that you select the One Bundle Per Project checkbox and the List Resource Bundle value from the Resource Bundle Type dropdown list. The first time that you invoke the Select Text Resource dialog, JDeveloper generates one resource bundle for the project. The generated resource bundle is a Java class named after the default project bundle name in the Project Properties dialog (for example, ViewControllerBundle.java).

JDeveloper generates a resource bundle as an .xlf file if you select the XML Localization Interchange File Format (XLIFF) Bundle option and a .properties file if you select the Properties Bundle option.

By default, JDeveloper creates the generated resource bundle in the view subdirectory of the project's Application Sources directory.

29.2.3 How to Create an Entry in a JDeveloper-Generated Resource Bundle

JDeveloper generates one or more resource bundles based on the values you select in the resource bundle options part of the Project Properties dialog. It generates a resource bundle the first time that you invoke the Select Text Resource dialog from a component property in the Property Inspector.

JDeveloper writes key-value pairs to the resource bundle based on the values that you enter in the Select Text Resource dialog. It also allows you to select an existing key-value pair from a resource bundle to render a runtime display value for a component.

Before you begin:

It may help to understand how JDeveloper manages resource bundles. For more information, see Section 29.2, "Using Automatic Resource Bundle Integration in JDeveloper."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To create an entry in the resource bundle generated by JDeveloper:

	
In the JSF page, select the component for which you want to write a runtime value.

For example, select an af:inputText component.

	
In the Property Inspector, use a property's dropdown list to select Select Text Resource to create a new entry in the resource bundle.

The Select Text Resource entry in the dropdown list only appears for properties that support text resources. For example, the Label property of an af:inputText component.

	
Write the value that you want to appear at runtime in the Display Value input field, as illustrated in Figure 29-2.

JDeveloper generates a value in the Key input field.

	
Optionally, write a description in the Description input field.

	
Note:

JDeveloper displays a matching text resource in the Matching Text Resource field if a text resource exists that matches the value you entered in the Display Value input field exists.

	
Click Save and Select.

29.2.4 What Happens When You Create an Entry in a JDeveloper-Generated Resource Bundle

JDeveloper writes the key-value pair that you define in the Select Text Resource dialog to the resource bundle. The options that you select in the resource bundle options part of the Project Properties dialog determine what type of resource bundle JDeveloper writes the key-value pair to. For more information, see Section 29.2.2, "What Happens When You Set Resource Bundle Options".

The component property for which you define the resource bundle entry uses an EL expression to retrieve the value from the resource bundle at runtime. For example, an af:inputText component's Label property may reference an EL expression similar to the following:

#{viewcontrollerBundle.NAME}

where viewcontrollerBundle references the resource bundle and NAME is the key for the runtime value.

29.3 Manually Defining Resource Bundles and Locales

A resource bundle contains a number of named resources, where the data type of the named resources is String. A bundle may have a parent bundle. When a resource is not found in a bundle, the parent bundle is searched for the resource. Resource bundles can be either Java classes, property files, or XLIFF files. The abstract class java.util.ResourceBundle has two subclasses: java.util.PropertyResourceBundle and java.util.ListResourceBundle. A java.util.PropertyResourceBundle is stored in a property file, which is a plain-text file containing translatable text. Property files can contain values only for String objects. If you need to store other types of objects, you must use a java.util.ListResourceBundle class instead.

For more information about using XLIFF, see http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

To add support for an additional locale, replace the values for the keys with localized values and save the property file, appending a language code (mandatory) and an optional country code and variant as identifiers to the name, for example, UIResources_it.properties.

The java.util.ListResourceBundle class manages resources in a name and value array. Each java.util.ListResourceBundle class is contained within a Java class file. You can store any locale-specific object in a java.util.ListResourceBundle class. To add support for an additional locale, you create a subclass from the base class, save it to a file with a locale or language extension, translate it, and compile it into a class file.

The ResourceBundle class is flexible. If you first put your locale-specific String objects in a java.util.PropertyResourceBundle file, you can still move them to a ListResourceBundle class later. There is no impact on your code, because any call to find your key will look in both the java.util.ListResourceBundle class and the java.util.PropertyResourceBundle file.

The precedence order is class before properties. So if a key exists for the same language in both a class file and a property file, the value in the class file will be the value presented to you. Additionally, the search algorithm for determining which bundle to load is as follows:

	
(baseclass)+(specific language)+(specific country)+(specific variant)

	
(baseclass)+(specific language)+(specific country)

	
(baseclass)+(specific language)

	
(baseclass)+(default language)+(default country)+(default variant)

	
(baseclass)+(default language)+(default country)

	
(baseclass)+(default language)

For example, if your browser is set to the Italian (Italy) locale and the default locale of the application is US English, the application attempts to find the closest match, looking in the following order:

	
it_IT

	
it

	
en_US

	
en

	
The base class bundle

	
Tip:

The getBundle method used to load the bundle looks for the default locale classes before it returns the base class bundle. If it fails to find a match, it throws a MissingResourceException error. A base class with no suffixes should always exist as a default. Otherwise, it may not find a match and the exception is thrown.

29.3.1 How to Define the Base Resource Bundle

You must create a base resource bundle that contains all the text strings that are not part of the components themselves. This bundle should be in the default language of the application. You can create a resource bundle as a property file, as an XLIFF file, or as a Java class. After a resource bundle file has been created, you can edit the file using the Edit Resource Bundles dialog.

Before you begin:

It may help to understand what types of resource bundle you can create. For more information, see Section 29.3, "Manually Defining Resource Bundles and Locales."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To create a resource bundle as a property file or an XLIFF file:

	
In JDeveloper, create a new file.

	
In the Application Navigator, right-click where you want the file to be placed and choose New from the context menu to open the New Gallery.

	
Note:

If you are creating a localized version of the base resource bundle, save the file to the same directory as the base file.

	
In the Categories tree, select General, and in the Items list, select File. Click OK.

	
In the Create File dialog, enter a name for the file using the convention <name><_lang>.properties for the using the properties file or <name><_lang>.xlf for using the XLIFF file, where the <_lang> suffix is provided for translated files, as in _de for German, and omitted for the base language.

	
Note:

If you are creating a localized version of a base resource bundle, you must append the ISO 639 lowercase language code to the name of the file. For example, the Italian version of the UIResources bundle is UIResources_it.properties. You can add the ISO 3166 uppercase country code (for example it_CH, for Switzerland) if one language is used by more than one country. You can also add an optional nonstandard variant (for example, to provide platform or region information).
If you are creating the base resource bundle, do not append any codes.

	
Enter the content for the file. You can enter the content manually by entering the key-value pairs. You can use the Edit Resource Bundle dialog to enter the key-value pairs, as described in Section 29.3.2, "How to Edit a Resource Bundle File".

	
If you are creating a property file, create a key and value for each string of static text for this bundle. The key is a unique identifier for the string. The value is the string of text in the language for the bundle. If you are creating a localized version of the base resource bundle, any key not found in this version will inherit the values from the base class.

	
Note:

All non-ASCII characters must be UNICODE-escaped or the encoding must be explicitly specified when compiling, for example:

javac -encoding ISO8859_5 UIResources_it.java

For example, the key and the value for the title of the myDemo page is:

myDemo.pageTitle=My Purchase Requests

	
If you are creating an XLIFF file, enter the proper tags for each key-value pair. For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="myResources" datatype="xml">
 <body>
 <trans-unit id="NAME">
 <source>Name</source>
 <target/>
 <note>Name of employee</note>
 </trans-unit>
 <trans-unit id="HOME_ADDRESS">
 <source>Home Address</source>
 <target/>
 <note>Adress of employee</note>
 </trans-unit>
 <trans-unit id="OFFICE_ADDRESS">
 <source>Office Address</source>
 <target/>
 <note>Office building </note>
 </trans-unit>
 </body>
 </file>
</xliff>

	
After you have entered all the values, click OK.

To create a resource bundle as a Java class:

	
In JDeveloper, create a new Java class:

	
In the Application Navigator, right-click where you want the file to be placed and choose New to open the New Gallery.

	
Note:

If you are creating a localized version of the base resource bundle, it must reside in the same directory as the base file.

	
In the Categories tree, select General, and in the Items list, select Java Class. Click OK.

	
In the Create Java Class dialog, enter a name and package for the class. The class must extend java.util.ListResourceBundle.

	
Note:

If you are creating a localized version of a base resource bundle, you must append the ISO 639 lowercase language code to the name of the class. For example, the Italian version of the UIResources bundle might be UIResources_it.java. You can add the ISO 3166 uppercase country code (for example it_CH, for Switzerland) if one language is used by more than one country. You can also add an optional nonstandard variant (for example, to provide platform or region information).
If you are creating the base resource bundle, do not append any codes.

	
Implement the getContents() method, which simply returns an array of key-value pairs. Create the array of keys for the bundle with the appropriate values. Or use the Edit Resource Bundles dialog to automatically generate the code, as described in Section 29.3.2, "How to Edit a Resource Bundle File". Example 29-5 shows a base resource bundle Java class.

	
Note:

Keys must be String objects. If you are creating a localized version of the base resource bundle, any key not found in this version will inherit the values from the base class.

Example 29-5 Base Resource Bundle Java Class

package sample;

import java.util.ListResourceBundle;

public class MyResources extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
}
static final Object[][] contents {
 {"button_Search", Search"},
 {"button_Reset", "Reset"},
 };
}

29.3.2 How to Edit a Resource Bundle File

After you have created a resource bundle property file, XLIFF file, or Java class file, you can edit it using the source editor.

Before you begin:

It may help to understand what types of resource bundles you can define and edit. For more information, see Section 29.3, "Manually Defining Resource Bundles and Locales."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To edit a resource bundle after it has been created:

	
In JDeveloper, choose Application > Edit Resource Bundles from the main menu.

	
In the Edit Resource Bundles dialog, select the resource bundle file you want to edit from the Resource Bundle dropdown list, as shown in Figure 29-4, or click the Search icon to launch the Select Resource Bundle dialog.

Figure 29-4 Edit Resource Bundle Dialog

[image: Edit Resource Bundle dialog]

	
In the Select Resource Bundle dialog, select the file type from the File type dropdown list. Navigate to the resource bundle you want to edit, as shown in Figure 29-5. Click OK.

Figure 29-5 Select Resource Bundle Dialog

[image: Select Resource Bundle dialog]

	
In the Edit Resource Bundles dialog, click the Add icon to add a key-value pair, as shown in Figure 29-6. When you have finished, click OK.

Figure 29-6 Adding Values to a Resource Bundle

[image: Adding Values to a Resource Bundle]

29.3.3 How to Register Locales and Resource Bundles in Your Application

You must register the locales and resource bundles used in your application in the faces-config.xml file.

Before you begin:

It may help to understand how you can manually manage resource bundles. For more information, see Section 29.3, "Manually Defining Resource Bundles and Locales."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To register a locale for your application:

	
Open the faces-config.xml file and click the Overview tab in the editor window. The faces-config.xml file is located in the <View_Project>/WEB-INF directory.

	
In the editor window, select Application.

	
In the Locale Config area, click Add to open the Property Inspector to add the code for the locale, as shown in Figure 29-7.

Figure 29-7 Adding a Locale to faces-config.xml

[image: Add locale to faces-config.xml.]

After you have added the locales, the faces-config.xml file should have code similar to the following:

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>ca</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>zh_Ch</supported-locale>
 </locale-config>

To register the resource bundle:

	
Open the faces-config.xml file and click the Overview tab in the editor window. The faces-config.xml file is located in the <View_Project>/WEB-INF directory.

	
In the editor window, select Application.

	
In the Resource Bundle section, click Add to enable editor input. Enter the fully qualified name of the base bundle that contains messages to be used by the application and a variable name that can be used to reference the bundle in an EL expression, as shown in Figure 29-8.

Figure 29-8 Adding a Resource Bundle to faces-config.xml

[image: Adding resource bundle to faces-config.xml.]

After you have added the resource bundle, the faces-config.xml file should have code similar to the following:

<resource-bundle>
 <base-name>oracle.fodemo.storefront.StoreFrontUIBundle</base-name>
 <var>res</var>
</resource-bundle>

29.3.4 How to Use Resource Bundles in Your Application

You set your page encoding and response encoding to all supported languages and you bind to the resource bundle.

Before you begin:

It may help to understand how you can manually manage resource bundles. For more information, see Section 29.3, "Manually Defining Resource Bundles and Locales."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To use a base resource bundle on your page:

	
Set your page encoding and response encoding to be a superset of all supported languages. If no encoding is set, the page encoding defaults to the value of the response encoding set using the contentType attribute of the page directive. Example 29-6 shows the encoding for a sample page.

Example 29-6 Page and Response Encoding

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>

	
Bind all attributes that represent strings of static text displayed on the page to the appropriate key in the resource bundle, using the variable defined in the faces-config.xml file for the <resource-bundle> element. Example 29-7 shows the code for the View button on the myDemo page.

Example 29-7 Binding to a Resource Bundle

<af:commandButton text="#{res['myDemo.buttonbar.view']}"
 . . . />

	
Tip:

If you type the following syntax in the source editor, JDeveloper displays a dropdown list of the keys that resolve to strings in the resource bundle:
<af:commandButton text="#{res.

JDeveloper completes the EL expression when you select a key from the dropdown list.

	
You can also use the adfBundle keyword to resolve resource strings from specific resource bundles as EL expressions in the JSF page.

The usage format is #{adfBundle[bundleID] [resource_Key]}, where bundleID is the fully qualified bundle ID, such as project.EmpMsgBundle, and resource_Key is the resource key in the bundle, such as Deptno_LABEL. Example 29-8 shows how adfBundle is used to provide the button text with a resource strings from a specific resource bundle.

Example 29-8 Binding Using adfBundle

<af:commandButton text="#{adfBundle['project.EmpMsgBundle'] ['Deptno_LABEL']}"

29.3.5 What You May Need to Know About ADF Skins and Control Hints

If you use an ADF skin and have created a custom resource bundle for the skin, you must also create localized versions of the resource bundle. Similarly, if your application uses control hints to set any text, you must create localized versions of the generated resource bundles for that text.

29.4 Configuring Pages for an End User to Specify Locale at Runtime

You can configure an application so end users can specify the locale at runtime rather than the default behavior where the locale settings of the end user's browser determine the runtime locale. Implement this functionality if you want your application to allow end users to specify their preferred locale and save their preference.

29.4.1 How to Configure a Page for an End User to Specify Locale

Create a new page or open an existing page. Configure it so that:

	
It references a backing bean to store locale information

	
An end user can invoke a control at runtime to update the locale information in the backing bean

	
The locale attribute of the f:view tag references the backing bean

Before you begin:

It may help to understand the configuration options available to you. For more information, see Section 29.4, "Configuring Pages for an End User to Specify Locale at Runtime."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To configure a page for an end user to specify locale:

	
Create a page with a backing bean to store locale information.

For more information, see Section 3.4.1, "How to Create JSF Pages".

	
Provide a control (for example, a selectOneChoice component) that an end user can use to change locale.

For example, in the ADF Faces page of the Component Palette, from the Text and Selection panel, drag a Choice component and drop it on the page.

	
Bind the control to a backing bean that stores the locale value, as illustrated in the following example.

<af:selectOneChoice label="Select Locale"
 binding="#{backingBeanScope.backing_changeLocale.soc1}"
 id="soc1">
 <af:selectItem label="French" value="FR"
 binding="#{backingBeanScope.backing_changeLocale.si1}"
 id="si1"/>
 ...
</af:selectOneChoice>

	
Bind the locale attribute of the f:view tag to the locale value in the backing bean.

	
In the Structure window for the JSF page, right-click the f:view tag and choose Go to Properties.

	
In the Property Inspector, use the dropdown menu next to the locale attribute to open the Expression Builder.

	
Use the Expression Builder to bind to the locale value in the backing bean, as shown in Figure 29-9.

Figure 29-9 Expression Builder Binding the Locale Attribute to a Backing Bean

[image: Expression Builder Binding Locale Attribute to Backing Bean]

	
Save the page.

29.4.2 What Happens When You Configure a Page to Specify Locale

JDeveloper generates a reference to the backing bean for the command component that you use to change the locale. Example 29-9 shows an example using the selectOneChoice component.

Example 29-9 selectOneChoice Component Referencing a Backing Bean

<af:selectOneChoice label="Select Locale"
 binding="#{backingBeanScope.backing_changeLocale.soc1}"
 id="soc1">
 <af:selectItem label="French" value="FR"
 binding="#{backingBeanScope.backing_changeLocale.si1}"
 id="si1"/>
 ...
</af:selectOneChoice>

JDeveloper also generates the required methods in the backing bean for the page. Example 29-10 shows extracts for the backing bean that correspond to Example 29-9.

Example 29-10 Backing Bean Methods to Change Locale

package view.backing;

...
import oracle.adf.view.rich.component.rich.input.RichSelectOneChoice;

public class ChangeLocale {
 ...
 ...
 private RichSelectOneChoice soc1;
 ...

 ...

 ...
 public void setD2(RichDocument d2) {
 this.d2 = d2;
 }

 ...

 public void setSoc1(RichSelectOneChoice soc1) {
 this.soc1 = soc1;
 }

 public RichSelectOneChoice getSoc1() {
 return soc1;
 }

 public void setSi1(RichSelectItem si1) {
 this.si1 = si1;
 }
...
}

29.4.3 What Happens at Runtime When an End User Specifies a Locale

At runtime, an end user invokes the command component you configured to change the locale of the application. The backing bean stores the updated locale information. Pages where the locale attribute of the f:view tag reference the backing bean render using the locale specified by the end user.

The locale specified by the end user must be registered with your application. For more information about specifying a locale and associated resource bundles, see Section 29.3.3, "How to Register Locales and Resource Bundles in Your Application".

29.5 Configuring Optional ADF Faces Localization Properties

Along with providing text translation, ADF Faces also automatically provides other types of translation, such as currency codes and support for bidirectional rendering (also known as BiDi support). The application will automatically be displayed appropriately, based on the user's selected locale. However, you can also manually set the following localization settings for an application in the trinidad-config.xml file:

	
<currency-code>: Defines the default ISO 4217 currency code used by oracle.adf.view.faces.converter.NumberConverter to format currency fields that do not specify a currency code in their own converter.

	
<number-grouping-separator>: Defines the separator used for groups of numbers (for example, a comma). ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. If set, this value is used by oracle.adf.view.faces.converter.NumberConverter while it parses and formats.

	
<decimal-separator>: Defines the separator used for the decimal point (for example, a period or a comma). ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. If set, this value is used by oracle.adf.view.faces.converter.NumberConverter while it parses and formats.

	
<right-to-left>: Defines the direction in which text appears in a page. ADF Faces supports bidirectional rendering and automatically derives the rendering direction from the current locale, but you can explicitly set the default page rendering direction by using the values true or false.

	
<time-zone>: Defines the time zone appropriate to the selected locale. ADF Faces automatically uses the time zone used by the client browser. This value is used by oracle.adf.view.faces.converter.DateTimeConverter when it converts String to Date.

	
<formatting-locale>: Defines the date and number format appropriate to the selected locale. ADF Faces and Trinidad, will by default, format dates and numbers in the same locale used for localized text. If you want dates and numbers formatted in a different locale, you can use an IANA-formatted locale (for example, ja, fr-CA). The contents of this element can also be an EL expression pointing at an IANA string or a java.util.Locale object.

29.5.1 How to Configure Optional Localization Properties

You can configure optional localization properties by entering elements in the trinidad-config.xml file.

Before you begin:

It may help to understand what optional localization properties you can modify. For more information, see Section 29.3, "Manually Defining Resource Bundles and Locales."

You may also find it helpful to understand functionality that can be added using other Oracle ADF features. For more information, see Section 29.1.2, "Additional Functionality for Internationalizing and Localizing Pages."

To configure optional localization properties:

	
Open the trinidad-config.xml file. The file is located in the <View_Project>/WEB-INF directory.

	
From the Component Palette, drag the element you wish to add to the file into the Structure window. An empty element is added to the page.

	
Enter the desired value.

Example 29-11 shows a sample trinidad-config.xml file with all the optional localization elements set.

Example 29-11 Configuring Currency Code and Separators for Numbers and Decimal Point

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

<formatting-locale>
 #{request.locale}
</formatting-locale>

<!-- Set the time zone to Pacific Daylight Savings Time -->
<time-zone>PDT</time-zone>

21 Introduction to ADF Data Visualization Components

This chapter describes the ADF Data Visualization components, an expressive set of interactive ADF Faces components. The functionality shared across the components and with other ADF Faces components is also highlighted. The remaining chapters in this part of the guide provide detailed information about how to create and customize each component.

This chapter includes the following sections:

	
Section 21.1, "About ADF Data Visualization Components"

	
Section 21.2, "Common Functionality in Data Visualization Components"

	
Section 21.3, "Providing Data for ADF Data Visualization Components"

21.1 About ADF Data Visualization Components

The ADF data visualization components provide significant graphical and tabular capabilities for displaying and analyzing data. These components provide the following common features:

	
They are full ADF Faces components that support the use of ADF data controls.

	
They provide for declarative design time creation using the Data Controls Panel, the JSF visual editor, Property Inspector, and Component Palette.

	
Each component offers live data preview during design. This feature is especially useful to let you see the effect of your design as it progresses without having to compile and run a page.

Data visualization components include: graph, gauge, pivot table, geographic map, thematic map, Gantt charts, and hierarchy viewer.

The prefix dvt: occurs at the beginning of each gauge component name indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag library.

21.1.1 Graph Component Use Cases and Examples

The graph component gives you the capability of producing more than 50 types of graphs, including a variety of bar graphs, pie graphs, line graphs, scatter graphs, and stock graphs. This component lets you evaluate multiple data points on multiple axes in many ways. For example, a number of graphs assist you in the comparison of results from one group against the results from another group.

The following kinds of graphs can be produced by the graph component:

	
Area graph (areaGraph): Creates a graph in which data is represented as a filled-in area. Use area graphs to show trends over time, such as sales for the last 12 months. Area graphs require at least two groups of data along an axis. The axis is often labeled with increments of time such as months.

	
Bar graph (barGraph): Creates a graph in which data is represented as a series of vertical bars. Use to examine trends over time or to compare items at the same time, such as sales for different product divisions in several regions.

	
Bar (horizontal) graph (horizontalBarGraph): Creates a graph that displays bars horizontally along the Y-axis. Use to provide an orientation that allows you to show trends or compare values.

	
Bubble graph (bubbleGraph): Creates a graph in which data is represented by the location and size of round data markers (bubbles). Use to show correlations among three types of values, especially when you have a number of data items and you want to see the general relationships. For example, use a bubble graph to plot salaries (X-axis), years of experience (Y-axis), and productivity (size of bubble) for your work force. Such a graph allows you to examine productivity relative to salary and experience.

	
Combination graph (comboGraph): Creates a graph that uses different types of data markers (bars, lines, or areas) to display different kinds of data items. Use to compare bars and lines, bars and areas, lines and areas, or all three.

	
Funnel graph (funnelGraph): Creates a graph that is a visual representation of data related to steps in a process. The steps appear as vertical slices across a horizontal cylinder. As the actual value for a given step or slice approaches the quota for that slice, the slice fills. Typically a funnel graph requires actual values and target values against a stage value, which might be time. For example, use this component to watch a process (such as a sales pipeline) move towards a target across the stage of the quarters of a fiscal year.

	
Line graph (lineGraph): Creates a graph in which data is represented as a line, as a series of data points, or as data points that are connected by a line. Line graphs require data for at least two points for each member in a group. For example, a line graph over months requires at least two months. Typically a line of a specific color is associated with each group of data such as Americas, Europe, and Asia. Use to compare items over the same time.

	
Pareto graph (paretoGraph): Creates a graph in which data is represented by bars and a percentage line that indicates the cumulative percentage of bars. Each set of bars identifies different sources of defects, such as the cause of a traffic accident. The bars are arranged by value, from the largest number to the lowest number of incidents. A Pareto graph is always a dual-Y graph in which the first Y-axis corresponds to values that the bars represent and the second Y-axis runs from 0 to 100% and corresponds to the cumulative percentage values. Use the Pareto graph to identify and compare the sources of defects.

	
Pie graph (pieGraph): Creates a graph in which one group of data is represented as sections of a circle causing the circle to look like a sliced pie. Use to show the relationship of parts to a whole such as how much revenue comes from each product line.

	
Radar graph (radarGraph): Creates a graph that appears as a circular line graph. Use to show patterns that occur in cycles, such as monthly sales for the last three years.

	
Scatter/polar graph (scatterGraph): Creates a graph in which data is represented by the location of data markers. Use to show correlation between two different kinds of data values such as sales and costs for top products. Scatter graphs are especially useful when you want to see general relationships among a number of items.

	
Sparkchart (sparkChart): Creates a simple, condensed graph that displays trends or variations, often in the column of a table or inline with text. Sparkcharts are simple in design, with limited features and formatting options, showing as much data as possible.

	
Stock graph (stockGraph): Creates a graph in which data shows the high, low, and closing prices of a stock. Each stock marker displays three separate values.

Figure 21-1 show an application dashboard that illustrates:

	
bar graph

	
pie graph with exploded slice

Figure 21-1 Dashboard with Bar Graph and Pie Graph

[image: Dashboard with bar and pie graphs.]

Figure 21-2 shows an application dashboard that illustrates, clockwise from top left:

	
curved line graph with time selector window

	
pie graph with 3D effect and an exploded slice

	
bar graph with 3D effect

Figure 21-2 Dashboard with Line, Pie, and Bar Graphs

[image: Dashboard with line, pie, and bar graphs.]

Figure 21-3 shows a line sparkchart displaying sales trends in a table column.

Figure 21-3 Sparkchart of Sales Trends

[image: sparkchart displaying sales trends]

For more information including additional use cases and examples, see Chapter 22, "Using Graph Components."

21.1.2 Gauge Component Use Cases and Examples

The gauge (gauge) component renders graphical representations of data. Unlike the graph, a gauge focuses on a single data point and examines that point relative to minimum, maximum, and threshold indicators to identify problem areas.

One gauge component can create a single gauge or a set of gauges depending on the data provided.

The following kinds of gauges can be produced by this component:

	
Dial gauge: Creates a gauge that indicates its metric value along an 180-degree arc. This type of gauge usually has an indicator in the shape of a line or an arrow that points to the value that the gauge is plotting.

	
Status meter gauge: Creates a gauge that indicates the progress of a task or the level of some measurement along a horizontal rectangular bar. An inner rectangle shows the current level of a measurement against the ranges marked on an outer rectangle.

	
Status meter gauge (vertical): Creates a gauge that indicates the progress of a task of the level of some measurement along a vertical rectangular bar.

	
LED (lighted electronic display) gauge: Creates a gauge that depicts graphically a measurement, such as key performance indicator (KPI). Several styles of graphics are available for LED gauges such as arrows that indicate good (up arrow), fair (left- or right-pointing arrow), or poor (down arrow).

You can specify any number of thresholds for a gauge. However, some LED gauges (such as those with arrow or triangle indicators) support a limited number of thresholds because there are a limited number of meaningful directions for them to point. For arrow or triangle indicators, the threshold limit is three.

Figure 21-4 shows a set of dial gauges set with thresholds to display warehouse stock levels.

Figure 21-4 Dial Gauges set with Thresholds

[image: Dial gauges set wiith thresholds]

Figure 21-5 shows a set of status meter gauges set with thresholds.

Figure 21-5 Status Meter Gauges set with Thresholds

[image: Status meter gauges set with thresholds.]

For more information including additional use cases and examples, see Chapter 23, "Using Gauge Components."

21.1.3 Pivot Table Use Cases and Examples

The pivot table (pivotTable) produces a grid that supports multiple layers of data labels on rows or columns. An optional pivot filter bar (pivotFilterBar) can be associated with the pivot table to filter data not displayed in the row or column edge. When bound to an appropriate data control such as a row set, the component also supports the option of generating subtotals and totals for grid data, and drill operations at runtime.

Pivot tables let you swap data labels from one edge (row or column) or pivot filter bar (page edge) to another edge to obtain different views of your data. For example, a pivot table might initially display total sales data for products within regions on the row edge, broken out by years on the column edge. If you swap region and year at runtime, then you end up with total sales data for products within years, broken out by region.

Pivot tables support horizontal and vertical scrolling, header and cell formatting, and drag-and-drop pivoting. Pivot tables also support ascending and descending group sorting of rows at runtime. Figure 21-6 shows an example pivot table with a pivot filter bar.

Figure 21-6 Pivot Table with Pivot Filter Bar

[image: Pivot table with pivot filter bar.]

For more information including additional use cases and examples, see Chapter 24, "Using Pivot Table Components."

21.1.4 Geographic Map Use Cases and Examples

The geographic map (map) provides the functionality of Oracle Spatial within the ADF framework. This component represents business data on a map and lets you superimpose multiple layers of information on a single map. This component supports the simultaneous display of a color theme, a graph theme (bar or pie graph), and point themes. You can create any number of each type of theme and you can use the map toolbar to select the desired themes at runtime.

As an example of a geographic map, consider a base map of the United States with a color theme that provides varying color intensity to indicate the popularity of a product within each state, a pie chart theme that shows the stock levels of warehouses, and a point theme that identifies the exact location of each warehouse. When all three themes are superimposed on the United States map, you can easily evaluate whether there is sufficient inventory to support the popularity level of a product in specific locations. Figure 21-7 shows a geographic map with color theme, pie graph theme, and point theme.

Figure 21-7 Geographic Map with Color Theme, Pie Graph Theme, and Point Theme

[image: goegraphic map for a product]

For more information including additional use cases and examples, see Chapter 25, "Using Map Components."

21.1.5 Thematic Map Component Use Cases and Examples

A thematic map (thematicMap) component represents business data as patterns in stylized areas or associated markers and does not require a connection to a map viewer service. Thematic maps focus on data without the geographic details in a geographic map. The thematic map is packaged with prebuilt base maps including a USA base map, a world base map, as well as base maps for continents and regions of the world such as EMEA and APAC. The thematic map component does not require a map service to display a base map.

For example, you could use a USA base map with a states map layer to display the preferences in each state for a particular brand of soft drink using colors as displayed in Figure 21-8. The example illustrates thematic map default features including a data bound legend and labels associated with the stylized areas.

Figure 21-8 Thematic Map Displaying Product Preferences by Area

[image: Thematic map displaying product preferences by styled area.]

For more information including additional use cases and examples, see Chapter 25, "Using Map Components."

21.1.6 Gantt Chart Component Use Cases and Examples

The Gantt chart is a type of horizontal bar graph (with time on the horizontal axis) that is used in planning and tracking projects to show resources or tasks in a time frame with a distinct beginning and end.

A Gantt chart consists of two ADF Faces tree tables combined with a splitter. The left-hand table contains a list of tasks or resources while the right-hand table consists of a single column in which progress is graphed over time.

There are three types of gantt components:

	
Project Gantt (projectGantt): Creates a Gantt chart that shows tasks vertically, and the duration of the task is represented as a bar on a horizontal timeline.

	
Resource utilization Gantt (resourceUtilizationGantt): Creates a Gantt chart that shows graphically whether resources are over or under allocated. It shows resources vertically while showing their allocation and, optionally, capacity on the horizontal time axis.

	
Scheduling Gantt (schedulingGantt): Creates a Gantt chart that shows resource management and is based on manual scheduling boards. It shows resources vertically with corresponding activities on the horizontal time axis.

Figure 21-9 shows a project Gantt view of staff resources and schedules.

Figure 21-9 Project Gantt

[image: project gantt of staff assignments]

For more information including additional use cases and examples, see Chapter 26, "Using Gantt Chart Components."

21.1.7 Hierarchy Viewer Component Use Cases and Examples

The hierarchy viewer (hierarchyViewer) component displays hierarchical data as a set of linked nodes in a diagram. The nodes and links correspond to the elements and relationships to the data. The component supports pan and zoom operations, expanding and collapsing of the nodes, rendering of simple ADF Faces components within the nodes, and search of the hierarchy viewer data. A common use of the hierarchy viewer is to display an organization chart, as shown in Figure 21-10.

Figure 21-10 Hierarchy Viewer as Organizational Chart

[image: Hierarchy viewer as organizational chart.]

For more information including additional use cases and examples, see Chapter 27, "Using Hierarchy Viewer Components."

21.1.8 Additional Functionality for Data Visualization Components

You may find it helpful to understand other ADF Faces features before you data bind your data visualization components. Additionally, once you have added a data visualization component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that data visualization components use:

	
Partial page rendering: You may want a DVT component to refresh to show new data based on an action taken on another component on the page. For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Personalization: Users can change the way the DVT components display at runtime, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Accessibility: You can make your DVT components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Skins and styles: You can customize the appearance of DVT components using an ADF skin that you apply to the application or by applying CSS style properties directly using a style-related property (styleClass or inlineStyle). For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Placeholder data controls: If you know the DVT components on your page will eventually use ADF data binding, but you need to develop the pages before the data controls are ready, then you should consider using placeholder data controls, rather than manually binding the components. Using placeholder data controls will provide the same declarative development experience as using developed data controls. For more information, see the "Designing a Page Using Placeholder Data Controls" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

21.2 Common Functionality in Data Visualization Components

Data visualization components share much of the same functionality, such as how data is delivered, automatic partial page rendering (PPR), the image format used to display the component, and how data can be displayed and edited. It is important that you understand this shared functionality and how it is configured before you use these components.

21.2.1 Content Delivery

Data visualization components including graph, gauge, pivot table, Gantt chart, thematic map, and hierarchy viewer can be configured for how data is delivered from the data source. The data con be delivered to the components either immediately upon rendering, as soon as the data is available, or lazily fetch after the shell of the component has been rendered. By default all data visualization components, with the exception of the geographic map, support the delivery of content from the data source when it is available. The contentDelivery attribute of these components is set to whenAvailable by default.

Data visualization components based on a tree or tree table model including Gantt charts, pivot tables, and the hierarchy viewer are virtualized, meaning not all the rows, columns, or levels that are there for the component on the server are delivered to and displayed on the client. You configure these components to fetch a certain number of rows, columns, or levels at a time from your data source. Use these attributes to configure fetch size:

	
Pivot table:

	
rowFetchSize: Specifies the number of rows in a data fetch block. The default value is 25.

	
columnFetchSize: Specifies the number of columns in a data fetch block. The default value is 10.

	
Hierarchy Viewer:

	
levelFetchSize: Specifies the number of child nodes that will be fetched and displayed at a single time for each expanded parent node. Additional child nodes may be fetched and displayed by using the lateral navigation controls shown in the hierarchy viewer. The default value is 25.

	
Gantt charts:

	
fetchSize: Specifies the number of rows in the data fetch block. The default value is 25.

	
horizontalFetchSize: Specifies the size of the horizontal data window in number of pixels in which the data are fetched. Only task bars within this data window would be rendered. In contrast with fetchSize, which provides vertical virtualization, horizontalFetchSize provides horizontal virtualization.

For lazy delivery, when a page contains one or more of these components, the page initially goes through the standard lifecycle. However, instead of fetching the data during that initial request, a special separate partial page rendering (PPR) request is run, and the value of the fetch size for the component is then returned. Because the page has just been rendered, only the Render Response phase executes for the components, allowing the corresponding data to be fetched and displayed. When a user's actions cause a subsequent data fetch (for example scrolling in a pivot table grid for another set of rows), another PPR request is executed.

When content delivery is configured to be delivered when it is available, the framework checks for data availability during the initial request, and if it is available, it sends the data to the component. If it is not available, the data is loaded during the separate PPR request, as it is with lazy delivery.

	
Performance Tip:

Lazy delivery should be used when a data fetch is expected to be an expensive (slow) operation, for example, slow, high-latency database connection, or fetching data from slow non-database data sources like web services. Lazy delivery should also be used when the page contains a number of components other than a data visualization component. Doing so allows the initial page layout and other components to be rendered first before the data is available.
Immediate delivery should be used if the data visualization component is the only context on the page, or if the component is not expected to return a large set of data. In this case, response time will be faster than using lazy delivery (or in some cases, simply perceived as faster), as the second request will not go to the server, providing a faster user response time and better server CPU utilizations. Note that for components based on a tree or tree table model, only the value configured to be the fetch block will be initially returned. As with lazy delivery, when a user's actions cause a subsequent data fetch, the next set of rows are delivered.

The whenAvailable delivery provides the additional flexibility of using immediate when data is available during initial rendering or falling back on lazy when data is not initially available.

For more information about setting the fetch size for components based on the tree or tree table model, see Section 21.2.1, "Content Delivery."

21.2.2 Automatic Partial Page Rendering (PPR)

ADF Faces supports Partial Page Rendering (PPR), which allows certain components on a page to be rerendered without the need to rerender the entire page. In addition to built-in PPR functionality, you can configure components to use cross-component rendering, which allows you to set up dependencies so that one component acts as a trigger and another as the listener. For more information, see Section 8.1, "About Partial Page Rendering."

By default, ADF data visualization components support automatic PPR, where any component whose values change as a result of backend business logic is automatically rerendered. If your application uses the Fusion technology stack, you can enable the automatic partial page rendering feature on any page. For more information, see the "What You May Need to Know About Automatic Partial Page Rendering" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

21.2.3 Image Formats for Graph and Gauge Components

By default, data visualization graph and gauge components are displayed using a Flash player as specified in the component imageFormat attribute. Alternatively, components can be displayed using a Portable Network Graphics (PNG) output format, as in the case when plug-ins are not allowed on client machines, or when printing the components.

Both Flash and PNG image formats support bi-directional locales. Although static rendering, for example, maintaining a drilled view of the graph Flash image is fully supported when using a PNG output format, certain interactive features are not available, such as:

	
Animation

	
Context menus

	
Popup support

When graphs or gauges are displayed in ADF tables through stamping, a PNG_STAMPED image format should be used.

You can disable the use of Flash content across the entire application by setting a flash-player-usage context parameter in adf-config.xml. For more information, see Section A.4.3, "Configuring Flash as Component Output Format."

21.2.4 Embedded Fonts for Graph and Gauge Components

Graph and gauge components provide text rotation, high fidelity display, and embedded fonts using Flash image types. The Flash engine is a prebuilt Shockwave Flash (SWF) file containing precompiled ActionScript code used to display a graph or gauge by using an XML definition of a chart. The Flash engine is downloaded and instantiated by a Flash Player embedded in the client browser at runtime.

Embedded fonts are used for display and printing purposes, they are not installed on the client, and they cannot be edited. They are used by the Flash Player, in memory, and are cleared when the player terminates. Although embedded fonts require a roundtrip to the server to download the font SWF file, they provide a consistent look across all clients, support text rotation, and minimize distortion or anti-aliasing.

Oracle provides one font, Albany WT, for use in Flash images when necessary. This font does not provide any non-plain variations such as Bold or Italic. The Albany WT font is used instead of the default font to support certain animations not supported by Flash with device fonts, if the application does not specify and provide its own embedded font to use instead.

Specific fonts and their respective SWF files can be added to your application as embedded fonts to be passed to the Flash engine. The engine will defer-load any font specified in the list until that font is required by any text or labels in a graph or gauge definition. Example 21-1 defines the Georgia font with a Bold and Italic combination.

Example 21-1 SWF File

package
{
 import.flash.display.Sprite;
 import.flash.text.Font;
public class fGeorgiaBoldItalic extends Srite
 (
 [Embed (source="c:\\WINDOWS\\Fonts\\GEORGIABI.TTF",
 fontName="Georgia Bold Italic",
 fontWeight="Bold",
 fontStyle="Italic".
 mimType="application/x-font-truetype")]
 private statis car font1:Class;
 public function fGeorgiaBoldItalic() {
 Font registerFont(font1);
}
 }
}

You can set graph and gauge embedded font attributes as follows:

	
flashDefaultFontLoading: Specifies whether default fonts are loaded in FLASH from the middle tier. Valid values are:

	
FLASH_DEFAULT_FONT_LOADING_ALL: The default value. Specify to use the embedded font. The application is responsible to make sure that the correct fonts are specified and available on the system.

	
FLASH_DEFAULT_FONT_LOADING_NONE: Specify not to use the embedded font.

	
fontURLMap: Use for gauge components. Provides a mapping of font names and font SWF file URLs in the form of a java.util.Map object. This map should have the font names as the keys, and the font URLs as the values.

21.2.5 Graph and Gauge Context Menus

Context menus can be defined for graph and gauge components using these context menu facets:

	
bodyContextMenu: Specifies a context menu that is displayed on non-selectable elements in the component.

	
contextMenu: Specifies a context menu that is displayed on any selectable element in the component.

	
multiSelectContextMenu: Specifies a content menu that is displayed when multiple elements are selected in the component.

Each facet supports a single child component. For all of these facets to work, selection must be enabled and supported for the specific graph or gauge type. Context Menus are currently only supported in Flash.

Due to technical limitations when using the Flash rendering format, context menu contents are currently displayed using the Flash Player's context menu. This imposes several limitations defined by the Flash Player:

	
Flash does not allow for submenus it its context menu.

	
Flash limits custom menu items to 15. Any built-in menu items for the component, for example, a pie graph interactiveSliceBehavior menu item, will count towards the limit,

	
Flash limits menu items to text-only. Icons or other controls possible in ADF Faces menus are not possible in Flash menus.

	
Each menu caption must contain at least one visible character. Control characters, new lines, and other white space characters are ignored. No caption can be more than 100 characters long.

	
Menu captions that are identical to another custom item are ignored, whether the matching item is visible or not. Menu captions are compared to built-in captions or existing custom captions without regard to case, punctuation, or white space.

	
The following captions are not allowed, although the words may be used in conjunction with other words to form a custom caption: Save, Zoom In, Zoom Out, 100%, Show All, Quality, Play, Loop, Rewind, Forward, Back, Movie not loaded, About, Print, Show Redraw Regions, Debugger, Undo, Cut, Copy, Paste, Delete, Select All, Open, Open in new window, and Copy link.

	
None of the following words can appear in a custom caption on their own or in conjunction with other words: Adobe, Macromedia, Flash Player, or Settings.

Additionally, since the request from Flash for context menu items is a synchronous call, a server request to evaluate EL is not possible when the context menu is invoked. To provide context menus that vary by selected object, the menus will be pre-fetched if the context menu popup uses the setting contentDelivery="lazyUncached". For context menus that may vary by state, this means that any EL expressions within the menu definition will be called repeatedly at render time, with different selection and currency states. When using these context menus that are pre-fetched, the application must be aware of the following:

	
Long running or slow code should not be executed in any EL expression that may be used to determine how the context menu is displayed. This does not apply to af:commandMenuItem attributes that are called after a menu item is selected, such as actionListener.

	
In the future, if the Flash limitations are solved, the ADF context menu may be displayed in place of the Flash context menu. To ensure upgrade compatibility, you should code such that an EL expression will function both in cases where the menu is pre-fetched, and also where the EL expression is evaluated when the menu is invoked. It is recommended that the only component state that applications rely on are selection and currency.

21.2.6 Screen Reader Support

All data visualization components provide attributes that support descriptive text about the component. Setting the appropriate attribute for the component is required for supporting the screen reader mode. Set the following attributes for data visualization components:

	
shortDesc attribute: Use for all graph and gauge components.

	
summary attribute: Use for pivot table, Gantt chart, geographic and thematic map, and hierarchy viewer components.

21.2.7 Text Resources from Application Resource Bundles

JDeveloper supports easy localization of ADF Faces and data visualization components using the abstract class java.util.ResourceBundle to provide locale-specific resources.

Data visualization components may include text that is part of the component, for example the af:table component uses the resource string af_table.LABEL_FETCHING for the message text that displays in the browser while the af:table component fetches data during the initial load of data or while the user scrolls the table. JDeveloper provides automatic translation of these text resources into 28 languages. These text resources are referenced in a resource bundle. If you set the browser to use the language in Italy, any text contained within the components will automatically be displayed in Italian

For any text you add to a component, for example if you define the title of a pieGraph component by setting the text attribute on its child graphTitle component, you must provide a resource bundle that holds the actual text, create a version of the resource bundle for each locale, and add a <locale-config> element to define default and support locales in the application's faces-config.xml file. You must also add a <resource-bundle> element to your application's faces-config.xml file in order to make the resource bundles available to all the pages in your application. Once you have configured and registered a resource bundle, the Expression Language (EL) editor will display the key from the bundle, making it easier to reference the bundle in application pages.

To simplify the process of creating text resources for text you add to ADF components, JDeveloper supports automatic resource bundle synchronization for any translatable string in the visual editor. When you edit components directly in the visual editor or in the Property Inspector, text resources are automatically created in the base resource bundle. For more information, see Section 29.2, "Using Automatic Resource Bundle Integration in JDeveloper."

	
Note:

Any text retrieved from the database is not translated.

For data visualization components with title and label child components, you can also create and add text resources to a resource bundle by using the attribute dropdown list to open a Select Text Resource dialog to select or add a translatable string from an application resource bundle. Alternatively, you can select Expression Builder to open the Expression Language (EL) editor to create an expression to be executed at runtime for the title or label.

21.3 Providing Data for ADF Data Visualization Components

In JDeveloper you can add any Data Visualization component to your JSF page using UI-first development, and then later manually bind the data you wish to display using ADF data controls or managed beans. In this case the component is added to the page by dragging from the Component Palette and the Property Inspector is used to manually bind the data.

Alternatively, you can use data-first development and create the component using an ADF data control that will handle the data binding for you. In this case the component is added to the page by dragging from the Data Controls panel, and completing data binding dialogs to configure the display of data.

For example, when you are designing your page using simple UI-first development, you use the Component Palette to add a graph to a JSF page. When you drag and drop a graph component onto the page, the Component Gallery displays available categories of graph types, with descriptions, to provide visual assistance when creating graphs. You can also specify a quick-start layout of the graph's title and legend. Figure 21-11 shows the Component Gallery that displays when creating a pie graph from the Component Palette.

Figure 21-11 Component Gallery for Pie Graphs from Component Palette

[image: Component Gallery for pie graphs from Component Palette.]

For information about creating Data Visualization components using UI-first development, understanding component data requirements, configuring DVT parent and child components, customizing the appearance of components, and adding special effects and interactivity to components, see the following chapters in this part of the guide:

	
Chapter 22, "Using Graph Components"

	
Chapter 23, "Using Gauge Components"

	
Note:

Graphs and gauges have a tabularData method that lets you provide CSV (Comma Separated Value) data from a method stored in a managed bean.

	
Chapter 24, "Using Pivot Table Components"

	
Chapter 25, "Using Map Components"

	
Chapter 26, "Using Gantt Chart Components"

	
Chapter 27, "Using Hierarchy Viewer Components"

You can also create and data bind a graph by dragging a data control from the Data Controls Panel. A Component Gallery displays available graph categories, types, and descriptions to provide visual assistance when designing graphs and defining a quick layout. Figure 21-12 shows the Component Gallery that displays when creating a line graph from a data control.

Figure 21-12 Component Gallery for Line Graphs from Data Controls Panel

[image: Component Gallery for line graphs from Data Controls Panel.]

Figure 21-13 shows the Create Line Graph dialog you use to bind the data collection attributes to the graph component.

Figure 21-13 Create Line Graph Data Binding Dialog

[image: Create Line Graph data binding dialog]

All data visualization components can be bound to data collections in an ADF data control. For information and examples of data binding these components to data controls, see the following:

	
"Creating DataBound Graphs" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
"Creating Databound Gauges" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
"Creating Databound Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

In JDeveloper, a Create Pivot Table wizard provides declarative support for databinding and configuring the pivot table.

	
"Creating Databound Geographic Maps" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
"Creating Databound Thematic Maps" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
"Creating Databound Gantt Charts" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
"Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

A ADF Faces Configuration

This appendix describes how to configure JSF and ADF Faces features in various XML configuration files, as well as how to retrieve ADF Faces configuration values using the RequestContext API and how to use JavaScript partitioning.

This chapter includes the following sections:

	
Section A.1, "About Configuring ADF Faces"

	
Section A.2, "Configuration in web.xml"

	
Section A.3, "Configuration in faces-config.xml"

	
Section A.4, "Configuration in adf-config.xml"

	
Section A.5, "Configuration in adf-settings.xml"

	
Section A.6, "Configuration in trinidad-config.xml"

	
Section A.7, "Configuration in trinidad-skins.xml"

	
Section A.8, "Using the RequestContext EL Implicit Object"

	
Section A.9, "Performance Tuning"

A.1 About Configuring ADF Faces

A JSF web application requires a specific set of configuration files, namely, web.xml and faces-config.xml. ADF applications also store configuration information in the adf-config.xml and adf-settings.xml files. Because ADF Faces shares the same code base with MyFaces Trinidad, a JSF application that uses ADF Faces components for the UI also must include a trinidad-config.xml file, and optionally a trinidad-skins.xml file. For more information about the relationship between Trinidad and ADF Faces, see Chapter 1, "Introduction to ADF Faces."

A.2 Configuration in web.xml

Part of a JSF application's configuration is determined by the contents of its Java EE application deployment descriptor, web.xml. The web.xml file, which is located in the /WEB-INF directory, defines everything about your application that a server needs to know (except the root context path, which is automatically assigned for you in JDeveloper, or assigned by the system administrator when the application is deployed). Typical runtime settings in the web.xmlfile include initialization parameters, custom tag library location, and security settings.

The following is configured in the web.xmlfile for all applications that use ADF Faces:

	
Context parameter javax.faces.STATE_SAVING_METHOD set to client

	
MyFaces Trinidad filter and mapping

	
MyFacesTrinidad resource servlet and mapping

	
JSF servlet and mapping

	
Note:

JDeveloper automatically adds the necessary ADF Faces configurations to the web.xml file for you the first time you use an ADF Faces component in an application.

For more information about the required elements, see Section A.2.2, "What You May Need to Know About Required Elements in web.xml."

For information about optional configuration elements in web.xml related to ADF Faces, see Section A.2.3, "What You May Need to Know About ADF Faces Context Parameters in web.xml."

For information about configuring web.xml outside of ADF Faces, see Developing Web Applications, Servlets, and JSPs for Oracle.

A.2.1 How to Configure for JSF and ADF Faces in web.xml

In JDeveloper, when you create a project that uses JSF technology, a starter web.xml file with default servlet and mapping elements is created for you in the /WEB-INF directory.

When you use ADF Faces components in a project (that is, a component tag is used on a page rather than just importing the library), in addition to default JSF configuration elements, JDeveloper also automatically adds the following to the web.xml file for you:

	
Configuration elements that are related to MyFaces Trinidad filter and MyFaces Trinidad resource servlet

	
Context parameter javax.faces.STATE_SAVING_METHOD with the value of client

When you elect to use JSP fragments in the application, JDeveloper automatically adds a JSP configuration element for recognizing and interpreting.jsff files in the application.

Example A-1 shows the web.xml file with the default elements that JDeveloper adds for you when you use JSF and ADF Faces and.jsff files.

For information about the web.xml configuration elements needed for working with JSF and ADF Faces, see Section A.2.2, "What You May Need to Know About Required Elements in web.xml."

Example A-1 Generated web.xml File

<?xml version = '1.0' encoding = 'windows-1252'?><web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <description>Empty web.xml file for Web Application</description>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>35</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>
</web-app>

	
Note:

When you use ADF data controls to build databound web pages, the ADF binding filter and a servlet context parameter for the application binding container are added to the web.xml file.

Configuration options for ADF Faces are set in the web.xml file using <context-param> elements.

To add ADF Faces configuration elements in web.xml:

	
In the Application Navigator, double-click web.xml to open the file.

By default, JDeveloper opens the web.xml file in the overview editor, as indicated by the active Overview tab at the bottom of the editor window.

When you use the overview editor to add or edit entries declaratively, JDeveloper automatically updates the web.xml file for you.

	
To edit the XML code directly in the web.xml file, click Source at the bottom of the editor window.

When you edit elements in the XML editor, JDeveloper automatically reflects the changes in the overview editor.

For a list of context parameters you can add, see Section A.2.3, "What You May Need to Know About ADF Faces Context Parameters in web.xml."

A.2.2 What You May Need to Know About Required Elements in web.xml

The required, application-wide configuration elements for JSF and ADF Faces in the web.xml file are:

	
Context parameter javax.faces.STATE_SAVING_METHOD: Specifies where to store the application's view state. By default this value is server, which stores the application's view state on the server. It is recommended that you set javax.faces.STATE_SAVING_METHOD to client when you use ADF Faces, to store the view state on the browser client. When set to client, ADF Faces then automatically uses token-based, client-side state saving. You can specify the number of tokens to use instead of using the default number of 15. For more information about state-saving context parameters, see Section A.2.3, "What You May Need to Know About ADF Faces Context Parameters in web.xml."

	
MyFaces Trinidad filter and mapping: Installs the MyFaces Trinidad filter org.apache.myfaces.trinidad.webapp.TrinidadFilter, which is a servlet filter that ensures ADF Faces is properly initialized, in part by establishing a RequestContext object. TrinidadFilter also processes file uploads. The filter mapping maps the JSF servlet's symbolic name to the MyFaces Trinidad filter. The forward and request dispatchers are needed for any other filter that is forwarding to the MyFaces Trinidad filter.

	
Tip:

If you use multiple filters in your application, ensure that they are listed in the web.xml file in the order in which you want to run them. At runtime, the filters are called in the sequence listed in that file.

	
MyFaces Trinidad resource servlet and mapping: Installs the MyFaces Trinidad resource servlet org.apache.myfaces.trinidad.webapp.ResourceServlet, which serves up web application resources (images, style sheets, JavaScript libraries) by delegating to a resource loader. The servlet mapping maps the MyFaces Trinidad resource servlet's symbolic name to the URL pattern. By default, JDeveloper uses /adf/* for MyFaces Trinidad Core, and /afr/* for ADF Faces.

	
JSF servlet and mapping (added when creating a JSF page or using a template with ADF Faces components): The JSF servlet servlet javax.faces.webapp.FacesServlet manages the request processing lifecycle for web applications that utilize JSF to construct the user interface. The mapping maps the JSF servlet's symbolic name to the URL pattern, which can use either a path prefix or an extension suffix pattern.

By default JDeveloper uses the path prefix /faces/*, as shown in the following code:

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

For example, if your web page is index.jspx, this means that when the URL http://localhost:8080/MyDemo/faces/index.jspx is issued, the URL activates the JSF servlet, which strips off the faces prefix and loads the file /MyDemo/index.jspx.

A.2.3 What You May Need to Know About ADF Faces Context Parameters in web.xml

ADF Faces configuration options are defined in the web.xml file using <context-param> elements. For example:

<context-param>
 <param-name>oracle.adf.view.rich.LOGGER_LEVEL</param-name>
 <param-value>ALL</param-value>
</context-param>

The following context parameters are supported for ADF Faces.

A.2.3.1 State Saving

You can specify the following state-saving context parameters:

	
org.apache.myfaces.trinidad.CLIENT_STATE_METHOD: Specifies the type of client-side state saving to use when client-side state saving is enabled by using javax.faces.STATE_SAVING_METHOD. The values for CLIENT_STATE_METHOD are:

	
token: (Default) Stores the page state in the session, but persists a token to the client. The simple token, which identifies a block of state stored back on the HttpSession object, is stored on the client. This enables ADF Faces to disambiguate the same page appearing multiple times. Failover is supported.

	
all: Stores all state information on the client in a (potentially large) hidden form field. It is useful for developers who do not want to use HttpSession.

	
Performance Tip:

Because of the potential size of storing all state information, it is recommended that you set client-state saving to token.

	
org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS: Specifies how many tokens should be stored at any one time per user, when token-based client-side state saving is enabled. The default is 15. When the number of tokens is exceeded, the state is lost for the least recently viewed pages, which affects users who actively use the Back button or who have multiple windows opened at the same time. If you are building HTML applications that rely heavily on frames, you would want to increase this value.

	
org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE: Specifies whether or not to globally compress state saving on the session. Each user session can have multiple pageState objects that heavily consume live memory and thereby impact performance. This overhead can become a much bigger issue in clustering when session replication occurs. The default is off.

A.2.3.2 Debugging

You can specify the following debugging context parameters:

	
org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT: ADF Faces, by default, obfuscates the JavaScript it delivers to the client, stripping comments and whitespace at the same time. This dramatically reduces the size of the ADF Faces JavaScript download, but it also makes it tricky to debug the JavaScript. Set to true to turn off the obfuscation during application development. Set to false for application deployment.

	
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION: By default this parameter is false. If it is set to true, ADF Faces will automatically check the modification date of your JSPs and CSS files, and discard the saved state when the files change.

	
Performance Tip:

When set to true, this CHECK_FILE_MODIFICATION parameter adds overhead that should be avoided when your application is deployed. Set to false when deploying your application to a runtime environment.

	
oracle.adf.view.rich.LOGGER_LEVEL: This parameter enables JavaScript logging when the default render kit is oracle.adf.rich. The default is OFF. If you wish to turn on JavaScript logging, use one of the following levels: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, and ALL. Set to INFO if you have enabled automated profiler instrumentation code (see oracle.adf.view.rich.profiler.ENABLED in Section A.2.3.8, "Profiling").

	
Performance Tip:

JavaScript logging will affect performance. Set this value to OFF in a runtime environment.

	
oracle.adf.view.rich.REQUEST_ID_TRACING: This parameter is used for diagnosing failed partial page rendering (PPR) requests by associating end user reports with corresponding entries in server-side logs. This is accomplished by appending the unique ECIF number for the server log to the PPR URL. By default this parameter is set to off. Set the parameter to PPR to activate the diagnostic functionality.

A.2.3.3 File Uploading

You can specify the following file upload context parameters:

	
org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY: Specifies the maximum amount of memory that can be used in a single request to store uploaded files. The default is 100K.

	
org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE: Specifies the maximum amount of disk space that can be used in a single request to store uploaded files. The default is 2000K.

	
org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR: Specifies the directory where temporary files are to be stored during file uploading. The default is the user's temporary directory.

	
Note:

The file upload initialization parameters are processed by the default UploadedFileProcessor only. If you replace the default processor with a custom UploadedFileProcessor implementation, the parameters are not processed.

A.2.3.4 Resource Debug Mode

You can specify the following:

	
org.apache.myfaces.trinidad.resource.DEBUG: Specifies whether or not resource debug mode is enabled. The default is false. Set to true if you want to enable resource debug mode. When enabled, ADF Faces sets HTTP response headers to let the browser know that resources (such as JavaScript libraries, images, and CSS) can be cached.

	
Tip:

After turning on resource debug mode, clear your browser cache to force the browser to load the latest versions of the resources.

	
Performance Tip:

In a production environment, this parameter should be removed or set to false.

A.2.3.5 User Customization

For more information about enabling and using session change persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

A.2.3.6 Enabling the Application for Real User Experience Insight

Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic requested by, and generated from, your network. It measures the response times of pages and transactions at the most critical points in the network infrastructure. Session diagnostics allow you to perform root-cause analysis.

RUEI enables you to view server and network times based on the real-user experience, to monitor your Key Performance Indicators (KPIs) and Service Level Agreements (SLAs), and to trigger alert notifications on incidents that violate their defined targets. You can implement checks on page content, site errors, and the functional requirements of transactions. Using this information, you can verify your business and technical operations. You can also set custom alerts on the availability, throughput, and traffic of all items identified in RUEI.

Specify whether or not RUEI is enabled for oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER by adding the parameter to the web.xml file and setting the value to true. By default this parameter is not set or is set to false.

A.2.3.7 Assertions

You can specify whether or not assertions are used within ADF Faces using the oracle.adf.view.rich.ASSERT_ENABLED parameter. The default is false. Set to true to turn on assertions.

	
Performance Tip:

Assertions will affect performance. Set this value to false in a runtime environment.

A.2.3.8 Profiling

You can specify the following JavaScript profiling context parameters:

	
oracle.adf.view.rich.profiler.ENABLED: Specifies whether or not to use the automated profiler instrumentation code provided with the JavaScript Profiler. The default is false. Set to true to enable the JavaScript profile. When the profiler is enabled, an extra roundtrip is needed on each page to fetch the profiler data. By default, JDeveloper uses the /WEB-INF/profiler.xml configuration file. To override the location of the profiler.xml file, use the ROOT_FILE context parameter, as described next. You may also want to set DEBUG_JAVASCRIPT to true, to turn off JavaScript obfuscation. You also must set the LOGGER_LEVEL to at least INFO.

	
oracle.adf.view.rich.profiler.ROOT_FILE: Specifies the initial profiler.xml file to load, if automated profiler instrumentation code is turned on. By default, JDeveloper uses the /WEB-INF/profiler.xml file if ROOT_FILE is not specified.

A.2.3.9 Dialog Prefix

To change the prefix for launching dialogs, set the org.apache.myfaces.trinidad.DIALOG_NAVIGATION_PREFIX parameter.

The default is dialog:, which is used in the beginning of the outcome of a JSF navigation rule that launches a dialog (for example, dialog:error).

A.2.3.10 Compression for CSS Class Names

You can set the org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION parameter to determine compression of the CSS class names for skinning keys.

The default is false. Set to true if you want to disable the compression.

	
Performance Tip:

Compression will affect performance. In a production environment, set this parameter to false.

A.2.3.11 Test Automation

When you set the oracle.adf.view.rich.automation.ENABLED parameter to true and when the component ID attribute is null, the component testId attribute is used during automated testing to ensure that the ID is not null. The testId is an attribute only on the tag. It is not part of the Java component API.

	
Note:

When this context parameter is set to true, the oracle.adf.view.rich.security.FRAME_BUSTING context parameter behaves as though it were set to never. For more information, see Section A.2.3.17, "Framebusting."

A.2.3.12 UIViewRoot Caching

Use the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT parameter to enable or disable UIViewRoot caching. When token client-side state saving is enabled, MyFaces Trinidad can apply an additional optimization by caching an entire UIViewRoot tree with each token. (Note that this does not affect thread safety or session failover.) This is a major optimization for AJAX-intensive systems, as postbacks can be processed far more rapidly without the need to reinstantiate the UIViewRoot tree.

You set the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT parameter to true to enable caching. This is the default. Set the parameter to false to disable caching.

	
Note:

This type of caching is known to interfere with some other JSF technologies. In particular, the Apache MyFaces Tomahawk saveState component does not work, and template text in Facelets may appear in duplicate.

A.2.3.13 Themes and Tonal Styles

Although the oracle.adf.view.rich.tonalstyles.ENABLED parameter is still available for the purpose of backward compatibility, keep the parameter set to false, and use themes as a replacement style for the tonal style classes of.AFDarkTone, .AFMediumTone, .AFLightTone and .AFDefaultTone. Themes are easier to author than tonal styles; they rely on fewer selectors, and they avoid CSS containment selectors. For this reason they are less prone to bugs. Due to the limitation on the number of selectors in one CSS file, both tonal styles and themes cannot be supported in the same application.

A.2.3.14 Partial Page Rendering

Use the org.apache.myfaces.trinidad.PPR_OPTIMIZATION parameter to turn partial page rendering (PPR) optimization on and off. By default, this parameter is set to off. Set to on for improving the performance and efficiency of PPR.

A.2.3.15 Partial Page Navigation

Use the oracle.adf.view.rich.pprNavigation.OPTIONS parameter to turn partial page navigation on and off. By default, the value is off. Partial page navigation uses the same base page throughout the application, and simply replaces the body content of the page with each navigation. This processing results in better performance because JavaScript libraries and style sheets do not need to be reloaded with each new page. For more information, see Section 8.4, "Using Partial Page Navigation."

Valid values are:

	
on: PPR navigation is turned on for the application.

	
Note:

If you set the parameter to on, then you need to set the partialSubmit attribute to true for any command components involved in navigation. For more information about partialSubmit, see Section 6.1.1, "Events and Partial Page Rendering."

	
off: PPR navigation is turned off for the application.

	
onWithForcePPR: When an action on a command component results in navigation, the action will always be delivered using PPR, as if the component had partialSubmit set to true. For more information about partialSubmit, see Section 6.1.1, "Events and Partial Page Rendering." If the component already has partialSubmit set to true, the framework does nothing. If partialSubmit is not set to true, the entire document is refreshed to ensure that old page refresh behavior is preserved. The entire document is also refreshed if the action component does not contain navigation.

A.2.3.16 JavaScript Partitioning

Use the oracle.adf.view.rich.libraryPartitioning.ENABLED parameter to turn JavaScript partitioning on and off. By default, the value is true (enabled). JavaScript partitioning allows a page to download only the JavaScript needed by client components for that page.

Valid values are:

	
true: JavaScript partitioning is enabled (the default).

	
false: JavaScript partitioning is disabled.

For more information about using and configuring JavaScript partitioning, see Section 4.9, "JavaScript Library Partitioning."

A.2.3.17 Framebusting

Use the oracle.adf.view.rich.security.FRAME_BUSTING context parameter to use framebusting in your application. Framebusting is a way to prevent clickjacking, which occurs when a malicious web site pulls a page originating from another domain into a frame and overlays it with a counterfeit page, allowing only portions of the original, or clickjacked, page (for example, a button) to display. When users click the button, they in fact are clicking a button on the clickjacked page, causing unexpected results.

For example, say your application is a web-based email application that resides in DomainA, and a web site in DomainB clickjacks your page by creating a page with an IFrame that points to a page in your email application at DomainA. When the two pages are combined, the page from DomainB covers most of your page in the IFrame, and exposes only a button on your page that deletes all email for the account. Users, not realizing they are actually in the email application, may click the button and inadvertently delete all their email.

Framebusting prevents clickjacking by using the following JavaScript to block the application's pages from running in frames:

top.location.href = location.href;

If you configure your application to use framebusting by setting the parameter to always, then whenever a page tries to run in a frame, an alert is shown to the user that the page is being redirected, the JavaScript code is run to define the page as topmost, and the page is disallowed to run in the frame.

If your application needs to use frames, you can set the parameter value to differentDomain. This setting causes framebusting to occur only if the frame has the same origin as the parent page. This is the default setting.

	
Note:

The origin of a page is defined using the domain name, application layer protocol, and in most browsers, TCP port of the HTML document running the script. Pages are considered to originate from the same domain if and only if all these values are exactly the same.
For example, these pages will fail the origin check due to the difference in port numbers:

	
http://www.example.com:8888/dir/page.html

	
http://www.example.com:7777/dir/page.html

For example, say you have a page named DomainApage1 in your application that uses a frame to include the page DomainApage2. Say the external DomainBpage1 tries to clickjack the page DomainApage1. The result would be the following window hierarchy:

	
DomainBpage1

	
DomainApage1

	
DomainApage2

If the application has framebusting set to be differentDomain, then the framework walks the parent window hierarchy to determine whether any ancestor windows originate from a different domain. Because DoaminBpage1 originates from a different domain, the framebusting JavaScript code will run for the DomainApage1 page, causing it to become the top-level window. And because DomainApage2 originates from the same domain as DomainApage1, it will be allowed to run in the frame.

Valid values are:

	
always: The page will show an error and redirect whenever it attempts to run in a frame.

	
differentDomain: The page will show an error and redirect only when it attempts to run in a frame on a page that originates in a different domain (the default).

	
never: The page can run in any frame on any originating domain.

	
Note:

This context parameter is ignored and will behave as if it were set to never when either of the following context parameters is set to true:
	
org.apache.myfaces.trinidad.util. ExternalContextUtils.isPortlet

	
oracle.adf.view.rich.automation.ENABLED

A.2.3.18 Suppressing Auto-Generated Component IDs

Use the oracle.adf.view.rich.SUPPRESS_IDS context parameter set to auto when programmatically adding an af:outputText or af:outputFormatted component as a partial target, that is, through a call to addPartialTarget().

By default, this parameter is set to explicit, thereby reducing content size by suppressing both auto-generated and explicitly set component IDs except when either of the following is true:

	
The component partialTriggers attribute is set

	
The clientComponent attribute is set to true

In the case of a call to addPartialTarget(), the partialTriggers attribute is not set and the partial page render will not succeed. You can set the parameter to auto to suppress only auto-generated component IDs for these components.

A.2.3.19 ADF Faces Caching Filter

The ADF Faces Caching Filter (ACF) is a Java EE Servlet filter that can be used to accelerate web application performance by enabling the caching (and/or compression) of static application objects such as images, style sheets, and documents like.pdf and.zip files. These objects are cached in an external web cache such as Oracle Web Cache or in the browser cache. With web cache, the cacheability of content is largely determined through URL-based rules defined by the web cache administrator. Using ACF, the ADF application administrator or author can define caching rules directly in the adf-config.xml file. For more information about defining caching rules, see Section A.4.2, "Defining Caching Rules for ADF Faces Caching Filter."

ADF Faces tag library JARs include default caching rules for common resource types, such as.js, .css, and image file types. These fixed rules are defined in the adf-settings.xml file, and cannot be changed during or after application deployment. In the case of conflicting rules, caching rules defined by the application developer in adf-config.xml will take precedence. For more information about settings in adf-settings.xml, see Section A.5.2, "What You May Need to Know About Elements in adf-settings.xml."

Oracle Web Cache must be configured by the web cache administrator to route all traffic to the web application through the web cache. In the absence of the installation of Oracle Web Cache, the caching rules defined in adf-config.xml will be applied for caching in the browser if the <agent-caching> child element is set to true. To configure the ACF to be in the URL request path, add the following servlet filter definitions in the web.xml file:

	
ACF filter class: Specify the class to perform URL matching to rules defined in adf-config.xml

	
ACF filter mapping: Define the URL patterns to match with the caching rules defined in adf-config.xml

Example A-2 shows a sample ACF servlet definition.

Example A-2 ACF Servlet Definition

<!- Servlet Filter definition ->
<filter>
 <filter-name>ACF</filter-name>
 <filter-class>oracle.adfinternal.view.faces.caching.filter.AdfFacesCachingFilter
 </filter-class>
</filter>
<!- servlet filter mapping definition ->
<filter-mapping>
 <filter-name>ACF</filter-name>
 <url-pattern>*</url-pattern>
</filter-mapping>

	
Note:

The ACF servlet filter must be the first filter in the chain of filters defined for the application.

A.2.3.20 Configuring Native Browser Context Menus for Command Links

Use the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION context parameter to enable or disable the end user´s browser to supply a context menu for ADF Faces command components that render a link. The context menu may present menu options that invoke a different action (for example, open a link in a new window) to that specified by the command component.

By default, this parameter is set to yes, thereby suppressing the rendering of a context menu for ADF Faces command components. By setting the parameter to no, you can disable this suppression and allow the native browser context menu to appear. For information about the ADF Faces command components for which you can configure this functionality, see

A.2.3.21 Session Timeout Warning

When a request is sent to the server, a session timeout value is written to the page and the session timeout warning interval is defined by the context parameter oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_TIMEOUT. The user is given the opportunity to extend the session in a warning dialog, and a notification is sent when the session has expired and the page is refreshed. Depending on the application security configuration, the user may be redirected to the log in page when the session expires.

Use the oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_TIMEOUT context parameter to set the number of seconds prior to the session timeout when a warning dialog is displayed. If the value of WARNING_BEFORE_TIMEOUT is less than 120 seconds, if client state saving is used for the page, or if the session has been invalidated, the feature is disabled. The session timeout value it taken directly from the session.

Example A-3 shows configuration of the warning dialog to display at 120 seconds before the timeout of the session.

Example A-3 Configuration of Session Timeout Warning

<context-param>
 <param-name>oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_
 TIMEOUT</param-name>
 <param-value>120</param-value>
</context-param>

The default value of this parameter is 120 seconds. To prevent notification of the user too frequently when the session timeout is set too short, the actual value of WARNING_BEFORE_TIMEOUT is determined dynamically, where the session timeout must be more than 2 minutes or the feature is disabled.

A.2.3.22 JSP Tag Execution in HTTP Streaming

Use the oracle.adf.view.rich.tag.SKIP_EXECUTION parameter to enable or disable JSP tag execution in HTTP streaming requests during the processing of JSP pages. Processing of facelets is not included.

By default, this parameter is set to streaming, where JSP tag execution is skipped during streaming requests. You can set the parameter to off to execute JSP tags per each request in cases where tag execution is needed by streaming requests.

A.2.4 What You May Need to Know About Other Context Parameters in web.xml

Other optional, application-wide context parameters are:

	
javax.faces.CONFIG_FILE: Specifies paths to JSF application configuration resource files. Use a comma-separated list of application-context relative paths for the value, as shown in the following code. Set this parameter if you use more than one JSF configuration file in your application.

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>
 /WEB-INF/faces-config1.xml,/WEB-INF/faces-config2.xml
 </param-value>
</context-param>

	
javax.faces.DEFAULT_SUFFIX: Specifies a file extension (suffix) for JSP pages that contain JSF components. The default value is .jsp.

	
Note:

This parameter value is ignored when you use prefix mapping for the JSF servlet (for example, /faces), which is done by default for you.

	
javax.faces.LIFECYCLE_ID: Specifies a lifecycle identifier other than the default set by the javax.faces.lifecycle.LifecycleFactory.DEFAULT_LIFECYCLE constant.

	
Caution:

Setting LIFECYCLE_ID to any other value will break ADF Faces.

	
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION: Specifies whether JSP and CSS files require a restart in order to see changes at runtime. By default, set to false. Set to true if you want to be able to view changes without restarting the server.

A.3 Configuration in faces-config.xml

The JSF configuration file is where you register a JSF application's resources such as custom validators and managed beans, and define all the page-to-page navigation rules. While an application can have any JSF configuration file name, typically the file name is the faces-config.xml file. Small applications usually have one faces-config.xml file.

When you use ADF Faces components in your application, JDeveloper automatically adds the necessary configuration elements for you into faces-config.xml. For more information about the faces-config.xml file, see the Java EE 5 tutorial on Sun's web site (http://java.sun.com).

A.3.1 How to Configure for ADF Faces in faces-config.xml

In JDeveloper, when you create a project that uses JSF technology, an empty faces-config.xml file is created for you in the /WEB-INF directory. An empty faces-config.xml file is also automatically added for you when you create a new application workspace based on an application template that uses JSF technology (for example, the Java EE Web Application template. For more information, see Section 3.2, "Creating an Application Workspace."

When you use ADF Faces components in your application, the ADF default render kit ID must be set to oracle.adf.rich. When you insert an ADF Faces component into a JSF page for the first time, or when you add the first JSF page to an application workspace that was created using the Fusion template, JDeveloper automatically inserts the default render kit for ADF components into the faces-config.xml file, as shown in Example A-4.

Example A-4 ADF Default Render Kit Configuration in faces-config.xml

<?xml version="1.0" encoding="windows-1252"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 </application>
</faces-config>

Typically, you would configure the following in the faces-config.xml file:

	
Application resources such as message bundles and supported locales

	
Page-to-page navigation rules

	
Custom validators and converters

	
Managed beans for holding and processing data, handling UI events, and performing business logic

	
Note:

If your application uses ADF Controller, these items are configured in the adfc-config.xml file. For more information, see the "Getting Started With Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

In JDeveloper, you can use the declarative overview editor to modify the faces-config.xml file. If you are familiar with the JSF configuration elements, you can use the XML editor to edit the code directly.

To edit faces-config.xml:

	
In the Application Navigator, double-click faces-config.xml to open the file.

By default, JDeveloper opens the faces-config.xml file in the overview editor, as indicated by the active Overview tab at the bottom of the editor window.

When you use the overview editor to add for example, managed beans and validators declaratively, JDeveloper automatically updates the faces-config.xml file for you.

	
To edit the XML code directly in the faces-config.xml file, click Source at the bottom of the editor window.

When you edit elements in the XML editor, JDeveloper automatically reflects the changes in the overview editor.

	
Tip:

JSF allows more than one <application> element in a single faces-config.xml file. The Overview mode of the JSF Configuration Editor allows you to edit only the first <application> instance in the file. For any other <application> elements, you will need to edit the file directly using the XML editor.

A.4 Configuration in adf-config.xml

The adf-config.xml file is used to configure application-wide features, like security, caching, and change persistence. Other Oracle components also configure properties in this file.

A.4.1 How to Configure ADF Faces in adf-config.xml

Before you can provide configuration for your application, you must first create the adf-config.xml file. Then you can add configuration for any application-wide ADF features that your application will use.

To create and edit adf-config.xml:

	
If not already created, create a META-INF directory for your project.

	
Right-click the META-INF directory, and choose New.

	
In the New Gallery, expand General, select XML and then XML Document, and click OK.

	
Tip:

If you don't see the General node, click the All Technologies tab at the top of the Gallery.

	
Enter adf-config.xml as the file name and save it in the META-INF directory.

	
In the source editor, replace the generated code with the code shown in Example A-5.

Example A-5 XML for adf-config.xml File

<?xml version="1.0" encoding="utf-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:ads="http://xmlns.oracle.com/adf/activedata/config">

</adf-config>

	
You can now add the elements needed for the configuration of features you wish to use.

A.4.2 Defining Caching Rules for ADF Faces Caching Filter

Caching rules for the ADF Faces Caching Filter (ACF) are defined in the adf-config.xml file, located in the web-application's.adf/META-INF directory. You must configure ACF to be in the request path for these URL matching rules. For information about adding the ACF servlet filter definition, see Section A.2.3.19, "ADF Faces Caching Filter."

The single root element for one or more caching rules is <caching-rules>, configured as a child of the <adf-faces-config> element in the namespace http://xmlns.oracle.com/adf/faces/config.

A <caching-rule> element defines each caching rule, evaluated in the order listed in the configuration file. Example A-6 shows the syntax for defining caching rules in adf-config.xml.

Example A-6 ACF Caching Rule Syntax

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <caching-rules xmlns="http://xmlns.oracle.com/adf/faces/rich/acf">
 <caching-rule id="cache-rule1">
 <cache>true|false</cache>
 <duration>3600</duration>
 <agent-caching>true|false</agent-caching>
 <agent-duration>4800</agent-duration>
 <compress>true|false</compress>
 <cache-key-pattern>....</cache-key-pattern>
 <search-key>
 <key>key1</key>
 <key>key2</key>
 </search-key>
 <varyBy>
 <vary-element>
 <vary-name><cookieName>|<headerName></vary-name>
 <vary-type>cookie|header</vary-type>
 </vary-element>
 </varyBy>
 </caching-rule>
 </caching-rules>
 </adf-faces-config>
</adf-config>

Each caching rule is defined in a <caching-rule> element. An optional id attribute can be defined to support rule location. Table A-1 describes the <caching-rule> child elements used to define the parameters for caching or compressing the objects in the application.

Table A-1 AFC Caching Rule Elements and Attributes

	Rule Element Children	Attribute Description and Value
	
<cache>

	
Specifies whether or not the object must be cached in the web cache. A value of false will ensure the object is never cached. The default is true.

	
<duration>

	
Defines the duration in seconds for which the object will be cached in the web cache. The default is 300 seconds.

	
<agent-caching>

	
Specify a value of true to use a browser cache in the absence of a web cache.

	
<agent-duration>

	
Defines the duration in seconds for which the object is cached in a browser cache. The default is -1. If <agent-caching> is true and <agent-duration> is not defined, then the value for <duration> is used instead.

	
<compress>

	
Specifies whether or not the object cached in the web cache must be compressed. The default value is true.

	
<cache-key-pattern>

	
Determines the URLs to match for the rule. One and only one <cache-key-pattern> element must be defined for the file extensions or the path prefix of a request URL. A <cache-key-pattern> value starting with a "*." value will be used as a file extension mapping, and others will be used as path prefix mapping.

	
<search-key> <key>

	
Defines the search keys tagged to the cached object. Each <caching-rule> can define one <search-key> element with one or more child <key> elements. The value of a search key is used in invalidating cached content. A default <search-key> is added at runtime for the context root of the application in order to identify all resources related to an application.

	
<varyBy> <vary-element> <vary-name> <vary-type>

	
Used for versioning objects cached in the web cache. A <varyBy> element can have one or more <vary-element> elements that define the parameters for versioning a cached object. Most static resources will not require this definition.

Each <vary-element> is defined by:

	
<vary-name>: Valid values are cookieName for the name of the cookie whose value the response varies on, or headerName for the name of the HTTP header whose value determines the version of the object that is cached in the web cache.

	
<vary-type>: Valid values are cookie or header.

The web cache automatically versions request parameters. Multiple version of an object will be stored in web cache based on the request parameter.

A.4.3 Configuring Flash as Component Output Format

By default, the application uses the output format specified for each component. For example, ADF Data Visualization components specify a Flash output format to display animation and interactivity effects in a web browser. If the component output format is Flash, and the user's platform doesn't support the Flash Player, as in Apple's iOS operating system, the output format is automatically downgraded to the best available fallback.

You can configure the use of Flash content across the entire application by setting a flash-player-usage context parameter in adf-config.xml. The valid settings include:

	
downgrade: Specify that if the output format is Flash, but the Flash Player isn't available, then downgrade to the best available fallback. The user will not be prompted to download the Flash Player.

	
disable: Specify to disable the use of Flash across the application. All components will be rendered in their non-Flash versions, regardless of whether or not the Flash Player is available on the client.

Example A-7 shows the syntax for application-wide disabling of Flash in adf-config.xml.

Example A-7 Flash Disabled in adf-config.xml

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <flash-player-usage>disabled</flash-player-usage>
 </adf-faces-config></adf-config>

The context parameter also supports an EL Expression value. This allows applications to selectively enable or disable Flash for different parts of the application, or for different users, based on their preferences.

	
Note:

Previously Data Visualization dvt:graph and dvt:gauge components used an imageFormat=AUTO" value. The AUTO value has been deprecated and you should set use imageFormat="FLASH" and set flash-player-usage context parameter to downgrade to achieve the same effect application-wide.

A.5 Configuration in adf-settings.xml

The adf-settings.xml file holds project- and library-level settings such as ADF Faces help providers and caching/compression rules. The configuration settings for the adf-settings.xml files are fixed and cannot be changed during and after application deployment. There can be multiple adf-settings.xml files in an application. ADF settings file users are responsible for merging the contents of their configurations.

A.5.1 How to Configure for ADF Faces in adf-settings.xml

Before you can provide configuration for your application, you must first create the adf-settings.xml file. Then you can add the configuration for any project features that your application will use. For more information about configurations in this file, see Section A.5.2, "What You May Need to Know About Elements in adf-settings.xml."

To create and edit adf-settings.xml:

	
If not already created, create a META-INF directory for your project in the Application Sources folder (.adf\META-INF).

	
Right-click the META-INF directory, and choose New from the context menu.

	
In the New Gallery, expand General, select XML and then XML Document, and click OK.

	
Tip:

If you don't see the General node, click the All Technologies tab at the top of the Gallery.

	
In the source editor, replace the generated code with the code shown in Example A-8, with the correct settings for your web application root.

Example A-8 XML for adf-settings.xml File

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings"
 xmlns:wap="http://xmlns.oracle.com/adf/share/http/config" >
 <wap:adf-web-config xmlns="http://xmlns.oracle.com/adf/share/http/config">
 <web-app-root rootName="myroot" />
 </wap:adf-web-config>
</adf-settings>

	
You can now add the elements needed for the configuration of features you wish to use. For more information, see Section A.5.2, "What You May Need to Know About Elements in adf-settings.xml."

A.5.2 What You May Need to Know About Elements in adf-settings.xml

The following configuration elements are supported in the adf-settings.xml file.

A.5.2.1 Help System

You register the help provider used by your help system using the following elements:

	
<adf-faces-config>: A parent element that groups configurations specific to ADF Faces.

	
<prefix-characters>: The provided prefix if the help provider is to supply help topics only for help topic IDs beginning with a certain prefix. This can be omitted if prefixes are not used.

	
<help-provider-class>: The help provider class.

	
<custom-property> and <property-value>: A property element that defines the parameters the help provider class accepts.

Example A-9 shows an example of a registered help provider. In this case, there is only one help provider for the application, so there is no need to include a prefix.

Example A-9 Help Provider Registration

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MYAPP">
 <help-provider-class>
 oracle.adfdemo.view.webapp.MyHelpProvider
 </help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

A.5.2.2 Caching Rules

Application-specific libraries and JARs contain a variety of resources that may require caching and/or compression of files. In the event of multiple libraries or JARs, an application may include one or more adf-setting.xml files that contain various caching rules based on matching URLs. The caching rules are merged into an ordered list at runtime. If a request for a resource matches more than one caching rule, the rule encountered first in the list will be honored.

The ADF Faces JAR includes default caching rules for common resource types, such as.js, .css, and image file types. These fixed rules are defined in the adf-settings.xml file, and cannot be changed during or after application deployment. Application developers can define application caching rules in the adf-config.xml file that take precedence over the rules defined in adf-settings.xml. Example A-10 shows the adf-settings.xml file for the ADF Faces JAR.

Example A-10 ADF Faces adf-settings.xml File

<adf-settings>
 <adf-faces-settings>
 <caching-rules>
 <caching-rule id="cache css">
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.css</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache js">
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.js</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache png">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.png</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache jpg">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.jpg</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache jpeg">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.jpeg</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache gif">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.gif</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache html">
 <compress>true</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.html</cache-key-pattern>
 </caching-rule>
 </caching-rules>
 </adf-faces-settings>
</adf-settings>

A.6 Configuration in trinidad-config.xml

When you create a JSF application using ADF Faces components, you configure ADF Faces features (such as skin family and level of page accessibility support) in the trinidad-config.xml file. Like faces-config.xml, the trinidad-config.xml file has a simple XML structure that enables you to define element properties using the JSF Expression Language (EL) or static values.

	
Note:

You can also configure high availability testing support by setting a system property to use org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION. For more information, see Section A.6.3, "What You May Need to Know About Configuring a System Property."

A.6.1 How to Configure ADF Faces Features in trinidad-config.xml

In JDeveloper, when you insert an ADF Faces component into a JSF page for the first time, a starter trinidad-config.xml file is automatically created for you in the /WEB-INF directory. Example A-11 shows a starter trinidad-config.xml file.

Example A-11 Starter trinidad-config.xml File Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://xmlns.oracle.com/trinidad/config">

 <skin-family>fusion</skin-family>

</trinidad-config>

By default, JDeveloper configures the fusion skin family for a JSF application that uses ADF Faces. You can change this to blafplus-rich, blafplus-medium, simple, or use a custom skin. If you wish to use a custom skin, create the trinidad-skins.xml configuration file, and modify trinidad-config.xml file to use the custom skin. For more information about creating custom skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

Typically, you would configure the following in the trinidad-config.xml file:

	
Page animation

	
Level of page accessibility support

	
Time zone

	
Enhanced debugging output

	
Oracle Help for the Web (OHW) URL

You can also register a custom file upload processor for uploading files.

In JDeveloper, you can use the XML editor to modify the trinidad-config.xml file.

To edit trinidad-config.xml:

	
In the Application Navigator, double-click trinidad-config.xml to open the file in the XML editor.

	
If you are familiar with the element names, enter them in the editor. Otherwise use the Structure window to help you insert them.

	
In the Structure window:

	
Right-click an element to choose from the Insert before or Insert after menu, and click the element you wish to insert.

	
Double-click the newly inserted element in the Structure window to open it in the Property Inspector. Enter a value or select one from a dropdown list (if available).

In most cases you can enter either a JSF EL expression (such as #{view.locale.language=='en' ? 'minimal' : 'blafplus-rich'}) or a static value (for example., <debug-output>true</debug-output>). EL expressions are dynamically reevaluated on each request, and must return an appropriate object (for example, a boolean object).

For a list of the configuration elements you can use, see Section A.6.2, "What You May Need to Know About Elements in trinidad-config.xml."

Once you have configured the trinidad-config.xml file, you can retrieve the property values programmatically or by using JSF EL expressions. For more information, see Section A.8, "Using the RequestContext EL Implicit Object."

A.6.2 What You May Need to Know About Elements in trinidad-config.xml

All trinidad-config.xml files must begin with a <trinidad-config> element in the http://myfaces.apache.org/trinidad/config XML namespace. The order of elements inside of <trinidad-config> does not matter. You can include multiple instances of any element.

A.6.2.1 Animation Enabled

Certain ADF Faces components use animation when rendering. For example, trees and tree tables use animation when expanding and collapsing nodes. The following components use animation when rendering:

	
Table detail facet for disclosing and undisclosing the facet

	
Trees and tree table when expanding and collapsing nodes

	
Menus

	
Popup selectors

	
Dialogs

	
Note windows and message displays

The type and time of animation used is configured as part of the skin for the application. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

You can set the animation-enabled element to either true or false, or you can use an EL expression that resolves to either true or false. By default animation-enabled is set to true.

	
Note:

Enabling animation will have an impact on performance. For more information, see the "Oracle Application Development Framework Performance Tuning" section in the Oracle Fusion Middleware Performance and Tuning Guide.

A.6.2.2 Skin Family

As described in Section A.6.1, "How to Configure ADF Faces Features in trinidad-config.xml," JDeveloper by default uses the fusion skin family for a JSF application that uses ADF Faces. You can change the <skin-family> value to blafplus-rich, blafplus-medium, simple, or to a custom skin definition. For information about creating and using custom skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

You can use an EL expression for the skin family value, as shown in the following code:

<skin-family>#{prefs.proxy.skinFamily}</skin-family>

A.6.2.3 Time Zone and Year

To set the time zone used for processing and displaying dates, and the year offset that should be used for parsing years with only two digits, use the following elements:

	
<time-zone>: By default, ADF Faces uses the time zone used by the application server if no value is set. If needed, you can use an EL expression that evaluates to a TimeZone object. This value is used by org.apache.myfaces.trinidad.converter.DateTimeConverter while converting strings to Date.

	
<two-digit-year-start>: This defaults to the year 1950 if no value is set. If needed, you can use a static, integer value or an EL expression that evaluates to an Integer object. This value is used by org.apache.myfaces.trinidad.converter.DateTimeConverter to convert strings to Date.

A.6.2.4 Enhanced Debugging Output

By default, the <debug-output> element is false. ADF Faces enhances debugging output when you set <debug-output> to true. The following features are then added to debug output:

	
Automatic indenting

	
Comments identifying which component was responsible for a block of HTML

	
Detection of unbalanced elements, repeated use of the same attribute in a single element, or other malformed markup problems

	
Detection of common HTML errors (for example, <form> tags inside other <form> tags or <tr> or <td> tags used in invalid locations).

	
Performance Tip:

Debugging impacts performance. Set this parameter to false in a production environment.

A.6.2.5 Page Accessibility Level

Use <accessibility-mode> to define the level of accessibility support in an application. The supported values are:

	
default: Output supports accessibility features.

	
inaccessible: Accessibility-specific constructs are removed to optimize output size.

	
screenReader: Accessibility-specific constructs are added to improve behavior under a screen reader.

	
Note:

Screen reader mode may have a negative effect on other users. For example, access keys are not displayed if the accessibility mode is set to screen reader mode.

Use <accessibility-profile> to configure the color contrast and font size used in the application. The supported values are:

	
high-contrast: Application displays using high-contrast instead of the default contrast.

	
large-fonts: Application displays using large fonts instead of the default size fonts.

To use more than one setting, separate the values with a space.

A.6.2.6 Language Reading Direction

By default, ADF Faces page rendering direction is based on the language being used by the browser. You can, however, explicitly set the default page rendering direction in the <right-to-left> element by using an EL expression that evaluates to a Boolean object, or by using true or false, as shown in the following code:

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

A.6.2.7 Currency Code and Separators for Number Groups and Decimal Points

To set the currency code to use for formatting currency fields, and define the separator to use for groups of numbers and the decimal point, use the following elements:

	
<currency-code>: Defines the default ISO 4217 currency code used by the org.apache.myfaces.trinidad.converter.NumberConverter class to format currency fields that do not specify an explicit currency code in their own converter. Use a static value or an EL expression that evaluates to a String object. For example:

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

	
<number-grouping-separator>: Defines the separator used for groups of numbers (for example, a comma). ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. You can use a static value or an EL expression that evaluates to a Character object. If set, this value is used by the org.apache.myfaces.trinidad.converter.NumberConverter class while parsing and formatting.

For example, to set the number grouping separator to a period when the German language is used in the application, use this code:

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

	
<decimal-separator>: Defines the separator (for example, a period or a comma) used for the decimal point. ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. You can use a static value or an EL expression that evaluates to a Character object. If set, this value is used by the org.apache.mtfaces.trinidad.converter.NumberConverter class while parsing and formatting.

For example, to set the decimal separator to a comma when the German language is used in the application, use this code:

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

A.6.2.8 Formatting Dates and Numbers Locale

By default, ADF Faces and MyFaces Trinidad will format dates (including the first day of the week) and numbers in the same locale used for localized text (which by default is the locale of the browser). If, however, you want dates and numbers formatted in a different locale, you can use the <formatting-locale> element, which takes an IANA-formatted locale (for example, ja, fr-CA) as its value. The contents of this element can also be an EL expression pointing at an IANA string or a java.util.Locale object.

A.6.2.9 Output Mode

To change the output mode ADF Faces uses, set the <output-mode> element, using one of these values:

	
default: The default page output mode (usually display).

	
printable: An output mode suitable for printable pages.

	
email: An output mode suitable for emailing a page's content.

A.6.2.10 Number of Active PageFlowScope Instances

By default ADF Faces sets the maximum number of active PageFlowScope instances at any one time to 15. Use the <page-flow-scope-lifetime> element to change the number. Unlike other elements, you must use a static value: EL expressions are not supported.

A.6.2.11 File Uploading

While you can set file uploading parameters in web.xml, configuring file uploading parameters in trinidad-config.xml has the advantage of supporting EL Expressions that can be evaluated at runtime to change the value setting. The following elements are supported:

	
<uploaded-file-processor>: This parameter must be the name of a class that implements the org.apache.myfaces.trinidad.webapp.UploadedFileProcessor interface, responsible for processing each individual uploaded file as it comes from the incoming request and making its contents available for the rest of the request. Most developers will find the default UploadedFileProcessor sufficient for their purposes, but applications that need to support uploading very large files may improve their performance by immediately storing files in their final destination, instead of requiring Apache Trinidad to handle temporary storage during the request.

	
<uploaded-file-max-memory>: Used to set the maximum amount of memory used during the file upload process before the data will start writing out to disk. This setting directly overrides the web.xml setting org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY. This value can be hard coded or can be explicitly configured with an EL expression that returns a Long object.

	
<uploaded-file-max-disk-space>: Used to set the maximum amount of disk space allowed for an uploaded file before an EOFException is thrown. This setting directly overrides the web.xml setting org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE. This value can be hard coded or can be explicitly configured with an EL expression that returns a Long object.

	
<uploaded-file-max-disk-space>: Used to change the default location uploaded files are stored. This setting directly overrides the web.xml setting org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR. This value can be hard coded or can be explicitly configured with an EL expression that returns a String object.

A.6.2.12 Custom File Uploaded Processor

Most applications do not need to replace the default UploadedFileProcessor instance provided in ADF Faces, but if your application must support uploading of very large files, or if it relies heavily on file uploads, you may wish to replace the default processor with a custom UploadedFileProcessor implementation.

For example, you could improve performance by using an implementation that immediately stores files in their final destination, instead of requiring ADF Faces to handle temporary storage during the request. To replace the default processor, specify your custom implementation using the <uploaded-file-processor> element, as shown in the following code:

<uploaded-file-processor>
 com.mycompany.faces.myUploadedFileProcessor
</uploaded-file-processor>

A.6.2.13 Client-Side Validation and Conversion

ADF Faces validators and converters support client-side validation and conversion, as well as server-side validation and conversion. ADF Faces client-side validators and converters work the same way as the server-side validators and converters, except that JavaScript is used on the client.

The JavaScript-enabled validators and converters run on the client when the form is submitted; thus errors can be caught without a server roundtrip.

The <client-validation-disabled> configuration element is not supported in the rich client version of ADF Faces. This means you cannot turn off client-side validation and conversion in ADF Faces applications.

A.6.3 What You May Need to Know About Configuring a System Property

Some Trinidad configuration options are set by a system property. To support high availability testing, use org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION. On the system property pass a comma-delimited set of case-insensitive values including:

	
NONE: No state serialization checks are performed (the default).

	
ALL: Perform all available tests (unless NONE is also specified, in which case NONE takes precedence).

	
SESSION: Wrap the Session Map returned by the ExternalContext to test that only serializable objects are placed in the Session Map, throwing a CastCastException if the object is not serializable.

	
TREE: Aggressively attempt to serialize the component state during state saving and throw an exception if serialization fails.

	
COMPONENT: Aggressively attempt to serialize each component subtree's state during state saving in order to identify the problem component (slow).

	
PROPERTY: Aggressively attempt to serialize each property value during state saving in order to identify the problem property (slow).

For example, the tester would initially start off validating if the session and JSF state is serializable by setting the system property to:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree

If a JSF state serialization is detected, the test is rerun with the component and property flags enabled as:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=all

A.7 Configuration in trinidad-skins.xml

By default, JDeveloper uses the blafplus-rich skin family when you create JSF pages with ADF Faces components. The skin family is configured in the trinidad-config.xml file, as described in Section A.6.1, "How to Configure ADF Faces Features in trinidad-config.xml." If you wish to use a custom skin for your application, create a trinidad-skins.xml file, which is used to register custom skins in an application.

For detailed information about creating custom skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

A.8 Using the RequestContext EL Implicit Object

In ADF Faces, you can use the EL implicit object requestContext to retrieve values from configuration properties defined in the trinidad-config.xml file. The requestContext implicit object, which is an instance of the org.apache.myfaces.trinidad.context.RequestContext class, exposes several properties of type java.util.Map, enabling you to use JSF EL expressions to retrieve context object property values.

For example, the EL expression #{requestContext} returns the RequestContext object itself, and the EL expression #{requestContext.skinFamily} returns the value of the <skin-family> element from the trinidad-config.xml file.

You can also use EL expressions to bind a component attribute value to a property of the requestContext implicit object. For example, in the EL expression that follows, the <currency-code> property is bound to the currencyCode attribute value of the JSF ConvertNumber component:

<af:outputText>
 <f:convertNumber currencyCode="#{requestContext.currencyCode}"/>
</af:outputText>

You can use the following requestContext implicit object properties:

	
requestContext.accessibilityMode: Returns the value of the <accessibility-mode> element from the trinidad-config.xml file.

	
requestContext.agent: Returns an object that describes the client agent that is making the request and that is to display the rendered output. The properties in the agent object are:

	
agentName: Canonical name of the agent browser, (for example, gecko and ie).

	
agentVersion: Version number of the agent browser.

	
capabilities: Map of capability names (for example, height, width) and their values for the current client request.

	
hardwareMakeModel: Canonical name of the hardware make and model (for example, nokia6600 and sonyericssonP900).

	
platformName: Canonical name of the platform (for example, ppc, windows, and mac).

	
platformVersion: Version number of the platform.

	
type: Agent type (for example, desktop, pda, and phone).

	
requestContext.clientValidationDisabled: Returns the value of the <client-validation-disabled> element from the trinidad-config.xml file.

	
requestContext.colorPalette: Returns a Map that takes color palette names as keys, and returns the color palette as a result. Each color palette is an array of java.awt.Color objects. Provides access to four standard color palettes:

	
web216: The 216 web-safe colors

	
default49: A 49-color palette, with one fully transparent entry

	
opaque40: A 49-color palette, without a fully transparent entry

	
default80: An 80-color palette, with one fully transparent entry

	
requestContext.currencyCode: Returns the value of the <currency-code> element from the trinidad-config.xml file.

	
requestContext.debugOutput: Returns the value of the <debug-output> element from the trinidad-config.xml file.

	
requestContext.decimalSeparator: Returns the value of the <decimal-separator> element from the trinidad-config.xml file.

	
requestContext.formatter: Returns a Map object that performs message formatting with a recursive Map structure. The first key must be the message formatting mask, and the second key is the first parameter into the message.

	
requestContext.helpSystem: Returns a Map object that accepts help system properties as keys, and returns a URL as a result. For example, the EL expression #{requestContext.helpSystem['frontPage']} returns a URL to the front page of the help system. This assumes you have configured the <oracle-help-servlet-url> element in the trinidad-config.xml file.

	
requestContext.helpTopic: Returns a Map object that accepts topic names as keys, and returns a URL as a result. For example, the EL expression #{requestContext.helpTopic['foo']} returns a URL to the help topic "foo". This assumes you have configured the <oracle-help-servlet-url> element in the trinidad-config.xml file.

	
requestContext.numberGroupingSeparator: Returns the value of the <number-grouping-separator> element from the trinidad-config.xml file.

	
requestContext.oracleHelpServletUrl: Returns the value of the <oracle-help-servlet-url> element from the trinidad-config.xml file.

	
requestContext.outputMode: Returns the value of the <output-mode> element from the trinidad-config.xml file.

	
requestContext.pageFlowScope: Returns a map of objects in the pageFlowScope object.

	
requestContext.rightToLeft: Returns the value of the <right-to-left> element from the trinidad-config.xml file.

	
requestContext.skinFamily: Returns the value of the <skin-family> element from the trinidad-config.xml file.

	
requestContext.timeZone: Returns the value of the <time-zone> element from the trinidad-config.xml file.

	
requestContext.twoDigitYearStart: Returns the value of the <two-digit-year-start> element from the trinidad-config.xml file.

For a complete list of properties, refer to the Javadoc for org.apache.myfaces.trinidad.context.RequestContext.

	
Note:

One instance of the org.apache.myfaces.trinidad.context.RequestContext class exists per request. The RequestContext class does not extend the JSF FacesContext class.
To retrieve a configuration property programmatically, first call the static getCurrentInstance() method to get an instance of the RequestContext object, and then call the method that retrieves the desired property, as shown in the following code:

RequestContext context = RequestContext.getCurrentInstance();

// Get the time-zone property
TimeZone zone = context.getTimeZone();

// Get the right-to-left property
if (context.isRightToLeft())
{
 .
 .
 .
}

A.9 Performance Tuning

In addition to the performance tips related to specific configuration options, find more information about performance tuning in the "Oracle Application Development Framework Performance Tuning" section in the Oracle Fusion Middleware Performance and Tuning Guide.

31 Creating Custom ADF Faces Components

This chapter describes how to create custom ADF Faces components.

This chapter includes the following sections:

	
Section 31.1, "About Custom ADF Faces Components"

	
Section 31.2, "Setting Up the Workspace and Starter Files"

	
Section 31.3, "Developing for the Client-Side"

	
Section 31.4, "Developing for the Server-Side"

	
Section 31.5, "Deploying a Component Library"

	
Section 31.6, "Adding the Custom Component to an Application"

31.1 About Custom ADF Faces Components

The ADF Faces component library provides a comprehensive set of UI components that covers most of your requirements. However, there are situations when you will want to create a custom rich component that is specific to your application. A custom rich component will allow you to have custom behavior and perform actions that best suit the needs of your application.

	
Note:

Creating custom JSF Facelet components is covered in many books, articles, web sites, and the JavaServer Faces specification, therefore, it is not covered in this guide. This chapter describes how to create ADF Faces components.

JSF technology is built to allow self-registering components and other framework parts. The core JSF runtime at web application startup accomplishes this by inspecting all JAR files in the class path. Any JAR files whose /META-INF/faces-config.xml file contains JSF artifacts will be loaded. Therefore, you can package custom ADF Faces components in a JAR file and simply add it into the web project.

For each ADF Faces component, there is a server-side component and there can also be a client-side component. On the server, for JSPs, a render kit provides a base to balance the complex mixture of markup language and JavaScript. The server-side framework also adds a custom lifecycle to take advantage of the API hooks for partial page component rendering. On the client, ADF Faces provides a structured JavaScript framework for handling various nontrivial tasks. These tasks include state synchronization using partial page rendering. For more information about the ADF Faces architecture, see Chapter 4, "Using ADF Faces Client-Side Architecture."

ADF Faces components are derived from the Apache MyFaces Trinidad component library. Because of this, many of the classes you extend when creating a custom ADF Faces component are actually MyFaces Trinidad classes. For more information about the history of ADF Faces, including its evolution, see Chapter 1, "Introduction to ADF Faces."

Between the JSP and the JSF components is the Application class. The tag library uses a factory method on the application object to instantiate a concrete component instance using the mnemonic referred to as the componentType.

A component can render its own markup but this is not considered to be a best practice. The preferred approach is to define a render kit that focuses on a strategy for rendering the presentation. The component uses a factory method on the render kit to get the renderer associated with the particular component. If the component is consumed in an application that uses Facelets, then a component handler creates the component.

In addition to functionality, any custom component you create must use an ADF Faces skin to be able to be displayed properly with other ADF Faces components. To use a skin, you must create and register the skinning keys and properties for your component. This chapter describes only how to create and register skins for custom components. For more information about how skins are used and created in general, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Tip:

To work with ADF Faces components, your custom component must use at least the ADF Faces simple skin, because the FusionFX, blafplus-rich, and blafplus-medium skins inherit from the simple skin. Additionally, if there is any chance your component will be used in an Oracle WebCenter application, then your skin must also be registered with the simple.portlet skin.

31.1.1 Developing a Custom Component with JDeveloper

An ADF Faces component consists of both client-side and server-side resources. On the client side, there is the client component, the component peer (the component presenter), and any events associated with the client component.

On the server side, there is the server component, server component events, and event listeners. Also, there is a component renderer, a component JSP tag, a composite resource loader, a JavaScript resource loader, and a resource bundle.

The component also has several configuration and support files. Together, these classes, JavaScripts, and configuration files are packaged into a JAR file, which can be imported as a library into an application and used like other components.

You can use JDeveloper to set up the application workspace and project in which you develop the custom component. After you have created the workspace and project, you add starter working files for the required classes, JavaScript files, and configuration files that make up the custom component. During development, you edit and add code to each of these files, specific for the custom component.

The development process is as follows:

	
Create an application, workspace, and project as an environment for development. This includes adding library dependencies and registering XML schemas. You should not create the component in the same application in which you plan to use the component.

	
Create a deployment profile for packaging the component into a JAR file.

	
Create the following starter configuration and support files:

	
faces-config.xml: Used to register many of the artifacts used by the component.

	
trinidad-skins.xml: Used to register the skins that the component uses.

	
Cascading style sheet: Used to define the style properties for the skins.

	
Render kit resource loader: Allows the application to load all the resources required by the component.

	
adf-js-features.xml: Allows the component to become part of a JavaScript partition. For more information about partitions, see Section 4.9, "JavaScript Library Partitioning."

	
JSP tag library descriptor (TLD) (for JSP): Defines the tag used on the JSF page.

	
Component handler (for Facelets): Defines the handler used to render the component.

	
Create the following client-side JavaScript files:

	
Client Component: Represents the component and its attributes on the client.

	
Client Peer: Manages the document object model (DOM) for the component.

	
Client Event: Invokes processing on the client and optionally propagates processing to the server.

	
Create the following server-side Java files:

	
Server Component class: Represents the component on the server.

	
Server Event Listener class: Listens for and responds to events.

	
Server Events class: Invokes events on the server.

	
Server Renderer class: Determines the display of the component.

	
Resource Bundle class: Defines text strings used by the component.

	
Further develop the component by testing and debugging the JavaScript and Java code. You can use the JDeveloper debugger to set breakpoints and to step through the code. You can also use Java logging features to trace the execution of the component.

	
Deploy the component into a JAR file.

	
Test the component by adding it into an application.

Table 31-1 lists the client-side and server-side component artifacts for a custom component. The configuration and support files are not included in the table.

Table 31-1 Client-Side and Server-Side Artifacts for a Custom Component

	Client	Server
	
Component class:

oracle.component_package.js.component.prefixComponent_name.js

Extends:

oracle.adf.view.js.component.AdfUIObject.js

	
Component:

oracle.<component_package>.faces.component.<Component_name>.java

Extends:

org.apache.myfaces.trinidad.component.UIXObject.java

	
Event:

oracle.<component_package>.js.event.<prefix><Event_name>.js

Extends:

oracle.adf.view.js.component.AdfComponentEvent.js

	
Event:

oracle.<component_package>.faces.event.<Event_name> .java

Extends:

javax.faces.event.FacesEvent.java

	
	
Event Listener:

oracle.<component_package>.faces.event<Listener_name>

Extends:

com.faces.event.FacesListener

	
Component Peer:

com.<component_package>.js.component.<prefix><Peer_name>Peer.js

Extends:

oracle.adf.view.js.laf.rich.AdfRichUIPeer.js.js

	

	
	
Component Renderer:

com.<component_package>.faces.render.<Renderer_name>.java

Extends:

oracle.adf.view.rich.render.RichRenderer.java

	
	
Component JSP Tag (JSP only):

com.<component_package>.faces.taglib.<Tagname_name>Tag.java

Extends:

javax.faces.webapp.UIComponentELTag.java

	
	
Composite Resource Loader:

com.<component_package>.faces.resource.<Loader_name>ResourceLoader.java

Extends:

org.myfaces.trinidad.resource.RegxResourceLoader.java

	
	
JavaScript Resource Loader:

com.<component_package>.faces.resource.<Script_Loader_name>ResourceLoader.java

Extends:

org.myfaces.trinidad.resource.AggregateingResourceLoader.java

	
	
Resource Bundle:

com.<component_package>.faces.resource.<Bundle_name>Bundle.java

Extends:

java.util.ListResouceBundle.java

31.1.2 An Example Custom Component

To help illustrate creating a custom component, a custom component named tagPane will be used as an example throughout the procedures. The tagPane custom component is created for reuse purposes. Although the tagPane presentation might have been implemented using a variety of existing components, having a single custom component simplifies the work of the page developer. In this case, there may be a trade-off of productivity between the component developer and the page developers. If this particular view composition were needed more than once, the development team would reduce costs by reducing the lines of code and simplifying the task of automating a business process.

The tagPane component displays a series of tags and their weighted occurrences for a set of files. Tags that are most frequently used are displayed in the largest font size, while the least used tags are displayed in the smallest font size. Each tag is also a link that triggers an event, which is then propagated to the server. The server causes all the files that contain an occurrence of that tag to then be displayed in a table. Figure 31-1 shows how the tagPane component would be displayed if it was added below the Search pane in the File Explorer application.

Figure 31-1 Custom tagPane Component

[image: Custom component used to show most popular link]

The tagPane component receives a collection of tags in a Java Map collection. The key of the map is the tag name. The value is a weight assigned to the tag. In the File Explorer application, the weight is the number of times the tag occurs and in most cases, the number of files associated with the tag. The tag name is displayed in the body text of a link and the font size used to display the name represents the weight. Each tag's font size will be proportionally calculated within the minimum and maximum font sizes based upon the upper and lower weights assigned to all tags in the set of files. To perform these functions, the tagPane custom component must have both client-side and server-side behaviors.

On the server side, the component displays the map of tags by rendering HTML hyperlinks. The basic markup rendering is performed on the server. A custom event on the component is defined to handle the user clicking a link, and then to display the associated files. These server-side behaviors are defined using a value expression and a method expression.

For example, the tagPane component includes:

	
A tag property for setting a Map<String, Number> collection of tags.

	
A tagSelectionListener method-binding event that is invoked on the server when the user clicks the link for the tag.

	
An orderBy property for displaying the sequence of tags from left to right in the order of descending by weight or alternatively displaying the tag links ascending alphabetically.

To allow each tag to be displayed in a font size that is proportional to its weight (occurrences), the font size is controlled using an inline style. However, each tag and the component's root markup node also uses a style class.

Example 31-1 shows how the tagPane component might be used in a JSF page.

Example 31-1 tagPane Custom Component Tag in a JSF Page

<acme:tagPane id="tagPane" tags="#{explorer.navigatorManager.tagNavigator.tags}"
 tagSelectListener="#{explorer.navigatorManager.tagNavigator.onTagSelect}"
 orderBy="alpha"
 partialTriggers="tagCountLabel"/>

Because the tagPane component must be used with other ADF Faces components, it must use the same skins. Therefore, any styling is achieved through the use of cascading style sheets (CSS) and corresponding skin selectors. For example, the tagPane component needs skin selectors to specify the root element, and to define the style for the container of the links and the way the hyperlinks are displayed. Example 31-2 shows a sample set of style selectors in the CSS file for the tagPane component.

Example 31-2 CSS Style Selectors for the Sample Custom Component

acme|tagPane - root element
acme|tagPane::content - container for the links
acme|tagPane::tag - tag hyperlink

You may need to specify the HTML code required for the custom component on the server side.

Example 31-3 shows HTML server-side code used for the tagPane component.

Example 31-3 HTML Code for the Server Side

<div class=" acme|tagPane">

 Tag1
 Tag2

</div>

On the client side, the component requires a JavaScript component counterpart and a component peer that defines client-side behavior. All DOM interaction goes through the peer (for more information, see Chapter 4, "Using ADF Faces Client-Side Architecture"). The component peer listens for the user clicking over the hyperlinks that surround the tag names. When the links are clicked, the peer raises a custom event on the client side, which propagates the event to the server side for further processing.

Table 31-2 lists the client-side and server-side artifacts for the tagPane component. Referencing the naming conventions in Table 31-1, the component_package is com.adfdemo.acme and the prefix is Acme.

Table 31-2 Client-Side and Server-Side Artifacts for the tagPane Custom Component

	Client	Server
	
Component:

com.adfdemo.acme.js.component.AcmeTagPane.js

Extends:

oracle.adf.view.js.component.AdfUIObject.js

	
Component

com.adfdemo.acme.faces.component.TagPane.java

Extends:

org.apache.myfaces.trinidad.component.UIXObject.java

	
Event:

com.adfdemo.acme.js.event.AcmeTagSelectEvent.js

Extends:

oracle.adf.view.js.component.AdfComponentEvent.js

	
Event:

com.adfdemo.acme.faces.event.TagSelectEvent.java

Extends:

javax.faces.event.FacesEvent.java

	
	
Event Listener:

com.adfdemo.acme.faces.event.SelectListener

Extends:

com.faces.event.FacesListener

	
Component Peer:

com.adfdemo.acme.js.component.AcmeTagPanePeer.js

Extends:

oracle.adf.view.js.laf.rich.AdfRichUIPeer.js

	

	
	
Component Renderer:

com.adfdemo.acme.faces.render.TagPaneRenderer.java

Extends:

oracle.adf.view.rich.render.RichRenderer.java

	
	
Component JSP Tag:

oracle.adfdemo.acme.faces.taglib.TagPaneTag.java

Extends:

javax.faces.webapp.UIComponentELTag.java

	
	
Composite Resource Loader:

oracle.adfdemo.acme.faces.resource.AcmeResourceLoader.java

Extends:

org.myfaces.trinidad.resource.RegxResourceLoader.java

	
	
JavaScript Resource Loader:

oracle.adfdemo.acme.faces.resource.ScriptsResourceLoader.java

Extends:

org.myfaces.trinidad.resource.AggregateingResourceLoader.java

	
	
Resource Bundle:

oracle.adfdemo.acme.faces.resource.AcmeSimpleDesktopBundle.java

Extends:

java.util.ListResouceBundle.java

31.2 Setting Up the Workspace and Starter Files

Use JDeveloper to set up an application and a project to develop the custom component. After your skeleton project is created, you can add a deployment profile for packaging the component into a JAR file.

During the early stages of development, you create starter configuration and support files to enable development. You may add to and edit these files during the process. You create the following configuration files:

	
META-INF/faces-config.xml: The configuration file required for any JSF-based application. While the component will use the faces-config.xml file in the application into which it is eventually imported, you will need this configuration file for development purposes.

	
META-INF/trinidad-skins.xml: The configuration information for the skins that the component can use. Extend the simple skin provided by ADF Faces to include the new component.

	
META-INF/package_directory/styles/skinName.css: The style metadata needed to skin the component.

	
META-INF/servlets/resources/name.resources: The render kit resource loader that loads style sheets and images from the component JAR file. The resource loader is aggregated by a resource servlet in the web application, and is used to configure the resource servlet. In order for the servlet to locate the resource loader file, it must be placed in the META-INF/servlets/resources directory.

	
META-INF/adf-js-features.xml: The configuration file used to define a feature. The definition usually includes a component name or description of functionality that a component provides, and the files used to implement the client-side component.

	
META-INF/prefix_name.tld (for JSP): The tag definition library for the component. If the consuming web application is using JSP, the custom component requires a defined TLD. The TLD file will be located in the META-INF folder along with the faces-config.xml and trinidad-skins.xml files.

	
META-INF/prefix_name.taglib.xml (for Facelets): The tag library definition for the component when the consuming application uses Facelets. This file defines the handler for the component.

For example, for the tagPane component, the following configuration files are needed:

	
META-INF/faces-config.xml

	
META-INF/trinidad-skins.xml

	
META-INF/acme/styles/acme-simple-desktop.css

	
META-INF/servlets/resources/acme.resources

	
META-INF/acme.tld

	
META-INF/acme.taglib.xml

	
META-INF/adf-js-features.xml

After the files are set up in JDeveloper, you add content to them. Then, you create the client-side files nd server-side files. For more information, see Section 31.3, "Developing for the Client-Side," and Section 31.4, "Developing for the Server-Side."

31.2.1 How to Set Up the JDeveloper Custom Component Environment

This chapter assumes you have experience using JDeveloper and are familiar with the steps involved in creating and deploying an application. For more information about using JDeveloper to create applications, see Chapter 3, "Getting Started with ADF Faces and JDeveloper." For more information about deployment, see the "Deploying Fusion Web Applications" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of the workspace and starter files needed for custom ADF Faces components. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To set up the custom component development environment in JDeveloper:

	
Create an application to serve as a development container for the component. Use JDeveloper to create a workspace and project. For procedures on creating an application, see Section 3.2, "Creating an Application Workspace." When selecting an application template, select the Generic Application template.

	
Note:

Do not select any other application template, or add any technologies to your application. Because the custom component will be packaged into a JAR file, you do not need to create unnecessary folders such as public_html that JDeveloper creates by default when you use a template specifically for web applications, or add web technologies. Instead, create the starter configuration file from the XML schemas.

	
Prepare the project to be deployed as a JAR file by creating a new deployment profile.

	
In the Application Navigator, right-click the project and choose New.

	
In the New Gallery, select Deployment Profile and then ADF Library JAR File, and click OK.

	
In the Create Deployment Profile dialog, enter a name for the Deployment Profile name. For example, the tagPane component might use adf-richclient-demo-acme.

	
In the Edit JAR Deployment Profile Properties dialog, click OK.

	
In the Project Properties dialog, add library dependencies.

	
Select Libraries and Classpath in the left pane.

	
Click Add Library.

	
In the Add Library dialog, select ADF Faces Runtime 11, Facelets Runtime (if using Facelets), JSF 1.2, and JSP Runtime, and click OK.

	
Click OK to close the Project Properties dialog.

	
Register XML schemas.

The custom component requires several XML configuration files. You can use JDeveloper to register the XML schemas associated with these configuration files. You must add schemas for three configuration files: faces-config.xml, trinidad-skins.xml, and trinidad-config.xml. By preregistering these schemas, you can create a template XML configuration file without having to know the specifics about the markup structure. The names and locations of the schemas are assumed by the base installation of JDeveloper.

	
Select Tools > Preferences. In the Preferences dialog, select XML Schemas in the left pane, and click Add.

	
In the Add Schema dialog, click Browse to navigate to the XML schemas included in your JDeveloper build, as shown in Table 31-3.

	
Note:

In the Add Schema dialog, make sure Extension is set to .xml. If you change it to XSD, when you later create XML files, you will not be able to use the XML schema you have created.

Table 31-3 XML Schema Locations

	XML Configuration File	Schema Location
	
/META-INF/faces-config.xml

	
JDeveloper_Home/jdeveloper/modules/oracle.jsf_1.2.9/glassfish.jsf_1.2.9jar!/com/sun/faces/web-facesconfig_1_2.xsd

	
/META-INF/trinidad-skins.xml

	
JDeveloper_Home/jdeveloper/modules/oralce.adf.view_11.1.1/trinidad-impl.jar!/org/apache/myfaces/trinidadinternal/ui/laf/xml/schemas/skin/trinidad-skins.xsd

	
/META-INF/trinidad-config.xml

	
JDeveloper_Home/jdeveloper/modules/oracle.adf.view_11.1.1/trinidad-api.jar!/trinidad-config.xsd

	
/META-INF/adf-js-features.xml

	
JDeveloper_Home/jdeveloper/modules/oracle.adf.view_11.1.1/adf-richclient-api-ll.jar!/adf-js-features.xsd

31.2.2 How to Add a Faces Configuration File

Although the custom component will be registered in the consuming application's faces-config.xml file, during development, the workspace requires a faces-config.xml file.

	
Note:

Do not use any of JDeveloper's declarative wizards or dialogs to create the faces-config.xml file. These declarative methods assume you are creating a web application, and will add uneccessary artifacts to your custom component application.

Before you begin:

It may be helpful to have an understanding of the workspace and starter files needed for custom ADF Faces components. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create a faces-config.xml file for the custom component:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General, select XML, and then Select XML Document from XML Schema, and click OK.

	
In the Create XML from XML Schema dialog:

	
XML File: Enter faces-config.xml.

	
Directory: Append \src\META-INF to the end of the directory entry.

	
Select Use Registered Schemas and click Next.

	
Enter the following:

	
Target Namespace: Select http://java.sun.com/xml/ns/javaee.

	
Root Element: Select faces-config.

Leave the defaults for the other fields, and click Finish.

The new file will automatically open in the XML editor.

	
Add the following schema information after the first line in the file:

<?xml version="1.0" encoding="US-ASCII"?>
 <faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">

Adding a schema provides better WYSIWYG tool support.

31.2.3 How to Add a MyFaces Trinidad Skins Configuration File

Add a MyFaces Trinidad skins file to register the component's CSS file, which is used to define the component's styles.

To create a trinidad-skins.xml file for the custom component:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select XML.

	
Select XML Document from XML Schema and click OK.

	
In the Create XML from XML Schema dialog:

	
XML File: Enter trinidad-skins.xml.

	
Directory: Append \src\META-INF to the end of the Directory entry.

	
Select Use Registered Schemas, and click Next.

	
Enter the following:

	
Target Namespace: Select http://myfaces.apache.org/trinidad/skin.

	
Root Element: Select skins.

	
Click Finish. The new file will automatically open in the XML editor.

31.2.4 How to Add a Cascading Style Sheet

Add a cascading style sheet to define component's style.

Before you begin:

It may be helpful to have an understanding of the workspace and starter files needed for custom ADF Faces components. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create a cascading style sheet for the custom component:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General, select File and click OK.

	
In the Create File dialog:

	
Enter a file name, for example, acme-simple-desktop.css.

	
Append \src\META-INF\component_prefix\styles to the end of the Directory entry, where component_prefix is the prefix that will be used in the component library. For example, for the tagPane component, acme is the prefix, therefore, the string to append would be \META-INF\acme\styles.

31.2.5 How to Add a Resource Kit Loader

Create an empty file and add the fully qualified classpath to the custom resource loader.

Before you begin:

It may be helpful to have an understanding of the workspace and starter files needed for custom ADF Faces components. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create a resource loader for the custom component:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and then File, and click OK.

	
In the Create File dialog:

	
Enter component_prefix.resources for File Name, where component_prefix will be the prefix used in the component library. For example, for the tagPane component, acme is the prefix, therefore, the string to enter is acme.resources.

	
Append \src\META-INF\sevlets\resources\ to the end of the Directory entry.

31.2.6 How to Add a JavaServer Pages Tag Library Descriptor File

You need a JSP TLD file to work with JSF pages.

Before you begin:

It may be helpful to have an understanding of the workspace and starter files needed for custom ADF Faces components. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create a JavaServer Pages TLD file for the custom component:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand Web Tier and select JSP.

	
Select JSP Tag Library and click OK.

	
In the Create JavaServer Page Tag Library dialog, select Deployable and click Next.

	
Enter the following:

	
Tag Library Descriptor Version: Select 2.1.

	
Short Name: A name. For example, for the tagPane component, you would enter acme.

	
Tag Library URI: A URI for the tag library. For example, for the tagPane component, you would enter http://oracle.adfdemo.acme.

	
Click Next and optionally enter additional tag library information, then click Finish.

31.2.7 How to Add a JavaScript Library Feature Configuration File

Add a features file to define the JavaScript files associated with the custom component, including the files for the client component, the client peer, and the client events.

Before you begin:

It may be helpful to have an understanding of the workspace and starter files needed for custom ADF Faces components. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create an adf-js-features.xml file for the custom component:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select XML.

	
In the right pane, select XML Document from XML Schema and click OK.

	
In the Create XML from XML Schema dialog:

	
XML File: Enter adf-js-features.xml.

	
Directory: Append \src\META-INF to the end of the Directory entry.

	
Select Use Registered Schemas, and click Next.

	
Do the following:

	
Target Namespace: Select http://xmlns.oracle.com/adf/faces/feature.

	
Root Element: Select features.

	
Click Finish. The new file will automatically open in the XML editor.

31.2.8 How to Add a Facelets Tag Library Configuration File

If a consuming application uses Facelets, then you must define the handler for the component.

Before you begin:

It may be helpful to have an understanding of the workspace and starter files needed for custom ADF Faces components. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create a Facelets tag library file:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select XML.

	
In the right pane, select XML Document and click OK.

	
In the Create XML file dialog, enter the following:

	
File Name: Enter prefix_name.taglib.xml

	
Directory: Append \src\META-INF to the end of the Directory entry.

	
Copy and paste the code shown in Example 31-4:

Example 31-4 Code for Facelets Tag Library Configuration File

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE facelet-taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN" "http://java.sun.com/dtd/facelet-taglib_1_0.dtd">
<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">

 <namespace>http://xmlns.oracle.adfdemo/acme</namespace>

 <tag>
 <tag-name>tagPane</tag-name>
 <handler-class>
 oracle.adfinternal.view.faces.facelets.rich.RichComponentHandler
 </handler-class>
 </tag>
</facelet-taglib>

	
Replace the namespace and tag-name code shown in bold with code appropriate for your application.

31.3 Developing for the Client-Side

After the JDeveloper workspace and configuration files have been created, you can create and code the client-side JavaScript files. When you have finished with the client-side development, create the server-side files, as described in Section 31.4, "Developing for the Server-Side."

	
Best Practice:

Because JavaScript libraries do not have namespaces, you should create all JavaScript object names for the custom component using the same prefix. You do not need to do this on the server because the server-side Java package names will prevent name collisions. For example, for the tagPane component, the client-side JavaScript object names all have the acme prefix.

Client components hold state for properties that are not defined within the corresponding DOM element. These properties are bound to an associated DOM element using the clientId. The clientId uniquely defines a server-side component within the component tree representing a page. The DOM element holds the clientId within the Id attribute.

	
Note:

Place each JavaScript object in its own separate source file for best practice and consistency.

Developing the client-side component requires creating a JavaScript file for the component, the peer, and the component event.

In addition to the client component, client-side events must be defined. The tagPane component's client-side event is fired and propagated to the server when the user clicks one of the three file types. The client event passed to the server is queued so that the target server-side component can take the appropriate action.

Finally, the custom component requires a client peer. The peer is the component presenter. Peers act as the links between a client component and an associated DOM element. Client peers add client behaviors. A peer must be bound to a component through a registration method.

As with the client component, the associated peer is bound to a DOM element using the component's clientId. There are two types of peers, statefull and stateless.

	
Some complex client components require the peer to hold state and thereby need to use a statefull peer. This type of peer is always bound to a DOM element. Statefull peers are less common than stateless peers.

	
Stateless peers do not hold state and one peer can be bound to multiple components. Stateless peers are the best performance option because they reduce the client footprint. This type of peer performs lazy content delivery to the component.

Peers add behavior to the component by dynamically registering and listening for DOM events. Conceptually, a peer's function is similar to the role of a managed bean. However, the client component is not bound to the peer using EL like the server-side component is bound to a view model (#{backingbean.callback}). The peer registers client component events in the InitSubclass (AdfRichUIPeer.addComponentEventHandlers("click")) callback method. The callback is assumed by using a naming convention of (<Peer>.prototype.HandleComponent<Event>). The peer manages DOM event callbacks where the server-side component handles the linking using EL bindings to managed beans. For more information about client-side architecture, including peers, see Section 4.1, "About Using ADF Faces Architecture."

The following section assumes you have already set up a custom component development template environment. This development environment includes the setting up of application workspace, projects, deployment profiles, and registering schemas. If you have not done so, see Section 31.2, "Setting Up the Workspace and Starter Files."

31.3.1 How to Create a JavaScript File for a Component

Use JDeveloper to create a JavaScript file for the component. In it, you will define the component type for the component.

Before you begin:

It may be helpful to have an understanding of client-side development for custom ADF Faces components. For more information, see Section 31.3, "Developing for the Client-Side."

You must also have set up your workspace and created the configuration files. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create the component JavaScript file:

	
In the Application Navigator, right-click the project and click New.

	
In the New Gallery, expand Web Tier and select HTML.

	
Select JavaScript File and click OK.

	
In the Create JavaScript File dialog, do the following:

	
File Name: Enter the name of the client-side component. For example, for the tagPane component, you might enter AcmeTagPane.js.

	
Tip:

To prevent naming collisions, start the name with the component prefix.

	
Directory: Enter the directory path of the component in a subdirectory under the src directory. For example, for the tagPane component, you might enter adfrichclient-demo-acme\src\oracle\adfdemo\acme\js\component.

	
Open the JavaScript File in the editor and add the component code to define the component type. Example 31-5 shows the code that might be used for the tagPane component.

Example 31-5 tagPane Component JavaScript

AdfUIComponents.createComponentClass(
 "AcmeTagPane",
 {
 componentType:"oracle.adfdemo.acme.TagPane",superclass:AdfUIObject
 }
);

31.3.2 How to Create a Javascript File for an Event

Use JDeveloper to create a JavaScript file for the event. Add code to the JavaScript to perform the functions required when a event is fired, such as a mouse click.

Before you begin:

It may be helpful to have an understanding of client-side development for custom ADF Faces components. For more information, see Section 31.3, "Developing for the Client-Side."

You must also have set up your workspace and created the configuration files. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create the JavaScript for the event:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand Web Tier and select HTML.

	
Select JavaScript File and click OK.

	
In the Create JavaScript File dialog, do the following:

	
File Name: Enter the name of the client-side event. For example, for the tagPane component, you might enter AcmeTagSelectEvent.js.

	
Tip:

To prevent naming collisions, start the name with the component prefix.

	
Directory: Enter the directory path of the event in a subdirectory under the src directory. For example, for the tagPane component, you might enter adf-richclient-demo-acme\src\oracle\adfdemo\acme\js\event.

	
Open the JavaScript File in the editor and add the event code. For an example that shows the event code that might be added for the tagPane component, see Section E.2.1, "Event Code for JavaScript."

31.3.3 How to Create a JavaScript File for a Peer

Use JDeveloper to create a JavaScript file for the peer. Add code to register the peer and bind it to the component.

Before you begin:

It may be helpful to have an understanding of client-side development for custom ADF Faces components. For more information, see Section 31.3, "Developing for the Client-Side."

You should have also already created the JavaScript file for the component. For more information, see Section 31.3.1, "How to Create a JavaScript File for a Component."

To create the peer JavaScript file:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand Web Tier and select HTML.

	
Select JavaScript File and click OK.

	
In the Create JavaScript File dialog, do the following:

	
File Name: Enter the name of the client-side peer. For example, for the tagPane component, you might enter AcmeTagPanePeer.js.

	
Tip:

To prevent naming collisions, start the name with the component prefix.

	
Directory: Enter the directory path of the event in a subdirectory under the src directory. For example, for the tagPane component, you might enter adf-richclient-demo-acme\src\oracle\adfdemo\acme\js\component.

	
Open the JavaScript file in the editor and add code for the peer. In this code, you must create the peer, add event handling with respect to the DOM, and register the peer with the component. Example 31-6 shows the code that might be added for the tagPane component.

Example 31-6 tagPane JavaScript Peer

AdfRichUIPeer.createPeerClass(AdfRichUIPeer, "AcmeTagPanePeer", true);
AcmeTagPanePeer.InitSubclass = function()
{
AdfLogger.LOGGER.logMessage(AdfLogger.FINEST,
 "AcmeTagPanePeer.InitSubclass()");
 AdfRichUIPeer.addComponentEventHandlers(this,
 AdfUIInputEvent.CLICK_EVENT_TYPE);
}

AcmeTagPanePeer.prototype.HandleComponentClick = function(componentEvent)
{
AdfLogger.LOGGER.logMessage(AdfLogger.FINEST, "AcmeTagPanePeer.HandleComponentClick(componentEvent)");
 // if the left mouse button was pressed
if (componentEvent.isLeftButtonPressed())
 {
 // find component for the peer
 var component = this.getComponent();
 AdfAssert.assertPrototype(component, AcmeTagPane);
 // find the native dom element for the click event
var target = componentEvent.getNativeEventTarget();
 if (target && target.tagName == "A")
 {
 AdfLogger.LOGGER.logMessage(AdfLogger.FINEST, "File type element (A)
 found: " + componentEvent.toString());
 var tag = target.firstChild.nodeValue;
 AdfAssert.assertString(tag);

 AdfLogger.LOGGER.logMessage(AdfLogger.FINEST, "tag :" + tag);
 // fire a select event
AcmeTagSelectEvent.queue(component, tag);
 //cancel the native dom onclick to prevent browser actions based on the
 //'#' hyperlink. The event is of type AdfIEUIInputEvent. This event
 //will cancle the native dom event by calling
 //AdfAgent.AGENT.preventDefault(Event)
 componentEvent.cancel();
 }
// event has dom node
 }
}
// Register the peer with the component. This bit of script must
// be invoked after the AcmeTagPane and AcmeTagSelectEvent objects
// are created. This is enforced by the ordering of the script files
// in the
 oracle.asfdemo.acme.faces.resource.AcmeResourceLoader.
 AcmeScriptsResourceLoader.AdfPage.PAGE.getLookAndFeel()
.registerPeerConstructor("oracle.adfdemo.acme.TagPane",
 "AcmeTagPanePeer");

31.3.4 How to Add a Custom Component to a JavaScript Library Feature Configuration File

Now that you have created all the JavaScript files for the component, you can add the component to the adf-js-features.xml file you created.

Before you begin:

It may be helpful to have an understanding of client-side development for custom ADF Faces components. For more information, see Section 31.3, "Developing for the Client-Side."

You should have also already created the JavaScript file for the component. For more information, see Section 31.3.1, "How to Create a JavaScript File for a Component."

To add a custom component to a JavaScript library feature configuration file:

Follow the procedures documented in Section 4.9.1, "How to Create a JavaScript Feature," omitting the steps for creating the XML files, as you have already done so. Example 31-7 shows the adf-js-features.xml file used for the tagPane component.

Example 31-7 adf-js-features.xml File for the tagPane Component

<?xml version="1.0" encoding="UTF-8" ?>
<features xmlns="http://xmlns.oracle.com/adf/faces/feature">
 <feature>
 <feature-name>AcmeTagPane</feature-name>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeTagPane.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/event/AcmeTagSelectEvent.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeTagPanePeer.js
 </feature-class>
 </feature>
</features>

31.4 Developing for the Server-Side

Server-side development involves creating Java classes for:

	
Event listener: This class listens for events and then invokes processing logic to handle the event.

	
Events: You create an event in order to invoke the logic in the associated listener.

	
Component: This class holds the properties that define behavior for the component.

	
Resource bundle: This class holds text strings for the component.

	
Renderer: This class determines how the component will be displayed in the client.

	
Resource loader: This class is required only if your component contains images needed for skinning.

After you have created the classes, add the component class and the renderer class to the faces-config.xml file. Then, complete the configuration files started in Section 31.2, "Setting Up the Workspace and Starter Files."

31.4.1 How to Create a Class for an Event Listener

The ADF Faces event API requires an event listener interface to process the event. The custom component has a dependency with the event and the event has a dependency with an event listener interface. The Java import statements must reflect these dependencies. You also must define the componentType for the component.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side."

You must also have set up your workspace and created the configuration files. For more information, see Section 31.2, "Setting Up the Workspace and Starter Files."

To create the EventListener class:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select Java.

	
Select Java Interface and click OK.

	
In the Create Java Interface File dialog, do the following:

	
Name: Enter a listener name. For example, for the tagPane component, you might enter TagSelectListener.

	
Package: Enter a name for the package. For example, for the tagPane component, you might enter oracle.adfdemo.acme.faces.event.

	
Open the Java file in the editor and add the following:

	
Have the listener extend the javax.faces.event.FacesListener interface.

	
Add an import statement, and import the FacesListener class and any other classes on which your event is dependent.

	
Add a method signature that will process the new event. Even though you have not created the actual event, you can enter it now so that you will not have to enter it later.

Example 31-8 shows the code for the tagPane event listener.

Example 31-8 tagPane Event Listener Java Code

package oracle.adfdemo.acme.faces.event;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.FacesListener;

public interface TagSelectListener
 extends FacesListener
{
 /**
 * <p>Process the {@link TagSelectEvent}.</p>
 * @param event fired on click of a tag link
 * @throws AbortProcessingException error processing {@link TagSelectEvent}
 */
 public void processTagSelect(TagSelectEvent event)
 throws AbortProcessingException;
}

31.4.2 How to Create a Class for an Event

You must create a server-side event that will be the counter representation of the JavaScript event created in Section 31.3.2, "How to Create a Javascript File for an Event." Server-side JSF events are queued by the component during the Apply Request Values lifecycle phase. Events propagate up to the UIViewRoot class after all the phases but the Render Response phase. Queued events are broadcast to the associated component.

The server-side Java component must raise the server-side event, so you must create the event source file first to resolve the compilation dependency.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side."

You should have also already created the event listener class. For more information, see Section 31.4.1, "How to Create a Class for an Event Listener."

To create the server-side event class:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select Java.

	
Select Java Class and click OK.

	
In the Create Java Class File dialog, do the following:

	
Name: Enter an event name. For example, for the tagPane component, you might enter TagSelectEvent.

	
Package: Enter the package name. For example, for the tagPane component, you might enter oracle.adfdemo.acme.faces.event.

	
Extends: Enter a name for the class that the event class extends. This is usually javax.faces.event.FacesEvent.

	
In the Optional Attributes section, select the following:.

	
In the Access Modifiers section, select public.

	
At the bottom, select Constructors from Superclass and Implement Abstract Methods.

Example 31-9 shows the code for the event class.

Example 31-9 tagPane Event Java Code

package oracle.adfdemo.acme.faces.event;
import javax.faces.component.UIComponent;
import javax.faces.event.FacesEvent;
import javax.faces.event.FacesListener;

public class TagSelectEvent
 extends FacesEvent
{
 /**
 * <p>Tag selected on the client.</p>
 */
 private String tag = null;
 /**
 * <p>Overloade constructor passing the <code>source</code>
 * {@link oracle.adfdemo.acme.faces.component.TagPane} component and the
 * selected <code>tag</code>.
 * </p>
 * @param source component firing the event
 * @param tag selected tag link type
 */
 public TagSelectEvent(UIComponent source,
 String tag)
 {
 super(source);
 this.tag = tag;
 }

 /**
 * <p>Returns <code>true</code> if the <code>facesListener</code> is a
 * {@link TagSelectListener}.</p>
 *
 * @param facesListener listener to be evaluated
 * @return <code>true</code>
 * if <code>facesListener</code> instancof {@link TagSelectListener}
 */
 public boolean isAppropriateListener(FacesListener facesListener)
 {
 return (facesListener instanceof TagSelectListener);
 }
 /**
 * <p>Delegates to the <code>processTagSelect</code>
 * method of a <code>FacesListener</code>
 * implementing the {@link TagSelectListener} interface.
 *
 * @param facesListener target listener realizing {@link TagSelectListener}
 */
 public void processListener(FacesListener facesListener)
 {
 ((TagSelectListener) facesListener).processTagSelect(this);
 }
 /**
 * @return the tag that was selected triggering this event
 */
 public String getTag()
 {
 return tag;
 }
}

31.4.3 Creating the Component

A JSF component can be described as a state holder of properties. These properties define behavior for rendering and how a component responds to user interface actions. When you are developing the component class, you identify the types of the needed properties. You also define the base component that it will extend from the MyFaces Trinidad Framework. For example, the tagPane component extends the UIXObject in MyFaces Trinidad.

Most components will have several properties that should be implemented. Some of the properties are inherited from the base class, and some are required for the ADF Faces framework. Other properties are required because they are best practice. And finally, some properties are specific to the functionality of the custom component.

For example, the tagPane component has the properties shown in Table 31-4.

Table 31-4 Component Properties for the tagPane Custom Component

	Origin	Property	Data Type	Description
	
Inherited

	
id

	
String.class

	
The identifier for a component.

	
rendererType

	
String.class

	
The logical identifier registered as a component renderer.

	
rendered

	
Boolean.class

	
True or false flag that determines if the component is rendered.

	
binding

	
ValueExpression.class

	
A binding value expression to store a component instance in a managed bean.

	
ADF Faces Framework

	
clientComponent

	
Boolean.class

	
True or false flag that determines whether a client-side component will be generated.

	
clientListeners

	
ClientListenerSet.class

	
A binding expression that registers a client listener on a component.

	
clientAttributes

	
Set.class

	
A client attribute on a component. The attribute is added both to the server-side JSF component as well as the client-side equivalent.

	
Best Practice

	
inlineStyle

	
String.class

	
A CSS style applied to the root component's class attribute.

	
styleClass

	
String.class

	
A CSS style added to the component's class attribute.

	
visible

	
Boolean.class

	
True or false flag that returns the visibility of the component. The visible property is not the same as the rendered property. The visible attribute affects the CSS style on the CSS root of the component.

	
partialTriggers

	
String[].class

	
The IDs of the components that should trigger a partial page update.

	
Specific to tagPane

	
tags

	
Map.class

	
The map of weighted tags. The key represents the tag name and the value as a number. Map<String.Number>.

	
	
orderBy

	
String.class

	
The order that the tags are rendered. The valid enumerations are alpha and weight.

	
	
tagSelectListener

	
MethodExpression.class

	
The newselectListener method binding expression that expects a single parameter of type oracle.adfdemo.acme.faces.event.TagSelectEvent. This binding will be when the client-side oracle.adfdemo.acme.js.event.AcmeTagSelectEvent.js event is queued from clicking one of the tags.

ADF Faces and MyFaces Trinidad component libraries are defined differently from other libraries. A JSF component has a collection called attributes that provides access to component properties (using the Java simple beans specification) through a MAP interface. The collection also holds value pairs that do not correspond to a component's properties. This concept is called attribute transparency. The JSF runtimes (both MyFaces Trinidad and the JSF reference implementation) implement this concept using the Java reflection API.

My Faces Trinidad defines its own internal collection, which does not use the Java reflection API. This difference means that it is more efficient than the base implementation. The solution in MyFaces Trinidad collects more metadata about the component properties. This metadata declares state properties, which allows the base class to fully implement the StateHolder interface in a base class.

My Faces Trinidad extends the javax.faces.component.UIComponent class with the org.apache.trinidad.component.UIXComponent class, followed by a complete component hierarchy. To ease code maintenance, the framework has a strategy for generating code based on configuration files and templates.

This component strategy is a trade-off in terms of development. It requires more coding for defining properties, but you will not have to code the two methods (saveState, restoreState) for the StateHolder interface for each component.

	
Note:

Do not have your custom component extend from any ADF Faces implementation packages. These implementations are private and might change.

31.4.4 How to Create a Class for a Component

Use JDeveloper to create a Java file for the component. Create a Type bean to hold property information and define a PropertyKey for each property. Then, generate accessors for the private attributes.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side." You should also understand the class you will be creating. For more information, see Section 31.4.3, "Creating the Component."

You must have also created the event class. For more information, see Section 31.4.2, "How to Create a Class for an Event."

To create the component class:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select Java.

	
Select Java Class. Click OK.

	
In the Create Java Class File dialog, do the following:

	
Name: Enter a component name. For example, for the tagPane component, you might enter TagPane.

	
Package: Enter a name for the package. For example, for the tagPane component, you might enter oracle.adfdemo.acme.faces.component.

	
Extends: Enter a name for the class the component class extends. For example, for the tagPane component, you would enter org.apache.myfaces.trinidad.component.UIXObject.

	
In the Optional Attributes section, select the following:.

	
In the Access Modifiers section, select public.

	
At the bottom, select Constructors from Superclass, and Implement Abstract Methods.

	
In the source editor, create a Type bean that contains component property information. This static class attribute shadows an attribute with the same name in the superclass. The type attribute is defined once per component class. Through the Type constructor, you pass a reference to the superclass's Type bean, which copies property information. For example, the tagPane class would contain the following constructor:

static public final FacesBean.Type TYPE = new FacesBean.Type(UIXObject.TYPE);

	
For each property, define a static PropertyKey that is used to access the properties state. Use the TYPE reference to register a new attribute. Specify the property type using the class reference. The component data type should correspond to the component property. There is another overload of the registerKey method that allows you to specify state information. The default assumes the property is persistent. Example 31-10 shows the PropertyKey methods for the tagPane component.

Example 31-10 PropertyKey Definition

 /**
 * <p>Custom CSS applied to the style attribute of the root markup node.</p>
 */
 static public final PropertyKey INLINE_STYLE_KEY =
 TYPE.registerKey("inlineStyle", String.class);
 /**
 * <p>Custom CSS class to the class attribute of the root markup node.</p>
 */
 static public final PropertyKey STYLE_CLASS_KEY =
 TYPE.registerKey("styleClass", String.class);

	
Right-click in the editor and choose Generate Accessors. In the Generate Accessors dialog, click Select All, ensure the Scope is set to Public, and click OK. This allows JDeveloper to generate get and set methods for the private attributes.

Then, remove the private attribute and replace with calls to getProperty(PropertyKey) and getProperty(PropertyKey).

Example 31-11 shows the code after replacing the private attribute.

Example 31-11 Component Properties

 public void setInlineStyle(String newinlineStyle)
 {
 // inlineStyle = newinlineStyle;
 setProperty(INLINE_STYLE_KEY, newinlineStyle);
 }
 /**
 * <p>CSS value applied to the root component's style attribute.</p>
 *
 * @return newinlineStyle CSS custom style text
 */
 public String getInlineStyle()
 {
 // return inlineStyle;
 return (String) getProperty(INLINE_STYLE_KEY);
 }

	
You may need to override any methods to perform specific functions in the component. For example, to allow your component to participate in partial page rendering (PPR), you must override the getBeanType method, as shown in Example 31-12.

Example 31-12

/**
 * <p>Exposes the <code>FacesBean.Type</code> for this class through a protected
 * method. This method is called but the <code>UIComponentBase</code> superclass
 * to setup the components <code>ValueMap</code> which is the container for the
 * <code>attributes</code> collection.</p>
 *
 * @return <code>TagPane.TYPE</code> static property
 */
@Override
protected FacesBean.Type getBeanType()
 {
 return TYPE;
 }

Refer to the ADF Faces JavaDoc for more information about the class your component extends, and the methods you may need to override.

For the tagPane component, the component must act on the event fired from the client component. A reference to the source component is passed as a parameter to the event's constructor.

For the tagPane component, the broadcast method checks if the event passed in using the formal parameter is a TagSelectEvent. If it is, the broadcast method invokes the method expression held by the tagSelectListener attribute.

Most events have an immediate boolean property that specifies the lifecycle phase in which the event should be invoked. If the immediate attribute is true, the event is processed in the Apply Values phase; otherwise, the event is processed in the Invoke Application phase. For more information, see Chapter 5, "Using the JSF Lifecycle with ADF Faces."

Example 31-13 shows the overwritten broadcast method for the tagPane component.

Example 31-13 The broadcast Method in the tagPane Component

 /**
 * @param facesEvent faces event
 * @throws AbortProcessingException exception during processing
 */
 @Override
 public void broadcast(FacesEvent facesEvent)
 throws AbortProcessingException
 {
 // notify the bound TagSelectListener
 if (facesEvent instanceof TagSelectEvent)
 {
 TagSelectEvent event = (TagSelectEvent) facesEvent;
 // utility method found in UIXComponentBase for invoking method event
 // expressions
 broadcastToMethodExpression(event, getTagSelectListener());
 }
 super.broadcast(facesEvent);
 }

31.4.5 How to Add the Component to the faces-config.xml File

After creating the component class, register the component by adding it to the /META-INF/faces-config.xml file. By defining the component in the faces configuration file packaged with the JAR project, you ensure that component is automatically recognized by the JSF runtime during web application startup.

To register the component, enter the component type, which is a logical name used by the applications factory to instantiate an instance of the component. For example, the tagPane component's type is oracle.adfdemo.acme.TagPane. You also need to add the fully qualified class path for the component, for example oracle.adfdemo.acme.faces.component.TagPane.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side." You should also understand the class you will be creating. For more information, see Section 31.4.3, "Creating the Component."

You must have also created the component class. For more information, see Section 31.4.4, "How to Create a Class for a Component."

To register a custom component:

	
In the Application Navigator, double-click the faces-config.xml file.

	
Click the Overview tab and click the Components navigation tab.

	
Click the Add icon and enter the type and class for the component.

	
Optionally, add any attributes, properties, or facets.

Example 31-14 shows the tagPane component defined within a faces-config.xml file.

Example 31-14 tagPane Component Added to the faces-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 </application>

 <component>
 <component-type>oracle.adfdemo.acme.TagPane</component-type>
 <component-class>oracle.adfdemo.acme.faces.component.TagPane
 </component-class>
 </component>

31.4.6 How to Create a Class for a Resource Bundle

Resource bundles are used to store information for the component, such as text for labels and messages, as well as translated text used if the application allows locale switching. Skins also use resource bundles to hold text for components. Because your custom component must use at least the simple skin, you must create at least a resource bundle for that skin. For a custom component, create a Java file for the resource bundle. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Tip:

You can also use a properties file for your resources.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side." You should also understand the class you will be creating. For more information, see Section 31.4.3, "Creating the Component."

You must have also registered the component. For more information, see Section 31.4.5, "How to Add the Component to the faces-config.xml File."

To create the resource bundle class:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select Java.

	
Select Java Class and click OK.

	
In the Create Java Class File dialog, do the following:

	
Name: Enter a resource bundle name. The name should reflect the skin with which it will be used. For example, for the sample component, you might enter AcmeSimpleDesktopBundle.

	
Package: Enter a name for the package. For example, for the sample component, you might enter oracle.adfdemo.acme.faces.resource.

	
Extends: For resource bundles, you must enter java.util.ListResourceBundle.

	
In the Optional Attributes section, select the following:.

	
In the Access Modifiers section, select public.

	
At the bottom, select Constructors from Superclass and Implement Abstract Methods.

	
Add any keys and define the text as needed. For more information about creating resource bundles for skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

Example 31-15 shows the resource bundle code for the tagPane component.

Example 31-15 tagPane Resource Bundle Java Code

package oracle.adfdemo.acme.faces.resource;
import java.util.ListResourceBundle;
/**
 * <p>Holds properties used by the components bundled in the jar project.
 * This bundle is part of the trinidad component skin that is configured
 * in the "/META-INF/trinidad-skins.xml" file. Component Renderers
 * will use the <code>RenderingContext</code> to lookup a key by calling
 * the <code>getTranslatedString(key)</code> method.</p>
 */
public class AcmeSimpleDesktopBundle
 extends ListResourceBundle
{
 /**
 * <p>Returns a two dimensional object array that represents a resource bundle
. * The first
 * element of each pair is the key and the second the value.</p>
 *
 * @return an array of value pairs
 */
 protected Object[][] getContents()
 {
 return new Object[][]
 {
 {"AcmeTagPane_tag_title","Tag Weight: {0}"}
 };
 }
}

	
To register the resource bundle for the simple desktop skin and any other desired skins, double-click the /META-INF/trinidad-skins.xml file to open it and do the following:

	
In the Structure window, select skin-addition.

	
In the Property Inspector, enter a skin ID. For the simple skin ID, enter simple.desktop.

	
In the Structure window, right-click skin-addition and choose Insert inside skin-addition > bundle-name.

	
In the Property Inspector, enter the fully qualified name of the resource bundle just created.

	
Note:

JDeveloper adds translation-source and bundle-name elements as comments. Instead of declaratively creating another bundle-name element, you can manually enter the bundle-name value in the generated element, and then remove the comment tag.

Example 31-16 shows the code for registering the tagPane resource bundle with the simple skin (you will add the style-sheet-name element value in a later step).

Example 31-16 Registering a Resource Bundle with a Skin

<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin-addition>
 <skin-id>simple.desktop</skin-id>
 <style-sheet-name></style-sheet-name>
 <bundle-name>
 oracle.adfdemo.acme.faces.resource.AcmeSimpleDesktopBundle
 </bundle-name>
 </skin-addition>
</skins>

31.4.7 How to Create a Class for a Renderer

ADF Faces components delegate the functionality of the component to a component class, and when the consuming application uses JSPs, the display of the component to a renderer. By default, all tags for ADF Faces combine the associated component class with an HTML renderer, and are part of the HTML render kit. HTML render kits are included with ADF Faces for display on both desktop and PDA devices.

Renderers are qualified in a render kit by family and renderer type. The family is a general categorization for a component, and should be the same as the family defined in the superclass. You do not have to override the getFamily() method in the component because the component will have the method through inheritance.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side." You should also understand the class you will be creating. For more information, see Section 31.4.3, "Creating the Component."

You must have also created the resource bundle. For more information, see Section 31.4.6, "How to Create a Class for a Resource Bundle.":

To create the renderer class:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General then select Java.

	
Select Java Class and click OK.

	
In the Create Java Class File dialog, do the following:

	
Name: Enter a renderer name. For example, for the tagPane component, you might enter TagPaneRenderer.

	
Package: Enter a name for the package. For example, for the tagPane component, you might enter oracle.adfdemo.acme.faces.render.

	
Extends: Enter oracle.adf.view.rich.render.RichRenderer.

	
In the Optional Attributes section, select the following:.

	
In the Access Modifiers section, select public.

	
At the bottom, select Constructors from Superclass and Implement Abstract Methods.

	
Add any needed functionality. For more information about the methods and fields available on the RichRender class, see the ADF Faces JavaDoc.

	
Note:

The skinning functionality provides an API you can use to get the CSS style properties for a given CSS selector during rendering of the component. This API is useful if you need to do conditional rendering based on what styling is set. For more information, see RenderingContext#getStyles and Styles#getSelectorStyleMap in the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html.

	
Note:

If your DOM structure is one that supports stretching, you can have your component automatically stretched to fill up the browser's viewport when that component is the sole visual root component in the component tree and if the document component is configured to allow stretching (for more information, see Section 9.2.5, "How to Configure the document Tag").
To have your component automatically stretch, override RichRenderer.getPrependedInlineStyle() and return getVisualRootStretchingStyles(context, rc, component, client, bean).

This method will return null in cases where your component is not the visual root component and will return a String of styles that would cause a DIV to fill up the browser's viewport if your component is the visual root component.

31.4.8 How to Add the Renderer to the faces-config.xml File

After you create the renderer, register it using the faces-config.xml configuration file. If you want the custom component to work with the other ADF Faces components, you must use the same render kit ID that ADF Faces components use.

	
Tip:

The most granular level that JSF allows for defining a render kit is at the view root.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side."

You must have also created the render kit and renderer. For more information, see Section 31.4.7, "How to Create a Class for a Renderer."

To register the render kit and renderer:

	
In the Application Navigator, double-click the faces-config.xml file to open it in the editor.

	
Select the Overview tab and then select the Render Kits navigation tab.

	
Click the Add icon for the Render Kits and enter oracle.adf.rich for the render kit ID.

	
Register your renderer by clicking the Add icon for Renderers and doing the following:

	
Family: Enter the class that the component extends. For example, for the tagPane component, you would enter org.apache.myfaces.trinidad.Object.

	
Type: Enter the type for the component. For example, for the tagPane component, you would enter oracle.adfdemo.acme.TagPane. This must match the renderer type.

	
Class: Enter the fully qualified class path to the renderer created in Section 31.4.7, "How to Create a Class for a Renderer." For example, for the tagPane component, you would enter oracle.adfdemo.acme.faces.render.TagPaneRenderer.

Example 31-17 shows the registration of the tagPane component render kit and renderer.

Example 31-17 tagPane Renderer Added to the faces-config.xml File

<render-kit>
 <render-kit-id>oracle.adf.rich</render-kit-id>
 <renderer>
 <component-family>org.apache.myfaces.trinidad.Object</component-family>
 <renderer-type>oracle.adfdemo.acme.TagPane</renderer-type>
 <renderer-class>oracle.adfdemo.acme.faces.render.TagPaneRenderer
 </renderer-class>
 </renderer>
</render-kit>

31.4.9 How to Create JSP Tag Properties

To use the component on a JSP page, you create a custom tag that will instantiate the custom component. The JSP tag has nothing to do with rendering because the component's renderer will actually perform that task. In JSF 1.1, the JSP tag would invoke rendering on the component after creating and adding it to the component tree. This caused problems because the non-JSF/JSP tags were writing to the same response writer. The timing of the interleaving did not work out for components that rendered their own child components.

	
Note:

An application that uses Facelets uses a handler to instantiate the component. For more information, see Section 31.2.8, "How to Add a Facelets Tag Library Configuration File."

In JSF 1.2, the target for Java EE 5 (Servlet 2.5, JSP 2.1), most of the JSP problems were fixed. The JSF/JSP component acts as a component factory that is responsible only for creating components. This means that the rendering response phase is divided into two steps. First the component tree is created, and then the tree is rendered, instead of rendering the components as the component tree was being built. This functionality was made possible by insisting that the entire view be represented by JSF components. The non-JSF/JSP generates markup that implicitly becomes a JSF verbatim component.

As a result of changing these mechanics, in JSF 1.2, custom JSP tags extend the javax.faces.webapp.UIComponentELTag class. The encodeBegin, encodeChildren, and encodeEnd methods in the JSP tag have been deprecated. These methods once made corresponding calls to the component. Because the view root in JSF 1.2 does the rendering, all the work can be done in the doStartTag and doEndTag methods. MyFaces Trinidad has its own version of this base class that you will use. The org.apache.myfaces.Trinidad.webapp.UIComponentELTag hooks into the components property bag and makes coding JSPs simpler.

The tag class includes the creation of the component's properties. You must choose tag properties carefully. There are some properties that you can ignore for tag implementation, but they may be required as TLD attributes.

The following three attributes are implemented by superclasses and shared by many components through Java inheritance:

	
id

	
binding

	
rendered

Do not implement the id attribute because the id attribute is implemented by the superclass javax.faces.webapp.UIComponentTagBase. The superclass javax.faces.webapp.UIComponentELTag implements the other two attributes, binding and rendered. Therefore, you do not need to add these to your tag class.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side."

You must have also completed the previous procedures in this section, up to this point.

To add a JSP tag:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General then select Java.

	
Select Java Class and click OK.

	
In the Create Java Class File dialog, do the following:

	
Name: Enter a tag name. For example, for the tagPane component, you might enter TagPaneTag.

	
Package: Enter a name for the package. For example, for the tagPane component, you might enter oracle.adfdemo.acme.faces.taglib.

	
Class: Enter org.apache.myfaces.trinidad.webapp.UIXComponentELTag.

	
In the Optional Attributes section, select the following:.

	
In the Access Modifiers section, select public.

	
At the bottom, select Constructors from Superclass and Implement Abstract Methods.

	
In the source editor, add all the attributes to the file.

Example 31-18 shows the code for the attributes for the TagPaneTag class.

Example 31-18 Attributes in the TagPaneTag Class

public class TagPaneTag
 extends UIXComponentELTag
{
 private ValueExpression _partialTriggers = null;
 private ValueExpression _visible = null;
 private ValueExpression _inlineStyle = null;
 private ValueExpression _styleClass = null;
 private ValueExpression _tags = null;
 private ValueExpression _orderBy = null;
 private MethodExpression _tagSelectListener = null;

	
To declaratively generate the accessor methods for the attributes, right-click the file in the source editor and choose Generate Accessors.

	
In the Generate Accessors dialog, click Select All, set the Scope to public and click OK.

	
Add the render type and component type to the class. The component type will be used by the superclass to instantiate the component using the application's factory method, createComponent(componentType).

Example 31-19 shows the code for the TagPaneTag class, where both the component type and render type are oracle.adfdemo.acme.TagPane.

Example 31-19 Component Type and Render Type for the TagPaneTag Class

 public String getComponentType()
 {
 return COMPONENT_TYPE;
 }
 public String getRendererType()
 {
 return RENDERER_TYPE;
 }

 /**
 * <p>This component's type, <code>oracle.adfdemo.acme.TagPane</code></p>
 */
 static public final String COMPONENT_TYPE =
 "oracle.adfdemo.acme.TagPane";
 /**
 * <p>Logical name given to the registered renderer for this component.</p>
 */
 static public final String RENDERER_TYPE = "oracle.adfdemo.acme.TagPane";

	
Override the setProperties method from the superclass that has a single formal parameter of type FacesBean. This is a MyFaces Trinidad version on the base UIComponentELTag, but it is passed the components state holder instead of the component reference. The job of the setProperties method is to push the JSP tag attribute values to the component.

Example 31-20 shows the overridden method for the tagPaneTag class.

Example 31-20 Overridden setProperties Method in the TagPaneTag Class

 @Override
 protected void setProperties(FacesBean facesBean) {
 super.setProperties(facesBean);

 setStringArrayProperty(facesBean, TagPane.PARTIAL_TRIGGERS_KEY,
 _partialTriggers);
 setProperty(facesBean, TagPane.VISIBLE_KEY, _visible);
 setProperty(facesBean, TagPane.INLINE_STYLE_KEY, _inlineStyle);
 setProperty(facesBean, TagPane.STYLE_CLASS_KEY, _styleClass);
 setProperty(facesBean, TagPane.TAGS_KEY, _tags);
 setProperty(facesBean, TagPane.ORDER_BY_KEY, _orderBy);
 facesBean.setProperty(TagPane.TAG_SELECT_LISTENER_KEY,
 _tagSelectListener);

 }

31.4.10 How to Configure the Tag Library Descriptor

A tag library descriptor (TLD) provides more information on the Java Class to the JSP compilation engine and IDE tools (TLDs are not used in applications that use Facelets).

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side."

You must have also completed the previous procedures in this section, and have specifically associated the tag library with a URI, assigned a version, and given it a name. You should have already performed this step when you created the tag library stub file in Section 31.2.6, "How to Add a JavaServer Pages Tag Library Descriptor File."

To configure the TLD:

	
Open the skeleton TLD file.

	
In the Component Palette, drag and drop a tag element.

	
In the Insert tag dialog, do the following:

	
name: Enter the name of the component. For example, for the tagPane component, you might enter tagPane.

	
body-content: Enter JSP.

	
tag-class: Click the ellipses button and navigate to the components tag class file.

	
Define each of the attributes as follows. For each attribute:

	
In the Structure window, right-click the tag element and choose Insert inside tag > attribute.

	
In the Insert Attribute dialog, enter a value for the name. This should be the same as the name given in the tag class.

	
In the Structure window, select the attribute and in the Property Inspector, set any attribute values.

There are three types of elements to define for each attribute. The <id> element is a simple string. Additionally attributes can be either deferred-value or deferred-method attributes. These allow late (deferred) evaluation of the expression. Now that JSP and JSF share the same EL engine, the compiled EL can be passed directly to the component.

For an example of the TLD for the tagPane component, see Section E.2.2, "Example Tag Library Descriptor File Code."

31.4.11 How to Create a Resource Loader

A resource loader is required only if the custom component has image files needed for the component's skinning. The images files are packaged into the JAR project so that the consumer of the component library will need to include the JAR into the class path of their web project and add a few entries into their web deployment descriptor file (web.xml). The ADF Faces framework uses a resource servlet to deliver images. You need to register this servlet in the web.xml file and then create the resource loader class. A component library requires a resource loader that is auto-loaded by the resource servlet. You create a URL pattern folder mapping for the servlet, which will be used to locate and identify resources within your custom component library.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side."

You must have also completed the previous procedures in this section, up to this point.

To create a resource loader class:

	
In the Application Navigator, right-click the project and select New.

	
In the New Gallery, expand General and select Java.

	
Select Java Class and click OK.

	
In the Create Java Class File dialog, do the following:

	
Name: Enter a resource loader name. For example, for the tagPane component, you might enter AcmeResourceLoader.

	
Package: Enter a name for the package. For example, for the tagPane component, you might enter oracle.adfdemo.acme.faces.resources.

	
Extends: Enter a name for the class that the tag extends. For example, for the tagPane component, you would enter org.apache.myfaces.trinidad.resource.RegexResourceLoader.

	
In the Optional Attributes section, select the following:.

	
In the Access Modifiers section, select public.

	
At the bottom, select Constructors from Superclass and Implement Abstract Methods.

	
In the source editor, register regular expressions that map to more specific resource loaders. For example, you might create an expression that maps image resources located under an images directory.

Example 31-21 shows the expression for the tagPane component that maps the /acme/images/ directory located relative to the /META-INF folder of the custom component JAR. As a result of the registration, the custom component images should be located under /META-INF/acme/images.

Example 31-21 Resource Loader for the tagPane Component

public class AcmeResourceLoader
 extends RegexResourceLoader
{
 public AcmeResourceLoader()
 {
 // any resource in "/acme/" with the following suffixes will be
 // loaded from the base folder of "META-INF".
 // The servlet pattern match "/acme/*" should exist under "META-INF".
 // For example URL : context-root/acme/images/type1.gif
 // map to: META-INF/acme/images/type1.gif
 register("(/.*\\.(jpg|gif|png|jpeg))",
 new ClassLoaderResourceLoader("META-INF"));

	
Register the Libraries Resource Loader by opening the /META-INF/servlet/resources/name.resources file and adding the fully qualified name of the resource loader class bound to the URI pattern.

The MyFaces Trinidad ResourceServlet uses the servlet context to scan across all JAR files within the class path of the web application. The servlet looks at its own URI mappings in the web deployment descriptor to formulate the location of this resource file. This file must contain the fully qualified name of the Java class bound to the URI pattern. During startup, the ResourceServlet will locate and use this file in a manner similar to how FacesServlet locates and uses the faces-config.xml files.

For the tagPane component, the acme.resources file would contain this entry for the composite resource loader:

oracle.adfdemo.acme.faces.resource.AcmeResourceLoader

31.4.12 How to Create a MyFaces Trinidad Cascading Style Sheet

A skin is a style sheet based on the CSS 3.0 syntax specified in one place for an entire application. Instead of inserting a style sheet on each page, you use one or more skins for the entire application. Every component automatically uses the styles as described by the skin. No design time code changes are required.

Oracle ADF Faces provides three skins for use in your applications:

	
blafplus-rich: Defines the default styles for ADF Faces components. This skin extends the blafplus-medium skin.

	
blafplus-medium: Provides a modest amount of styling. This style extends the simple skin.

	
simple: Contains only minimal formatting.

Skins provide more options than setting standard CSS styles and layouts. The skin's CSS file is processed by the skin framework to extract skin properties and icons and register them with the Skin object. Style sheet rules include a style selector, which identifies an element, and a set of style properties, which describes the appearance of the components.

All ADF Faces components use skins. The default skin is the simple skin. Because your custom components will be used in conjunction with other ADF Faces components, you add style selectors to an existing ADF Faces skin. Because the rich and medium skins inherit styles from the simple skin, you can simply add your selectors to the simple skin, and it will be available in all skins. However, you may want to style the selector differently for each skin. You set these styles in the CSS file you created. This file will be merged with other CSS styles in the application in which the component is used.

The text used in a skin is defined in a resource bundle. Create the text by creating a custom resource bundle and declaring the text you want to display. After you create your custom resource bundle, you register it with the skin. Coupling resource bundles with your CSS provides a method to make your components support multiple locales.

The /META-INF/trinidad-skins.xml file you created is used to register your CSS file and your resource bundle with an ADF Faces skin.

Before you begin:

It may be helpful to have an understanding of server-side development for custom ADF Faces components. For more information, see Section 31.4, "Developing for the Server-Side."

You must have also completed the previous procedures in this section, up to this point.

To create styles for your component:

	
Open the CSS file you created in Section 31.2.4, "How to Add a Cascading Style Sheet."

	
Define a root style selector for the component. This style will be associated with the <DIV> element that establishes the component.

	
Add other style selectors as needed. Example 31-22 shows the CSS file for the tagPane component.

Example 31-22 CSS File for the tagPane component

acme|tagPane - root element
acme|tagPane::content - container for the links
acme|tagPane::tag - tag hyperlink

For more information about creating CSS for components to be used by skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Create any needed resource bundle for your component.

	
To register your CSS with an ADF Faces skin, open the /META-INF/trinidad-skins.xml file.

	
In the Structure window, select the skin-addition element, and in the Property Inspector, do the following:

	
skin-id: Enter the ADF Faces skin to which you want to add the custom component selectors. You must register the selectors at least to the simple.desktop skin in order for them to be compatible with ADF Faces components.

	
Note:

If there is a possibility that the component will be used in an Oracle WebCenter application, then you must also register the selectors with the simple.portlet skin. Skins are also available for PDAs (for example, simple.pda). For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
style-sheet-name: Use the dropdown menu to choose Edit, and navigate to the CSS file you created.

	
If you created a resource bundle, add the fully qualified path to the bundle as the value for the <bundle-name> element.

Example 31-23 show the code for the tagPane component.

Example 31-23 tagPane trinidad-skins.xml Code

<?xml version="1.0" encoding="UTF-8" ?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin-addition>
 <skin-id>simple.desktop</skin-id>
 <style-sheet-name>acme/styles/acme-simple-desktop.css</style-sheet-name>
 <bundle-name>oracle.adfdemo.acme.faces.resource.AcmeSimpleDesktopBundle
 </bundle-name>
 </skin-addition>
</skins>

	
Add an image folder for the images used for the custom component. This folder should be under the META-INF directory. Place any images used by the custom component into this folder.

For tagPane, the image folder is /META-INF/acme/images.

31.5 Deploying a Component Library

After creating the custom component library, you must create a deployable artifact that can be used by a web application.

31.5.1 How to Deploy a Component Library

Before you can build a Java archive (JAR) file, update the project's deployment profile by adding the many resources you created.

Before you begin:

You must have created the client-files for the component, as described in Section 31.3, "Developing for the Client-Side," and also the server-side files, as described in Section 31.4, "Developing for the Server-Side."

To create the JAR file for deployment:

	
In the Application Navigator, double-click the project to open the Project Properties dialog.

	
In the left pane, select Compiler.

	
On the right, ensure that all file types to be deployed are listed in the Copy File Types to Output Directory text field.

	
Note:

Some file types, such as .css and .js are not included by default. You will need to add these.

	
In the left pane, select Deployment.

	
On the right, under Deployment Profiles, select the ADF Library JAR file, and click Edit.

	
In the left pane, select JAR Options.

	
Verify the default directory path or enter a new path to store your ADF Library JAR file. Ensure that Include Manifest File is selected, and click OK.

	
To deploy, right-click the project and select Deploy >Project_name from the context menu. By default, the JAR file will be deployed to a deployment directory within the project directory.

31.6 Adding the Custom Component to an Application

After the component has been created and you have created an ADF Library, you can proceed to import it and use it in another application. However, before using it in an application under development, you should use it in a test application to ensure it works as expected. To do so, import the custom library into your test application. For procedures, see the "Adding ADF Library Components into Projects" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

After you add the library, you configure the web deployment descriptor to add a resource servlet mapping. When you use the component and run your test application, you may find you need to debug the component. Therefore, it helps to have logging and assertions enabled for the project.

	
Tip:

Importing a library into an application allows the custom component to appear in JDeveloper's Component Palette.

31.6.1 How to Configure the Web Deployment Descriptor

You configured the component resource loader to assume a servlet resource mapping (for example, for the tagPane component, the mapping was acme). Therefore, you must add the expected resource servlet mappings to the consuming application's web.xml file.

By default, MyFaces Trinidad skinning compresses the CSS classes when it normalizes CSS 3 into CSS 2. Turn off this compression while you are debugging the component. For a production deployment, toggle off this setting.

Before you begin:

It may be helpful to have an understanding of adding a custom component to an application. For more information, see Section 31.6, "Adding the Custom Component to an Application."

To configure the web.xml file:

	
In the Application Navigator, double-click the web.xml file to open it.

	
In the overview editor, select the Servlets navigation tab, and click the Add icon to add a new servlet.

	
In the Servlets table, do the following:

	
Name: Enter resources.

	
Servlet Class: Enter org.apache.myfaces.trinidad.webapp.ResourceServlet.

	
Below the table, click the Servlet Mappings tab, then click the Add icon.

	
Enter a URI prefix. Resources beginning with this prefix will be handled by the servlet. For example, for the tagPane component, you might enter the prefix /acme/*.

	
To disable compression of the style sheet:

	
Select Application.

	
Click the Add icon for Context Initialization Parameters.

	
For Name, enter org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION and for Value enter true.

31.6.2 How to Enable JavaScript Logging and Assertions

JavaScript debugging can be a difficult task. To help debug this dynamic language with no type checking, the ADF Faces JavaScript libraries provide a logging mechanism similar to Java logging. There is also an assertion strategy to make the client scripts more type safe. Both of these features are turned on using configuration parameters in the web.xml file. The logging and assertion routines are browser specific. The client JavaScript libraries will support Gecko, Internet Explorer, Opera, and Safari versions of browser agents. For more information, see Section A.2.3.4, "Resource Debug Mode."

Before you begin:

It may be helpful to have an understanding of adding a custom component to an application. For more information, see Section 31.6, "Adding the Custom Component to an Application."

You must have also configured the deployment descriptor. For more information, see Section 31.6.1, "How to Configure the Web Deployment Descriptor."

To turn on logging and assertion:

	
In the Application Navigator, double-click the web.xml file.

	
In the overview editor, click the Application navigation tab.

	
On the Application page, click the Add icon for the Context Initialization Parameters.

	
Add the following parameter to turn on debugging:

	
Name: org.apache.myfaces.trinidad.resource.DEBUG

	
Value: true

This setting prevents MyFaces Trinidad from setting the cache headers for resources like JavaScript. It prevents the browser from caching resources.

	
Add the following parameter to set the debug level for client side JavaScript.

	
Name: oracle.adf.view.rich.LOGGER_LEVEL

	
Value: ALL

The valid values are OFF, SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST and ALL. The default is OFF.

	
Add the following parameter to turn on client-side script assertions:

	
Name: oracle.adf.view.rich.ASSERT_ENABLED

	
Value: true

This setting works together with logging. Toggling this switch to on will make debug information available to the browser. The assertions and logging are displayed differently, depending on the browser. For Internet Explorer, a child browser window will appear beside the active window. For FireFox with the Fire Bug plugin, the debug information will be available through the Fire Bug console.

31.6.3 How to Add a Custom Component to JSF Pages

Before you begin:

It may be helpful to have an understanding of adding a custom component to an application. For more information, see Section 31.6, "Adding the Custom Component to an Application."

You must have also configured the deployment descriptor. For more information, see Section 31.6.1, "How to Configure the Web Deployment Descriptor."

To add the custom component to a JSF page:

	
Open the jspx page in the source editor.

	
Add the TLD namespace to the root tag.

For example, for the tagPane component, because the tag library's URI is: http://adf-richclient-demo-acme, you would add:

xmlns:acme="http://oracle.adfdemo.acme"

	
Use the Component Palette to add the component to the page. Use the Property Inspector to set any attributes.

	
Tip:

If you are developing the application outside of JDeveloper, then on the page, use TLD short name and the component name. Also, add any values for attributes. For example, for the tagPane, you might add:

<acme:tagPane>
 <visible="true">
 <orderBy="alpha">
 <tagSelectionListener=#(tagBean.onTagSelect)
</tagPane>

31.6.4 What You May Need to Know About Using the tagPane Custom Component

If you wish to create the tagPane component as described in this chapter, and use it in an application, you will need to use backing beans to bind the custom component to the application components.

Example 31-24 shows the backing bean code that is used to bind the tagPane component to the File Explorer application.

Example 31-24 Backing Bean Logic for the tagPane Custom Component

public Map<String, Number> getTags()
 {
 if (_tags == null)
 {
 _tags = new TreeMap<String, Number>();
 List<FileItem> nameToFileItems = feBean.getDataFactory().getFileItemList();
 _doDeepTagCollection(_tags, nameToFileItems);
 }
 return _tags;
 }
 public void onTagSelect(TagSelectEvent event)
 {
 _selectedTag = event.getTag();
 CriteriaFileItemFilter criteria = new CriteriaFileItemFilter(_selectedTag);
 List<FileItem> nameToFileItems = _feBean.getDataFactory().getFileItemList();
 if (_selectedTagFileItemList == null) {
 _selectedTagFileItemList = new ArrayList<FileItem>();
 else {
 _selectedTagFileItemList.clear();
 }
 _doDeepTagSearch(criteria, _selectedTagFileItemList, nameToFileItems);
 _selectedTagResultsTableModel = new SortableModel(_selectedTagFileItemList);

 }

20 Working with Navigation Components

This chapter describes how to use ADF Faces navigation components such as commandButton, navigationPane, and train to provide navigation in web user interfaces.

This chapter includes the following sections:

	
Section 20.1, "About Navigation Components"

	
Section 20.2, "Common Functionality in Navigation Components"

	
Section 20.3, "Using Buttons and Links for Navigation"

	
Section 20.4, "Configuring a Browser's Context Menu for Command Links."

	
Section 20.5, "Using Buttons or Links to Invoke Functionality"

	
Section 20.6, "Using Navigation Items for a Page Hierarchy"

	
Section 20.7, "Using a Menu Model to Create a Page Hierarchy"

	
Section 20.8, "Creating a Simple Navigational Hierarchy"

	
Section 20.9, "Using Train Components to Create Navigation Items for a Multistep Process"

20.1 About Navigation Components

Navigation components allow users to drill down for more information, to navigate to related pages or windows, and to perform specific actions on data and navigate at the same time. The common forms of navigation components are buttons and links, most of which can be used on their own and a few that can only be used in conjunction with other components.

Some components render navigable items such as tabs and breadcrumbs for navigating hierarchical pages and keeping track of the user's current location in the page hierarchy. Two components render links and buttons that you use specifically to guide users through a multistep task. You can also use the command button or commandLink components to fire partial page requests, and to implement popup dialogs and secondary windows (in conjunction with other ADF Faces tags and components). Navigation components can provide navigation with or without server-side actions.

Figure 20-1 shows the different ADF Faces components that are used to provide navigation.

Figure 20-1 ADF Faces Navigation Components

[image: ADF Faces navigation components]

20.1.1 Navigation Components Use Cases and Examples

Typical uses of navigation components are to create buttons and links for allowing users to navigate to another page or window, to perform actions on data, or to perform actions and navigate at the same time. For example, as shown in Figure 20-2, the main page of the File Explorer application contains a commandButton component that you click to refresh the page after making a skin selection, a commandLink component that opens a popup window when clicked, and a goImageLink component that simply redirects to the current view Id in the component tree.

Figure 20-2 File Explorer Application Main Page

[image: Main page of File Explorer application]

At the top right corner of the File Explorer application, there are four global application links. While you can use goLink components to provide the destinations for navigation, the File Explorer application uses the navigationPane and child commandNavigationItem components to provide links that either navigate directly to another location or deliver an action that results in navigation.

The navigationPane component also lets you organize application content in a meaningful structure and provides a navigation method for users to move through different content areas in the application to perform various functions. For example, a simple HR application might have pages that let employees check on company benefits, and pages for administration to view and create employee data, as shown in Figure 20-3. The navigationPane component provides the structure with tabs, bars, or lists for example, and the child commandNavigationItem components provide the navigation links.

Figure 20-3 Page Showing Navigation Tab, Bar and List Links

[image: Navigation tabs, bars and lists on page]

A built-in overflow indicator appears if the application window is not wide enough to display all the navigation items, as shown in Figure 20-4.

Figure 20-4 Overflow Indicator

[image: Overflow Indicator]

The navigationPane component can also be used with a menu model, where the component is bound to the menu model managed bean. For complex page hierarchies, using a menu model is more efficient as the framework generates the correct number of navigation items in the structure on each page and also keeps track of which items are to be displayed as "selected".

The menuBar component can also be bound to a menu model to implement menus and submenus for navigating different levels in a page hierarchy. Most shopping web sites use a system of menus to categorize shopping areas and provide a one-click action to a specific subcategory or item in the hierarchy. As shown in Figure 20-5, the menu bar shows the first level of menu items at a glance. As the mouse cursor hovers over a menu, a submenu of more items display for the user to browse and choose. Typically you would not implement more than three levels of menu items.

Figure 20-5 Page With Three Menus On a Bar with a Submenu Expanded

[image: Page showing menu bar items]

Whether you use navigationPane or menuBar (bound to a menu model) to create your page hierarchy, you can use the breadCrumbs component and a series of child commandNavigationItem components to provide users with a visual indication to their current location in the page hierarchy. As shown in Figure 20-6, the breadCrumbs component displays a line of text links starting from the root page down to the current page, which is always the last link. If you create your page hierarchy using a menu model, you can also bind the breadCrumbs component to the same menu model managed bean and let the framework dynamically generate the links for you.

Figure 20-6 Page Showing Horizontal Breadcrumb Links

[image: Page showing breadcrumb links]

The train component allows users to quickly see where they are in a multistep process and also navigate through that process. The trainButtonBar component provides additional navigation for a train process in the form of Back and Next buttons, as shown in Figure 20-7.

Figure 20-7 ADF Faces Train and TrainButtonBar Demonstration Pages

[image: Train and TrainButtonBar components]

20.1.2 Additional Functionality for Navigation Components

You may find it helpful to understand other ADF Faces features before you implement your navigation components. Additionally, once you have added these components to your page, you may find that you need to add functionality such as accessibility and localization. Following are links to other functionality that navigation components can use.

	
Using parameters in text: You can use the ADF Faces EL format tags if you want the text displayed in a component to contain parameters that will resolve at runtime. For more information, see Section 3.5.2, "How to Use the EL Format Tags."

	
Events: ADF Faces command components deliver ActionEvent events when the components are activated. For more information about how to handle events on the server as well as on the client, see Chapter 6, "Handling Events."

	
Partial page rendering: ADF Faces command components can be used to trigger partial rerendering of components on a page. For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Accessibility: You can make your navigation components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Localization: Instead of directly entering text for labels, you can use property files. These files allow you to manage translation of the text strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
Skins: You can change the look and feel of navigation components by changing the skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

20.2 Common Functionality in Navigation Components

Like any JSF application, an application that uses ADF Faces components contains a set of rules for choosing the next page to display when a button or link (used on its own or within another navigation component) is clicked. You define the rules by adding JSF navigation rules and cases in the application's configuration resource file (faces-config.xml).

JSF uses an outcome string to select the navigation rule to use to perform a page navigation. ADF Faces navigation components that implement javax.faces.component.ActionSource interface generate an ActionEvent event when users activate the component. The JSF NavigationHandler and default ActionListener mechanisms use the outcome string on the activated component to find a match in the set of navigation rules. When JSF locates a match, the corresponding page is selected, and the Render Response phase renders the selected page. For more information about the JSF lifecycle, see Chapter 5, "Using the JSF Lifecycle with ADF Faces". Also note that navigation in an ADF Faces application may use partial page rendering. For more information, see Section 8.4, "Using Partial Page Navigation".

20.3 Using Buttons and Links for Navigation

Buttons and links in ADF Faces include the command components commandButton, commandLink, and commandImageLink, as well as the go components goButton, goImageLink, and goLink. The main difference between command components and go components is that while command components submit requests and fire ActionEvent events, go components navigate directly to another location without delivering an action. Visually, the rendered command and go components look the same, as shown in Figure 20-8.

Figure 20-8 Command Components and Go Components

[image: Command and go buttons. Command and go links.]

	
Tip:

ADF Faces also provides specialized command and go components that are used inside menus and toolbars only. For more information, see Chapter 16, "Using Menus, Toolbars, and Toolboxes".

The commandImageLink and goImageLink components render images as links, along with optional text, as shown in Figure 20-9. You can determine the position of the image relative to the optional text by setting a value for the iconPosition attribute. In addition, you can set different icons for when the user hovers over an icon, or the icon is depressed or disabled.

Figure 20-9 Command Image Link and Go Image Link

[image: commandImage link and goImageLink]

ADF Faces also includes the commandToolbarButton component that provides additional functionality, such as a popup facet that can open popup menus from a toolbar button. For more information, see Section 16.3, "Using Toolbars".

The behavior of command and link components differ when you output your page in simplified mode for printing or email. The following link components appear in print and email modes although they cannot be invoked:

	
af:commandImageLink

	
af:commandLink

	
af:goImageLink

	
af:goLink

The following command and go button components do not render when you output a page in simplified mode for printing or email:

	
af:commandButton

	
af:commandToolbarButton

	
af:goButton

For more information about email and print output modes, see Chapter 34, "Using Different Output Modes."

You can configure your application to allow end users to invoke a browser's context menu when they right-click a command component that renders a link. End users who right-click the link rendered by a command component may use a browser's context menu to invoke an action that you do not want them to invoke (for example, open the link in a new window). For more information, see Section 20.4, "Configuring a Browser's Context Menu for Command Links."

You can show a warning message to users if the page that they attempt to navigate away from contains uncommitted data. Add the checkUncommittedDataBehavior component as a child to command components that have their immediate attribute set to true. If the user chooses not to navigate, the client event will be cancelled. You can add the checkUncommittedDataBehavior component as a child to the following components:

	
af:commandButton

	
af:commandLink

	
af:commandImageLink

	
af:commandToolbarButton

	
af:activeCommandToolbarButton

For the warning message to appear to end users, the page must contain uncommitted data and you must have also set the document tag's uncommittedDataWarning attribute to on, as described in Section 9.2.5, "How to Configure the document Tag."

	
Note:

A warning message may also appear for uncommitted data if you set the document tag's uncommittedDataWarning tag to on and your page renders an ADF Controller bounded task flow that is configured as critical, as described in the "How to Enable Implicit Save Points" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

20.3.1 How to Use Command Buttons and Command Links

Typically, you use commandButton, commandLink, and commandImageLink components to perform page navigation and to execute any server-side processing.

Before you begin:

It may help to understand how command component's attributes affect functionality. For more information, see Section 20.3, "Using Buttons and Links for Navigation."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create and use command components:

	
Create a commandButton component by dragging and dropping a Button from the General Controls panel of the Component Palette to the JSF page. Create a commandLink component by dragging and dropping a Link. Create a commandImageLink component by dragging and dropping a Link (Image).

	
In the Property Inspector, expand the Common section and set the text attribute.

	
Tip:

Alternatively, you can use the textAndAccessKey attribute to provide a single value that defines the label along with the access key to use for the button or link. For information about how to define access keys, see Section 30.3.4, "How to Define Access Keys for an ADF Faces Component"

	
Set the icon attribute to the URI of the image file you want to use inside a commandButton or commandImageLink component (this is not supported for commandLink). For a commandImageLink component, you can also set the hoverIcon, disabledIcon, and depressedIcon attributes.

	
Tip:

You can use either the text attribute (or textAndAccessKey attribute) or the icon attribute, or both.

	
Set the action attribute to an outcome string or to a method expression that refers to a backing bean action method that returns a logical outcome String. For more information about configuring the navigation between pages, see Section 3.3, "Defining Page Flows".

The default JSF ActionListener mechanism uses the outcome string to select the appropriate JSF navigation rule, and tells the JSF NavigationHandler what page to use for the Render Response phase. For more information about using managed bean methods to open dialogs, see Chapter 15, "Using Popup Dialogs, Menus, and Windows". For more information about outcome strings and navigation in JSF applications, see the Java EE 6 tutorial at http://download.oracle.com/javaee/index.html.

	
Tip:

The actionListener attribute can also be used for navigation when bound to a handler that returns an outcome. Usually, you should use this attribute only to handle user interface logic and not navigation.
For example, in the File Explorer application, the Search button in Search panel does not navigate anywhere. Instead, it is used to perform a search. It has the following value for its actionListener attribute:

actionListener="#{explorer.navigatorManager.searchNavigator.
 searchForFileItem}"

This expression evaluates to a method that actually performs the search.

	
Expand the Behavior section and set the disabled attribute to true if you want to show the component as a non-interactive button or link.

	
Set the partialSubmit attribute to true to fire a partial page request each time the component is activated. For more information, see Section 8.2, "Enabling Partial Page Rendering Declaratively".

	
Set the immediate attribute to true if you want to skip the Process Validations and Update Model phases. The component's action listeners (if any), and the default JSF ActionListener handler are executed at the end of the Apply Request Values phase of the JSF lifecycle. For more information, see Section 5.2, "Using the Immediate Attribute".

	
Optionally, if you set the immediate attribute to true as described in step 7, you can add the af:checkUncommittedDataBehavior component as a child to the command component to display a warning message to the user if the page contains uncommitted data. Drag Check Uncommitted Data Behavior from the Behavior group in the Operations panel of the Component Palette and drop it as a child of the command component you added in step 1.

	
Note:

You must have also set the document tag's uncommittedDataWarning attribute to on, as described in Section 9.2.5, "How to Configure the document Tag."

Command buttons and links can also be used to open secondary windows through these attributes: useWindow, windowHeight, windowWidth, launchListener, and returnListener. For information about opening secondary windows, see the "Using the ADF Faces Dialog Framework" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

To use command buttons and links to invoke popups without writing any JavaScript code, see Section 15.3, "Declaratively Invoking a Popup."

20.3.2 How to Use Go Buttons and Go Links

You use the goButton, goImageLink, and goLink components to perform direct page navigation, without delivering an ActionEvent event.

Before you begin:

It may help to understand how the go component's attributes affect functionality. For more information, see Section 20.3, "Using Buttons and Links for Navigation."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create and use go buttons and go links:

	
Create a goButton component by dragging and dropping a Button (Go) from the General Controls panel of the Component Palette to the JSF page. Create a goLink component by dragging and dropping a Link (Go). Create a goImageLink component by dragging and dropping an Image (Go).

	
In the Property Inspector, expand the Common section and set the text attribute.

	
Tip:

Instead, you can use the textAndAccessKey attribute to provide a single value that defines the label and the access key to use for the button or link. For information about how to define access keys, see Section 30.3.4, "How to Define Access Keys for an ADF Faces Component"

	
Set the icon attribute to the URI of the image file you want to use inside a goButton or goImageLink component (not supported for goLink). For a goImageLink component, you can also set the hoverIcon, disabledIcon, depressedIcon, and iconPosition attributes.

The iconPosition attribute supports two values: leading (default) and trailing. Set to leading to render the icon before the text. Set to trailing to render the icon after the text.

	
Tip:

You can use either the text attribute (or textAndAccessKey attribute) or the icon attribute, or both.

	
Set the destination attribute to the URI of the page to which the link should navigate.

For example, in the File Explorer application, the goLink component in the popups.jspx file has the following set for its destination attribute:

destination="http://www.oracle.com"

	
Set the targetFrame attribute to specify where the new page should display. Acceptable values are:

	
_blank: The link opens the document in a new window.

	
_parent: The link opens the document in the window of the parent. For example, if the link appeared in a dialog, the resulting page would render in the parent window.

	
_self: The link opens the document in the same page or region.

	
_top: The link opens the document in a full window, replacing the entire page.

	
Expand the Behavior section and set the disabled attribute to true if you want to show the component as a non-interactive button or link.

20.3.3 What You May Need to Know About Using Partial Page Navigation

As described in Section 8.4, "Using Partial Page Navigation," you can configure an ADF Faces application to have navigation triggered through a partial page rendering request. When partial page navigation is turned on, partial page navigation for GET requests is automatically supported on the following components:

	
af:goButton

	
af:goImageLink

	
af:goLink

	
af:goMenuItem (used within af:menu and af:menuBar)

	
af:commandNavigationItem (used within af:navigationPane)

The only requirement is that the destination attribute on a supported component contain a relative URL of the application context root and begin with "/", such as "/faces/myPage.jspx", where faces is the URL mapping to the application's servlet defined in web.xml and myPage.jspx is the page to navigate. Because partial page navigation makes use of the hash ('#') portion of the URL, you cannot use the hash portion for navigation to anchors within a page.

If the targetFrame attribute on a supported component is set to open the link in a new window, the framework automatically reverts to full page navigation.

20.4 Configuring a Browser's Context Menu for Command Links

The command components that render links at runtime allow your end users to invoke actions. In addition you can configure your application so that the ADF Faces framework allows the end user´s browser to render a context menu for these command components. The context menu may present menu options that invoke a different action (for example, open a link in a new window) to that specified by the command component. The components for which you can configure this behavior include the following:

	
af:commandLink

	
af:commandImageLink

	
af:commandMenuItem (used within an af:menuBar component)

	
af:commandNavigationItem if no value is specified for the destination attribute, the ADF Faces framework enables the browser context menu in the following scenarios:

	
For the two anchors that af:commandNavigationItem renders when inside an af:train component

	
When an af:commandNavigationItem renders inside an af:breadCrumbs component

	
When an af:commandNavigationItem renders inside an af:navigationPane component (any hint--tabs, bar, buttons, choice, list)

	
af:panelTabbed: the tabs and overflow indicators

	
af:panelAccordion: the disclosure link and overflow indicators

You cannot configure this behavior for components that specify a destination and do not invoke an action. Examples of these components include the following:

	
af:goLink

	
af:goImageLink

	
af:commandNavigationItem where you specify a value for the destination attribute and no value for the action attribute

20.4.1 How to Configure a Browser's Context Menu for Command Links

Set the value of the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION context parameter in your application's web.xml file to no.

Before you begin:

It may help to understand what command components you can configure this functionality for. For more information, Section 20.4, "Configuring a Browser's Context Menu for Command Links."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To configure a browser's context menu for a command link:

	
In the Application Navigator, double-click web.xml to open the file.

By default, JDeveloper opens the web.xml file in the Overview editor.

	
In the Context Initialization Parameters table, add an entry for the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION parameter and set it to no.

	
Save and close the web.xml file.

20.4.2 What Happens When You Configure a Browser's Context Menu for Command Links

If you followed the procedure outlined in Section 20.4.1, "How to Configure a Browser's Context Menu for Command Links," JDeveloper writes a value to the web.xml file, as shown in Example 20-1.

Example 20-1 Context Parameter to Configure a Browser's Context Menu

<context-param>
 <param-name>oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION</param-name>
 <param-value>no</param-value>
 </context-param>

For more information about ADF Faces configuration options in your application's web.xml file, see Section A.2, "Configuration in web.xml."

At runtime, end users can invoke a browser's context menu by right-clicking on the links rendered by certain components, as described in Section 20.4, "Configuring a Browser's Context Menu for Command Links."

20.5 Using Buttons or Links to Invoke Functionality

In addition to using command components for navigation, ADF Faces also includes listener tags that you can use in conjunction with command components to have specific functionality execute when the action event fires. Listener tags included with ADF Faces include:

	
exportCollectionActionListener: Use to export data from the table, tree and treeTable components to an Excel spreadsheet. For more information, see Section 12.10, "Exporting Data from Table, Tree, or Tree Table".

	
fileDownloadActionListener: Use to initiate a file download from the server to the local hard drive. For more information, see Section 20.5.1, "How to Use a Command Component to Download Files".

	
resetListener: Use to reset submitted values. However, no data model states will be altered. For more information, see Section 20.5.2, "How to Use a Command Component to Reset Input Fields". If the input components render in a popup, see Section 15.7, "Resetting Input Fields in a Popup."

If you want to reset the input components to their previous state, which was partially or fully submitted successfully to the server, then you can use a reset button. For more information, see Section 11.2.3, "How to Add a Reset Button to a Form".

20.5.1 How to Use a Command Component to Download Files

You can create a way for users to download files by creating an action component such as a command button and associating it with a fileDownloadActionListener tag. When the user selects or clicks the action component, a popup dialog displays that allows the user to select different download options, as shown in Figure 20-10.

Figure 20-10 File Download Dialog

[image: File download dialog]

Use the fileDownloadActionListener tag to allow an action component (for example, a command button, command link, or menu item) to send the contents of a file to an end user. You can also specify the content type or file name when you use this tag. Any value that you set for the action component's partialSubmit attribute is ignored at render time if you use the fileDownloadActionListener tag. The fileDownloadActionListener tag determines what type of submit the action component invokes based on the context. If you use the fileDownloadActionListener tag within a JSF portlet in your application, the action component invokes a partial submit (partialSubmit="true"). If you use the fileDownloadActionListener tag within an application that uses the ADF Faces servlet, the action component invokes a full submit (partialSubmit="false").

	
Tip:

For information about uploading a file to the server, see Section 11.9, "Using File Upload".

After the content has been sent to the browser, how that content is displayed or saved depends on the option that the end user selects in the dialog. If the end user selects the Open with option, the application associated with that file type will be invoked to display the content. For example, a text file may result in the Notepad application being started. If the end user selects the Save to Disk option, depending on the browser, a popup dialog may appear to select a file name and a location in which to store the content.

Example 20-2 shows the tags of a command button with the fileDownloadActionListener tag to download the file named hello.txt to the user.

Example 20-2 File Download Using Command Button and fileDownloadActionListener Tag

<af:commandButton value="Say Hello">
 <af:fileDownloadActionListener filename="hello.txt"
 contentType="text/plain; charset=utf-8"
 method="#{bean.sayHello}"/>
</af:commandButton>

Example 20-3 shows a managed bean method used to process the file download.

Example 20-3 Managed Bean Method Used to Process File Download

public void sayHello(FacesContext context, OutputStream out) throws IOException{
 OutputStreamWriter w = new OutputStreamWriter(out, "UTF-8");
 w.write("Hi there!");
 . . .
}

If you use the fileDownloadActionListener tag from within a JSF portlet in your application, you can optionally add the parameters described in Table 20-1 to the web.xml file of your application to configure the size and temporary location options for the file during download.

Table 20-1 Parameters to Add to web.xml File to Use fileDownloadActionListener in a Portlet

	Parameter name	Data type	Description
	
oracle.adf.view.rich.portal.FILE_DOWNLOAD_MAX_MEM

	
Integer

	
Specify the maximum size in kilobytes of the file that the fileDownloadActionListener tag can store during a session. If the file exceeds the maximum size you specify, the application attempts to save the file to the hard drive in the location you specify for FILE_DOWNLOAD_TEMP_DIR.

If you do not specify a value for this parameter in the web.xml file, it defaults to 100 kilobytes.

	
oracle.adf.view.rich.portal.FILE_DOWNLOAD_MAX_DISK_SPACE

	
Integer

	
Specify the maximum size in kilobytes of the file that the fileDownloadActionListener tag can download. If a file's size exceeds this value, an exception occurs and a log message is logged to the server's log file.

If you do not specify a value for this parameter in the web.xml file, it defaults to 2000.

	
oracle.adf.view.rich.portal.FILE_DOWNLOAD_TEMP_DIR

	
String

	
Specify the temporary location where you store files during download. If you do not specify a value, it defaults to the directory specified by java.io.tempDir.

For more information about configuring your web.xml file, Section A.2, "Configuration in web.xml." For information about how to create a JSF portlet, see the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

Before you begin:

It may help to understand how command component's attributes affect functionality. For more information, see Section 20.5, "Using Buttons or Links to Invoke Functionality."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create a file download mechanism:

	
From the Component Palette, drag and drop any action component to your page (for more information about action components, see Section 20.3, "Using Buttons and Links for Navigation").

	
Expand the Operations panel of the Component Palette. From the Listeners group in the panel, and drag and drop the File Download Action Listener tag as a child to the action component.

	
In the Property Inspector set the following attributes:

	
contentType: Specify the MIME type of the file, for example text/plain, text/csv, application/pdf, and so on.

	
filename: Specify the proposed file name for the object. When the file name is specified, a Save File dialog will typically be displayed, though this is ultimately up to the browser. If the name is not specified, the content will typically be displayed inline in the browser, if possible.

	
method: Specify the method that will be used to download the file contents. The method takes two arguments, a FacesContext object and an OutputStream object. The OutputStream object will be automatically closed, so the sole responsibility of this method is to write all bytes to the OutputStream object.

For example, the code for a command button would be similar to the following:

<af:commandButton text="Load File">
 <af:fileDownloadActionListener contentType="text/plain"
 filename="MyFile.txt"
 method="#(mybean.LoadMyFile"/>
</af:commandButton>

20.5.2 How to Use a Command Component to Reset Input Fields

You can use the resetListener tag in conjunction with a command component to reset input values. When the end user invokes the command component, it resets all input values to null or empty. If you want to reset the input components to their previous state, which was partially or fully submitted successfully to the server, then you should use a reset button. For more information, see Section 11.2.3, "How to Add a Reset Button to a Form".

If you use the resetListener tag to reset input components that render in a popup, you also need to set a value for the popup component's resetEditableValues property. For more information about this use case, see Section 15.7, "Resetting Input Fields in a Popup."

Before you begin:

It may help to understand how command component's attributes affect functionality. For more information, see Section 20.5, "Using Buttons or Links to Invoke Functionality."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To use the reset listener tag:

	
Create a command component as documented in Section 20.3, "Using Buttons and Links for Navigation".

	
Drag and drop a Reset Listener from the Listeners group of Operations panel of the Component Palette as a child to the command component that you created in step 1.

JDeveloper displays the Insert Reset Listener dialog.

	
Specify the type of event that the resetListener tag activates in response to. For example, enter action so that the resetListener tag responds to an actionEvent returned by the command component's actionListener attribute.

Click Help in the Insert Reset Listener dialog to view a complete list of supported values.

20.6 Using Navigation Items for a Page Hierarchy

	
Note:

If your application uses the Fusion technology stack with the ADF Controller, then you should use ADF task flows and an XMLMenuModel implementation to create the navigation system for your application page hierarchy. For details, see the "Creating a Page Hierarchy Using Task Flows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

An application may consist of pages that are related and organized in a tree-like hierarchy, where users gain access to specific information on a page by drilling down a path of links. For example, Figure 20-11 shows a simple page hierarchy with three levels of nodes under the top-level node, Home. The top-level node represents the root parent page; the first-level nodes, Benefits and Employee Data, represent parent pages that contain general information for second-level child nodes (such as Insurance and View Employee) that contain more specific information; the Insurance node is also a parent node, which contains general information for third-level child nodes, Health and Dental. Each node in a page hierarchy (except the root Home node) can be a parent and a child node at the same time, and each node in a page hierarchy corresponds to a page.

Figure 20-11 Benefits and Employee Page Hierarchy

[image: Hierarchical page tree. 2 level 1 nodes, 1 global node.]

Navigation in a page hierarchy follows the parent-child links. For example, to view Health information, the user would start drilling from the Benefits page, then move to the Insurance page where two choices are presented, one of which is Health. The path of selected links starting from Home and ending at Health is known as the focus path in the tree.

In addition to direct parent-child navigation, some cross-level or cross-parent navigation is also possible. For example, from the Dental page, users can jump to the Paid Time Off page on the second level, and to the Benefits page or the Employee Data page on the first level.

As shown in Figure 20-11, the Help node, which is not linked to any other node in the hierarchy but is on the same level as the top-level Home node, is a global node. Global nodes represent global pages (such as a Help page) that can be accessed from any page in the hierarchy.

Typical widgets used in a web user interface for navigating a page hierarchy are tabs, bars, lists, and global links, all of which can be created by using the navigationPane component. Figure 20-12 shows an example of how the hierarchy as illustrated in Figure 20-11 could be rendered using the navigationPane and other components.

Figure 20-12 Rendered Benefits and Employee Data Pages

[image: Hiearchical menu components in a page]

In general, tabs are used as first-level nodes, as shown in Figure 20-12, where there are tabs for the Benefits and Employee Data pages. Second-level nodes, such as Insurance and Paid Time Off are usually rendered as bars, and third-level nodes, such as Health and Dental are usually rendered as lists. However, you may also use tabs for both first- and second-level nodes. Global links (which represent global nodes) are rendered as text links. In Figure 20-12, the Home and Help global links are rendered as text links.

One navigationPane component corresponds to one level of nodes, whether they are first-, second-, or third-level nodes, or global nodes. Regardless of the type of items the navigationPane component is configured to render for a level, you always use the commandNavigationItem component to represent the items within the level.

The navigationPane component simply renders tabs, bars, lists, and global links for navigation. To achieve the positioning and visual styling of the page background, as shown in Figure 20-17 and Figure 20-18, you use the decorativeBox component as the parent to the first level navigationPane component. The decorativeBox component uses themes and skinning keys to control the borders and colors of its different facets. For example, if you use the default theme, the decorativeBox component body is white and the border is blue, and the top-left corner is rounded. If you use the medium theme, the body is a medium blue. For information about using themes and skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins".

	
Tip:

Because creating a page hierarchy requires that each page in the hierarchy use the same layout and look and feel, consider using a template to determine where the navigation components should be placed and how they should be styled. For more information, see Section 10.4, "Using Page Templates".

On each page in simple hierarchies, you first use a series of navigationPane components to represent each level of the hierarchy. Then you add commandNavigationItem components as direct children of the navigationPane components for each of the links at each level. For example, to create the Health insurance page as shown in Figure 20-12, you would first use a navigationPane component for each level displayed on the page, in this case it would be four: one for the global links, one for the first-level nodes, one for the second-level nodes, and one for the third-level nodes. You would then need to add commandNavigationItem components as children to each of the navigationPane components to represent the individual links (for example, you would add two commandNavigationItem child components to the third-level navigationPane component to represent the two third-level list items). If instead you were creating the Benefits page, as shown in Figure 20-13, you would add only three navigationPane components (one each for the global, first, and second levels), and then add just the commandNavigationItem components for the links seen from this page.

Figure 20-13 First-Level Page

[image: Tabs navigate to first level page]

As you can see, with large page hierarchies, this process can be very time consuming and error prone. Instead of creating each of the separate commandNavigationItem components on each page, for larger hierarchies you can use an XMLMenuModel implementation and managed beans to dynamically generate the navigation items on the pages. The XMLMenuModel class, in conjunction with a metadata file, contains all the information for generating the appropriate number of hierarchical levels on each page, and the navigation items that belong to each level.

Then instead of using multiple commandNavigationItem components within each navigationPane component and marking the current items as selected on each page, you declaratively bind each navigationPane component to the same XMLMenuModel implementation, and use one commandNavigationItem component in the nodeStamp facet to provide the navigation items. The commandNavigationItem component acts as a stamp for navigationPane component, stamping out navigation items for nodes (at every level) held in the XMLMenuModel object.

The menuBar component can also be used with the XMLMenuModel implementation to stamp out menu items for navigating a page hierarchy.

	
Note:

If you want to create menus that can be used to cause some sort of change in an application (for example, a File menu that contains the commands Open and Delete), then see Chapter 16, "Using Menus, Toolbars, and Toolboxes".

On any page, to show the user's current position in relation to the entire page hierarchy, you use the breadCrumbs component with a series of commandNavigationItem components or one commandNavigationItem component as a nodeStamp, to provide a path of links from the current page back to the root page (that is, the current nodes in the focus path).

For more information about creating a navigational hierarchy using the XMLMenuModel, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy". For more information about manually creating a navigational hierarchy, see Section 20.8, "Creating a Simple Navigational Hierarchy".

20.6.1 How to Create Navigation Cases for a Page Hierarchy

Whether you use a menu model to create the navigation items for a page hierarchy or manually create the navigation items yourself, the JSF navigation model, through the default ActionListener mechanism, is used to choose the page to navigate to when users select a navigation item.

Before you begin:

It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create navigation cases for a page hierarchy:

	
In the Application Navigator, double-click faces-config.xml. By default, this file is located in the project's Web Content/WEB-INF folder.

	
Create one global JSF navigation rule that has the navigation cases for all the nodes in the page hierarchy.

For example, the page hierarchy shown in Figure 20-11 has 10 nodes, including the global Help node. Thus, you would create 10 navigation cases within one global navigation rule in the faces-config.xml file, as shown in Example 20-4.

For each navigation case, specify a unique outcome string, and the path to the JSF page that should be displayed when the navigation system returns an outcome value that matches the specified string.

Example 20-4 Global Navigation Rule for a Page Hierarchy in faces-config.xml

<navigation-rule>
 <navigation-case>
 <from-outcome>goHome</from-outcome>
 <to-view-id>/home.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHelp</from-outcome>
 <to-view-id>/globalhelp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goEmp</from-outcome>
 <to-view-id>/empdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goBene</from-outcome>
 <to-view-id>/benefits.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goIns</from-outcome>
 <to-view-id>/insurance.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goPto</from-outcome>
 <to-view-id>/pto.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goView</from-outcome>
 <to-view-id>/viewdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goCreate</from-outcome>
 <to-view-id>/createemp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHealth</from-outcome>
 <to-view-id>/health.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goDental</from-outcome>
 <to-view-id>/dental.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

For more information about creating navigation cases in JDeveloper, see Section 3.3, "Defining Page Flows".

20.7 Using a Menu Model to Create a Page Hierarchy

	
Note:

If your application uses the Fusion technology stack or the ADF Controller, then you should use ADF task flows and an XMLMenuModel implementation to create the navigation system for your application page hierarchy. For details, see the "Creating a Page Hierarchy Using Task Flows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Section 20.6, "Using Navigation Items for a Page Hierarchy" describes how you can create navigation items for a very simple page hierarchy using navigationPane components with multiple commandNavigationItem children components. Using the same method for more complex page hierarchies would be time consuming and error prone. It is inefficient and tedious to manually insert and configure individual commandNavigationItem components within navigationPane and breadCrumbs components on several JSF pages to create all the available items for enabling navigation. It is also difficult to maintain the proper selected status of each item, and to deduce and keep track of the breadcrumb links from the current page back to the root page.

For more complex page hierarchies (and even for simple page hierarchies), a more efficient method of creating a navigation system is to use a menu model. A menu model is a special kind of tree model. A tree model is a collection of rows indexed by row keys. In a tree, the current row can contain child rows (for more information about a tree model, see Section 12.6, "Displaying Data in Trees"). A menu model is a tree model that knows how to retrieve the rowKey of the node that has the current focus (the focus node). The menu model has no special knowledge of page navigation and places no requirements on the nodes that go into the tree.

The XMLMenuModel class creates a menu model from a navigation tree model. But XMLMenuModel class has additional methods that enable you to define the hierarchical tree of navigation in XML metadata. Instead of needing to create Java classes and configuring many managed beans to define and create the menu model (as you would if you used one of the other ADF Faces menu model classes), you create one or more XMLMenuModel metadata files that contain all the node information needed for the XMLMenuModel class to create the menu model.

	
Tip:

Do not confuse the navigationPane component with the panelTabbed component. You use the panelTabbed component to display multiple tabbed content areas that can be hidden and displayed (see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels"). However, the panelTabbed component cannot bind to any navigational model and the whole content must be available from within the page, so it has limited applicability.

To create a page hierarchy using a menu model, you do the following:

	
Create the JSF navigation rule and navigation cases for the page hierarchy. See Section 20.6.1, "How to Create Navigation Cases for a Page Hierarchy".

	
Create the XMLMenuModel metadata. See Section 20.7.1, "How to Create the Menu Model Metadata".

	
Configure the managed bean for the XMLMenuModel class. The application uses the managed bean to build the hierarchy. This configuration is automatically done for you when you use the Create ADF Menu Model dialog in JDeveloper to create the XMLMenuModel metadata file. See Section 20.7.2, "What Happens When You Use the Create ADF Menu Model Wizard".

	
Create a JSF page for each of the hierarchical nodes (including any global nodes).

	
Tip:

Typically, you would use a page template that contains a facet for each level of items (including global items and breadcrumbs) to create each JSF page. For example, the navigationPane component representing global items might be wrapped in a facet named navigationGlobal, and the navigationPane component representing first level tabs might be wrapped in a navigation1 facet. For information about creating page templates, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components".

	
On each page, bind the navigationPane and breadCrumbs components to the XMLMenuModel class. See Section 20.7.3, "How to Bind the navigationPane Component to the Menu Model" and Section 20.7.4, "How to Use the breadCrumbs Component with a Menu Model". To bind the menuBar component, see Section 20.7.5, "How to Use the menuBar Component with a Menu Model".

20.7.1 How to Create the Menu Model Metadata

The XMLMenuModel metadata file is a representation of a navigation menu for a page hierarchy in XML format. You can use one or more XMLMenuModel metadata files to represent an entire page hierarchy. In an XMLMenuModel metadata file, the page hierarchy is described within the menu element, which is the root element of the file. Every XMLMenuModel metadata file is required to have a menu element and only one menu element is allowed in each file.

The other elements in the XMLMenuModel metadata file or hierarchy can be made up of item nodes, group nodes, and shared nodes. Item nodes represent navigable nodes (or pages) in the hierarchy. For example, say you wanted to build the hierarchy as depicted in Figure 20-14.

Figure 20-14 Sample Page Hierarchy

[image: Hierarchy for a navigation menu]

If you wanted each node in the hierarchy to have its own page to which a user can navigate, then in the metadata file you would create an item node for each page. You nest children nodes inside a parent node to create the hierarchy. However, say you did not need a page for the Employee Data node, but instead wanted the user to navigate directly to the View Employee page. You would then use a group node to represent the Employee Data page and use the group node's idref attribute to reference the page that opens (the View Employee page) when an end user clicks the Employee Data tab. The group node allows you to retain the hierarchy without needing to create pages for nodes that are simply aggregates for their children nodes.

Example 20-5 shows an XMLMenuModel metadata file that uses mostly item nodes and one group node to define the entire page hierarchy illustrated in Figure 20-14.

Example 20-5 XMLMenuModel Metadata File Sample 1

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="in01" focusViewId="/home.jspx" label="Home" action="goHome">
 <itemNode id="in1" focusViewId="/benefits.jspx" action="goBene"
 label="Benefits">
 <itemNode id="in11" focusViewId="/insurance.jspx" action="goIns"
 label="Insurance">
 <itemNode id="in111" focusViewId="/health.jspx" action="goHealth"
 label="Health"/>
 <itemNode id="in112" focusViewId="/dental.jspx" action="goDental"
 label="Dental"/>
 </itemNode>
 <itemNode id="in12" focusViewId="/pto.jspx" action="goPto"
 label="Paid Time Off">
 <itemNode id="in121" focusViewId="/vacation.jspx"
 action="goVacation" label="Vacation"/>
 <itemNode id="in122" focusViewId="/sick.jspx" action="goSick"
 label="Sick Pay"/>
 </itemNode>
 </itemNode>
 <groupNode id="gn2" idref="newEmp" label="Employee Data">
 <itemNode id="in21" focusViewId="/createemp.jspx" action="goCreate"
 label="Create New Employee"/>
 <itemNode id="in22" focusViewId="/viewdata.jspx" action="goView"
 label="View Data"/>
 </groupNode>
 </itemNode>
 <itemNode id="in02" focusViewId="/globalhelp.jspx" action="goHelp"
 label="Help"/>
 <itemNode id="in03" focusViewId="/preferences.jspx" action="goPref"
 label="Preferences"/>
</menu>

Within the root menu element, global nodes are any nodes that are direct children of the menu element. For example, the code in Example 20-5 shows three global nodes, namely, Home, Help, and Preferences.

You can also nest menu models using shared nodes. This approach is recommended where you have sub trees in the hierarchy (for example, the Benefits tree) as it makes the page hierarchy easier to maintain. For example, you might create the entire Benefits tree as its own menu model metadata file (as shown in Example 20-6) so that the menu model could be reused across an application.

Example 20-6 Benefits XMLMenuModel Metadata File

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="in1" focusViewId="/benefits.jspx" action="goBene"
 label="Benefits">
 <itemNode id="in11" focusViewId="/insurance.jspx" action="goIns"
 label="Insurance">
 <itemNode id="in111" focusViewId="/health.jspx" action="goHealth"
 label="Health"/>
 <itemNode id="in112" focusViewId="/dental.jspx" action="goDental"
 label="Dental"/>
 </itemNode>
 <itemNode id="in12" focusViewId="/pto.jspx" action="goPto"
 label="Paid Time Off">
 <itemNode id="in121" focusViewId="/vacation.jspx"
 action="goVacation" label="Vacation"/>
 <itemNode id="in122" focusViewId="/sick.jspx" action="goSick"
 label="Sick Pay"/>
 </itemNode>
 </itemNode>
</menu>

Once you have created the nodes as a separate menu model, then within the different hierarchies that need to use those nodes, you use a shared node to reference the Benefits menu model.

Example 20-7 shows an XMLMenuModel metadata file that uses item nodes, a shared node and a group node to define the same page hierarchy depicted in Figure 20-14.

Example 20-7 XMLMenuModel Metadata File Sample 2

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="in01" focusViewId="/home.jspx" label="Home" action="goHome">
 <sharedNode ref="#{benefits_menu}/>
 <groupNode id="gn2" idref="newEmp" label="Employee Data">
 <itemNode id="in21" focusViewId="/createemp.jspx" action="goCreate"
 label="Create New Employee"/>
 <itemNode id="in22" focusViewId="/viewdata.jspx" action="goView"
 label="View Data"/>
 </groupNode>
 </itemNode>
 <itemNode id="in02" focusViewId="/globalhelp.jspx" action="goHelp"
 label="Help"/>
 <itemNode id="in03" focusViewId="/preferences.jspx" action="goPref"
 label="Preferences"/>
</menu>

The sharedNode element references the managed bean that is configured for the Benefits XMLMenuModel metadata file. Whenever you use the Create ADF Menu Model wizard to create a metadata file, JDeveloper automatically adds the managed bean configuration for you.

Before you begin:

It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create the XMLMenuModel metadata:

	
In the Application Navigator, locate the project where you wish to create the XMLMenuModel metadata file. Under the project's Web Content/WEB-INF folder, right-click faces-config.xml and choose Create ADF Menu Model from the context menu.

	
Note:

If your application uses ADF Controller, then this menu option will not be available to you. You need to instead use a bounded task flow to create the hierarchy. See the "Creating a Page Hierarchy Using Task Flows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
In the Create ADF Menu Model dialog, enter a file name for the XMLMenuModel metadata file, for example, root_menu.

	
Tip:

If you are using more than one XMLMenuModel metadata file to define your page hierarchy, use the name root_menu only for the topmost (root) metadata file that contains references to the other submenu metadata files.

	
Enter a directory for the metadata file. By default, JDeveloper will save the XMLMenuModel metadata file in the WEB-INF directory of the application.

When you click OK, JDeveloper displays a blank XMLMenuModel metadata file in the source editor, as shown in Example 20-8.

Example 20-8 Blank XMLMenuModel Metadata File

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"></menu>

For information about the managed bean configuration that JDeveloper automatically adds for you in faces-config.xml, see Section 20.7.2, "What Happens When You Use the Create ADF Menu Model Wizard".

	
Select the menu node in the Structure window and enter the appropriate information in the Property Inspector.

Table 20-2 shows the attributes you can specify for the menu element.

Table 20-2 Menu Element Attributes

	Attribute	Description
	
resourceBundle

	
Optional. This is the resource bundle to use for the labels (visible text) of the navigation items at runtime. For example, org.apache.myfaces.demo.xmlmenuDemo.resource.MenuBundle.

	
var

	
If using a resource bundle, specify an ID to use to reference the bundle in EL expressions for navigation item labels. For example, #{bundle.somelabel}. See Example 20-9 for a sample XMLMenuModel metadata file that uses a resource bundle.

	
xmlns

	
Required. Set to http://myfaces.apache.org/trinidad/menu

Example 20-9 shows sample XMLMenuModel metadata code that uses EL expressions to access a resource bundle for the navigation item labels.

Example 20-9 XMLMenuModel Using Resource Bundle

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"
 resourceBundle="org.apache.myfaces.demo.xmlmenuDemo.resource.MenuBundle"
 var="bundle">
 <itemNode id="in1" label="#{bundle.somelabel1}" ../>
 <itemNode id="in2" label="#{bundle.somelabel2}" ../>
</menu>

	
Note:

When you use a sharedNode element to create a submenu and you use resource bundles for the navigation item labels, it is quite possible that the shared menu model will use the same value for the var attribute on the root menu element. The XMLMenuModel class handles this possibility during parsing by ensuring that each resource bundle is assigned a unique hash key.

For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages".

	
In the Structure window, add the desired elements for the nodes in your hierarchy, using itemNode, groupNode, or sharedNode as needed. To begin, right-click menu and choose Insert inside menu, and then choose the desired element from the context menu, as shown in Figure 20-15.

Figure 20-15 Context Menu for Inserting Elements into Menu

[image: Context menu for inserting elements into menu]

The elements can be one of the following:

	
itemNode: Specifies a node that performs navigation upon user selection.

	
groupNode: Groups child components; the groupNode itself does no navigation. Child nodes node can be itemNode or another groupNode.

For example, say you did not need a page for the Employee Data node, but instead, wanted the user to navigate directly to the View Employee page. You would then use a group node to represent the Employee Data page by specifying the id attribute of the desired child node as a value for the group node's idref attribute. The group node allows you to retain the hierarchy without needing to create pages for nodes that are simply aggregates for their children nodes.

	
sharedNode: References another XMLMenuModel instance. A sharedNode element is not a true node; it does not perform navigation nor does it render anything on its own.

You can insert a sharedNode element anywhere within the hierarchy. For example, in the code shown in Example 20-10, the sharedNode element adds a submenu on the same level as the first-level Employee Data node.

Example 20-10 SharedNode Sample Code

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"
 <itemNode id="in0" label="Home" ..>
 <sharedNode ref="#{shared_menu}"/>
 <itemNode id="in1" label="Employee Data" ../>
 </itemNode>
 <itemNode id="in01" label="Help" ../>
</menu>

As you build the XMLMenuModel metadata file, the tree structure you see in the Structure window exactly mirrors the indentation levels of the menu metadata, as shown in Figure 20-16.

Figure 20-16 Tree Structure of XMLMenuModel Metadata in Structure Window

[image: Tree structure in Structure window]

	
For each element used to create a node, set the properties in the Property Inspector, as described in Table 20-3 for itemNode elements, Table 20-4 for groupNode elements, and Table 20-5 for sharedNode elements.

Table 20-3 itemNode Element Attributes

	Attribute	Description
	
action

	
Specify either an outcome string or an EL method binding expression that returns an outcome string. In either case, the outcome string must match the from-outcome value to the navigation case for that node as configured in the faces-config.xml file.

	
destination

	
Specify the URI of the page to navigate to when the node is selected, for example, http://www.oracle.com. If the destination is a JSF page, the URI must begin with "/faces".

Alternatively, specify an EL method expression that evaluates to the URI.

If both action and destination are specified, destination takes precedence over action.

	
focusViewId

	
Required. The URI of the page that matches the node's navigational result, that is, the to-view-id value of the navigation case for that node as specified in the faces-config.xml file.

For example, if the action outcome of the node navigates to /page_one.jspx (as configured in the faces-config.xml file), then focusViewId must also be /page_one.jspx.

The focusViewId does not perform navigation. Page navigation is the job of the action or destination attributes. The focusViewId, however, is required for the XMLMenuModel to determine the correct focus path.

	
id

	
Required. Specify a unique identifier for the node.

As shown in Example 20-5, it is good practice to use "inX" for the ID of each itemNode, where for example, "inX" could be in1, in11, in111, in2, in21, in 211, and so on.

	
label

	
Specify the label text to display for the node. Can be an EL expression to a string in a resource bundle, for example, #{bundle.somelabel}, where bundle must match the root menu element's var attribute value.

A groupNode element does not have the action or destination attribute that performs navigation directly, but it points to a child node that has the action outcome or destination URI, either directly by pointing to an itemNode child (which has the action or destination attribute), or indirectly by pointing to a groupNode child that will then point to one of its child nodes, and so on until an itemNode element is reached. Navigation will then be determined from the action outcome or destination URI of that itemNode element.

Consider the groupNode code shown in Example 20-11. At runtime, when users click groupNode id="gn1", or groupNode id="gn11", or itemNode id="in1", the navigation outcome is "goToSubTabOne", as specified by the first itemNode reached (that is itemNode id="id1"). Table 20-4 shows the attributes you must specify when you use a groupNode element.

Example 20-11 groupNode Elements

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns:"http://myfaces.apache.org/trinidad/menu">
 <groupNode id="gn1" idref="gn11" label="GLOBAL_TAB_0">
 <groupNode id="gn11" idref="in1" label="PRIMARY_TAB_0">
 <itemNode id="in1" label="LEVEL2_TAB_0" action="goToSubTabOne"
 focusViewId="/menuDemo/subtab1.jspx"/>
 <itemNode id="in2" label="LEVEL2_TAB_1" action="goToSubTabTwo"
 focusViewId="/menuDemo/subtab2.jspx"/>
 </groupNode>
 <itemNode id="in3" label="PRIMARY_TAB_1" focusViewId="/menuDemo/tab2.jspx"
 destination="/faces/menuDemo/tab2.jspx"/>
 </groupNode>
 <itemNode id="gin1" label="GLOBAL_TAB_1" action="goToGlobalOne"
 focusViewId="/menuDemo/global1.jspx"/>
 <itemNode id="gin2" label="GLOBAL_TAB_2"
 destination="/faces/menuDemo/global2.jspx"
 focusViewId="/menuDemo/global2.jspx"/>
</menu>

Table 20-4 GroupNode Element Attribute

	Attribute	Description
	
id

	
A unique identifier for the group node.

As shown in Example 20-11, it is good practice to use gnX for the ID of each groupNode, where for example, gnX could be gn1, gn2, and so on.

	
idref

	
Specify the ID of a child node, which can be an itemNode, or another groupNode. When adding a groupNode as a child node, that child in turn can reference another groupNode and so on, but eventually an itemNode child must be referenced as the last child.

The idref attribute can contain more than one child ID, separated by spaces; the IDs are processed in the order they are listed.

	
label

	
Specify the label text to display for the group node. Can be an EL expression to a string in a resource bundle, for example, #{bundle.somelabel}.

Table 20-5 sharedNode Element Attribute

	Attribute	Description
	
ref

	
Specify the managed bean name of another XMLMenuModel class, as configured in the faces-config.xml file, for example, #{shared_menu}.

At runtime, the referenced navigation menu is created, inserted as a submenu into the main (root) menu, and rendered.

20.7.2 What Happens When You Use the Create ADF Menu Model Wizard

When you use the Create ADF Menu Model wizard to create an XMLMenuModel metadata file, JDeveloper automatically configures for you a managed bean for the menu metadata file in the faces-config.xml file, using the metadata file name you provide as the managed bean name.

Example 20-12 shows part of the faces-config.xml file that contains the configuration of one XMLMenuModel metadata file. By default, JDeveloper uses the oracle.adf.view.rich.model.MDSMenuModel class as the managed bean class, and request as the managed bean scope, which is required and cannot be changed.

Example 20-12 Managed Bean Configuration for XMLMenuModel in faces-config.xml

<managed-bean>
 <managed-bean-name>root_menu</managed-bean-name>
 <managed-bean-class>oracle.adf.view.
 rich.model.MDSMenuModel</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>createHiddenNodes</property-name>
 <value>false</value>
 </managed-property>
 <managed-property>
 <property-name>source</property-name>
 <property-class>java.lang.String</property-class>
 <value>/WEB-INF/root_menu.xml</value>
 </managed-property>
</managed-bean>

In addition, the following managed properties are added by JDeveloper for the XMLMenuModel managed bean:

	
createHiddenNodes: When true, specifies that the hierarchical nodes must be created even if the component's rendered attribute is false. The createHiddenNodes value is obtained and made available when the menu metadata source file is opened and parsed. This allows the entire hierarchy to be created, even when you do not want the actual component to be rendered.

	
source: Specifies the menu metadata source file to use (for example, /WEB-INF/root_menu.xml).

	
Note:

The createHiddenNodes property must be placed before the source property, which JDeveloper does for you when the managed bean is automatically configured. The XMLMenuModel managed bean must have the createHiddenNodes value already set to properly parse and create the menu's XML metadata from the source managed property.

For each XMLMenuModel metadata file that you create in a project using the wizard, JDeveloper configures a managed bean for it in the faces-config.xml file. For example, if you use a sharedNode element in an XMLMenuModel to reference another XMLMenuModel metadata file (as shown in Example 20-10), you would have created two metadata files. And JDeveloper would have added two managed bean configurations in the faces-config.xml file, one for the main (root) menu model, and a second managed bean for the shared (referenced) menu model, as shown in Example 20-13.

Example 20-13 Managed Bean for Shared Menu Model in faces-config.xml

<!-- managed bean for referenced, shared menu model -->
<managed-bean>
 <managed-bean-name>shared_menu</managed-bean-name>
 <managed-bean-class>
 <managed-bean-class>oracle.adf.view.
 rich.model.MDSMenuModel</managed-bean-class>
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>createHiddenNodes</property-name>
 <value>false</value>
 </managed-property>
 <managed-property>
 <property-name>source</property-name>
 <property-class>java.lang.String</property-class>
 <value>/WEB-INF/shared_menu.xml</value>
 </managed-property>
</managed-bean>

This means, if you use shared nodes in your XMLMenuModel metadata files, the faces-config.xml file will have a root menu model managed bean, plus menu model managed beans for any menu models referenced through shared nodes.

20.7.3 How to Bind the navigationPane Component to the Menu Model

Each node in the page hierarchy corresponds to one JSF page. On each page, you use one navigationPane component for each level of navigation items that you have defined in your XMLMenuModel metadata file, including global items. Levels are defined by a zero-based index number: Starting with global nodes in the metadata file (that is, direct children nodes under the menu element as shown in Example 20-5), the level attribute value is 0 (zero), followed by 1 for the next level (typically tabs), 2 for the next level after that (typically bars), and so on. For example, if you had a page hierarchy like the one shown in Figure 20-14 and Example 20-5, you would use three navigationPane components on a page such as Home (for the three levels of navigation under the Home node), plus one more navigationPane component for the global nodes.

	
Tip:

Because the menu model dynamically determines the hierarchy (that is, the links that appear in each navigationPane component) and also sets the current nodes in the focus path as selected, you can practically reuse the same code for each page. You need to change only the page's document title, and add the specific page contents to display on that page.
Because of this similar code, you can create a single page fragment that has just the facets containing the navigationPane components, and include that fragment in each page, where you change the page's document title and add the page contents.

As described in Section 20.8.1, "How to Create a Simple Page Hierarchy", you use the hint attribute to specify the type of navigation item you want to use for each hierarchical level (for example, buttons, tabs, or bar). But instead of manually adding multiple commandNavigationItem components yourself to provide the navigation items, you bind each navigationPane component to the root XMLMenuModel managed bean, and insert only one commandNavigationItem component into the nodeStamp facet of each navigationPane component, as shown in Example 20-14.

Example 20-14 navigationPane Component Bound to XMLMenuModel Managed Bean

<af:navigationPane var="menuNode" value="#{root_menu}" level="0"
 hint="buttons">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"
 visible="#{menuNode.visible}"
 rendered="#{menuNode.rendered}"/>
 </f:facet>
</af:navigationPane>

The nodeStamp facet and its single commandNavigationItem component, in conjunction with the XMLMenuModel managed bean, are responsible for:

	
Stamping out the correct number of navigation items in a level.

	
Displaying the correct label text and other properties as defined in the metadata. For example, the EL expression #{menuNode.label} retrieves the correct label text to use for a navigation item, and #{menuNode.doAction} evaluates to the action outcome defined for the same item.

	
Marking the current items in the focus path as selected. You should not specify the selected attribute at all for the commandNavigationItem components.

	
Note:

If there is no node information in the XMLMenuModel object for a particular hierarchical level (for example, level 3 lists), ADF Faces does not display those items on the page even though the page contains the navigationPane component code for that level.

Before you begin:

It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To bind a navigationPane component to the menu model:

	
If you want the navigation items to be styled, create a decorativeBox component by dragging and dropping a Decorative Box from the Layout panel of the Component Palette to the JSF page. Set the theme to determine how you want the tabs to appear. Valid values are:

	
default: Body is white with a blue border. Top-left corner is rounded.

	
light: Body is light blue. Top-left corner is rounded.

	
medium: Body is medium blue. Top-left corner is rounded.

	
dark: Body is dark blue. Top-left corner is rounded.

You can change how the themes are displayed. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins".

	
Create a navigationPane component by dragging and dropping a Navigation Pane from the Component Palette to the JSF page. Add a navigationPane component for each level of the hierarchy.

	
Tip:

The Navigation Pane component can be found in the Interactive Containers and Headers group of the Layout panel in the Component Palette.

For example, to create any of the pages as shown in the hierarchy in Figure 20-14, you would drag and drop four navigationPane components.

	
For each navigationPane component, in the Property Inspector, expand the Common section and set the hint attribute to one of the following types of navigation items to determine how the navigationPane will display the following:

	
bar: Displays the navigation items separated by a bar, for example the Insurance and Paid Time Off links in Figure 20-18.

	
buttons: Displays the navigation items separated by a bar in a global area, for example the Home and Help links in Figure 20-18.

	
choice: Displays the navigation items in a popup list when the associated dropdown icon is clicked. You must include a value for the navigationPane component's icon attribute and you can associate a label to the dropdown list using the title attribute.

	
list: Displays the navigation items in a bulleted list, for example the Health and Dental links in Figure 20-18.

	
tabs: Displays the navigation items as tabs, for example the Benefits and Employee Data tabs in Figure 20-18.

	
Set the level attribute to point to the appropriate level of metadata in the XMLMenuModel metadata file. The level attribute is a zero-based index number: Starting with global nodes in the metadata file (that is, direct children nodes under the menu element as shown in Example 20-5), the level attribute value is 0 (zero), followed by 1 for the next level (typically tabs), 2 for the next level after that (typically bars), and so on.

The commandNavigationItem component is able to get its metadata from the metadata file through the level attribute on the parent navigationPane component. By default, if you do not specify a level attribute value, 0 (zero) is used, that means the navigationPane component will take the metadata from the first-level under the menu element for rendering by the commandNavigationItem component.

	
In the Property Inspector, expand the Data section. Set the value attribute to the menu model managed bean that is configured for the root XMLMenuModel class in the faces-config.xml file.

	
Note:

The value attribute can reference root menu models and menu models referenced by shared nodes. If you reference a shared node in the value attribute, the faces-config.xml file needs to have a new managed bean entry with a different managed bean name than the one which is used in a root menu model definition in the menu model metadata file. This promotes the menu model of a shared node to a root menu model which can then be referred to in the value attribute.

	
Set the var attribute to text that you will use in the commandNavigationItem components to get the needed data from the menu model.

As the hierarchy is created at runtime, and each node is stamped, the data for the current node is copied into the var attribute, which can then be addressed using an EL expression. You specify the name to use for this property in the EL expression using the var property.

	
Tip:

You use the same value for the var attribute for every navigationPane component on the page or in the application.

	
Drag and drop a Navigation Item from the Interactive Containers and Headers group in the Layout panel of the Component Palette to the nodeStamp facet of the navigationPane component.

	
Set the values for the remaining attributes that have corresponding values in the metadata using EL expressions that refer to the menu model (whose metadata contains that information). You access these values using the value of the var attribute you set for the parent navigationPane component in Step 6 along with the name of the corresponding itemNode element that holds the value in the metadata. Table 20-6 shows the attributes on the navigation item that has corresponding values in the metadata.

Table 20-6 Navigation Item Attributes and the Associated Menu Model Attributes

	Navigation Item Attribute	Associated Menu Model Element Attribute
	
text

	
label

	
action

	
doAction

	
icon

	
icon

	
destination

	
destination

	
visible

	
visible

	
rendered

	
rendered

For example, if you had set the var attribute on the parent navigationPane component to menuNode, you would use #{menuNode.doAction} as the EL expression for the value of the action attribute. This would resolve to the action property set in the metadata for each node. Example 20-15 shows the JSF code for binding to a menu model that has four levels of hierarchical nodes.

Example 20-15 Binding to the XMLMenuModel

<af:form>
 <af:navigationPane hint="buttons" level="0" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="tabs" level="1" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="bar" level="2" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="list" level="3" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
</af:form>

	
Note:

For information about how to let users close navigation tabs, see Section 20.8.3, "What You May Need to Know About Removing Navigation Tabs".

20.7.4 How to Use the breadCrumbs Component with a Menu Model

Creating a breadcrumb using the menu model is similar to creating the page hierarchy; you use the breadCrumbs component with a nodeStamp facet that stamps a commandNavigationItem component with data from the model.

Before you begin:

It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create a breadcrumb using a menu model:

	
Create a breadCrumbs component by dragging and dropping a BreadCrumbs from the Location group of General Controls panel of the Component Palette to the JSF page.

	
By default, breadcrumb links are displayed in a horizontal line. To change the layout to be vertical, in the Property Inspector, expand the Common section and set the orientation attribute to vertical.

	
In the Property Inspector, expand the Data section. Set the value attribute to the root XMLMenuModel managed bean as configured in the faces-config.xml file. This is the same bean to which the navigationPane component is bound.

	
Note:

The value attribute should reference only a root menu model and not any menu models referenced through shared nodes. For example, if you use a shared node in your main XMLMenuModel element (as shown in Example 20-10), JDeveloper would have created managed bean configurations for the shared node and the root XMLMenuModel bean that consumes the shared model. The shared model managed bean is automatically incorporated into the root menu model managed bean as the menu tree is parsed at startup.

	
Set the var attribute to text that you will use in the commandNavigationItem components to get the needed data from the menu model.

As the hierarchy is created at runtime, and each node is stamped, the data for the current node is copied into the var attribute, which can then be addressed using an EL expression. You specify the name to use for this property in the EL expression using the var property.

	
Tip:

You can use the same value for the var attribute for the breadCrumbs component as you did for the navigationPane components on the page or in the application.

	
Add one commandNavigationItem component as a child by dragging and dropping a Navigation Item from the Interactive Containers and Headers group in the Layout panel of the Component Palette to the nodeStamp facet of the breadCrumbs component.

	
Note:

The nodeStamp facet of the breadCrumbs component determines what links appear according to the menu model that you specify for the value attribute of the breadCrumbs component. If you do not specify the menu model you want to render for the value attribute of the breadCrumbs component, no links appear at runtime. Do not use a nodeStamp facet for the breadCrumbs component if you do not use a menu model because no stamps will be required.

	
Set the values for the remaining attributes that have corresponding values in the metadata using EL expressions that refer to the menu model (whose metadata contains that information). You access these values using the value of the var attribute you set for the parent breadCrumbs component in Step 4 along with the name of the corresponding itemNode element that holds the value in the metadata. Table 20-6 shows the attributes on the navigation item that has corresponding values in the metadata.

For example, if you had set the var attribute on the breadCrumbs component to menuNode, you would use #{menuNode.doAction} as the EL expression for the value of the action attribute. This would resolve to the action property set in the metadata for each node.

Example 20-16 breadCrumbs Component Bound to the XMLMenuModel

<af:breadCrumbs var="menuNode" value="#{root_menu}">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"/>
 </f:facet>
</af:breadCrumbs>

20.7.5 How to Use the menuBar Component with a Menu Model

As described in Chapter 16, "Using Menus, Toolbars, and Toolboxes," the menuBar and menu components are usually used to organize and create menus that users click to cause some change or action in the application. Where applicable, the menuBar component can be used with an XMLMenuModel implementation and managed beans to create a page hierarchy. Like the breadCrumbs or navigationPane component, when menuBar is bound to the root XMLMenuModel managed bean, you use one commandNavigationItem component in the nodeStamp facet to dynamically provide the menu items for navigating the page hierarchy.

When the page hierarchy of a web site cannot be sufficiently represented by a tabbed navigation system (through a navigationPane or panelTabbed component), use the menuBar component to provide a navigation bar of menus and submenus. For example, a web store application with many shopping categories for users to browse might benefit from a horizontal arrangement of top-level menus in a bar instead of rendering all the categories and subcategories within tabs, subtabs or bars, and lists. With a menuBar bound to a menu model, submenus appear only when the user places the mouse cursor over a top-level menu or a submenu item. Not only does this arrangement reduce screen real estate, but the user can also quickly navigate from the top of the hierarchy to a page at the lowest level with just one click.

Unlike a menuBar component that is not bound to a menu model, a menuBar that is bound to a menu model is not detachable, and should not be used with a toolbar. Also, do not use navigation tabs with a menuBar bound to a menu model on the same page. If you must use both, always place the menuBar component above the navigation tabs. You can, however, use a menuBar bound to a menu model with a breadCrumbs component bound to the same model on those pages where you want to show breadcrumb links.

Before you begin:

It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create a horizontal menu bar using a menu model:

	
If you want the menu bar to be styled, create a decorativeBox component by dragging and dropping a Decorative Box from the Layout panel of the Component Palette to the JSF page. Set the theme to determine how you want the tabs to appear. Valid values are:

	
default: Body is white with a blue border. Top-left corner is rounded.

	
light: Body is light blue. Top-left corner is rounded.

	
medium: Body is medium blue. Top-left corner is rounded.

	
dark: Body is dark blue. Top-left corner is rounded.

You can change how the themes are displayed. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins".

	
Create a menuBar component by dragging and dropping a Menu Bar from the Menus and Toolbars panel of the Component Palette to the JSF page.

	
In the Property Inspector, Menu Model section, set the value attribute to the root XMLMenuModel managed bean as configured in the faces-config.xml file. This is the same bean to which the breadCrumbs component is bound.

	
Note:

The value attribute should reference only a root menu model and not any menu models referenced through shared nodes. For example, if you use a shared node in your main XMLMenuModel element (as shown in Example 20-10), JDeveloper would have created managed bean configurations for the shared node and the root XMLMenuModel bean that consumes the shared model. The shared model managed bean is automatically incorporated into the root menu model managed bean as the menu tree is parsed at startup.

	
Set the var attribute to text that you will use in the commandNavigationItem components to get the needed data from the menu model.

As the hierarchy is created at runtime, and each node is stamped, the data for the current node is copied into the var attribute, which can then be addressed using an EL expression. You specify the name to use for this property in the EL expression using the var property.

	
Tip:

You can use the same value for the var attribute for the menuBar component as you did for the breadCrumbs component on the page or in the application.

	
Add one commandNavigationItem component as a child by dragging and dropping a Navigation Item from the Interactive Containers and Headers group in the Layout panel of the Component Palette to the nodeStamp facet of the menuBar component.

	
Note:

The nodeStamp facet of the menuBar component determines what links appear according to the menu model that you specify for the value attribute of the menuBar component. If you do not specify the menu model you want to render for the value attribute of the menuBar component, no menu items will appear at runtime.

	
Set the values for the remaining attributes that have corresponding values in the metadata using EL expressions that refer to the menu model (whose metadata contains that information). You access these values using the value of the var attribute you set for the parent menuBar component in Step 4 along with the name of the corresponding itemNode element that holds the value in the metadata. Table 20-6 shows the attributes on the navigation item that has corresponding values in the metadata.

For example, if you had set the var attribute on the menuBar component to menuNode, you would use #{menuNode.doAction} as the EL expression for the value of the action attribute. This would resolve to the action property set in the metadata for each node.

Example 20-17 menuBar Component Bound to the XMLMenuModel

<af:menuBar var="menuNode" value="#{root_menu}">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"/>
 </f:facet>
</af:menuBar>

20.7.6 What Happens at Runtime

The value attribute of the menu model bound component (navigationPane, breadCrumbs, or menuBar) references the managed bean for the XMLMenuModel element. When that managed bean is requested, the following takes place:

	
The setSource() method of the XMLMenuModel class is called with the location of the model's metadata, as specified in the managed-property element in the faces-config.xml file.

	
An InputStream object to the metadata is made available to the parser (SAXParser); the metadata for the navigation items is parsed, and a call to MenuContentHandler method is made.

	
The MenuContentHandler builds the navigation menu tree structure as a List object in the following manner:

	
The startElement() method is called at the start of processing a node in the metadata.

	
The endElement() method is called at the end of processing the node.

	
As each node is processed, a List of navigation menu nodes that make up the page hierarchy of the menu model is created.

	
A TreeModel object is created from the list of navigation menu nodes.

	
The XMLMenuModel object is created from the TreeModel object.

If a groupNode element has more than one child id in its idref attribute, the following occurs:

	
The IDs are processed in the order they are listed. If no child node is found with the current ID, the next ID is used, and so on.

	
Once a child node is found that matches the current ID in the idref list, then that node is checked to see if its rendered attribute is set to true, its disabled attribute is set to false, its readOnly attribute is set to false, and its visible attribute is set to true. If any of the criteria is not met, the next ID in the idref list is used, and so on.

	
The first child node that matches the criteria is used to obtain the action outcome or destination URI. If no child nodes are found that match the criteria, an error is logged. However, no error will be shown in the UI.

	
If the first child node that matches the criteria is another groupNode element, the processing continues into its children. The processing stops when an itemNode element that has either an action or destination attribute is encountered.

	
When the itemNode element has an action attribute, the user selection initiates a POST action and the navigation is performed through the action outcome. When the itemNode element has a destination attribute, the user selection initiates a GET action and navigation is performed directly using the destination value.

The XMLMenuModel class provides the model that correctly highlights and enables the items on the navigation menus (such as tabs and bars) as you navigate through the navigation menu system. The model is also instantiated with values for label, doAction, and other properties that are used to dynamically generate the navigation items.

The XMLMenuModel class does no rendering; the model bound component uses the return value from the call to the getFocusRowKey() method to render the navigation menu items for a level on a page.

The commandNavigationItem component housed within the nodeStamp facet of the menu model bound component provides the label text and action outcome for each navigation item. Each time the nodeStamp facet is stamped, the data for the current navigation item is copied into an EL-reachable property, the name of which is defined by the var attribute on the navigationPane component that houses the nodeStamp facet. The nodeStamp displays the data for each item by getting further properties from the EL-reachable property. Once the navigation menu has completed rendering, this property is removed (or reverted back to its previous value). When users select a navigation item, the default JSF actionListener mechanism uses the action outcome string or destination URI to handle the page navigation.

The XMLMenuModel class, in conjunction with nodeStamp facet also controls whether or not a navigation item is rendered as selected. As described earlier, the XMLMenuModel object is created from a tree model, which contains viewId attribute information for each node. The XMLMenuModel class has a method getFocusRowKey() that determines which page has focus, and automatically renders a node as selected if the node is on the focus path. The getFocusRowKey() method in its most simplistic fashion does the following:

	
Gets the current viewId attribute.

	
Compares the viewId attribute value with the IDs in internal maps used to resolve duplicate viewId values and in the viewIdFocusPathMap object that was built by traversing the tree when the menu model was created.

	
Returns the focus path to the node with the current viewId attribute or returns null if the current viewId attribute value cannot be found.

The viewId attribute of a node is used to determine the focus rowKey object. Each item in the model is stamped based on the current rowKey object. As the user navigates and the current viewId attribute changes, the focus path of the model also changes and a new set of navigation items is accessed.

20.7.7 What You May Need to Know About Using Custom Attributes

Custom attributes that you have created can be displayed, but only for itemNode elements. To add an itemNode element to access the value of a custom attribute, you need to get the tree from the menu model by:

	
Calling the menu models getWrappedData() method

	
Calling the getFocusRowKey() method to get the current focus path

	
Using this focus path to traverse the tree and return a list of nodes in the focus path

	
Testing one or more of these nodes for custom attribute(s) by calling the getCustomProperty() API

Example 20-18 shows an example of the required code.

Example 20-18 Accessing Custom Attributes from the XMLMenuModel

 /**
 * Returns the nodes corresponding to a focus path
 *
 * @param tree
 * @param focusPath
 */
 public List getNodesFromFocusPath(TreeModel tree, ArrayList focusPath)
 {
 if (focusPath == null || focusPath.size() == 0)
 return null;

 // Clone the focusPath cause we remove elements
 ArrayList fp = (ArrayList) focusPath.clone();

 // List of nodes to return
 List nodeList = new ArrayList<Object>(fp.size());

 // Convert String rowkey to int and point to the
 // node (row) corresponding to this index
 int targetNodeIdx = Integer.parseInt((String)fp.get(0));
 tree.setRowIndex(targetNodeIdx);

 // Get the node
 Object node = tree.getRowData()

 // put the Node in the List
 nodeList.add(node);

 // Remove the 0th rowkey from the focus path
 // leaving the remaining focus path
 fp.remove(0);

 // traverse into children
 if (fp.size() > 0
 && tree.isContainer()
 && !tree.isContainerEmpty()
)
 {
 tree.enterContainer();

 // get list of nodes in remaining focusPath
 List childList = getNodesFromFocusPath(tree, fp);

 // Add this list to the nodeList
 nodeList.addAll(childList);

 tree.exitContainer();
 }

 return nodeList;
 }

 public String getElementLabel(XMLMenuModel model, Object myVal, String myProp)
 {
 TreeModel tree = model.getWrappedData();

 Object node = findNodeByPropertyValue(tree, myVal, myProp);

 FacesContext context = FacesContext.getCurrentInstance();
 PropertyResolver resolver = context.getApplication().getPropertyResolver();

 String label = (String) resolver.getValue(node, _LABEL_ATTR);

 return label;
 }

 public Object findNodeByPropertyValue(TreeModel tree, Object myVal, String myProp)
 {
 FacesContext context = FacesContext.getCurrentInstance();
 PropertyResolver resolver = context.getApplication().getPropertyResolver();

 for (int i = 0; i < tree.getRowCount(); i++)
 {
 tree.setRowIndex(i);

 // Get a node
 Object node = tree.getRowData();

 // Get the value of the attribute of the node
 Obect propVal = resolver.getValue(node, myProp);

 if (propVal == myVal)
 {
 return node;
 }

 if (tree.isContainer() && !tree.isContainerEmpty())
 {
 tree.enterContainer();
 node = findNodeByPropertyValue(tree, myVal, myProp);

 if (node != null)
 return node;

 tree.exitContainer();
 }guap
 }
 return null;
 }

20.8 Creating a Simple Navigational Hierarchy

	
Note:

If the application hierarchy is complex and consists of deeply nested pages, it is more efficient to use a menu model to create your navigation system. For details, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy".

Section 20.6, "Using Navigation Items for a Page Hierarchy" describes a simple page hierarchy with three levels of links under a top-level root node, Home. Figure 20-17 and Figure 20-18 show an example of what the user interface could look like when the navigationPane component and individual commandNavigationItem components are used to create a view for the page hierarchy shown in Figure 20-11.

Figure 20-17 Navigation Items Available from the View Employee Page

[image: Navigation items using NavigationPane]

When you create the hierarchy manually, first determine the focus path of each page (that is, where exactly in the hierarchy the page resides) in order to determine the exact number of navigationPane and commandNavigationItem components needed for each page, as well as to determine the components that should be configured as selected when the user visits the page. For example, in Figure 20-17, which shows the View Employee page, you would need three navigationPane components. In addition to the first-level tabs, only the second-level child bars of Employee Data are needed, and only the Employee Data tab and View Employee bar render as selected.

Similarly in Figure 20-18, which shows the Health page, only the child bars of Benefits are needed, and the Benefits tab and Insurance bar must be configured as selected. Additionally for this page, you would create the child nodes under Insurance, which can be presented as a vertical list on the side of the page. The Health item in the vertical list is configured as selected, and the contents of the Health page are displayed in the middle, to the right of the vertical list.

Figure 20-18 Navigation Items Available from the Health Page

[image: Navigation items using NavigationPane]

Regardless of the type of navigation items you use (such as tabs, bars or lists), you use a navigationPane component to represent one level of hierarchical links, and a series of commandNavigationItem child components within each navigationPane component to provide the actual navigation items. For example, in Figure 20-18 the actual links for the first-level tabs (Benefits and Employee Data), the second-level bars (Insurance and Paid Time Off), and the Health and Dental links in the list are each provided by a commandNavigationItem component. Underneath the bars, to provide the breadcrumb links that show the focus path of the current page, you use a breadCrumbs component with the required number of child commandNavigationItem components.

20.8.1 How to Create a Simple Page Hierarchy

When your navigational hierarchy contains only a few pages and is not very deep, you can elect to manually create the hierarchy. Doing so involves creating the navigation rule and navigation cases, using the navigationPane component to create the hierarchy, and using the commandNavigationItem component to create the links.

Before you begin:

It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.8, "Creating a Simple Navigational Hierarchy."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To manually create a navigation hierarchy:

	
In the Application Navigator, double-click faces-config.xml. By default, this file is located in the project's Web Content/WEB-INF folder.

	
Create one global JSF navigation rule that has the navigation cases for all the nodes (that is, pages) in the page hierarchy.

For example, the page hierarchy shown in Figure 20-11 has 10 nodes, including the global Help node. Thus, you would create 10 navigation cases within one global navigation rule in the faces-config.xml file, as shown in Example 20-19.

For each navigation case, specify a unique outcome string, and the path to the JSF page that should be displayed when the navigation system returns an outcome value that matches the specified string.

Example 20-19 Global Navigation Rule for a Page Hierarchy in faces-config.xml

<navigation-rule>
 <navigation-case>
 <from-outcome>goHome</from-outcome>
 <to-view-id>/home.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHelp</from-outcome>
 <to-view-id>/globalhelp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goEmp</from-outcome>
 <to-view-id>/empdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goBene</from-outcome>
 <to-view-id>/benefits.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goIns</from-outcome>
 <to-view-id>/insurance.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goPto</from-outcome>
 <to-view-id>/pto.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goView</from-outcome>
 <to-view-id>/viewdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goCreate</from-outcome>
 <to-view-id>/createemp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHealth</from-outcome>
 <to-view-id>/health.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goDental</from-outcome>
 <to-view-id>/dental.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

For more information about creating navigation cases in JDeveloper, see Section 3.3, "Defining Page Flows".

	
Create the JSF pages for all the hierarchical nodes. If you want the navigation tabs to be styled, create a decorativeBox component by dragging and dropping a Decorative Box from the Layout panel of the Component Palette to each page. Set the theme to determine how you want the tabs to appear. Valid values are:

	
default: Body is white with a blue border. Top-left corner is rounded.

	
light: Body is light blue. Top-left corner is rounded.

	
medium: Body is medium blue. Top-left corner is rounded.

	
dark: Body is dark blue. Top-left corner is rounded.

You can change how the themes are displayed. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins". To consider using a page template to achieve the positioning and visual styling of your JSF pages, see Section 10.4, "Using Page Templates".

	
Create a navigationPane component by dragging and dropping a Navigation Pane from the Interactive Containers and Headers group in the Layout panel of the Component Palette to each page. Drop a navigationPane component for each level of the hierarchy on the page.

For example, to create the Health page as shown in Figure 20-18, drag and drop four navigationPane components. In the Health page, the components are dropped into specific areas of a template that already contains layout components to create the look and feel of the page.

	
For each navigationPane component, in the Property Inspector, expand the Common section and set the hint attribute to one of the following types of navigation items to determine how the navigationPane component will be displayed:

	
bar: Displays the navigation items separated by a bar, for example the Insurance and Paid Time Off links in Figure 20-18.

	
buttons: Displays the navigation items separated by a bar in a global area, for example the Home and Help links in Figure 20-18.

	
choice: Displays the navigation items in a popup list when the associated dropdown icon is clicked. You must include a value for the navigationPane component's icon attribute and you can associate a label to the dropdown list using title attribute.

	
list: Displays the navigation items in a bulleted list, for example the Health and Dental links in Figure 20-18.

	
tabs: Displays the navigation items as tabs, for example the Benefits and Employee Data tabs in Figure 20-18.

	
For each navigationPane component, add the needed commandNavigationItem components to represent the different links by dragging and dropping a Navigation Item from the Interactive Containers and Headers group in the Layout panel of the Component Palette. Drop a Navigation Item as a child to the navigationPane component for each link needed.

For example, to create the Health page as shown in Figure 20-18, you would use a total of eight commandNavigationItem components, two for each navigationPane component.

	
Performance Tip:

At runtime, when available browser space is less than the space needed to display the contents in a tab or bar of a navigation pane, or the contents of the breadcrumb, ADF Faces automatically displays overflow icons that enable users to select and navigate to those items that are out of view. The number of child components within a navigationPane or breadCrumbs component, and the complexity of the children, will affect the performance of the items within the overflow. You should set the size of the navigationPane or breadCrumbs component to avoid overflow when possible.

	
For each commandNavigationItem component, set the navigation to the desired page. In the Property Inspector, expand the Common section and provide a static string outcome of an action or use an EL expression to reference an action method through the action property. If you use a string, it must match the navigation metadata set up in the navigation rules for the page created in Step 2. If referencing a method, that method must return the required string.

	
In the Property Inspector, expand the Behavior section and set the selected attribute. This attribute should be true if the commandNavigationItem component should be displayed as selected when the page is first rendered, and false if it should not.

At runtime, when a navigation item is selected by the user, that component's selected attribute changes to selected="true" and the appearance changes to indicate to the user that the item has been selected. For example, in Figure 20-18 the Benefits tab, Insurance bar, and Health list item are shown as selected by a change in either background color or font style. You do not have to write any code to show the selected status; the selected attribute on the commandNavigationItem component for that item takes care of turning on the selected status when the attribute value is true.

Example 20-20 shows code used to generate the navigation items that are available when the current page is Health. Because the Health page is accessed from the Insurance page from the Benefits page, the commandNavigationItem components for those three links have selected="true".

Example 20-20 Sample Code Using Individual Navigation Items on One Page

<af:navigationPane hint="buttons">
 <af:commandNavigationItem text="Home" action="goHome"/>
 <af:commandNavigationItem text="Help" action="goHelp"/>
</af:navigationPane>
.
.
.
<af:navigationPane hint="tabs">
 <af:commandNavigationItem text="Benefits" action="goBene"
 selected="true"/>
 <af:commandNavigationItem text="Employee Data" action="goEmp"/>
</af:navigationPane>
.
.
.
<af:navigationPane hint="bar">
 <af:commandNavigationItem text="Insurance" action="goIns"
 selected="true"/>
 <af:commandNavigationItem text="Paid Time Off" action="goPto"/>
</af:navigationPane>
.
.
.
<af:navigationPane hint="list">
 <af:commandNavigationItem text="Health" action="goHealth"
 selected="true"/>
 <af:commandNavigationItem text="Dental" action="goDental"/>
</af:navigationPane>

To change the selected state programmatically, you have to write a backing bean method to handle an action event. Then reference the method on the actionListener attribute of the commandNavigationItem components, as shown in Example 20-21.

Example 20-21 Using actionListener to Change Selected State

JSF Page Code ----->
<af:navigationPane hint="tabs">
 <af:commandNavigationItem text="Benefits"
 actionListener="#{myBean.navigationItemAction}"
 partialSubmit="true"../>
 .
</af:navigationPane>

Managed Bean Code ----->
public void navigationItemAction(ActionEvent event)
{
 UIComponent actionItem = event.getComponent();
 UIComponent parent = actionItem.getParent();
 while (! (parent instanceof UIXNavigationHierarchy))
 {
 parent = parent.getParent();
 if (parent == null)
 {
 System.err.println(
 "Unexpected component hierarchy, no UIXNavigationHierarchy found.");
 return;
 }
 }

 List<UIComponent> children = parent.getChildren();
 for (UIComponent child : children)
 {
 FacesBean childFacesBean = ((UIXComponent) child).getFacesBean();
 FacesBean.Type type = childFacesBean.getType();
 PropertyKey selectedKey = type.findKey("selected");
 if (selectedKey != null)
 {
 childFacesBean.setProperty(selectedKey, child==actionItem);
 }
 }
 RequestContext adfContext = RequestContext.getCurrentInstance();
 adfContext.addPartialTarget(parent);
}

20.8.2 How to Use the breadCrumbs Component

In both Figure 20-17 and Figure 20-18, the user's current position in the page hierarchy is indicated by a path of links from the current page back to the root page. The path of links, also known as breadcrumbs, is displayed beneath the secondary bars, above the vertical lists (if any). To manually create such a path of links, you use the breadCrumbs component with a series of commandNavigationItem components as children.

Before you begin:

It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.8, "Creating a Simple Navigational Hierarchy."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To manually create a breadcrumb:

	
Create a breadCrumbs component by dragging and dropping a BreadCrumbs from the Location group in the General Controls panel of the Component Palette to the JSF page.

	
By default, breadcrumb links are displayed in a horizontal line. To change the layout to be vertical, in the Property Inspector, expand the Common section and set the orientation attribute to vertical.

	
For each link in the breadcrumb, create a commandNavigationItem component by dragging and dropping a Navigation Item from the Interactive Containers and Headers group in the Layout panel of the Component Palette as a child to the breadCrumbs component. The last item should represent the current page.

	
Tip:

Depending on the renderer or client device type, the last link in the breadcrumb may not be displayed, but you still must add the commandNavigationItem component for it. On clients that do display the last breadcrumb link, the link is always disabled automatically because it corresponds to the current page.

	
For each commandNavigationItem component (except the last), set the navigation to the desired page. In the Property Inspector, expand the Common section and provide a static string outcome of an action or use an EL expression to reference an action method through the action property. If you use a string, it must match the navigation metadata set up in the navigation rule for the page created in Step 2. If referencing a method, that method must return the required string.

For example, to create the breadcrumb as shown on the Health page in Figure 20-18, drag and drop four commandNavigationItem components, as shown in Example 20-22.

Example 20-22 BreadCrumbs Component With Individual CommandNavigationItem Children

<af:breadCrumbs>
 <af:commandNavigationItem text="Home" action="goHome"/>
 <af:commandNavigationItem text="Benefits" action="goBene"/>
 <af:commandNavigationItem text="Insurance" action="goIns"/>
 <af:commandNavigationItem text="Health"/>
</af:breadCrumbs>

20.8.3 What You May Need to Know About Removing Navigation Tabs

You can configure a navigationPane component whose hint attribute value is tabs so that the individual tabs can be closed. You can set it such that all tabs can be closed, all but the last tab can be closed, or no tabs can be closed. When navigation tabs are configured to be removed, a close icon (for example, an X) is displayed at the end of each tab as the mouse cursor hovers over the tab.

To enable tabs removal in a navigationPane component when hint="tabs", you need to do the following:

	
Set the itemRemoval attribute on navigationPane hint="tabs" to all or allExceptLast. When set to allExceptLast, all but one tab can be closed. This means as a user closes tabs, when there is only one tab left, that single last tab cannot be closed.

	
Implement a handler to do the tab removal. When a user closes a tab, an ItemEvent of type remove is launched. Your code must handle this event and the actual removal of the tab, and any other desired functionality (for example, show a warning dialog or how to handle child components). For more information about events, see Chapter 6, "Handling Events." For information about using popup dialogs and windows, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
Set the itemListener attribute on the commandNavigationItem component to an EL expression that resolves to the handler method that will handle the actual tab removal, as shown in Example 20-23.

Example 20-23 Using itemListener to Remove a Tab Item

JSF Page Code ----->
<af:navigationPane hint="tabs" itemRemoval="all">
 <af:commandNavigationItem text="Benefits" partialSubmit="true"
 itemListener="#{closebean.handleCloseTabItem}"/>
 .
 .
 .
</af:navigationPane>

Managed Bean Code ----->
import oracle.adf.view.rich.event.ItemEvent;
...
public void handleCloseTabItem(ItemEvent itemEvent)
{
 if (itemEvent.getType().equals(ItemEvent.Type.remove))
 {
 Object item = itemEvent.getSource();
 if (item instanceof RichCommandNavigationItem)
 {
 RichCommandNavigationItem tabItem = (RichCommandNavigationItem) item;
 tabItem.setVisible(false);
 // do other desired functionality here ...
 }
 }
}

20.9 Using Train Components to Create Navigation Items for a Multistep Process

	
Note:

If your application uses the Fusion technology stack or the ADF Controller, then you should use ADF task flows to create the navigation system for your application page hierarchy. For details, see the "Using Train Components in Bounded Task Flows" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

If you have a set of pages that users should visit in a particular order, consider using the train component on each page to display a series of navigation items that guide users through the multistep process. Figure 20-19 shows an example of what a rendered train component looks like on a page. Not only does a train component display the number of steps in a multistep process, it also indicates the location of the current step in relation to the entire process.

Figure 20-19 Navigation Items Rendered by a train Component

[image: 8 steps in a train. First 2 are visited. Current is 3.]

The train component renders each configured step represented as a train stop, and with all the stops connected by lines. Each train stop has an image (for example, a square block) with a label underneath the image.

Each train stop corresponds to one step or one page in your multistep process. Users navigate the train stops by clicking an image or label, which causes a new page to display. Typically, train stops must be visited in sequence, that is, a user must start at step 1, move to step 2, then step 3, and so on; a user cannot jump to step 3 if the user has not visited step 2. Train stops can also be configured so that end users do not have to visit the stops in sequence. When you configure train stops in this way, all train stops that can be directly visited are enabled.

As shown in Figure 20-19, the train component provides at least four styles for train stops. The current stop where the user is visiting is indicated by a bold font style in the train stop's label, and a different image for the stop; visited stops before the current stop are indicated by a different label font color and image color; the next stop immediately after the current stop appears enabled; any other stops that have not been visited are grayed-out.

A train stop can include a subtrain, that is, you configure a command component (for example, a commandButton component) to start a child multistep process from a parent stop, and then return to the correct parent stop after completing the subprocess. Suppose stop number 3 has a subprocess train containing two stops, when the user navigates into the first stop in the subprocess train, ADF Faces displays an icon representation of the parent train before and after the subprocess train, as shown in Figure 20-20.

Figure 20-20 Parent Train Icons At Start and End of a Subtrain

[image: Subtrain multi-step process]

You can use the trainButtonBar component in conjunction with the train component to provide additional navigation items for the train, in the form of Back and Next buttons, as shown in Figure 20-21. These Back and Next buttons allow users to navigate only to the next or previous train stop from the current stop. You can also use the trainButtonBar component without a train component. For example, you may want to display just the Back and Next buttons without displaying the stops when not all of the stops will be visited based on some conditional logic.

Figure 20-21 Navigation Buttons Rendered by a trainButtonBar Component

[image: Back and Next buttons rendered by TrainButtonBar]

Both train components work by having the value attribute bound to a train model of type org.apache.myfaces.trinidad.model.MenuModel. The train menu model contains the information needed to:

	
Control a specific train behavior (that is, how the train advances users through the train stops to complete the multistep process).

	
Dynamically generate the train stops, including the train stop labels, and the status of each stop (that is, whether a stop is currently selected, visited, unvisited, or disabled).

	
Note:

In an application that uses the ADF Model layer and ADF Controller, this navigation and display is set up and handled in a different manner. For more information, see the "Using Train Components in Bounded Task Flows" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Briefly, a menu model for the train is implemented by extending the MenuModel abstract class, which in turn extends the TreeModel class (for more information, see Chapter 12, "Using Tables and Trees"). A MenuModel object represents the menu structure of a page or application or could represent the hierarchy of pages and stops involved in a flow.

Because an instance of a MenuModel class is a special kind of a TreeModel object, the nodes in the TreeModel object can represent the stops of a train. The node instance that represents a train stop within the train component can be of type TrainStopModel, or it can be any object as long as it provides the same EL structure as a TrainStopModel object. However, the TrainStopModel class is a convenient interface that exposes all the relevant methods to retrieve the outcome, as well as the label of a stop and its immediate, disabled, and visited attribute states.

The MenuModel class can also indicate where in the tree the current train stop (page) is focused. The getFocusRowKey() method in the MenuModel class returns the rowKey object of the focus page for the current viewId. The menu model implementation for the train must also have a specific train behavior. You can implement this behavior by extending the MenuModel abstract class or the ProcessMenuModel convenience class. Both these classes come from the following package:

org.apache.myfaces.trinidad.model

The train behavior controls what other stops along the train users can visit while visiting the current train stop.

To create a train stop model, you can either extend the TrainStopModel abstract class and implement the abstract methods, or you can create your own class with the same method signatures. Your class must return a rowData object. An instance of this class represents a rowData object in the underlying collection (for the MenuModel implementation).

Binding a train component to a menu model is similar to binding a navigationPane component to an XMLMenuModel class using the value attribute (described in Section 20.7.3, "How to Bind the navigationPane Component to the Menu Model"). However, as long as your TrainStopModel implementation represents a rowData object, you do not need to use the nodeStamp facet and its commandNavigationItem component to provide the train stops. At runtime ADF Faces dynamically creates the nodeStamp facet and commandNavigationItem component, and automatically binds the methods in the train stop model to the appropriate properties on the commandNavigationItem component. Example 20-24 shows the simplified binding for a train.

	
Tip:

If you need to collate information for the train stops from various places, then you will need to manually create the nodeStamp facet and the individual commandNavigationItem components that represent the train stops. For more information, see Section 20.9.3, "How to Bind to the Train Model in JSF Pages".

Example 20-24 Simplified Train Model Binding

<af:train value="#{simpleTrainModel}"/>

The MenuModel implementation of your train model must provide specific train behavior. Train behavior defines how you want to control the pages users can access based on the page they are currently visiting. ADF Faces supports two train behaviors: Plus One and Max Visited.

Suppose there are 5 pages or stops in a train, and the user has navigated from page 1 to page 4 sequentially. Currently the user is at page 4. Where the user can go next depends on which train behavior the train model implements:

	
Plus One behavior: the user can go to page 3 or page 5

	
Max Visited behavior: the user can visit pages 1 to 3 (previously visited) and page 5 because it is the next page in the sequence. If the user goes to page 2, the next page that the user can visit is page 1, 3 or 4. The user cannot visit page 5 because page 4 was the maximum visited train stop in the sequence.

To define and use a train for all pages in a multistep process:

	
Create a JSF navigation rule and the navigation cases for the train. Creating a navigation rule and its navigation cases for a train is similar to Section 20.8.1, "How to Create a Simple Page Hierarchy", where you create one global navigation rule that has the navigation cases for all the train stops in the train.

	
Note:

You may want to set the value of the redirect element to true for each navigation case that you define within the JSF navigation rule if each train stop is an individual page and you want the client browser's URL to reference each new page. If you enable partial page rendering, the displayed URL may be different. For more information about the redirect element, see the JavaServer Faces specification. For more information about partial page rendering, see Chapter 8, "Rerendering Partial Page Content".

	
Create a train model that implements a specific train behavior and provides the train stop items for stamping. This includes creating a train stop model class and a menu model class. See Section 20.9.1, "How to Create the Train Model".

	
Configure managed beans for the train model. See Section 20.9.2, "How to Configure Managed Beans for the Train Model".

	
Create a JSF page for each train stop.

	
On each page, bind the train component to the train model. See Section 20.9.3, "How to Bind to the Train Model in JSF Pages". Optionally, bind the trainButtonBar component to the same train model, if you want to provide additional navigation buttons for the train.

20.9.1 How to Create the Train Model

To define a train menu model, you create:

	
A train stop model that provides data for rendering a train stop.

	
A MenuModel implementation with a specific train behavior (like Max Visited or Plus One) that controls what stops along the train users can visit while visiting at a current train stop, which stops should be disabled or whether the train needs to be navigated sequentially or not, among other things.

ADF Faces makes it easier for you to define a train menu model by providing additional public classes, such as:

	
The abstract class TrainStopModel for implementing a train stop model

	
The classes ProcessMenuModel and ProcessUtils that implement the Max Visited and Plus One behaviors

Users can either implement their own custom train behavior by overriding MenuModel or extend the existing ProcessMenuModel to provide specialized behavior.

For examples of train model classes, see the oracle.adfdemo.view.nav.rich package of the ADF Faces Demonstration application.

Before you begin:

It may help to understand how a train component's attributes affect functionality. For more information, see Section 20.9, "Using Train Components to Create Navigation Items for a Multistep Process."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To create the train model:

	
Create a train stop model class. A train stop model object holds the row data for stamping each train stop. The train stop model implementation you create should set and get the properties for each stop in the train, and define the methods required to render a train stop. The properties of a train stop correspond to the properties of the commandNavigationItem component. This will allow you to use the simplified binding, as shown in Example 20-24.

Alternatively, you can extend the abstract class TrainStopModel, and implement the abstract methods in the subclass.

The properties on the commandNavigationItem component that will be automatically EL bound are:

	
action: A static action outcome or a reference to an action method that returns an action outcome. The outcome is used for page navigation through the default ActionListener mechanism in JSF.

	
disabled: A boolean value that indicates whether or not the train stop should be non-interactive. Note that the train behavior you elect to use affects the value of this property. For more information, see Step 2.

	
immediate: A boolean value that determines whether or not data validations should be performed. Note that the train behavior you elect to use affects the value of this property. For more information, see Step 2.

	
messageType: A value that specifies a message alert icon over the train stop image. Possible values are none, error, warning, and info, and complete. For more information about messages, see Chapter 19, "Displaying Tips, Messages, and Help".

	
shortDesc: A value that is commonly used by client user agents to display as tooltip help text for the train stop.

	
showRequired: A boolean value that determines whether or not to display an asterisk next to the train stop to indicate that required values are contained in that train stop page.

	
textAndAccessKey: A single value that sets both the label text to display for the train stop, as well as the access key to use.

	
visited: A boolean value that indicates whether or not the train stop has already been visited. Note that the train behavior you elect to use affects the value of this property. For more information, see Step 2.

	
Create a class based on the MenuModel class to facilitate the construction of a train model.

The MenuModel implementation of your train model must have a specific train behavior. The ProcessMenuModel class in the org.apache.myfaces.trinidad.model package is a reference implementation of the MenuModel class that supports the two train behaviors: Plus One and Max Visited. To implement a train behavior for a train model, you can either extend the ProcessMenuModel class, or create your own.

In your train model class, you override the getFocusRowKey() method (see the MenuModel class) and implement a train behavior (see the ProcessMenuModel and ProcessUtils classes).

The train behaviors provided in the ProcessMenuModel class have an effect on the visited, immediate, and disabled properties of the commandNavigationItem component.

The visited attribute is set to true only if that page in the train has been visited. The ProcessMenuModel class uses the following logic to determine the value of the visited attribute:

	
Max Visited: A max visited stop is the farthest stop the user has visited in the current session. visited is set to true for any stop if it is before a max visited stop, or if it is the max visited stop itself.

	
Plus One: A plus one stop does not keep track of the farthest stop that was visited. The visited attribute is set to true for the current stop, or a stop that is before the current stop.

When the data on the current page does not have to be validated, the immediate attribute should be set to true. Suppose page 4 in the Plus One behavior described earlier has data that must be validated. If the user has advanced to page 4 and then goes back to page 2, the user has to come back to page 4 again later to proceed on to page 5. This means the data on page 4 does not have to be validated when going back to page 1, 2, or 3 from page 4, but the data should be validated when going ahead to page 5. For more information about how the immediate attribute works, see Section 5.2, "Using the Immediate Attribute".

The ProcessMenuModel class uses the following logic to determine the value of the immediate attribute:

	
Plus One: The immediate attribute is set to true for any previous step, and false otherwise.

	
Max Visited: When the current page and the maximum page visited are the same, the behavior is the same as the Plus One scenario. If the current page is before the maximum page visited, then the immediate attribute is set to false.

	
Note:

In an application that uses the ADF Model layer, the pageDefinition element in a page definition file supports an attribute (SkipValidation) that, when set to true, skips data validation for the page. Set SkipValidation to true if you want users to navigate from the page without invoking data validation. For more information, see the "pageNamePageDef.xml" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

The disabled attribute is set to true only if that page in the train cannot be reached from the current page. The ProcessMenuModel class uses the following logic to determine the value of the disabled attribute:

	
Plus One: The disabled attribute will be true for any page beyond the next available page.

	
Max Visited: When the current stop and the maximum page visited are the same, the behavior is the same as the Plus One behavior. If the current page is before the maximum page visited, then disabled is set to true for any page beyond the maximum page visited.

By default, ADF Faces uses the Max Visited behavior when a non-null maxPathKey value is passed into the train model, as determined by the managed bean you will create to support the behavior (for more information, see Section 20.9.2, "How to Configure Managed Beans for the Train Model"). If the maxPathKey value is null, then ADF Faces uses the Plus One behavior.

20.9.2 How to Configure Managed Beans for the Train Model

You use managed beans in a train model to gather the individual train stops into an Arraylist object, which is turned into the tree model that is then injected into a menu model to bind to the value attribute of the train component. You must instantiate the beans with the proper values for injection into the models, and you also have to configure a managed bean for each train stop or page in the train.

Before you begin:

It may help to understand how a train component's attributes affect functionality. For more information, see Section 20.9, "Using Train Components to Create Navigation Items for a Multistep Process."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To configure managed beans for the train model:

	
Configure a managed bean for each stop in the train, with values for the properties that require setting at instantiation, to create the train stops to pass into an ArrayList.

If a train stop has subprocess train children, there should be a managed bean for each subprocess train stop as well.

Each bean should be an instance of the train stop model class created in Section 20.9.1, "How to Create the Train Model". Example 20-25 shows sample managed bean code for train stops in the faces-config.xml file.

Example 20-25 Managed Beans for All Train Stops

<!-- First train stop -->
<managed-bean>
 <managed-bean-name>train1</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>First Step</value>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>

<!-- Second train stop -->
<managed-bean>
 <managed-bean-name>train2</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train2.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train2</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>Second Step</value>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>

<!-- And so on -->
.
.
.

The managed properties set the values to the train stop model object (the class created in Step 1 in Section 20.9.1, "How to Create the Train Model").

The viewId value is the path and file name to the page that is navigated to when the user clicks a train stop.

The outcome property value is the action outcome string that matches a JSF navigation case. The default JSF ActionListener mechanism is used to choose the page associated with the train stop as the view to navigate to when the train stop is selected.

The label property value is the train stop label text that displays beneath the train stop image. The value can be static or an EL expression that evaluates to a string in a resource bundle.

The model property value is the managed bean name of the train model (see Example 20-29).

If a train stop has subprocess train children, the managed bean configuration should also include the property (for example, children) that lists the managed bean names of the subprocess train stops in value expressions (for example, #{train4a}), as shown in Example 20-26.

Example 20-26 Managed Bean for a Train Stop with Subprocess train Children

<managed-bean>
 <managed-bean-name>train4</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train4.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train4</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>Fourth Step</value>
 </managed-property>
 <managed-property>
 <property-name>children</property-name>
 <list-entries>
 <value-class>project1.DemoTrainStopModel</value-class>
 <value>#{train4a}</value>
 <value>#{train4b}</value>
 <value>#{train4c}</value>
 </list-entries>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>

	
Configure a managed bean that is an instance of an ArrayList object to create the list of train stops to pass into the train tree model.

Example 20-27 shows sample managed bean code for creating the train stop list.

Example 20-27 Managed Bean for Train List

<managed-bean>
 <managed-bean-name>trainList</managed-bean-name>
 <managed-bean-class>
 java.util.ArrayList
 </managed-bean-class>
 <managed-bean-scope>
 none
 </managed-bean-scope>
 <list-entries>
 <value-class>project1.DemoTrainStopModel</value-class>
 <value>#{train1}</value>
 <value>#{train2}</value>
 <value>#{train3}</value>
 <value>#{train4}</value>
 <value>#{train5}</value>
 </list-entries>
</managed-bean>

The list-entries element contains the managed bean names for the train stops (excluding subprocess train stops) in value expressions (for example, #{train1}), listed in the order that the stops should appear on the train.

	
Configure a managed bean to create the train tree model from the train list.

The train tree model wraps the entire train list, including any subprocess train lists. The train model managed bean should be instantiated with a childProperty value that is the same as the property name that represents the list of subprocess train children (see Example 20-26).

Example 20-28 Managed Bean for Train Tree Model

<managed-bean>
 <managed-bean-name>trainTree</managed-bean-name>
 <managed-bean-class>
 org.apache.myfaces.trinidad.model.ChildPropertyTreeModel
 </managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>childProperty</property-name>
 <value>children</value>
 </managed-property>
 <managed-property>
 <property-name>wrappedData</property-name>
 <value>#{trainList}</value>
 </managed-property>
</managed-bean>

The childProperty property defines the property name to use to get the child list entries of each train stop that has a subprocess train.

The wrappedData property value is the train list instance to wrap, created by the managed bean in Step 2.

	
Configure a managed bean to create the train model from the train tree model.

This is the bean to which the train component on each page is bound. The train model wraps the train tree model. The train model managed bean should be instantiated with a viewIdProperty value that is the same as the property name that represents the pages associated with the train stops.

Example 20-29 shows sample managed bean code for a train model.

Example 20-29 Managed Bean for Train Model

<managed-bean>
 <managed-bean-name>trainMenuModel</managed-bean-name>
 <managed-bean-class>
 org.apache.myfaces.trinidad.model.ProcessMenuModel
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>viewIdProperty</property-name>
 <value>viewId</value>
 </managed-property>
 <managed-property>
 <property-name>wrappedData</property-name>
 <value>#{trainTree}</value>
 </managed-property>
 <!-- to enable plusOne behavior instead, comment out the maxPathKey property -->
 <managed-property>
 <property-name>maxPathKey</property-name>
 <value>TRAIN_DEMO_MAX_PATH_KEY</value>
 </managed-property>
</managed-bean>

The viewIdProperty property value is set to the property that is used to specify the page to navigate to when the user clicks the train stop.

The wrappedData property value is the train tree instance to wrap, created by the managed bean in Step 3.

The maxPathKey property value is the value to pass into the train model for using the Max Visited train behavior. ADF Faces uses the Max Visited behavior when a non-null maxPathKey value is passed into the train model. If the maxPathKey value is null, then ADF Faces uses the Plus One behavior.

20.9.3 How to Bind to the Train Model in JSF Pages

Each stop in the train corresponds to one JSF page. On each page, you use one train component and optionally a trainButtonBar component to provide buttons that allow the user to navigate through the train.

Before you begin:

It may help to understand how a train component's attributes affect functionality. For more information, see Section 20.9, "Using Train Components to Create Navigation Items for a Multistep Process."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."

To bind the train component to the train model:

	
Create a train component by dragging and dropping a Train from the Location group in the General Controls panel of the Component Palette to the JSF page. Optionally drag and drop a Train Button Bar.

	
Bind the component. If your MenuModel implementation for a train model returns a rowData object similar to the public abstract class oracle.adf.view.rich.model.TrainStopModel, you can use the simplified form of train binding in the train components, as shown in the following code:

<af:train value="#{trainMenuModel}"/>
<af:trainButtonBar value="#{trainMenuModel}"/>

The trainMenuModel EL expression is the managed bean name for the train model (see Example 20-29).

If you cannot use the simplified binding, you must bind the train value to the train model bean, manually add the nodeStamp facet to the train, and to that, add a commandNavigationItem component, as shown in Example 20-30.

Example 20-30

<af:train value="#{aTrainMenuModel}" var="stop">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem
 text="#{stop.label}"
 action="#{stop.outcome}"
 .
 .
 .
 </af:commandNavigationItem>
 </f:facet>
</af:train>

1 Introduction to ADF Faces

This chapter introduces ADF Faces, providing an overview of the framework functionality and each of the different component types found in the library.

This chapter includes the following sections:

	
Section 1.1, "About Oracle ADF Faces"

	
Section 1.2, "ADF Faces Framework"

	
Section 1.3, "ADF Faces Components"

1.1 About Oracle ADF Faces

Oracle ADF Faces is a set of over 150 Ajax-enabled JavaServer Faces (JSF) components, as well as a complete framework, all built on top of the JSF 2.0 standard. In it's beginnings, ADF Faces was a first-generation set of JSF components, and has since been donated to the Apache Software Foundation. That set is now known as Apache MyFaces Trinidad (currently available through the Apache Software Foundation), and remains as the foundation of today's ADF Faces.

With ADF Faces and JSF 2.0, you can implement Ajax-based applications relatively easily with a minimal amount of hand-coded JavaScript. For example, you can easily build a stock trader's dashboard application that allows a stock analyst to use drag and drop to add new stock symbols to a table view, which then gets updated by the server model using an advanced push technology. To close new deals, the stock trader could navigate through the process of purchasing new stocks for a client, without having to leave the actual page. Much of this functionality can be implemented declaratively using Oracle JDeveloper, a full-featured development environment with built-in support for ADF Faces components, allowing you to quickly and easily build the view layer of your web application.

	
Note:

Because ADF Faces adheres to the standards of the JSF technology, this guide is mostly concerned with content that is in addition to, or different from, JSF standards. Therefore, it is recommended that you have a basic understanding of how JSF works before beginning to develop with ADF Faces. To learn more about JSF, see http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html.

1.2 ADF Faces Framework

ADF Faces framework offers complete rich functionality, including the following;

	
Built to the JSF 2.0 specification

ADF Faces supports JSF 2.0, including Facelets. Several of the new JavaServer Faces 2.0 features have parallel functionality in ADF Faces. To understand the new functionality introduced in JSF 2.0 and the functional overlap that exists between ADF Faces and JSF 2.0, see the JavaServer Faces 2.0 Overview and Adoption Roadmap in Oracle ADF Faces and Oracle JDeveloper 11g whitepaper on OTN.

	
Large set of fully featured rich components

The library provides over 150 Rich Internet Application (RIA) components, including geometry-managed layout components, text and selection components, sortable and hierarchical data tables and trees, menus, in-page dialogs, and general controls. For more information, see Section 1.3, "ADF Faces Components."

	
Widespread Ajax support

Many ADF Faces components have ajax-style functionality implemented natively. For example, the ADF Faces table component lets you scroll through the table, sort the table by clicking a column header, mark a row or several rows for selection, and even expand specific rows in the table, all without requiring the page to be submitted to the server, and with no coding needed. In ADF Faces, this functionality is implemented as partial page rendering (PPR). For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Limited need for developers to write JavaScript

ADF Faces hides much of the complex JavaScript from you. Instead, you declaratively control how components function. You can implement a rich, functional, attractive Web UI using ADF Faces in a declarative way that does not require the use of any JavaScript at all.

That said, there may be cases when you do want to add your own functionality to ADF Faces, and you can easily do that using the client-side component and event framework. For more information, see Chapter 4, "Using ADF Faces Client-Side Architecture."

	
Enhanced lifecycle on both server and client

ADF Faces extends the standard JSF 2.0 page request lifecycle. Examples include a client-side value lifecycle, a subform component that allows you to create independent submittable regions on a page without needing multiple forms, and an optimized lifecycle that can limit the parts of the page submitted for processing. For more information, see Chapter 5, "Using the JSF Lifecycle with ADF Faces."

	
Event handling

ADF Faces adheres to standard JSF event handling techniques, as well as offering complete a client-side event model. For more information about events, see Chapter 6, "Handling Events."

	
Partial page navigation

ADF Faces applications can use PPR for navigation, which eliminates the need to repeatedly load JavaScript libraries and stylesheets when navigating between pages. For more information, see Section 8.4, "Using Partial Page Navigation."

	
Client-side validation, conversion, and messaging

ADF Faces validators can operate on both the client and server side. Client-side validators are in written JavaScript and validation errors caught on the client-side can be processed without a round-trip to the server. For more information, see Chapter 7, "Validating and Converting Input."

	
Server-side push and streaming

The ADF Faces framework includes server-side push that allows you to provide real-time data updates for ADF Faces components. For more information, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."

	
Active geometry management

ADF Faces provides a client-side geometry management facility that allows components to determine how best to make use of available screen real-estate. The framework notifies layout components of browser resize activity, and they in turn are able to resize their children. This allows certain components to stretch or shrink, filling up any available browser space. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."

	
Advanced templating and declarative components

You can create page templates, as well as page fragments and composite components made up of multiple components, which can be used throughout your application. For more information, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components."

	
Advanced visualization components

ADF Faces includes data visualization components, which are Flash- and PNG-enabled components capable of rendering dynamic charts, graphs, gauges, and other graphics that provide a real-time view of underlying data. For more information, see Part V, "Using ADF Data Visualization Components".

	
Skinning

You can create your own look and feel by implementing skins for ADF Faces components. Oracle provides a stand-alone skin editor, where you can declaratively create and modify your skins. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Internationalization

You can configure your JSF page or application to use different locales so that it displays the correct language based on the language setting of a user's browser. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
Accessibility

ADF Faces components have built-in accessibility that work with a range of assistive technologies, including screen readers.ADF Faces accessibility audit rules provide direction to create accessible images, tables, frames, forms, error messages, and popup windows using accessible HTML markup. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
User-driven personalization

Many ADF Faces components allow users to change the display of the component at runtime. By default, these changes live only as long as the page request. However, you can configure your application so that the changes can be persisted through the length of the user's session. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Drag and drop

The ADF Faces framework allows the user to move data from one location to another by dragging and dropping one component onto another. For more information, see Chapter 33, "Adding Drag and Drop Functionality."

	
Integration with other Oracle ADF technologies

You can use ADF Faces in conjunction with the other Oracle ADF technologies, including ADF Business Components, ADF Controller, and ADF Databinding. For more information about using ADF Faces with the ADF technology stack, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Integrated declarative development with Oracle JDeveloper

JDeveloper is a full-featured development environment with built-in declarative support for ADF Faces components, including a visual layout editor, a Component Palette that allows you to drag and drop an ADF Faces component onto a page, and a Property Inspector where you declaratively configure component functionality. For more information about using JDeveloper, see Chapter 3, "Getting Started with ADF Faces and JDeveloper."

1.3 ADF Faces Components

ADF Faces components generally fall into the following categories:

	
Layout components

Layout components act as containers to determine the layout of the page, ADF Faces layout components also include interactive container components that can show or hide content, or that provide sections, lists, or empty spaces. JDeveloper provides prebuilt quick-start layouts that declaratively add layout components to your page based on how you want the page to look. For more information about layout components and geometry management, see Chapter 9, "Organizing Content on Web Pages."

In addition to standard layout components, ADF Faces also provides the following specialty layout components:

	
Explorer-type menus and toolbar containers: Allow you to create menu bars and toolbars. Menus and toolbars allow users to select from a specified list of options (in the case of a menu) or buttons (in the case of a toolbar) to cause some change to the application. For more information, see Chapter 16, "Using Menus, Toolbars, and Toolboxes."

	
Secondary windows: Display data in popup windows or dialogs. The dialog framework in ADF Faces provides an infrastructure to support building pages for a process displayed in a new popup browser window separate from the parent page. Multiple dialogs can have a control flow of their own. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
Core structure components and tags: Provide the tags needed to create pages and layouts, such as documents, forms and subforms, and resources. These tags are discussed in various chapters.

	
Text and selection components

These components allow you to display text, from a simple output text component to input components, including selection components, to a complex list of value component.

	
Output components: Display text and graphics, and can also play video and music clips. ADF Faces also includes a carousel component that can display graphics in a revolving carousel. For more information, see Chapter 18, "Using Output Components."

	
Input components: Allow users to enter data or other types of information, such as color selection or date selection. ADF Faces also provides simple lists from which users can choose the data to be posted, as well as a file upload component. For more information about input components, see Chapter 11, "Using Input Components and Defining Forms."

	
List-of-Values (LOV) components: Allow users to make selections from lists driven by a model that contains functionality like searching for a specific value or showing values marked as favorites. These LOV components are useful when a field used to populate an attribute for one object might actually be contained in a list of other objects, as with a foreign key relationship in a database. For more information, see Chapter 13, "Using List-of-Values Components."

	
Data Views

ADF Faces provides a number of different ways to display complex data.

	
Table and tree components: Display structured data in tables or expandable trees. ADF Faces tables provide functionality such as sorting column data, filtering data, and showing and hiding detailed content for a row. Trees have built-in expand/collapse behavior. Tree tables combine the functionality of tables with the data hierarchy functionality of trees. For more information, see Chapter 12, "Using Tables and Trees."

	
Data visualization components: Allow users to view and analyze complex data in real time. ADF data visualization components include graphs, gauges, pivot tables, geographic maps, Gantt charts, and hierarchy viewers that display hierarchical data as a set of linked nodes, for example an organization chart. For more information, see Chapter 21, "Introduction to ADF Data Visualization Components."

	
Query components: Allow users to query data. The query component can support multiple search criteria, dynamically adding and deleting criteria, selectable search operators, match all/any selections, seeded or saved searches, a basic or advanced mode, and personalization of searches. For more information, see Chapter 14, "Using Query Components."

	
Specialty display components: The calendar component displays activities in day, week, month, or list view. You can implement popup components that allow users to create, edit, or delete activities. For more information, see Chapter 17, "Using a Calendar Component." The carousel component allows you to display a collection of images in a scrollable manner. For more information, see Section 18.6, "Displaying Images in a Carousel."

	
Messaging and help: The framework provides the ability to display tooltips, messages, and help for input components, as well as the ability to display global messages for the application. The help framework allows you to create messages that can be reused throughout the application.You create a help provider using a Java class, a managed bean, an XLIFF file, or a standard properties file, or you can link to an external HTML-based help system. For more information, see Chapter 19, "Displaying Tips, Messages, and Help."

	
Hierarchical menu model: ADF Faces provides navigation components that render items such as tabs and breadcrumbs for navigating hierarchical pages. The framework provides an XML-based menu model that, in conjunction with a metadata file, contains all the information for generating the appropriate number of hierarchical levels on each page, and the navigation items that belong to each level. For more information, see Chapter 20, "Working with Navigation Components."

	
General controls

General controls include the components used to navigate, as well as to display images and icons,

	
Navigation components: Allow users to go from one page to the next. ADF Faces navigation components include buttons and links, as well as the capability to create more complex hierarchical page flows accessed through different levels of menus. For more information, see Chapter 20, "Working with Navigation Components."

	
Images and icon components: Allow you to display images as simple as icons, to as complex as video. For more information, see Chapter 18, "Using Output Components."

	
Operations

While not components, these tags work with components to provide additional functionality, such as drag and drop, validation, and a variety of event listeners. These operational tags are discussed with the components that use them.

15 Using Popup Dialogs, Menus, and Windows

This chapter describes how to create and use popups in secondary windows including dialogs, menus, and windows on JSF pages.

This chapter includes the following sections:

	
Section 15.1, "About Popup Dialogs, Menus, and Windows"

	
Section 15.2, "Declaratively Creating Popups"

	
Section 15.3, "Declaratively Invoking a Popup"

	
Section 15.4, "Programmatically Invoking a Popup"

	
Section 15.5, "Displaying Contextual Information in Popups"

	
Section 15.6, "Controlling the Automatic Cancellation of Inline Popups"

	
Section 15.7, "Resetting Input Fields in a Popup"

15.1 About Popup Dialogs, Menus, and Windows

You can use the popup component with a number of other ADF Faces components to create a variety of dialogs, menus, and windows that provide information or request input from end users. Using these components, you can configure functionality to allow your end users to show and hide information in secondary windows, input additional data, or invoke functionality. The capabilities offered by these components allow you to render content or functionality that is supplemental to the content rendered on the primary interface and, as a result, develop uncluttered and user friendly interfaces.

The popup component is an invisible layout control, used in conjunction with other components to display inline (that is, belonging to the same page) dialogs, windows, and menus. The popup component is invoked from within the primary interface and the application manages the content that renders in the popup component like content in the primary interface without interference from popup blockers. It is recommended that the content type you render in a popup component be HTML. Other types of content, such as Flash or PDF files, may not render appropriately in a popup component.

Figure 15-1 shows examples where the popup component works with other ADF Faces components to render secondary windows.

Figure 15-1 ADF Faces Components for Dialogs, Menus, and Windows

[image: ADF Faces Components for Dialogs, Menus, and Windows]

To provide support for building pages for a process displayed separate from the parent page, ADF Faces provides a dialog framework. This framework supports multiple dialog pages with a control flow of their own. For example, say a user is checking out of a web site after selecting a purchase and decides to sign up for a new credit card before completing the checkout. The credit card transaction could be launched using the dialog framework in an external browser window. The completion of the credit card transaction does not close the checkout transaction on the original page.

This dialog framework can also be used inline as part of the parent page. This can be useful when you want the pages to have a control flow of their own, but you don't want the external window blocked by popup blockers.

If your application uses the full Fusion technology stack, note that this dialog framework is integrated with ADF Controller for use with ADF task flows. For more information, see the "Running a Bounded Task Flow in a Modal Dialog" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Using a context parameter named LAST_WINDOW_SESSION_TIMEOUT in your application's web.xml file, you can specify the maximum inactive period of time before session timeout when an application has only one open window. The maximum inactive period of time that you specify for the context parameter should be less than the value you specify for session timeout. If you enable this feature and there is only one window open in a session, the session timeout is set to the value that you specify for this context parameter. Example 15-1 shows how to set the value of the LAST_WINDOW_SESSION_TIMEOUT context parameter in a web.xml file to 1800 seconds.

Example 15-1 Specifying the Session Timeout for the Last Window in an Application

<!-- Sets the session timeout to 1800 seconds when there is only one window open in the session and 1800 seconds is smaller then the original session timeout. This gives your application the option to end the session when an end user closes the last window. Specify a value in seconds. A negative value disables this feature. The default value is -1. -->
 <context-param>
 <param-name>LAST_WINDOW_SESSION_TIMEOUT</param-name>
 <param-value>1800</param-value>
 </context-param>

For more information about configuring your application's web.xml file, Appendix A, "Configuration in web.xml."

15.1.1 Popup Dialogs, Menus, Windows Use Cases and Examples

You can place a dialog component as a child to a popup component and render a dialog in a popup at runtime. The dialog component must be the only immediate child component of the popup component. At runtime, end users can view or enter information (for example, search criteria) and use the dialog component's default command component buttons to invoke a dialogEvent when clicked. Figure 15-2 shows an example where an end user can dismiss the dialog by clicking the Close button.

Figure 15-2 af:dialog Component

[image: Inline dialog]

You can also use components within a popup to display contextual information related to another component. When so configured, the related component displays a small square. When moused over, the icon grows and also displays a note icon as shown in Figure 15-3.

Figure 15-3 With Mouseover, Larger Icon with Note is Displayed

[image: Mouseover displays larger note icon]

When the user clicks the note icon, the associated popup displays its enclosed content.

15.1.2 Additional Functionality for Popup Dialogs, Menus, and Windows

You may find it helpful to understand other ADF Faces features before you use a popup component to create dialogs, menus, and windows. Additionally, once you have added a popup component (or related components) to your page, you may find that you need to add functionality such as accessibility and localization. Following are links to other functionality that these components can use.

	
Using parameters in text: You can use the ADF Faces EL format tags if you want the text displayed in a component to contain parameters that will resolve at runtime. For more information, see Section 3.5.2, "How to Use the EL Format Tags."

	
Events: The dialog component renders ADF Faces command components. You also use a command component in conjunction with the showPopupBehavior tag to launch a popup. These ADF Faces command components deliver ActionEvent events when activated. For more information about how to handle events on the server as well as on the client, see Chapter 6, "Handling Events."

	
Messages: Popup dialogs and secondary windows are frequently used to provide different levels of help information for users. For more information about how to display messages to users, see Chapter 19, "Displaying Tips, Messages, and Help."

	
Localization: Instead of directly entering text for labels in the popup dialogs, menus, and windows that you create, you can use property files. These files allow you to manage translation of the text strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
Skins: You can change the look and feel of the components that you use to create popup dialogs, menus, and windows by changing the skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Accessibility: You can make your popup dialogs, menus, and windows accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Dialog framework: If your application uses the full Fusion technology stack, note that the dialog framework is integrated with ADF Controller for use with ADF task flows. For more information, see the "Using Dialogs in Your Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

15.2 Declaratively Creating Popups

The dialog, panelWindow, menu, and noteWindow components can all be used inside the popup component to display inline popups, as shown in Table 15-1. When no child component exists for the popup component, a very simple inline popup appears.

Table 15-1 Components Used with the popup Component

	Component	Displays at Runtime
	
dialog

	
Displays its children inside a dialog and delivers events when the OK, Yes, No, and Cancel actions are activated. For more information, see Section 15.2.1, "How to Create a Dialog."

[image: dialog component]

	
panelWindow

	
Displays its children in a window that is similar to a dialog, but does not support events. For more information, see Section 15.2.2, "How to Create a Panel Window."

[image: panel window]

	
menu

	
Displays a context menu for an associated component. For more information, see Section 15.2.3, "How to Create a Context Menu." [image: menu in a popup]

	
noteWindow

	
Displays read-only information associated with a particular UI component. Note windows are used to display help and messages and are commonly shown on mouseover or on focus gestures. For more information, see Section 15.2.4, "How to Create a Note Window."

[image: noteWindow component]
	
popup component without one of the following components as an immediate child component: dialog, panelWindow, menu, or noteWindow

	
Displays content inline. [image: simple popup]

Both the dialog and panelWindow components support definition help, content displayed when a user moves the cursor over a help icon (a blue circle with a question mark). The dialog and panelWindow components do not support instruction help. For more information, see Chapter 19, "Displaying Tips, Messages, and Help."

Typically, you use a command component in conjunction with the showPopupBehavior tag to launch a popup. You associate the showPopupBehavior tag with the component it should launch. This tag also controls the positioning of the popup (when needed).

In addition to being used with action events on command components, the showPopupBehavior tag can be used in conjunction with other events, such as the showDetail event and the selection event. For more information, see Section 15.3, "Declaratively Invoking a Popup."

As an alternative to using the showPopupBehavior tag in conjunction with a command component, you can launch, cancel, or hide a popup by writing a backing bean method. The backing bean method you write takes the actionEvent returned by the command component as an argument. For more information about this alternative, see Section 15.4, "Programmatically Invoking a Popup."

By default, the content of the popup is not sent from the server until the popup is displayed. This represents a trade-off between the speed of showing the popup when it is opened and the speed of rendering the parent page. Once the popup is loaded, by default the content will be cached on the client for rapid display.

You can modify this content delivery strategy by setting the contentDelivery attribute on the popup component to one of the following options:

	
lazy - The default strategy previously described. The content is not loaded until you show the popup once, after which it is cached.

	
immediate - The content is loaded onto the page immediately, allowing the content to be displayed as rapidly as possible. Use this strategy for popups that are consistently used by all users every time they use the page.

	
lazyUncached - The content is not loaded until the popup displays, and then the content reloads every time you show the popup. Use this strategy if the popup shows data that can become stale or outdated.

If you choose to set the popup component's contentDelivery attribute to lazy, you can further optimize the performance of the popup component and the page that hosts it by setting another popup component attribute (childCreation) to deferred. This defers the creation of the popup component's child components until the application delivers the content. The default value for the childCreation attribute is immediate.

15.2.1 How to Create a Dialog

Create a dialog when you need the dialog to raise events when dismissed. Once you add the dialog component as a child to the popup component, you can add other components to display and collect data.

By default, the dialog component can have the following combination of buttons:

	
Cancel

	
OK

	
OK and Cancel

	
Yes and No

	
Yes, No, and Cancel

	
None

These buttons launch a dialogEvent when clicked. You can add other buttons to a dialog using the buttonBar facet. Any buttons that you add do not invoke the dialogEvent. Instead, they invoke the standard actionEvent. It is recommended that any of these buttons that you add have their partialSubmit attribute set to true. This makes sure that an actionEvent invokes only on components within the dialog. However, you can add buttons and set their partialSubmit attribute to false if you set the af:popup component's autoCancel property's value to disabled. Choosing this latter option (partialSubmit set to false) results in increased wait times for end users because your application reloads the page and reinitializes components on the page before it restores the popup component's visibility (and by extension, the dialog component). Note that you must set the command component's partialSubmit attribute to true if the af:popup component's autoCancel property's value is set to enabled (the default value). For more information about the use of the af:popup component's autoCancel property, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."

Before you begin:

It may be helpful to understand how the dialog component's attributes and other components affect the functionality of inline dialogs. For more information, see Section 15.2, "Declaratively Creating Popups."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To create an inline dialog:

	
In the ADF Faces page of the Component Palette, from the Layout panel, in the Secondary Windows group, drag a Popup and drop it on the page.

	
Tip:

It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the popup component must be within a form component.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
ContentDelivery: Select how the content is delivered to the component in the popup.

	
Tip:

Values of input components in a dialog are not reset when a user clicks the dialog's Cancel button. If the user opens the dialog a second time, those values will still display. If you want the values to match the current values on the server, then set the contentDelivery attribute to lazyUncached.

	
Animate: Select true to enable animation. Animation is determined by configuration in the trinidad-config.xml file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled."). You can override this setting by selecting false.

	
LauncherVar: Enter a variable to be used to reference the launch component. This variable is reachable only during event delivery on the popup or its child components, and only if the EventContext is set to launcher.

	
EventContext: Set to launcher if the popup is shared by multiple objects, for example if the dialog within the popup will display information for the selected row in a table. Setting this attribute to launcher makes the row clicked current before the event listener is called, and returns data only for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."

	
Optionally, in the Property Inspector, expand the Common section and set the following attributes:

	
AutoCancel: Select disabled to prevent the automatic cancellation of an inline popup. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."

	
ChildCreation: Set to deferred to defer the creation of the popup component's child components until the application delivers the content. The default value for the childCreation attribute is immediate. For more information, see Section 15.2, "Declaratively Creating Popups."

	
ResetEditableValues: Select whenCanceled to reset editable values that an end user entered to null if the end user cancels the dialog.

Alternatively, you can use the resetListener component. For more information about using the resetListener component, see Section 15.7, "Resetting Input Fields in a Popup."

	
From the Component Palette, drag and drop a Dialog as a direct child to the popup component.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
Type: Select the built-in partial-submit command buttons you want to display in your dialog.

For example, if you set the type attribute to yesNoCancel, the dialog displays Yes, No, and Cancel buttons. When any of these buttons are pressed, the dialog dismisses itself, and the associated outcome (either ok, yes, no, or cancel) is delivered with an event. The ok, yes, and no outcomes are delivered with the dialogEvent. Cancel outcomes are sent with the PopupCanceled event. You can use the appropriate listener property to bind to a method to handle the event, using the outcome to determine the logic.

	
Tip:

A dialog will not dismiss if there are any ADF Faces messages with a severity of error or greater.

	
Title: Enter text to be displayed as the title on the dialog window.

	
CloseIconVisible: Select whether or not you want the Close icon to display in the dialog.

	
Modal: Select whether or not you want the dialog to be modal. Modal dialogs do not allow the user to return to the main page until the dialog has been dismissed.

	
Resize: Select whether or not you want users to be able to change the size of the dialog. The default is off.

	
StretchChildren: Select whether or not you want child components to stretch to fill the dialog. When set to first, the dialog stretches a single child component. However, the child component must allow stretching. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."

	
Note:

If you set Resize to on or set StretchChildren to first, you must also set ContentWidth and ContentHeight (see Step 8). Otherwise, the size will default to 250x250 pixels.

	
Expand the Appearance section and set the text attributes.

Instead of specifying separate button text and an access key, you can combine the two, so that the access key is part of the button text. Simply precede the letter to be used as an access key with an ampersand (&).

For example, if you want the text for the affirmative button to be OK, and you want the O in OK to be the access key, enter &OK.

	
Expand the Behavior section and if needed, enter a value for the DialogListener attribute. The value should be an EL expression method reference to a dialog listener method that handles the event.

For example, suppose you create a dialog to confirm the deletion of an item. You might then create a method on a managed bean similar to the deleteItem method shown in Example 15-2. This method accesses the outcome from the event. If the outcome is anything other than yes, the dialog is dismissed. If the outcome is yes (meaning the user wants to delete the item), the method then gets the selected item and deletes it.

Example 15-2 Handler for dialogEvent That Deletes an Item

 public void deleteItem(DialogEvent dialogEvent)
 {
 if (dialogEvent.getOutcome() != DialogEvent.Outcome.yes)
 {
 return;
 }

 // Ask for selected item from FileExplorerBean
 FileItem selectedFileItem = _feBean.getLastSelectedFileItem();
 if (selectedFileItem == null)
 {
 return;
 }
 else
 {
 // Check if we are deleting a folder
 if (selectedFileItem.isDirectory())
 {
 _feBean.setSelectedDirectory(null);
 }
 }

 this.deleteSelectedFileItem(selectedFileItem);
 }

Example 15-3 shows how the dialogListener attribute is bound to the deleteItem method.

Example 15-3

<af:dialog title="#{explorerBundle['deletepopup.popuptitle']}"
 type="yesNo"
 dialogListener="#{explorer.headerManager.deleteItem}"
 id="d1">

The dialogEvent is propagated to the server only when the outcome is ok, yes, or no. You can block this if needed. For more information, see Section 6.3.5, "How to Prevent Events from Propagating to the Server.")

If the user instead clicks the Cancel button (or the Close icon), the outcome is cancel, the popupCancel client event is raised on the popup component. Any values entered into input components rendered in the popup component do not get sent to the server. Any editable components that have changed their values since the popup component rendered do not send the changed values to the server. The popupCancel event is delivered to the server.

	
If you want to set a fixed size for the dialog, or if you have set resize to on or set stretchChildren to first, expand the Appearance section and set the following attributes:

	
ContentHeight: Enter the desired height in pixels.

	
ContentWidth: Enter the desired width in pixels.

	
Tip:

While the user can change the values of these attributes at runtime (if the resize attribute is set to on), the values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Note:

If you use a command component without the showPopupBehavior tag to launch the dialog, and if that command component has values for the windowHeight and windowWidth attributes, the values on the command component override the contentHeight and contentWidth values. The dialog framework allows you to use a command component to launch a dialog without the showPopupBehavior tag. For more information, see the "Running a Bounded Task Flow in a Modal Dialog" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about the showPopupBehavior tag, see Section 15.3, "Declaratively Invoking a Popup."

	
If needed, add command components to the buttonBar facet. It is recommended that you set the partialSubmit attribute to true for every added command component. However, you can set the command component's partialSubmit attribute to false if the af:popup component's autoCancel property is set to disabled. The values an af:popup component's autoCancel property and a command component partialSubmit property determine how a command component dismisses and reloads a dialog. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."

	
Tip:

If the facet is not visible in the visual editor:
	
Right-click the dialog component in the Structure window.

	
From the context menu, choose Facets - Dialog > ButtonBar. Facets in use on the page are indicated by a checkmark in front of the facet name.

By default, added command components do not dismiss the dialog. You need to bind the actionListener on the command component to a handler that manages closing the dialog, as well as any needed processing. For examples on how to do this, see the tag documentation.

	
Insert components to display or collect data for the dialog. Use a layout component like panelGroupLayout to contain the components.

	
Tip:

Normally, clicking a dialog's Cancel button or Close icon prevents any data entered into an inputText component from being submitted. However, setting the autoSubmit attribute to true on an inputText component in a dialog overrides the dialog's cancel behavior, as this setting causes a submit.

	
Add logic on the parent page to invoke the popup and dialog. For more information, see Section 15.3, "Declaratively Invoking a Popup."

15.2.2 How to Create a Panel Window

The panelWindow component is similar to the dialog component, but it does not allow you to configure the buttons or to add buttons to a facet. If you need to invoke logic to handle data in the panelWindow, you need to create a listener for the popup component's cancel event.

The popup component that contains the panelWindow component must be contained within a form component.

	
Tip:

If you are using the panelWindow as an inline popup in an application that uses the Fusion technology stack, and you want to emulate the look of a dialog, place the panelWindow component in the center facet of a panelStretchLayout component, and place command buttons in the bottom facet.

Before you begin:

It may be helpful to understand how the panelWindow component's attributes affect the functionality of inline windows. For more information, see Section 15.2, "Declaratively Creating Popups."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To create an inline window:

	
In the ADF Faces page of the Component Palette, from the Layout panel, in the Secondary Windows group, drag a Popup and drop it on the page.

	
Tip:

It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the popup component must be within a form component.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
ContentDelivery: Select how the content is to be delivered to the component in the popup.

	
Tip:

Values of input components are not reset when a user closes the panelWindow component. If the user opens the window a second time, those values will still display. If you want the values to match the current values on the server, then set the contentDelivery attribute to lazyUncached.

	
Animate: Select true to enable animation. Animation is determined by configuration in the trinidad-config.xml file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled.").

	
LauncherVar: Enter a name (for example, source) for a variable. Similar to the var attribute on a table, this variable is used to store reference in the Request scope to the component containing the showPopupBehavior tag. The variable is reachable only during event delivery on the popup or its child components, and only if EventContext is set to launcher.

	
EventContext: Set to launcher if the popup is shared by multiple objects, for example if the window within the popup will display information for the selected row in a table. Setting this attribute to launcher makes the row clicked current before the event listener is called, and returns data only for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."

	
PopupCancelListener: set to an EL expression that evaluates to a handler with the logic that you want to invoke when the window is dismissed.

	
Optionally, in the Property Inspector, expand the Common section and set a value for the AutoCancel property to determine the automatic cancel behavior. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."

	
In the ADF Faces page of the Component Palette, from the Layout panel, drag and drop a Panel Window as a direct child to the popup component.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
Modal: Select whether or not you want the window to be modal. Modal windows do not allow the user to return to the main page until the window has been dismissed.

	
CloseIconVisible: Select whether or not you want the Close icon to display in the window.

	
Title: The text displayed as the title in the window.

	
Resize: Select whether or not you want users to be able to change the size of the dialog. The default is off.

	
StretchChildren: Select whether or not you want child components to stretch to fill the window. When set to first, the window stretches a single child component. However, the child component must allow stretching. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."

	
Note:

If you set Resize to on or set StretchChildren to first, you must also set ContentWidth and ContentHeight (see Step 6). Otherwise, the size will default to 250x250 pixels.

	
If you want to set a fix size for the window, or if you have set resize to on or set stretchChildren to first, expand the Appearance section and set the following attributes:

	
ContentHeight: Enter the desired height in pixels.

	
ContentWidth: Enter the desired width in pixels.

	
Tip:

While the user can change the values of these attributes at runtime (if the resize attribute is set to on), the values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Note:

If a command component without the showPopupBehavior tag is used to launch the dialog, and if that command component has values for the windowHeight and windowWidth attributes, the values on the command component will override the contentHeight and contentWidth values. For more information about the showPopupBehavior tag, see Section 15.3, "Declaratively Invoking a Popup."

	
Insert components to display or collect data for the window. Use a layout component like panelGroupLayout to contain the components.

	
Add logic on the parent page to invoke the popup and panel window. For more information, see Section 15.3, "Declaratively Invoking a Popup."

15.2.3 How to Create a Context Menu

You create a context menu by using menu components within the popup component. You can then invoke the context menu popup from another component, based on a given trigger. If instead, you want toolbar buttons in a toolbar to launch popup menus, then see Section 16.3, "Using Toolbars."

Before you begin:

It may be helpful to understand how the popup component's attributes and other components affect the functionality of context menus. For more information, see Section 15.2, "Declaratively Creating Popups."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To create an inline context menu:

	
In the ADF Faces page of the Component Palette, from the Layout panel, in the Secondary Windows group, drag a Popup and drop it on the page.

	
Tip:

It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the popup component must be within a form component.

	
In the Property Inspector, expand the Common section and set the following attributes.

	
ContentDelivery: Determines how the content is delivered to the component in the popup.

	
Animate: Select true to enable animation. Animation is determined by configuration in the trinidad-config.xml file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled."). You can override this setting by selecting false.

	
LauncherVar: Enter a variable name (for example, source) to be used to reference the launch component. This variable is reachable only during event delivery on the popup or its child components, and only if the EventContext is set to launcher.

	
EventContext: Set to launcher if the popup is shared by multiple objects, for example if the menu within the popup will display information for the selected row in a table. Setting this attribute to launcher makes the row clicked current before the event listener is called, and returns only data for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."

	
Optionally, in the Property Inspector, expand the Common section and set a value for the AutoCancel property to determine the automatic cancel behavior. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."

	
From the Component Palette, drag and drop a Menu as a direct child to the popup component, and build your menu using commandMenuItem components, as documented starting with Step 6 in Section 16.2.1, "How to Create and Use Menus in a Menu Bar."

	
Tip:

Because this is a context menu, you do not need to create a menu bar or multiple menus, as documented in Steps 1 through 5 in Section 16.2.1, "How to Create and Use Menus in a Menu Bar."

	
Add logic on the parent page to invoke the popup and context menu. For more information, see Section 15.3, "Declaratively Invoking a Popup."

15.2.4 How to Create a Note Window

Use the noteWindow component to display read-only text. The popup component that contains the noteWindow component must be contained within a form component.

Before you begin:

It may be helpful to understand how the noteWindow component's attributes and other components affect functionality. For more information, see Section 15.2, "Declaratively Creating Popups."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To create an inline window:

	
In the ADF Faces page of the Component Palette, from the Layout panel, in the Secondary Windows group, drag a Popup and drop it on the page.

	
Tip:

It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the popup component must be within a form component.

	
In the Property Inspector, expand the Common section and set the following attributes.

	
ContentDelivery: Determines how the content is delivered to the component in the popup.

	
Animate: Select true to enable animation. Animation is determined by configuration in the trinidad-config.xml file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled."). You can override this setting by selecting false.

	
LauncherVar: Enter a variable to be used to reference the launch component. This variable is reachable only during event delivery on the popup or its child components, and only if the EventContext is set to launcher.

	
EventContext: Set to launcher if the popup is shared by multiple objects, for example if the window within the popup will display information for the selected row in a table. Setting this attribute to launcher makes the row clicked current before the event listener is called, and returns only data for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."

	
PopupCancelListener: Set to an EL expression that evaluates to a handler with the logic that you want to invoke when the window is dismissed.

	
Optionally, in the Property Inspector, expand the Common section and set a value for the AutoCancel property to determine the automatic cancel behavior. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."

	
From the Component Palette, drag and drop a Note Window as a direct child to the popup component.

	
To enter the text to display in the window:

	
Click the Source tab to view the page source code.

	
Remove the closing slash (/) from the af:noteWindow tag.

	
Below the af:noteWindow tag, enter the text to display, using simple HTML tags, and ending with a closed af:noteWindow tag.

Example 15-4 shows text for a note window.

Example 15-4 Text Within an af:noteWindow Tag

<af:popup id="popupHead" contentDelivery="lazyUncached">
 <af:noteWindow inlineStyle="width:200px" id="nw3">
 <p>In anatomy, the head of an animal is the rostral part (from
 anatomical position) that usually comprises the brain, eyes,
 ears, nose, and mouth (all of which aid in various sensory
 functions, such as sight, hearing, smell, and taste). Some very
 simple animals may not have a head, but many bilaterally
 symmetric forms do.</p>
 </af:noteWindow>
</af:popup>

Figure 15-4 shows how the note would display.

Figure 15-4 Text Displayed in a Note Window

[image: Text displayed in a note window]

	
Optionally, in the Property Inspector, expand the Behavior section and specify a number of seconds for the AutoDismissalTimeout property. The value you specify determines the time in seconds that the note window displays before the application automatically dismisses it. Any value you specify overrides the default automatic dismissal behavior. This override is revoked if the end user moves the mouse over the content of the note window because this gesture reverts the automatic dismissal behavior back to the default automatic dismissal behavior for the note window. The default automatic dismissal behavior is to dismiss the note window when focus changes from the launching source or from the content of the popup.

	
Note:

The feature enabled by this property is not accessible friendly because a mouse over triggers the timeout cancellation period and there is no keyboard equivalent.

	
Add logic on the parent page to invoke the popup and note window. For more information, see Section 15.3, "Declaratively Invoking a Popup."

15.2.5 What Happens at Runtime: Popup Component Events

When content is delivered to the popup, and the contentDelivery attribute is set to either lazy or lazyUncached, the popupFetch server-side event is invoked. This event has two properties, eventContext and launcherVar. The eventContext property determines the context from which the event is delivered, either from the context of the popup (self) or from the component that launched the popup (launcher). Setting the context to launcher can be very useful if the popup is shared by multiple components, because the framework will behave as though the component that launched the popup had launched the event, and not the popup. The launcherVar property is used to keep track of the current launcher, similar to the way in which variables are used to stamp out rows in a table.

For example, say you have a column in a table that displays a person's first name using a command link. When the command link is hovered over, a popup noteWindow is invoked that shows the person's full name. Because this noteWindow will be used by all rows in the table, but it needs to display the full name only for the row containing the command link that was clicked, you need to use the eventContext property to ensure that the context is that row, as shown in Example 15-5.

Example 15-5 Using eventContext for Shared Popups

<af:popup id="noteWindow" contentDelivery="lazyUncached" eventContext="launcher"
 launcherVar="source">
 <af:noteWindow>
 <af:outputText value="#{testBean.fullName}"/>
 </af:noteWindow>
</af:popup>
<af:table var="person" value="#{testBean.people}">
 <af:column id="firstName">
 <af:commandLink text="#{person.firstName}">
 <af:showPopupBehavior popupId="::noteWindow" triggerType="mouseHover"/>
 </af:commandLink>
 </af:column>
</af:table>

Using the variable source, you can take values from the source and apply them, or you can set values. For example, you could get the full name value of the people object used in the table, and set it as the value of the testBean's fullName property used by the window, using a setPropertyListener and clientAttribute tag, as shown in Example 15-6.

Example 15-6 Setting the Value of a Component in a Popup Using the launcherVar Property

<af:popup id="noteWindow" contentDelivery="lazyUncached" eventContext="launcher"
 launcherVar="source">
 <af:noteWindow>
 <af:outputText value="#{testBean.fullName}"/>
 </af:noteWindow>
 <af:setPropertyListener from="#{source.attributes.fullName}"
 to="#{testBean.fullName}" type="popupFetch"/>
</af:popup>
<af:table var="person" value="#{testBean.people}">
 <af:column id="firstName">
 <f:facet name="header">
 <af:outputText value="First Name"/>
 </f:facet>
 <af:commandLink text="#{person.firstName}">
 <af:showPopupBehavior popupId="::noteWindow" triggerType="mouseHover"/>
 <af:clientAttribute name="fullName" value="#{person.fullName}"/>
 </af:commandLink>
 </af:column>
</af:table>

In this example, the launcherVar property source gets the full name for the current row using the popupFetch event. For more information about using the setPropertyListener tag, see Section 5.7.2, "How to Use the pageFlowScope Scope Without Writing Java Code." For more information about using client attributes, see Section 4.7, "Using Bonus Attributes for Client-Side Components." For more information about the showPopupBehavior tag, see Section 15.3, "Declaratively Invoking a Popup."

Popups also invoke the following client-side events:

	
popupOpening: Fired when the popup is invoked. If this event is canceled in a client-side listener, the popup will not be shown.

	
popupOpened: Fired after the popup becomes visible. One example for using this event would be to create custom rules for overriding default focus within the popup.

	
popupCanceled: Fired when a popup is unexpectedly dismissed by auto-dismissal or by explicitly invoking the popup client component's cancel method. This client-side event also has a server-side counterpart.

	
popupClosed: Fired when the popup is hidden or when the popup is unexpectedly dismissed. This client-side event also has a server-side counterpart.

When a popup is closed by an affirmative condition, for example, when the Yes button is clicked, it is hidden. When a popup is closed by auto-dismissal, for example when either the Close icon or the Cancel button is clicked, it is canceled. Both types of dismissals result in raising a popupClosed client-side event. Canceling a popup also raises a client-side popupCanceled event that has an associated server-side counterpart. The event will not be propagated to the server unless there are registered listeners for the event. If it is propagated, it prevents processing of any child components to the popup, meaning any submitted values and validation are ignored. You can create a listener for the popupCanceled event that contains logic to handle any processing needed when the popup is canceled.

If you want to invoke some logic based on a client-side event, you can create a custom client listener method. For more information, see Section 4.2, "Listening for Client Events." If you want to invoke server-side logic based on a client event, you can add a serverListener tag that will invoke that logic. For more information, see Section 6.4, "Sending Custom Events from the Client to the Server."

15.2.6 What You May Need to Know About Dialog Events

The dialog component raises a dialogEvent when the end user clicks the OK, Yes, No or Cancel buttons. A dialog component automatically hides itself when the end user clicks the OK, Yes or No buttons provided that no message with a severity of error or greater exists on the page. An end user selecting the Cancel button or close icon cancels the parent popup component and raises a popup canceled event.

You can configure a dialogListener attribute to intercept the dialogEvent returned by the OK, Yes, No, and Cancel buttons. Only the dialogEvent returned by the OK, Yes and No buttons get propagated to the server. The dialogEvent returned by the Cancel button, the ESC key, and close icon queue a client dialog event and do not get propagated to the server.

If you configure an actionListener for the command component that invokes a dialog component to carry out an action (for example, update an inputText component) after the dialog component returns, you also need to call resetValue() on the inputText component if the command component's immediate value is set to true.

For more information about the events raised by the dialog and popup components, see the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces.

15.3 Declaratively Invoking a Popup

With ADF Faces components, JavaScript is not needed to show or hide popups. The showPopupBehavior tag provides a declarative solution, so that you do not have to write JavaScript to open a popup component or register a script with the popup component. For more information about client behavior tags, see Section 6.6, "Using ADF Faces Client Behavior Tags."

The showPopupBehavior tag listens for a specified event, for example the actionEvent on a command component, or the disclosureEvent on a showDetail component. However, the showPopupBehavior tag also cancels delivery of that event to the server. Therefore, if you need to invoke some server-side logic based on the event that the showPopupBehavior tag is listening for, then you need to use either JavaScript to launch the popup, or programmatically launch the popup component as documented in Section 15.4, "Programmatically Invoking a Popup."

15.3.1 How to Declaratively Invoke a Popup Using the af:showPopupBehavior Tag

You use the showPopupBehavior tag in conjunction with the component that invokes the popup, for example a commandButton component that invokes a dialog, or an inputText component that, when right-clicked, will invoke a context menu.

Before you begin:

Create the type of popup that you to invoke declaratively, as described in Section 15.2, "Declaratively Creating Popups" and create the component that invokes the popup.

It may be helpful to have an understanding of the configuration options available to you if you want to invoke a popup component declaratively. For more information, see Section 15.3, "Declaratively Invoking a Popup."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To use the showPopupBehavior tag:

	
In the Component Palette, from the Operations panel, in the Behavior group, drag a Show Popup Behavior and drop it as a child to the component that invokes the popup.

	
In the Property Inspector, use the dropdown menu for the PopupId attribute to choose Edit. Use the Edit Property: PopuId dialog to select the popup component to invoke and click OK.

	
In the Property Inspector, from the TriggerType dropdown menu, choose the trigger to invoke the popup. The default is action which can be used for command components. Use contextMenu to trigger a popup when the right-mouse is clicked. Use mouseHover to trigger a popup when the cursor is over the component. The popup closes when the cursor moves off the component. For a detailed list of component and mouse/keyboard events that can trigger the popup, see the documentation for the showPopupBehavior tag in the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces.

	
Note:

The event selected for the showPopupBehavior tag's triggerType attribute will not be delivered to the server. If you need to invoke server-side logic based on this event, then you must invoke the popup using either JavaScript or a custom event as documented in Section 6.4, "Sending Custom Events from the Client to the Server" or invoke the popup programmatically as documented in Section 15.4, "Programmatically Invoking a Popup"

	
From the AlignId dropdown, choose Edit, and then use the Edit Property: AlignId dialog to select the component with which you want the popup to align.

	
From the Align dropdown menu, choose how the popup should be positioned relative to the component selected in the previous step.

	
Note:

The dialog and panelWindow components do not require alignId or align attributes, as the corresponding popup can be moved by the user. If you set AlignId, the value will be overridden by any manual drag and drop repositioning of the dialog or window. If no value is entered for AlignId or Align, then the dialog or window is opened in the center of the browser.
Additionally, if the triggerType attribute is set to contextMenu, the alignment is always based on mouse position.

15.3.2 What Happens When You Use af:showPopupBehavior Tag to Invoke a Popup

At design time, JDeveloper generates the corresponding values in the source files that you selected in the Property Inspector. Example 15-7 shows sample code that displays some text in the af:popup component with the id “popup1" when the button "Click Me" is clicked.

Example 15-7 showPopupBehavior Associated with commandButton component

<af:commandButton immediate="true"
 text="Show Popup"
 clientComponent="true"
 id="popupButton2">
 <af:showPopupBehavior
 popupId="popup2"
 alignId="popupButton2"
 align="afterStart"/>
</af:commandButton>

<af:popup id="popup2">
 <af:inputText label="What is your name?" id="it1"/>
</af:popup>

The code in Example 15-7 tells ADF Faces to align the popup contents with the commandButton identified by the id attribute, and to use the alignment position of afterStart, which aligns the popup underneath the button, as shown in Figure 15-5.

Figure 15-5 Button and Popup Contents

[image: button and popup contents]

15.4 Programmatically Invoking a Popup

You can programmatically show, hide, or cancel a popup in response to an actionEvent generated by a command component. Implement this functionality if you want to deliver the actionEvent to the server immediately so you can invoke server-side logic and show, hide, or cancel the popup in response to the outcome of invoking the server-side logic.

Programmatically invoking a popup as described here differs to the method of invoking a popup described in Section 15.3, "Declaratively Invoking a Popup" where the showPopupBehavior tag does not deliver the actionEvent to the server immediately.

You create the type of popup that you want by placing one of the components (dialog, panelWindow, menu, or noteWindow) inside the popup component as described in Section 15.2, "Declaratively Creating Popups." Make sure that the popup component is in the right context when you invoke it. One of the easier ways to do this is to bind it to the backing bean for the page, as in Example 15-8.

Example 15-8 Binding a popup Component to a Backing Bean

<af:popup
 id="p1"
 binding="#{mybean.popup}"
 ...
/>

Once you have done this, you configure a command component's actionListener attribute to reference the popup component by calling an accessor for the popup binding.

Write code for the backing bean method that invokes, cancels, or hides the popup. Example 15-9 shows a showPopup backing bean method that uses the HINT_LAUNCH_ID hint to identify the command component that passes the actionEvent to it and p1 to reference the popup on which we invoke the show method.

Example 15-9 Backing Bean Method Invoking a Popup

public void showPopup(ActionEvent event) {
{
 FacesContext context = FacesContext.getCurrentInstance();
 UIComponent source = (UIComponent)event.getSource();
 String alignId = source.getClientId(context);
 RichPopup.PopupHints hints = new RichPopup.PopupHints();
 hints.add(RichPopup.PopupHints.HintTypes.HINT_ALIGN_ID,source)
 .add(RichPopup.PopupHints.HintTypes.HINT_LAUNCH_ID,source)
 .add(RichPopup.PopupHints.HintTypes.HINT_ALIGN,
 RichPopup.PopupHints.AlignTypes.ALIGN_AFTER_END);
 p1.show(hints);
}

Example 15-10 shows a backing bean method that cancels a popup in response to an actionEvent:

Example 15-10 Backing Bean Method Canceling a Popup

public void cancelPopupActionListener(ActionEvent event) {
 FacesContext context = FacesContext.getCurrentInstance();
 p1.cancel();
 }

Example 15-11 shows a backing bean method that hides a popup in response to an actionEvent:

Example 15-11 Backing Bean Method Hiding a Popup

public void hidePopupActionListener(ActionEvent event) {
 FacesContext context = FacesContext.getCurrentInstance();
 p1.hide();
 }

The p1 object in the previous examples refers to an instance of the RichPopup class from the following package:

oracle.adf.view.rich.component.rich.RichPopup

For more information about RichPopup, see the Oracle Fusion Middleware Java API Reference for Oracle ADF Faces.

15.4.1 How to Programmatically Invoke a Popup

You configure the command component's actionListener attribute to reference the backing bean method that shows, cancels or hides the popup.

Before you begin:

Create the type of popup that you want the server-side method to invoke, as described in Section 15.2, "Declaratively Creating Popups."

It may be helpful to have an understanding of the configuration options available to you if you want to invoke a popup component programmatically. For more information, see Section 15.4, "Programmatically Invoking a Popup."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To programmatically invoke a popup:

	
In the Component Palette, from the General Controls panel, drag and drop a command component onto the JSF page.

For example, a Button component.

	
In the Property Inspector, expand the Behavior section and set the following attributes:

	
PartialSubmit: set to true if you do not want the Fusion web application to render the entire page after an end user clicks the command component. The default value (false) causes the application to render the whole page after an end user invokes the command component. For more information about page rendering, see Chapter 8, "Rerendering Partial Page Content."

	
ActionListener: set to an EL expression that evaluates to a backing bean method with the logic that you want to execute when the end user invokes the command component at runtime.

	
Write the logic for the backing bean that is invoked when the command component in step 2 passes an actionEvent.

For more information, see Example 15-9, "Backing Bean Method Invoking a Popup", Example 15-10, "Backing Bean Method Canceling a Popup", or Example 15-11, "Backing Bean Method Hiding a Popup".

15.4.2 What Happens When You Programmatically Invoke a Popup

At runtime, end users can invoke the command components you configure to invoke the server-side methods to show, cancel, or hide a popup. For example, Figure 15-6 shows a panelWindow component that renders inside a popup component. It exposes two command buttons (Cancel and Hide) that invoke the cancel and hide methods respectively. End users invoke a commandLink component rendered in the SupplierName column of the table component in the underlying page to show the popup.

Figure 15-6 Popup Component Invoked by a Server-Side Method

[image: Popup Component Invoked by a Server-Side Method]

15.5 Displaying Contextual Information in Popups

There may be cases when you think the user may need more information to complete a task on a page, but you don't want to clutter the page with information that may not be needed each time the page is accessed, or with multiple buttons that might launch dialogs to display information. While you could put the information in a popup that was launched with a right-click on a component, the user would have no way of knowing the information was available in a popup.

The contextInfo component allows you to display additional information in a popup and also notifies users that additional information is available. When you place the contextInfo component into the context facet of a component that supports contextual information, a small orange square is shown in the upper left-hand corner of the component, as shown in Figure 15-7.

Figure 15-7 contextInfo Displays a Square

[image: Triangle displays in upper left-hand corner]

When the user places the cursor over the square, a larger triangle with a note icon and tooltip is displayed, indicating that additional information is available, as shown in Figure 15-8.

Figure 15-8 contextInfo Component Indicates Additional Information Is Available

[image: icon indicates addition info is available]

Because a showPopupBehavior tag is a child to the contextInfo component, the referenced popup will display when the user clicks the information icon, as shown in Figure 15-9.

Figure 15-9 Dialog launched From contextInfo Component

[image: Dialog launched from contextInfo component]

15.5.1 How to Create Contextual Information

You use the showPopupBehavior component as a child to the contextInfo component, which allows the popup component to align with the component that contains the contextInfo component.

Before you begin:

	
Create the component that will be the parent to the contextInfo component. The following components support the contextInfo component:

	
column

	
commandLink

	
inputComboboxListOfValues

	
inputListOfValues

	
inputText

	
outputFormatted

	
outputText

	
selectOneChoice

	
Create the popup to display, as documented in Section 15.2, "Declaratively Creating Popups."

	
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To use a contextInfo component:

	
In the ADF Faces page of the Component Palette, from the General Controls panel, drag a Context Info and drop it into the Context facet of the component that is to display the additional information icons.

	
Tip:

If the facet is not visible in the visual editor:
	
Right-click the outputText component in the Structure window.

	
From the context menu, choose Facets - component name > Context. Facets in use on the page are indicated by a checkmark in front of the facet name.

	
If you need server-side logic to execute when the contextInfo component displays, bind the contextInfoListener attribute to a handler that can handle the event.

	
Note:

If you use the showPopupBehavior tag to launch the popup, then delivery of the contextInfoEvent to the server is cancelled. If you need to invoke server-side logic based on this event, then you must launch the popup by using either JavaScript or a custom event as documented in Section 6.4, "Sending Custom Events from the Client to the Server."

	
In the Component Palette, from the Operations panel, in the Behavior group, drag a Show Popup Behavior and drop it as a child to the contextInfo component.

	
With the showPopupBehavior tag selected in the editor, in the Property Inspector, set the attributes as described in Section 15.3.1, "How to Declaratively Invoke a Popup Using the af:showPopupBehavior Tag." For the triggerType value, be sure to enter contextInfo.

15.6 Controlling the Automatic Cancellation of Inline Popups

You can use the af:popup component with a number of other components to create inline popups. That is, inline windows, dialogs, and context menus. These other components include the:

	
Dialog component to create an inline dialog

For more information, see Section 15.2.1, "How to Create a Dialog."

	
panelWindow component to create an inline window

For more information, see Section 15.2.2, "How to Create a Panel Window."

	
Menu components to create context menus

For more information, see Section 15.2.3, "How to Create a Context Menu."

	
noteWindow component to create a note window

For more information, see Section 15.2.4, "How to Create a Note Window."

By default, a Fusion web application automatically cancels an inline popup if the metadata that defines the inline popup is replaced. Scenarios where this happens include the following:

	
Invocation of a command component that has its partialSubmit property set to false. The Fusion web application renders the entire page after it invokes such a command component. In contrast, a command component that has its partialSubmit property set to true causes the Fusion web application to render partial content. For more information about page rendering, see Chapter 8, "Rerendering Partial Page Content."

	
A component that renders a toggle icon for end users to display or hide content hosts the popup component. Examples include the showDetailItem and panelTabbed components. For more information about the use of components that render toggle icons, see Section 9.8, "Displaying and Hiding Contents Dynamically."

	
Failover occurs when the Fusion web application displays an inline popup. During failover, the Fusion web application replaces the entire page.

You can change the default behavior described in the previous list by disabling the automatic cancellation of an inline popup component. This means that the Fusion web application does not automatically cancel the inline popup if any of the above events occur. Instead, the Fusion web applications restores the inline popup.

15.6.1 How to Disable the Automatic Cancellation of an Inline Popup

You disable the automatic cancellation of an inline popup by setting the popup component's autoCancel property to disabled.

Before you begin:

It may be helpful to understand how other components can affect functionality. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To control the automatic cancellation of inline popups:

	
In the Structure window, right-click the af:popup component for which you want to configure the automatic cancellation behavior and choose Go to Properties.

	
In the Property Inspector, expand the Common section and use the dropdown menu for the AutoCancel property to choose disabled.

15.6.2 What Happens When You Disable the Automatic Cancellation of an Inline Popup

JDeveloper sets the af:popup component autoCancel property's value to disabled, as shown in Example 15-12:

Example 15-12 Metadata to Prevent the Automatic Cancellation of an Inline Popup

<af:popup id="p1" autoCancel="disabled">
 ...
</af:popup>

At runtime, the Fusion web application restores an inline popup after it rerenders a page if the inline popup displayed before invocation of the command to rerender the page.

15.7 Resetting Input Fields in a Popup

You can use the resetListener component in conjunction with a popup component to allow end users to reset input values in an input field. Example use cases where you may want to implement this functionality for input components that render in a popup component include:

	
Permitting end users to reset an incorrect value that they previously entered

	
Removing values where the popup component invokes a popupCanceledEvent before the application submits the values to the server that an end user entered.

End user gestures that invoke a popupCancelEvent include clicking a command button (for example, a button labelled Close), the cancel icon in the title bar of a popup dialog or pressing the Esc key.

Depending on how you configure the popup component, data may be cached on the client. For example, if you set the popup component's contentDelivery attribute to immediate, the application always caches data on the client.

For more information about how the setting that you choose for the contentDelivery attribute determines the content delivery strategy for your popup component, see Section 15.2, "Declaratively Creating Popups" and Section 15.2.5, "What Happens at Runtime: Popup Component Events."

Example 15-13 shows the metadata for a popup component where the contentDelivery attribute is set to immediate and the user's popup renders a dialog component with preconfigured controls that raise dialogEvents, as described in Section 15.2.1, "How to Create a Dialog." In this scenario, data that the end user entered is cached on the client. The application does not submit data that you want to reset to the server. Also, the preconfigured controls rendered by the dialog component may prevent the popup from closing if they encounter validation errors.

Example 15-13 The resetListener Tag on the Popup Component

<af:popup id="popup" contentDelivery="immediate">
 <af:resetListener type="popupCanceled"/>
</af:popup>

For more information about using the resetListener component independently of a popup component, see Section 20.5.2, "How to Use a Command Component to Reset Input Fields."

	
Note:

Setting the resetListener component's type attribute to popupCanceled provides the same functionality as setting the popup component's resetEditableValues attribute to whenCanceled. For more information about setting the resetEditableValues attribute of the popup component, see Section 15.2.1, "How to Create a Dialog."

15.7.1 How to Reset the Input Fields in a Popup

You enable end users to reset the data in a popup's input fields to null by setting the resetListener component's type attribute to popupCanceled.

Before you begin:

It may be helpful to understand the use cases for which you can configure this functionality in a popup component. For more information, see Section 15.7, "Resetting Input Fields in a Popup."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."

To reset the input fields in a popup:

	
Create the type of popup dialog that you require, as described in Section 15.2, "Declaratively Creating Popups."

	
From the Component Palette, drag and drop a Reset Listener as a direct child to the popup component.

	
In the Insert Reset Listener dialog that JDeveloper displays, enter popupCanceled as the type of event that the resetListener component responds to.

Click Help in the Insert Reset Listener dialog to view a complete list of supported values.

15.7.2 What Happens When You Configure a Popup to Reset Its Input Fields

JDeveloper writes entries similar to those shown in Example 15-14 when you configure a popup component and a resetListener component to allow end users to reset the input field(s) in the popup component to null.

Example 15-14 Popup Component Configured to Reset Input Fields Using Reset Listener

<af:popup id="popupDialog" contentDelivery="lazyUncached"
 popupCanceledListener="#{demoInput.resetPopupClosed}">
 <af:dialog title="Enter an Incorrect Value">
 <af:inputText id="it2" label="Always-incorrect Value" value="#{demoInput.value}">
 <f:validator binding="#{demoInput.obstinateValidator2}"/>
 </af:inputText>
 </af:dialog>
 <af:resetListener type="popupCanceled"/>
</af:popup>

At runtime, an end user gesture that raises a popupCanceled event results in the resetListener component resetting values in the input fields of the popup component to null, as illustrated in Figure 15-10.

Figure 15-10 Popup Component Resetting Input Fields

[image: Popup Component Resetting Input Fields]

[bookmark: BABJJCJG][bookmark: ADFUI533]
26 Using Gantt Chart Components

This chapter describes how to display data in Gantt charts using the ADFData Visualization projectGantt, resourceUtilizationGantt, and schedulingGantt components. If your application uses the Fusion technology stack, then you can use data controls to create Gantt charts. For more information, see the "Creating Databound Gantt Charts" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

This chapter includes the following sections:

	
Section 26.1, "About Gantt Chart Components"

	
Section 26.2, "Using Gantt Chart Components"

	
Section 26.3, "Customizing Gantt Chart Legends, Toolbars, and Context Menus"

	
Section 26.4, "Working with Gantt Chart Tasks and Resources"

	
Section 26.5, "Specifying Nonworking Days, Read-Only Features, and Time Axes"

	
Section 26.6, "Printing a Gantt Chart"

	
Section 26.7, "Using Gantt Charts as a Drop Target or Drag Source"

[bookmark: CIHEACIB][bookmark: ADFUI534]

26.1 About Gantt Chart Components

A Gantt chart is a type of horizontal bar graph that you use to plan and track projects. It shows resources or tasks in a time frame with a distinct beginning and end. A Gantt chart component is composed of two regions, one displaying the Gantt chart data in a table, and the other displaying the Gantt chart data graphically with a resizable splitter between the two regions. The table and chart regions share the same data and selection model, supporting and synchronizing scrolling, and expanding and collapsing of rows between the two regions.

At runtime, Gantt charts provide interaction capabilities in the table region to the user such as entering data, expanding and collapsing rows, showing and hiding columns, navigating to a row, and sorting and totaling columns. In the chart region, users can drag a task to a new date, select multiple tasks to create dependencies, and extend the task date. A Gantt chart toolbar is available to support user operations such as changing or filtering the view of the data, and creating, deleting, cutting, copying, and pasting tasks.

Both Gantt chart regions are based on an ADF Faces tree table component. For more information about ADF tree tables, including virtualization of rows, see Chapter 12, "Using Tables and Trees."

ADF Gantt chart components include a project Gantt chart, a resource utilization Gantt chart, and a scheduling Gantt chart.

[bookmark: ADFUI11891]
[bookmark: sthref338]
26.1.1 End User and Presentation Features

To understand how Gantt charts are used and can be customized, it is helpful to understand these elements and features:

[bookmark: BABHCFGG][bookmark: ADFUI539]

26.1.1.1 Scrolling, Zooming, and Panning

The Gantt chart design lets you perform horizontal scrolling of the table and the chart regions independently. This is especially helpful when you want to hold specific task or resource information constant in the table region while scrolling through multiple time periods of information in the chart region.

Users can also zoom in and out on the time scale of a Gantt chart by holding the Ctrl key and using the mouse scroll wheel. A tooltip displays to allow the user to keep track of the current level when zooming through multiple levels at a time. This is especially useful for users with a scroll wheel without a click function.

In project and scheduling Gantt charts, users can pan the chart area by dragging it vertically and horizontally using the cursor. A move cursor displays when the user clicks inside the chart area, other than on a task.

[bookmark: ADFUI12280]
[bookmark: sthref339]
26.1.1.2 Selection

This feature provides access to the rowKeys of the selected tasks in the scheduling Gantt chart and the selected time buckets in the resource utilization Gantt chart components. Furthermore, this feature will allow access to the rowKeys of the currently selected task in the scheduling Gantt and the currently selected time bucket in the resource utilization Gantt. By default, the project Gantt chart provides access to the scheduled tasks.

[bookmark: ADFUI540]
[bookmark: sthref340]
26.1.1.3 How to Navigate to a Specific Date in a Gantt Chart- Navigation and Display

You can move the chart region of the Gantt chart rapidly to a specific date.

[bookmark: ADFUI11031]
To navigate to a specific date in a Gantt chart:

	
From the View menu, choose Go to Date.

	
In the Go to Date dialog, specify the desired date by clicking the Select Date icon and indicating the date in the calendar.

	
Click OK.

The display of the chart region of the Gantt chart begins at the date you requested.

[bookmark: ADFUI1078]
[bookmark: sthref341]
26.1.1.4 How to Control the Visibility of Columns in the Table Region

By default, all the columns that you define when you create a databound Gantt chart are visible in the table region. You can selectively cause one or more of these columns to be hidden.

[bookmark: ADFUI11032]
To control the display of columns in the table region of a Gantt chart:

	
From the View menu, select List Pane.

	
From the context menu, select Columns.

	
In the Columns menu, deselect any column that you want to be hidden in the table region of the Gantt chart. You can also select any column that you want to make visible in the table region.

	
Note:

You must keep at least one column visible in the table region.

[bookmark: ADFUI10142]
[bookmark: sthref342]
26.1.1.5 Navigating in a Gantt Chart

You can browse through Gantt chart regions by scrolling, or you can access a specific date in the chart region. You can also control if columns in the table region are visible.

[bookmark: ADFUI1077]
[bookmark: sthref343]
26.1.1.6 How to Display Data in a Hierarchical List or a Flat List

If a Gantt chart is using a hierarchical data model, then you have the option of displaying all the Gantt chart data in a collapsed form or in an expanded form.

[bookmark: ADFUI11033]
To control the display of Gantt chart data in a list:

	
From the View menu, select List Pane.

	
From the ensuing menu, select either Show As List, for an expanded list, or Show As Hierarchy, for a collapsed list.

[bookmark: ADFUI1079]
[bookmark: sthref344]
26.1.1.7 How to Change the Gantt Chart Time Scale

You can change the time scale display in a Gantt chart and you can zoom in and out on a time axis to display the chart region in different time units. You can also use a specialized zoom-to-fit feature in which you select the amount of time that you want to display in the chart region without a need to scroll the chart.

[bookmark: ADFUI11034]
To change the settings of a time axis:

	
From the View menu, select Time Scale.

	
In the ensuing Time Scale dialog, in the Time Unit column, select a new unit value for either the major axis, the minor axis, or both axes. A sample box displays sample settings for the time unit that you select. Figure 26-1 shows the Time Scale dialog.

[bookmark: BHADBCEA][bookmark: ADFUI11486]
Figure 26-1 Time Scale Dialog

[image: time scale dialog]

	
Click OK.

[bookmark: ADFUI11035]
To zoom in or out on a time axis:

	
Optionally, on the toolbar, click the Zoom In icon to display the time axis at a lower level time unit.

	
Optionally, on the toolbar, click the Zoom Out icon to display the time axis at a higher level time unit.

	
Optionally, in the box on the toolbar after the zoom icons, select a time period that represents the amount of time on the chart that you want to display without the need to scroll.

	
Optionally, right-click the time axis for which you wish to change the scale and select an available time unit from the submenu.

[bookmark: ADFUI12281]
[bookmark: sthref345]
26.1.1.8 Server-Side Events

When a user interaction involves a change in data, the Gantt chart processes the change by performing validation, event handling, and update of the data model. Validation ensures that the data submitted meets basic requirements, for example, that a date is valid and does not fall into a nonworking time period. When validation fails, the update of the data model is omitted, and an error message is returned.

When a Gantt chart server-side event is fired, an event with validated information about the change is sent to the registered listener. The listener is then responsible for updating the underlying data model. A customized event handler can be registered by specifying a method binding expression on the dataChangeListener attribute of the Gantt chart component.

Server-side events supported by the Gantt chart include:

	
Update of data in the table cells of the Gantt chart table region

	
Create, update, delete, move, cut, copy, paste, indent, outdent of tasks

	
Reassignment of resource by dragging the task bar from one row to another

	
Drag the task bar to another date

	
Extend the duration of a task

	
Link or unlink tasks

	
Select a row or multiple rows in the Gantt chart table region

	
Undo or redo of user actions

	
Double-click on a task bar

Users can filter the data in a Gantt chart using a dropdown list from the toolbar. You can create a custom filter.

[bookmark: ADFUI11892]
[bookmark: sthref346]
26.1.2 Gantt Chart Component Use Cases and Examples

The Gantt chart provides the following components:

	
Project Gantt chart: A project Gantt chart is used for project management. The chart lists tasks vertically and shows the duration of each task as a bar on a horizontal time line. It graphs each task on a separate line as shown in Figure 26-2.

[bookmark: CIHHJIAD][bookmark: ADFUI11023]
Figure 26-2 Project Gantt Chart for a Software Application

[image: Project Gantt chart for software application]

	
Resource Utilization Gantt chart: A resource utilization Gantt chart graphically shows the metrics for a resource, for example, whether resources are over or under allocated. It shows resources vertically while showing their metrics, such as allocation and capacity on the horizontal time axis. Figure 26-3 shows a resource utilization Gantt chart illustrating how many hours are allocated and utilized for a particular developer resource in a given time period.

[bookmark: BHAFHHBI][bookmark: ADFUI11024]
Figure 26-3 Resource Utilization Gantt Chart for a Software Application

[image: resource utilization Gantt chart for application]

	
Scheduling Gantt chart: A scheduling Gantt chart is used for resource scheduling. The chart is based on manual scheduling boards and shows resources vertically, with corresponding activities on the horizontal time axis. Examples of resources include people, machines, or rooms. The scheduling Gantt chart uses a single line to graph all the tasks that are assigned to a resource as shown in Figure 26-4.

[bookmark: CIHGCDHE][bookmark: ADFUI11025]
Figure 26-4 Scheduling Gantt Chart for a Software Application

[image: Scheduling Gantt chart for software application]

A Gantt chart consists of the following functional areas:

	
Table region: Displays Gantt chart data attributes in a table with columns. The table region requires a minimum of one column, but you can define attributes for as many columns as desired in the Gantt chart data binding dialogs.

For example, in Figure 26-2, the table region contains the following columns: Name (of the task), Priority, Orig. Est., Curr. Est., Elapsed (days), Remaining (days), and Resources.

	
Chart region: Displays a bar graph of the Gantt chart data along a horizontal time axis. The time axis provides for major and minor settings to allow for zooming. The major setting is for larger time increments and the minor setting is for smaller time increments.

For example, in Figure 26-2, the chart region graphs tasks on a time axis that shows days within weeks.

	
Information panel: Displays both the information region that displays text about the selected task or metrics about the selected resource, and the optional legend that displays task types in the area beneath the table region and the chart region. Note that the Gantt chart legend is not present unless you insert the legend child tag inside the parent Gantt chart tag.

	
Toolbar: Lets users perform operations on the Gantt chart. The toolbar is visible in the Gantt chart by default. You can change the visibility of the toolbar by setting the ShowToolbar attribute on the Appearance page of the Property Inspector for the Gantt chart.

The toolbar consists of the following sections:

	
Menu bar: The left section of the toolbar contains a set of menus for the Gantt chart. Each Gantt chart type has a set of default options. Figure 26-5 displays the menu bar, which is visible in the Gantt chart by default. You can change the visibility of the menu bar by setting the ShowMenuBar attribute in the Appearance page of the Property Inspector for the Gantt chart. You can customize menu items by using the menubar facet.

	
Note:

The View menu items do not require that you write application code to make them functional. However, you must provide application code for any items that you want to use on the other menus.

[bookmark: CIHGDGCE][bookmark: ADFUI11026]
Figure 26-5 Sample Menu Bar for a Gantt Chart

[image: Gantt chart menu bar]

	
Toolbar buttons: The right section of the toolbar displays a set of action buttons for working with the Gantt chart. Each Gantt chart type has a set of default options. Figure 26-6 shows a sample toolbar for a project Gantt chart.

[bookmark: CIHIHEFF][bookmark: ADFUI11027]
Figure 26-6 Sample Toolbar for a Project Gantt Chart

[image: Project Gantt chart toolbar]

You can customize toolbar buttons by using the toolbar facet.

	
Context menu: Right-clicking in the Gantt chart table or chart regions provides a popup context menu with a standard set of menu items. You can provide your own set of menu items by using the tablePopupMenu or chartPopupMenu facet.

	
Printing service: The Gantt chart provides printing capability in conjunction with XML Publisher by generating PDF files. For more information, see Section 26.6, "Printing a Gantt Chart".

[bookmark: CIHJIHGB][bookmark: ADFUI11893]

26.1.3 Additional Functionality for Gantt Chart Components

You may find it helpful to understand other ADF Faces features before you implement your Gantt chart component. Additionally, once you have added a Gantt chart component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that Gantt chart components can use:

	
Partial page rendering: You may want a Gantt chart to refresh to show new data based on an action taken on another component on the page. For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Personalization: Users can change the way the Gantt chart displays at runtime, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Accessibility: You can make your Gantt chart components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Export to Excel: You can export the table region of the project Gantt chart using af:exportCollectionActionListener. For more information, see Section 12.10, "Exporting Data from Table, Tree, or Tree Table."

	
Content Delivery: You configure your Gantt chart table region to fetch a certain number of rows at a time from your data source using the contentDelivery attribute. For more information, see Section 12.2.2, "Content Delivery."

	
Automatic data binding: If your application uses the Fusion technology stack, then you can create automatically bound Gantt charts based on how your ADF Business components are configured. For more information, see the "Creating Databound Gantt Charts" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

If you know the UI components on your page will eventually use ADF data binding, but you need to develop the pages before the data controls are ready, then you should consider using placeholder data controls, rather than manually binding the components. Using placeholder data controls will provide the same declarative development experience as using developed data controls. For more information, see the "Designing a Page Using Placeholder Data Controls" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such as how data is delivered, automatic partial page rendering (PPR), image formats, and how data can be displayed and edited. For more information, see Section 21.2, "Common Functionality in Data Visualization Components."

[bookmark: BHAJEIFE][bookmark: ADFUI1075]

26.2 Using Gantt Chart Components

The data model for a Gantt chart can be either a tree (hierarchical) model or a collection model that contains a row set or flat list of objects. For more information, see the "Creating Databound ADF Gantt Charts" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

When you bind a Gantt chart to a data control, you specify how the collection in the data control maps to the node definitions of the Gantt chart.

[bookmark: BABFDHEG][bookmark: ADFUI1076]

26.2.1 Data for a Project Gantt Chart

The data model for a project Gantt chart supports hierarchical data and uses TreeModel to access the data in the underlying list. The specific model class is org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by the TreeModel must have, at a minimum, the following properties:

	
taskId: The ID of the task.

	
startTime: The start time of the task.

	
endTime: The end time of the task.

Optionally, the object could implement the oracle.adf.view.faces.bi.model.Task interface to ensure it provides the correct properties to the Gantt chart.

When binding the data to an ADF data control, the following node definitions are available in a project Gantt chart:

	
Task node: Represents a collection of tasks. The task node definition has the following types of optional accessors:

	
subTask (available only for project Gantt chart)

	
splitTask

	
Split task node: Represents a collection of split tasks. A split task node definition does not have accessors.

	
Dependency node: Represents a collection of dependencies for a task. A dependency node definition does not have accessors.

	
Recurring task node: Represents a collection of recurring tasks. A recurring task node definition does not have accessors.

Table 26-1 shows a complete list of data object keys for the project Gantt chart.

[bookmark: ADFUI12563][bookmark: sthref347][bookmark: CIHHBEEF]
Table 26-1 Data Object Keys for Project Gantt

	Data Object Key
	Date Type and Description

	
actualEnd

	
Date. The actual end time for normal and milestone tasks.

	
actualStart

	
Date. The actual start time for normal and milestone tasks.

	
completedThrough

	
Date. Completed through for normal and summary tasks.

	
critical

	
Boolean. Specifies whether or not the task is critical for all tasks.

	
Dependency (node)

	
A list of dependencies for a task. Data object keys for dependencies include:

	
fromId: The ID of the task where the dependency begins.

	
toId: The ID of the task where the dependency ends.

	
type: The type of the dependency. Valid values are start-start, start-finish, finish-finish, finish-start, start-before, start-together, finish-after, and finish-together.

	
endTime (required)

	
Date. The end time for all tasks.

	
icon1

	
String. The first icon associated with the task bar for all tasks. The icon might change depending on other attributes

	
icon2

	
String. The second icon associated with the tasks bar for all tasks.

	
icon3

	
String. The third icon associated with the tasks bar for all tasks.

	
iconPlacement

	
String. The alignment of the icon in the task bar for all tasks. Valid values are left (default), right, inside, start, end, innerLeft, innerRight, innerCenter, innerStart, innerEnd.

	
isContainer

	
Boolean. Specifies whether or not a node definition is a container.

	
label

	
String. The label associated with the task bar for all tasks.

	
labelPlacement

	
String. The alignment of the label in the task bar for all tasks. Valid values are left (default), right, inside, start, end, innerLeft, innerRight, innerCenter, innerStart, innerEnd.

	
percentComplete

	
Integer. Percentage completed for normal and summary tasks.

	
Recurring tasks (node)

	
The list of recurring tasks for all tasks.

	
Split tasks (node)

	
The list of tasks without a continuous time line for all tasks.

	
startTime (required)

	
Date. The starting time for all tasks.

	
Subtasks (node)

	
An optional list of subtasks for all tasks.

	
taskId (required)

	
String. The unique identifier for all tasks.

	
type

	
Sting. The type of the tasks for all tasks.

[bookmark: ADFUI10075]
[bookmark: sthref348]
26.2.2 Data for a Resource Utilization Gantt Chart

The data model for a resource utilization Gantt chart supports hierarchical data and uses TreeModel to access the data in the underlying list. The specific model class is org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by TreeModel must have, at a minimum, the following properties:

	
resourceId: The ID of the task.

	
timeBuckets: A collection of time bucket objects for this resource.

Optionally, the object could implement the oracle.adf.view.faces.bi.model.Resource interface to ensure it provides the correct properties to the Gantt chart.

The collection of objects returned by the timeBuckets property must also have the following properties:

	
time: The date represented by the time bucket.

	
values: A list of metrics for this resource.

When binding the data to an ADF data control, the following node definitions are available in a Resource Utilization Gantt chart:

	
Resource node: Represents a collection of resources. The resource node definition has an optional subResources accessor that returns a collection of subresources for the current resource.

	
Time bucket node: Represents a collection of time slots with metrics defined.

Table 26-2 shows a complete list of data object keys for the resource utilization Gantt chart.

[bookmark: ADFUI12564][bookmark: sthref349][bookmark: CIHEHJID]
Table 26-2 Data Object Keys for Resource Utilization Gantt

	Data Object Key
	Data Type and Description

	
label

	
String. The label associated with the task bar.

	
labelAlign

	
String. The alignment of the label in the task bar. Valid values are top (default) and inside.

	
resourceId (required)

	
String. The unique identifier of a resource.

	
timeBuckets (required)

	
List. The list of tasks associated with a resource.

	
time (required)

	
Date. The start time of the time bucket.

	
values (required)

	
Double. The values of the metrics.

[bookmark: BABIABGB][bookmark: ADFUI3088]

26.2.3 Data for a Scheduling Gantt Chart

The data model for a scheduling Gantt chart supports hierarchical data and uses TreeModel to access the data in the underlying list. The specific model class is org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by TreeModel must have, at a minimum, the following properties:

	
resourceId: The ID of the task.

	
tasks: A collection of task objects for this resource.

Optionally, the object could implement the oracle.adf.view.faces.bi.model.ResourceTask interface to ensure it provides the correct properties to the Gantt chart.

The collection of objects returned by the tasks property must also have the following properties:

	
taskId: The ID of the task.

	
startTime: The start time of the task.

	
endTime: The end time of the task.

When binding the data to an ADF data control, the scheduling Gantt chart has a Resource node definition. The Resource node has the following types of accessors:

	
subResources: Returns a collection of subresources for the current resource. This accessor is optional.

	
tasks: Returns a collection of tasks for the current resource. This accessor is required. Tasks can also include a splitTask accessor.

Table 26-3 shows a complete list of data object keys for a scheduling Gantt chart.

[bookmark: ADFUI12565][bookmark: sthref350][bookmark: CIHIBCHE]
Table 26-3 Data Object Keys for Scheduling Gantt Chart

	Data Object Key
	Data Type and Description

	
Dependency (node)

	
A list of dependencies for a task. Data object keys for dependencies include:

	
fromId: The ID of the task where the dependency begins.

	
toId: The ID of the task where the dependency ends.

	
type: The type of the dependency. Valid values are start-start, start-finish, finish-finish, finish-start, start-before, start-together, finish-after, and finish-together.

	
endTime (required)

	
Date. The end time for all the tasks.

	
icon1

	
String. The first icon associated with the task bar for all tasks. The icon might change depending on other attributes.

	
icon2

	
String. The second icon associated with the task bar for all tasks.

	
icon3

	
String. The third icon associated with the task bar for all tasks.

	
iconPlacement

	
String. The alignment of the icon in the task bar for all tasks. Valid values are left (default), right, inside, inside_left, inside_right, and inside_center. In bi-directional locales, start and end values are also supported.

	
isContainer

	
Boolean. Specifies whether or not a node definition is a container.

	
label

	
String. The label associated with the task bar for all tasks.

	
labelPlacement

	
String. The alignment of the label in the task bar for all tasks. Valid values are left (default), right, inside, inside_left, inside_right, and inside_center. In bi-directional locales, start and end values are also supported.

	
Recurring tasks (node)

	
A list of recurring tasks for all tasks.

	
resourceId (required)

	
String. The unique identifier of a resource.

	
Split tasks (node)

	
A collection of tasks without a continuous time line for all tasks.

	
startTime (required)

	
Date. The start time for all tasks.

	
startupTime

	
Date. The startup time before a task begins.

	
Tasks (node) (required)

	
A list of tasks associated with a resource.

	
taskId (required)

	
String. The unique identifier of the task for all tasks.

	
taskType

	
String. The type of the task for all tasks.

	
workingDaysOfTheWeek

	
Object. A list of the working days of the week.

	
workingEndTime

	
Date. The work end time for the resource.

	
workingStartTime

	
Date. The work start time for the resource.

[bookmark: ADFUI3087]
[bookmark: sthref351]
26.2.4 Gantt Chart Tasks

Project and scheduling Gantt charts use predefined tasks with a set of formatting properties that describe how the tasks will be rendered in the chart area. All supported tasks must have a unique identifier. The following describes the supported tasks and how they appear in a Gantt chart:

	
Normal: The basic task type. It is a plain horizontal bar that shows the start time, end time, and duration of the task.

	
Summary: The start and end date for a group of subtasks. A summary task cannot be moved or extended. Instead, it is the responsibility of the application to execute code to recalculate the start and end date for a summary task when the date of a subtask changes. Summary tasks are available only for the project Gantt chart.

	
Milestone: A specific date in the Gantt chart. There is only one date associated with a milestone task. A milestone task cannot be extended but it can be moved. A milestone task is available only for the project Gantt chart.

	
Recurring: A task that is repeated in a Gantt chart, each instance with its own start and end date. Individual recurring tasks can optionally contain a subtype. All other properties of the individual recurring tasks come from the task which they are part of. However, if an individual recurring task has a subtype, this subtype overrides the task type.

	
Split: A task that is split into two horizontal bars, usually linked by a line. The time between the bars represents idle time due to traveling or down time.

	
Scheduled: The basic task type for a scheduling Gantt chart. This task type shows the starting time, ending time, and duration of a task, as well as startup time if one is specified.

For normal, summary, and milestone tasks, additional attributes are supported that would change the appearance and activity of a task. These style attributes include:

	
percentComplete, completedThrough: An extra bar would be drawn to indicate how far the task is completed. This is applicable to normal and summary task types.

	
critical: The color of the bar would be changed to red to mark it as critical. This is applicable to normal, summary, and milestone task types.

	
actualStart and actualEnd: When these attributes are specified, instead of drawing one bar, two bars are drawn. One bar indicates the base start and end date, the other bar indicates the actual start and end date. This is applicable to normal and milestone task types.

Figure 26-7 displays a legend that shows common task types in a project Gantt chart.

[bookmark: CIHJFDAC][bookmark: ADFUI11028]
Figure 26-7 Project Gantt Chart Legend for Task Types

[image: Gannt chart legend for task types]

[bookmark: BHAJHHBG][bookmark: ADFUI537]

26.2.5 Configuring Gantt Charts

The three Gantt chart components beginning with the prefix dvt: for each Gantt chart tag name indicates that the tag belongs to the ADF Data Visualization Tools (DVT) tag library:

	
dvt:projectGantt

	
dvt:resourceUtilizationGantt

	
dvt:schedulingGantt

All Gantt chart components support the child tag dvt:ganttLegend to provide an optional legend in the information panel of a Gantt chart. Some menu bar and toolbar functions may or may not be available depending on whether the Gantt legend is specified.

In the Gantt chart table region, the ADF Faces af:column tag is used to specify the header text, icons and alignment for the data, the width of the column, and the data bound to the column. To display data in hierarchical form, a nodeStamp facet specifies the primary identifier of an element in the hierarchy. For example, the "Task Name" column might be used as the nodeStamp facet for a project Gantt chart. Example 26-1 shows sample code for a project Gantt chart with "Task Name" as the nodeStamp facet, with columns for Resource, Start Date, and End Date.

[bookmark: BHAJFEIE][bookmark: ADFUI11029]
Example 26-1 Sample Code for Project Gantt Chart Columns

<dvt:projectGantt id="projectChart1" startTime="2008-04-12"
 endTime="2009-04-12"
 value="#{project.model}"
 var="task">
 <f:facet name="major">
 <dvt:timeAxis scale="months"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="weeks"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name">
 <af:outputText value="#{task.taskName}"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource">
 <af:outputText value="#{task.resourceName}"/>
 </af:column>
 <af:column headerText="Start Date">
 <af:outputText value="#{task.startTime}"/>
 </af:column>
 <af:column headerText="End Date">
 <af:outputText value="#{task.endTime}"/>
 </af:column>
</dvt:projectGantt>

In addition to the nodeStamp facet, other facets are used for customizations by the Gantt chart components. Table 26-4 shows the facets supported by Gantt chart components.

[bookmark: ADFUI12566][bookmark: sthref352][bookmark: CIHEIABA]
Table 26-4 Facets Supported by Gantt Chart Components

	

	

	
chartPopupMenu

	
Specifies the component to use to identify additional controls to appear in the context menu of the chart region. Must be an af:popup component.

	
customPanel

	
Specifies the component to use to identify controls to appear in the custom tab of the task properties dialog.

	
major

	
Specifies the component to use to identify the major time axis. Must be a dvt:timeAxis component.

	
menuBar

	
Specifies the component to use to identify additional controls to appear in the Gantt menu bar. Must be an af:menu component

	
minor

	
Specifies the component to use to identify the minor time axis. Must be a dvt:timeAxis component.

	
nodeStamp

	
Specifies the component to use to stamp each element in the Gantt chart. Only certain types of components are supported, including all components with no activity and most components that implement the EditableValueHolder or ActionSource interfaces. Must be an af:column component.

	
tablePopupMenu

	
Specifies the component to use to identify additional controls to appear in the context menu of the table region. Must be an af:popup component.

	
toolbar

	
Specifies the component to use to identify additional controls to appear in the Gantt toolbar. Must be an af:toobar component.

[bookmark: BHAHGAHF][bookmark: ADFUI10141]

26.2.6 How to Add a Gantt Chart to a Page

When you are designing your page using simple UI-first development, you use the Component Palette to drag and drop a project, resource utilization, or scheduling Gantt chart component onto a JSF page.

Once the Gantt chart is added to your page, you can use the Property Inspector to specify data values and configure additional display attributes for the Gantt chart.

In the Property Inspector you can use the dropdown menu for each attribute field to display a property description and options such as displaying an EL Expression Builder or other specialized dialogs. Figure 26-8 shows the dropdown menu for a project Gantt chart component value attribute.

[bookmark: CIHIICEA][bookmark: ADFUI12716]
Figure 26-8 Project Gantt Chart Value Attribute Dropdown Menu

[image: Project Gantt Chart Value Attribute Dropdown Menu]

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create a Gantt chart and the binding will be done for you. For more information, see the "Creating Databound Gantt Charts" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

[bookmark: ADFUI12717]
Before you begin:

It may be helpful to have an understanding of how Gantt chart attributes and Gantt chart child components can affect functionality. For more information, see Section 26.2.5, "Configuring Gantt Charts."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 26.1.3, "Additional Functionality for Gantt Chart Components."

[bookmark: ADFUI12718]
To add a Gantt chart to a page:

	
In the Component Palette, from the ADF Data Visualizations page, in the Gantt chart panel, drag and drop a Project, Resource Utilization, or Scheduling Gantt chart onto the page to open the Create Gantt chart dialog.

Optionally, use the dialog to bind the Gantt chart by selecting Bind Data Now and entering or navigating to the ADF data control or ADF managed bean that represents the data you wish to display on the Gantt chart. If you choose this option, the data binding fields in the dialog will be available for editing. Otherwise, click OK to add the component to the page.

	
In the Property Inspector, view the attributes for the Gantt chart. Use the help button to display the complete tag documentation for the projectGantt, resourceUtilizationGantt, or schedulingGantt, component.

	
Expand the Common section. Use this section to set the following attributes:

	
StartTime: Enter the start time used to render the time period of the Gantt chart.

	
EndTime: Enter the end time used to render the time period of the Gantt chart.

	
Expand the Gantt Data section. Use this section to set the following attributes:

	
Value: Specify the data model, which must be of type org.apache.myfaces.trinidad.model.TreeModel, using an EL Expression.

	
Var: Specify the variable used to reference each element of the Gantt chart data collection. Once this component has completed rendering, this variable is removed, or reverted back to its previous value.

	
Expand the Appearance section. Use this section to set the following attributes:

	
ShowMenuBar: Specify whether or not the menu bar should be shown in the Gantt chart. If this attribute is set to false, then any custom menu bar items specified in the menuBar facet will also be hidden.

	
ShowToolbar: Specify whether or not the toolbar should be shown in the Gantt chart. If this attribute is set to false, then any custom toolbar buttons specified in the toolbar facet will also be hidden.

	
Summary: Enter a description of the Gantt chart. This description is accessed by screen reader users

	
Expand the Behavior section. Use this section to set the following attributes:

	
InitiallyExpandAll: Specifies whether or not all the rows should be initially expanded.

	
FetchSize: Use to specify the number of rows in a data fetch block. The default value for rows is 25. For more information about content delivery to Gantt charts, see Section 21.2.1, "Content Delivery."

	
FeaturesOff: Enter a space delimited list of end user features to disable at runtime. The valid values will depend upon the type of Gantt chart.

[bookmark: ADFUI12719]
[bookmark: sthref353]
26.2.7 What Happens When You Add a Gantt Chart to a Page

When you use the Component Palette to create a Gantt chart, JDeveloper inserts code in the JSF page. Example 26-2 shows the code inserted in the JSF page for a project Gantt chart.

[bookmark: CIHDIGDH][bookmark: ADFUI12720]
Example 26-2 Code Sample for Project Gantt Chart

<dvt:projectGantt startTime="2011-03-20" endTime="2011-06-19" var="row" id="pg1">
 <f:facet name="major">
 <dvt:timeAxis scale="weeks" id="ta5"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="days" id="ta6"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column sortable="false" headerText="col1" id="c11">
 <af:outputText value="#{row.col1}" id="ot11"/>
 </af:column>
 </f:facet>
 <af:column sortable="false" headerText="col2" id="c12">
 <af:outputText value="#{row.col2}" id="ot12"/>
 </af:column>
 <af:column sortable="false" headerText="col3" id="c13">
 <af:outputText value="#{row.col3}" id="ot13"/>
 </af:column>
 <af:column sortable="false" headerText="col4" id="c14">
 <af:outputText value="#{row.col4}" id="ot14"/>
 </af:column>
 <af:column sortable="false" headerText="col5" id="c15">
 <af:outputText value="#{row.col5}" id="ot15"/>
 </af:column>
</dvt:projectGantt>

[bookmark: BHACHHHH][bookmark: ADFUI10167]

26.3 Customizing Gantt Chart Legends, Toolbars, and Context Menus

You can modify default Gantt chart features including the information panel and legend that are displayed below the Gantt chart, menu bar options and toolbar buttons, and the popup menu that is displayed when you right-click in the Gantt chart table or chart regions.

[bookmark: ADFUI10168]
[bookmark: sthref354]
26.3.1 How to Customize a Gantt Chart Legend

The optional Gantt chart legend subcomponent includes an area that displays detailed information about the selected task, or metrics about the selected time bucket, and a legend that displays the symbol and color code bar used to represent each type of task in a Gantt chart. At runtime, users can hide or show the information panel using a toolbar button.

The dvt:ganttLegend tag must be added as a child of the Gantt chart tag in order to provide the legend areas. The content of the legend areas is automatically generated based on the properties for each type of task registered with the taskbarFormatManager.

You can customize the information displayed when a task or time bucket is selected by using the keys and label attributes on the Gantt chart legend tag. The keys attribute should specify the data object keys used to retrieve the value to display and the labels attribute should contain the corresponding labels for the values retrieved with the keys. If these attributes are not specified, the legend will use the entire space of the information panel.

You can also add icons to the legend by using the iconKeys and iconLabels attributes on the Gantt chart legend tag. Icons will be automatically resized to 12 by 12 pixels if the icon size is too large.

Example 26-3 show sample code to display information about an On Hold task in the legend of a project Gantt chart.

[bookmark: BHAGBCGA][bookmark: ADFUI11207]
Example 26-3 Adding a Gantt Chart Legend

<dvt:projectGantt var="task">
 <dvt:ganttLegend id="gl" keys="TaskName StartTime EndTime" labels="Name Start Finish" icons="images/wait.png" iconLabels="OnHold"/>
</dvt:projectGantt>

[bookmark: ADFUI10169]
[bookmark: sthref355]
26.3.2 Customizing Gantt Chart Toolbars

The Gantt chart toolbar subcomponent allows users to perform operations on the Gantt chart. The left section of the toolbar is a menu bar that contains a set of default menu options for each Gantt chart type. The right section of the toolbar displays a set of default action buttons for working with each Gantt chart type.

You can supply your own menu items and toolbar buttons by using the menu and toolbar facets in your Gantt chart. The Gantt chart merges the new menu items with the standard items in the Gantt chart. Example 26-4 shows sample code for specifying a new menu item.

[bookmark: BHAJFFEF][bookmark: ADFUI11039]
Example 26-4 Sample Code for Custom Menu Item

<dvt:projectGantt var="task">
<f:facet name=menuBar>
 <af:menu text=My Menu>
 <af:commandMenuItem text="Add..." />
 <af:commandMenuItem text="Create.." />
 </af:menu>
</f:facet>
</dvt:projectGantt>

Example 26-5 shows sample code for specifying a new toolbar button.

[bookmark: BHAIIGID][bookmark: ADFUI11040]
Example 26-5 Sample Code for Custom Toolbar Button

<dvt:schedulingGantt var="task">
<f:facet name="toolbar">
 <af:toolbar>
 <af:commandToolbarButton text="Custom" disabled="true"/>
 </af:toolbar>
</dvt:schedulingGantt>

Actions initiated on the menu bar and toolbar buttons are handled through a registered listener, DataChangeListener, on the Gantt chart component. For example, when a user presses the delete button in the toolbar, a DataChangeEvent with the ID of the task selected for deletion would be fired on the server. The registered listener is then responsible for performing the actual deletion of the task, and the Gantt chart data model is refreshed with the updated information.

You can register DataChangeListener by specifying a method binding using the dataChangeListener attribute on the Gantt chart tag. For example, if you put the code in a backing bean in a method called handleDataChange, then the setting for the dataChangeListener attribute becomes: "#{myBackingBean.handleDataChange}".

Example 26-6 shows sample code in a backing bean.

[bookmark: BHAHIDIE][bookmark: ADFUI11041]
Example 26-6 Backing Bean for Handling Data Change

public void handleDataChanged(DataChangeEvent evt)
{
if (DataChangeEvent.DELETE == evt.getActionType())

}

[bookmark: ADFUI10170]
[bookmark: sthref356]
26.3.3 Customizing Gantt Chart Context Menus

When users right-click in the Gantt chart table or chart regions, a context menu is displayed to allow users to perform operations on the Gantt chart. A standard set of options is provided for each region.

You can supply your own menu items using the tablePopupMenu and chartPopupMenu facets in your Gantt chart. The Gantt chart merges the new menu items with the standard items in the Gantt chart. Example 26-7 shows sample code for specifying a custom menu item in the table region context menu.

[bookmark: BHAJHFAJ][bookmark: ADFUI11042]
Example 26-7 Sample Code for Custom Context Menu Item

<dvt:projectGantt startTime="#{test.startTime}" endTime="#{test.endTime}"
 value="#{test.treeModel}" var="task">

 <f:facet name="tablePopupMenu">
 <af:popup>
 <af:commandMenuItem text="Custom" disabled="true"/>
 </af:popup>
 </f:facet>
</dvt:projectGantt>

You can also dynamically change the context menu at runtime. Example 26-8 shows sample code to update a custom popup menu on a task bar based on which task is selected in the chart region of a project Gantt chart.

[bookmark: BHAHEIDB][bookmark: ADFUI11208]
Example 26-8 Sample Code for Dynamic Context Menu

<dvt:projectGantt var="task"
 taskSelectionListener="#{backing.handleTaskSelected}">
 <f:facet name="chartPopupMenu">
 <af:popup id="p1" contentDelivery="lazyUncached">
 <af:menu>
 </af:menu>
 </af:popup>
 </f:facet>
</dvt:projectGantt>

The handleTaskSelected method is specified in a backing bean. Example 26-9 shows sample code for the backing bean.

[bookmark: BHAJFAAA][bookmark: ADFUI11209]
Example 26-9 Backing Bean for Handling Task Selection

public void handleTaskSelected(TaskSelectionEvent evt)
{
 JUCtrlHierNodeBinding _task = (JUCtrlHierNodeBinding)evt.getTask();
 String _type = _task.getAttribute("TaskType");

 RichPopup _popup = m_gantt.getFacet("chartPopupMenu");
 if (_popup != null)
 {
 RichMenu _menu = (RichMenu)_popup.getChildren().get(0);
 _menu.getChildren().clear();
 if ("Summary".equals(_type))
 {
 RichCommandMenuItem _item = new RichCommandMenuItem();
 _item.setId("i1");
 _item.setText("Custom Action 1");
 _menu.getChildren().add(_item); }
 else if ("Normal".equals(_type))
 {
 RichCommandMenuItem _item = new RichCommandMenuItem();
 _item.setId("i1");
 _item.setText("Custom Action 2");
 _menu.getChildren().add(_item); }
 }
}

For more information about using the af:popup components see Chapter 15, "Using Popup Dialogs, Menus, and Windows".

[bookmark: BHAHAIGG][bookmark: ADFUI10171]

26.4 Working with Gantt Chart Tasks and Resources

You can customize Gantt chart tasks to create a new task type, specify a custom data filter, and add a double-click event to a task bar.

[bookmark: ADFUI10172]
[bookmark: sthref357]
26.4.1 How to Create a New Task Type

A task type is represented visually as a bar in the chart region of a Gantt chart. You can create a new task type in one of three ways:

	
Defining the task type style properties in the .jspx file or in a separate CSS file.

	
Defining a TaskbarFormat object and registering the object with the taskbarFormatManager.

	
Modifying the properties of a predefined task type by retrieving the associated TaskbarFormat object and updating its properties through a set method.

The TaskBarFormat object exposes the following properties:

	
Fill color

	
Fill image pattern

	
Border color

	
Images used for a milestone task

	
Images used for the beginning and end of a summary task

For tasks that have more than one bar, such as a split or recurring task, properties are defined for each individual bar.

Example 26-10 shows sample code to define the properties for a custom task type in the .jspx file.

[bookmark: BHAGCCHF][bookmark: ADFUI11210]
Example 26-10 Sample Code to Define Custom Task Type Properties

<af:document>
 <f:facet name="metaContainer">
 <f:verbatim>
Organizing Content on Web Pages

9 Organizing Content on Web Pages

This chapter describes how to use several of the ADF Faces layout components to organize content on web pages.

This chapter includes the following sections:

	
Section 9.1, "About Organizing Content on Web Pages"

	
Section 9.2, "Starting to Lay Out a Page"

	
Section 9.3, "Arranging Contents to Stretch Across a Page"

	
Section 9.4, "Using Splitters to Create Resizable Panes"

	
Section 9.5, "Arranging Page Contents in Predefined Fixed Areas"

	
Section 9.6, "Arranging Content in Forms"

	
Section 9.7, "Arranging Contents in a Dashboard"

	
Section 9.8, "Displaying and Hiding Contents Dynamically"

	
Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels"

	
Section 9.10, "Displaying Items in a Static Box"

	
Section 9.11, "Displaying a Bulleted List in One or More Columns"

	
Section 9.12, "Grouping Related Items"

	
Section 9.13, "Separating Content Using Blank Space or Lines"

9.1 About Organizing Content on Web Pages

ADF Faces provides a number of layout components that can be used to arrange other components on a page. Usually, you begin building your page with these components. You then add components that provide other functionality (for example rendering data or rendering buttons) either inside facets or as child components to these layout components.

	
Tip:

You can create page templates that allow you to design the layout of pages in your application. The templates can then be used by all pages in your application. For more information, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components."

In addition to layout components that simply act as containers, ADF Faces also provides interactive layout components that can display or hide their content, or that provide sections, lists, or empty space. Some layout components also provide geometry management functionality, such as stretching their contents to fit the browser windows as the window is resized, or the capability to be stretched when placed inside a component that stretches. For more information about stretching and other geometry management functionality of layout components, see Section 9.2.1, "Geometry Management and Component Stretching."

Table 9-1 briefly describes each of the ADF Faces layout components.

Table 9-1 ADF Faces Layout Components

	Component	Description	Can Stretch Children	Can Be Stretched
	
Page Management Components

	
	

	
	
document

	
Creates each of the standard root elements of an HTML page: <html>, <body>, and <head>. All pages must contain this component. For more information, see Section 9.2, "Starting to Lay Out a Page."

	
X

	

	
	
form

	
Creates an HTML <form> element. For more information, see Section 9.2, "Starting to Lay Out a Page."

	
	

	
Page Layout Containers

	
	

	
	
panelStretchLayout

	
Contains top, bottom, start, center, and end facets where you can place other components. For more information, see Section 9.3, "Arranging Contents to Stretch Across a Page."

	
X

	
X (when the dimensionsFrom attribute is set to parent)

	
	
panelSplitter

	
Divides a region into two parts (first facet and second facet) with a repositionable divider between the two. You can place other components within the facets. For more information, see Section 9.4, "Using Splitters to Create Resizable Panes."

	
X

	
X (when the dimensionsFrom attribute is set to parent)

	
	
panelDashboard

	
Provides a columnar display of child components (usually panelBox components). For more information, see Section 9.7, "Arranging Contents in a Dashboard."

	
X

	
X (when the dimensionsFrom attribute is set to parent)

	
	
panelBorderLayout

	
Can have child components, which are placed in its center, and also contains 12 facets along the border where additional components can be placed. These will surround the center. For more information, see Section 9.5, "Arranging Page Contents in Predefined Fixed Areas."

	
	

	
	
panelFormLayout

	
Positions input form controls, such as inputText components so that their labels and fields line up vertically. It supports multiple columns, and contains a footer facet. For more information, see Section 9.6, "Arranging Content in Forms."

	
	

	
Components with Show/Hide Capabilities

	
	

	
	
showDetailHeader

	
Can hide or display contents below the header. Often used as a child to the panelHeader component. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."

	
X (if the type attribute is set to stretch)

	
X (if the type attribute is set to stretch)

	
	
showDetailItem

	
Used to hold the content for the different panes of the panelAccordion or different tabs of the panelTabbed component. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

	
X (if it contains a single child component and its stretchChildren attribute is set to first.)

	

	
	
panelBox

	
Titled box that can contain child components. Has a toolbar facet. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."

	
X (if it is being stretched or if the type attribute is set to stretch)

	
X

	
	
panelAccordion

	
Used in conjunction with showDetailItem components to display as a panel that can be expanded or collapsed. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

	
	
X (when the dimensionsFrom attribute is set to parent)

	
	
panelTabbed

	
Used in conjunction with showDetailItem components to display as a set of tabbed panels. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

If you want the tabs to be used in conjunction with navigational hierarchy, for example each tab is a different page or region that contains another set of navigation items, you may instead want to use a navigationPane component in a navigational menu. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."

	
	
X (when the dimensionsFrom attribute is set to parent)

	
	
showDetail

	
Hides or displays content through a toggle icon. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."

	
	

	
Miscellaneous Containers

	
	

	
	
panelHeader

	
Contains child components and provides a header that can include messages, toolbars, and help topics. For more information, see Section 9.10, "Displaying Items in a Static Box."

	
X (if the type attribute is set to stretch)

	
X (if the type attribute is set to stretch)

	
	
panelCollection

	
Used in conjunction with collection components such as table, tree and treeTable to provide menus, toolbars, and status bars for those components. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars."

	
X (only a single table, tree, or tree table)

	
X

	
	
decorativeBox

	
Creates a container component whose facets use style themes to apply a bordered look to its children. This component is typically used as a container for the navigationPane component that is configured to display tabs. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."

	
X (in the Center facet)

	
X (when the dimensionsFrom attribute is set to parent)

	
	
inlineFrame

	
Creates an inline iframe tag.

	
	
X

	
	
navigationPane

	
Creates a series of navigation items representing one level in a navigation hierarchy. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."

	
	
X (if configured to display tabs)

	
	
panelList

	
Renders each child component as a list item and renders a bullet next to it. Can be nested to create hierarchical lists. For more information, see Section 9.11, "Displaying a Bulleted List in One or More Columns."

	
	

	
	
panelWindow

	
Displays child components inside a popup window. For more information, see Section 15.2, "Declaratively Creating Popups."

	
	

	
	
toolbox

	
Displays child toolbar and menu components together. For more information, see Section 16.3, "Using Toolbars."

	
	

	
Grouping Containers

	
	

	
	
panelGroupLayout

	
Groups child components either vertically or horizontally. Used in facets when more than one component is to be contained in a facet. For more information, see Section 9.12, "Grouping Related Items."

	
	
X (only if set to scroll or vertical layout)

	
	
group

	
Groups child components without regard to layout unless handled by the parent component of the group. Used in facets when more than one component is to be contained in a facet. For more information, see Section 9.12, "Grouping Related Items."

	
	

	
Spacing Components

	
	

	
	
separator

	
Creates a horizontal line between items. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."

	
	

	
	
spacer

	
Creates an area of blank space. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."

	
	

9.1.1 Additional Functionality for Layout Components

Once you have added a layout component to your page, you may find that you need to add functionality such as responding to events. Following are links to other functionality that layout components can use.

	
Templates: Once you create a layout, you can save it as a template. When you make layout modifications to the template, all pages that consume the template will automatically reflect the layout changes. For more information, see Section 10.4, "Using Page Templates."

	
Themes: Themes add color styling to some of layout components, such as the panelBox component. For more information about themes, see Appendix 28, "Customizing the Appearance Using Styles and Skins"

	
Skins: You can change the icons and other properties of layout components using skins. for more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Localization: Instead of entering values for attributes that take strings as values, you can use property files. These files allow you to manage translation of these strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
Accessibility: You can make your input components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Using parameters in text: You can use the ADF Faces EL format tags if you want text displayed in a component to contain parameters that will resolve at runtime. For more information, see Section 3.5.2, "How to Use the EL Format Tags."

	
Events: Layout components fire both server-side and client-side events that you can have your application react to by executing some logic. For more information, see Chapter 6, "Handling Events."

	
User customization: Some of the components have areas that can be expanded or collapsed, such as the showDetailHeader component. You can configure your application so that the state of the component (expanded or collapsed) can be saved when the user leaves the page. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."

9.2 Starting to Lay Out a Page

JSF pages that use ADF Faces components must have the document tag enclosed within a view tag. All other components that make up the page then go in between <af:document> and </af:document>. The document tag is responsible for rendering the browser title text, as well as the invisible page infrastructure that allows other components in the page to be displayed. For example, at runtime, the document tag creates the root elements for the client page. In HTML output, the standard root elements of an HTML page, namely, <html>, <head>, and <body>, are generated.

By default, the document tag is configured to allow capable components to stretch to fill available browser space. You can further configure the tag to allow a specific component to have focus when the page is rendered, or to provide messages for failed connections or warnings about navigating before data is submitted. For more information, see Section 9.2.5, "How to Configure the document Tag."

Typically, the next component used is the ADF Faces form component. This component creates an HTML form element that can contain controls that allow a user to interact with the data on the page.

	
Note:

Even though you can have multiple HTML forms on a page, you should have only a single ADF Faces form tag per page. For more information, see Section 11.2, "Defining Forms."

JDeveloper automatically inserts the view, document, and form tags for you, as shown in Example 9-1. For more information, see Section 3.4, "Creating a View Page."

Example 9-1 Initial JSF Page Created by JDeveloper Wizard

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="untitled1" id="d1">
 <af:form id="f1"></af:form>
 </af:document>
 </f:view>
</jsp:root>

Once those tags are placed in the page, you can use the layout components to control how and where other components on the page will render. The component that will hold all other components is considered the root component. Which component you choose to use as the root component depends on whether you want the contained components to display their contents so that they stretch to fit the browser window, or whether you want the contents to flow, using a scrollbar to access any content that may not fit in the window. For more information about stretching and flowing, see Chapter 9, "Geometry Management and Component Stretching."

	
Tip:

Instead of creating your layout yourself, you can use JDeveloper's quick layout templates, which provide correctly configured components that will display your page with the layout you want. For more information, see Section 9.2.3, "Using Quick Start Layouts."

9.2.1 Geometry Management and Component Stretching

Geometry management is the process by which the user, parent components, and child components negotiate the actual sizes and locations of the components in an application. For example, a component might be resized when it's first loaded into a browser, when the browser is resized, or when a user explicitly resizes it.

By default, if there is only a single effective visual root component, that root component will stretch automatically to consume the browser's viewable area, provided that component supports geometry management. Examples of geometry management components are panelStretchLayout and panelSplitter. If the root component supports stretching its child components (and they in turn support being stretched), the size of the child components will also recompute, and so on down the component hierarchy until a flowing layout area is reached; that is, an area that does not support stretching of its child components. You do not have to write any code to enable the stretching.

	
Note:

The framework does not consider popup dialogs, popup windows, or non-inline messages as root components. If a form component is the direct child component of the document component, the framework will look inside the form tag for the visual root. For information on sizing a popup, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

As shown in Table 9-1, the panelStretchLayout, panelSplitter, and panelDashboard components are components that can be stretched and can also stretch their child components. Additionally, when the showDetailItem component is used as a direct child of the panelAccordion or panelTabbed component, the contents in the showDetailItem component can be stretched. Therefore, the panelStretchLayout, panelSplitter, panelDashboard, panelAccordion with a showDetailItem component, and a panelTabbed with a showDetailItem component, are the components you should use as root components when you want to make the contents of the page fill the browser window.

For example, Figure 9-1 shows a table placed in the center facet of the panelStretchLayout component. The table stretches to fill the browser space. When the entire table does not fit in the browser window, scrollbars are added in the data body section of the table.

Figure 9-1 Table Inside a Component That Stretches Child Components

[image: Table is stretched]

Figure 9-2 shows the same table, but nested inside a panelGroupLayout component, which cannot stretch its child components (for clarity, a dotted red outline has been placed around the panelGroupLayout component). The table component displays only a certain number of columns and rows, determined by properties on the table.

Figure 9-2 Table Inside a Component That Does Not Stretch Its Child Components

[image: Table is not stretched]

	
Performance Tip:

The cost of geometry management is directly related to the complexity of child components. Therefore, try minimizing the number of child components that are under a parent geometry-managed component.

9.2.2 Nesting Components Inside Components That Allow Stretching

Even though you choose a component that can stretch its child components, only the following components will actually stretch:

	
decorativeBox (when configured to stretch)

	
inputText (when configured to stretch)

	
panelAccordion (when configured to stretch)

	
panelBox (when configured to stretch)

	
panelCollection

	
panelDashboard (when configured to stretch)

	
panelGroupLayout (with the layout attribute set to scroll or vertical)

	
panelHeader (when configured to stretch)

	
panelSplitter (when configured to stretch)

	
panelStretchLayout (when configured to stretch)

	
panelTabbed (when configured to stretch)

	
region

	
showDetailHeader (when configured to stretch)

	
table (when configured to stretch)

	
tree (when configured to stretch)

	
treeTable (when configured to stretch)

The following layout components cannot be stretched when placed inside a facet of a component that stretches its child components:

	
panelBorderLayout

	
panelFormLayout

	
panelGroupLayout (with the layout attribute set to default or horizontal)

	
panelLabelAndMessage

	
panelList

	
showDetail

	
tableLayout (MyFaces Trinidad component)

One interesting way to think about geometry management and resizing is to think of components as being one of four types of puzzle pieces, as shown in

Figure 9-3 Four Categories of Components for Geometry Management

[image: Four types of layout components]

You can only place components that can be stretched inside components that stretch their children. If you want to use a component that does not stretch within the facet of component that stretches its child components, you must wrap it in a transition component. Transition components can be stretched but do not stretch their children. Transition components must always be used between a component that stretches its children and a component that does not stretch. If you do not, you may see unexpected results when the component renders.

For example, suppose you want to have a form appear in one side of a panelSplitter component. Say your root component is the panelStretchLayout, and so is the first component on your page. You add a panelSplitter component (configured to default settings) as a child to the panelStretchLayout component, and to the first facet of that component, you add a panelFormLayout component. Figure 9-4 shows how those components would fit together. Notice that the panelFormLayout component cannot "fit" into the panelSplitter component because the panelSplitter can stretch its children and so will attempt to stretch the panelFormLayout, but the panelFormLayout cannot be stretched.

Figure 9-4 Order of Components in One Layout Scenario

[image: Three layout components don’t fit]

When a component does not "fit" into a component that stretches children, you may get unexpected results when the browser attempts to render the component.

To have a valid layout, when you want to use a component that does not stretch in a component that stretches its children, you must use a transition component. To fix the panelFormLayout example, you could surround the panelFormLayout component with a panelGroupLayout component set to scroll. This component stretches, but does not stretch its children, as shown in Figure 9-5.

Figure 9-5 Order of Components in Second Layout Scenario

[image: Layout Using Geometry Managing Components]

In this case, all the components fit together. The panelGroupLayout component will not attempt to stretch the panelFormLayout, and so it will correctly render. And because the panelGroupLayout component can be stretched, the layout will not break between the components that can and cannot stretch.

	
Tip:

Do not attempt to stretch any of the components in the list of components that cannot stretch by setting their width to 100%. You may get unexpected results. Instead, surround the component to be stretched with a component that can be stretched.
The panelGroupLayout component set to scroll is a good container for components that cannot stretch, when you want to use those components in layout with components that do stretch.

9.2.3 Using Quick Start Layouts

When you use the New Gallery Wizard to create a JSF page (or a page fragment), you can choose from a variety of predefined quick start layouts. When you choose one of these layouts, JDeveloper adds the necessary components and sets their attributes to achieve the look and behavior you want. In addition to saving time, when you use the quick layouts, you can be sure that layout components are used together correctly to achieve the desired geometry management.

You can choose from one-, two-, and three-column formats. Within those formats, you can choose how many separate panes will be displayed in each column, and if those panes can stretch or remain a fixed size. Figure 9-6 shows the different layouts available in the two-column format.

Figure 9-6 Quick Layouts

[image: You can choose from different layouts.]

Along with adding layout components, you can also choose to apply a theme to the chosen quick layout. These themes add color styling to some of the components used in the quick start layout. To see the color and where it is added, see Appendix D, "Quick Start Layout Themes." For more information about themes, see Chapter 28, "Customizing the Appearance Using Styles and Skins"

For more information about creating pages using the quick layouts, see Section 3.4, "Creating a View Page."

9.2.4 Tips for Using Geometry-Managed Components

To ensure your page is displayed as expected in all browsers, use one of the quick layouts provided by JDeveloper when you create a page. These layouts ensure that the correct components are used and configured properly. For more information, see Section 9.2.3, "Using Quick Start Layouts."

	
Best Practice:

Use quick start layouts to avoid layout display issues.

However, if you wish to create your layout yourself, follow these tips for creating a layout that includes both stretched and flowing components:

	
Place the page contents inside a root component that performs geometry management, either panelStretchLayout, panelSplitter, panelAccordion with a showDetailItem, or panelTabbed with a showDetailItem.

	
Never specify a height value with percent units. Instead, build a component structure out of components that support being stretched and that stretch their child components. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."

	
Inside this stretchable structure, create islands of nonstretched or flowing components by using transition components, such as the panelGroupLayout component with the layout attribute set to scroll. This component will provide the transition between stretched and flowing components because it supports being stretched but will not stretch its child components.

	
Never try to stretch something vertically inside a nonstretched or flowing container because it will not act consistently across web browsers.

	
For components contained in a parent flowing component (that is, a component that does not stretch its children), do not set widths greater than 95%. If you do, you may get unexpected results.

	
If the parent component is 768 pixels or greater, set the styleClass attribute on the component to be stretched to AFStretchWidth. This style will stretch the component to what appears to be 100% of the parent container, taking into account different browsers and any padding or borders on the parent.

	
If the parent component is 768 pixels or less, set the styleClass attribute on the component to be stretched to AFAuxiliaryStretchWidth. This style will stretch the component to what appears to be 100% of the parent container, taking into account different browsers and any padding or borders on the parent.

	
Note:

The two different styles are needed due to how Microsoft Internet Explorer 7 computes widths inside scrolling containers (this has been resolved in Internet Explorer 8). Unless you can control the version of browser used to access your application, you should use these styles as described.

	
Never use the position style.

	
Ensure that the maximized attribute on the document tag is set to true (this is the default). For more information about setting the attribute, see Section 9.2.5, "How to Configure the document Tag."

The remainder of this chapter describes the ADF Faces layout components and how they can be used to design a page. You can find information about how each component handles stretching in the respective "What You May Need to Know About Geometry Management" sections.

9.2.5 How to Configure the document Tag

The document tag contains a number of attributes that you can configure to control behavior for the page. For example, you can configure the icon that the browser may insert into the address bar (commonly known as a favicon). Figure 9-7 shows the Oracle icon in the address bar of the Firefox browser.

Figure 9-7 Small Icon Configured on the document Tag

[image: Small icon displayed in browser]

You can also configure the tag for the following functionality:

	
Focus: You can set which component should have focus when the page is first rendered.

	
Uncommitted data: You can have a warning message display if a user attempts to navigate off the page and the data has not been submitted.

	
State saving: You can override the settings in the web.xml file for an individual page, so that the state of the page should be saved on the client or on the server.

To configure the document tag:

	
In the Structure window, select the af:document node.

	
In the Property Inspector, expand the Common section and set the following:

	
InitialFocusId: Use the dropdown menu to choose Edit. In the Edit Property dialog, select the component that should have focus when the page first renders.

Because this focus happens on the client, the component you select must have a corresponding client component. For more information, see Section 4.4, "Instantiating Client-Side Components."

	
Maximized: Set to true if you want the root component to expand to fit all available browser space. When the document tag's maximized attribute is set to true, the framework searches for a single visual root component, and stretches that component to consume the browser's viewable area, provided that the component can be stretched. Examples of components that support this are panelStretchLayout and panelSplitter. The document tag's maximized attribute is set to true by default. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."

	
Title: Enter the text that should be displayed in the title bar of the browser.

	
Expand the Appearance section and set the following: and for the attribute,.

	
FailedConnectionText: Enter the text you want to be displayed if a connection cannot be made to the server.

	
Small Icon Source: Enter the URI to an icon (typically 16 pixels by 16 pixels) that the browser may insert into the address bar (commonly known as a favicon). If no value is specified, each browser may do or display something different.

You can enter a space-delimited list of icons and a browser will typically display the first value it supports. For example, Microsoft Internet Explorer only supports .ico for favicons. So given the following value:

/images/small-icon.png /small-icon.ico

Internet Explorer will display small-icon.ico, while Firefox would display small-icon.png.

Use one forward slash (/) in the address if the file is located inside of the web application's root folder. Use two forward slashes (//) if the file located in the server's root folder.

	
Large Icon Source: Enter the URI to an icon (typically 129 pixels by 129 pixels) that a browser may use when bookmarking a page to a device's home page.

Figure 9-8 Mobile Device Displaying Large Icon

[image: Mobile Device Displaying Large Icon]

If no value is specified, each browser may do or display something different.

You can enter a space-delimited list of icons and a browser will typically display the first value it supports.

Use one forward slash (/) in the address if the file is located inside of the web application's root folder. Use two forward slashes (//) if the file located in the server's root folder.

	
Tip:

Different versions of the iPhone and iPad use different sized images. You can use the largest size (129 pixels by 129 pixels) and the image will be scaled to the needed size.

	
Expand the Behavior section and set UncommitedDataWarning to on if you want a warning message displayed to the user when the application detects that data has not been committed. This can happen because either the user attempts to leave the page without committing data or there is uncommitted data on the server. By default, this is set to off

	
Note:

If your application does not use ADF Controller, the data is considered to be committed when it is posted to the middle tier. For example, when a user clicks a commandButton, no warning will be displayed when navigation occurs in the middle tier regardless of whether the data was actually written to the back end.

	
Expand the Advanced section and set StateSaving to the type of state saving you want to use for a page.

For ADF Faces applications, it is recommended to have the application use client state saving with tokens, which saves page state to the session and persists a token to the client. This setting affects the application globally, such that all pages have state saved to the session and persist tokens with information regarding state.

However, there may be a page for which you which you want the state saved differently. For example, when a user posts back to a login page after an extended period of time, you do not want the session time out error to be displayed. By changing the stateSaving attribute on the page to client, then when the user posts back to the login page, the time out error will not display.

You can override the global setting in web.xml to one of the following for the page:

	
client: The state is saved fully to the client, without the use of tokens. This setting keeps the session expired messages from being displayed.

	
default: The state of the page is based on whatever is set in web.xml.

	
server: The state of the page is saved on the server.

For more information about state saving, see Appendix A, "Configuration in web.xml."

9.3 Arranging Contents to Stretch Across a Page

Use the panelStretchLayout component to arrange content in defined areas on a page and when you want the content to be able to stretch when the browser is resized. The panelStretchLayout component is one of the components that can stretch components placed in its facets. Figure 9-9 shows the component's facets.

Figure 9-9 Facets in the panelStretchLayout Component

[image: Components can be placed in facets]

	
Note:

Figure 9-9 shows the facets when the language reading direction of the application is configured to be left-to-right. If instead the language direction is right-to-left, the start and end facets are switched.

When you set the height of the top and bottom facets, any contained components are stretched up to fit the height. Similarly, when you set the width of the start and end facets, any components contained in those facets are stretched to that width. If no components are placed in the facets, then that facet does not render. That is, that facet will not take up any space. If you want that facet to take up the set space but remain blank, insert a spacer component. See Section 9.13, "Separating Content Using Blank Space or Lines." Child Components components in the center facet are then stretched to fill up any remaining space. For more information about component stretching, see Section 9.2.1, "Geometry Management and Component Stretching."

Instead of setting the height of the top or bottom facet, or width of the start or end facet to a dimension, you can set the height or width to auto. This allows the facet to size itself to use exactly the space required by the child components of the facet. Space will be allocated based on what the web browser determines is the required amount of space to display the facet content.

	
Performance Tip:

Using auto as a value will degrade performance of your page. You should first attempt to set a height or width and use the auto attribute sparingly.

The File Explorer application uses a panelStretchLayout component as the root component in the template. Child components are placed only in the center and bottom facets. Therefore, whatever is in the center facet stretches the full width of the window, and from the top of the window to the top of the bottom facet, whose height is determined by the bottomHeight attribute. Example 9-2 shows abbreviated code from the fileExplorerTemplate file.

Example 9-2 panelStretchLayout in the File Explorer's Template File

<af:panelStretchLayout
 bottomHeight="#{attrs.footerGlobalSize}">
 <f:facet name="center">
 <af:panelSplitter orientation="vertical" ...>
.
.
.
 </af:panelSplitter
 </f:facet>
 <f:facet name="bottom">
 <af:panelGroupLayout layout="vertical">
.
.
.
 </af:panelGroupLayout>
 </f:facet>
</af:panelStretchLayout>

The template uses an EL expression to determine the value of the bottomHeight attribute. This expression resolves to the value of the footerGlobalSize attribute defined in the template, which by default is 0. Any page that uses the template can override this value. For example, the index.jspx page uses this template and sets the value to 30. Therefore, when the File Explorer application renders, the contents in the panelStretchLayout component begin 30 pixels from the bottom of the page.

9.3.1 How to Use the panelStretchLayout Component

The panelStretchLayout component cannot have any direct child components. Instead, you place components within its facets. The panelStretchLayout is one of the components that can be configured to stretch any components in its facets to fit the browser. You can nest panelStretchLayout components. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.3, "Arranging Contents to Stretch Across a Page."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the panelStretchLayout component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Stretch Layout to the JSF page.

	
In the Property Inspector, expand the Common section and set the attributes as needed.

When there are child components in the top, bottom, start, and end facets, these components occupy space that is defined by the topHeight, bottomHeight, startWidth, and endWidth attributes. For example, topHeight attribute specifies the height of the top facet, and startWidth attribute specifies the width of the start facet. Child components in top and bottom facets are stretched up to the height set by topHeight and bottomHeight attributes, respectively, and child components in start and end facets are stretched up to the width set by startWidth and endWidth attributes, respectively. Instead of setting a numeric dimension, you can set the topHeight, bottomHeight, startWidth and endWidth attributes to auto and the browser will determine the amount of space required to display the content in the facets.

	
Note:

If you set a facet to use auto as a value for the width or height of that facet, the child component does not have to be able to stretch. In fact, it must use a stable, standalone width that is not dependent upon the width of the facet.
For example, you should not use auto on a facet whose child component can stretch their children automatically. These components have their own built-in stretched widths by default which will then cause them to report an unstable offsetWidth value, which is used by the browser to determine the amount of space.

Additionally, you should not use auto in conjunction with a child component that uses a percentage length for its width. The facet content cannot rely on percentage widths or be any component that would naturally consume the entire width of its surrounding container.

If you do not explicitly specify a value, by default, the value for the topHeight, bottomHeight, startWidth, and endWidth attributes is 50 pixels each. The widths of the top and bottom facets, and the heights of the start and end facets are derived from the width and height of the parent component of panelStretchLayout.

	
Tip:

If a facet does not contain a child component, it is not rendered and therefore does not take up any space. You must place a child component into a facet in order for that facet to occupy the configured space.

	
By default, the panelStretchLayout component stretches to fill available browser space. If you want to place the panelStretchLayout component inside a component that does not stretch its children, then you need to configure the panelStretchLayout component to not stretch.

Set DimensionsFrom to one of the following:

	
children: Instead of stretching, the panelStretchLayout component will get its dimensions from its child component.

	
Note:

If you use this setting, you cannot use a percentage to set the height of the top and bottom facets. If you do, those facets will try to get their dimensions from the size of this panelStretchLayout component, which will not be possible, as the panelStretchLayout component will be getting its height from its contents, resulting in a circular dependency If a percentage is used for either facet, it will be disregarded and the default 50px will be used instead.
Additionally, you cannot set the height of the panelStretchLayout component (for example through the inlineStyle or styleClass attributes) if you use this setting. Doing so would cause conflict between the panelStretchLayout height and the child component height.

	
parent: the size of the panelStretchLayout component will be determined in the following order:

	
From the inlineStyle attribute.

	
If no value exists for inlineStyle, then the size is determined by the parent container (that is, the panelStretchLayout component will stretch).

	
If the parent container is not configured or not able to stretch its children, the size will be determined by the skin.

	
auto: If the parent component to the panelStretchLayout component allows stretching of its child, then the panelStretchLayout component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelStretchLayout component will be based on the size of its child component.

	
To place content in the component, drag and drop the desired component into any of the facets. If you want the child component to stretch, it must be a component that supports being stretched. See Section 9.3.2, "What You May Need to Know About Geometry Management and the panelStretchLayout Component," for more details.

Because facets accept one child only, if you want to add more than one child component, wrap the child components inside a container component, for example, a panelGroupLayout component. This component must also be able to be stretched in order for all contained components to stretch.

	
Tip:

If any facet is not visible in the visual editor:
	
Right-click the panelStretchLayout component in the Structure window.

	
From the context menu, choose Facets - Panel Stretch Layout >facet name. Facets in use on the page are indicated by a checkmark in front of the facet name.

9.3.2 What You May Need to Know About Geometry Management and the panelStretchLayout Component

The panelStretchLayout component can stretch its child components and it can also be stretched. The following components can be stretched inside the facets of the panelStretchLayout component:

	
decorativeBox (when configured to stretch)

	
calendar

	
inputText (when configured to stretch)

	
panelAccordion (when configured to stretch)

	
panelBox (when configured to stretch)

	
panelCollection

	
panelDashboard (when configured to stretch)

	
panelGroupLayout (only with the layout attribute set to scroll or vertical)

	
panelHeader (when configured to stretch)

	
panelSplitter (when configured to stretch)

	
panelStretchLayout (when configured to stretch)

	
panelTabbed (when configured to stretch)

	
region

	
showDetailHeader (when configured to stretch)

	
table (when configured to stretch)

	
tree (when configured to stretch)

	
treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the panelStretchLayout component:

	
panelBorderLayout

	
panelFormLayout

	
panelGroupLayout (only with the layout attribute set to default or horizontal)

	
panelLabelAndMessage

	
panelList

	
showDetail

	
tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place a component that cannot be stretched into a facet of the panelStretchLayout component, wrap that component in a transition component that can stretch.

For example, if you want to place content in a panelBox component (which does not stretch) within a facet of the panelStretchLayout component, you could place a panelGroupLayout component with its layout attribute set to scroll in a facet of the panelStretchLayout component, and then place the panelBox component in that panelGroupLayout component. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."

9.4 Using Splitters to Create Resizable Panes

When you have groups of unique content to present to users, consider using the panelSplitter component to provide multiple panes separated by adjustable splitters. The ADF Faces demo application uses a panelSplitter to separate the component demo area from the editor area, as shown in Figure 9-10. Users can change the size of the panes by dragging the splitter, and can also collapse and restore the panel that displays the editor. When a panel is collapsed, the panel contents are hidden; when a panel is restored, the contents are displayed.

Figure 9-10 ADF Faces Demo Application Uses panelSplitter to Separate Contents

[image: Multiple Panes Separated by Splitters]

The panelSplitter component lets you organize contents into two panes separated by an adjustable splitter. The panes can either line up on a horizontal line (as does the splitter shown in Figure 9-10) or on a vertical line. The ADF Faces demo application uses another panelSplitter component to separate the application's global menu from the main body of the page. Figure 9-11 shows the panelSplitter component expanded to show the menu, which includes access to the documentation and source.

Figure 9-11 panelSplitter with a Vertical Split Expanded

[image: panelSplitter shows header]

Clicking the arrow button on a splitter collapses the panel that holds the global menu, and the menu items are no longer shown, as shown in Figure 9-12.

Figure 9-12 panelSplitter with a Vertical Split Collapsed

[image: Horizontal and Vertical PanelSplitter]

You place components inside the facets of the panelSplitter component. The panelSplitter component uses geometry management to stretch its child components at runtime. This means when the user collapses one panel, the contents in the other panel are explicitly resized to fill up available space.

	
Note:

While the user can change the values of the splitterPosition and collapsed attributes by resizing or collapsing the panes, those values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

9.4.1 How to Use the panelSplitter Component

The panelSplitter component lets you create two panes separated by a splitter. Each splitter component has two facets, namely, first and second, which correspond to the first panel and second panel, respectively. Child components can reside inside the facets only. To create more than two panes, you nest the panelSplitter components.

Before You Begin

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.4, "Using Splitters to Create Resizable Panes."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the panelSplitter component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Splitter onto the JSF page.

	
In the Property Inspector, expand the Common section.

	
Set Orientation to vertical to create two vertical panes (one on top of the other). By default, the value is horizontal, which means horizontal panes are placed left-to-right (or right-to-left, depending on the language reading direction).

	
Set SplitterPosition and PositionedFromEnd to determine the initial placement of the splitter. By default, the value of the splitterPosition attribute is 200 pixels, and the positionedFromEnd attribute is false. This setting means that ADF Faces measures the initial position of the adjustable splitter from the start or top panel (depending on the orientation attribute value). For example, if the orientation attribute is set to horizontal, the splitterPosition attribute is 200 and the positionedFromEnd attribute is false (all default values), then ADF Faces places the splitter 200 pixels from the start panel, as shown in Figure 9-13.

Figure 9-13 Splitter Position Measured from Start Panel

[image: Splitter position measured from start pane]

If the positionedFromEnd attribute is set to true, then ADF Faces measures the initial position of the splitter from the end (or bottom panel, depending on the orientation value). Figure 9-14 shows the position of the splitter measured 200 pixels from the end panel.

Figure 9-14 Splitter Position Measured from End Panel

[image: Splitter position measured from end pane]

	
Set collapsed to determine whether or not the splitter is in a collapsed (hidden) state. By default, the collapsed attribute is false, which means both panes are displayed. When the user clicks the arrow button on the splitter, the collapsed attribute is set to true and one of the panes is hidden.

ADF Faces uses the collapsed and positionedFromEnd attributes to determine which panel (that is, the first or second panel) to hide (collapse) when the user clicks the arrow button on the splitter. When the collapsed attribute is set to true and the positionedFromEnd attribute is false, the first panel is hidden and the second panel stretches to fill up the available space. When the collapsed attribute is true and the positionedFromEnd attribute is true, the second panel is hidden instead. Visually, the user can know which panel will be collapsed by looking at the direction of the arrow on the button: when the user clicks the arrow button on the splitter, the panel collapses in the direction of the arrow.

	
By default, the panelSplitter component stretches to fill available browser space. If you want to place the panelSplitter into a component that does not stretch its children, then you need to change how the panelSplitter component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom attribute. In the Property Inspector, set DimensionsFrom to one of the following:

	
children: Instead of stretching, the panelSplitter component will get its dimensions from its child component.

	
Note:

If you use this setting and you set the orientation attribute to vertical, then the contents of the collapsible panel will not be determined by its child component, but instead will be determined by the value of splitterPosition attribute. The size of the other pane will be determined by its child component.
Additionally, you cannot set the height of the panelSplitter component (for example through the inlineStyle or styleClass attributes) if you use this setting. Doing so would cause conflict between the panelSplitter height and the child component height.

	
parent: The size of the panelSplitter component will be determined in the following order:

	
From the inlineStyle attribute.

	
If no value exists for inlineStyle, then the size is determined by the parent container.

	
If the parent container is not configured or not able to stretch its children, the size will be determined by the skin.

	
auto: If the parent component to the panelSplitter component allows stretching of its child, then the panelSplitter component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelSplitter component will be based on the size of its child component.

	
To place content in the component, drag and drop the desired component into the first and second facets. When you have the orientation set to horizontal, the first facet is the left facet. When you have the orientation set to vertical, the first facet is the top facet. If you want the child component to stretch, it must be a component that supports stretching. For more details, see Section 9.4.2, "What You May Need to Know About Geometry Management and the panelSplitter Component."

Because facets accept one child component only, if you want to add more than one child component, wrap the child components inside a container component. This component must also be able to be stretched in order for all contained components to stretch.

	
Tip:

If any facet is not visible in the visual editor:
	
Right-click the panelSplitter component in the Structure window.

	
From the context menu, choose Facets - Panel Splitter >facet name. Facets in use on the page are indicated by a checkmark in front of the facet name.

	
To create more than two panes, insert another Panel Splitter component into a facet to create nested splitter panes (as shown in Figure 9-15).

Figure 9-15 Nested panelSplitter Components

[image: panelSplitters can be nested]

Example 9-3 shows the code generated by JDeveloper when you nest splitter components.

Example 9-3 Nested panelSplitter Components

<af:panelSplitter ...>
 <f:facet name="first">
 <!-- first panel child components components here -->
 </f:facet>
 <f:facet name="second">
 <!-- Contains nested splitter component -->
 <af:panelSplitter orientation="vertical" ...>
 <f:facet name="first">
 <!-- first panel child components components here -->
 </f:facet>
 <f:facet name="second">
 <!-- second panel child components components here -->
 </f:facet>
 </af:panelSplitter>
 </f:facet>
</af:panelSplitter>

	
If you want to perform some operation when users collapse or expand a panel, attach a client-side JavaScript using the clientListener tag for the collapsed attribute and a propertyChange event type. For more information about client-side events, see Chapter 6, "Handling Events."

9.4.2 What You May Need to Know About Geometry Management and the panelSplitter Component

The panelSplitter component can stretch its child components and it can also be stretched. The following components can be stretched inside the first or second facet of the panelSplitter component:

	
decorativeBox (when configured to stretch)

	
calendar

	
inputText (when configured to stretch)

	
panelAccordion (when configured to stretch)

	
panelBox (when configured to stretch)

	
panelCollection (when configured to stretch)

	
panelDashboard (when configured to stretch)

	
panelGroupLayout (only with the layout attribute set to scroll or vertical)

	
panelHeader (when configured to stretch)

	
panelSplitter (when configured to stretch)

	
panelStretchLayout (when configured to stretch)

	
panelTabbed (when configured to stretch)

	
region

	
showDetailHeader (when configured to stretch)

	
table (when configured to stretch)

	
tree (when configured to stretch)

	
treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the panelSplitter component:

	
panelBorderLayout

	
panelFormLayout

	
panelGroupLayout (only with the layout attribute set to default or horizontal)

	
panelLabelAndMessage

	
panelList

	
showDetail

	
tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched into a facet of the panelSplitter component, wrap that component in a transition component that does not stretch its child components.

For example, if you want to place content in a panelBox component and have it flow within a facet of the panelSplitter component, you could place a panelGroupLayout component with its layout attribute set to scroll in a facet of the panelSplitter component, and then place the panelBox component in that panelGroupLayout component. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."

9.5 Arranging Page Contents in Predefined Fixed Areas

The panelBorderLayout component uses facets to contain components in predefined areas of a page. Instead of a center facet, the panelBorder layout component takes 0 to n direct child components (also known as indexed children), which are rendered consecutively in the center. The facets then surround the child components.

Figure 9-16 shows the facets of the panelBorderLayout component.

Figure 9-16 Facets in panelBorderLayout

[image: Predefined named areas around center area]

The 12 supported facets of the panelBorderLayout component are:

	
top: Renders child components above the center area.

	
bottom: Renders child components below the center area.

	
start: Supports multiple reading directions. This facet renders child components on the left of the center area between top and bottom facet child components, if the reading direction of the client browser is left-to-right. If the reading direction is right-to-left, it renders child components on the right of the center area. When your application must support both reading directions, this facet ensures that the content will be displayed on the proper side when the direction changes. If you do not need to support both directions, then you should use either the left or right facet.

	
end: Supports multiple reading directions. This facet renders child components on the right of the center area between top and bottom facet child components, if the reading direction of the client browser is left-to-right. If the reading direction is right-to-left, it renders child components on the left of the center area. When your application must support both reading directions, this facet ensures that the content will be displayed on the proper side when the direction changes. If you do not need to support both directions, then you should use either the left or right facet.

	
left: Supports only one reading direction. This facet renders child components on the left of the center area between top and bottom facet child components. When the reading direction is left-to-right, the left facet has precedence over the start facet if both the left and start facets are used (that is, contents in the start facet will not be displayed). If the reading direction is right-to-left, the left facet also has precedence over the end facet if both left and end facets are used.

	
right: Supports only one reading direction. This facet renders child components on the right of the center area between top and bottom facet child components. If the reading direction is left-to-right, the right facet has precedence over the end facet if both right and end facets are used. If the reading direction is right-to-left, the right facet also has precedence over the start facet, if both right and start facets are used.

	
innerTop: Renders child components above the center area but below the top facet child components.

	
innerBottom: Renders child components below the center area but above the bottom facet child components.

	
innerLeft: Renders child components similar to the left facet, but renders between the innerTop and innerBottom facets, and between the left facet and the center area.

	
innerRight: Renders child components similar to the right facet, but renders between the innerTop facet and the innerBottom facet, and between the right facet and the center area.

	
innerStart: Renders child components similar to the innerLeft facet, if the reading direction is left-to-right. Renders child components similar to the innerRight facet, if the reading direction is right-to-left.

	
innerEnd: Renders child components similar to the innerRight facet, if the reading direction is left-to-right. Renders child components similar to the innerLeft facet, if the reading direction is right-to-left.

The panelBorderLayout component does not support stretching its child components, nor does it stretch when placed in a component that stretches its child components. Therefore, the size of each facet is determined by the size of the component it contains. If instead you want the contents to stretch to fill the browser window, consider using the panelStretchLayout component instead. For more information, see Section 9.3, "Arranging Contents to Stretch Across a Page."

9.5.1 How to Use the panelBorderLayout Component to Arrange Page Contents in Predefined Fixed Areas

There is no restriction to the number of panelBorderLayout components you can have on a JSF page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.5, "Arranging Page Contents in Predefined Fixed Areas."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the panelBorderLayout component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Border Layout onto the JSF page.

	
From the Component Palette, drag and drop the component that will be used to display contents in the center of the window as a child component to the panelBorderLayout component.

Child components are displayed consecutively in the order in which you inserted them. If you want some other type of layout for the child components, wrap the components inside the panelGroupLayout component. For more information, see Section 9.12, "Grouping Related Items."

	
To place contents that will surround the center, drag and drop the desired component into each of the facets.

Because facets accept one child component only, if you want to add more than one child component, wrap the child components inside a container.

	
Tip:

If any facet is not visible in the visual editor:
	
Right-click the panelBorderLayout component in the Structure window.

	
From the context menu, choose Facets - Panel Border Layout >facet name. Facets in use on the page are indicated by a checkmark in front of the facet name.

9.6 Arranging Content in Forms

The panelFormLayout component lets you lay out multiple components such as input fields and selection list fields in one or more columns. The File Explorer application uses a panelFormLayout component to display file properties. The component is configured to have the labels right-aligned, as shown in Figure 9-17.

Figure 9-17 Right-Aligned Labels and Left-Aligned Fields in a Form

[image: Right-aligned labels and left-aligned fields]

Figure 9-18 shows the same page with the component configured to display the labels above the fields.

Figure 9-18 Labels Above Fields in a Form

[image: Labels above Fields in Form]

You can configure the panelFormLayout component to display the fields with their labels in one or more columns. Each field in the form is a child component of the panelFormLayout component. You set the desired number of rows, and if there are more child components than rows, the remaining child components are placed in a new column. Example 9-4 shows a panelFormLayout component with 10 inputText child components.

Example 9-4

<af:panelFormLayout id="pfl1" rows="10">
 <af:inputText label="Label 1" id="it1"/>
 <af:inputText label="Label 2" id="it2"/>
 <af:inputText label="Label 3" id="it3"/>
 <af:inputText label="Label 4" id="it4"/>
 <af:inputText label="Label 5" id="it5"/>
 <af:inputText label="Label 6" id="it6"/>
 <af:inputText label="Label 7" id="it7"/>
 <af:inputText label="Label 8" id="it8"/>
 <af:inputText label="Label 9" id="it9"/>
 <af:inputText label="Label 10" id="it10"/>
</af:panelFormLayout>

Because the panelFormLayout's row attribute is set to 10, all 10 inputText components appear in one column, as shown in Figure 9-19.

Figure 9-19 All inputText Components Display in One Column

[image: All components display in one column]

However, if the row attribute were to be set to 8, then the first 8 inputText components display in the first column and the last two appear in the second column, as shown in Figure 9-20.

Figure 9-20 Components Displayed in Two Columns

[image: components in two column form]

However, the number of rows displayed in each is not solely determined by the configured number of rows. By default, the panelFormLayout component's maxColumns attribute is set to render no more than three columns (two for PDA applications). This value is what actually determines the number of rows. For example, if you have 25 child components and you set the component to display 5 rows and you leave the default maximum number of columns set to 3, then the component will actually display 9 rows, even though you have it set to display 5. This is because the maximum number of columns can override the set number of rows. Because it is set to allow only up to 3 columns, the component must use 9 rows in order to display all child components. You would need to set the maximum number of columns to 5 in order to have the component display just 5 rows.

ADF Faces uses default label and field widths, as determined by the standard HTML flow in the browser. You can also specify explicit widths to use for the labels and fields. Regardless of the number of columns in the form layout, the widths you specify apply to all labels and fields. You specify the widths using either absolute numbers in pixels or percentage values. If the length of a label does not fit, the text is wrapped.

	
Tip:

If your page will be displayed in languages other than English, you should leave extra space in the labels to account for different languages and characters.

9.6.1 How to Use the panelFormLayout Component

You can use one or more panelFormLayout components on a page to create the desired form layout.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.6, "Arranging Content in Forms."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use panelFormLayout:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Form Layout onto the JSF page.

	
In the Property Inspector, expand the Common section and set the label alignment.

By default, field labels on the child input components are displayed beside the fields. To place the labels above the fields, set the labelAlignment attribute to top.

	
Note:

When you nest a panelFormLayout component inside another panelFormLayout component, the label alignment in the nested layout is top.

	
Set rows and maxColumns to determine the number of rows and columns in the panelFormLayout component.

The rows attribute value is the number that ADF Faces uses as the number of rows after which a new column will start. By default, it is set to 2147483647 (Integer.MAX_VALUE). This means all the child components that are set to rendered="true" and visible="true" will render in one, single column.

If you want the form to contain more than one column, set the rows attribute to a multiple of the number of rendered child components, and then set the maxColumns attribute to the maximum amount of columns that the form should display. The default value of maxColumns is 3. (On PDAs, the default is 2).

	
Note:

If the panelFormLayout component is inside another panelFormLayout component, the inner panelFormLayout component's maxColumns value is always 1.

For example, if the rows attribute is set to 6 and there are 1 to 6 rendered child components, the list will be displayed in 1 column. If there are 7 to 12 rendered child components, the list will be displayed in 2 columns. If there are 13 or more child components, the list will be displayed in 3 columns. To display all rendered child components in 1 column, set the rows attribute back to the default value.

If the number of rendered child components would require more columns than allowed by the maxColumn attribute, then the value of the rows attribute is overridden. For example, if there are 100 rendered child components, and the rows attribute is set to 30 and the maxColumns attribute is 3 (default), the list will be displayed in 3 columns and 34 rows. If the maxColumns attribute is set to 2, the list will be displayed in 2 columns and 51 rows.

	
Tip:

Rendered child components refers only to direct child components of the panelFormLayout component. Therefore, when a component that renders multiple rows (for example selectManyCheckbox) is a child, all its rows will be treated as a single rendered child and cannot be split across separate columns.

	
Set fieldWidth and labelWidth as needed.

ADF Faces uses default label and field widths, as determined by standard HTML flow in the browser. You can also specify explicit widths to use for the labels and fields.

The labelWidth attribute on the panelFormLayout component lets you set the preferred width for labels; the fieldWidth attribute lets you set the preferred width for fields.

	
Note:

Any value you specify for the labelWidth component is ignored in layouts where the labelAlignment attribute is set to top, that is, in layouts where the labels are displayed above the fields.

Regardless of the number of columns in the form layout, the widths you specify apply to all labels and fields, that is, you cannot set different widths for different columns. You specify the widths using any CSS unit such as em, px, or %. The unit used must be the same for both the labelWidth and fieldWidth attribute.

When using percentage values:

	
The percentage width you specify is a percent of the entire width taken up by the panelFormLayout component, regardless of the number of columns to be displayed.

	
The sum of the labelWidth and fieldWidth percentages must add up to 100%. If the sum is less than 100%, the widths will be normalized to equal 100%. For example, if you set the labelWidth to 10% and the fieldWidth to 30%, at runtime the labelWidth would be 33% and the fieldWidth would be 67%.

	
If you explicitly set the width of one but not the other (for example, you specify a percentage for labelWidth but not fieldWidth), ADF Faces automatically calculates the percentage width that is not specified.

	
Note:

If your panelFormLayout component contains multiple columns and a footer, you may see a slight offset between the positioning of the main form items and the footer items in web browsers that do not honor fractional divisions of percentages. To minimize this effect, ensure that the percentage labelWidth is evenly divisible by the number of columns.

Suppose the width of the panelFormLayout component takes up 600 pixels of space, and the labelWidth attribute is set at 50%. In a one-column display, the label width will be 300 pixels and the field width will be 300 pixels. In a two-column display, each column is 300 pixels, so each label width in a column will be 150 pixels, and each field width in a column will be 150 pixels.

If the length of the label text does not fit on a single line with the given label width, ADF Faces automatically wraps the label text. If the given field width is less than the minimum size of the child content you have placed inside the panelFormLayout component, ADF Faces automatically uses the minimum size of the child content as the field width.

	
Note:

If the field is wider than the space allocated, the browser will not truncate the field but instead will take space from the label columns. This potentially could cause the labels to wrap more than you would like. In this case, you may want to consider reducing the width of the field contents (for example, use a smaller contentStyle width on an inputText component).

	
Insert the desired child components.

Usually you insert labeled form input components, such as Input Text, Select Many Checkbox, and other similar components that enable users to provide input.

	
Tip:

The panelFormLayout component also allows you to use the iterator, switcher, and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panelFormLayout component.

Example 9-5 shows the panelFormLayout component as it is used on the properties.jspx page of the File Explorer application, shown in Figure 9-17.

Example 9-5 panelFormLayout Component

<af:panelFormLayout rows="5" id="pfl1">
 <af:inputText value="#{fileItemProperties.type}"
 label="#{explorerBundle['fileproperties.type']}"
 readOnly="true" id="it2"/>
 <af:inputText value="#{fileItemProperties.location}"
 label="#{explorerBundle['fileproperties.currentpath']}"
 readOnly="true" id="it3"/>
 <af:inputText value="#{fileItemProperties.size}"
 label="#{explorerBundle['fileproperties.size']}"
 readOnly="true" id="it4"/>
 <af:inputText value="#{fileItemProperties.contains}"
 label="#{explorerBundle['fileproperties.contains']}"
 readOnly="true" id="it5"/>
</af:panelFormLayout>

	
Tip:

If you use non-input components (which do not have label attributes) or if you want to group several input components with one single label inside a panelFormLayout component, first wrap the components inside a panelLabelAndMessage component. For information about using the panelLabelAndMessage component, see Section 19.4, "Grouping Components with a Single Label and Message."

	
To group semantically related input components in a form layout, use the group component to wrap those components that belong in a group. Components placed within a group will cause the panelFormLayout component to draw a separator line above and below the group.

For more information about using the group component, see Section 9.6.2, "What You May Need to Know About Using the group Component with the panelFormLayout Component."

	
To add content below the child input components, insert the desired component into the footer facet.

Facets accept only one child component. If you have to insert more than one component in the footer facet, use the panelGroupLayout component or the group component to wrap the footer child components. Example 9-6 shows sample code that uses the panelGroupLayout component to arrange footer child components in a panelFormLayout component.

Example 9-6 Footer Child Components in panelFormLayout Arranged Horizontally

<af:panelFormLayout>
 <f:facet name="footer">
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Save"/>
 <af:commandButton text="Cancel"/>
 <f:facet name="separator">
 <af:spacer width="3" height="3"/>
 </f:facet>
 </af:panelGroupLayout>
 </f:facet>
 .
 .
 .
</af:panelFormLayout>

9.6.2 What You May Need to Know About Using the group Component with the panelFormLayout Component

While the group component itself does not render anything, when it used as a child in the panelFormLayout component, visible separators are displayed around the child components of each group component. For example, you might want to group some of the input fields in a form layout created by the panelFormLayout component. Example 9-16 shows sample code that groups two sets of child components inside a panelFormLayout component.

Example 9-7 Grouping Child Components in panelFormLayout

<af:panelFormLayout binding="#{editor.component}" rows="10" labelWidth="33%"
 fieldWidth="67%" testId="panelFormLayout1">
 <af:inputText columns="5" label="label 1"/>
 <af:group>
 <af:inputText columns="5" label="grouped 1" shortDesc="This one is secret!"
 secret="true"/>
 <af:inputText columns="5" label="grouped 2"/>
 <af:inputText columns="5" label="grouped 3"/>
 </af:group>
 <af:inputDate id="df1" label="label 2"/>
 <af:panelLabelAndMessage label="label 3" labelStyle="vertical-align: middle;">
 <af:commandButton text="Submit"/>
 </af:panelLabelAndMessage>
 <af:selectOneListbox id="sol" label="label 4" shortDesc="Select One Option">
 <af:selectItem label="option 1"/>
 <af:selectItem label="option 2"/>
 <af:selectItem label="option 3"/>
 <af:selectItem label="option 4"/>
 </af:selectOneListbox>
 <af:selectManyListbox id="rs" label="label 5" shortDesc="Select Option">
 <af:selectItem label="option 1"/>
 <af:selectItem label="option 2"/>
 <af:selectItem label="option 3"/>
 <af:selectItem label="option 4"/>oiiiik,
 </af:selectManyListbox>
</af:panelFormLayout>

Following along with the sample code in Example 9-16, at runtime the panelFormLayout component renders dotted, separator lines before and after the first group of child components, as shown in Figure 9-21.

Figure 9-21 Grouped Components in panelFormLayout

[image: Dotted lines set apart a group of components]

As described in Section 9.6, "Arranging Content in Forms," the panelFormLayout component uses certain component attributes to determine how to display its child components (grouped and ungrouped) in columns and rows. When using the group component to group related components in a panelFormLayout component that will display its child components in more than one column, the child components of any group component will always be displayed in the same column, that is, child components inside a group component will never be split across a column.

While the group component does not provide any layout for its child components, the underlying HTML elements can provide the desired layout for the child components inside the group component. For example, if you want child button components in a group component to flow horizontally in a form layout, use the panelGroupLayout component to wrap the buttons, and set the layout attribute on panelGroupLayout component to horizontal. Then insert the panelGroupLayout component into group component, as shown in Example 9-8.

Example 9-8 panelGroupLayout Inside a Group Component

<af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Save" ../>
 <af:commandButton text="Cancel" ../>
 <f:facet name="separator">
 <af:spacer width="3"/>
 </f:facet>
 </af:panelGroupLayout>
</af:group>

When you use the group component to group child components in the footer facet of the panelFormLayout component, you must place all the group components and other ungrouped child components in one root group component, as shown in Example 9-9.

Example 9-9 footer Facet in panelFormLayout with One Root group Component

<af:panelFormLayout ...>
 <f:facet name="footer">
 <!-- One root group component needed -->
 <af:group>
 <af:outputText value="Footer item 1"/>
 <!-- One group -->
 <af:group>
 <af:outputText value="Group 1 item 1"/>
 <af:outputText value="Group 1 item 2"/>
 </af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Save"/>
 <af:commandButton text="Cancel"/>
 <f:facet name="separator">
 <af:spacer width="3"/>
 </f:facet>
 </af:panelGroupLayout>
 </af:group>
 </f:facet>
 .
 .
 .
</af:panelFormLayout>

Like grouped child components in a panelFormLayout component, at runtime the panelFormLayout component renders dotted, separator lines around the child components of each group component in the footer facet, as shown in Figure 9-22.

Figure 9-22 Footer in panelGroupLayout with Grouped Components

[image: Grouped items in body and footer of PanelFormLayout]

	
Note:

The footer facet in the panelFormLayout component supports only two levels of grouped components, that is, you cannot have three or more levels of nested group components in the footer facet. For example, the following code is not valid:

<f:facet name="footer">
 <!-- Only one root group -->
 <af:group>
 <af:outputText value="Footer item 1"/>
 <!-- Any number of groups at this level -->
 <af:group>
 <af:outputText value="Group 1 item 1"/>
 <af:outputText value="Group 1 item 2"/>
 <!-- But not another nested group. This is illegal. -->
 <af:group>
 <af:outputText value="Nested Group 1 item 1"/>
 <af:outputText value="Nested Group 1 item 2"/>
 </af:group>
 </af:group>
 <af:outputText value="Another footer item"/>
 </af:group>
</f:facet>

Whether you are grouping components in the footer facet or in the main body of the panelFormLayout component, if the first or last child inside the panelFormLayout component or inside the footer facet is a group component, no separator lines will be displayed around the child components in that group. For example, both sets of code examples in Example 9-10 would produce the same visual effect at runtime.

Example 9-10 Code Producing Same Visual Effect

<!-- Example 1: Group of buttons is last child in root group -->
<f:facet name="footer">
 <af:group>
 <af:outputText value="Footer text item 1"/>
 <af:outputText value="Footer text item 2"/>
 <af:group>
 <af:inputText label="Nested group item 1"/>
 <af:inputText label="Nested group item 2"/>
 </af:group>
 <af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Cancel"/>
 <af:commandButton text="Save"/>
 </af:panelGroupLayout>
 </af:group>
 </af:group>
</f:facet>

<!-- Example 2: panelGroupLayout of buttons is last child in root group-->
<f:facet name="footer">
 <af:group>
 <af:outputText value="Footer text item 1"/>
 <af:outputText value="Footer text item 2"/>
 <af:group>
 <af:inputText label="Nested group item 1"/>
 <af:inputText label="Nested group item 2"/>
 </af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Cancel"/>
 <af:commandButton text="Save"/>
 </af:panelGroupLayout>
 </af:group>
</f:facet>

9.7 Arranging Contents in a Dashboard

The panelDashboard component allows you to arrange its child components in rows and columns, similar to the panelForm component. However, instead of text components, the panelDashboard children are panelBox components that contain content, as shown in Figure 9-23.

Figure 9-23 panelDashboard with panelBox Child Components

[image: panelDashboard arranges panelBoxes]

When you add a panelDashboard component, you configure the number of columns it will contain, along with the height of each row. The dashboard stretches its children to fill up the configured space. If all the child components do not fit within the specified number of columns and row height, then the panelDashboard component displays a scroll bar.

When placed in a component that stretches it children, by default, the panelDashboard stretches to fill its parent container, no matter the number of children. This could mean that you may have blank space in the dashboard when the browser is resized to be much larger than the dashboard needs.

For example, say you have set the panelDashboard to inherit its size from its parent by setting the dimensionsFrom attribute to parent. You set columns to 1 and the rowHeight to 50px. You then add two panelBox components. Because columns is set to 1, you will have 2 rows. Because the parent component is a panelStretchLayout, the panelDashboard will stretch to fill the panelStretchLayout, no matter the height of the boxes, and you end up with extra space, as shown in Figure 9-24 (the color of the dashboard has been changed to fuchsia to make it more easy to see its boundaries).

Figure 9-24 panelDashboard Stretches to Fill Space

[image: panelDashboard stretches to fill up space]

If instead you don't want the dashboard to stretch, you can place it in a component that does not stretch its children, and you can configure the panelDashboard to determine its size based on its children (by setting the dimensionsFrom attribute to children). It will then be as tall as the number of rows required to display the children, multiplied by the rowHeight attribute.

In the previous example, if instead you place the dashboard in a panelGroupLayout set to scroll, because the rowHeight is set to 50, your panelDashboard will always be just over 100px tall, no matter the size of the browser window, as shown in Figure 9-25.

Figure 9-25 panelDashboard Does Not Stretch

[image: panelDashboard does not stretch]

The panelDashboard component also supports declarative drag and drop behavior, so that the user can rearrange the child components. As shown in Figure 9-26, the user can for example, move panelBox 10 between panelBox 4 and panelBox 5. A shadow is displayed where the box can be dropped.

Figure 9-26 Drag and Drop Capabilities in panelDashboard

[image: Drag and drop panelboxes in panelDashboard]

	
Note:

You can also configure drag and drop functionality that allows users to drag components into and out of the panelDashboard component. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component."

Along with the ability to move child components, the panelDashboard component also provides an API that you can access to allow users to switch child components from being rendered to not rendered, giving the appearance of panelBoxes being inserted or deleted. The dashboard uses partial page rendering to redraw the new set of child components without needing to redraw the entire page.

You can use the panelDashboardBehavior tag to make the rendering of components appear more responsive. This tag allows the activation of a command component to apply visual changes to the dashboard before the application code modifies the component tree on the server. Because this opening up of space happens before the action event is sent to the server, the user will see immediate feedback while the action listener for the command component modifies the component tree and prepares the dashboard for the optimized encoding of the insert.

For example, Figure 9-27 shows a panelDashboard component used in the right panel of a panelSplitter component. In the left panel, list items displayed as links represent each panelBox component in the panelDashboard. When all panelBox components are displayed, the links are all inactive. However, if a user deletes one of the panelBox components, the corresponding link becomes active. The user can click the link to reinsert the panelBox. By using the panelDashboardBehavior tag with the commandLink component, the user sees the inserted box drawing.

Figure 9-27 commandLink Components Use panelDashboardBehavior Tag

[image: panelDashboardBehavior tag for links]

If you decide not to use this tag, there will be a slight delay while your action listener is processing before the user sees any change to the dashboard structure.

Figure 9-28 shows a practical example using a panelDashboard component. Selecting one of the links at the top of the page changes the panelBoxes displayed in the dashboard. The user can also add panelBoxes by clicking the associated link on the left-hand side of the page.

Figure 9-28 Practical Example of panelDashboard

[image: panelDashboard example]

9.7.1 How to Use the panelDashboard Component

After you add a panelDashboard to a page, you can configure the dashboard to determine whether or not it will stretch. Then, add child components, and if you want to allow rearrangement the components, also add a componentDragSource tag to the child component. If you want to allow insertion and deletion of components, implement a listener to handle the action. You can also use the panelDashboardBehavior tag to make the panelDashboard component appear more responsive to the insertion.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.7, "Arranging Contents in a Dashboard."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To use the panelDashboard component:

	
In the Component Palette, from the Layout panel drag and drop a Panel Dashboard onto the page.

	
In the Property Inspector, expand the Common section.

	
Set columns to the number of columns you want to use to display the child components. The child components will stretch to fit each column.

	
Set RowHeight to the number of pixels high that each row should be. The child components will stretch to this height.

	
By default, the panelDashboard component stretches to fill available browser space. If instead, you want to use the panelDashboard component as a child to a component that does not stretch its children, then you need to change how the panelDashboard component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom attribute. To do so, expand the Appearance section, and set DimensionsFrom to one of the following:

	
children: the panelDashboard component will get its dimensions from its child components.

	
Note:

If you use this setting, you cannot set the height of the panelDashboard component (for example through the inlineStyle or styleClass attributes). Doing so would cause conflict between the panelDashboard height and the child component height.

	
parent: the size of the panelDashboard component will be determined in the following order:

	
From the inlineStyle attribute.

	
If no value exists for inlineStyle, then the size is determined by the parent container.

	
If the parent container is not configured or not able to stretch its children, the size will be determined by the skin.

	
auto: If the parent component to the panelDashboard component allows stretching of its child, then the panelDashboard component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelDashboard component will be based on the size of its child component.

	
From the Component Palette, drag and drop child panelBox components.

	
Tip:

The panelDashboard component also supports the region component as a child component.

	
If you want users to be able to reorder the child components, in the Component Palette, from the Operations panel, in the Drag and Drop group, drag and drop a Component Drag Source as a child to each of the child components.

	
If you want to be able to add and delete components, create a managed bean and implement a handler method that will handle reordering children when a child is added or dropped. This event is considered a drop event, so you must use the Drag and Drop framework. For more information about creating a handler for a drop event, see Chapter 33, "Adding Drag and Drop Functionality."

To use the optimized lifecycle, have the handler call the panelDashboard component's prepareOptimizedEncodingOfInsertedChild() method, which causes the dashboard to send just the inserted child component to be rendered.

	
Note:

If you plan on using the panelDashboardBehavior tag, then this API should be called from the associated command component's actionListener handler.

	
If you have added a componentDragSource tag in Step 7, then you must also implement a DropEvent handler for the panelDashboard. With the panelDashboard component selected, expand the Behavior section and bind the DropListener attribute to that handler method.

	
If you wish to use a panelDashboardBehavior tag, drag and drop a command component that will be used to initiate the insertion.

	
In the Property Inspector, bind the ActionListener for the command component to a handler on a managed bean that will handle the changes to the component tree. Have the handler call the panelDashboard component's prepareOptimizedEncodingOfInsertedChild() method, which causes the dashboard to send just the inserted child component to be rendered. Example 9-11 shows code on a managed bean that handles the insertion of child components.

Example 9-11 Action Listener Code for Insert Button

public void handleInsert(ActionEvent e)
{
 UIComponent eventComponent = e.getComponent();
 String panelBoxId = eventComponent.getAttributes().get("panelBoxId").toString();
 UIComponent panelBox = _dashboard.findComponent(panelBoxId);

 // Make this panelBox rendered:
 panelBox.setRendered(true);

 // Becaue the dashboard is already shown, perform an optimized
 // render so the whole dashboard does not have to be re-encoded:
 int insertIndex = 0;
 List<UIComponent> children = _dashboard.getChildren();
 for (UIComponent child : children)
 {
 if (child.equals(panelBox))
 {
 // Let the dashboard know that only the one child component should be
 // encoded during the render phase:
 _dashboard.prepareOptimizedEncodingOfInsertedChild(
 FacesContext.getCurrentInstance(),
 insertIndex);
 break;
 }

 if (child.isRendered())
 {
 // Count only rendered children because that is all that the
 // panelDashboard can see:
 insertIndex++;
 }
 }
 // Add the side bar as a partial target because we need to
 // redraw the state of the side bar item that corresponds to the inserted item:
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_sideBar);
}

	
In the Component Palette, from the Operations panel, in the Behavior group, drag a Panel Dashboard Behavior tag and drop it as a child to the command component.

	
In the Property Inspector, enter the following:

	
for: Enter the ID for the associated panelDashboard component

	
index: Enter an EL expression that resolves to a method that determines the index of the component to be inserted. When you use the panelDashboardBehavior tag, a placeholder element is inserted into the DOM tree where the actual component will be rendered once it is returned from the server. Because the insertion placeholder gets added before the insertion occurs on the server, you must specify the location where you are planning to insert the child component so that if the user reloads the page, the children will continue to remain displayed in the same order.

9.7.2 What You May Need to Know About Geometry Management and the panelDashboard Component

This component organizes its children into a grid based on the number of columns and the rowHeight attribute. The child components that can be stretched inside of the panelDashboard include:

	
inputText (when the rows attribute is set to greater than one, and the simple attribute is set to true)

	
panelBox

	
region (when configured to stretch)

	
table (when configured to stretch)

If you try to put any other component as a child component to the panelDashboard component, then the component hierarchy is not valid.

9.8 Displaying and Hiding Contents Dynamically

Sometimes you want users to have the choice of displaying or hiding content. When you do not need to show all the functionality of the user interface at once, you can save a lot of space by using components that enable users to show and hide parts of the interface at will.

The showDetail component creates a label with a toggle icon that allows users to disclose (show) or undisclose (hide) contents under the label. When the contents are undisclosed (hidden), the default label is Show and the expand icon is displayed. When the contents are disclosed (shown), the default label is Hide, and the collapse icon is displayed.

For example, the newFileItem page of the File Explorer application uses a showDetail component to hide and display file properties. The component is configured to hide the properties when the page is displayed, as shown in Figure 9-29.

Figure 9-29 Collapsed showDetail

[image: collapsed showDetail]

When the user clicks the toggle icon, the properties are displayed, as shown in Figure 9-30.

Figure 9-30 Expanded showDetail

[image: Expanded and collapsed ShowDetail components]

If you want to use something more complex than an outputText component to display the disclosed and undisclosed text, you can add components to the showDetail component's prompt facet. When set to be visible, any contents in the prompt facet will replace the disclosed and undisclosed text values. To use the showDetail component, see Section 9.8.1, "How to Use the showDetail Component."

Like the showDetail component, the showDetailHeader component also toggles the display of contents, but the showDetailHeader component provides the label and toggle icon in a header, and also provides facets for a menu bar, toolbar, and text.

	
Tip:

The showDetailHeader component is the same as a panelHeader component, except that it handles disclosure events. For more information about the panelHeader component, see Section 9.10, "Displaying Items in a Static Box."

When there is not enough space to display everything in all the facets of the title line, the showDetailHeader text is truncated and displays an ellipsis. When the user hovers over the truncated text, the full text is displayed in a tooltip, as shown in Figure 9-31.

Figure 9-31 Text for the showDetailHeader Is Truncated

[image: Text for the panelHeader is Truncated]

When there is more than enough room to display the contents, the extra space is placed between the context facet and the toolbar, as shown in Figure 9-32.

Figure 9-32 Extra Space Is Added Before the Toolbar

[image: Extra Space is Added Before the Toolbar]

Additionally, you can configure the showDetailHeader component to be used as a message for errors, warnings, information, or confirmations. The contents are undisclosed or disclosed below the header. For example, the newFileItem page of the File Explorer application uses a showDetailHeader component to display help for creating a new file. By default, the help is undisclosed, as shown in Figure 9-30. When the user clicks the toggle icon in the header, the contents are disclosed, as shown in Figure 9-33.

Figure 9-33 showDetailHeader Component Used to Display Help

[image: showDetailHeader can display help text]

You can also use the showDetailHeader component in conjunction with the panelHeader component to divide a page into sections and subsections, where some contents can be hidden. The showDetailHeader component contains a number of facets, such as a toolbar and menu bar facet. These facets are the same as for the panelHeader component. For more information about the panelHeader component, see Section 9.10, "Displaying Items in a Static Box."

You can nest showDetailHeader components to create a hierarchy of content. Each nested component takes on a different heading style to denote the hierarchy. Figure 9-34 shows three nested showDetailHeader components, and their different styles.

Figure 9-34 Nested showDetailHeader Components Create a Hierarchy

[image: showDetailHeader components can be nested]

You can change the styles used by each header level by applying a skin to the showDetailHeader component. For details about skinning ADF Faces components, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Note:

While you can force the style of the text using the size attribute, (where 0 is the largest text), the value of the size attribute will not affect the hierarchy. It only affects the style of the text. Hierarchy is determined by the nesting of the components.

Use the panelBox component when you want information to be able to be displayed or hidden below the header, and you want the box to be offset from other information on the page. The File Explorer application uses two panelBox components on the properties.jspx page to display the attributes and history of a file, as shown in Figure 9-35.

Figure 9-35 Two panelBox Components

[image: Two Panel Boxes or Content Containers]

Figure 9-36 shows the same page, but with the History panelBox component in an undisclosed state.

Figure 9-36 Undisclosed panelBox Component

[image: Undisclosed panelBox]

You can set the background color on a panelBox component so that the contents are further delineated from the rest of the page. Two color combinations (called ramps) are offered, and each combination contains four levels of color: none, light, medium, and dark. Figure 9-37 shows the same panel boxes as in Figure 9-35, but with the bottom panelBox component configured to show the medium tone of the core ramp.

Figure 9-37 Panel Boxes Using a Background Color

[image: Background color set in panelBox]

You can set the size of a panelBox component either explicitly by assigning a pixel size, or as a percentage of its parent. You can also set the alignment of the title, and add an icon. In addition, the panelBox component includes the toolbar facet that allows you to add a toolbar and toolbar buttons to the box.

The showDetail, showDetailHeader, and panelBox components all handle disclosure events on the server. Disclosure events are sent whenever the user toggles the component between disclosed and undisclosed. This means that a roundtrip to the server is required, even though no data may be being sent or received. You can configure these components to so that they handle the disclosure event on the client instead, which improves performance. The event will not be sent to the server until another event is sent, or if the component detects that any data has changed.

If you want to show and hide multiple large areas of content, consider using the panelAccordion and panelTabbed components. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

9.8.1 How to Use the showDetail Component

Use the showDetail component to show and hide a single set of content.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the showDetail component:

	
In the Component Palette, from the Layout panel, drag and drop a Show Detail onto the JSF page.

	
In the Property Inspector, expand the Common section and set the attributes as needed.

Set Disclosed to true if you want the component to show its child components.

	
Note:

While the user can change the value of the disclosed attribute by displaying and hiding the contents, the value will not be retained once the user leaves the page unless you configure your application to allow user customizations. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

Set DisclosedText to the label you want to display next to the toggle icon when the contents are disclosed (shown). By default, the label is Hide if no value is specified.

Set UndisclosedText to the label you want to display next to the toggle icon when the contents are undisclosed (hidden). By default, the label is Show if no value is specified.

	
Note:

If you specify a value for disclosedText but not for undisclosedText, then ADF Faces automatically uses the disclosedText value for both the disclosed state and undisclosed state. Similarly, if you specify a value for undisclosedText but not for disclosedText, the undisclosedText value is used when the contents are hidden or displayed.
Instead of using text specified in disclosedText and undisclosedText, you could use the prompt facet to add a component that will render next to the toggle icon.

	
Expand the Behavior section and set DisclosureListener to a DisclosureListener method in a backing bean that you want to execute when the user displays or hides the component's contents.

For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

	
Set HandleDisclosure to client if you want the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated.

For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

	
Note:

If you have bound the disclosureListener to a listener method that handles the disclosure event, then the handleDisclosure value is ignored, and the event is handled on the server.

	
Performance Tip:

If you do not expect the component to handle data changes, you should set the handleDisclosure attribute to client.

	
To add content, insert the desired child components inside the showDetail component.

9.8.2 How to Use the showDetailHeader Component

Use the showDetailHeader component when you want to display a single set of content under a header, or when you want the content to be used as messages that can be displayed or hidden. You can also use the showDetailHeader component to create a hierarchy of headings and content when you want the content to be able to be hidden.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the showDetailHeader component:

	
In the Component Palette, from the Layout panel, drag and drop a Show Detail Header onto the JSF page.

	
In the Property Inspector, expand the Common section. Set Text to the text string you want for the section header label.

	
Set Icon to the URI of the image file you want to use for the section header icon. The icon image is displayed before the header label.

	
Note:

Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner.

	
If you are using the header to provide specific messaging information, set MessageType to one of the following values:

	
confirmation: The confirmation icon (represented by a note page overlaid with a green checkmark) replaces any specified icon image.

	
error: The error icon (represented by a red circle with an x inside) replaces any specified icon image. The header label also changes to red.

	
info: The info icon (represented by a blue circle with an I inside) replaces any specified icon image.

	
warning: The warning icon (represented by a yellow triangle with an exclamation mark inside) replaces any specified icon image.

	
none: Default. No icon is displayed, unless one is specified for the icon attribute.

Figure 9-38 shows each of the icons used for message types.

Figure 9-38 Icons Used for Message Types

[image: message type icons]

	
Note:

Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner.

	
Set Disclosed to true if you want the component to show its child components.

	
Note:

While the user can change the value of the disclosed attribute by displaying and hiding the contents, the value will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Expand the Behavior section and set DisclosureListener to a disclosureListener method in a backing bean that you want to execute when the user displays or hides the component's contents.

For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

	
Set HandleDisclosure to client if you want the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated.

For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

	
Note:

If you have bound the disclosureListener to a listener method that handles the disclosure event, then the handleDisclosure value is ignored, and the event is handled on the server.

	
Performance Tip:

If you do not expect the component to handle data changes, you should set the handleDisclosure attribute to client.

	
If you want to control how the showDetailHeader component handles geometry management, expand the Appearance section and set Type. Set it to flow if you do not want the component to stretch or to stretch its children. The height of the showDetailHeader component will be determined solely by its children. Set it to stretch if you want it to stretch and stretch its child (will only stretch a single child component). Leave it set to the default if you want the parent component of the showDetailHeader component to determine geometry management. For more information about geometry management, see Section 9.2.1, "Geometry Management and Component Stretching."

	
To add buttons or icons to the header, in the Component Palette, from the Layout panel, in the Menus and Toolbar Containers group, drag and drop the toolbar component into the toolbar facet. Then add any number of commandToolbarButton or commandButton components into the newly inserted toolbar component. For more information about using the toolbar component, see Section 16.3, "Using Toolbars."

	
Note:

Toolbar overflow is not supported in panelHeader components.

	
To add menus to the header, insert menu components into the menuBar facet. For more information about creating menus, see Section 16.2, "Using Menus in a Menu Bar."

	
Tip:

You can place menus in the toolbar facet and toolbars (and toolboxes) in the menu facet. The main difference between these facets is location. The toolbar facet is before the menu facet.

	
To create a subsection header, insert another showDetailHeader component inside an existing showDetailHeader component.

The size attribute specifies the number to use for the header level. The largest number is 0, and it corresponds to an H1 header level; the smallest is 5, and it corresponds to an H6 header.

By default, the size attribute is -1. This means ADF Faces automatically calculates the header number (and thus the header level style to use) from the topmost, parent component. When you use nested components, you do not have to set the size attribute explicitly to get the proper header style to be displayed.

	
Note:

While you can force the style of the text using the size attribute, (where 0 is the largest text), the value of the size attribute will not affect the hierarchy. It only affects the style of the text. Hierarchy is determined by the nesting of the components.

In the default skin used by ADF Faces, the style used for sizes above 2 will be displayed the same as size 2. That is, there is no difference in styles for sizes 3, 4, or 5–they all show the same style as size 2. You can change this by creating a custom skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
To add content to a section or subsection, insert the desired child components inside the showDetailHeader component.

9.8.3 How to Use the panelBox Component

You can insert any number of panelBox components on a page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use a panelBox component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Box to the JSF page.

	
In the Property Inspector, expand the Appearance section, and for Ramp, select the ramp you wish to use.

The core ramp uses variations of blue, while the highlight ramp uses variations of yellow. You can change the colors used by creating a custom skin. For details, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Set Background to one of the following values: light, medium, dark, or default. The default background color is transparent.

	
Set Text to the text string you want to display as the title in the header portion of the container.

	
Set Icon to the URI of the icon image you want to display before the header text.

	
Note:

If both the text and icon attributes are not set, ADF Faces does not display the header portion of the panelBox component.

	
Note:

Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner.

	
Set TitleHalign to one of the following values: center, start, end, left, or right. The value determines the horizontal alignment of the title (including any icon image) in the header portion of the container.

	
Expand the Behavior section and set DisclosureListener to a disclosureListener method in a backing bean that you want to execute when the user shows or hides the component's contents.

For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

	
Set HandleDisclosure to client if you want the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated.

For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

	
Note:

If you have bound the disclosureListener to a listener method that handles the disclosure event, then the handleDisclosure value is ignored, and the event is handled on the server.

	
Performance Tip:

If you do not expect the component to handle data changes, you should set the handleDisclosure attribute to client.

	
To add toolbar buttons, in the Component Palette, from the Layout panel, in the Menus and Toolbar Containers group, drag and drop a Toolbar into the toolbar facet. Then insert the desired number of commandToolbarButton components into the toolbar component. For information about using toolbar and commandToolbarButton components, see Section 16.3, "Using Toolbars."

	
Tip:

If any facet is not visible in the visual editor:
	
Right-click the panelBox component in the Structure window.

	
From the context menu, choose Facets - Panel Box >Toolbar. Facets in use on the page are indicated by a checkmark in front of the facet name.

	
To add contents to the container for display, insert the desired components as child components to the panelBox component.

Typically, you would insert one child component into the panelBox component, and then insert the contents for display into the child component. The child component controls how the contents will be displayed, not the parent panelBox component.

	
To change the width of the panelBox component, set the inlineStyle attribute to the exact pixel size you want. Alternatively, you can set the inlineStyle attribute to a percentage of the outer element that contains the panelBox component. Example 9-12 shows the code you might use for changing the width.

Example 9-12 panelBox Component with inlineStyle Attribute Set

<af:panelBox inlineStyle="width:50%;" ...>
 <!-- child contents here -->
</af:panelBox>

9.8.4 What You May Need to Know About Disclosure Events

The disclosed attribute specifies whether to show (disclose) or hide (undisclose) the contents under its header. By default, the disclosed attribute is true, that is, the contents are shown. When the attribute is set to false, the contents are hidden. You do not have to write any code to enable the toggling of contents from disclosed to undisclosed, and vice versa. ADF Faces handles the toggling automatically.

When the user clicks the toggle icon to show or hide contents, by default, the components deliver a org.apache.myfaces.trinidad.event.DisclosureEvent event to the server. The DisclosureEvent event contains information about the source component and its state: whether it is disclosed (expanded) or undisclosed (collapsed). The isExpanded() method returns a boolean value that determines whether to expand (disclose) or collapse (undisclose) the node. If you only want the component to disclose and undisclose its contents, then you do not need to write any code.

However, if you want to perform special handling of a DisclosureEvent event, you can bind the component's disclosureListener attribute to a disclosureListener method in a backing bean. The disclosureListener method will then be invoked in response to a DisclosureEvent event, that is, whenever the user clicks the disclosed or undisclosed icon.

The disclosureListener method must be a public method with a single disclosureEvent event object and a void return type, shown in Example 9-13.

Example 9-13 disclosureListener Method

public void some_disclosureListener(DisclosureEvent disclosureEvent) {
// Add event handling code here
}

By default, DisclosureEvent events are usually delivered in the Invoke Application phase, unless the component's immediate attribute is set to true. When the immediate attribute is set to true, the event is delivered in the earliest possible phase, usually the Apply Request Values phase.

If you do not need to use a listener method to react to the disclosure event, then consider setting the handleDisclosure attribute to client. This setting causes the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated. The event will also be automatically sent to the server if the disclosureListener attribute is bound to a listener method, even when the handleDisclosure attribute is set to client.

If you do want to have a disclosureListener method and you also want to react to the event on the client, you can use the AdfDisclosureEvent client-side event. The event root for the client AdfDisclosureEvent event is set to the event source component: only the event for the panel whose disclosed attribute is true gets sent to the server. For more information about client-side events and event roots, see Chapter 6, "Handling Events."

The value of the disclosed attribute can be persisted at runtime, that is, when the user shows or hides contents, ADF Faces can change and then persist the attribute value so that it remains in that state for the length of the user's session. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Note:

Any ADF Faces component that has built-in event functionality, as the showDetail, showDetailHeader, and panelBox components do, must be enclosed in the form component.

9.9 Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

When you need to display multiple areas of content that can be hidden and displayed, you can use the panelAccordion or the panelTabbed components. Both of these components use the showDetailItem component to display the actual contents.

The panelAccordion component creates a series of expandable panes. You can allow users to expand more than one panel at any time, or to expand only one panel at a time. When more than one panel is expanded, the user can adjust the height of the panel by dragging the header of the showDetailItem component.

When a panel is collapsed, only the panel header is displayed; when a panel is expanded, the panel contents are displayed beneath the panel header (users can expand the panes by clicking either the panelAccordion component's header or the expand icon). The File Explorer application uses the panelAccordion component to display the Folders and Search panes, as shown in Figure 9-39.

Figure 9-39 panelAccordion Panes

[image: Expanded and collapsed panels]

At runtime, when available browser space is less than the space needed to display expanded panel contents, ADF Faces automatically displays overflow icons that enable users to select and navigate to those panes that are out of view. Figure 9-40 shows the overflow icon (circled in the lower right-hand corner) displayed in the Folders panel of the File Explorer application when there is not enough room to display the Search panel.

Figure 9-40 Overflow Icon In panelAccordion

[image: Overflow icon above third accordian panel]

When the user clicks the overflow icon, ADF Faces displays the overflow popup menu (as shown in Figure 9-41) for the user to select and navigate to.

Figure 9-41 Overflow Popup Menu in panelAccordion

[image: Overflow popup menu above third accordian panel]

You can also configure the panelAccordion so that the panes can be rearranged by dragging and dropping, as shown in Figure 9-42.

Figure 9-42 Panes Can Be Reordered by Dragging and Dropping

[image: Search pane dragged]

When the order is changed, the displayIndex attribute on the showDetailItem components also changes to reflect the new order.

	
Note:

Items in the overflow cannot be reordered.

To use the panelAccordion component, see Section 9.9.1, "How to Use the panelAccordion Component."

The panelTabbed component creates a series of tabbed panes. Unlike the panelAccordion panes, the panelTabbed panes are not collapsible or expandable. Instead, when users select a tab, the contents of the selected tab are displayed. The tabs may be positioned above the display area, below the display area, or both. You can configure a panelTabbed component so that the individual tabs can be closed. You can have it so that all tabs can be closed, all but the last tab can be closed, or no tabs can be closed. When tabs are configured to be removed, an X is displayed at the end of the tab. You can also configure tabs so that they display a disabled X, meaning it can be removed, but is currently disabled.

You can configure when the showDetailItem components that contain the contents for each of the tabs will be created. When you have a small number of tabs, you can have all the showDetailItem components created when the panelTabbed component is first created, regardless of which tab is currently displayed. However, if the panelTabbed component contains a large number of showDetailItem components, the page might be slow to render. To enhance performance, you can instead configure the panelTabbed component to create a showDetailItem component only when its corresponding tab is selected. You can further configure the delivery method to either destroy a showDetailItem once the user selects a different tab, or to keep any selected showDetailItem components in the component tree so that they do not need to be recreated each time they are accessed.

The File Explorer application uses the panelTabbed component to display the contents in the main panel, as shown in Figure 9-43.

Figure 9-43 panelTabbed Panes

[image: Tabbed panels]

To use the panelTabbed component, see Section 9.9.2, "How to Use the panelTabbed Component."

	
Tip:

If you want the tabs to be used in conjunction with navigational hierarchy, for example, each tab is a different page or region that contains another set of navigation items, you may want to use a navigation panel component to create a navigational menu. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."

For both the panelAccordion and panelTabbed components, use one showDetailItem component to provide the contents for each panel. For example, if you want to use four panes, insert four showDetailItem components inside the panelAccordion or panelTabbed components, respectively. To use the showDetailItem component, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components." You can add a toolbar to the toolbar facet of the showDetailItem component, and the toolbar will be shown whenever the panel or tab is disclosed. Figure 9-43 shows the toolbar used by the showDetailItem component in the File Explorer application.

The panelTabbed component also supports an overflow icon if all tabs cannot be displayed. Figure 9-44 shows the overflow icon in the File Explorer application.

Figure 9-44 Overflow Icon in panelTabbed Component

[image: Arrows next to tab indicate overflow]

	
Performance Tip:

The number of child components within a panelAccordion or panelTabbed component, and the complexity of the child components, will affect the performance of the overflow. Set the size of the panelAccordion or panelTabbed component to avoid overflow when possible.

The panelAccordion and panelTabbed components can be configured to be stretched, or they can be configured to instead take their dimensions from the currently disclosed showDetailItem child.

When you configure the panelAccordion or panelTabbed component to stretch, then you can also configure the showDetailItem component to stretch a single child as long as it is the only child of the showDetailItem component.

9.9.1 How to Use the panelAccordion Component

You can use more than one panelAccordion component in a page, typically in different areas of the page, or nested. After adding the panelAccordion component, insert a series of showDetailItem components to provide the panes, using one showDetailItem for one panel. Then insert components into each showDetailItem to provide the panel contents. For procedures on using the showDetailItem component, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the panelAccordion component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Accordion onto the JSF page.

	
In the Property Inspector, expand the Common section.

	
Set DiscloseMany to true if you want users to be able to expand and see the contents of more than one panel at the same time.

By default, the value is false. This means only one panel can be expanded at any one time. For example, suppose there is one expanded panel A and one collapsed panel B when the page first loads. If the user expands panel B, panel A will be collapsed, because only one panel can be expanded at any time.

	
Set the DiscloseNone to true if you want users to be able to collapse all panes.

By default, the value is false. This means one panel must remain expanded at any time.

	
If you want users to be able to rearrange the panes by dragging and dropping, expand the Behavior section, and set Reorder to enabled. The default is disabled.

	
Note:

If the panelAccordion has components other than showDetailItem components (see the tip in Step 8), those components can be reordered on the client only. Therefore, any new order will not be preserved.

	
By default, the panelAccordion component stretches to fill available browser space. If instead, you want to use the panelAccordion component as a child to a component that does not stretch its children, then you need to change how the panelAccordion component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom attribute. Set DimensionsFrom to one of the following:

	
children: the panelAccordion component will get its dimensions from the currently disclosed showDetailItem component.

	
Note:

If you use this setting, you cannot set the height of the panelAccordion component (for example through the inlineStyle or styleClass attributes). Doing so would cause conflict between the panelAccordion height and the child component height.
Similarly, you cannot set the stretchChildren, flex, and inflexibleHeight attributes on any showDetailItem component, as those settings would result in a circular reference back to the panelAccordion to determine size.

	
parent: the size of the panelAccordion component will be determined in the following order:

	
From the inlineStyle attribute.

	
If no value exists for inlineStyle, then the size is determined by the parent container.

	
If the parent container is not configured or not able to stretch its children, the size will be determined by the skin.

	
auto: If the parent component to the panelAccordion component allows stretching of its child, then the panelAccordion component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelAccordion component will be based on the size of its child component.

	
Note:

If you want the panelAccordion to stretch, and you also want the showDetailItem to stretch its contents, then you must configure the showDetailItem in a certain way. For details, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."

	
By default, all child showDetailItem components are created when the panelTabbed component is created. If there will be a large number of children, to improve performance you can configure the panelTabbed either so that it creates the child showDetailItem component only when the tab is selected, or so that it creates the child showDetailItem component only when it's selected the first time, and from that point on it remains created.

You configure when the child components will be created using the childCreation attribute. To do so, expand the Behavior section, and set ChildCreation to one of the following:

	
immediate: All showDetailItem components are created when the panelTabbed component is created.

	
lazy: The showDetailItem component is created only when the associated tab is selected. Once a tab is selected, the showDetailItem component remains created in the component tree.

	
lazyUncached: The showDetailItem component is created only when the associated tab is selected. Once another tab is selected, the showDetailItem component is destroyed.

	
By default, one panel is added for you using a showDetailItem component as a child component to the panelAccordion component. To add more panes, insert the showDetailItem component inside the panelAccordion component. You can add as many panes as you wish.

	
Tip:

Accordion panels also allow you to use the iterator, switcher, and group components as direct child components, providing these components wrap child components that would typically be direct child components of the accordion panel.

To add contents for display in a panel, insert the desired child components into each showDetailItem component. For procedures, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."

9.9.2 How to Use the panelTabbed Component

Using the panelTabbed component to create tabbed panes is similar to using the panelAccordion component to create accordion panes. After adding a panelTabbed component, you insert a series of showDetailItem components to provide the tabbed panel contents for display.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the panelTabbed component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Tabbed onto the JSF page.

	
In the Property Inspector, expand the Common section.

	
Set Position to below if you want the tabs to be rendered below the contents in the display area.

By default, the value is above. This means the tabs are rendered above the contents in the display area. The other acceptable value is both, where tabs are rendered above and below the display area.

	
If you want users to be able to close (remove) tabs, then set TabRemoval. You can set it to allow all tabs to be removed, or all but the last tab. You must implement a handler to do the actual removal and configure the listeners for the associated showDetailItem components. You can override this on an individual showDetail Item component, so that an individual tab cannot be removed (a close icon does not display), or so that the closed icon is disabled. For more information, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."

	
By default, the panelTabbed component stretches to fill available browser space. If instead, you want to use the panelTabbed component as a child to a component that does not stretch its children, then you need to change how the panelTabbed component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom attribute. To do so, set DimensionsFrom to one of the following:

	
disclosedChild: the panelTabbed component will get its dimensions from the currently disclosed showDetailItem component.

	
Note:

If you use this setting, you cannot set the height of the panelTabbed component (for example through the inlineStyle or styleClass attributes). Doing so would cause conflict between the panelTabbed height and the child component height.

	
parent: the size of the panelTabbed component will be determined in the following order:

	
From the inlineStyle attribute.

	
If no value exists for inlineStyle, then the size is determined by the parent container.

	
If the parent container is not configured or not able to stretch its children, the size will be determined by the skin.

	
auto: If the parent component to the PanelTabbed component allows stretching of its child, then the panelTabbed component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelTabbed component will be based on the size of its child component.

	
By default, one tabbed panel is created for you using a showDetailItem component as a child to the panelTabbed component. To add more panes, insert the showDetailItem component inside the panelTabbed component. You can add as many tabbed panes as you wish.

	
Tip:

The panelTabbed component also allow you to use the iterator, switcher, and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panelTabbed component.

To add contents for display in a panel, insert the desired child components into each showDetailItem component. For information about using showDetailItem, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."

9.9.3 How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components

Insert showDetailItem components into a panelAccordion or panelTabbed component only. Each showDetailItem component corresponds to one accordion panel or tabbed panel. Typically, you insert two or more showDetailItem components into the parent component. Insert the child components for display into the showDetailItem components.

The disclosed attribute on a showDetailItem component specifies whether to show (disclose) or hide (undisclose) the corresponding accordion panel or tab contents. By default, the disclosed attribute is false, that is, the contents are hidden (undisclosed). When the attribute is set to true, the contents are shown (disclosed). You do not have to write any code to enable the toggling of contents from disclosed to undisclosed, and vice versa. ADF Faces handles the toggling automatically.

The following procedure assumes you have already added a panelAccordion or panelTabbed component to the JSF page, as described in Section 9.9.1, "How to Use the panelAccordion Component," and Section 9.9.2, "How to Use the panelTabbed Component," respectively.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To add accordion panel or tabbed panel contents using a showDetailItem component:

	
Insert one or more showDetailItem components inside the parent component, such as panelAccordion or panelTabbed, by dragging and dropping a Show Detail Item component from Layout panel of the Component Palette.

	
In the Property Inspector, expand the Appearance section.

	
Set Text to the label you want to display for this panel or tab.

	
To add an icon before the label, set Icon to the URI of the image file to use.

	
Note:

Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner.

	
If the showDetailItem component is being used inside a panelAccordion component configured to stretch, you can configure the showDetailItem to stretch and in turn stretch its contents, however, the showDetailItem component must contain only one child component. You need to set Flex and the StretchChildren for each showDetailItem component.

Use the following attributes on each showDetailItem component to control the flexibility of panel contents:

	
Flex: Specifies a nonnegative integer that determines how much space is distributed among the showDetailItem components of one panelAccordion component. By default, the value of the flex attribute is 0 (zero), that is, the panel contents of each showDetailItem component are inflexible. To enable flexible contents in a panel, specify a flex number larger than 0, for example, 1 or 2. A larger flex value means that the contents will be made larger than components with lower flex values. For two flexible components, their height sizes are exactly proportionate to the flex values assigned. If component A has flex set to 2 and component B has flex set to 1, then the height of component A is two times the height of component B.

	
InflexibleHeight: Specifies the number of pixels a panel will use. The default is 100 pixels. This means if a panel has a flex value of 0 (zero), ADF Faces will use 100 pixels for that panel, and then distribute the remaining space among the nonzero panes. If the contents of a panel cannot fit within the panelAccordion container given the specified inflexibleHeight value, ADF Faces automatically moves nearby contents into overflow menus (as shown in Figure 9-41). Also, if a panel has a nonzero flex value, this will be the minimum height that the panel will shrink to before causing other panes to be moved into the overflow menus.

	
StretchChildren: When set to first, stretches a single child component. However, the child component must allow stretching. For more information, see Section 9.9.4, "What You May Need to Know About Geometry Management and the showDetailItem Component."

For example, the File Explorer application uses showDetailItem components to display contents in the navigator panel. Because the Search Navigator requires more space when both navigators are expanded, its flex attribute is set to 2 and the showDetailItem component for the Folders Navigator uses the default flex value of 1. This setting causes the Search Navigator to be larger than the Folders Navigator when it is expanded.

	
Note:

Instead of directly setting the value for the flex attribute, the File Explorer application uses an EL expression that resolves to a method used to determine the value. Using an EL expression allows you to programmatically change the value if you decide at a later point to use metadata to provide model information.

The user can change the panel heights at runtime, thereby changing the value of the flex and inflexibleHeight attributes. Those values can be persisted so that they remain for the duration of the user's session. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

Note the following additional information about flexible accordion panel contents:

	
There must be two or more panes (showDetailItem components) with flex values larger than 0 before ADF Faces can enable flexible contents. This is because ADF Faces uses the flex ratio between two components to determine how much space to allocate among the panel contents. At runtime, two or more panes must be expanded before the effect of flexible contents can be seen.

	
If the showDetailItem component has only one child component and the flex value is nonzero, and the stretchChildren attribute is set to first, ADF Faces will stretch that child component regardless of the discloseMany attribute value on the panelAccordion component.

	
When all showDetailItem components have flex values of 0 (zero) and their panel contents are disclosed, even though the disclosed contents are set to be inflexible, ADF Faces will stretch the contents of the last disclosed showDetailItem component as if the component had a flex value of 1, but only when that showDetailItem component has one child only, and the stretchChildren attribute is set to first. If the last disclosed panel has more than one child component or the stretchChildren attribute is set to none, the contents will not be stretched.

Even with the flex attribute set, there are some limitations regarding geometry management. For more information, see Section 9.9.4, "What You May Need to Know About Geometry Management and the showDetailItem Component."

	
Expand the Behavior section. Set DisclosureListener to the disclosureListener method in a backing bean you want to execute when this panel or tab is selected by the user.

For information about server disclosure events and event listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

	
Set Disabled to true if you want to disable this panel or tab (that is, the user will not be able to select the panel or tab).

	
Set Disclosed to true if you want this panel or tab to show its child components.

By default, the disclosed attribute is set to false. This means the contents for this panel or tab are hidden.

	
Note:

Note the difference between the disclosed and rendered attributes. If the rendered attribute value is false, it means that this accordion header bar or tab link and its corresponding contents are not available at all to the user. However, if the disclosed attribute is set to false, it means that the contents of the item are not currently visible, but may be made visible by the user because the accordion header bar or tab link are still visible.

If none of the showDetailItem components has the disclosed attribute set to true, ADF Faces automatically shows the contents of the first enabled showDetailItem component (except when it is a child of a panelAccordion component, which has a setting for zero disclosed panes).

	
Note:

While the user can change the value of the disclosed attribute by displaying or hiding the contents, the value will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
For showDetailItem components used in a panelAccordion component, expand the Behavior section, and set DisplayIndex to reflect the order in which the showDetailItem components should appear. If you simply want them to appear in the order in which they are in the page's code, then leave the default, -1.

	
Tip:

If some showDetailItem components have -1 as the value for displayIndex, and others have a positive number, those with the -1 value will display after those with a positive number, in the order they appear in the page's code.

	
Tip:

This value can be changed at runtime if the parent panelAccordion component is configured to allow reordering.

	
If you chose to allow tab removal for a panelTabbed component, expand the Behavior section and set Remove to one of the following:

	
inherit: The corresponding tab can be removed if the parent panelTabbed component is configured to allow it. This is the default.

	
no: The corresponding tab cannot be removed, and will not display a close icon.

	
disabled: The corresponding tab will display a disabled close icon.

Set ItemListener to an EL expression that resolves to a handler method that will handle the actual removal of a component.

	
To add toolbar buttons to a panel (supported in the panelAccordion component only), in the Component Palette, from the Layout panel, in the Menus and Toolbar Containers group, insert a Toolbar into the toolbar facet of the showDetailItem component that defines that panel. Then, insert the desired number of commandToolbarButton components into the toolbar component. Although the toolbar facet is on the showDetailItem component, it is the panelAccordion component that renders the toolbar and its buttons. For information about using toolbar and commandToolbarButton, see Section 16.3, "Using Toolbars."

	
Note:

When an accordion panel is collapsed, ADF Faces does not display the toolbar and its buttons. The toolbar and its buttons are displayed in the panel header only when the panel is expanded.

	
To add contents to the panel, insert the desired child components into each showDetailItem component.

9.9.4 What You May Need to Know About Geometry Management and the showDetailItem Component

Both the panelAccordion or panelTabbed components can be configured to stretch when they are placed inside a component that uses geometry management to stretch its child components. However, for the panelAccordion component, the showDetailItem component will stretch only if the discloseMany attribute on the panelAccordion component is set to true (that is, when multiple panes may be expanded to show their inflexible or flexible contents), the showDetailItem component contains only one child component, and the showDetailItem component's stretchChildren attribute is set to first. By default, panel contents will not stretch. The showDetailItem component will allow stretching if:

	
It contains only a single child

	
Its stretchChildren attribute is set to first

	
The child has no width, height, border, and padding set

	
The child must be capable of being stretched

When all of the preceding bullet points are true, the showDetailItem component can stretch its child component. The following components can be stretched inside the showDetailItem component:

	
decorativeBox (when configured to stretch)

	
calendar

	
inputText (when configured to stretch)

	
panelAccordion (when configured to stretch)

	
panelBox

	
panelCollection (when configured to stretch)

	
panelDashboard (when configured to stretch)

	
panelGroupLayout (only when the layout attribute is set to scroll or vertical)

	
panelLabelAndMessage (when configured to stretch)

	
panelSplitter (when configured to stretch)

	
panelStretchLayout (when configured to stretch)

	
panelTabbed (when configured to stretch)

	
region

	
table (when configured to stretch)

	
tree (when configured to stretch)

	
treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a showDetailItem component:

	
panelBorderLayout

	
panelFormLayout

	
panelGroupLayout (only when the layout attribute is set to default or horizontal)

	
panelHeader

	
panelList

	
tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch as a child to a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched as a child of a showDetailItem component, you need to wrap that component in different component that does not stretch its child components.

For example, if you want to place content in a panelList component and have it be displayed in a showDetailItem component, you might place a panelGroupLayout component with its layout attribute set to scroll as the chid of the showDetailItem component, and then place the panelList component in that component. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."

9.9.5 What You May Need to Know About showDetailItem Disclosure Events

The showDetailItem component inside of panelAccordion and panelTabbed components supports queuing of disclosure events so that validation is properly handled on the server and on the client.

In general, for any component with the disclosed attribute, by default, the event root for the client AdfDisclosureEvent is set to the event source component: only the event for the panel whose disclosed attribute is true gets sent to the server. However, for the showDetailItem component that is used inside of panelTabbed or panelAccordion component, the event root is the panelTabbed or panelAccordion component (that is, the event source parent component, not the event source component). This ensures that values from the previously disclosed panel will not get sent to the server.

For example, suppose you have two showDetailItem components inside a panelTabbed or panelAccordion component with the discloseMany attribute set to false and the discloseNone attribute set to false. Suppose the showDetailItem 1 component is disclosed but not showDetailItem 2. Given this scenario, the following occurs:

	
On the client:

	
When a user clicks to disclose showDetailItem 2, a client-only disclosure event gets fired to set the disclosed attribute to false for the showDetailItem 1 component. If this first event is not canceled, another client disclosure event gets fired to set the disclosed attribute to true for the showDetailItem 2 component. If this second event is not canceled, the event gets sent to the server; otherwise, there are no more disclosure changes.

	
On the server:

	
The server disclosure event is fired to set the disclosed attribute to true on the showDetailItem 2 component. If this first server event is not canceled, another server disclosure event gets fired to set the disclosed attribute to false for the showDetailItem 1 component. If neither server event is canceled, the new states get rendered, and the user will see the newly disclosed states on the client; otherwise, the client looks the same as it did before.

For the panelAccordion component with the discloseMany attribute set to false and the discloseNone attribute set to true, the preceding information is the same only when the disclosure change forces a paired change (that is, when two disclosed states are involved). If only one disclosure change is involved, there will just be one client and one server disclosure event.

For the panelAccordion component with the discloseMany attribute set to true (and any discloseNone setting), only one disclosure change is involved; there will just be one client and one server disclosure event.

For additional information about disclosure events, see Section 9.8.4, "What You May Need to Know About Disclosure Events."

9.10 Displaying Items in a Static Box

You can use the panelHeader component when you want header type functionality, such as message display or associated help topics, but you do not have to provide the capability to show and hide content.

You can use the decorativeBox component when you need to transition to a different look and feel on the page. The decorativeBox component uses themes and skinning keys to control the borders and colors of its different facets. For example, depending on the skin you are using, if you use the default theme, the decorativeBox component body is white and the border is blue, and the top-left corner is rounded. If you use the medium theme, the body is a medium blue. For information about using themes and skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins"

The panelHeader component offers facets for specific types of components and the ability to open a help topic from the header. The following are the facets supported by the panelHeader component:

	
context: Displays information in the header alongside the header text.

	
help: Displays help information. Use only for backward compatibility. Use the helpTopicId attribute on the panelHeader component instead.

	
info: Displays information beneath the header text, aligned to the right.

	
legend: If help text is present, displays information to the left of the help content and under the info facet's content. If help text is not present, the legend content will be rendered directly under the header.

	
toolbar: Displays a toolbar, before the menu bar.

	
menuBar: Displays a menu bar, after the toolbar.

Figure 9-45 shows the different facets in the panelHeader component.

Figure 9-45 panelHeader and Its Facets

[image: Faces in panelHeader]

When there is not enough space to display everything in all the facets of the title line, the panelHeader text is truncated and displays an ellipsis. When the user hovers over the truncated text, the full text is displayed in a tooltip, as shown in Figure 9-46.

Figure 9-46 Text for the panelHeader Is Truncated

[image: Text for the panelHeader is Truncated]

When there is more than enough room to display the contents, the extra space is placed between the context facet and the toolbar, as shown in Figure 9-47.

Figure 9-47 Extra Space Is Added Before the Toolbar

[image: Extra Space is Added Before the Toolbar]

You can configure panelHeader components so that they represent a hierarchy of sections. For example, as shown in Figure 9-48, you can have a main header with a subheader and then a heading level 1 also with a subheader.

Figure 9-48 Creating Subsections with the panelHeader Component

[image: Subsedction in panelHeader]

Create subsections by nesting panelHeader components within each other. When you nest panelHeader components, the heading text is automatically sized according to the hierarchy, with the outermost panelHeader component having the largest text.

	
Note:

While you can force the style of the text using the size attribute (where 0 is the largest text), the value of the size attribute will not affect the hierarchy. It only affects the style of the text.

For information about using the panelHeader component, see Section 9.10.1, "How to Use the panelHeader Component."

The decorativeBox component provides styling capabilities using themes. It has two facets, top and center. The top facet provides a non-colored area, while the center facet is the actual box. The height of the top facet depends on whether or not a component has been put into the top facet. When the facet is set, the topHeight attribute is used to specify the size the content should occupy.

The color of the box for the center facet depends on the theme and skin used. Figure 9-49 shows the different themes available by default.

Figure 9-49 Themes Used in a decorativeBox Component

[image: Themes Used in a decorativeBox Component]

By default, the decorativeBox component stretches to fill its parent component. You can also configure the decorative Box component to inherit its dimensions from its child components. For example, Figure 9-50 shows the medium-theme decorativeBox configured to stretch to fill its parent, while the dark-theme decorativeBox is configured to only be as big as its child outputText component.

Figure 9-50 decorativeBox Can Stretch or Not

[image: decorativeBox Can Stretch or Not]

You can further control the style of the decorativeBox component using skins. Skinning keys can be defined for the following areas of the component:

	
top-start

	
top

	
top-end

	
start

	
end

	
bottom-start

	
bottom

	
bottom-end

For more information about skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

9.10.1 How to Use the panelHeader Component

You can use one panelHeader component to contain specific information, or you can use a series of nested panelHeader components to create a hierarchical organization of content. If you want to be able to hide and display the content, use the showDetailHeader component instead. For more information, see Section 9.8.2, "How to Use the showDetailHeader Component."

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.10, "Displaying Items in a Static Box."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use a panelHeader component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Header onto the page.

	
In the Property Inspector, expand the Appearance section.

	
Set Text to the label you want to display for this panel.

	
To add an icon before the label, set Icon to the URI of the image file to use.

	
Note:

Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner.

	
If you are using the header to provide specific messaging information, set MessageType to one of the following values:

	
confirmation: The confirmation icon (represented by a note page overlaid with a green checkmark) replaces any specified icon image.

	
error: The error icon (represented by a red circle with an "x" inside) replaces any specified icon image. The header label also changes to red.

	
info: The info icon (represented by a blue circle with an "I" inside) replaces any specified icon image.

	
none: Default. No icon is displayed.

	
warning: The warning icon (represented by a yellow triangle with an exclamation mark inside) replaces any specified icon image.

Figure 9-51 shows the icons used for the different message types.

Figure 9-51 Icons for Message Types

[image: Icons used for message types]

	
Note:

Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner.

	
To display help for the header, enter the topic ID for HelpTopicId. For more information about creating and using help topics, see Section 19.5, "Displaying Help for Components."

	
If you want to control how the panelHeader component handles geometry management, expand the Appearance section and set Type to one of the following. For more information about geometry management, see Section 9.2.1, "Geometry Management and Component Stretching."

	
flow: The component will not stretch or stretch its children. The height of the panelHeader component will be determined solely by its children.

	
stretch: The component will stretch and stretch its child (will only stretch a single child component).

	
default: if you want the parent component of the panelHeader component to determine geometry management.

	
To add toolbar buttons to a panel, insert the toolbar component into the toolbar facet. Then, insert the desired number of commandToolbarButton components into the toolbar component. For information about using toolbar and commandToolbarButton, see Section 16.3, "Using Toolbars."

	
Note:

Toolbar overflow is not supported in panelHeader components.

	
To add menus to a panel, insert menu components into the menuBar facet. For information about creating menus in a menu bar, see Section 16.2, "Using Menus in a Menu Bar."

	
Tip:

You can place menus in the toolbar facet and toolbars (and toolboxes) in the menu facet. The main difference between these facets is location. The toolbar facet is before the menu facet.

	
Add contents to the other facets as needed.

	
Tip:

If any facet is not visible in the visual editor:
	
Right-click the panelHeader component in the Structure window.

	
From the context menu, choose Facets - Panel Header >facet name. Facets in use on the page are indicated by a checkmark in front of the facet name.

	
To add contents to the panel, insert the desired child components into the panelHeader component.

9.10.2 How to Use the decorativeBox Component

You use the decorativeBox component to provide a colored area or box in a page. This component is typically used as a container for the navigationPane component that is configured to display tabs. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."

To create and use a decorativeBox component:

	
In the Component Palette, from the Layout panel, drag and drop a Decorative Box onto the page.

	
In the Property Inspector, expand the Common section and set Top Height to the height for the top facet.

	
To change the theme, expand the Style and Theme section and choose a different theme.

	
By default, the decorativeBox component stretches to fill available browser space. If instead, you want to use the decorativeBox component as a child to a component that does not stretch its children, then you need to change how the decorativeBox component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom attribute. Set DimensionsFrom to one of the following:

	
children: the decorativeBox component will get its dimensions from its child components.

	
Note:

If you use this setting, you cannot use a percentage to set the height of the top facet. If you do, the top facet will try to get its dimensions from the size of this decorativeBox component, which will not be possible, as the decorativeBox component will be getting its height from its contents, resulting in a circular dependency. If a percentage is used, it will be disregarded and the default 50px will be used instead.
Similarly, you cannot set the height of the decorativeBox (for example through the inlineStyle or styleClass attributes). Doing so would cause conflict between the decorativeBox height and the child component height.

	
parent: the size of the decorativeBox component will be determined in the following order:

	
From the inlineStyle attribute.

	
If no value exists for inlineStyle, then the size is determined by the parent container.

	
If the parent container is not configured or not able to stretch its children, the size will be determined by the skin.

	
auto: If the parent component to the decorativeBox component allows stretching of its child, then the decorativeBox component will stretch to fill the parent. If the parent does not stretch its children then the size of the decorativeBox component will be based on the size of its child component.

For more information, see Section 9.10.3, "What You May Need to Know About Geometry Management and the decorativeBox Component."

9.10.3 What You May Need to Know About Geometry Management and the decorativeBox Component

The decorativeBox component can stretch child components in its center facet and it can also be stretched. The following components can be stretched inside the center facet of the decorativeBox component:

	
inputText (when configured to stretch)

	
decorativeBox (when configured to stretch)

	
panelAccordion (when configured to stretch)

	
panelBox

	
panelCollection (when configured to stretch)

	
panelDashboard

	
panelGroupLayout (only with the layout attribute set to scroll or vertical)

	
panelLabelAndMessage (when configured to stretch)

	
panelSplitter (when configured to stretch)

	
panelStretchLayout (when configured to stretch)

	
panelTabbed (when configured to stretch)

	
region

	
table (when configured to stretch)

	
tableLayout (when configured to stretch. Note that this is a MyFaces Trinidad component)

	
tree (when configured to stretch)

	
treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the decorativeBox component:

	
panelBorderLayout

	
panelFormLayout

	
panelGroupLayout (only with the layout attribute set to default or horizontal)

	
panelHeader

	
panelList

	
showDetail

	
showDetailHeader

You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched into a facet of the decorativeBox component, wrap that component in a transition component that does not stretch its child components.

For example, if you want to place content in a panelBox component and have it flow within a facet of the decorativeBox component, you could place a panelGroupLayout component with its layout attribute set to scroll in the facet of the decorativeBox component, and then place the panelBox component in that panelGroupLayout component. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."

9.11 Displaying a Bulleted List in One or More Columns

The panelList component is a layout element for displaying a vertical list of child components with a bullet next to each child, as shown in Figure 9-52. Only child components whose rendered attribute is set to true and whose visible attribute is set to true are considered for display by in the list.

	
Note:

To display dynamic data (for example, a list of data determined at runtime by JSF bindings), use the selection components, as documented in Section 11.6, "Using Selection Components." If you need to create lists that change the model layer, see Chapter 13, "Using List-of-Values Components."

Figure 9-52 PanelList Component with Default Disc Bullet

[image: Bulleted list of items]

By default, the disc bullet is used to style the child components. There are other styles you can use, such as square bullets and white circles. You can also split the list into columns when you have a very long list of items to display.

9.11.1 How to Use the panelList Component

Use one panelList component to create each list of items.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.11, "Displaying a Bulleted List in One or More Columns."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the panelList component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel List to the JSF page.

	
In the Property Inspector, expand the Common section, and set the listStyle attribute to a valid CSS 2.1 list style value, such as one of the following:

	
list-style-type: disc

	
list-style-type: square

	
list-style-type: circle

	
list-style-type: decimal

	
list-style-type: lower-alpha

	
list-style-type: upper-alpha

For example, the list-style-type: disc attribute value corresponds to a disc bullet, and the list-style-type: circle value corresponds to a circle bullet.

For a complete list of the valid style values to use, refer to the CSS 2.1 Specification for generated lists at

http://www.w3.org/TR/CSS21/generate.html

	
Tip:

Some browsers support more style options than others, for example, upper-roman, lower-roman, and lower-greek. Use of these is cautioned because they will not display consistently across web browsers.

Example 9-14 shows the code for setting the list style to a circle.

Example 9-14 PanelList Component with ListStyle Attribute Set

<af:panelList listStyle="list-style-type: circle" ...>
 <!-- child components here -->
</af:panelList>

	
Insert the desired number of child components (to display as bulleted items) into the panelList component.

	
Tip:

Panel lists also allow you to use the iterator, switcher, and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panel list.

For example, you could insert a series of commandLink components or outputFormatted components.

	
Note:

By default, ADF Faces displays all rendered child components of a panelList component in a single column. For details on how to split the list into two or more columns and for information about using the rows and maxColumns attributes, see Section 9.6, "Arranging Content in Forms." The concept of using the rows and maxColumns attributes for columnar display in the panelList and panelFormLayout components are the same.

9.11.2 What You May Need to Know About Creating a List Hierarchy

You can nest panelList components to create a list hierarchy. A list hierarchy, as shown in Figure 9-53, has outer items and inner items, where the inner items belonging to an outer item are indented under the outer item. Each group of inner items is created by one nested panelList component.

Figure 9-53 Hierarchical List Created Using Nested panelList Components

[image: Hierarchical list of items]

To achieve the list hierarchy as shown in Figure 9-53, use a group component to wrap the components that make up each group of outer items and their respective inner items. Example 9-15 shows the code for how to create a list hierarchy that has one outer item with four inner items, and another outer item with two inner items.

Example 9-15 Nested PanelList Components

<af:panelList>
 <!-- First outer item and its four inner items -->
 <af:group>
 <af:commandLink text="item 1"/>
 <af:panelList>
 <af:commandLink text="item 1.1"/>
 <af:commandLink text="item 1.2"/>
 <af:commandLink text="item 1.3"/>
 <af:commandLink text="item 1.4"/>
 </af:panelList>
 </af:group>
 <!-- Second outer item and its two inner items -->
 <af:group>
 <af:commandLink text="item 2"/>
 <af:panelList>
 <af:commandLink text="item 2.1"/>
 <af:commandLink text="item 2.2"/>
 </af:panelList>
 </af:group>
</af:panelList>

By default, the outer list items (for example, item 1 and item 2) are displayed with the disc bullet, while the inner list items (for example, item 1.1 and item 2.1) have the white circle bullet.

For more information about the panelGroupLayout component, see Section 9.12, "Grouping Related Items."

9.12 Grouping Related Items

To keep like items together within a parent component, use either the group or panelGroupLayout component. The group component aggregates or groups together child components that are related semantically. Unlike the panelGroupLayout component, the group component does not provide any layout for its child components. Used on its own, the group component does not render anything; only the child components inside of a group component render at runtime.

You can use any number of group components to group related components together. For example, you might want to group some of the input fields in a form layout created by the panelFormLayout component. Example 9-16 shows sample code that groups two sets of child components inside a panelFormLayout component.

Example 9-16 Grouping Child Components in panelFormLayout

<af:panelFormLayout>
 <af:inputDate label="Pick a date"/>
 <!-- first group -->
 <af:group>
 <af:selectManyCheckbox label="Select all that apply">
 <af:selectItem label="Coffee" value="1"/>
 <af:selectItem label="Cream" value="1"/>
 <af:selectItem label="Low-fat Milk" value="1"/>
 <af:selectItem label="Sugar" value="1"/>
 <af:selectItem label="Sweetener"/>
 </af:selectManyCheckbox>
 <af:inputText label="Special instructions" rows="3"/>
 </af:group>
 <!-- Second group -->
 <af:group>
 <af:inputFile label="File to upload"/>
 <af:inputText label="Enter passcode"/>
 </af:group>
 <af:inputText label="Comments" rows="3"/>
 <af:spacer width="10" height="15"/>
 <f:facet name="footer"/>
</af:panelFormLayout>

The panelGroupLayout component lets you arrange a series of child components vertically or horizontally without wrapping, or consecutively with wrapping, as shown in Figure 9-54. The layout attribute value determines the arrangement of the child components.

Figure 9-54 panelGroupLayout Arrangements

[image: Consecutive, horizontal, vertical layouts]

In all arrangements, each pair of adjacent child components can be separated by a line or white space using the separator facet of the panelGroupLayout component. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."

When using the horizontal layout, the child components can also be vertically or horizontally aligned. For example, you could make a short component beside a tall component align at the top, as shown in Figure 9-55.

Figure 9-55 Top-Aligned Horizontal Layout with panelGroupLayout

[image: Horizontal layout with PanelGroupLayout]

Unlike the panelSplitter or panelStretchLayout components, the panelGroupLayout component does not stretch its child components. Suppose you are already using a panelSplitter or panelStretchLayout component as the root component for the page, and you have a large number of child components to flow, but are not to be stretched. To provide scrollbars when flowing the child components, wrap the child components in the panelGroupLayout component with its layout attribute set to scroll, and then place the panelGroupLayout component inside a facet of the panelSplitter or panelStretchLayout component.

When the layout attribute is set to scroll on a panelGroupLayout component, ADF Faces automatically provides a scrollbar at runtime when the contents contained by the panelGroupLayout component are larger than the panelGroupLayout component itself. You do not have to write any code to enable the scrollbars, or set any inline styles to control the overflow.

For example, when you use layout components such as the panelSplitter component that let users display and hide child components contents, you do not have to write code to show the scrollbars when the contents are displayed, and to hide the scrollbars when the contents are hidden. Simply wrap the contents the be displayed inside a panelGroupLayout component, and set the layout attribute to scroll.

In the File Explorer application, the Search Navigator contains a panelSplitter component used to hide and show the search criteria. When the search criteria are hidden, and the search results content does not fit into the area, a scrollbar is rendered, as shown in Figure 9-56.

Figure 9-56 Scrollbars Rendered Using panelGroupLayout

[image: Scroll bars in panelGroupLayout]

9.12.1 How to Use the panelGroupLayout Component

Any number of panelGroupLayout components can be nested to achieve the desired layout.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.12, "Grouping Related Items."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the panelGroupLayout component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Group Layout to the JSF page.

	
Insert the desired child components into the panelGroupLayout component.

	
Tip:

The panelGroupLayout component also allows you to use the iterator, switcher, and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panelGroupLayout component.

	
To add spacing or separator lines between adjacent child components, insert the spacer or separator component into the separator facet.

	
In the Property Inspector, expand the Appearance section. To arrange the child components in the desired layout, set Layout to one of the following values:

	
default: Provides consecutive layout with wrapping.

At runtime, when the contents exceed the browser space available (that is, when the child components are larger than the width of the parent container panelGrouplayout), the browser flows the contents onto the next line so that all child components are displayed.

	
Note:

ADF Faces uses the bidirectional algorithm when making contents flow. Where there is a mix of right-to-left content and left-to-right content, this may result in contents not flowing consecutively.

	
horizontal: Uses a horizontal layout, where child components are arranged in a horizontal line. No wrapping is provided when contents exceed the amount of browser space available.

In a horizontal layout, the child components can also be aligned vertically and horizontally. By default, horizontal child components are aligned in the center with reference to an imaginary horizontal line, and aligned in the middle with reference to an imaginary vertical line. To change the horizontal and vertical alignments of horizontal components, use the following attributes:

	
halign: Sets the horizontal alignment. The default is center. Other acceptable values are: start, end, left, right.

For example, set halign to start if you want horizontal child components to always be left-aligned in browsers where the language reading direction is left-to-right, and right-aligned in a right-to-left reading direction.

	
valign: Sets the vertical alignment. Default is middle. Other acceptable values are: top, bottom, baseline.

In output text components (such as outputText) that have varied font sizes in the text, setting valign to baseline would align the letters of the text along an imaginary line on which the letters sit, as shown in Figure 9-57. If you set valign to bottom for such text components, the resulting effect would not be as pleasant looking, because bottom vertical alignment causes the bottommost points of all the letters to be on the same imaginary line.

Figure 9-57 Bottom and Baseline Vertical Alignment of Text

[image: Vertical alignment in text output]

	
Note:

The halign and valign attributes are ignored if the layout is not horizontal.

	
scroll: Uses a vertical layout, where child components are stacked vertically, and a vertical scrollbar is provided when necessary.

	
vertical: Uses a vertical layout, where child components are stacked vertically.

9.12.2 What You May Need to Know About Geometry Management and the panelGroupLayout Component

While the panelGroupLayout component cannot stretch its child components, it can be stretched when it is the child of a panelSplitter or panelStretchLayout component and its layout attribute is set to either scroll or vertical.

9.13 Separating Content Using Blank Space or Lines

You can incorporate some blank space in your pages, to space out the components so that the page appears less cluttered than it would if all the components were presented immediately next to each other, or immediately below each other. The ADF Faces component provided specifically for this purpose is the spacer component.

You can include either or both vertical and horizontal space in a page using the height and width attributes.

The height attribute determines the amount of vertical space to include in the page. Example 9-17 shows a page set up to space out two lengthy outputText components with some vertical space.

Example 9-17 Vertical Space

<af:panelGroupLayout layout="vertical">
 <af:outputText value="This is a long piece of text for this page..."/>
 <af:spacer height="10"/>
 <af:outputText value="This is some more lengthy text ..."/>
</af:panelGroupLayout>

Figure 9-58 shows the effect the spacer component has on the page output as viewed in a browser.

Figure 9-58 Vertical Space Viewed in a Browser

[image: Vertical space between consecutive components]

The width attribute determines the amount of horizontal space to include between components. Example 9-18 shows part of the source of a page set up to space out two components horizontally.

Example 9-18 Horizontal Space

<af:outputLabel value="Your credit rating is currently:"/>
<af:spacer width="10"/>
<af:outputText value="Level 8"/>

Figure 9-59 shows the effect of spacing components horizontally as viewed in a browser.

Figure 9-59 Horizontal Space Viewed in a Browser

[image: Horizontal space between components]

The separator component creates a horizontal line. Figure 9-60 shows the properties.jspx file as it would be displayed with a separator component inserted between the two panelBox components.

Figure 9-60 Using the separator Component to Create a Line

[image: Separator component creates lines]

The spacer and separator components are often used in facets of other layout components. Doing so ensures that the space or line stays with the components they were meant to separate.

9.13.1 How to Use the spacer Component

You can use as many spacer components as needed on a page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the spacer component:

	
In the Component Palette, from the Layout panel, drag and drop a Spacer to the JSF page.

	
In the Property Inspector, expand the Common section. Set the width and height as needed.

	
Note:

If the height is specified but not the width, a block-level HTML element is rendered, thereby introducing a new line effect. If the width is specified, then, irrespective of the specified value of height, it may not get shorter than the applicable line-height in user agents that strictly support HTML standards.

9.13.2 How to Use the Separator Component

You can use as many separator components as needed on a page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."

To create and use the separator component:

	
In the Component Palette, from the Layout panel, drag and drop a Separator to the JSF page.

	
In the Property Inspector, set the properties as needed.

Untitled Document

Using ADF Faces Client-Side Architecture

4 Using ADF Faces Client-Side Architecture

This chapter outlines the ADF Faces client-side architecture.

This chapter includes the following sections:

	
Section 4.1, "About Using ADF Faces Architecture"

	
Section 4.2, "Listening for Client Events"

	
Section 4.3, "Adding JavaScript to a Page"

	
Section 4.4, "Instantiating Client-Side Components"

	
Section 4.5, "Locating a Client Component on a Page"

	
Section 4.6, "Accessing Component Properties on the Client"

	
Section 4.7, "Using Bonus Attributes for Client-Side Components"

	
Section 4.8, "Understanding Rendering and Visibility"

	
Section 4.9, "JavaScript Library Partitioning"

4.1 About Using ADF Faces Architecture

ADF Faces extends the JavaServer Faces architecture, adding a client-side framework on top of the standard server-centric model. The majority of ADF Faces components are rendered in HTML that is generated on the server-side for a request. In addition, ADF Faces allows component implementations to extend their reach to the client using a client-side component and event model.

The ADF Faces framework already contains much of the functionality for which you would ordinarily need to use JavaScript. In many cases, you can achieve rich component functionality declaratively, without the use of JavaScript. However, there may be times when you do need to add your own JavaScript, for example custom processing in response to a client-side event. In these cases, you can use the client-side framework.

The JavaScript class that you will interact with most is AdfUIComponent and its subclasses. An instance of this class is the client-side representation of a server-side component. You can think of a client-side component as a simple property container with support for event handling. Client-side components primarily exist to add behavior to the page by exposing an API contract for both application developers as well as for the framework itself. It is this contract that allows, among other things, toggling the enabled state of a button on the client.

Each client component has a set of properties (key/value pairs) and a list of listeners for each supported event type. All ADF Faces JavaScript classes are prefixed with Adf to avoid naming conflicts with other JavaScript libraries. For example, RichCommandButton has AdfRichCommandButton, RichDocument has AdfRichDocument, and so on.

In the client-side JavaScript layer, client components exist mostly to provide an API contract for the framework and for developers. Because client components exist only to store state and provide an API, they have no direct interaction with the document object model (DOM) whatsoever. All DOM interaction goes through an intermediary called the peer. Peers interact with the DOM generated by the Java renderer and handle updating that state and responding to user interactions.

Peers have a number of other responsibilities, including:

	
DOM initialization and cleanup

	
DOM event handling

	
Geometry management

	
Partial page response handling

	
Child visibility change handling

This separation isolates the component and application developer from changes in the DOM implementation of the component and also isolates the need for the application to know whether a component is implemented in HTML DOM at all (for example the Flash components).

In JSF, as in most component-based frameworks, an intrinsic property of the component model is that components can be nested to form a hierarchy, typically known as the component tree. This simply means that parent components keep track of their children, making it possible to walk over the component tree to find all descendents of any given component. While the full component tree exists on the server, the ADF Faces client-side component tree is sparsely populated.

For performance optimization, client components exist only when they are required, either due to having a clientListener handler registered on them, or because the page developer needs to interact with a component on the client side and has specifically configured the client component to be available. You don't need to understand the client framework as except for exceptional cases, you use most of the architectural features declaratively, without having to create any code.

For example, because the framework does not create client components for every server-side component, there may be cases where you need a client version of a component instance. Section 4.4, "Instantiating Client-Side Components," explains how to do this declaratively. You use the Property Inspector in JDeveloper to set properties that determine whether a component should be rendered at all, or simply be made not visible, as described in Section 4.8, "Understanding Rendering and Visibility."

	
Note:

It is also possible for JavaScript components to be present that do not correspond to any existing server-side component. For example, some ADF Faces components have client-side behavior that requires popup content. These components may create AdfRichPopup JavaScript components, even though no server-side Java RichPopup component may exist.

Other functionality may require you to use the ADF Faces JavaScript API. For example, Section 4.5, "Locating a Client Component on a Page," explains how to use the API to locate a specific client-side component, and Section 4.6, "Accessing Component Properties on the Client," documents how to access specific properties.

A common issue with JavaScript-heavy frameworks is determining how best to deliver a large JavaScript code base to the client. If all the code is in a single JavaScript library, there will be a long download time, while splitting the JavaScript into too many libraries will result in a large number of roundtrips. To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions. A JavaScript library partition contains code for components and/or features that are commonly used together. For more information, see Section 4.9, "JavaScript Library Partitioning."

4.2 Listening for Client Events

In a traditional JSF application, if you want to process events on the client, you must listen to DOM-level events. However, these events are not delivered in a portable manner. The ADF Faces client-side event model is similar to the JSF events model, but implemented on the client. The client-side event model abstracts from the DOM, providing a component-level event model and lifecycle, which executes independently of the server. Consequently, you do not need to listen for click events on buttons. You can instead listen for AdfActionEvent events, which can be caused by key or mouse events.

Events sent by clients are all subclasses of the AdfBaseEvent class. Each client event has a source, which is the component that triggered the event. Events also have a type (for example, action or dialog), used to determine which listeners are interested in the event. You register a client listener on the component declaratively using the af:clientListener tag.

4.2.1 How to Listen for Client Events

You use the af:clientListener tag to call corresponding Javascript in response to a client event. For example, suppose you have a button that, in response to a click, should display a "Hello World" alert. You need to first create the JavaScript function that will respond to the event by displaying the alert. You then add the client listener to the component that will invoke that function.

Before you begin

It may be helpful to have an understanding of client event processing. For more information, see Section 4.2, "Listening for Client Events."

To listen for a client event:

	
Implement the JavaScript function. For example, to display the alert, you might create the JavaScript function shown in Example 4-1.

Example 4-1 JavaScript Event Handler

function sayHello(event)
 {
 alert("Hello, world!")
 }

	
From the Operations panel of the Component Palette, drag and drop a Client Listener as a child to the component that will raise the event.

Enter the function created in Step 1, as well as the type of action that the listener should respond to. Example 4-2 shows the code that would be created for the listener for the sayHello function.

Example 4-2 Registering a Client Listener

<af:commandButton text="Say Hello">
 <af:clientListener method="sayHello" type="action"/>
</af:commandButton>

	
Tip:

Because the button has a registered client listener, the framework will automatically create a client version of the component.

When the button is clicked, because there is a client version of the component, the AdfAction client event is invoked. Because a clientListener tag is configured to listen for the AdfAction event, it causes the sayHello function to execute. For more information about client-side events, see Section 6.3, "Using JavaScript for ADF Faces Client Events."

4.3 Adding JavaScript to a Page

You can either add inline JavaScript directly to a page or you can import JavaScript libraries into a page. When you import libraries, you reduce the page content size, the libraries can be shared across pages, and they can be cached by the browser. You should import JavaScript libraries whenever possible. Use inline JavaScript only for cases where a small, page-specific script is needed.

	
Performance Tip:

Including JavaScript only in the pages that need it will result in better performance because those pages that do not need it will not have to load it, as they would if the JavaScript were included in a template. However, if you find that most of your pages use the same JavaScript code, you may want to consider including the script or the tag to import the library in a template.
Note, however, that if a JavaScript code library becomes too big, you should consider splitting it into meaningful pieces and include only the pieces needed by the page (and not in a template). This approach will provide improved performance, because the browser cache will be used and the HTML content of the page will be smaller.

4.3.1 How to Use Inline JavaScript

Create the JavaScript on the page and then use a clientListener tag to invoke it.

Before you begin

It may be helpful to have an understanding of adding JavaScript to a page. For more information, see Section 4.3, "Adding JavaScript to a Page."

To use inline JavaScript:

	
Add the MyFaces Trinidad tag library to the root element of the page by adding the code shown in bold in Example 4-3.

Example 4-3 MyFaces Trinidad Tag Library on a Page

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:trh="http://myfaces.apache.org/trinidad/html">

	
In the Component Palette, from the Layout panel, in the Core Structure group, drag and drop a Resource onto the page.

	
Note:

Do not use the f:verbatim tag in a page or template to specify the JavaScript.

	
In the Insert Resource dialog, select javascript from the dropdown menu and click OK.

	
Create the JavaScript on the page within the <af:resource> tag.

For example, the sayHello function shown in Example 4-1 might be included in a JSF page as shown in Example 4-4.

Example 4-4 Inline JavaScript

<af:resource>
 function sayHello()
 {
 alert("Hello, world!")
 }
</af:resource>

	
In the Structure window, right-click the component that will invoke the JavaScript, and choose Insert inside component > ADF Faces > Client Listener.

	
In the Insert Client Listener dialog, in the Method field, enter the JavaScript function name. In the Type field, select the event type that should invoke the function.

4.3.2 How to Import JavaScript Libraries

Use the af:resource tag to access a JavaScript library from a page. This tag should appear inside the document tag's metaContainer facet.

Before you begin

It may be helpful to have an understanding of adding JavaScript to a page. For more information, see Section 4.3, "Adding JavaScript to a Page."

To access a JavaScript library from a page:

	
Below the document tag, add the code shown in bold in Example 4-5 and replace /mySourceDirectory with the relative path to the directory that holds the JavaScript library.

Example 4-5 Accessing a JavaScript Library

<af:document>
 <f:facet name="metaContainer">
 <af:resource source="/mySourceDirectory"/>
 </facet>
 <af:form></af:form>
</af:document>

	
In the Structure window, right-click the component that will invoke the JavaScript, and choose Insert inside component > ADF Faces > Client Listener.

	
In the Insert Client Listener dialog, in the Method field, enter the fully qualified name of the function. For example, if the sayHello function was in the MyScripts library, you would enter MyScripts.sayHello. In the Type field, select the event type that should invoke the function.

4.3.3 What You May Need to Know About Accessing Client Event Sources

Often when your JavaScript needs to access a client component, it is within the context of a listener and must access the event's source component. Use the getSource() method to get the client component. Example 4-6 shows the sayHello function accessing the source client component in order to display its name.

Example 4-6 Accessing a Client Event Source

function sayHello(actionEvent)
{
 var component=actionEvent.getSource();

 //Get the ID for the component
 var id=component.getId();

 alert("Hello from "+id);
}

For more information about accessing client event sources, see Section 6.3, "Using JavaScript for ADF Faces Client Events." For more information about accessing client-side properties, see Section 4.6, "Accessing Component Properties on the Client." For a complete description of how client events are handled at runtime, see Section 6.3.7, "What Happens at Runtime: How Client-Side Events Work."

4.4 Instantiating Client-Side Components

By default, the framework does not make any guarantees about which components will have corresponding client-side component instances. To interact with a component on the client, you will usually register a clientListener handler. When a component has a registered clientListener handler, it will automatically have client-side representation. You can also explicitly configure a component to be available on the client by setting the clientComponent attribute to true.

4.4.1 How to Configure a Component to for a Client-Side Instance

You can manually configure a component to have a client side instance using the clientComponent attribute.

	
Performance Tip:

Only set clientComponent to true if you plan on interacting with the component programmatically on the client.

	
Note:

When the framework creates a client component for its own uses, that client component may only contain information the framework needs at that time. For example, not all of the attributes may be available.

Before you begin

It may be helpful to have an understanding of client-side instances. For more information, see Section 4.4, "Instantiating Client-Side Components."

To configure a component for a client-side instance:

	
In the Structure window, select the component that needs a client-side instance.

	
In the Property Inspector, set ClientSide to true.

4.4.2 What Happens When You Set clientComponent to true

When you set the clientComponent attribute to true, the framework creates an instance of an AdfUIComponent class for the component. This class provides the API that you can work with on the client side and also provides basic property accessor methods (for example, getProperty() and setProperty()), event listener registration, and event delivery-related APIs. The framework also provides renderer-specific subclasses (for example, AdfRichOutputText) which expose property-specific accessor methods (for example, getText() and setText()). These accessor methods are simply wrappers around the AdfUIComponent class's getProperty() and setProperty() methods and are provided for coding convenience.

For example, suppose you have an outputText component on the page that will get its value (and therefore the text to display) from the sayHello function. That function must be able to access the outputText component in order to set its value. For this to work, there must be a client-side version of the outputText component. Example 4-7 shows the JSF page code. Note that the outputText component has an id value and the clientComponent attribute is set to true. Also, note there is no value in the example, because that value will be set by the JavaScript.

Example 4-7 Adding a Component

<af:commandButton text="Say Hello">
 <af:clientListener method="sayHello" type="action"/>
</af:commandButton>

<af:outputText id="greeting" value="" clientComponent="true">

Because the outputText component will now have client-side representation, the JavaScript will be able to locate and work with it.

4.5 Locating a Client Component on a Page

When you need to find a client component that is not the source of an event, you can use the AdfUIComponent.findComponent(expr) method. This method is similar to the JSF UIComponent.findComponent() method, which searches for and returns the UIComponent object with an ID that matches the specified search expression. The AdfUIComponent.findComponent(expr) method simply works on the client instead of the server.

Example 4-8 shows the sayHello function finding the outputText component using the component's ID.

Example 4-8 Finding a Client Component Using findComponent()

function sayHello(actionEvent)
{
 var buttonComponent=actionEvent.getSource();

 //Find the client component for the "greeting" af:outputText
 var greetingComponent=buttonComponent.findComponent("greeting");

 //Set the value for the outputText component
 greetingComponent.setValue("Hello World")
}

ADF Faces also has the AdfPage.PAGE.findComponentByAbsoluteId(absolute expr) method. Use this method when you want to hard-code the String for the ID. Use AdfUIComponent.findComponent(expr) when the client ID is being retrieved from the component.

	
Note:

There is also a confusingly named AdfPage.PAGE.findComponent(clientId) method, however this function uses implementation-specific identifiers that can change between releases and should not be used by page authors.

4.5.1 What You May Need to Know About Finding Components in Naming Containers

If the component you need to find is within a component that is a naming container (such as pageTemplate, subform, table, and tree), then instead of using the AdfPage.PAGE.findComponentByAbsoluteId(absolute expr) method, use the AdfUIComponent.findComponent(expr) method. The expression can be either absolute or relative.

	
Tip:

You can determine whether or not a component is a naming container by reviewing the component tag documentation. The tag documentation states whether a component is a naming container.

Absolute expressions use the fully qualified JSF client ID (meaning, prefixed with the IDs of all NamingContainer components that contain the component) with a leading NamingContainer.SEPARATOR_CHAR character, for example:

":" + (namingContainersToJumpUp * ":") + some ending portion of the clientIdOfComponentToFind

For example, to find a table whose ID is t1 that is within a panel collection component whose ID is pc1 contained in a region whose ID is r1 on page that uses the myTemplate template, you might use the following:

:myTemplate:r1:pc1:t1

Alternatively, if both the components (the one doing the search and the one being searched for) share the same NamingContainer component somewhere in the hierarchy, you can use a relative path to perform a search relative to the component doing the search. A relative path has multiple leading NamingContainer.SEPARATOR_CHAR characters, for example:

":" + clientIdOfComponentToFind

In the preceding example, if the component doing the searching is also in the same region as the table, you might use the following:

::somePanelCollection:someTable

	
Tip:

Think of a naming container as a folder and the clientId as a file path. In terms of folders and files, you use two sequential periods and a slash (../) to move up in the hierarchy to another folder. This is the same thing that the multiple colon (:) characters do in the findComponent() expression. A single leading colon (:) means that the file path is absolute from the root of the file structure. If there are multiple leading colon (:) characters at the beginning of the expression, then the first one is ignored and the others are counted, one set of periods and a slash (../) per colon (:) character.
Note that if you were to use the AdfPage.findComponentByAbsoluteId() method, no leading colon is needed as, the path always absolute.

When deciding whether to use an absolute or relative path, keep the following in mind:

	
If you know that the component you are trying to find will always be in the same naming container, then use an absolute path.

	
If you know that the component performing the search and the component you are trying to find will always be in the same relative location, then use a relative path.

There are no getChildren() or getFacet() functions on the client. Instead, the AdfUIComponent.visitChildren() function is provided to visit all children components or facets (that is all descendents). Because ADF Faces uses a sparse component tree (that is, client components are created on an as-needed basis, the component that the getParent() method might return on the client may not be the actual parent on the server (it could be any ancestor). Likewise, the components that appear to be immediate children on the client could be any descendants. For more information, see the ADF Faces JavaScript documentation.

4.6 Accessing Component Properties on the Client

For each built-in property on a component, convenience accessor methods are available on the component class. For example, you can call the getValue() method on a client component and receive the same value that was used on the server.

	
Note:

All client properties in ADF Faces use the getXyz function naming convention including boolean properties. The isXyz naming convention for boolean properties is not used.

Constants are also available for the property names on the class object. For instance, you can use AdfRichDialog.STYLE_CLASS constant instead of using "styleClass".

	
Note:

In JavaScript, it is more efficient to refer to a constant than to code the string, as in some JavaScript execution environments, the latter requires an object allocation on each invocation.

When a component's property changes, the end result should be that the component's DOM is updated to reflect its new state, in some cases without a roundtrip to the server. The component's role in this process is fairly limited: it simply stores away the new property value and then notifies the peer of the change. The peer contains the logic for updating the DOM to reflect the new component state.

	
Note:

Not all property changes are handled through the peer on the client side. Some property changes are propagated back to the server and the component is rerendered using PPR.

Most property values that are set on the client result in automatic synchronization with the server (although some complex Java objects are not sent to the client at all). There are however, two types of properties that act differently: secured properties and disconnected properties.

Secured properties are those that cannot be set on the client at all. For example, say a malicious client used JavaScript to set the immediate flag on a commandLink component to true. That change would then be propagated to the server, resulting in server-side validation being skipped, causing a possible security hole (for more information about using the immediate property, see Section 5.2, "Using the Immediate Attribute"). Consequently, the immediate property is a secured property.

Attempts to set secured property from JavaScript will fail. For more information, see Section 4.6.3, "How to Unsecure the disabled Property." Table 4-1 shows the secure properties on the client components.

Table 4-1 Secure Client Properties

	Component	Secure Property
	
AdfRichChooseColor

	
colorData

	
AdfRichComboboxListOfValue

	
disabled

readOnly

	
AdfRichCommandButton

	
disabled

readOnly

blocking

	
AdfRichCommandImageLink

	
blocking

disabled

partialSubmit

	
AdfRichCommandLink

	
readOnly

	
AdfRichDialog

	
dialogListener

	
AdfRichDocument

	
failedConnectionText

	
AdfRichInputColor

	
disabled

readOnly

colorData

	
AdfRichInputDate

	
disabled

readOnly

valuePassThru

	
AdfRichInputFile

	
disabled

readOnly

	
AdfRichInputListOfValues

	
disabled

readOnly

	
AdfRichInputNumberSlider

	
disabled

readOnly

	
AdfRichInputNumberSplinBox

	
disabled

readOnly

maximum

minimum

stepSize

	
AdfRichInputRangeSlider

	
disabled

readOnly

	
AdfRichInputText

	
disabled

readOnly

secret

	
AdfRichPopUp

	
launchPopupListener

model

returnPopupListener

returnPopupDataListener

createPopupId

	
AdfRichUIQuery

	
conjunctionReadOnly

model

queryListener

queryOperationListener

	
AdfRichSelectBooleanCheckbox

	
disabled

readOnly

	
AdfRichSelectBooleanRadio

	
disabled

readOnly

	
AdfRichSelectManyCheckbox

	
disabled

readOnly

valuePassThru

	
AdfRichSelectManyChoice

	
disabled

readOnly

valuePassThru

	
AdfRichSelectManyListBox

	
disabled

readOnly

valuePassThru

	
AdfRichSelectManyShuttle

	
disabled

readOnly

valuePassThru

	
AdfRichSelectOneChoice

	
disabled

readOnly

valuePassThru

	
AdfRichSelectOneListBox

	
disabled

readOnly

valuePassThru

	
AdfRichSelectOneRadio

	
disabled

readOnly

valuePassThru

	
AdfRichSelectOrderShuttle

	
disabled

readOnly

valuePassThru

	
AdfRichUITable

	
filterModel

	
AdfRichTextEditor

	
disabled

readOnly

	
AdfUIChart

	
chartDrillDownListener

	
AdfUIColumn

	
sortProperty

	
AdfUICommand

	
actionExpression

returnListener

launchListener

immediate

	
AdfUIComponentRef

	
componentType

	
AdfUIEditableValueBase

	
immediate

valid

required

localValueSet

submittedValue

requiredMessageDetail

	
AdfUIMessage.js

	
for

	
AdfUINavigationLevel

	
level

	
AdfUINavigationTree

	
rowDisclosureListener

startLevel

immediate

	
AdfUIPage

	
rowDisclosureListener

immediate

	
AdfUIPoll

	
immediate

pollListener

	
AdfUIProgress

	
immediate

	
AdfUISelectBoolean

	
selected

	
AdfUISelectInput

	
actionExpression

returnListener

	
AdfUISelectRange

	
immediate

rangeChangeListener

	
AdfUIShowDetailBase

	
immediate

disclosureListener

	
AdfUISingleStep

	
selectedStep

maxStep

	
AdfUISubform

	
default

	
AdfUITableBase

	
rowDisclosureListener

selectionListener

immediate

sortListener

rangeChangeListener

showAll

	
AdfUITreeBase

	
immediate

rowDisclosureListener

selectionListener

focusRowKey

focusListener

	
AdfUITreeTable

	
rowsByDepth

rangeChangeListener

	
AdfUIValueBase

	
converter

ADF Faces does allow you to configure the disabled property so that it can be made unsecure. This can be useful when you need to use JavaScript to enable and disable buttons.

Disconnected properties are those that can be set on the client, but that do not propagate back to the server. These properties have a lifecycle on the client that is independent of the lifecycle on the server. For example, client form input components (like AdfRichInputText) have a submittedValue property, just as the Java EditableValueHolder components do. However, setting this property does not directly affect the server. In this case, standard form submission techniques handle updating the submitted value on the server.

A property can be both disconnected and secured. In practice, such properties act like disconnected properties on the client: they can be set on the client, but will not be sent to the server. But they act like secured properties on the server, in that they will refuse any client attempts to set them.

4.6.1 How to Set Property Values on the Client

The ADF Faces framework provides setXYZ convenience functions that call through to the underlying ADFUIComponent.setProperty function, passing the appropriate property name (for more information, see the ADF Faces JavaScript JavaDoc). Example 4-9 shows how you might use the setProperty function to set the backgroundcolor property on an inputText component to red when the value changes.

Example 4-9

<af:form>
 <af:resource type="javascript">
 function color(event) {
 var inputComponent = event.getSource();
 inputComponent.setproperty("inlineStyle", "background-color:Red");
 }
 </af:resource>
 <af:outputText id="it" label="label">
 <af:clientListener method="color" type="valueChange"/>
 </af:inputText>
</af:form>

By using these functions, you can change the value of a property, and as long as it is not a disconnected property or a secure property, the value will also be changed on the server.

4.6.2 What You May Need to Know About Setting Properties on the Client

There may be cases when you do not want the value of the property to always be delivered and synchronized to the server. For example, say you have inputText components in a form, and as soon as a user changes a value in one of the components, you want the changed indicator to display. To do this, you might use JavaScript to set the changed attribute to true on the client component when the valueChangeEvent event is delivered. Say also, you do not want the changed indicator to display once the user submits the page, because at that time, the values are saved.

Say you use JavaScript to set the changed attribute to true when the valueChangeEvent is delivered, as shown in

Example 4-10 Using JavaScript to Set the changed Property

<af:form>
 <af:resource type="javascript">
 function changed(event) {
 var inputComponent = event.getSource();
 inputComponent.setChanged(true);
 }
 </af:resource>
 <af:inputText id="it" label="label">
 <af:clientListener method="changed" type="valueChange"/>
 </af:inputText>
 <af:commandButton text="Submit"/>
</af:form>

Using this example, the value of the changed attribute, which is true, will also be sent to the server, because all the properties on the component are normally synchronized to the server. So the changed indicator will continue to display.

To make it so the indicator does not display when the values are saved to the server, you might use one of the following alternatives:

	
Move the logic from the client to the server, using an event listener. Use this alternative when there is an event being delivered to the server, such as the valueChangeEvent event. Example 4-11 shows example JSP code.

Example 4-11 JSP Code for Setting Property Values on the Server

<af:form>
 <af:inputText label="label"
 autoSubmit="true"
 changed="#{test.changed}"
 valueChangeListener="#{test.valueChange}"/>
 <af:commandButton text="Submit" />
</af:form>

Example 4-12 shows the corresponding managed bean code.

Example 4-12 Using a Managed Bean to Set a Property Value

import javax.faces.event.ValueChangeEvent;
import oracle.adf.view.rich.context.AdfFacesContext;

public class TestBean {
 public TestBean() {}

 public void valueChange(ValueChangeEvent valueChangeEvent)
 {
 setChanged(true);
 AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();
 adfFacesContext.addPartialTarget(valueChangeEvent.getComponent());
 FacesContext.getCurrentInstance().renderResponse();
 }

 public void setChanged(boolean changed)
 {
 _changed = changed;
 }

 public boolean isChanged()
 {
 return _changed;
 }
 private boolean _changed;
}

	
Move the logic to the server, using JavaScript that invokes a custom server event and a serverListener tag. Use this when there is no event being delivered. Example 4-13 shows the JSP code.

Example 4-13 JSP Code for Setting Property Values Using JavaScript and a Server Listener

<af:form>
 <af:resource type="javascript">
 function changed(event)
 {
 var inputComponent = event.getSource();
 AdfCustomEvent.queue(inputComponent, "myCustomEvent", null, true);
 }
 </af:resource>
 <af:inputText label="label" changed="#{test2.changed}">
 <af:serverListener type="myCustomEvent"
 method="#{test2.doCustomEvent}"/>
 <af:clientListener method="changed" type="valueChange"/>
 </af:inputText>
 <af:commandButton text="Submit"/>
</af:form>

Example 4-14 shows the managed bean code.

Example 4-14 Using a Custom Event to Set a Property Value

package test;

import javax.faces.context.FacesContext;

import oracle.adf.view.rich.context.AdfFacesContext;
import oracle.adf.view.rich.render.ClientEvent;

public class Test2Bean
{
 public Test2Bean()
 {
 }

 public void doCustomEvent(ClientEvent event)
 {
 setChanged(true);
 AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();
 adfFacesContext.addPartialTarget(event.getComponent());
 FacesContext.getCurrentInstance().renderResponse();
 }

 public void setChanged(boolean changed)
 {
 _changed = changed;
 }

 public boolean isChanged()
 {
 return _changed;
 }
 private boolean _changed;

}

	
On the client component, set the changed attribute to true, which will propagate to the server, but then use an actionListener on the command component to set the changed attribute back to false. Example 4-15 shows the JSP code.

Example 4-15 JSP Code for Using a Listener on a Command Component to Set a Property Value

<af:form>
 <af:resource type="javascript">
 function changed(event) {
 var inputComponent = event.getSource();
 inputComponent.setChanged(true);
 }
 </af:resource>
 <af:inputText binding="#{test3.input}" label="label">
 <af:clientListener method="changed" type="valueChange"/>
 </af:inputText>
 <af:commandButton text="Submit" actionListener="#{test3.clear}"/>
</af:form>

Example 4-16 shows the corresponding managed bean code.

Example 4-16 Using an ActionLIstener to Set a Property Value

package test;

import javax.faces.event.ActionEvent;

import oracle.adf.view.rich.component.rich.input.RichInputText;

public class Test3Bean
{
 public Test3Bean()
 {
 }

 public void clear(ActionEvent actionEvent)
 {
 _input.setChanged(false);
 }

 public void setInput(RichInputText input)
 {
 _input = input;
 }

 public RichInputText getInput()
 {
 return _input;
 }

 private RichInputText _input;
}

4.6.3 How to Unsecure the disabled Property

You use the unsecured property to set the disabled property to be unsecure. You need to manually add this property and the value of disabled to the code for the component whose disabled property should be unsecure. For example, the code for a button whose disabled property should be unsecured would be:

<af:commandButton text="commandButton 1" id="cb1" unsecure="disabled"/>

Once you set the unsecure attribute to disabled, a malicious JavaScript could change the disabled attribute unwittingly. For example, say you have an expense approval page, and on that page, you want certain managers to be able to only approve invoices that are under $200. For this reason, you want the approval button to be disabled unless the current user is allowed to approve the invoice.

If you did not set the unsecured attribute to disabled, the approval button would remain disabled until a round-trip to the server occurs, where logic determines if the current user can approve the expense. But because you want the button to display correctly as the page loads the expense, say you set the unsecure attribute to disabled. Now you can use JavaScript on the client to determine if the button should be disabled. But now, any JavaScript (including malicious JavaScript that you have no control over) can do the same thing.

To avoid the malicious JavaScript, the application has to always assume that the button may have been enabled by malicious client side Javascript and therefore needs to always recheck that the current manager has the appropriate spending authority before performing the approval. In the expense report approval screen, you might have JavaScript that checks that the amount is under $200, but you still need to have the action for the approval button perform the logic on the server. Adding the logic to the server ensures that the disabled attribute does not get changed when it should not.

Similarly, if you allow your application to be modified at runtime, and you allow users to potentially edit the unsecure and/or the disabled attributes, you must ensure that your application still performs the same logic as if the round-trip to the server had occurred.

4.6.4 What Happens at Runtime: How Client Properties Are Set on the Client

Calling the setProperty() function on the client sets the property to the new value, and synchronously fires a PropertyChangeEvent event with the old and new values (as long as the value is different). Also, setting a property may cause the component to rerender itself.

4.7 Using Bonus Attributes for Client-Side Components

In some cases you may want to send additional information to the client beyond the built-in properties. This can be accomplished using bonus attributes. Bonus attributes are extra attributes that you can add to a component using the clientAttribute tag. For performance reasons, the only bonus attributes sent to the client are those specified by clientAttribute.

The clientAttribute tag specifies a name/value pair that is added to the server-side component's attribute map. In addition to populating the server-side attribute map, using the clientAttribute tag results in the bonus attribute being sent to the client, where it can be accessed through the AdfUIComponent.getProperty("bonusAttributeName") method.

The framework takes care of marshalling the attribute value to the client. The marshalling layer supports marshalling of a range of object types, including strings, booleans, numbers, dates, arrays, maps, and so on. For more information on marshalling, see Section 6.4.3, "What You May Need to Know About Marshalling and Unmarshalling Data."

	
Performance Tip:

In order to avoid excessive marshalling overhead, use client-side bonus attributes sparingly.

	
Note:

The clientAttribute tag should be used only for bonus (application-defined) attributes. If you need access to standard component attributes on the client, instead of using the clientAttribute tag, simply set the clientComponent attribute to true. For more information, see Section 4.4, "Instantiating Client-Side Components."

4.7.1 How to Create Bonus Attributes

You can use the Component Palette to add a bonus attribute to a component.

Before you begin

It may be helpful to have an understanding of bonus attributes. For more information, see Section 4.7, "Using Bonus Attributes for Client-Side Components."

To create bonus attributes:

	
In the Structure window, select the component to which you would like to add a bonus attribute.

	
In the Component Palette, from the Operations panel, drag and drop a Client Attribute as a child to the component.

	
In the Property Inspector, set the Name and Value attributes.

4.7.2 What You May Need to Know About Marshalling Bonus Attributes

Although client-side bonus attributes are automatically delivered from the server to the client, the reverse is not true. That is, changing or setting a bonus attribute on the client will have no effect on the server. Only known (nonbonus) attributes are synchronized from the client to the server. If you want to send application-defined data back to the server, you should create a custom event. For more information, see Section 6.4, "Sending Custom Events from the Client to the Server."

4.8 Understanding Rendering and Visibility

All ADF Faces display components have two attributes that relate to whether or not the component is displayed on the page for the user to see: rendered and visible.

The rendered attribute has very strict semantics. When rendered is set to false, there is no way to show a component on the client without a roundtrip to the server. To support dynamically hiding and showing page contents, the framework adds the visible attribute. When set to false, the component's markup is available on the client but the component is not displayed. Therefore calls to the setVisible(true) or setVisible(false) method will, respectively, show and hide the component within the browser (as long as rendered is set to true), whether those calls happen from Java or from JavaScript. However, because visible simply shows and hides the content in the DOM, it doesn't always provide the same visual changes as using the rendered would.

	
Performance Tip:

You should set the visible attribute to false only when you absolutely need to be able to toggle visibility without a roundtrip to the server, for example in JavaScript. Nonvisible components still go through the component lifecycle, including validation.
If you do not need to toggle visibility only on the client, then you should instead set the rendered attribute to false. Making a component not rendered (instead of not visible) will improve server performance and client response time because the component will not have client-side representation, and will not go through the component lifecycle.

Example 4-17 shows two outputText components, only one of which is rendered at a time. The first outputText component is rendered when no value has been entered into the inputText component. The second outputText component is rendered when a value is entered.

Example 4-17 Rendered and Not Rendered Components

<af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}"/>
 <af:commandButton text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:"/>
 <af:outputText value="No text entered" id="output1"
 rendered="#{myBean.inputValue==null}"/>
 <af:outputText value="#{myBean.inputValue}"
 rendered="#{myBean.inputValue !=null}"/>
</af:panelGroupLayout>

Provided a component is rendered in the client, you can either display or hide the component on the page using the visible property.

Example 4-18 shows how you might achieve the same functionality as shown in Example 4-17, but in this example, the visible attribute is used to determine which component is displayed (the rendered attribute is true by default, it does not need to be explicitly set).

Example 4-18 Visible and Not Visible Components

<af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}"/>
 <af:commandButton text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:"/>
 <af:outputText value="No text entered" id="output1"
 visible="#{myBean.inputValue==null}"/>
 <af:outputText value="#{myBean.inputValue}"
 visible="#{myBean.inputValue !=null}"/>
</af:panelGroupLayout>

However, because using the rendered attribute instead of the visible attribute improves performance on the server side, you may instead decide to have JavaScript handle the visibility.

Example 4-19 shows the page code for JavaScript that handles the visiblity of the components.

Example 4-19 Using JavaScript to Turn On Visibility

function showText()
{
 var output1 = AdfUIComponent.findComponent("output1")
 var output2 = AdfUIComponent.findComponent("output2")
 var input = AdfUIComponent.findComponent("input")

 if (input.getValue() == "")
 {
 output1.setVisible(true);
 }
 else
 {
 output2.setVisible(true)
 }

 }

4.8.1 How to Set Visibility Using JavaScript

You can create a conditional JavaScript function that can toggle the visible attribute of components.

Before you begin

It may be helpful to have an understanding of how components are displayed. For more information, see Section 4.8, "Understanding Rendering and Visibility."

To set visibility:

	
Create the JavaScript that can toggle the visibility. Example 4-19 shows a script that turns visibility on for one outputText component if there is no value; otherwise, the script turns visibility on for the other outputText component.

	
For each component that will be needed in the JavaScript function, expand the Advanced section of the Property Inspector and set the ClientComponent attribute to true. This creates a client component that will be used by the JavaScript.

	
For the components whose visibility will be toggled, set the visible attribute to false.

Example 4-20 shows the full page code used to toggle visibility with JavaScript.

Example 4-20 JavaScript Toggles Visibility

<f:view>
<af:resource>
 function showText()
 {
 var output1 = AdfUIComponent.findComponent("output1")
 var output2 = AdfUIComponent.findComponent("output2")
 var input = AdfUIComponent.findComponent("input")

 if (input.value == "")
 {
 output1.setVisible(true);
 }
 else
 {
 output2.setVisible(true)
 }

 }
</af:resource>
<af:document>
 <af:form>
 <af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}" clientComponent="true"
 immediate="true"/>
 <af:commandButton text="Enter" clientComponent="true">
 <af:clientListener method="showText" type="action"/>
 </af:commandButton>
 </af:panelGroupLayout>
 <af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:" clientComponent="false"/>
 <af:outputText value="No text entered" id="output1"
 visible="false" clientComponent="true"/>
 <af:outputText value="#{myBean.inputValue}" id="output2"
 visible="false" clientComponent="true"/>
 </af:panelGroupLayout>
 </af:form>
 </af:document>
</f:view>

4.8.2 What You May Need to Know About Visible and the isShowing Function

If the parent of a component has its visible attribute set to false, when the isVisible function is run against a child component whose visible attribute is set to true, it will return true, even though that child is not displayed. For example, say you have a panelGroupLayout component that contains an outputText component as a child, and the panelGroupLayout component's visible attribute is set to false, while the outputText component's visible attribute is left as the default (true). On the client, neither the panelGroupLayout nor the outputText component will be displayed, but if the isVisible function is run against the outputText component, it will return true.

For this reason, the framework provides the isShowing() function. This function will return false if the component's visible attribute is set to false, or if any parent of that component has visible set to false.

4.9 JavaScript Library Partitioning

A common issue with JavaScript-heavy frameworks is determining how best to deliver a large JavaScript code base to the client. On one extreme, bundling all code into a single JavaScript library can result in a long download time. On the other extreme, breaking up JavaScript code into many small JavaScript libraries can result in a large number of roundtrips. Both approaches can result in the end user waiting unnecessarily long for the initial page to load.

To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions. A JavaScript library partition contains code for components and/or features that are commonly used together. By default, ADF Faces provides a partitioning that is intended to provide a balance between total download size and total number of roundtrips.

One benefit of ADF Faces's library partitioning strategy is that it is configurable. Because different applications make use of different components and features, the default partitioning provided by ADF Faces may not be ideal for all applications. As such, ADF Faces allows the JavaScript library partitioning to be customized on a per-application basis. This partitioning allows application developers to tune the JavaScript library footprint to meet the needs of their application.

ADF Faces groups its components' JavaScript files into JavaScript features. A JavaScript feature is a collection of JavaScript files associated with a logical identifier that describes the feature. For example, the panelStretchLayout client component is comprised of the following two JavaScript files

	
oracle/adf/view/js/component/rich/layout/AdfRichPanelStretchLayout.js

	
oracle/adfinternal/view/js/laf/dhtml/rich/AdfDhtmlPanelStretchLayoutPeer.js

These two files are grouped into the AdfRichPanelStretchLayout feature.

JavaScript features are further grouped into JavaScript partitions. JavaScript partitions allow you to group JavaScript features into larger collections with the goal of influencing the download size and number of round trips. For example, since the panelStretchLayout component is often used with the panelSplitter component, the features for these two components are grouped together in the stretch partition, along with the other ADF Faces layout components that can stretch their children. At runtime, when a page is loaded, the framework determines the components used on the page, and then from that, determines which features are needed (feature names are the same as the components' constructor name). Only the partitions that contain those features are downloaded.

Features and partitions are defined using configuration files. ADF Faces ships with a default features and partitions configuration file. You can overwrite the default partitions file by creating your own implementation. When you create custom ADF Faces components, you can create your own features and partition configuration files for those components.

By default, JavaScript partitioning is turned on. Whether or not your application uses JavaScript partitioning is determined by a context parameter in the web.xml file. For more information, see Section A.2.3.16, "JavaScript Partitioning."

4.9.1 How to Create a JavaScript Feature

You create a JavaScript feature by creating an adf-js-features.xml file, and then adding entries for the features.

	
Note:

You create JavaScript features when you create custom ADF Faces components. All existing ADF Faces components already have features created for them, and these cannot be changed.

Before you begin

It may be helpful to have an understanding of JavaScript partitioning works. For more information, see Section 4.9, "JavaScript Library Partitioning."

To create a JavaScript feature:

	
If not already created, create a META-INF directory for your component.

	
Right-click the META-INF directory, and choose New from the context menu.

	
In the New Gallery, expand General, select XML and then XML Document, and click OK.

	
Tip:

If you don't see the General node, click the All Technologies tab at the top of the Gallery.

	
Enter adf-js-features.xml as the file name and save it in the META-INF directory.

	
In the source editor, replace the generated code with the code shown in Example 4-21.

Example 4-21 XML for adf-js-features.xml File

<?xml version="1.0" encoding="utf-8" ?>
<adf-js-features xmlns="http://xmlns.oracle.com/adf/faces/feature"

</adf-js-features>

	
Add the following elements to populate a feature with the relevant component files and dependencies.

	
features: The root element of the configuration file.

	
feature: Create as a child to the features element. This element must contain one feature-name child element and can also contain any number of feature-class, as well as any number of feature-dependency elements.

	
feature-name: Create as a child to the feature element. Specifies the name of the feature. You must use the client component's constructor name for this value.

	
feature-class: Create as a child to the feature element. Specifies the location of the single JavaScript file or class to be included in this feature. There can be multiple feature-class elements.

	
feature-dependency: Create as a child to the feature element. Specifies the name of another feature that this feature depends on. For example, if one component B extends component A, then the feature that represents component A must be listed as a dependency for component B. By noting dependencies, the framework can ensure that any dependent classes are available, even if the two features are not in the same partition.

Example 4-22 shows the feature element for a fictitious custom component that uses popup components (and therefore has a dependency to the popup feature).

Example 4-22 JavaScript Features Configuration

<features xmlns="http://xmlns.oracle.com/adf/faces/feature">
 <feature>
 <feature-name>AcmeMyPane</feature-name>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeMyPane.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/event/AcmePaneSelectEvent.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeMyPanePeer.js
 </feature-class>

 <!-- Dependencies -->

 <!-- Popup hints -->
 <feature-dependency>AdfRichPopup</feature-dependency>

</feature>

4.9.2 How to Create JavaScript Partitions

You create a JavaScript partition by creating an adf-js-partitions.xml file, and then adding entries for the features.

	
Note:

ADF Faces provides a default adf-js-partitions.xml file (see Section E.1.1, "The adf-js-partitions.xml File"). If you want to change the partition configuration, you need to create your own complete adf-js-partitions.xml file. At runtime, the framework will search the WEB-INF directory for that file. If one is not found, it will load the default partition file.

Before you begin

It may be helpful to have an understanding of JavaScript partitioning works. For more information, see Section 4.9, "JavaScript Library Partitioning."

To create JavaScript partitions:

	
Right-click the WEB-INF directory, and choose New from the context menu.

	
In the New Gallery, expand General, select XML and then XML Document, and click OK.

	
Tip:

If you don't see the General node, click the All Technologies tab at the top of the Gallery.

	
Enter adf-js-partitions.xml as the file name and save it in the WEB-INF directory.

	
In the source editor, replace the generated code with the code shown in Example 4-23.

Example 4-23 XML for adf-js-partitions.xml File

<?xml version="1.0" encoding="utf-8" ?>
<adf-js-features xmlns="http://xmlns.oracle.com/adf/faces/partition"

</adf-js-partitions>

	
Add the following elements to populate a partition with the relevant features.

	
partitions: The root element of the configuration file.

	
partition: Create as a child to the partitions element. This element must contain one partition-name child element and one or more feature elements.

	
partition-name: Create as a child to the partition element. Specifies the name of the partition. This value will be used to produce a unique URL for this partition's JavaScript library.

	
feature: Create as a child to the partition element. Specifies the feature to be included in this partition. There can be multiple feature elements.

	
Tip:

Any feature configured in the adf-js-features.xml file that does not appear in a partition is treated as if it were in its own partition.

Example 4-24 shows the partition element for the tree partition that contains the AdfRichTree and AdfRichTreeTable features.

Example 4-24 JavaScript Partition Configuration

<partition>
 <partition-name>tree</partition-name>
 <feature>AdfUITree</feature>
 <feature>AdfUITreeTable</feature>
 <feature>AdfRichTree</feature>
 <feature>AdfRichTreeTable</feature>
</partition>

4.9.3 What Happens at Runtime: JavaScript Partitioning

ADF Faces loads the library partitioning configuration files at application initialization time. First, ADF Faces searches for all adf-js-features.xml files in the META-INF directory and loads all that are found (including the ADF Faces default feature configuration file).

For the partition configuration file, ADF Faces looks for a single file named adf-js-partitions.xml in the WEB-INF directory. If no such file is found, the ADF Faces default partition configuration is used.

During the render traversal, ADF Faces collects information about which JavaScript features are required by the page. At the end of the traversal, the complete set of JavaScript features required by the (rendered) page contents is known. Once the set of required JavaScript features is known, ADF Faces uses the partition configuration file to map this set of features to the set of required partitions. Given the set of required partitions, the HTML <script> references to these partitions are rendered just before the end of the HTML document.

19 Displaying Tips, Messages, and Help

This chapter describes how to define and display tips and messages for ADF Faces components, and how to provide different levels of help information for users.

This chapter includes the following sections:

	
Section 19.1, "About Displaying Tips and Messages"

	
Section 19.2, "Displaying Tips for Components"

	
Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion"

	
Section 19.4, "Grouping Components with a Single Label and Message"

	
Section 19.5, "Displaying Help for Components"

19.1 About Displaying Tips and Messages

ADF Faces provides many different ways for displaying informational text in an application. You can create simple tip text, validation and conversion tip text, validation and conversion failure messages, as well as elaborate help systems.

Figure 19-1 ADF Messaging Components

[image: Messaging components]

Many ADF Faces components support the shortDesc attribute, which for most components, displays tip information when a user hovers the cursor over the component. Figure 19-2 shows a tip configured for a toolbar button. For more information about creating tips, see Section 19.2, "Displaying Tips for Components."

Figure 19-2 Tip Displays Information

[image: Tooltip displays information]

Along with tips, EditableValueHolder components (such as the inputText component, or the selection components) can display hints used for validation and conversion. When you configure validation or conversion, a default hint automatically displays in a note window (for more information, see Chapter 7, "Validating and Converting Input").

ADF Faces uses the standard JSF messaging API. JSF supports a built-in framework for messaging by allowing FacesMessage instances to be added to the FacesContext object using the addMessage(java.lang.String clientId, FacesMessage message) method. In general there are two types of messages that can be created: component-level messages, which are associated with a specific component based on any client ID that was passed to the addMessage method, and global-level messages, which are not associated with a component because no client ID was passed to the addMessage method.

When conversion or validation fails on an EditableValueHolder ADF Faces component, FacesMessages objects are automatically added to the message queue on the FacesContext instance, passing in that component's ID. These messages are then displayed in the note window for the component. ADF Faces components are able to display their own messages. You do not need to add any tags.

Similarly, the document tag handles and displays all global FacesMessages objects (those that do not contain an associated component ID), as well as component FacesMessages. Like component messages, you do not need to add any tags for messages to be displayed. Whenever a global message is created (or more than one component message), all messages in the queue will be displayed in a popup window, as shown in Figure 19-3.

Figure 19-3 Global and Component Messages Displayed by the Document

[image: Global and component messages]

Alternatively, you can use the ADF Faces messages component if you want messages to display on the page rather than in a popup window. For more information about displaying hints and messages for components, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

	
Tip:

While ADF Faces provides messages for validation and conversion, you can add your own FacesMessages objects to the queue using the standard JSF messaging API. When you do so, ADF Faces will display icons with the message based on the message level, as follows: [image: Message icons]

Instead of having each component display its own messages, you can use the panelLabelAndMessage component to group components and display a message in one area. This can be very useful when you have to group components together. For example, the File Explorer application uses a panelLabelAndMessage component where users enter a telephone number. The telephone number input field is actually three separate inputText components. The panelLabelAndMessage component wraps three inputText components. Instead of each having its own label and message, the three have just one label and one message, as shown in Figure 19-8. For more information, see Section 19.4, "Grouping Components with a Single Label and Message."

Along with configuring messages for individual component instances, you can create a separate help system that provides information that can be reused throughout the application.You create help information using different types of providers, and then reference the help text from the UI components. The following are the three types of help supported by ADF Faces:

	
Definition: Provides a help icon (question mark in a blue circle) with the help text appearing when the user mouses over the icon, as shown in Figure 19-4.

Figure 19-4 Definition Messages Display When Mousing Over the Icon

[image: Definition message is a mouseover tip]

	
Instruction: Depending on the component, this type of help either provides instruction text within the component (as with panelHeader components), or displays text in the note window that is opened when the user clicks in the component, as shown in Figure 19-5. The text can be any length.

Figure 19-5 Instruction Messages Display in a Note Window

[image: Instruction message in a note window]

	
External URL: You can have a help topic that resides in an external application, which will open in a separate browser window. For example, instead of displaying instruction help, Figure 19-6 shows the Select Skin selectOneChoice component configured to open a help topic about skins. When a user clicks the help icon, the help topic opens.

Figure 19-6 External URL Help Opens in a New Window

[image: Help can display in a separate window]

For more information about creating help systems, see Section 19.5, "Displaying Help for Components."

19.1.1 Messaging Components Use Cases and Examples

Messages can typically be divided into to types: error messages that display when an error occurs in the application, for example when a user enters incompatible information, and informational messages that provide for example, hints for using a component or for completing a task on a page.

Error messages use the JSF messaging API. There are two types of error messages: component messages where the message applies to the specific component only, and global messages, where the message applies to more than one component or the whole page.

By default, the noteWindow component is used for component error messages. When you configure conversion or validation on any input component, validation and conversion hints and errors are automatically displayed in the noteWindow component. You do not need to add the component to the page.

For example, when users click Help > Give Feedback in the File Explorer application, a dialog displays where they can enter a time and date for a customer service representative to call. Because the inputDate component contains a converter, when the user clicks in the field, a note window displays a hint that shows the expected pattern, as shown in Figure 19-7. If the inputDate component was also configured with a minimum or maximum value, the hint would display that information as well. These hints are provided by the converters and validators automatically.

Figure 19-7 Attached Converters and Validators Include Messages

[image: Messages in converters and validators]

If a user enters a date incorrectly in the field shown in Figure 19-7, an error message is displayed, as shown in Figure 19-8. Note that the error message appears in the note window along with the hint.

Figure 19-8 Validation and Conversion Errors Display in Note Window

[image: Errors display in note window]

If you want to display an error message for a non-ADF Faces component, or if you want the message to be displayed inline instead of the note window, use the ADF Faces message component. When you use this component, messages are displayed next to the component, as shown in Figure 19-9.

Figure 19-9 Use the message Component to Display Messages Inline

[image: Messages displayed inline]

Global messages are by default displayed in a dialog, as shown in Figure 19-10. You do not need to add the popup component to the page.

Figure 19-10 Global Messages Display in a Popup Dialog

[image: Global messages displayed in a popup]

If instead you want the error messages to display directly on the page, use the messages component. When you use this component, the messages are displayed in a list at the top of the page, as shown in Figure 19-11.

Figure 19-11 Use the messages Component to Display Global Messages on the Page

[image: Global messages displayed in a list]

For more information about error messages, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

Informational messages can range from simple tooltips to comprehensive help systems. Tooltips should be used when the component for which you want to display hints or information does not support help text. However, tooltip text must be very brief. If you have to display more detailed information, or if the text can be reused among many component instances, consider using help text instead.

You create tooltips by configuring the shortDesc attribute on a component. The value of that attribute then displays in a note window when the user hovers over the component, as shown in Figure 19-12.

Figure 19-12 Tooltip for a Component

[image: Tooltip displays in noteWindow]

For more information about tooltips, see Section 19.2, "Displaying Tips for Components."

Use definition help when you need to display more information than can fit in a tooltip. When you configure definition help for most components, a help icon is displayed next to the component. The help text is displayed when the mouse hovers over the component, as shown in Figure 19-13.

Figure 19-13 Definition Help for a Column Component

[image: Help icon displayed in column header]

For more information about definition help, see Section 19.5, "Displaying Help for Components."

When you want to display field-level help, configure an input component to use instruction text. When the user clicks in the component, the help text is displayed in a note window, as shown in Figure 19-14.

Figure 19-14 Instruction Text for a Component

[image: Instruction text displayed for input text component]

When you want to display instructions for a task, configure instruction help for a container component. The text will appear in the header of the component, as shown in Figure 19-15.

Figure 19-15 Instruction Text for the panelHeader Component

[image: Definition help]

	
Best Practice:

Instruction text for input components should be used only when the typical user may fail to perform a task without assistance. Excessive use of instruction text clutters the page with directions or distracts users with note windows that may also obscure related page elements.

When you need to provide comprehensive help, you can use the help icon to link to an external help system available through a URL.

For more information about instruction and external help, see Section 19.5, "Displaying Help for Components."

19.1.2 Additional Functionality for Message Components

You may find it helpful to understand other ADF Faces features before you implement your message components and help functionality. Additionally, once you have added these components to your page, you may find that you need to add functionality such as skinning to change icons and accessibility and using resource bundles to store message text. Following are links to other functionality that message components can use.

	
Using parameters in text: You can use the ADF Faces EL format tags if you want text displayed in a component to contain parameters that will resolve at runtime. For more information, see Section 3.5.2, "How to Use the EL Format Tags."

	
Client events: If you want your help topic to launch using JavaScript, you use a listener for a client event. For more information about client-side events, see Section 6.3, "Using JavaScript for ADF Faces Client Events."

	
Skinning: The icons displayed for messages and help are determined by the skin used by the application. You can change the icons by creating a new skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Localization: Instead of directly entering text for messages, you can use property files. These files allow you to manage translation of these strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

19.2 Displaying Tips for Components

ADF Faces components use the shortDesc attribute to display a tip when the user hovers the mouse over the component. Input components display the tips in their note window. Other component types display the tip in a standard tip box. This text should be kept short. If you have to display more detailed information, or if the text can be reused among many component instances, consider using help text, as described in Section 19.5, "Displaying Help for Components."

Figure 19-16 shows the effect when the cursor hovers over an inputText component.

Figure 19-16 Tip for an inputText Component

[image: Tooltip displayed in a browser]

Figure 19-17 shows a tip as displayed for a showDetailItem component.

Figure 19-17 Tip for a showDetailItem Component

[image: Tip for command component]

19.2.1 How to Display Tips for Components

You use the shortDesc attribute on a component to display a tip.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.2, "Displaying Tips for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To define a tip for a component:

	
In the Structure window, select the component for which you want to display the tip.

	
In the Property Inspector, expand the Appearance section and enter a value for the shortDesc attribute.

	
Tip:

The value should be less than 80 characters, as some browsers will truncate the tip if it exceeds that length.

If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages."

19.3 Displaying Hints and Error Messages for Validation and Conversion

Validators and converters have a default hint that is displayed to users when they click in the associated field. For converters, the hint usually tells the user the correct format to use. For validators, the hint is used to convey what values are valid.

For example, in the File Explorer application, when a user clicks in the input date field on the Speak with Customer Service page, a tip is displayed showing the correct format to use, as shown in Figure 19-18.

Figure 19-18 Validators and Converters Have Built-in Messages

[image: Message is based on converter pattern]

When the value of an ADF Faces component fails validation, or cannot be converted by a converter, the component displays the resulting FacesMessage instance.

For example, entering a date that does not match the dateStyle attribute of the converter results in an error message, as shown in Figure 19-19.

Figure 19-19 Validation Error at Runtime

[image: Validation error displayed in a browser]

You can override the default validator and converter hint and error messages for either a component instance, or globally for all instances. To define a custom message for a component instance you set attributes to the detail messages to be displayed. The actual attributes vary according to the validator or converter. Figure 19-20 shows the attributes that you can populate to override the messages for the convertDateTime converter, as displayed in the Property Inspector.

Figure 19-20 Message Attributes on a Converter

[image: Message attributes for convertDateTime]

To define an error message that will be used by all instances of the component, you need to create an entry in a resource bundle that will override the default message.

If you do not want messages to be displayed in the note window, you can use the message component, and messages will be displayed inline with the component. Figure 19-21 shows how messages are displayed using the message component.

Figure 19-21 Use the message Component to Display Messages Inline

[image: Messages displayed inline]

JSF pages in an ADF Faces application use the document tag, which among other things, handles displaying all global messages (those not associated with a component) in a popup window. However, if you want to display global messages on the page instead, use the messages component.

19.3.1 How to Define Custom Validator and Converter Messages for a Component Instance

To override the default validator and converter messages for a single component instance, set values for the different message attributes.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To define a validator or converter message:

	
In the Structure window, select the converter or validator for which you want to create the error message.

	
Note:

You can override messages only for ADF Faces components. If you want to create a message for a non-ADF Faces component (for example for the f:validator component), then use the message component. For more information, see Section 19.3.3, "How to Display Component Messages Inline."

	
In the Property Inspector, expand the Messages section and enter a value for the attribute for which you want to provide a message.

The values can include dynamic content by using parameter placeholders such as {0}, {1}, {2}, and so on. For example, the messageDetailConvertDate attribute on the convertDateTime converter uses the following parameters:

	
{0} the label that identifies the component

	
{1} the value entered by the user

	
{2}an example of the format expected by the component.

	
Tip:

your application uses bidirectional or right-to-left display, do not start the message with the expected format parameter (2), as it may not display correctly in Internet Explorer.

Using these parameters, you could create this message:

{1} is not using the correct date format. Please enter the date as follows: {2}.

The error message would then be displayed as shown in Figure 19-22.

Figure 19-22 Detail Message at Runtime

[image: Inline detail message displayed in a browser]

	
Tip:

Use the dropdown menu to view the property help, which includes the parameters accepted by the message.

If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages."

	
Note:

The message text is for the detail message of the FacesMessage object. If you want to override the summary (the text shown at the top of the message), you can only do this globally. For more information, see Section 19.3.2, "How to Define Custom Validator and Converter Messages for All Instances of a Component."

19.3.2 How to Define Custom Validator and Converter Messages for All Instances of a Component

Instead of changing the message string per component instance with the messageDetail[XYZ] attributes, you can override the string globally so that the custom string will be displayed for all instances. The global messages are handled by key/value pairs in a message bundle. You can override summary, detail, and hint messages.

To globally override a default validator or converter message:

	
Refer to Appendix B, "Message Keys for Converter and Validator Messages" to determine the message key for the message you want to override. For example, to override the detail message displayed when the input value exceeds the maximum value length, you would use the key org.apache.myfaces.trinidad.validator.LengthValidator. MAXIMUM_detail, as shown in Section B.3.8, "af:validateLength."

	
Create or open a message bundle. For procedures and information about message bundles, see Chapter 29, "Internationalizing and Localizing Pages."

	
Note:

If you are creating a new bundle, you will need to register it with the application.

	
Add the key override to the message bundle. For example, to override the message for the input value length, you might add:

org.apache.myfaces.trinidad.validator.LengthValidator.MAXIMUM_detail: Your value exceeds the limit.

19.3.3 How to Display Component Messages Inline

Instead of having a component display its messages in the note window, use the message component to display the messages inline on the page. In order for the message component to display the correct messages, associate it with a specific component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To display component messages inline:

	
In the Structure window, select the component that will display its messages using the message component. If not already set, enter an ID for the component.

	
In the Component Palette, from the Text and Selection panel, drag a Message and drop it where you want the message to be displayed on the page.

	
Use the dropdown menu for the for attribute to select Edit.

	
In the Edit Property dialog, locate the component for which the message component will display messages. Only components that have their ID set are valid selections.

	
Note:

The message icon and message content that will be displayed are based on what was given when the FacesMessage object was created. Setting the messageType or message attributes on the message component causes the messageType or message attribute values to be displayed at runtime, regardless of whether or not an error has occurred. Only populate these attributes if you want the content to always be displayed when the page is rendered.

19.3.4 How to Display Global Messages Inline

Instead of displaying global messages in a popup window for the page, display them inline using the messages component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To display global messages inline:

	
In the Component Palette, from the Text and Selection panel, drag a Messages and drop it onto the page where you want the messages to be displayed.

	
In the Property Inspector set the following attributes:

	
globalOnly: By default, ADF Faces displays global messages (messages that are not associated with components) followed by individual component messages. If you want to display only global messages in the box, set this attribute to true. Component messages will continue to be displayed with the associated component.

	
inline: Set to true to show messages at the top of the page. Otherwise, messages will be displayed in a dialog.

19.4 Grouping Components with a Single Label and Message

By default, ADF Faces input and select components have built-in support for label and message display. If you want to group components and use a single label, wrap the components using the panelLabelAndMessage component.

For example, the File Explorer application collects telephone numbers using four separate inputText components; one for the area code, one for the exchange, one for the last four digits, and one for the extension. Because a single label is needed, the four inputText components are wrapped in a panelLabelAndMessage component, and the label value is set on that component. However, the input component for the extension requires an additional label, so an outputText component is used. Example 19-1 shows the JSF code for the panelLabelAndMessage component.

Example 19-1 panelLabelAndMessage Can Display a Single Label and Help Topic

<af:panelLabelAndMessage labelAndAccessKey="#{explorerBundle['help.telephone']}"
 helpTopicId="HELP_TELEPHONE_NUMBER"
 labelStyle="vertical-align: top;
 padding-top: 0.2em;">
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="4"
 columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:outputText value="#{explorerBundle['help.extension']}"/>
 <af:inputText simple="true" columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
</af:panelLabelAndMessage>

Figure 19-23 shows how the panelLabelAndMessage and nested components are displayed in a browser.

Figure 19-23 Examples Using the panelLabelAndMessage Component

[image: Examples using PanelLabelAndMessage]

The panelLabelAndMessage component also includes an End facet that can be used to display additional components at the end of the group. Figure 19-24 shows how the telephone number fields would be displayed if the End facet was populated with an outputText component.

Figure 19-24 End Facet in a panelLabelAndMessage Component

[image: End facet text]

Use a panelGroupLayout component within a panelLabelAndMessage component to group the components for the required layout. For information about using the panelGrouplayout component, see Section 9.12, "Grouping Related Items."

You set the simple attribute to true on each of the input components so that their individual labels are not displayed. However, you may want to set a value for the label attribute on each of the components for messaging purposes and for accessibility.

	
Tip:

If you have to use multiple panelLabelAndMessage components one after another, wrap them inside an af:panelFormLayout component, so that the labels line up properly. For information about using the panelFormLayout component, see Section 9.6, "Arranging Content in Forms."

Group and wrap components using the panelLabelAndMessage component. The panelLabelAndMessage component can be used to wrap any components, not just those that typically display messages and labels.

19.4.1 How to Group Components with a Single Label and Message

You use the panelLabelAndMessage component to group components and display a single label for that group.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.4, "Grouping Components with a Single Label and Message."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To arrange form input components with one label and message:

	
Add input or select components as needed to the page.

For each input and select component:

	
Set the simple attribute to true.

	
For accessibility reasons, set the label attribute to a label for the component.

	
In the Structure window, select the input and/or select components created in Step 1. Right-click the selection and choose Surround With > Panel Label And Message.

	
With the panelLabelAndMessage component selected, in the Property Inspector, set the following:

	
label: Enter the label text to be displayed for the group of components.

	
for: Use the dropdown menu to choose Edit. In the Edit Property dialog, select the ID of the child input component. If there is more than one input component, select the first component.

Set the for attribute to the first inputComponent to meet accessibility requirements.

If one or more of the nested input components is a required component and you want a marker to be displayed indicating this, set the showRequired attribute to true.

	
To place content in the End facet, drag and drop the desired component into the facet.

Because facets accept one child component only, if you want to add more than one child component, you must wrap the child components inside a container, such as a panelGroupLayout or group component.

	
Tip:

If the facet is not visible in the visual editor:
	
Right-click the panelLabelAndMessage component in the Structure window.

	
From the context menu, choose Facets - Panel Label And Message >facet name. Facets in use on the page are indicated by a checkmark in front of the facet name.

19.5 Displaying Help for Components

ADF Faces provides a framework that allows you to create and display three different types of help whose content comes from an external source, rather than as text configured on the component. Because it is not configured directly on the component, the content can be used by more than one component, saving time in creating pages and also allowing you to change the content in one place rather than everywhere the content appears.

The first type of external help provided by ADF Faces is Definition help. Like a standard tip, the content appears in a message box. However, instead of appearing when the user mouses over the component, Definition help provides a help icon (a blue circle with a question mark). When the user mouses over the icon, the content is displayed, as shown in Figure 19-25.

Figure 19-25 Definition Text for a Component

[image: Help text displayed for inputText component]

Table 19-1 shows the components that support Definition help.

Table 19-1 Components That Support Definition Help

	Supported Components	Help Icon Placement	Example
	
All input components, Select components, Choose Color, Choose Date, Query components

	
Before the label, or if no label exists, at the start of the field

	
[image: inputComponent with message]

	
Panel Header, PanelBox, Show Detail Header

	
End of header text

	
[image: panelHeader definition]

	
Panel Window, Dialog

	
Next to close icon in header

	[image: help icon in right corner]

	
Columns in table and tree

	
Below header text

	
[image: Definition in a column]

The second type of help is Instruction help. Where Instruction help is displayed depends on the component with which it is associated. The panelHeader and Search panel components display Instruction help within the header. Figure 19-26 shows how the text that typically is displayed as Definition help as shown in Figure 19-25 would be displayed as Instruction help within the panelHeader component.

Figure 19-26 Instruction Text for panelHeader

[image: Definition help]

All other components that support Instruction help display the text within a note window, as shown in Figure 19-27. Note that no help icon is displayed.

Figure 19-27 Instruction Text for a Component

[image: Instruction text displayed for input text component]

Table 19-2 shows the components that support Instruction help.

Table 19-2 Components That Support Instruction Help

	Supported Components	Help Placement	Example
	
Input components, Choose Color, Choose Date, Quick Query

	
Note window, on focus only

	
[image: inputComponent with instruction help]

	
Select components

	
Note window, on hover and focus

	
[image: panelHeader definition]

	
Panel Header, Panel Box, Query

	
Text below header text

	
[image: panelHeader with Instruction help]

The last type of help is External URL help. You provide a URL to a web page in an external application, and when the help icon is clicked, the web page opens in a separate browser window, as shown in Figure 19-28. Instead of clicking a help icon, you can use JavaScript to open a help window based on any client-based event.

Figure 19-28 External URL Help

[image: External URL help]

ADF Faces includes a variety of help providers. The ResourceBundleHelpProvider help provider allows you to create resource bundles that hold the help content. The ELHelpProvider help provider allows you to create XLIFF files that get converted into maps, or create a managed bean that contains a map of help text strings. You can use a combination of the different help providers. You can also create your own help provider class.

To create help for your application, do the following:

	
Determine the help provider(s) to use and then implement the required artifacts.

	
Register the help provider(s), specifying the prefix that will be used to access the provider's help. Each help provider has its own unique prefix, which is used as its identifier. A particular provider will be called to produce help only for help topic IDs that start with the prefix under which the provider is registered.

	
Have the UI components access the help contained in the providers by using the component's helpTopicId attribute. A helpTopicId attribute contains the following.

	
The prefix that is used by the provider of the help

	
The topic name

For example, the value of the helpTopicId attribute on the inputText component shown in Figure 19-27 might be RBHELP_FILE_NAME, where RBHELP is the resource bundle help providers prefix, and FILE_NAME is the help topic name.

19.5.1 How to Create Resource Bundle-Based Help

You can store help text within standard resource bundle property files and use the ResourceBundleHelpProvider class to deliver the content.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create resource bundle-based help:

	
Create a properties file that contains the topic ID and help text for each help topic. The topic ID must contain the following:

	
The prefix that will be used by this provider, for example, RBHELP.

	
The topic name, for example, TELEPHONE_NUMBER.

	
The help type, for example, DEFINITION.

For example, a topic ID might be RBHELP_TELEPHONE_NUMBER_DEFINITION.

	
Note:

All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.
UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-2), then both types of help will be displayed by the UI component.

Example 19-2 shows an example resource bundle with three topics.

Example 19-2 Resource Bundle Help

RBHELP_CUST_SERVICE_EMAIL_DEFINITION=For security reasons,
 we strongly discourage the submission of credit card numbers.
RBHELP_TELEPHONE_NUMBER_DEFINITION=We only support calling telephone numbers
 in the United States at this time.
RBHELP_TELEPHONE_NUMBER_INSTRUCTIONS=Enter a telephone number.

	
Note:

If you wish to use an external URL help type, create a subclass of the ResourceBundleHelpProvider class. For more information, see Step 3.

	
Register the resource bundle as a help provider in the adf-settings.xml file

To register the provider, from the META-INF directory, open the adf-settings.xml file, click the Source tab, and add the following elements:

	
<help-provider>: Use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the resource bundle.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter oracle.adf.view.rich.help.ResourceBundleHelpProvider.

	
<property>: Create as a child element to the <help-provider> element. The property defines the actual help source.

	
<property-name>: Create as a child element to the <property> element, and enter a name for the source, for example, baseName.

	
<value>: Create as a child element to the <property> element and enter the fully qualified class name of the resource bundle. For example, the qualified class name of the resource bundle used in the ADF Faces demo application is oracle.adfdemo.view.resource.DemoResources.

Example 19-3 shows how the resource bundle in Example 19-2 would be registered in the adf-settings.xml file.

Example 19-3 Registering a Resource Bundle as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="RBHELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ResourceBundleHelpProvider
 </help-provider-class>
 <property>
 <property-name>baseName</property-name>
 <value>oracle.adfdemo.view.resource.DemoResources</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

	
If you want to use External URL help, then you also must extend the ResourceBundleHelpProvider class and implement the getExternalUrl method. Example 19-4 shows an example method.

Example 19-4 Overriding the getExternalURL Method

protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {
 if (topicId == null)
 return null;
 if (topicId.contains("TOPICID_ALL") ||
 topicId.contains("TOPICID_DEFN_URL") ||
 topicId.contains("TOPICID_INSTR_URL") ||
 topicId.contains("TOPICID_URL"))
 return http://www.myURL.com;
 else
 return null;
 }

In Example 19-4, all the topics in the method return the same URL. You would have to create separate if statements to return different URLs.

If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 19.5.4, "How to Use JavaScript to Launch an External Help Window."

19.5.2 How to Create XLIFF-Based Help

You can store the help text in XLIFF XML files and use the ELHelpProvider class to deliver the content. This class translates the XLIFF file to a map of strings that will be used as the text in the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create XLIFF help:

	
Create an XLIFF file that defines your help text, using the following elements within the <body> tag:

	
<trans-unit>: Enter the topic ID. This must contain the prefix, the topic name, and the help type, for example, XLIFFHELP_CREDIT_CARD_DEFINITION. In this example, XLIFFHELP will become the prefix used to access the XLIFF file. CREDIT_CARD is the topic name, and DEFINITION is the type of help.

	
Note:

All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.
UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-5), then both types of help will be displayed by the UI component.

	
<source>: Create as a direct child of the <trans-unit> element and enter the help text.

	
<target>: Create as a direct child of the <trans-unit> element and leave it blank. This element is used to hold translated help text.

	
<note>: Create as a direct child of the <trans-unit> element and enter a description of the help text.

Example 19-5 shows an example of an XLIFF file that contains two topics.

Example 19-5 XLIFF Help

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="this" datatype="xml">
 <body>
 <trans-unit id="XLIFF_CREDIT_CARD_DEFINITION">
 <source>Credit Card Definition</source>
 <target/>
 <note>Credit Card definition text.</note>
 </trans-unit>
 <trans-unit id="XLIFF_CREDIT_CARD_INSTRUCTIONS">
 <source>Credit Card Instructions</source>
 <target/>
 <note>Credit card instruction text.</note>
 </trans-unit>
 </body>
 </file>
</xliff>

	
Register XLIFF as a help provider in the adf-settings.xml file.

To register the provider, from the META-INF directory, open the adf-settings.xml file and add the following elements:

	
<help-provider>: Use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the XLIFF file.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter oracle.adf.view.rich.help.ELHelpProvider.

	
<property>: Create as a child element to the <help-provider> element. The property values define the actual help source.

	
<property-name>: Create as a child element to the <property> element and enter a name for the help, for example, helpSource.

	
<value>: Create as a child element to the <property> element and enter an EL expression that resolves to the XLIFF file, wrapped in the adfBundle EL function, for example, #{adfBundle['project1xliff.view.Project1XliffBundle']}.

Example 19-6 shows how the XLIFF file in Example 19-5 would be registered in the adf-settings.xml file.

Example 19-6 Registering an XLIFF File as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="XLIFF">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{adfBundle['project1xliff.view.Project1XliffBundle']}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

19.5.3 How to Create Managed Bean Help

To implement managed bean help, create a managed bean that contains a map of strings that will be used as the text in the help. Managed bean help providers use the ELHelpProvider class to deliver the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create managed bean help:

	
Create a managed bean that returns a map of strings, each of which is the ID and content for a help topic, as shown in Example 19-7.

Example 19-7 Managed Bean that Returns a Map of Help Text Strings

public class ELHelpProviderMapDemo
{
 public ELHelpProviderMapDemo()
 {
 }

 /* To use the ELHelpProvider, the EL expression must point to a Map, otherwise
 * you will get a coerceToType error. */

 public Map<String, String> getHelpMap()
 {
 return _HELP_MAP;
 }

 static private final Map<String, String> _HELP_MAP =
 new HashMap<String, String>();
 static
 {
 _HELP_MAP.put("MAPHELP_CREDIT_CARD_DEFINITION",
 "Map value for credit card definition");
 _HELP_MAP.put("MAPHELP_CREDIT_CARD_INSTRUCTIONS",
 "Map value for credit card instructions");
 _HELP_MAP.put("MAPHELP_SHOPPING_DEFINITION",
 "Map value for shopping definition");
 _HELP_MAP.put("MAPHELP_SHOPPING_INSTRUCTIONS",
 "Map value for shopping instructions");
 }

}

The first string must contain the prefix, the topic name, and the help type, for example, MAPHELP_CREDIT_CARD_DEFINITION. In this example, MAPHELP will become the prefix used to access the bean. CREDIT_CARD is the topic name, and DEFINITION is the type of help. The second string is the help text.

	
Note:

All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.
UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-7), then both types of help will be displayed by the UI component.

	
Note:

If you wish to use external URL help, create a subclass of the ELHelpProvider class. For more information, see Step 4.

	
Register the managed bean in the faces-config.xml file. Example 19-8 shows the bean shown in Example 19-7 registered in the faces-config.xml file.

Example 19-8 Managed Bean Registration in the faces-config.xml File.

<managed-bean>
 <managed-bean-name>helpTranslationMap</managed-bean-name>
 <managed-bean-class>
 oracle.adfdemo.view.webapp.ELHelpProviderMapDemo
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

For more information about using and registering managed beans, see Section 3.6, "Creating and Using Managed Beans."

	
Register the managed bean as a help provider in the adf-settings.xml file.

To register the provider, from the META-INF directory, open the adf-settings.xml file and add the following elements:

	
<help-provider>: Create and use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter the fully qualified class path to the class created in Step 1.

	
<property>: Create as a child element to the <help-provider> element. The property defines the map of help strings on the managed bean.

	
<property-name>: Create as a child element to the <property> element and enter a property name, for example helpSource.

	
<value>: Create as a child element to the <property> element and enter an EL expression that resolves to the help map on the managed bean.

Example 19-9 shows how the bean in Example 19-8 would be registered in the adf-settings.xml file.

Example 19-9 Registering a Managed Bean as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MAPHELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{helpTranslationMap.helpMap}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

	
If you want to use External URL help with the managed bean provider, then extend the ELHelpProvider class and implement the getExternalUrl method. Example 19-10 shows an example method.

Example 19-10 Overriding the getExternalURL Method

protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {
 if (topicId == null)
 return null;
 if (topicId.contains("TOPICID_ALL") ||
 topicId.contains("TOPICID_DEFN_URL") ||
 topicId.contains("TOPICID_INSTR_URL") ||
 topicId.contains("TOPICID_URL"))
 return http://www.myURL.com;
 else
 return null;
 }

In Example 19-10, all the topics in the method return the same URL. You must create separate if statements to return different URLs.

If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 19.5.4, "How to Use JavaScript to Launch an External Help Window."

19.5.4 How to Use JavaScript to Launch an External Help Window

If you want to use external URL help, by default, the user clicks a help icon to launch the help window. Instead, you can use JavaScript and a client event listener for a specific component's event to launch the help window.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To use JavaScript to launch an external help window:

	
Create a JavaScript function that uses the launchHelp API to launch a specific URL or page.

Example 19-11 shows the launchHelp function used to launch the helpClient.jspx.

Example 19-11 JavaScript to Launch an External Help Page

<af:resource type="javascript">
 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

	
Drag and drop a component whose client event will cause the function to be called. You must set the clientId on this component to true.

	
In the Component Palette, from the Operations panel, drag and drop a Client Listener as a child to the component created in Step 2. Configure the clientListener to invoke the function created in Step 1. For more information about using the clientListener tag, see Section 4.2, "Listening for Client Events."

Example 19-12 shows the code used to have a click event on a commandToolbarButton component launch the helpClient.jspx page.

Example 19-12 Page Code Used to Launch an External Help Window

<af:toolbar id="tb1">
 <af:commandToolbarButton text="Launch help window" id="ctb1"
 icon="/images/happy_computer.gif">
 <af:clientListener method="launchHelp" type="click"/>
 </af:commandToolbarButton>
</af:toolbar>
<af:resource type="javascript">
 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

19.5.5 How to Create a Java Class Help Provider

Instead of using one of the ADF Faces help providers, create your own. Create the actual text in some file that your help provider will be able to access and display. To create a Java class help provider, extend the HelpProvider class. For more information about this class, refer to the ADF Faces Javadoc.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create a Java class help provider:

	
Create a Java class that extends oracle.adf.view.rich.help.HelpProvider.

	
Create a public constructor with no parameters. You also must implement the logic to access and return help topics.

	
This class will be able to access properties and values that are set in the adf-settings.xml file when you register this provider. For example, the ADF Faces providers all use a property to define the actual source of the help strings. To access a property in the adf-settings.xml file, create a method that sets a property that is a String. For example:

public void setMyCustomProperty(String arg)

	
To register the provider, from the META-INF directory, open the adf-settings.xml file and add the following elements:

	
<help-provider>: Use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted. All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter the fully qualified class path to the class created in Step 1.

	
<property>: Create as a child element to the <help-provider> element and use it to define the property that will be used as the argument for the method created in Step 3.

	
<property-name>: Create as a child element to the <property> element and enter the property name.

	
<value>: Create as a child element to the <property> element and enter the value for the property.

Example 19-13 shows an example of a help provider class registered in the adf-settings.xml file.

Example 19-13 Registering a Help Provider Class

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MYAPP">
 <help-provider-class>
 oracle.adfdemo.view.webapp.MyHelpProvider
 </help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

19.5.6 How to Access Help Content from a UI Component

Use the HelpTopicId attribute on components to access and display the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To access help from a component:

	
In the Structure window, select the component to which you want to add help. For a list of components that support help, see Table 19-1 and Table 19-2.

	
In the Property Inspector, expand the Appearance section, and enter a value for the helpTopicId attribute. This should include the prefix to access the correct help provider and the topic name. It should not include the help type, as all help types registered with that name will be returned and displayed, for example:

<af:inputText label="Credit Card" helpTopicId="XLIFF_CREDIT_CARD"/>

This example will return both the definition and instruction help defined in the XLIFF file in Example 19-5.

	
If you want to provide help for a component that does not support help, you can instead add an outputText component to display the help text, and then bind that component to the help provider, for example:

<af:outputFormatted
 value="#{adfFacesContext.helpProvider['XLIFF_CREDIT_CARD'].instructions}"/>

This will access the instruction help text.

19.5.7 What You May Need to Know About Combining Different Message Types

When you add help messages to input components that may already display messages for validation and conversion, ADF Faces displays the messages in the following order within the note window:

	
Validation and conversion error messages.

	
Validation and conversion hints.

	
For input and select components only, Instruction help. For panelHeader components, Instruction help is always displayed below the header.

	
Value for shortDesc attribute.

Figure 19-29 shows an inputDate component that contains a converter, instruction help, and a tip message.

Figure 19-29 Different Message Types Can Be Displayed at One Time

[image: Different message types displayed]

6 Handling Events

This chapter describes how to handle events on the server as well as on the client.

This chapter includes the following sections:

	
Section 6.1, "About Events and Event Handling"

	
Section 6.2, "Using ADF Faces Server Events"

	
Section 6.3, "Using JavaScript for ADF Faces Client Events"

	
Section 6.4, "Sending Custom Events from the Client to the Server"

	
Section 6.5, "Executing a Script Within an Event Response"

	
Section 6.6, "Using ADF Faces Client Behavior Tags"

	
Section 6.7, "Using Polling Events to Update Pages"

6.1 About Events and Event Handling

In traditional JSF applications, event handling typically takes place on the server. JSF event handling is based on the JavaBeans event model, where event classes and event listener interfaces are used by the JSF application to handle events generated by components.

Examples of events in an application include clicking a button or link, selecting an item from a menu or list, and changing a value in an input field. When a user activity occurs such as clicking a button, the component creates an event object that stores information about the event and identifies the component that generated the event. The event is also added to an event queue. At the appropriate time in the JSF lifecycle, JSF tells the component to broadcast the event to the corresponding registered listener, which invokes the listener method that processes the event. The listener method may trigger a change in the user interface, invoke backend application code, or both.

Like standard JSF components, ADF Faces command components deliver ActionEvent events when the components are activated, and ADF Faces input and select components deliver ValueChangeEvent events when the component local values change.

For example, in the File Explorer application, the File Menu contains a submenu whose commandMenuItem components allow a user to create a new file or folder. When users click the Folder commandMenuItem, an ActionEvent is invoked. Because the EL expression set as the value for the component's actionListener attribute resolves to the createNewDirectory method on the headerManager managed bean, that method is invoked and a new directory is created.

	
Note:

Any ADF Faces component that has built-in event functionality must be enclosed in the form tag.

While ADF Faces adheres to standard JSF event handling techniques, it also enhances event handling in two key ways by providing:

	
Ajax-based functionality (partial page rendering)

	
A client-side event model

6.1.1 Events and Partial Page Rendering

Unlike standard JSF events, ADF Faces events support Ajax-style partial postbacks to enable partial page rendering (PPR). Instead of full page rendering, ADF Faces events and components can trigger partial page rendering, that is, only portions of a page refresh upon request.

Certain components are considered event root components. Event root components determine boundaries on the page, and so allow the lifecycle to run just on components within that boundary (for more information about this aspect of the lifecycle, see Section 5.3, "Using the Optimized Lifecycle"). When an event occurs within an event root, only those components that are children to the root are refreshed on the page. An example of an event root component is a popup. When an event happens within a popup, only the popup and its children are rerenderd, and not the whole page.

Additionally, certain events indicate a specific component as an event root component. For example, the disclosure event sent when a expanding or collapsing a showDetail component (see Section 9.8, "Displaying and Hiding Contents Dynamically"), indicates that the showDetail component is a root. The lifecycle is run only on the showDetail component (and any child components or other components that point to this as a trigger), and only they are rerendered when it is expanded or collapsed.

Table 6-1 shows the all event types in ADF Faces, and whether or not the source component is an event root.

Table 6-1 Events and Event Root Components

	Event Type	Component Trigger	Is Event Root
	
action

	
All command components

	
false

	
dialog

	
dialog

	
false

	
disclosure

	
showDetail, showDetailHeader

	
true

	
disclosure

	
showDetailItem

	
true

	
focus

	
tree, treeTable

	
true

	
launch

	
All command components

	
NA

	
launchPopup

	
inputListOfValues, inputComboboxListOfValues

	
true

	
load

	
document

	
NA

	
poll

	
poll

	
true

	
popupOpened

	
popup

	
NA

	
popupOpening

	
popup

	
NA

	
popupClosed

	
popup

	
NA

	
propertyChange

	
All components

	
NA

	
queryEvent

	
query, quickQuery

	
true

	
queryOperation

	
query, quickQuery

	
true

	
rangeChange

	
table

	
NA

	
regionNavigation

	
region

	
NA

	
return

	
All command components

	
true

	
returnPopupData

	
inputListOfValues, inputComboboxListOfValues

	
true

	
returnPopup

	
inputListOfValues, inputComboboxListOfValues

	
true

	
rowDisclosure

	
tree, treeTable

	
true

	
sort

	
treeTable, table

	
true

	
valueChange

	
All input and select components (components that implement EditableValueHolder)

	
true

	
Tip:

If components outside of the event root need to be processed when the event root is processed, then you must set the partialTrigger attribute on those components to the ID of the event root component. For more information, see Section 8.2, "Enabling Partial Page Rendering Declaratively."

6.1.2 Client-Side Event Model

In addition to server-side action and value change events, ADF Faces components also invoke client-side action and value change events, and other kinds of server and client events. Some events are generated by both server and client components (for example, selection events); some events are generated by server components only (for example, launch events); and some events are generated by client components only (for example, load events).

By default, most client events are propagated to the server. Changes to the component state are automatically synchronized back to the server to ensure consistency of state, and events are delivered, when necessary, to the server for further processing. However, you can configure your event so that it does not propagate.

In addition, any time you register a client-side event listener on the server-side Java component, the ADF Faces framework assumes that you require a JavaScript component, so a client-side component is created.

Client-side JavaScript events can come from several sources: they can be derived automatically from DOM events, from property change events, or they can be manually created during the processing of other events.

6.2 Using ADF Faces Server Events

ADF Faces provides a number of server-side events. Table 6-2 lists the events generated by ADF Faces components on the server, and the components that trigger them.

Table 6-2 ADF Faces Server Events

	Event	Triggered by Component...
	
ActionEvent

	
All command components. For more information, see Chapter 20, "Working with Navigation Components."

	
ActiveDataEvent

	
Used to update components based on events. For more information see the "Using the Active Data Service" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
AttributeChangeEvent

	
All input and select components (components that implement EditableValueHolder). For more information, see Chapter 11, "Using Input Components and Defining Forms."

	
CalendarActivity DurationChangeEvent

CalendarActivityEvent

CalendarDisplay ChangeEvent

CalendarEvent

	
The Calendar component. For more information, see Chapter 17, "Using a Calendar Component."

	
CarouselSpinEvent

	
The carousel component. For more information, see Section 18.6, "Displaying Images in a Carousel."

	
ColumnSelectionEvent

ColumnVisibility ChangeEvent

	
The table and treeTable components. For more information, see Chapter 12, "Using Tables and Trees."

	
ContextInfoEvent

	
The contextInfo component. For more information, see Section 15.5, "Displaying Contextual Information in Popups."

	
DialogEvent

	
The dialog component. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
DisclosureEvent

	
The showDetail, showDetailHeader, showDetailItem components. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically" and Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

	
DropEvent

	
Components that support drag and drop. For more information, see Chapter 33, "Adding Drag and Drop Functionality."

	
FocusEvent *

	
The tree and treeTable components. For more information, see Chapter 12, "Using Tables and Trees."

	
ItemEvent

	
The panelTabbed component. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels." Also, the navigationPane component. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."

	
LaunchEvent

	
All command components. For more information, see Chapter 20, "Working with Navigation Components."

	
LaunchPopupEvent

	
The inputListOfValues and inputComboboxListOfValues components. For more information, see Chapter 14, "Using Query Components."

	
LoadEvent **

	
The document component. For more information, see Section 9.2.5, "How to Configure the document Tag."

	
PollEvent

	
The poll component. For more information, see Section 6.7, "Using Polling Events to Update Pages"

	
PopupCanceledEvent

PopupFetchEvent

	
The popup component. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
QueryEvent

QueryOperationEvent

	
The query and quickQuery components. For more information, see Chapter 14, "Using Query Components."

	
RangeChangeEvent

	
The table component. For more information, see Chapter 12, "Using Tables and Trees."

	
RegionNavigationEvent

	
The region component. For more information, see the "Using Task Flows as Regions" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
ReturnEvent

	
All command components. For more information, see Chapter 20, "Working with Navigation Components."

	
ReturnPopupEvent

	
The inputListOfValues and inputComboboxListOfValues components. For more information, see Chapter 14, "Using Query Components."

	
ReturnPopupDataEvent

	
The popup component. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
RowDisclosureEvent

	
The tree and treeTable components. For more information, see Chapter 12, "Using Tables and Trees."

	
SelectionEvent

	
The table, tree, and treeTable components. For more information, see Chapter 12, "Using Tables and Trees."

	
SortEvent

	
The table and treeTable components. For more information, see Chapter 12, "Using Tables and Trees."

	
ValueChangeEvent

	
All input and select components (components that implement EditableValueHolder). For more information, see Chapter 11, "Using Input Components and Defining Forms."

	
WindowLifecycleEvent

	
Delivered when the LifecycleState of a window changes. For more information, see the ADF Faces JavaDoc.

	
WindowLifecycle NavigateEvent

	
Delivered when the current window is unloaded in order to navigate to a new location. For more information, see the ADF Faces JavaDoc.

* This focus event is generated when focusing in on a specific subtree, which is not the same as a client-side keyboard focus event.

** The LoadEvent event is fired after the initial page is displayed (data streaming results may arrive later).

6.2.1 How to Handle Server-Side Events

All server events have event listeners on the associated component(s). You need to create a handler that processes the event and then associate that handler code with the listener on the component.

For example, in the File Explorer application, a selection event is fired when a user selects a row in the table. Because the table's selectionListener attribute is bound to the tableSelectFileItem handler method on the TableContentView.java managed bean, that method is invoked in response to the event.

Before you begin

It may be helpful to have an understanding of server-side events. For more information, see Section 6.2, "Using ADF Faces Server Events."

To handle server-side events:

	
In a managed bean (or the backing bean for the page that will use the event listener), create a public method that accepts the event (as the event type) as the only parameter and returns void. Example 6-1 shows the code for the tableSelectFileItem handler. (For information about creating and using managed beans, see Section 3.6, "Creating and Using Managed Beans.")

Example 6-1 Event Listener Method

 public void tableSelectFileItem(SelectionEvent selectionEvent)
 {
 FileItem data = (FileItem)this.getContentTable().getSelectedRowData();
 setSelectedFileItem(data);
 }

	
Tip:

If the event listener code is likely to be used by more than one page in your application, consider creating an event listener implementation class that all pages can access. All server event listener class implementations must override a processEvent() method, where Event is the event type.
For example, the LaunchListener event listener accepts an instance of LaunchEvent as the single argument. In an implementation, you must override the event processing method, as shown in the following method signature:

public void processLaunch (LaunchEvent evt)
{
 // your code here
}

	
To register an event listener method on a component, in the Structure window, select the component that will invoke the event. In the Property Inspector, use the dropdown menu next to the event listener property, and choose Edit.

	
Use the Edit Property dialog to select the managed bean and method created in Step 1.

Example 6-2 shows sample code for registering a selection event listener method on a table component.

Example 6-2 Registering an Event Listener Method

<af:table id="folderTable" var="file"
. . .
 rowSelection="single"
 selectionListener="#{explorer.tableContentView.tableSelectFileItem}"
. . .
</af:table>

6.3 Using JavaScript for ADF Faces Client Events

Most components can also work with client-side events. Handling events on the client saves a roundtrip to the server. When you use client-side events, instead of having managed beans contain the event handler code, you use JavaScript, which can be contained either on the calling page or in a JavaScript library.

By default, client events are processed only on the client. However, some event types are also delivered to the server, for example, AdfActionEvent events, which indicate a button has been clicked. Other events may be delivered to the server depending on the component state. For example, AdfValueChangeEvent events will be delivered to the server when the autoSubmit attribute is set to true. You can cancel an event from being delivered to the server if no additional processing is needed. However, some client events cannot be canceled. For example, because the popupOpened event type is delivered after the popup window has opened, this event delivery to the server cannot be canceled.

	
Performance Tip:

If no server processing is needed for an event, consider canceling the event at the end of processing so that the event does not propagate to the server. For more information, see Section 6.3.5, "How to Prevent Events from Propagating to the Server."

Table 6-3 lists the events generated by ADF Faces client components, whether or not events are sent to the sever, whether or not the events are cancelable, and the components that trigger the events.

Table 6-3 ADF Faces Client Events

	Event Class	Event Type	Propagates to Server	Can Be Canceled	Triggered by Component
	
AdfActionEvent

	
action

	
Yes

	
Yes

	
All command components

	
AdfBusyStateEvent

	
busyState

	
No

	
No

	
Triggered by the page

	
AdfCarouselSpinEvent

	
event

	
Yes

	
No

	
carousel

	
AdfColumnSelectionEvent

	
event

	
Yes

	
Yes

	
table, treeTable

	
AdfComponentEvent

	
load

	
Yes

	
Yes

	
document

After the document's contents have been displayed on the client, even when PPR navigation is used. It does not always correspond to the onLoad DOM event.

	
AdfComponentFocusEvent

	
	
No

	
Yes

	
Any component that can receive focus

	
AdfDialogEvent

	
event

	
Yes

	
Yes

	
dialog

When user selects the OK or Cancel button in a dialog

	
AdfDisclosureEvent

	
event

	
Yes

	
Yes

	
panelBox, region, showDetail, showDetailHeader, showDetailItem

When the disclosure state is toggled by the user

	
AdfDomComponentEvent

	
inlineFrameLoad

	
Yes

	
Yes

	
inlineFrame

When the internal iframe fires its load event.

	
AdfDropEvent

	
drop

	
Yes

	
No

	
Any component that supports drag and drop

	
AdfFocusEvent

	
focus

	
Yes

	
Yes

	
tree, treeTable

	
AdfItemEvent

	
item

	
Yes

	
Yes

	
commandNavigationItemshowDetailItem

	
AdfLaunchPopupEvent

	
launch

	
Yes

	
Yes

	
inputListOfValues, inputComboboxListOfValues

	
AdfPollEvent

	
poll

	
Yes

	
Yes

	
poll

	
AdfPopupCanceledEvent

	
popupCanceled

	
Yes

	
Yes

	
popup

After a popup is unexpectedly closed or the cancel method is invoked

	
AdfPopupClosedEvent

	
popupClosed

	
No

	
No

	
popup

After a popup window or dialog is closed

	
AdfPopupOpenedEvent

	
popupOpened

	
No

	
No

	
popup

After a popup window or dialog is opened

	
AdfPopupOpeningEvent

	
popupOpening

	
No

	
Yes

	
popup

Prior to opening a popup window or dialog

	
AdfPropertyChangeEvent

	
propertyChange

	
No

	
No

	
All components

	
AdfQueryEvent

	
event

	
Yes

	
Yes

	
query, quickQuery

Upon a query action (that is, when the user clicks the search icon or search button)

	
AdfQueryOperationEvent

	
event

	
Yes

	
Yes

	
query, quickQuery

	
AdfReturnEvent

	
returnEvent

	
Yes

	
Yes

	
All command components

	
AdfReturnPopupDataEvent

	
launchEvent

	
Yes

	
Yes

	
inputListOfValues, inputComboboxListOfValues

	
AdfReturnPopupEvent

	
returnPopup

	
Yes

	
Yes

	
inputListOfValues, inputComboboxListOfValues

	
AdfRowDisclosureEvent

	
rowDisclosure

	
Yes

	
Yes

	
tree, treeTable

When the row disclosure state is toggled

	
AdfRowKeySetChangeEvent

	
selection, rowDisclosure

	
Always for disclosure event on a table. Yes, if there is a selection listener or a disclosure listener on the server.

	
Yes

	
table, treeTable, tree

	
AdfSelectionEvent

	
selection

	
Yes

	
Yes

	
tree, treeTable, table

When the selection state changes

	
AdfSortEvent

	
sort

	
Yes

	
Yes

	
treeTable, table

When the user sorts the table data

	
AdfValueChangeEvent

	
valueChange

	
Yes

	
Yes

	
All input and select components (components that implement EditableValueHolder)

When the value of an input or select component is changed

ADF Faces also supports client keyboard and mouse events, as shown in Table 6-4.

Table 6-4 Keyboard and Mouse Event Types Supported

	Event Type	Event Fires When...
	
click

	
User clicks a component

	
dblclick

	
User double-clicks a component

	
mousedown

	
User moves mouse down on a component

	
mouseup

	
User moves mouse up on a component

	
mousemove

	
User moves mouse while over a component

	
mouseover

	
Mouse enters a component

	
mouseout

	
Mouse leaves a component

	
keydown

	
User presses key down while focused on a component

	
keyup

	
User releases key while focused on a component

	
keypress

	
When a successful keypress occurs while focused on a component

	
focus

	
Component gains keyboard focus

	
blur

	
Component loses keyboard focus

	
Best Practice:

Keyboard and mouse events wrap native DOM events using the AdfUIInputEvent subclass of the AdfBaseEvent class, which provides access to the original DOM event and also offers a range of convenience functions for retrieval of key codes, mouse coordinates, and so on. The AdfBaseEvent class also accounts for browser differences in how these events are implemented. Consequently, you must avoid invoking the getNativeEvent() method on the directly, and instead use the AdfUIInputEvent API.

The clientListener tag provides a declarative way to register a client-side event handler script on a component. The script will be invoked when a supported client event type is fired. Example 6-3 shows an example of a JavaScript function associated with an action event.

Example 6-3 clientListener Tag

<af:commandButton id="button0"
 text="Do something in response to an action">
 <af:clientListener method="someJSMethod" type="action"/>
</af:commandButton>

	
Tip:

Use the clientListener tag instead of the component's JavaScript event properties.

All ADF Faces components support the JSF 2.0 client behavior API. Client events on ADF Faces components are also exposed as client behaviors. Client behaviors tags (like f:ajax) allow you to declaratively attach JavaScript to a component, which will then execute in response to a client behavior. For example, Example 6-4 shows the f:ajax tag attached to an inputText component. This tag will cause the outputText component to render when the change client event occurs on the inputText component.

Example 6-4 Using the f:ajax Client Behavior Tag

af:inputText ...>
 <f:ajax name="change" render="ot1" execute="@this" />
</af:inputText>
<af:outputText id="ot1" ... />

6.3.1 How to Use Client-Side Events

To use client-side events, you need to first create the JavaScript that will handle the event. You then use a clientListener tag.

Before you begin

It may be helpful to have an understanding of client-side events. For more information, see Section 6.3, "Using JavaScript for ADF Faces Client Events."

To use client-side events:

	
Create the JavaScript event handler function. For information about creating JavaScript, see Section 4.3, "Adding JavaScript to a Page." Within that functionality, you can add the following:

	
Locate a client component on a page

If you want your event handler to operate on another component, you must locate that component on the page. For example, in the File Explorer application, when users choose the Give Feedback menu item in the Help menu, the associated JavaScript function has to locate the help popup dialog in order to open it. For more information about locating client components, see Section 4.5, "Locating a Client Component on a Page."

	
Return the original source of the event

If you have more than one of the same component on the page, your JavaScript function may need to determine which component issued the event. For example, say more than one component can open the same popup dialog, and you want that dialog aligned with the component that called it. You must know the source of the AdfLaunchPopupEvent in order to determine where to align the popup dialog. For more information, see Section 6.3.2, "How to Return the Original Source of the Event."

	
Add client attributes

It may be that your client event handler will need to work with certain attributes of a component. For example, in the File Explorer application, when users choose the About menu item in the Help menu, a dialog launches that allows users to provide feedback. The function used to open and display this dialog is also used by other dialogs, which may need to be displayed differently. Therefore, the function needs to know which dialog to display along with information about how to align the dialog. This information is carried in client attributes. Client attributes can also be used to marshall custom server-side attributes to the client. For more information, see Section 6.3.3, "How to Use Client-Side Attributes for an Event."

	
Cancel propagation to the server

Some of the components propagate client-side events to the server, as shown in Table 6-3. If you do not need this extra processing, then you can cancel that propagation. For more information, see Section 6.3.5, "How to Prevent Events from Propagating to the Server."

	
Once you create the JavaScript function, you must add an event listener that will call the event method.

	
Note:

Alternatively, you can use a JSF 2.0 client behavior tag (such as f:ajax) to respond to the client event, as all client events on ADF Faces components are also exposed as client behaviors. For more information, see the Java EE 6 tutorial (http://download.oracle.com/javaee/index.html)

	
Select the component to invoke the JavaScript, and in the Property Inspector, set ClientComponent to true.

	
In the Component Palette, from the Listeners group of the Operations panel, drag a Client Listener and drop it as a child to the selected component.

	
In the Insert Client Listener dialog, enter the method and select the type for the JavaScript function.

The method attribute of the clientListener tag specifies the JavaScript function to call when the corresponding event is fired. The JavaScript function must take a single parameter, which is the event object.

The type attribute of the clientListener tag specifies the client event type that the tag will listen for, such as action or valueChange. Table 6-3 lists the ADF Faces client events.

The type attribute of the clientListener tag also supports client event types related to keyboard and mouse events. Table 6-4 lists the keyboard and mouse event types.

Example 6-5 shows the code used to invoke the showHelpFileExplorerPopup function from the Explorer.js JavaScript file.

Example 6-5 clientListener Tags on JSF Page

<af:commandMenuItem id="feedbackMenuItem"
 text="#{explorerBundle['menuitem.feedback']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showHelpFileExplorerPopup"
 type="action"/>
</af:commandMenuItem>

	
Add any attributes required by the function by dragging a Client Attribute from the Operations panel of the Component Palette, and dropping it as a child to the selected component. Enter the name and value for the attribute in the Property Inspector. Example 6-6 shows the code used to set attribute values for the showAboutFileExplorerPopup function.

Example 6-6 Adding Attributes

 <af:commandMenuItem id="aboutMenuItem"
 text="#{explorerBundle['menuitem.about']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showAboutFileExplorerPopup"
 type="action"/>
 <af:clientAttribute name="popupCompId" value=":fe:aboutPopup"/>
 <af:clientAttribute name="align" value="end_after"/>
 <af:clientAttribute name="alignId" value="aboutMenuItem"/>
 </af:commandMenuItem>

	
Best Practice:

Keyboard and mouse events wrap native DOM events using the AdfUIInputEvent subclass of the AdfBaseEvent class, which provides access to the original DOM event and also offers a range of convenience functions for retrieval of key codes, mouse coordinates, and so on. The AdfBaseEvent class also accounts for browser differences in how these events are implemented. Consequently, you must avoid invoking the getNativeEvent() method on the directly, and instead use the AdfUIInputEvent API.

6.3.2 How to Return the Original Source of the Event

The JavaScript method getSource() returns the original source of a client event. For example, the File Explorer application contains the showAboutFileExplorerPopup function shown in Example 6-7, that could be used by multiple events to set the alignment on a given popup dialog or window, using client attributes to pass in the values. Because each event that uses the function may have different values for the attributes, the function must know which source fired the event so that it can access the corresponding attribute values (for more about using client attributes, see Section 6.3.3, "How to Use Client-Side Attributes for an Event").

Example 6-7 Finding the Source Component of a Client Event

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 source.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

The getSource() method is called to determine the client component that fired the current focus event, which in this case is the popup component.

6.3.3 How to Use Client-Side Attributes for an Event

There may be cases when you want the script logic to cause some sort of change on a component. To do this, you may need attribute values passed in by the event. For example, the File Explorer application contains the showAboutFileExplorerPopup function shown in Example 6-8, that can be used to set the alignment on a given popup component, using client attributes to pass in the values. The attribute values are accessed by calling the getProperty method on the source component.

Example 6-8 Attribute Values Are Accessed from JavaScript

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 var aboutPopup = event.getSource().findComponent(popupCompId);
 aboutPopup.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

The values are set on the source component, as shown in Example 6-9.

Example 6-9 Setting Attributes on a Component

<af:commandMenuItem id="aboutMenuItem"
 text="#{explorerBundle['menuitem.about']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showAboutFileExplorerPopup"
 type="action"/>
 <af:clientAttribute name="popupCompId" value=":aboutPopup"/>
 <af:clientAttribute name="align" value="end_after"/>
 <af:clientAttribute name="alignId" value="aboutMenuItem"/>
</af:commandMenuItem>

Using attributes in this way allows you to reuse the script across different components, as long as they all trigger the same event.

6.3.4 How to Block UI Input During Event Execution

There may be times when you do not want the user to be able to interact with the UI while a long-running event is processing. For example, suppose your application uses a button to submit an order, and part of the processing includes creating a charge to the user's account. If the user were to inadvertently press the button twice, the account would be charged twice. By blocking user interaction until server processing is complete, you ensure no erroneous client activity can take place.

The ADF Faces JavaScript API includes the AdfBaseEvent.preventUserInput function. To prevent all user input while the event is processing, you can call the preventUserInput function, and a glass pane will cover the entire browser window, preventing further input until the event has completed a roundtrip to the server.

You can use the preventUserInput function only with custom events, events raised in a custom client script, or events raised in a custom client component's peer. Additionally, the event must propagate to the server. Example 6-10 shows how you can use preventUserInput in your JavaScript.

Example 6-10 Blocking UI Input

function queueEvent(event)
{
 event.cancel(); // cancel action event
 var source = event.getSource();

 var params = {};
 var type = "customListener";
 var immediate = true;
 var isPartial = true;
 var customEvent = new AdfCustomEvent(source, type, params, immediate);
 customEvent.preventUserInput();
 customEvent.queue(isPartial);
}

6.3.5 How to Prevent Events from Propagating to the Server

By default, some client events propagate to the server once processing has completed on the client. In some circumstances, it is desirable to block this propagation. For instance, if you are using a commandButton component to execute JavaScript code when the button is clicked, and there is no actionListener event listener on the server, propagation of the event is a waste of resources. To block propagation to the server, you call the cancel() function on the event in your listener. Once the cancel() function has been called, the isCanceled() function will return true.

Example 6-11 shows the showAboutFileExplorerPopup function, which cancels its propagation.

Example 6-11 Canceling a Client Event from Propagating to the Server

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 var aboutPopup = event.getSource().findComponent(popupCompId);
 aboutPopup.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

Canceling an event may also block some default processing. For example, canceling an AdfUIInputEvent event for a context menu will block the browser from showing a context menu in response to that event.

The cancel() function call will be ignored if the event cannot be canceled, which an event indicates by returning false from the isCancelable() function (events that cannot be canceled show "no" in the Is Cancelable column in Table 6-3). This generally means that the event is a notification that an outcome has already completed, and cannot be blocked. There is also no way to uncancel an event once it has been canceled.

6.3.6 How to Indicate No Response is Expected

There may be times when you do not expect the framework to handle the response for an event. For example, when exporting table content to a spreadsheet, you don't need to wait for r the call to return To let the framework know that no response is expected, you use the AdfBaseEvent.noResponseExpected() method.

6.3.7 What Happens at Runtime: How Client-Side Events Work

Event processing in general is taken from the browser's native event loop. The page receives all DOM events that bubble up to the document, and hands them to the peer associated with that piece of DOM. The peer is responsible for creating a JavaScript event object that wraps that DOM event, returning it to the page, which queues the event (for more information about peers and the ADF Faces architecture, see Chapter 4, "Using ADF Faces Client-Side Architecture").

The event queue on the page most commonly empties at the end of the browser's event loop once each DOM event has been processed by the page (typically, resulting in a component event being queued). However, because it is possible for events to be queued independently of any user input (for example, poll components firing their poll event when a timer is invoked), queueing an event also starts a timer that will force the event queue to empty even if no user input occurs.

The event queue is a First-In-First-Out queue. For the event queue to empty, the page takes each event object and delivers it to a broadcast() function on the event source. This loop continues until the queue is empty. It is completely legitimate (and common) for broadcasting an event to indirectly lead to queueing a new, derived event. That derived event will be broadcast in the same loop.

When an event is broadcast to a component, the component does the following:

	
Delivers the event to the peer's DispatchComponentEvent method.

	
Delivers the event to any listeners registered for that event type.

	
Checks if the event should be bubbled, and if so initiates bubbling. Most events do bubble. Exceptions include property change events (which are not queued, and do not participate in this process at all) and, for efficiency, mouse move events.

While an event is bubbling, it is delivered to the AdfUIComponent HandleBubbledEvent function, which offers up the event to the peer's DispatchComponentEvent function. Note that client event listeners do not receive the event, only the peers do.

Event bubbling can be blocked by calling an event's stopBubbling() function, after which the isBubblingStopped() function will return true, and bubbling will not continue. As with cancelling, you cannot undo this call.

	
Note:

Canceling an event does not stop bubbling. If you want to both cancel an event and stop it from bubbling, you must call both functions.

	
If none of the prior work has canceled the event, calls the AdfUIComponent.HandleEvent method, which adds the event to the server event queue, if the event requests it.

6.3.8 What You May Need to Know About Using Naming Containers

Several components in ADF Faces are NamingContainer components, such as pageTemplate, subform, table, and tree. When working with client-side API and events in pages that contain NamingContainer components, you should use the findComponent() method on the source component.

For example, because all components in any page within the File Explorer application eventually reside inside a pageTemplate component, any JavaScript function must use the getSource() and findComponent() methods, as shown in Example 6-12. The getSource() method accesses the AdfUIComponent class, which can then be used to find the component.

Example 6-12 JavaScript Using the findComponent() Method

function showPopup(event)
{
 event.cancel();
 var source = event.getSource();
 var popup = source.findComponent("popup");
 popup.show({align:"after_end", alignId:"button"});
}

When you use the findComponent() method, the search starts locally at the component where the method is invoked. For more information about working with naming containers, see Section 4.5, "Locating a Client Component on a Page."

6.4 Sending Custom Events from the Client to the Server

While the clientAttribute tag supports sending bonus attributes from the server to the client, those attributes are not synchronized back to the server. To send any custom data back to the server, use a custom event sent through the AdfCustomEvent class and the serverListener tag.

The AdfCustomEvent.queue() JavaScript method enables you to fire a custom event from any component whose clientComponent attribute is set to true. The custom event object contains information about the client event source and a map of parameters to include on the event. The custom event can be set for immediate delivery (that is, during the Apply Request Values phase), or non-immediate delivery (that is, during the Invoke Application phase).

For example, in the File Explorer application, after entering a file name in the search field on the left, users can press the Enter key to invoke the search. As Example 6-13 shows, this happens because the inputText field contains a clientListener that invokes a JavaScript function when the Enter key is pressed.

Example 6-13 clientListener Invokes JavaScript Function and Causes ServerLIstener to Be Invoked

//Code on the JSF page...
<af:inputText id="searchCriteriaName"
 value="#{explorer.navigatorManager.searchNavigator.
 searchCriteriaName}"
 shortDesc="#{explorerBundle['navigator.filenamesearch']}">
 <af:serverListener type="enterPressedOnSearch"
 method="#{explorer.navigatorManager.
 searchNavigator.searchOnEnter}"/>
 <af:clientListener type="keyPress"
 method="Explorer.searchNameHandleKeyPress"/>
</af:inputText>

//Code in JavaScript file...
Explorer.searchNameHandleKeyPress = function (event)
{
 if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
 {
 var source = event.getSource();
 AdfCustomEvent.queue(source,
 "enterPressedOnSearch",
 {},
 false);
 }
}

The JavaScript contains the AdfCustomEvent.queue method that takes the event source, the string enterPressedOnSearch as the custom event type, a null parameter map, and False for the immediate parameter.

The inputText component on the page also contains the following serverListener tag:

<af:serverListener type="enterPressedOnSearch"
 method="#{explorer.navigatorManager.
 searchNavigator.searchOnEnter}"/>

Because the type value enterPressedOnSearch is the same as the value of the parameter in the AdfCustomEvent.queue method in the JavaScript, the method that resolves to the method expression #{explorer.navigatorManager.searchNavigator.searchOnEnter} will be invoked.

6.4.1 How to Send Custom Events from the Client to the Server

To send a custom event from the client to the server, fire the client event using a custom event type, write the server listener method on a backing bean, and have this method process the custom event. Next, register the server listener with the component.

Before you begin

It may be helpful to have an understanding of sending custom events to the server. For more information, see Section 6.4, "Sending Custom Events from the Client to the Server."

To send custom events:

	
Create the JavaScript that will handle the custom event using the AdfCustomEvent.queue() method to provide the event source, custom event type, and the parameters to send to the server.

For example, the JavaScript used to cause the pressing of the Enter key to invoke the search functionality uses the AdfCustomEvent.queue method that takes the event source, the string enterPressedOnSearch as the custom event type, a null parameter map, and False for the immediate parameter, as shown in Example 6-14.

Example 6-14 Sample JavaScript for Custom Events

Explorer.searchNameHandleKeyPress = function (event)
{
 if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
 {
 var source = event.getSource();
 AdfCustomEvent.queue(source,
 "enterPressedOnSearch",
 {},
 false);
 }
}

	
Create the server listener method on a managed bean. This method must be public and take an oracle.adf.view.rich.render.ClientEvent object and return a void type. Example 6-15 shows the code used in the SearchNavigatorView managed bean that simply calls another method to execute the search and then refreshes the navigator.

Example 6-15 Server Listener Method for a Custom Client Event

 public void searchOnEnter(ClientEvent clientEvent)
 {
 doRealSearchForFileItem();

 // refresh search navigator
 this.refresh();
 }

	
Note:

The Java-to-JavaScript transformation can lose type information for Numbers, chars, Java Objects, arrays, and nonstring CharSequences. Therefore, if an object being sent to the server was initially on the server, you may want to add logic to ensure the correct conversion. See Section 6.4.3, "What You May Need to Know About Marshalling and Unmarshalling Data."

	
Register the clientListener by dragging a Client Listener from the Operations panel of the Component Palette, and dropping it as a child to the component that raises the event.

	
Note:

On the component that will fire the custom client event, the clientComponent attribute must be set to true to ensure that a client-side generated component is available.

	
In the Insert Client Listener dialog, enter the method and type for the JavaScript function. Be sure to include a library name if the script is not included on the page. The type can be any string used to identify the custom event, for example, enterPressedOnSearch was used in the File Explorer.

	
Register the server listener by dragging a Server Listener from the Operations panel of the Component Palette, and dropping it as a sibling to the clientListener tag.

	
In the Insert Server Listener dialog, enter the string used as the Type value for the client listener, as the value for this server listener, for example enterPressedOnSearch.

In the Property Inspector, for the method attribute, enter an expression that resolves to the method created in Step 2.

6.4.2 What Happens at Runtime: How Client and Server Listeners Work Together

At runtime, when the user initiates the event, for example, pressing the Enter key, the client listener script executes. This script calls the AdfCustomEvent.queue() method, and a custom event of the specified event type is queued on the input component. The server listener registered on the input component receives the custom event, and the associated bean method executes.

6.4.3 What You May Need to Know About Marshalling and Unmarshalling Data

Marshalling and unmarshalling is the process of converting data objects of a programming language into a byte stream and back into data objects that are native to the same or a different programming language. In ADF Faces, marshalling and unmarshalling refer to transformation of data into a suitable format so that it can be optimally exchanged between JavaScript on the client end and Java on the server end. When the client is browser-based, the two common strategies for marshalling are JavaScript Object Notation (JSON) and XML. ADF Faces uses a mix of both of these strategies, with the information sent from the server to the client mostly as JSON and information sent from the client to the server as XML (for more information about JSON, see http://www.json.org).

When you send information from JavaScript to Java, the JavaScript data objects are converted (marshalled) into XML, which is then parsed back or unmarshalled into Java objects at the server-side. For example, consider a JSF page that has a commandButton component whose ID is cmd. When a user clicks the commandButton component, the client must communicate to the server that an actionEvent has been fired by this specific commandButton. In the requestParameter map, the information is mapped with the key using the format event + . + id where id is the ID of the component. So the requestParameter map key for the commandComponent would be the XML string stored as the value of the key event.cmd.

The XML fragment after marshalling in this example would be:

<m xmlns="http:/oracle.com/richClient/comm"><k v="type"><s>action</s></k></m>

The m in the example means that this should be unmarshalled into a map. The k denotes the key and the value is of type String. On the server side, this XML fragment is parsed into a java.util.Map of one entry having type (java.lang.String) as the key and action (java.lang.String) as the value.

The unmarshalled information is grouped per client ID, stored in the request map, and used when the components are being decoded. So in this example, when the commandButton is decoded, it will check for the presence of any client events using its client ID (event.cmd) and then queue an action event if one is found (the decode behavior is implemented in the renderer hierarchy for commandButton component).

Table 6-5 shows the mapping between corresponding JavaScript and Java types.

Table 6-5 JavaScript to Java Type Map

	JavaScript Type	Java Type
	
Boolean

	
java.lang.Boolean

	
Number

	
java.lang.Double

	
String

	
java.lang.String

	
Date

	
java.util.Date

	
Array

	
java.util.ArrayList

	
Object

	
java.util.Map

Marshalling from Java to JavaScript happens mostly through JSON. This type of marshalling is straightforward as JSON is the object literal notation in JavaScript. The client-components usually have their properties encoded in JSON. Consider the following example:

new AdfRichCommandButton('demoTemplate:richComand'
 {'partialSubmit':true,'useWindow':false})

The second argument ({'partialSubmit':true,'useWindow':false}) is a JSON object. There is no additional unmarshalling step required at the browser end as JSON can directly be parsed into the JavaScript environment as an object.

Encoding for a table also uses JSON to pass push messages to the client. The following is an example of an envelope containing a single encoded push message:

[{'rKey':'0','type':'update','data':[{'val':'Active Data Every Second: on row 0:78','prop':'value','cInd':0},{'val':'Active Data Every Second: on row 0:78','prop':'value','cInd':1}]}]

The envelope is a JavaScript Array with only one object, which describes the message. This message contains information about the type of change, the actual value of the data, and so on, that is then used by the client-side table peer to update the table itself.

Table 6-6 shows the mapping between corresponding Java and JavaScript types.

Table 6-6 Java to JavaScript Type Map

	Java Type	JavaScript Type
	
java.lang.Boolean

	
Boolean

	
java.lang.Double

	
Number

	
java.lang.Integer

	
Number

	
java.lang.Float

	
Number

	
java.lang.Long

	
Number

	
java.lang.Short

	
Number

	
java.lang.Character

	
String

	
java.lang.CharSequence

	
String

	
java.util.Collection

	
Array

	
java.util.Date

	
Date

	
java.util.Map

	
Object

	
Array

	
Array

	
java.awt.Color

	
TrColor

Note that there could be some loss of information during the conversion process. For example, say you are using the following custom event to send the number 1 and the String test, as shown in the following example:

AdfCustomEvent.queue(event.getSource(), "something", {first:1, second:"test"});

In the server-side listener, the type of the first parameter would become a java.lang.Double because numbers are converted to Doubles when going from JavaScript to Java. However, it might be that the parameter started on the server side as an int, and was converted to a number when conversion from Java to JavaScript took place. Now on its return trip to the server, it will be converted to a Double.

6.5 Executing a Script Within an Event Response

Using the ExtendedRenderKitService class, you can add JavaScript to an event response, for example, after invoking an action method binding. It can be a simple message like sending an alert informing the user that the database connection could not be established, or a call to a function like hide() on a popup window to programatically dismiss a popup dialog.

For example, in the File Explorer application, when the user clicks the UpOneFolder navigation button to move up in the folder structure, the folder pane is repainted to display the parent folder as selected. The HandleUpOneFolder() method is called in response to clicking the UpOneFolder button event. It uses the ExtendedRenderKitService class to add JavaScript to the response.

Example 6-16 shows the UpOneFolder code in the page with the actionListener attribute bound to the HandleUpOneFolder() handler method which will process the action event when the button is clicked.

Example 6-16 Invoking a Method to Add JavaScript to a Response

<af:commandToolbarButton id="upOneFolder"
. . .
 actionListener="#{explorer.headerManager.handleUpOneFolder}"/>

Example 6-17 shows the handleUpOneFolder method that uses the ExtendedRenderKitService class.

Example 6-17 Adding JavaScript to a Response

public void handleUpOneFolder(ActionEvent actionEvent)
 {
 UIXTree folderTree =
 feBean.getNavigatorManager().getFoldersNavigator().getFoldersTreeComponent();
 Object selectedPath =
 feBean.getNavigatorManager().getFoldersNavigator().getFirstSelectedTreePath();

 if (selectedPath != null)
 {
 TreeModel model =
 _feBean.getNavigatorManager().getFoldersNavigator().getFoldersTreeModel();
 Object oldRowKey = model.getRowKey();
 try
 {
 model.setRowKey(selectedPath);
 Object parentRowKey = model.getContainerRowKey();
 if (parentRowKey != null)
 {
 folderTree.getSelectedRowKeys().clear();
 folderTree.getSelectedRowKeys().add(parentRowKey);
 // This is an example of how to force a single attribute
 // to rerender. The method assumes that the client has an optimized
 // setter for "selectedRowKeys" of tree.
 FacesContext context = FacesContext.getCurrentInstance();
 ExtendedRenderKitService erks =
 Service.getRenderKitService(context,
 ExtendedRenderKitService.class);
 String clientRowKey = folderTree.getClientRowKeyManager().
 getClientRowKey(context, folderTree, parentRowKey);
 String clientId = folderTree.getClientId(context);
 StringBuilder builder = new StringBuilder();
 builder.append("AdfPage.PAGE.findComponent('");
 builder.append(clientId);
 builder.append("').setSelectedRowKeys({'");
 builder.append(clientRowKey);
 builder.append("':true});");
 erks.addScript(context, builder.toString());
 }
 }
 finally
 {
 model.setRowKey(oldRowKey);
 }
 // Only really needed if using server-side rerendering
 // of the tree selection, but performing it here saves
 // a roundtrip (just one, to fetch the table data, instead
 // of one to process the selection event only after which
 // the table data gets fetched!)
 _feBean.getNavigatorManager().getFoldersNavigator().openSelectedFolder();
 }

 }

6.6 Using ADF Faces Client Behavior Tags

ADF Faces client behavior tags provide declarative solutions to common client operations that you would otherwise have to write yourself using JavaScript, and register on components as client listeners. By using these tags instead of writing your own JavaScript code to implement the same operations, you reduce the amount of JavaScript code that needs to be downloaded to the browser.

ADF Faces provides these client behavior tags that you can use in place of client listeners:

	
panelDashboardBehavior: Enables the runtime insertion of a child component into a panelDasboard component to appear more responsive. For details, see Section 9.7.1, "How to Use the panelDashboard Component."

	
insertTextBehavior: Enables a command component to insert text at the cursor in an inputText component. For details, see Section 11.3.2, "How to Add the Ability to Insert Text into an inputText Component."

	
richTextEditorInsertBehavior: Enables a command component to insert text (including preformatted text) at the cursor in a richTextEditor component. For details, see Section 11.8.2, "How to Add the Ability to Insert Text into a richTextEditor Component."

	
autoSuggestBehavior: Enables list of values components to show items in a dropdown list that match what the user is typing. For more information, see Section 13.1, "About List-of-Values Components."

	
showPopupBehavior: Enables a command component to launch a popup component. For details, see Section 15.3, "Declaratively Invoking a Popup."

	
showPrintablePageBehavior: Enables a command component to generate and display a printable version of the page. For details, see Section 34.2, "Displaying a Page for Print."

	
checkUncommittedDataBehavior: Enables a command component to display a warning when the immediate attribute is set to true and a user attempts to navigate away from the page. For details see Chapter 20, "Working with Navigation Components."

	
scrollComponentIntoViewBehavior: Enables a command component to jump to a named component when clicked. For details, see Section 6.6.1, "How to Use the scrollComponentIntoViewBehavior Tag."

	
Tip:

ADF Faces also provides a server-side scrollComponentIntoView API that can be used when the component that is to be scrolled to may not yet be rendered on the page.
For example, if you have a table and you want to be able to scroll to a specific row, that row may be out of view when the table is first rendered. You can use the scrollComponentIntoView API as part of the data fetch event. For more information, see the ADF Faces JavaDoc.

Client behavior tags cancel server-side event delivery automatically. Therefore, any actionListener or action attributes on the parent component will be ignored. This cannot be disabled. If you want to also trigger server-side functionality, you should use either a client-side event (see Section 6.3, "Using JavaScript for ADF Faces Client Events"), or add an additional client listener that uses AdfCustomEvent and af:serverListener to deliver a server-side event (see Section 6.4, "Sending Custom Events from the Client to the Server").

6.6.1 How to Use the scrollComponentIntoViewBehavior Tag

Use the scrollComponentIntoViewBehavior tag when you want the user to be able to jump to a particular component on a page. This action is similar to an anchor in HTML. For example, you may want to allow users to jump to a particular part of a page using a commandLink component. For the richTextEditor and inlineFrame components, you can jump to a subcomponent. For example, Figure 6-1 shows a richTextEditor component with a number of sections in its text. The command links below the editor allow the user to jump to specific parts of the text.

Figure 6-1 scrollComponentIntoViewBehavior Tag in an Editor

[image: scrollComponentIntoViewBehavior Tag in an Editor]

You can also configure the tag to have focus switched to the component to which the user has scrolled.

Before you begin:

It may be helpful to have an understanding of behavior tags. For more information, see Section 6.6, "Using ADF Faces Client Behavior Tags."

To use the scrollComponentIntoViewBehavior tag:

	
Create a command component that the user will click to jump to the named component. For procedures, see Section 20.3.1, "How to Use Command Buttons and Command Links."

	
In the Component Palette, from the Operations panel, drag and drop a Scroll Component Into View Behavior as a child to the command component.

	
In the Insert Scroll Component Into View Behavior dialog, use the dropdown arrow to select Edit and then navigate to select the component to which the user should jump.

	
In the Property Inspector, set the focus attribute to true if you want the component to have focus after the jump.

	
For a richTextEditor or inlineFrame component, optionally enter a value for the subTargetId attribute. This ID is defined in the value of the richTextEditor or inlineFrame component.

For example, the value of the subTargetId attribute for the scrollComponentIntoViewBehavior tag shown in Figure 6-1 is Introduction. The value of the richTextEditor is bound to the property shown in Example 6-18. Note that Introduction is the ID for the first header.

Example 6-18 subTargetId Value Defined in a Property

private static final String _RICH_SECTIONED_VALUE =
 "<div>\n" +
 " <h2>\n" +
 " Introduction</h2>\n" +
 " <p>\n" +
 " The ADF Table component is used to display a list of structured data. For example,\n" +
 " if we have a data structure called Person that has two properties - firstname and\n" +
 " lastname, we could use a Table with two columns - one for firstname, and the other\n" +
 " for lastname - to display a list of Person objects.\n" +
 " </p>\n" +
 " </div>\n" +
 " <div>\n" +
 " <h2>\n" +
 " The Table Model</h2>\n" +
 " <p>\n" +
 . . .
 </div>";

6.7 Using Polling Events to Update Pages

ADF Faces provides the poll component whose pollEvent can be used to communicate with the server at specified intervals. For example, you might use the poll component to update an outputText component, or to deliver a heartbeat to the server to prevent a user from being timed out of their session.

You need to create a listener for the pollEvent that will be used to do the processing required at poll time. For example, if you want to use the poll component to update the value of an outputText component, you would implement a pollEventListener method that would check the value in the data source and then update the component.

You can configure the interval time to determine how often the poll component will deliver its poll event. You also configure the amount of time after which the page will be allowed to time out. This can be useful, as the polling on a page causes the session to never time out. Each time a request is sent to the server, a session time out value is written to the page to determine when to cause a session time out. Because the poll component will continually send a request to the server (based on the interval time), the session will never time out. This is expensive both in network usage and in memory.

To avoid this issue, the web.xml configuration file contains the oracle.adf.view.rich.poll.TIMEOUT context-parameter, which specifies how long a page should run before it times out. A page is considered eligible to time out if there is no keyboard or mouse activity. The default timeout period is set at ten minutes. So if user is inactive for 10 minutes, that is, does not use the keyboard or mouse, then the framework stops polling, and from that point on, the page participates in the standard server-side session timeout (for more information, see Section A.2.3.21, "Session Timeout Warning").

If the application does time out, when the user moves the mouse or uses the keyboard again, a new session timeout value is written to the page, and polling starts again.

You can override this time for a specific page using the poll component's timeout attribute.

6.7.1 How to Use the Poll Component

When you use the poll component, you normally also create a handler method to handle the functionality for the polling event.

Before You Begin

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 6.7, "Using Polling Events to Update Pages."

To use a poll component:

	
In a managed bean, create a handler for the poll event. For more information about managed beans, see Section 3.6, "Creating and Using Managed Beans."

	
Create a poll component by dragging and dropping a Poll from the Operations panel of the Component Palette.

	
In the Property Inspector, expand the Common section and set the following:

	
Interval: Enter the amount of time in milliseconds between poll events. Set to 0 to disable polling.

	
PollListener: Enter an EL expression that evaluates to the method in Step 1.

	
Timeout: If you want to override the global timeout value in the web.xml file, set Timeout to the amount of time in milliseconds after which the page will stop polling and the session will time out.

23 Using Gauge Components

This chapter describes how to display data in gauges using the ADF Data Visualization gauge component. If your application uses the Fusion technology stack, then you can use data controls to create gauges. For more information, see the "Creating Databound ADF Gauges" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

This chapter includes the following sections:

	
Section 23.1, "About the Gauge Component"

	
Section 23.2, "Using the Gauge Component"

	
Section 23.3, "Configuring Gauge Display Elements"

	
Section 23.4, "Formatting Gauge Style Elements"

	
Section 23.5, "Formatting Numeric Data Values in Gauges"

	
Section 23.6, "Adding Gauge Special Effects and Animation"

	
Section 23.7, "Using Custom Shapes for Gauges"

23.1 About the Gauge Component

Gauges are measuring instruments for indicating a quantity such as sales, stock levels, temperature, or speed. Gauges typically display a single data value, often more effectively than a graph. Gauges can show state information such as acceptable or unacceptable ranges using color. For example, a gauge value axis might show ranges colored red, yellow, and green to represent low, medium, and high states. When you need to compare many data values at a glance, multiple gauges can be shown inside table cells, or in a vertical, horizontal, or grid layout as a gauge set.

	
Best Practice Tip:

When multiple data values, such as the text values of thresholds and the current value are required, a list or table component may be a better choice than a gauge.

The gauge component supports four categories of gauge types: dial, status meter, vertical status meter, and LED. All gauge types can display a title, bottom label, data label, and legend.

23.1.1 End User and Presentation Features of Gauge Components

To understand how gauges are used and can be customized, it may be helpful to review these elements and features:

	
Display elements including:

	
Gauge and gauge set backgrounds

	
Gauge frames

	
Dial gauge plot area

	
Indicators and indicator bars

	
Gauge top, bottom, and metric labels

	
Thresholds and labels

	
Legends

	
Tick marks and labels

	
Tooltips: A tooltip of contextual information automatically displays when a users moves a cursor over the plot area, indicator, or threshold region. Figure 23-1 shows the indicator tooltip for a dial gauge.

Figure 23-1 Indicator Tooltip for Dial Gauge

[image: Indicator tooltip for dial gauge.]

23.1.2 Gauge Component Use Cases and Examples

Gauges are typically used to display a single data point. The following types of gauges are supported by the gauge component:

	
Dial: Indicates its metric along a configurable arc value axis. This is the default gauge type. Dial gauges can display as a simple gauge, a gauge with thresholds, or as a set of dial gauges.

Figure 23-2 shows a dial gauge with thresholds indicating a Plasma HD TV stock level within an acceptable range.

Figure 23-2 Dial Gauge with Thresholds

[image: Gauge dial with thresdholds.]

	
Status Meter: Indicates the progress of a task or the level of some measurement along a horizontal rectangular bar. An inner rectangle shows the current level of a measurement against the ranges marked on an outer rectangle. Status meter gauges can display as a simple gauge, a gauge with thresholds, or as a set of status meter gauges.

Figure 23-3 shows the Plasma HD TV stock level using a status meter gauge.

Figure 23-3 Status Meter Gauge with Thresholds

[image: Status meter gauge with thresholds.]

	
Status Meter (vertical): Indicates the progress of a task or the level of some measurement along a vertical rectangular bar. Vertical status meter gauges can display as a simple gauge, a gauge with thresholds, or as a set of vertical status meter gauges.

Figure 23-4 shows the Plasma HD TV stock level using a vertical status meter gauge.

Figure 23-4 Vertical Status Meter Gauge with Thresholds

[image: Vertical status meter gauge with thresholds.]

	
LED (light-emitting diode): Graphically depicts a measurement, such as a key performance indicator (KPI). Several styles of graphics are available for LED gauges, such as round or rectangular shapes that use color to indicate status, and triangles or arrows that indicate good (up), fair (left- or right-pointing), or poor (down) states in addition to a color indicator. LED gauges can also display as a gauge set.

Figure 23-5 shows the Plasma HD TV stock level using a LED bulb indicator using color to indicate status.

Figure 23-5 LED Bulb Gauge

[image: LED bulb gauge.]

Figure 23-6 shows the same stock level using a LED arrow.

Figure 23-6 LED Arrow Gauge

[image: LED arrow gauge]

All gauge types can be displayed as a set of gauges in a built-in grid layout. Gauge sets are useful when displaying individual values for a group of related items. Figure 23-7 shows a gauge set comparing performance measures across three cities.

Figure 23-7 Gauge Set Comparing Performance Across Cities

[image: Gauge Set Comparing Performance Across Cities]

Horizontal status meter and LED gauges are well-suited for display in table cells where users can see and compare them alongside related information such as labels, links, and icons. Figure 23-8 shows a table comparing the population density in countries with the highest population in 2010.

Figure 23-8 Horizontal Status Meter Gauges Displayed in Table

[image: Horizontal status meter gauges displayed in table.]

23.1.3 Additional Functionality of Gauge Components

You may find it helpful to understand other ADF Faces features before you implement your gauge component. Additionally, once you have added a gauge component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that gauge components can use:

	
Partial page rendering: You may want a gauge to refresh to show new data based on an action taken on another component on the page. For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Personalization: When enabled for users to change the way the gauge displays at runtime, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Accessibility: You can make your gauge components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Skins and styles: You can customize the appearance of gauge components using an ADF skin that you apply to the application or by applying CSS style properties directly using a style-related property (styleClass or inlineStyle). For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Automatic data binding: If your application uses the Fusion technology stack, then you can create automatically bound gauges based on how your ADF Business components are configured. For more information, see the "Creating Databound Gauges" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

If you know the UI components on your page will eventually use ADF data binding, but you need to develop the pages before the data controls are ready, then you should consider using placeholder data controls, rather than manually binding the components. Using placeholder data controls will provide the same declarative development experience as using developed data controls. For more information, see the "Designing a Page Using Placeholder Data Controls" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such as how data is delivered, automatic partial page rendering (PPR), image formats, and how data can be displayed and edited. For more information, see Section 21.2, "Common Functionality in Data Visualization Components."

23.2 Using the Gauge Component

Gauges display the following kinds of data values:

	
Metric: The value that the gauge is to plot. This value can be specified as static data in the Gauge Data attributes category in the Property Inspector. It can also be specified through data controls or through the tabularData attribute of the gauge tag. This is the only required data for a gauge. The number of metric values supplied affects whether a single gauge is displayed or a series of gauges are displayed in a gauge set.

	
Minimum and maximum: Optional values that identify the lowest and highest points on the gauge value axis. These values can be provided as dynamic data from a data collection. They can also be specified as static data in the Gauge Data attributes category in the Property Inspector for the gauge tag. For more information, see Section 23.3.1, "How to Configure Gauge Thresholds."

	
Threshold: Optional values that can be provided as dynamic data from a data collection to identify ranges of acceptability on the value axis of the gauge. You can also specify these values as static data using gauge threshold tags in the Property Inspector. For more information, see Section 23.3.1, "How to Configure Gauge Thresholds."

23.2.1 Configuring Gauges

The properties for the gauge component are sufficient to produce a gauge, but you can also add and configure child components or supported facets to further customize the display and behavior of the gauge or gauge set. The prefix dvt:occurs at the beginning of each gauge component name indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag library. You can configure gauge child components and supported facets in the following areas:

	
Gauge display elements:

	
Gauge background (gaugeBackground) and gauge set background (gaugeSetBackground): Bounded area behind the gauge or gauge set.

	
Gauge frame (gaugeFrame): Refers to the decorative frame that encloses the plot area on dial gauges.

	
Plot area (gaugePlotArea): Indicates the graphical representation of the metric value of the gauge.

	
Indicator (indicator): Points to the value that is plotted in a dial gauge, typically in the form of a line or an arrow.

	
Indicator bar (indicatorBar): The inner rectangle in a status meter gauge.

	
Indicator base (indicatorBase): The circular base of a line or needle style indicator in a dial gauge.

	
Gauge labels:

	
Top label (topLabel): Shows the gauge title appearing at the top or inside of a gauge. You can configure an upper label frame (upperLabelFrame) for this label to specify border color and fill color. Turn off the default title separator when using this frame.

	
Bottom label (bottomLabel): Refers to an optional label that appears below or inside the gauge. By default, displays the label for the data row. You can configure a lower label frame (lowerLabelFrame) for this label to specify border color and fill color.

	
Metric label (metricLabel): Shows the value of the metric that the gauge is plotting in text.

	
Thresholds and legend: Use a threshold set (thresholdSet) to specify the threshold sections (threshold) for the metrics of a gauge. You can create an unlimited number of thresholds for a gauge.

A legend displays a description of the threshold set with the color and the name or range of each threshold. Legend elements include legend area (gaugeLegendArea), text (gaugeLegendText), and title (gaugeLegendTitle).

	
Tick marks (tickMark): Refers to the markings along the value axis of the gauge. These can identify regular intervals, from minimum value to maximum value, and can also indicate threshold values. Tick marks can specify major increments that may include tick mark labels (tickLabel) or minor increments.

	
Context menus (bodyContextMenu facet): Use this facet to support a single af:popup component containing the context menu that will be shown on right click on any non-selectable object within the component. The af:popup must contain an af:menu to display the context menu.

	
Data values: Format categorical and numeric data values with standard ADF converters. For more information, see Section 23.5, "Formatting Numeric Data Values in Gauges."

	
Interactivity: Use a shape attributes set (shapeAttributesSet) to configure behavior properties for gauge child elements. For example, the alt text of a gauge plot area can be displayed as a tooltip when the user moves the mouse over that area at runtime. For more information, see Section 23.6.3, "How to Add Interactivity to Gauges."

	
Custom shapes: You can use a set of pre-built custom styles for gauges, or specify a vector graphics file that is used for output by setting the customShapesPath attribute. For more information, see Section 23.7, "Using Custom Shapes for Gauges."

23.2.2 How to Add a Gauge to a Page

When you are designing your page using simple UI-first development, you use the Component Palette to add a gauge to a JSF page. When you drag and drop a gauge component onto the page, the Component Gallery displays available categories of gauge types, with descriptions, to provide visual assistance when creating gauges. You can also specify a quick-start layout of the gauge's title and legend. Figure 23-9 shows the Component Gallery for gauges with the dial gauge type selected.

Figure 23-9 Component Gallery for Gauges

[image: Gauge Component Gallery.]

Once you complete the dialog, and the gauge is added to your page, you can use the Property Inspector to specify data values and configure additional display attributes for the gauge.

In the Property Inspector you can use the dropdown menu for each attribute field to display a property description and options such as displaying an EL Expression Builder or other specialized dialogs. Figure 23-10 shows the dropdown menu for a gauge component value attribute.

Figure 23-10 Gauge Component Value Attribute Dropdown Menu

[image: gauge component attribute field dropdown list]

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create a gauge and the binding will be done for you. For more information, see the "Creating Databound ADF Gauges" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child components can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 23.1.3, "Additional Functionality of Gauge Components."

To add a gauge to a page:

	
In the Component Palette, from the ADF Data Visualizations page, in the Gauge panel, drag and drop a Gauge onto the page to open the Create Gauge dialog in the Component Gallery.

Use the dialog to select the gauge category and type, and the quick start layout for display of gauge title, legend, and labels. If you need help, press F1 or click Help.

	
In the Property Inspector, view the attributes for the gauge or gauge set. Use the help button to display the complete tag documentation for the gauge component.

	
Expand the Common section. Use this section to set the following attributes:

	
GaugeType: If you wish to change the category of gauge types selected in the Component Gallery, use the dropdown list to select any of the following valid values: DIAL, LED, STATUSMETER, or VERTICALSTATUSMETER.

	
GaugeSetColumnCount, GaugeSetAlignment, and GaugeSetDirection: Use one or more of these attributes to determine the layout of gauges in a gauge set. For more information see, Section 23.3.4, "How to Specify the Layout of Gauges in a Gauge Set."

	
Expand the Gauge Data section. Specify data values for the gauge by setting the value in these fields:

	
Value: For a single gauge, specify the data model, which must be an instance of DataModel, using an EL Expression. Alternatively, set a metric value as either a Java.lang.Number object or a String.

	
TabularData: For a gauge set, specify a tabular data set as a Java.util.List object. For more information, see Section 23.2.4, "How to Create a Gauge Using Tabular Data."

	
MinValue and MaxValue: Optionally, set the lowest and greatest values on the gauge axis. These values are set automatically if not specified.

	
Expand the Appearance section. Specify display attributes by setting the value in these fields:

	
LedStyle: If you wish to change the shape of the LED gauge selected in the Component Gallery, use the dropdown list to select any of the following valid values: LS_DOT, LS_ARROW, LS_RECTANGLE, or LS_TRIANGLE. You can also use the LS_CUSTOM value if you wish to specify a custom image.

	
ThresholdDialStyle: If you wish to change the default style (TDS_SEGMENTS) of thresholds in dial gauges, use the dropdown list to select any of the following valid values: TDS_PIE_FILL, TDS_RING_FILL.

	
AngleExtent: Use to specify the range of degrees that sweeps through angles other than the standard 220-degree arc in a dial gauge.

	
CustomShapesPath: Use to specify the path to the custom shape definition file. For more information, see Section 23.7, "Using Custom Shapes for Gauges."

	
ShortDesc: Enter a description of the gauge. This description is accessed by screen reader users.

	
AnimationOnDisplay, AnimationOnDataChange, AnimationDuration (Animation sub-section): Use one or more of these attributes to set animation effects for the gauge. For more information, see Section 23.6.4, "Animating Gauges."

23.2.3 What Happens When You Add a Gauge to a Page

When a gauge component is inserted into a JSF page using the Component Gallery, a set of child tags that support customization of the gauge is automatically inserted. Example 23-1 shows the code inserted in the JSF page for a dial gauge with the quick-start layout selected in the Component Gallery in Figure 23-9.

Example 23-1 Gauge Sample Code

<dvt:gauge id="gauge2" value="#{bindings.Gaugedemo1View1.gaugeModel}"
 gaugeType="DIAL" imageFormat="FLASH">
 <dvt:gaugeBackground>
 <dvt:specialEffects fillType="FT_GRADIENT">
 <dvt:gradientStopStyle/>
 </dvt:specialEffects>
 </dvt:gaugeBackground>
 <dvt:gaugeFrame/>
 <dvt:indicator/>
 <dvt:indicatorBase/>
 <dvt:gaugePlotArea/>
 <dvt:tickLabel/>
 <dvt:tickMark/>
 <dvt:topLabel/>
 <dvt:bottomLabel/>
 <dvt:metricLabel position="LP_WITH_BOTTOM_LABEL"/>
 <dvt:thresholdSet>
 <dvt:threshold fillColor="#d62800"/>
 <dvt:threshold fillColor="#00ff00"/>
 </dvt:thresholdSet>
</dvt:gauge>

23.2.4 How to Create a Gauge Using Tabular Data

A gauge set is created when a grid of data is used for the gauge component. The tabularData attribute of a gauge component lets you specify a list of values that the gauge uses to create a grid and to populate itself. To create a gauge using tabular data you must store the data in a method in the gauge's managed bean, and then use the gauge component's tabularData attribute to reference the data.

When you provide only the metric value through the tabularData attribute, each value in the grid is represented by a separate gauge. In this case you must specify any desired thresholds and minimum or maximum values through the Property Inspector.

For example, the table in Figure 23-11 has five columns: Quota, Sales, Margin, Costs, and Units, and three rows: London, Paris, and New York. This data produces a gauge set with five gauges in each row and lets you compare values such as sales across the three cities.

Figure 23-11 Comparison of Annual Results

[image: Comparison of annual results for 3 cities.]

In a managed bean, the structure of the list of tabular data consists of a three-member Object array for each data value to be passed to the gauge. The members of each array must be organized as follows:

	
The first member (index 0) is the column label of the data value in the grid. This is generally a String.

	
The second member (index 1) is the row label of the data value in the grid. This is generally a String.

	
The third member (index 2) is the data value, which is usually Double.

Example 23-2 shows code in a managed bean that creates the list of tabular data required for the gauge that compares annual results for three cities displayed in Figure 23-11.

Example 23-2 Managed Bean to Create a List of Tabular Data for Annual Results

public List getGaugeData()
{
 ArrayList list = new ArrayList();
 String[] rowLabels = new String[] {"London", "Paris", "New York"};
 String[] colLabels = new String[] {"Quota", "Sales", "Margin", "Costs", "Units"};
 double [] [] values = new double[][]{
 {60, 90, 135},
 {50, -100, -150},
 {130, 140, 150},
 {70, 80, -130},
 {110, 120, 130}
 };
 for (int c = 0; c < colLabels.length; c++)
 {
 for (int r = 0; r < rowLabels.length; r++)
 {
 list.add (new Object [] {colLabels[c], rowLabels[r],
 new Double (values [c][r])});
 }
 }
 return list;
}

To provide the metric value and optionally threshold. minimum, and maximum values, use data specification to set the columns or rows of data through the tabularData attribute.

For example, the data in Figure 23-12 provides the metric values and minimum, maximum, and threshold values for two cities. The data produces a gauge set of two gauges comparing sales results by desired specifications.

Figure 23-12 Comparison of Sales Results by Specification

[image: Comparison of desired specifications.]

Example 23-3 shows code in a managed bean that creates the list of tabular data required for the gauge that compares sales results by specification for two cities displayed in Figure 23-12.

Example 23-3 Managed Bean to Create a List of Tabular Data for Sales Results

CommonGauge gauge = new CommonGauge();
 Object[] specs = { DataSpecification.METRIC, DataSpecification.MINIMUM, DataSpecification.MAXIMUM, DataSpecification.THRESHOLD, DataSpecification.THRESHOLD };
 String[] colLabels = new String[] { "Sales", "Min", "Max", "Quota", "Target" };
 String[] rowLabels = new String[] { "Boston", "Chicago" };
 double[][] values = new double[][] { {40, 60}, {0,0}, {100,80}, {30,35}, {50,70} };
 List gaugeData = new ArrayList();
 for (int c = 0; c < colLabels.length; c++) {
 for (int r = 0; r < rowLabels.length; r++) {
 gaugeData.add(new Object[] { colLabels[c], rowLabels[r], new Double(values[c][r]) });
 }
 }
 gauge.setTabularData(specs, gaugeData);

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a managed bean that creates a list of tabular data. If you do not, follow the instructions in Section 3.6, "Creating and Using Managed Beans."

You should already have a gauge set on your page. If you do not, follow the instructions in this chapter to create a gauge set. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To create a gauge set using tabular data from a managed bean:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector expand the Gauge Data section.

	
From the TabularData attribute menu, choose Expression Builder.

	
In the Expression Builder dialog, use the search box to locate the gauge's managed bean.

	
Expand the managed bean node and select the method that creates the list of tabular data.

	
Click OK.

The Expression is created.

For example, if the name of the managed bean is sampleGauge and the name of the method that creates the list of tabular data is getGaugeData, the Expression Builder generates the code #{sampleGauge.gaugeData} as the value for the tabularData attribute of the gauge component.

23.2.5 What You May Need to Know About Flash and PNG Image Formats

By default, gauges are displayed using a Flash player as specified in the gauge component imageFormat attribute. Alternatively, gauges can be displayed using a Portable Network Graphics (PNG) output format, as in the case when plug-ins are not allowed on client machines. A PNG output format is used also when printing gauges. Although static rendering is fully supported when using a PNG output format, certain interactive features are not available including:

	
Animation

	
Context menus

	
Popup support

You can disable the use of Flash content across the entire application by setting a flash-player-usage context parameter in adf-config.xml. For more information, see Section A.4.3, "Configuring Flash as Component Output Format."

To improve performance, inline PNG images using data URIs are used when there is browser support for URIs and the images are sufficiently small. However, if the application specifies a path to a stored image using the imageSource attribute on the gauge component, it will be respected and inline images will not be sent.

When gauges are displayed in ADF table cells through stamping, a PNG_STAMPED setting is required for the gauge's imageFormat attribute.

23.2.6 Using Gauges in Tables

You can display gauges in table cells where users can see and compare them alongside related information. The immediate children of an ADF table component must be column components. Each visible column component is displayed as a separate column in the table. Column components contain components used to display content, images, or provide further functionality.

The child components of each column display the data for each row in that column. The column does not create child components per row; instead, the table uses stamping to render each row. Each child is stamped once per row, repeatedly for all the rows. As each row is stamped, the data for the current row is copied into a property that can be addressed using an EL expression. You specify the name to use for this property using the var property on the table. Once the table has completed rendering, this property is removed or reverted back to its previous value.

Example 23-4 shows sample code for displaying gauges in an ADF table component.

Example 23-4 Gauge Component Stamped in Table Column

<af:table summary="table" value="#{gaugeData.gaugeTableData}" var="testvar"
 rowBandingInterval="0" id="t1" columnStretching="last"
 inlineStyle="height:400px" styleClass="AFStretchWidth">
 <af:column rowHeader="true" sortable="false" headerText="Country"
 align="center"
 id="c1" width="120"
 inlineStyle="font-weight:bold; font-size: 12px;">
 <af:outputText value="#{testvar.name}" id="ot1"/>
 </af:column>
 <af:column sortable="true" headerText="Density (1/km^2)"
 align="center" id="c2" width="300"
 sortProperty="density">
 <dvt:gauge shortDesc="Gauge" id="gauge77" gaugeType="STATUSMETER"
 binding="#{editor.component}" dynamicResize="DYNAMIC_SIZE"
 value="#{testvar.density}"
 inlineStyle="height:22px" styleClass="AFStretchWidth"
 minValue="0.0" maxValue="1200.0">
 <dvt:indicatorBar/>
 <dvt:thresholdSet>
 <dvt:threshold fillColor="#00aa00" thresholdMaxValue="300"/>
 <dvt:threshold fillColor="#ffcc00" thresholdMaxValue="700"/>
 <dvt:threshold fillColor="#cc2255"/>
 </dvt:thresholdSet>
 <dvt:topLabel position="LP_NONE"/>
 <dvt:bottomLabel position="LP_NONE"/>
 <dvt:metricLabel position="LP_NONE"/>

 </dvt:gauge>
 </af:column>

When configuring gauges in table cells, use these guidelines to improve usability:

	
Vertical status meter gauges are not recommended for use in table cells as the table rows would have to be very tall.

	
Make gauges as small as possible while maintaining legibility.

	
To maximize use of space, use table column and row headers to describe gauges, rather than using gauge titles or bottom labels.

	
Use only one type of gauge per column or row, and use the same axis values and thresholds.

	
Display horizontal status meters in columns, and dial and LED gauges in rows or columns.

	
Avoid displaying so many gauges that users must scroll to see them all.

23.3 Configuring Gauge Display Elements

You can customize gauge display elements including thresholds, labels, indicators, tick marks, and the layout of gauge sets.

23.3.1 How to Configure Gauge Thresholds

Thresholds are numerical data values in a gauge that highlight a particular range of values. Thresholds must be values between the minimum and the maximum value for a gauge. The range identified by a threshold is filled with a color that is different from the color of other ranges.

The data collection for a gauge can provide dynamic values for thresholds when the gauge is databound. For information about using dynamic values for thresholds, see

After the gauge is created, you can also specify static threshold values by configuring a thresholdSet child component that wraps an unlimited number of threshold child components in a gauge. If threshold values are supplied in both the data collection and in threshold components, the gauge honors the values in the threshold components.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

If you create a gauge using a gauge type with thresholds in the Component Gallery, a dvt:thresholdSet component and dvt:threshold component children are automatically added to the dvt:gauge component in the Structure window.

To add static thresholds to a gauge:

	
In the Structure window, right-click the dvt:gauge component and choose Insert inside dvt:gauge > ADF Data Visualization > Threshold Set.

	
Right-click the dvt:thresholdSet component and choose Insert inside dvt:thresholdSet > Threshold.

	
In the Property Inspector, set the following attributes:

	
ThresholdMaxValue: Specify the maximum value for the threshold section you are configuring. Values can be an integer or

	
Note:

For the final threshold, the maximum value of the gauge is used as the threshold maximum value regardless of any entry you make in the ThresholdMaxValue attribute for the final threshold.

	
FillColor and BorderColor: Optionally, specify a RGB value for the fill color and border color respectively for the threshold section you are configuring. You can also change the color from opaque to transparent. For more information, see Section 23.4.2, "Specifying Transparency for Gauge Elements."

	
Text: Optionally, specify the text to be displayed in the legend to identify this threshold. You can also bind the text to a text resource. For more information, see Section 23.4.3, "How to Format Gauge Text and Use Text Resources."

	
Repeat Step 2 and Step 3 to create each threshold in the gauge from the lowest minimum value to the highest maximum value.

	
Note:

You have the option of adding any number of thresholds to gauges. However, arrow and triangle LED gauges support thresholds only for the three directions to which they point

23.3.2 How to Customize Gauge Labels

By default gauges display a metric label, and optional top and bottom labels using the child components metricLabel, topLabel, and bottomLabel. You can customize the display and positioning of each label, as well as control the fill and border colors of the optional top and bottom gauge label frames.

The categorical data value represented by the top or bottom label can also be customized using an attributeFormat tag and ADF Faces converter tags to format percents, scale numbers, control the number of decimal places, placement of signs, and so on. For more information, see

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child label components are automatically added to the gauge component. The default location, if any, of each gauge label is specified in the position attribute of the component, based on the choice you make for a quick-layout option in the Component Gallery.

To customize a gauge label:

	
In the Structure window, select the gauge child label component (dvt:metricLabel, dvt:topLabel, or dvt:bottomLabel) you wish to configure.

	
In the Property Inspector, set the following attributes:

	
Position: Use to specify the location, if any, of the gauge label. Valid values include:

	
LP_NONE: No label is displayed.

	
LP_INSIDE_GAUGE: Label is displayed inside the plot area of the gauge. Labels are horizontally centered across a gauge. When set to this value, top and bottom labels are also vertically centered inside the plot area. Good choice for the LED gauge.

	
LP_INSIDE_GAUGE_RIGHT and LP_INSIDE_GAUGE_LEFT: Metric label is displayed either to the right or lefts of the plot area.

	
LP_ABOVE_GAUGE: The default value for the top label. Displays the label above the gauge.

	
LP_BELOW_GAUGE: The default value for the bottom label. Displays the label below the gauge. If the position of both the bottom and metric labels are set to this value, then both labels are displayed below the gauge. However, the bottom label is displayed above the metric label.

	
LP_WITH_BOTTOM_GAUGE: The default value for the metric label. Displays the label beside the bottom label.

	
Text: The text displayed in the top or bottom label. In the attribute menu, choose Select Text Resources for a dialog to associate the text with application text resources. For more information, see Section 23.4.3, "How to Format Gauge Text and Use Text Resources."

	
NumberType, Scaling, and AutoPrecision: Available only for metric labels. Use these attributes to configure the display of numeric data values in the gauge. For more information, see Section 23.5.2, "What You May Need to Know About Automatic Scaling and Precision."

	
If you wish to configure the text font used in the gauge label, do the following:

	
In the Structure window, right-click the gauge child label component (dvt:metricLabel, dvt:topLabel, or dvt:bottomLabel) you wish to configure and select Insert inside label component > Font.

	
In the Property Inspector, set the attributes for the font. For more information, see Section 23.4.3, "How to Format Gauge Text and Use Text Resources."

	
If you wish to configure a frame around the top or bottom gauge label, do the following:

	
In the Structure window, right-click the dvt:gauge component and select Insert inside dvt:gauge > Upper Label Frame or Lower Label Frame.

	
In the Property Inspector, specify a RGB value for the FillColor and BorderColor attributes for the label frame you are configuring. You can also change the color from opaque to transparent. For more information, see Section 23.4.2, "Specifying Transparency for Gauge Elements."

23.3.3 How to Customize Gauge Indicators and Tick Marks

Gauges use a graphic to indicate the precise gauge value. By default gauges display a line for dial gauges using the child component indicator, and a bar inside status meter or vertical status meter gauges using the child component indicatorBar. The child component indicatorBase is used to set the fill properties of the circular base of all indicators of a dial gauge. You can customize the appearance of gauge indicators.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child indicator components are automatically added to the gauge component based on the gauge type you chose in the Component Gallery. LED gauges do not have indicators.

To customize the appearance of gauge indicators:

	
For dial gauge indicators, do the following:

	
In the Structure window, select the dvt:indicator component.

	
In the Property Inspector, set the following attributes:

	
Type: Identifies the kind of indicator: a line indicator (default), a fill indicator, or a needle indicator.

	
BorderColor: Specifies the color of the border of the indicator.

	
FillColor: Specifies the color of the fill for the indicator.

	
UseThresholdFillColor: Determines whether the color of the threshold area in which the indicator falls should override the specified color of the indicator.

	
In the Structure window, select the dvt:indicatorBase component.

	
In the Property Inspector, set the following attributes:

	
Rendered: Identifies the kind of indicator: a line indicator (default), a fill indicator, or a needle indicator.

	
BorderColor: Specifies the color of the border of the indicator.

	
FillColor: Specifies the color of the fill for the indicator.

	
For status meter and vertical status meter gauges, do the following:

	
In the Structure window, select the dvt:indicatorBar component.

	
In the Property Inspector, set the following attributes:

	
BorderColor: Specifies the color of the border of the indicator.

	
FillColor: Specifies the color of the fill for the indicator.

	
Note:

If you want to specify that the color of the threshold area in which the indicator bar falls should override the specified color of the indicator, add an indicator component to the gauge, and set its UseThresholdFillColor attribute to true.

Tick marks are incremental marks along the gauge value axis for dial, status meter, and vertical status meter gauges. LED gauges do not have tick marks. By default, gauges display tick marks using the gauge child tickMark component to specify the display, spacing, and color or major and minor tick marks.

The gauge child tickLabel component identifies major tick labels to specify the location of the labels (interior or exterior of the gauge), and the format for numbers displayed in the tick labels. Minor tick marks do not support labels.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child tick mark and tick mark label components are automatically added to the gauge component based on the choices you make in the Component Gallery. LED gauges do not have tick marks.

To customize the tick marks and tick labels for a gauge:

	
In the Structure window, select the dvt:tickMark component.

	
In the Property Inspector, set values for the following attributes:

	
MajorIncrement and MinorIncrement: Sets the distance between two major tick marks and two minor tick marks, respectively. If the value is less than zero for either attribute, the tick marks are not displayed.

	
MajorTickColor and MinorTickColor: Sets the hexidecimal color of major tick marks and minor tick marks, respectively.

	
Content: Specifies where tick marks occur within a gauge set. Valid values are any combination separated by spaces or commas including:

	
TC_INCREMENTS: Display tick marks in increments.

	
TC_MAJOR_TICK: Display tick marks for minimum, maximum, and incremental values.

	
TC_MIN_MAX: Display tick marks for minimum and maximum values.

	
TC_METRIC: Display tick marks for actual metric values.

	
TC_NONE: Display no tick marks.

	
TC_THRESHOLD: Display tick marks for threshold values.

	
In the Structure window, select the dvt:tickLabel component.

	
In the Property Inspector, set values for the following attributes:

	
Position: By default, the dial gauge displays interior tick labels to provide a cleaner look when the gauge is contained entirely within the gauge frame. Because the tick labels lie within the plot area, the length of the tick labels must be limited to fit in this space. You can customize your gauge to use exterior labels by setting the value for this attribute to TLP_EXTERIOR from the default TLP_INTERIOR.

	
Content: Specifies where tick labels occur within a gauge set. Valid values are any combination separated by spaces or commas including:

	
TC_INCREMENTS: Display tick labels in increments.

	
TC_MAJOR_TICK: Display tick labels for minimum, maximum, and incremental values.

	
TC_MIN_MAX: Display tick labels for minimum and maximum values.

	
TC_METRIC: Display tick labels for actual metric values.

	
TC_NONE: Display no tick labels.

	
TC_THRESHOLD: Display tick labels for threshold values.

	
NumberType, Scaling, and AutoPrecision: Available only for metric labels. Use these attributes to configure the display of numeric data values in the gauge. For more information, see.

23.3.4 How to Specify the Layout of Gauges in a Gauge Set

A single gauge can display one row of data bound to a gauge component. A gauge set displays a gauge for each row in multiple rows of data in a data collection.

You can specify the location of gauges within a gauge set by specifying values for attributes in the gauge component.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child components can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge set on your page. If you do not, follow the instructions in this chapter to create a gauge set. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To specify the layout of gauges in a gauge set:

	
In the Structure window, right-click the dvt:gauge component and choose Go to Properties.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
GaugeSetColumnCount: Specify the number of columns of gauges that will appear in the gauge set.

A setting of zero causes all gauges to appear in a single row. Any positive integer determines the exact number of columns in which the gauges are displayed. A setting of -1 causes the number of columns to be determined automatically from the data source.

	
GaugeSetDirection: Use the dropdown list to select a value for the placement of gauges in columns.

If you select GSD_ACROSS, then the default layout of the gauges is used and the gauges appear from left to right, then top to bottom. If you select GSD_DOWN, the layout of the gauges is from top to bottom, then left to right.

	
GaugesSetAlignment: Use the dropdown list to select a value for the alignment of gauges within a gauge set.

This attribute defaults to the setting GSA_NONE, which divides the available space equally among the gauges in the gauge set. Other options use the available space and optimal gauge size to allow for alignment towards the left or right and the top or bottom within the gauge set. You can also select GSA_CENTER to center the gauges within the gauge set.

23.3.5 What You May Need to Know About Configuring Gauge Set Display

When configuring gauge set display, use these guidelines to improve usability:

	
When the individual gauges in a gauge set do not have titles or axes, specify a label above the gauge set that displays the name of the data set and its units of measure, for example, "2010 Population (Millions)."

	
When thresholds are defined, include a legend. For more information, see Section 23.3.1, "How to Configure Gauge Thresholds."

	
Avoid displaying so many gauges that users must scroll to view all of the gauges.

23.4 Formatting Gauge Style Elements

You can customize the styling of gauges to change the initial size or a gauge, specify dynamic resizing to fit the presentation area of a gauge, and apply style elements. You can also use text formatting and text resource, and transparency in gauges.

23.4.1 How to Change Gauge Size and Apply CSS Styles

Gauges are displayed in a default size of 200 X 200 pixels. You can customize the size of a gauge or specify dynamic resizing to fit an area across different browser window sizes. When gauges are displayed in a horizontally or vertically restricted area, for example in a web page sidebar, the gauge is displayed in a small image size. Although fully featured, the smaller image is a simplified display.

You can customize the width and height of a gauge, and you can allow for dynamic resizing of a gauge based on changes to the size of its container. These two aspects of a gauge are interrelated in that they share the use of the gauge inlineStyle attribute.

You can also apply CSS styles such as active, focus, hover, link, and visited to use for a gauge.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To specify the size of a gauge:

	
In the Structure window, select the dvt:gauge component.

	
In Property Inspector, expand the Style section. Specify the initial size of the gauge in the InlineStyle attribute. If you do not also provide for dynamic resizing of the gauge, then the initial size becomes the only display size for the gauge. For example,

width:200px;height:200px

If you are specifying dynamic resizing for the gauge, you can enter a fixed number of pixels or a relative percent for both width and height. For example, to create a gauge that fills 50% of its container's width and has a height of 200 pixels, use the following setting for the InlineStyle attribute:

width:50%;height:200px

	
Best Practice Tip:

Instead of specifying width at 100% in the inlineStyle attribute, set the styleClass attribute to AFStretchWidth.

	
If you want to specify dynamic resizing for the gauge, expand the Behavior section. From the DynamicResize attribute dropdown list, select DYNAMIC_SIZE.

To apply CSS styles to a gauge:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector, expand the Style section. From the StyleClass attribute menu, choose Edit and use the property editor dialog to select the CSS styles to apply to the gauge.

23.4.2 Specifying Transparency for Gauge Elements

You can specify that various elements of a gauge display a transparent color instead of the default opaque color by setting the borderColor and fillColor attributes on the gauge child components related to those elements. These color properties accept a 6 or 8 RGB hexidecimal value. When an 8-digit value is used, the first two digits represent transparency. For example, you can set transparency by using a value of 00FFFFFF.

Any gauge child component that supports borderColor or fillColor attributes can be set to transparency. The following are examples of gauge child components that support transparency:

	
gaugeBackground

	
gaugeFrame

	
gaugePlotArea

	
gaugeLegendArea

23.4.3 How to Format Gauge Text and Use Text Resources

You can format the text in gauges using a gaugeFont component as a child for any of the these gauge child components that represent titles and labels in a gauge:

	
bottomLabel

	
metricLabel

	
gaugeLegendText

	
gaugeLegendTitle

	
tickLabel

	
topLabel

The attributes of the gaugeFont component allows you to specify these font attributes for the gauge child element:

	
name: Specifies the name of the font, for example San Serif.

	
size: Specifies the font size in pixels, for example 11.

	
color: Specifies the color of the font. This color property accepts a 6 or 8 RGB hexidecimal value. When an 8-digit value is used, the first two digits represent transparency. For example, you can set transparency by using a value of 00FFFFFF

	
bold: Specifies whether or not the font is bold. The default value is FALSE.

	
italic: Specifies whether or not the text is in italics. The default value is FALSE.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child components for titles or labels are automatically added to the gauge component, based on the choices you make in the Component Gallery.

To specify a text font for a gauge title or label component:

	
In the Structure window, right-click the gauge child component for a title or label, for example, dvt:metricLabel, and choose Insert inside dvt:metricLabel > Font.

If the component is not available, right-click the dvt:gauge component, and choose Insert inside dvt:gauge > ADF Data Visualization > gauge child title or label component.

	
In the Property Inspector, set values for one or more of the dvt:gaugeFont component attributes. Use the help button to display the complete tag documentation for the dvt:gaugeFont component.

You can also set the font attributes of gauge components globally across all pages in your application by using a cascading style sheet (CSS) to build a skin, and configuring your application to use the skin. By applying a skin to define the fonts used in gauge components, the pages in an application will be smaller and more organized, with a consistent style easily modified by changing the CSS file. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

JDeveloper supports easy localization of DVT components using the abstract class java.util.ResourceBundle to provide locale-specific resources. For those gauge child components that represent titles and labels in a gauge you can associate a text resource referenced in an application resource bundle. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

To specify a text resource for a gauge title or label component:

	
In the Structure window, select the gauge child component for a title or label, for example, dvt:metricLabel.

	
In the Property Inspector, in the text attribute menu, choose Select Text Resources to open the Select Text Resource dialog.

Use the dialog to associate the component text with a text resource. If you need help, press F1 or click Help

23.5 Formatting Numeric Data Values in Gauges

Gauge child components including metricLabel, tickLabel, and gaugeLgendText display numeric data values in gauges. Each component has a numberType attribute that lets you specify whether you want to display the value itself, or a percentage that the value represents. In some cases, this might be sufficient numeric formatting.

If you wish to further format the gauge metric or tick label value, you can use an ADF Faces standard converter, af:convertNumber. For example, you may wish to display the value as currency or display specific decimal settings.

23.5.1 How to Format Numeric Data Values in Gauges

The metrics represented in gauges are numeric data values. You can apply specific formatting rules to these values.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child components that display configurable data values are automatically added to the gauge component, based on the choices you make in the Component Gallery.

To format numeric data values in a gauge:

	
In the Structure window, select the gauge child component displaying data values (metricLabel, tickLabel, or gaugeLegendText) that you wish to configure.

If the component is not available, right-click the dvt:gauge component, and choose Insert inside dvt:gauge > ADF Data Visualization > (metricLabel, tickLabel, or gaugeLegendText).

	
In the Property Inspector, if you want to display the data value as a percentage rather than as a value, set the NumberType attribute of the component to NT_PERCENT.

	
If you want to specify additional formatting for the data values displayed in the gauge metric or tick label, do the following:

	
In the Structure window, right-click the dvt:metricLabel or dvt:tickLabel, and choose Insert inside (dvt:metricLabel or dvt:tickLabel) > Convert Number.

	
In the Property Inspector, specify values for the attributes of the af:convertNumber component to produce additional formatting. Use the help button to display the complete tag documentation for the af:convertNumber component.

	
Note:

When the numberType attribute of metric or tick labels is set to percent (NT_PERCENT), a child af:convertNumber tag, if used, will be automatically set to percent for its type attribute. When af:convertNumber is forced to percent, gauge clears the pattern attribute. This means that patterns are ignored when a gauge forces percent formatting.

23.5.2 What You May Need to Know About Automatic Scaling and Precision

In order to achieve a compact and clean display, gauges automatically determine the scale and precision of the values being displayed in metric labels and tick labels. For example, a value of 40,000 will be formatted as 40K, and 0.230546 will be displayed with 2 decimal points as 0.23.

Automatic formatting still occurs when af:convertNumber is specified. Gauge tags that support af:convertNumber child tags have scaling and autoPrecision attributes that can be used to control the graph's automatic number formatting. By default, these attribute values are set to scaling="auto" and autoPrecision="on". Fraction digit settings specified in af:convertNumber, such as minFractionDigits, maxFractionDigits, or pattern, are ignored unless autoPrecision is set to off.

23.6 Adding Gauge Special Effects and Animation

You can add special features to a gauge such as applying gradient effects to parts of a gauge, adding interactivity to gauges, animating gauges, and taking advantage of gauge support for active data.

23.6.1 How to Add Gradient Special Effects to a Gauge

A gradient is a special effect in which an object changes color gradually. Each color in a gradient is represented by a stop. The first stop is stop 0, the second is stop 1, and so on. You must specify the number of stops in the special effects for a child component of a gauge that supports special effects.

You can define gradient special effects for the following child components of a gauge:

	
gaugeBackground

	
gaugeSetBackground

	
gaugePlotArea

	
gaugeFrame

	
gaugeLegendArea

	
lowerLabelFrame

	
upperLabelFrame

	
indicator

	
indicatorBar

	
indicatorBase

	
threshold

For each child component of a gauge to which you want to add special effects, you must insert a child specialEffects component. For example, if you want to add a gradient to the background of a gauge, then you would add a child specialEffects component to the background component. You must also set the specialEffects component fillType attribute to FT_GRADIENT.

Then, optionally if you want to control the rate of change for the fill color of the child component, you add as many gradientStopStyle components as you need to control the color and rate of change for the fill color of the component. The gradientStopStyle components are added as child components to the specialEffects component.

The approach that you use to define gradient special effects is identical for each child component of the gauge that supports these effects. The procedure defines how to add gradient special effects to the background of a gauge.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child components are automatically added to the gauge component based on the gauge type you chose in the Component Gallery.

To add a gradient special effect to the background of a gauge:

	
In the Structure window, right-click the gauge child component that supports gradient special effects, for example dvt:gaugeBackground, and choose Insert inside dvt:gaugeBackground > Special Effects.

	
In the Property Inspector, set the following attributes:

	
FillType: From the dropdown list select FT_GRADIENT.

	
GradientDirection: From the dropdown list select the direction of change that you want to use for the gradient fill. The default value is GD_RIGHT.

	
NumStops: Enter the number of stops to use for the gradient.

	
Optionally, in the Property Inspector, click Configure Gradient Stops to control the color and rate of change for the first gradient stop.

	
In the Property Inspector, set the following attributes:

	
StopIndex: Enter a zero-based integer as an index for the component.

	
GradientStopColor: Specify a RGB value for the color that you want to use at this specific point along the gradient. You can also change the color from opaque to transparent. For more information, see Section 23.4.2, "Specifying Transparency for Gauge Elements."

	
GradientStopPosition: Enter the proportional distance along a gradient for the identified stop color. The gradient is scaled from 0 to 100. If 0 or 100 is not specified, default positions are used for those points.

	
If you wish to configure additional gradient stops, in the Structure window, right-click the dvt:specialEffects component and choose Insert inside dvt:specialEffects > dvt:gradientStopStyle.

	
Repeat Step 4 for each gradient stop you want to configure.

23.6.2 What Happens When You Add a Gradient Special Effect to a Gauge

When you add a gradient fill to the background of a gauge, specify two stops, and configure the color and rate of change for each stop, XML code is generated. Example 23-5 shows the XML code that is generated.

Example 23-5 XML Code Generated for Adding a Gradient to the Background of a Gauge

<dvt:gauge >
 <dvt:gaugeBackground borderColor="#848284">
 <dvt:specialEffects fillType="FT_GRADIENT" gradientDirection="GD_RADIAL">
 <dvt:gradientStopStyle stopIndex="0" gradientStopPosition="60"
 gradientStopColor="FFFFCC"/>
 <dvt:gradientStopStyle stopIndex="1" gradientStopPosition="90"
 gradientStopColor="FFFF99"/>
 </dvt:specialEffects>
 </dvt:gaugeBackground>
</dvt:gauge>

23.6.3 How to Add Interactivity to Gauges

Interactivity in gauges involves associating a specified part of a gauge with an HTML attribute such as a hyperlink, or a JavaScript event such as a user moving the cursor over that part of the gauge. For example, a gauge indicator could be associated with a hyperlink, or a tooltip of a gauge indicator could change from "Indicator" to "Indicator is Clicked" when the user clicks the indicator.

You specify interactivity properties on one or more shapeAttributes components wrapped in a gauge child shapeAttributesSet component. The interactivity provides a connection between the gauge subcomponent, as specified in the component attribute of a shapeAttributes component, and an HTML attribute or a JavaScript event. Each shapeAttributes component must contain a subcomponent and at least one attribute in order to be functional.

The valid values for gauge subcomponents, as specified in the component attribute of the shapeAttributes component, are:

	
GAUGE_BOTTOMLABEL: the label below the gauge

	
GAUGE_INDICATOR: the indicator in the gauge

	
GAUGE_LEGENDAREA: the legend area of the gauge

	
GAUGE_LEGENDTEXT: the text label of the legend area

	
GAUGE_METRICLABEL: the label showing the metric value

	
GAUGE_TOPLABEL: the label above the gauge

	
GAUGE_PLOTAREA: the area inside the gauge

	
GAUGE_THRESHOLD: the threshold area of the gauge

Interactivity attributes associated with the gauge subcomponent can be any of the following:

	
Behavior attributes: An attribute such as onClick, onMouseMove, onKeyDown, or any attribute with a prefix of on that takes a string containing JavaScript code or a reference to a managed bean method that returns JavaScript code as its value. If the value is a managed bean method, the method takes the subcomponent handle as its input parameter.

	
Common attributes: An HTML attribute such as alt, href, nohref, target, title, and tabindix that takes a string or a managed bean method that returns a string as its value. The value can be a string, or a boolean depending on the attribute. Other attributes control the basic settings of the interactivity, such as clickable, clickAction, and clickListener to control the click events, and id to reference the subcomponent.

For example, Example 23-6 shows the code for a dial gauge where the tooltip of the indicator changes from "Indicator" to "Indicator is Clicked" when the user clicks the indicator, and the tooltip for the gauge metric label displays "Metric Label" when the user mouses over that label at runtime.

Example 23-6 Sample Code for Gauge shapeAttributes Component

<dvt:gauge >
 <dvt:shapeAttributesSet>
 <dvt:shapeAttributes component="GAUGE_INDICATOR" alt="Indicator"
 onClick="document.title="onClick";"/>
 <dvt:shapeAttributes component="GAUGE_METRICLABEL" alt="Metric Label"
 onMouseMove="document.title="onMouseMove";"/>
 </dvt:shapeAttributesSet>
</dvt:gauge>

You can also use a managed bean method to return the value of the interactivity attribute. Example 23-8 shows a managed bean sample code.

Example 23-7 Sample Managed Bean Code

public String alt(oracle.dss.dataView.ComponentHandle handle) {
 return handle.getName(); }
 public String onClick(oracle.dss.dataView.ComponentHandle handle) {
 return ("document.title=\"onClick\";"); }
 public String onMouseMove(oracle.dss.dataView.ComponentHandle handle) {
 return ("document.title=\"onMouseMove\";"); }

Example 23-7 shows sample code for referencing the managed bean in a shapeAttributes component.

Example 23-8 Gauge shapeAttributes Component Referencing a Managed Bean

<dvt:gauge >
 <dvt:shapeAttributesSet>
 <dvt:shapeAttributes component="GAUGE_INDICATOR" alt="#{sampleGauge.alt}"
 onClick="#{sampleGauge.onClick}"/>
 <dvt:shapeAttributes component="GAUGE_METRICLABEL"
 alt="#{sampleGauge.alt}" onMouseMove="#{sampleGauge.onMouseMove}"/>
 </dvt:shapeAttributesSet>
</dvt:gauge>

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You may find it helpful to understand how managed beans are used in JDeveloper. For more information, see Section 3.6, "Creating and Using Managed Beans."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To add interactivity to a gauge subcomponent:

	
In the Structure window, right-click the dvt:gauge component, and choose Insert inside dvt:gauge > ADF Data Visualizations > Shape Attributes Set.

	
Right-click the dvt:shapeAttributesSet component, and choose Insert inside dvt:shapeAttributesSet > Shape Attributes.

	
In the Property Inspector, expand the Common Section. For the Component attribute, use the dropdown list to select the gauge subcomponent to which you are adding interactivity, for example GAUGE_INDICATOR

	
Set one or more of the other attributes in this section to specify the interactivity properties for the subcomponent.

	
Note:

You can use the attribute dropdown menu on the attributes in this section to choose a Method Expression Builder dialog when creating a reference to a managed bean. For some attributes you can also choose Edit > Edit Property to select an available managed bean from a dropdown list, or choose New to create a managed bean using the Create Managed Bean dialog.

	
Expand the Behavior section. Use this section to set one or more of these attributes with a prefix of on that takes a string containing JavasScript code or a reference to a managed bean method that returns JavaScript code as its value.

	
If you wish to configure additional interactivity effects for a gauge subcomponent, repeat step 2 through step 5 for each subcomponent.

23.6.4 Animating Gauges

You can animate gauges (not gauge sets) upon initial display, or to show changes in data. Animation effects are specified in the gauge's animationOnDisplay and animationOnDataChange properties. For example, a dial gauge indicator can change color at initial display or when a data value increases or decreases. Figure 23-13 shows a dial gauge with the dial indicator animated to display the data change at each threshold level.

Figure 23-13 Animated Dial Gauge

[image: Animated dial gauge.]

Animation effects can also be performed using active data. The Active Data Service (ADS) allows you to bind ADF Faces components to an active data source using the ADF model layer. To allow this, you must configure the components and the bindings so that the components can display the data as it is updated in the source. Alternatively, you can configure the application to poll the data source for changes at prescribed intervals.

23.6.5 How to Specify Animation Effects for Gauges

You can set animation effects for gauges upon initial display, or upon data change associated with partial page rerendering (PPR), or Active Data Service (ADS). For more information about PPR, see Chapter 8, "Rerendering Partial Page Content." For more information about ADS, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To specify animation effects for a gauge:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector, expand the Appearance section. Use the Animation subsection to set these attributes:

	
AnimationOnDisplay: Use to specify the type of initial rendering effect to apply. Valid values are:

	
NONE (default): Do not show any initial rendering effect.

	
AUTO: Apply an initial rendering effect automatically chosen based on graph or gauge type.

	
AnimationOnDataChange: Use to specify the type of data change animation to apply. Valid values are:

	
NONE: Apply no data change animation effects.

	
AUTO (default): Apply Active Data Service (ADS) data change animation events. For more information about ADS, see Section 23.6.6, "How to Configure Gauges to Display Active Data."

	
ON: Apply partial page refresh (PPR) data change animation events. Use this setting to configure the application to poll the data source for changes at prescribed intervals.

23.6.6 How to Configure Gauges to Display Active Data

Animation effects using Active Data Service (ADS) can be added to dial and status meter gauge types. ADS allows you to bind ADF Faces components to an active data source using the ADF model layer. To allow this, you must configure the components and the bindings so that the components can display the data as it is updated in the data source. For more information about ADS and configuring your application, see the "Using the Active Data Service" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

You configure a databound gauge to display active data by setting a value on the binding element in the corresponding page definition file.

Before you begin:

You should have a data source that publishes events when data is changed and you should have created business services that react to those events and the associated data controls to represent those services.

To configure a gauge to display active data:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector, expand the Common section and enter a unique value for the ID attribute.

If you do not select an identifier, one will be entered for you.

	
In the Structure window, right-click the dvt:gauge component, and select Go to Page Definition.

	
In the Structure window, expand the Bindings folder, and select the node that represents the attribute binding for the component.

	
In the Property Inspector, expand the Advanced section, and from the ChangeEventPolicy attribute dropdown list, select Push.

23.7 Using Custom Shapes for Gauges

A set of prebuilt custom shapes styles are provided for the gauge component. You can also create and use a graphics file to create a custom shape for a gauge. Set the customShapesPath attribute for the gauge component to use an available custom shapes style, or to point to the vector graphics file that is processed into the graphics used for output.

23.7.1 How to Use Prebuilt Custom Shapes Styles

You can choose from a set of prebuilt custom shapes styles to specify a custom shape for a gauge. The custom shapes styles are:

	
Rounded rectangle

	
Full circle

	
Beveled circle

Figure 23-14 shows a dial gauge displayed with each of the custom shapes styles applied.

Figure 23-14 Dial Gauges with Custom Shapes Styles

[image: Dial gauges with custom shapes]

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To apply a custom shapes style to a gauge:

	
In the Structure window, right-click the dvt:gauge component and choose Go to Properties.

	
In the Property Inspector, expand the Appearance section, and select the custom shapes style from the CustomShapesPath attribute dropdown list. Valid values include: Rounded Rectangle, Full Circle, and Beveled Circle.

23.7.2 How to Use a Custom Shapes Graphic File

Due to the requirements for rotating and resizing a gauge's components, such as the plot area or tick marks, a vector graphics file is required when creating a custom shapes graphic file. Scalable Vector Graphics (SVG) is the supported file format for creating custom shapes for gauges.

After designing the gauge and exporting it to an SVG file, a designer can add information to identify, scale, and position the gauge shapes and components, and to specify other metadata used in processing.

In the SVG file, gauge components are identified using an ID. For example, an SVG file with <polygon id="indicator"/> would be interpreted as using a polygon shape for the indicator component. To specify multiple shapes to create the desired visual for a component, the ID can be modified as in id="indicator_0", id="indicator_1", and id="indicator_2".

Table 23-1 shows the gauge component IDs and their descriptions.

Table 23-1 Gauge Component IDs for Custom Shapes

	ID	Description
	
indicator

	
Points to the value represented by the gauge. If not specified, the gauge will use the indicator specified in the application.

For the dial gauge, the indicator must be specified while pointing up (90 degrees), so that the shape can be properly rotated.

For the status meter gauge, the indicator should be specified with its full extent, and the gauge will be cropped to point to the metric value.

	
indicatorBase

	
For a dial gauge, refers to the object that appears at the base of the indicator component. If specified, and the indicatorCenter is not, then the center of the indicatorBase will be taken as the indicatorCenter.

	
gaugeFrame

	
Refers to the optional component that adds visual distinction to the plotArea. It can be turned on or off in the application by setting the rendered property. Used primarily when the user wants to use the default gauge plotArea. If no plotArea is specified, then the gauge will insert the default plotArea within the plotAreaBounds. This provides a quick way to change the look of the gauge without having to create a custom plotArea or tickMark.

	
lowerLabelFrame

	
Refers to the frame that contains the bottomLabel when its position is LP_BELOW_GAUGE; allows the user to customize the look of this frame. The gauge will position the lowerLabelFrame in the same relative position to other gauge components when it is found in the custom shapes file.

	
plotArea

	
For the dial gauge, refers to the circular area within which the indicator moves.

For the status meter gauge, refers to the area that contains the indicator.

For the LED gauge, refers to the area that contains any graphics that will not be filled with the LED fill color.

When a plotArea is not specified, the gauge will draw the default plotArea. For tick marks to be drawn, a specification of the plotArea also requires either tickMarkPath or a set of tick marks.

	
tickMark

	
Used to define increments on the gauge. When a set of tick marks is specified with no tickMarkPath, the gauge will use the tick marks exactly where they appear on the plotArea. In this case, it is up to the user to ensure that the tick marks appear at equal increments. If a tickMarkPath is specified, the gauge will accept a single tickMark, at 90 degrees for the dial, and it will rotate and position the tickMark along the tickMarkPath.

	
upperLabelFrame

	
Refers to the frame that contains the topLabel when its position is LP_ABOVE_GAUGE. Setting the upperLabelFrame allows the user to customize the look of this frame. The gauge will position the upperLabelFrame in the same relative position to other gauge components when it is found in the custom shapes file.

Table 23-2 shows the metadata IDs and the descriptions used for internal calculations, not rendered in the gauge.

Table 23-2 Metadata IDs for Custom Shapes

	ID	Description
	
indicatorBarBounds

	
Specifies the box containing the minimum and maximum extent of the indicator bar. If not specified, the bounding box is taken to be the entire indicator as specified in the input file.

	
indicatorCenter

	
Specifies the center of rotation for the indicator that rotates around in a dial gauge. The center of the shape with this ID is considered to be the indicator center. If not specified, it is assumed to be the center of the bottom edge of the plot area for an 180-degree dial gauge, and the center of the plot area for an N-degree dial gauge.

	
ledFillArea

	
Specifies the area of the LED gauge that should be filled with the appropriate threshold color. If not specified, then the entire plotArea shape specified in the graphics file will be filled with the threshold color.

	
lowerLabelFrameTextBox

	
For complex lowerLabelFrame shapes, specifies a rectangle that can be set as the lowerLabelFrameTextBox. This box determines the position of the bottom label within the lowerLabelFrame.

	
plotAreaBounds

	
Specified the bounding box for the plotArea. If no plotArea has been specified in this file, then a bounding box is needed for the gauge to draw the plot area of the gauge. If not specified, then the gaugeFrame will use its own bounding box for this purpose.

	
thresholdFillArea

	
Defines the area that will be filled with the threshold colors.

For a dial gauge, specifies the thresholdFillArea that will be filled by sweeping an arc from the indicatorCenter.

For a status meter gauge, specifies the thresholdFillArea that will be filled based on the orientation of the status meter gauge.

	
tickMarkPath

	
Defines the path in which to draw tick marks. This is necessary for the gauge to calculate where tick marks should be drawn on a custom plot area, and the gauge will be unable to change the majorTickCount if this is not specified.

	
upperLabelFrameTextBox

	
For complex upperLabelFrame shapes, specifies a rectangle that can be set as the upperLabelFrameTextBox. This box determines the position of the topLabel within the upperLabelFrame.

Example 23-9 shows a sample SVG file used to specify custom shapes for the components of a gauge.

Example 23-9 Sample SVG File Used for Gauge Custom Shapes

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg xmlns:svg="http://www.w3.org/2000/svg"
 xmlns="http://www.w3.org/2000/svg"
 version="1.0">

 <rect width="264.72726" height="179.18887" rx="8.2879562"
 ry="10.368411" x="152.76225" y="202.13995"
 style="fill:#c83737;fill-opacity:1;stroke:none"
 id="gaugeFrame"/>
 <rect width="263.09058" height="42.581127" rx="3.0565372"
 ry="3.414634" x="155.11697" y="392.35468"
 fill="#c83737"
 id="lowerLabelFrame" />
 <rect width="241.79999" height="120.13961"
 x="164.2415" y="215.94714"
 style="fill:#ffeeaa"
 id="plotAreaBounds"/>
 <rect width="74.516975" height="44.101883"
 rx="2.6630435" ry="3.5365853"
 x="247.883" y="325.4415"
 style="fill:#ffd5d5;fill-opacity:1;stroke:none"
 id="indicatorBase"/>
 <rect width="6.0830183" height="98.849045" rx="2.6630435"
 ry="2.2987804" x="282.86035" y="237.23772"
 style="fill:#00aa00;fill-opacity:1;stroke:none"
 id="indicator"/>
</svg>

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge set. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To use a custom shapes graphics file for a gauge:

	
In the Structure window, right-click the dvt:gauge component and choose Go to Properties.

	
In the Property Inspector, expand the Appearance section, and in the CustomShapesPath attribute field, enter the path to the SVG file to be used to specify the custom shapes for your gauge. For example:

/path/customShapesFile.svg

23.7.3 What You May Need to Know About Supported SVG Features

The custom shapes available to you support the following SVG features:

	
Transformations

	
Paths

	
Basic shapes

	
Fill and stroke painting

	
Linear and radial gradients

SVG features that are not supported by custom shapes include:

	
Unit Identifiers: All coordinates and lengths should be specified without the unit identifiers, and are assumed to be in pixels. The parser does not support unit identifiers, because the size of certain units can vary based on the display used. For example, an inch may correspond to different numbers of pixels on different displays. The only exceptions to this are gradient coordinates, which can be specified as percentages.

	
Text: All text on the gauge is considered data, and should be specified through the tags or data binding.

	
Specifying Paint: The supported options are none, 6-digit hexadecimal, and a <uri> reference to a gradient.

	
Fill Properties: The fill-rule attribute is not supported.

	
Stroke Properties: The stroke-linecap, stroke-linejoin, stroke-miterlimit, stroke-disarray, and stroke-opacity attributes are not supported.

	
Linear Gradients and Radial Gradients: The gradientUnits, gradientTransform, spreadMethod, and xlink:href are not supported. Additionally, the r, fx, and fy attributes on the radial gradient are not supported.

	
Elliptical Arc Out-of-Range Parameters: If rx, ry, and x-axis-rot are too small such that there is no solution, the ellipse should be scaled uniformly until there is exactly one solution. The SVG parser will not support this.

	
General Error Conditions: The SVG input is expected to be well formed and without errors. The SVG parser will not perform any error checking or error recovery for incorrectly formed files, and it will stop parsing when it encounters an error in the file.

13 Using List-of-Values Components

This chapter describes how to use a list-of-values component to display a model-driven list of objects from which a user can select a value.

This chapter includes the following sections:

	
Section 13.1, "About List-of-Values Components"

	
Section 13.2, "Creating the ListOfValues Data Model"

	
Section 13.3, "Using the inputListOfValues Component"

	
Section 13.4, "Using the InputComboboxListOfValues Component"

13.1 About List-of-Values Components

ADF Faces provides two list-of-values (LOV) input components that can display multiple attributes of each list item and can optionally allow the user to search for the needed item. These LOV components are useful when a field used to populate an attribute for one object might actually be contained in a list of other objects, as with a foreign key relationship in a database. For example, suppose you have a form that allows the user to edit employee information. Instead of having a separate page where the user first has to find the employee record to edit, that search and select functionality can be built into the form, as shown in Figure 13-1.

Figure 13-1 List-of-Values Input Field

[image: List of Values field displayed in a browser]

In this form, the employee name field is an LOV that contains a list of employees. When the user clicks the search icon of the inputListOfValues component, a Search and Select popup dialog displays all employees, along with a search field that allows the user to search for the employee, as shown in Figure 13-2.

Figure 13-2 The Search Popup Dialog for a List-of-Values Component

[image: Search popup for a list of values component]

When the user returns to the page, the current information for that employee is displayed in the form, as shown in Figure 13-3. The user can then edit and save the data.

Figure 13-3 Form Populated Using LOV Component

[image: Fields populated by LOV component]

As shown in the preceding figures, the inputListOfValues component provides a popup dialog from which the user can search for and select an item. The list is displayed in a table. In contrast, the inputComboboxListOfValues component allows the user two different ways to select an item to input: from a simple dropdown list, or by searching as you can in the inputListOfValues component. Note that the columns of the table will not stretch to the full width of the dialog.

You can also create custom content to be rendered in the Search and Select dialog by using the searchContent facet. You define the returnPopupDataValue attribute and programmatically set it with a value when the user selects an item from the Search and Select dialog and then closes the dialog. This value will be the return value from the ReturnPopupEvent to the returnPopupListener. When you implement the returnPopupListener, you can perform functions such as setting the value of the LOV component and its dependent components, and displaying the custom content. In the searchContent facet you can add components such as tables, trees, and input text to display your custom content.

If you implement both the searchContent facet and the ListOfValues model, the searchContent facet implementation will take precedence in rendering the Search and Select dialog. Example 13-1 shows the code to display custom content using a table component.

Example 13-1 Adding Custom Content to the Search and Select Dialog

<af:inputListOfValues model="#{bean.listOfValuesModel}"
...
 returnPopupDataValue="#{bean.returnPopupDataValue}"
 returnPopupListener="#{bean.returnPopupListener}">
 <f:facet name="searchContent">
 <af:table id="t1" value="#{bean.listModel}" var="row"
 selectionListener="#{bean.selected}"
 ...
 </f:facet>
</af:inputListOfValues>

Both components support the auto-complete feature, which allows the user to enter a partial value in the input field, tab out, and have the dialog populated with the rows that match the partial criteria. For this to work, you must implement logic so that when the user tabs out after a partial entry, the entered value is posted back to the server. On the server, your model implementation filters the list using the partially entered value and performs a query to retrieve the list of values. ADF Faces provides APIs for this functionality.

If you want to add the auto-complete feature when the user tabs out after entering a partial entry, you will need to disable the custom popup. In your LaunchPopupListener()code, add launchPopupEvent.setLaunchPopup(false) to prevent the custom popup from launching when the user tabs out. Clicking on the Search link will still launch the Search and Select dialog. Example 13-2 shows the listener code in a managed bean that is used to disable the custom popup.

Example 13-2 Disabling the Custom Popup

public void LaunchPopupListener(LaunchPopupEvent launchPopupEvent) {
 if (launchPopupEvent.getPopupType().equals
 (LaunchPopupEvent.PopupType.SEARCH_DIALOG)
 {
 ...

 launchPopupEvent.setLaunchPopup(false);
 }
}

If the readOnly attribute is set to true, the input field is disabled. If readOnly is set to false, then the editMode attribute determines which type of input is allowed. If editMode is set to select, the value can be entered only by selecting from the list. If editMode is set to input, then the value can also be entered by typing.

You can also implement the LOV component to automatically display a list of suggested items when the user types in a partial value. For example, when the user enters Ca, then a suggested list which partially matches Ca is displayed as a suggested items list, as shown in Figure 13-4. If there are no matches, a "No results found." message will be displayed.

Figure 13-4 Suggested Items List for an LOV

[image: Suggested Items list.]

The user can select an item from this list to enter it into the input field, as shown in Figure 13-5.

Figure 13-5 Suggested Items Selected

[image: Suggested Items selected.]

You add the auto-suggest behavior by adding the af:autoSuggestBehavior tag inside the LOV component with the tag's suggestItems values set to a method that retrieves and displays the list. You can create this method in a managed bean. If you are using ADF Model, the method is implemented by default. You also need to set the component's autoSubmit property to true.

In your LOV model implementation, you can implement a smart list that filters the list further. You can implement a smart list for both LOV components. If you are using ADF Model, the inputComboboxListOfValues allows you declaratively select a smart list filter defined as a view criteria for that LOV. If the smart list is implemented, and auto-suggest behavior is also used, auto-suggest will search from the smart list first. If the user waits for two seconds without a gesture, auto-suggest will also search from the full list and append the results. The maxSuggestedItems attribute specifies the number of items to return (-1 indicates a complete list). If maxSuggestedItems > 0, a More link is rendered for the user to click to launch the LOV's Search and Select dialog. Example 13-3 shows the code for an LOV component with both auto-suggest behavior and a smart list.

Example 13-3 Auto-Suggest Behavior and Smart List

af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"/>
 maxSuggestedItems="7"/>

Figure 13-6 shows how a list can be displayed by an inputComboboxListOfValues component. If the popup dialog includes a query panel, then a Search link is displayed at the bottom of the dropdown list. If a query panel is not used, a More link is displayed.

Figure 13-6 InputComboboxListOfValues Displays a List of Employee Names

[image: inputComboboxListOfValues shows list]

The dropdown list of the inputComboboxListOfValues component can display the following:

	
Full list: As shown in Figure 13-6, a complete list of items returned by the ListOfValuesModel.getItems() method.

	
Favorites list: A list of recently selected items returned by the ListOfValuesModel.getRecentItems() method.

	
Search link: A link that opens a popup Search and Select dialog. The link is not on the scrollable region on the dropdown list.

	
customActions facet: A facet for adding additional content. Typically, this contains one or more commandLink components. You are responsible for implementing any logic for the commandLink to perform its intended action, for example, launching a popup dialog.

The number of columns to be displayed for each row can be retrieved from the model using the getItemDescriptors() method. The default is to show all the columns.

The popup dialog from within an inputListOfValues component or the optional search popup dialog in the inputComboboxListOfValues component also provides the ability to create a new record. For the inputListOfValues component, when the createPopupId attribute is set on the component, a toolbar component with a commandToolbarButton is displayed with a create icon. At runtime, a commandToolbarButton component appears in the LOV popup dialog, as shown in Figure 13-7.

Figure 13-7 Create Icon in Toolbar of Popup Dialog

[image: Create icon in toolbar of popup]

When the user clicks the Create button, a popup dialog is displayed that can be used to create a new record. For the inputComboboxListOfValues, instead of a toolbar, a commandLink with the label Create is displayed in the customActions facet, at the bottom of the dialog. This link launches a popup where the user can create a new record. In both cases, you must provide the code to actually create the new record.

Both the inputListOfValues and the inputComboboxListOfValues components support the context facet. This facet allows you to add the af:contextInfo control, which can be used to show contextual information. When the user clicks in this area, it launches a popup window displaying contextual information.

	
Tip:

Instead of having to build your own create functionality, you can use ADF Business Components and ADF data binding. For more information, see the "Creating an Input Table" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Like the query components, the LOV components rely on a data model to provide the functionality. This data model is the ListOfValuesModel class. This model uses a table model to display the list of values, and can also access a query model to perform a search against the list. You must implement the provided interfaces for the ListOfValuesModel in order to use the LOV components.

	
Tip:

Instead of having to build your own ListOfValuesModel class, you can use ADF Business Components to provide the needed functionality. For more information, see the "Creating Databound Selection Lists and Shuttles" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

When the user selects an item in the list, the data is returned as a list of objects for the selected row, where each object is the rowData for a selected row. The list of objects is available on the ReturnPopupEvent event, which is queued after a selection is made.

If you choose to also implement a QueryModel class, then the popup dialog will include a Query component that the user can use to perform a search and to filter the list. Note the following about using the Query component in an LOV popup dialog:

	
The saved search functionality is not supported.

	
The Query component in the popup dialog and its functionality is based on the corresponding QueryDescriptor class.

	
The only components that can be included in the LOV popup dialog are query, toolbar, and table.

When the user clicks the Search button to start a search, the ListOfValuesModel.performQuery() method is invoked and the search is performed. For more information about the query model, see Chapter 14, "Using Query Components."

You should use the list-of-values components when you have a more complex selection process than can be handled by the simpler select components. With list-of-values components, you can filter the selection list using accessors, smart list, auto-suggest, and other features to fine-tune the list criteria. You can create custom content in the popup window. You can add code to the returnPopupListener to perform functions when the popup window closes. A customActions facet can be used to add additional content. A create feature allows the user to create a new record. The list-of-values components offer a rich set of data input features for easier data entry.

13.1.1 Additional Functionality for List-of-Values Components

You may find it helpful to understand other ADF Faces features before you implement your list-of-values components. Additionally, once you have added a list-of-value component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that input components can use.

	
Client components: Components can be client components. To work with the components on the client, see Chapter 4, "Using ADF Faces Client-Side Architecture."

	
JavaScript APIs: All list-of-value components have JavaScript client APIs that you can use to set or get property values. For more information, see the ADF Faces JavaScript API documentation.

	
Events: List-of-value components fire both server-side and client-side events that you can have your application react to by executing some logic. For more information, see Chapter 6, "Handling Events."

	
You can add validation and conversion to list-of-values components. For more information, see Chapter 7, "Validating and Converting Input."

	
You can display tips and messages, as well as associate online help with list-of-values components. For more information, see Chapter 19, "Displaying Tips, Messages, and Help."

	
There may be times when you want the certain list-of-values components to be validated before other components on the page. For more information, see Section 5.2, "Using the Immediate Attribute."

	
You may want other components on the page to update based on selections you make from a list-of-values component. For more information, see Section 5.3, "Using the Optimized Lifecycle."

	
You can change the appearance of the components using skins. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
You can make your list-of-values components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Instead of entering values for attributes that take strings as values, you can use property files. These files allow you to manage translation of these strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
The LOV components use the query component to populate the search list. For more information on the query component, see Chapter 14, "Using Query Components."

	
Other list components, such as selectOneChoice, also allow users to select from a list, but they do not include a popup dialog and they are intended for smaller lists. For more information about select choice components, list box components, and radio buttons, see Chapter 11, "Using Input Components and Defining Forms."

	
If your application uses the Fusion technology stack, then you can create list-of-value components based on how your ADF Business components are configured. For more information, see the "Creating a Basic Databound Page" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. If your application uses Enterprise JavaBeans, you can do the same. For more information, see the “Creating a Basic Databound Page" of the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

13.2 Creating the ListOfValues Data Model

Before you can use the LOV components, you must have a data model that uses the ADF Faces API to access the LOV functionality. Figure 13-8 shows the class diagram for a ListOfValues model.

Figure 13-8 Class Diagram for LIstOfValues Model

[image: Class diagram for ListOfValues model]

13.2.1 How to Create the ListOfValues Data Model

Begin you begin:

It may be helpful to have an understanding of the list-of-values data model. For more information, see Section 13.2, "Creating the ListOfValues Data Model."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."

To create a ListOfValues model and associated events:

	
Create implementations of each of the interface classes shown in Figure 13-8. Table 13-1 provides a description of the APIs.

Table 13-1 ListOfValues Model API

	Method	Functionality
	
autoCompleteValue()

	
Called when the search icon is clicked or the value is changed and the user tabs out from the input field, as long as autoSubmit is set to true on the component. This method decides whether to open the dialog or to auto-complete the value. The method returns a list of filtered objects.

	
valueSelected(value)

	
Called when the value is selected from the Search and Select dialog and the OK button is clicked. This method gives the model a chance to update the model based on the selected value.

	
isAutoCompleteEnabled()

	
Returns a boolean to decide whether or not the auto complete is enabled.

	
getTableModel()

	
Returns the implementation of the TableModel class, on which the table in the search and select dialog will be based and created.

	
getItems() and getRecentItems()

	
Return the items and recentItems lists to be displayed in the combobox dropdown. Valid only for the inputComboboxListOfValues component. Returns null for the inputListOfValues component.

	
getItemDescriptors()

	
Return the list of columnDescriptors to be displayed in the dropdown list for an inputComboboxListOfValues component.

	
getQueryModel() and getQueryDescriptor()

	
Return the queryModel based on which the query component inside the Search and Select dialog is created.

	
performQuery()

	
Called when the search button in the query component is clicked.

For an example of a ListOfValues model, see the DemoLOVBean and DemoComboboxLOVBean classes located in the oracle.adfdemo.view.lov package, found in the Application Sources directory of the ADF Faces application.

	
For the inputListOfValues component, provide logic in a managed bean (it can be the same managed bean used to create your LOV model) that accesses the attribute used to populate the list. The inputComboboxListOfValues component uses the getItems() and getRecentItems() methods to return the list.

	
For the Search and Select popup dialog used in the InputListOfValues component, or if you want the InputComboboxListOfValues component to use the Search and Select popup dialog, implement the ListOfValuesModel.autoCompleteValue() and ListOfValuesModel.valueSelected() methods. These methods open the popup dialog and apply the selected values onto the component.

13.3 Using the inputListOfValues Component

The inputListOfValues component uses the ListOfValues model you implemented to access the list of items, as documented in Section 13.2, "Creating the ListOfValues Data Model."

13.3.1 How to Use the InputListOfValues Component

Before you begin:

It may be helpful to have an understanding of the inputListOfValues component. For more information, see Section 13.3, "Using the inputListOfValues Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."

You will need to complete this task:

	Create a page or page fragment. If you also implemented the search API in the model, the component would also allows the user to search through the list for the value.

To add an inputListOfValues component:

	
In the Component Palette, from the Common panel, drag an Input List Of Values and drop it onto the page.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
model: Enter an EL expression that resolves to your ListOfValuesModel implementation, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
value: Enter an EL expression that resolves to the attribute values used to populate the list, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
Expand the Appearance section and set the following attribute values:

	
popupTitle: Specify the title of the Search and Select popup dialog.

	
searchDesc: Enter text to display as a mouseover tip for the component.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
Expand the Behavior section and set the following attribute values:

	
autoSubmit: Set to true if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto-complete feature to work. If you are adding the auto-suggest behavior, you must set autoSubmit to true.

	
createPopupId: If you have implemented a popup dialog used to create a new object in the list, specify the ID of that popup component. Doing so will display a toolbar component above the table that contains a commandToolbarButton component bound to the popup dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will be always refreshed.

	
launchPopupListener: Enter an EL expression that resolves to a launchPopupListener that you implement to provide additional functionality when the popup is launched.

	
returnPopupListener: Enter an EL expression that resolves to a returnPopupListener component that you implement to provide additional functionality when the value is returned.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
If you want users to be able to create a new item, create a popup dialog with the ID given in Step 4. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
In the Component Palette, from the Operations panel, drag an Auto Suggest Behavior and drop it as a child to the inputListOfValues component.

	
In the Property Inspector, for each of the auto-suggest attributes, enter the:

	
EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the suggestItems. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)

	
EL expression that resolves to the smartList method. The method should return List<javax.model.SelectItem> of the smart list items.

	
Number of items to be displayed in the auto-suggest list. Enter -1 to display the complete list.

If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 13-4

Example 13-4 autoSuggestBehavior Tag in an LOV

<af:inputListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 maxSuggestedItems="7"/>
</af:inputListOfValues>

If the component is being used with a data model such as ADF Model, the suggestItem method should be provided by the default implementation.

	
If you are not using ADF Model, create the suggestItems method to process and display the list. The suggestItems method signature is shown in Example 13-5.

Example 13-5 suggestItems Method Signature

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

13.4 Using the InputComboboxListOfValues Component

The inputComboboxListOfValues component allows a user to select a value from a dropdown list and populate the LOV field, and possibly other fields, on a page, similar to the inputListOfValues component. However, it also allows users to view the values in the list either as a complete list, or by most recently viewed. You can also configure the component to perform a search in a popup dialog, as long as you have implemented the query APIs, as documented in Section 13.2, "Creating the ListOfValues Data Model."

13.4.1 How to Use the InputComboboxListOfValues Component

Before you begin:

It may be helpful to have an understanding of the inputComboboxListOfValues component. For more information, see Section 13.4, "Using the InputComboboxListOfValues Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."

To add an inputComboboxListOfValues component:

	
In the Component Palette, from the Common panel, drag an Input Combobox List Of Values and drop it onto the page.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
model: Enter an EL expression that resolves to your ListOfValuesModel implementation, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
value: Enter an EL expression that resolves to the attribute values used to populate the list, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
Expand the Appearance section and set the following attribute values:

	
popupTitle: Specify the title of the Search and Select popup dialog.

	
searchDesc: Enter text to display as a mouseover tip for the component.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
Expand the Behavior section and set the following attribute values:

	
autoSubmit: Set to true if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto complete feature to work. If you are adding the auto-suggest behavior, you must set autoSubmit to true.

	
createPopupId: If you have implemented a popup dialog used to create a new object in the list, specify the ID of that popup component. Doing so will display a toolbar component above the table that contains a commandToolbarButton component bound to the dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will always be refreshed.

	
launchPopupListener: Enter an EL expression that resolves to a launchPopupListener handler that you implement to provide additional functionality when the popup dialog is opened.

	
returnPopupListener: Enter an EL expression that resolves to a returnPopupListener handler that you implement to provide additional functionality when the value is returned.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
If you are using a launchPopupListener, you can use the getPopupType() method of the LaunchPopupEvent class to differentiate the source of the event. getPopupType() returns DROPDOWN_LIST if the event is a result of the launch of the LOV Search and Select dialog, and SEARCH_DIALOG if the event is the result of the user clicking the Search button in the dialog.

	
If you want users to be able to create a new item, create a popup dialog with the ID given in Step 5. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
In the Component Palette, from the Operations panel, drag an Auto Suggest Behavior and drop it as child to the inputComboboxListOfValues component.

	
In the Property Inspector, for each of the auto-suggest attributes, enter the:

	
EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the suggestItems. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)

	
EL expression that resolves to the smartList method. The method should return List<javax.model.SelectItem> of the smart list items.

	
Number of items to be displayed in the auto-suggest list. Enter -1 to display the complete list.

If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 13-6.

Example 13-6 autoSuggestBehavior Tag in an LOV

<af:inputComboboxListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 maxSuggestedItems="7"/>
</af:inputComboboxListOfValues>

If the component is being used with a data model such as ADF Model, the suggestItem method should be provided by the default implementation.

	
If you are not using the component with ADF Model, create the suggestItems method to process and display the list. The suggestItems method signature is shown in Example 13-7.

Example 13-7 suggestItems Method Signature

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

30 Developing Accessible ADF Faces Pages

This chapter describes how to add accessibility support to ADF Faces components with keyboard shortcuts and text descriptions of the component name and state. Accessibility guidelines for ADF pages that use partial page rendering, scripting, styles, and certain page and navigation structures are also described in this chapter.

This chapter includes the following sections:

	
Section 30.1, "About Accessibility Support In ADF Faces"

	
Section 30.2, "Configuring Accessibility Support In ADF Faces"

	
Section 30.3, "Specifying Component-Level Accessibility Properties"

	
Section 30.4, "Creating Accessible Pages"

	
Section 30.5, "Running Accessibility Audit Rules"

30.1 About Accessibility Support In ADF Faces

Accessibility involves making your application usable for persons with disabilities such as low vision or blindness, deafness, or other physical limitations. This means creating applications that can be used without a mouse (keyboard only), used with a screen reader for blind or low-vision users, and used without reliance on sound, color, or animation and timing.

ADF Faces user interface components have built-in accessibility support for visually and physically impaired users. User agents such as a web browser rendering to nonvisual media such as a screen reader can read component text descriptions to provide useful information to impaired users.

While the ADF Faces accessibility guidelines for components, page, and navigation structures is useful, it is not a substitute for familiarity with accessibility standards and performing accessibility testing with assistive technology.

For physically impaired users, ADF Faces has been tested to work with JAWS, an assistive technology screen reader. More information about the JAWS screen reader software is available at http://www.freedomscientific.com.

Access key support provides an alternative method to access components and links using only the keyboard. ADF Faces accessibility audit rules provide direction to create accessible images, tables, frames, forms, error messages, and popup windows using accessible HTML markup. Additional framework and platform issues presented by client-side scripting, in particular using asynchronous JavaScript and XML (AJAX), have been addressed in Oracle's accessibility strategy.

Oracle software implements the Web Content Accessibility Guidelines (WCAG) 1.0 AA standards. The interpretation of these standards is available at http://www.oracle.com/accessibility/standards.html

30.1.1 ADF Faces Accessibility Support Use Cases and Examples

ADF Faces provides three types of application accessibility support: screen reader, high-contrast mode, and large-font mode. Figure 30-1 shows an example of accessibility options in a dropdown menu. The user can choose a combination of all three options as required.

Figure 30-1 Dropdown Menu Listing Accessibility Support Options

[image: Dropdown menu listing accessibility types]

Figure 30-2 shows an example of accessibility options in screen reader mode.

Figure 30-2 Dropdown Menu listing Accessibility Support options in Screen Reader mode

[image: Menu listing accessibility types in screen reader mode]

30.1.2 Additional Information for Accessibility Support in ADF Pages

You may also find it helpful to understand other ADF Faces features before you make your application accessible. Following are links to other features that work with accessibility.

	
Internationalization and localization: The ADF skin that you create to apply to your application can be customized as part of a process to internationalize and localize ADF Faces pages. For more information about this process, see Chapter 29, "Internationalizing and Localizing Pages."

	
Keyboard shortcuts: Keyboard shortcuts provide an alternative to pointing devices for navigating the page. For more information about how to use keyboard shortcuts with accessibility, see Appendix C, "Keyboard Shortcuts."

30.2 Configuring Accessibility Support In ADF Faces

ADF Faces provides three levels of application accessibility support, configured in the trinidad-config.xml file using the <accessibility-mode> element. The acceptable values for <accessibility-mode> are:

	
default: By default, ADF Faces generates components that have rich user interface interaction, and are also accessible through the keyboard.

	
screenReader: ADF Faces generates components that are optimized for use with screen readers. The screenReader mode facilitates text usage for disabled users, but may degrade the output for nondisabled users or users with only some physical limitations.

You can also use the @accessibility-profile element to define finer-grain accessibility preferences in the style sheet or you can specify the accessibility profile options in the trinidad-config.xml file. The options are high-contrast, large-fonts, or both. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

The acceptable values for <accessibility-profile> are:

	
high-contrast: ADF Faces can generate high-contrast–friendly visual content. High-contrast mode is intended to make ADF Faces applications compatible with operating systems or browsers that have high-contrast features enabled. For example, ADF Faces changes its use of background images and background colors in high-contrast mode to prevent the loss of visual information. Note that the ADF Faces high-contrast mode is more beneficial if used in conjunction with your browser's or operating system's high-contrast mode. Also, some users might find it beneficial to use large-font mode along with high-contrast mode.

	
large-fonts: ADF Faces can generate browser-zoom–friendly content. In default mode, most text and many containers have a fixed font size to provide a consistent and defined look. In large-font mode, text and containers have a scalable font size. This allows ADF Faces both to be compatible with browsers that are set to larger font sizes and to work with browser-zoom capabilities. Note that if you are not using large-font mode or browser-zoom capabilities, you should disable large-font mode. Also, some users might find it beneficial to use high-contrast mode along with the large-font mode.

	
Note:

The <accessibility-mode> and <accessibility-profile> elements are EL-bound to a session scope managed bean that contains the user-specific preferences.

30.2.1 Accessibility Support Guidelines at Sign-In

When developing an application, it is a good practice to provide accessibility selection options for users after application sign-in. The sign-in accessibility flow should consist of three pages for first-time users and two pages for subsequent users, as described here:

	
Sign-in page

	
Accessibility Mode Selection page (mandatory for first-time users)

	
Application home page

The accessibility options should appear for first time users and any user who opts not to circumvent it on subsequent authentications. For example, you can provide a page or dialog with the following options:

	
Hint text: Provide brief information about the accessibility options.

	
Checkboxes

	
Screen reader: Generate ADF Faces components that are optimized for use with screen readers.

	
High Contrast: Generate high-contrast–friendly visual content.

	
Large Fonts: Generate browser-zoom–friendly content

	
Do not show these options again: Do not show the accessibility options after sign-in.

	
A Continue button: Navigate to the home page of the application.

Figure 30-3 shows a page with accessibility options.

Figure 30-3 Accessibility Options After Sign-In

[image: Accessibility options after sign-in]

If the user opts not to see the accessibility options at sign-in by choosing Do not show these options again, then you should also provide a page or a dialog to navigate the user to the accessibility options. For example, the user preferences page of the application. Figure 30-4 shows the preferences page of an application with accessibility options.

Figure 30-4 Accessibility Options in User Preferences Page

[image: Accessibiltiy options in preferences page]

Note that the application may have additional authentication security set up between the Accessibility Mode Selection page and the product-specific home page.

30.2.2 How to Configure Accessibility Support in trinidad-config.xml

In JDeveloper, when you insert an ADF Faces component into a JSF page for the first time, a starter trinidad-config.xml file is automatically created for you in the /WEB-INF/ directory. The file has a simple XML structure that enables you to define element properties using the JSF expression language (EL) or static values. The order of elements in the file does not matter. You can configure accessibility support by editing the XML file directly or by using the Structure window.

Before you begin:

It may be helpful to have an understanding of accessibility support in ADF Faces. For more information, see Section 30.2, "Configuring Accessibility Support In ADF Faces." You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 30.1.2, "Additional Information for Accessibility Support in ADF Pages."

To configure accessibility support in trinidad-config.xml:

	
In the Application Navigator, double-click trinidad-config.xml.

	
In the XML editor, enter the element name <accessibility-mode> and accessibility support value (default, screenReader, or inaccessible). For example:

<accessibility-mode>screenReader</accessibility-mode>

This code sets the application's accessibility support to screen reader mode.

	
Enter the element name <accessibility-profile> and accessibility profile value (high-contrast, large-fonts).

For example:

<!-- Enable both high-contrast and large-fonts content -->
<accessibility-profile>high-contrast large-fonts</accessibility-profile>

This code sets the application's profile support to use both high-contrast and large-fonts. Figure 30-5 illustrates a trinidad-config.xml file in JDeveloper.

Figure 30-5 trinidad-config.xml in JDeveloper

[image: trinidad-config.xml in JDeveloper]

	
Alternatively, you can use the Structure window to insert the value:

	
In the Application Navigator, select the trinidad-config.xml file.

	
In the Structure window, right-click the XML file root element, choose the Insert Inside menu item, and click the <accessibility-mode> element.

	
Double-click the newly inserted element in the Structure window to open the Property Inspector. Enter a value or select one from the dropdown list.

Once you have configured the trinidad-config.xml file, you can retrieve the property values programmatically or by using JSF EL expressions.

For example, the following code returns nothing if the accessibility mode is not explicitly set:

String mode=ADFFacesContext.getCurrentInstance().getAccessibilityMode;

In this EL expression example, a null value is returned if the accessibility mode is not explicitly set:

<af:outputText value="*#{requestContext.accessibilityMode}"/>

You can set accessibility selection options at the time of application sign-in, or in the user preferences page of the application. For more information, see Section 30.2.1, "Accessibility Support Guidelines at Sign-In."

30.3 Specifying Component-Level Accessibility Properties

Guidelines for component-specific accessibility are provided in Section 30.3.1, "ADF Faces Component Accessibility Guidelines." The guidelines include a description of the relevant property with examples and tips. For information about auditing compliance with ADF Faces accessibility rules, see Section 30.5, "Running Accessibility Audit Rules."

Access key support for ADF Faces input or command and go components such as af:inputText, af:commandButton, and af:goLink involves defining labels and specifying keyboard shortcuts. While it is possible to use the tab key to move from one control to the next in a web application, keyboard shortcuts are more convenient and efficient.

To specify an access key for a component, set the component's accessKey attribute to a keyboard character (or mnemonic) that is used to gain quick access to the component. You can set the attribute in the Property Inspector or in the page source using & encoding.

The same access key can be bound to several components. If the same access key appears in multiple locations in the same page, the rendering agent will cycle among the components accessed by the same key. That is, each time the access key is pressed, the focus will move from component to component. When the last component is reached, the focus will return to the first component.

Using access keys on af:goButton and af:goLink components may immediately activate them in some browsers. Depending on the browser, if the same access key is assigned to two or more go components on a page, the browser may activate the first component instead of cycling through the components that are accessed by the same key.

To develop accessible page and navigation structures, follow the additional accessibility guidelines described in Section 30.4, "Creating Accessible Pages."

30.3.1 ADF Faces Component Accessibility Guidelines

To develop accessible ADF Faces components, follow the guidelines described in Table 30-1. Components not listed do not have accessibility guidelines.

	
Note:

In cases where the label property is referenced in the accessibility guidelines, the labelAndAccessKey property may be used where available, and is the preferred option.
Unless noted otherwise, you can also label ADF Faces input and select controls by:

	
Specifying the for property in an af:outputLabel component

	
Specifying the for property in an af:panelLabelAndMessage component

Table 30-1 ADF Faces Components Accessibility Guidelines

	Component	Guidelines
	
af:activeCommandToolbarButton

	
Specify the text, textAndAccessKey, or shortDesc property. Usually, the text or textAndAccessKey property is used as the label for the component. Unique buttons and links must have unique text.

All toolbar buttons and links that support icons must have the text, textAndAccessKey, or shortDesc property defined. When there is no text, the shortDesc must be defined and used as the label for the component.

	
af:activeImage

	
Specify the shortDesc property.

If the image is only present for decorative purposes and communicates no information, set shortDesc to the empty string.

	
af:chooseColor

	
For every af:chooseColor component, there must be at least one af:inputColor component with a chooseId property which points to the af:chooseColor component.

	
af:chooseDate

	
For every af:chooseDate component, there must be at least one af:inputDate component with a chooseId property which points to the af:chooseDate component.

	
af:column

	
Specify the headerText property, or provide a header facet.

In a table, you must identify atleast one column component as a row header by setting rowHeader to true or unstyled. Ensure that the rowHeader column provides a unique textual value, and columns that contain an input component are not assigned as the row header.

For every child input component, set the Simple attribute to true, and ensure that the input component has a label assigned. In rich mode, the label is not displayed, but it is read by the screen reader software in screen reader mode.

If you wish to provide help information for the column, use helpTopicId.

If you use a filter facet to set a filter on a column, ensure that the filter component has a label assigned.

	
af:commandButton

af:commandImageLink

	
One of the following properties must be specified: text, textAndAccessKey, or shortDesc. The text should specify the action to be taken and make sense when read out of context. For example, use "go to index" instead of "click here."

Usually, the text or textAndAccessKey property is used as the label for the component. Unique buttons and links must have unique text.

	
af:commandLink

	
Specify the text or textAndAccessKey property. The text should specify where the link will take the user and make sense when read out of context. For example use "go to index" instead of "click here." Multiple links that go to the same location must use the same text and unique links must have unique text.

Usually, the text or textAndAccessKey property is used as the label for the component. Unique buttons and links must have unique text.

	
af:commandMenuItem

af:commandNavigationItem

af:comandToolbarButton

	
One of the following properties must be specified: text, textAndAccessKey, or shortDesc.

Usually, the text or textAndAccessKey property is used as the label for the component. Unique buttons and links must have unique text.

	
af:dialog

af:document

	
Specify the title property.

If you wish to provide help information, use helpTopicId.

	
af:goButton

	
One of the following properties must be specified: text, textAndAccessKey, or shortDesc. The text should specify the action to be taken and make sense when read out of context. For example use "go to index" instead of "click here."

Usually, the text or textAndAccessKey property is used as the label for the component. Unique buttons and links must have unique text.

	
af:goLink

af:goMenuItem

	
Specify the text property. The text should specify where the link will take the user and make sense when read out of context. For example use "go to index" instead of "click here." Multiple links that go to the same location must use the same text and unique links must have unique text.

Usually, the text or textAndAccessKey property is used as the label for the component. Unique buttons and links must have unique text.

	
af:icon

	
Specify the shortDesc property. If the icon is only present only for decorative purposes and communicates no information, set shortDesc to the empty string.

	
af:image

	
Specify the shortDesc property. If the image is only present for decorative purposes and communicates no information, set shortDesc to the empty string.

Use the longDescURL property for images where a complex explanation is necessary. For example, charts and graphs require a description file that includes all the details that make up the chart.

	
af:inlineFrame

	
Specify the shortDesc property.

	
af:inputColor

af:inputComboboxListOfValues

af:inputDate

af:inputFile

af:inputListOfValues

af:inputNumberSlider

af:inputNumberSpinbox

af:inputRangeSlider

af:inputText

	
Specify the label property.

For af:inputComboboxListOfValues and af:inputListOfValues components, the searchDesc must also be specified.

If you wish to provide help information, use helpTopicId.

	
af:outputFormatted

	
The value property must specify valid HTML.

	
af:outputLabel

	
Specify the value or valueAndAccessKey property.

	
af:panelBox

af:panelHeader

	
Specify the text property.

If you wish to provide help information, use helpTopicId.

	
af:panelLabelAndMessage

	
Specify the label or labelAndAccessKey property. When using this component to label an ADF Faces input or select control, the for property must be specified.

If you wish to provide help information, use helpTopicId.

	
af:panelSplitter

af:panelStretchLayout

	
Refer to Section 30.4.4, "How to Use Page Structures and Navigation."

	
af:panelWindow

	
Specify the title property.

If you wish to provide help information, use helpTopicId.

	
af:poll

	
When using polling to update content, allow end users to control the interval, or to explicitly initiate updates instead of polling.

	
af:query

	
Specify the following properties:

	
headerText

	
addFieldsButtonAccessKey

	
addFieldsButtonText

	
resetButtonAccessKey

	
resetButtonText

	
saveButtonAccessKey

	
saveButtonText

	
searchButtonAccessKey

	
searchButtonText

If you wish to provide help information, use helpTopicId.

	
af:quickQuery

	
Specify the label and searchDesc properties.

If you wish to provide help information, use helpTopicId.

	
af:region

	
If you wish to provide help information, use helpTopicId.

	
af:resetButton

	
One of the following properties must be specified: text or textAndAccessKey. The text should specify the action to be taken and make sense when read out of context. For example, use "go to index" instead of "click here."

Usually, the text or textAndAccessKey property is used as the label for the component. Unique buttons and links must have unique text.

	
af:richTextEditor

	
Specify the label property.

If you wish to provide help information, use helpTopicId.

	
af:selectBooleanCheckbox

af:selectBooleanRadio

	
One of the following properties must be specified: text, textAndAccessKey, or label.

If you wish to provide help information, use helpTopicId.

	
af:selectItem

	
Specify the label property. Note that using the for attribute of af:outputLabel and af:panelMessageAndLabel components is not an acceptable alternative.

	
af:selectManyCheckbox

af:selectManyChoice

af:selectManyListbox

af:selectManyShuttle

af:selectOneChoice

af:selectOneListbox

af:selectOneRadio

af:selectOrderShuttle

	
Specify the label property.

For the af:selectManyShuttle and af:selectOrderShuttle components, the leadingHeader and trailingHeader properties must be specified.

If you wish to provide help information, use helpTopicId.

	
af:showDetailHeader

	
Specify the text property.

If you wish to provide help information, use helpTopicId.

	
af:showDetailItem

	
One of the following properties must be specified: text, textAndAccessKey, or shortDesc.

	
af:showPopupBehavior

	
Specify the triggerType property.

Note that trigger types of mouseHover, mouseMove, mouseOver, and mouseOut are suppressed in the screen reader mode. Hence, you must provide alternate access to the content for these trigger types in the screen reader mode.

	
af:table

af:treeTable

	
Specify the summary property. The summary should describe the purpose of the table.

All table columns must have column headers.

In screen reader mode, if a label is specified for an input component inside af:column, ADF Faces automatically inserts row information into the application-specified label of the input component. Typically, the application-specified label matches the column header text, and along with the inserted row information it provides a unique identity for each input component.

30.3.2 Using ADF Faces Table Components in Screen Reader Mode

If you are using ADF Faces table components in your web application, you must designate a column as the row header for screen reader mode. The row header is used by the screen reader software to announce the row when the end user selects it. Typically, a single column is used as a row header that allows multiple selections, but you can mark multiple columns as row headers. When you mark multiple columns as row headers, they appear as the initial columns of the table, and they are frozen.

Sometimes, for display purposes, you may not want to have a row header. In such a case, you must define one column in the table to have the rowHeader attribute set to unstyled. In screen reader mode, the table or the tree table component with the unstyled row header column is moved to the starting position with displayIndex set to 0, and it is frozen. In default mode, the table or tree table component with the unstyled row header column is not moved to the starting position, it is not frozen, and it is rendered without any row header CSS style.

30.3.3 Data Visualization Components Accessibility Guidelines

To develop accessible Data Visualization components, follow the accessibility guidelines described in Table 30-2. Components not listed do not have accessibility guidelines.

Table 30-2 Data Visualization Components Accessibility Guidelines

	Component	Guideline
	
dvt:projectGantt

dvt:resourceUtilizationGantt

dvt:schedulingGantt

	
Specify the summary property. The summary should describe the purpose of the Gantt component.

	
dvt:gauge

	
Specify the shortDesc property.

	
dvt:areaGraph

dvt:barGraph

dvt:horizontalBarGraph

dvt:bubbleGraph

dvt:comboGraph

dvt:funnelGraph

dvt:lineGraph

dvt:paretoGraph

dvt:pieGraph

dvt:radarGraph

dvt:scatterGraph

dvt:stockGraph

	
Specify the shortDesc property. The shortDesc property should describe the purpose of the graph.

Note that in screen reader mode, an instance of pivot table substitutes for the graph component, and the end user can then use the standard cursor keys to navigate through the data.

In screen reader mode, the following visualization features of the graph component are not supported:

	
Data change animation during partial page rendering.

	
Zoom and scroll. Scrolling is supported in pivot table.

	
The seriesRolloverBehavior and hideAndShowBehavior properties on simple graph tags.

	
The interactiveSliceBehavior property on pie graphs.

	
Precise control of data marker shapes and colors, including the following:

	
Declarative properties on the Series child tag

	
Declarative markerShape and markerColor properties on scatter graphs

	
Callback APIs

	
Conditional formatting rules from a backing bean

	
Marker underlays for bubble and scatter graphs

In screen reader mode, the following interactive features of the graph component are not supported:

	
Context menu facets

	
Popups

	
TimeSelector functionality through the <dvt:timeSelector> child tag

	
The drillingEnabled property of simple graph tags

	
ShapeAttributes support, and access to fine-grained mouse and key events from all graph components

	
Drag and drop in bubble and scatter graphs

	
DataSelection in bubble and scatter graphs

	
Programmatic TickLabelCallback support

	
dvt:hierarchyViewer

	
Specify the summary property.

Note that in screen reader mode, an instance of the tree table component substitutes for the hierarchy viewer component, and the end user can then use the standard cursor keys to navigate through the data.

	
dvt:map

	
Specify the summary property.

Note that in screen reader mode, an instance of the table component substitutes for the map component, and the end user can then use the standard cursor keys to navigate through the data.

	
dvt:thematicMap

	
Specify the summary property.

Note that in screen reader mode, an instance of the table component substitutes for each DataLayer component, and the end user can then use the standard cursor keys to navigate through the data.

If the thematic map instance has multiple DataLayers associated with it, then a dropdown list is also rendered in screen reader mode to enable end users to switch between the corresponding table instances.

	
dvt:pivotTable

	
Specify the summary property. The summary should describe the purpose of the pivot table component.

	
dvt:sparkChart

	
Specify the shortDesc property.

30.3.4 How to Define Access Keys for an ADF Faces Component

In the Property Inspector of the component for which you are defining an access key, enter the mnemonic character in the accessKey attribute field. When simultaneously setting the text, label, or value and mnemonic character, use the ampersand (&) character in front of the mnemonic character in the relevant attribute field.

Before you begin:

It may be helpful to have an understanding of component-level accessibility guidelines. For more information, see Section 30.3, "Specifying Component-Level Accessibility Properties." You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 30.1.2, "Additional Information for Accessibility Support in ADF Pages."

Defining Access Keys

Use one of four attributes to specify a keyboard character for an ADF Faces input or command and go component:

	
accessKey: Use to set the mnemonic character used to gain quick access to the component. For command and go components, the character specified by this attribute must exist in the text attribute of the instance component; otherwise, ADF Faces does not display the visual indication that the component has an access key.

Example 30-1 shows the code that sets the access key to the letter h for the af:goLink component. When the user presses the keys ALT+H, the text value of the component will be brought into focus.

Example 30-1 AccessKey Attribute Defined

<af:goLink text="Home" accessKey="h">

	
textAndAccessKey: Use to simultaneously set the text and the mnemonic character for a component using the ampersand (&) character. In JSPX files, the conventional ampersand notation is &. In JSP files, the ampersand notation is simply &. In the Property Inspector, you need only the &.

Example 30-2 shows the code that specifies the button text as Home and sets the access key to H, the letter immediately after the ampersand character, for the af:commandButton component.

Example 30-2 TextAndAccessKey Attribute Defined

<af:commandButton textAndAccessKey="&Home"/>

	
labelAndAccessKey: Use to simultaneously set the label attribute and the access key on an input component, using conventional ampersand notation.

Example 30-3 shows the code that specifies the label as Date and sets the access key to a, the letter immediately after the ampersand character, for the af:selectInputDate component.

Example 30-3 LabelAndAccessKey Attribute Defined

<af:inputSelectDate value="Choose date" labelAndAccessKey="D&ate"/>

	
valueAndAccessKey: Use to simultaneously set the value attribute and the access key, using conventional ampersand notation.

Example 30-4 shows the code that specifies the label as Select Date and sets the access key to e, the letter immediately after the ampersand character, for the af:outputLabel component.

Example 30-4 ValueAndAccessKey Attribute Defined

<af:outputLabel for="someid" valueAndAccessKey="Select Dat&e"/>
<af:inputText simple="true" id="someid"/>

Access key modifiers are browser and platform-specific. If you assign an access key that is already defined as a menu shortcut in the browser, the ADF Faces component access key will take precedence. Refer to your specific browser's documentation for details.

In some browsers, if you use a space as the access key, you must provide the user with the information that Alt+Space or Alt+Spacebar is the access key because there is no way to present a blank space visually in the component's label or textual label. For that browser you could provide text in a component tooltip using the shortDesc attribute.

30.3.5 How to Define Localized Labels and Access Keys

Labels and access keys that must be displayed in different languages can be stored in resource bundles where different language versions can be displayed as needed. Using the <resource-bundle> element in the JSF configuration file available in JSF 1.2, you can make resource bundles available to all the pages in your application without using a f:loadBundle tag in every page.

Before you begin:

It may be helpful to have an understanding of component-level accessibility guidelines. For more information, see Section 30.3, "Specifying Component-Level Accessibility Properties." You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 30.1.2, "Additional Information for Accessibility Support in ADF Pages."

To define localized labels and access keys:

	
Create the resource bundles as simple.properties files to hold each language version of the labels and access keys. For details, see Section 29.3.1, "How to Define the Base Resource Bundle."

	
Add a <locale-config> element to the faces-config.xml file to define the default and supported locales for your application. For details, see Section 29.3.3, "How to Register Locales and Resource Bundles in Your Application."

	
Create a key and value for each string of static text for each resource bundle. The key is a unique identifier for the string. The value is the string of text in the language for the bundle. In each value, place an ampersand (& or amp) in front of the letter you wish to define as an access key.

For example, the following code defines a label and access key for an edit button field in the UIStrings.properties base resource bundle as Edit:

srlist.buttonbar.edit=&Edit

In the Italian language resource bundle, UIStrings_it.properties, the following code provides the translated label and access key as Aggiorna:

srlist.buttonbar.edit=A&ggiorna

	
Add a <resource-bundle> element to the faces-config.xml file for your application. Example 30-5 shows an entry in a JSF configuration file for a resource bundle.

Example 30-5 Resource Bundle in JSF Configuration File

<resource-bundle>
 <var>res</var>
 <base-name>resources.UIStrings</base-name>
</resource-bundle>

Once you set up your application to use resource bundles, the resource bundle keys show up in the Expression Language (EL) editor so that you can assign them declaratively.

In the following example, the UI component accesses the resource bundle:

<af:outputText value="#{res['login.date']}"/

For more information, see Chapter 29, "Internationalizing and Localizing Pages."

30.4 Creating Accessible Pages

In addition to component-level accessibility guidelines, you should also follow page-level accessibility guidelines when you design your application. While component-level guidelines may determine how you use a component, page-level accessibility guidelines are more involved with the overall design and function of the application as a whole.

The page-level accessibility guidelines are for:

	
Using partial page rendering

	
Using scripting

	
Using styles

	
Using page structures and navigation

	
Using WAI-ARIA landmark regions

When designing the application pages, you must follow these general accessibility guidelines described in Table 30-3.

Table 30-3 General Accessibility Guidelines

	Guideline	Action
	
Avoid using raw HTML content

	
If possible, avoid using raw HTML content. If raw HTML content is required, use af:outputFormatted and ensure that the content is valid.

	
Use the clearest and simplest language appropriate for a site's content

	
Ensure language clarity and simplicity across the application.

	
Provide keyboard alternatives to drag and drop

	
Any functionality that uses drag and drop operations must also be exposed through a keyboard-accessible interface, such as Cut, Copy, and Paste menu items.

	
Provide access to the accessibility mode

	
ADF Faces exposes the following accessibility modes:

	
Default

	
Screen reader - optimized for screen reader users

You must design your web application to enable end users to choose a screen reader mode, if required. For more information about configuring screen reader mode in ADF Faces, see Section 30.2, "Configuring Accessibility Support In ADF Faces."

When designing your web application, note that you may be required to add additional accessibility modes, such as a high-contrast accessibility mode or a large-font mode.

	
Review accessibility standards

	
You must be aware of relevant accessibility standards, such as the Web Content Accessibility Guidelines. Although the ADF Faces framework and components hide many of the implementation details, it is recommended that you be familiar with these guidelines.

	
Write text that describes the link's purpose

	
Ensure that the purpose of each link can be determined from the link text alone, or from the link text together with its programmatically determined link context, except where the purpose of the link would be ambiguous to users in general.

	
Provide information about the general layout of the site, such as a site map or table of contents

	
Ensure that site layout requirements are met.

	
Provide multiple ways to locate a page

	
Ensure that page access requirements are met across the application. Pages that are the result of a process, or a step in a process, can be excluded.

	
Provide visual separation between adjacent links

	
Ensure that adjacent links are visually separated, and that a single link containing white space does not appear as multiple links.

	
Provide accessibility support for non-ADF content

	
Ensure that non-ADF Faces content in the page is accessible. The content can come from other Oracle products, or any third-party products.

	
Provide accessibility support for external documents

	
Ensure that external documents, such as Word documents and PDF files, are accessible. The documents could be generated by the product, or be shipped with the product, and must have least one accessible version.

The guidelines described in this section, and its subsections, follow Oracle Global HTML Accessibility Guidelines, which combines the guidelines of Section 508 and Web Content Accessibility Guidelines. ADF Faces components ease your responsibility, as they implicitly meet several accessibility guidelines. For example, ADF Faces renders the lang attribute on every page, and all headers rendered by ADF Faces components use the appropriate HTML header elements.

30.4.1 How to Use Partial Page Rendering

Screen readers do not reread the full page in a partial page request. When using Partial Page Rendering (PPR), you must follow the guidelines described in Table 30-4.

Table 30-4 Partial Page Rendering Guidelines for Accessibility

	Guideline	Action
	
Prefer downstream partial page changes

	
Partial page rendering causes the screen reader software to read the page starting from the component that triggered the partial action. Therefore, place the target component after the component that triggers the partial request; otherwise, the screen reader software will not read the updated target.

For example, the most common PPR use case is the master-detail user interface, where selecting a value in the master component results in partial page replacement of the detail component. In such scenarios, the master component must always appear before the detail component in the document order.

	
Provide guidance for partial page changes

	
Screen reader or screen magnifier users may have difficulty determining exactly what content has changed as a result of partial page rendering activity. It may be helpful to provide guidance in the form of inline text descriptions that identify relationships between key components in the page. For example, in a master-detail scenario, inline text might explain that when a row on master component is updated, the detail component is also updated. Alternatively, a help topic might explain the structure in the page and the relationships between components.

30.4.2 How to Use Scripting

Client-side scripting is not recommended for any application problem for which there is a declarative solution and so should be kept to a minimum.

When using scripting, you must follow these guidelines as described in Table 30-5.

Table 30-5 Scripting Guidelines for Accessibility

	Guideline	Action
	
Keep scripting to a minimum

	
Avoid client-side scripting.

	
Do not interact with the component Document Object Model (DOM) directly

	
ADF Faces components automatically synchronize with the screen reader when DOM changes are made. Direct interaction with the DOM is not allowed.

	
Do not use JavaScript timeouts

	
Screen readers do not reliably track modifications made in response to timeouts implemented using the JavaScript setTimeout() or setInterval() APIs. Do not call these methods.

	
Provide keyboard equivalents

	
Some users may not have access to the mouse input device. For example, some users may be limited to keyboard use only, or may use alternate input devices or technology such as voice recognition software. When adding functions using client-side listeners, ensure that the function is accessible independent in device. Practically speaking this means that:

	
All functions must be accessible using the keyboard events.

	
Click events should be preferred over mouse-over or mouse-out.

	
Mouse-over or mouse-out events should additionally be available through the click event.

	
Avoid focus changes

	
Focus changes can be confusing to screen reader users as they involve a change of context. Design your application to avoid changing the focus programmatically, especially in response to focus events. Additionally, do not set popup windows to be displayed in response to focus changes because standard tabbing is disrupted.

	
Provide explicit popup triggers

	
Screen readers do not automatically respond to inline popup startups. To force the screen reader software to read the popup contents when in screen reader mode, the ADF Faces framework explicitly moves the keyboard focus to any popup window just after it is opened. An explicit popup trigger such as a link or button must be provided, or the same information must be available in some other keyboard or screen reader accessible way.

	
Provide text description for embedded objects

	
Ensure that each embedded object has a proper text description associated with it. The OBJECT element must specify the title attribute; the APPLET element must specify the alt attribute.

Run the audit report to verify the audit rule for af:media.

	
Provide links to download required plug-ins

	
ADF Faces does not make use of any plug-ins such as Java, Flash, or PDF. You must ensure that the appropriate links are provided for plug-ins required by the application.

	
Provide accessible content for plug-ins

	
Ensure that all content conveyed by applets and plug-ins is accessible, or provide an alternate means of accessing equivalent content.

	
Avoid input-device dependency for event handlers

	
Ensure that event handlers are input device-independent, except for events not essential to content comprehension or application operation, such as mouse rollover image swaps.

In addition to scripting guidelines, you must also provide some programming guidelines. Many of these guidelines are implicitly adopted by ADF Faces and no action is required to implement them. The programming guidelines are listed in Table 30-6.

Table 30-6 Application Programming Guidelines for Accessibility

	Guideline	Action
	
Avoid using markup to redirect pages

	
No action required. ADF Faces does not use markup to redirect pages.

	
Specify the DOCTYPE of each page

	
No action required. ADF Faces specifies the DOCTYPE for every page.

	
Avoid using ASCII characters to render drawings or figures

	
Ensure that no ASCII art is included in the application.

	
Avoid disrupting the features of the platform that are defined, in the documentation intended for application developers, as having an accessibility usage

	
No action required. ADF Faces ensures that content generated by the ADF Faces components does not disrupt platform accessibility features.

	
Describe components that control the appearance of other components

	
Ensure that ADF Faces components that control other components have proper descriptions. The control over other components may include enabling or disabling, hiding or showing, or changing the default values of other controls.

	
Always use well-formed HTML code

	
No action required. ADF Faces is responsible for ensuring that its components generate well-formed HTML code.

	
Do not use depreciated HTML elements

	
No action required. ADF Faces is responsible for ensuring that its components do not use deprecated HTML elements.

	
Ensure that section headings are self-explanatory, and use header elements H1 through H6

	
No action required. All headers rendered by ADF Faces components use the appropriate HTML header elements.

	
Ensure that the list content uses appropriate HTML list elements

	
No action required. All lists rendered by ADF Faces components use the appropriate HTML list elements, such as OL, UL, LI, DL, DT, and DD.

	
Mark quotations with proper elements

	
Ensure that quotations are appropriately marked up using Q or BLOCKQUOTE elements. Do not use quotation markup for formatting effects such as indentation.

	
Identify the primary natural language of each page with the lang attribute on the HTML element

	
No action required. ADF Faces renders the lang attribute on every page.

	
Ensure that all form elements have a label associated with them using markup

	
Run the audit report. The Verify that the component is labeled audit rule warns about missing labels.

	
Provide unique titles to each FRAME or IFRAME elements

	
Run the audit report. The Verify that the component has a short description audit rule warns when af:inlineFrame is missing the shortDesc title.

Note that ADF Faces af:inlineFrame does not provide access to longDesc.

	
Provide a title to each page of the frame

	
Run the audit report. The Verify that the component has a title audit rule warns when af:document is missing the title attribute.

	
Ensure that popup windows have focus when they open, and focus must return to a logical place when the popup window is closed

	
Popup windows provided by ADF Faces components always appear in response to explicit user action. ADF Faces also ensures that focus is properly moved to the popup window on launch and restored on dismiss. However, for popup windows which are launched manually through af:clientListener or af:showPopupBehavior, you must ensure that the pop-up window is launched in response to explicit user action.

30.4.3 How to Use Styles

ADF Faces components are already styled and you may not need to make any changes. When using cascading style sheets (CSS) to directly modify the default appearance of ADF Faces components, you must follow the guidelines as described in Table 30-7.

Table 30-7 Style Guidelines for Accessibility

	Guideline	Action
	
Keep CSS use to a minimum

	
You are not required to specify CSS directly to the ADF components, as they are already styled.

	
Do not override default component appearance

	
Be aware of accessibility implications when you override default component appearance. Using CSS to change the appearance of components can have accessibility implications. For example, changing colors may result in color contrast issues.

	
Use scalable size units

	
When specifying sizes using CSS, use size units that scale relative to the font size rather than absolute units. For example, use em, ex or % units rather than px. This is particularly important when specifying heights using CSS, because low-vision users may scale up the font size, causing contents restricted to fixed or absolute heights to be clipped. It is important to do this in large fonts mode, which is the mode that is best compatible with browser zoom.

	
Do not use CSS positioning

	
Use CSS positioning only in the case of positioning the stretched layout component. Do not use CSS positioning elsewhere.

	
Use style sheets to change the layout and presentation of the screen

	
No action required. ADF Faces uses structural elements with style sheets to implement layout.

	
Create a style of presentation that is consistent across pages

	
No action required. ADF Faces provides a consistent style of presentation via its skinning architecture.

	
Do not use colors or font styles to convey information or indicate an action

	
Ensure that colors, or font styles, are not used as the only visual means of conveying information, indicating an action, prompting a response, or distinguishing a visual element.

30.4.4 How to Use Page Structures and Navigation

When using page structures and navigation tools, you must follow the guidelines as described in Table 30-8.

Table 30-8 Style Guidelines for Page Structures and Navigation

	Guideline	Action
	
Use af:panelSplitter for layouts

	
When implementing geometry-managed layouts, using af:panelSplitter allows users to:

	
Redistribute space to meet their needs

	
Hide or collapse content that is not of immediate interest.

If you are planning to use af:panelStretchLayout, you should consider using af:panelStretchLayout instead when appropriate.

These page structure qualities are useful to all users, and are particularly helpful for low-vision users and screen-reader users

As an example, a chrome navigation bar at the top of the page should be placed within the first facet of a vertical af:panelSplitter component, rather than within the top facet of af:panelStretchLayout component. This allows the user to decrease the amount of space used by the bar, or to hide it altogether. Similarly, in layouts that contain left, center, or right panes, use horizontal splitters to lay out the panes.

	
Enable scrolling of flow layout contents

	
When nesting flow layout contents (for example layout controls inside of geometry-managed parent components such as af:panelSplitter or af:panelStretchLayout), wrap af:panelGroupLayout with layout="scroll" around the flow layout contents. This provides scrollbars in the event that the font size is scaled up such that the content no longer fits. Failure to do this can result in content being clipped or truncated.

	
Use header based components to identify page structure

	
HTML header elements play an important role in screen readability. Screen readers typically allow users to gain an understanding of the overall structure of the page by examining or navigating across HTML headers. Identify major portions of the page through components that render HTML header contents including:

	
af:panelHeader

	
af:showDetailHeader

	
af:showDetailItem in af:panelAccordion (each accordion in a pane renders an HTML header for the title area)

	
Use af:breadCrumbs to identify page location

	
Accessibility standards require that users be able to determine their location within a web site or application. The use of af:breadCrumbs achieves this purpose.

	
Use af:skipLinkTarget to provide a skip link target

	
The af:skipLinkTarget tag provides a way to automatically generate a skip link at the beginning of the page. This is helpful for both screen reader and keyboard users, who benefit from the ability to skip over page-level chrome that is repeated on all pages.The af:skipLinkTarget tag should be specified once per page template.

	
Maintain consistency for navigational mechanisms that are repeated on multiple pages

	
Ensure navigation consistency by using the ADF Faces navigation components.

	
Provide a method for skipping repetitive content

	
If repetitive content (including navigation links) is provided at the top of a page, ensure that the af:skipLinkTarget is used to skip over the repetitive content.

30.4.5 How to Use Images and Tables

When using images, you must follow the guidelines as described in Table 30-9.

Table 30-9 Style Guidelines for Images

	Guideline	Action
	
Specify description in alt attribute of non-decorative images

	
Run the audit report. The Verify that the component has a short description audit rule warns about missing shortDesc attributes. Ensure that shortDesc value is meaningful.

	
Ensure that decorative images, such as spacer images, specify an alt="" attribute

	
Run the audit report. The Verify that the component has a short description audit rule warns about missing shortDesc attributes. Ensure that shortDesc value is meaningful.

	
Specify description in alt attribute of complex images, such as charts

	
Ensure that the longDesc attribute is specified for complex af:image components.

You may consider replacing charts with an accessible component, such as a table, in screen reader mode.

	
Provide audio or text alternative for prerecorded synchronized media, such as videos

	
Ensure that the appropriate audio or text alternatives are provided.

	
Provide captions for prerecorded synchronized media

	
Ensure that the appropriate captions are provided. Captions are not required if the synchronized media is an alternative to text and is clearly labeled.

When using tables, you must follow the guidelines as described in Table 30-10.

Table 30-10 Style Guidelines for Tables

	Guideline	Action
	
Always provide row or column headers in tables

	
The ADF Faces table based components provide proper HTML markup for row or column header data.

Run the audit report. The Verify that table columns have headers audit rule warns when column header data is missing. Applications which use trh:tableLayout to construct data or layout tables are responsible for ensuring that such tables adhere to all Oracle accessibility guidelines.

	
Provide a description for each table component using the summary attribute or CAPTION element.

	
Run the audit report. The Verify that tables has summaries audit rule warns when data tables are missing the summary attribute.

	
Ensure that layout tables do not use the TH element.

	
No action required. ADF Faces ensures that layout components do not use TH for layout tables.

	
Ensure that layout tables specify summary="" and do not have the CAPTION element

	
No action required. ADF Faces ensures that the layout components generate an empty summary for layout tables.

	
Provide correct reading sequence in a layout table

	
No action required. ADF Faces ensures that the reading sequence is correct for any layout tables that it generates.

30.4.6 How to Use WAI-ARIA Landmark Regions

The WAI-ARIA standard defines different sections of the page as different landmark regions. Together with WAI-ARIA roles, they convey information about the high-level structure of the page and facilitate navigation across landmark areas. This is particularly useful to users of assistive technologies such as screen readers.

ADF Faces includes landmark attributes for several layout components, as listed in Table 30-11.

Table 30-11 ADF Faces Components with Landmark Attributes

	Component	Attribute
	
decorativeBox

	
topLandmark

centerLandmark

	
panelGroupLayout

	
landmark

	
panelSplitter

	
firstLandmark

secondLandmark

	
panelStretchLayout

	
topLandmark

startLandmark

centerLandmark

endLandmark

bottomLandmark

These attributes can be set to one of the WAI-ARIA landmark roles, including:

	
banner

	
complimentary

	
contentinfo

	
main

	
navigation

	
search

When any of the landmark-related attributes is set, ADF Faces renders a role attribute with the value you specified.

30.5 Running Accessibility Audit Rules

JDeveloper provides ADF Faces accessibility audit rules to investigate and report compliance with many of the common requirements described in Section 30.3.1, "ADF Faces Component Accessibility Guidelines."

30.5.1 How to Create and Run an Audit Profile

Running an audit report requires creating and running an audit profile.

Before you begin:

It may be helpful to have an understanding of accessibility audit rules. For more information, see Section 30.5, "Running Accessibility Audit Rules." You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 30.1.2, "Additional Information for Accessibility Support in ADF Pages."

To create an audit profile:

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, choose Audit > Profiles.

	
In the Audit: Profiles dialog, clear all checkboxes, and then select the ADF Faces > Accessibility checkbox.

	
Click Save As and save the profile with a unique name.

Figure 30-6 illustrates the settings of the Audit: Profiles dialog to create an accessibility audit profile.

Figure 30-6 Audit Profile Settings for ADF Faces Accessibility

[image: Audit Profile Settings for ADF Faces Accessibility]

	
Click OK.

To run the audit report:

	
From the main menu, choose Build > Audit target.

	
In the Audit Profile dialog, from the Profile dropdown menu, select the ADF Faces accessibility audit profile you created.

Figure 30-7 Audit dialog to run an audit report

[image: Audit Profile dialog]

	
Click Run to generate the report.

The audit report results are displayed in the Log window. After the report generation is complete, you can export the report to an HTML file by clicking the Export icon in the Log window toolbar.

