SQL Tuning Guide
12c Release 1 (12.1)
E15858-15
May 2013
Oracle Database SQL Tuning Guide, 12c Release 1 (12.1)
E15858-15
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.
Primary Author: Lance Ashdown
Contributing Author: Maria Colgan
Contributors: Pete Belknap, Ali Cakmak, Sunil Chakkappen, Immanuel Chan, Deba Chatterjee, Dinesh Das, Leonidas Galanis, Bruce Golbus, Shantanu Joshi, Tom Kyte, Allison Lee, Sue Lee, David McDermid, Colin McGregor, Hong Su, Murali Thiyagarajah, Mark Townsend, Randy Urbano, Bharath Venkatakrishnan, Hailing Yu
Contributor: The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an inspiration to all who worked on this release.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual explains how to tune Oracle SQL.
This preface contains the following topics:
This document is intended for database administrators and application developers who perform the following tasks:
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
This manual assumes that you are familiar with the following documents:
To learn how to tune data warehouse environments, see Oracle Database Data Warehousing Guide.
Many examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database. See Oracle Database Sample Schemas for information on how these schemas were created and how you can use them.
To learn about Oracle Database error messages, see Oracle Database Error Messages. Oracle Database error message documentation is only available in HTML. If you are accessing the error message documentation on the Oracle Documentation CD, then you can browse the error messages by range. After you find the specific range, use your browser's find feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This preface contains:	
Oracle Database SQL Tuning Guide for Oracle Database 12c Release 1 (12.1) has the following changes.	
The following features are new in this release:	
The SPM Evolve Advisor is a task infrastructure that enables you to schedule an evolve task, rerun an evolve task, and generate persistent reports. The new automatic evolve task, SYS_AUTO_SPM_EVOLVE_TASK	
, runs in the default maintenance window. This task ranks all unaccepted plans and runs the evolve process for them. If the task finds a new plan that performs better than existing plan, the task automatically accepts the plan. You can also run evolution tasks manually using the DBMS_SPM	
package.	
Adaptive query optimization is a set of capabilities that enable the optimizer to make run-time adjustments to execution plans and discover additional information that can lead to better statistics. The set of capabilities include:	
An adaptive plan has built-in options that enable the final plan for a statement to differ from the default plan. During the first execution, before a specific subplan becomes active, the optimizer makes a final decision about which option to use. The optimizer bases its choice on observations made during the execution up to this point. The ability of the optimizer to adapt plans can improve query performance.	
See "Adaptive Plans".	
When using automatic reoptimization, the optimizer monitors the initial execution of a query. If the actual execution statistics vary significantly from the original plan statistics, then the optimizer records the execution statistics and uses them to choose a better plan the next time the statement executes. The database uses information obtained during automatic reoptimization to generate SQL plan directives automatically.	
In previous releases, the database stored compilation and execution statistics in the shared SQL area, which is nonpersistent. Starting in Oracle Database 12c Release 1 (12.1), the database can use a SQL plan directive, which is additional information and instructions that the optimizer can use to generate a more optimal plan. The database stores SQL plan directives persistently in the SYSAUX	
tablespace. When generating an execution plan, the optimizer can use SQL plan directives to obtain more information about the objects accessed in the plan.	
In previous releases, dynamic statistics (previously called dynamic sampling) was only used when one or more of the tables in a query did not have optimizer statistics. Starting in this release, the optimizer automatically decides whether dynamic statistics are useful and which dynamic statistics level to use for all SQL statements. Dynamic statistics gathers are persistent and usable by other queries.	
See "Dynamic Statistics".	
This release introduces top frequency and hybrid histograms. If a column contains more than 254 distinct values, and if the top 254 most frequent values occupy more than 99% of the data, then the database creates a top frequency histogram using the top 254 most frequent values. By ignoring the unpopular values, which are statistically insignificant, the database can produce a better quality histogram for highly popular values. A hybrid histogram is an enhanced height-based histogram that stores the exact frequency of each endpoint in the sample, and ensures that a value is never stored in multiple buckets.	
Also, regular frequency histograms have been enhanced. The optimizer computes frequency histograms during NDV computation based on a full scan of the data rather than a small sample (when AUTO_SAMPLING	
is used). The enhanced frequency histograms ensure that even highly infrequent values are properly represented with accurate bucket counts within a histogram.	
Real-Time Database Operations Monitoring enables you to monitor long running database tasks such as batch jobs, scheduler jobs, and Extraction, Transformation, and Loading (ETL) jobs as a composite business operation. This feature tracks the progress of SQL and PL/SQL queries associated with the business operation being monitored. As a DBA or developer, you can define business operations for monitoring by explicitly specifying the start and end of the operation or implicitly with tags that identify the operation.	
You can concurrently gather optimizer statistics on multiple tables, table partitions, or table subpartitions. By fully utilizing multiprocessor environments, the database can reduce the overall time required to gather statistics. Oracle Scheduler and Advanced Queuing create and manage jobs to gather statistics concurrently. The scheduler decides how many jobs to execute concurrently, and how many to queue based on available system resources and the value of the JOB_QUEUE_PROCESSES	
initialization parameter.	
DBMS_STATS	
statistics gathering functions You can run the DBMS_STATS	
functions in reporting mode. In this mode, the optimizer does not actually gather statistics, but reports objects that would be processed if you were to use a specified statistics gathering function.	
See "Running Statistics Gathering Functions in Reporting Mode".	
You can use DBMS_STATS	
functions to report on a specific statistics gathering operation or on operations that occurred during a specified time.	
With column group statistics, the database gathers optimizer statistics on a group of columns treated as a unit. Starting in this release, Oracle Database automatically determines which column groups are required in a specified workload or SQL tuning set, and then creates the column groups. Thus, for any specified workload, you no longer need to know which columns from each table must be grouped.	
See "Detecting Useful Column Groups for a Specific Workload".	
Starting in this release, global temporary tables have a different set of optimizer statistics for each session. Session-specific statistics improve performance and manageability of temporary tables because users no longer need to set statistics for a global temporary table in each session or rely on dynamic statistics. The possibility of errors in cardinality estimates for global temporary tables is lower, ensuring that the optimizer has the necessary information to determine an optimal execution plan.	
See "Session-Specific Statistics for Global Temporary Tables".	
SQL Test Case Builder can capture and replay actions and events that enable you to diagnose incidents that depend on certain dynamic and volatile factors. This capability is especially useful for parallel query and automatic memory management.	
See Chapter 17, "Gathering Diagnostic Data with SQL Test Case Builder."	
A bulk load is a CREATE TABLE AS SELECT	
or INSERT INTO ... SELECT	
operation. In previous releases, you needed to manually gather statistics after a bulk load to avoid the possibility of a suboptimal execution plan caused by stale statistics. Starting in this release, Oracle Database gathers optimizer statistics automatically, which improves both performance and manageability.	
ALTER TABLE EXCHANGE	
is a common partition maintenance operation. During a partition exchange, the statistics of the partition and the table are also exchanged. A synopsis is a set of auxiliary statistics gathered on a partitioned table when the INCREMENTAL	
value is set to true	
. In previous releases, you could not gather table-level synopses on a table. Thus, you could not gather table-level synopses on a table, exchange the table with a partition, and end up with synopses on the partition. You had to explicitly gather optimizer statistics in incremental mode to create the missing synopses. Starting in this release, you can gather table-level synopses on a table. When you exchange this table with a partition in an incremental mode table, the synopses are also exchanged.	
See "Maintaining Incremental Statistics for Partition Maintenance Operations".	
Incremental statistics can automatically calculate global statistics for a partitioned table even if the partition or subpartition statistics are stale and locked.	
See "Maintaining Incremental Statistics for Tables with Stale or Locked Partition Statistics".	
These enhancements minimize CPU and memory consumption and reduce I/O for queries against cubes.	
See Table 9-7, "OPERATION and OPTIONS Values Produced by EXPLAIN PLAN" to learn about the CUBE JOIN	
operation.	
The following features are deprecated in this release, and may be desupported in a future release:	
See Chapter 23, "Managing SQL Plan Baselines" for information about alternatives.	
SIMILAR	
value for the CURSOR_SHARING	
initialization parameter This value is deprecated. Use FORCE	
instead.	
Some features previously described in this document are desupported in Oracle Database 12c Release 1. See Oracle Database Upgrade Guide for a list of desupported features.	
The following are additional changes in the release:	
The Oracle Database 11g Oracle Database Performance Tuning Guide has been divided into two books for Oracle Database 12c Release 1:	
This chapter provides a brief introduction to SQL tuning.	
This chapter contains the following topics:	
SQL tuning is the iterative process of improving SQL statement performance to meet specific, measurable, and achievable goals. SQL tuning implies fixing problems in deployed applications. In contrast, application design sets the security and performance goals before deploying an application.	
See Also:	
A SQL statement becomes a problem when it fails to perform according to a predetermined and measurable standard. After you have identified the problem, a typical tuning session has one of the following goals:	
For a response time problem, consider an online book seller application that hangs for three minutes after a customer updates the shopping cart. Contrast with a three-minute parallel query in a data warehouse that consumes all of the database host CPU, preventing other queries from running. In each case, the user response time is three minutes, but the cause of the problem is different, and so is the tuning goal.	
If you are tuning SQL, then this manual assumes that you have the following knowledge and skills:	
Database architecture is not the domain of administrators alone. As a developer, you want to develop applications in the least amount of time against an Oracle database, which requires exploiting the database architecture and features. For example, not understanding Oracle Database concurrency controls and multiversioning read consistency may make an application corrupt the integrity of the data, run slowly, and decrease scalability.	
Oracle Database Concepts explains the basic relational data structures, transaction management, storage structures, and instance architecture of Oracle Database.	
Because of the existence of GUI-based tools, it is possible to create applications and administer a database without knowing SQL. However, it is impossible to tune applications or a database without knowing SQL.	
Oracle Database Concepts includes an introduction to Oracle SQL and PL/SQL. You must also have a working knowledge of Oracle Database SQL Language Reference, Oracle Database PL/SQL Language Reference, and Oracle Database PL/SQL Packages and Types Reference.	
The database generates performance statistics, and provides SQL tuning tools that interpret these statistics.	
Oracle Database 2 Day + Performance Tuning Guide provides an introduction to the principal SQL tuning tools.	
After you have identified the goal for a tuning session, for example, reducing user response time from three minutes to less than a second, the problem becomes how to accomplish this goal. The Oracle-recommended tuning methodology is covered in detail in Chapter 2, "SQL Performance Methodology."	
The specifics of a tuning session depend on many factors, including whether you tune proactively or reactively. In proactive SQL tuning, you regularly use SQL Tuning Advisor to determine whether you can make SQL statements perform better. In reactive SQL tuning, you correct a SQL-related problem that a user has experienced.	
Whether you tune proactively or reactively, a typical SQL tuning session involves all or most of the following tasks:	
Review past execution history to find the statements responsible for a large share of the application workload and system resources.	
The optimizer statistics are crucial to SQL tuning. If these statistics do not exist or are no longer accurate, then the optimizer cannot generate the best plan. Other data relevant to SQL performance include the structure of tables and views that the statement accessed, and definitions of any indexes available to the statement.	
Typically, causes of SQL performance problems include:	
If a SQL statement is written so that it performs unnecessary work, then the optimizer cannot do much to improve its performance. Examples of inefficient design include	
UNION	
instead of UNION ALL	
The query optimizer (also called the optimizer) is internal software that determines which execution plan is most efficient. Sometimes the optimizer chooses a plan with a suboptimal access path, which is the means by which the database retrieves data from the database. For example, the plan for a query predicate with low selectivity may use a full table scan on a large table instead of an index.	
You can compare the execution plan of an optimally performing SQL statement to the plan of the statement when it performs suboptimally. This comparison, along with information such as changes in data volumes, can help identify causes of performance degradation.	
Absence of SQL access structures, such as indexes and materialized views, is a typical reason for suboptimal SQL performance. The optimal set of access structures can improve SQL performance by orders of magnitude.	
Stale statistics on a table do not accurately reflect the table data. Without accurate optimizer statistics, the optimizer can make decisions based on faulty information and generate suboptimal execution plans.	
Suboptimal performance might be connected with memory, I/O, and CPU problems.	
The scope of the solution must match the scope of the problem. Consider a problem at the database level and a problem at the statement level. For example, the shared pool is too small, which causes cursors to age out quickly, which in turn causes many hard parses (see "Shared Pool Check"). Using an initialization parameter to increase the shared pool size fixes the problem at the database level and improves performance for all sessions. However, if a single SQL statement is not using a helpful index, then changing the optimizer initialization parameters for the entire database could harm overall performance. If a single SQL statement has a problem, then an appropriately scoped solution addresses just this problem with this statement.	
These actions vary depending on circumstances. For example, you might rewrite a SQL statement to be more efficient, avoiding unnecessary hard parsing by rewriting the statement to use bind variables. You might also use equijoins, remove functions from WHERE	
clauses, and break a complex SQL statement into multiple simple statements.	
In some cases, you improve SQL performance not by rewriting the statement, but by restructuring schema objects. For example, you might index a new access path, or reorder columns in a concatenated index. You might also partition a table, introduce derived values, or even change the database design.	
To ensure optimal SQL performance, verify that execution plans continue to provide optimal performance, and choose better plans if they come available. You can achieve these goals using optimizer statistics, SQL profiles, and SQL plan baselines.	
SQL tuning tools fall into the categories of automated and manual. In this context, a tool is automated if the database itself can provide diagnosis, advice, or corrective actions. A manual tool requires you to perform all of these operations.	
All tuning tools depend on the basic tools of the dynamic performance views, statistics, and metrics that the database instance collects. The database itself contains the data and metadata required to tune SQL statements.	
Oracle Database provides several advisors relevant for SQL tuning. Additionally, SQL plan management is a mechanism that can prevent performance regressions and also help you to improve SQL performance.	
All of the automated SQL tuning tools can use SQL tuning sets as input. A SQL tuning set (STS) is a database object that includes one or more SQL statements along with their execution statistics and execution context.	
ADDM is self-diagnostic software built into Oracle Database. ADDM can automatically locate the root causes of performance problems, provide recommendations for correction, and quantify the expected benefits. ADDM also identifies areas where no action is necessary.	
ADDM and other advisors make use of Automatic Workload Repository (AWR), which is an infrastructure that provides services to database components to collect, maintain, and use statistics. ADDM examines and analyzes statistics in AWR to determine possible performance problems, including high-load SQL.	
For example, you can configure ADDM to run nightly. In the morning, you can examine the latest ADDM report to see what might have caused a problem and if there is a recommended fix. The report might show that a particular SELECT	
statement consumed a huge amount of CPU, and recommend that you run SQL Tuning Advisor.	
SQL Tuning Advisor is internal diagnostic software that identifies problematic SQL statements and recommends how to improve statement performance. When run during database maintenance windows as an automated maintenance task, SQL Tuning Advisor is known as Automatic SQL Tuning Advisor.	
SQL Tuning Advisor takes one or more SQL statements as an input and invokes the Automatic Tuning Optimizer to perform SQL tuning on the statements. The advisor performs the following types of analysis:	
A SQL profile is a set of auxiliary information specific to a SQL statement. A SQL profile contains corrections for suboptimal optimizer estimates discovered during Automatic SQL Tuning. This information can improve optimizer estimates for cardinality, which is the number of rows that is estimated to be or actually is returned by an operation in an execution plan, and selectivity. These improved estimates lead the optimizer to select better plans.	
The output is in the form of advice or recommendations, along with a rationale for each recommendation and its expected benefit. The recommendation relates to a collection of statistics on objects, creation of new indexes, restructuring of the SQL statement, or creation of a SQL profile. You can choose to accept the recommendations to complete the tuning of the SQL statements.	
SQL Access Advisor is internal diagnostic software that recommends which materialized views, indexes, and materialized view logs to create, drop, or retain.	
SQL Access Advisor takes an actual workload as input, or the advisor can derive a hypothetical workload from the schema. SQL Access Advisor considers the trade-offs between space usage and query performance, and recommends the most cost-effective configuration of new and existing materialized views and indexes. The advisor also makes recommendations about partitioning.	
SQL plan management is a preventative mechanism that enables the optimizer to automatically manage execution plans, ensuring that the database uses only known or verified plans. This mechanism can build a SQL plan baseline, which contains one or more accepted plans for each SQL statement. By using baselines, SQL plan management can prevent plan regressions from environmental changes, while permitting the optimizer to discover and use better plans.	
SQL Performance Analyzer determines the effect of a change on a SQL workload by identifying performance divergence for each SQL statement. System changes such as upgrading a database or adding an index may cause changes to execution plans, affecting SQL performance. By using SQL Performance Analyzer, you can accurately forecast the effect of system changes on SQL performance. Using this information, you can tune the database when SQL performance regresses, or validate and measure the gain when SQL performance improves.	
In some situations, you may want to run manual tools in addition to the automated tools. Alternatively, you may not have access to the automated tools.	
Execution plans are the principal diagnostic tool in manual SQL tuning. For example, you can view plans to determine whether the optimizer selects the plan you expect, or identify the effect of creating an index on a table.	
You can display execution plans in multiple ways. The following tools are the most commonly used:	
EXPLAIN PLAN	
This SQL statement enables you to view the execution plan that the optimizer would use to execute a SQL statement without actually executing the statement. See Oracle Database SQL Language Reference.	
AUTOTRACE	
The AUTOTRACE	
command in SQL*Plus generates the execution plan and statistics about the performance of a query. This command provides statistics such as disk reads and memory reads. See SQL*Plus User's Guide and Reference.	
V$SQL_PLAN	
and related views These views contain information about executed SQL statements, and their execution plans, that are still in the shared pool. See Oracle Database Reference.	
You can use the DBMS_XPLAN	
package methods to display the execution plan generated by the EXPLAIN PLAN	
command and query of V$SQL_PLAN	
.	
The Real-Time SQL Monitoring feature of Oracle Database enables you to monitor the performance of SQL statements while they are executing. By default, SQL monitoring starts automatically when a SQL statement runs in parallel, or when it has consumed at least 5 seconds of CPU or I/O time in a single execution.	
A database operation is a set of database tasks defined by end users or application code, for example, a batch job or Extraction, Transformation, and Loading (ETL) processing. You can define, monitor, and report on database operations. Real-Time Database Operations provides the ability to monitor composite operations automatically. The database automatically monitors parallel queries, DML, and DDL statements as soon as execution begins.	
Oracle Enterprise Manager Cloud Control (Cloud Control) provides easy-to-use SQL monitoring pages. Alternatively, you can monitor SQL-related statistics using the V$SQL_MONITOR	
and V$SQL_PLAN_MONITOR	
views. You can use these views with the following views to get more information about executions that you are monitoring:	
V$ACTIVE_SESSION_HISTORY	
V$SESSION	
V$SESSION_LONGOPS	
V$SQL	
V$SQL_PLAN	
See Also:	
A SQL trace file provides performance information on individual SQL statements: parse counts, physical and logical reads, misses on the library cache, and so on. You can use this information to diagnose SQL performance problems.	
You can enable and disable SQL tracing for a specific session using the DBMS_MONITOR	
or DBMS_SESSION	
packages. Oracle Database implements tracing by generating a trace file for each server process when you enable the tracing mechanism.	
Oracle Database provides the following command-line tools for analyzing trace files:	
TKPROF	
This utility accepts as input a trace file produced by the SQL Trace facility, and then produces a formatted output file.	
trcsess	
This utility consolidates trace output from multiple trace files based on criteria such as session ID, client ID, and service ID. After trcsess	
merges the trace information into a single output file, you can format the output file with TKPROF	
. trcsess	
is useful for consolidating the tracing of a particular session for performance or debugging purposes.	
End-to-End Application Tracing simplifies the process of diagnosing performance problems in multitier environments. In these environments, the middle tier routes a request from an end client to different database sessions, making it difficult to track a client across database sessions. End-to-End application tracing uses a client ID to uniquely trace a specific end-client through all tiers to the database.	
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more aboutDBMS_MONITOR and DBMS_SESSION	
A hint is an instruction passed to the optimizer through comments in a SQL statement. Hints enable you to make decisions normally made automatically by the optimizer.	
In a test or development environment, hints are useful for testing the performance of a specific access path. For example, you may know that a specific index is more selective for certain queries. In this case, you may use hints to instruct the optimizer to use a better execution plan, as in the following example:	
You can access most tuning tools using Cloud Control, which is a system management tool that provides centralized management of a database environment. By combining a graphical console, Oracle Management Servers, Oracle Intelligent Agents, common services, and administrative tools, Cloud Control provides a comprehensive system management platform.	
You can also access all SQL tuning tools using a command-line interface. For example, the DBMS_ADVISOR	
package is the command-line interface for SQL Tuning Advisor.	
Oracle recommends Cloud Control as the best interface for database administration and tuning. In cases where the command-line interface better illustrates a particular concept or task, this manual uses command-line examples. However, in these cases the tuning tasks include a reference to the principal Cloud Control page associated with the task.	
This chapter describes the recommended methodology for SQL tuning. This chapter contains the following topics:	
This section contains the following topics:	
Data modeling is important to successful application design. You must perform this modeling in a way that quickly represents the business practices. Heated debates may occur about the correct data model. The important thing is to apply greatest modeling efforts to those entities affected by the most frequent business transactions.	
In the modeling phase, there is a great temptation to spend too much time modeling the non-core data elements, which results in increased development lead times. Use of modeling tools can then rapidly generate schema definitions and can be useful when a fast prototype is required.	
In the design and architecture phase of any system development, care should be taken to ensure that the application developers understand SQL execution efficiency. To achieve this goal, the development environment must support the following characteristics:	
Connecting to the database is an expensive operation that is highly unscalable. Therefore, a best practice is to minimize the number of concurrent connections to the database. A simple system, where a user connects at application initialization, is ideal. However, in a web-based or multitiered application in which application servers multiplex database connections to users, this approach can be difficult. With these types of applications, design them to pool database connections, and not reestablish connections for each user request.	
Maintaining user connections is equally important to minimizing the parsing activity on the system. Parsing is the process of interpreting a SQL statement and creating an execution plan for it. This process has many phases, including syntax checking, security checking, execution plan generation, and loading shared structures into the shared pool. There are two types of parse operations:	
A SQL statement is submitted for the first time, and no match is found in the shared pool. Hard parses are the most resource-intensive and unscalable, because they perform all the operations involved in a parse.	
A SQL statement is submitted for the first time, and a match is found in the shared pool. The match can be the result of previous execution by another user. The SQL statement is shared, which is optimal for performance. However, soft parses are not ideal, because they still require syntax and security checking, which consume system resources.	
Because parsing should be minimized as much as possible, application developers should design their applications to parse SQL statements once and execute them many times. This is done through cursors. Experienced SQL programmers should be familiar with the concept of opening and re-executing cursors.	
Application developers must also ensure that SQL statements are shared within the shared pool. To achieve this goal, use bind variables to represent the parts of the query that change from execution to execution. If this is not done, then the SQL statement is likely to be parsed once and never re-used by other users. To ensure that SQL is shared, use bind variables and do not use string literals with SQL statements. For example:	
Statement with string literals:	
Statement with bind variables:	
The following example shows the results of some tests on a simple OLTP application:	
These tests were performed on a four-CPU computer. The differences increase as the number of CPUs on the system increase.	
This section contains the following topics:	
The testing process mainly consists of functional and stability testing. At some point in the process, performance testing is performed.	
The following list describes some simple rules for performance testing an application. If correctly documented, then this list provides important information for the production application and the capacity planning process after the application has gone live.	
All testing must be done with fully populated tables. The test database should contain data representative of the production system in terms of data volume and cardinality between tables. All the production indexes should be built and the schema statistics should be populated correctly.	
Perform all testing with the optimizer mode that you plan to use in production.	
Test a single user on an idle or lightly-used database for acceptable performance. If a single user cannot achieve acceptable performance under ideal conditions, then multiple users cannot achieve acceptable performance under real conditions.	
Obtain an execution plan for each SQL statement. Use this process to verify that the optimizer is obtaining an optimal execution plan, and that the relative cost of the SQL statement is understood in terms of CPU time and physical I/Os. This process assists in identifying the heavy use transactions that require the most tuning and performance work in the future.	
This process is difficult to perform accurately, because user workload and profiles might not be fully quantified. However, transactions performing DML statements should be tested to ensure that there are no locking conflicts or serialization problems.	
Test with a configuration as close to the production system as possible. Using a realistic system is particularly important for network latencies, I/O subsystem bandwidth, and processor type and speed. Failing to use this approach may result in an incorrect analysis of potential performance problems.	
When benchmarking, it is important to measure the performance under steady state conditions. Each benchmark run should have a ramp-up phase, where users are connected to the application and gradually start performing work on the application. This process allows for frequently cached data to be initialized into the cache and single execution operations—such as parsing—to be completed before the steady state condition. Likewise, after a benchmark run, a ramp-down period is useful so that the system frees resources, and users cease work and disconnect.	
When new applications are rolled out, two strategies are commonly adopted:	
Both approaches have merits and disadvantages. The Big Bang approach relies on reliable testing of the application at the required scale, but has the advantage of minimal data conversion and synchronization with the old system, because it is simply switched off. The Trickle approach allows debugging of scalability issues as the workload increases, but might mean that data must be migrated to and from legacy systems as the transition takes place.	
It is difficult to recommend one approach over the other, because each technique has associated risks that could lead to system outages as the transition takes place. Certainly, the Trickle approach allows profiling of real users as they are introduced to the new application, and allows the system to be reconfigured while only affecting the migrated users. This approach affects the work of the early adopters, but limits the load on support services. Thus, unscheduled outages only affect a small percentage of the user population.	
The decision on how to roll out a new application is specific to each business. Any adopted approach has its own unique pressures and stresses. The more testing and knowledge that you derive from the testing process, the more you realize what is best for the rollout.	
This chapter explains how Oracle Database processes SQL statements. Specifically, the section explains the way in which the database processes DDL statements to create objects, DML to modify data, and queries to retrieve data.	
This chapter contains the following topics:	
SQL processing is the parsing, optimization, row source generation, and execution of a SQL statement. Depending on the statement, the database may omit some of these stages. Figure 3-1 depicts the general stages of SQL processing.	
As shown in Figure 3-1, the first stage of SQL processing is parsing. This stage involves separating the pieces of a SQL statement into a data structure that other routines can process. The database parses a statement when instructed by the application, which means that only the application, and not the database itself, can reduce the number of parses.	
When an application issues a SQL statement, the application makes a parse call to the database to prepare the statement for execution. The parse call opens or creates a cursor, which is a handle for the session-specific private SQL area that holds a parsed SQL statement and other processing information. The cursor and private SQL area are in the program global area (PGA).	
During the parse call, the database performs the following checks:	
The preceding checks identify the errors that can be found before statement execution. Some errors cannot be caught by parsing. For example, the database can encounter deadlocks or errors in data conversion only during statement execution.	
Oracle Database must check each SQL statement for syntactic validity. A statement that breaks a rule for well-formed SQL syntax fails the check. For example, the following statement fails because the keyword FROM	
is misspelled as FORM	
:	
The semantics of a statement are its meaning. Thus, a semantic check determines whether a statement is meaningful, for example, whether the objects and columns in the statement exist. A syntactically correct statement can fail a semantic check, as shown in the following example of a query of a nonexistent table:	
During the parse, the database performs a shared pool check to determine whether it can skip resource-intensive steps of statement processing. To this end, the database uses a hashing algorithm to generate a hash value for every SQL statement. The statement hash value is the SQL ID shown in V$SQL.SQL_ID	
.	
When a user submits a SQL statement, the database searches the shared SQL area to see if an existing parsed statement has the same hash value. The hash value of a SQL statement is distinct from the following values:	
Oracle Database uses the SQL ID to perform a keyed read in a lookup table. In this way, the database obtains possible memory addresses of the statement.	
A SQL statement can have multiple plans in the shared pool. Typically, each plan has a different hash value. If the same SQL ID has multiple plan hash values, then the database knows that multiple plans exist for this SQL ID.	
Parse operations fall into the following categories, depending on the type of statement submitted and the result of the hash check:	
If Oracle Database cannot reuse existing code, then it must build a new executable version of the application code. This operation is known as a hard parse, or a library cache miss.	
Note: The database always perform a hard parse of DDL.	
During the hard parse, the database accesses the library cache and data dictionary cache numerous times to check the data dictionary. When the database accesses these areas, it uses a serialization device called a latch on required objects so that their definition does not change. Latch contention increases statement execution time and decreases concurrency.	
A soft parse is any parse that is not a hard parse. If the submitted statement is the same as a reusable SQL statement in the shared pool, then Oracle Database reuses the existing code. This reuse of code is also called a library cache hit.	
Soft parses can vary in how much work they perform. For example, configuring the session shared SQL area can sometimes reduce the amount of latching in the soft parses, making them "softer."	
In general, a soft parse is preferable to a hard parse because the database skips the optimization and row source generation steps, proceeding straight to execution.	
Figure 3-2 is a simplified representation of a shared pool check of an UPDATE	
statement in a dedicated server architecture.	
If a check determines that a statement in the shared pool has the same hash value, then the database performs semantic and environment checks to determine whether the statements mean the same. Identical syntax is not sufficient. For example, suppose two different users log in to the database and issue the following SQL statements:	
The SELECT	
statements for the two users are syntactically identical, but two separate schema objects are named my_table	
. This semantic difference means that the second statement cannot reuse the code for the first statement.	
Even if two statements are semantically identical, an environmental difference can force a hard parse. In this context, the optimizer environment is the totality of session settings that can affect execution plan generation, such as the work area size or optimizer settings (for example, the optimizer mode). Consider the following series of SQL statements executed by a single user:	
In the preceding example, the same SELECT	
statement is executed in three different optimizer environments. Consequently, the database creates three separate shared SQL areas for these statements and forces a hard parse of each statement.	
See Also:	
During the optimization stage, Oracle Database must perform a hard parse at least once for every unique DML statement and performs the optimization during this parse. The database never optimizes DDL unless it includes a DML component such as a subquery that requires optimization. Chapter 4, "Query Optimizer Concepts" explains the optimization process in more detail.	
The row source generator is software that receives the optimal execution plan from the optimizer and produces an iterative execution plan that is usable by the rest of the database. The iterative plan is a binary program that, when executed by the SQL engine, produces the result set.	
The execution plan takes the form of a combination of steps. Each step returns a row set. The next step either uses the rows in this set, or the last step returns the rows to the application issuing the SQL statement.	
A row source is a row set returned by a step in the execution plan along with a control structure that can iteratively process the rows. The row source can be a table, view, or result of a join or grouping operation.	
The row source generator produces a row source tree, which is a collection of row sources. The row source tree shows the following information:	
Example 3-1 shows the execution plan of a SELECT	
statement when AUTOTRACE	
is enabled. The statement selects the last name, job title, and department name for all employees whose last names begin with the letter A	
. The execution plan for this statement is the output of the row source generator.	
Example 3-1 Execution Plan	
During execution, the SQL engine executes each row source in the tree produced by the row source generator. This step is the only mandatory step in DML processing.	
Figure 3-3 is an execution tree, also called a parse tree, that shows the flow of row sources from one step to another in the plan in Example 3-1. In general, the order of the steps in execution is the reverse of the order in the plan, so you read the plan from the bottom up.	
Each step in an execution plan has an ID number. The numbers in Figure 3-3 correspond to the Id	
column in the plan shown in Example 3-1. Initial spaces in the Operation	
column of the plan indicate hierarchical relationships. For example, if the name of an operation is preceded by two spaces, then this operation is a child of an operation preceded by one space. Operations preceded by one space are children of the SELECT	
statement itself.	
In Figure 3-3, each node of the tree acts as a row source, which means that each step of the execution plan in Example 3-1 either retrieves rows from the database or accepts rows from one or more row sources as input. The SQL engine executes each row source as follows:	
departments	
table. jobs	
table. emp_name_ix	
index in order, looking for each key that begins with the letter A	
and retrieving the corresponding rowid. For example, the rowid corresponding to Atkinson	
is AAAPzRAAFAAAABSAAe	
. employees	
table the rows whose rowids were returned by Step 4. For example, the database uses rowid AAAPzRAAFAAAABSAAe	
to retrieve the row for Atkinson	
. For example, the row for employee Atkinson	
is associated with the job name Stock Clerk	
.	
For example, the row for employee Atkinson	
is associated with the department named Shipping	
.	
In some execution plans the steps are iterative and in others sequential. The hash join shown in Example 3-1 is sequential. The database completes the steps in their entirety based on the join order. The database starts with the index range scan of emp_name_ix	
. Using the rowids that it retrieves from the index, the database reads the matching rows in the employees	
table, and then scans the jobs	
table. After it retrieves the rows from the jobs	
table, the database performs the hash join.	
During execution, the database reads the data from disk into memory if the data is not in memory. The database also takes out any locks and latches necessary to ensure data integrity and logs any changes made during the SQL execution. The final stage of processing a SQL statement is closing the cursor.	
Most DML statements have a query component. In a query, execution of a cursor places the results of the query into a set of rows called the result set.	
Result set rows can be fetched either a row at a time or in groups. In the fetch stage, the database selects rows and, if requested by the query, orders the rows. Each successive fetch retrieves another row of the result until the last row has been fetched.	
In general, the database cannot determine for certain the number of rows to be retrieved by a query until the last row is fetched. Oracle Database retrieves the data in response to fetch calls, so that the more rows the database reads, the more work it performs. For some queries the database returns the first row as quickly as possible, whereas for others it creates the entire result set before returning the first row.	
In general, a query retrieves data by using the Oracle Database read consistency mechanism. This mechanism, which uses undo data to show past versions of data, guarantees that all data blocks read by a query are consistent to a single point in time.	
For an example of read consistency, suppose a query must read 100 data blocks in a full table scan. The query processes the first 10 blocks while DML in a different session modifies block 75. When the first session reaches block 75, it realizes the change and uses undo data to retrieve the old, unmodified version of the data and construct a noncurrent version of block 75 in memory.	
DML statements that must change data use the read consistency mechanism to retrieve only the data that matched the search criteria when the modification began. Afterward, these statements retrieve the data blocks as they exist in their current state and make the required modifications. The database must perform other actions related to the modification of the data such as generating redo and undo data.	
Oracle Database processes DDL differently from DML. For example, when you create a table, the database does not optimize the CREATE TABLE	
statement. Instead, Oracle Database parses the DDL statement and carries out the command.	
The database processes DDL differently because it is a means of defining an object in the data dictionary. Typically, Oracle Database must parse and execute many recursive SQL statements to execute a DDL statement. Suppose you create a table as follows:	
Typically, the database would run dozens of recursive statements to execute the preceding statement. The recursive SQL would perform actions such as the following:	
COMMIT	
before executing the CREATE TABLE	
statement COMMIT	
if the DDL statement succeeded or a ROLLBACK	
if it did not See Also: Oracle Database Development Guide to learn about processing DDL, transaction control, and other types of statements	
This chapter describes the most important concepts relating to the query optimizer. This chapter contains the following topics:	
The query optimizer (called simply the optimizer) is built-in database software that determines the most efficient method for a SQL statement to access requested data.	
This section contains the following topics:	
The optimizer attempts to generate the best execution plan for a SQL statement. The best execution plan is defined as the plan with the lowest cost among all considered candidate plans.	
The optimizer determines the best plan for a SQL statement by examining multiple access methods, such as full table scan or index scans, and different join methods such as nested loops and hash joins. The best method of execution depends on myriad conditions including how the query is written, the size of the data set, the layout of the data, and which access structures exist.	
Because the database has many internal statistics and tools at its disposal, the optimizer is usually in a better position than the user to determine the best method of statement execution. For this reason, all SQL statements use the optimizer.	
Consider a user who queries records for employees who are managers. If the database statistics indicate that 80% of employees are managers, then the optimizer may decide that a full table scan is most efficient. However, if statistics indicate that few employees are managers, then reading an index followed by a table access by rowid may be more efficient than a full table scan.	
Query optimization is the overall process of choosing the most efficient means of executing a SQL statement. The database optimizes each SQL statement based on statistics collected about the actual data being accessed. The optimizer uses the number of rows, the size of the data set, and other factors to generate possible execution plans, assigning a numeric cost to each plan. The database uses the plan with the lowest cost.	
In Oracle Database optimization, cost represents the estimated resource usage for an execution plan. The optimizer is sometimes called the cost-based optimizer (CBO) to contrast with the legacy rule-based optimizer. The CBO bases the cost of access paths and join methods on the estimated system resources, which includes I/O, CPU, and memory. The plan with the lowest cost is selected.	
Note: The optimizer may not make the same decisions from one version of Oracle Database to the next. In recent versions, the optimizer might make different decision because better information is available and more optimizer transformations are possible.	
An execution plan describes a recommended method of execution for a SQL statement. The plans shows the combination of the steps Oracle Database uses to execute a SQL statement. Each step either retrieves rows of data physically from the database or prepares them for the user issuing the statement.	
In Figure 4-1, the optimizer generates two possible execution plans for an input SQL statement, uses statistics to calculate their costs, compares their costs, and chooses the plan with the lowest cost.	
As shown in Figure 4-1, the input to the optimizer is a parsed representation of a SQL statement. Each SELECT	
block in the original SQL statement is represented internally by a query block. A query block can be a top-level statement, subquery, or unmerged view (see "View Merging").	
In Example 4-1, the SQL statement consists of two query blocks. The subquery in parentheses is the inner query block. The outer query block, which is the rest of the SQL statement, retrieves names of employees in the departments whose IDs were supplied by the subquery.	
Example 4-1 Query Blocks	
The query form determines how query blocks are interrelated.	
For each query block, the optimizer generates a query subplan. The database optimizes query blocks separately from the bottom up. Thus, the database optimizes the innermost query block first and generates a subplan for it, and then generates the outer query block representing the entire query.	
The number of possible plans for a query block is proportional to the number of objects in the FROM	
clause. This number rises exponentially with the number of objects. For example, the possible plans for a join of five tables are significantly higher than the possible plans for a join of two tables.	
One analogy for the optimizer is an online trip advisor. A cyclist wants to know the most efficient bicycle route from point A to point B. A query is like the directive "I need the most efficient route from point A to point B" or "I need the most efficient route from point A to point B by way of point C." The trip advisor uses an internal algorithm, which relies on factors such as speed and difficulty, to determine the most efficient route. The cyclist can influence the trip advisor's decision by using directives such as "I want to arrive as fast as possible" or "I want the easiest ride possible."	
In this analogy, an execution plan is a possible route generated by the trip advisor. Internally, the advisor may divide the overall route into several subroutes (subplans), and calculate the efficiency for each subroute separately. For example, the trip advisor may estimate one subroute at 15 minutes with medium difficulty, an alternative subroute at 22 minutes with minimal difficulty, and so on.	
The advisor picks the most efficient (lowest cost) overall route based on user-specified goals and the available statistics about roads and traffic conditions. The more accurate the statistics, the better the advice. For example, if the advisor is not frequently notified of traffic jams, road closures, and poor road conditions, then the recommended route may turn out to be inefficient (high cost).	
The optimizer contains three main components, which are shown in Figure 4-2.	
A set of query blocks represents a parsed query, which is the input to the optimizer. The optimizer performs the following operations:	
The optimizer determines whether it is helpful to change the form of the query so that the optimizer can generate a better execution plan. See "Query Transformer".	
The optimizer estimates the cost of each plan based on statistics in the data dictionary. See "Estimator".	
The optimizer compares the costs of plans and chooses the lowest-cost plan, known as the execution plan, to pass to the row source generator. See "Plan Generator".	
For some statements, the query transformer determines whether it is advantageous to rewrite the original SQL statement into a semantically equivalent SQL statement with a lower cost. When a viable alternative exists, the database calculates the cost of the alternatives separately and chooses the lowest-cost alternative. Chapter 5, "Query Transformations" describes the different types of optimizer transformations.	
Figure 4-3 shows the query transformer rewriting an input query that uses OR	
into an output query that uses UNION	
ALL	
.	
The estimator is the component of the optimizer that determines the overall cost of a given execution plan. The estimator uses three different types of measures to achieve this goal:	
The percentage of rows in the row set that the query selects, with 0	
meaning no rows and 1	
meaning all rows. Selectivity is tied to a query predicate, such as WHERE last_name LIKE 'A%'	
, or a combination of predicates. A predicate becomes more selective as the selectivity value approaches 0	
and less selective (or more unselective) as the value approaches 1	
.	
Note: Selectivity is an internal calculation that is not visible in the execution plans.	
The cardinality is the estimated number of rows returned by each operation in an execution plan.	
This measure represents units of work or resource used. The query optimizer uses disk I/O, CPU usage, and memory usage as units of work.	
As shown in Figure 4-4, if statistics are available, then the estimator uses them to compute the measures. The statistics improve the degree of accuracy of the measures.	
For the query shown in Example 4-1, the estimator uses selectivity, cardinality, and cost measures to produce its total cost estimate of 3:	
The selectivity represents a fraction of rows from a row set. The row set can be a base table, a view, or the result of a join. The selectivity is tied to a query predicate, such as last_name	
= 'Smith'	
, or a combination of predicates, such as last_name	
= 'Smith'	
AND	
job_id	
= 'SH_CLERK'	
.	
Note: Selectivity is an internal calculation that is not visible in execution plans.	
A predicate filters a specific number of rows from a row set. Thus, the selectivity of a predicate indicates how many rows pass the predicate test. Selectivity ranges from 0.0 to 1.0. A selectivity of 0.0 means that no rows are selected from a row set, whereas a selectivity of 1.0 means that all rows are selected. A predicate becomes more selective as the value approaches 0.0 and less selective (or more unselective) as the value approaches 1.0.	
The optimizer estimates selectivity depending on whether statistics are available:	
Depending on the value of the OPTIMIZER_DYNAMIC_SAMPLING	
initialization parameter, the optimizer either uses dynamic statistics or an internal default value. The database uses different internal defaults depending on the predicate type. For example, the internal default for an equality predicate (last_name	
= 'Smith'	
) is lower than for a range predicate (last_name >	
'Smith'	
) because an equality predicate is expected to return a smaller fraction of rows.	
When statistics are available, the estimator uses them to estimate selectivity. Assume there are 150 distinct employee last names. For an equality predicate last_name =	
'Smith'	
, selectivity is the reciprocal of the number n	
of distinct values of last_name	
, which in this example is .006 because the query selects rows that contain 1 out of 150 distinct values.	
If a histogram exists on the last_name	
column, then the estimator uses the histogram instead of the number of distinct values. The histogram captures the distribution of different values in a column, so it yields better selectivity estimates, especially for columns that have data skew. See Chapter 11, "Histograms."	
The cardinality is the estimated number of rows returned by each operation in an execution plan. For example, if the optimizer estimate for the number of rows returned by a full table scan is 100, then the cardinality for this operation is 100. The cardinality value appears in the Rows	
column of the execution plan.	
The optimizer determines the cardinality for each operation based on a complex set of formulas that use both table and column level statistics, or dynamic statistics, as input. The optimizer uses one of the simplest formulas when a single equality predicate appears in a single-table query, with no histogram. In this case, the optimizer assumes a uniform distribution and calculates the cardinality for the query by dividing the total number of rows in the table by the number of distinct values in the column used in the WHERE	
clause predicate.	
For example, user hr	
queries the employees	
table as follows:	
The employees	
table contains 107 rows. The current database statistics indicate that the number of distinct values in the salary	
column is 58	
. Thus, the optimizer calculates the cardinality of the result set as 2	
, using the formula 107/58=1.84	
.	
Cardinality estimates must be as accurate as possible because they influence all aspects of the execution plan. Cardinality is important when the optimizer determines the cost of a join. For example, in a nested loops join of the employees	
and departments	
tables, the number of rows in employees	
determines how often the database must probe the departments	
table. Cardinality is also important for determining the cost of sorts.	
The optimizer cost model accounts for the I/O, CPU, and network resources that a query is predicted to use. The cost is an internal numeric measure that represents the estimated resource usage for a plan. The lower the cost, the more efficient the plan.	
The execution plan displays the cost of the entire plan, which is indicated on line 0	
, and each individual operation. For example, the following plan shows a cost of 14	
.	
The cost is an internal unit that you can use for plan comparisons. You cannot tune or change it.	
The access path determines the number of units of work required to get data from a base table. The access path can be a table scan, a fast full index scan, or an index scan.	
During a table scan or fast full index scan, the database reads multiple blocks from disk in a single I/O. Therefore, the cost of the scan depends on the number of blocks to be scanned and the multiblock read count value.	
The cost of an index scan depends on the levels in the B-tree, the number of index leaf blocks to be scanned, and the number of rows to be fetched using the rowid in the index keys. The cost of fetching rows using rowids depends on the index clustering factor.	
The join cost represents the combination of the individual access costs of the two row sets being joined, plus the cost of the join operation.	
The plan generator explores various plans for a query block by trying out different access paths, join methods, and join orders. Many plans are possible because of the various combinations that the database can use to produce the same result. The optimizer picks the plan with the lowest cost.	
Figure 4-5 shows the optimizer testing different plans for an input query.	
The following snippet from an optimizer trace file shows some computations that the optimizer performs:	
The trace file shows the optimizer first trying the departments	
table as the outer table in the join. The optimizer calculates the cost for three different join methods: nested loops join (NS), sort merge (SM), and hash join (HJ). The optimizer picks the hash join as the most efficient method:	
The optimizer then tries a different join order, using employees	
as the outer table. This join order costs more than the previous join order, so it is abandoned.	
The optimizer uses an internal cutoff to reduce the number of plans it tries when finding the lowest-cost plan. The cutoff is based on the cost of the current best plan. If the current best cost is large, then the optimizer explores alternative plans to find a lower cost plan. If the current best cost is small, then the optimizer ends the search swiftly because further cost improvement is not significant.	
The optimizer performs different operations depending on how it is invoked. The database provides the following types of optimization:	
The optimizer compiles the SQL and generates an execution plan. The normal mode generates a reasonable plan for most SQL statements. Under normal mode, the optimizer operates with strict time constraints, usually a fraction of a second, during which it must find an optimal plan.	
When SQL Tuning Advisor invokes the optimizer, the optimizer is known as Automatic Tuning Optimizer. In this case, the optimizer performs additional analysis to further improve the plan produced in normal mode. The optimizer output is not an execution plan, but a series of actions, along with their rationale and expected benefit for producing a significantly better plan.	
In Oracle Database, adaptive query optimization is a set of capabilities that enables the optimizer to make run-time adjustments to execution plans and discover additional information that can lead to better statistics. Adaptive optimization is helpful when existing statistics are not sufficient to generate an optimal plan.	
The following graphic shows the feature set for adaptive query optimization:	
An adaptive plan enables the optimizer to defer the final plan decision for a statement until execution time. The ability of the optimizer to adapt a plan, based on information learned during execution, can greatly improve query performance.	
Adaptive plans are useful because the optimizer occasionally picks a suboptimal default plan because of a cardinality misestimate. The ability to adapt the plan at run time based on actual execution statistics results in a more optimal final plan. After choosing the final plan, the optimizer uses it for subsequent executions, thus ensuring that the suboptimal plan is not reused.	
An adaptive plan contains multiple predetermined subplans, and an optimizer statistics collector. A subplan is a portion of a plan that the optimizer can switch to as an alternative at run time. For example, a nested loops join could be switched to a hash join during execution. An optimizer statistics collector is a row source inserted into a plan at key points to collect run-time statistics. These statistics help the optimizer make a final decision between multiple subplans.	
During statement execution, the statistics collector gathers information about the execution, and buffers a portion of the rows received by the subplan. Based on the information observed by the statistics collector, the optimizer makes a final decision about which subplan to use. After the optimizer chooses a subplan, the statistics collector stops collecting statistics and buffering rows, and permits the rows to pass through instead. On subsequent executions of the child cursor, the optimizer disables buffering, and chooses the same final plan.	
The database uses adaptive plans when OPTIMIZER_FEATURES_ENABLE	
is 12.1.0.1	
or later, and the OPTIMIZER_ADAPTIVE_REPORTING_ONLY	
initialization parameter is set to the default of false	
(see "Controlling Adaptive Optimization").	
Example 4-2 shows a join of the order_items	
and product_information	
tables. An adaptive plan for this statement shows two possible plans, one with a nested loops join and the other with a hash join.	
Example 4-2 Join of order_items and product_information	
A nested loops join is preferable if the database can avoid scanning a significant portion of product_information	
because its rows are filtered by the join predicate. If few rows are filtered, however, then scanning the right table in a hash join is preferable.	
The following graphic shows the adaptive process. For the query in Example 4-2, the adaptive portion of the default plan contains two subplans, each of which uses a different join method. The optimizer automatically determines when each join method is optimal, depending on the cardinality of the left side of the join.	
The statistics collector buffers enough rows coming from the order_items	
table to determine which join method to use. If the row count is below the threshold determined by the optimizer, then the optimizer chooses the nested loops join; otherwise, the optimizer chooses the hash join. In this case, the row count coming from the order_items	
table is above the threshold, so the optimizer chooses a hash join for the final plan, and disables buffering.	
After the optimizer determines the final plan, DBMS_XPLAN.DISPLAY_CURSOR	
displays the hash join. The Note	
section of the execution plan indicates whether the plan is adaptive, as shown in the following sample plan:	
Typically, parallel execution requires data redistribution to perform operations such as parallel sorts, aggregations, and joins. Oracle Database can use many different data distributions methods. The database chooses the method based on the number of rows to be distributed and the number of parallel server processes in the operation.	
For example, consider the following alternative cases:	
The database may chose the broadcast distribution method. In this case, the entire result set is sent to all of the parallel server processes.	
If a data skew is encountered during the data redistribution, then it could adversely effect the performance of the statement. The database is more likely to pick a hash distribution to ensure that each parallel server process receives an equal number of rows.	
The hybrid hash distribution technique is an adaptive parallel data distribution that does not decide the final data distribution method until execution time. The optimizer inserts statistic collectors in front of the parallel server processes on the producer side of the operation. If the actual number of rows is less than a threshold, defined as twice the degree of parallelism chosen for the operation, then the data distribution method switches from hash to broadcast. Otherwise, the data distribution method is a hash.	
The following graphic shows a hybrid hash join between the departments	
and employees	
tables. A statistics collector is inserted in front of the parallel server processes scanning the departments	
table. The distribution method is based on the run-time statistics. In this example, the number of rows exceeds the threshold of twice the degree of parallelism, so the optimizer chooses a broadcast technique for the departments	
table.	
In the following alternative example, the threshold is 16 (2 X 8). Because the number of rows (27) is greater than the threshold, the optimizer chooses a hybrid hash. Note the statistics collector in step 10 of the plan.	
See Also: Oracle Database VLDB and Partitioning Guide to learn more about parallel data redistribution techniques	
The quality of the plans that the optimizer generates depends on the quality of the statistics. Some query predicates become too complex to rely on base table statistics alone, so the optimizer augments these statistics with adaptive statistics.	
The following topics describe types of adaptive statistics:	
During the compilation of a SQL statement, the optimizer decides whether to use dynamic statistics by considering whether the available statistics are sufficient to generate an optimal execution plan. If the available statistics are insufficient, then the optimizer uses dynamic statistics to augment the statistics. One type of dynamic statistics is the information gathered by dynamic sampling. The optimizer can use dynamic statistics for table scans, index access, joins, and GROUP BY	
operations, thus improving the quality of optimizer decisions.	
See Also: "Dynamic Statistics" to learn more about dynamic statistics and optimizer statistics in general	
Whereas adaptive plans help decide between multiple subplans, they are not feasible for all kinds of plan changes. For example, a query with an inefficient join order might perform suboptimally, but adaptive plans do not support adapting the join order during execution. In these cases, the optimizer considers automatic reoptimization. In contrast to adaptive plans, automatic reoptimization changes a plan on subsequent executions after the initial execution.	
At the end of the first execution of a SQL statement, the optimizer uses the information gathered during execution to determine whether automatic reoptimization is worthwhile. If execution informations differs significantly from optimizer estimates, then the optimizer looks for a replacement plan on the next execution. The optimizer uses the information gathered during the previous execution to help determine an alternative plan. The optimizer can reoptimize a query several times, each time learning more and further improving the plan.	
A form of reoptimization known as statistics feedback (formerly known as cardinality feedback) automatically improves plans for repeated queries that have cardinality misestimates. The optimizer can estimate cardinalities incorrectly for many reasons, such as missing statistics, inaccurate statistics, or complex predicates.	
The basic process of reoptimization using statistics feedback is as follows:	
The optimizer may enable monitoring for statistics feedback for the shared SQL area in the following cases:	
At the end of execution, the optimizer compares its initial cardinality estimates to the actual number of rows returned by each operation in the plan during execution. If estimates differ significantly from actual cardinalities, then the optimizer stores the correct estimates for subsequent use. The optimizer also creates a SQL plan directive so that other SQL statements can benefit from the information obtained during this initial execution.	
Example 4-3 Statistics Feedback	
This example shows how the database uses statistics feedback to adjust incorrect estimates.	
oe	
runs the following query of the orders	
, order_items	
, and product_information	
tables: E-Rows	
) is far fewer than the actual rows (A-Rows	
). Example 4-4 Actual Rows and Estimated Rows	
oe	
reruns the following query of the orders	
, order_items	
, and product_information	
tables: Note	
section) for the second execution, and also chose a different plan. Example 4-5 Actual Rows and Estimated Rows	
In the preceding output, the estimated number of rows (269	
) matches the actual number of rows.	
Another form of reoptimization is performance feedback. This reoptimization helps improve the degree of parallelism automatically chosen for repeated SQL statements when PARALLEL_DEGREE_POLICY	
is set to ADAPTIVE	
.	
The basic process of reoptimization using performance feedback is as follows:	
PARALLEL_DEGREE_POLICY	
is set to ADAPTIVE	
, the optimizer determines whether to execute the statement in parallel, and if so, which degree of parallelism to use. The optimizer chooses the degree of parallelism based on the estimated performance of the statement. Additional performance monitoring is enabled for all statements.	
If the two values vary significantly, then the database marks the statement for reparsing, and stores the initial execution statistics as feedback. This feedback helps better compute the degree of parallelism for subsequent executions.	
Note: Even ifPARALLEL_DEGREE_POLICY is not set to ADAPTIVE , statistics feedback may influence the degree of parallelism chosen for a statement.	
A SQL plan directive is additional information that the optimizer uses to generate a more optimal plan. For example, when the database joins two tables that have a data skew in their join columns, a SQL plan directive can direct the optimizer to use dynamic statistics to obtain an accurate cardinality estimate.The optimizer collects SQL plan directives on query expressions rather than at the statement level. In this way, the optimizer can apply directives to multiple SQL statements. The database automatically maintains directives, and stores them in the SYSAUX	
tablespace. You can manage directives using the package DBMS_SPD	
.	
See Also:	
SQL plan management is a mechanism that enables the optimizer to automatically manage execution plans, ensuring that the database uses only known or verified plans (see Chapter 23, "Managing SQL Plan Baselines"). This mechanism can build a SQL plan baseline, which contains one or more accepted plans for each SQL statement.	
The optimizer can access and manage the plan history and SQL plan baselines of SQL statements. This capability is central to the SQL plan management architecture. In SQL plan management, the optimizer has the following main objectives:	
The optimizer uses the normal cost-based search method.	
As explained in "Query Transformer," the optimizer employs several query transformation techniques. This chapter contains the following topics:	
In OR	
expansion, the optimizer transforms a query with a WHERE	
clause containing OR	
operators into a query that uses the UNION ALL	
operator. The database can perform OR	
expansion for various reasons. For example, it may enable more efficient access paths or alternative join methods that avoid Cartesian products. As always, the optimizer performs the expansion only if the cost of the transformed statement is lower than the cost of the original statement.	
In Example 5-1, user sh	
creates a concatenated index on the sales.prod_id	
and sales.promo_id	
columns, and then queries the sales	
table using an OR	
condition.	
Example 5-1 OR Condition	
In Example 5-1, because the promo_id=33	
and prod_id=136	
conditions could each take advantage of an index access path, the optimizer transforms the statement into the query in Example 5-2.	
Example 5-2 UNION ALL Condition	
For the transformed query in Example 5-2, the optimizer selects an execution plan that accesses the sales	
table using the index, and then assembles the result. The plan is shown in Example 5-3.	
Example 5-3 Plan for Query of sales	
In view merging, the optimizer merges the query block representing a view into the query block that contains it. View merging can improve plans by enabling the optimizer to consider additional join orders, access methods, and other transformations.	
For example, after a view has been merged and several tables reside in one query block, a table inside a view may permit the optimizer to use join elimination to remove a table outside the view. For certain simple views in which merging always leads to a better plan, the optimizer automatically merges the view without considering cost. Otherwise, the optimizer uses cost to make the determination. The optimizer may choose not to merge a view for many reasons, including cost or validity restrictions.	
If OPTIMIZER_SECURE_VIEW_MERGING	
is true	
(default), then Oracle Database performs checks to ensure that view merging and predicate pushing do not violate the security intentions of the view creator. To disable these additional security checks for a specific view, you can grant the MERGE VIEW	
privilege to a user for this view. To disable additional security checks for all views for a specific user, you can grant the MERGE	
ANY	
VIEW	
privilege to that user.	
Note: You can use hints to override view merging rejected because of cost or heuristics, but not validity.	
This section contains the following topics:	
See Also:	
The optimizer represents each nested subquery or unmerged view by a separate query block. The database optimizes query blocks separately from the bottom up. Thus, the database optimizes the innermost query block first, generates the part of the plan for it, and then generates the plan for the outer query block, representing the entire query.	
The parser expands each view referenced in a query into a separate query block. The block essentially represents the view definition, and thus the result of a view. One option for the optimizer is to analyze the view query block separately, generate a view subplan, and then process the rest of the query by using the view subplan to generate an overall execution plan. However, this technique may lead to a suboptimal execution plan because the view is optimized separately.	
View merging can sometimes improve performance. As shown in Example 5-4, view merging merges the tables from the view into the outer query block, removing the inner query block. Thus, separate optimization of the view is not necessary.	
In simple view merging, the optimizer merges select-project-join views. For example, a query of the employees	
table contains a subquery that joins the departments	
and locations	
tables.	
Simple view merging frequently results in a more optimal plan because of the additional join orders and access paths available after the merge. A view may not be valid for simple view merging because:	
GROUP BY	
DISTINCT	
MODEL	
CONNECT BY	
SELECT	
list. Example 5-4 Simple View Merging	
The following query joins the hr.employees	
table with the dept_locs_v	
view, which returns the street address for each department. dept_locs_v	
is a join of the departments	
and locations	
tables.	
The database can execute the preceding query by joining departments	
and locations	
to generate the rows of the view, and then joining this result to employees	
. Because the query contains the view dept_locs_v	
, and this view contains two tables, the optimizer must use one of the following join orders:	
employees	
, dept_locs_v	
(departments	
, locations	
) employees	
, dept_locs_v	
(locations	
, departments	
) dept_locs_v	
(departments	
, locations	
), employees	
dept_locs_v	
(locations	
, departments	
), employees	
Join methods are also constrained. The index-based nested loops join is not feasible for join orders that begin with employees	
because no index exists on the column from this view. Without view merging, the optimizer generates the following execution plan:	
View merging merges the tables from the view into the outer query block, removing the inner query block. After view merging, the query is as follows:	
Because all three tables appear in one query block, the optimizer can choose from the following six join orders:	
employees	
, departments	
, locations	
employees	
, locations	
, departments	
departments	
, employees	
, locations	
departments	
, locations	
, employees	
locations	
, employees	
, departments	
locations	
, departments	
, employees	
The joins to employees	
and departments	
can now be index-based. After view merging, the optimizer chooses the following more efficient plan, which uses nested loops:	
See Also: The Oracle Optimizer blog athttps://blogs.oracle.com/optimizer/ to learn about outer join view merging, which is a special case of simple view merging	
In complex view merging, the optimizer merges views containing GROUP BY	
and DISTINCT	
views. Like simple view merging, complex merging enables the optimizer to consider additional join orders and access paths.	
The optimizer can delay evaluation of GROUP BY	
or DISTINCT	
operations until after it has evaluated the joins. Delaying these operations can improve or worsen performance depending on the data characteristics. If the joins use filters, then delaying the operation until after joins can reduce the data set on which the operation is to be performed. Evaluating the operation early can reduce the amount of data to be processed by subsequent joins, or the joins could increase the amount of data to be processed by the operation. The optimizer uses cost to evaluate view merging and merges the view only when it is the lower cost option.	
Aside from cost, the optimizer may be unable to perform complex view merging for the following reasons:	
CONNECT BY	
query block. GROUPING SETS	
, ROLLUP	
, or PIVOT	
clauses. MODEL	
clause. Example 5-5 Complex View Joins with GROUP BY	
The following view uses a GROUP BY	
clause:	
The following query finds all of the customers from the United States who have bought at least 100 fur-trimmed sweaters:	
The cust_prod_totals_v	
view is eligible for complex view merging. After merging, the query is as follows:	
The transformed query is cheaper than the untransformed query, so the optimizer chooses to merge the view. In the untransformed query, the GROUP BY	
operator applies to the entire sales	
table in the view. In the transformed query, the joins to products	
and customers	
filter out a large portion of the rows from the sales	
table, so the GROUP BY	
operation is lower cost. The join is more expensive because the sales	
table has not been reduced, but it is not much more expensive because the GROUP BY	
operation does not reduce the size of the row set very much in the original query. If any of the preceding characteristics were to change, merging the view might no longer be lower cost. The final plan, which does not include a view, is as follows:	
Example 5-6 Complex View Joins with DISTINCT	
The following query of the cust_prod_v	
view uses a DISTINCT	
operator:	
After determining that view merging produces a lower-cost plan, the optimizer rewrites the query into this equivalent query:	
The plan for the preceding query is as follows:	
The preceding plan contains a view named vm_nwvw_1	
, known as a projection view, even after view merging has occurred. Projection views appear in queries in which a DISTINCT	
view has been merged, or a GROUP BY	
view is merged into an outer query block that also contains GROUP BY	
, HAVING	
, or aggregates. In the latter case, the projection view contains the GROUP BY	
, HAVING	
, and aggregates from the original outer query block.	
In the preceding example of a projection view, when the optimizer merges the view, it moves the DISTINCT	
operator to the outer query block, and then adds several additional columns to maintain semantic equivalence with the original query. Afterward, the query can select only the desired columns in the SELECT	
list of the outer query block. The optimization retains all of the benefits of view merging: all tables are in one query block, the optimizer can permute them as needed in the final join order, and the DISTINCT	
operation has been delayed until after all of the joins complete.	
In predicate pushing, the optimizer "pushes" the relevant predicates from the containing query block into the view query block. For views that are not merged, this technique improves the subplan of the unmerged view because the database can use the pushed-in predicates to access indexes or to use as filters.	
For example, suppose you create a table hr.contract_workers	
as follows:	
You create a view that references employees	
and contract_workers	
. The view is defined with a query that uses the UNION	
set operator, as follows:	
You then query the view as follows:	
Because the view is a UNION	
set query, the optimizer cannot merge the view's query into the accessing query block. Instead, the optimizer can transform the accessing statement by pushing its predicate, the WHERE	
clause condition department_id=50	
, into the view's UNION	
set query. The equivalent transformed query is as follows:	
The transformed query can now consider index access in each of the query blocks.	
In subquery unnesting, the optimizer transforms a nested query into an equivalent join statement, and then optimizes the join. This transformation enables the optimizer to consider the subquery tables during access path, join method, and join order selection. The optimizer can perform this transformation only if the resulting join statement is guaranteed to return the same rows as the original statement, and if subqueries do not contain aggregate functions such as AVG	
.	
For example, suppose you connect as user sh	
and execute the following query:	
Because the customers.cust_id	
column is a primary key, the optimizer can transform the complex query into the following join statement that is guaranteed to return the same data:	
If the optimizer cannot transform a complex statement into a join statement, it selects execution plans for the parent statement and the subquery as though they were separate statements. The optimizer then executes the subquery and uses the rows returned to execute the parent query. To improve execution speed of the overall execution plan, the optimizer orders the subplans efficiently.	
A materialized view is like a query with a result that the database materializes and stores in a table. When the optimizer finds a user query compatible with the query associated with a materialized view, then the database can rewrite the query in terms of the materialized view. This technique improves query execution because the database has precomputed most of the query result.	
The optimizer looks for any materialized views that are compatible with the user query, and then selects one or more materialized views to rewrite the user query. The use of materialized views to rewrite a query is cost-based. That is, the optimizer does not rewrite the query when the plan generated without the materialized views has a lower cost than the plan generated with the materialized views.	
Consider the following materialized view, cal_month_sales_mv	
, which aggregates the dollar amount sold each month:	
Assume that sales number is around one million in a typical month. The view has the precomputed aggregates for the dollar amount sold for each month. Consider the following query, which asks for the sum of the amount sold for each month:	
Without query rewrite, the database must access sales	
directly and compute the sum of the amount sold. This method involves reading many million rows from sales	
, which invariably increases query response time. The join also further slows query response because the database must compute the join on several million rows. With query rewrite, the optimizer transparently rewrites the query as follows:	
Star transformation is an optimizer transformation that avoids full table scans of fact tables in a star schema. This section contains the following topics:	
A star schema divides data into facts and dimensions. Facts are the measurements of an event such as a sale and are typically numbers. Dimensions are the categories that identify facts, such as date, location, and product.	
A fact table has a composite key made up of the primary keys of the dimension tables of the schema. Dimension tables act as lookup or reference tables that enable you to choose values that constrain your queries.	
The term star schema comes from the fact that the diagrams of the schemas typically show a central fact table with lines joining it to the dimension tables, so the graphic impression is similar to a star. Figure 5-1 shows sales	
as the fact table and products	
, times	
, customers	
, and channels	
as the dimension tables.	
In joins of fact and dimension tables, a star transformation can avoid a full scan of a fact table by fetching only relevant rows from the fact table that join to the constraint dimension rows. When queries contain restrictive filter predicates on other columns of the dimension tables, the combination of filters can dramatically reduce the data set that the database processes from the fact table.	
Star transformation adds subquery predicates corresponding to the constraint dimensions. These subquery predicates are called bitmap semijoin predicates. The optimizer performs the transformation when indexes exist on the fact join columns. By driving bitmap AND	
and OR	
operations of key values supplied by the subqueries, the database only needs to retrieve relevant rows from the fact table. If the predicates on the dimension tables filter out significant data, then the transformation can be more efficient than a full table scan on the fact table.	
After the database has retrieved the relevant rows from the fact table, the database may need to join these rows back to the dimension tables using the original predicates. The database can eliminate the join back of the dimension table when the following conditions are met:	
SELECT	
list, GROUP BY	
clause, and so on. The STAR_TRANSFORMATION_ENABLED	
initialization parameter controls star transformations. This parameter takes the following values:	
true	
The optimizer performs the star transformation by identifying the fact and constraint dimension tables automatically. The optimizer performs the star transformation only if the cost of the transformed plan is lower than the alternatives. Also, the optimizer attempts temporary table transformation automatically whenever materialization improves performance (see "Temporary Table Transformation: Scenario").	
false	
(default) The optimizer does not perform star transformations.	
TEMP_DISABLE	
This value is identical to true	
except that the optimizer does not attempt temporary table transformation.	
See Also: Oracle Database Reference to learn about theSTAR_TRANSFORMATION_ENABLED initialization parameter	
In Example 5-7, the query finds the total sales amount in all cities in California for quarters Q1 and Q2 of year 1999 through the Internet. In this example, sales	
is the fact table, and the other tables are dimension tables.	
Example 5-7 Star Query	
Sample output for Example 5-7 is as follows:	
In Example 5-7, the sales	
table contains one row for every sale of a product, so it could conceivably contain billions of sales records. However, only a few products are sold to customers in California through the Internet for the specified quarters. Example 5-8 shows a star transformation of the query in Example 5-7. The transformation avoids a full table scan of sales	
.	
Example 5-8 Star Transformation	
Example 5-9 shows an edited version of the execution plan for the star transformation in Example 5-8.	
Example 5-9 Partial Execution Plan for Star Transformation	
Line 26 of Example 5-9 shows that the sales	
table has an index access path instead of a full table scan. For each key value that results from the subqueries of channels	
(line 14), times	
(line 19), and customers	
(line 24), the database retrieves a bitmap from the indexes on the sales	
fact table (lines 15, 20, 25).	
Each bit in the bitmap corresponds to a row in the fact table. The bit is set when the key value from the subquery is same as the value in the row of the fact table. For example, in the bitmap 101000...	
(the ellipses indicates that the values for the remaining rows are 0	
), rows 1 and 3 of the fact table have matching key values from the subquery.	
The operations in lines 12, 17, and 22 iterate over the keys from the subqueries and retrieve the corresponding bitmaps. In Example 5-8, the customers	
subquery seeks the IDs of customers whose state or province is CA	
. Assume that the bitmap 101000...	
corresponds to the customer ID key value 103515	
from the customers	
table subquery. Also assume that the customers	
subquery produces the key value 103516	
with the bitmap 010000...	
, which means that only row 2 in sales	
has a matching key value from the subquery.	
The database merges (using the OR	
operator) the bitmaps for each subquery (lines 11, 16, 21). In our customers	
example, the database produces a single bitmap 111000...	
for the customers	
subquery after merging the two bitmaps:	
In line 10 of Example 5-9, the database applies the AND	
operator to the merged bitmaps. Assume that after the database has performed all OR	
operations, the resulting bitmap for channels	
is 100000...	
If the database performs an AND	
operation on this bitmap and the bitmap from customers	
subquery, then the result is as follows:	
In line 9 of Example 5-9, the database generates the corresponding rowids of the final bitmap. The database retrieves rows from the sales	
fact table using the rowids (line 26). In our example, the database generate only one rowid, which corresponds to the first row, and thus fetches only a single row instead of scanning the entire sales	
table.	
In Example 5-9, the optimizer does not join back the table channels	
to the sales	
table because it is not referenced outside and the channel_id	
is unique. If the optimizer cannot eliminate the join back, however, then the database stores the subquery results in a temporary table to avoid rescanning the dimension table for bitmap key generation and join back. Also, if the query runs in parallel, then the database materializes the results so that each parallel execution server can select the results from the temporary table instead of executing the subquery again.	
In Example 5-10, the database materializes the results of the subquery on customers	
into a temporary table.	
Example 5-10 Star Transformation Using Temporary Table	
The optimizer replaces customers	
with the temporary table sys_temp_0fd9d6621_e7e24	
, and replaces references to columns cust_id	
and cust_city	
with the corresponding columns of the temporary table. The database creates the temporary table with two columns: (c0 NUMBER, c1 VARCHAR2(30))	
. These columns correspond to cust_id	
and cust_city	
of the customers	
table. The database populates the temporary table by executing the following query at the beginning of the execution of the previous query:	
Example 5-11 shows an edited version of the execution plan for the query in Example 5-10.	
Example 5-11 Partial Execution Plan for Star Transformation Using Temporary Table	
Lines 1, 2, and 3 of the plan materialize the customers	
subquery into the temporary table. In line 6, the database scans the temporary table (instead of the subquery) to build the bitmap from the fact table. Line 27 scans the temporary table for joining back instead of scanning customers	
. The database does not need to apply the filter on customers	
on the temporary table because the filter is applied while materializing the temporary table.	
In table expansion, the optimizer generates a plan that uses indexes on the read-mostly portion of a partitioned table, but not on the active portion of the table. This section contains the following topics:	
Table expansion is useful because of the following facts:	
Table expansion takes advantage of index-based plans for tables that have high update volume. You can configure a table so that an index is only created on the read-mostly portion of the data, and does not suffer the overhead burden of index maintenance on the active portions of the data. Thus, table expansion reaps the benefit of improved performance without suffering the ill effects of index maintenance.	
Table partitioning makes table expansion possible. If a local index exists on a partitioned table, then the optimizer can mark the index as unusable for specific partitions. In effect, some partitions are not indexed.	
In table expansion, the optimizer transforms the query into a UNION ALL	
statement, with some subqueries accessing indexed partitions and other subqueries accessing unindexed partitions. The optimizer can choose the most efficient access method available for a partition, regardless of whether it exists for all of the partitions accessed in the query.	
The optimizer does not always choose table expansion:	
While the database accesses each partition of the expanded table only once across all branches of the UNION ALL	
, any tables that the database joins to it are accessed in each branch.	
For example, a table appearing on the right side of an outer join is not valid for table expansion.	
You can control table expansion with the hint EXPAND_TABLE	
hint. The hint overrides the cost-based decision, but not the semantic checks.	
The optimizer keeps track of which partitions must be accessed from each table, based on predicates that appear in the query. Partition pruning enables the optimizer to use table expansion to generate more optimal plans.	
Assumptions	
This scenario assumes the following:	
sh.sales	
table, which is range-partitioned on the time_id	
column. To use table expansion:	
DBMS_EXPLAN	
: As shown in the Pstart	
and Pstop	
columns in the following plan, the optimizer determines from the filter that only 16 of the 28 partitions in the table must be accessed:	
After the optimizer has determined the partitions to be accessed, it considers any index that is usable on all of those partitions. In the preceding plan, the optimizer chose to use the sales_prod_bix	
bitmap index.	
SALES_1995	
partition of the sales	
table: The preceding DDL disables the index on partition 1, which contains all sales from before 1996.	
Note: You can obtain the partition information by querying theUSER_IND_PARTITIONS view.	
DBMS_XPLAN	
to obtain the plan. The output shows that the plan did not change:	
The plan is the same because the disabled index partition is not relevant to the query. If all partitions that the query accesses are indexed, then the database can answer the query using the index. Because the query only accesses partitions 16 through 28, disabling the index on partition 1 does not affect the plan.	
SALES_Q4_2003	
), which is a partition that the query does not access: By disabling the index on a partition that the query does not need to access, the query can no longer use this index (without table expansion).	
DBMS_EXPLAN	
. As shown in the following plan, the optimizer does not use the index:	
In the preceding example, the query accesses 16 partitions. On 15 of these partitions, an index is available, but no index is available for the final partition. Because the optimizer has to choose one access path or the other, the optimizer cannot make use of the index on any of the partitions.	
In the preceding query, the first query block in the union all accesses the partitions that are indexed, while the second query block accesses the partition that is not. The two subqueries enable the optimizer to choose to use the index in the first query block, if it is more optimal than using a table scan of all of the partitions that are accessed.	
DBMS_EXPLAN	
. The plan appears as follows:	
Star transformation enables specific types of queries to avoid accessing large portions of big fact tables (see "Star Transformation"). Star transformation requires defining several indexes, which in an actively updated table can have overhead. With table expansion, you can define indexes on only the inactive partitions so that the optimizer can consider star transformation on only the indexed portions of the table.	
Assumptions	
This scenario assumes the following:	
sales	
is actively being updated, as is often the case with time-partitioned tables. To take advantage of table expansion in a star query:	
DBMS_XPLAN	
, which shows the following plan: The preceding plan uses table expansion. The UNION ALL	
branch that is accessing every partition except the last partition uses star transformation. Because the indexes on partition 28 are disabled, the database accesses the final partition using a full table scan.	
In the cost-based transformation known as join factorization, the optimizer can factorize common computations from branches of a UNION ALL	
query.	
This section contains the following topics:	
UNION ALL	
queries are common in database applications, especially in data integration applications. Often, branches in a UNION ALL	
query refer to the same base tables. Without join factorization, the optimizer evaluates each branch of a UNION ALL	
query independently, which leads to repetitive processing, including data access and joins. Join factorization transformation can share common computations across the UNION ALL	
branches. Avoiding an extra scan of a large base table can lead to a huge performance improvement.	
Join factorization can factorize multiple tables and from more than two UNION ALL	
branches. Join factorization is best explained through examples. Example 5-12 shows a query of four tables and two UNION ALL	
branches.	
Example 5-12 UNION ALL Query	
In Example 5-12, table t1	
appears in both UNION ALL	
branches, as does the filter predicate t1.c1 > 1	
and the join predicate t1.c1 = t2.c1	
. Nevertheless, without any transformation, the database must perform the scan and the filtering on table t1	
twice, one time for each branch. Example 5-13 uses join factorization to transform the query in Example 5-12.	
Example 5-13 Factorized Query	
In Example 5-13, table t1	
is factorized. Thus, the database performs the table scan and the filtering on t1	
only one time. If t1	
is large, then this factorization avoids the huge performance cost of scanning and filtering t1	
twice.	
Note: If the branches in aUNION ALL query have clauses that use the DISTINCT function, then join factorization is not valid.	
A benefit of join factorization is that it can create more possibilities for join orders. In Example 5-14, view V	
is same as the query in Example 5-12.	
Example 5-14 Query Involving Five Tables	
Before join factorization, the database must join t1	
, t2	
, and t3	
before joining them with t5	
. But if join factorization factorizes t1	
from view V	
, as shown in Example 5-15, then the database can join t1	
with t5	
.	
Example 5-15 Factorization of t1 from View V	
Example 5-16 shows the same query as Example 5-15, but with the view definition removed so that the factorization is easier to see.	
Example 5-16 Factorization of t1 from View V	
The query transformation in Example 5-15 opens up new join orders. However, join factorization imposes specific join orders. For example, in Example 5-15, tables t2	
and t3	
appear in the first branch of the UNION ALL	
query in view VW_JF_1	
. The database must join t2	
with t3	
before it can join with t1	
, which is not defined within the VW_JF_1	
view. The imposed join order may not necessarily be the best join order. For this reason, the optimizer performs join factorization using the cost-based transformation framework. The optimizer calculate the cost of the plans with and without join factorization, and then chooses the cheapest plan.	
The database supports join factorization of outer joins, antijoins, and semijoins, but only for the right tables in such joins. For example, join factorization can transform the query in Example 5-17 by factorizing t2	
.	
Example 5-17 Outer Join	
Example 5-18 shows the factorized query.	
This chapter contains the following topics:	
An access path is a way in which a query retrieves rows from a row source. A row source is a set of rows returned by a step in an execution plan. A row source can be a table, view, or result of a join or grouping operation.	
The database uses different access paths for different relational data structures (see Oracle Database Concepts for an overview of these structures). Table 6-1 summarizes common access paths for the major data structures.	
Table 6-1 Data Structures and Access Paths	
Access Path	Heap-Organized Tables
---	---
x	
x	
x	
x	
x	
x	
x	
x	
x	
x	
x	
x	
Bitmap Index Range Scans	x
x	
x	
As explained in "Cost-Based Optimization," the optimizer considers different possible execution plans, and then assigns each plan a cost. The optimizer chooses the plan with the lowest cost. In general, index access paths are more efficient for statements that retrieve a small subset of table rows, whereas full table scans are more efficient when accessing a large portion of a table.	
A table is the basic unit of data organization in an Oracle database. Relational tables are the most common table type. Relational tables have with the following organizational characteristics:	
This section explains optimizer access paths for heap-organized tables, and contains the following topics:	
See Also:	
By default, a table is organized as a heap, which means that the database places rows where they fit best rather than in a user-specified order. As users add rows, the database places the rows in the first available free space in the data segment. Rows are not guaranteed to be retrieved in the order in which they were inserted.	
The database stores rows in data blocks. In tables, the database can write a row anywhere in the bottom part of the block. Oracle Database uses the block overhead, which contains the row directory and table directory, to manage the block itself.	
An extent is made up of logically contiguous data blocks. The blocks may not be physically contiguous on disk. A segment is a set of extents that contains all the data for a logical storage structure within a tablespace. For example, Oracle Database allocates one or more extents to form the data segment for a table. The database also allocates one or more extents to form the index segment for a table.	
By default, the database uses automatic segment space management (ASSM) for permanent, locally managed tablespaces. When a session first inserts data into a table, the database formats a bitmap block. The bitmap tracks the blocks in the segment. The database uses the bitmap to find free blocks and then formats each block before writing to it. ASSM spread out inserts among blocks to avoid concurrency issues.	
The high water mark (HWM) is the point in a segment beyond which data blocks are unformatted and have never been used. Below the HWM, a block may be formatted and written to, formatted and empty, or unformatted. The low high water mark (low HWM) marks the point below which all blocks are known to be formatted because they either contain data or formerly contained data.	
During a full table scan, the database reads all blocks up to the low HWM, which are known to be formatted, and then reads the segment bitmap to determine which blocks between the HWM and low HWM are formatted and safe to read. The database knows not to read past the HWM because these blocks are unformatted.	
Every row in a heap-organized table has a rowid unique to this table that corresponds to the physical address of a row piece. A rowid is a 10-byte physical address of a row.	
The rowid points to a specific file, block, and row number. For example, in the rowid AAAPecAAFAAAABSAAA	
, the final AAA	
represents the row number. The row number is an index into a row directory entry. The row directory entry contains a pointer to the location of the row on the block.	
The database can sometimes move a row in the bottom part of the block. For example, if row movement is enabled, then the row can move because of partition key updates, Flashback Table operations, shrink table operations, and so on. If the database moves a row within a block, then the database updates the row directory entry to modify the pointer. The rowid stays constant.	
Oracle Database uses rowids internally for the construction of indexes. For example, each key in a B-tree index is associated with a rowid that points to the address of the associated row. Physical rowids provide the fastest possible access to a table row, enabling the database to retrieve a row in as little as a single I/O.	
In a direct path read, the database reads buffers from disk directly into the PGA, bypassing the SGA entirely. Figure 6-1 shows the difference between scattered and sequential reads, which store buffers in the SGA, and direct path reads.	
Situations in which Oracle Database may perform direct path reads include:	
CREATE TABLE AS SELECT	
statement ALTER REBUILD	
or ALTER MOVE	
statement A full table scan reads all rows from a table, and then filters out those rows that do not meet the selection criteria.	
In general, the optimizer chooses a full table scan when it cannot use a different access path, or another usable access path is higher cost. Typical reasons for choosing a full table scan include the following:	
If no index exists, then the optimizer uses a full table scan.	
Unless the index is a function-based index (see "Using Function-Based Indexes for Performance"), the database indexes the values of the column, not the values of the column with the function applied. A typical application-level mistake is to index a character column, such as char_col	
, and then query the column using syntax such as WHERE char_col=1	
. The database implicitly applies a TO_NUMBER	
function to the constant number 1	
, which prevents use of the index.	
SELECT COUNT(*)	
query is issued, and an index exists, but the indexed column contains nulls. The optimizer cannot use the index to count the number of table rows because the index cannot contain null entries (see "B-Tree Indexes and Nulls").	
For example, an index might exist on employees(first_name,last_name)	
. If a user issues a query with the predicate WHERE last_name='KING'	
, then the optimizer may not choose an index because column first_name	
is not in the predicate. However, in this situation the optimizer may choose to use an index skip scan (see "Index Skip Scans").	
If the optimizer determines that the query requires most of the blocks in the table, then it uses a full table scan, even though indexes are available. Full table scans can use larger I/O calls. Making fewer large I/O calls is cheaper than making many smaller calls.	
For example, a table was small, but now has grown large. If the table statistics are stale and do not reflect the current size of the table, then the optimizer does not know that an index is now most efficient than a full table scan. See "Introduction to Optimizer Statistics."	
If a table contains fewer than n blocks under the high water mark, where n equals the setting for the DB_FILE_MULTIBLOCK_READ_COUNT	
initialization parameter, then a full table scan may be cheaper than an index range scan. The scan may be less expensive regardless of the fraction of tables being accessed or indexes present.	
A high degree of parallelism for a table skews the optimizer toward full table scans over range scans. Query the value in the ALL_TABLES.DEGREE	
column in for the table to determine the degree of parallelism.	
The hint FULL(
table	
alias	
)	
instructs the optimizer to use a full table scan.	
In a full table scan, the database sequentially reads every formatted block under the high water mark. The database reads each block only once. The following graphic depicts a scan of a table segment, showing how the scan skips unformatted blocks below the high water mark.	
Because the blocks are adjacent, the database can speed up the scan by making I/O calls larger than a single block, known as a multiblock read. The size of a read call ranges from one block to the number of blocks specified by the DB_FILE_MULTIBLOCK_READ_COUNT	
initialization parameter. For example, setting this parameter to 4	
instructs the database to read up to 4 blocks in a single call.	
See Also:	
When the database reads blocks into the buffer cache as the result of a full scan of a large table, the database treats these reads differently from other types of reads. The blocks are immediately available for reuse to prevent the full table scan from effectively cleaning out the buffer cache. The database automatically determines whether to cache blocks.	
Automatic caching is disabled for tables that are created or altered with the CACHE	
attribute. You can also use the CACHE	
hint to override the default behavior. In this case, the database does not force or pin the blocks in the buffer cache, but ages them out of the cache in the same way as any other block. The CACHE	
hint is useful for small lookup tables. Use care when exercising this option because a full scan of a large table may clean most of the other blocks out of the cache.	
See Also:	
When performing a full table scan, the database can sometimes improve response time by using multiple parallel execution servers. In some cases, as when the database has a large amount of memory, the database can cache parallel query data in the system global area (SGA) instead of using direct path reads into the program global area (PGA). Typically, parallel queries occur in low-concurrency data warehouses because of the potential resource usage.	
See Also:	
The following statement queries salaries over 4000 in the hr.employees	
table:	
Example 6-1 retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR	
function. Because no index exists on the salary	
column, the optimizer cannot use an index range scan, and so uses a full table scan.	
Example 6-1 Full Table Scan	
A rowid is an internal representation of the storage location of data. The rowid of a row specifies the data file and data block containing the row and the location of the row in that block. Locating a row by specifying its rowid is the fastest way to retrieve a single row because it specifies the exact location of the row in the database.	
Note: Rowids can change between versions. Accessing data based on position is not recommended because rows can move. To learn more about rowids, see Oracle Database Development Guide.	
In most cases, the database accesses a table by rowid after a scan of one or more indexes. However, table access by rowid need not follow every index scan. If the index contains all needed columns, then access by rowid might not occur (see "Index Fast Full Scans").	
To access a table by rowid, the database performs the following steps:	
WHERE	
clause or through an index scan of one or more indexes Table access may be needed for columns in the statement not present in the index.	
Assume run the following query:	
Step 2 of the following plan shows a range scan of the emp_emp_id_pk	
index on the hr.employees	
table. The database uses the rowids obtained from the index to find the corresponding rows from the employees	
table, and then retrieve them. The BATCHED	
access shown in Step 1 means that the database retrieves a few rowids from the index, and then attempts to access rows in block order to improve the clustering and reduce the number of times that the database must access a block.	
A sample table scan retrieves a random sample of data from a simple table or a complex SELECT	
statement, such as a statement involving joins and views.	
The database uses a sample table scan when a statement FROM	
clause includes either of the following clauses:	
SAMPLE	
(
sample_percent	
)	
The database reads a specified percentage of rows in the table to perform a sample table scan.	
SAMPLE BLOCK	
(
sample_percent	
)	
The database reads a specified percentage of table blocks to perform a sample table scan.	
The sample_percent specifies the percentage of the total row or block count to include in the sample. The value must be in the range .000001	
up to, but not including, 100	
. This percentage indicates the probability of each row, or each cluster of rows in block sampling, being selected for the sample. It does not mean that the database retrieves exactly sample_percent of the rows.	
Note: Block sampling is possible only during full table scans or index fast full scans. If a more efficient execution path exists, then the database does not sample blocks. To guarantee block sampling for a specific table or index, use theFULL or INDEX_FFS hint.	
See Also:	
Example 6-2 uses a sample table scan to access 1% of the employees	
table, sampling by blocks instead of rows.	
Example 6-2 Sample Table Scan	
The EXPLAIN	
PLAN	
output for this statement might look as follows:	
An index is an optional structure, associated with a table or table cluster, that can sometimes speed data access. By creating an index on one or more columns of a table, you gain the ability in some cases to retrieve a small set of randomly distributed rows from the table. Indexes are one of many means of reducing disk I/O.	
This section contains the following topics:	
See Also:	
B-trees, short for balanced trees, are the most common type of database index. A B-tree index is an ordered list of values divided into ranges. By associating a key with a row or range of rows, B-trees provide excellent retrieval performance for a wide range of queries, including exact match and range searches.	
Figure 6-2 illustrates the logical structure of a B-tree index. A B-tree index has two types of blocks: branch blocks for searching and leaf blocks that store values. Branch blocks store the minimum key prefix needed to make a branching decision between two keys. The leaf blocks contain every indexed data value and a corresponding rowid used to locate the actual row. Each index entry is sorted by (key, rowid). Within a leaf block, a key and rowid is linked to its left and right sibling entries. The leaf blocks themselves are also doubly linked.	
Figure 6-2 shows the leaf blocks as adjacent to each other, so that the 1-10	
block is next to and before the 11-19	
block. This arrangement illustrates the linked lists that connect the index entries. However, index blocks need not be stored in order within an index segment. For example, the 246-250	
block could appear anywhere in the segment, including directly before the 1-10	
block. Because blocks can appear anywhere in the segment, ordered index scans must perform single-block I/O. The database must read a block to determine which block it must read next.	
Figure 6-2 shows the index entries within an index block stored sequentially. This is true at a high level. At a low level, the index entries in the index block body are stored in a heap, just like table rows. For example, if the value 10	
is inserted first into a table, then the index entry with key 10	
might be inserted at the bottom of the index block, and if 0	
is inserted next into the table, then the index entry for key 0	
might be inserted on top of the entry for 10	
, and so on. Thus, the index entries in the block body are not stored in key order. However, within the index block, the row header stores records in key order. For example, the first record in the header points to the index entry with key 0	
, and so on sequentially up to the record that points to the index entry with key 10	
. Thus, index scans can read the row header to determine where to begin and end range scans, avoiding the necessity of reading every entry in the block.	
Figure 6-2 shows a nonunique index. In a nonunique index, the database stores the rowid by appending it to the key as an extra column with a length byte to make the key unique. For example, the first index key in Figure 6-2 is the pair 0	
,rowid	
and not simply 0	
. The database sorts the data by index key values and then by rowid ascending. For example, the entries are sorted as follows:	
In a unique index, the index key does not include the rowid. The database sorts the data only by the index key values, such as 0	
, 1	
, 2	
, and so on.	
B-tree indexes never store completely null keys, which is important for how the optimizer chooses access paths. A consequence of this rule is that single-column B-tree indexes never store nulls.	
An example helps illustrate. The hr.employees	
table has a primary key index on employee_id	
, and a unique index on department_id	
. The department_id	
column can contain nulls, making it a nullable column, but the employee_id	
column cannot.	
The following example shows that the optimizer chooses a full table scan for a query of all department IDs in hr.employees	
. The optimizer cannot use the index on employees.department_id	
because the index is not guaranteed to include entries for every row in the table.	
The following example shows the optimizer can use the index on department_id	
for a query of a specific department ID because all non-null rows are indexed.	
The following example shows that the optimizer chooses an index scan when the predicate excludes null values:	
An index unique scan returns at most 1 rowid.	
The database performs a unique scan when the following conditions apply:	
WHERE prod_id=10	
. CREATE UNIQUE INDEX	
statement. A unique or primary key constraint is insufficient by itself to produce an index unique scan. Consider the following example, which creates a primary key constraint on a column with a non-unique index, resulting in an index range scan:	
You can use the INDEX(
alias index_name	
)	
hint to specify the index to use, but not a specific type of index access path.	
See Also:	
The scan searches the index in order for the specified key. An index unique scan stops processing as soon as it finds the first record because no second record is possible. The database obtains the rowid from the index entry, and then retrieves the row specified by the rowid.	
Figure 6-3 illustrates an index unique scan. The statement requests the record for product ID 19	
in the prod_id	
column, which has a primary key index.	
The following statement queries the record for product 19	
in the sh.products	
table:	
Example 6-3 retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR	
function. Because a primary key index exists on products.prod_id	
, and the WHERE	
clause references all of the columns using an equality operator, the optimizer chooses a unique scan.	
Example 6-3 Index Unique Scan	
An index range scan is an ordered scan of values. The range in the scan can be bounded on both sides, or unbounded on one or both sides. The optimizer typically chooses a range scan for selective queries (see "Selectivity").	
By default, the database stores indexes in ascending order, and scans them in the same order. For example, a query with the predicate department_id >= 20	
uses a range scan to return rows sorted by index keys 20	
, 30	
, 40	
, and so on. If multiple index entries have identical keys, then the database returns them in ascending order by rowid, so that 0,AAAPvCAAFAAAAFaAAa	
is followed by 0,AAAPvCAAFAAAAFaAAg	
, and so on.	
An index range scan descending is identical to an index range scan except that the database returns rows in descending order. Usually, the database uses a descending scan when ordering data in a descending order, or when seeking a value less than a specified value.	
The optimizer considers index range scans in the following circumstances:	
TRUE	
, FALSE	
, or UNKNOWN	
. Examples of conditions include: department_id = :id	
department_id < :id	
department_id > :id	
AND	
combination of the preceding conditions for leading columns in the index, such as department_id > :low AND department_id < :hi	
. Note: For the optimizer to consider a range scan, wild-card searches of the formcol1 LIKE '%ASD' must not be in a leading position.	
Tip: If you require sorted data, then use theORDER BY clause, and do not rely on an index. If an index can satisfy an ORDER BY clause, then the optimizer uses this option and avoids a sort.	
The optimizer considers an index range scan descending when an index can satisfy an ORDER BY DESCENDING	
clause.	
If the optimizer chooses a full table scan or another index, then a hint may be required to force this access path. The INDEX(
tbl_alias	
ix_name	
)	
and INDEX_DESC(
tbl_alias	
ix_name	
)	
hints instruct the optimizer to use a specific index.	
In general, the process is as follows:	
Note: In some cases, an index scan reads a set of index blocks, sorts the rowids, and then reads a set of table blocks.	
Thus, to scan the index, the database moves backward or forward through the leaf blocks. For example, a scan for IDs between 20 and 40 locates the first leaf block that has the lowest key value that is 20 or greater. The scan proceeds horizontally through the linked list of leaf nodes until it finds a value greater than 40, and then stops.	
Figure 6-4 illustrates an index range scan using ascending order. A statement requests the employees	
records with the value 20	
in the department_id	
column, which has a nonunique index. In this example, 2 index entries for department 20	
exist.	
The following statement queries the records for employees in department 20	
with salaries greater than 1000	
:	
Example 6-4 retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR	
function. This query is highly selective, so the query uses the index on the department_id	
column. The database scans the index, fetches the records from the employees table, and then applies the salary > 1000	
filter to these fetched records to generate the result.	
Example 6-4 Index Range Scan	
The following statement queries the records for employees in department 20	
in descending order:	
Example 6-5 retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR	
function. This query is selective, so the query uses the index on the department_id	
column. The database locates the first index leaf block that contains the highest key value that is 20	
or less. The scan then proceeds horizontally to the left through the linked list of leaf nodes. The database obtains the rowid from each index entry, and then retrieves the row specified by the rowid.	
Example 6-5 Index Range Scan Descending	
An index full scan reads the entire index in order. An index full scan can eliminate a separate sorting operation because the data in the index is ordered by index key.	
Situations in which the optimizer considers an index full scan include:	
ORDER BY	
on indexed non-nullable columns. The database reads the root block, and then navigates down the left hand side of the index (or right if doing a descending full scan) until it reaches a leaf block. The database then reads across the bottom of the index, one block at a time, in sorted order. The scan uses single-block I/O rather than multiblock I/O.	
Figure 6-5 illustrates an index full scan. A statement requests the departments	
records ordered by department_id	
.	
The following statement queries the ID and name for departments in order of department ID:	
Example 6-6 retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR	
function. The database locates the first index leaf block, and then proceeds horizontally to the right through the linked list of leaf nodes. For each index entry, the database obtains the rowid from the entry, and then retrieves the table row specified by the rowid. In this way, the database avoids a separate operation to sort the retrieved rows.	
Example 6-6 Index Full Scan	
An index fast full scan reads the index blocks in unsorted order, as they exist on disk. This scan does not use the index to probe the table, but reads the index instead of the table, essentially using the index itself as a table.	
The optimizer considers this scan when a query only accesses attributes in the index. The INDEX_FFS	
(
table_name	
index_name	
)	
hint forces a fast full index scan.	
Note: Unlike a full scan, a fast full scan cannot eliminate a sort operation because it does not read the index in order.	
The database uses multiblock I/O to read the root block and all of the leaf and branch blocks. The databases ignores the branch and root blocks and reads the index entries on the leaf blocks.	
The following statement queries the ID and name for departments in order of department ID:	
Example 6-7 retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR	
function.	
Example 6-7 Index Fast Full Scan	
An index fast full scan occurs when the initial column of a composite index is "skipped" or not specified in the query. For example, if the composite index key is (cust_gender,cust_email)	
, then the query predicate does not reference the cust_gender	
column.	
The optimizer considers a skip scan when the following criteria are met:	
Often, skip scanning index blocks is faster than scanning table blocks, and faster than performing full index scans.	
An index skip scan logically splits a composite index into smaller subindexes. The number of distinct values in the leading columns of the index determines the number of logical subindexes. The lower the number, the fewer logical subindexes the optimizer must create, and the more efficient the scan becomes. The scan reads each logical index separately, and "skips" index blocks that do not meet the filter condition on the non-leading column.	
The customers	
table contains a column cust_gender	
whose values are either M	
or F	
. You create a composite index on the columns (cust_gender	
, cust_email	
) as follows:	
Conceptually, a portion of the index might look as in Example 6-8, with the gender value of F	
or M	
as the leading edge of the index.	
Example 6-8 Composite Index Entries	
You run the following query for a customer in the sh.customers	
table:	
The database can use a skip scan of the customers_gender_email	
index even though cust_gender	
is not specified in the WHERE	
clause. In Example 6-8, the leading column cust_gender	
has two possible values. The database logically splits the index into two. One subindex has the key F	
, with entries in the following form:	
The second subindex has the key M	
, with entries in the following form:	
When searching for the record for the customer whose email is Abbey@company.com	
, the database searches the subindex with the leading value F	
first, and then searches the subindex with the leading value M	
. Conceptually, the database processes the query as follows:	
The plan for the query is as follows:	
An index join scan is a hash join of multiple indexes that together return all columns requested by a query. The database does not need to access the table because all data is retrieved from the indexes.	
The optimizer considers an index join in the following circumstances:	
You can specify an index join with the INDEX_JOIN(
table_name	
)	
hint.	
An index join involves scanning multiple indexes, and then using a hash join on the rowids obtained from these scans to return the rows. Table access is always avoided. For example, the process for joining two indexes on a single table is as follows:	
The following statement queries the last name and email for employees whose last name begins with A	
, specifying an index join:	
Separate indexes exist on the (
last_name	
,first_name)	
and email	
columns. Part of the emp_name_ix	
index might look as follows:	
The first part of the emp_email_uk	
index might look as follows:	
Example 6-9 retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR	
function. The database retrieves all rowids in the emp_email_uk	
index, and then retrieves rowids in emp_name_ix	
for last names that begin with A	
. The database uses a hash join to search both sets of rowids for matches. For example, rowid AAAVgdAALAAAABSABD	
occurs in both sets of rowids, so the database probes the employees	
table for the record corresponding to this rowid.	
Example 6-9 Index Join Scan	
This section explains how bitmap indexes, and describes some of the more common bitmap index access paths:	
In a conventional B-tree index, one entry points to a single row. In a bitmap index, the indexed data combined with the rowid range is the key. The database stores at least one bitmap for each index key. Each value in the bitmap, which is a series of 1	
and 0	
values, points to a row within a rowid range. Thus, in a bitmap index, one entry points to multiple rows.	
Table 6-2 shows the differences among types of index entries.	
Table 6-2 Index Entries for B-Trees and Bitmaps	
Index Entry	Key
---	---
Unique B-tree	Indexed data only
Nonunique B-tree	Indexed data combined with rowid
Bitmap	Indexed data combined with rowid range
The database stores a bitmap index in a B-tree structure (see "Bitmap Storage"). The database can search the B-tree quickly on the first part of the key, which is the set of attributes on which the index is defined, and then obtain the corresponding rowid range and bitmap.	
See Also:	
Bitmap indexes are suitable for low cardinality data that is infrequently modified. Data has low cardinality when the number of distinct values in a column is low in relation to the total number of rows.	
Through compression techniques, these indexes can generate many rowids with minimal I/O. Bitmap indexes provide especially useful access paths in queries that contain the following:	
WHERE	
clause Before the table itself is accessed, the database filters out rows that satisfy some, but not all, conditions.	
AND	
and OR	
operations on low cardinality columns Combining bitmap indexes on low cardinality columns makes these operations more efficient. The database can combine bitmaps from bitmap indexes very quickly. For example, if bitmap indexes exist on the cust_gender	
and cust_marital_status	
columns of customers	
, then these indexes can enormously improve the performance of the following query:	
COUNT	
function The database can scan the index without needing to scan the table.	
Unlike B-tree indexes, bitmap indexes can contain nulls. Queries that count the number of nulls in a column can use the index without needing to scan the table.	
For a particular value in a bitmap, the value is 1	
if the row values match the bitmap condition, and 0	
if it does not. Based on these values, the database uses an internal algorithm to map bitmaps onto rowids.	
The bitmap entry contains the indexed value, the rowid range (start and end rowids), and a bitmap. Each 0	
or 1	
value in the bitmap is an offset into the rowid range, and maps to a potential row in the table, even if the row does not exist. Because the number of possible rows in a block is predetermined, the database can use the range endpoints to determine the rowid of an arbitrary row in the range.	
Note: The Hakan factor is an optimization used by the bitmap index algorithms to limit the number of rows that Oracle Database assumes can be stored in a single block. By artificially limiting the number of rows, the database reduces the size of the bitmaps.	
Table 6-3 shows part of a sample bitmap for the sh.customers.cust_marital_status	
column, which is nullable. The actual index has 12 distinct values. Only 3 are shown in the sample: null, married	
, and single	
.	
Table 6-3 Bitmap Index Entries	
Column Value	Start Rowid in Range
---	---
0	0
1	0
0	1
1	0
As shown in Table 6-3, bitmap indexes can include keys that consist entirely of null values, unlike B-tree indexes. In Table 6-3, the null has a value of 1	
for the 6th row in the range, which means that the cust_marital_status	
value is null for the 6th row in the range. Indexing nulls can be useful for some SQL statements, such as queries with the aggregate function COUNT	
.	
A bitmap join index is a bitmap index for the join of two or more tables. The optimizer can use a bitmap join index to reduce or eliminate the volume of data that must be joined during plan execution. Bitmap join indexes can be much more efficient in storage than materialized join views.	
The following example creates a bitmap index on the sh.sales	
and sh.customers	
tables:	
The FROM	
and WHERE	
clause in the preceding CREATE	
statement represent the join condition between the tables. The customers.cust_city	
column is the index key.	
Each key value in the index represents a possible city in the customers	
table. Conceptually, key values for the index might look as follows, with one bitmap associated with each key value:	
Each bit in a bitmap corresponds to one row in the sales	
table. In the Smithville	
key, the value 1	
means that the first row in the sales	
table corresponds to a product sold to a Smithville customer, whereas the value 0	
means that the second row corresponds to a product not sold to a Smithville customer.	
Consider the following query of the number of separate sales to Smithville customers:	
The following plan shows that the database reads the Smithville	
bitmap to derive the number of Smithville sales (Step 4), thereby avoiding the necessity of joining customers	
and sales	
to obtain the results.	
A bitmap index resides in a B-tree structure, using branch blocks and leaf blocks just as in a B-tree. For example, if the customers.cust_marital_status	
column has 12 distinct values, then one branch block might point to the keys married	
,	
rowid-range	
and single	
,	
rowid-range	
, another branch block might point to the widowed,	
rowid-range	
key, and so on. Alternatively, a single branch block could point to a leaf block containing all 12 distinct keys.	
Each indexed column value may have one or more bitmap pieces, each with its own rowid range occupying a contiguous set of rows in one or more extents. The database can use a bitmap piece to break up an index entry that is large relative to the size of a block. For example, the database could break a single index entry into three pieces, with the first two pieces in separate blocks in the same extent, and the last piece in a separate block in a different extent.	
A bitmap conversion translates between an entry in the bitmap and a row in a table. The conversion can go from entry to row (TO ROWID	
), or from row to entry (FROM ROWID	
).	
The optimizer uses a conversion whenever it retrieves a row from a table using a bitmap index entry.	
Table 6-3 represents the bitmap conceptually as a table with customers	
row numbers as columns and cust_marital_status	
values as rows. Each field in Table 6-3 has the value 1	
or 0	
, and represents a column value in a row. Conceptually, the bitmap conversion uses an internal algorithm that says, "Field F in the bitmap corresponds to the Nth row of the Mth block of the table," or "The Nth row of the Mth block in the table corresponds to field F in the bitmap."	
A query of the sh.customers	
table selects the names of all customers born before 1918:	
The following plan shows that the database uses a range scan to find all key values less than 1918	
(Step 3), converts the 1	
values in the bitmap to rowids (Step 2), and then uses the rowids to obtain the rows from the customers	
table (Step 1):	
This type of access path uses a bitmap index to look up a single key value.	
The optimizer considers this access path when the predicate contains an equality operator.	
The query scans a single bitmap for positions containing a 1	
value. The database converts the 1	
values into rowids, and then uses the rowids to find the rows.	
A query of the sh.customers	
table selects all widowed customers:	
The following plan shows that the database reads the entry with the Widowed	
key in the customers	
bitmap index (Step 3), converts the 1	
values in the bitmap to rowids (Step 2), and then uses the rowids to obtain the rows from the customers	
table (Step 1):	
This type of access path uses a bitmap index to look up a range of values.	
The optimizer considers this access path when the predicate selects a range of values (see "Index Range Scans").	
This scan works similarly to a B-tree range scan (see "Index Range Scans").	
A query of the sh.customers	
table selects the names of customers born before 1918:	
The following plan shows that the database obtains all bitmaps for cust_year_of_birth	
keys lower than 1918	
(Step 3), converts the bitmaps to rowids (Step 2), and then fetches the rows (Step 1):	
This access path merges multiple bitmaps together, and returns a single bitmap as a result.	
The optimizer typically uses a bitmap merge to combine bitmaps generated from an index range scan.	
A merge uses an OR	
operation between two bitmaps. The resulting bitmap selects all rows from the first bitmap, plus all rows from every subsequent bitmap.	
The following example shows sample bitmaps for three customers.cust_year_of_birth	
keys: 1917	
, 1916	
, and 1915	
. If any position in any bitmap has a 1	
, then the merged bitmap has a 1	
in the same position. Otherwise, the merged bitmap has a 0	
.	
A query of the sh.customers	
table selects the names of female customers born before 1918:	
The following plan shows that the database obtains all bitmaps for cust_year_of_birth	
keys lower than 1918	
(Step 6), and then merges these bitmaps to create a single bitmap (Step 5), obtains a single bitmap for the cust_gender	
key of F (Step 4), and then performs an AND	
operation on these two bitmaps to generate a single bitmap that contains 1	
values for the desired rows (Step 3):	
Oracle Database Concepts explains table clusters in depth. This section briefly discusses access paths for table clusters.	
An index cluster is a table cluster that uses an index to locate data. The cluster index is a B-tree index on the cluster key. A cluster scan retrieves all rows that have the same cluster key value from a table stored in an indexed cluster.	
The database considers a cluster scan when a query accesses a table in an indexed cluster.	
In an indexed cluster, the database stores all rows with the same cluster key value in the same data block. For example, if the hr.employees2	
and hr.departments2	
tables are clustered in emp_dept_cluster	
, and if the cluster key is department_id	
, then the database stores all employees in department 10	
in the same block, all employees in department 20	
in the same block, and so on.	
The B-tree cluster index associates the cluster key value with the database block address (DBA) of the block containing the data. For example, the index entry for key 30	
shows the address of the block that contains rows for employees in department 30	
:	
When a user requests rows in the cluster, the database scans the index to obtain the DBAs of the blocks containing the rows. Oracle Database then locates the rows based on these DBAs.	
As user hr	
, you create a table cluster, cluster index, and tables in the cluster as follows:	
You query the employees in department 30	
as follows:	
To perform the scan, Oracle Database first obtains the rowid of the row describing department 30 by scanning the cluster index (Step 2). Oracle Database then locates the rows in employees	
using this rowid (Step 1).	
A hash cluster is like an indexed cluster, except the index key is replaced with a hash function. No separate cluster index exists. In a hash cluster, the data is the index. The database uses a hash scan to locate rows in a hash cluster based on a hash value.	
The database considers a hash scan when a query accesses a table in a hash cluster.	
In a hash cluster, all rows with the same hash value are stored in the same data block. To perform a hash scan, Oracle Database first obtains the hash value by applying a hash function to a cluster key value specified by the statement. Oracle Database then scans the data blocks containing rows with that hash value.	
You create a hash cluster and tables in the cluster as follows:	
You query the employees in department 30	
as follows:	
To perform a hash scan, Oracle Database first obtains the hash value by applying a hash function to the key value 30	
, and then uses this hash value to scan the data blocks and rerieve the rows (Step 1).	
This chapter contains the following topics:	
A join is a statement that retrieves data from multiple tables. A join is characterized by multiple tables in the FROM	
clause. The existence of a join condition in the WHERE	
clause (or in the FROM	
clause in ANSI syntax) defines the relationship between the tables. In a join, one row set is called inner, and the other is called outer.	
To choose an execution plan for a join statement, the optimizer must make the following interrelated decisions:	
As for simple statements, the optimizer must choose an access path to retrieve data from each table in the join statement.	
To join each pair of row sources, Oracle Database must perform a join operation. The possible join methods are nested loop, sort merge, and hash joins. A Cartesian join requires one of the preceding join methods.	
To execute a statement that joins more than two tables, Oracle Database joins two of the tables and then joins the resulting row source to the next table. This process continues until all tables are joined into the result.	
The query optimizer considers the following when choosing an execution plan:	
The optimizer recognizes such situations based on UNIQUE	
and PRIMARY	
KEY	
constraints on the tables. If such a situation exists, then the optimizer places these tables first in the join order. The optimizer then optimizes the join of the remaining set of tables.	
The optimizer does not consider join orders that violate this rule. Similarly, when a subquery has been converted into an antijoin or semijoin, the tables from the subquery must come after those tables in the outer query block to which they were connected or correlated. However, hash antijoins and semijoins are able to override this ordering condition in certain circumstances.	
The optimizer generates a set of execution plans, according to possible join orders, join methods, and available access paths. The optimizer then estimates the cost of each plan and chooses the one with the lowest cost. The optimizer estimates costs in the following ways:	
The optimizer also considers other factors when determining the cost of each operation. For example:	
If the database can read many sequential blocks from disk in a single I/O, then an index on the inner table for the nested loops join is less likely to improve performance over a full table scan. The multiblock read count is specified by the initialization parameter DB_FILE_MULTIBLOCK_READ_COUNT	
.	
You can use the LEADING	
hint to override the optimizer's choice of join orders, as in the following example:	
The database ignores the LEADING	
hint when the tables specified cannot be joined first in the order specified because of dependencies in the join graph.	
See Also:	
Nested loops joins are useful when the following conditions are true:	
It is important that the inner table is driven from (dependent on) the outer table. If the inner table's access path is independent of the outer table, then the same rows are retrieved for every iteration of the outer loop, degrading performance considerably. In such cases, hash joins of the two independent row sources perform better.	
A nested loops join involves the following steps:	
Oracle Database 11g introduced a new implementation for nested loops joins. Consequently, execution plans that include nested loops might appear different from releases before Oracle Database 11g. For example, the number of NESTED	
LOOPS	
join row sources might be different. Both the new implementation and the original implementation for nested loops joins are possible in the current release.	
Consider the following query:	
Before Oracle Database 11g, the execution plan for this query might appear similar to the following:	
In this example, the outer side of the join consists of a scan of the hr.departments	
table that returns the rows that match the condition department_name	
IN	
('Marketing', 'Sales')	
. The inner loop retrieves the employees in the hr.employees	
table that are associated with those departments.	
The new implementation for nested loops joins reduces overall latency for physical I/O. When an index or a table block is not in the buffer cache and is needed to process the join, a physical I/O is required. The current release of Oracle Database can batch multiple physical I/O requests and process them using a vector I/O instead of processing them one at a time.	
As part of the new implementation for nested loops joins, two NESTED	
LOOPS	
join row sources might appear in the execution plan where only one would have appeared in prior releases. In such cases, Oracle Database allocates one NESTED	
LOOPS	
join row source to join the values from the table on the outer side of the join with the index on the inner side. A second row source is allocated to join the result of the first join, which includes the rowids stored in the index, with the table on the inner side of the join.	
Consider the query in "Original Implementation for Nested Loops Joins". In the current release, with the new implementation for nested loops joins, the execution plan for this query might appear similar to the following:	
In this case, rows from the hr.departments	
table form the outer side of the first join. The inner side of the first join is the index emp_department_ix	
. The results of the first join form the outer side of the second join, which has hr.employees	
as its inner side.	
In some cases, a second join row source is not allocated, and the execution plan looks the same as it did before Oracle Database 11g. The following list describes such cases:	
ORDER	
BY	
sort, Oracle Database might use the original implementation for nested loops joins. OPTIMIZER_FEATURES_ENABLE	
initialization parameter is set to a release before Oracle Database 11g. In this case, Oracle Database uses the original implementation for nested loops joins. The optimizer uses nested loops joins when joining small number of rows, with a good driving condition between the two tables. You drive from the outer loop to the inner loop, so the order of tables in the execution plan is important.	
The outer loop is the driving row source. It produces a set of rows for driving the join condition. The row source can be a table accessed using an index scan or a full table scan. Also, the rows can be produced from any other operation. For example, the output from a nested loops join can serve as a row source for another nested loops join.	
The inner loop is iterated for every row returned from the outer loop, ideally by an index scan. If the access path for the inner loop is not dependent on the outer loop, then you can end up with a Cartesian product; for every iteration of the outer loop, the inner loop produces the same set of rows. Therefore, you should use other join methods when two independent row sources are joined together.	
For some SQL examples, the data is small enough for the optimizer to prefer full table scans and use hash joins. However, you can add a USE_NL	
to instruct the optimizer to change the join method to nested loops. This hint instructs the optimizer to join each specified table to another row source with a nested loops join, using the specified table as the inner table.	
For example, the optimizer chooses a hash join for the following query:	
The plan looks as follows:	
To force a nested loops join using departments	
as the inner table, add the USE_NL	
hint as in the following query:	
The plan looks as follows:	
The related hint USE_NL_WITH_INDEX	
hint instructs the optimizer to join the specified table to another row source using a nested loops join. The join uses the following:	
Alternatively, if no index is specified, then the nested loops join uses an index with at least one join predicate as the index key.	
The outer loop of a nested loop can be a nested loop. You can nest two or more outer loops to join as many tables as needed. Each loop is a data access method, as follows:	
The database uses a hash join to join larger data sets. The optimizer uses the smaller of two tables or data sources to build a hash table on the join key in memory. It then scans the larger table, probing the hash table to find the joined rows.This method is best when the smaller table fits in available memory. The cost is then limited to a single read pass over the data for the two tables.	
The optimizer uses a hash join to join two tables if they are joined using an equijoin and if either of the following conditions are true:	
In Example 7-1, the database uses the table orders	
to build the hash table. The database scans the larger order_items	
later.	
Example 7-1 Hash Joins	
Apply the USE_HASH	
hint to instruct the optimizer to use a hash join when joining two tables together. See "Guidelines for Join Order Hints".	
Sort merge joins can join rows from two independent sources. In general, hash joins perform better than sort merge joins. However, sort merge joins can perform better than hash joins if both of the following conditions exist:	
However, if a sort merge join involves choosing a slower access method (an index scan as opposed to a full table scan), then the benefit of using a sort merge might be lost.	
Sort merge joins are useful when the join condition between two tables is an inequality condition such as <	
, <=	
, >	
, or >=	
. Sort merge joins perform better than nested loops joins for large data sets. Hash joins require an equality condition.	
In a merge join, there is no concept of a driving table. The join consists of two steps:	
Both the inputs are sorted on the join key.	
The sorted lists are merged.	
If the input is sorted by the join column, then a sort join operation is not performed for that row source. However, a sort merge join always creates a positionable sort buffer for the right side of the join so that it can seek back to the last match in the case where duplicate join key values come out of the left side of the join.	
The optimizer can choose a sort merge join over a hash join for joining large amounts of data if any of the following conditions are true:	
To instruct the optimizer to use a sort merge join, apply the USE_MERGE	
hint. You might also need to give hints to force an access path.	
There are situations where it makes sense to override the optimizer with the USE_MERGE	
hint. For example, the optimizer can choose a full scan on a table and avoid a sort operation in a query. However, there is an increased cost because a large table is accessed through an index and single block reads, as opposed to faster access through a full table scan.	
The database uses a Cartesian join when one or more of the tables does not have any join conditions to any other tables in the statement. The optimizer joins every row from one data source with every row from the other data source, creating the Cartesian product of the two sets.	
The optimizer uses Cartesian joins when it is asked to join two tables with no join conditions. In some cases, a common filter condition between the two tables could be picked up by the optimizer as a possible join condition. In other cases, the optimizer may decide to generate a Cartesian product of two very small tables that are both joined to the same large table.	
An outer join extends the result of a simple join. An outer join returns all rows that satisfy the join condition and also returns some or all of those rows from one table for which no rows from the other satisfy the join condition.	
This section contains the following topics:	
The database uses this operation to loop through an outer join between two tables. The outer join returns the outer (preserved) table rows, even when no corresponding rows are in the inner (optional) table.	
In a regular outer join, the optimizer chooses the order of tables (driving and driven) based on the cost. However, in a nested loop outer join, the join condition determines the order of tables. The database uses the outer table, with rows that are being preserved, to drive to the inner table.	
The optimizer uses nested loops joins to process an outer join in the following circumstances:	
For an example of a nested loop outer join, you can add the USE_NL	
hint to Example 7-2 to instruct the optimizer to use a nested loop. For example:	
The optimizer uses hash joins for processing an outer join if the data volume is high enough to make the hash join method efficient or if it is not possible to drive from the outer table to inner table.	
The order of tables is determined by the cost. The outer table, including preserved rows, may be used to build the hash table, or it may be used to probe the hash table.	
Example 7-2 shows a typical hash join outer join query, and its execution plan. In this example, all the customers with credit limits greater than 1000 are queried. An outer join is needed so that you do not miss the customers who do not have any orders.	
Example 7-2 Hash Join Outer Joins	
The query looks for customers which satisfy various conditions. An outer join returns NULL	
for the inner table columns along with the outer (preserved) table rows when it does not find any corresponding rows in the inner table. This operation finds all the customers	
rows that do not have any orders	
rows.	
In this case, the outer join condition is the following:	
The components of this condition represent the following:	
customers	
. orders	
. customers	
rows, including those rows without a corresponding row in orders	
. You could use a NOT	
EXISTS	
subquery to return the rows. However, because you are querying all the rows in the table, the hash join performs better (unless the NOT	
EXISTS	
subquery is not nested).	
In Example 7-3, the outer join is to a multitable view. The optimizer cannot drive into the view like in a normal join or push the predicates, so it builds the entire row set of the view.	
Example 7-3 Outer Join to a Multitable View	
The view definition is as follows:	
When an outer join cannot drive from the outer (preserved) table to the inner (optional) table, it cannot use a hash join or nested loops joins. Then it uses the sort merge outer join for performing the join operation.	
The optimizer uses sort merge for an outer join in the following cases:	
A full outer join acts like a combination of the left and right outer joins. In addition to the inner join, rows from both tables that have not been returned in the result of the inner join are preserved and extended with nulls. In other words, full outer joins join tables together, yet show rows with no corresponding rows in the joined tables.	
The query in Example 7-4 retrieves all departments and all employees in each department, but also includes:	
Example 7-4 Full Outer Join	
The statement produces the following output:	
Starting with Oracle Database 11g, Oracle Database automatically uses a native execution method based on a hash join for executing full outer joins whenever possible. When the database uses the new method to execute a full outer join, the execution plan for the query contains HASH	
JOIN	
FULL	
OUTER	
. Example 7-5 shows the execution plan for the query in Example 7-4.	
Example 7-5 Execution Plan for a Full Outer Join	
Notice that HASH	
JOIN	
FULL	
OUTER	
is included in the plan. Therefore, the query uses the hash full outer join execution method. Typically, when the full outer join condition between two tables is an equijoin, the hash full outer join execution method is possible, and Oracle Database uses it automatically.	
To instruct the optimizer to consider using the hash full outer join execution method, apply the NATIVE_FULL_OUTER_JOIN	
hint. To instruct the optimizer not to consider using the hash full outer join execution method, apply the NO_NATIVE_FULL_OUTER_JOIN	
hint. The NO_NATIVE_FULL_OUTER_JOIN	
hint instructs the optimizer to exclude the native execution method when joining each specified table. Instead, the full outer join is executed as a union of left outer join and an antijoin.	
In Oracle Database 12c, multiple tables may exist on the left of an outer-joined table. This enhancement enables Oracle Database to merge a view that contains multiple tables and appears on the left of outer join.	
In releases before Oracle Database 12c, a query such as the following was invalid, and would trigger an ORA-01417	
error message:	
Starting in Oracle Database 12c, the preceding query is valid.	
This chapter contains the following topics:	
The combination of the steps that Oracle Database uses to execute a statement is an execution plan. Oracle Database may need to perform many steps. Each step either retrieves rows of data physically from the database or prepares them for the user issuing the statement. An execution plan includes an access path for each table that the statement accesses and an ordering of the tables (the join order) with the appropriate join method.	
The EXPLAIN	
PLAN	
statement displays execution plans that the optimizer chooses for SELECT	
, UPDATE	
, INSERT	
, and DELETE	
statements. This section contains the following topics:	
A statement execution plan is the sequence of operations that the database performs to run the statement. The row source tree is the core of the execution plan (see "SQL Row Source Generation"). The tree shows the following information:	
In addition to the row source tree, the plan table contains information about the following:	
The EXPLAIN	
PLAN	
results enables you to determine whether the optimizer selects a particular execution plan, such as a nested loops join. The results also help you to understand the optimizer decisions, such as why the optimizer chose a nested loops join instead of a hash join, and enables you to understand the performance of a query.	
Execution plans can and do change as the underlying optimizer inputs change. EXPLAIN	
PLAN	
output shows how the database would run the SQL statement when the statement was explained. This plan can differ from the actual execution plan a SQL statement uses because of differences in the execution environment and explain plan environment.	
Note: To avoid possible SQL performance regression that may result from execution plan changes, consider using SQL plan management.	
Execution plans can differ because of the following:	
Schemas can differ for the following reasons:	
Even if the schemas are the same, the optimizer can choose different execution plans when the costs are different. Some factors that affect the costs include the following:	
Examining an explain plan enables you to look for throw-away in cases such as the following:	
In the plan shown in Example 8-1, the last step is a very unselective range scan that is executed 76563 times, accesses 11432983 rows, throws away 99% of them, and retains 76563 rows. Why access 11432983 rows to realize that only 76563 rows are needed?	
Example 8-1 Looking for Throw-Away in an Explain Plan	
The execution plan operation alone cannot differentiate between well-tuned statements and those that perform poorly. For example, an EXPLAIN	
PLAN	
output that shows that a statement uses an index does not necessarily mean that the statement runs efficiently. Sometimes indexes are extremely inefficient. In this case, you should examine the following:	
It is best to use EXPLAIN	
PLAN	
to determine an access plan, and then later prove that it is the optimal plan through testing. When evaluating a plan, examine the statement's actual resource consumption.	
In addition to running the EXPLAIN	
PLAN	
command and displaying the plan, you can use the V$SQL_PLAN	
views to display the execution plan of a SQL statement:	
After the statement has executed, you can display the plan by querying the V$SQL_PLAN	
view. V$SQL_PLAN	
contains the execution plan for every statement stored in the shared SQL area. Its definition is similar to the PLAN_TABLE	
. See "PLAN_TABLE Columns".	
The advantage of V$SQL_PLAN	
over EXPLAIN	
PLAN	
is that you do not need to know the compilation environment that was used to execute a particular statement. For EXPLAIN	
PLAN	
, you would need to set up an identical environment to get the same plan when executing the statement.	
The V$SQL_PLAN_STATISTICS	
view provides the actual execution statistics for every operation in the plan, such as the number of output rows and elapsed time. All statistics, except the number of output rows, are cumulative. For example, the statistics for a join operation also includes the statistics for its two inputs. The statistics in V$SQL_PLAN_STATISTICS	
are available for cursors that have been compiled with the STATISTICS_LEVEL	
initialization parameter set to ALL	
.	
The V$SQL_PLAN_STATISTICS_ALL	
view enables side by side comparisons of the estimates that the optimizer provides for the number of rows and elapsed time. This view combines both V$SQL_PLAN	
and V$SQL_PLAN_STATISTICS	
information for every cursor.	
See Also:	
Oracle Database does not support EXPLAIN	
PLAN	
for statements performing implicit type conversion of date bind variables. With bind variables in general, the EXPLAIN	
PLAN	
output might not represent the real execution plan.	
From the text of a SQL statement, TKPROF	
cannot determine the types of the bind variables. It assumes that the type is CHARACTER	
, and gives an error message otherwise. You can avoid this limitation by putting appropriate type conversions in the SQL statement.	
The PLAN_TABLE	
is automatically created as a public synonym to a global temporary table. This temporary table holds the output of EXPLAIN	
PLAN	
statements for all users. PLAN_TABLE	
is the default sample output table into which the EXPLAIN	
PLAN	
statement inserts rows describing execution plans. See "PLAN_TABLE Columns" for a description of the columns in the table.	
While a PLAN_TABLE	
table is automatically set up for each user, you can use the SQL script catplan.sql	
to manually create the global temporary table and the PLAN_TABLE	
synonym. The name and location of this script depends on your operating system. On UNIX and Linux, the script is located in the $ORACLE_HOME/rdbms/admin	
directory.	
For example, start a SQL*Plus session, connect with SYSDBA	
privileges, and run the script as follows:	
Oracle recommends that you drop and rebuild your local PLAN_TABLE	
table after upgrading the version of the database because the columns might change. This can cause scripts to fail or cause TKPROF	
to fail, if you are specifying the table.	
If you do not want to use the name PLAN_TABLE	
, create a new synonym after running the catplan.sql	
script. For example:	
The EXPLAIN PLAN	
statement enables you to examine the execution plan that the optimizer chose for a SQL statement. When the statement is issued, the optimizer chooses an execution plan and then inserts data describing the plan into a database table. Issue the EXPLAIN PLAN	
statement and then query the output table.	
The basics of using the EXPLAIN PLAN	
statement are as follows:	
CATPLAN	
.SQL	
to create a sample output table called PLAN_TABLE	
in your schema. See "The PLAN_TABLE Output Table". EXPLAIN PLAN	
FOR	
clause before the SQL statement.	
After issuing the EXPLAIN PLAN	
statement, use a script or package provided by Oracle Database to display the most recent plan table output. See "Displaying PLAN_TABLE Output".	
The execution order in EXPLAIN PLAN	
output begins with the line that is the furthest indented to the right. The next step is the parent of that line. If two lines are indented equally, then the top line is normally executed first. To explain a SQL statement, use the EXPLAIN	
PLAN	
FOR	
clause immediately before the statement. For example:	
This explains the plan into the PLAN_TABLE	
table. You can then select the execution plan from PLAN_TABLE	
. See "Displaying PLAN_TABLE Output".	
With multiple statements, you can specify a statement identifier and use that to identify your specific execution plan. Before using SET	
STATEMENT	
ID	
, remove any existing rows for that statement ID.	
In Example 8-2, st1	
is specified as the statement identifier:	
You can specify the INTO	
clause to specify a different table.	
Example 8-3 Using EXPLAIN PLAN with the INTO Clause	
You can specify a statement ID when using the INTO	
clause.	
After you have explained the plan, use the following SQL scripts or PL/SQL package provided by Oracle Database to display the most recent plan table output:	
UTLXPLS	
.SQL	
This script displays the plan table output for serial processing. Example 8-5, "EXPLAIN PLAN Output" is an example of the plan table output when using the UTLXPLS	
.SQL	
script.	
UTLXPLP	
.SQL	
This script displays the plan table output including parallel execution columns.	
DBMS_XPLAN.DISPLAY	
table function This function accepts options for displaying the plan table output. You can specify:	
PLAN_TABLE	
EXPLAIN	
PLAN	
BASIC	
, SERIAL	
, TYPICAL	
, and ALL	
Examples of using DBMS_XPLAN	
to display PLAN_TABLE	
output are:	
See Also: Oracle Database PL/SQL Packages and Types Reference for more information about theDBMS_XPLAN package	
Example 8-4 uses EXPLAIN PLAN	
to examine a SQL statement that selects the employee_id	
, job_title	
, salary	
, and department_name	
for the employees whose IDs are less than 103.	
Example 8-4 Using EXPLAIN PLAN	
The resulting output table in Example 8-5 shows the execution plan chosen by the optimizer to execute the SQL statement in the example:	
Example 8-5 EXPLAIN PLAN Output	
If you have specified a statement identifier, then you can write your own script to query the PLAN_TABLE	
. For example:	
STATEMENT_ID	
. CONNECT	
BY	
clause to walk the tree from parent to child, the join keys being STATEMENT_ID	
= PRIOR	
STATEMENT_ID	
and PARENT_ID	
= PRIOR	
ID	
. LEVEL	
(associated with CONNECT	
BY	
) to indent the children. The NULL	
in the Rows	
column indicates that the optimizer does not have any statistics on the table. Analyzing the table shows the following:	
You can also select the COST	
. This is useful for comparing execution plans or for understanding why the optimizer chooses one execution plan over another.	
Note: These simplified examples are not valid for recursive SQL.	
This chapter contains the following topics:	
This section uses EXPLAIN	
PLAN	
examples to illustrate execution plans. The statement in Example 9-1 displays the execution plans.	
Example 9-1 Statement to display the EXPLAIN PLAN	
Examples of the output from this statement are shown in Example 9-7 and Example 9-2.	
Example 9-2 EXPLAIN PLAN for Statement ID ex_plan1	
This plan shows execution of a SELECT	
statement. The table employees	
is accessed using a full table scan.	
employees	
is accessed, and the WHERE	
clause criteria is evaluated for every row. SELECT	
statement returns the rows meeting the WHERE	
clause criteria. Example 9-3 EXPLAIN PLAN for Statement ID ex_plan2	
This plan shows execution of a SELECT	
statement.	
EMP_NAME_IX	
to evaluate the WHERE	
clause criteria. SELECT	
statement returns rows satisfying the WHERE	
clause conditions. This section contains the following topics:	
The adaptive optimizer is a feature of the optimizer that enables it to adapt plans based on run-time statistics (see "Adaptive Plans"). All adaptive mechanisms can execute a final plan for a statement that differs from the default plan.	
An adaptive plan chooses among subplans during the current statement execution. In contrast, automatic reoptimization changes a plan only on executions that occur after the current statement execution.	
You can determine whether the database used adaptive query optimization for a SQL statement based on the comments in the Notes	
section of plan. The comments indicate whether row sources are dynamic, or whether automatic reoptimization adapted a plan (see Table 9-8).	
Assumptions	
This tutorial assumes the following:	
STATISTICS_LEVEL	
initialization parameter is set to ALL	
(see Oracle Database Reference to learn about the STATISTICS_LEVEL	
initialization parameter). oe	
, you want to issue the following separate queries: DBMS_XPLAN.DISPLAY_PLAN	
to see the default plan, that is, the plan that the optimizer chose before applying its adaptive mechanism. DBMS_XPLAN.DISPLAY_CURSOR	
to see the final plan and adaptive plan. SYS	
has granted oe	
the following privileges: GRANT SELECT ON V_$SESSION TO oe	
GRANT SELECT ON V_$SQL TO oe	
GRANT SELECT ON V_$SQL_PLAN TO oe	
GRANT SELECT ON V_$SQL_PLAN_STATISTICS_ALL TO oe	
To see the results of adaptive optimization:	
oe	
. Query orders	
.	
For example, use the following statement:	
View the plan in the cursor.	
For example, run the following commands:	
Example 9-4 shows sample output, which has been reformatted to fit on the page. In this plan, the optimizer chooses a nested loops join. The original optimizer estimates are shown in the E-Rows	
column, whereas the actual statistics gathered during execution are shown in the A-Rows	
column. In the MERGE JOIN	
operation, the difference between the estimated and actual number of rows is significant.	
Example 9-4 DBMS_XPLAN.DISPLAY_CURSOR Output	
orders	
that you ran in Step 2. SELECT	
statement that you ran in Step 3. Example 9-5 shows that the optimizer has chosen a different plan, using a hash join. The Note section shows that the optimizer used statistics feedback to adjust its cost estimates for the second execution of the query, thus illustrating automatic reoptimization.	
Example 9-5 DBMS_XPLAN.DISPLAY_CURSOR Output	
V$SQL	
to verify the performance improvement. The following query shows the performance of the two statements (sample output included).	
The second statement executed, which is child number 1	
, used statistics feedback. CPU time, elapsed time, and buffer gets are all significantly lower.	
order_items	
. For example, use the following statement:	
For example, run the following statement:	
Sample output appears below:	
In this plan, the optimizer chooses a nested loops join.	
For example, use the following statement:	
Sample output appears below:	
Based on statistics collected at run time, the optimizer chose a hash join rather than the nested loops join. The switch illustrates the adaptive plan feature.	
Tuning a parallel query begins much like a non-parallel query tuning exercise by choosing the driving table. However, the rules governing the choice are different. In the non-parallel case, the best driving table is typically the one that produces fewest number of rows after limiting conditions are applied. The small number of rows are joined to larger tables using non-unique indexes.	
For example, consider a table hierarchy consisting of customer	
, account	
, and transaction	
.	
customer	
is the smallest table while transaction	
is the largest. A typical OLTP query might retrieve transaction information about a specific customer account. The query drives from the customer	
table. The goal in this case is to minimize logical I/O, which typically minimizes other critical resources including physical I/O and CPU time.	
For parallel queries, the driving table is usually the largest table because the database can use parallel query. It would not be efficient to use parallel query in this case because only a few rows from each table are ultimately accessed. However, what if it were necessary to identify all customers who had transactions of a certain type last month? It would be more efficient to drive from the transaction	
table because no limiting conditions exist on the customer	
table. The database would join rows from the transaction	
table to the account	
table, and finally to the customer	
table. In this case, the indexes used on the account	
and customer	
table are probably highly selective primary key or unique indexes rather than non-unique indexes used in the first query. Because the transaction	
table is large and the column is not selective, it would be beneficial to use parallel query driving from the transaction	
table.	
Parallel operations include the following:	
PARALLEL_TO_PARALLEL	
PARALLEL_TO_SERIAL	
A PARALLEL_TO_SERIAL	
operation is always the step that occurs when the query coordinator consumes rows from a parallel operation. Another type of operation that does not occur in this query is a SERIAL	
operation. If these types of operations occur, then consider making them parallel operations to improve performance because they too are potential bottlenecks.	
PARALLEL_FROM_SERIAL	
PARALLEL_TO_PARALLEL	
If the workloads in each step are relatively equivalent, then the PARALLEL_TO_PARALLEL	
operations generally produce the best performance.	
PARALLEL_COMBINED_WITH_CHILD	
PARALLEL_COMBINED_WITH_PARENT	
A PARALLEL_COMBINED_WITH_PARENT	
operation occurs when the database performs the step simultaneously with the parent step.	
If a parallel step produces many rows, then the QC may not be able to consume the rows as fast as they are produced. Little can be done to improve this situation.	
When using EXPLAIN	
PLAN	
with parallel queries, the database compiles and executes one parallel plan. This plan is derived from the serial plan by allocating row sources specific to the parallel support in the QC plan. The table queue row sources (PX	
Send	
and PX	
Receive	
), the granule iterator, and buffer sorts, required by the two parallel execution server set PQ model, are directly inserted into the parallel plan. This plan is the same plan for all parallel execution servers when executed in parallel or for the QC when executed serially.	
Example 9-6 is a simple query for illustrating an EXPLAIN	
PLAN	
for a parallel query.	
Example 9-6 Parallel Query Explain Plan	
One set of parallel execution servers scans EMP2	
in parallel, while the second set performs the aggregation for the GROUP	
BY	
operation. The PX	
BLOCK	
ITERATOR	
row source represents the splitting up of the table EMP2	
into pieces to divide the scan workload between the parallel execution servers. The PX	
SEND	
and PX	
RECEIVE	
row sources represent the pipe that connects the two sets of parallel execution servers as rows flow up from the parallel scan, get repartitioned through the HASH	
table queue, and then read by and aggregated on the top set. The PX	
SEND	
QC	
row source represents the aggregated values being sent to the QC in random (RAND) order. The PX	
COORDINATOR	
row source represents the QC or Query Coordinator which controls and schedules the parallel plan appearing below it in the plan tree.	
Index row sources using bitmap indexes appear in the EXPLAIN	
PLAN	
output with the word BITMAP	
indicating the type of the index. Consider the sample query and plan in Example 9-7.	
Example 9-7 EXPLAIN PLAN with Bitmap Indexes	
In this example, the predicate c1	
=2	
yields a bitmap from which a subtraction can take place. From this bitmap, the bits in the bitmap for c2	
= 6	
are subtracted. Also, the bits in the bitmap for c2	
IS	
NULL	
are subtracted, explaining why there are two MINUS	
row sources in the plan. The NULL	
subtraction is necessary for semantic correctness unless the column has a NOT	
NULL	
constraint. The TO	
ROWIDS	
option generates the rowids necessary for the table access.	
Note: Queries using bitmap join index indicate the bitmap join index access path. The operation for bitmap join index is the same as bitmap index.	
When your query contains the result_cache	
hint, the ResultCache	
operator is inserted into the execution plan.	
For example, consider the following query:	
To view the EXPLAIN PLAN	
for this query, use the command:	
The EXPLAIN PLAN	
output for this query should look similar to the following:	
In this EXPLAIN PLAN	
, the ResultCache	
operator is identified by its CacheId	
, which is b06ppfz9pxzstbttpbqyqnfbmy	
. You can now run a query on the V$RESULT_CACHE_OBJECTS	
view by using this CacheId	
.	
Use EXPLAIN	
PLAN	
to see how Oracle Database accesses partitioned objects for specific queries.	
Partitions accessed after pruning are shown in the PARTITION	
START	
and PARTITION	
STOP	
columns. The row source name for the range partition is PARTITION	
RANGE	
. For hash partitions, the row source name is PARTITION	
HASH	
.	
A join is implemented using partial partition-wise join if the DISTRIBUTION	
column of the plan table of one of the joined tables contains PARTITION	
(KEY	
). Partial partition-wise join is possible if one of the joined tables is partitioned on its join column and the table is parallelized.	
A join is implemented using full partition-wise join if the partition row source appears before the join row source in the EXPLAIN	
PLAN	
output. Full partition-wise joins are possible only if both joined tables are equi-partitioned on their respective join columns. Examples of execution plans for several types of partitioning follow.	
Consider the following table, emp_range	
, partitioned by range on hire_date	
to illustrate how pruning is displayed. Assume that the tables employees	
and departments	
from the Oracle Database sample schema exist.	
For the first example, consider the following statement:	
Oracle Database displays something similar to the following:	
The database creates a partition row source on top of the table access row source. It iterates over the set of partitions to be accessed. In this example, the partition iterator covers all partitions (option ALL	
), because a predicate was not used for pruning. The PARTITION_START	
and PARTITION	
_STOP	
columns of the PLAN_TABLE	
show access to all partitions from 1 to 5.	
For the next example, consider the following statement:	
In the previous example, the partition row source iterates from partition 4 to 5 because the database prunes the other partitions using a predicate on hire_date	
.	
Finally, consider the following statement:	
In the previous example, only partition 1 is accessed and known at compile time; thus, there is no need for a partition row source.	
Oracle Database displays the same information for hash partitioned objects, except the partition row source name is PARTITION	
HASH	
instead of PARTITION	
RANGE	
. Also, with hash partitioning, pruning is only possible using equality or IN	
-list predicates.	
To illustrate how Oracle Database displays pruning information for composite partitioned objects, consider the table emp_comp	
that is range partitioned on hiredate	
and subpartitioned by hash on deptno	
.	
For the first example, consider the following statement:	
This example shows the plan when Oracle Database accesses all subpartitions of all partitions of a composite object. The database uses two partition row sources for this purpose: a range partition row source to iterate over the partitions and a hash partition row source to iterate over the subpartitions of each accessed partition.	
In the following example, the range partition row source iterates from partition 1 to 5, because the database performs no pruning. Within each partition, the hash partition row source iterates over subpartitions 1 to 3 of the current partition. As a result, the table access row source accesses subpartitions 1 to 15. In other words, it accesses all subpartitions of the composite object.	
In the previous example, only the last partition, partition 5, is accessed. This partition is known at compile time, so the database does not need to show it in the plan. The hash partition row source shows accessing of all subpartitions within that partition; that is, subpartitions 1 to 3, which translates into subpartitions 13 to 15 of the emp_comp	
table.	
Now consider the following statement:	
In the previous example, the predicate deptno	
= 20 enables pruning on the hash dimension within each partition, so Oracle Database only needs to access a single subpartition. The number of that subpartition is known at compile time, so the hash partition row source is not needed.	
Finally, consider the following statement:	
The last two examples are the same, except that department_id	
= :dno	
replaces deptno	
= 20	
. In this last case, the subpartition number is unknown at compile time, and a hash partition row source is allocated. The option is SINGLE	
for that row source, because Oracle Database accesses only one subpartition within each partition. The PARTITION	
_START	
and PARTITION	
_STOP	
is set to KEY	
, which means that Oracle Database determines the number of subpartitions at run time.	
In the following example, emp_range_did	
is joined on the partitioning column department_id	
and is parallelized. The database can use a partial partition-wise join because the dept2	
table is not partitioned. Oracle Database dynamically partitions the dept2	
table before the join.	
Example 9-8 Partial Partition-Wise Join with Range Partition	
The execution plan shows that the table dept2	
is scanned serially and all rows with the same partitioning column value of emp_range_did	
(department_id	
) are sent through a PART	
(KEY	
), or partition key, table queue to the same parallel execution server doing the partial partition-wise join.	
In the following example, emp_comp	
is joined on the partitioning column and is parallelized, enabling use of a partial partition-wise join because dept2	
is not partitioned. The database dynamically partitions dept2	
before the join.	
Example 9-9 Partial Partition-Wise Join with Composite Partition	
The plan shows that the optimizer selects partial partition-wise join from one of two columns. The PX	
SEND	
node type is PARTITION	
(KEY	
) and the PQ Distrib	
column contains the text PART	
(KEY	
), or partition key. This implies that the table dept2	
is re-partitioned based on the join column department_id	
to be sent to the parallel execution servers executing the scan of EMP_COMP	
and the join.	
In both Example 9-8 and Example 9-9, the PQ_DISTRIBUTE	
hint explicitly forces a partial partition-wise join because the query optimizer could have chosen a different plan based on cost in this query.	
In the following example, emp_comp	
and dept_hash	
are joined on their hash partitioning columns, enabling use of a full partition-wise join. The PARTITION	
HASH	
row source appears on top of the join row source in the plan table output.	
The PX	
PARTITION	
HASH	
row source appears on top of the join row source in the plan table output while the PX	
PARTITION	
RANGE	
row source appears over the scan of emp_comp	
. Each parallel execution server performs the join of an entire hash partition of emp_comp	
with an entire partition of dept_hash	
.	
Example 9-10 Full Partition-Wise Join	
An INLIST	
ITERATOR	
operation appears in the EXPLAIN	
PLAN	
output if an index implements an IN	
-list predicate. For example:	
The EXPLAIN	
PLAN	
output appears as follows:	
The INLIST	
ITERATOR	
operation iterates over the next operation in the plan for each value in the IN	
-list predicate. The following sections describe the three possible types of IN	
-list columns for partitioned tables and indexes.	
If the IN	
-list column empno	
is an index column but not a partition column, then the plan is as follows (the IN	
-list operator appears before the table operation but after the partition operation):	
The KEY	
(INLIST	
) designation for the partition start and stop keys specifies that an IN	
-list predicate appears on the index start and stop keys.	
If empno	
is an indexed and a partition column, then the plan contains an INLIST	
ITERATOR	
operation before the partition operation:	
If empno	
is a partition column and no indexes exist, then no INLIST	
ITERATOR	
operation is allocated:	
If emp_empno	
is a bitmap index, then the plan is as follows:	
You can also use EXPLAIN	
PLAN	
to derive user-defined CPU and I/O costs for domain indexes. EXPLAIN	
PLAN	
displays these statistics in the OTHER	
column of PLAN_TABLE	
.	
For example, assume table emp	
has user-defined operator CONTAINS	
with a domain index emp_resume	
on the resume	
column, and the index type of emp_resume	
supports the operator CONTAINS	
. You explain the plan for the following query:	
The database could display the following plan:	
The PLAN_TABLE	
used by the EXPLAIN	
PLAN	
statement contains the columns listed in Table 9-1.	
Table 9-1 PLAN_TABLE Columns	
Column	Type
---	---
Value of the optional	
Unique identifier of a plan in the database.	
Date and time when the	
Any comment (of up to 80 bytes) you want to associate with each step of the explained plan. This column indicates whether the database used an outline or SQL profile for the query. If you need to add or change a remark on any row of the	
Name of the internal operation performed in this step. In the first row generated for a statement, the column contains one of the following values:	
See Table 9-3 for more information about values for this column.	
A variation on the operation described in the See Table 9-3 for more information about values for this column.	
Name of the database link used to reference the object (a table name or view name). For local queries using parallel execution, this column describes the order in which the database consumes output from operations.	
Name of the user who owns the schema containing the table or index.	
Unique alias of a table or view in a SQL statement. For indexes, it is the object alias of the underlying table.	
Number corresponding to the ordinal position of the object as it appears in the original statement. The numbering proceeds from left to right, outer to inner for the original statement text. View expansion results in unpredictable numbers.	
Modifier that provides descriptive information about the object; for example,	
The ID of the next execution step that operates on the output of the	
Depth of the operation in the row source tree that the plan represents. You can use the value to indent the rows in a plan table report.	
For the first row of output, this indicates the optimizer's estimated cost of executing the statement. For the other rows, it indicates the position relative to the other children of the same parent.	
Cost of the operation as estimated by the optimizer's query approach. Cost is not determined for table access operations. The value of this column does not have any particular unit of measurement; it is a weighted value used to compare costs of execution plans. The value of this column is a function of the	
Estimate by the query optimization approach of the number of rows that the operation accessed.	
Estimate by the query optimization approach of the number of bytes that the operation accessed.	
Describes the contents of the	
Start partition of a range of accessed partitions. It can take one of the following values: n indicates that the start partition has been identified by the SQL compiler, and its partition number is given by n.	
Stop partition of a range of accessed partitions. It can take one of the following values: n indicates that the stop partition has been identified by the SQL compiler, and its partition number is given by n.	
Step that has computed the pair of values of the	
Other information that is specific to the execution step that a user might find useful. See the	
Method used to distribute rows from producer query servers to consumer query servers. See Table 9-2 for more information about the possible values for this column. For more information about consumer and producer query servers, see Oracle Database Data Warehousing Guide.	
CPU cost of the operation as estimated by the query optimizer's approach. The value of this column is proportional to the number of machine cycles required for the operation. For statements that use the rule-based approach, this column is null.	
I/O cost of the operation as estimated by the query optimizer's approach. The value of this column is proportional to the number of data blocks read by the operation. For statements that use the rule-based approach, this column is null.	
Temporary space, in bytes, that the operation uses as estimated by the query optimizer's approach. For statements that use the rule-based approach, or for operations that do not use any temporary space, this column is null.	
Predicates used to locate rows in an access structure. For example, start or stop predicates for an index range scan.	
Predicates used to filter rows before producing them.	
Expressions produced by the operation.	
Elapsed time in seconds of the operation as estimated by query optimization. For statements that use the rule-based approach, this column is null.	
Name of the query block, either system-generated or defined by the user with the	
Table 9-2 describes the values that can appear in the DISTRIBUTION	
column:	
Table 9-2 Values of DISTRIBUTION Column of the PLAN_TABLE	
DISTRIBUTION Text	Interpretation
---	---
Maps rows to query servers based on the partitioning of a table or index using the rowid of the row to	
Maps rows to query servers based on the partitioning of a table or index using a set of columns. Used for partial partition-wise join,	
Maps rows to query servers using a hash function on the join key. Used for	
Maps rows to query servers using ranges of the sort key. Used when the statement contains an	
Randomly maps rows to query servers.	
Broadcasts the rows of the entire table to each query server. Used for a parallel join when one table is very small compared to the other.	
The QC consumes the input in order, from the first to the last query server. Used when the statement contains an	
The QC consumes the input randomly. Used when the statement does not have an	
Table 9-3 lists each combination of OPERATION	
and OPTIONS	
produced by the EXPLAIN	
PLAN	
statement and its meaning within an execution plan.	
Table 9-3 OPERATION and OPTIONS Values Produced by EXPLAIN PLAN	
Operation	Option
---	---
Operation accepting multiple sets of rowids, returning the intersection of the sets, eliminating duplicates. Used for the single-column indexes access path.	
Merges several bitmaps resulting from a range scan into one bitmap.	
Subtracts bits of one bitmap from another. Row source is used for negated predicates. Use this option only if there are nonnegated predicates yielding a bitmap from which the subtraction can take place. An example appears in "Viewing Bitmap Indexes with EXPLAIN PLAN".	
Computes the bitwise	
Computes the bitwise	
Takes each row from a table row source and finds the corresponding bitmap from a bitmap index. This set of bitmaps are then merged into one bitmap in a following	
Retrieves rows in hierarchical order for a query containing a	
Operation accepting multiple sets of rows returning the union-all of the sets.	
Operation counting the number of rows selected from a table.	
Count operation where the number of rows returned is limited by the	
Uses inner joins for all cube access.	
Uses an outer join for at least one dimension, and inner joins for the other dimensions.	
Uses outer joins for all cube access.	
Retrieval of one or more rowids from a domain index. The options column contain information supplied by a user-defined domain index cost function, if any.	
Operation accepting a set of rows, eliminates some of them, and returns the rest.	
Retrieval of only the first row selected by a query.	
Operation retrieving and locking the rows selected by a query containing a	
Operation hashing a set of rows into groups for a query with a	
Operation hashing a set of rows into groups for a query with a	
(These are join operations.)	Operation joining two sets of rows and returning the result. This join method is useful for joining large data sets of data (DSS, Batch). The join condition is an efficient way of accessing the second table. Query optimizer uses the smaller of the two tables/data sources to build a hash table on the join key in memory. Then it scans the larger table, probing the hash table to find the joined rows.
Hash (left) antijoin	
Hash (left) semijoin	
Hash right antijoin	
Hash right semijoin	
Hash (left) outer join	
Hash right outer join	
(These are access methods.)	
Retrieval of a single rowid from an index.	
Retrieval of one or more rowids from an index. Indexed values are scanned in ascending order.	
Retrieval of one or more rowids from an index. Indexed values are scanned in descending order.	
Retrieval of all rowids from an index when there is no start or stop key. Indexed values are scanned in ascending order.	
Retrieval of all rowids from an index when there is no start or stop key. Indexed values are scanned in descending order.	
Retrieval of all rowids (and column values) using multiblock reads. No sorting order can be defined. Compares to a full table scan on only the indexed columns. Only available with the cost based optimizer.	
Retrieval of rowids from a concatenated index without using the leading column(s) in the index. Only available with the cost based optimizer.	
Iterates over the next operation in the plan for each value in the	
Operation accepting two sets of rows and returning the intersection of the sets, eliminating duplicates.	
(These are join operations.)	Operation accepting two sets of rows, each sorted by a value, combining each row from one set with the matching rows from the other, and returning the result.
Merge join operation to perform an outer join statement.	
Merge antijoin.	
Merge semijoin.	
Can result from 1 or more of the tables not having any join conditions to any other tables in the statement. Can occur even with a join and it may not be flagged as	
Retrieval of rows in hierarchical order for a query containing a	
(These are access methods.)	
Retrieval of all rows from a materialized view.	
Retrieval of sampled rows from a materialized view.	
Retrieval of rows from a materialized view based on a value of an indexed cluster key.	
Retrieval of rows from materialized view based on hash cluster key value.	
Retrieval of rows from a materialized view based on a rowid range.	
Retrieval of sampled rows from a materialized view based on a rowid range.	
If the materialized view rows are located using user-supplied rowids.	
If the materialized view is nonpartitioned and rows are located using index(es).	
If the materialized view is partitioned and rows are located using only global indexes.	
If the materialized view is partitioned and rows are located using one or more local indexes and possibly some global indexes. Partition Boundaries: The partition boundaries might have been computed by: A previous The	
Operation accepting two sets of rows and returning rows appearing in the first set but not in the second, eliminating duplicates.	
(These are join operations.)	Operation accepting two sets of rows, an outer set and an inner set. Oracle Database compares each row of the outer set with each row of the inner set, returning rows that satisfy a condition. This join method is useful for joining small subsets of data (OLTP). The join condition is an efficient way of accessing the second table.
Nested loops operation to perform an outer join statement.	
Iterates over the next operation in the plan for each partition in the range given by the	
Access one partition.	
Access many partitions (a subset).	
Access all partitions.	
Similar to iterator, but based on an	
Indicates that the partition set to be accessed is empty.	
Implements the division of an object into block or chunk ranges among a set of parallel execution servers.	
Implements the query coordinator that controls, schedules, and executes the parallel plan below it using parallel execution servers. It also represents a serialization point, as the end of the part of the plan executed in parallel and always has a	
Same semantics as the regular	
Shows the consumer/receiver parallel execution node reading repartitioned data from a send/producer (QC or parallel execution server) executing on a PX SEND node. This information was formerly displayed into the	
Implements the distribution method taking place between two parallel execution servers. Shows the boundary between two sets and how data is repartitioned on the send/producer side (QC or side. This information was formerly displayed into the	
Retrieval of data from a remote database.	
Operation involving accessing values of a sequence.	
Retrieval of a single row that is the result of applying a group function to a group of selected rows.	
Operation sorting a set of rows to eliminate duplicates.	
Operation sorting a set of rows into groups for a query with a	
Operation sorting a set of rows into groups for a query with a	
Operation sorting a set of rows before a merge-join.	
Operation sorting a set of rows for a query with an	
(These are access methods.)	
Retrieval of all rows from a table.	
Retrieval of sampled rows from a table.	
Retrieval of rows from a table based on a value of an indexed cluster key.	
Retrieval of rows from table based on hash cluster key value.	
Retrieval of rows from a table based on a rowid range.	
Retrieval of sampled rows from a table based on a rowid range.	
If the table rows are located using user-supplied rowids.	
If the table is nonpartitioned and rows are located using index(es).	
If the table is partitioned and rows are located using only global indexes.	
If the table is partitioned and rows are located using one or more local indexes and possibly some global indexes. Partition Boundaries: The partition boundaries might have been computed by: A previous The	
Operation evaluating a	
Operation accepting two sets of rows and returns the union of the sets, eliminating duplicates.	
Operation that rotates data from columns into rows.	
Operation performing a view's query and then returning the resulting rows to another operation.	
This section contains the following topics:	
The following dynamic performance and data dictionary views provide information on execution plans.	
Table 9-4 Execution Plan Views	
View	Description
---	---
Explains why a particular child cursor is not shared with existing child cursors. Each column identifies a specific reason why the cursor cannot be shared. The	
Includes a superset of all rows appearing in all final plans.	
Contains memory usage statistics for row sources that use SQL memory (sort or hash join). This view concatenates information in	
The PLAN_TABLE	
used by the EXPLAIN	
PLAN	
statement contains the columns listed in Table 9-5.	
Table 9-5 PLAN_TABLE Columns	
Column	Type
---	---
Value of the optional	
Unique identifier of a plan in the database.	
Date and time when the	
Any comment (of up to 80 bytes) you want to associate with each step of the explained plan. This column indicates whether the database used an outline or SQL profile for the query. If you need to add or change a remark on any row of the	
Name of the internal operation performed in this step. In the first row generated for a statement, the column contains one of the following values:	
See Table 9-6 for more information about values for this column.	
A variation on the operation that the See Table 9-6 for more information about values for this column.	
Name of the database link used to reference the object (a table name or view name). For local queries using parallel execution, this column describes the order in which the database consumes output from operations.	
Name of the user who owns the schema containing the table or index.	
Unique alias of a table or view in a SQL statement. For indexes, it is the object alias of the underlying table.	
Number corresponding to the ordinal position of the object as it appears in the original statement. The numbering proceeds from left to right, outer to inner for the original statement text. View expansion results in unpredictable numbers.	
Modifier that provides descriptive information about the object; for example,	
The ID of the next execution step that operates on the output of the	
Depth of the operation in the row source tree that the plan represents. You can use this value to indent the rows in a plan table report.	
For the first row of output, this indicates the optimizer's estimated cost of executing the statement. For the other rows, it indicates the position relative to the other children of the same parent.	
Cost of the operation as estimated by the optimizer's query approach. Cost is not determined for table access operations. The value of this column does not have any particular unit of measurement; it is a weighted value used to compare costs of execution plans. The value of this column is a function of the	
Estimate by the query optimization approach of the number of rows that the operation accessed.	
Estimate by the query optimization approach of the number of bytes that the operation accessed.	
Describes the contents of the	
Start partition of a range of accessed partitions. It can take one of the following values: n indicates that the start partition has been identified by the SQL compiler, and its partition number is given by n.	
Stop partition of a range of accessed partitions. It can take one of the following values: n indicates that the stop partition has been identified by the SQL compiler, and its partition number is given by n.	
Step that has computed the pair of values of the	
Other information that is specific to the execution step that a user might find useful. See the	
Method used to distribute rows from producer query servers to consumer query servers. See Table 9-6 for more information about the possible values for this column. For more information about consumer and producer query servers, see Oracle Database Data Warehousing Guide.	
CPU cost of the operation as estimated by the query optimizer's approach. The value of this column is proportional to the number of machine cycles required for the operation. For statements that use the rule-based approach, this column is null.	
I/O cost of the operation as estimated by the query optimizer's approach. The value of this column is proportional to the number of data blocks read by the operation. For statements that use the rule-based approach, this column is null.	
Temporary space, in bytes, used by the operation as estimated by the query optimizer's approach. For statements that use the rule-based approach, or for operations that do not use any temporary space, this column is null.	
Predicates used to locate rows in an access structure. For example, start or stop predicates for an index range scan.	
Predicates used to filter rows before producing them.	
Expressions produced by the operation.	
Elapsed time in seconds of the operation as estimated by query optimization. For statements that use the rule-based approach, this column is null.	
Name of the query block, either system-generated or defined by the user with the	
Table 9-6 describes the values that can appear in the DISTRIBUTION	
column:	
Table 9-6 Values of DISTRIBUTION Column of the PLAN_TABLE	
DISTRIBUTION Text	Interpretation
---	---
Maps rows to query servers based on the partitioning of a table or index using the rowid of the row to	
Maps rows to query servers based on the partitioning of a table or index using a set of columns. Used for partial partition-wise join,	
Maps rows to query servers using a hash function on the join key. Used for	
Maps rows to query servers using ranges of the sort key. Used when the statement contains an	
Randomly maps rows to query servers.	
Broadcasts the rows of the entire table to each query server. Used for a parallel join when one table is very small compared to the other.	
The QC consumes the input in order, from the first to the last query server. Used when the statement contains an	
The QC consumes the input randomly. Used when the statement does not have an	
Table 9-7 lists each combination of OPERATION	
and OPTIONS	
produced by the EXPLAIN	
PLAN	
statement and its meaning within an execution plan.	
Table 9-7 OPERATION and OPTIONS Values Produced by EXPLAIN PLAN	
Operation	Option
---	---
Operation accepting multiple sets of rowids, returning the intersection of the sets, eliminating duplicates. Used for the single-column indexes access path.	
Merges several bitmaps resulting from a range scan into one bitmap.	
Subtracts bits of one bitmap from another. Row source is used for negated predicates. This option is usable only if there are nonnegated predicates yielding a bitmap from which the subtraction can take place.	
Computes the bitwise	
Computes the bitwise	
Takes each row from a table row source and finds the corresponding bitmap from a bitmap index. This set of bitmaps are then merged into one bitmap in a following	
Retrieves rows in hierarchical order for a query containing a	
Operation accepting multiple sets of rows returning the union-all of the sets.	
Operation counting the number of rows selected from a table.	
Count operation where the number of rows returned is limited by the	
Joins a table or view on the left and a cube on the right. See Oracle Database SQL Language Reference to learn about the	
Uses an antijoin for a table or view on the left and a cube on the right.	
Uses an antijoin (single-sided null aware) for a table or view on the left and a cube on the right. The join column on the right (cube side) is	
Uses an outer join for a table or view on the left and a cube on the right.	
Uses a right semijoin for a table or view on the left and a cube on the right.	
Uses inner joins for all cube access.	
Uses an outer join for at least one dimension, and inner joins for the other dimensions.	
Uses outer joins for all cube access.	
Retrieval of one or more rowids from a domain index. The options column contain information supplied by a user-defined domain index cost function, if any.	
Operation accepting a set of rows, eliminates some of them, and returns the rest.	
Retrieval of only the first row selected by a query.	
Operation retrieving and locking the rows selected by a query containing a	
Operation hashing a set of rows into groups for a query with a	
Operation hashing a set of rows into groups for a query with a	
(These are join operations.)	Operation joining two sets of rows and returning the result. This join method is useful for joining large data sets of data (DSS, Batch). The join condition is an efficient way of accessing the second table. Query optimizer uses the smaller of the two tables/data sources to build a hash table on the join key in memory. Then it scans the larger table, probing the hash table to find the joined rows.
Hash (left) antijoin	
Hash (left) semijoin	
Hash right antijoin	
Hash right semijoin	
Hash (left) outer join	
Hash right outer join	
(These are access methods.)	
Retrieval of a single rowid from an index.	
Retrieval of one or more rowids from an index. Indexed values are scanned in ascending order.	
Retrieval of one or more rowids from an index. Indexed values are scanned in descending order.	
Retrieval of all rowids from an index when there is no start or stop key. Indexed values are scanned in ascending order.	
Retrieval of all rowids from an index when there is no start or stop key. Indexed values are scanned in descending order.	
Retrieval of all rowids (and column values) using multiblock reads. No sorting order can be defined. Compares to a full table scan on only the indexed columns. Only available with the cost based optimizer.	
Retrieval of rowids from a concatenated index without using the leading column(s) in the index. Only available with the cost based optimizer.	
Iterates over the next operation in the plan for each value in the	
Operation accepting two sets of rows and returning the intersection of the sets, eliminating duplicates.	
(These are join operations.)	Operation accepting two sets of rows, each sorted by a value, combining each row from one set with the matching rows from the other, and returning the result.
Merge join operation to perform an outer join statement.	
Merge antijoin.	
Merge semijoin.	
Can result from 1 or more of the tables not having any join conditions to any other tables in the statement. Can occur even with a join and it may not be flagged as	
Retrieval of rows in hierarchical order for a query containing a	
(These are access methods.)	
Retrieval of all rows from a materialized view.	
Retrieval of sampled rows from a materialized view.	
Retrieval of rows from a materialized view based on a value of an indexed cluster key.	
Retrieval of rows from materialized view based on hash cluster key value.	
Retrieval of rows from a materialized view based on a rowid range.	
Retrieval of sampled rows from a materialized view based on a rowid range.	
MAT_VIEW REWITE ACCESS	
If the materialized view rows are located using user-supplied rowids.	
If the materialized view is nonpartitioned and rows are located using index(es).	
If the materialized view is partitioned and rows are located using only global indexes.	
If the materialized view is partitioned and rows are located using one or more local indexes and possibly some global indexes. Partition Boundaries: The partition boundaries might have been computed by: A previous The	
Operation accepting two sets of rows and returning rows appearing in the first set but not in the second, eliminating duplicates.	
(These are join operations.)	Operation accepting two sets of rows, an outer set and an inner set. Oracle Database compares each row of the outer set with each row of the inner set, returning rows that satisfy a condition. This join method is useful for joining small subsets of data (OLTP). The join condition is an efficient way of accessing the second table.
Nested loops operation to perform an outer join statement.	
Iterates over the next operation in the plan for each partition in the range given by the	
Access one partition.	
Access many partitions (a subset).	
Access all partitions.	
Similar to iterator, but based on an	
Indicates that the partition set to be accessed is empty.	
Implements the division of an object into block or chunk ranges among a set of parallel execution servers.	
Implements the Query Coordinator which controls, schedules, and executes the parallel plan below it using parallel execution servers. It also represents a serialization point, as the end of the part of the plan executed in parallel and always has a	
Same semantics as the regular	
Shows the consumer/receiver parallel execution node reading repartitioned data from a send/producer (QC or parallel execution server) executing on a PX SEND node. This information was formerly displayed into the	
Implements the distribution method taking place between two sets of parallel execution servers. Shows the boundary between two sets and how data is repartitioned on the send/producer side (QC or side. This information was formerly displayed into the	
Retrieval of data from a remote database.	
Operation involving accessing values of a sequence.	
Retrieval of a single row that is the result of applying a group function to a group of selected rows.	
Operation sorting a set of rows to eliminate duplicates.	
Operation sorting a set of rows into groups for a query with a	
Operation sorting a set of rows into groups for a query with a	
Operation sorting a set of rows before a merge-join.	
Operation sorting a set of rows for a query with an	
(These are access methods.)	
Retrieval of all rows from a table.	
Retrieval of sampled rows from a table.	
Retrieval of rows from a table based on a value of an indexed cluster key.	
Retrieval of rows from table based on hash cluster key value.	
Retrieval of rows from a table based on a rowid range.	
Retrieval of sampled rows from a table based on a rowid range.	
If the table rows are located using user-supplied rowids.	
If the table is nonpartitioned and rows are located using index(es).	
If the table is partitioned and rows are located using only global indexes.	
If the table is partitioned and rows are located using one or more local indexes and possibly some global indexes. Partition Boundaries: The partition boundaries might have been computed by: A previous The	
Operation evaluating a	
Operation accepting two sets of rows and returns the union of the sets, eliminating duplicates.	
Operation that rotates data from columns into rows.	
Operation performing a view's query and then returning the resulting rows to another operation.	
Table 9-8 provides notes on DBMS_XPLAN	
functions and parameters that are relevant for accessing adapted plans. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.	
Table 9-8 DBMS_XPLAN Functions and Parameters Relevant for Adaptive Queries	
Functions	Notes
---	---
The When you specify If the format argument specifies the outline display, then the function displays the hints for each option in the dynamic subplan. If the plan is not an adaptive plan, then the function displays the default plan.When you do not specify	
The When you specify	
This chapter explains basic concepts relating to optimizer statistics.	
This chapter includes the following topics:	
Oracle Database optimizer statistics describe details about the database and its objects. The optimizer cost model relies on statistics collected about the objects involved in a query, and the database and host where the query runs. Statistics are critical to the optimizer's ability to pick the best execution plan for a SQL statement.	
Optimizer statistics include the following:	
As shown in Figure 10-1, the database stores optimizer statistics for tables, columns, indexes, and the system in the data dictionary. You can access these statistics using data dictionary views.	
Note: The optimizer statistics are different from the performance statistics visible throughV$ views.	
The optimizer collects statistics on different types of database objects and characteristics of the database environment. This section contains the following topics:	
In Oracle Database, table statistics include information about rows and blocks. The optimizer uses these statistics to determine the cost of table scans and table joins. DBMS_STATS	
can gather statistics for both permanent and temporary tables.	
The database tracks all relevant statistics about permanent tables. DBMS_STATS.GATHER_TABLE_STATS	
commits before gathering statistics on permanent tables. For example, table statistics stored in DBA_TAB_STATISTICS	
track the following:	
The database uses the row count stored in DBA_TAB_STATISTICS	
when determining cardinality.	
The optimizer uses the number of data blocks with the DB_FILE_MULTIBLOCK_READ_COUNT	
initialization parameter to determine the base table access cost.	
Example 10-1 Table Statistics	
This example queries some table statistics for the sh.customers	
table.	
See Also:	
Column statistics track information about column values and data distribution. The optimizer uses these statistics to generate accurate cardinality estimates and make better decisions about index usage, join orders, join methods, and so on.	
For example, index statistics in DBA_TAB_COL_STATISTICS	
track the following:	
The optimizer can use extended statistics, which are a special type of column statistics. These statistics are useful for informing the optimizer of logical relationships among columns.	
See Also:	
The index statistics include information about the number of index levels, the number of index blocks, and the relationship between the index and the data blocks. The optimizer uses these statistics to determine the cost of index scans.	
For example, index statistics stored in the DBA_IND_STATISTICS	
view track the following:	
The BLEVEL	
column shows the number of blocks required to go from the root block to a leaf block. A B-tree index has two types of blocks: branch blocks for searching and leaf blocks that store values. See Oracle Database Concepts for a conceptual overview of B-tree indexes.	
This columns tracks the number of distinct indexed values. If a unique constraint is defined, and if no NOT NULL	
constraint is defined, then this value equals the number of non-null values.	
Example 10-2 Index Statistics	
This example queries some index statistics for the cust_lname_ix	
and customers_pk	
indexes on the sh.customers	
table (sample output included):	
For a B-tree index, the index clustering factor measures the physical grouping of rows in relation to an index value, such as last name (see Oracle Database Concepts for an overview).	
A clustering factor that is close to the number of blocks in a table indicates that the rows are physically ordered in the table blocks by the index key. If the database performs a full table scan, then the database tends to retrieve the rows as they are stored on disk sorted by the index key. A clustering factor that is close to the number of rows indicates that the rows are scattered randomly across the database blocks in relation to the index key. If the database performs a full table scan, then the database would not retrieve rows in any sorted order by this index key.	
The index clustering factor helps the optimizer decide whether an index scan or full table scan is more efficient for certain queries. A low clustering factor indicates an efficient index scan.	
The clustering factor is a property of a specific index, not a table. If multiple indexes exist on a table, then the clustering factor for one index might be small while the factor for another index is large. An attempt to reorganize the table to improve the clustering factor for one index may degrade the clustering factor of the other index.	
Example 10-3 Index Clustering Factor	
This example shows how the optimizer uses the index clustering factor to determine whether using an index is more effective than a full table scan.	
sh	
, and then query the number of rows and blocks in the sh.customers	
table (sample output included): customers.cust_last_name	
column. For example, execute the following statement:	
The following query shows that the customers_last_name_idx	
index has a high clustering factor because the clustering factor is significantly more than the number of blocks in the table:	
customers	
table, with rows ordered by cust_last_name	
. For example, execute the following statements:	
customers3	
table. For example, execute the GATHER_TABLE_STATS	
procedure as follows:	
customers3	
table . For example, enter the following query (sample output included):	
cust_last_name	
column of customers3	
. For example, execute the following statement:	
customers3_last_name_idx	
index. The following query shows that the customers3_last_name_idx	
index has a lower clustering factor:	
The table customers3	
has the same data as the original customers	
table, but the index on customers3	
has a much lower clustering factor because the data in the table is ordered by the cust_last_name	
. The clustering factor is now about 10 times the number of blocks instead of 70 times.	
customers	
table. For example, execute the following query (sample output included):	
For example, execute the following query (partial sample output included):	
The preceding plan shows that the optimizer did not use the index on the original customers	
tables.	
customers3	
table. For example, execute the following query (sample output included):	
For example, execute the following query (partial sample output included):	
The result set is the same, but the optimizer chooses the index. The plan cost is much less than the cost of the plan used on the original customers	
table.	
customers	
with a hint that forces the optimizer to use the index. For example, execute the following query (partial sample output included):	
For example, execute the following query (partial sample output included):	
The preceding plan shows that the cost of using the index on customers	
is higher than the cost of a full table scan. Thus, using an index does not necessarily improve performance. The index clustering factor is an effective measure of whether an using an index is more effective than a full table scan.	
To illustrate how the index clustering factor can influence the cost of table access, consider the following scenario:	
col1	
column currently stores the values A	
, B	
, and C	
. col1_idx	
exists on col1	
for this table. Assume that the rows are stored in the blocks as shown in Example 10-4.	
In Example 10-4, the index clustering factor for col1_idx	
is low. The rows that have the same indexed column values for col1	
are in the same data blocks in the table. Thus, the cost of using an index range scan to return all rows with value A	
is low because only one block in the table must be read.	
Assume that the same rows are scattered across data blocks as shown in Example 10-5.	
In Example 10-5, the index clustering factor for col1_idx	
is higher. The database must read all three blocks in the table to retrieve all rows with the value A	
in col1	
.	
A global temporary table is a special table that stores intermediate session-private data for a specific duration. The ON COMMIT	
clause of CREATE GLOBAL TEMPORARY TABLE	
indicates whether the table is transaction-specific (DELETE ROWS	
) or session-specific (PRESERVE ROWS	
). Thus, temporary tables hold intermediate result sets for the duration of either a transaction or a session.	
When you create a global temporary table, you create a definition that is visible to all sessions. No physical storage is allocated. When a session first puts data into the table, the database allocates storage space. The data in a temporary table is only visible to the current session.	
In previous releases, the database did not maintain statistics for global temporary tables and non-global temporary tables differently. The database maintained one version of the statistics shared by all sessions, even though data in different sessions could differ. Starting in Oracle Database 12c Release 1 (12.1), you can set the table-level preference GLOBAL_TEMP_TABLE_STATS	
to make statistics on a global temporary table shared or session-specific. If set to session-specific, then you can gather statistics for a global temporary table in one session, and then use the statistics for this session only. Meanwhile, users can continue to maintain a shared version of the statistics. During optimization, the optimizer first checks whether a global temporary table has session-specific statistics. If yes, the optimizer uses them. Otherwise, the optimizer uses shared statistics if they exist.	
Session-specific statistics have the following characteristics:	
The views are DBA_TAB_STATISTICS	
, DBA_IND_STATISTICS	
, DBA_TAB_HISTOGRAMS	
, and DBA_TAB_COL_STATISTICS	
(each view has a corresponding USER_	
and ALL_	
version). The SCOPE	
column shows whether statistics are session-specific or shared.	
Different sessions can share the cursor using shared statistics, as in previous releases. The same session can share the cursor using session-specific statistics.	
GLOBAL_TEMP_TABLE_STATS	
preference is set to SESSION	
, by default GATHER_TABLE_STATS	
immediately invalidates previous cursors compiled in the same session. However, this procedure does not invalidate cursors compiled in other sessions. DBMS_STATS	
commits changes to session-specific global temporary tables, but not to transaction-specific global temporary tables. In previous releases, running DBMS_STATS.GATHER_TABLE_STATS	
on a transaction-specific temporary table (ON COMMIT DELETE ROWS	
) would delete all rows in the table, making the statistics show the table as empty. Starting in Oracle Database 12c Release 1 (12.1), the following procedures do not commit for transaction-specific temporary tables, so that data in these tables is not lost:	
GATHER_TABLE_STATS	
DELETE_TABLE_STATS	
DELETE_COLUMN_STATS	
DELETE_INDEX_STATS	
SET_TABLE_STATS	
SET_COLUMN_STATS	
SET_INDEX_STATS	
GET_TABLE_STATS	
GET_COLUMN_STATS	
GET_INDEX_STATS	
The preceding program units observe the GLOBAL_TEMP_TABLE_STATS	
preference. For example, if the table preference is set to SHARED	
, then SET_TABLE_STATS	
sets the shared statistics. If the table preference is set to SESSION	
, then SET_TABLE_STATS	
sets the session statistics.	
See Also:	
The system statistics describe hardware characteristics such as I/O and CPU performance and utilization. System statistics enable the query optimizer to more accurately estimate I/O and CPU costs when choosing execution plans.	
The database does not invalidate previously parsed SQL statements when updating system statistics. The database parses all new SQL statements using new statistics.	
The extensible optimizer enables authors of user-defined functions and indexes to create statistics collection, selectivity, and cost functions for the optimizer to use when choosing a execution plan. The optimizer cost model is extended to integrate information supplied by the user to assess CPU and the I/O cost.	
Statistics types act as interfaces for user-defined functions that influence the choice of execution plan by the optimizer. However, to use a statistics type, the optimizer requires a mechanism to bind the type to a database object such as a column, standalone function, object type, index, indextype, or package. The SQL statement ASSOCIATE STATISTICS	
creates this association.	
Functions for user-defined statistics are relevant for columns that use both standard SQL data types and object types, and for domain indexes. When you associate a statistics type with a column or domain index, the database calls the statistics collection method in the statistics type whenever DBMS_STATS	
gathers statistics for database objects.	
See Also:	
Oracle Database provides several mechanisms to gather statistics. This section contains the following topics:	
The DBMS_STATS	
PL/SQL package collects and manages optimizer statistics. This package enables you to control what and how statistics are collected, including the degree of parallelism for statistics collection, sampling methods, granularity of statistics collection in partitioned tables, and so on.	
Note: Do not use theCOMPUTE and ESTIMATE clauses of the ANALYZE statement to collect optimizer statistics. These clauses have been deprecated. Instead, use DBMS_STATS .	
Statistics gathered with the DBMS_STATS	
package are required for the creation of accurate execution plans. For example, table statistics gathered by DBMS_STATS	
include the number of rows, number of blocks, and average row length.	
By default, Oracle Database uses automatic optimizer statistics collection. In this case, the database automatically runs DBMS_STATS	
to collect optimizer statistics for all schema objects for which statistics are missing or stale. The process eliminates many manual tasks associated with managing the optimizer, and significantly reduces the risks of generating suboptimal execution plans because of missing or stale statistics. You can also update and manage optimizer statistics by manually executing DBMS_STATS	
.	
See Also:	
By default, when optimizer statistics are missing or need augmentation, the database automatically gathers dynamic statistics during a parse. The database uses recursive SQL to scan a small random sample of table blocks. Dynamic statistics augment statistics rather than providing an alternative to them.	
Dynamic statistics can supplement statistics such as table and index block counts, table and join cardinalities (estimated number of rows), join column statistics, and GROUP BY	
statistics. This information helps the optimizer improve plans by making better estimates for predicate selectivity.	
Dynamic statistics are beneficial in the following situations:	
A bulk load is a CREATE TABLE AS SELECT	
or INSERT INTO ... SELECT	
operation. Starting in Oracle Database 12c Release 1 (12.1), the database can gather table statistics automatically during the following types of bulk loads:	
CREATE TABLE AS SELECT	
INSERT INTO ... SELECT	
into an empty table using a direct path insert By default, a parallel insert uses a direct path insert. You can force a direct path insert by using the /*+APPEND */	
hint.	
When inserting into an empty partitioned table, the database gathers global statistics during the insert. For example, if you run INSERT INTO SALES SELECT	
, and if sales	
is an empty partitioned table, then the database gathers global statistics for sales	
, but does not gather partition-level statistics.	
When inserting into a partitioned table using extended syntax, if the specified partition or subpartition is empty, then the database gathers the statistics on the specified partition or subpartition during the insert. No global level statistics are gathered. For example, if you run INSERT INTO sales PARTITION (sales_q4_2000) SELECT	
, and if partition sales_q4_2000	
is empty before the insert (other partitions need not be empty), then the database gathers statistics during the insert. Moreover, if the INCREMENTAL	
preference is enabled for sales	
, then the database also gathers synopses for sales_q4_2000	
(see "How to Enable Incremental Statistics Maintenance"). Statistics are immediately available after the INSERT	
statement. However, if you roll back the transaction, then the database automatically deletes statistics gathered during the bulk load.	
INSERT INTO ... SELECT	
into a non-empty table, partition, or subpartition In this case, an OPTIMIZER STATISTICS GATHERING	
row source appears in the plan. However, this row source is only a pass-through. Check the dictionary table to find out whether the database gathers statistics. The DBA_TAB_COL_STATISTICS	
view has a column called Notes	
that shows the value STATS_ON_LOAD	
when the column statistics are gathered during the bulk load.	
In a data warehouse, you frequently need to load a large amount of data into the database. For example, a sales record data warehouse might have sales data loaded nightly. In previous releases, you needed to manually gather statistics after a bulk load to avoid the possibility of a suboptimal plan caused by stale statistics.	
Oracle Database now gathers the statistics automatically, which has the following principal benefits:	
Gathering statistics during the load avoids an additional table scan to gather table statistics.	
No user intervention is required to gather statistics after a bulk load.	
While gathering online statistics, the database does not gather index statistics or histograms. If these statistics are required, then Oracle recommends running DBMS_STATS.GATHER_TABLE_STATS	
with the options	
parameter set to GATHER AUTO	
after the bulk load. In this case, GATHER_TABLE_STATS	
only gathers missing or stale statistics. Thus, the database only gathers index statistics or histograms, and not table and basic column statistics collected during the bulk load. You can set the table preference options	
to GATHER AUTO	
on the tables that will have a bulk load. In this way, you need not explicitly set the options	
parameter when running GATHER_TABLE_STATS	
.	
By default, the database gathers statistics during bulk loads. You can disable the feature at the statement level by using the NO_GATHER_OPTIMIZER_STATISTICS	
hint. You can also explicitly enable the feature at the statement level by using the GATHER_OPTIMIZER_STATISTICS	
hint. For example, the following statement disables online statistics gathering for bulk loads:	
Currently, statistics gathering does not happen for bulk load statements when any of the following conditions apply to the target table:	
SYS	
. ON COMMIT DELETE ROWS	
. PUBLISH	
preference set to FALSE	
. INCREMENTAL	
is set to true	
, and extended syntax is not used. For example, if you issued DBMS_STATS.SET_TABLE_PREFS(null,'sales', incremental','true')	
, then the database does not gather statistics for INSERT INTO sales SELECT	
, but it can gather statistics for INSERT INTO sales PARTITION	
(sales_q4_2000) SELECT	
.	
See Also:	
The database collects optimizer statistics at various times and from various sources. The database uses the following sources:	
DBMS_STATS	
execution, automatic or manual This PL/SQL package is the primary means of gathering optimizer statistics. See Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS_STATS.GATHER_TABLE_STATS	
procedure.	
During SQL compilation, the database can augment the statistics previously gathered by DBMS_STATS	
. In this stage, the database runs additional queries to obtain more accurate information on how many rows in the tables satisfy the WHERE	
clause predicates in the SQL statement (see "When the Database Samples Data").	
During execution, the database can further augment previously gathered statistics. In this stage, Oracle Database collects the number of rows produced by every row source during the execution of a SQL statement. At the end of execution, the optimizer determines whether the estimated number of rows is inaccurate enough to warrant reparsing at the next statement execution. If the cursor is marked for reparsing, then the optimizer uses actual row counts from the previous execution instead of estimates.	
A SQL profile is a collection of auxiliary statistics on a query. The profile stores these supplemental statistics in the data dictionary. The optimizer uses SQL profiles during optimization to determine the most optimal plan (see "About SQL Profiles").	
The database stores optimizer statistics in the data dictionary and updates or replaces them as needed. You can query statistics in data dictionary views.	
This section contains the following topics:	
A SQL plan directive is additional information and instructions that the optimizer can use to generate a more optimal plan. For example, a SQL plan directive can instruct the optimizer to record a missing extension.	
During SQL execution, if a cardinality misestimate occurs, then the database creates SQL plan directives. During SQL compilation, the optimizer examines the query corresponding to the directive to determine whether missing extensions or histograms exist (see "Managing Extended Statistics"). The optimizer records any missing extensions. Subsequent DBMS_STATS	
calls collect statistics for the extensions.	
The optimizer uses dynamic sampling whenever it does not have sufficient statistics corresponding to the directive. For example, the optimizer performs dynamic sampling until the creation of column group statistics, and also after this point when misestimates occur. Currently, the optimizer monitors only column groups. The optimizer does not create an extension on expressions.	
SQL plan directives are not tied to a specific SQL statement or SQL ID. The optimizer can use directives for statements that are nearly identical because directives are defined on a query expression. For example, directives can help the optimizer with queries that use similar patterns, such as queries that are identical except for a select list item.	
The database automatically manages SQL plan directives. The database initially creates directives in the shared pool. The database periodically writes the directives to the SYSAUX	
tablespace. You can manage directives with the APIs available in the DBMS_SPD	
package.	
This example shows how the database automatically creates and uses SQL plan directives for SQL statements.	
Assumptions	
You plan to run queries against the sh	
schema, and you have privileges on this schema and on data dictionary and V$	
views.	
To see how the database uses a SQL plan directive:	
sh.customers	
table. The gather_plan_statistics	
hint shows the actual number of rows returned from each operation in the plan. Thus, you can compare the optimizer estimates with the actual number of rows returned.	
Example 10-6 shows the execution plan (sample output included).	
Example 10-6 Execution Plan	
The actual number of rows (A-Rows	
) returned by each operation in the plan varies greatly from the estimates (E-Rows	
). This statement is a candidate for automatic reoptimization (see "Automatic Reoptimization").	
customers	
query can be reoptimized. The following statement queries the V$SQL.IS_REOPTIMIZABLE	
value (sample output included):	
The IS_REOPTIMIZABLE	
column is marked Y	
, so the database will perform a hard parse of the customers	
query on the next execution. The optimizer uses the execution statistics from this initial execution to determine the plan. The database persists the information learned from reoptimization as a SQL plan directive.	
sh	
schema. Example 10-7 uses DBMS_SPD	
to write the SQL plan directives to disk, and then shows the directives for the sh	
schema only.	
Example 10-7 Displaying SQL Plan Directives for the sh Schema	
Initially, the database stores SQL plan directives in memory, and then writes them to disk every 15 minutes. Thus, the preceding example calls DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE	
to force the database to write the directives to the SYSAUX	
tablespace.	
Monitor directives using the views DBA_SQL_PLAN_DIRECTIVES	
and DBA_SQL_PLAN_DIR_OBJECTS	
. Three entries appear in the views, one for the customers	
table itself, and one for each of the correlated columns. Because the customers	
query has the IS_REOPTIMIZABLE	
value of Y	
, if you reexecute the statement, then the database will hard parse it again, and then generate a plan based on the previous execution statistics.	
customers	
table again. For example, enter the following statement:	
Example 10-8 shows the execution plan (sample output included).	
Example 10-8 Execution Plan	
The Note	
section indicates that the database used reoptimization for this statement. The estimated number of rows (E-Rows	
) is now correct. The SQL plan directive has not been used yet.	
customers	
query. For example, run the following query (sample output included):	
A new plan exists for the customers	
query, and also a new child cursor.	
For example, run the following query, which is similar but not identical to the original customers	
query (the state is MA	
instead of CA	
):	
The following statement queries the cursor (sample output included).:	
The Note	
section of the plan shows that the optimizer used the SQL directive for this statement, and also used dynamic statistics.	
Example 10-9 queries the data dictionary for information about the directive, which the optimizer has now used.	
Example 10-9 Display Directives for sh Schema	
The SQL plan directive now has a state of MISSING_STATS	
. This state means that the database has automatically determined that extended statistics, in the form of column group statistics, can address this problem. So, if you gather statistics on the customers	
table, then you should also see that a new column group is automatically created for the cust_state_province	
and country_id	
columns.	
See Also:	
This example is a continuation of "How the Optimizer Uses SQL Plan Directives: Example". The example shows how the database uses a SQL plan directive until the optimizer verifies that an extension exists and the statistics are applicable. At this point, the directive changes its status to HAS_STATS	
. Subsequent compilations use the statistics instead of the directive.	
Assumptions	
This example assumes you have already followed the steps in "How the Optimizer Uses SQL Plan Directives: Example".	
To see how the optimizer uses an extension and SQL plan directive:	
sh.customers	
table. For example, execute the following PL/SQL program:	
customers	
table. For example, execute the following query (sample output included):	
The preceding output indicates that a column group extension exists on the cust_state_province	
and country_id	
columns.	
Example 10-10 queries the data dictionary for information about the directive.	
Example 10-10 Display Directives for sh Schema	
Although column group statistics exist, the directive has a state of MISSING_STATS	
because the database has not yet recompiled the statement. During the next compilation, the optimizer verifies that the statistics are applicable. If they are applicable, then the status of the directive changes to HAS_STATS	
. Subsequent compilations use the statistics instead of the directive.	
sh.customers	
table. Example 10-11 shows the execution plan (sample output included).	
Example 10-11 Execution Plan	
The Note	
section shows that the optimizer used the directive and not the extended statistics. During the compilation, the database verified the extended statistics.	
Example 10-12 queries the data dictionary for information about the directive.	
Example 10-12 Display Directives for sh Schema	
The state of the directive, which has changed to HAS_STATS	
, shows that the database has verified the extended statistics.	
sh.customers	
table again, using a slightly different form of the statement. For example, run the following query:	
If the cursor is in the shared SQL area, then the database typically shares the cursor. To force a reparse, this step changes the SQL text slightly by adding a comment.	
Example 10-13 shows the execution plan (sample output included).	
Example 10-13 Execution Plan	
The absence of a Note	
shows that the optimizer used the extended statistics instead of the SQL plan directive. If the directive is not used for 53 weeks, then the database automatically purges it.	
See Also:	
In previous releases, the database always gathered dynamic statistics (formerly called dynamic sampling) during optimization, and only when a table in the query had no statistics. Starting in Oracle Database 12c Release 1 (12.1), the optimizer automatically decides whether dynamic statistics are useful and which statistics level to use for all SQL statements.	
The primary factor in the decision to use dynamic statistics is whether available statistics are sufficient to generate an optimal plan. If statistics are insufficient, then the optimizer uses dynamic statistics.	
Automatic dynamic statistics are enabled when any of the following conditions is true:	
OPTIMIZER_DYNAMIC_SAMPLING	
initialization parameter uses its default value, which means that it is not explicitly set. OPTIMIZER_DYNAMIC_SAMPLING	
initialization parameter is set to 11	
. In general, the optimizer uses default statistics rather than dynamic statistics to compute statistics needed during optimizations on tables, indexes, and columns. The optimizer decides whether to use dynamic statistics based on several factors. For example, the database uses automatic dynamic statistics in the following situations:	
Figure 10-2 illustrates the process of gathering dynamic statistics.	
As shown in Figure 10-2, the optimizer automatically gathers dynamic statistics in the following cases:	
When tables in a query have no statistics, the optimizer gathers basic statistics on these tables before optimization. Statistics can be missing because the application creates new objects without a follow-up call to DBMS_STATS	
to gather statistics, or because statistics were locked on an object before statistics were gathered.	
In this case, the statistics are not as high-quality or as complete as the statistics gathered using the DBMS_STATS	
package. This trade-off is made to limit the impact on the compile time of the statement.	
Statistics gathered by DBMS_STATS	
can become out-of-date. Typically, statistics are stale when 10% or more of the rows in the table have changed since the last time statistics were gathered.	
Statistics can be insufficient whenever the optimizer estimates the selectivity of predicates (filter or join) or the GROUP BY	
clause without taking into account correlation between columns, skew in the column data distribution, statistics on expressions, and so on.	
Extended statistics help the optimizer obtain accurate quality cardinality estimates for complex predicate expressions (see "About Statistics on Column Groups"). The optimizer can use dynamic statistics to compensate for the lack of extended statistics or when it cannot use extended statistics, for example, for non-equality predicates.	
Note: The database does not use dynamic statistics for queries that contain theAS OF clause.	
See Also: Oracle Database Reference to learn about theOPTIMIZER_DYNAMIC_SAMPLING initialization parameter	
At the beginning of optimization, when deciding whether a table is a candidate for dynamic statistics, the optimizer checks for the existence of persistent SQL plan directives on the table (see Figure 10-2). For each directive, the optimizer registers a statistics expression that the optimizer computes when it must determine the selectivity of a predicate involving the table.	
When sampling is necessary, the database must determine the sample size (see Figure 10-2). Starting in Oracle Database 12c Release 1 (12.1), if the OPTIMIZER_DYNAMIC_SAMPLING	
initialization parameter is not explicitly set to a value other than 11	
, then the optimizer automatically decides whether to use dynamic statistics and which level to use.	
In Figure 10-2, the database issues a recursive SQL statement to scan a small random sample of the table blocks. The database applies the relevant single-table predicates and joins to estimate predicate selectivities.	
The database persists the results of dynamic statistics as sharable statistics. The database can share the results during the SQL compilation of one query with recompilations of the same query. The database can also reuse the results for queries that have the same patterns. If no rows have been inserted, deleted, or updated in the table being sampled, then the use of dynamic statistics is repeatable.	
See Also:	
A histogram is a special type of column statistic that provides more detailed information about the data distribution in a table column. A histogram sorts values into "buckets," as you might sort coins into buckets.	
Based on the NDV and the distribution of the data, the database chooses the type of histogram to create. (In some cases, when creating a histogram, the database samples an internally predetermined number of rows.) The types of histograms are as follows:	
This section contains the following topics:	
By default the optimizer assumes a uniform distribution of rows across the distinct values in a column. For columns that contain data skew (a nonuniform distribution of data within the column), a histogram enables the optimizer to generate accurate cardinality estimates for filter and join predicates that involve these columns.	
For example, a California-based book store ships 95% of the books to California, 4% to Oregon, and 1% to Nevada. The book orders table has 300,000 rows. A table column stores the state to which orders are shipped. A user queries the number of books shipped to Oregon. Without a histogram, the optimizer assumes an even distribution of 300000/3 (the NDV is 3), estimating cardinality at 100,000 rows. With this estimate, the optimizer chooses a full table scan. With a histogram, the optimizer calculates that 4% of the books are shipped to Oregon, and chooses an index scan.	
For histograms, the algorithm for cardinality depends on factors such as the endpoint numbers and values, and whether column values are popular or unpopular.	
An endpoint number is a number that uniquely identifies a bucket. In frequency and hybrid histograms, the endpoint number is the cumulative frequency of all values included in the current and previous buckets. For example, a bucket with endpoint number 100	
means the total frequency of values in the current and all previous buckets is 100. In height-balanced histograms, the optimizer numbers buckets sequentially, starting at 0	
or 1	
. In all cases, the endpoint number is the bucket number.	
An endpoint value is the highest value in the range of values in a bucket. For example, if a bucket contains only the values 52794	
and 52795	
, then the endpoint value is 52795	
.	
The popularity of a value in a histogram affects the cardinality estimate algorithm as follows:	
A popular value occurs as an endpoint value of multiple buckets. The optimizer determines whether a value is popular by first checking whether it is the endpoint value for a bucket. If so, then for frequency histograms, the optimizer subtracts the endpoint number of the previous bucket from the endpoint number of the current bucket. Hybrid histograms already store this information for each endpoint individually. If this value is greater than 1, then the value is popular.	
The optimizer calculates its cardinality estimate for popular values using the following formula:	
Any value that is not popular is a nonpopular value. The optimizer calculates the cardinality estimates for nonpopular values using the following formula:	
The optimizer calculates density using an internal algorithm based on factors such as the number of buckets and the NDV. Density is expressed as a decimal number between 0	
and 1	
. Values close to 1	
indicate that the optimizer expects many rows to be returned by a query referencing this column in its predicate list. Values close to 0	
indicate that the optimizer expects few rows to be returned.	
In some cases, to reduce the total number of buckets, the optimizer compresses multiple buckets into a single bucket. For example, the following frequency histogram indicates that the first bucket number is 1	
and the last bucket number is 23	
:	
Several buckets are "missing." Originally, buckets 2	
through 6	
each contained a single instance of value 52793	
. The optimizer compressed all of these buckets into the bucket with the highest endpoint number (bucket 6	
), which now contains 5 instances of value 52793	
. This value is popular because the difference between the endpoint number of the current bucket (6	
) and the previous bucket (1	
) is 5. Thus, before compression the value 52793	
was the endpoint for 5 buckets.	
The following annotations show which buckets are compressed, and which values are popular:	
In a frequency histogram, each distinct column value corresponds to a single bucket of the histogram. Because each value has its own dedicated bucket, some buckets may have many values, whereas others have few.	
An analogy to a frequency histogram is sorting coins so that each individual coin initially gets its own bucket. For example, the first penny is in bucket 1, the second penny is in bucket 2, the first nickel is in bucket 3, and so on. You then consolidate all the pennies into a single penny bucket, all the nickels into a single nickel bucket, and so on with the remainder of the coins.	
A top frequency histogram is a variation on a frequency histogram that ignores unpopular values that are statistically insignificant. For example, if a pile of 1000 coins contains only a single penny, then you can ignore the penny when sorting the coins into buckets. A top frequency histogram can produce a better histogram for highly popular values.	
Frequency histograms depend on the number of requested histogram buckets, represented by the variable n. By default, n is 254	
when the number of buckets is not specified using the method_opt	
parameter of the DBMS_STATS	
statistics gathering procedures.	
The database creates a frequency histogram when the NDV is less than or equal to n. For example, the sh.countries.country_subregion_id	
column has 8 distinct values, ranging sequentially from 52792	
to 52799	
. If n is the default of 254	
, then the optimizer creates a frequency histogram.	
If a small number of values occupies most of the rows, then creating a frequency histogram on this small set of values is useful even when the NDV is greater than n. To create a better quality histogram for popular values, the optimizer ignores the unpopular values. The database creates a top frequency histogram when all of the following conditions are met:	
(1-(1/	
n	
))*100	
. estimate_percent	
parameter is set to AUTO_SAMPLE_SIZE	
in the DBMS_STATS	
statistics gathering procedure. Starting in Oracle Database 12c, if the sampling size is the default of AUTO_SAMPLE_SIZE	
, then the database creates frequency histograms from a full table scan. For all other sampling percentage specifications, the database derives frequency histograms from a sample. In previous releases, the database gathered histograms based on a small sample, which meant that low-frequency values often did not appear in the sample. Using density in this case sometimes led the optimizer to overestimate selectivity.	
This scenario shows how to generate a frequency histogram using the sample schemas.	
Assumptions	
This scenario assumes that you want to generate a frequency histogram on the sh.countries.country_subregion_id	
column. This table has 23 rows.	
The following query shows that the country_subregion_id	
column contains 8 distinct values (sample output included) that are unevenly distributed:	
To generate a frequency histogram:	
sh.countries	
and the country_subregion_id	
column, letting the number of buckets default to 254. For example, execute the following PL/SQL anonymous block:	
country_subregion_id	
column. For example, use the following query (sample output included):	
The optimizer chooses a frequency histogram because n or fewer distinct values exist in the column, where n defaults to 254	
.	
country_subregion_id	
column. For example, use the following query (sample output included):	
Figure 11-1 is a graphical illustration of the 8 buckets in the histogram. Each value is represented as a coin that is dropped into a bucket.	
As shown in Figure 11-1, each distinct value has its own bucket. Because this is a frequency histogram, the endpoint number is the cumulative frequency of endpoints. For 52793	
, the endpoint number 6	
indicates that the value appears 5 times (6 - 1). For 52794	
, the endpoint number 8	
indicates that the value appears 2 times (8 - 6).	
Every bucket whose endpoint is at least 2 greater than the previous endpoint contains a popular value. Thus, buckets 6	
, 8	
, 12	
, 14	
, and 23	
contain popular values. The optimizer calculates their cardinality based on endpoint numbers. For example, the optimizer calculates the cardinality (C	
) of value 52799	
using the following formula, where the number of rows in the table is 23:	
Buckets 1	
, 9	
, and 10	
contain nonpopular values. The optimizer estimates their cardinality based on density.	
See Also:	
This scenario shows how to generate a top frequency histogram using the sample schemas.	
Assumptions	
This scenario assumes that you want to generate a top frequency histogram on the sh.countries.country_subregion_id	
column. This table has 23 rows.	
The following query shows that the country_subregion_id	
column contains 8 distinct values (sample output included) that are unevenly distributed:	
To generate a top frequency histogram:	
sh.countries	
and the country_subregion_id	
column, specifying fewer buckets than distinct values. For example, enter the following command to specify 7 buckets:	
country_subregion_id	
column. For example, use the following query (sample output included):	
Because you specified 7 buckets for the 8 distinct values in the sh.countries.country_subregion_id	
column, n = 7	
. In the country_subregion_id	
column, the top 7 most frequent values occupy 95.6% of the rows, which exceeds the threshold of 85.7%, generating a top frequency histogram (see "Criteria For Frequency Histograms").	
For example, use the following query (sample output included):	
Figure 11-2 is a graphical illustration of the 7 buckets in the top frequency histogram. The values are represented in the diagram as coins.	
As shown in Figure 11-2, each distinct value has its own bucket except for 52795	
, which is excluded from the histogram because it is nonpopular and statistically insignificant. As in a standard frequency histogram, the endpoint number represents the cumulative frequency of values.	
See Also:	
In a legacy height-balanced histogram, column values are divided into buckets so that each bucket contains approximately the same number of rows. For example, if you have 99 coins to distribute among 4 buckets, each bucket contains about 25 coins. The histogram shows where the endpoints fall in the range of values.	
Frequency histograms depend on the number of requested histogram buckets, which is represented in this section by the variable n. By default, n is 254	
when the number of buckets is not specified through the method_opt	
parameter of the DBMS_STATS	
statistics gathering procedures. Before Oracle Database 12c Release 1 (12.1), the database created a height-balanced histogram when the NDV was greater than n. This type of histogram was useful for range predicates, and equality predicates on values that appear as endpoints in at least two buckets.	
Note: If no sampling percentage is specified, then Oracle Database 12c Release 1 (12.1) no longer creates height-balanced histograms. If you upgrade the database from Oracle Database 11g to Oracle Database 12c, then any height-based histograms created before the upgrade remain in use. If Oracle Database 12c Release 1 (12.1) creates new histograms, and if the sampling percentage isAUTO_SAMPLE_SIZE , then the histograms are either top frequency or hybrid, but not height-balanced.	
This scenario shows how to generate a height-balanced histogram using the sample schemas.	
Assumptions	
This scenario assumes that you want to generate a height-balanced histogram on the sh.countries.country_subregion_id	
column. This table has 23 rows.	
The following query shows that the country_subregion_id	
column contains 8 distinct values (sample output included) that are unevenly distributed:	
To generate a height-balanced histogram:	
sh.countries	
and the country_subregion_id	
column, specifying fewer buckets than distinct values. Note: To simulate Oracle Database 11g behavior, which is necessary to create a height-based histogram, setestimate_percent to a nondefault value. If you specify a nondefault percentage, then the database creates frequency or height-balanced histograms.	
For example, enter the following command:	
country_subregion_id	
column. For example, use the following query (sample output included):	
The optimizer chooses a height-balanced histogram because the number of distinct values (8) is greater than the number of buckets (7), and the estimate_percent	
value is nondefault.	
For example, use the following query (sample output included):	
country_subregion_id	
column. For example, use the following query (sample output included):	
Figure 11-3 is a graphical illustration of the height-balanced histogram. The values are represented in the diagram as coins.	
The bucket number is identical to the endpoint number. The optimizer records the value of the last row in each bucket as the endpoint value, and then checks to ensure that the minimum value is the endpoint value of the first bucket, and the maximum value is the endpoint value of the last bucket. In this example, the optimizer adds bucket 0	
so that the minimum value 52792	
is the endpoint of a bucket.	
The optimizer must evenly distribute 23 rows into the 7 specified histogram buckets, so each bucket contains approximately 3 rows. However, the optimizer compresses buckets with the same endpoint. So, instead of bucket 1	
containing 2 instances of value 52793	
, and bucket 2	
containing 3 instances of value 52793	
, the optimizer puts all 5 instances of value 52793	
into bucket 2	
. Similarly, instead of having buckets 5	
, 6	
, and 7	
contain 3 values each, with the endpoint of each bucket as 52799	
, the optimizer puts all 9 instances of value 52799	
into bucket 7	
.	
In this example, buckets 3	
and 4	
contain nonpopular values because the difference between the current endpoint number and previous endpoint number is 1. The optimizer calculates cardinality for these values based on density. The remaining buckets contain popular values. The optimizer calculates cardinality for these values based on endpoint numbers.	
See Also:	
A hybrid histogram combines characteristics of both height-based histograms and frequency histograms. This "best of both worlds" approach enables the optimizer to obtain better selectivity estimates in some situations.	
The height-based histogram sometimes produces inaccurate estimates for values that are almost popular. For example, a value that occurs as an endpoint value of only one bucket but almost occupies two buckets is not considered popular.	
To solve this problem, a hybrid histogram distributes values so that no value occupies more than one bucket, and then stores the endpoint repeat count value, which is the number of times the endpoint value is repeated, for each endpoint (bucket) in the histogram. By using the repeat count, the optimizer can obtain accurate estimates for almost popular values.	
To illustrate the utility of endpoint repeat counts, assume that a column coins	
contains the following values, sorted from low to high:	
You gather statistics for this table, setting the method_opt	
argument of DBMS_STATS.GATHER_TABLE_STATS	
to FOR ALL COLUMNS SIZE 3	
. In this case, the optimizer initially groups the values in coins	
into three buckets, as follows:	
If a bucket border splits a value so that some occurrences of the value are in one bucket and some in another, then the optimizer shifts the bucket border (and all other following bucket borders) forward to include all occurrences of the value. For example, the optimizer shifts value 5	
so that it is now wholly in the first bucket, and the value 25	
is now wholly in the second bucket:	
The endpoint repeat count measures the number of times that the corresponding bucket endpoint, which is the value at the right bucket border, repeats itself. For example, in the first bucket, the value 5	
is repeated 3 times, so the endpoint repeat count is 3	
:	
Height-balanced histograms do not store as much information as hybrid histograms. By using repeat counts, the optimizer can determine exactly how many occurrences of an endpoint value exist. For example, the optimizer knows that the value 5	
appears 3 times, the value 25	
appears 4 times, and the value 100	
appears 2 times. This frequency information helps the optimizer to generate better cardinality estimates.	
Starting in Oracle Database 12c Release 1 (12.1), the database creates hybrid histograms when all of the following conditions are true:	
254	
. AUTO_SAMPLE_SIZE	
. If users specify their own percentage, then the database creates frequency or height-balanced histograms.	
This scenario shows how to generate a hybrid histogram using the sample schemas.	
Assumptions	
This scenario assumes that you want to generate a hybrid histogram on the sh.products.prod_subcategory_id	
column. This table has 72 rows. The prod_subcategory_id	
column contains 22 distinct values.	
To generate a hybrid histogram:	
sh.products	
and the prod_subcategory_id	
column, specifying 10 buckets. For example, enter the following command:	
For example, use the following query (sample output included):	
The column contains 22 distinct values. Because the number of buckets (10) is less than 22, the optimizer cannot create a frequency histogram. The optimizer considers both hybrid and top frequency histograms. To qualify for a top frequency histogram, the percentage of rows occupied by the top 10 most frequent values must be equal to or greater than threshold p, where p is (1-(1/10))*100, or 90%. However, in this case the top 10 most frequent values occupy 54 rows out of 72, which is only 75% of the total. Therefore, the optimizer chooses a hybrid histogram because the criteria for a top frequency histogram do not apply.	
country_subregion_id	
column. For example, use the following query (sample output included):	
country_subregion_id	
column. For example, use the following query (sample output included):	
In a height-based histogram, the optimizer would evenly distribute 72 rows into the 10 specified histogram buckets, so that each bucket contains approximately 7 rows. Because this is a hybrid histogram, the optimizer distributes the values so that no value occupies more than one bucket. For example, the optimizer does not put some instances of value 2036	
into one bucket and some instances of this value into another bucket: all instances are in bucket 36	
.	
The endpoint repeat count shows the number of times the highest value in the bucket is repeated. By using the endpoint number and repeat count for these values, the optimizer can estimate cardinality. For example, bucket 12	
contains instances of values 2033	
, 2034	
, 2035	
, and 2036	
. The endpoint value 2036	
has an endpoint repeat count of 4	
, so the optimizer knows that 4 instances of this value exist. For values such as 2033	
, which are not endpoints, the optimizer estimates cardinality using density.	
See Also:	
This chapter explains basic tasks relating to optimizer statistics management. "Managing Optimizer Statistics: Advanced Topics" covers advanced concepts and tasks.	
This chapter contains the following topics:	
In Oracle Database, optimizer statistics collection is the gathering of optimizer statistics for database objects, including fixed objects. The database can collect optimizer statistics automatically. You can also collect them manually using the DBMS_STATS	
package (see "Gathering Optimizer Statistics Manually").	
The contents of tables and associated indexes change frequently, which can lead the optimizer to choose suboptimal execution plan for queries. Thus, statistics must be kept current to avoid any potential performance issues because of suboptimal plans.	
To minimize DBA involvement, Oracle Database automatically gathers optimizer statistics at various times. Some automatic options are configurable, such enabling AutoTask to run DBMS_STATS	
.	
You can manage optimizer statistics either through Oracle Enterprise Manager Cloud Control (Cloud Control) or using PL/SQL on the command line.	
The Manage Optimizer Statistics page in Cloud Control is a GUI that enables you to manage optimizer statistics.	
Oracle Enterprise Manager Cloud Control enables you to manage multiple databases within a single GUI-based framework.	
To access a database home page using Cloud Control:	
You can perform most necessary tasks relating to optimizer statistics through pages linked to by the Manage Optimizer Statistics page.	
To manage optimizer statistics using Cloud Control:	
The Manage Optimizer Statistics appears.	
See Also: Online Help for Oracle Enterprise Manager Cloud Control	
You can use the DBMS_STATS	
package to perform most optimizer statistics tasks. Use the DBMS_AUTO_TASK_ADMIN	
PL/SQL package to enable and disable automatic statistics gathering.	
See Also: Oracle Database PL/SQL Packages and Types Reference to learn how to useDBMS_STATS and DBMS_AUTO_TASK_ADMIN	
The automated maintenance tasks infrastructure (known as AutoTask) schedules tasks to run automatically in Oracle Scheduler windows known as maintenance windows. By default, one window is scheduled for each day of the week. Automatic optimizer statistics collection runs as part of AutoTask. By default, the collection runs in all predefined maintenance windows.	
Note: Data visibility and privilege requirements may differ when using automatic optimizer statistics collection with pluggable databases. See Oracle Database Administrator's Guide for a table that summarizes how manageability features work in a container database (CDB).	
To collect the optimizer statistics, the database calls an internal procedure that operates similarly to the GATHER_DATABASE_STATS	
procedure with the GATHER	
AUTO	
option. Automatic statistics collection honors all preferences set in the database.	
The principal difference between manual and automatic collection is that the latter prioritizes database objects that need statistics. Before the maintenance window closes, automatic collection assesses all objects and prioritizes objects that have no statistics or have very old statistics.	
Note: When gathering statistics manually, you can reproduce the object prioritization of automatic collection by using theDBMS_AUTO_TASK_IMMEDIATE package. This package runs the same statistics gathering job that is executed during the automatic nightly statistics gathering job.	
This section contains the following topics:	
You can enable and disable all automatic maintenance tasks, including automatic optimizer statistics collection, using Cloud Control.	
The default window timing works well for most situations. However, you may have operations such as bulk loads that occur during the window. In such cases, to avoid potential conflicts that result from operations occurring at the same time as automatic statistics collection, Oracle recommends that you change the window accordingly.	
To control automatic optimizer statistics collection using Cloud Control:	
The Automated Maintenance Tasks page appears.	
This page shows the predefined tasks. To retrieve information about each task, click the corresponding link for the task.	
The Automated Maintenance Tasks Configuration page appears.	
By default, automatic optimizer statistics collection executes in all predefined maintenance windows in MAINTENANCE_WINDOW_GROUP	
.	
Note: Oracle strongly recommends that you not disable automatic statistics gathering because it is critical for the optimizer to generate optimal plans for queries against dictionary and user objects. If you disable automatic collection, ensure that you have a good manual statistics collection strategy for dictionary and user schemas.	
The Edit Window page appears.	
In this page, you can change the parameters such as duration and start time for window execution.	
See Also: Online Help for Oracle Enterprise Manager Cloud Control	
If you do not use Cloud Control to enable and disable automatic optimizer statistics collection, then you have the following options:	
ENABLE	
or DISABLE	
procedure in the DBMS_AUTO_TASK_ADMIN	
PL/SQL package. This package is the recommended command-line technique. For both the ENABLE	
or DISABLE	
procedures, you can specify a particular maintenance window with the window_name	
parameter. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.	
STATISTICS_LEVEL	
initialization level to BASIC	
to disable collection of all advisories and statistics, including Automatic SQL Tuning Advisor. Note: Because monitoring and many automatic features are disabled, Oracle strongly recommends that you do not setSTATISTICS_LEVEL to BASIC .	
To control automatic statistics collection using DBMS_AUTO_TASK_ADMIN:	
For example, query DBA_AUTOTASK_CLIENT	
as follows:	
Sample output appears as follows:	
To change the window attributes for automatic statistics collection:	
For example, to change the Monday maintenance window so that it starts at 5 a.m., execute the following PL/SQL program:	
See Also:	
This section contains the following topics:	
The optimizer statistics preferences set the default values of the parameters used by automatic statistics collection and the DBMS_STATS	
statistics gathering procedures. You can set optimizer statistics preferences at the table, schema, database (all tables), and global (tables with no preferences and any tables created in the future) levels. In this way, you can automatically maintain optimizer statistics when some objects require settings that differ from the default.	
For example, by default the DBMS_STATS	
preference INCREMENTAL	
is set to false	
. You can set INCREMENTAL	
to true	
for a range-partitioned table when the last few partitions are updated. Also, when performing a partition exchange operation on a nonpartitioned table, Oracle recommends that you set INCREMENTAL	
to true	
and INCREMENTAL_LEVEL	
to TABLE	
. With these settings, DBMS_STATS	
gathers table-level synopses on this table (see "Maintaining Incremental Statistics for Partition Maintenance Operations").	
Table 12-1 summarizes the DBMS_STATS	
procedures that change the defaults of parameters used by the DBMS_STATS.GATHER_*_STATS	
procedures. Parameter values set in DBMS_STAT.GATHER_*_STATS	
override other settings. If a parameter has not been set, then the database checks for a table-level preference. If no table preference exists, then the database uses the global preference. See Oracle Database PL/SQL Packages and Types Reference for descriptions of CASCADE	
, METHOD_OPT	
, and the other parameters.	
Table 12-1 Setting Preferences for Gathering Statistics	
DBMS_STATS Procedure	Scope
---	---
Specified table only.	
All existing objects in the specified schema. This procedure calls	
All user-defined schemas in the database. You can include system-owned schemas such as This procedure calls	
Any object in the database that does not have an existing table preference. All parameters default to the global setting unless a table preference is set or the parameter is explicitly set in the With You can only set the	
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS procedures for setting optimizer statistics |
Table 12-2 illustrates the relationship between SET_TABLE_PREFS
, SET_SCHEMA_STATS
, and SET_DATABASE_PREFS
.
Table 12-2 Changing Preferences for Statistics Gathering Procedures
Action | Description |
---|---|
SQL> SELECT DBMS_STATS.GET_PREFS ('incremental', 'sh', 'costs') FROM DUAL; DBMS_STATS.GET_PREFS('INCREMENTAL','SH','COSTS') -- TRUE | You query the |
SQL> EXEC DBMS_STATS.SET_TABLE_PREFS ('sh', 'costs', 'incremental', 'false'); PL/SQL procedure successfully completed. | You use |
SQL> SELECT DBMS_STATS.GET_PREFS ('incremental', 'sh', 'costs') FROM DUAL; DBMS_STATS.GET_PREFS('INCREMENTAL','SH','COSTS') -- FALSE | You query the |
SQL> EXEC DBMS_STATS.SET_SCHEMA_PREFS ('sh', 'incremental', 'true'); PL/SQL procedure successfully completed. | You use |
SQL> SELECT DBMS_STATS.GET_PREFS ('incremental', 'sh', 'costs') FROM DUAL; DBMS_STATS.GET_PREFS('INCREMENTAL','SH','COSTS') -- TRUE | You query the |
SQL> EXEC DBMS_STATS.SET_DATABASE_PREFS ('incremental', 'false'); PL/SQL procedure successfully completed. | You use |
SQL> SELECT DBMS_STATS.GET_PREFS ('incremental', 'sh', 'costs') FROM DUAL; DBMS_STATS.GET_PREFS('INCREMENTAL','SH','COSTS') -- FALSE | You query the |
A global preference applies to any object in the database that does not have an existing table preference. You can set optimizer statistics preferences at the global level using Cloud Control. See the Cloud Control Help for an explanation of the options on the preference page.
To set global optimizer statistics preferences using Cloud Control:
The Global Statistics Gathering Options page appears.
See Also: Online Help for Oracle Enterprise Manager Cloud Control |
You can set optimizer statistics preferences at the database, schema, and table level using Cloud Control.
To set object-level optimizer statistics preferences using Cloud Control:
The Object Level Statistics Gathering Preferences page appears.
The page refreshes with the table names.
The General subpage of the Edit Preferences page appears.
The General subpage of the Add Table Preferences page appears.
The General subpage of the Edit Schema Preferences page appears.
See Also: Online Help for Oracle Enterprise Manager Cloud Control |
If you do not use Cloud Control to set optimizer statistics preferences, then you can invoke the DBMS_STATS
procedures described in Table 12-1.
Prerequisites
This task has the following prerequisites:
SYSDBA
privileges, or both ANALYZE ANY DICTIONARY
and ANALYZE ANY
system privileges. SYSDBA
privileges, or have the ANALYZE ANY
system privilege. ANALYZE ANY
system privilege. To set optimizer statistics preferences from the command line:
DBMS_STATS.GET_PREFS
procedure to see preferences set at the object level, or at the global level if a specific table is not set. For example, obtain the STALE_PERCENT
parameter setting for the sh.sales
table as follows:
ownname
- Set schema name (SET_TAB_PREFS
and SET_SCHEMA_PREFS
only) tabname
- Set table name (SET_TAB_PREFS
only) pname
- Set parameter name pvalue
- Set parameter value add_sys
- Include system tables (optional, SET_DATABASE_PREFS
only) The following example specifies that 13% of rows in sh.sales
must change before the statistics on that table are considered stale:
*_TAB_STAT_PREFS
view to confirm the change. For example, query DBA_TAB_STAT_PREFS
as follows:
Sample output appears as follows:
See Also: Oracle Database PL/SQL Packages and Types Reference for descriptions of the parameter names and values for program units |
As an alternative or supplement to automatic statistics gathering, you can use the DBMS_STATS
package to gather statistics manually.
This section contains the following topics:
See Also:
|
Use the DBMS_STATS
package to manipulate optimizer statistics. You can gather statistics on objects and columns at various levels of granularity: object, schema, and database. You can also gather statistics for the physical system, as explained in "Gathering System Statistics Manually".
Table 12-3 summarizes the DBMS_STATS
procedures for gathering optimizer statistics. This package does not gather statistics for table clusters. However, you can gather statistics on individual tables in a table cluster.
Table 12-3 DBMS_STATS Procedures for Gathering Optimizer Statistics
Procedure | Purpose |
---|---|
| Collects index statistics |
| Collects table, column, and index statistics |
| Collects statistics for all objects in a schema |
| Collects statistics for all system schemas, including |
| Collects statistics for all objects in a database |
When the OPTIONS
parameter is set to GATHER STALE
or GATHER AUTO
, the GATHER_SCHEMA_STATS
and GATHER_DATABASE_STATS
procedures gather statistics for any table that has stale statistics and any table that is missing statistics. If a monitored table has been modified more than 10%, then the database considers these statistics stale and gathers them again.
Note: As explained in "Controlling Automatic Optimizer Statistics Collection", you can configure a nightly job to gather statistics automatically. |
See Also: Oracle Database PL/SQL Packages and Types Reference for complete syntax and semantics for theDBMS_STATS package |
In most cases, automatic statistics collection is sufficient for database objects modified at a moderate speed. However, automatic collection may sometimes be inadequate or unavailable, as in the following cases:
This section offers guidelines for typical situations in which you may choose to gather statistically manually:
In the context of optimizer statistics, sampling is the gathering of statistics from a random subset of table rows. By enabling the database to avoid full table scans and sorts of entire tables, sampling minimizes the resources necessary to gather statistics.
The database gathers the most accurate statistics when it processes all rows in the table, which is a 100% sample. However, the larger the sample size, the longer the statistics gathering operation. The problem is determining a sample size that provides accurate statistics in a reasonable time.
DBMS_STATS
uses sampling when a user specifies the parameter ESTIMATE_PERCENT
, which controls the percentage of the rows in the table to sample. To maximize performance gains while achieving necessary statistical accuracy, Oracle recommends that the ESTIMATE_PERCENT
parameter be set to DBMS_STATS.AUTO_SAMPLE_SIZE
(the default). With this setting, the database uses a hash-based algorithm that is much faster than sampling. This algorithm reads all rows and produces statistics that are nearly as accurate as statistics from a 100% sample. The statistics computed using this technique are deterministic.
By default, the database gathers statistics with the parallelism degree specified at the table or index level. You can override this setting with the degree
argument to the DBMS_STATS
gathering procedures. Oracle recommends setting degree
to DBMS_STATS.AUTO_DEGREE
. This setting enables the database to choose an appropriate degree of parallelism based on the object size and the settings for the parallelism-related initialization parameters.
The database can gather most statistics serially or in parallel. However, the database does not gather some index statistics in parallel, including cluster indexes, domain indexes, and bitmap join indexes. The database can use sampling when gathering parallel statistics.
Note: Do not confuse gathering statistics in parallel with gathering statistics concurrently. See "About Concurrent Statistics Gathering". |
For partitioned tables and indexes, DBMS_STATS
can gather separate statistics for each partition and global statistics for the entire table or index. Similarly, for composite partitioning, DBMS_STATS
can gather separate statistics for subpartitions, partitions, and the entire table or index.
Use the granularity
argument to the DBMS_STATS
procedures to determine the type of partitioning statistics to be gathered. Oracle recommends setting granularity
to the default value of AUTO
to gather subpartition, partition, or global statistics, depending on partition type. The ALL
setting gathers statistics for all types.
When tables are frequently modified, gather statistics often enough so that they do not go stale, but not so often that collection overhead degrades performance. You may only need to gather new statistics every week or month. The best practice is to use a script or job scheduler to regularly run the DBMS_STATS.GATHER_SCHEMA_STATS
and DBMS_STATS.GATHER_DATABASE_STATS
procedures.
Because the database does not permit data manipulation against external tables, the database never marks statistics on external tables as stale. If new statistics are required for an external table, for example, because the underlying data files change, then regather the statistics. Gather statistics manually for external tables with the same procedures that you use for regular tables.
Stale statistics on a table do not accurately reflect its data. The database provides a table monitoring facility to help determine when a database object needs new statistics. Monitoring tracks the approximate number of DML operations on a table and whether the table has been truncated since the most recent statistics collection. You can run DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO
to immediately reflect the outstanding monitored information kept in memory.
After running DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO
, determine whether statistics are stale by querying the STALE_STATS
column in DBA_TAB_STATISTICS
and DBA_IND_STATISTICS
. This column is based on information in the DBA_TAB_MODIFICATIONS
view and the STALE_PERCENT
preference for DBMS_STATS
. The STALE_STATS
column has the following possible values:
YES
The statistics are stale.
NO
The statistics are not stale.
The statistics are not collected.
Executing GATHER_SCHEMA_STATS
or GATHER_DATABASE_STATS
with the GATHER AUTO
option collects statistics only for objects with no statistics or stale statistics.
Assumptions
This tutorial assumes the following:
sh.sales
. It is enabled by default when the STATISTICS_LEVEL
initialization parameter is set to TYPICAL
or ALL
. ANALYZE_ANY
system privilege so you can run the DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO
procedure. To determine stale statistics:
For example, execute the following procedure:
The following example queries stale statistics for the sh.sales
table (partial output included):
See Also:
|
Use GATHER_TABLE_STATS
to collect table statistics, and GATHER_SCHEMA_STATS
to collect statistics for all objects in a schema.
To gather schema statistics using DBMS_STATS:
GATHER_TABLE_STATS
or GATHER_SCHEMA_STATS
procedure, specifying the desired parameters. Typical parameters include:
ownname
tabname
, indname
, partname
degree
Example 12-1 Gathering Statistics for a Table
This example uses the DBMS_STATS
package to gather statistics on the sh.customers
table with a parallelism setting of 2
.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theGATHER_TABLE_STATS procedure |
Fixed objects are dynamic performance tables and their indexes. These objects record current database activity.
Unlike other database tables, the database does not automatically use dynamic sampling for SQL statement referencing X$
tables when optimizer statistics are missing. Instead, the optimizer uses predefined default values. These defaults may not be representative and could potentially lead to a suboptimal execution plan. Thus, it is important to keep fixed object statistics current.
Oracle Database automatically gathers fixed object statistics as part of automated statistics gathering if have not been previously collected (see "Controlling Automatic Optimizer Statistics Collection"). You can also manually collect statistics on fixed objects by calling DBMS_STATS.GATHER_FIXED_OBJECTS_STATS
. Oracle recommends that you gather statistics when the database has representative activity.
Prerequisites
You must have the SYSDBA
or ANALYZE ANY DICTIONARY
system privilege to execute this procedure.
To gather schema statistics using GATHER_FIXED_OBJECTS_STATS:
DBMS_STATS.GATHER_FIXED_OBJECTS_STATS
procedure, specifying the desired parameters. Typical parameters include:
stattab
stattab
(optional) - statid
stattab
(if different from current schema) - statown
Example 12-2 Gathering Statistics for a Table
This example uses the DBMS_STATS
package to gather fixed object statistics.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theGATHER_TABLE_STATS procedure |
Statistics for volatile tables, which are tables modified significantly during the day, go stale quickly. For example, a table may be deleted or truncated, and then rebuilt.
When you set the statistics of a volatile object to null, Oracle Database dynamically gathers the necessary statistics during optimization using dynamic statistics. The OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter controls this feature.
Note: As described in "Locking and Unlocking Optimizer Statistics," gathering representative statistics and them locking them is an alternative technique for preventing statistics for volatile tables from going stale. |
Assumptions
This tutorial assumes the following:
oe.orders
table is extremely volatile. orders
table to prevent the database from gathering statistics on the table. In this way, the database can dynamically gather necessary statistics as part of query optimization. oe
user has the necessary privileges to query DBMS_XPLAN.DISPLAY_CURSOR
. To delete and the lock optimizer statistics:
oe
, and then delete the statistics for the oe
table. For example, execute the following procedure:
oe
table. For example, execute the following procedure:
orders
table. For example, use the following statement:
You run the following commands (partial output included):
The Note in the preceding execution plan shows that the database used dynamic statistics for the SELECT
statement.
Oracle Database enables you to gather statistics on multiple tables or partitions concurrently. This section contains the following topics:
When concurrent statistics gathering mode is enabled, the database can simultaneously gather optimizer statistics for the following:
Concurrency can reduce the overall time required to gather statistics by enabling the database to fully use multiple CPUs.
Note: Concurrent statistics gathering mode does not rely on parallel query processing, but is usable with it. |
Oracle Database employs the following tools and technologies to create and manage multiple statistics gathering jobs concurrently:
Enable concurrent statistics gathering by setting the CONCURRENT
preference with DBMS_STATS.SET_GLOBAL_PREF
(see "Enabling Concurrent Statistics Gathering").
The database runs as many concurrent jobs as possible. The Job Scheduler decides how many jobs to execute concurrently and how many to queue. As running jobs complete, the scheduler dequeues and runs more jobs until the database has gathered statistics on all tables, partitions, and subpartitions. The maximum number of jobs is bounded by the JOB_QUEUE_PROCESSES
initialization parameter and available system resources.
In most cases, the DBMS_STATS
procedures create a separate job for each table partition or subpartition. However, if the partition or subpartition is very small or empty, the database may automatically batch the object with other small objects into a single job to reduce the overhead of job maintenance.
The following figure illustrates the creation of jobs at different levels, where Table 3 is a partitioned table, and the other tables are nonpartitioned. Job 3 acts as a coordinator job for Table 3, and creates a job for each partition in that table, and a separate job for the global statistics of Table 3. This example assumes that incremental statistics gathering is disabled; if enabled, then the database derives global statistics from partition-level statistics after jobs for partitions complete.
See Also:
|
The DBMS_STATS
package does not explicitly manage resources used by concurrent statistics gathering jobs that are part of a user-initiated statistics gathering call. Thus, the database may use system resources fully during concurrent statistics gathering. To address this situation, use the Resource Manager to cap resources consumed by concurrent statistics gathering jobs. The Resource Manager must be enabled to gather statistics concurrently.
The system-supplied consumer group ORA$AUTOTASK
registers all statistics gathering jobs. You can create a resource plan with proper resource allocations for ORA$AUTOTASK
to prevent concurrent statistics gathering from consuming all available resources. If you lack your own resource plan, and if choose not to create one, then consider activating the Resource Manager with the system-supplied DEFAULT_PLAN
.
Note: TheORA$AUTOTASK consumer group is shared with the maintenance tasks that automatically run during the maintenance windows. Thus, when concurrency is activated for automatic statistics gathering, the database automatically manages resources, with no extra steps required. |
To enable concurrent statistics gathering, use the DBMS_STATS.SET_GLOBAL_PREFS
procedure to set the CONCURRENT
preference. Possible values are as follows:
MANUAL
Concurrency is enabled only for manual statistics gathering.
AUTOMATIC
Concurrency is enabled only for automatic statistics gathering.
ALL
Concurrency is enabled for both manual and automatic statistics gathering.
OFF
Concurrency is disabled for both manual and automatic statistics gathering. This is the default value.
This tutorial in this section explains how to enable concurrent statistics gathering.
Prerequisites
This tutorial has the following prerequisites:
CREATE JOB
MANAGE SCHEDULER
MANAGE ANY QUEUE
SYSAUX
tablespace must be online because the scheduler stores its internal tables and views in this tablespace. JOB_QUEUE_PROCESSES
initialization parameter must be set to at least 4
. By default, the Resource Manager is disabled. If you do not have a resource plan, then consider enabling the Resource Manager with the system-supplied DEFAULT_PLAN
(see Oracle Database Administrator's Guide).
Assumptions
This tutorial assumes that you want to do the following:
sh
schema sh
statistics To enable concurrent statistics gathering:
The following example uses the default plan for the Resource Manager:
JOB_QUEUE_PROCESSES
initialization parameter to at least twice the number of CPU cores. In Oracle Real Application Clusters, the JOB_QUEUE_PROCESSES
setting applies to each node.
Assume that the system has 4 CPU cores. The following example sets the parameter to 8
(twice the number of cores):
For example, enter the following command in SQL*Plus (sample output included):
For example, execute the following PL/SQL anonymous block:
For example, execute the following query (sample output included):
SH
schema. For example, execute the following procedure:
DBA_OPTSTAT_OPERATION_TASKS
. For example, execute the following query (sample output included):
For example, execute the following query:
See Also:
|
When CONCURRENT
statistics gathering is enabled, you can execute each statistics gathering job in parallel. This combination is useful when you are analyzing large tables, partitions, or subpartitions.
The following procedure describes the recommended configuration.
To configure the system for parallel execution and concurrent statistics gathering:
For example, use the following SQL statement:
Perform the following steps:
OTHER_GROUPS
has queuing enabled. The following sample script illustrates one way to create a temporary resource plan (pqq_test
), and enable the Resource Manager with this plan:
See Also:
|
To monitor statistics gathering jobs, use the following views:
DBA_OPTSTAT_OPERATION_TASKS
This view contains the history of tasks that are performed or currently in progress as part of statistics gathering operations (recorded in DBA_OPTSTAT_OPERATIONS
). Each task represents a target object to be processed in the corresponding parent operation.
DBA_OPTSTAT_OPERATIONS
This view contains a history of statistics operations performed or currently in progress at the table, schema, and database level using the DBMS_STATS
package.
The TARGET
column in the preceding views shows the target object for that statistics gathering job in the following form:
All statistics gathering job names start with the string ST$
.
To display currently running statistics tasks and jobs:
To display completed statistics tasks and jobs:
DBA_OPTSTAT_OPERATIONS
view based on the statistics gathering operation name, target, and start time. After you identify the operation ID, you can query the DBA_OPTSTAT_OPERATION_TASKS
view to find the corresponding tasks in that operation For example, to list operations with the ID 981, use the following commands in SQL*Plus (sample output included):
To display statistics gathering tasks and jobs that have failed:
Incremental statistics scan only changed partitions. Starting in Oracle Database 11g, incremental statistics maintenance improves the performance of gathering statistics on large partitioned table by deriving global statistics from partition-level statistics.
This section contains the following topics:
In a typical case, an application loads data into a new partition of a range-partitioned table. As applications add new partitions and load data, the database must gather statistics on the new partition and keep global statistics up to date.
Without incremental statistics, statistics collection typically uses a two-pass approach:
The full scan of the table for global statistics collection can be very expensive, depending on the size of the table. As the table adds partitions, the longer the execution time for GATHER_TABLE_STATS
because of the full table scan required for the global statistics. The database must perform the scan of the entire table even if only a small subset of partitions change. In contrast, incremental statistics enable the database to avoid these full table scans.
Starting in Oracle Database 11g, the database avoids a full table scan when computing global statistics by deriving global statistics from the partition statistics. The database can accurately derive some statistics from partition statistics. For example, the number of rows at the global level is the sum of number of rows of partitions. Even global histograms can be derived from partition histograms.
However, the database cannot derive all statistics from partition-level statistics. For example, the database cannot derive the NDV of a column from partition-level NDVs. So, the database maintains a structure called a synopsis for each column at the partition level. A synopsis can be viewed as a sample of distinct values. The database can accurately derive the NDV for each column by merging partition-level synopses.
When incremental statistics maintenance is enabled, the database does the following:
Example 12-3 Deriving Global Statistics
The following graphic shows how the database gathers statistics for the initial six partitions of the sales
table, and then creates synopses for each partition (S1
, S2
, and so on). The database creates global statistics by aggregating the partition-level statistics and synopses.
The following graphic shows a new partition, containing data for May 24, being added to the sales
table. The database gathers statistics for the newly added partition, retrieves synopses for the other partitions, and then aggregates the synopses to create global statistics.
Use DBMS_STATS.SET_TABLE_PREFS
to set the INCREMENTAL
value, and in this way control incremental statistics maintenance. When INCREMENTAL
is set to false
(default), the database always uses a full table scan to maintain global statistics. When the following criteria are met, the database updates global statistics incrementally by scanning only the partitions that have changed:
INCREMENTAL
value for the partitioned table is true
. PUBLISH
value for the partitioned table is true
. AUTO_SAMPLE_SIZE
for ESTIMATE_PERCENT
and AUTO
for GRANULARITY
when gathering statistics on the table. Enabling incremental statistics maintenance has the following consequences:
SYSAUX
tablespace consumes additional space to maintain global statistics for partitioned tables. A partition maintenance operation is a partition-related operation such as adding, exchanging, merging, or splitting table partitions. Oracle Database 12c Release 1 (12.1) introduces the following enhancements for maintaining incremental statistics:
DBMS_STATS
can create a synopsis on a nonpartitioned table. The synopsis enables the database to maintain incremental statistics as part of a partition exchange operation without having to explicitly gather statistics on the partition after the exchange. When the DBMS_STATS
preference INCREMENTAL
is set to true
on a table, the INCREMENTAL_LEVEL
preference controls which synopses are collected and when. This preference takes the following values:
TABLE
DBMS_STATS
gathers table-level synopses on this table. You can only set INCREMENTAL_LEVEL
to TABLE
at the table level, not at the schema, database, or global level.
PARTITION
(default) DBMS_STATS
only gathers synopsis at the partition level of partitioned tables.
When performing a partition exchange, to have synopses after the exchange for the partition being exchanged, set INCREMENTAL
to true
and INCREMENTAL_LEVEL
to TABLE
on the table to be exchanged with the partition.
Assumptions
This tutorial assumes the following:
p_sales_01_2010
in a sales
table. t_sales_01_2010
, and then populate the table. To maintain incremental statistics as part of a partition exchange operation:
t_sales_01_2010
. For example, run the following statement:
t_sales_01_2010
. For example, run the following PL/SQL code:
DBMS_STATS
gathers table-level synopses on t_sales_01_2010
.
INCREMENTAL
preference is true
on the sh.sales
table. For example, run the following PL/SQL code:
sh.sales
before with INCREMENTAL
set to true
, then gather statistics on the partition to be exchanged. For example, run the following PL/SQL code:
For example, use the following SQL statement:
After the exchange, the partitioned table has both statistics and a synopsis for partition p_sales_01_2010
.
In releases before Oracle Database 12c Release 1 (12.1), the preceding statement swapped the segment data and statistics of p_sales_01_2010
with t_sales_01_2010
. The database did not maintain synopses for nonpartitioned tables such as t_sales_01_2010
. To gather global statistics on the partitioned table, you needed to rescan the p_sales_01_2010
partition to obtain its synopses.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more aboutDBMS_STATS.SET_TABLE_PREFS |
Starting in Oracle Database 12c Release 1 (12.1), incremental statistics can automatically calculate global statistics for a partitioned table even if the partition or subpartition statistics are stale and locked.
When incremental statistics are enabled in releases before Oracle Database 12c Release 1 (12.1), if any DML occurs on a partition, then the optimizer considers statistics on this partition to be stale. Thus, DBMS_STATS
must gather the statistics again to accurately aggregate the global statistics. Furthermore, if DML occurs on a partition whose statistics are locked, then DBMS_STATS
cannot regather the statistics on the partition, so a full table scan is the only means of gathering global statistics. The necessity to regather statistics creates performance overhead.
In Oracle Database 12c Release 1 (12.1), the statistics preference INCREMENTAL_STALENESS
controls how the database determines whether the statistics on a partition or subpartition are stale. This preference takes the following values:
USE_STALE_PERCENT
A partition or subpartition is not considered stale if DML changes are less than the STALE_PERCENT
preference specified for the table. The default value of STALE_PERCENT
is 10
, which means that if DML causes more than 10% of row changes, then the table is considered stale.
USE_LOCKED_STATS
Locked partition or subpartition statistics are not considered stale, regardless of DML changes.
NULL
(default) A partition or subpartition is considered stale if it has any DML changes. This behavior is identical to the Oracle Database 11g behavior. When the default value is used, statistics gathered in incremental mode are guaranteed to be the same as statistics gathered in nonincremental mode. When a nondefault value is used, statistics gathered in incremental mode might be less accurate than those gathered in nonincremental mode.
The first two of the preceding values you can specify together. For example, you can write the following anonymous block:
Assumptions
This tutorial assumes the following:
STALE_PERCENT
for a partitioned table is set to 10
. INCREMENTAL
value is set to true
. INCREMENTAL
mode before. INCREMENTAL_STALENESS
, whether the statistics are locked, and the percentage of DML changes. To test for tables with stale or locked partition statistics:
INCREMENTAL_STALENESS
to NULL
. Afterward, 5% of the rows in one partition change because of DML activity.
DBMS_STATS
to gather statistics on the table. DBMS_STATS
regathers statistics for the partition that had the 5% DML activity, and incrementally maintains the global statistics.
INCREMENTAL_STALENESS
to USE_STALE_PERCENT
. Afterward, 5% of the rows in one partition change because of DML activity.
DBMS_STATS
to gather statistics on the table. DBMS_STATS
does not regather statistics for the partition that had DML activity (because the changes are under the staleness threshold of 10%), and incrementally maintains the global statistics.
Afterward, 20% of the rows in one partition change because of DML activity.
DBMS_STATS
to gather statistics on the table. DBMS_STATS
does not regather statistics for the partition because the statistics are locked. The database gathers the global statistics with a full table scan.
Afterward, 5% of the rows in one partition change because of DML activity.
DBMS_STATS
to gather statistics on the table. When you gather statistics on this table, DBMS_STATS
does not regather statistics for the partition because they are not considered stale. The database maintains global statistics incrementally using the existing statistics for this partition.
INCREMENTAL_STALENESS
to USE_LOCKED_STATS
and USE_STALE_PERCENT
. Afterward, 20% of the rows in one partition change because of DML activity.
DBMS_STATS
to gather statistics on the table. Because USE_LOCKED_STATS
is set, DBMS_STATS
ignores the fact that the statistics are stale and uses the locked statistics. The database maintains global statistics incrementally using the existing statistics for this partition.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more aboutDBMS_STATS.SET_TABLE_PREFS |
System statistics describe the system's hardware characteristics, such as I/O and CPU performance and utilization, to the optimizer. System statistics enable the optimizer to choose a more efficient execution plan. Oracle recommends that you gather system statistics when a physical change occurs in the environment, for example, the server has faster CPUs, more memory, or different disk storage.
To gather system statistics, use DBMS_STATS.GATHER_SYSTEM_STATS
. When the database gathers system statistics, it analyzes activity in a specified time period (workload statistics) or simulates a workload (noworkload statistics). The input arguments to DBMS_STATS.GATHER_SYSTEM_STATS
are:
NOWORKLOAD
The optimizer gathers statistics based on system characteristics only, without regard to the workload.
INTERVAL
After the specified number of minutes has passed, the optimizer updates system statistics either in the data dictionary, or in an alternative table (specified by stattab
). Statistics are based on system activity during the specified interval.
START
and STOP
START
initiates gathering statistics. STOP
calculates statistics for the elapsed period (since START
) and refreshes the data dictionary or an alternative table (specified by stattab
). The optimizer ignores INTERVAL
.
EXADATA
The system statistics consider the unique capabilities provided by using Exadata, such as large I/O size and high I/O throughput. The optimizer sets the multiblock read count and I/O throughput statistics along with CPU speed.
Table 12-4 lists the optimizer system statistics gathered by DBMS_STATS
and the options for gathering or manually setting specific system statistics.
Table 12-4 Optimizer System Statistics in the DBMS_STAT Package
Parameter Name | Description | Initialization | Options for Gathering or Setting Statistics | Unit |
---|---|---|---|---|
| Represents noworkload CPU speed. CPU speed is the average number of CPU cycles in each second. | At system startup | Set | Millions/sec. |
| Represents the time it takes to position the disk head to read data. I/O seek time equals seek time + latency time + operating system overhead time. | At system startup 10 (default) | Set | ms |
| Represents the rate at which an Oracle database can read data in the single read request. | At system startup 4096 (default) | Set | Bytes/ms |
| Represents workload CPU speed. CPU speed is the average number of CPU cycles in each second. | None | Set | Millions/sec. |
| Maximum I/O throughput is the maximum throughput that the I/O subsystem can deliver. | None | Set | Bytes/sec. |
| Slave I/O throughput is the average parallel execution server I/O throughput. | None | Set | Bytes/sec. |
| Single-block read time is the average time to read a single block randomly. | None | Set | ms |
| Multiblock read is the average time to read a multiblock sequentially. | None | Set | ms |
| Multiblock count is the average multiblock read count sequentially. | None | Set | blocks |
See Also: Oracle Database PL/SQL Packages and Types Reference for detailed information on the procedures in theDBMS_STATS package for implementing system statistics |
The database automatically gathers essential parts of system statistics at startup. CPU and I/O characteristics tend to remain constant over time. Typically, these characteristics only change when some aspect of the configuration is upgraded. For this reason, Oracle recommends that you gather system statistics only when a physical change occurs in your environment, for example, the server gets faster CPUs, more memory, or different disk storage.
Note the following guidelines:
Use DBMS_STATS.GATHER_SYSTEM_STATS
to capture statistics when the database has the most typical workload. For example, database applications can process OLTP transactions during the day and generate OLAP reports at night.
Workload statistics include the following statistics listed in Table 12-4:
sreadtim
) and multiblock (mreadtim
) read times mbrc
) cpuspeed
) maxthr
) slavethr
) The database computes sreadtim
, mreadtim
, and mbrc
by comparing the number of physical sequential and random reads between two points in time from the beginning to the end of a workload. The database implements these values through counters that change when the buffer cache completes synchronous read requests.
Because the counters are in the buffer cache, they include not only I/O delays, but also waits related to latch contention and task switching. Thus, workload statistics depend on system activity during the workload window. If system is I/O bound (both latch contention and I/O throughput), then the statistics promote a less I/O-intensive plan after the database uses the statistics.
As shown in Figure 12-1, if you gather workload statistics, then the optimizer uses the mbrc
value gathered for workload statistics to estimate the cost of a full table scan.
When gathering workload statistics, the database may not gather the mbrc
and mreadtim
values if no table scans occur during serial workloads, as is typical of OLTP systems. However, full table scans occur frequently on DSS systems. These scans may run parallel and bypass the buffer cache. In such cases, the database still gathers the sreadtim
because index lookups use the buffer cache.
If the database cannot gather or validate gathered mbrc
or mreadtim
values, but has gathered sreadtim
and cpuspeed
, then the database uses only sreadtim
and cpuspeed
for costing. In this case, the optimizer uses the value of the initialization parameter DB_FILE_MULTIBLOCK_READ_COUNT
to cost a full table scan. However, if DB_FILE_MULTIBLOCK_READ_COUNT
is 0
or is not set, then the optimizer uses a value of 8
for calculating cost.
Use the DBMS_STATS.GATHER_SYSTEM_STATS
procedure to gather workload statistics. The GATHER_SYSTEM_STATS
procedure refreshes the data dictionary or a staging table with statistics for the elapsed period. To set the duration of the collection, use either of the following techniques:
START
the beginning of the workload window, and then STOP
at the end of the workload window. INTERVAL
and the number of minutes before statistics gathering automatically stops. If needed, you can use GATHER_SYSTEM_STATS (gathering_mode=>'STOP')
to end gathering earlier than scheduled. See Also: Oracle Database PL/SQL Packages and Types Reference to learn about the initialization parameterDB_FILE_MULTIBLOCK_READ_COUNT |
This tutorial explains how to set the workload interval with the START
and STOP
parameters of GATHER_SYSTEM_STATS
.
Assumptions
This tutorial assumes the following:
To gather workload statistics using START and STOP:
For example, at 10 a.m., execute the following procedure to start collection:
For example, at 11 a.m., execute the following procedure to end collection:
The optimizer can now use the workload statistics to generate execution plans that are effective during the normal daily workload.
For example, run the following query:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.GATHER_SYSTEM_STATS procedure |
This tutorial explains how to set the workload interval with the INTERVAL
parameter of GATHER_SYSTEM_STATS
.
Assumptions
This tutorial assumes the following:
workload_stats
. To gather workload statistics using INTERVAL:
dba1
. For example, execute the following PL/SQL program to create user statistics table workload_stats
:
JOB_QUEUE_PROCESSES
is not 0
so that DBMS_JOB
jobs and Oracle Scheduler jobs run. For example, gather statistics for two hours with the following program:
For example, gather statistics for two hours with the following program:
For example, during the day you can import the OLTP statistics from the staging table into the dictionary with the following program:
For example, during the night you can import the OLAP statistics from the staging table into the dictionary with the following program:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.GATHER_SYSTEM_STATS procedure |
Noworkload statistics capture characteristics of the I/O system. By default, Oracle Database uses noworkload statistics and the CPU cost model. The values of noworkload statistics are initialized to defaults at the first instance startup. You can also use the DBMS_STATS.GATHER_SYSTEM_STATS
procedure to gather noworkload statistics manually.
Noworkload statistics include the following system statistics listed in Table 12-4:
iotfrspeed
) ioseektim
) cpuspeednw
) The major difference between workload statistics and noworkload statistics is in the gathering method. Noworkload statistics gather data by submitting random reads against all data files, whereas workload statistics uses counters updated when database activity occurs. If you gather workload statistics, then Oracle Database uses them instead of noworkload statistics.
To gather noworkload statistics, run DBMS_STATS.GATHER_SYSTEM_STATS
with no arguments or with the gathering mode set to noworkload
. There is an overhead on the I/O system during the gathering process of noworkload statistics. The gathering process may take from a few seconds to several minutes, depending on I/O performance and database size.
When you gather noworkload statistics, the database analyzes the information and verifies it for consistency. In some cases, the values of noworkload statistics may retain their default values. You can either gather the statistics again, or use SET_SYSTEM_STATS
to set the values manually to the I/O system specifications.
Assumptions
This tutorial assumes that you want to gather noworkload statistics manually.
To gather noworkload statistics manually:
For example, run the following statement:
For example, run the following query:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.GATHER_SYSTEM_STATS procedure |
Use the DBMS_STATS.DELETE_SYSTEM_STATS
function to delete system statistics. This procedure deletes workload statistics collected using the INTERVAL
or START
and STOP
options, and then resets the default to noworkload statistics. However, if the stattab
parameter specifies a table for storing statistics, then the subprogram deletes all system statistics with the associated statid
from the statistics table.
Assumptions
This tutorial assumes the following:
To delete system statistics:
For example, run the following statement:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.DELETE_SYSTEM_STATS procedure |
This chapter explains advanced concepts and tasks relating to optimizer statistics management, including extended statistics.
This chapter contains the following topics:
By default, when optimizer statistics are missing or need augmentation, dynamic statistics automatically run recursive SQL during parsing to scan a small random sample of table blocks.
This section contains the following topics:
The dynamic statistics level controls both when the database gathers dynamic statistics, and the size of the sample that the optimizer uses to gather the statistics. Set the dynamic statistics level using either the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter (dynamic statistics were called dynamic sampling in previous releases) or a statement hint.
Dynamic statistics are enabled in the database by default. Table 13-1 describes the levels. The default level is 2
.
Table 13-1 Dynamic Statistics Levels
Level | When the Optimizer Uses Dynamic Statistics | Sample Size (Blocks) |
---|---|---|
0 | Do not use dynamic statistics | n/a |
1 | Use dynamic statistics for all tables that do not have statistics, but only if the following criteria are met:
| 32 |
2 | Use dynamic statistics if at least one table in the statement has no statistics. This is the default setting. | 64 |
3 | Use dynamic statistics if any of the following conditions is true:
| 64 |
4 | Use dynamic statistics if any of the following conditions is true:
| 64 |
5 | Use dynamic statistics if the statement meets level 4 criteria. | 128 |
6 | Use dynamic statistics if the statement meets level 4 criteria. | 256 |
7 | Use dynamic statistics if the statement meets level 4 criteria. | 512 |
8 | Use dynamic statistics if the statement meets level 4 criteria. | 1024 |
9 | Use dynamic statistics if the statement meets level 4 criteria. | 4086 |
10 | Use dynamic statistics if the statement meets level 4 criteria. | All blocks |
11 | Use dynamic statistics automatically when the optimizer deems it necessary. The resulting statistics are persistent in the statistics repository, making them available to other queries. | Automatically determined |
See Also: Oracle Database Reference to learn about theOPTIMIZER_DYNAMIC_SAMPLING initialization parameter |
When setting the sampling level, the best practice is to use ALTER SESSION
to set the value for the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter. Determining a systemwide setting that would be beneficial to all SQL statements can be difficult.
Assumptions
This tutorial assumes the following:
WHERE
clause predicates on two correlated columns: sh.customers
table contains 932 rows that meet the conditions in the query. sh.customers
table. cust_city
and cust_state_province
columns. OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter is set to the default level of 2
. To set the dynamic statistics level manually:
The output appears below (the example has been reformatted to fit on the page):
The columns in the WHERE
clause have a real-world correlation, but the optimizer is not aware that Los Angeles is in California and assumes both predicates reduce the number of rows returned. Thus, the table contains 932 rows that meet the conditions, but the optimizer estimates 53, as shown in bold.
If the database had used dynamic statistics for this plan, then the Note
section of the plan output would have indicated this fact. The optimizer did not use dynamic statistics because the statement executed serially, standard statistics exist, and the parameter OPTIMIZER_DYNAMIC_SAMPLING
is set to the default of 2
.
4
in the session using the following statement: The new plan shows a more accurate estimate of the number of rows, as shown by the value 932 in bold:
The note at the bottom of the plan indicates that the sampling level is 4
. The additional dynamic statistics made the optimizer aware of the real-world relationship between the cust_city
and cust_state_province
columns, thereby enabling it to produce a more accurate estimate for the number of rows: 932 rather than 53.
See Also:
|
In general, the best practice is not to incur the cost of dynamic statistics for queries whose compile times must be as fast as possible, for example, unrepeated OLTP queries. You can disable the feature by setting the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter.
To disable dynamic statistics at the session level:
0
. For example, run the following statement:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theOPTIMIZER_DYNAMIC_SAMPLING initialization parameter |
By default, the database automatically publishes statistics when the statistics collection ends. Alternatively, you can use pending statistics to save the statistics and not publish them immediately after the collection. This technique is useful for testing queries in a session with pending statistics. When the test results are satisfactory, you can publish the statistics to make them available for the entire database.
The database stores pending statistics in the data dictionary just as for published statistics. By default, the optimizer uses published statistics. You can change the default behavior by setting the OPTIMIZER_USE_PENDING_STATISTICS
initialization parameter to true
(the default is false
).
The top part of Figure 13-1 shows the optimizer gathering statistics for the sh.customers
table and storing them in the data dictionary with pending status. The bottom part of the diagram shows the optimizer using only published statistics to process a query of sh.customers
.
Figure 13-1 Published and Pending Statistics
In some cases, the optimizer can use a combination of published and pending statistics. For example, the database stores both published and pending statistics for the customers
table. For the orders
table, the database stores only published statistics. If OPTIMIZER_USE_PENDING_STATS = true
, then the optimizer uses pending statistics for customers
and published statistics for orders
. If OPTIMIZER_USE_PENDING_STATS = false
, then the optimizer uses published statistics for customers
and orders
.
See Also: Oracle Database Reference to learn about theOPTIMIZER_USE_PENDING_STATISTICS initialization parameter |
You can use the DBMS_STATS
package to perform operations relating to publishing statistics. Table 13-2 lists the relevant program units.
Table 13-2 DBMS_STATS Program Units Relevant for Publishing Optimizer Statistics
Program Unit | Description |
---|---|
| Check whether the statistics are automatically published as soon as |
| Set the |
| Set the |
| Publish valid pending statistics for all objects or only specified objects. |
| Delete pending statistics. |
| Export pending statistics. |
The initialization parameter OPTIMIZER_USE_PENDING_STATISTICS
determines whether the database uses pending statistics when they are available. The default value is false
, which means that the optimizer uses only published statistics. Set to true
to specify that the optimizer uses any existing pending statistics instead. The best practice is to set this parameter at the session level rather than at the database level.
You can use access information about published statistics from data dictionary views. Table 13-3 lists relevant views.
Table 13-3 Views Relevant for Publishing Optimizer Statistics
View | Description |
---|---|
| Displays optimizer statistics for the tables accessible to the current user. |
| Displays column statistics and histogram information extracted from |
| Displays column statistics and histogram information for the table partitions owned by the current user. |
| Describes column statistics and histogram information for subpartitions of partitioned objects owned by the current user. |
| Displays optimizer statistics for the indexes accessible to the current user. |
| Describes pending statistics for tables, partitions, and subpartitions accessible to the current user. |
| Describes the pending statistics of the columns accessible to the current user. |
| Describes the pending statistics for tables, partitions, and subpartitions accessible to the current user collected using the |
See Also:
|
This section explains how to use DBMS_STATS
program units to change the publishing behavior of optimizer statistics, and also to export and delete these statistics.
Assumptions
This tutorial assumes the following:
sh.customers
and sh.sales
tables so that newly collected statistics have pending status. sh.customers
table. sh.sales
table, but decide to delete them without publishing them. sh.customers
and sh.sales
tables so that newly collected statistics are published. To manage published and pending statistics:
sh
. Run the following query (sample output included):
The value true
indicates that the database publishes statistics as it gathers them. Every table uses this value unless a specific table preference has been set.
When using GET_PREFS
, you can also specify a schema and table name. The function returns a table preference if it is set. Otherwise, the function returns the global preference.
For example, run the following query (sample output included):
This example shows that the database currently stores no pending statistics for the sh
schema.
sh.customers
table. For example, execute the following procedure so that statistics are marked as pending:
Subsequently, when you gather statistics on the customers
table, the database does not automatically publish statistics when the gather job completes. Instead, the database stores the newly gathered statistics in the USER_TAB_PENDING_STATS
table.
sh.customers
. For example, run the following program:
For example, run the following query (sample output included):
This example shows that the database now stores pending statistics for the sh.customers
table.
Set the initialization parameter OPTIMIZER_USE_PENDING_STATISTICS
to true
as shown:
The following example changes the email addresses of all customers named Bruce Chalmers:
The optimizer uses the pending statistics instead of the published statistics when compiling all SQL statements in this session.
sh.customers
. For example, execute the following program:
sh.sales
table. For example, execute the following program:
Subsequently, when you gather statistics on the sh.sales
table, the database does not automatically publish statistics when the gather job completes. Instead, the database stores the statistics in the USER_TAB_PENDING_STATS
table.
sh.sales
. For example, run the following program:
sh.sales
. Assume you change your mind and now want to delete pending statistics for sh.sales
. Run the following program:
sh.customers
and sh.sales
tables back to their default setting. For example, execute the following program:
DBMS_STATS
enables you to collect extended statistics, which are statistics that can improve cardinality estimates when multiple predicates exist on different columns of a table, or when predicates use expressions. An extension is either a column group or an expression.
Oracle Database supports the following types of extended statistics:
This type of extended statistics can improve cardinality estimates when multiple columns from the same table occur together in a SQL statement. See "Managing Column Group Statistics".
This type of extended statistics improves optimizer estimates when predicates use expressions, for example, built-in or user-defined functions. See "Managing Expression Statistics".
Note: You cannot create extended statistics on virtual columns. See Oracle Database SQL Language Reference for a list of restrictions on virtual columns. |
A column group is a set of columns that is treated as a unit. By gathering statistics on a column group, the optimizer can more accurately determine the cardinality estimate when a query groups these columns together.
As explained in "SQL Plan Directives", the optimizer can use SQL plan directives to generate a more optimal plan. When applicable, a SQL plan directive can automatically trigger the creation of column group statistics.
The following sections provide an overview of column group statistics, and explain how to manage them manually:
See Also:
|
Individual column statistics are useful for determining the selectivity of a single predicate in a WHERE
clause. However, when the WHERE
clause includes multiple predicates on different columns from the same table, individual column statistics do not show the relationship between the columns. The optimizer assumes no relationship exists between the columns, so it calculates the selectivity of the predicates independently, and then combines them. However, if a correlation between the single columns exists, then the optimizer cannot take it into account when determining a cardinality estimate, which it creates by multiplying the selectivity of each table predicate by the number of rows.
Figure 13-2 contrasts two ways of gathering statistics on the cust_state_province
and country_id
columns of the sh.customers
table. The diagram shows DBMS_STATS
collecting statistics on each column individually and on the group.
Use DBMS_STATS
to detect and create column groups as follows:
Note: The optimizer uses column group statistics for equality predicates, inlist predicates, and for estimating the group by cardinality. |
The following query on the DBA_TAB_COL_STATISTICS
table shows information about statistics that have been gathered on the columns cust_state_province
and country_id
from the sh.customers
table:
Sample output is as follows:
As shown in the following query, 3341 customers reside in California:
Consider an explain plan for a query of customers in the state CA
and in the country with ID 52790
(USA):
Based on the single-column statistics for the country_id
and cust_state_province
columns, the optimizer estimates that the query will return 128 rows. 3341 customers reside in California, but the optimizer does not know that California is in the USA, and so greatly underestimates cardinality by assuming that both predicates reduce the number of returned rows.
You can make the optimizer aware of the real-world relationship between values in country_id
and cust_state_province
by gathering column group statistics. These statistics enable the optimizer to give a more accurate cardinality estimate.
Table 13-4 lists the DBMS_STATS
program units that are relevant for detecting and creating column groups.
Table 13-4 DBMS_STATS Column Group Program Units
Program Unit | Description |
---|---|
| Iterates over the SQL statements in the specified workload, compiles them, and then seeds column usage information for the columns that appear in these statements. To determine the appropriate column groups, the database must observe a representative workload. You do not need to run the queries themselves during the monitoring period. Instead, you can run |
| Generates a report that lists the columns that were seen in filter predicates, join predicates, and group by clauses in the workload. You can use this function to review column usage information recorded for a specific table. |
| Creates extensions, which are either column groups or expressions. The database gathers statistics for the extension when either a user-generated or automatic statistics gathering job gathers statistics for the table. |
You can use DBMS_STATS.SEED_COL_USAGE
and REPORT_COL_USAGE
to determine which column groups are required for a table based on a specified workload. This technique is useful when you do not know which extended statistics to create. This technique does not work for expression statistics.
Assumptions
This tutorial assumes the following:
sh.customers_test
table (created from the customers
table) that use predicates referencing the columns country_id
and cust_state_province
. To detect column groups:
sh
, and then create the customers_test
table and gather statistics for it: In a different SQL*Plus session, connect as SYS
and run the following PL/SQL program to enable monitoring for 300 seconds:
As user sh
, run explain plans for two queries in the workload.
The following examples show the explain plans for two queries on the customers_test
table:
Sample output appears below:
The first plan shows a cardinality of 1 row for a query that returns 932 rows. The second plan shows a cardinality of 1949 rows for a query that returns 145 rows.
Call the DBMS_STATS.REPORT_COL_USAGE
function to generate a report:
The report appears below:
In the preceding report, the first three columns were used in equality predicates in the first monitored query:
All three columns appeared in the same WHERE
clause, so the report shows them as a group filter. In the second query, two columns appeared in the GROUP BY
clause, so the report labels them as GROUP_BY
. The sets of columns in the FILTER
and GROUP_BY
report are candidates for column groups.
As explained in Table 13-4, you can use the DBMS_STATS.CREATE_EXTENDED_STATS
function to create column groups that were detected previously by executing DBMS_STATS.SEED_COL_USAGE
.
Assumptions
This tutorial assumes that you have performed the steps in "Detecting Useful Column Groups for a Specific Workload".
To create column groups:
customers_test
table based on the usage information captured during the monitoring window. For example, run the following query:
Sample output appears below:
The database created two column groups for customers_test
: one column group for the filter predicate and one group for the group by operation.
Run GATHER_TABLE_STATS
to regather the statistics for customers_test
:
sh
, run explain plans for two queries in the workload. Check the USER_TAB_COL_STATISTICS
view to determine which additional statistics were created by the database:
Partial sample output appears below:
This example shows the two column group names returned from the DBMS_STATS.CREATE_EXTENDED_STATS
function. The column group created on CUST_CITY
, CUST_STATE_PROVINCE
, and COUNTRY_ID
has a height-balanced histogram.
The following examples show the explain plans for two queries on the customers_test
table:
The new plans show more accurate cardinality estimates:
In some cases, you may know the column group that you want to create. The METHOD_OPT
argument of the DBMS_STATS.GATHER_TABLE_STATS
function can create and gather statistics on a column group automatically. You can create a new column group by specifying the group of columns using FOR COLUMNS
.
Assumptions
This tutorial assumes the following:
cust_state_province
and country_id
columns in the customers
table in sh
schema. To create a column group and gather statistics for this group:
sh
user. For example, execute the following PL/SQL program:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.GATHER_TABLE_STATS procedure |
To obtain the name of a column group, use the DBMS_STATS.SHOW_EXTENDED_STATS_NAME
function or a database view. You can also use views to obtain information such as the number of distinct values, and whether the column group has a histogram.
Assumptions
This tutorial assumes the following:
cust_state_province
and country_id
columns in the customers
table in sh
schema. To monitor a column group:
sh
user. SHOW_EXTENDED_STATS_NAME
function. For example, run the following PL/SQL program:
The output is similar to the following:
USER_STAT_EXTENSIONS
view. For example, run the following query:
For example, run the following query:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.SHOW_EXTENDED_STATS_NAME function |
Use the DBMS_STATS.DROP_EXTENDED_STATS
function to delete a column group from a table.
Assumptions
This tutorial assumes the following:
cust_state_province
and country_id
columns in the customers
table in sh
schema. To drop a column group:
sh
user. For example, the following PL/SQL program deletes a column group from the customers
table:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.DROP_EXTENDED_STATS function |
The type of extended statistics known as expression statistics improve optimizer estimates when a WHERE
clause has predicates that use expressions.
This section contains the following topics:
When an expression is applied to a column in the WHERE
clause in the form(
function
(
col
)=
constant
)
, the optimizer has no way of knowing how this SQL function affects the cardinality of the predicate unless a function-based index had been created. Starting in Oracle Database 11g, you can gather expression statistics on the expression(
function
(
col
)
itself.
Figure 13-3 shows the optimizer using statistics to generate a plan for a query that uses a function. The top shows the optimizer checking statistics for the column. The bottom shows the optimizer checking statistics corresponding to the expression used in the query. The expression statistics yield more accurate estimates.
As shown in Figure 13-3, when expression statistics are not available, the optimizer can produce suboptimal plans.
The following query of the sh.customers
table shows that 3341 customers are in the state of California:
Consider the plan for the same query with the LOWER()
function applied:
Because no expression statistics exist for LOWER(cust_state_province)='ca'
, the optimizer estimate is significantly off. You can use DBMS_STATS
procedures to correct these estimates.
You can use DBMS_STATS
to create statistics for a user-specified expression. You have the option of using either of the following program units:
GATHER_TABLE_STATS
procedure CREATE_EXTENDED_STATISTICS
function followed by the GATHER_TABLE_STATS
procedure Assumptions
This tutorial assumes the following:
sh.customers
that use the UPPER(cust_state_province)
function. UPPER(cust_state_province)
expression. To create expression statistics:
sh
user. For example, run the following command, specifying the function in the method_opt
argument:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.GATHER_TABLE_STATS procedure |
You can use the database view DBA_STAT_EXTENSIONS
and the DBMS_STATS.SHOW_EXTENDED_STATS_NAME
function to obtain information about expression statistics. You can also use views to obtain information such as the number of distinct values, and whether the column group has a histogram.
Assumptions
This tutorial assumes the following:
LOWER(cust_state_province)
expression. To monitor expression statistics:
sh
user. For example, run the following query:
Sample output appears as follows:
For example, run the following query:
See Also:
|
Use the DBMS_STATS.DROP_EXTENDED_STATS
function to delete a column group from a table.
Assumptions
This tutorial assumes the following:
LOWER(cust_state_province)
expression. To drop expression statistics:
sh
user. For example, the following PL/SQL program deletes a column group from the customers
table:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.DROP_EXTENDED_STATS procedure |
You can lock statistics to prevent them from changing. After statistics are locked, you cannot make modifications to the statistics until the statistics have been unlocked.
Locking procedures are useful in a static environment when you want to guarantee that the statistics and resulting plan never change. For example, you may want to prevent new statistics from being gathered on a table or schema by the DBMS_STATS_JOB
process, such as highly volatile tables.
When you lock statistics on a table, all dependent statistics are locked. The locked statistics include table statistics, column statistics, histograms, and dependent index statistics. To overwrite statistics even when they are locked, you can set the value of the FORCE
argument in various DBMS_STATS
procedures, for example, DELETE_*_STATS
and RESTORE_*_STATS
, to true
.
The DBMS_STATS
package provides two procedures for locking statistics: LOCK_SCHEMA_STATS
and LOCK_TABLE_STATS
.
Assumptions
This tutorial assumes the following:
oe.orders
table and on the hr
schema. oe.orders
table statistics and hr
schema statistics from changing. To lock statistics:
oe
user. oe.orders
. For example, execute the following PL/SQL program:
hr
user. hr
schema. For example, execute the following PL/SQL program:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.LOCK_TABLE_STATS procedure |
The DBMS_STATS
package provides two procedures for unlocking statistics: UNLOCK_SCHEMA_STATS
and UNLOCK_TABLE_STATS
.
Assumptions
This tutorial assumes the following:
oe.orders
table and on the hr
schema. To unlock statistics:
oe
user. oe.orders
. For example, execute the following PL/SQL program:
hr
user. hr
schema. For example, execute the following PL/SQL program:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.UNLOCK_TABLE_STATS procedure |
Whenever statistics in the data dictionary are modified, the database automatically saves old versions of statistics. If newly collected statistics lead to suboptimal execution plans, then you may want to revert to the previous statistics. In this way, restoring optimizer statistics can aid in troubleshooting suboptimal plans.
Figure 13-4 illustrates a timeline for restoring statistics. In the graphic, statistics collection occurs on August 10 and August 20. On August 24, the DBA determines that the current statistics may be causing the optimizer to generate suboptimal plans. On August 25, the administrator restores the statistics collected on August 10.
Figure 13-4 Restoring Optimizer Statistics
Restoring statistics is similar to importing and exporting statistics. In general, restore statistics instead of exporting them in the following situations:
Export statistics rather than restoring them in the following situations:
See Also: Oracle Database PL/SQL Packages and Types Reference for an overview of the procedures for restoring and importing statistics |
When restoring previous versions of statistics, the following limitations apply:
DBMS_STATS.RESTORE_*_STATS
procedures cannot restore user-defined statistics. ANALYZE
command has been used for collecting statistics. RESTORE_*_STATS
procedures is lost. Without this data, these features do not function properly. To remove all rows from a table, and to restore these statistics with DBMS_STATS
, use TRUNCATE
instead of dropping and re-creating the same table. You can restore statistics using the DBMS_STATS.RESTORE_*_STATS
procedures. The procedures listed in Table 13-5 accept a timestamp as an argument and restore statistics as of the specified time (as_of_timestamp
).
Table 13-5 DBMS_STATS Restore Procedures
Procedure | Description |
---|---|
| Restores statistics of all dictionary tables (tables of |
| Restores statistics of all fixed tables as of a specified timestamp. |
| Restores statistics of all tables of a schema as of a specified timestamp. |
| Restores system statistics as of a specified timestamp. |
| Restores statistics of a table as of a specified timestamp. The procedure also restores statistics of associated indexes and columns. If the table statistics were locked at the specified timestamp, then the procedure locks the statistics. |
Dictionary views display the time of statistics modifications. You can use the following views to determine the time stamp to be use for the restore operation:
DBA_OPTSTAT_OPERATIONS
view contain history of statistics operations performed at schema and database level using DBMS_STATS
. DBA_TAB_STATS_HISTORY
views contains a history of table statistics modifications. Assumptions
This tutorial assumes the following:
oe.orders
table, the optimizer began choosing suboptimal plans for queries of this table. To restore optimizer statistics:
oe.orders
. For example, run the following query:
Sample output is as follows:
For example, restore the oe.orders
table statistics to August 10, 2012:
You can specify any date between 8/10 and 8/20 because DBMS_STATS
restores statistics as of the specified time.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more about theDBMS_STATS.RESTORE_TABLE_STATS procedure |
By default, the database retains optimizer statistics for 31 days, after which time the statistics are scheduled for purging. You can use the DBMS_STATS
package to determine the retention period, change the period, and manually purge old statistics.
This section contains the following topics:
You can use DBMS_STATS
procedures to obtain historical information for optimizer statistics. This information is useful when you want to determine how long the database retains optimizer statistics, and how far back these statistics can be restored.
You can use the following procedure to obtain information about the optimizer statistics history:
GET_STATS_HISTORY_RETENTION
This function can retrieve the current statistics history retention value.
GET_STATS_HISTORY_AVAILABILITY
This function retrieves the oldest time stamp when statistics history is available. Users cannot restore statistics to a time stamp older than the oldest time stamp.
To obtain optimizer statistics history information:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.GET_STATS_HISTORY_RETENTION procedure |
By default, the database retains optimizer statistics for 31 days. You can configure the retention period using the DBMS_STATS.ALTER_STATS_HISTORY_RETENTION
procedure.
Prerequisites
To run this procedure, you must have either the SYSDBA
privilege, or both the ANALYZE ANY DICTIONARY
and ANALYZE ANY
system privileges.
Assumptions
This tutorial assumes the following:
set_opt_stats_retention
that you can use to change the optimizer statistics retention period. To change the optimizer statistics retention period:
For example, create the following procedure:
For example, execute the procedure that you created in the previous step (sample output included):
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.ALTER_STATS_HISTORY_RETENTION procedure |
Automatic purging is enabled when the STATISTICS_LEVEL
initialization parameter is set to TYPICAL
or ALL
. The database purges all history older than the older of (current time - the ALTER_STATS_HISTORY_RETENTION
setting) and (time of the most recent statistics gathering - 1).
You can purge old statistics manually using the PURGE_STATS
procedure. If you do not specify an argument, then this procedure uses the automatic purging policy. If you specify the before_timestamp
parameter, then the database purges statistics saved before the specified timestamp.
Prerequisites
To run this procedure, you must have either the SYSDBA
privilege, or both the ANALYZE ANY DICTIONARY
and ANALYZE ANY
system privileges.
Assumptions
This tutorial assumes that you want to purge statistics more than one week old.
To purge optimizer statistics:
DBMS_STATS.PURGE_STATS
procedure. For example, execute the procedure as follows:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_STATS.PURGE_STATS procedure |
You can export and import optimizer statistics from the data dictionary to user-defined statistics tables. You can also copy statistics from one database to another database.
Importing and exporting are especially useful for testing an application using production statistics. You use DBMS_STATS
to export schema statistics from a production database to a test database so that developers can tune execution plans in a realistic environment before deploying applications.
When you transport optimizer statistics between databases, you must use DBMS_STATS
to copy the statistics to and from a staging table, and tools to make the table contents accessible to the destination database. Figure 13-5 illustrates the process using Oracle Data Pump and ftp
.
Figure 13-5 Transporting Optimizer Statistics
As shown in Figure 13-5, the basic steps are as follows:
DBMS_STATS.EXPORT_SCHEMA_STATS
. .dmp
file using Oracle Data Pump. .dmp
file from the production host to the test host using a transfer tool such as ftp
. .dmp
file to a staging table using Oracle Data Pump. DBMS_STATS.IMPORT_SCHEMA_STATS
. This section explains how to transport schema statistics from a production database to a test database.
Prerequisites and Restrictions
When preparing to export optimizer statistics, note the following:
DBMS_STATS.CREATE_STAT_TABLE
creates the statistics table. DBMS_STATS
import procedure. exp
) does not export statistics with the data, but this restriction does not apply to Data Pump Export. Note: Exporting and importing statistics usingDBMS_STATS is a distinct operation from using Data Pump Export and Import. |
Assumptions
This tutorial assumes the following:
sh
schema statistics on a production database and use DBMS_STATS
to import them into a test database. dba1
exists on both production and test databases. opt_stats
to store the schema statistics. opt_stats
. To generate schema statistics and import them into a separate database:
dba1
. For example, execute the following PL/SQL program to create user statistics table opt_stats
:
For example, manually gather schema statistics as follows:
DBMS_STATS
to export the statistics. For example, retrieve schema statistics and store them in the opt_stats
table created previously:
For example, run the expdp
command at the operating schema prompt:
For example, run the impdp
command at the operating schema prompt:
dba1
. DBMS_STATS
to import statistics from the user statistics table and store them in the data dictionary. The following PL/SQL program imports schema statistics from table opt_stats
into the data dictionary:
See Also:
|
You can run the DBMS_STATS
statistics gathering procedures in reporting mode. In this case, the optimizer does not actually gather statistics, but reports objects that would be processed if you were to use a specified statistics gathering function.
Table 13-6 lists the DBMS_STATS.REPORT_GATHER_*_STATS
functions. For all functions, the input parameters are the same as for the corresponding GATHER_*_STATS
procedure, with the following additional parameters: detail_level
and format
. Supported formats are XML
, HTML
, and TEXT
. See Oracle Database PL/SQL Packages and Types Reference for complete syntax and semantics for the reporting mode functions.
Table 13-6 DBMS_STATS Reporting Mode Functions
Function | Description |
---|---|
| Runs |
| Runs |
| Runs |
| Runs |
| Runs |
| Runs the automatic statistics gather job in reporting mode. The procedure does not actually collect statistics, but reports all objects that would be affected by running the job. |
Assumptions
This tutorial assumes that you want to generate an HTML report of the objects that would be affected by running GATHER_SCHEMA_STATS
on the oe
schema.
To report on objects affected by running GATHER_SCHEMA_STATS:
DBMS_STATS.REPORT_GATHER_SCHEMA_STATS
function. For example, run the following commands in SQL*Plus:
The following graphic shows a partial example report:
You can use DBMS_STATS
functions to report on a specific statistics gathering operation or on operations that occurred during a specified time. This section shows the command-line interface. To learn about the Cloud Control interface, see "Graphical Interface for Optimizer Statistics Management".
Table 13-7 lists the functions. See Oracle Database PL/SQL Packages and Types Reference for complete syntax and semantics for the functions that report on statistics operations.
Table 13-7 DBMS_STATS Reporting Functions
Function | Description |
---|---|
| Generates a report of all statistics operations that occurred between two points in time. You can narrow the scope of the report to include only automatic statistics gathering runs. You can also provide a set of pluggable database (PDB) IDs so that the database reports only statistics operations from the specified PDBs. |
| Generates a report of the specified operation. Optionally, you can specify a particular PDB ID in a container database (CDB). |
Assumptions
This tutorial assumes that you want to generate HTML reports of the following:
To report on all operations in the past day:
DBMS_STATS.REPORT_STATS_OPERATIONS
function. For example, run the following commands:
The following graphic shows a sample report:
DBMS_STATS.REPORT_SINGLE_STATS_OPERATION
function for an individual operation. For example, run the following program to generate a report of operation 848
:
The following graphic shows a sample report:
See Also:
|
As explained in "SQL Plan Directives", the database automatically manages SQL plan directives. If the directives are not used in 53 weeks, then the database automatically purges them.
You can use DBMS_SPD
procedures and functions to manage directives manually.
Table 13-8 lists some of the more commonly used procedures and functions. See Oracle Database PL/SQL Packages and Types Reference for complete syntax and semantics for the DBMS_SPD
package.
Table 13-8 DBMS_SPD Procedures
Procedure | Description |
---|---|
| Forces the database to write directives from memory to persistent storage in the |
| Drops a SQL plan directive. |
Prerequisites
You must have the Administer SQL Management Object privilege to execute the DBMS_SPD
APIs.
Assumptions
This tutorial assumes that you want to do the following:
sh
schema to persistent storage. sh
schema. To write and then delete all sh schema plan directives:
For example, execute the following DBMS_SPD
program:
sh
schema. Example 13-1 queries the data dictionary for information about the directive.
Example 13-1 Display Directives for sh Schema
sh
schema. The following PL/SQL program unit deletes the SQL plan directive with the ID 1484026771529551585
:
See Also:
|
This chapter contains the following topics:
In general, optimizer defaults are adequate for most operations. However, in some cases you may have information unknown to the optimizer, or need to tune the optimizer for a specific type of statement or workload. In such cases, influencing the optimizer may provide better performance.
You can influence the optimizer using several techniques, including SQL profiles, SQL Plan Management, initialization parameters, and hints. Figure 14-1 shows the principal techniques for influencing the optimizer.
Figure 14-1 Techniques for Influencing the Optimizer
The overlapping squares in Figure 14-1 show that SQL plan management uses both initialization parameters and hints. SQL profiles also technically include hints.
You can use the following techniques to influence the optimizer:
Parameters influence many types of optimizer behavior at the database instance and session level. The most important parameters are covered in "Influencing the Optimizer with Initialization Parameters".
A hint is a commented instruction in a SQL statement. Hints control a wide range of behavior. See "Influencing the Optimizer with Hints".
DBMS_STATS
This package updates and manages optimizer statistics. The more accurate the statistics, the better the optimizer estimates.
This chapter does not cover DBMS_STATS
. See Chapter 12, "Managing Optimizer Statistics: Basic Topics."
A SQL profile is a database object that contains auxiliary statistics specific to a SQL statement. Conceptually, a SQL profile is to a SQL statement what a set of object-level statistics is to a table or index. A SQL profile can correct suboptimal optimizer estimates discovered during SQL tuning.
This chapter does not cover SQL profiles. See Chapter 22, "Managing SQL Profiles."
SQL plan management is a preventative mechanism that enables the optimizer to automatically manage execution plans, ensuring that the database uses only known or verified plans.
This chapter does not cover SQL plan management. See Chapter 23, "Managing SQL Plan Baselines."
Note: A stored outline is a legacy technique that serve a similar purpose to SQL plan baselines. See Chapter 24, "Migrating Stored Outlines to SQL Plan Baselines" to learn how to migrate stored outlines to SQL plan baselines. |
In some cases, multiple techniques optimize the same behavior. For example, you can set optimizer goals using both initialization parameters and hints.
This section contains the following topics:
Oracle Database includes several initialization parameters that can influence optimizer behavior. Table 14-1 lists some of the most important.
Table 14-1 Initialization Parameters That Control Optimizer Behavior
Initialization Parameter | Description |
---|---|
| Converts literal values in SQL statements to bind variables. Converting the values improves cursor sharing and can affect the execution plans of SQL statements. The optimizer generates the execution plan based on the presence of the bind variables and not the actual literal values. Set to |
| Specifies the number of blocks that are read in a single I/O during a full table scan or index fast full scan. The optimizer uses the value of this parameter to calculate the cost of full table scans and index fast full scans. Larger values result in a lower cost for full table scans, which may result in the optimizer choosing a full table scan over an index scan. The default value of this parameter corresponds to the maximum I/O size that the database can perform efficiently. This value is platform-dependent and is 1MB for most platforms. Because the parameter is expressed in blocks, it is set to a value equal to the maximum I/O size that can be performed efficiently divided by the standard block size. If the number of sessions is extremely large, then the multiblock read count value decreases to avoid the buffer cache getting flooded with too many table scan buffers. |
| Controls the reporting mode for automatic reoptimization and adaptive plans (see "Adaptive Plans"). By default, reporting mode is off (If set to |
| Sets the optimizer mode at database instance startup. Possible values are |
| Controls the cost analysis of an index probe with a nested loop. The range of values |
| Adjusts the cost of index probes. The range of values is |
| Enables or disables the use of invisible indexes. |
| Controls whether the database uses the SQL query result cache for all queries, or only for the queries that are annotated with the result cache hint. When set to When setting this parameter, consider how the result cache handles PL/SQL functions. The database invalidates query results in the result cache using the same mechanism that tracks data dependencies for PL/SQL functions, but otherwise permits caching of queries that contain PL/SQL functions. Because PL/SQL function result cache invalidation does not track all kinds of dependencies (such as on sequences, |
| Changes the memory allocated to the result cache. If you set this parameter to |
| Specifies the maximum amount of cache memory that any single result can use. The default value is 5%, but you can specify any percentage value between |
| Specifies the number of minutes for which a result that depends on remote database objects remains valid. The default is |
| Enables the optimizer to cost a star transformation for star queries (if |
See Also:
|
The OPTIMIZER_FEATURES_ENABLE
initialization parameter controls a set of optimizer-related features, depending on the release. The parameter accepts one of a list of valid string values corresponding to the release numbers, such as 10.2.0.1
or 11.2.0.1
.
You can use this parameter to preserve the old behavior of the optimizer after a database upgrade. For example, if you upgrade Oracle Database 11g from Release 1 (11.1.0.7) to Release 2 (11.2.0.2), then the default value of the OPTIMIZER_FEATURES_ENABLE
parameter changes from 11.1.0.7
to 11.2.0.2
. This upgrade results in the optimizer enabling optimization features based on 11.2.0.2.
For backward compatibility, you may not want the execution plans to change because of new optimizer features in a new release. In such cases, you can set OPTIMIZER_FEATURES_ENABLE
to an earlier version. If you upgrade to a new release, and if you want to enable the features in the new release, then you do not need to explicitly set the OPTIMIZER_FEATURES_ENABLE
initialization parameter.
Caution: Oracle does not recommend explicitly setting theOPTIMIZER_FEATURES_ENABLE initialization parameter to an earlier release. To avoid SQL performance regression that may result from execution plan changes, consider using SQL plan management instead. See Chapter 23, "Managing SQL Plan Baselines." |
Assumptions
This tutorial assumes the following:
To enable query optimizer features for a specific release:
For example, run the following SQL*Plus command:
For example, run the following SQL statement to set the optimizer version to 10.2.0.5:
The preceding statement restores the optimizer functionality that existed in Oracle Database 10g Release 2 (10.2.0.5).
See Also: Oracle Database Reference to learn about optimizer features enabled when you setOPTIMIZER_FEATURES_ENABLE to different release values |
The optimizer goal is the prioritization of resource usage by the optimizer. Using the OPTIMIZER_MODE
initialization parameter, you can set the following optimizer goals:
When you set the OPTIMIZER_MODE
value to ALL_ROWS
, the database uses the least amount of resources necessary to process all rows that the statement accessed.
For batch applications such as Oracle Reports, optimize for best throughput. Usually, throughput is more important in batch applications because the user is only concerned with the time necessary for the application to complete. Response time is less important because the user does not examine the results of individual statements while the application is running.
When you set the OPTIMIZER_MODE
value to FIRST_ROWS_
n
, the database optimizes with a goal of best response time to return the first n rows, where n equals 1
, 10
, 100
, or 1000
.
For interactive applications in Oracle Forms or SQL*Plus, optimize for response time. Usually, response time is important because the interactive user is waiting to see the first row or rows that the statement accessed.
Assumptions
This tutorial assumes the following:
To enable query optimizer features for a specific release:
For example, run the following SQL*Plus command:
For example, run the following SQL statement to configure the system to retrieve the first 10 rows as quickly as possible:
For example, run the following SQL statement to configure only this session to optimize for throughput:
In Oracle Database, adaptive query optimization is the process by which the optimizer adapts an execution plan based on statistics collected at run time (see "About Adaptive Query Optimization"). Adaptive optimization is enabled under the following conditions:
OPTIMIZER_FEATURES_ENABLE
initialization parameter is set to 12.1.0.1
or later. OPTIMIZER_ADAPTIVE_REPORTING_ONLY
initialization parameter is set to false
(default). If OPTIMIZER_ADAPTIVE_REPORTING_ONLY
is set to true
, then adaptive optimization runs in reporting-only mode. In this case, the database gathers information required for adaptive optimization, but does not change the plans. An adaptive plan always chooses the default plan, but the database collects information about the execution as if the parameter were set to false
.
View adaptive reports by using DBMS_XPLAN.DISPLAY_CURSOR
. The format argument passed to DBMS_XPLAN.DISPLAY_CURSOR
must include +ADAPTIVE
.
Assumptions
This tutorial assumes the following:
OPTIMIZER_FEATURES_ENABLE
initialization parameter is set to 12.1.0.1
or later. OPTIMIZER_ADAPTIVE_REPORTING_ONLY
initialization parameter is set to false
(default). To disable adaptive optimization:
SYSTEM
, and then query the current settings. For example, run the following SQL*Plus command:
OPTIMIZER_ADAPTIVE_REPORTING_ONLY
initialization parameter to true
. For example, in SQL*Plus run the following SQL statement:
DBMS_XPLAN.DISPLAY_CURSOR
to view the reports. See Also:
|
Optimizer hints are special comments in a SQL statement that pass instructions to the optimizer. The optimizer uses hints to choose an execution plan for the statement unless prevented by some condition.
This section contains the following topics:
Use hints to influence the optimizer mode, query transformation, access path, join order, and join methods. For example, Figure 14-2 shows how you can use a hint to tell the optimizer to use a specific index for a specific statement. Oracle Database SQL Language Reference lists the most common hints by functional category.
The advantage of hints is that they enable you to make decisions normally made by the optimizer. In a test environment, hints are useful for testing the performance of a specific access path. For example, you may know that an index is more selective for certain queries, as in Figure 14-2. In this case, the hint may cause the optimizer to generate a better plan.
The disadvantage of hints is the extra code that you must manage, check, and control. Hints were introduced in Oracle7, when users had little recourse if the optimizer generated suboptimal plans. Because changes in the database and host environment can make hints obsolete or have negative consequences, a good practice is to test using hints, but use other techniques to manage execution plans.
Oracle provides several tools, including SQL Tuning Advisor, SQL plan management, and SQL Performance Analyzer, to address performance problems not solved by the optimizer. Oracle strongly recommends that you use these tools instead of hints because they provide fresh solutions as the data and database environment change.
Hints fall into the following types:
Single-table hints are specified on one table or view. INDEX
and USE_NL
are examples of single-table hints. The following statement uses a single-table hint:
Multi-table hints are like single-table hints except that the hint can specify multiple tables or views. LEADING
is an example of a multi-table hint. The following statement uses a multi-table hint:
Note: USE_NL(table1 table2) is not considered a multi-table hint because it is a shortcut for USE_NL(table1) and USE_NL(table2) . |
Query block hints operate on single query blocks. STAR_TRANSFORMATION
and UNNEST
are examples of query block hints. The following statement uses a query block hint:
Statement hints apply to the entire SQL statement. ALL_ROWS
is an example of a statement hint. The following statement uses a statement hint:
When you specify a hint, it optimizes only the statement block in which it appears, overriding any instance-level or session-level parameters. A statement block is one of the following:
MERGE
, SELECT
, INSERT
, UPDATE
, or DELETE
statement UNION
, MINUS
, INTERSECT
) Example 14-1 shows a query consisting of two component queries and the UNION
operator. This statement has two blocks, one for each component query. Hints in the first component query apply only to its optimization, not to the optimization of the second component query. For example, in the first week of 2011 you query current year and last year sales. You apply FIRST_ROWS(10)
to the query of last year's (2010) sales and the ALL_ROWS
hint to the query of this year's (2011) sales.
Example 14-1 Query Using a Set Operator
You must enclose hints within a SQL comment. The hint comment must immediately follow the first keyword of a SQL statement block. You can use either style of comment: a slash-star (/*
) or pair of dashes (--
). The plus-sign (+) hint delimiter must come immediately after the comment delimiter, as in the following fragment:
The database ignores incorrectly specified hints. The database also ignores combinations of conflicting hints, even if these hints are correctly specified. If one hint is incorrectly specified, but a hint in the same comment is correctly specified, then the database considers the correct hint.
Caution: The database does not issue error messages for hints that it ignores. |
A statement block can have only one comment containing hints, but it can contain many space-separated hints. For example, a complex query may include multiple table joins. If you specify only the INDEX
hint for a specified table, then the optimizer must determine the remaining access paths and corresponding join methods. The optimizer may not use the INDEX
hint because the join methods and access paths prevent it. Example 14-2 uses multiple hints to specify the exact join order.
Example 14-2 Multiple Hints
See Also: Oracle Database SQL Language Reference to learn about the syntax rules for comments and hints |
The join order can have a significant effect on the performance of a SQL statement. In some cases, you can specify join order hints in a SQL statement so that it does not access rows that have no effect on the result.
The driving table in a join is the table to which other tables are joined. In general, the driving table contains the filter condition that eliminates the highest percentage of rows in the table.
Consider the following guidelines:
The following example shows how to tune join order effectively:
Each of the first three conditions in the previous example is a filter condition that applies to a single table. The last two conditions are join conditions.
Filter conditions dominate the choice of driving table and index. In general, the driving table contains the filter condition that eliminates the highest percentage of rows. Thus, because the range of 100 to 200 is narrow compared with the range of acol
, but the ranges of 10000 and 20000 are relatively large, taba
is the driving table, all else being equal.
With nested loops joins, the joins occur through the join indexes, which are the indexes on the primary or foreign keys used to connect that table to an earlier table in the join tree. Rarely do you use the indexes on the non-join conditions, except for the driving table. Thus, after taba
is chosen as the driving table, use the indexes on b
.key1
and c
.key2
to drive into tabb
and tabc
, respectively.
You can reduce the work of the following join by first joining to the table with the best still-unused filter. Thus, if bcol
BETWEEN
... is more restrictive (rejects a higher percentage of the rows) than ccol
BETWEEN
..., then the last join becomes easier (with fewer rows) if tabb
is joined before tabc
.
ORDERED
or STAR
hint to force the join order. This chapter contains the following topics:
A bind variable is a placeholder in a SQL statement that must be replaced with a valid value or value address for the statement to execute successfully. By using bind variables, you can write a SQL statement that accepts inputs or parameters at run time. The following query uses v_empid
as a bind variable:
In bind variable peeking (also known as bind peeking), the optimizer looks at the value in a bind variable when the database performs a hard parse of a statement.
When a query uses literals, the optimizer can use the literal values to find the best plan. However, when a query uses bind variables, the optimizer must select the best plan without the presence of literals in the SQL text. This task can be extremely difficult. By peeking at bind values, the optimizer can determine the selectivity of a WHERE
clause condition as if literals had been used, thereby improving the plan.
Example 15-1 Bind Peeking
The following 100,000 row emp
table exists in the database. The table has the following definition:
The data is significantly skewed in the deptno
column. The value 10 is found in 99.9% of the rows. Each of the other deptno
values (0
through 9
) is found in 1% of the rows. You have gathered statistics for the table, resulting in a histogram on the deptno
column. You define a bind variable and query emp
using the bind value 9
as follows:
The query returns 10 rows:
To generate the execution plan for the query, the database peeked at the value 9
during the hard parse. The optimizer generated selectivity estimates as if the user had executed the following query:
When choosing a plan, the optimizer only peeks at the bind value during the hard parse. This plan may not be optimal for all possible values.
Oracle Database automatically determines whether the SQL statement or PL/SQL block being issued is identical to another statement currently in the shared pool.
Oracle Database performs the following steps to compare the text of the SQL statement to existing SQL statements in the shared pool:
In this case, the SQL statement does not currently exist in the shared pool, so the database performs a hard parse. This ends the shared pool check.
In this case, the database compares the text of the matched statement to the text of the hashed statement to see if they are identical. The text of the SQL statements or PL/SQL blocks must be identical, character for character, including spaces, case, and comments. For example, the following statements cannot use the same shared SQL area:
Usually, SQL statements that differ only in literals cannot use the same shared SQL area. For example, the following statements do not resolve to the same SQL area:
The only exception to this rule is when the parameter CURSOR_SHARING
has been set to FORCE
, in which case similar statements can share SQL areas. The costs and benefits involved in using CURSOR_SHARING
are explained in "When to Set CURSOR_SHARING to FORCE".
See Also: Oracle Database Reference for more information about theCURSOR_SHARING initialization parameter |
References to schema objects in the SQL statements or PL/SQL blocks must resolve to the same object in the same schema. For example, if two users issue the following SQL statement, and if each user has its own employees
table, then the following statement is not identical because the statement references different employees
tables for each user:
For example, the following statements cannot use the same shared SQL area because the bind variable names differ:
Many Oracle products, such as Oracle Forms and the precompilers, convert the SQL before passing statements to the database. The conversion uniformly changes characters to uppercase, compresses white space, and renames bind variables so that a consistent set of SQL statements is produced.
For example, SQL statements must be optimized using the same optimizer goal (see "Choosing an Optimizer Goal").
The adaptive cursor sharing feature enables a single statement that contains bind variables to use multiple execution plans. Cursor sharing is "adaptive" because the cursor adapts its behavior so that the database does not always use the same plan for each execution or bind variable value.
For appropriate queries, the database monitors data accessed over time for different bind values, ensuring the optimal choice of cursor for a specific bind value. For example, the optimizer might choose one plan for bind value 9
and a different plan for bind value 10
. Cursor sharing is "adaptive" because the cursor adapts its behavior so that the same plan is not always used for each execution or bind variable value.
Adaptive cursor sharing is enabled for the database by default and cannot be disabled. Adaptive cursor sharing does not apply to SQL statements containing more than 14 bind variables.
Note: Adaptive cursor sharing is independent of theCURSOR_SHARING initialization parameter (see "Sharing Cursors for Existing Applications"). Adaptive cursor sharing is equally applicable to statements that contain user-defined and system-generated bind variables. |
A bind-sensitive cursor is a cursor whose optimal plan may depend on the value of a bind variable. The database monitors the behavior of a bind-sensitive cursor that uses different bind values to determine whether a different plan is beneficial.
The criteria used by the optimizer to decide whether a cursor is bind-sensitive include the following:
Example 15-2 Bind-Sensitive Cursors
Example 15-1 queried the emp
table using the bind value 9
for deptno
. In this example, you run the DBMS_XPLAN.DISPLAY_CURSOR
function to show the execution plan:
The output is as follows:
The plan indicates that the optimizer chose an index range scan, which is expected because of the low cardinality of the value 9
. Query V$SQL
to view statistics about the cursor:
As shown in the following output, one child cursor exists for this statement and has been executed once. A small number of buffer gets are associated with the child cursor. Because the deptno
data is skewed, the database created a histogram. This histogram led the database to mark the cursor as bind-sensitive (IS_BIND_SENSITIVE
is Y
).
For each execution of the query with a new bind value, the database records the execution statistics for the new value and compares them to the execution statistics for the previous value. If execution statistics vary greatly, then the database marks the cursor bind-aware.
A bind-aware cursor is a bind-sensitive cursor that is eligible to use different plans for different bind values. After a cursor has been made bind-aware, the optimizer chooses plans for future executions based on the bind value and its selectivity estimate.
When a statement with a bind-sensitive cursor executes, the database decides whether to mark the cursor bind-aware. The decision depends on whether the cursor produces significantly different data access patterns for different bind values. If the database marks the cursor bind-aware, then the next time that the cursor executes the database does the following:
V$SQL.IS_SHAREABLE
is N
). This cursor is no longer usable. The database marks the cursor as able to age out of the shared SQL area quickly. Example 15-3 Bind-Aware Cursors
In Example 15-1 you queried emp
using the bind value 9
. Now you query emp
using the bind value 10
. The query returns 99,900 rows that contain the value 10
:
Because the cursor for this statement is bind-sensitive, the optimizer assumes that the cursor can be shared. Consequently, the optimizer uses the same index range scan for the value 10
as for the value 9
.
The V$SQL
output shows that the same bind-sensitive cursor was executed a second time (the query using 10
) and required many more buffer gets than the first execution:
Now you execute the query using the value 10
a second time. The database compares statistics for previous executions and marks the cursor as bind-aware. In this case, the optimizer decides that a new plan is warranted, so it performs a hard parse of the statement and generates a new plan. The new plan uses a full table scan instead of an index range scan:
A query of V$SQL
shows that the database created an additional child cursor (child number 1
) that represents the plan containing the full table scan. This new cursor shows a lower number of buffer gets and is marked bind-aware:
After you execute the query twice with value 10
, you execute it again using the more selective value 9
. Because of adaptive cursor sharing, the optimizer "adapts" the cursor and chooses an index range scan rather than a full table scan for this value (see "Introduction to Access Paths").
A query of V$SQL
indicates that the database created a new child cursor (child number 2
) for the execution of the query:
Because the database is now using adaptive cursor sharing, the database no longer uses the original cursor (child 0
), which is not bind-aware. The shared SQL area can now age out the defunct cursor.
If the optimizer creates a plan for a bind-aware cursor, and if this plan is the same as an existing cursor, then the optimizer can perform cursor merging. In this case, the database merges cursors to save space in the shared SQL area. The database increases the selectivity range for the cursor to include the selectivity of the new bind.
Suppose you execute a query with a bind value that does not fall within the selectivity ranges of the existing cursors. The database performs a hard parse and generates a new plan and new cursor. If this new plan is the same plan used by an existing cursor, then the database merges these two cursors and deletes one of the old cursors.
You can use the V$
views for adaptive cursor sharing to see selectivity ranges, cursor information (such as whether a cursor is bind-aware or bind-sensitive), and execution statistics:
V$SQL
shows whether a cursor is bind-sensitive or bind-aware V$SQL_CS_HISTOGRAM
shows the distribution of the execution count across a three-bucket execution history histogram V$SQL_CS_SELECTIVITY
shows the selectivity ranges stored for every predicate containing a bind variable if the selectivity was used to check cursor sharing V$SQL_CS_STATISTICS
summarizes the information that the optimizer uses to determine whether to mark a cursor bind-aware. Reuse of shared SQL for multiple users running the same application, avoids hard parsing. Soft parses provide a significant reduction in the use of resources such as the shared pool and library cache latches.
To share cursors:
For example, the following statements cannot use the same shared area because they do not match character for character:
By replacing the literals with a bind variable, only one SQL statement would result, which could be executed twice:
Note: For existing applications where rewriting the code to use bind variables is impractical, you can use theCURSOR_SHARING initialization parameter to avoid some hard parse overhead. See "Sharing Cursors for Existing Applications". |
Typically, the majority of data required by most users can be satisfied using preset queries. Use dynamic SQL where such functionality is required.
Multiple users issuing the same stored procedure use the same shared PL/SQL area automatically. Because stored procedures are stored in a parsed form, their use reduces run-time parsing.
V$SQL_SHARED_CURSOR
to determine why the cursors are not shared. This would include optimizer settings and bind variable mismatches. In SQL parsing, an identical statement is a statement whose text is identical to another, character for character, including spaces, case, and comments. A similar statement is identical except for the values of some literals.
The parse phase compares the statement text with statements in the shared pool to determine whether the statement can be shared. If the initialization parameter CURSOR_SHARING=EXACT
(default), and if a statement in the pool is not identical, then the database does not share the SQL area. Each statement has its own parent cursor and its own execution plan based on the literal in the statement.
When SQL statements use literals rather than bind variables, a nondefault setting for the CURSOR_SHARING
initialization parameter enables the database to replace literals with system-generated bind variables. Using this technique, the database can sometimes reduce the number of parent cursors in the shared SQL area.
When CURSOR_SHARING
is set to a nondefault value, the database performs the following steps during the parse:
If an identical statement is found, then the database skips to Step 3. Otherwise, the database proceeds to the next step.
If a similar statement is not found, then the database performs a hard parse. If a similar statement is found, then the database proceeds to the next step.
If the plan is not applicable, then the database performs a hard parse. If the plan is applicable, then the database proceeds to the next step.
See Also:
|
The best practice is to write sharable SQL and use the default of EXACT
for CURSOR_SHARING
. However, for applications with many similar statements, setting CURSOR_SHARING
to FORCE
can significantly improve cursor sharing, resulting in reduced memory usage, faster parses, and reduced latch contention. Consider this approach when statements in the shared pool differ only in the values of literals, and when response time is poor because of a very high number of library cache misses.
Note: Staring in Oracle Database 12c, theSIMILAR value for CURSOR_SHARING is deprecated. Use FORCE instead. |
When CURSOR_SHARING
is set to FORCE
, the database uses one parent cursor and one child cursor for each distinct SQL statement. The database uses the same plan for each execution of the same statement. For example, consider the following statement:
If you use FORCE
, then the database optimizes this statement as if it contained a bind variable and uses bind peeking to estimate cardinality. Statements that differ only in the bind variable share the same execution plan.
Setting CURSOR_SHARING
to FORCE
has the following drawbacks:
DESCRIBE
) of any selected expressions that contain literals in a SELECT
statement. However, the actual length of the data returned does not change. See Also:
|
This chapter describes how to monitor database operations.
This chapter contains the following topics:
A database operation is a set of database tasks defined by end users or application code, for example, a batch job or Extraction, Transformation, and Loading (ETL) processing. You can define, monitor, and report on database operations.
Database operations are either simple or composite. A simple database operation is a single SQL statement or PL/SQL procedure or function. A composite database operation is activity between two points in time in a database session, with each session defining its own beginning and end points. A session can participate in at most one composite database operation at a time.
Real-Time SQL Monitoring, which was introduced in Oracle Database 11g, enables you to monitor a single SQL statement or PL/SQL procedure. Starting in Oracle Database 12c Release 1 (12.1), Real-Time Database Operations provides the ability to monitor composite operations automatically. The database automatically monitors parallel queries, DML, and DDL statements as soon as execution begins. By default, Real-Time SQL Monitoring automatically starts when a SQL statement runs in parallel, or when it has consumed at least 5 seconds of CPU or I/O time in a single execution.
This section contains the following topics:
In general, monitoring database operations is useful for the following users:
Monitoring database operations is useful for performing the following tasks:
Tracking requires first defining a database operation, for example, though PL/SQL, OCI, or JDBC APIs. After the operation is defined, the database infrastructure determines what to track on behalf of this operation. You can then generate reports on the operation. For example, your tuning task may involve determining which SQL statements run on behalf of a specific batch job, what their execution statistics were, what was occurring in the database when the operation was executing, and so on.
This task involves monitoring a currently executing database operation. The information is particularly useful when you are investigating why an operation is taking a long time to complete.
You may want to detect when a SQL execution uses excessive CPU, issues an excessive amount of I/O, or takes a long time to complete. With Oracle Database Resource Manager (the Resource Manager), you can configure thresholds for each consumer group that specify the maximum resource usage for all SQL executions in the group. When a SQL operation reaches a specified threshold, Resource Manager can switch the operation into a lower-priority consumer group, terminate the session or call, or log the event (see Oracle Database Administrator's Guide). You can then monitor these SQL operations (see "Reporting on Database Operations").
When tuning a database operation, you typically aim to improve the response time. Often the database operation performance issues are mainly SQL performance issues.
The following graphic illustrates the different tasks involved in monitoring database operations:
For simple operations, Real-Time SQL Monitoring helps determine where a currently executing SQL statement is in its execution plan and where the statement is spending its time. You can also see the breakdown of time and resource usage for recently completed statements. In this way, you can better determine why a particular operation is expensive.
Typical use cases for Real-Time SQL Monitoring include the following:
In OLTP and data warehouse environments, a job often logically groups related SQL statements. The job can involve multiple sessions. Database operation monitoring is useful for digging through a suboptimally performing job to determine where resources are being consumed. Thus, database operations enable you to track related information and improve performance tuning time.
Typical use cases for monitoring composite operations include the following:
This section describes the most important concepts for database monitoring:
Setting the CONTROL_MANAGEMENT_PACK_ACCESS
initialization parameter to DIAGNOSTIC+TUNING
(default) enables monitoring of database operations. Real-Time SQL Monitoring is a feature of the Oracle Database Tuning Pack.
Figure 16-1 gives an overview of the architecture for database operations.
Figure 16-1 Architecture for Database Operations
As shown in Figure 16-1, you can use the DBMS_SQL_MONITOR
package to define database operations. After monitoring is initiated, the database stores metadata about the database operations in AWR (see "Reporting on Database Operations"). The database refreshes monitoring statistics in close to real time as each monitored statement executes, typically once every second. The database periodically saves the data to disk.
Every monitored database operation has an entry in the V$SQL_MONITOR
view. This entry tracks key performance metrics collected for the execution, including the elapsed time, CPU time, number of reads and writes, I/O wait time, and various other wait times. The V$SQL_PLAN_MONITOR
view includes monitoring statistics for each operation in the execution plan of the SQL statement being monitored. You can access reports by using DBMS_SQL_MONITOR.REPORT_SQL_MONITOR
, which has an Oracle Enterprise Manager Cloud Control (Cloud Control) interface.
See Also:
|
A composite database operation consists of the activity of one session between two points in time. Exactly one session exists for the duration of the database operation.
SQL statements or PL/SQL procedures running in this session are part of the composite operation. Composite database operations can also be defined in the database kernel. Typical composite operations include SQL*Plus scripts, batch jobs, and ETL processing.
A database operation is uniquely identified by the following information:
This is a user-created name such as daily_sales_report
. The name is the same for a job even if it is executed concurrently by different sessions or on different databases. Database operation names do not reside in different namespaces.
Two or more occurrences of the same DB operation can run at the same time, with the same name but different execution IDs. This numeric ID uniquely identifies different executions of the same database operation.
The database automatically creates an execution ID when you begin a database operation. You can also specify a user-created execution ID.
The database uses the following triplet of values to identify each SQL and PL/SQL statement monitored in the V$SQL_MONITOR
view, regardless of whether the statement is included in a database operation:
SQL_ID
) SQL_EXEC_START
) SQL_EXEC_ID
) You can use zero or more additional attributes to describe and identify the characteristics of a DB operation. Each attribute has a name and value. For example, for operation daily_sales_report
, you might define the attribute db_name
and assign it the value prod
.
See Also:
|
This section contains the following topics:
The Monitored SQL Executions page in Cloud Control is the recommended interface for reporting on database operations.
To access the Monitored SQL Executions page:
The Monitored SQL Executions page appears.
You can use the DBMS_SQL_MONITOR
package to define the beginning and ending of a database operation, and generate a report of the database operations.
Table 16-1 DBMS_SQL_MONITOR
Program Unit | Description |
---|---|
| This function accepts several input parameters to specify the execution, the level of detail in the report, and the report type. If no parameters are specified, then the function generates a text report for the last execution that was monitored. |
| This function associates a session with a database operation. |
| This function disassociates a session from the specified database operation execution. |
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_SQL_MONITOR package |
You can monitor the statistics for SQL statement execution using the V$SQL_MONITOR
, V$SQL_PLAN_MONITOR
, and V$SQL_MONITOR_SESSTAT
views. Table 16-2 summarizes these views.
Table 16-2 Views for Database Operations Monitoring
Package | Description |
---|---|
| This view contains global, high-level information about the top SQL statements in a database operation. Each monitored SQL statement has an entry in this view. Each row contains a SQL statement whose statistics are accumulated from multiple sessions and all of its executions in the operation. The primary key is the combination of the columns The
|
| This view contains the statistics for all sessions involved in the database operation. Most of the statistics are cumulative. The database stores the statistics in XML format instead of using each column for each statistic. This view is primarily intended for the report generator. Oracle recommends that you use |
| This view contains monitoring statistics for each step in the execution plan of the monitored SQL statement. The database updates statistics in |
You can use the preceding views with the following views to get additional information about the monitored execution:
V$ACTIVE_SESSION_HISTORY
V$SESSION
V$SESSION_LONGOPS
V$SQL
V$SQL_PLAN
This section explains the basic tasks in database operations monitoring. Basic tasks are as follows:
This task explains how you can enable automatic monitoring of database operations at the system and statement level.
This section explains how you can define the beginning and end of a database operation using PL/SQL.
This section explains how you can generate and interpret reports on a database operation.
This section contains the following topics:
The SQL monitoring feature is enabled by default when the STATISTICS_LEVEL
initialization parameter is either set to TYPICAL
(the default value) or ALL
. SQL monitoring starts automatically for all long-running queries.
Prerequisites
Because SQL monitoring is a feature of the Oracle Database Tuning Pack, the CONTROL_MANAGEMENT_PACK_ACCESS
initialization parameter must be set to DIAGNOSTIC+TUNING
(the default value).
Assumptions
This tutorial assumes the following:
STATISTICS_LEVEL
initialization parameter is set to BASIC
. To enable monitoring of database operations:
For example, run the following SQL*Plus command:
TYPICAL
. For example, run the following SQL statement:
See Also: Oracle Database Reference to learn about theSTATISTICS_LEVEL and CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter |
When the CONTROL_MANAGEMENT_PACK_ACCESS
initialization parameter is set to DIAGNOSTIC+TUNING
, you can use hints to enable or disable monitoring of specific SQL statements. The MONITOR
hint enables monitoring, whereas the NO_MONITOR
hint disables monitoring.
Two statement-level hints are available to force or prevent the database from monitoring a SQL statement. To force SQL monitoring, use the MONITOR
hint:
This hint is effective only when the CONTROL_MANAGEMENT_PACK_ACCESS
parameter is set to DIAGNOSTIC+TUNING
. To prevent the hinted SQL statement from being monitored, use the NO_MONITOR
reverse hint.
Assumptions
This tutorial assumes the following:
SELECT * FROM sales ORDER BY time_id
. To disable monitoring of database operations for a SQL statement:
NO_MONITOR
hint. For example, run the following statement:
See Also: Oracle Database SQL Language Reference for information about using theMONITOR and NO_MONITOR hints |
Creating a database operation involves explicitly defining its beginning and end points. You can start a database operation by using the DBMS_SQL_MONITOR.BEGIN_OPERATION
function and end the operation by using the DBMS_SQL_MONITOR.END_OPERATION
procedure.
Assumptions
This tutorial assumes the following:
sh.sales
table and the number of customers in the sh.customers
table. sh_count
. To create a database operation:
For example, run the following SQL*Plus command:
For example, execute the BEGIN_OPERATION
function as follows:
For example, run the following statements:
For example, execute the END_OPERATION
procedure as follows:
For example, run the following query (sample output included):
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_SQL_MONITOR package |
By default, AWR automatically captures SQL monitoring reports in XML format. The reports capture only SQL statements that are not executing or queued and have finished execution since the last capture cycle. AWR captures reports only for the most expensive statements according to elapsed execution time.
The Monitored SQL Executions page in Cloud Control summarizes the activity for monitored statements. You can use this page to drill down and obtain additional details about particular statements. The Monitored SQL Executions Details page uses data from several views, including the following:
GV$SQL_MONITOR
GV$SQL_PLAN_MONITOR
GV$SQL_MONITOR_SESSTAT
GV$SQL
GV$SQL_PLAN
GV$ACTIVE_SESSION_HISTORY
GV$SESSION_LONGOPS
DBA_HIST_REPORTS
DBA_HIST_REPORTS_DETAILS
Assumptions
This tutorial assumes the following:
sh
is executing the following long-running parallel query of the sales made to each customer: Note: To generate the SQL monitor report from the command line, run theREPORT_SQL_MONITOR function in the DBMS_SQLTUNE package, as in the following sample SQL*Plus script: VARIABLE my_rept CLOB BEGIN :my_rept :=DBMS_SQLTUNE.REPORT_SQL_MONITOR(); END; / PRINT :my_rept |
To monitor SQL executions:
In the following graphic, the top row shows the parallel query.
In this example, the query has been executing for 1.4 minutes.
The Monitored SQL Details page appears.
The preceding report shows the execution plan and statistics relating to statement execution. For example, the Timeline column shows when each step of the execution plan was active. Times are shown relative to the beginning and end of the statement execution. The Executions column shows how many times an operation was executed.
A message shows the full text of the SQL statement.
A message shows that user I/O is consuming over half of database time.
Database Time measures the amount of time the database has spent working on this SQL statement. This value includes CPU and wait times, such as I/O time. The bar graph is divided into several color-coded portions to highlight CPU resources, user I/O resources, and other resources. You can move the cursor over any portion to view the percentage value of the total.
A message appears.
In the preceding graphic, the IO Requests message shows the total number of read requests issued by the monitored SQL. The message shows that read requests form 80% of the total I/O requests.
See Also:
|
A SQL test case is a set of information that enables a developer to reproduce the execution plan for a specific SQL statement that has encountered a performance problem. SQL Test Case Builder is a tool that automatically gathers information needed to reproduce the problem in a different database instance.
This chapter contains the following topics:
In many cases, a reproducible test case makes it easier to resolve SQL-related problems. SQL Test Case Builder automates the sometimes difficult and time-consuming process of gathering and reproducing as much information as possible about a problem and the environment in which it occurred.
The output of SQL Test Case Builder is a set of scripts in a predefined directory. These scripts contain the commands required to re-create all the necessary objects and the environment. After the test case is ready, you can create a zip file of the directory and move it to another database, or upload the file to Oracle Support.
This section contains the following topics:
In the fault diagnosability infrastructure of Oracle Database, an incident is a single occurrence of a problem. A SQL incident is a SQL-related problem. When a problem (critical error) occurs multiple times, the database creates an incident for each occurrence. Incidents are timestamped and tracked in the Automatic Diagnostic Repository (ADR). Each incident is identified by a numeric incident ID, which is unique within the ADR.
SQL Test Case Builder is accessible any time on the command line. In Oracle Enterprise Manager Cloud Control (Cloud Control), the SQL Test Case pages are only available after a SQL incident is found.
See Also:
|
SQL Test Case Builder captures permanent information such as the query being executed, table and index definitions (but not the actual data), PL/SQL packages and program units, optimizer statistics, SQL plan baselines, and initialization parameter settings. Starting in Oracle Database 12c Release 1 (12.1), SQL Test Case Builder also captures and replays transient information, including information only available as part of statement execution.
SQL Test Case Builder supports the following:
SQL Test Case Builder captures inputs to the decisions made regarding adaptive plans, and replays them at each decision point (see "Adaptive Plans"). For adaptive plans, the final statistics value at each buffering statistics collector is sufficient to decide on the final plan.
The database automatically handles the memory requested for each SQL operation. Actions such as sorting can affect performance significantly. SQL Test Case Builder keeps track of the memory activities, for example, where the database allocated memory and how much it allocated.
Regathering dynamic statistics on a different database does not always generate the same results, for example, when data is missing (see "Dynamic Statistics"). To reproduce the problem, SQL Test Case Builder exports the dynamic statistics result from the source database. In the testing database, SQL Test Case Builder reuses the same values captured from the source database instead of regathering dynamic statistics.
SQL Test Case Builder can capture dynamic information accumulated during multiple executions of the query. This capability is important for automatic reoptimization (see "Automatic Reoptimization").
The compilation environment setting is an important part of the query optimization context. SQL Test Case Builder captures nondefault settings altered by the user when running the problem query in the source database. If any nondefault parameter values are used, SQL Test Case Builder re-establishes the same values before running the query.
The statistics history for objects is helpful to determine whether a plan change was caused by a change in statistics values. DBMS_STATS
stores the history in the data dictionary. SQL Test Case Builder stores this statistics data into a staging table during export. During import, SQL Test Case Builder automatically reloads the statistics history data into the target database from the staging table.
The statement history is important for diagnosing problems related to adaptive cursor sharing, statistics feedback, and cursor sharing bugs. The history includes execution plans and compilation and execution statistics.
See Also:
|
The output of the SQL Test Case Builder is a set of files that contains the commands required to re-create all the necessary objects and the environment. By default, SQL Test Case Builder stores the files in the following location, where incnum refers to the incident number and runnum refers to the run number:
For example, a valid output file name could be as follows:
You can specify a nondefault location by creating an Oracle directory and invoking DBMS_SQLDIAG.EXPORT_SQL_TESTCASE
, as in the following example:
You can access SQL Test Case Builder either through Cloud Control or using PL/SQL on the command line.
Within Cloud Control, you can access SQL Test Case Builder from the Incident Manager page or the Support Workbench page.
This task explains how to navigate to the Incident Manager from the Incidents and Problems section on the Database Home page.
To access the Incident Manager:
In the following example, the ORA 600
error is a SQL incident.
The Problem Details page of the Incident Manager appears.
The Support Workbench page appears, with the incidents listed in a table.
See Also:
|
This task explains how to navigate to the Incident Manager from the Oracle Database menu.
To access the Support Workbench:
The Support Workbench page appears, with the incidents listed in a table.
See Also: Online help for Cloud Control |
You can use the DBMS_SQLDIAG
package to perform tasks relating to SQL Test Case Builder. This package consists of various subprograms for the SQL Test Case Builder, some of which are listed in Table 17-1.
Table 17-1 SQL Test Case Functions in DBMS_SQLDIAG
Procedure | Description |
---|---|
| Exports a SQL test case to a user-specified directory |
| Exports a SQL test case corresponding to the incident ID passed as an argument |
| Exports a SQL test case corresponding to the SQL text passed as an argument |
| Imports a SQL test case into a schema |
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more about theDBMS_SQLDIAG package |
This tutorial explains how to run SQL Test Case Builder using Cloud Control.
Assumptions
This tutorial assumes the following:
EXPLAIN PLAN
statement as user sh
, which causes an internal error: To run SQL Test Case Builder:
The Problem Details page appears.
The Incident Details page appears.
The Incident Details: incident_number page appears.
The Additional Diagnostics subpage appears.
The Run User Action page appears.
After processing completes, the Confirmation page appears.
See Also: Online help for Cloud Control |
This chapter contains the following sections:
See Also: SQL*Plus User's Guide and Reference for information about the use of Autotrace to trace and tune SQL*Plus statements |
End-to-End application tracing can identify the source of an excessive workload, such as a high load SQL statement, by client identifier, service, module, action, session, instance, or an entire database. This isolates the problem to a specific user, service, session, or application component.
This section contains the following topics:
See Also:
|
In multitier environments, the middle tier routes a request from an end client to different database sessions, making it difficult to track a client across database sessions. End-to-End application tracing is an infrastructure that uses a client ID to uniquely trace a specific end-client through all tiers to the database.
End-to-End application tracing simplifies diagnosing performance problems in multitier environments. For example, you can identify the source of an excessive workload, such as a high-load SQL statement, and contact the user responsible. Also, a user having problems can contact you. You can then identify what this user's session is doing at the database level.
End-to-End application tracing also simplifies management of application workloads by tracking specific modules and actions in a service. The module and action names are set by the application developer. For example, you would use the SET_MODULE
and SET_ACTION
procedures in the DBMS_APPLICATION_INFO
package to set these values in a PL/SQL program.
End-to-End application tracing can identify workload problems for:
HR.HR
ACCTG
for an accounting application INSERT
or UPDATE
operation, in a module The database provides the trcsess
command-line utility that consolidates tracing information based on specific criteria. The SQL Trace facility and TKPROF
are two basic performance diagnostic tools that can help you monitor applications running against the Oracle database. After tracing information is written to files, you can consolidate this data with the trcsess
utility, and then diagnose it with TKPROF
or SQL Trace.
The recommended interface for end-to-end application tracing is Oracle Enterprise Manager Cloud Control (Cloud Control). Using Cloud Control, you can view the top consumers for each consumer type, and enable or disable statistics gathering and SQL tracing for specific consumers. If Cloud Control is unavailable, then you can manage this feature using the DBMS_MONITOR
APIs.
To gather the appropriate statistics using PL/SQL, you must enable statistics gathering for client identifier, service, module, or action using procedures in DBMS_MONITOR
.
You can gather statistics by the following criteria:
The default level is the session-level statistics gathering. Statistics gathering is global for the database and continues after a database instance is restarted.
The procedure CLIENT_ID_STAT_ENABLE
enables statistics gathering for a given client ID, whereas the procedure CLIENT_ID_STAT_DISABLE
disables it. You can view client identifiers in the CLIENT_IDENTIFIER
column in V$SESSION
.
Assumptions
This tutorial assumes that you want to enable and then disable statistics gathering for the client with the ID oe.oe
.
To enable and disable statistics gathering for a client identifier:
oe.oe
. For example, run the following command:
oe.oe
. For example, run the following command:
The procedure SERV_MOD_ACT_STAT_ENABLE
enables statistic gathering for a combination of service, module, and action, whereas the procedure SERV_MOD_ACT_STAT_DISABLE
disables statistic gathering for a combination of service, module, and action.
When you change the module or action using the preceding DBMS_MONITOR
procedures, the change takes effect when the next user call is executed in the session. For example, if a module is set to module1
in a session, and if the module is reset to module2
in a user call in the session, then the module remains module1
during this user call. The module is changed to module2
in the next user call in the session.
Assumptions
This tutorial assumes that you want to gather statistics as follows:
ACCTG
service PAYROLL
module INSERT
ITEM
action within the GLEDGER
module To enable and disable statistics gathering for a service, module, and action:
For example, run the following commands:
For example, run the following command:
You can display the statistics that have been gathered with the following V$
views:
DBA_ENABLED_AGGREGATIONS
view can display the accumulated global statistics for the currently enabled statistics. V$CLIENT_STATS
view displays the accumulated statistics for a specified client identifier. V$SERVICE_STATS
view displays accumulated statistics for a specified service. V$SERV_MOD_ACT_STATS
view displays accumulated statistics for a combination of specified service, module, and action. V$SERVICEMETRIC
view displays accumulated statistics for elapsed time of database calls and for CPU use. To enable tracing for client identifier, service, module, action, session, instance or database, execute the appropriate procedures in the DBMS_MONITOR
package. You can enable tracing for specific diagnosis and workload management by the following criteria:
With the criteria that you provide, specific trace information is captured in a set of trace files and combined into a single output trace file.
To enable tracing globally for the database for a specified client identifier, use the CLIENT_ID_TRACE_ENABLE
procedure. The CLIENT_ID_TRACE_DISABLE
procedure disables tracing globally for the database for a given client identifier.
Assumptions
This tutorial assumes the following:
OE.OE
is the client identifier for which SQL tracing is to be enabled. To enable and disable tracing for a client identifier:
For example, execute the following program:
For example, execute the following command:
The SERV_MOD_ACT_TRACE_ENABLE
procedure enables SQL tracing for a specified combination of service name, module, and action globally for a database, unless the procedure specifies a database instance name. The SERV_MOD_ACT_TRACE_DISABLE
procedure disables the trace at all enabled instances for a given combination of service name, module, and action name globally.
Assumptions
This tutorial assumes the following:
ACCTG
. ACCTG
service and the PAYROLL
module. inst1
instance. To enable and disable tracing for a service, module, and action:
For example, execute the following command:
For example, execute the following command:
The SESSION_TRACE_ENABLE
procedure enables the trace for a given database session identifier (SID), on the local instance.
To enable tracing for a specific session ID and serial number, determine the values for the session to trace:
Use the appropriate values to enable tracing for a specific session:
The true
argument includes wait information in the trace. The false
argument excludes bind information from the trace.
The SESSION_TRACE_DISABLE
procedure disables the trace for a given database session identifier (SID) and serial number. For example:
While the DBMS_MONITOR
package can only be invoked by a user with the DBA role, any user can also enable SQL tracing for their own session by using the DBMS_SESSION
package. A user can invoke the SESSION_TRACE_ENABLE
procedure to enable session-level SQL trace for the user's session. For example:
The true
argument includes wait information in the trace. The false
argument excludes bind information from the trace.
The SESSION_TRACE_DISABLE
procedure disables the trace for the invoking session. For example:
The DATABASE_TRACE_ENABLE
procedure enables SQL tracing for a given instance or an entire database. Tracing is enabled for all current and future sessions. For example:
In this example, the inst1
instance is specified to enable tracing for that instance. The true
argument specifies that wait information is in the trace. The false
argument specifies that no bind information is in the trace. This example results in SQL tracing of all SQL in the inst1
instance.
The DATABASE_TRACE_ENABLE
procedure overrides all other session-level traces, but is complementary to the client identifier, service, module, and action traces. All new sessions inherit the wait and bind information specified by this procedure until the DATABASE_TRACE_DISABLE
procedure is called. When you invoke this procedure with the instance_name
parameter, the procedure resets the session-level SQL trace for the named instance. If you invoke this procedure without the instance_name
parameter, then the procedure resets the session-level SQL trace for the entire database.
The DATABASE_TRACE_DISABLE
procedure disables the tracing for an entire instance or database. For example:
This preceding example disables all session-level SQL tracing for the inst1
instance. To disable the session-level SQL tracing for an entire database, invoke the DATABASE_TRACE_DISABLE
procedure without specifying the instance_name
parameter:
A Cloud Control report or the DBA_ENABLED_TRACES
view can display outstanding traces. In the DBA_ENABLED_TRACES
view, you can determine detailed information about how a trace was enabled, including the trace type. The trace type specifies whether the trace is enabled for client identifier, session, service, database, or a combination of service, module, and action.
The trcsess
utility consolidates trace output from selected trace files based on several criteria:
After trcsess
merges the trace information into a single output file, the output file could be processed by TKPROF
.
trcsess
is useful for consolidating the tracing of a particular session for performance or debugging purposes. Tracing a specific session is usually not a problem in the dedicated server model as a single dedicated process serves a session during its lifetime. You can see the trace information for the session from the trace file belonging to the dedicated server serving it. However, in a shared server configuration a user session is serviced by different processes over time. The trace pertaining to the user session is scattered across different trace files belonging to different processes. This makes it difficult to get a complete picture of the life cycle of a session.
The syntax for the trcsess
utility is:
where
output
specifies the file where the output is generated. If this option is not specified, then the utility writes to standard output. session
consolidates the trace information for the session specified. The session identifier is a combination of session index and session serial number, such as 21.2371
. You can locate these values in the V$SESSION
view. clientid
consolidates the trace information given client ID. service
consolidates the trace information for the given service name. action
consolidates the trace information for the given action name. module
consolidates the trace information for the given module name. trace_files
is a list of all the trace file names, separated by spaces, in which trcsess
should look for trace information. You can use the wildcard character (*
) to specify the trace file names. If you do not specify trace files, then trcsess
takes all the files in the current directory as input. You must specify one of the session
, clientid
, service
, action
, or module
options. If more then one of the session
, clientid
, service
, action
, or module
options is specified, then the trace files which satisfies all the criteria specified are consolidated into the output file.
This sample output of trcsess
shows the container of traces for a particular session. In this example, the session index and serial number equals 21.2371
.
You can invoke trcsess
with various options. In the following case, all files in current directory are taken as input:
In this case, several trace files are specified:
The sample output is similar to the following:
The SQL Trace facility and TKPROF
enable you to accurately assess the efficiency of the SQL statements an application runs. For best results, use these tools with EXPLAIN
PLAN
rather than using EXPLAIN
PLAN
alone.
The SQL Trace facility provides performance information on individual SQL statements. It generates the following statistics for each statement:
If the cursor for the SQL statement is closed, then SQL Trace also provides row source information that includes:
Although it is possible to enable the SQL Trace facility for a session or for an instance, it is recommended that you use the DBMS_SESSION
or DBMS_MONITOR
packages instead. When the SQL Trace facility is enabled for a session or for an instance, performance statistics for all SQL statements executed in a user session or in the instance are placed into trace files. Using the SQL Trace facility can have a severe performance impact and may result in increased system overhead, excessive CPU usage, and inadequate disk space.
Oracle Database provides the trcsess
command-line utility that consolidates tracing information from several trace files based on specific criteria, such as session or client ID. See "Using the trcsess Utility".
See Also: "Enabling and Disabling for End-to-End Tracing" to learn how to use theDBMS_SESSION or DBMS_MONITOR packages to enable SQL tracing for a session or an instance |
You can run the TKPROF
program to format the contents of the trace file and place the output into a readable output file. TKPROF
can also:
Note: If the cursor for a SQL statement is not closed, thenTKPROF output does not automatically include the actual execution plan of the SQL statement. In this situation, use the EXPLAIN option with TKPROF to generate an execution plan. |
TKPROF
reports each statement executed with the resources it has consumed, the number of times it was called, and the number of rows which it processed. This information enables you to locate those statements that are using the greatest resource. With baselines available, you can assess whether the resources used are reasonable given the work done.
This section explains the basic procedure for using SQL Trace and TKPROF
.
To use the SQL Trace facility and TKPROF:
See "Step 1: Setting Initialization Parameters for Trace File Management".
TKPROF
to translate the trace file created in Step 2 into a readable output file. This step can optionally create a SQL script that you can use to store the statistics in a database. When the SQL Trace facility is enabled for a session, Oracle Database generates a trace file containing statistics for traced SQL statements for that session. When the SQL Trace facility is enabled for an instance, Oracle Database creates a separate trace file for each process.
To set initialization parameters for trace file management:
TIMED_STATISTICS
, MAX_DUMP_FILE_SIZE
, and DIAGNOSTIC_DEST
initialization parameters, as indicated in Table 18-1. Table 18-1 Initialization Parameters to Check Before Enabling SQL Trace
Parameter | Description |
---|---|
Specifies the location of the Automatic Diagnostic Repository (ADR) Home. The diagnostic files for each database instance are located in this dedicated directory. Oracle Database Reference for information about the | |
When the SQL Trace facility is enabled at the database instance level, every call to the database writes a text line in a file in the operating system's file format. The maximum size of these files in operating system blocks is limited by this initialization parameter. The default is | |
Enables and disables the collection of timed statistics, such as CPU and elapsed times, by the SQL Trace facility, and the collection of various statistics in the If Enabling timing causes extra timing calls for low-level operations. This is a dynamic parameter. It is also a session parameter. See Oracle Database Reference for information about the |
Be sure you know how to distinguish the trace files by name. You can tag trace files by including in your programs a statement such as SELECT
'
program_name
'
FROM
DUAL
. You can then trace each file back to the process that created it.
You can also set the TRACEFILE_IDENTIFIER
initialization parameter to specify a custom identifier that becomes part of the trace file name (see Oracle Database Reference for information about the TRACEFILE_IDENTIFIER
initialization parameter). For example, you can add my_trace_id
to subsequent trace file names for easy identification with the following:
TKPROF
to format them. Enable the SQL Trace facility at either of the following levels:
Use DBMS_MONITOR.DATABASE_TRACE_ENABLE
procedure to enable tracing, and DBMS_MONITOR.DATABASE_TRACE_DISABLE
procedure to disable tracing.
Use DBMS_SESSION.SET_SQL_TRACE
procedure to enable tracing (true
) or disable tracing (false
).
Caution: Because running the SQL Trace facility increases system overhead, enable it only when tuning SQL statements, and disable it when you are finished. |
To enable and disable tracing at the database instance level:
The following example enables tracing for the orcl
instance:
The following example disables tracing for the orcl
instance:
To enable and disable tracing at the session level:
The following example enables tracing for the current session:
The following example disables tracing for the current session:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn aboutDBMS_MONITOR.DATABASE_TRACE_ENABLE |
TKPROF
accepts as input a trace file produced by the SQL Trace facility, and it produces a formatted output file. TKPROF
can also be used to generate execution plans.
After the SQL Trace facility has generated trace files, you can:
TKPROF
on each individual trace file, producing several formatted output files, one for each session. TKPROF
on the result to produce a formatted output file for the entire instance. trcsess
command-line utility to consolidate tracing information from several trace files, then run TKPROF
on the result. See "Using the trcsess Utility". TKPROF
does not report COMMITs
and ROLLBACKs
that are recorded in the trace file.
Sample output from TKPROF
is as follows:
For this statement, TKPROF
output includes the following information:
EXPLAIN
PLAN
. TKPROF
also provides a summary of user level statements and recursive SQL calls for the trace file.
TKPROF
is run from the operating system prompt. The syntax is:
The input and output files are the only required arguments. If you invoke TKPROF
without arguments, then the tool displays online help. Use the arguments in Table 18-2 with TKPROF
.
Table 18-2 TKPROF Arguments
Argument | Description |
---|---|
| Specifies the input file, a trace file containing statistics produced by the SQL Trace facility. This file can be either a trace file produced for a single session, or a file produced by concatenating individual trace files from multiple sessions. |
| Specifies the file to which |
| Specifies whether to record summary for any wait events found in the trace file. Valid values are |
| Sorts traced SQL statements in descending order of specified sort option before listing them in the output file. If multiple options are specified, then the output is sorted in descending order by the sum of the values specified in the sort options. If you omit this parameter, then
|
| Lists only the first integer sorted SQL statements from the output file. If you omit this parameter, then |
| If you specify |
| Creates a SQL script that stores the trace file statistics in the database. |
| Enables and disables the listing of SQL statements issued by the user |
| Specifies the schema and name of the table into which The specified user must be able to issue This option enables multiple individuals to run
If no plan table exists, then |
| Determines the execution plan for each SQL statement in the trace file and writes these execution plans to the output file. |
| Creates a SQL script with the specified |
| An integer that controls the output line width of some |
This section provides two brief examples of TKPROF
usage. For an complete example of TKPROF
output, see "Sample TKPROF Output".
If you are processing a large trace file using a combination of SORT
parameters and the PRINT
parameter, then you can produce a TKPROF
output file containing only the highest resource-intensive statements. For example, the following statement prints the 10 statements in the trace file that have generated the most physical I/O:
This example runs TKPROF
, accepts a trace file named examp12_jane_fg_sqlplus_007
.trc
, and writes a formatted output file named outputa
.prf
:
This example is likely to be longer than a single line on the screen, and you might need to use continuation characters, depending on the operating system.
Note the other parameters in this example:
EXPLAIN
value causes TKPROF
to connect as the user scott
and use the EXPLAIN
PLAN
statement to generate the execution plan for each traced SQL statement. You can use this to get access paths and row source counts. Note: If the cursor for a SQL statement is not closed, thenTKPROF output does not automatically include the actual execution plan of the SQL statement. In this situation, you can use the EXPLAIN option with TKPROF to generate an execution plan. |
TABLE
value causes TKPROF
to use the table temp_plan_table_a
in the schema scott
as a temporary plan table. INSERT
value causes TKPROF
to generate a SQL script named STOREA
.SQL
that stores statistics for all traced SQL statements in the database. SYS
parameter with the value of NO
causes TKPROF
to omit recursive SQL statements from the output file. In this way, you can ignore internal Oracle Database statements such as temporary table operations. SORT
value causes TKPROF
to sort the SQL statements in order of the sum of the CPU time spent executing and the CPU time spent fetching rows before writing them to the output file. For greatest efficiency, always use SORT
parameters. This section provides guidelines for interpreting TKPROF
output.
While TKPROF
provides a useful analysis, the most accurate measure of efficiency is the performance of the application. At the end of the TKPROF
output is a summary of the work that the process performed during the period that the trace was running.
TKPROF
lists the statistics for a SQL statement returned by the SQL Trace facility in rows and columns. Each row corresponds to one of three steps of SQL statement processing. Statistics are identified by the value of the CALL
column. See Table 18-3.
Table 18-3 CALL Column Values
CALL Value | Meaning |
---|---|
| Translates the SQL statement into an execution plan, including checks for proper security authorization and checks for the existence of tables, columns, and other referenced objects. |
| Actual execution of the statement by Oracle Database. For |
| Retrieves rows returned by a query. Fetches are only performed for |
The other columns of the SQL Trace facility output are combined statistics for all parses, executions, and fetches of a statement. The sum of query
and current
is the total number of buffers accessed, also called Logical I/Os (LIOs). See Table 18-4.
Table 18-4 SQL Trace Statistics for Parses, Executes, and Fetches.
Statistics about the processed rows appear in the ROWS
column. The column shows the number of rows processed by the SQL statement. This total does not include rows processed by subqueries of the SQL statement.
For SELECT
statements, the number of rows returned appears for the fetch step. For UPDATE
, DELETE
, and INSERT
statements, the number of rows processed appears for the execute step.
Note: The row source counts are displayed when a cursor is closed. In SQL*Plus, there is only one user cursor, so each statement executed causes the previous cursor to be closed; therefore, the row source counts are displayed. PL/SQL has its own cursor handling and does not close child cursors when the parent cursor is closed. Exiting (or reconnecting) causes the counts to be displayed. |
Row source operations provide the number of rows processed for each operation executed on the rows and additional row source information, such as physical reads and writes. The following is a sample:
In this sample TKPROF
output, note the following under the Row Source Operation column:
cr
specifies consistent reads performed by the row source r
specifies physical reads performed by the row source w
specifies physical writes performed by the row source time
specifies time in microseconds If wait event information exists, then the TKPROF
output includes a section similar to the following:
In addition, wait events are summed for the entire trace file at the end of the file.
To ensure that wait events information is written to the trace file for the session, run the following SQL statement:
Timing statistics have a resolution of one hundredth of a second. Therefore, any operation on a cursor that takes a hundredth of a second or less might not be timed accurately. Keep this limitation in mind when interpreting statistics. In particular, be careful when interpreting the results from simple queries that execute very quickly.
Sometimes, to execute a SQL statement issued by a user, Oracle Database must issue additional SQL statements. Such statements are called recursive calls or recursive SQL. For example, if you insert a row into a table that has insufficient space to hold that row, then the database makes recursive calls to allocate the space dynamically. The database also generates recursive calls when data dictionary information is not available in memory and so must be retrieved from disk.
If recursive calls occur while the SQL Trace facility is enabled, then TKPROF
produces statistics for the recursive SQL statements and marks them clearly as recursive SQL statements in the output file. You can suppress the listing of Oracle Database internal recursive calls (for example, space management) in the output file by setting the SYS
command-line parameter to NO
. The statistics for a recursive SQL statement are included in the listing for that statement, not in the listing for the SQL statement that caused the recursive call. So, when you are calculating the total resources required to process a SQL statement, consider the statistics for that statement and those for recursive calls caused by that statement.
Note: Recursive SQL statistics are not included for SQL-level operations. |
TKPROF
also lists the number of library cache misses resulting from parse and execute steps for each SQL statement. These statistics appear on separate lines following the tabular statistics. If the statement resulted in no library cache misses, then TKPROF
does not list the statistic. In "Sample TKPROF Output", the statement resulted in one library cache miss for the parse step and no misses for the execute step.
The following SQL statements are truncated to 25 characters in the SQL Trace file:
TKPROF
also lists the user ID of the user issuing each SQL statement. If the SQL Trace input file contained statistics from multiple users, and if the statement was issued by multiple users, then TKPROF
lists the ID of the last user to parse the statement. The user ID of all database users appears in the data dictionary in the column ALL_USERS
.USER_ID
.
If you specify the EXPLAIN
parameter on the TKPROF
statement line, then TKPROF
uses the EXPLAIN
PLAN
statement to generate the execution plan of each SQL statement traced. TKPROF
also displays the number of rows processed by each step of the execution plan.
Note: Trace files generated immediately after instance startup contain data that reflects the activity of the startup process. In particular, they reflect a disproportionate amount of I/O activity as caches in the system global area (SGA) are filled. For the purposes of tuning, ignore such trace files. |
See Also: Chapter 9, "Reading Execution Plans" for more information about interpreting execution plans |
You must determine which SQL statements use the most CPU or disk resource. If the TIMED_STATISTICS
parameter is enabled, then you can find high CPU activity in the CPU
column. If TIMED_STATISTICS
is not enabled, then check the QUERY
and CURRENT
columns.
With the exception of locking problems and inefficient PL/SQL loops, neither the CPU time nor the elapsed time is necessary to find problem statements. The key is the number of block visits, both query (that is, subject to read consistency) and current (that is, not subject to read consistency). Segment headers and blocks that are going to be updated are acquired in current mode, but all query and subquery processing requests the data in query mode. These are precisely the same measures as the instance statistics CONSISTENT
GETS
and DB
BLOCK
GETS
. You can find high disk activity in the disk
column.
The following listing shows TKPROF
output for one SQL statement as it appears in the output file:
If it is acceptable to have 7.01 CPU seconds and to retrieve 824 rows, then you need not look any further at this trace output. In fact, a major use of TKPROF
reports in a tuning exercise is to eliminate processes from the detailed tuning phase.
The output indicates that 10 unnecessary parse call were made (because 11 parse calls exist for this single statement) and that array fetch operations were performed. More rows were fetched than there were fetches performed. A large gap between CPU
and elapsed
timings indicates Physical I/Os.
You might want to keep a history of the statistics generated by the SQL Trace facility for an application, and compare them over time. TKPROF
can generate a SQL script that creates a table and inserts rows of statistics into it. This script contains:
CREATE
TABLE
statement that creates an output table named TKPROF_TABLE
. INSERT
statements that add rows of statistics, one for each traced SQL statement, to TKPROF_TABLE
. After running TKPROF
, run this script to store the statistics in the database.
When you run TKPROF
, use the INSERT
parameter to specify the name of the generated SQL script. If you omit this parameter, then TKPROF
does not generate a script.
After TKPROF
has created the SQL script, you might want to edit the script before running it. If you have created an output table for previously collected statistics, and if you want to add new statistics to this table, then remove the CREATE
TABLE
statement from the script. The script then inserts the new rows into the existing table.
If you have created multiple output tables, perhaps to store statistics from different databases in different tables, then edit the CREATE
TABLE
and INSERT
statements to change the name of the output table.
The following CREATE
TABLE
statement creates the TKPROF_TABLE
:
Most output table columns correspond directly to the statistics that appear in the formatted output file. For example, the PARSE_CNT
column value corresponds to the count statistic for the parse step in the output file.
The columns in Table 18-5 help you identify a row of statistics.
Table 18-5 TKPROF_TABLE Columns for Identifying a Row of Statistics
The output table does not store the statement's execution plan. The following query returns the statistics from the output table. These statistics correspond to the formatted output shown in "Sample TKPROF Output".
Sample output appears as follows:
This section describes some fine points of TKPROF
interpretation:
If you are not aware of the values being bound at run time, then it is possible to fall into the argument trap. EXPLAIN
PLAN
cannot determine the type of a bind variable from the text of SQL statements, and it always assumes that the type is VARCHAR
. If the bind variable is actually a number or a date, then TKPROF
can cause implicit data conversions, which can cause inefficient plans to be executed. To avoid this situation, experiment with different data types in the query, and perform the conversion yourself.
The next example illustrates the read consistency trap. Without knowing that an uncommitted transaction had made a series of updates to the NAME
column, it is very difficult to see why so many block visits would be incurred.
Cases like this are not normally repeatable: if the process were run again, it is unlikely that another transaction would interact with it in the same way.
This example shows an extreme (and thus easily detected) example of the schema trap. At first, it is difficult to see why such an apparently straightforward indexed query must look at so many database blocks, or why it should access any blocks at all in current mode.
Two statistics suggest that the query might have been executed with a full table scan. These statistics are the current mode block visits, plus the number of rows originating from the Table Access row source in the execution plan. The explanation is that the required index was built after the trace file had been produced, but before TKPROF
had been run.
Generating a new trace file gives the following data:
One of the marked features of this correct version is that the parse call took 10 milliseconds of CPU time and 20 milliseconds of elapsed time, but the query apparently took no time at all to execute and perform the fetch. These anomalies arise because the clock tick of 10 milliseconds is too long relative to the time taken to execute and fetch the data. In such cases, it is important to get lots of executions of the statements, so that you have statistically valid numbers.
Sometimes, as in the following example, you might wonder why a particular query has taken so long.
Again, the answer is interference from another transaction. In this case, another transaction held a shared lock on the table cq_names
for several seconds before and after the update was issued. It takes a fair amount of experience to diagnose that interference effects are occurring. On the one hand, comparative data is essential when the interference is contributing only a short delay (or a small increase in block visits in the previous example). However, if the interference contributes only modest overhead, and if the statement is essentially efficient, then its statistics may not require analysis.
This section provides an example of TKPROF
output. Portions have been edited out for brevity.
This chapter contains the following topics:
A SQL tuning set (STS) is a database object that includes:
The database stores SQL tuning sets in a database-provided schema.
This section contains the following topics:
Note: Data visibility and privilege requirements may differ when using an STS with pluggable databases. See Oracle Database Administrator's Guide for a table that summarizes how manageability features work in a container database (CDB). |
An STS enables you to group SQL statements and related metadata in a single database object, which you can use to meet your tuning goals. Specifically, SQL tuning sets achieve the following goals:
You can use an STS as input to multiple database advisors, including SQL Tuning Advisor, SQL Access Advisor, and SQL Performance Analyzer.
You can export SQL tuning sets from one database to another, enabling transfer of SQL workloads between databases for remote performance diagnostics and tuning. When suboptimally performing SQL statements occur on a production database, developers may not want to investigate and tune directly on the production database. The DBA can transport the problematic SQL statements to a test database where the developers can safely analyze and tune them.
To create an STS, you must load SQL statements into an STS from a source. As shown in Figure 19-1, the source can be Automatic Workload Repository (AWR), the shared SQL area, customized SQL provided by the user, trace files, or another STS.
SQL tuning sets can do the following:
You can use either Oracle Enterprise Manager Cloud Control (Cloud Control) or the DBMS_SQLTUNE
package to manage SQL tuning sets. Oracle recommends that you use Cloud Control.
The SQL Tuning Sets page in Cloud Control is the starting page from which you can perform most operations relating to SQL tuning sets.
To access the SQL Tuning Sets page:
The SQL Tuning Sets page appears, as shown in Figure 19-2.
On the command line, you can use the DBMS_SQLTUNE
package to manage SQL tuning sets. You must have the ADMINISTER SQL TUNING SET
system privilege to manage SQL tuning sets that you own, or the ADMINISTER
ANY
SQL
TUNING
SET
system privilege to manage any SQL tuning sets.
This section explains the basic tasks involved in managing SQL tuning sets. Figure 19-3 shows the basic workflow for creating, using, and deleting an STS.
Typically, you perform STS operations in the following sequence:
"Creating a SQL Tuning Set" describes this task.
"Loading a SQL Tuning Set" describes this task.
"Displaying the Contents of a SQL Tuning Set" describes this task.
"Modifying a SQL Tuning Set" describes this task.
"Transporting a SQL Tuning Set" describes this task.
"Dropping a SQL Tuning Set" describes this task.
Execute the DBMS_SQLTUNE.CREATE_SQLSET
procedure to create an empty STS in the database. Using the function instead of the procedure causes the database to generate a name for the STS.
Table 19-1 describes some procedure parameters. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.
Table 19-1 DBMS_SQLTUNE.CREATE_SQLSET Parameters
Parameter | Description |
---|---|
| Name of the STS |
| Optional description of the STS |
Assumptions
This tutorial assumes that you want to create an STS named SQLT_WKLD_STS
.
To create an STS:
DBMS_SQLTUNE.CREATE_SQLSET
procedure. For example, execute the following PL/SQL program:
The following example queries the status of all SQL tuning sets owned by the current user:
Sample output appears below:
To load an STS with SQL statements, execute the DBMS_SQLTUNE.LOAD_SQLSET
procedure. The standard sources for populating an STS are AWR, another STS, or the shared SQL area. For both the workload repository and SQL tuning sets, predefined table functions can select columns from the source to populate a new STS.
Table 19-2 describes some DBMS_SQLTUNE.LOAD_SQLSET
procedure parameters. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.
Table 19-2 DBMS_SQLTUNE.LOAD_SQLSET Parameters
Parameter | Description |
---|---|
| Specifies the cursor reference from which to populate the STS. |
| Specifies how the statements are loaded into the STS. The possible values are |
The DBMS_SQLTUNE.SELECT_CURSOR_CACHE
function collects SQL statements from the shared SQL area according to the specified filter. This function returns one SQLSET_ROW
per SQL ID or PLAN_HASH_VALUE
pair found in each data source.
Use the CAPTURE_CURSOR_CACHE_SQLSET
function to repeatedly poll the shared SQL area over a specified interval. This function is more efficient than repeatedly calling the SELECT_CURSOR_CACHE
and LOAD_SQLSET
procedures. This function effectively captures the entire workload, as opposed to the AWR, which only captures the workload of high-load SQL statements, or the LOAD_SQLSET
procedure, which accesses the data source only once.
Prerequisites
This tutorial has the following prerequisites:
SELECT_CURSOR_CACHE
function are evaluated as part of SQL statements run by the current user. As such, they are executed with that user's security privileges and can contain any constructs and subqueries that user can access, but no more. Assumptions
This tutorial assumes that you want to load the SQL tuning set named SQLT_WKLD_STS
with statements from the shared SQL area.
To load an STS:
DBMS_SQLTUNE.LOAD_SQLSET
procedure. For example, execute the following PL/SQL program to populate a SQL tuning set with all cursor cache statements that belong to the sh
schema:
After an STS has been created and populated, execute the DBMS_SQLTUNE.SELECT_SQLSET
function to read the contents of the STS, optionally using filtering criteria.
You select the output of SELECT_SQLSET
using a PL/SQL pipelined table function, which accepts a collection of rows as input. You invoke the table function as the operand of the table operator in the FROM
list of a SELECT
statement.
Table 19-3 describes some SELECT_SQLSET
function parameters. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.
Table 19-3 DBMS_SQLTUNE.SELECT_SQLSET Parameters
Parameter | Description |
---|---|
| The SQL predicate to filter the SQL from the STS defined on attributes of the |
| Specifies the objects that exist in the object list of selected SQL from the shared SQL area |
Table 19-4 describes some attributes of the SQLSET_ROW
object. These attributes appears as columns when you query TABLE(DBMS_SQLTUNE.SELECT_SQLSET())
.
Table 19-4 SQLSET_ROW Attributes
Parameter | Description |
---|---|
| Schema in which the SQL is parsed |
| Sum of the total number of seconds elapsed for this SQL statement |
| Total number of buffer gets (number of times the database accessed a block) for this SQL statement |
Assumptions
This tutorial assumes that you want to display the contents of an STS named SQLT_WKLD_STS
.
To display the contents of an STS:
TABLE
function. For example, execute the following query:
Sample output appears below:
The following example displays statements with a disk reads to buffer gets ratio greater than or equal to 50%:
Sample output appears below:
Use the DBMS_SQLTUNE.DELETE_SQLSET
procedure to delete SQL statements from an STS. You can use the UPDATE_SQLSET
procedure to update the attributes of SQL statements (such as PRIORITY
or OTHER
) in an existing STS identified by STS name and SQL ID. See Oracle Database PL/SQL Packages and Types Reference for more information.
Assumptions
This tutorial assumes that you want to modify SQLT_WKLD_STS
as follows:
fudq5z56g642p
to 1
. You can use priority as a ranking criteria when running SQL Tuning Advisor. To modify the contents of an STS:
TABLE
function. For example, execute the following query:
Sample output appears below:
Use the basic_filter
predicate to filter the SQL from the STS defined on attributes of the SQLSET_ROW
. The following example deletes all statements in the STS with fetch counts over 100:
The following example sets the priority of statement 2cqsw036j5u7r
to 1
:
For example, execute the following query:
Sample output appears below:
You can transport an STS to any database created in Oracle Database 10g Release 2 or later. This technique is useful when using SQL Performance Analyzer to tune regressions on a test database.
When you transport SQL tuning sets between databases, use DBMS_SQLTUNE
to copy the SQL tuning sets to and from a staging table, and use other tools (such as Oracle Data Pump or a database link) to move the staging table to the destination database.
Figure 19-4 shows the process using Oracle Data Pump and ftp
.
As shown in Figure 19-4, the steps are as follows:
DBMS_SQLTUNE.PACK_STGTAB_SQLSET
. .dmp
file using Oracle Data Pump. .dmp
file from the production host to the test host using a transfer tool such as ftp
. .dmp
file to a staging table using Oracle Data Pump. DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET
. When you transport an STS from a non-CDB to a CDB database, you must remap the con_dbid
of each SQL statement in the STS to a con_dbid
within the destination CDB. The basic steps are as follows:
DBMS_SQLTUNE.PACK_STGTAB_SQLSET
. con_dbid
in the staging table using DBMS_SQLTUNE.REMAP_STGTAB_SQLSET
. The following sample PL/SQL program remaps con_dbid
1234
to 5678
:
Table 19-5 describes the DBMS_SQLTUNE
procedures relevant for transporting SQL tuning sets. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.
Table 19-5 DBMS_SQLTUNE Procedures for Transporting SQL Tuning Sets
Procedure | Description |
---|---|
| Create a staging table to hold the exported SQL tuning sets |
| Populate a staging table with SQL tuning sets |
| Copy the SQL tuning sets from the staging table into a database |
Assumptions
This tutorial assumes the following:
To transport an STS:
CREATE_STGTAB_SQLSET
procedure to create a staging table to hold the exported SQL tuning sets. The following example creates my_11g_staging_table
in the dba1
schema and specifies the format of the staging table as 11.2:
PACK_STGTAB_SQLSET
procedure to populate the staging table with SQL tuning sets. The following example populates dba1.my_11g_staging_table
with the STS my_sts
owned by hr
:
For example, run the expdp
command at the operating system prompt:
For example, run the impdp
command at the operating system prompt:
UNPACK_STGTAB_SQLSET
procedure to copy the SQL tuning sets from the staging table into the database. The following example shows how to unpack the SQL tuning sets:
Execute the DBMS_SQLTUNE.DROP_SQLSET
procedure to drop an STS from the database.
Prerequisites
Ensure that no tuning task is currently using the STS to be dropped. If a tuning task exists that is using this STS, then drop the task before dropping the STS. Otherwise, the database issues an ORA-13757
error.
Assumptions
This tutorial assumes that you want to drop an STS named SQLT_WKLD_STS
.
To drop an STS:
DBMS_SQLTUNE.DROP_SQLSET
procedure. For example, execute the following PL/SQL program:
The following example counts the number of SQL tuning sets named SQLT_WKLD_STS
owned by the current user (sample output included):
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about the STS procedures inDBMS_SQLTUNE |
This chapter explains the concepts and tasks relating to SQL Tuning Advisor.
This chapter contains the following topics:
SQL Tuning Advisor is SQL diagnostic software in the Oracle Database Tuning Pack. You can submit one or more SQL statements as input to the advisor and receive advice or recommendations for how to tune the statements, along with a rationale and expected benefit.
This section contains the following topics:
SQL Tuning Advisor is a mechanism for resolving problems related to suboptimally performing SQL statements. Use SQL Tuning Advisor to obtain recommendations for improving performance of high-load SQL statements, and prevent regressions by only executing optimal plans.
Tuning recommendations include:
The recommendations generated by SQL Tuning Advisor help you achieve the following specific goals:
Identifying and tuning high-load SQL statements is challenging even for an expert. SQL Tuning Advisor uses the optimizer to tune SQL for you.
You can configure an Automatic SQL Tuning task to run nightly in maintenance windows. When invoked in this way, the advisor can generate recommendations and also implement SQL profiles automatically.
The database contains a vast amount of statistics about its own operations. SQL Tuning Advisor can perform deep mining and analysis of internal information to improve execution plans.
When suboptimally performing SQL statements occur on a production database, developers may not want to investigate and tune directly on the production database. The DBA can transport the problematic SQL statements to a test database where the developers can safely analyze and tune them.
When tuning multiple statements, SQL Tuning Advisor does not recognize interdependencies between the statements. Instead, SQL Tuning Advisor offers a convenient way to get tuning recommendations for many statements.
Note: Data visibility and privilege requirements may differ when using SQL Tuning Advisor with pluggable databases. The advisor can tune a query in the current pluggable database (PDB), and in other PDBs in which this query has been executed. In this way, a container database (CDB) administrator can tune the same query in many PDBs at the same time, whereas a PDB administrator can only tune a single PDB. See Oracle Database Administrator's Guide for a table that summarizes how manageability features work in a CDB. |
Automatic Tuning Optimizer is the central tool used by SQL Tuning Advisor. The advisor can receive SQL statements as input from the sources shown in Figure 20-1, analyze these statements using the optimizer, and then make recommendations.
Invoking Automatic Tuning Optimizer for every hard parse consumes significant time and resources (see "SQL Parsing"). Tuning mode is meant for complex and high-load SQL statements that significantly affect database performance.
Figure 20-1 shows the basic architecture of SQL Tuning Advisor.
Figure 20-1 SQL Tuning Advisor Architecture
SQL Tuning Advisor is invoked in either of the following ways:
You can configure SQL Tuning Advisor to run during nightly system maintenance windows. When run by AUTOTASK
, the advisor is known as Automatic SQL Tuning Advisor and performs automatic SQL tuning. See "Managing the Automatic SQL Tuning Task".
In on-demand SQL tuning, you manually invoke SQL Tuning Advisor to diagnose and fix SQL-related performance problems after they have been discovered. Oracle Enterprise Manager Cloud Control (Cloud Control) is the preferred interface for tuning SQL on demand, but you can also use the DBMS_SQLTUNE
PL/SQL package. See "Running SQL Tuning Advisor On Demand".
SQL Tuning Advisor uses Automatic Tuning Optimizer to perform its analysis. This optimization is "automatic" because the optimizer analyzes the SQL instead of the user. Do not confuse Automatic Tuning Optimizer with automatic SQL tuning, which in this document refers only to the work performed by the Automatic SQL Tuning task.
Input for SQL Tuning Advisor can come from several sources, including the following:
The primary input source is ADDM (pronounced Adam). By default, ADDM runs proactively once every hour and analyzes key statistics gathered by Automatic Workload Repository (AWR) over the last hour to identify any performance problems including high-load SQL statements. If a high-load SQL is identified, then ADDM recommends running SQL Tuning Advisor on the SQL. See Oracle Database Performance Tuning Guide to learn about ADDM.
AWR takes regular snapshots of system activity, including high-load SQL statements ranked by relevant statistics, such as CPU consumption and wait time.
You can view the AWR and manually identify high-load SQL statements. You can run SQL Tuning Advisor on these statements, although Oracle Database automatically performs this work as part of automatic SQL tuning. By default, AWR retains data for the last eight days. You can locate and tune any high-load SQL that ran within the retention period of AWR using this technique. See Oracle Database Performance Tuning Guide to learn about AWR.
The database uses the shared SQL area to tune recent SQL statements that have yet to be captured in AWR. The shared SQL area and AWR provide the capability to identify and tune high-load SQL statements from the current time going as far back as the AWR retention allows, which by default is at least 8 days. See Oracle Database Concepts to learn about the shared SQL area.
A SQL tuning set (STS) is a database object that stores SQL statements along with their execution context. An STS can include SQL statements that are yet to be deployed, with the goal of measuring their individual performance, or identifying the ones whose performance falls short of expectation. When a set of SQL statements serve as input, the database must first construct and use an STS. See "About SQL Tuning Sets".
After analyzing the SQL statements, SQL Tuning Advisor produces the following types of output:
The benefit percentage shown for each recommendation is calculated using the following formula:
For example, assume that before tuning the execution time was 100 seconds, and after implementing the recommendation the new execution time is expected to be 33 seconds. This benefit calculation for this performance improvement is as follows:
You choose whether to accept the recommendations to optimize the SQL statements. Depending on how it is configured, Automatic SQL Tuning Advisor can implement the SQL profile recommendations to tune the statement without user intervention. When invoked on demand, SQL Tuning Advisor can recommend that the user implement a SQL profile, but can never implement it automatically.
In tuning mode, the optimizer has more time to consider options and gather statistics. For example, Automatic Tuning Optimizer can use dynamic statistics and partial statement execution. The following graphic depicts the different types of analysis that Automatic Tuning Optimizer performs.
This section contains the following topics:
The optimizer relies on object statistics to generate execution plans. If these statistics are stale or missing, then the optimizer can generate suboptimal plans. Automatic Tuning Optimizer checks each query object for missing or stale statistics, and recommends gathering fresh statistics if needed. Figure 20-2 depicts the process of statistical analysis.
Figure 20-2 Statistical Analysis by Automatic Tuning Optimizer
SQL profiling is the verification by the Automatic Tuning Optimizer of its own estimates. By reviewing execution history and testing the SQL, the optimizer can ensure that it has the most accurate information available to generate execution plans. SQL profiling is related to but distinct from the steps of generating SQL Tuning Advisor recommendations and implementing these recommendations.
The following graphic shows SQL Tuning Advisor recommending a SQL profile and automatically implementing it. After the profile is created, the optimizer can use the profile as additional input when generating execution plans.
The database can profile the following types of statement:
SELECT
, INSERT
with a SELECT
clause, UPDATE
, DELETE
, and the update or insert operations of MERGE
) CREATE
TABLE
statements (only with the AS
SELECT
clause) After SQL Tuning Advisor performs its analysis, it either recommends or does not recommend implementing a SQL profile.
The following graphic shows the SQL profiling process.
During SQL profiling, the optimizer verifies cost, selectivity, and cardinality for a statement. The optimizer uses either of the following methods:
The optimizer compares the new estimate to the regular estimate and, if the difference is great enough, applies a correction factor.
This method is more efficient than the sampling method when the predicates provide efficient access paths.
The optimizer uses the past statement execution history to determine correct settings. For example, if the history indicates that a SQL statement is usually executed only partially, then the optimizer uses FIRST_ROWS
instead of ALL_ROWS
optimization (see "Choosing an Optimizer Goal").
If the optimizer generates auxiliary information during statistical analysis or SQL profiling, then the optimizer recommends implementing a SQL profile. As shown in Figure 20-3, the following options are possible:
ACCEPT_SQL_PROFILE
tuning task parameter (see "Configuring the Automatic SQL Tuning Task Using the Command Line"): true
, then the advisor implements SQL profiles automatically. false
, then user intervention is required. AUTO
(default), then the setting is true
when at least one SQL statement exists with a SQL profile, and false
when this condition is not satisfied. Note: The Automatic SQL Tuning task cannot automatically create SQL plan baselines or add plans to them (see "Plan Evolution"). |
At any time during or after automatic SQL tuning, you can view a report. This report describes in detail the SQL statements that were analyzed, the recommendations generated, and any SQL profiles that were automatically implemented.
An access path is the means by which the database retrieves data. For example, a query using an index and a query using a full table scan use different access paths. In some cases, indexes can greatly enhance the performance of a SQL statement by eliminating full table scans.
The following graphic illustrates access path analysis.
Automatic Tuning Optimizer explores whether a new index can significantly enhance query performance and recommends either of the following:
Index recommendations are specific to the SQL statement processed by SQL Tuning Advisor. Sometimes a new index provides a quick solution to the performance problem associated with a single SQL statement.
Because the Automatic Tuning Optimizer does not analyze how its index recommendation can affect the entire SQL workload, it also recommends running SQL Access Advisor on the SQL statement along with a representative SQL workload. SQL Access Advisor examines the effect of creating an index on the SQL workload before making recommendations.
During structural analysis, Automatic Tuning Optimizer tries to identify syntactic, semantic, or design problems that can lead to suboptimal performance. The goal is to identify poorly written SQL statements and to advise you how to restructure them.
Figure 20-4 illustrates structural analysis.
Some syntax variations negatively affect performance. In structural analysis, the automatic tuning optimizer evaluates statements against a set of rules, identifies inefficient coding techniques, and recommends an alternative statement if possible.
As shown in Figure 20-4, Automatic Tuning Optimizer identifies the following categories of structural problems:
A suboptimally performing statement may be using NOT IN
instead of NOT EXISTS
, or UNION
instead of UNION ALL
. The UNION
operator, as opposed to the UNION ALL
operator, uses a unique sort to ensure that no duplicate rows are in the result set. If you know that two queries do not return duplicates, then use UNION ALL
.
If the indexed column and the compared value have a data type mismatch, then the database does not use the index because of the implicit data type conversion. For example, if the indexed cust_id
column has a VARCHAR2
data type, then the predicate WHERE cust_id=7777
does not use the index.
A classic example of a design mistake is a missing join condition that leads to a Cartesian product.
In each case, Automatic Tuning Optimizer makes relevant suggestions to restructure the statements. The suggested alternative statement is similar, but not equivalent, to the original statement. For example, the suggested statement may use UNION ALL
instead of UNION
. You can then determine if the advice is sound.
While tuning a SQL statement, SQL Tuning Advisor searches real-time and historical performance data for alternative execution plans for the statement. If plans other than the original plan exist, then SQL Tuning Advisor reports an alternative plan finding. The follow graphic shows SQL Tuning Advisor finding two alternative plans and generating an alternative plan finding.
SQL Tuning Advisor validates the alternative execution plans and notes any plans that are not reproducible. When reproducible alternative plans are found, you can create a SQL plan baseline to instruct the optimizer to choose these plans in the future.
Example 20-1 shows an alternative plan finding for a SELECT
statement.
Example 20-1 Alternative Plan Finding
Example 20-1 shows that SQL Tuning Advisor found two plans, one in the shared SQL area and one in a SQL tuning set. The plan in the shared SQL area is the same as the original plan.
SQL Tuning Advisor only recommends an alternative plan if the elapsed time of the original plan is worse than alternative plans. In this case, SQL Tuning Advisor recommends that users create a SQL plan baseline on the plan with the best performance. In Example 20-1, the alternative plan did not perform as well as the original plan, so SQL Tuning Advisor did not recommend using the alternative plan.
In Example 20-2, the alternative plans section of the SQL Tuning Advisor output includes both the original and alternative plans and summarizes their performance. The most important statistic is elapsed time. The original plan used an index, whereas the alternative plan used a full table scan, increasing elapsed time by .002 seconds.
Example 20-2 Alternative Plans Section
To adopt an alternative plan regardless of whether SQL Tuning Advisor recommends it, call DBMS_SQLTUNE.CREATE_SQL_PLAN_BASELINE
. You can use this procedure to create a SQL plan baseline on any existing reproducible plan.
When your goal is to identify SQL performance problems proactively, configuring SQL Tuning Advisor as an automated task is a simple solution. The task processes selected high-load SQL statements from AWR that qualify as tuning candidates.
This section explains how to manage the Automatic SQL Tuning task. This section contains the following topics:
This section contains the following topics:
Many DBAs do not have the time needed for the intensive analysis required for SQL tuning. Even when they do, SQL tuning involves several manual steps. Because several different SQL statements may be high load on any given day, DBAs may have to expend considerable effort to monitor and tune them. Configuring automatic SQL tuning instead of tuning manually decreases cost and increases manageability.
The automated task does not process the following types of SQL:
You can run SQL Tuning Advisor on demand to tune the preceding types of SQL statements.
Oracle Scheduler uses the automated maintenance tasks infrastructure (known as AutoTask) to schedules tasks to run automatically. By default, the Automatic SQL Tuning task runs for at most one hour in a nightly maintenance window. You can customize attributes of the maintenance windows, including start and end time, frequency, and days of the week.
See Also:
|
On the command line, you can use PL/SQL packages to perform SQL tuning tasks. Table 20-1 describes the most relevant packages.
Table 20-1 SQL Tuning Advisor Packages
Package | Description |
---|---|
| Enables you run SQL Tuning Advisor, manage SQL profiles, manage SQL tuning sets, and perform real-time SQL performance monitoring. To use this API, you must have the |
| Provides an interface to |
See Also: Oracle Database PL/SQL Packages and Types Reference to learn aboutDBMS_SQLTUNE ad DBMS_AUTO_TASK_ADMIN |
This section explains the basic tasks in running SQL Tuning Advisor as an automatic task. Figure 20-5 shows the basic workflow.
As shown in Figure 20-6, the basic procedure is as follows:
This section explains how to enable and disable the Automatic SQL Tuning task using Cloud Control (preferred) or a command-line interface.
You can enable and disable all automatic maintenance tasks, including the Automatic SQL Tuning task, using Cloud Control.
To enable or disable the Automatic SQL Tuning task using Cloud Control:
The Automated Maintenance Tasks page appears.
This page shows the predefined tasks. You access each task by clicking the corresponding link to get more information about the task.
The Automatic SQL Tuning Result Summary page appears.
The Task Status section shows whether the Automatic SQL Tuning Task is enabled or disabled. In the following graphic, the task is disabled:
The Automated Maintenance Tasks Configuration page appears.
By default, Automatic SQL Tuning executes in all predefined maintenance windows in MAINTENANCE_WINDOW_GROUP
.
If you do not use Cloud Control to enable and disable the Automatic SQL Tuning task, then you have the following options:
ENABLE
or DISABLE
procedure in the DBMS_AUTO_TASK_ADMIN
PL/SQL package. This package is the recommended command-line technique. For both the ENABLE
or DISABLE
procedures, you can specify a particular maintenance window with the window_name
parameter. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.
STATISTICS_LEVEL
initialization parameter to BASIC
to disable collection of all advisories and statistics, including Automatic SQL Tuning Advisor. Because monitoring and many automatic features are disabled, Oracle strongly recommends that you do not set STATISTICS_LEVEL
to BASIC
. See Oracle Database Reference for complete reference information.
To enable or disable Automatic SQL Tuning using DBMS_AUTO_TASK_ADMIN:
For example, query DBA_AUTOTASK_CLIENT
as follows (sample output included):
To disable collection of all advisories and statistics:
The following SQL*Plus command shows that STATISTICS_LEVEL
is set to ALL
:
STATISTICS_LEVEL
to BASIC
as follows: This section explains how to configure settings for the Automatic SQL Tuning task.
You can enable and disable all automatic maintenance tasks, including the Automatic SQL Tuning task, using Cloud Control. You must perform the operation as SYS
or have the EXECUTE
privilege on the PL/SQL package DBMS_AUTO_SQLTUNE
.
To configure the Automatic SQL Tuning task using Cloud Control:
The Automated Maintenance Tasks page appears.
This page shows the predefined tasks. You access each task by clicking the corresponding link to get more information about the task itself.
The Automatic SQL Tuning Result Summary page appears.
SYS_AUTO_SQL_TUNING_TASK
). The Automated Maintenance Tasks Configuration page appears.
The Automatic SQL Tuning Settings page appears.
The DBMS_AUTO_SQLTUNE
package enables you to configure automatic SQL tuning by specifying the task parameters using the SET_AUTO_TUNING_TASK_PARAMETER
procedure. Because the task is owned by SYS
, only SYS
can set task parameters.
The ACCEPT_SQL_PROFILE
tuning task parameter specifies whether to implement SQL profiles automatically (true
) or require user intervention (false
). The default is AUTO
, which means true
if at least one SQL statement exists with a SQL profile and false
if this condition is not satisfied.
Note: When automatic implementation is enabled, the advisor only implements recommendations to create SQL profiles. Recommendations such as creating new indexes, gathering optimizer statistics, and creating SQL plan baselines are not automatically implemented. |
Assumptions
This tutorial assumes the following:
To set Automatic SQL Tuning task parameters:
For example, connect SQL*Plus to the database with administrator privileges and execute the following query:
Sample output appears as follows:
Example 20-3 Setting SQL Tuning Task Parameters
The following PL/SQL block sets a time limit to 20 minutes, and also automatically implements SQL profiles and sets limits for these profiles:
See Also: Oracle Database PL/SQL Packages and Types Reference for complete reference information forDBMS_AUTO_SQLTUNE |
At any time during or after the running of the Automatic SQL Tuning task, you can view a tuning report. This report contains information about all executions of the automatic SQL tuning task.
Depending on the sections that were included in the report, you can view information in the following sections:
This section has a high-level description of the automatic SQL tuning task, including information about the inputs given for the report, the number of SQL statements tuned during the maintenance, and the number of SQL profiles created.
This section lists the SQL statements (by their SQL identifiers) that were tuned during the maintenance window and the estimated benefit of each SQL profile, or the execution statistics after performing a test execution of the SQL statement with the SQL profile.
This section contains the following information about each SQL statement analyzed by SQL Tuning Advisor:
This section shows the old and new explain plans used by each SQL statement analyzed by SQL Tuning Advisor.
This section lists all errors encountered by the automatic SQL tuning task.
To generate a SQL tuning report as a CLOB
, execute the DBMS_SQLTUNE
.REPORT_AUTO_TUNING_TASK
function. You can store the CLOB
in a variable and then print the variable to view the report. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.
Assumptions
This section assumes that you want to show all SQL statements that were analyzed in the most recent execution, including recommendations that were not implemented.
To create and access an Automatic SQL Tuning Advisor report:
DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK
function. The following example generates a text report to show all SQL statements that were analyzed in the most recent execution, including recommendations that were not implemented:
The following sample shows the Automatic SQL Tuning task analyzed 17 SQL statements in just over 7 minutes:
If SQL Tuning Advisor makes a recommendation, then weigh the pros and cons of accepting it.
The following example shows that SQL Tuning Advisor found a plan for a statement that is potentially better than the existing plan. The advisor recommends implementing a SQL profile.
This section contains the following topics:
In this context, on-demand SQL tuning is defined as any invocation of SQL Tuning Advisor that does not result from the Automatic SQL Tuning task.
Typically, you invoke SQL Tuning Advisor on demand in the following situations:
In both situations, running SQL Tuning Advisor is usually the quickest way to fix unexpected SQL performance problems.
The recommended user interface for running SQL Tuning Advisor manually is Cloud Control.
Automatic Database Diagnostic Monitor (ADDM) automatically identifies high-load SQL statements. If ADDM identifies such statements, then click Schedule/Run SQL Tuning Advisor on the Recommendation Detail page to run SQL Tuning Advisor.
To tune SQL statements manually using SQL Tuning Advisor:
The Schedule SQL Tuning Advisor page appears.
If Cloud Control is unavailable, then you can run SQL Tuning Advisor using procedures in the DBMS_SQLTUNE
package. To use the APIs, the user must have the ADVISOR
privilege.
This section explains the basic tasks in running SQL Tuning Advisor using the DBMS_SQLTUNE
package. Oracle Database 2 Day + Performance Tuning Guide explains how to tune SQL using Cloud Control.
Figure 20-6 shows the basic workflow when using the PL/SQL APIs.
As shown in Figure 20-6, the basic procedure is as follows:
To create a SQL tuning task execute the DBMS_SQLTUNE.CREATE_TUNING_TASK
function. You can create tuning tasks from any of the following:
The scope
parameter is one of the most important for this function. You can set this parameter to the following values:
LIMITED
SQL Tuning Advisor produces recommendations based on statistical checks, access path analysis, and SQL structure analysis. SQL profile recommendations are not generated.
COMPREHENSIVE
SQL Tuning Advisor carries out all the analysis it performs under limited scope plus SQL profiling.
Assumptions
This tutorial assumes the following:
hr
, who has the ADVISOR
privilege. 100
to the preceding query. To create a SQL tuning task:
DBMS_SQLTUNE.CREATE_TUNING_TASK
function. For example, execute the following PL/SQL program:
The following example queries the status of all tasks owned by the current user, which in this example is hr
:
Sample output appears below:
In the preceding output, the INITIAL
status indicates that the task has not yet started execution.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_SQLTUNE.CREATE_TUNING_TASK function |
To change the parameters of a tuning task after it has been created, execute the DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER
function. See Oracle Database PL/SQL Packages and Types Reference for complete reference information.
Assumptions
This tutorial assumes the following:
hr
, who has the ADVISOR
privilege. STA_SPECIFIC_EMP_TASK
created in "Creating a SQL Tuning Task". To configure a SQL tuning task:
DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER
function. For example, execute the following PL/SQL program to change the time limit of the tuning task to 300 seconds:
The following example queries the values of all used parameters in task STA_SPECIFIC_EMP_TASK
:
Sample output appears below:
To execute a SQL tuning task, use the DBMS_SQLTUNE.EXECUTE_TUNING_TASK
function. The most important parameter is task_name
.
Note: You can also execute the automatic tuning taskSYS_AUTO_SQL_TUNING_TASK using the EXECUTE_TUNING_TASK API. SQL Tuning Advisor performs the same analysis and actions as it would when run automatically. |
Assumptions
This tutorial assumes the following:
hr
, who has the ADVISOR
privilege. STA_SPECIFIC_EMP_TASK
created in "Creating a SQL Tuning Task". To execute a SQL tuning task:
DBMS_SQLTUNE.EXECUTE_TUNING_TASK
function. For example, execute the following PL/SQL program:
The following example queries the status of all tasks owned by the current user, which in this example is hr
:
Sample output appears below:
See Also: Oracle Database PL/SQL Packages and Types Reference for complete reference information about theDBMS_SQLTUNE.EXECUTE_TUNING_TASK function |
When you create a SQL tuning task in Cloud Control, no separate monitoring step is necessary. Cloud Control displays the status page automatically.
If you do not use Cloud Control, then you can monitor currently executing SQL tuning tasks by querying the data dictionary and dynamic performance views. Table 20-2 describes the relevant views.
Table 20-2 DBMS_SQLTUNE.EXECUTE_TUNING_TASK Parameters
View | Description |
---|---|
| Displays information about tasks owned by the current user. The view contains one row for each task. Each task has a name that is unique to the owner. Task names are just informational and no uniqueness is enforced within any other namespace. |
| Displays information about the progress of advisor execution. |
Assumptions
This tutorial assumes the following:
hr
, who has the ADVISOR
privilege. STA_SPECIFIC_EMP_TASK
that you executed in "Executing a SQL Tuning Task". To monitor a SQL tuning task:
For example, query the status of STA_SPECIFIC_EMP_TASK
as follows:
The following output shows that the task has completed:
The following example queries the status of the task with task ID 884
:
Sample output appears below:
To report the results of a tuning task, use the DBMS_SQLTUNE.REPORT_TUNING_TASK
function. The report contains all the findings and recommendations of SQL Tuning Advisor. For each proposed recommendation, the report provides the rationale and benefit along with the SQL statements needed to implement the recommendation.
Assumptions
This tutorial assumes the following:
hr
, who has the ADVISOR
privilege. STA_SPECIFIC_EMP_TASK
executed in "Executing a SQL Tuning Task". To view the report for a SQL tuning task:
DBMS_SQLTUNE.REPORT_TUNING_TASK
function. For example, you run the following statements:
Truncated sample output appears below:
This chapter contains the following topics:
SQL Access Advisor is diagnostic software that identifies and helps resolve SQL performance problems by recommending indexes, materialized views, materialized view logs, or partitions to create, drop, or retain.
This section contains the following topics:
Note: Data visibility and privilege requirements may differ when using SQL Access Advisor with pluggable databases. See Oracle Database Administrator's Guide for a table that summarizes how manageability features work in a container database (CDB). |
SQL Access Advisor helps you achieve your performance goals by recommending the proper set of materialized views, materialized view logs, partitions, and indexes for a given workload. Materialized views, partitions, and indexes are essential when tuning a database to achieve optimum performance for complex, data-intensive queries.
SQL Access Advisor takes an actual workload as input, or derives a hypothetical workload from a schema. The advisor then recommends access structures for faster execution path. The advisor provides the following advantages:
See Also: Oracle Database 2 Day + Performance Tuning Guide to learn how to use SQL Access Advisor with Cloud Control |
Automatic Tuning Optimizer is the central tool used by SQL Access Advisor. The advisor can receive SQL statements as input from the sources shown in Figure 21-1, analyze these statements using the optimizer, and then make recommendations.
Figure 21-1 shows the basic architecture of SQL Access Advisor.
Figure 21-1 SQL Access Advisor Architecture
SQL Access Advisor requires a workload, which consists of one or more SQL statements, plus statistics and attributes that fully describe each statement. A full workload contains all SQL statements from a target business application. A partial workload contains a subset of SQL statements.
As shown in Figure 21-1, SQL Access Advisor input can come from the following sources:
The database uses the shared SQL area to analyze recent SQL statements that are currently in V$SQL
.
A SQL tuning set (STS) is a database object that stores SQL statements along with their execution context. When a set of SQL statements serve as input, the database must first construct and use an STS.
Note: For best results, provide a workload as a SQL tuning set. TheDBMS_SQLTUNE package provides helper functions that can create SQL tuning sets from common workload sources, such as the SQL cache, a user-defined workload stored in a table, and a hypothetical workload. |
You can create a hypothetical workload from a schema by analyzing dimensions and constraints. This option is useful when you are initially designing your application.
As shown in Figure 21-1, you can apply a filter to a workload to restrict what is analyzed. For example, specify that the advisor look at only the 30 most resource-intensive statements in the workload, based on optimizer cost. This restriction can generate different sets of recommendations based on different workload scenarios.
SQL Access Advisor parameters control the recommendation process and customization of the workload. These parameters control various aspects of the process, such as the type of recommendation required and the naming conventions for what it recommends.
To set these parameters, use the DBMS_ADVISOR.SET_TASK_PARAMETER
procedure. Parameters are persistent in that they remain set for the life span of the task. When a parameter value is set using DBMS_ADVISOR.SET_TASK_PARAMETER
, the value does not change until you make another call to this procedure.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_ADVISOR.SET_TASK_PARAMETER procedure |
A task recommendation can range from a simple to a complex solution. The advisor can recommend that you create database objects such as the following:
SQL Access Advisor index recommendations include bitmap, function-based, and B-tree indexes. A bitmap index offers a reduced response time for many types of ad hoc queries and reduced storage requirements compared to other indexing techniques. B-tree indexes are most commonly used in a data warehouse to index unique or near-unique keys. SQL Access Advisor materialized view recommendations include fast refreshable and full refreshable MVs, for either general rewrite or exact text match rewrite.
SQL Access Advisor, using the TUNE_MVIEW
procedure, also recommends how to optimize materialized views so that they can be fast refreshable and take advantage of general query rewrite.
A materialized view log is a table at the materialized view's master site or master materialized view site that records all DML changes to the master table or master materialized view. A fast refresh of a materialized view is possible only if the materialized view's master has a materialized view log.
SQL Access Advisor can recommend partitioning on an existing unpartitioned base table to improve performance. Furthermore, it may recommend new indexes and materialized views that are themselves partitioned.
While creating new partitioned indexes and materialized view is no different from the unpartitioned case, partition existing base tables with care. This is especially true when indexes, views, constraints, or triggers are defined on the table.
To make recommendations, SQL Access Advisor relies on structural statistics about table and index cardinalities of dimension level columns, JOIN
KEY
columns, and fact table key columns. You can gather exact or estimated statistics with the DBMS_STATS
package (see "About Manual Statistics Collection with DBMS_STATS").
Because gathering statistics is time-consuming and full statistical accuracy is not required, it is usually preferable to estimate statistics. Without gathering statistics on a specified table, queries referencing this table are marked as invalid in the workload, resulting in no recommendations for these queries. It is also recommended that all existing indexes and materialized views have been analyzed.
See Also:
|
In general, each recommendation provides a benefit for one query or a set of queries. All individual actions in a recommendation must be implemented together to achieve the full benefit. Recommendations can share actions.
For example, a CREATE
INDEX
statement could provide a benefit for several queries, but some queries might benefit from an additional CREATE
MATERIALIZED
VIEW
statement. In that case, the advisor would generate two recommendations: one for the set of queries that require only the index, and another one for the set of queries that require both the index and the materialized view.
SQL Access Advisor recommendations include the following types of actions:
PARTITION
BASE
TABLE
This action partitions an existing unpartitioned base table.
CREATE|DROP|RETAIN {MATERIALIZED VIEW|MATERIALIZED VIEW LOG|INDEX}
The CREATE
actions corresponds to new access structures. RETAIN
recommends keeping existing access structures. SQL Access Advisor only recommends DROP
when the WORKLOAD_SCOPE
parameter is set to FULL
.
GATHER STATS
This action generates a call to a DBMS_STATS
procedure to gather statistics on a newly generated access structure (see "About Manual Statistics Collection with DBMS_STATS").
Multiple recommendations may refer to the same action. However, when generating a script for the recommendation, you only see each action once.
See Also: "Viewing SQL Access Advisor Task Results" to learn how to view actions and recommendations |
The partition recommendation is a special type of recommendation. When SQL Access Advisor determines that partitioning a specified base table would improve workload performance, the advisor adds a partition action to every recommendation containing a query referencing the base table. This technique ensures that index and materialized view recommendations are implemented on the correctly partitioned tables.
SQL Access Advisor may recommend partitioning an existing unpartitioned base table to improve query performance. When the advisor implementation script contains partition recommendations, note the following issues:
The partition implementation script attempts to migrate dependent objects such as indexes, materialized views, and constraints. However, some object cannot be automatically migrated. For example, PL/SQL stored procedures defined against a repartitioned base table typically become invalid and must be recompiled.
CREATE
INDEX
and CREATE
MATERIALIZED
VIEW
recommendations) depend on the partitioning recommendation. To obtain accurate recommendations, do not simply remove the partition recommendation from the script. Rather, rerun the advisor with partitioning disabled, for example, by setting parameter ANALYSIS_SCOPE
to a value that does not include the keyword TABLE
. See Also: Oracle Database SQL Language Reference forCREATE DIRECTORY syntax, and Oracle Database PL/SQL Packages and Types Reference for detailed information about the GET_TASK_SCRIPT procedure. |
All information required and generated by SQL Access Advisor resides in the Advisor repository, which is in the data dictionary. The repository has the following benefits:
Oracle recommends that you use SQL Access Advisor through its GUI wizard, which is available in Cloud Control. Oracle Database 2 Day + Performance Tuning Guide explains how to use the SQL Access Advisor wizard.
You can also invoke SQL Access Advisor through the DBMS_ADVISOR
package. This chapter explains how to use the API. See Oracle Database PL/SQL Packages and Types Reference for complete semantics and syntax.
The SQL Access Advisor: Initial Options page in Cloud Control is the starting page for a wizard that guides you through the process of obtaining recommendations.
To access the SQL Access Advisor: Initial Options page:
The SQL Access Advisor: Initial Options page appears., shown in Figure 21-2.
Figure 21-2 SQL Access Advisor: Initial Options
You can perform most SQL plan management tasks in this page or in pages accessed through this page.
See Also:
|
On the command line, you can use the DBMS_ADVISOR
package to manage SQL tuning sets. The DBMS_ADVISOR
package consists of a collection of analysis and advisory functions and procedures callable from any PL/SQL program. You must have the ADVISOR
privilege to use DBMS_ADVISOR
.
Figure 21-3 shows the basic workflow for SQL Access Advisor.
Typically, you use SQL Access Advisor by performing the following steps:
The input workload source for SQL Access Advisor is a SQL tuning set (STS). Use DBMS_SQLTUNE.CREATE_SQLSET
to create a SQL tuning set.
"Creating a SQL Tuning Set as Input for SQL Access Advisor" describes this task.
SQL Access Advisor performs best when a workload based on actual usage is available. Use DBMS_SQLTUNE.LOAD_SQLSET
to populate the SQL tuning set with your workload.
"Populating a SQL Tuning Set with a User-Defined Workload" describes this task.
In the task, you define what SQL Access Advisor must analyze and the location of the analysis results. Create a task using the DBMS_ADVISOR.CREATE_TASK
procedure. You can then define parameters for the task using the SET_TASK_PARAMETER
procedure, and then link the task to an STS by using the DBMS_ADVISOR.ADD_STS_REF
procedure.
"Creating and Configuring a SQL Access Advisor Task" describes this task.
Run the DBMS_ADVISOR.EXECUTE_TASK
procedure to generate recommendations. Each recommendation specifies one or more actions. For example, a recommendation could be to create several materialized view logs, create a materialized view, and then analyze it to gather statistics.
"Executing a SQL Access Advisor Task" describes this task.
You can view the recommendations by querying data dictionary views.
"Viewing SQL Access Advisor Task Results" describes this task.
"Generating and Executing a Task Script" that describes this task.
The input workload source for SQL Access Advisor is an STS. Because an STS is stored as a separate entity, multiple advisor tasks can share it. Create an STS with the DBMS_SQLTUNE.CREATE_SQLSET
statement.
After an advisor task has referenced an STS, you cannot delete or modify the STS until all advisor tasks have removed their dependency on it. A workload reference is removed when a parent advisor task is deleted, or when you manually remove the workload reference from the advisor task.
Prerequisites
The user creating the STS must have been granted the ADMINISTER SQL TUNING SET
privilege. To run SQL Access Advisor on SQL tuning sets owned by other users, the user must have the ADMINISTER ANY SQL TUNING SET
privilege.
Assumptions
This tutorial assumes the following:
MY_STS_WORKLOAD
. sh
schema. To create an STS :
sh
, and then set SQL*Plus variables. For example, enter the following commands:
For example, assign a value to the workload_name
variable and create the STS as follows:
See Also:
|
A workload consists of one or more SQL statements, plus statistics and attributes that fully describe each statement. A full workload contains all SQL statements from a target business application. A partial workload contains a subset of SQL statements. The difference is that for full workloads SQL Access Advisor may recommend dropping unused materialized views and indexes.
You cannot use SQL Access Advisor without a workload. SQL Access Advisor ranks the entries according to a specific statistic, business importance, or combination of the two, which enables the advisor to process the most important SQL statements first.
SQL Access Advisor performs best with a workload based on actual usage. You can store multiple workloads in the form of SQL tuning sets, so that you can view the different uses of a real-world data warehousing or OLTP environment over a long period and across the life cycle of database instance startup and shutdown.
Table 21-1 describes procedures that you can use to populate an STS with a user-defined workload.
Table 21-1 Procedures for Loading an STS
Procedure | Description |
---|---|
| Populates the SQL tuning set with a set of selected SQL. You can call the procedure multiple times to add new SQL statements or replace attributes of existing statements. See Oracle Database PL/SQL Packages and Types Reference. |
| Copies SQL workload data to a user-designated SQL tuning set. The user must have the required SQL tuning set privileges and the required |
Assumptions
This tutorial assumes the following:
sh.user_workload
to store information about SQL statements. sh.user_workload
table with information about three queries of tables in the sh
schema. sh.user_workload
. To populate an STS with a user-defined workload:
sh
, and then create the user_workload
table. For example, enter the following commands:
user_workload
table with information about queries. For example, execute the following statements:
user_workload
table, and then loads the contents of this cursor into the STS named MYWORKLOAD
. For example, execute the following PL/SQL program:
Use the DBMS_ADVISOR.CREATE_TASK
procedure to create a SQL Access Advisor task. In the SQL Access Advisor task, you define what the advisor must analyze and the location of the results. You can create multiple tasks, each with its own specialization. All are based on the same Advisor task model and share the same repository.
Configuring the task involves the following steps:
At the time the recommendations are generated, you can apply a filter to the workload to restrict what is analyzed. This restriction provides the ability to generate different sets of recommendations based on different workload scenarios.
SQL Access Advisor parameters control the recommendation process and customization of the workload. These parameters control various aspects of the process, such as the type of recommendation required and the naming conventions for what it recommends. See "Categories for SQL Access Advisor Task Parameters".
If parameters are not defined, then the database uses the defaults. You can set task parameters by using the DBMS_ADVISOR.SET_TASK_PARAMETER
procedure. Parameters are persistent in that they remain set for the life span of the task. When a parameter value is set using SET_TASK_PARAMETER
, it does not change until you make another call to this procedure.
Because the workload is independent, you must link it to a task using the DBMS_ADVISOR.ADD_STS_REF
procedure. After this link has been established, you cannot delete or modify the workload until all advisor tasks have removed their dependency on the workload. A workload reference is removed when a user deletes a parent advisor task or manually removes the workload reference from the task by using the DBMS_ADVISOR.DELETE_STS_REF
procedure (see "Deleting SQL Access Advisor Tasks").
Prerequisites and Restrictions
The user creating the task must have been granted the ADVISOR
privilege.
Assumptions
This tutorial assumes the following:
MYTASK
. To create and configure a SQL Access Advisor task:
sh
, and then create the task. For example, enter the following commands:
For example, execute the following statements:
For example, execute the following statement:
See Also:
|
The DBMS_ADVISOR.EXECUTE_TASK
procedure performs SQL Access Advisor analysis or evaluation for the specified task. Task execution is a synchronous operation, so the database does not return control to the user until the operation has completed, or the database detects a user interrupt. After the return or execution of the task, you can check the DBA_ADVISOR_LOG
table for the execution status.
Running EXECUTE_TASK
generates recommendations. A recommendation includes one or more actions, such as creating a materialized view log or a materialized view.
Prerequisites and Restrictions
When processing a workload, SQL Access Advisor attempts to validate each statement to identify table and column references. The database achieves validation by processing each statement as if it were being executed by the statement's original user.
If the user does not have SELECT
privileges to a particular table, then SQL Access Advisor bypasses the statement referencing the table. This behavior can cause many statements to be excluded from analysis. If SQL Access Advisor excludes all statements in a workload, then the workload is invalid. SQL Access Advisor returns the following message:
To avoid missing critical workload queries, the current database user must have SELECT
privileges on the tables targeted for materialized view analysis. For these tables, these SELECT
privileges cannot be obtained through a role.
Assumptions
This tutorial assumes that you want to execute the task you configured in "Creating and Configuring a SQL Access Advisor Task".
To create and configure a SQL Access Advisor task:
sh
, and then execute the task. For example, execute the following statement:
USER_ADVISOR_LOG
to check the status of the task. For example, execute the following statements (sample output included):
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more about theEXECUTE_TASK procedure and its parameters |
You can view each recommendation generated by SQL Access Advisor using several data dictionary views, which are summarized in Table 21-2. However, it is easier to use the DBMS_ADVISOR.GET_TASK_SCRIPT
procedure or Cloud Control, which graphically displays the recommendations and provides hyperlinks to quickly see which SQL statements benefit from a recommendation.
Each recommendation produced by SQL Access Advisor is linked to the SQL statement it benefits. Each recommendation corresponds to one or more actions. EAch action has one or more attributes.
Each action has attributes pertaining to the access structure properties. The name and tablespace for each applicable access structure are in the ATTR1
and ATTR2
columns of USER_ADVISOR_ATTRIBUTES
(see "Action Attributes in the DBA_ADVISOR_ACTIONS View"). The space occupied by each new access structure is in the NUM_ATTR1
column. Other attributes are different for each action.
Table 21-2 Views Showing Task Results
Data Dictionary View (DBA, USER) | Description |
---|---|
| Displays information about advisor tasks. To see SQL Access Advisor tasks, select where |
| Displays the results of an analysis of all recommendations in the database. A recommendation can have multiple actions associated with it. The |
| Displays information about the actions associated with all recommendations in the database. Each action is specified by the |
| Displays information about the rationales for all recommendations in the database. |
| Displays information about all workload objects in the database after a SQL Access Advisor analysis. The precost and postcost numbers are in terms of the estimated optimizer cost (shown in |
Assumptions
This tutorial assumes that you want to view results of the task you executed in "Executing a SQL Access Advisor Task".
To view the results of a SQL Access Advisor task:
For example, execute the following statements (sample output included):
The preceding output shows the recommendations (rec_id
) produced by an SQL Access Advisor run, with their rank and total benefit. The rank is a measure of the importance of the queries that the recommendation helps. The benefit is the total improvement in execution cost (in terms of optimizer cost) of all queries using the recommendation.
For example, execute the following query of USER_ADVISOR_SQLA_WK_STMTS
(sample output included):
The precost and postcost numbers are in terms of the estimated optimizer cost (shown in EXPLAIN
PLAN
) both without and with the recommended access structure changes.
For example, use the following query (sample output included):
For example, use the following query (sample output included):
For example, create the following PL/SQL procedure show_recm
, and then execute it to see attributes of the actions:
The following output shows attributes of actions in the recommendations:
You can use the procedure DBMS_ADVISOR.GET_TASK_SCRIPT
to create a script of the SQL statements for the SQL Access Advisor recommendations. The script is an executable SQL file that can contain DROP
, CREATE
, and ALTER
statements. For new objects, the names of the materialized views, materialized view logs, and indexes are automatically generated by using the user-specified name template. Review the generated SQL script before attempting to execute it.
Assumptions
This tutorial assumes that you want to save and execute a script that contains the recommendations generated in "Executing a SQL Access Advisor Task".
To save and execute a SQL script:
For example, use the following statements:
sh
, and then save the script to a file. For example, use the following statement:
The following is a fragment of a script generated by this procedure:
For example, enter the following command:
See Also: Oracle Database SQL Language Reference forCREATE DIRECTORY syntax, and Oracle Database PL/SQL Packages and Types Reference to learn about the GET_TASK_SCRIPT procedure |
To tune a single SQL statement, the DBMS_ADVISOR.QUICK_TUNE
procedure accepts as its input a task_name
and a single SQL statement. The procedure creates a task and workload and executes this task. EXECUTE_TASK
and QUICK_TUNE
produce the same results. However, QUICK_TUNE
is easier when tuning a single SQL statement.
Assumptions
This tutorial assumes the following:
MY_QUICKTUNE_TASK
. To create a template and base a task on this template:
sh
, and then initialize SQL*Plus variables for the SQL statement and task name. For example, enter the following commands:
For example, the following statement executes MY_QUICKTUNE_TASK
:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more about theQUICK_TUNE procedure and its parameters |
This section contains the following topics:
SQL Access Advisor operates in two modes: problem-solving and evaluation. By default, SQL Access Advisor attempts to solve access method problems by looking for enhancements to index structures, partitions, materialized views, and materialized view logs. For example, a problem-solving run may recommend creating a new index, adding a new column to a materialized view log, and so on.
When you set the ANALYSIS_SCOPE
parameter to EVALUATION
, SQL Access Advisor comments only on which access structures the supplied workload uses. An evaluation-only run may only produce recommendations such as retaining an index, retaining a materialized view, and so on. The evaluation mode can be useful to see exactly which indexes and materialized views a workload is using. SQL Access Advisor does not evaluate the performance impact of existing base table partitioning.
To create a task and set it to evaluation mode:
For example, enter the following statement, where t_name
is a SQL*Plus variable set to the name of the task:
For example, the following statement sets the previous task to evaluation mode:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theSET_TASK_PARAMETER procedure and its parameters |
You can use the DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES
procedure to do the following:
Assumptions
This tutorial assumes the following:
MYTASK
to TUNING1
. TUNING1
read-only. To update task attributes:
sh
, and then change the name of the task. For example, use the following statement:
For example, use the following statement:
See Also: Oracle Database PL/SQL Packages and Types Reference for more information regarding theUPDATE_TASK_ATTRIBUTES procedure and its parameters |
A task template is a saved configuration on which to base future tasks and workloads. A template enables you to set up any number of tasks or workloads that can serve as starting points or templates for future task creation. By setting up a template, you can save time when performing tuning analysis. This approach also enables you to custom fit a tuning analysis to the business operation.
Physically, there is no difference between a task and a template. However, a template cannot be executed. To create a task from a template, you specify the template to be used when a new task is created. At that time, SQL Access Advisor copies the data and parameter settings from the template into the newly created task. You can also set an existing task to be a template by setting the template attribute when creating the task or later using the UPDATE_TASK_ATTRIBUTE
procedure.
Table 21-3 describes procedures that you can use to manage task templates.
Table 21-3 DBMS_ADVISOR Procedures for Task Templates
Procedure | Description |
---|---|
| The |
| The |
|
|
Assumptions
This tutorial assumes the following:
MY_TEMPLATE
. MY_TEMPLATE
. NEWTASK
based on MY_TEMPLATE
. To create a template and base a task on this template:
sh
, and then create a task as a template. For example, create a template named MY_TEMPLATE
as follows:
For example, the following statements set the naming conventions for recommended indexes and materialized views:
For example, enter the following commands to create NEWTASK
based on MY_TEMPLATE
:
See Also:
|
SQL Access Advisor enables you to interrupt the recommendation process or allow it to complete. An interruption signals SQL Access Advisor to stop processing and marks the task as INTERRUPTED
. At that point, you may update recommendation attributes and generate scripts.
Intermediate results represent recommendations for the workload contents up to that point in time. If recommendations must be sensitive to the entire workload, then Oracle recommends that you let the task complete. Additionally, recommendations made by the advisor early in the recommendation process do not contain base table partitioning recommendations. The partitioning analysis requires a large part of the workload to be processed before it can determine whether partitioning would be beneficial. Therefore, if SQL Access Advisor detects a benefit, then only later intermediate results contain base table partitioning recommendations.
This section describes two ways to terminate SQL Access Advisor task execution:
The DBMS_ADVISOR.INTERRUPT_TASK
procedure causes a SQL Access Advisor task execution to terminate as if it had reached its normal end. Thus, you can see any recommendations that have been formed up to the point of the interruption. An interrupted task cannot be restarted. The syntax is as follows:
Assumptions
This tutorial assumes the following:
MYTASK
is currently executing. To interrupt a currently executing task:
sh
, and then interrupt the task. For example, create a template named MY_TEMPLATE
as follows:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theINTERRUPT_TASK procedure |
You can stop task execution by calling the DBMS_ADVISOR.CANCEL_TASK
procedure and passing in the task name for this recommendation process. SQL Access Advisor may take a few seconds to respond to this request. Because all advisor task procedures are synchronous, to cancel an operation, you must use a separate database session. If you use CANCEL_TASK
, then SQL Access Advisor makes no recommendations.
A cancel command effective restores the task to its condition before the start of the canceled operation. Therefore, a canceled task or data object cannot be restarted. However, you can reset the task using DBMS_ADVISOR.RESET_TASK
, and then execute it again. The CANCEL_TASK
syntax is as follows:
The RESET_TASK
procedure resets a task to its initial starting point, which has the effect of removing all recommendations and intermediate data from the task. The task status is set to INITIAL
. The syntax is as follows:
Assumptions
This tutorial assumes the following:
MYTASK
is currently executing. This task is set to make partitioning recommendations. To cancel a currently executing task:
sh
, and then cancel the task. For example, create a template named MY_TEMPLATE
as follows:
For example, execute the RESET_TASK
procedure as follows:
For example, change the analysis scope to INDEX
as follows:
For example, execute MYTASK
as follows:
See Also:
|
The DBMS_ADVISOR.DELETE_TASK
procedure deletes existing SQL Access Advisor tasks from the repository. The syntax is as follows:
If a task is linked to an STS workload, and if you want to delete the task or workload, then you must remove the link between the task and the workload using the DELETE_STS_REF
procedure. The following example deletes the link between task MYTASK
and the current user's SQL tuning set MYWORKLOAD
:
Assumptions
This tutorial assumes the following:
sh
currently owns multiple SQL Access Advisor tasks. MYTASK
. MYTASK
is currently linked to workload MYWORKLOAD
. To delete a SQL Access Advisor task:
sh
, and then query existing SQL Access Advisor tasks. For example, query the data dictionary as follows (sample output included):
MYTASK
and MYWORKLOAD
. For example, delete the reference as follows:
For example, delete MYTASK
as follows:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more about theDELETE_TASK procedure and its parameters |
By default, all SQL Access Advisor recommendations are ready to be implemented. However, you can choose to skip or exclude selected recommendations by using the DBMS_ADVISOR.MARK_RECOMMENDATION
procedure. MARK_RECOMMENDATION
enables you to annotate a recommendation with a REJECT
or IGNORE
setting, which causes the GET_TASK_SCRIPT
to skip it when producing the implementation procedure.
If SQL Access Advisor makes a recommendation to partition one or multiple previously unpartitioned base tables, then consider carefully before skipping this recommendation. Changing a table's partitioning scheme affects the cost of all queries, indexes, and materialized views defined on the table. Therefore, if you skip the partitioning recommendation, then the advisor's remaining recommendations on this table are no longer optimal. To see recommendations on your workload that do not contain partitioning, reset the advisor task and rerun it with the ANALYSIS_SCOPE
parameter changed to exclude partitioning recommendations.
The syntax is as follows:
Assumptions
This tutorial assumes the following:
To mark a recommendation:
sh
, and then mark the recommendation. For example, reject recommendation 1
as follows:
This recommendation and any dependent recommendations do not appear in the script.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more about theMARK_RECOMMENDATIONS procedure and its parameters |
Using the UPDATE_REC_ATTRIBUTES
procedure, SQL Access Advisor names and assigns ownership to new objects such as indexes and materialized views during analysis. However, it does not necessarily choose appropriate names, so you may manually set the owner, name, and tablespace values for new objects. For recommendations referencing existing database objects, owner and name values cannot be changed. The syntax is as follows:
The attribute_name
parameter can take the following values:
OWNER
Specifies the owner name of the recommended object.
NAME
Specifies the name of the recommended object.
TABLESPACE
Specifies the tablespace of the recommended object.
Assumptions
This tutorial assumes the following:
SH_MVIEWS
. To mark a recommendation:
sh
, and then update the recommendation attribute. For example, change the tablespace name to SH_MVIEWS
as follows:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn more about theUPDATE_REC_ATTRIBUTES procedure and its parameters |
Oracle Database provides a script that contains several SQL Access Advisor examples that you can run on a test database. The script is named ORACLE_HOME
/rdbms/demo/aadvdemo.sql
.
This section contains the following topics:
Table 21-4 maps SQL Access Advisor actions to attribute columns in the DBA_ADVISOR_ACTIONS
view. In the table, MV
refers to a materialized view.
Table 21-4 SQL Access Advisor Action Attributes
Action | ATTR1 Column | ATTR2 Column | ATTR3 Column | ATTR4 Column | ATTR5 Column | ATTR6 Column | NUM_ATTR1 Column |
---|---|---|---|---|---|---|---|
| Index name | Index tablespace | Target table |
| Index column list / expression | Unused | Storage size in bytes for the index |
| MV name | MV tablespace |
|
| SQL | Unused | Storage size in bytes for the MV |
| Target table name | MV log tablespace |
|
| Table column list | Partitioning subclauses | Unused | | | | |
| Name of equivalence | Checksum value | Unused | Unused | Source SQL statement | Equivalent SQL statement | Unused |
| Index name | Unused | Unused | Unused | Index columns | Unused | Storage size in bytes for the index |
| MV name | Unused | Unused | Unused | Unused | Unused | Storage size in bytes for the MV |
| Target table name | Unused | Unused | Unused | Unused | Unused | Unused |
| Table name |
| Partition key for partitioning (column name or list of column names) | Partition key for subpartitioning (column name or list of column names) | SQL | SQL | Unused |
| Index name |
| Partition key for partitioning (list of column names) | Unused | SQL | Unused | Unused |
| MV name |
| Partition key for partitioning (column name or list of column names) | Partition key for subpartitioning (column name or list of column names) | SQL | SQL | Unused | | |
| Index name | Unused | Target table |
| Index columns | Unused | Storage size in bytes for the index |
| MV name | Unused |
| Unused | SQL | Unused | Storage size in bytes for the MV |
| Target table name | Unused | Unused | Unused | Unused | Unused | Unused |
Table 21-5 groups the most relevant SQL Access Advisor task parameters into categories. All task parameters for workload filtering are deprecated.
Table 21-5 Types of Advisor Task Parameters And Their Uses
Workload Filtering | Task Configuration | Schema Attributes | Recommendation Options |
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
| ||
| | |
|
| |
| |
| | | |
| | | |
| |||
| | | |
You can use the constants shown in Table 21-6 with SQL Access Advisor.
Table 21-6 SQL Access Advisor Constants
Constant | Description |
---|---|
ADVISOR_ALL | A value that indicates all possible values. For string parameters, this value is equivalent to the wildcard |
ADVISOR_CURRENT | Indicates the current time or active set of elements. Typically, this is used in time parameters. |
ADVISOR_DEFAULT | Indicates the default value. Typically used when setting task or workload parameters. |
ADVISOR_UNLIMITED | A value that represents an unlimited numeric value. |
ADVISOR_UNUSED | A value that represents an unused entity. When a parameter is set to |
SQLACCESS_GENERAL | Specifies the name of a default SQL Access general-purpose task template. This template sets the |
SQLACCESS_OLTP | Specifies the name of a default SQL Access OLTP task template. This template sets the |
SQLACCESS_WAREHOUSE | Specifies the name of a default SQL Access warehouse task template. This template sets the |
SQLACCESS_ADVISOR | Contains the formal name of SQL Access Advisor. You can specify this name when procedures require the Advisor name as an argument. |
This chapter contains the following topics:
A SQL profile is a database object that contains auxiliary statistics specific to a SQL statement. Conceptually, a SQL profile is to a SQL statement what object-level statistics are to a table or index. SQL profiles are created when a DBA invokes SQL Tuning Advisor (see "About SQL Tuning Advisor").
This section contains the following topics:
When profiling a SQL statement, SQL Tuning Advisor uses a specific set of bind values as input, and then compares the optimizer estimate with values obtained by executing fragments of the statement on a data sample. When significant variances are found, SQL Tuning Advisor bundles corrective actions together in a SQL profile, and then recommends its acceptance.
The corrected statistics in a SQL profile can improve optimizer cardinality estimates, which in turn leads the optimizer to select better plans. SQL profiles provide the following benefits over other techniques for improving plans:
A SQL profile is a collection of auxiliary statistics on a query, including all tables and columns referenced in the query. The profile stores this information in the data dictionary. The optimizer uses this information at optimization time to determine the correct plan.
Note: The SQL profile contains supplemental statistics for the entire statement, not individual plans. The profile does not itself determine a specific plan. |
A SQL profile contains, among other statistics, a set of cardinality adjustments. The cardinality measure is based on sampling the WHERE
clause rather than on statistical projection. A profile uses parts of the query to determine whether the estimated cardinalities are close to the actual cardinalities and, if a mismatch exists, uses the corrected cardinalities. For example, if a SQL profile exists for SELECT * FROM t WHERE x=5 AND y=10
, then the profile stores the actual number of rows returned.
When choosing plans, the optimizer has the following sources of information:
Figure 22-1 shows the relationship between a SQL statement and the SQL profile for this statement. The optimizer uses the SQL profile and the environment to generate an execution plan. In this example, the plan is in the SQL plan baseline for the statement.
If either the optimizer environment or SQL profile change, then the optimizer can create a new plan. As tables grow, or as indexes are created or dropped, the plan for a SQL profile can change. The profile continues to be relevant even if the data distribution or access path of the corresponding statement changes. In general, you do not need to refresh SQL profiles.
Over time, profile content can become outdated. In this case, performance of the SQL statement may degrade. The statement may appear as high-load or top SQL. In this case, the Automatic SQL Tuning task again captures the statement as high-load SQL. You can implement a new SQL profile for the statement.
Internally, a SQL profile is implemented using hints that address different types of problems. These hints do not specify any particular plan. Rather, the hints correct errors in the optimizer estimation algorithm that lead to suboptimal plans. For example, a profile may use the TABLE_STATS
hint to set object statistics for tables when the statistics are missing or stale.
As explained in "SQL Profiling", SQL Tuning Advisor invokes Automatic Tuning Optimizer to generate SQL profile recommendations. Recommendations to implement SQL profiles occur in a finding, which appears in a separate section of the SQL Tuning Advisor report.
When you implement (or accept) a SQL profile, the database creates the profile and stores it persistently in the data dictionary. However, the SQL profile information is not exposed through regular dictionary views.
Example 22-1 SQL Profile Recommendation
In this example, the database found a better plan for a SELECT
statement that uses several expensive joins. The database recommends running DBMS_SQLTUNE.ACCEPT_SQL_PROFILE
to implement the profile, which enables the statement to run 98.53% faster.
Sometimes SQL Tuning Advisor may recommend implementing a profile that uses the Automatic Degree of Parallelism (Auto DOP) feature. A parallel query profile is only recommended when the original plan is serial and when parallel execution can significantly reduce the elapsed time for a long-running query.
When it recommends a profile that uses Auto DOP, SQL Tuning Advisor gives details about the performance overhead of using parallel execution for the SQL statement in the report. For parallel execution recommendations, SQL Tuning Advisor may provide two SQL profile recommendations, one using serial execution and one using parallel.
The following example shows a parallel query recommendation. In this example, a degree of parallelism of 7 improves response time significantly at the cost of increasing resource consumption by almost 25%. You must decide whether the reduction in database throughput is worth the increase in response time.
See Also:
|
You can use SQL profiles with or without SQL plan management. No strict relationship exists between the SQL profile and the plan baseline. If a statement has multiple plans in a SQL plan baseline, then a SQL profile is useful because it enables the optimizer to choose the lowest-cost plan in the baseline.
Oracle Enterprise Manager Cloud Control (Cloud Control) usually handles SQL profiles as part of automatic SQL tuning.
On the command line, you can manage SQL profiles with the DBMS_SQLTUNE
package. To use the APIs, you must have the ADMINISTER SQL MANAGEMENT OBJECT
privilege.
See Also:
|
This section explains the basic tasks involved in managing SQL profiles. Figure 22-2 shows the basic workflow for implementing, altering, and dropping SQL profiles.
Typically, you manage SQL profiles in the following sequence:
"Implementing a SQL Profile" describes this task.
"Listing SQL Profiles" describes this task.
"Altering a SQL Profile" describes this task.
"Dropping a SQL Profile" describes this task.
To tune SQL statements on another database, you can transport both a SQL tuning set and a SQL profile to a separate database. "Transporting a SQL Profile" describes this task.
See Also: Oracle Database PL/SQL Packages and Types Reference for information about theDBMS_SQLTUNE package |
Implementing (also known as accepting) a SQL profile means storing it persistently in the database. A profile must be implemented before the optimizer can use it as input when generating plans.
As a rule of thumb, implement a SQL profile recommended by SQL Tuning Advisor. If the database recommends both an index and a SQL profile, then either use both or use the SQL profile only. If you create an index, then the optimizer may need the profile to pick the new index.
In some situations, SQL Tuning Advisor may find an improved serial plan in addition to an even better parallel plan. In this case, the advisor recommends both a standard and a parallel SQL profile, enabling you to choose between the best serial and best parallel plan for the statement. Implement a parallel plan only if the increase in response time is worth the decrease in throughput.
To implement a SQL profile, execute the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE
procedure. Some important parameters are as follows:
profile_type
Set this parameter to REGULAR_PROFILE
for a SQL profile without a change to parallel execution, or PX_PROFLE
for a SQL profile with a change to parallel execution.
force_match
This parameter controls statement matching. Typically, an accepted SQL profile is associated with the SQL statement through a SQL signature that is generated using a hash function. This hash function changes the SQL statement to upper case and removes all extra whites spaces before generating the signature. Thus, the same SQL profile works for all SQL statements in which the only difference is case and white spaces.
By setting force_match
to true
, the SQL profile additionally targets all SQL statements that have the same text after the literal values in the WHERE
clause have been replaced by bind variables. This setting may be useful for applications that use only literal values because it enables SQL with text differing only in its literal values to share a SQL profile. If both literal values and bind variables are in the SQL text, or if force_match
is set to false
(default), then the literal values in the WHERE
clause are not replaced by bind variables.
See Also: Oracle Database PL/SQL Packages and Types Reference for information about theACCEPT_SQL_PROFILE procedure |
This section shows how to use the ACCEPT_SQL_PROFILE
procedure to implement a SQL profile.
Assumptions
This tutorial assumes the following:
STA_SPECIFIC_EMP_TASK
includes a recommendation to create a SQL profile. my_sql_profile
. profile_type
). To implement a SQL profile:
ACCEPT_SQL_PROFILE
function. For example, execute the following PL/SQL:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure |
The data dictionary view DBA_SQL_PROFILES
stores SQL profiles persistently in the database. The statistics are in an Oracle internal format, so you cannot query profiles directly. However, you can list profiles.
To list SQL profiles:
DBA_SQL_PROFILES
view. For example, execute the following query:
Sample output appears below:
You can alter attributes of an existing SQL profile using the attribute_name
parameter of the ALTER_SQL_PROFILE
procedure.
The CATEGORY
attribute determines which sessions can apply a profile. View the CATEGORY
attribute by querying DBA_SQL_PROFILES.CATEGORY
. By default, all profiles are in the DEFAULT
category, which means that all sessions in which the SQLTUNE_CATEGORY
initialization parameter is set to DEFAULT
can use the profile.
By altering the category of a SQL profile, you determine which sessions are affected by profile creation. For example, by setting the category to DEV
, only sessions in which the SQLTUNE_CATEGORY
initialization parameter is set to DEV
can use the profile. Other sessions do not have access to the SQL profile and execution plans for SQL statements are not impacted by the SQL profile. This technique enables you to test a profile in a restricted environment before making it available to other sessions.
The example in this section assumes that you want to change the category of the SQL profile so it is used only by sessions with the SQL profile category set to TEST
, run the SQL statement, and then change the profile category back to DEFAULT
.
To alter a SQL profile:
ALTER_SQL_PROFILE
procedure to set the attribute_name
. For example, execute the following code to set the attribute CATEGORY
to TEST
:
For example, execute the following SQL:
ALTER_SQL_PROFILE
procedure to set the attribute_name
. For example, execute the following code to set the attribute CATEGORY
to DEFAULT
:
See Also:
|
You can drop a SQL profile with the DROP_SQL_PROFILE
procedure.
Assumptions
This section assumes the following:
my_sql_profile
. To drop a SQL profile:
DBMS_SQLTUNE.DROP_SQL_PROFILE
procedure. The following example drops the profile named my_sql_profile
:
See Also:
|
You can transport SQL profiles. This operation involves exporting the SQL profile from the SYS
schema in one database to a staging table, and then importing the SQL profile from the staging table into another database. You can transport a SQL profile to any Oracle database created in the same release or later.
Table 22-1 shows the main procedures and functions for managing SQL profiles.
Table 22-1 APIs for Transporting SQL Profiles
Procedure or Function | Description |
---|---|
| Creates the staging table used for copying SQL profiles from one system to another. |
| Moves profile data out of the |
| Uses the profile data stored in the staging table to create profiles on this system. |
The following graphic shows the basic workflow of transporting SQL profiles:
Assumptions
This tutorial assumes the following:
my_profile
from a production database to a test database. dba1
schema. To transport a SQL profile:
CREATE_STGTAB_SQLPROF
procedure to create a staging table to hold the SQL profiles. The following example creates my_staging_table
in the dba1
schema:
PACK_STGTAB_SQLPROF
procedure to export SQL profiles into the staging table. The following example populates dba1.my_staging_table
with the SQL profile my_profile
:
Move the table using your utility of choice. For example, use Oracle Data Pump or a database link.
UNPACK_STGTAB_SQLPROF
to unpack SQL profiles from the staging table. The following example shows how to unpack SQL profiles in the staging table:
See Also:
|
This chapter explains the concepts and tasks relating to SQL plan management using the DBMS_SPM
package.
This chapter contains the following topics:
SQL plan management is a preventative mechanism that enables the optimizer to automatically manage execution plans, ensuring that the database uses only known or verified plans. In this context, a plan includes all plan-related information (for example, SQL plan identifier, set of hints, bind values, and optimizer environment) that the optimizer needs to reproduce an execution plan.
SQL plan management uses a mechanism called a SQL plan baseline. A plan baseline is a set of accepted plans that the optimizer is allowed to use for a SQL statement. In the typical use case, the database accepts a plan into the plan baseline only after verifying that the plan performs well.
The main components of SQL plan management are as follows:
This component stores relevant information about plans for a set of SQL statements. See "Plan Capture".
This component is the detection by the optimizer of plan changes based on stored plan history, and the use of SQL plan baselines to select appropriate plans to avoid potential performance regressions. See "Plan Selection".
This component is the process of adding new plans to existing SQL plan baselines, either manually or automatically. See "Plan Evolution".
This section contains the following topics:
The primary goal of SQL plan management is to prevent performance regressions caused by plan changes. A secondary goal is to gracefully adapt to changes such as new optimizer statistics or indexes by verifying and accepting only plan changes that improve performance.
Note: SQL plan baselines cannot help when an event has caused irreversible execution plan changes, such as dropping an index. |
Typical scenarios in which SQL plan management can improve or preserve SQL performance include:
Most plan changes result in either improvement or no performance change. However, some plan changes may cause performance regressions. SQL plan baselines significantly minimize potential regressions resulting from an upgrade.
When you upgrade, the database only uses plans from the plan baseline. The database puts new plans that are not in the current baseline into a holding area, and later evaluates them to determine whether they use fewer resources than the current plan in the baseline. If the plans perform better, then the database promotes them into the baseline; otherwise, the database does not promote them.
SQL plan baselines help minimize performance regressions and stabilize SQL performance.
The application software may use appropriate SQL execution plans developed in a standard test configuration for the new statements. If the system configuration is significantly different from the test configuration, then the database can evolve SQL plan baselines over time to produce better performance.
Both SQL profiles and SQL plan baselines help improve the performance of SQL statements by ensuring that the optimizer uses only optimal plans. Both profiles and baselines are internally implemented using hints (see "About Optimizer Hints"). However, these mechanisms have the following significant differences:
Typically, you create SQL plan baselines before significant performance problems occur. SQL plan baselines prevent the optimizer from using suboptimal plans in the future.
The database creates SQL profiles when you invoke SQL Tuning Advisor, which you do typically only after a SQL statement has shown high-load symptoms. SQL profiles are primarily useful by providing the ongoing resolution of optimizer mistakes that have led to suboptimal plans. Because the SQL profile mechanism is reactive, it cannot guarantee stable performance as drastic database changes occur.
The following graphic illustrates the difference:
A SQL plan baseline is a set of accepted plans. Each plan is implemented using a set of outline hints that fully specify a particular plan. SQL profiles are also implemented using hints, but these hints do not specify any specific plan. Rather, the hints correct miscalculations in the optimizer estimates that lead to suboptimal plans. For example, a hint may correct the cardinality estimate of a table.
Because a profile does not constrain the optimizer to any one plan, a SQL profile is more flexible than a SQL plan baseline. For example, changes in initialization parameters and optimizer statistics allow the optimizer to choose a better plan.
Oracle recommends that you use SQL Tuning Advisor. In this way, you follow the recommendations made by the advisor for SQL profiles and plan baselines rather than trying to determine which mechanism is best for each SQL statement.
SQL plan capture refers to techniques for capturing and storing relevant information about plans in the SQL Management Base for a set of SQL statements. Capturing a plan means making SQL plan management aware of this plan.
You can configure initial plan capture to occur automatically by setting an initialization parameter, or you can capture plans manually by using the DBMS_SPM
package.
You enable automatic initial plan capture by setting the initialization parameter OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES
to true
(the default is false
). When enabled, the database automatically creates a SQL plan baseline for any repeatable SQL statement executed on the database.
If automatic initial plan capture is enabled, and if the database executes a repeatable SQL statement, then the capture algorithm is as follows:
The following graphic shows the decision tree for automatic initial plan capture when OPTIMIZER_USE_SQL_PLAN_BASELINES
is set to true
(see "Plan Selection" for more information):
Note: The settings ofOPTIMIZER_CAPTURE_SQL_PLAN_BASELINES and OPTIMIZER_USE_SQL_PLAN_BASELINES are independent. For example, if OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES is true , then the database creates initial plan baselines regardless of whether OPTIMIZER_USE_SQL_PLAN_BASELINES is true or false . |
See Also: Oracle Database Reference to learn about theOPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter |
In SQL plan management, manual plan capture refers to the user-initiated bulk load of existing plans into a SQL plan baseline. Use Cloud Control or PL/SQL to load the execution plans for SQL statements from a SQL tuning set (STS), the shared SQL area, a staging table, or a stored outline.
The following graphic illustrates loading plans into a SQL plan baseline.
The loading behavior varies depending on whether a SQL plan baseline exists for each statement represented in the bulk load:
Manually loaded plans are always marked accepted because the optimizer assumes that any plan loaded manually by the administrator has acceptable performance.
SQL plan selection is the optimizer ability to detect plan changes based on stored plan history, and the use of SQL plan baselines to select plans to avoid potential performance regressions.
When the database performs a hard parse of a SQL statement, the optimizer generates a best-cost plan. By default, the optimizer then attempts to find a matching plan in the SQL plan baseline for the statement. If no plan baseline exists, then the database runs the statement with the best-cost plan.
If a plan baseline exists, then the optimizer behavior depends on whether the newly generated plan is in the plan baseline:
The following graphic shows the decision tree for SQL plan selection.
In general, SQL plan evolution is the process by which the optimizer verifies new plans and adds them to an existing SQL plan baseline. Specifically, plan evolution consists of the following distinct steps:
In the standard case of plan evolution, the optimizer performs the preceding steps sequentially, so that a new plan is not usable by SQL plan management until the optimizer verifies plan performance relative to the SQL plan baseline. However, you can configure SQL plan management to perform one step without performing the other. The following graphic shows the possible paths for plan evolution:
Typically, a SQL plan baseline for a SQL statement starts with a single accepted plan. However, some SQL statements perform well when executed with different plans under different conditions. For example, a SQL statement with bind variables whose values result in different selectivities may have several optimal plans. Creating a materialized view or an index or repartitioning a table may make current plans more expensive than other plans.
If new plans were never added to SQL plan baselines, then the performance of some SQL statements might degrade. Thus, it is sometimes necessary to evolve newly accepted plans into SQL plan baselines. Plan evolution prevents performance regressions by verifying the performance of a new plan before including it in a SQL plan baseline.
The DBMS_SPM
package provides procedures and functions for plan evolution. These procedures use the task infrastructure. For example, CREATE_EVOLVE_TASK
creates an evolution task, whereas EXECUTE_EVOLVE_TASK
executes it. All task evolution procedures have the string EVOLVE_TASK
in the name.
Use the evolve procedures on demand, or configure the procedures to run automatically. The automatic maintenance task SYS_AUTO_SPM_EVOLVE_TASK
executes daily in the scheduled maintenance window. The task perform the following actions automatically:
See Also:
|
This section describes the SQL plan management storage architecture:
The SQL management base (SMB) is a logical repository in the data dictionary that contains the following:
The SMB stores information that the optimizer can use to maintain or improve SQL performance.
The SMB resides in the SYSAUX
tablespace and uses automatic segment-space management. Because the SMB is located entirely within the SYSAUX
tablespace, the database does not use SQL plan management and SQL tuning features when this tablespace is unavailable.
The following graphic illustrates the SMB architecture.
Note: Data visibility and privilege requirements may differ when using the SMB with pluggable databases. See Oracle Database Administrator's Guide for a table that summarizes how manageability features work in a container database (CDB). |
When automatic SQL plan capture is enabled, the SQL statement log contains the SQL ID of SQL statements that the optimizer has evaluated over time. The database tracks a statement when its SQL ID exists in the SQL statement log. When the database parses or executes a statement that is tracked, the database recognizes it as a repeatable SQL statement.
Example 23-1 Logging SQL Statements
This example illustrates how the database tracks statements in the statement log and creates baselines automatically for repeatable statements. An initial query of the statement log shows no tracked SQL statements. After a query of hr.jobs
for AD_PRES
, the log shows one tracked statement.
Now the session executes a different jobs
query. The log shows two tracked statements:
A query of DBA_SQL_PLAN_BASELINES
shows that no baseline for either statement exists because neither statement is repeatable:
The session executes the query for job_id='PR_REP'
a second time. Because this statement is now repeatable, and because automatic SQL plan capture is enabled, the database creates a plan baseline for this statement. The query for job_id='AD_PRES'
has only been executed once, so no plan baseline exists for it.
See Also:
|
The SQL plan history is the set of plans generated for a repeatable SQL statement over time. The history contains both SQL plan baselines and unaccepted plans.
In SQL plan management, the database detects plan changes and records the new plan in the history so that the DBA can manually evolve (verify) it. Because ad hoc SQL statements do not repeat and so do not have performance degradation, the database maintains plan history only for repeatable SQL statements.
Starting in Oracle Database 12c Release 1 (12.1), the SMB stores the plans rows for new plans added to the plan history of a SQL statement. The DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE
function fetches and displays the plan from the SMB. For plans created before Oracle Database 12c Release 1 (12.1), the function must compile the SQL statement and generate the plan because the SMB does not store the rows.
See Also:
|
An enabled plan is eligible for use by the optimizer. The database automatically marks all plans in the plan history as enabled even if they are still unaccepted. You can manually change an enabled plan to a disabled plan, which means the optimizer can no longer use the plan even if it is accepted.
A plan is accepted if and only if it is in the plan baseline. The plan history for a statement contains all plans, both accepted and unaccepted. After the optimizer generates the first accepted plan in a plan baseline, every subsequent unaccepted plan is added to the plan history, awaiting verification, but is not in the SQL plan baseline.
Figure 23-1 shows plan histories for three different SQL statements. The SQL plan baseline for one statement contains two accepted plans. The plan history for this statement includes two unaccepted plans. A DBA has marked one unaccepted plan as disabled so that the optimizer cannot use it.
Figure 23-1 SQL Plan Management Architecture
A fixed plan is an accepted plan that is marked as preferred, so that the optimizer considers only the fixed plans in the baseline. Fixed plans influence the plan selection process of the optimizer.
Assume that three plans exist in the SQL plan baseline for a statement. You want the optimizer to give preferential treatment to only two of the plans. As shown in Figure 23-2, you mark these two plans as fixed so that the optimizer uses only the best plan from these two, ignoring the other plans.
If new plans are added to a baseline that contains at least one enabled fixed plan, then the optimizer cannot use the new plans until you manually declare them as fixed.
Access the DBMS_SPM
package through Cloud Control or through the command line.
The SQL Plan Control page in Cloud Control is a GUI that shows information about SQL profiles, SQL patches, and SQL plan baselines.
To access the SQL Plan Baseline page:
The SQL Plan Control page appears.
You can perform most SQL plan management tasks in this page or in pages accessed through this page.
See Also:
|
On the command line, use the DBMS_SPM
and DBMS_XPLAN
PL/SQL packages to perform most SQL plan management tasks. Table 23-1 describes the most relevant DBMS_SPM
procedures and functions for creating, dropping, and loading SQL plan baselines.
Table 23-1 DBMS_SPM Procedures and Functions
Package | Procedure or Function | Description |
---|---|---|
|
| This procedure changes configuration options for the SMB in name/value format. |
|
| This procedure creates a staging table that enables you to transport SQL plan baselines from one database to another. |
|
| This function drops some or all plans in a plan baseline. |
|
| This function loads plans in the shared SQL area (also called the cursor cache) into SQL plan baselines. |
|
| This function loads plans in an STS into SQL plan baselines. |
|
| This function packs SQL plan baselines, which means that it copies them from the SMB into a staging table. |
|
| This function unpacks SQL plan baselines, which means that it copies SQL plan baselines from a staging table into the SMB. |
|
| This function displays one or more execution plans for the SQL statement identified by SQL handle. |
"About the DBMS_SPM Evolve Functions" describes the functions related to SQL plan evolution.
This section explains the basic tasks in using SQL plan management to prevent plan regressions and permit the optimizer to consider new plans. The tasks are as follows:
Load plans from SQL tuning sets, the shared SQL area, a staging table, or stored outlines.
Use PL/SQL to verify the performance of specified plans and add them to plan baselines.
Alter disk space limits and change the length of the plan retention policy.
This section contains the following topics:
You control SQL plan management with initialization parameters. The default values are as follows:
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=false
For any repeatable SQL statement that does not already exist in the plan history, the database does not automatically create an initial SQL plan baseline for the statement. See "Automatic Initial Plan Capture".
OPTIMIZER_USE_SQL_PLAN_BASELINES=true
For any SQL statement that has an existing SQL plan baseline, the database automatically adds new plans to the SQL plan baseline as nonaccepted plans. See "Plan Selection".
Note: The settings of the preceding parameters are independent of each other. For example, ifOPTIMIZER_CAPTURE_SQL_PLAN_BASELINES is true , then the database creates initial plan baselines for new statements even if OPTIMIZER_USE_SQL_PLAN_BASELINES is false . |
If the default behavior is what you intend, then skip this section.
The following sections explain how to change the default parameter settings from the command line. If you use Cloud Control, then set these parameters in the SQL Plan Baseline subpage (shown in Figure 23-3).
Setting the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES
initialization parameter to true
is all that is necessary for the database to automatically create an initial SQL plan baseline for any SQL statement not already in the plan history. This parameter does not control the automatic addition of newly discovered plans to a previously created SQL plan baseline.
Caution: When automatic baseline capture is enabled, the database creates a SQL plan baseline for every repeatable statement, including all recursive SQL and monitoring SQL. Thus, automatic capture may result in the creation of an extremely large number of plan baselines. |
To enable automatic initial plan capture for SQL plan management:
For example, connect SQL*Plus to the database with administrator privileges and execute the following command (sample output included):
If the parameters are set as you intend, then skip the remaining steps.
When you set the OPTIMIZER_USE_SQL_PLAN_BASELINES
initialization parameter to false
, the database does not use any plan baselines in the database. Typically, you might want to disable one or two plan baselines, but not all of them. A possible use case might be testing the benefits of SQL plan management.
To disable all SQL plan baselines in the database:
For example, connect SQL*Plus to the database with administrator privileges and execute the following command (sample output included):
If the parameters are set as you intend, then skip the remaining steps.
SQL> ALTER SYSTEM SET OPTIMIZER_USE_SQL_PLAN_BASELINES=false
;SPM Evolve Advisor is a SQL advisor that evolves plans that have recently been added to the SQL plan baseline. The advisor simplifies plan evolution by eliminating the requirement to do it manually.
By default, SYS_AUTO_SPM_EVOLVE_TASK
runs daily in the scheduled maintenance window. The SPM Evolve Advisor task ranks all unaccepted plans, and then performs test executions of as many plans as possible during the window. The evolve task selects the lowest-cost plan to compare against each unaccepted plan. If a plan performs sufficiently better than the existing accepted plan, then the database automatically accepts it. The task can accept more than one plan.
No separate scheduler client exists for the Automatic SPM Evolve Advisor task. One client controls both Automatic SQL Tuning Advisor and Automatic SPM Evolve Advisor. Thus, the same task enables or disables both. See "Enabling and Disabling the Automatic SQL Tuning Task" to learn how to enable and disable Automatic SPM Evolve Advisor.
The DBMS_SPM
package enables you to configure automatic plan evolution by specifying the task parameters using the SET_EVOLVE_TASK_PARAMETER
procedure. Because the task is owned by SYS
, only SYS
can set task parameters.
The ACCEPT_PLANS
tuning task parameter specifies whether to accept recommended plans automatically. When ACCEPT_PLANS
is true
(default), SQL plan management automatically accepts all plans recommended by the task. When set to false
, the task verifies the plans and generates a report if its findings, but does not evolve the plans.
Assumptions
The tutorial in this section assumes the following:
To set automatic evolution task parameters:
For example, connect SQL*Plus to the database with administrator privileges and execute the following query:
Sample output appears as follows:
For example, the following PL/SQL block sets a time limit to 20 minutes, and also automatically accepts plans:
See Also: Oracle Database PL/SQL Packages and Types Reference for complete reference information forDBMS_SPM |
To view the plans stored in the SQL plan baseline for a specific statement, use the DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE
function. This function uses plan information stored in the plan history to display the plans. Table 23-2 describes some function parameters.
Table 23-2 DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE Parameters
Function Parameter | Description |
---|---|
| SQL handle of the statement. Retrieve the SQL handle by joining the |
| Name of the plan for the statement. |
This section explains how to show plans in a baseline from the command line. If you use Cloud Control, then display plan baselines from the SQL Plan Baseline subpage shown in Figure 23-3.
To display SQL plans:
For example, assume that a SQL plan baseline exists for a SELECT
statement with the SQL ID 31d96zzzpcys9
.
The following query displays execution plans for the statement with the SQL ID 31d96zzzpcys9
:
The sample query results are as follows:
The results show that the plan for SQL ID 31d96zzzpcys
is named SQL_PLAN_52gvzja8jfysuc0e983c6
and was captured automatically.
See Also:
|
You can initiate the user-initiated bulk load of a set of existing plans into a SQL plan baseline. The goal of this task is to load plans from the following sources:
Capture the plans for a SQL workload into an STS, and then load the plans into the SQL plan baselines. The optimizer uses the plans the next time that the database executes the SQL statements. Bulk loading execution plans from an STS is an effective way to prevent plan regressions after a database upgrade.
Note: You can load plans from Automatic Workload Repository snapshots into an STS, and then load plans from the STS into the SQL plan baseline. |
Load plans for statements directly from the shared SQL area, which is in the shared pool of the SGA. By applying a filter on the module name, the schema, or the SQL ID you identify the SQL statement or set of SQL statements to capture. The optimizer uses the plans the next time that the database executes the SQL statements.
Loading plans directly from the shared SQL area is useful when application SQL has been hand-tuned using hints. Because you probably cannot change the SQL to include the hint, populating the SQL plan baseline ensures that the application SQL uses optimal plans.
Use the DBMS_SPM
package to define a staging table, DBMS_SPM.PACK_STGTAB_BASELINE
to copy the baselines into a staging table, and Oracle Data Pump to transfer the table to another database. On the destination database, use DBMS_SPM.UNPACK_STGTAB_BASELINE
to unpack the plans from the staging table and put the baselines into the SMB.
A use case is the introduction of new SQL statements into the database from a new application module. A vendor can ship application software with SQL plan baselines for the new SQL. In this way, the new SQL uses plans that are known to give optimal performance under a standard test configuration. Alternatively, if you develop or test an application in-house, export the correct plans from the test database and import them into the production database.
Migrate stored outlines to SQL plan baselines. After the migration, you maintain the same plan stability that you had using stored outlines while being able to use the more advanced features provided by SQL Plan Management, such as plan evolution. See "Migrating Stored Outlines to SQL Plan Baselines".
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_SPM.PACK_STGTAB_BASELINE Function |
A SQL tuning set is a database object that includes one or more SQL statements, execution statistics, and execution context. This section explains how to load plans from an STS.
Load plans with the DBMS_SPM.LOAD_PLANS_FROM_SQLSET
function or using Cloud Control. Table 23-3 describes some function parameters.
Table 23-3 LOAD_PLANS_FROM_SQLSET Parameters
Function Parameter | Description |
---|---|
| Name of the STS from which the plans are loaded into SQL plan baselines. |
| A filter applied to the STS to select only qualifying plans to be loaded. The filter can take the form of any |
| Default |
This section explains how to load plans from the command line. In Cloud Control, go to the SQL Plan Baseline subpage (shown in Figure 23-3) and click Load to load plan baselines from SQL tuning sets.
Assumptions
This tutorial assumes the following:
SELECT
/*LOAD_STS*/ *SPM_STS
, which is owned by user SPM
. To load plans from a SQL tuning set:
For example, query DBA_SQLSET_STATEMENTS
for the STS name (sample output included):
The output shows that the plan for the select /*LOAD_STS*/
statement is in the STS.
For example, in SQL*Plus execute the function as follows:
The basic_filter
parameter specifies a WHERE
clause that loads only the plans for the queries of interest. The variable cnt
stores the number of plans loaded from the STS.
Example 23-2 executes the following query (sample output included).
Example 23-2 DBA_SQL_PLAN_BASELINES
The output shows that the plan is accepted, which means that it is in the plan baseline. Also, the origin is MANUAL-LOAD
, which means that the plan was loaded by an end user rather than automatically captured.
For example, execute DBMS_SQLTUNE.DROP_SQLSET
to drop the SPM_STS
tuning set as follows:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_SPM.LOAD_PLANS_FROM_SQLSET function |
This section explains how to load plans from the shared SQL area using PL/SQL.
Load plans with the LOAD_PLANS_FROM_CURSOR_CACHE
function of the DBMS_SPM
package. Table 23-4 describes some function parameters.
Table 23-4 LOAD_PLANS_FROM_CURSOR_CACHE Parameters
Function Parameter | Description |
---|---|
| SQL statement identifier. Identifies a SQL statement in the shared SQL area. |
| Default |
This section explains how to load plans using the command line. In Cloud Control, go to the SQL Plan Baseline subpage (shown in Figure 23-3) and click Load to load plan baselines from the shared SQL area.
Assumptions
This tutorial assumes the following:
To load plans from the shared SQL area:
For example, query V$SQL
for the SQL ID of the sh.sales
query (sample output included):
The preceding output shows that the SQL ID of the statement is 27m0sdw9snw59
.
For example, execute the LOAD_PLANS_FROM_CURSOR_CACHE
function in SQL*Plus to load the plan for the statement with the SQL ID 27m0sdw9snw59
:
In the preceding example, the variable cnt
contains the number of plans that were loaded.
Example 23-3 queries DBA_SQL_PLAN_BASELINES
(sample output included).
Example 23-3 DBA_SQL_PLAN_BASELINES
The output shows that the plan is accepted, which means that it is in the plan baseline for the statement. Also, the origin is MANUAL-LOAD
, which means that the statement was loaded by an end user rather than automatically captured.
See Also: Oracle Database PL/SQL Packages and Types Reference to learn how to use theDBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE function |
You may want to transfer optimal plans from a source database to a different destination database. For example, you may have investigated a set of plans on a test database and confirmed that they have performed well. You may then want to load these plans into a production database.
A staging table is a table that, for the duration of its existence, stores plans so that the plans do not disappear from the table while you are unpacking them. Use the DBMS.CREATE_STGTAB_BASELINE
procedure to create a staging table. To pack (insert row into) and unpack (extract rows from) the staging table, use the PACK_STGTAB_BASELINE
and UNPACK_STGTAB_BASELINE
functions of the DBMS_SPM
package. Oracle Data Pump Import and Export enable you to copy the staging table to a different database.
The following graphic depicts the basic steps.
Assumptions
This tutorial assumes the following:
stage1
in the source database. spm
into the staging table. stage1
as fixed plans. To transfer a set of SQL plan baselines from one database to another:
CREATE_STGTAB_BASELINE
procedure. The following example creates a staging table named stage1
:
The following example packs enabled plan baselines created by user spm
into staging table stage1
. Select SQL plan baselines using the plan name (plan_name
), SQL handle (sql_handle
), or any other plan criteria. The table_name
parameter is mandatory.
stage1
into a dump file using Oracle Data Pump Export. stage1
from the dump file using the Oracle Data Pump Import utility. The following example unpacks all fixed plan baselines stored in the staging table stage1
:
See Also:
|
Oracle recommends that you configure the SQL Plan Management Evolve task to run automatically, as explained in "Managing the SPM Evolve Advisor Task". You can also use PL/SQL or Cloud Control to manually evolve an unaccepted plan to determine whether it performs better than any plan currently in the plan baseline.
This section contains the following topics:
Table 23-5 describes the most relevant DBMS_SPM
procedures and functions for managing plan evolution. Execute evolution tasks manually or schedule them to run automatically.
Table 23-5 DBMS_SPM Functions and Procedures for Managing Plan Evolution Tasks
Package | Procedure or Function | Description |
---|---|---|
|
| This function accepts one recommendation to evolve a single plan into a SQL plan baseline. |
|
| This function creates an advisor task to prepare the plan evolution of one or more plans for a specified SQL statement. The input parameters can be a SQL handle, plan name or a list of plan names, time limit, task name, and description. |
|
| This function executes an evolution task. The input parameters can be the task name, execution name, and execution description. If not specified, the advisor generates the name, which is returned by the function. |
|
| This function implements all recommendations for an evolve task. Essentially, this function is equivalent to using |
|
| This function displays the results of an evolve task as a |
|
| This function updates the value of an evolve task parameter. In this release, the only valid parameter is |
Oracle recommends that you configure SPM Evolve Advisor to run automatically (see "Configuring the Automatic SPM Evolve Advisor Task"). You can also evolve SQL plan baselines manually. Figure 23-4 shows the basic workflow for managing SQL plan management tasks.
Typically, you manage SQL plan evolution tasks in the following sequence:
See Also: Oracle Database PL/SQL Packages and Types Reference for information about theDBMS_SPM package |
This section describes a typical use case in which you create and execute a task, and then implements its recommendations. Table 23-6 describes some parameters of the CREATE_EVOLVE_TASK
function.
Table 23-6 DBMS_SPM.CREATE_EVOLVE_TASK Parameters
Function Parameter | Description |
---|---|
| SQL handle of the statement. The default |
| Plan identifier. The default |
| Time limit in number of minutes. The time limit for first unaccepted plan equals the input value. The time limit for the second unaccepted plan equals the input value minus the time spent in first plan verification, and so on. The default |
| User-specified name of the evolution task. |
This section explains how to evolve plan baselines from the command line. In Cloud Control, from the SQL Plan Baseline subpage (shown in Figure 23-3), select a plan, and then click Evolve.
Assumptions
This tutorial assumes the following:
To evolve a specified plan:
For example, enter the following statement:
sh
, and then set SQL*Plus display parameters: SELECT
statements so that SQL plan management captures them: SELECT /* q1_group_by */
statement for the first time. Because the database only captures plans for repeatable statements, the plan baseline for this statement is empty.
For example, execute the following query (sample output included):
SQL plan management only captures repeatable statements, so this result is expected.
SELECT /* q1_group_by */
statement for the second time. Example 23-4 executes the following query (sample output included).
Example 23-4 DBA_SQL_PLAN_BASELINES
The output shows that the plan is accepted, which means that it is in the plan baseline for the statement. Also, the origin is AUTO-CAPTURE
, which means that the statement was automatically captured and not manually loaded.
Explain the plan for the statement and verify that the optimizer is using this plan.
For example, explain the plan as follows, and then display it:
Sample output appears below:
The note indicates that the optimizer is using the plan shown with the plan name listed in Example 23-4.
SELECT /* q1_group_by */
statement. For example, use the following statements:
select /* q1_group_by */
statement again. Because automatic capture is enabled, the plan baseline is populated with the new plan for this statement.
Example 23-5 executes the following query (sample output included).
Example 23-5 DBA_SQL_PLAN_BASELINES
The output shows that the new plan is unaccepted, which means that it is in the statement history but not the SQL plan baseline.
For example, explain the plan as follows, and then display it:
Sample output appears below:
The note indicates that the optimizer is using the plan shown with the plan name listed in Example 23-4.
For example, execute the DBMS_SPM.CREATE_EVOLVE_TASK
function and then obtain the name of the task:
The following sample output shows the name of the task:
Now that the task has been created and has a unique name, execute the task.
For example, execute the DBMS_SPM.EXECUTE_EVOLVE_TASK
function (sample output included):
For example, execute the DBMS_SPM.REPORT_EVOLVE_TASK
function (sample output included):
This report indicates that the new execution plan, which uses the two new indexes, performs better than the original plan.
For example, execute the IMPLEMENT_EVOLVE_TASK
function:
Example 23-5 executes the following query (sample output included).
Example 23-6 DBA_SQL_PLAN_BASELINES
The output shows that the new plan is accepted.
For example, enter the following statements:
See Also: Oracle Database PL/SQL Packages and Types Reference for information about using theDBMS_SPM evolve functions |
You can remove some or all plans from a SQL plan baseline. This technique is sometimes useful when testing SQL plan management.
Drop plans with the DBMS_SPM.DROP_SQL_PLAN_BASELINE
function. This function returns the number of dropped plans. Table 23-8 describes input parameters.
Table 23-7 DROP_SQL_PLAN_BASELINE Parameters
Function Parameter | Description |
---|---|
| SQL statement identifier. |
| Name of a specific plan. Default |
This section explains how to drop baselines from the command line. In Cloud Control, from the SQL Plan Baseline subpage (shown in Figure 23-3), select a plan, and then click Drop.
Assumptions
This tutorial assumes that you want to drop all plans for the following SQL statement, effectively dropping the SQL plan baseline:
To drop a SQL plan baseline:
Example 23-7 executes the following query (sample output included).
Example 23-7 DBA_SQL_PLAN_BASELINES
The following example drops the plan baseline with the SQL handle SQL_b6b0d1c71cd1807b
, and returns the number of dropped plans. Specify plan baselines using the plan name (plan_name
), SQL handle (sql_handle
), or any other plan criteria. The table_name
parameter is mandatory.
For example, execute the following query:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDROP_SQL_PLAN_BASELINE function |
The SQL management base is a part of the data dictionary that resides in the SYSAUX
tablespace. It stores statement logs, plan histories, SQL plan baselines, and SQL profiles. This section explains how to change the disk space usage parameters for the SMB, and change the retention time for plans in the SMB.
The DBA_SQL_MANAGEMENT_CONFIG
view shows the current configuration settings for the SMB. Table 23-8 describes the parameters in the PARAMETER_NAME
column.
Table 23-8 Parameters in DBA_SQL_MANAGEMENT_CONFIG.PARAMETER_NAME
Parameter | Description |
---|---|
| Maximum percent of |
| Number of weeks to retain unused plans before they are purged. The default is 53. |
A weekly background process measures the total space occupied by the SMB. When the defined limit is exceeded, the process writes a warning to the alert log. The database generates alerts weekly until either the SMB space limit is increased, the size of the SYSAUX
tablespace is increased, or the disk space used by the SMB is decreased by purging SQL management objects (SQL plan baselines or SQL profiles). This task explains how to change the limit with the DBMS_SPM.CONFIGURE
procedure.
Assumptions
This tutorial assumes the following:
To change the percentage limit of the SMB:
For example, execute the following query (sample output included):
For example, execute the following command to change the setting to 30%:
For example, execute the following join (sample output included):
A weekly scheduled purging task manages disk space used by SQL plan management. The task runs as an automated task in the maintenance window. The database purges plans that have not been used for longer than the plan retention period, as identified by the LAST_EXECUTED
timestamp stored in the SMB for that plan. The default retention period is 53 weeks. The period can range between 5 and 523 weeks.
This task explains how to change the plan retention period with the DBMS_SPM.CONFIGURE
procedure. In Cloud Control, set the plan retention policy in the SQL Plan Baseline subpage (shown in Figure 23-3).
To change the plan retention period for the SMB:
For example, execute the following query (sample output included):
For example, execute the CONFIGURE
procedure to change the period to 105 weeks:
For example, execute the following query:
See Also: Oracle Database PL/SQL Packages and Types Reference to learn about theDBMS_SPM.CONFIGURE procedure |
This chapter explains the concepts and tasks relating to stored outline migration. This chapter contains the following topics:
Note: Starting in Oracle Database 12c, stored outlines are deprecated. See Chapter 24, "Migrating Stored Outlines to SQL Plan Baselines" for an alternative. |
A stored outline is a set of hints for a SQL statement. The hints direct the optimizer to choose a specific plan for the statement. A stored outline is a legacy technique for providing plan stability.
Stored outline migration is the user-initiated process of converting stored outlines to SQL plan baselines. A SQL plan baseline is a set of plans proven to provide optimal performance.
This section contains the following topics:
This section assumes that you rely on stored outlines to maintain plan stability and prevent performance regressions. The goal of this section is to provide a convenient method to safely migrate from stored outlines to SQL plan baselines. After the migration, you can maintain the same plan stability that you had using stored outlines while being able to use the more advanced features provided by the SQL Plan Management framework.
Specifically, the section explains how to address the following problems:
The stored outline migration PL/SQL API helps solve the preceding problems in the following ways:
For a specified SQL statement, you can add new plans as SQL plan baselines after they are verified not to cause performance regressions.
If hints stored in a plan baseline become invalid, then the plan may not be reproducible by the optimizer. In this case, the optimizer selects an alternative reproducible plan baseline or the current best-cost plan generated by optimizer.
The optimizer can choose from a set of optimal plans for a specific SQL statement instead of being restricted to a single plan per category, as required by stored outlines.
This section explains how the database migrates stored outlines to SQL plan baselines. This information is important for performing the task of migrating stored outlines.
The following graphic shows the main stages in stored outline migration:
The migration process has the following stages:
The database copies it directly or calculates it based on information in the outline. For example, the text of the SQL statement exists in both schemas, so the database can copy the text from outline to baseline.
The plan hash value and plan cost cannot be derived from the existing information in the outline, which necessitates reparsing the hints.
The compilation environment and execution statistics are only available during execution when the plan baseline is parsed and compiled.
The migration is complete only after the preceding phases complete.
An outline is a set of hints, whereas a SQL plan baseline is a set of plans. Because they are different technologies, some functionality of outlines does not map exactly to functionality of baselines. For example, a single SQL statement can have multiple outlines, each of which is in a different outline category, but the only category that currently exists for baselines is DEFAULT
.
The equivalent of a category for an outline is a module for a SQL plan baseline. Table 24-1 explains how outline categories map to modules.
Table 24-1 Outline Categories
Concept | Description | Default Value |
---|---|---|
Outline Category | Specifies a user-defined grouping for a set of stored outlines. You can use categories to maintain different stored outlines for a SQL statement. For example, a single statement can have an outline in the Each SQL statement can have one or more stored outlines. Each stored outline is in one and only one outline category. A statement can have multiple stored outlines in different categories, but only one stored outline exists for each category of each statement. During migration, the database maps each outline category to a SQL plan baseline module. |
|
Baseline Module | Specifies a high-level function being performed. A SQL plan baseline can belong to one and only one module. | After an outline is migrated to a SQL plan baseline, the module name defaults to outline category name. |
Baseline Category | Only one SQL plan baseline category exists. This category is named A statement can have multiple SQL plan baselines in the |
|
When migrating stored outlines to SQL plan baselines, Oracle Database maps every outline category to a SQL plan baseline module with the same name. As shown in the following diagram, the outline category OLTP
is mapped to the baseline module OLTP
. After migration, DEFAULT
is a super-category that contains all SQL plan baselines.
You can use the DBMS_SPM
package to perform the stored outline migration. Table 24-2 describes the relevant functions in this package.
Table 24-2 DBMS_SPM Functions Relating to Stored Outline Migration
DBMS_SPM Function | Description |
---|---|
| Migrates existing stored outlines to plan baselines. Use either of the following formats:
|
| Changes an attribute of a single plan or all plans associated with a SQL statement. |
| Drops stored outlines that have been migrated to SQL plan baselines. The function finds stored outlines marked as |
You can control stored outline and plan baseline behavior with initialization and session parameters. Table 24-3 describes the relevant parameters. See Table 24-5 and Table 24-6 for an explanation of how these parameter settings interact.
Table 24-3 Parameters Relating to Stored Outline Migration
Initialization or Session Parameter | Description | Parameter Type |
---|---|---|
| Determines whether Oracle Database automatically creates and stores an outline for each query submitted during the session. | Initialization parameter |
| Enables or disables the automatic recognition of repeatable SQL statement and the generation of SQL plan baselines for these statements. | Initialization parameter |
| Determines whether the optimizer uses stored outlines to generate execution plans. Note: This is a session parameter, not an initialization parameter. | Session |
| Enables or disables the use of SQL plan baselines stored in SQL Management Base. | Initialization parameter |
You can use database views to access information relating to stored outline migration. Table 24-4 describes the following main views.
Table 24-4 Views Relating to Stored Outline Migration
View | Description |
---|---|
| Describes all stored outlines in the database. The |
| Displays information about the SQL plan baselines currently created for specific SQL statements. The |
See Also:
|
This section explains the basic steps in using the PL/SQL API to perform stored outline migration. The basic steps are as follows:
Review the migration prerequisites and determine how you want the migrated plan baselines to behave.
See "Migrating Outlines to Utilize SQL Plan Management Features".
See "Migrating Outlines to Preserve Stored Outline Behavior".
See "Performing Follow-Up Tasks After Stored Outline Migration".
This section explains how to prepare for stored outline migration.
To prepare for stored outline migration:
SYSDBA
privileges or the EXECUTE
privilege on the DBMS_SPM
package. For example, do the following to use operating system authentication to log on to a database as SYS
:
The following example queries all stored outlines that have not been migrated to SQL plan baselines:
INSERT AS SELECT
statement. If you do not decide to migrate all outlines, then identify the outlines or categories that you intend to migrate.
A fixed plan is frozen. If a fixed plan is reproducible using the hints stored in plan baseline, then the optimizer always chooses the lowest-cost fixed plan baseline over plan baselines that are not fixed. Essentially, a fixed plan baseline acts as a stored outline with valid hints.
A fixed plan is reproducible when the database can parse the statement based on the hints stored in the plan baseline and create a plan with the same plan hash value as the one in the plan baseline. If one of more of the hints become invalid, then the database may not be able to create a plan with the same plan hash value. In this case, the plan is nonreproducible.
If a fixed plan cannot be reproduced when parsed using its hints, then the optimizer chooses a different plan, which can be either of the following:
In some cases, a performance regression occurs because of the different plan, requiring SQL tuning.
If a plan baseline does not contain fixed plans, then SQL Plan Management considers the plans equally when picking a plan for a SQL statement.
See Also:
|
The goals of this task are as follows:
Assumptions
This tutorial assumes the following:
To migrate specific outlines, see Oracle Database PL/SQL Packages and Types Reference for details about the DBMS_SPM.MIGRATE_STORED_OUTLINE
function.
By default, generated plans are not fixed and SQL Plan Management considers all plans equally when picking a plan for a SQL statement. This situation permits the advanced feature of plan evolution to capture new plans for a SQL statement, verify their performance, and accept these new plans into the plan baseline.
To migrate stored outlines to SQL plan baselines:
MIGRATE_STORED_OUTLINE
. The following sample PL/SQL block migrates all stored outlines to fixed baselines:
See Also:
|
The goal of this task is to migrate stored outlines to SQL plan baselines and preserve the original behavior of the stored outlines by creating fixed plan baselines. A fixed plan has higher priority over other plans for the same SQL statement. If a plan is fixed, then the plan baseline cannot be evolved. The database does not add new plans to a plan baseline that contains a fixed plan.
Assumptions
This tutorial assumes the following:
firstrow
. See Oracle Database PL/SQL Packages and Types Reference for syntax and semantics of the DBMS_SPM.MIGRATE_STORED_OUTLINE
function.
To migrate stored outlines to plan baselines:
MIGRATE_STORED_OUTLINE
. The following sample PL/SQL block migrates stored outlines in the category firstrow
to fixed baselines:
After migration, the SQL plan baselines is in module firstrow
and category DEFAULT
.
See Also:
|
The goals of this task are as follows:
This section explains how to set initialization parameters relating to stored outlines and plan baselines. The OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES
and CREATE_STORED_OUTLINES
initialization parameters determine how and when the database creates stored outlines and SQL plan baselines. Table 24-5 explains the interaction between these parameters.
Table 24-5 Creation of Outlines and Baselines
CREATE_STORED_OUTLINES Initialization Parameter | OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES Initialization Parameter | Database Behavior |
---|---|---|
|
| When executing a SQL statement, the database does not create stored outlines or SQL plan baselines. |
|
| The automatic recognition of repeatable SQL statements and the generation of SQL plan baselines for these statements is enabled. When executing a SQL statement, the database creates only new SQL plan baselines (if they do not exist) with the category name |
|
| Oracle Database automatically creates and stores an outline for each query submitted during the session. When executing a SQL statement, the database creates only new stored outlines (if they do not exist) with the category name |
|
| When executing a SQL statement, the database creates only new stored outlines (if they do not exist) with the specified category name for the statement. |
|
| Oracle Database automatically creates and stores an outline for each query submitted during the session. The automatic recognition of repeatable SQL statements and the generation of SQL plan baselines for these statements is also enabled. When executing a SQL statement, the database creates both stored outlines and SQL plan baselines with the category name |
|
| Oracle Database automatically creates and stores an outline for each query submitted during the session. The automatic recognition of repeatable SQL statements and the generation of SQL plan baselines for these statements is also enabled. When executing a SQL statement, the database creates stored outlines with the specified category name and SQL plan baselines with the category name |
The USE_STORED_OUTLINES
session parameter (it is not an initialization parameter) and OPTIMIZER_USE_SQL_PLAN_BASELINES
initialization parameter determine how the database uses stored outlines and plan baselines. Table 24-6 explains how these parameters interact.
Table 24-6 Use of Stored Outlines and SQL Plan Baselines
USE_STORED_OUTLINES Session Parameter | OPTIMIZER_USE_SQL_PLAN_BASELINES Initialization Parameter | Database Behavior |
---|---|---|
|
| When choosing a plan for a SQL statement, the database does not use stored outlines or plan baselines. |
|
| When choosing a plan for a SQL statement, the database uses only SQL plan baselines. |
|
| When choosing a plan for a SQL statement, the database uses stored outlines with the category name |
|
| When choosing a plan for a SQL statement, the database uses stored outlines with the specified category name. If a stored outline with the specified category name does not exist, then the database uses a stored outline in the |
|
| When choosing a plan for a SQL statement, stored outlines take priority over plan baselines. If a stored outline with the category name |
|
| When choosing a plan for a SQL statement, stored outlines take priority over plan baselines. If a stored outline with the specified category name or the |
Assumptions
This tutorial assumes the following:
Hints in releases before Oracle Database 10g use a local hint format. After migration, hints stored in a plan baseline use the global hints format introduced in Oracle Database 10g.
To place the database in the proper state after the migration:
Ensure that the plans are enabled and accepted. For example, enter the following query (partial sample output included):
For example, the following statement changes the status of the baseline for the specified SQL statement to fixed
:
For example, enter the following query (partial sample output included):
For example, the following statements drops all stored outlines with status MIGRATED
in DBA_OUTLINES
:
For example, the following SQL statements instruct the database to create SQL plan baselines instead of stored outlines when a SQL statement is executed. The example also instructs the database to apply a stored outline in category allrows
or DEFAULT
only if it exists and has not been migrated to a SQL plan baseline. In other cases, the database applies SQL plan baselines instead.
See Also:
|
This appendix provides an overview of data access methods using indexes and clusters that can enhance or degrade performance.
The appendix contains the following topics:
This section describes the following:
Although query optimization helps avoid the use of nonselective indexes within query execution, the SQL engine must continue to maintain all indexes defined against a table, regardless of whether queries make use of them. Index maintenance can present a significant CPU and I/O resource demand in any write-intensive application. In other words, do not build indexes unless necessary.
To maintain optimal performance, drop indexes that an application is not using. You can find indexes that are not being used by using the ALTER
INDEX
MONITORING
USAGE
functionality over a period that is representative of your workload. This monitoring feature records whether an index has been used. If you find that an index has not been used, then drop it. Make sure you are monitoring a representative workload to avoid dropping an index which is used, but not by the workload you sampled.
Also, indexes within an application sometimes have uses that are not immediately apparent from a survey of statement execution plans. An example of this is a foreign key index on a parent table, which prevents share locks from being taken out on a child table.
If you are deciding whether to create new indexes to tune statements, then you can also use the EXPLAIN
PLAN
statement to determine whether the optimizer chooses to use these indexes when the application is run. If you create new indexes to tune a statement that is currently parsed, then Oracle Database invalidates the statement.
When the statement is next parsed, the optimizer automatically chooses a new execution plan that could potentially use the new index. If you create new indexes on a remote database to tune a distributed statement, then the optimizer considers these indexes when the statement is next parsed.
Creating an index to tune one statement can affect the optimizer's choice of execution plans for other statements. For example, if you create an index to be used by one statement, then the optimizer can choose to use that index for other statements in the application as well. For this reason, reexamine the application's performance and execution plans, and rerun the SQL trace facility after you have tuned those statements that you initially identified for tuning.
See Also:
|
SQL Access Advisor is an alternative to manually determining which indexes are required. This advisor recommends a set of indexes when invoked from Oracle Enterprise Manager Cloud Control (Cloud Control) or run through the DBMS_ADVISOR
package APIs. SQL Access Advisor either recommends using a workload or it generates a hypothetical workload for a specified schema.
Various workload sources are available, such as the current contents of the SQL cache, a user-defined set of SQL statements, or a SQL tuning set. Given a workload, SQL Access Advisor generates a set of recommendations from which you can select the indexes to be implemented. SQL Access Advisor provides an implementation script that can be executed manually or automatically through Cloud Control.
A key is a column or expression on which you can build an index. Follow these guidelines for choosing keys to index:
WHERE
clauses. Note: Oracle Database automatically creates indexes, or uses existing indexes, on the keys and expressions of unique and primary keys that you define with integrity constraints. |
Indexing low selectivity columns can be helpful when the data distribution is skewed so that one or two values occur much less often than other values.
UPDATE
statements that modify indexed columns and INSERT
and DELETE
statements that modify indexed tables take longer than if there were no index. Such SQL statements must modify data in indexes and data in tables. They also create additional undo and redo. WHERE
clauses with functions or operators. A WHERE
clause that uses a function, other than MIN
or MAX
, or an operator with an indexed key does not make available the access path that uses the index except with function-based indexes. INSERT
, UPDATE
, and DELETE
statements access the parent and child tables. Such an index allows UPDATE
s and DELETE
s on the parent table without share locking the child table. INSERT
s, UPDATE
s, and DELETE
s and the use of the space required to store the index. You might want to experiment by comparing the processing times of the SQL statements with and without indexes. You can measure processing time with the SQL trace facility. See Also: Oracle Database Development Guide for more information about the effects of foreign keys on locking |
A composite index contains multiple key columns. Composite indexes can provide additional advantages over single-column indexes:
Sometimes you can combine two or more columns or expressions, each with low selectivity, to form a composite index with higher selectivity.
If all columns selected by a query are in a composite index, then Oracle Database can return these values from the index without accessing the table.
A SQL statement can use an access path involving a composite index when the statement contains constructs that use a leading portion of the index.
A leading portion of an index is a set of one or more columns that were specified first and consecutively in the list of columns in the CREATE
INDEX
statement that created the index. Consider this CREATE
INDEX
statement:
x
, xy
, and xyz
combinations of columns are leading portions of the index yz
, y
, and z
combinations of columns are not leading portions of the index Follow these guidelines for choosing keys for composite indexes:
WHERE
clause conditions combined with AND
operators, especially if their combined selectivity is better than the selectivity of either key individually. Of course, consider the guidelines associated with the general performance advantages and trade-offs of indexes described in the previous sections.
Follow these guidelines for ordering keys in composite indexes:
WHERE
clauses comprise a leading portion. WHERE
clauses more frequently, then create the index so that the more frequently selected keys comprise a leading portion to allow the statements that use only these keys to use the index. WHERE
clauses equally often but the data is physically ordered on one of the keys, then place this key first in the composite index. Even after you create an index, the optimizer cannot use an access path that uses the index simply because the index exists. The optimizer can choose such an access path for a SQL statement only if it contains a construct that makes the access path available. To allow the query optimizer the option of using an index access path, ensure that the statement contains a construct that makes such an access path available.
In some cases, you might want to prevent a SQL statement from using an access path that uses an existing index. You may want to take this approach if you know that the index is not very selective and a full table scan would be more efficient. If the statement contains a construct that makes such an index access path available, then you can force the optimizer to use a full table scan through one of the following methods:
NO_INDEX
hint to give the query optimizer maximum flexibility while disallowing the use of a certain index. FULL
hint to instruct the optimizer to choose a full table scan instead of an index scan. INDEX
or INDEX_COMBINE
hints to instruct the optimizer to use one index or a set of listed indexes instead of another. See Also: Chapter 14, "Influencing the Optimizer" for more information about theNO_INDEX , FULL , INDEX , and INDEX_COMBINE and hints |
Parallel execution uses indexes effectively. It does not perform parallel index range scans, but it does perform parallel index lookups for parallel nested loops join execution. If an index is very selective (few rows correspond to each index entry), then a sequential index lookup might be better than a parallel table scan.
You might want to re-create an index to compact it and minimize fragmented space, or to change the index's storage characteristics. When creating a new index that is a subset of an existing index, or when rebuilding an existing index with new storage characteristics, Oracle Database might use the existing index instead of the base table to improve the performance of the index build.
However, in some cases using the base table instead of the existing index is beneficial. Consider an index on a table on which a lot of DML has been performed. Because of the DML, the size of the index can increase to the point where each block is only 50% full, or even less. If the index refers to most of the columns in the table, then the index could actually be larger than the table. In this case, it is faster to use the base table rather than the index to re-create the index.
To reorganize or compact an existing index or to change its storage characteristics, use the ALTER
INDEX . . . REBUILD
statement. The REBUILD
statement uses the existing index as the basis for the new one. All index storage statements are supported, such as STORAGE
(for extent allocation), TABLESPACE
(to move the index to a new tablespace), and INITRANS
(to change the initial number of entries).
Usually, ALTER
INDEX . . . REBUILD
is faster than dropping and re-creating an index, because this statement uses the fast full scan feature. It reads all the index blocks using multiblock I/O, then discards the branch blocks. A further advantage of this approach is that the old index is still available for queries while the rebuild is in progress.
See Also: Oracle Database SQL Language Reference for more information about theCREATE INDEX and ALTER INDEX statements and restrictions on rebuilding indexes |
You can coalesce leaf blocks of an index by using the ALTER
INDEX
statement with the COALESCE
option. This option enables you to combine leaf levels of an index to free blocks for reuse. You can also rebuild the index online.
See Also: Oracle Database SQL Language Reference and Oracle Database Administrator's Guide for more information about the syntax for this statement |
You can use an existing nonunique index on a table to enforce uniqueness, either for UNIQUE
constraints or the unique aspect of a PRIMARY
KEY
constraint. The advantage of this approach is that the index remains available and valid when the constraint is disabled. Therefore, enabling a disabled UNIQUE
or PRIMARY
KEY
constraint does not require rebuilding the unique index associated with the constraint. This can yield significant time savings on enable operations for large tables.
Using a nonunique index to enforce uniqueness also enables you to eliminate redundant indexes. You do not need a unique index on a primary key column if that column is included as the prefix of a composite index. You can use the existing index to enable and enforce the constraint. You also save significant space by not duplicating the index. However, if the existing index is partitioned, then the partitioning key of the index must also be a subset of the UNIQUE
key; otherwise, Oracle Database creates an additional unique index to enforce the constraint.
An enabled novalidated constraint behaves similarly to an enabled validated constraint for new data. Placing a constraint in the enabled novalidated state signifies that any new data entered into the table must conform to the constraint. Existing data is not checked. By placing a constraint in the enabled novalidated state, you enable the constraint without locking the table.
If you change a constraint from disabled to enabled, then the table must be locked. No new DML, queries, or DDL can occur, because no mechanism can ensure that operations on the table conform to the constraint during the enable operation. The enabled novalidated state prevents users from performing operations on the table that violate the constraint.
The database can validate an enabled novalidated constraint with a parallel, consistent-read query of the table to determine whether any data violates the constraint. The database performs no locking, so the enable operation does not block readers or writers. In addition, the database can validate enabled novalidated constraints in parallel. The database can validate multiple constraints at the same time and check the validity of each constraint using parallel query.
To create tables with constraints and indexes:
NOT
NULL
constraints can be unnamed and should be created enabled and validated. Name all other constraints (CHECK
, UNIQUE
, PRIMARY
KEY
, and FOREIGN
KEY
) and create them disabled.
Note: By default, constraints are created in theENABLED state. |
ALTER
TABLE
statement for each constraint, validate all constraints. Do this to primary keys before foreign keys. For example, Now load data into table t
.
At this point, users can start performing INSERT
, UPDATE
, DELETE
, and SELECT
operations on table t
.
Now the constraints are enabled and validated.
A function-based index includes columns that are either transformed by a function, such as the UPPER
function, or included in an expression, such as col1
+ col2
. With a function-based index, you can store computation-intensive expressions in the index.
Defining a function-based index on the transformed column or expression allows that data to be returned using the index when that function or expression is used in a WHERE
clause or an ORDER
BY
clause. In this way, the database can avoid computing the value of the expression when processing SELECT
and DELETE
statements. Thus, a function-based index is useful when frequently executed SQL statements include transformed columns, or columns in expressions, in a WHERE
or ORDER
BY
clause.
Oracle Database treats descending indexes as function-based indexes. The columns marked DESC
are sorted in descending order.
For example, function-based indexes defined with the UPPER
(column_name
) or LOWER
(column_name
) keywords allow case-insensitive searches. The index created in the following statement:
facilitates processing queries such as:
See Also:
|
Similar to partitioned tables, partitioned indexes improve manageability, availability, performance, and scalability. They can either be partitioned independently (global indexes) or automatically linked to a table's partitioning method (local indexes).
Oracle Database supports both range and hash partitioned global indexes. In a range partitioned global index, each index partition contains values defined by a partition bound. In a hash partitioned global index, each partition contains values determined by the Oracle Database hash function.
The hash method can improve performance of indexes where a small number leaf blocks in the index have high contention in multiuser OLTP environment. In some OLTP applications, index insertions happen only at the right edge of the index. This situation could occur when the index is defined on monotonically increasing columns. In such situations, the right edge of the index becomes a hot spot because of contention for index pages, buffers, latches for update, and additional index maintenance activity, which results in performance degradation.
With hash partitioned global indexes index entries are hashed to different partitions based on partitioning key and the number of partitions. This spreads out contention over number of defined partitions, resulting in increased throughput. Hash-partitioned global indexes would benefit TPC-H refresh functions that are executed as massive PDMLs into huge fact tables because contention for buffer latches would be spread out over multiple partitions.
With hash partitioning, an index entry is mapped to a particular index partition based on the hash value generated by Oracle Database. The syntax to create hash-partitioned global index is very similar to hash-partitioned table. Queries involving equality and IN
predicates on index partitioning key can efficiently use global hash partitioned index to answer queries quickly.
See Also: Oracle Database Concepts and Oracle Database Administrator's Guide for more information about global indexes tables |
An index-organized table differs from an ordinary table in that the data for the table is held in its associated index. Changes to the table data, such as adding new rows, updating rows, or deleting rows, result only in updating the index. Because data rows are stored in the index, index-organized tables provide faster key-based access to table data for queries that involve exact match or range search or both.
A parent/child relationship is an example of a situation that may warrant an index-organized table. For example, a members
table has a child table containing phone numbers. Phone numbers for a member are changed and added over time. In a heap-organized table, rows are inserted in data blocks where they fit. However, when you query the members
table, you always retrieve the phone numbers from the child table. To make the retrieval more efficient, you can store the phone numbers in an index-organized table so that phone records for a given member are inserted near each other in the data blocks.
In some circumstances, an index-organized table may provide a performance advantage over a heap-organized table. For example, if a query requires fewer blocks in the cache, then the database uses the buffer cache more efficiently. If fewer distinct blocks are needed for a query, then a single physical I/O may retrieve all necessary data, requiring a smaller amount of I/O for each query.
Global hash-partitioned indexes are supported for index-organized tables and can provide performance benefits in a multiuser OLTP environment. Index-organized tables are useful when you must store related pieces of data together or physically store data in a specific order.
See Also: Oracle Database Concepts and Oracle Database Administrator's Guide for more information about index-organized tables |
Bitmap indexes can substantially improve performance of queries that have all of the following characteristics:
WHERE
clause contains multiple predicates on low- or medium-cardinality columns. You can use multiple bitmap indexes to evaluate the conditions on a single table. Bitmap indexes are thus highly advantageous for complex ad hoc queries that contain lengthy WHERE
clauses. Bitmap indexes can also provide optimal performance for aggregate queries and for optimizing joins in star schemas.
See Also: Oracle Database Concepts and Oracle Database Data Warehousing Guide for more information about bitmap indexing |
In addition to a bitmap index on a single table, you can create a bitmap join index, which is a bitmap index for the join of two or more tables. A bitmap join index is a space-saving way to reduce the volume of data that must be joined by performing restrictions in advance. For each value in a column of a table, a bitmap join index stores the rowids of corresponding rows in another table. In a data warehousing environment, the join condition is an equi-inner join between the primary key column(s) of the dimension tables and the foreign key column(s) in the fact table.
Bitmap join indexes are much more efficient in storage than materialized join views, an alternative for materializing joins in advance. Materialized join views do not compress the rowids of the fact tables.
See Also: Oracle Database Data Warehousing Guide for examples and restrictions of bitmap join indexes |
Domain indexes are built using the indexing logic supplied by a user-defined indextype. An indextype provides an efficient mechanism to access data that satisfy certain operator predicates. Typically, the user-defined indextype is part of an Oracle Database option, like the Spatial option. For example, the SpatialIndextype
allows efficient search and retrieval of spatial data that overlap a given bounding box.
The cartridge determines the parameters you can specify in creating and maintaining the domain index. Similarly, the performance and storage characteristics of the domain index are presented in the specific cartridge documentation.
Refer to the appropriate cartridge documentation for information such as the following:
Note: You can also create index types with theCREATE INDEXTYPE statement. |
A table cluster is a group of one or more tables that are physically stored together because they share common columns and usually appear together in SQL statements. Because the database physically stores related rows together, disk access time improves. To create a cluster, use the CREATE
CLUSTER
statement.
Consider clustering tables in the following circumstances:
Detail records are stored in the same data blocks as the master record, so they are likely still to be in memory when you select them, requiring Oracle Database to perform less I/O.
In this case, consider storing a detail table alone in a cluster. This measure improves the performance of queries that select detail records of the same master, but does not decrease the performance of a full table scan on the master table. An alternative is to use an index organized table.
Avoid clustering tables in the following circumstances:
Modifying a row's cluster key value takes longer than modifying the value in an nonclustered table, because Oracle Database might need to migrate the modified row to another block to maintain the cluster.
A full table scan of a clustered table can take longer than a full table scan of an nonclustered table. Oracle Database is likely to read more blocks because the tables are stored together.
To access a row in a clustered table, Oracle Database reads all blocks containing rows with that value. If these rows take up multiple blocks, then accessing a single row could require more reads than accessing the same row in a nonclustered table.
This causes waste of space for the low cardinality key value. It causes collisions for the high cardinality key values. Collisions degrade performance.
Consider the benefits and drawbacks of clusters for the application. For example, you might decide that the performance gain for join statements outweighs the performance loss for statements that modify cluster key values. You might want to experiment and compare processing times with the tables both clustered and stored separately.
See Also:
|
Hash clusters group table data by applying a hash function to each row's cluster key value. All rows with the same cluster key value are stored together on disk. Consider the benefits and drawbacks of hash clusters for the application. You might want to experiment and compare processing times with a particular table in a hash cluster and alone with an index.
Follow these guidelines for choosing when to use hash clusters:
WHERE
clauses, if the WHERE
clauses contain equality conditions that use the same column or combination of columns. Designate this column or combination of columns as the cluster key. Full table scans must read all blocks allocated to the hash cluster, even though some blocks might contain few rows. Storing the table alone reduces the number of blocks read by full table scans.
If hashing is appropriate for the table based on the considerations in this list, then storing a single table in a hash cluster can be useful. This is true regardless of whether the table is joined frequently with other tables.
See Also:
|
accepted plan
In the context of SQL plan management, a plan that is in a SQL plan baseline for a SQL statement and thus available for use by the optimizer. An accepted plan contains a set of hints, a plan hash value, and other plan-related information.
access path
The means by which the database retrieves data from a database. For example, a query using an index and a query using a full table scan use different access paths.
adaptive cursor sharing
A feature that enables a single statement that contains bind variables to use multiple execution plans. Cursor sharing is "adaptive" because the cursor adapts its behavior so that the database does not always use the same plan for each execution or bind variable value.
adaptive optimizer
A feature of the optimizer that enables it to adapt plans based on run-time statistics.
adaptive plan
An execution plan that changes after optimization because run-time conditions indicate that optimizer estimates are inaccurate. An adaptive plan has different built-in plan options. During the first execution, before a specific subplan becomes active, the optimizer makes a a final decision about which option to use. The optimizer bases its choice on observations made during the execution up to this point. Thus, an adaptive plan enables the final plan for a statement to differ from the default plan.
adaptive query optimization
A set of capabilities that enables the adaptive optimizer to make run-time adjustments to execution plans and discover additional information that can lead to better statistics. Adaptive optimization is helpful when existing statistics are not sufficient to generate an optimal plan.
antijoin
A join that returns rows that fail to match the subquery on the right side. For example, an antijoin can list departments with no employees. Antijoins use the NOT EXISTS
or NOT IN
constructs.
Automatic Database Diagnostic Monitor (ADDM)
ADDM is self-diagnostic software built into Oracle Database. ADDM examines and analyzes data captured in Automatic Workload Repository (AWR) to determine possible database performance problems.
automatic optimizer statistics collection
The automatic running of the DBMS_STATS
package to collect optimizer statistics for all schema objects for which statistics are missing or stale.
automatic initial plan capture
The mechanism by which the database automatically creates a SQL plan baseline for any repeatable SQL statement executed on the database. Enable automatic initial plan capture by setting the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES
initialization parameter to true
(the default is false
).
automatic reoptimization
The ability of the optimizer to automatically change a plan on subsequent executions of a SQL statement. Automatic reoptimization can fix any suboptimal plan chosen due to incorrect optimizer estimates, from a suboptimal distribution method to an incorrect choice of degree of parallelism.
automatic SQL tuning
The work performed by Automatic SQL Tuning Advisor it runs as an automated task within system maintenance windows.
Automatic SQL Tuning Advisor
SQL Tuning Advisor when run as an automated maintenance task. Automatic SQL Tuning runs during system maintenance windows as an automated maintenance task, searching for ways to improve the execution plans of high-load SQL statements.
See SQL Tuning Advisor.
Automatic Tuning Optimizer
The optimizer when invoked by SQL Tuning Advisor. In SQL tuning mode, the optimizer performs additional analysis to check whether it can further improve the plan produced in normal mode. The optimizer output is not an execution plan, but a series of actions, along with their rationale and expected benefit for producing a significantly better plan.
Automatic Workload Repository (AWR)
The infrastructure that provides services to Oracle Database components to collect, maintain, and use statistics for problem detection and self-tuning.
AWR
AWR snapshot
A set of data for a specific time that is used for performance comparisons. The delta values captured by the snapshot represent the changes for each statistic over the time period. Statistics gathered by are queried from memory. You can display the gathered data in both reports and views.
baseline
In the context of AWR, the interval between two AWR snapshots that represent the database operating at an optimal level.
bind-aware cursor
A bind-sensitive cursor that is eligible to use different plans for different bind values. After a cursor has been made bind-aware, the optimizer chooses plans for future executions based on the bind value and its cardinality estimate.
bind-sensitive cursor
A cursor whose optimal plan may depend on the value of a bind variable. The database monitors the behavior of a bind-sensitive cursor that uses different bind values to determine whether a different plan is beneficial.
bind variable
A placeholder in a SQL statement that must be replaced with a valid value or value address for the statement to execute successfully. By using bind variables, you can write a SQL statement that accepts inputs or parameters at run time. The following query uses v_empid
as a bind variable:
bind variable peeking
The ability of the optimizer to look at the value in a bind variable during a hard parse. By peeking at bind values, the optimizer can determine the selectivity of a WHERE
clause condition as if literals had been used, thereby improving the plan.
bitmap join index
A bitmap index for the join of two or more tables.
bitmap piece
A subcomponent of a single bitmap index entry. Each indexed column value may have one or more bitmap pieces. The database uses bitmap pieces to break up an index entry that is large in relation to the size of a block.
B-tree index
An index organized like an upside-down tree. A B-tree index has two types of blocks: branch blocks for searching and leaf blocks that store values. The leaf blocks contain every indexed data value and a corresponding rowid used to locate the actual row. The "B" stands for "balanced" because all leaf blocks automatically stay at the same depth.
bulk load
A CREATE TABLE AS SELECT
or INSERT INTO ... SELECT
operation.
cardinality
The number of rows that is expected to be or actually is returned by an operation in an execution plan. Data has low cardinality when the number of distinct values in a column is low in relation to the total number of rows.
Cartesian join
A join in which one or more of the tables does not have any join conditions to any other tables in the statement. The optimizer joins every row from one data source with every row from the other data source, creating the Cartesian product of the two sets.
child cursor
The cursor containing the plan, compilation environment, and other information for a statement whose text is stored in a parent cursor. When a statement first executes, the database creates both a parent and child cursor in the shared pool.
cluster scan
An access path for a table cluster. In an indexed table cluster, Oracle Database first obtains the rowid of one of the selected rows by scanning the cluster index. Oracle Database then locates the rows based on this rowid.
column group
A set of columns that is treated as a unit.
column group statistics
Extended statistics gathered on a group of columns treated as a unit.
column statistics
Statistics about columns that the optimizer uses to determine optimal execution plans. Column statistics include the number of distinct column values, low value, high value, and number of nulls.
complex view merging
The merging of views containing the GROUP BY
or DISTINCT
keywords.
composite database operation
In a database operation, the activity between two points in time in a database session, with each session defining its own beginning and end points. A session can participate in at most one composite database operation at a time.
concurrency
Simultaneous access of the same data by many users. A multiuser database management system must provide adequate concurrency controls so that data cannot be updated or changed improperly, compromising data integrity.
concurrent statistics gathering mode
A mode that enables the database to simultaneously gather optimizer statistics for multiple tables in a schema, or multiple partitions or subpartitions in a table. Concurrency can reduce the overall time required to gather statistics by enabling the database to fully use multiple CPUs.
condition
A combination of one or more expressions and logical operators that returns a value of TRUE
, FALSE
, or UNKNOWN
.
cost
A numeric internal measure that represents the estimated resource usage for an execution plan. The lower the cost, the more efficient the plan.
cost-based optimizer (CBO)
The legacy name for the optimizer. In earlier releases, the cost-based optimizer was an alternative to the rule-based optimizer (RBO).
cost model
The internal optimizer model that accounts for the cost of the I/O, CPU, and network resources that a query is predicted to use.
cumulative statistics
A count such as the number of block reads. Oracle Database generates many types of cumulative statistics for the system, sessions, and individual SQL statements.
cursor
A handle or name for a private SQL area in the PGA. Because cursors are closely associated with private SQL areas, the terms are sometimes used interchangeably.
cursor cache
See shared SQL area.
cursor merging
Combining cursors to save space in the shared SQL area. If the optimizer creates a plan for a bind-aware cursor, and if this plan is the same as an existing cursor, then the optimizer can merge the cursors.
database operation
A set of database tasks defined by end users or application code, for example, a batch job or ETL processing.
data skew
Large variations in the number of duplicate values in a column.
default plan
For an adaptive plan, the execution plan initially chosen by the optimizer using the statistics from the data dictionary. The default plan can differ from the final plan.
disabled plan
A plan that a database administrator has manually marked as ineligible for use by the optimizer.
degree of parallelism
The number of parallel execution servers associated with a single operation. Parallel execution is designed to effectively use multiple CPUs. Oracle Database parallel execution framework enables you to either explicitly choose a specific degree of parallelism or to rely on Oracle Database to automatically control it.
density
A decimal number between 0
and 1
that measures the selectivity of a column. Values close to 1
indicate that the column is unselective, whereas values close to 0
indicate that this column is more selective.
direct path read
A single or multiblock read into the PGA, bypassing the SGA.
driving table
The table to which other tables are joined. An analogy from programming is a for loop that contains another for loop. The outer for loop is the analog of a driving table, which is also called an outer table.
dynamic performance view
A view created on dynamic performance tables, which are virtual tables that record current database activity. The dynamic performance views are called fixed views because they cannot be altered or removed by the database administrator. They are also called V$
views because they begin with the string V$
(GV$
in Oracle RAC).
dynamic statistics
An optimization technique in which the database executes a recursive SQL statement to scan a small random sample of a table's blocks to estimate predicate selectivities.
dynamic statistics level
The level that controls both when the database gathers dynamic statistics, and the size of the sample that the optimizer uses to gather the statistics. Set the dynamic statistics level using either the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter or a statement hint.
enabled plan
In SQL plan management, a plan that is eligible for use by the optimizer.
endpoint number
A number that uniquely identifies a bucket in a histogram. In frequency and hybrid histograms, the endpoint number is the cumulative frequency of endpoints. In height-balanced histograms, the endpoint number is the bucket number.
endpoint repeat count
In a hybrid histogram, the number of times the endpoint value is repeated, for each endpoint (bucket) in the histogram. By using the repeat count, the optimizer can obtain accurate estimates for almost popular values.
endpoint value
An endpoint value is the highest value in the range of values in a histogram bucket.
estimator
The component of the optimizer that determines the overall cost of a given execution plan.
execution plan
The combination of steps used by the database to execute a SQL statement. Each step either retrieves rows of data physically from the database or prepares them for the user issuing the statement. You can override execution plans by using hints.
execution tree
A tree diagram that shows the flow of row sources from one step to another in an execution plan.
expression
A combination of one or more values, operators, and SQL functions that evaluates to a value. For example, the expression 2*2
evaluates to 4
. In general, expressions assume the data type of their components.
expression statistics
A type of extended statistics that improves optimizer estimates when a WHERE
clause has predicates that use expressions.
extended statistics
A type of optimizer statistics that improves estimates for cardinality when multiple predicates exist or when predicates contain expressions.
extensible optimizer
An optimizer capability that enables authors of user-defined functions and indexes to create statistics collection, selectivity, and cost functions that the optimizer uses when choosing an execution plan. The optimizer cost model is extended to integrate information supplied by the user to assess CPU and I/O cost.
extension
A column group or an expression. The statistics collected for column groups and expressions are called extended statistics.
external table
A read-only table whose metadata is stored in the database but whose data in stored in files outside the database. The database uses the metadata describing external tables to expose their data as if they were relational tables.
filter condition
A WHERE
clause component that eliminates rows from a single object referenced in a SQL statement.
final plan
In an adaptive plan, the plan that executes to completion. The default plan can differ from the final plan.
fixed object
A dynamic performance table or its index. The fixed objects are owned by SYS
. Fixed object tables have names beginning with X$
and are the base tables for the V$
views.
fixed plan
An accepted plan that is marked as preferred, so that the optimizer considers only the fixed plans in the SQL plan baseline. You can use fixed plans to influence the plan selection process of the optimizer.
frequency histogram
A type of histogram in which each distinct column value corresponds to a single bucket. An analogy is sorting coins: all pennies go in bucket 1, all nickels go in bucket 2, and so on.
full outer join
A combination of a left and right outer join. In addition to the inner join, the database uses nulls to preserve rows from both tables that have not been returned in the result of the inner join. In other words, full outer joins join tables together, yet show rows with no corresponding rows in the joined tables.
full table scan
A scan of table data in which the database sequentially reads all rows from a table and filters out those that do not meet the selection criteria. All data blocks under the high water mark are scanned.
global temporary table
A special temporary table that stores intermediate session-private data for a specific duration.
hard parse
The steps performed by the database to build a new executable version of application code. The database must perform a hard parse instead of a soft parse if the parsed representation of a submitted statement does not exist in the shared SQL area.
hash cluster
A type of table cluster that is similar to an indexed cluster, except the index key is replaced with a hash function. No separate cluster index exists. In a hash cluster, the data is the index.
hash join
A method for joining large data sets. The database uses the smaller of two tables or data sources to build a hash table on the join key in memory. It then scans the larger table, probing the hash table to find the joined rows.
hash scan
An access path for a table cluster. The database uses a hash scan to locate rows in a hash cluster based on a hash value. In a hash cluster, all rows with the same hash value are stored in the same data block. To perform a hash scan, Oracle Database first obtains the hash value by applying a hash function to a cluster key value specified by the statement, and then scans the data blocks containing rows with that hash value.
heap-organized table
A table in which the data rows are stored in no particular order on disk. By default, CREATE TABLE
creates a heap-organized table.
height-balanced histogram
A histogram in which column values are divided into buckets so that each bucket contains approximately the same number of rows.
hint
An instruction passed to the optimizer through comments in a SQL statement. The optimizer uses hints to choose an execution plan for the statement.
histogram
A special type of column statistic that provides more detailed information about the data distribution in a table column.
hybrid hash distribution technique
An adaptive parallel data distribution that does not decide the final data distribution method until execution time.
hybrid histogram
An enhanced height-based histogram that stores the exact frequency of each endpoint in the sample, and ensures that a value is never stored in multiple buckets.
implicit query
A component of a DML statement that retrieves data without a subquery. An UPDATE
, DELETE
, or MERGE
statement that does not explicitly include a SELECT
statement uses an implicit query to retrieve the rows to be modified.
incremental statistics maintenance
The ability of the database to generate global statistics for a partitioned table by aggregating partition-level statistics.
index
Optional schema object associated with a nonclustered table, table partition, or table cluster. In some cases indexes speed data access.
index cluster
An table cluster that uses an index to locate data. The cluster index is a B-tree index on the cluster key.
index clustering factor
A measure of row order in relation to an indexed value such as employee last name. The more scattered the rows among the data blocks, the lower the clustering factor.
index fast full scan
A scan of the index blocks in unsorted order, as they exist on disk. This scan reads the index instead of the table.
index full scan
The scan of an entire index in key order.
index-organized table
A table whose storage organization is a variant of a primary B-tree index. Unlike a heap-organized table, data is stored in primary key order.
index range scan
An index range scan is an ordered scan of an index that has the following characteristics:
index range scan descending
An index range scan in which the database returns rows in descending order.
index skip scan
An index scan occurs in which the initial column of a composite index is "skipped" or not specified in the query. For example, if the composite index key is (cust_gender,cust_email)
, then the query predicate does not reference the cust_gender
column.
index statistics
Statistics about indexes that the optimizer uses to determine whether to perform a full table scan or an index scan. Index statistics include B-tree levels, leaf block counts, the index clustering factor, distinct keys, and number of rows in the index.
index unique scan
A scan of an index that returns either 0 or 1 rowid.
inner table
In a nested loops join, the table that is not the outer table (driving table). For every row in the outer table, the database accesses all rows in the inner table. The outer loop is for every row in the outer table and the inner loop is for every row in the inner table.
join
A statement that retrieves data from multiple tables specified in the FROM
clause of a SQL statement. Join types include inner joins, outer joins, and Cartesian joins.
join condition
A condition that compares two columns, each from a different table, in a join. The database combines pairs of rows, each containing one row from each table, for which the join condition evaluates to true
.
join elimination
The removal of redundant tables from a query. A table is redundant when its columns are only referenced in join predicates, and those joins are guaranteed to neither filter nor expand the resulting rows.
join factorization
A cost-based transformation that can factorize common computations from branches of a UNION ALL
query. Without join factorization, the optimizer evaluates each branch of a UNION ALL
query independently, which leads to repetitive processing, including data access and joins. Avoiding an extra scan of a large base table can lead to a huge performance improvement.
join method
A method of joining a pair of row sources. The possible join methods are nested loop, sort merge, and hash joins. A Cartesian join requires one of the preceding join methods
join order
The order in which multiple tables are joined together. For example, for each row in the employees
table, the database can read each row in the departments
table. In an alternative join order, for each row in the departments
table, the database reads each row in the employees
table.
To execute a statement that joins more than two tables, Oracle Database joins two of the tables and then joins the resulting row source to the next table. This process continues until all tables are joined into the result.
join predicate
A predicate in a WHERE
or JOIN
clause that combines the columns of two tables in a join.
latch
A low-level serialization control mechanism used to protect shared data structures in the SGA from simultaneous access.
library cache
An area of memory in the shared pool. This cache includes the shared SQL areas, private SQL areas (in a shared server configuration), PL/SQL procedures and packages, and control structures such as locks and library cache handles.
library cache hit
The reuse of SQL statement code found in the library cache.
library cache miss
During SQL processing, the act of searching for a usable plan in the library cache and not finding it.
maintenance window
A contiguous time interval during which automated maintenance tasks run. The maintenance windows are Oracle Scheduler windows that belong to the window group named MAINTENANCE_WINDOW_GROUP
.
manual plan capture
The user-initiated bulk load of existing plans into a SQL plan baseline.
materialized view
A schema object that stores a query result. All materialized views are either read-only or updatable.
multiblock read
An I/O call that reads multiple database blocks. Multiblock reads can significantly speed up full table scans.
NDV
Number of distinct values. The NDV is important in generating selectivity estimates.
nested loops join
A type of join method. A nested loops join determines the outer table that drives the join, and for every row in the outer table, probes each row in the inner table. The outer loop is for each row in the outer table and the inner loop is for each row in the inner table. An analogy from programming is a for
loop inside of another for
loop.
nonjoin column
A predicate in a WHERE
clause that references only one table.
nonpopular value
In a histogram, any value that does not span two or more endpoints. Any value that is not nonpopular is a popular value.
noworkload statistics
Optimizer system statistics gathered when the database simulates a workload.
on-demand SQL tuning
The manual invocation of SQL Tuning Advisor. Any invocation of SQL Tuning Advisor that is not the result of an Automatic SQL Tuning task is on-demand tuning.
optimization
The overall process of choosing the most efficient means of executing a SQL statement.
optimizer
Built-in database software that determines the most efficient way to execute a SQL statement by considering factors related to the objects referenced and the conditions specified in the statement.
optimizer cost model
The model that the optimizer uses to select an execution plan. The optimizer selects the execution plan with the lowest cost, where cost represents the estimated resource usage for that plan. The optimizer cost model accounts for the I/O, CPU, and network resources that the query will use.
optimizer environment
The totality of session settings that can affect execution plan generation, such as the work area size or optimizer settings (for example, the optimizer mode).
optimizer goal
The prioritization of resource usage by the optimizer. Using the OPTIMIZER_MODE
initialization parameter, you can set the optimizer goal best throughput or best response time.
optimizer statistics
Details about the database its object used by the optimizer to select the best execution plan for each SQL statement. Categories include table statistics such as numbers of rows, index statistics such as B-tree levels, system statistics such as CPU and I/O performance, and column statistics such as number of nulls.
optimizer statistics collection
The gathering of optimizer statistics for database objects. The database can collect these statistics automatically, or you can collect them manually by using the system-supplied DBMS_STATS
package.
optimizer statistics collector
A row source inserted into an execution plan at key points to collect run-time statistics for use in adaptive plans.
optimizer statistics preferences
The default values of the parameters used by automatic statistics collection and the DBMS_STATS
statistics gathering procedures.
outer join
A join condition using the outer join operator (+
) with one or more columns of one of the tables. The database returns all rows that meet the join condition. The database also returns all rows from the table without the outer join operator for which there are no matching rows in the table with the outer join operator.
outer table
See driving table
parallel execution
The application of multiple CPU and I/O resources to the execution of a single database operation.
parallel query
A query in which multiple processes work together simultaneously to run a single SQL query. By dividing the work among multiple processes, Oracle Database can run the statement more quickly. For example, four processes retrieve rows for four different quarters in a year instead of one process handling all four quarters by itself.
parent cursor
The cursor that stores the SQL text and other minimal information for a SQL statement. The child cursor contains the plan, compilation environment, and other information. When a statement first executes, the database creates both a parent and child cursor in the shared pool.
parse call
A call to Oracle to prepare a SQL statement for execution. The call includes syntactically checking the SQL statement, optimizing it, and then building or locating an executable form of that statement.
parsing
The stage of SQL processing that involves separating the pieces of a SQL statement into a data structure that can be processed by other routines.
A hard parse occurs when the SQL statement to be executed is either not in the shared pool, or it is in the shared pool but it cannot be shared. A soft parse occurs when a session attempts to execute a SQL statement, and the statement is already in the shared pool, and it can be used.
partition maintenance operation
A partition-related operation such as adding, exchanging, merging, or splitting table partitions.
pending statistics
Unpublished optimizer statistics. By default, the optimizer uses published statistics but does not use pending statistics.
performance feedback
This form of automatic reoptimization helps improve the degree of parallelism automatically chosen for repeated SQL statements when PARALLEL_DEGREE_POLICY
is set to ADAPTIVE
.
pipelined table function
A PL/SQL function that accepts a collection of rows as input. You invoke the table function as the operand of the table operator in the FROM
list of a SELECT
statement.
plan evolution
The manual change of an unaccepted plan in the SQL plan history into an accepted plan in the SQL plan baseline.
plan generator
The part of the optimizer that tries different access paths, join methods, and join orders for a given query block to find the plan with the lowest cost.
plan selection
The optimizer's attempt to find a matching plan in the SQL plan baseline for a statement after performing a hard parse.
plan verification
Comparing the performance of an unaccepted plan to a plan in a SQL plan baseline and ensuring that it performs better.
popular value
In a histogram, any value that spans two or more endpoints. Any value that is not popular is an nonpopular value.
predicate pushing
A transformation technique in which the optimizer "pushes" the relevant predicates from the containing query block into the view query block. For views that are not merged, this technique improves the subplan of the unmerged view because the database can use the pushed-in predicates to access indexes or to use as filters.
private SQL area
An area in memory that holds a parsed statement and other information for processing. The private SQL area contains data such as bind variable values, query execution state information, and query execution work areas.
proactive SQL tuning
Using SQL tuning tools to identify SQL statements that are candidates for tuning before users have complained about a performance problem.
projection view
An optimizer-generated view that appear in queries in which a DISTINCT
view has been merged, or a GROUP BY
view is merged into an outer query block that also contains GROUP BY
, HAVING
, or aggregates.
query
An operation that retrieves data from tables or views. For example, SELECT * FROM employees
is a query.
query block
A top-level SELECT
statement, subquery, or unmerged view
query optimizer
See optimizer.
reactive SQL tuning
Diagnosing and fixing SQL-related performance problems after users have complained about them.
recursive SQL
Additional SQL statements that the database must issue to execute a SQL statement issued by a user. The generation of recursive SQL is known as a recursive call. For example, the database generates recursive calls when data dictionary information is not available in memory and so must be retrieved from disk.
reoptimization
repeatable SQL statement
A statement that the database parses or executes after recognizing that it is tracked in the SQL statement log.
result set
In a query, the set of rows generated by the execution of a cursor.
rowid
A globally unique address for a row in a table.
row set
A set of rows returned by a step in an execution plan.
row source
An iterative control structure that processes a set of rows in an iterated manner and produces a row set.
row source generator
Software that receives the optimal plan from the optimizer and outputs the execution plan for the SQL statement.
row source tree
A collection of row sources produced by the row source generator. The row source tree for a SQL statement shows information such as table order, access methods, join methods, and data operations such as filters and sorts.
sample table scan
A scan that retrieves a random sample of data from a simple table or a complex SELECT
statement, such as a statement involving joins and views.
sampling
Gathering statistics from a random subset of rows in a table.
selectivity
A value indicating the proportion of a row set retrieved by a predicate or combination of predicates, for example, WHERE last_name = 'Smith'
. A selectivity of 0
means that no rows pass the predicate test, whereas a value of 1
means that all rows pass the test.
The adjective selective means roughly "choosy." Thus, a highly selective query returns a low proportion of rows (selectivity close to 0
), whereas an unselective query returns a high proportion of rows (selectivity close to 1
).
semijoin
A join that returns rows from the first table when at least one match exist in the second table. For example, you list departments with at least one employee. The difference between a semijoin and a conventional join is that rows in the first table are returned at most once. Semijoins use the EXISTS
or IN
constructs.
shared pool
Portion of the SGA that contains shared memory constructs such as shared SQL areas.
shared SQL area
An area in the shared pool that contains the parse tree and execution plan for a SQL statement. Only one shared SQL area exists for a unique statement. The shared SQL area is sometimes referred to as the cursor cache.
simple database operation
A database operation consisting of a single SQL statement or PL/SQL procedure or function.
simple view merging
The merging of select-project-join views. For example, a query joins the employees
table to a subquery that joins the departments
and locations
tables.
SMB
soft parse
Any parse that is not a hard parse. If a submitted SQL statement is the same as a reusable SQL statement in the shared pool, then Oracle Database reuses the existing code. This reuse of code is also called a library cache hit.
sort merge join
A type of join method. The join consists of a sort join, in which both inputs are sorted on the join key, followed by a merge join, in which the sorted lists are merged.
SQL Access Advisor
SQL Access Advisor is internal diagnostic software that recommends which materialized views, indexes, and materialized view logs to create, drop, or retain.
SQL compilation
In the context of Oracle SQL processing, this term refers collectively to the phases of parsing, optimization, and plan generation.
SQL plan directive
Additional information and instructions that the optimizer can use to generate a more optimal plan. For example, a SQL plan directive might instruct the optimizer to collect missing statistics or gather dynamic statistics.
SQL handle
A string value derived from the numeric SQL signature. Like the signature, the handle uniquely identifies a SQL statement. It serves as a SQL search key in user APIs.
SQL ID
For a specific SQL statement, the unique identifier of the parent cursor in the library cache. The V$SQL.SQL_ID
column displays the SQL ID.
SQL incident
In the fault diagnosability infrastructure of Oracle Database, a single occurrence of a SQL-related problem. When a problem (critical error) occurs multiple times, the database creates an incident for each occurrence. Incidents are timestamped and tracked in the Automatic Diagnostic Repository (ADR).
SQL management base (SMB)
A logical repository that stores statement logs, plan histories, SQL plan baselines, and SQL profiles. The SMB is part of the data dictionary and resides in the SYSAUX
tablespace.
SQL plan baseline
A set of one or more accepted plans for a repeatable SQL statement. Each accepted plan contains a set of hints, a plan hash value, and other plan-related information. SQL plan management uses SQL plan baselines to record and evaluate the execution plans of SQL statements over time.
SQL plan capture
Techniques for capturing and storing relevant information about plans in the SQL management base (SMB) for a set of SQL statements. Capturing a plan means making SQL plan management aware of this plan.
SQL plan directive
Additional information that the optimizer uses to generate a more optimal plan. The optimizer collects SQL plan directives on query expressions rather than at the statement level. In this way, the directives are usable for multiple SQL statements.
SQL plan history
The set of plans generated for a repeatable SQL statement over time. The history contains both SQL plan baselines and unaccepted plans.
SQL plan management
SQL plan management is a preventative mechanism that records and evaluates the execution plans of SQL statements over time. SQL plan management can prevent SQL plan regressions caused by environmental changes such as a new optimizer version, changes to optimizer statistics, system settings, and so on.
SQL processing
The stages of parsing, optimization, row source generation, and execution of a SQL statement.
SQL profile
A set of auxiliary information built during automatic tuning of a SQL statement. A SQL profile is to a SQL statement what statistics are to a table. The optimizer can use SQL profiles to improve cardinality and selectivity estimates, which in turn leads the optimizer to select better plans.
SQL profiling
The verification and validation by the Automatic Tuning Advisor of its own estimates.
SQL signature
A numeric hash value computed using a SQL statement text that has been normalized for case insensitivity and white space. It uniquely identifies a SQL statement. The database uses this signature as a key to maintain SQL management objects such as SQL profiles, SQL plan baselines, and SQL patches.
SQL statement log
When automatic SQL plan capture is enabled, a log that contains the SQL ID of SQL statements that the optimizer has evaluated over time. A statement is tracked when it exists in the log.
SQL test case
A problematic SQL statement and the related information needed to reproduce the execution plan in a different environment. A SQL test case is stored in an Oracle Data Pump file.
SQL test case builder
A database feature that gathers information related to a SQL statement and packages it so that a user can reproduce the problem on a different database. The DBMS_SQLDIAG
package is the interface for SQL test case builder.
SQL trace file
A server-generated file that provides performance information on individual SQL statements. For example, the trace file contains parse, execute, and fetch counts, CPU and elapsed times, physical reads and logical reads, and misses in the library cache.
SQL tuning
The process of improving SQL statement efficiency to meet measurable goals.
SQL Tuning Advisor
Built-in database diagnostic software that optimizes high-load SQL statements.
SQL tuning set (STS)
A database object that includes one or more SQL statements along with their execution statistics and execution context.
star schema
A relational schema whose design represents a dimensional data model. The star schema consists of one or more fact tables and one or more dimension tables that are related through foreign keys.
statistics feedback
A form of automatic reoptimization that automatically improves plans for repeated queries that have cardinality misestimates. The optimizer may estimate cardinalities incorrectly for many reasons, such as missing statistics, inaccurate statistics, or complex predicates.
stored outline
A set of hints for a SQL statement. The hints in stored outlines direct the optimizer to choose a specific plan for the statement.
subplan
A portion of an adaptive plan that the optimizer can switch to as an alternative at run time. A subplan can consist of multiple operations in the plan. For example, the optimizer can treat a join method and the corresponding access path as one unit when determining whether to change the plan at run time.
subquery
A query nested within another SQL statement. Unlike implicit queries, subqueries use a SELECT
statement to retrieve data.
subquery unnesting
A transformation technique in which the optimizer transforms a nested query into an equivalent join statement, and then optimizes the join.
synopsis
A set of auxiliary statistics gathered on a partitioned table when the INCREMENTAL
value is set to true
.
system statistics
Statistics that enable the optimizer to use CPU and I/O characteristics. Index statistics include B-tree levels, leaf block counts, clustering factor, distinct keys, and number of rows in the index.
table cluster
A schema object that contains data from one or more tables, all of which have one or more columns in common. In table clusters, the database stores together all the rows from all tables that share the same cluster key.
table expansion
A transformation technique that enables the optimizer to generate a plan that uses indexes on the read-mostly portion of a partitioned table, but not on the active portion of the table.
table statistics
Statistics about tables that the optimizer uses to determine table access cost, join cardinality, join order, and so on. Table statistics include row counts, block counts, empty blocks, average free space per block, number of chained rows, average row length, and staleness of the statistics on the table.
top frequency histogram
A variation of a frequency histogram that ignores unpopular values that are statistically insignificant, thus producing a better histogram for highly popular values.
tuning mode
One of the two optimizer modes. When running in tuning mode, the optimizer is known as the Automatic Tuning Optimizer. In tuning mode, the optimizer determines whether it can further improve the plan produced in normal mode. The optimizer output is not an execution plan, but a series of actions, along with their rationale and expected benefit for producing a significantly better plan.
unaccepted plan
A plan for a statement that is in the SQL plan history but has not been added to the SQL plan management.
unselective
A relatively large fraction of rows from a row set. A query becomes more unselective as the selectivity approaches 1
. For example, a query that returns 999,999 rows from a table with one million rows is unselective. A query of the same table that returns one row is selective.
user response time
The time between when a user submits a command and receives a response.
See throughput.
V$ view
view merging
The merging of a query block representing a view into the query block that contains it. View merging can improve plans by enabling the optimizer to consider additional join orders, access methods, and other transformations.
workload statistics
Optimizer statistics for system activity in a specified time period.
 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. |