

1 Getting Started with Database Administration

This chapter contains the following topics:

	
Types of Oracle Database Users

	
Tasks of a Database Administrator

	
Submitting Commands and SQL to the Database

	
Identifying Your Oracle Database Software Release

	
About Database Administrator Security and Privileges

	
Database Administrator Authentication

	
Creating and Maintaining a Database Password File

	
Data Utilities

Types of Oracle Database Users

The types of users and their roles and responsibilities depend on the database site. A small site can have one database administrator who administers the database for application developers and users. A very large site can find it necessary to divide the duties of a database administrator among several people and among several areas of specialization.

Database Administrators

Each database requires at least one database administrator (DBA). An Oracle Database system can be large and can have many users. Therefore, database administration is sometimes not a one-person job, but a job for a group of DBAs who share responsibility.

A database administrator's responsibilities can include the following tasks:

	
Installing and upgrading the Oracle Database server and application tools

	
Allocating system storage and planning future storage requirements for the database system

	
Creating primary database storage structures (tablespaces) after application developers have designed an application

	
Creating primary objects (tables, views, indexes) once application developers have designed an application

	
Modifying the database structure, as necessary, from information given by application developers

	
Enrolling users and maintaining system security

	
Ensuring compliance with Oracle license agreements

	
Controlling and monitoring user access to the database

	
Monitoring and optimizing the performance of the database

	
Planning for backup and recovery of database information

	
Maintaining archived data on tape

	
Backing up and restoring the database

	
Contacting Oracle for technical support

Security Officers

In some cases, a site assigns one or more security officers to a database. A security officer enrolls users, controls and monitors user access to the database, and maintains system security. As a DBA, you might not be responsible for these duties if your site has a separate security officer. See Oracle Database Security Guide for information about the duties of security officers.

Network Administrators

Some sites have one or more network administrators. A network administrator, for example, administers Oracle networking products, such as Oracle Net Services. See Oracle Database Net Services Administrator's Guide for information about the duties of network administrators.

	
See Also:

Part V, "Distributed Database Management", for information on network administration in a distributed environment

Application Developers

Application developers design and implement database applications. Their responsibilities include the following tasks:

	
Designing and developing the database application

	
Designing the database structure for an application

	
Estimating storage requirements for an application

	
Specifying modifications of the database structure for an application

	
Relaying this information to a database administrator

	
Tuning the application during development

	
Establishing security measures for an application during development

Application developers can perform some of these tasks in collaboration with DBAs. See Oracle Database Development Guide for information about application development tasks.

Application Administrators

An Oracle Database site can assign one or more application administrators to administer a particular application. Each application can have its own administrator.

Database Users

Database users interact with the database through applications or utilities. A typical user's responsibilities include the following tasks:

	
Entering, modifying, and deleting data, where permitted

	
Generating reports from the data

Tasks of a Database Administrator

The following tasks present a prioritized approach for designing, implementing, and maintaining an Oracle Database:

Task 1: Evaluate the Database Server Hardware

Task 2: Install the Oracle Database Software

Task 3: Plan the Database

Task 4: Create and Open the Database

Task 5: Back Up the Database

Task 6: Enroll System Users

Task 7: Implement the Database Design

Task 8: Back Up the Fully Functional Database

Task 9: Tune Database Performance

Task 10: Download and Install Patches

Task 11: Roll Out to Additional Hosts

These tasks are discussed in the sections that follow.

	
Note:

When upgrading to a new release, back up your existing production environment, both software and database, before installation. For information on preserving your existing production database, see Oracle Database Upgrade Guide.

Task 1: Evaluate the Database Server Hardware

Evaluate how Oracle Database and its applications can best use the available computer resources. This evaluation should reveal the following information:

	
How many disk drives are available to the Oracle products

	
How many, if any, dedicated tape drives are available to Oracle products

	
How much memory is available to the instances of Oracle Database you will run (see your system configuration documentation)

Task 2: Install the Oracle Database Software

As the database administrator, you install the Oracle Database server software and any front-end tools and database applications that access the database. In some distributed processing installations, the database is controlled by a central computer (database server) and the database tools and applications are executed on remote computers (clients). In this case, you must also install the Oracle Net components necessary to connect the remote systems to the computer that executes Oracle Database.

For more information on what software to install, see "Identifying Your Oracle Database Software Release".

	
See Also:

For specific requirements and instructions for installation, see the following documentation:
	
The Oracle documentation specific to your operating system

	
The installation guides for your front-end tools and Oracle Net drivers

Task 3: Plan the Database

As the database administrator, you must plan:

	
The logical storage structure of the database

	
The overall database design

	
A backup strategy for the database

It is important to plan how the logical storage structure of the database will affect system performance and various database management operations. For example, before creating any tablespaces for your database, you should know how many data files will comprise the tablespace, what type of information will be stored in each tablespace, and on which disk drives the data files will be physically stored. When planning the overall logical storage of the database structure, take into account the effects that this structure will have when the database is actually created and running. Consider how the logical storage structure of the database will affect:

	
The performance of the computer running Oracle Database

	
The performance of the database during data access operations

	
The efficiency of backup and recovery procedures for the database

Plan the relational design of the database objects and the storage characteristics for each of these objects. By planning the relationship between each object and its physical storage before creating it, you can directly affect the performance of the database as a unit. Be sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely important. The physical location of frequently accessed data dramatically affects application performance.

During the planning stage, develop a backup strategy for the database. You can alter the logical storage structure or design of the database to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed database design. If you are not familiar with such design issues, see accepted industry-standard documentation.

Part II, "Oracle Database Structure and Storage", and Part III, "Schema Objects", provide specific information on creating logical storage structures, objects, and integrity constraints for your database.

Task 4: Create and Open the Database

After you complete the database design, you can create the database and open it for normal use. You can create a database at installation time, using the Database Configuration Assistant, or you can supply your own scripts for creating a database.

See Chapter 2, "Creating and Configuring an Oracle Database", for information on creating a database and Chapter 3, "Starting Up and Shutting Down" for guidance in starting up the database.

Task 5: Back Up the Database

After you create the database structure, perform the backup strategy you planned for the database. Create any additional redo log files, take the first full database backup (online or offline), and schedule future database backups at regular intervals.

	
See Also:

Oracle Database Backup and Recovery User's Guide

Task 6: Enroll System Users

After you back up the database structure, you can enroll the users of the database in accordance with your Oracle license agreement, and grant appropriate privileges and roles to these users. See Chapter 7, "Managing Users and Securing the Database" for guidance in this task.

Task 7: Implement the Database Design

After you create and start the database, and enroll the system users, you can implement the planned logical structure database by creating all necessary tablespaces. When you have finished creating tablespaces, you can create the database objects.

Part II, "Oracle Database Structure and Storage" and Part III, "Schema Objects" provide information on creating logical storage structures and objects for your database.

Task 8: Back Up the Fully Functional Database

When the database is fully implemented, again back up the database. In addition to regularly scheduled backups, you should always back up your database immediately after implementing changes to the database structure.

Task 9: Tune Database Performance

Optimizing the performance of the database is one of your ongoing responsibilities as a DBA. Oracle Database provides a database resource management feature that helps you to control the allocation of resources among various user groups. The database resource manager is described in Chapter 27, "Managing Resources with Oracle Database Resource Manager".

	
See Also:

Oracle Database Performance Tuning Guide for information about tuning your database and applications

Task 10: Download and Install Patches

After installation and on a regular basis, download and install patches. Patches are available as single interim patches and as patchsets (or patch releases). Interim patches address individual software bugs and may or may not be needed at your installation. Patch releases are collections of bug fixes that are applicable for all customers. Patch releases have release numbers. For example, if you installed Oracle Database 12c Release 1 (12.1.0.1), then the first patch release will have a release number of 12.1.0.2.

	
See Also:

Oracle Database Installation Guide for your platform for instructions on downloading and installing patches.

Task 11: Roll Out to Additional Hosts

After you have an Oracle Database installation properly configured, tuned, patched, and tested, you may want to roll that exact installation out to other hosts. Reasons to do this include the following:

	
You have multiple production database systems.

	
You want to create development and test systems that are identical to your production system.

Instead of installing, tuning, and patching on each additional host, you can clone your tested Oracle Database installation to other hosts, saving time and avoiding inconsistencies. There are two types of cloning available to you:

	
Cloning an Oracle home—Just the configured and patched binaries from the Oracle home directory and subdirectories are copied to the destination host and "fixed" to match the new environment. You can then start an instance with this cloned home and create a database.

You can use Oracle Enterprise Manager Cloud Control to clone an Oracle home to one or more destination hosts. You can manually clone an Oracle home using a set of provided scripts and Oracle Universal Installer.

	
Cloning a database—The tuned database, including database files, initialization parameters, and so on, are cloned to an existing Oracle home (possibly a cloned home).

You can use Cloud Control to clone an Oracle database instance to an existing Oracle home.

	
See Also:

	
Oracle Universal Installer and OPatch User's Guide for Windows and UNIX for information about cloning Oracle software

	
The Cloud Control online help for instructions for cloning a database

	
"Cloning a Database with CloneDB"

	
"Creating a PDB by Cloning an Existing PDB"

Submitting Commands and SQL to the Database

The primary means of communicating with Oracle Database is by submitting SQL statements. Oracle Database also supports a superset of SQL, which includes commands for starting up and shutting down the database, modifying database configuration, and so on. There are three ways to submit these SQL statements and commands to Oracle Database:

	
Directly, using the command-line interface of SQL*Plus

	
Indirectly, using a graphical user interface, such as Oracle Enterprise Manager Database Express (EM Express) or Oracle Enterprise Manager Cloud Control (Cloud Control)

With these tools, you use an intuitive graphical interface to administer the database, and the tool submits SQL statements and commands behind the scenes.

See Oracle Database 2 Day DBA and the online help for the tool for more information.

See Oracle Enterprise Manager Oracle Database Plug-in Release Notes for information about installing and enabling the Oracle Database Plug-in on Enterprise Manager Cloud Control 12c.

	
Directly, using SQL Developer

Developers use SQL Developer to create and test database schemas and applications, although you can also use it for database administration tasks.

See Oracle Database 2 Day Developer's Guide for more information.

This section focuses on using SQL*Plus to submit SQL statements and commands to the database. It includes the following topics:

	
About SQL*Plus

	
Connecting to the Database with SQL*Plus

About SQL*Plus

SQL*Plus is the primary command-line interface to your Oracle database. You use SQL*Plus to start up and shut down the database, set database initialization parameters, create and manage users, create and alter database objects (such as tables and indexes), insert and update data, run SQL queries, and more.

Before you can submit SQL statements and commands, you must connect to the database. With SQL*Plus, you can connect locally or remotely. Connecting locally means connecting to an Oracle database running on the same computer on which you are running SQL*Plus. Connecting remotely means connecting over a network to an Oracle database that is running on a remote computer. Such a database is referred to as a remote database. The SQL*Plus executable on the local computer is provided by a full Oracle Database installation, an Oracle Client installation, or an Instant Client installation.

	
See Also:

SQL*Plus User's Guide and Reference

Connecting to the Database with SQL*Plus

Oracle Database includes the following components:

	
The Oracle Database instance, which is a collection of processes and memory

	
A set of disk files that contain user data and system data

When you connect with SQL*Plus, you are connecting to the Oracle instance. Each instance has an instance ID, also known as a system ID (SID). Because there can be multiple Oracle instances on a host computer, each with its own set of data files, you must identify the instance to which you want to connect. For a local connection, you identify the instance by setting operating system environment variables. For a remote connection, you identify the instance by specifying a network address and a database service name. For both local and remote connections, you must set environment variables to help the operating system find the SQL*Plus executable and to provide the executable with a path to its support files and scripts. To connect to an Oracle instance with SQL*Plus, therefore, you must complete the following steps:

Step 1: Open a Command Window

Step 2: Set Operating System Environment Variables

Step 3: Start SQL*Plus

Step 4: Submit the SQL*Plus CONNECT Command

	
See Also:

Oracle Database Concepts for background information about the Oracle instance

Step 1: Open a Command Window

Take the necessary action on your platform to open a window into which you can enter operating system commands.

Step 2: Set Operating System Environment Variables

Depending on your platform, you may have to set environment variables before starting SQL*Plus, or at least verify that they are set properly.

For example, on most platforms, ORACLE_SID and ORACLE_HOME must be set. In addition, it is advisable to set the PATH environment variable to include the ORACLE_HOME/bin directory. Some platforms may require additional environment variables:

	
On the UNIX and Linux platforms, you must set environment variables by entering operating system commands.

	
On the Windows platform, Oracle Universal Installer (OUI) automatically assigns values to ORACLE_HOME and ORACLE_SID in the Windows registry.

If you did not create a database upon installation, OUI does not set ORACLE_SID in the registry; after you create your database at a later time, you must set the ORACLE_SID environment variable from a command window.

UNIX and Linux installations come with two scripts, oraenv and coraenv, that you can use to easily set environment variables. For more information, see Administrator's Reference for UNIX Systems.

For all platforms, when switching between instances with different Oracle homes, you must change the ORACLE_HOME environment variable. If multiple instances share the same Oracle home, you must change only ORACLE_SID when switching instances.

See the Oracle Database Installation Guide or administration guide for your operating system for details on environment variables and for information on switching instances.

Example 1-1 Setting Environment Variables in UNIX (C Shell)

setenv ORACLE_SID orcl
setenv ORACLE_HOME /u01/app/oracle/product/12.1.0/db_1
setenv LD_LIBRARY_PATH $ORACLE_HOME/lib:/usr/lib:/usr/dt/lib:/usr/openwin/lib:/usr/ccs/lib

Example 1-2 Setting Environment Variables in Windows

SET ORACLE_SID=orawin2

Example 1-2 assumes that ORACLE_HOME and ORACLE_SID are set in the registry but that you want to override the registry value of ORACLE_SID to connect to a different instance.

On Windows, environment variable values that you set in a command prompt window override the values in the registry.

Step 3: Start SQL*Plus

To start SQL*Plus:

	
Do one of the following:

	
Ensure that the PATH environment variable contains ORACLE_HOME/bin.

	
Change directory to ORACLE_HOME/bin.

	
Enter the following command (case-sensitive on UNIX and Linux):

sqlplus /nolog

Step 4: Submit the SQL*Plus CONNECT Command

You submit the SQL*Plus CONNECT command to initially connect to the Oracle instance or at any time to reconnect as a different user. The syntax of the CONNECT command is as follows:

CONN[ECT] [logon] [AS {SYSOPER | SYSDBA | SYSBACKUP | SYSDG | SYSKM}]

The syntax of logon is as follows:

{username | /}[@connect_identifier] [edition={edition_name | DATABASE_DEFAULT}]

When you provide username, SQL*Plus prompts for a password. The password is not echoed as you type it.

The following table describes the syntax components of the CONNECT command.

	Syntax Component	Description
	/
	Calls for external authentication of the connection request. A database password is not used in this type of authentication. The most common form of external authentication is operating system authentication, where the database user is authenticated by having logged in to the host operating system with a certain host user account. External authentication can also be performed with an Oracle wallet or by a network service. See Oracle Database Security Guide for more information. See also "Using Operating System Authentication".
	AS {SYSOPER | SYSDBA | SYSBACKUP | SYSDG | SYSKM}	Indicates that the database user is connecting with an administrative privilege. Only certain predefined administrative users or users who have been added to the password file may connect with these privileges. See "Administrative Privileges" for more information.
	username	A valid database user name. The database authenticates the connection request by matching username against the data dictionary and prompting for a user password.
	connect_identifier (1)	An Oracle Net connect identifier, for a remote connection. The exact syntax depends on the Oracle Net configuration. If omitted, SQL*Plus attempts connection to a local instance.
A common connect identifier is a net service name. This is an alias for an Oracle Net connect descriptor (network address and database service name). The alias is typically resolved in the tnsnames.ora file on the local computer, but can be resolved in other ways.

See Oracle Database Net Services Administrator's Guide for more information on connect identifiers.

	connect_identifier (2)	As an alternative, a connect identifier can use easy connect syntax. Easy connect provides out-of-the-box TCP/IP connectivity for remote databases without having to configure Oracle Net Services on the client (local) computer.
Easy connect syntax for the connect identifier is as follows (the enclosing double-quotes must be included):

"host[:port][/service_name][:server][/instance_name]"

where:

	
host is the host name or IP address of the computer hosting the remote database.

Both IP version 4 (IPv4) and IP version 6 (IPv6) addresses are supported. IPv6 addresses must be enclosed in square brackets. See Oracle Database Net Services Administrator's Guide for information about IPv6 addressing.

	
port is the TCP port on which the Oracle Net listener on host listens for database connections. If omitted, 1521 is assumed.

	
service_name is the database service name to which to connect. Can be omitted if the Net Services listener configuration on the remote host designates a default service. If no default service is configured, service_name must be supplied. Each database typically offers a standard service with a name equal to the global database name, which is made up of the DB_NAME and DB_DOMAIN initialization parameters as follows:

DB_NAME.DB_DOMAIN

If DB_DOMAIN is null, then the standard service name is just the DB_NAME. For example, if DB_NAME is orcl and DB_DOMAIN is us.example.com, then the standard service name is orcl.us.example.com.

See "Managing Application Workloads with Database Services" for more information.

	
server is the type of service handler. Acceptable values are dedicated, shared, and pooled. If omitted, the default type of server is chosen by the listener: shared server if configured, otherwise dedicated server.

	
instance_name is the instance to which to connect. You can specify both service name and instance name, which you would typically do only for Oracle Real Application Clusters (Oracle RAC) environments. For Oracle RAC or single instance environments, if you specify only instance name, you connect to the default database service. If there is no default service configured in the listener.ora file, an error is generated.You can obtain the instance name from the instance_name initialization parameter.

See Oracle Database Net Services Administrator's Guide for more information on easy connect.

	edition={edition_name | DATABASE_DEFAULT}	Specifies the edition in which the new database session starts. If you specify an edition, it must exist and you must have the USE privilege on it. If this clause is not specified, the database default edition is used for the session.
See Oracle Database Development Guide for information on editions and edition-based redefinition.

Example 1-3

This simple example connects to a local database as user SYSTEM. SQL*Plus prompts for the SYSTEM user password.

connect system

Example 1-4

This example connects to a local database as user SYS with the SYSDBA privilege. SQL*Plus prompts for the SYS user password.

connect sys as sysdba

When connecting as user SYS, you must connect AS SYSDBA.

Example 1-5

This example connects to a local database as user SYSBACKUP with the SYSBACKUP privilege. SQL*Plus prompts for the SYSBACKUP user password.

connect sysbackup as sysbackup

When connecting as user SYSBACKUP, you must connect AS SYSBACKUP.

Example 1-6

This example connects locally with the SYSDBA privilege with operating system authentication.

connect / as sysdba

Example 1-7

This example uses easy connect syntax to connect as user salesadmin to a remote database running on the host dbhost.example.com. The Oracle Net listener (the listener) is listening on the default port (1521). The database service is sales.example.com. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@"dbhost.example.com/sales.example.com"

Example 1-8

This example is identical to Example 1-7, except that the service handler type is indicated.

connect salesadmin@"dbhost.example.com/sales.example.com:dedicated"

Example 1-9

This example is identical to Example 1-7, except that the listener is listening on the nondefault port number 1522.

connect salesadmin@"dbhost.example.com:1522/sales.example.com"

Example 1-10

This example is identical to Example 1-7, except that the host IP address is substituted for the host name.

connect salesadmin@"192.0.2.5/sales.example.com"

Example 1-11

This example connects using an IPv6 address. Note the enclosing square brackets.

connect salesadmin@"[2001:0DB8:0:0::200C:417A]/sales.example.com"

Example 1-12

This example specifies the instance to which to connect and omits the database service name. A default database service must have been specified, otherwise an error is generated. Note that when you specify the instance only, you cannot specify the service handler type.

connect salesadmin@"dbhost.example.com//orcl"

Example 1-13

This example connects remotely as user salesadmin to the database service designated by the net service name sales1. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@sales1

Example 1-14

This example connects remotely with external authentication to the database service designated by the net service name sales1.

connect /@sales1

Example 1-15

This example connects remotely with the SYSDBA privilege and with external authentication to the database service designated by the net service name sales1.

connect /@sales1 as sysdba

Example 1-16

This example connects remotely as user salesadmin to the database service designated by the net service name sales1. The database session starts in the rev21 edition. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@sales1 edition=rev21

	
See Also:

	
"Using Operating System Authentication"

	
"Managing Application Workloads with Database Services" for information about database services

	
SQL*Plus User's Guide and Reference for more information on the CONNECT command

	
Oracle Database Net Services Administrator's Guide for more information on net service names

	
Oracle Database Net Services Reference for information on how to define the default service in listener.ora

Identifying Your Oracle Database Software Release

Because Oracle Database continues to evolve and can require maintenance, Oracle periodically produces new releases. Not all customers initially subscribe to a new release or require specific maintenance for their existing release. As a result, multiple releases of the product exist simultaneously.

As many as five numbers may be required to fully identify a release. The significance of these numbers is discussed in the sections that follow.

Release Number Format

To understand the release nomenclature used by Oracle, examine the following example of an Oracle Database release labeled "12.1.0.1.0".

Figure 1-1 Example of an Oracle Database Release Number

[image: Description of Figure 1-1 follows]

Major Database Release Number

The first numeral is the most general identifier. It represents a major new version of the software that contains significant new functionality.

Database Maintenance Release Number

The second numeral represents a maintenance release level. Some new features may also be included.

Fusion Middleware Release Number

The third numeral reflects the release level of Oracle Fusion Middleware.

Component-Specific Release Number

The fourth numeral identifies a release level specific to a component. Different components can have different numbers in this position depending upon, for example, component patch sets or interim releases.

Platform-Specific Release Number

The fifth numeral identifies a platform-specific release. Usually this is a patch set. When different platforms require the equivalent patch set, this numeral will be the same across the affected platforms.

Checking Your Current Release Number

To identify the release of Oracle Database that is currently installed and to see the release levels of other database components you are using, query the data dictionary view PRODUCT_COMPONENT_VERSION. A sample query follows. (You can also query the V$VERSION view to see component-level information.) Other product release levels may increment independent of the database server.

COL PRODUCT FORMAT A40
COL VERSION FORMAT A15
COL STATUS FORMAT A15
SELECT * FROM PRODUCT_COMPONENT_VERSION;

PRODUCT VERSION STATUS
-- ----------- -----------
NLSRTL 12.1.0.0.1 Production
Oracle Database 12c Enterprise Edition 12.1.0.0.1 Production
PL/SQL 12.1.0.0.1 Production
...

It is important to convey to Oracle the results of this query when you report problems with the software.

About Database Administrator Security and Privileges

To perform the administrative tasks of an Oracle Database DBA, you need specific privileges within the database and possibly in the operating system of the server on which the database runs. Ensure that access to a database administrator's account is tightly controlled.

This section contains the following topics:

	
The Database Administrator's Operating System Account

	
Administrative User Accounts

The Database Administrator's Operating System Account

To perform many of the administrative duties for a database, you must be able to execute operating system commands. Depending on the operating system on which Oracle Database is running, you might need an operating system account or ID to gain access to the operating system. If so, your operating system account might require operating system privileges or access rights that other database users do not require (for example, to perform Oracle Database software installation). Although you do not need the Oracle Database files to be stored in your account, you should have access to them.

	
See Also:

Your operating system-specific Oracle documentation. The method of creating the account of the database administrator is specific to the operating system.

Administrative User Accounts

The following administrative user accounts are automatically created when Oracle Database is installed:

	
SYS

	
SYSTEM

	
SYSBACKUP

	
SYSDG

	
SYSKM

	
Note:

Both Oracle Universal Installer (OUI) and Database Configuration Assistant (DBCA) now prompt for SYS and SYSTEM passwords and do not accept the default passwords "change_on_install" or "manager", respectively.
If you create the database manually, Oracle strongly recommends that you specify passwords for SYS and SYSTEM at database creation time, rather than using these default passwords. See "Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM" for more information.

Create at least one additional administrative user and grant to that user an appropriate administrative role to use when performing daily administrative tasks. Do not use SYS and SYSTEM for these purposes.

	
Note Regarding Security Enhancements:

In this release of Oracle Database and in subsequent releases, several enhancements are being made to ensure the security of default database user accounts. You can find a security checklist for this release in Oracle Database Security Guide. Oracle recommends that you read this checklist and configure your database accordingly.

SYS

When you create an Oracle database, the user SYS is automatically created and granted the DBA role.

All of the base tables and views for the database data dictionary are stored in the schema SYS. These base tables and views are critical for the operation of Oracle Database. To maintain the integrity of the data dictionary, tables in the SYS schema are manipulated only by the database. They should never be modified by any user or database administrator, and no one should create any tables in the schema of user SYS. (However, you can change the storage parameters of the data dictionary settings if necessary.)

Ensure that most database users are never able to connect to Oracle Database using the SYS account.

SYSTEM

When you create an Oracle database, the user SYSTEM is also automatically created and granted the DBA role.

The SYSTEM user name is used to create additional tables and views that display administrative information, and internal tables and views used by various Oracle Database options and tools. Never use the SYSTEM schema to store tables of interest to non-administrative users.

SYSBACKUP, SYSDG, and SYSKM

When you create an Oracle database, the following users are automatically created to facilitate separation of duties for database administrators:

	
SYSBACKUP facilitates Oracle Recovery Manager (RMAN) backup and recovery operations either from RMAN or SQL*Plus.

	
SYSDG facilitates Data Guard operations. The user can perform operations either with Data Guard Broker or with the DGMGRL command-line interface.

	
SYSKM facilitates Transparent Data Encryption keystore operations.

Each of these accounts provides a designated user for the new administrative privilege with the same name. Specifically, the SYSBACKUP account provides a designated user for the SYSBACKUP administrative privilege. The SYSDG account provides a designated user for the SYSDG administrative privilege. The SYSKM account provides a designated user for the SYSKM administrative privilege.

Create a user and grant to that user an appropriate administrative privilege to use when performing daily administrative tasks. Doing so enables you to manage each user account separately, and each user account can have a distinct password. Do not use the SYSBACKUP, SYSDG, or SYSKM user account for these purposes. These accounts are locked by default and should remain locked.

To use one of these administrative privileges, a user must exercise the privilege when connecting by specifying AS SYSBACKUP, AS SYSDG, or AS SYSKM. If the authentication succeeds, the user is connected with a session in which the administrative privilege is enabled. In this case, the session user is the corresponding administrative user account. For example, if user bradmin connects with the AS SYSBACKUP administrative privilege, then the session user is SYSBACKUP.

	
Note:

The SYSBACKUP, SYSDG, or SYSKM user accounts cannot be dropped.

	
See Also:

	
"Administrative Privileges"

	
Oracle Database Security Guide

The DBA Role

A predefined DBA role is automatically created with every Oracle Database installation. This role contains most database system privileges. Therefore, the DBA role should be granted only to actual database administrators.

	
Note:

The DBA role does not include the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM system privileges. These are special administrative privileges that allow an administrator to perform basic database administration tasks, such as creating the database and instance startup and shutdown. These administrative privileges are discussed in "Administrative Privileges".

	
See Also:

	
Oracle Database Security Guide for more information about administrative user accounts

	
"Using Password File Authentication"

Database Administrator Authentication

As a DBA, you often perform special operations such as shutting down or starting up a database. Because only a DBA should perform these operations, the database administrator user names require a secure authentication scheme.

This section contains the following topics:

	
Administrative Privileges

	
Selecting an Authentication Method for Database Administrators

	
Using Operating System Authentication

	
Using Password File Authentication

Administrative Privileges

Administrative privileges that are required for an administrator to perform basic database operations are granted through the following special system privileges:

	
SYSDBA

	
SYSOPER

	
SYSBACKUP

	
SYSDG

	
SYSKM

You must have one of these privileges granted to you, depending upon the level of authorization you require.

Starting with Oracle Database 12c, the SYSBACKUP, SYSDG, and SYSKM administrative privileges are available. Each new administrative privilege grants the minimum required privileges to complete tasks in each area of administration. The new administrative privileges enable you to avoid granting SYSDBA administrative privilege for many common tasks.

	
Note:

These administrative privileges allow access to a database instance even when the database is not open. Control of these privileges is totally outside of the database itself. Methods for authenticating database administrators with these privileges include operating system (OS) authentication, password files, and strong authentication with a directory-based authentication service.
These privileges can also be thought of as types of connections that enable you to perform certain database operations for which privileges cannot be granted in any other fashion. For example, if you have the SYSDBA privilege, then you can connect to the database by specifying CONNECT AS SYSDBA and perform STARTUP and SHUTDOWN operations. See "Selecting an Authentication Method for Database Administrators".

Operations Authorized by Administrative Privileges

The following table lists the operations that are authorized by each administrative privilege:

	Administrative Privilege	Operations Authorized
	SYSDBA 	
	Perform STARTUP and SHUTDOWN operations
	
ALTER DATABASE: open, mount, back up, or change character set

	
CREATE DATABASE

	
DROP DATABASE

	
CREATE SPFILE

	
ALTER DATABASE ARCHIVELOG

	
ALTER DATABASE RECOVER

	
Includes the RESTRICTED SESSION privilege

This administrative privilege allows most operations, including the ability to view user data. It is the most powerful administrative privilege.

	SYSOPER 	
	Perform STARTUP and SHUTDOWN operations
	
CREATE SPFILE

	
ALTER DATABASE: open, mount, or back up

	
ALTER DATABASE ARCHIVELOG

	
ALTER DATABASE RECOVER (Complete recovery only. Any form of incomplete recovery, such as UNTIL TIME|CHANGE|CANCEL|CONTROLFILE requires connecting as SYSDBA.)

	
Includes the RESTRICTED SESSION privilege

This privilege allows a user to perform basic operational tasks, but without the ability to view user data.

	SYSBACKUP 	This privilege allows a user to perform backup and recovery operations either from Oracle Recovery Manager (RMAN) or SQL*Plus.
See Oracle Database Security Guide for the full list of operations allowed by this administrative privilege.

	SYSDG 	This privilege allows a user to perform Data Guard operations. You can use this privilege with either Data Guard Broker or the DGMGRL command-line interface.
See Oracle Database Security Guide for the full list of operations allowed by this administrative privilege.

	SYSKM 	This privilege allows a user to perform Transparent Data Encryption keystore operations.
See Oracle Database Security Guide for the full list of operations allowed by this administrative privilege.

The manner in which you are authorized to use these privileges depends upon the method of authentication that you use.

When you connect with an administrative privilege, you connect with a current schema that is not generally associated with your username. For SYSDBA, the current schema is SYS. For SYSOPER, the current schema is PUBLIC. For SYSBACKUP, SYSDG, and SYSKM, the current schema is SYS for name resolution purposes.

Also, when you connect with an administrative privilege, you connect with a specific session user. When you connect as SYSDBA, the session user is SYS. For SYSOPER, the session user is PUBLIC. For SYSBACKUP, SYSDG, and SYSKM, the session user is SYSBACKUP, SYSDG, and SYSKM, respectively.

Example 1-17 Current Schema When Connecting AS SYSDBA

This example illustrates that a user is assigned another schema (SYS) when connecting with the SYSDBA administrative privilege. Assume that the sample user mydba has been granted the SYSDBA administrative privilege and has issued the following command and statement:

CONNECT mydba
CREATE TABLE admin_test(name VARCHAR2(20));

Later, user mydba issues this command and statement:

CONNECT mydba AS SYSDBA
SELECT * FROM admin_test;

User mydba now receives the following error:

ORA-00942: table or view does not exist

Having connected as SYSDBA, user mydba now references the SYS schema, but the table was created in the mydba schema.

Example 1-18 Current Schema and Session User When Connecting AS SYSBACKUP

This example illustrates that a user is assigned another schema (SYS) and another session user (SYSBACKUP) when connecting with the SYSBACKUP administrative privilege. Assume that the sample user mydba has been granted the SYSBACKUP administrative privilege and has issued the following command and statements:

CONNECT mydba AS SYSBACKUP

SELECT SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA') FROM DUAL;

SYS_CONTEXT('USERENV','CURRENT_SCHEMA')
--
SYS

SELECT SYS_CONTEXT('USERENV', 'SESSION_USER') FROM DUAL;

SYS_CONTEXT('USERENV','SESSION_USER')
--
SYSBACKUP

	
See Also:

	
"Administrative User Accounts"

	
"Using Operating System Authentication"

	
"Using Password File Authentication"

	
Oracle Database SQL Language Reference for more information about the current schema and the session user

	
Oracle Database Security Guide

Selecting an Authentication Method for Database Administrators

Database Administrators can authenticate database administrators through the data dictionary, (using an account password) like other users. Keep in mind that database passwords are case-sensitive. See Oracle Database Security Guide for more information about case-sensitive database passwords.

In addition to normal data dictionary authentication, the following methods are available for authenticating database administrators with the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM privilege:

	
Operating system (OS) authentication

	
Password files

	
Strong authentication with a directory-based authentication service, such as Oracle Internet Directory

These methods are required to authenticate a database administrator when the database is not started or otherwise unavailable. (They can also be used when the database is available.)

The remainder of this section focuses on operating system authentication and password file authentication. See Oracle Database Security Guide for information about authenticating database administrators with directory-based authentication services.

	
Notes:

Operating system authentication takes precedence over password file authentication. If you meet the requirements for operating system authentication, then even if you use a password file, you will be authenticated by operating system authentication.

Your choice is influenced by whether you intend to administer your database locally on the same system where the database resides, or whether you intend to administer many different databases from a single remote client. Figure 1-2 illustrates the choices you have for database administrator authentication schemes.

Figure 1-2 Database Administrator Authentication Methods

[image: Description of Figure 1-2 follows]

If you are performing remote database administration, consult your Oracle Net documentation to determine whether you are using a secure connection. Most popular connection protocols, such as TCP/IP and DECnet, are not secure.

	
See Also:

	
Oracle Database Security Guide for information about authenticating database administrators with directory-based authentication services.

	
Oracle Database Net Services Administrator's Guide

Nonsecure Remote Connections

To connect to Oracle Database as a privileged user over a nonsecure connection, you must be authenticated by a password file. When using password file authentication, the database uses a password file to keep track of database user names that have been granted the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege. This form of authentication is discussed in "Using Password File Authentication".

Local Connections and Secure Remote Connections

You can connect to Oracle Database as a privileged user over a local connection or a secure remote connection in two ways:

	
If the database has a password file and you have been granted a system privilege, then you can connect and be authenticated by a password file.

	
If the server is not using a password file, or if you have not been granted a system privilege and are therefore not in the password file, then you can use operating system authentication. On most operating systems, authentication for database administrators involves placing the operating system username of the database administrator in a special group.

For example, users in the OSDBA group are granted the SYSDBA administrative privilege. Similarly, the OSOPER group is used to grant SYSOPER administrative privilege to users, the OSBACKUPDBA group is used to grant SYSBACKUP administrative privilege to users, the OSDGDBA group is used to grant SYSDG administrative privilege to users, and the OSKMDBA group is used to grant SYSKM administrative privilege to users.

Using Operating System Authentication

This section describes how to authenticate an administrator using the operating system.

Operating System Groups

Membership in special operating system groups enables a DBA to authenticate to the database through the operating system rather than with a database user name and password. This is known as operating system authentication. The groups are created and assigned specific names as part of the database installation process. The default names vary depending upon your operating system, and are listed in the following table:

	Operating System Group	UNIX or Linux User Group	Windows User Group
	OSDBA	dba	ORA_DBA (for all Oracle homes)
ORA_HOMENAME_DBA (for each specific Oracle home)

	OSOPER	oper	ORA_OPER (for all Oracle homes)
ORA_HOMENAME_OPER (for each specific Oracle home)

	OSBACKUPDBA	backupdba	ORA_HOMENAME_SYSBACKUP
	OSDGDBA	dgdba	ORA_HOMENAME_SYSDG
	OSKMDBA	kmdba	ORA_HOMENAME_SYSKM

For the Windows user group names, replace HOMENAME with the Oracle home name.

Oracle Universal Installer uses these default names, but, on UNIX or Linux, you can override them. On UNIX or Linux, one reason to override them is if you have multiple instances running on the same host computer in different Oracle homes. If each instance has a different person as the principal DBA, then you can improve the security of each instance by creating different groups for each instance.

For example, for two instances on the same UNIX or Linux host in different Oracle homes, the OSDBA group for the first instance might be named dba1, and OSDBA for the second instance might be named dba2. The first DBA would be a member of dba1 only, and the second DBA would be a member of dba2 only. Thus, when using operating system authentication, each DBA would be able to connect only to his assigned instance.

On Windows, default user group names cannot be changed. The HOMENAME placeholder enables you to have different user group names when you have multiple instances running on the same host Windows computer.

Membership in a group affects your connection to the database in the following ways:

	
If you are a member of the OSDBA group, and you specify AS SYSDBA when you connect to the database, then you connect to the database with the SYSDBA administrative privilege.

	
If you are a member of the OSOPER group, and you specify AS SYSOPER when you connect to the database, then you connect to the database with the SYSOPER administrative privilege.

	
If you are a member of the OSBACKUPDBA group, and you specify AS SYSBACKUP when you connect to the database, then you connect to the database with the SYSBACKUP administrative privilege.

	
If you are a member of the OSDGDBA group, and you specify AS SYSDG when you connect to the database, then you connect to the database with the SYSDG administrative privilege.

	
If you are a member of the OSKMDBA group, and you specify AS SYSKM when you connect to the database, then you connect to the database with the SYSKM administrative privilege.

	
If you are not a member of one of these operating system groups, and you attempt to connect as SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM, then the CONNECT command fails.

	
See Also:

Your operating system specific Oracle documentation for information about creating the OSDBA and OSOPER groups

Preparing to Use Operating System Authentication

To enable operating system authentication of an administrative user:

	
Create an operating system account for the user.

	
Add the account to the appropriate operating-system defined groups.

Connecting Using Operating System Authentication

A user can be authenticated, enabled as an administrative user, and connected to a local database by typing one of the following SQL*Plus commands:

CONNECT / AS SYSDBA
CONNECT / AS SYSOPER
CONNECT / AS SYSBACKUP
CONNECT / AS SYSDG
CONNECT / AS SYSKM

For the Windows platform only, remote operating system authentication over a secure connection is supported. You must specify the net service name for the remote database:

CONNECT /@net_service_name AS SYSDBA
CONNECT /@net_service_name AS SYSOPER
CONNECT /@net_service_name AS SYSBACKUP
CONNECT /@net_service_name AS SYSDG
CONNECT /@net_service_name AS SYSKM

Both the client computer and database host computer must be on a Windows domain.

	
See Also:

	
"Connecting to the Database with SQL*Plus"

	
SQL*Plus User's Guide and Reference for syntax of the CONNECT command

Using Password File Authentication

This section describes how to authenticate an administrative user using password file authentication. You can use password file authentication for an Oracle database instance and for an Oracle Automatic Storage Management (Oracle ASM) instance. The password file for an Oracle database is called a database password file, and the password file for Oracle ASM is called an Oracle ASM password file.

This section describes creating a database password file. For information about creating an Oracle ASM password file, see Oracle Automatic Storage Management Administrator's Guide.

Preparing to Use Password File Authentication

To enable authentication of an administrative user using password file authentication you must do the following:

	
If it is not already created, then create the password file using the ORAPWD utility:

orapwd FILE=filename ENTRIES=max_users FORMAT=12

See "Creating and Maintaining a Database Password File" for details.

	
Notes:

	
When you invoke Database Configuration Assistant (DBCA) as part of the Oracle Database installation process, DBCA creates a password file.

	
The administrative privileges SYSBACKUP, SYSDG, and SYSKM are supported in the password file only when the file is created created with the FORMAT=12 argument. 12 is the default for the FORMAT command-line argument.

	
By default, passwords in the password file are case-sensitive.

	
When you create a database password file that is stored in an Oracle ASM disk group, it can be shared among the multiple Oracle RAC database instances. The password file is not duplicated on each Oracle RAC database instance.

	
Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to exclusive. (This is the default).

	
Note:

REMOTE_LOGIN_PASSWORDFILE is a static initialization parameter and therefore cannot be changed without restarting the database.

	
Connect to the database as user SYS (or as another user with the administrative privileges).

	
If the user does not already exist in the database, then create the user and assign a password.

Keep in mind that database passwords are case-sensitive. See Oracle Database Security Guide for more information about case-sensitive database passwords.

	
Grant the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to the user. For example:

GRANT SYSDBA to mydba;

This statement adds the user to the password file, thereby enabling connection AS SYSDBA, AS SYSOPER, AS SYSBACKUP, AS SYSDG, or AS SYSKM.

	
See Also:

"Creating and Maintaining a Database Password File" for instructions for creating and maintaining a password file

Connecting Using Password File Authentication

Administrative users can be connected and authenticated to a local or remote database by using the SQL*Plus CONNECT command. They must connect using their username and password and the AS SYSDBA, AS SYSOPER, AS SYSBACKUP, AS SYSDG, or AS SYSKM clause. By default, passwords are case-sensitive.

For example, if user mydba has been granted the SYSDBA privilege, then mydba can connect as follows:

CONNECT mydba AS SYSDBA

However, if user mydba has not been granted the SYSOPER privilege, then the following command fails:

CONNECT mydba AS SYSOPER

	
Note:

Operating system authentication takes precedence over password file authentication. Specifically, if you are a member of the appropriate operating system group, such as OSDBA or OSOPER, and you connect with the appropriate clause (for example, AS SYSDBA), then you will be connected with associated administrative privileges regardless of the username/password that you specify.
If you are not in the one of the operating system groups, and you are not in the password file, then attempting to connect with the clause fails.

	
See Also:

	
"Connecting to the Database with SQL*Plus"

	
SQL*Plus User's Guide and Reference for syntax of the CONNECT command

Creating and Maintaining a Database Password File

You can create a database password file using the password file creation utility, ORAPWD. For some operating systems, you can create this file as part of your standard installation.

This section contains the following topics:

	
Creating a Database Password File with ORAPWD

	
Sharing and Disabling the Database Password File

	
Adding Users to a Database Password File

	
Maintaining a Database Password File

	
See Also:

	
"Using Password File Authentication"

	
"Selecting an Authentication Method for Database Administrators"

	
Oracle Automatic Storage Management Administrator's Guide for information about creating and maintaining an Oracle ASM password file

Creating a Database Password File with ORAPWD

The syntax of the ORAPWD command is as follows:

orapwd FILE=filename [ENTRIES=numusers] [FORCE={y|n}] [ASM={y|n}]
[DBUNIQUENAME=dbname] [FORMAT={12|legacy}] [SYSBACKUP={y|n}] [SYSDG={y|n}]
[SYSKM={y|n}] [DELETE={y|n}] [INPUT_FILE=input-fname]

orapwd DESCRIBE FILE=filename

Command arguments are summarized in the following table.

	Argument	Description
	FILE	If the DESCRIBE argument is not included, then specify the name to assign to the new password file. You must supply a complete path. If you supply only a file name, the file is written to the current directory.
If the DESCRIBE argument is included, then specify the name of an existing password file.

	PASSWORD	Password for SYS. You are prompted for the password if it is not specified. The password is stored in the created password file.
	ENTRIES	(Optional) Maximum number of entries (user accounts) to permit in the file.
	FORCE	(Optional) If y, permits overwriting an existing password file.
	ASM	(Optional) If y, create an Oracle ASM password file in an Oracle ASM disk group.
If n, the default, create a password file in the operating system file system. When the DBUNIQUENAME argument is specified, the password file is a database password file. When the DBUNIQUENAME argument is not specified, the password file can be a database password file or an Oracle ASM password file.

	DBUNIQUENAME	Unique database name used to identify database password files residing in an ASM disk group only. This argument is required when the database password file is stored on an Oracle ASM disk group. This argument is ignored when an Oracle ASM password file is created by setting the ASM argument to y.
	FORMAT	(Optional) If 12, the default, the password file is created in Oracle Database 12c format. This format supports the SYSBACKUP, SYSDG, and SYSKM administrative privileges.
If legacy, the password file is in legacy format, which is the format before Oracle Database 12c. This argument cannot be set to legacy when the SYSBACKUP, SYSDG, or SYSKM argument is specified.

	SYSBACKUP	(Optional) If y, creates a SYSBACKUP entry in the password file. You are prompted for the password. The password is stored in the created password file.
	SYSDG	(Optional) If y, creates a SYSDG entry in the password file. You are prompted for the password. The password is stored in the created password file.
	SYSKM	(Optional) If y, creates a SYSKM entry in the password file. You are prompted for the password. The password is stored in the created password file.
	DELETE	(Optional) If y, delete the specified password file.
If n, the default, create the specified password file.

	INPUT_FILE	(Optional) Name of the input password file. ORAPWD migrates the entries in the input file to a new password file. This argument can convert a password file from legacy format to Oracle Database 12c format. ORAPWD cannot migrate an input password that is stored in an Oracle ASM disk group.
	DESCRIBE	Describes the properties of the specified password file, including the FORMAT value (12 or legacy) and the IGNORECASE value (y or n)

There are no spaces permitted around the equal-to (=) character.

	
Note:

The IGNORECASE argument is deprecated in this release. Oracle strongly recommends that you set IGNORECASE to n or omit the IGNORECASE setting entirely. See Oracle Database Security Guide and Oracle Database Upgrade Guide for more information.

Example 1-19 Creating a Database Password File Located in an Oracle ASM Disk Group

The following command creates a database password file in Oracle Database 12c format named orapworcl that is located in an Oracle ASM disk group. The DBUNIQUENAME argument is required because the database password file is located in an Oracle ASM disk group. The password file allows up to 10 privileged users with different passwords.

orapwd FILE='+DATA/orcl/orapworcl' ENTRIES=10 DBUNIQUENAME='orcl' FORMAT=12

Example 1-20 Creating a Database Password File with a SYSBACKUP Entry

The following example is the similar to Example 1-19 except that it creates a SYSBACKUP entry in the database password file. The password file is in Oracle Database 12c format by default.

orapwd FILE='+DATA/orcl/orapworcl' ENTRIES=10 DBUNIQUENAME='orcl' SYSBACKUP=y

Example 1-21 Creating a Database Password File Located in a File System

The following command creates a database password file in Oracle Database 12c format named orapworcl that is located in the default location in an operating system file system. The password file allows up to 30 privileged users with different passwords.

orapwd FILE='/u01/oracle/dbs/orapworcl' ENTRIES=30 FORMAT=12

Example 1-22 Migrating a Legacy Database Password File to Oracle Database 12c Format

The following command migrates a database password file in legacy format to Oracle Database 12c format. The password file is named orapworcl, and it is located in an operating system file system. The new database password file replaces the existing database password file. Therefore, FORCE must be set to y.

orapwd FILE='/u01/oracle/dbs/orapworcl' FORMAT=12
 INPUT_FILE='/u01/oracle/dbs/orapworcl' FORCE=y

Example 1-23 Describing a Password File

The following command describes the orapworcl password file.

orapwd DESCRIBE FILE='orapworcl'
Password file Description : format=12 ignorecase=N

ORAPWD Command Line Argument Descriptions

The following sections provide more information about some of the ORAPWD command line arguments.

	FILE
	
This argument sets the name of the password file being created. This argument is mandatory.

If you specify a location on an Oracle ASM disk group, then the database password file is shared automatically among the nodes in the cluster. When you use an Oracle ASM disk group to store the password file, and you are not using Oracle Managed Files, you must specify the full path name for the file. The full path is not required if you are using Oracle Managed Files.

If you do not specify a location on an Oracle ASM disk group, then the file name required for the password file is operating system specific. Some operating systems require the password file to adhere to a specific format and be located in a specific directory. Other operating systems allow the use of environment variables to specify the name and location of the password file.

Table 1-1 lists the required name and location for the password file on the UNIX, Linux, and Windows platforms. For other platforms, consult your platform-specific documentation.

Table 1-1 Required Password File Name and Location on UNIX, Linux, and Windows

	Platform	Required Name	Required Location
	
UNIX and Linux

	
orapwORACLE_SID

	
ORACLE_HOME/dbs

	
Windows

	
PWDORACLE_SID.ora

	
ORACLE_HOME\database

For example, for a database instance with the SID orcldw, the password file must be named orapworcldw on Linux and PWDorcldw.ora on Windows.

In an Oracle Real Application Clusters environment on a platform that requires an environment variable to be set to the path of the password file, the environment variable for each instance must point to the same password file.

For a policy-managed Oracle RAC database or an Oracle RAC One Node database with ORACLE_SID of the form db_unique_name_n, where n is a number, the password file is searched for first using ORACLE_HOME/dbs/orapwsid_prefix or ORACLE_HOME\database\PWDsid_prefix.ora. The sid_prefix (the first 8 characters of the database name) is used to locate the password file.

	
Caution:

It is critically important to the security of your system that you protect your password file and the environment variables that identify the location of the password file. Any user with access to these could potentially compromise the security of the connection.

	
See Also:

Chapter 17, "Using Oracle Managed Files"

	ENTRIES
	
This argument specifies the number of entries that you require the password file to accept. This number corresponds to the number of distinct users allowed to connect to the database as SYSDBA or SYSOPER. The actual number of allowable entries can be higher than the number of users, because the ORAPWD utility continues to assign password entries until an operating system block is filled. For example, if your operating system block size is 512 bytes, it holds four password entries. The number of password entries allocated is always a multiple of four.

Entries can be reused as users are added to and removed from the password file. If you intend to add users to a password file by granting SYSDBA and SYSOPER privileges to them, then this argument is required.

	
Caution:

When you exceed the allocated number of password entries, you must create a new password file. To avoid this necessity, allocate more entries than you think you will ever need.

	FORCE
	
This argument, if set to y, enables you to overwrite an existing password file. An error is returned if a password file of the same name already exists and this argument is omitted or set to n.

	ASM
	
If this argument is set to y, then ORAPWD creates an Oracle ASM password file. The FILE argument must specify a location in the Oracle ASM disk group.

If this argument is set to n, the default, then ORAPWD creates a password file. The FILE argument can specify a location in the Oracle ASM disk group or in the operating system file system. When the DBUNIQUENAME argument is specified, the password file is a database password file. When the DBUNIQUENAME argument is not specified, the password file can be a database password file or an Oracle ASM password file.

	
See Also:

Oracle Automatic Storage Management Administrator's Guide for information about creating and maintaining an Oracle ASM password file

	DBUNIQUENAME
	
This argument sets the unique database name for a database password file being created on an Oracle ASM disk group. It identifies which database resource to update with the database password file location.

This argument is not required when a database password file is created on an operating system file system.

This argument is ignored when an Oracle ASM password file is created by setting the ASM argument to y.

	FORMAT
	
If this argument is set to 12, the default, then ORAPWD creates a database password file in Oracle Database 12c format. Oracle Database 12c format is required for the password file to support SYSBACKUP, SYSDG, and SYSKM administrative privileges.

If this argument is set to legacy, then ORAPWD creates a database password file that is in the format before Oracle Database 12c. The password file supports SYSDBA and SYSOPER administrative privileges, but it does not support SYSBACKUP, SYSDG, and SYSKM administrative privileges.

	SYSBACKUP
	
If this argument is set to y, then ORAPWD creates a SYSBACKUP entry in the password file. You are prompted for the password. The password is stored in the created password file.

If this argument is set to n, then ORAPWD does not create a SYSBACKUP entry in the password file. If a password file was created in Oracle Database 12c format, then you can add a SYSBACKUP entry to the password file.

	SYSDG
	
If this argument is set to y, then ORAPWD creates a SYSDG entry in the password file. You are prompted for the password. The password is stored in the created password file.

If this argument is set to n, then ORAPWD does not create a SYSDG entry in the password file. If a password file was created in Oracle Database 12c format, then you can add a SYSDG entry to the password file.

	SYSKM
	
If this argument is set to y, then ORAPWD creates a SYSKM entry in the password file. You are prompted for the password. The password is stored in the created password file.

If this argument is set to n, then ORAPWD does not create a SYSKM entry in the password file. If a password file was created in Oracle Database 12c format, then you can add a SYSKM entry to the password file.

	DELETE
	
If this argument is set to y, then ORAPWD deletes the specified password file. When y is specified, FILE, ASM, or DBUNIQUENAME must be specified. When FILE is specified, the file must be located on an ASM disk group.

If this argument is set to n, the default, then ORAPWD creates the password file.

	INPUT_FILE
	
This argument specifies the name of the input password file. ORAPWD migrates the entries in the input file to a new password file. This argument can convert a password file from legacy format to Oracle Database 12c format.

When an input file is specified, ORAPWD does not create any new entries. Therefore, ORAPWD ignores the following arguments:

	
PASSWORD

	
SYSBACKUP

	
SYSDG

	
SYSKM

When an input file is specified and the new password file replaces the input file, FORCE must be set to y.

	
See Also:

"Administrative Privileges" and "Adding Users to a Database Password File"

Sharing and Disabling the Database Password File

You use the initialization parameter REMOTE_LOGIN_PASSWORDFILE to control whether a database password file is shared among multiple Oracle Database instances. You can also use this parameter to disable password file authentication.

This section contains the following topics:

	
Sharing and Disabling the Database Password File

	
Keeping Administrator Passwords Synchronized with the Data Dictionary

Sharing and Disabling the Database Password File

Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to one of the following values:

	
none: Setting this parameter to none causes Oracle Database to behave as if the password file does not exist. That is, no privileged connections are allowed over nonsecure connections.

	
exclusive: (The default) An exclusive password file can be used with only one database. Only an exclusive file can be modified. Using an exclusive password file enables you to add, modify, and delete users. It also enables you to change the password for SYS, SYSBACKUP, SYSDG, or SYSKM with the ALTER USER command.

When an exclusive password file is stored on an Oracle ASM disk group, it can be used by a single-instance database or multiple instances of an Oracle Real Application Clusters (Oracle RAC) database.

When an exclusive password file is stored on an operating system, it can be used with only one instance of one database.

	
shared: A shared password file can be used by multiple databases running on the same server, or multiple instances of an Oracle RAC database, even when it is stored on an operating system. A shared password file is read-only and cannot be modified. Therefore, you cannot add users to a shared password file. Any attempt to do so or to change the password of SYS or other users with the administrative privileges generates an error. All users needing administrative privileges must be added to the password file when REMOTE_LOGIN_PASSWORDFILE is set to exclusive. After all users are added, you can change REMOTE_LOGIN_PASSWORDFILE to shared, and then share the file.

This option is useful if you are administering multiple databases with a single password file.

You cannot specify shared for an Oracle ASM password file.

If REMOTE_LOGIN_PASSWORDFILE is set to exclusive or shared and the password file is missing, this is equivalent to setting REMOTE_LOGIN_PASSWORDFILE to none.

Keeping Administrator Passwords Synchronized with the Data Dictionary

If you change the REMOTE_LOGIN_PASSWORDFILE initialization parameter from none to exclusive or shared, or if you re-create the password file with a different SYS password, then you must ensure that the passwords in the data dictionary and password file for the SYS user are the same.

To synchronize the SYS passwords, use the ALTER USER statement to change the SYS password. The ALTER USER statement updates and synchronizes both the dictionary and password file passwords.

To synchronize the passwords for non-SYS users who log in using the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege, you must revoke and then regrant the privilege to the user, as follows:

	
Find all users who have been granted the SYSDBA privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSDBA='TRUE';

	
Revoke and then re-grant the SYSDBA privilege to these users.

REVOKE SYSDBA FROM non-SYS-user;
GRANT SYSDBA TO non-SYS-user;

	
Find all users who have been granted the SYSOPER privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSOPER='TRUE';

	
Revoke and regrant the SYSOPER privilege to these users.

REVOKE SYSOPER FROM non-SYS-user;
GRANT SYSOPER TO non-SYS-user;

	
Find all users who have been granted the SYSBACKUP privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSBACKUP ='TRUE';

	
Revoke and regrant the SYSBACKUP privilege to these users.

REVOKE SYSBACKUP FROM non-SYS-user;
GRANT SYSBACKUP TO non-SYS-user;

	
Find all users who have been granted the SYSDG privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSDG='TRUE';

	
Revoke and regrant the SYSDG privilege to these users.

REVOKE SYSDG FROM non-SYS-user;
GRANT SYSDG TO non-SYS-user;

	
Find all users who have been granted the SYSKM privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSKM='TRUE';

	
Revoke and regrant the SYSKM privilege to these users.

REVOKE SYSKM FROM non-SYS-user;
GRANT SYSKM TO non-SYS-user;

Adding Users to a Database Password File

When you grant SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to a user, that user's name and privilege information are added to the database password file. A user's name remains in the password file only as long as that user has at least one of these privileges. If you revoke all of these privileges, Oracle Database removes the user from the password file.

	
Note:

The password file must be created with the FORMAT=12 argument to support SYSBACKUP, SYSDG, or SYSKM administrative privilege.

Creating a Password File and Adding New Users to It

Use the following procedure to create a password and add new users to it:

	
Follow the instructions for creating a password file as explained in "Creating a Database Password File with ORAPWD".

	
Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to exclusive. (This is the default.)

Oracle Database issues an error if you attempt to grant these privileges and the initialization parameter REMOTE_LOGIN_PASSWORDFILE is not set correctly.

	
Note:

REMOTE_LOGIN_PASSWORDFILE is a static initialization parameter and therefore cannot be changed without restarting the database.

	
Connect with SYSDBA privileges as shown in the following example, and enter the SYS password when prompted:

CONNECT SYS AS SYSDBA

	
Start up the instance and create the database if necessary, or mount and open an existing database.

	
Create users as necessary. Grant SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to yourself and other users as appropriate. See "Granting and Revoking Administrative Privileges".

Granting and Revoking Administrative Privileges

Use the GRANT statement to grant the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to a user, as shown in the following example:

GRANT SYSDBA TO mydba;

Use the REVOKE statement to revoke the administrative privilege from a user, as shown in the following example:

REVOKE SYSDBA FROM mydba;

The WITH ADMIN OPTION is ignored if it is specified in the GRANT statement that grants an administrative privilege, and the following rules apply:

	
A user currently connected as SYSDBA can grant any administrative privilege to another user and revoke any administrative privilege from another user.

	
A user currently connected as SYSOPER cannot grant any administrative privilege to another user and cannot revoke any administrative privilege from another user.

	
A user currently connected as SYSBACKUP can grant or revoke another user's SYSBACKUP administrative privilege.

	
A user currently connected as SYSDG can grant or revoke another user's SYSDG administrative privilege.

	
A user currently connected as SYSKM can grant or revoke another user's SYSKM administrative privilege.

Administrative privileges cannot be granted to roles, because roles are available only after database startup. Do not confuse the database administrative privileges with operating system roles.

	
See Also:

Oracle Database Security Guide for more information on administrative privileges

Viewing Database Password File Members

Use the V$PWFILE_USERS view to see the users who have been granted administrative privileges. The columns displayed by this view are as follows:

	Column	Description
	USERNAME	This column contains the name of the user that is recognized by the password file.
	SYSDBA	If the value of this column is TRUE, then the user can log on with the SYSDBA administrative privileges.
	SYSOPER	If the value of this column is TRUE, then the user can log on with the SYSOPER administrative privileges.
	SYSASM	If the value of this column is TRUE, then the user can log on with the SYSASM administrative privileges.
	SYSBACKUP	If the value of this column is TRUE, then the user can log on with the SYSBACKUP administrative privileges.
	SYSDG	If the value of this column is TRUE, then the user can log on with the SYSDG administrative privileges.
	SYSKM	If the value of this column is TRUE, then the user can log on with the SYSKM administrative privileges.

	
Note:

SYSASM is valid only for Oracle Automatic Storage Management instances.

Maintaining a Database Password File

This section describes how to:

	
Expand the number of password file users if the database password file becomes full

	
Remove the database password file

Expanding the Number of Database Password File Users

If you receive an error when you try to grant system privileges to a user because the file is full, then you must create a larger database password file and grant the privileges to the users again.

Replacing a Password File

Use the following procedure to replace a database password file:

	
Identify the users who have system privileges by querying the V$PWFILE_USERS view.

	
Delete the existing database password file.

	
Follow the instructions for creating a new database password file using the ORAPWD utility in "Creating a Database Password File with ORAPWD". Ensure that the ENTRIES parameter is set to a number larger than you think you will ever need.

	
Follow the instructions in "Adding Users to a Database Password File".

Removing a Database Password File

If you determine that you no longer require a database password file to authenticate users, then you can delete the database password file and then optionally reset the REMOTE_LOGIN_PASSWORDFILE initialization parameter to none. After you remove this file, only those users who can be authenticated by the operating system can perform SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM database administration operations.

Data Utilities

Oracle utilities are available to help you maintain the data in your Oracle Database.

SQL*Loader

SQL*Loader is used both by database administrators and by other users of Oracle Database. It loads data from standard operating system files (such as, files in text or C data format) into database tables.

Export and Import Utilities

The Data Pump utility enables you to archive data and to move data between one Oracle Database and another. Also available are the original Import (IMP) and Export (EXP) utilities for importing and exporting data from and to earlier releases.

	
See Also:

Oracle Database Utilities for detailed information about these utilities

6 Managing Memory

This chapter contains the following topics:

	
About Memory Management

	
Memory Architecture Overview

	
Using Automatic Memory Management

	
Configuring Memory Manually

	
Configuring Database Smart Flash Cache

	
Memory Management Reference

About Memory Management

Memory management involves maintaining optimal sizes for the Oracle Database instance memory structures as demands on the database change. The memory structures that must be managed are the system global area (SGA) and the instance program global area (instance PGA).

Oracle Database supports various memory management methods, which are chosen by initialization parameter settings. Oracle recommends that you enable the method known as automatic memory management.

Automatic Memory Management

Oracle Database can manage the SGA memory and instance PGA memory completely automatically. You designate only the total memory size to be used by the instance, and Oracle Database dynamically exchanges memory between the SGA and the instance PGA as needed to meet processing demands. This capability is referred to as automatic memory management. With this memory management method, the database also dynamically tunes the sizes of the individual SGA components and the sizes of the individual PGAs.

Manual Memory Management

If you prefer to exercise more direct control over the sizes of individual memory components, you can disable automatic memory management and configure the database for manual memory management. There are a few different methods available for manual memory management. Some of these methods retain some degree of automation. The methods therefore vary in the amount of effort and knowledge required by the DBA. These methods are:

	
Automatic shared memory management - for the SGA

	
Manual shared memory management - for the SGA

	
Automatic PGA memory management - for the instance PGA

	
Manual PGA memory management - for the instance PGA

These memory management methods are described later in this chapter.

If you create your database with Database Configuration Assistant (DBCA) and choose the basic installation option, automatic memory management is enabled when system memory is less than or equal to 4 gigabytes. When system memory is greater than 4 gigabytes, automatic memory management is disabled, and automatic shared memory management is enabled. If you choose advanced installation, then DBCA enables you to select automatic memory management or automatic shared memory management.

	
Note:

The easiest way to manage memory is to use the graphical user interface of Oracle Enterprise Manager Database Express (EM Express) or Oracle Enterprise Manager Cloud Control (Cloud Control).
For information about managing memory with EM Express, see Oracle Database 2 Day DBA.

For information about managing memory with Cloud Control, see the Cloud Control online help.

	
See Also:

Oracle Database Concepts for an introduction to the various automatic and manual methods of managing memory.

Memory Architecture Overview

The basic memory structures associated with Oracle Database include:

	
System Global Area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that contain data and control information for one Oracle Database instance. The SGA is shared by all server and background processes. Examples of data stored in the SGA include cached data blocks and shared SQL areas.

	
Program Global Area (PGA)

A PGA is a memory region that contains data and control information for a server process. It is nonshared memory created by Oracle Database when a server process is started. Access to the PGA is exclusive to the server process. There is one PGA for each server process. Background processes also allocate their own PGAs. The total PGA memory allocated for all background and server processes attached to an Oracle Database instance is referred to as the total instance PGA memory, and the collection of all individual PGAs is referred to as the total instance PGA, or just instance PGA.

Figure 6-1 illustrates the relationships among these memory structures.

Figure 6-1 Oracle Database Memory Structures

[image: Description of Figure 6-1 follows]

If your database is running on Solaris or Oracle Linux, you can optionally add another memory component: Database Smart Flash Cache. Database Smart Flash Cache is an extension of the SGA-resident buffer cache, providing a level 2 cache for database blocks. It can improve response time and overall throughput for both read-intensive online transaction processing (OLTP) workloads and ad hoc queries and bulk data modifications in a data warehouse environment. Database Smart Flash Cache resides on one or more flash disk devices, which are solid state storage devices that use flash memory. Database Smart Flash Cache is typically more economical than additional main memory, and is an order of magnitude faster than disk drives.

	
See Also:

	
Oracle Database Concepts for more information on memory architecture in an Oracle Database instance

	
"Configuring Database Smart Flash Cache"

Using Automatic Memory Management

This section provides background information on the automatic memory management feature of Oracle Database, and includes instructions for enabling this feature. The following topics are covered:

	
About Automatic Memory Management

	
Enabling Automatic Memory Management

	
Monitoring and Tuning Automatic Memory Management

About Automatic Memory Management

The simplest way to manage instance memory is to allow the Oracle Database instance to automatically manage and tune it for you. To do so (on most platforms), you set only a target memory size initialization parameter (MEMORY_TARGET) and optionally a maximum memory size initialization parameter (MEMORY_MAX_TARGET). The total memory that the instance uses remains relatively constant, based on the value of MEMORY_TARGET, and the instance automatically distributes memory between the system global area (SGA) and the instance program global area (instance PGA). As memory requirements change, the instance dynamically redistributes memory between the SGA and instance PGA.

When automatic memory management is not enabled, you must size both the SGA and instance PGA manually.

Because the MEMORY_TARGET initialization parameter is dynamic, you can change MEMORY_TARGET at any time without restarting the database. MEMORY_MAX_TARGET, which is not dynamic, serves as an upper limit so that you cannot accidentally set MEMORY_TARGET too high, and so that enough memory is set aside for the database instance in case you do want to increase total instance memory in the future. Because certain SGA components either cannot easily shrink or must remain at a minimum size, the instance also prevents you from setting MEMORY_TARGET too low.

	
Note:

You cannot enable automatic memory management if the LOCK_SGA initialization parameter is TRUE. See Oracle Database Reference for information about this parameter.

	
See Also:

"Platforms That Support Automatic Memory Management"

Enabling Automatic Memory Management

If you did not enable automatic memory management upon database creation (either by selecting the proper options in DBCA or by setting the appropriate initialization parameters for the CREATE DATABASE SQL statement), you can enable it at a later time. Enabling automatic memory management involves a shutdown and restart of the database.

To enable automatic memory management

	
Start SQL*Plus and connect to the Oracle Database instance with the SYSDBA administrative privilege.

See "Connecting to the Database with SQL*Plus" and "Database Administrator Authentication" for instructions.

	
Calculate the minimum value for MEMORY_TARGET as follows:

	
Determine the current sizes of SGA_TARGET and PGA_AGGREGATE_TARGET in megabytes by entering the following SQL*Plus commands:

SHOW PARAMETER SGA_TARGET

NAME TYPE VALUE
------------------------------------ ----------- --------------------------
sga_target big integer 272M

SHOW PARAMETER PGA_AGGREGATE_TARGET

NAME TYPE VALUE
------------------------------------ ----------- --------------------------
pga_aggregate_target big integer 90M

See "Enabling Automatic Shared Memory Management" for information about setting the SGA_TARGET parameter if it is not set.

	
Run the following query to determine the maximum instance PGA allocated in megabytes since the database was started:

SELECT VALUE/1048576 FROM V$PGASTAT WHERE NAME='maximum pga allocated';

	
Compute the maximum value between the query result from step 2b and PGA_AGGREGATE_TARGET. Add SGA_TARGET to this value.

MEMORY_TARGET = SGA_TARGET + MAX(PGA_AGGREGATE_TARGET, MAXIMUM PGA ALLOCATED)

For example, if SGA_TARGET is 272M and PGA_AGGREGATE_TARGET is 90M as shown above, and if the maximum PGA allocated is determined to be 120M, then MEMORY_TARGET should be at least 392M (272M + 120M).

	
Choose the value for MEMORY_TARGET that you want to use.

This can be the minimum value that you computed in step 2, or you can choose to use a larger value if you have enough physical memory available.

	
For the MEMORY_MAX_TARGET initialization parameter, decide on a maximum amount of memory that you would want to allocate to the database for the foreseeable future. That is, determine the maximum value for the sum of the SGA and instance PGA sizes. This number can be larger than or the same as the MEMORY_TARGET value that you chose in the previous step.

	
Do one of the following:

	
If you started your Oracle Database instance with a server parameter file, which is the default if you created the database with the Database Configuration Assistant (DBCA), enter the following command:

ALTER SYSTEM SET MEMORY_MAX_TARGET = nM SCOPE = SPFILE;

where n is the value that you computed in Step 4.

The SCOPE = SPFILE clause sets the value only in the server parameter file, and not for the running instance. You must include this SCOPE clause because MEMORY_MAX_TARGET is not a dynamic initialization parameter.

	
If you started your instance with a text initialization parameter file, manually edit the file so that it contains the following statements:

memory_max_target = nM
memory_target = mM

where n is the value that you determined in Step 4, and m is the value that you determined in step 3.

	
Note:

In a text initialization parameter file, if you omit the line for MEMORY_MAX_TARGET and include a value for MEMORY_TARGET, the database automatically sets MEMORY_MAX_TARGET to the value of MEMORY_TARGET. If you omit the line for MEMORY_TARGET and include a value for MEMORY_MAX_TARGET, the MEMORY_TARGET parameter defaults to zero. After startup, you can then dynamically change MEMORY_TARGET to a nonzero value, provided that it does not exceed the value of MEMORY_MAX_TARGET.

	
Shut down and restart the database.

See Chapter 3, "Starting Up and Shutting Down" for instructions.

	
If you started your Oracle Database instance with a server parameter file, enter the following commands:

ALTER SYSTEM SET MEMORY_TARGET = nM;
ALTER SYSTEM SET SGA_TARGET = 0;
ALTER SYSTEM SET PGA_AGGREGATE_TARGET = 0;

where n is the value that you determined in step 3.

	
Note:

The preceding steps instruct you to set SGA_TARGET and PGA_AGGREGATE_TARGET to zero so that the sizes of the SGA and instance PGA are tuned up and down as required, without restrictions. You can omit the statements that set these parameter values to zero and leave either or both of the values as positive numbers. In this case, the values act as minimum values for the sizes of the SGA or instance PGA.
In addition, you can use the PGA_AGGREGATE_LIMIT initialization parameter to set an instance-wide hard limit for PGA memory. You can set PGA_AGGREGATE_LIMIT whether or not you use automatic memory management. See "Using Automatic PGA Memory Management".

	
See Also:

	
"About Automatic Memory Management"

	
"Memory Architecture Overview"

	
Oracle Database SQL Language Reference for information on the ALTER SYSTEM SQL statement

Monitoring and Tuning Automatic Memory Management

The dynamic performance view V$MEMORY_DYNAMIC_COMPONENTS shows the current sizes of all dynamically tuned memory components, including the total sizes of the SGA and instance PGA.

The view V$MEMORY_TARGET_ADVICE provides tuning advice for the MEMORY_TARGET initialization parameter.

SQL> select * from v$memory_target_advice order by memory_size;

MEMORY_SIZE MEMORY_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION
----------- ------------------ ------------ ------------------- ----------
 180 .5 458 1.344 0
 270 .75 367 1.0761 0
 360 1 341 1 0
 450 1.25 335 .9817 0
 540 1.5 335 .9817 0
 630 1.75 335 .9817 0
 720 2 335 .9817 0

The row with the MEMORY_SIZE_FACTOR of 1 shows the current size of memory, as set by the MEMORY_TARGET initialization parameter, and the amount of DB time required to complete the current workload. In previous and subsequent rows, the results show several alternative MEMORY_TARGET sizes. For each alternative size, the database shows the size factor (the multiple of the current size), and the estimated DB time to complete the current workload if the MEMORY_TARGET parameter were changed to the alternative size. Notice that for a total memory size smaller than the current MEMORY_TARGET size, estimated DB time increases. Notice also that in this example, there is nothing to be gained by increasing total memory size beyond 450MB. However, this situation might change if a complete workload has not yet been run.

EM Express provides an easy-to-use graphical memory advisor to help you select an optimal size for MEMORY_TARGET. See Oracle Database 2 Day DBA for details.

	
See Also:

	
Oracle Database Reference for more information about these dynamic performance views

	
Oracle Database Performance Tuning Guide for a definition of DB time.

Configuring Memory Manually

If you prefer to exercise more direct control over the sizes of individual memory components, you can disable automatic memory management and configure the database for manual memory management. There are two different manual memory management methods for the SGA, and two for the instance PGA.

The two manual memory management methods for the SGA vary in the amount of effort and knowledge required by the DBA. With automatic shared memory management, you set target and maximum sizes for the SGA. The database then sets the total size of the SGA to your designated target, and dynamically tunes the sizes of many SGA components. With manual shared memory management, you set the sizes of several individual SGA components, thereby determining the overall SGA size. You then manually tune these individual SGA components on an ongoing basis.

For the instance PGA, there is automatic PGA memory management, in which you set a target size for the instance PGA. The database then sets the size of the instance PGA to your target, and dynamically tunes the sizes of individual PGAs. There is also manual PGA memory management, in which you set maximum work area size for each type of SQL operator (such as sort or hash-join). This memory management method, although supported, is not recommended.

The following sections provide details on all of these manual memory management methods:

	
Using Automatic Shared Memory Management

	
Using Manual Shared Memory Management

	
Using Automatic PGA Memory Management

	
Using Manual PGA Memory Management

	
See Also:

Oracle Database Concepts for an overview of Oracle Database memory management methods.

Using Automatic Shared Memory Management

This section contains the following topics:

	
About Automatic Shared Memory Management

	
Components and Granules in the SGA

	
Setting Maximum SGA Size

	
Setting SGA Target Size

	
Enabling Automatic Shared Memory Management

	
Automatic Shared Memory Management Advanced Topics

	
See Also:

	
Oracle Database Performance Tuning Guide for information about tuning the components of the SGA

About Automatic Shared Memory Management

Automatic Shared Memory Management simplifies SGA memory management. You specify the total amount of SGA memory available to an instance using the SGA_TARGET initialization parameter and Oracle Database automatically distributes this memory among the various SGA components to ensure the most effective memory utilization.

When automatic shared memory management is enabled, the sizes of the different SGA components are flexible and can adapt to the needs of a workload without requiring any additional configuration. The database automatically distributes the available memory among the various components as required, allowing the system to maximize the use of all available SGA memory.

If you are using a server parameter file (SPFILE), the database remembers the sizes of the automatically tuned SGA components across instance shutdowns. As a result, the database instance does not need to learn the characteristics of the workload again each time the instance is started. The instance can begin with information from the previous instance and continue evaluating workload where it left off at the last shutdown.

Components and Granules in the SGA

The SGA comprises several memory components, which are pools of memory used to satisfy a particular class of memory allocation requests. Examples of memory components include the shared pool (used to allocate memory for SQL and PL/SQL execution), the java pool (used for java objects and other java execution memory), and the buffer cache (used for caching disk blocks). All SGA components allocate and deallocate space in units of granules. Oracle Database tracks SGA memory use in internal numbers of granules for each SGA component.

The memory for dynamic components in the SGA is allocated in the unit of granules. The granule size is determined by the amount of SGA memory requested when the instance starts. Specifically, the granule size is based on the value of the SGA_MAX_SIZE initialization parameter. Table 6-1 shows the granule size for different amounts of SGA memory.

Table 6-1 Granule Size

	SGA Memory Amount	Granule Size
	
Less than or equal to 1 GB

	
4 MB

	
Greater than 1 GB and less than or equal to 8 GB

	
16 MB

	
Greater than 8 GB and less than or equal to 16 GB

	
32 MB

	
Greater than 16 GB and less than or equal to 32 GB

	
64 MB

	
Greater than 32 GB and less than or equal to 64 GB

	
128 MB

	
Greater than 64 GB and less than or equal to 128 GB

	
256 MB

	
Greater than 128 GB

	
512 MB

Some platform dependencies may arise. Consult your operating system specific documentation for more details.

You can query the V$SGAINFO view to see the granule size that is being used by an instance. The same granule size is used for all components in the SGA.

If you specify a size for a component that is not a multiple of granule size, Oracle Database rounds the specified size up to the nearest multiple. For example, if the granule size is 4 MB and you specify DB_CACHE_SIZE as 10 MB, the database actually allocates 12 MB.

Setting Maximum SGA Size

The SGA_MAX_SIZE initialization parameter specifies the maximum size of the System Global Area for the lifetime of the instance. You can dynamically alter the initialization parameters affecting the size of the buffer caches, shared pool, large pool, Java pool, and streams pool but only to the extent that the sum of these sizes and the sizes of the other components of the SGA (fixed SGA, variable SGA, and redo log buffers) does not exceed the value specified by SGA_MAX_SIZE.

If you do not specify SGA_MAX_SIZE, then Oracle Database selects a default value that is the sum of all components specified or defaulted at initialization time. If you do specify SGA_MAX_SIZE, and at the time the database is initialized the value is less than the sum of the memory allocated for all components, either explicitly in the parameter file or by default, then the database ignores the setting for SGA_MAX_SIZE and chooses a correct value for this parameter.

Setting SGA Target Size

You enable the automatic shared memory management feature by setting the SGA_TARGET parameter to a nonzero value. This parameter sets the total size of the SGA. It replaces the parameters that control the memory allocated for a specific set of individual components, which are now automatically and dynamically resized (tuned) as needed.

	
Note:

The STATISTICS_LEVEL initialization parameter must be set to TYPICAL (the default) or ALL for automatic shared memory management to function.

Table 6-2 lists the SGA components that are automatically sized when SGA_TARGET is set. For each SGA component, its corresponding initialization parameter is listed.

Table 6-2 Automatically Sized SGA Components and Corresponding Parameters

	SGA Component	Initialization Parameter
	
Fixed SGA and other internal allocations needed by the Oracle Database instance

	
N/A

	
The shared pool

	
SHARED_POOL_SIZE

	
The large pool

	
LARGE_POOL_SIZE

	
The Java pool

	
JAVA_POOL_SIZE

	
The buffer cache

	
DB_CACHE_SIZE

	
The Streams pool

	
STREAMS_POOL_SIZE

The manually sized parameters listed in Table 6-3, if they are set, take their memory from SGA_TARGET, leaving what is available for the components listed in Table 6-2.

Table 6-3 Manually Sized SGA Components that Use SGA_TARGET Space

	SGA Component	Initialization Parameter
	
The log buffer

	
LOG_BUFFER

	
The keep and recycle buffer caches

	
DB_KEEP_CACHE_SIZE

DB_RECYCLE_CACHE_SIZE

	
Nonstandard block size buffer caches

	
DB_nK_CACHE_SIZE

In addition to setting SGA_TARGET to a nonzero value, you must set to zero all initialization parameters listed in Table 6-2 to enable full automatic tuning of the automatically sized SGA components.

Alternatively, you can set one or more of the automatically sized SGA components to a nonzero value, which is then used as the minimum setting for that component during SGA tuning. This is discussed in detail later in this section.

	
Note:

An easier way to enable automatic shared memory management is to use EM Express. When you enable automatic shared memory management and set the Total SGA Size, EM Express automatically generates the ALTER SYSTEM statements to set SGA_TARGET to the specified size and to set all automatically sized SGA components to zero. See Oracle Database 2 Day DBA for more information.
If you use SQL*Plus to set SGA_TARGET, you must then set the automatically sized SGA components to zero or to a minimum value.

SGA and Virtual Memory

For optimal performance in most systems, the entire SGA should fit in real memory. If it does not, and if virtual memory is used to store parts of it, then overall database system performance can decrease dramatically. The reason for this is that portions of the SGA are paged (written to and read from disk) by the operating system.

See your operating system documentation for instructions for monitoring paging activity. You can also view paging activity using Cloud Control. See Oracle Database 2 Day + Performance Tuning Guide for more information.

Monitoring and Tuning SGA Target Size

The V$SGAINFO view provides information on the current tuned sizes of various SGA components.

The V$SGA_TARGET_ADVICE view provides information that helps you decide on a value for SGA_TARGET.

SQL> select * from v$sga_target_advice order by sga_size;

 SGA_SIZE SGA_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR ESTD_PHYSICAL_READS
---------- --------------- ------------ ------------------- -------------------
 290 .5 448176 1.6578 1636103
 435 .75 339336 1.2552 1636103
 580 1 270344 1 1201780
 725 1.25 239038 .8842 907584
 870 1.5 211517 .7824 513881
 1015 1.75 201866 .7467 513881
 1160 2 200703 .7424 513881

The information in this view is similar to that provided in the V$MEMORY_TARGET_ADVICE view for automatic memory management. See "Monitoring and Tuning Automatic Memory Management" for an explanation of that view.

EM Express provides an easy-to-use graphical memory advisor to help you select an optimal size for SGA_TARGET. See Oracle Database 2 Day DBA for details.

	
See Also:

Oracle Database Reference for more information about these dynamic performance views

Enabling Automatic Shared Memory Management

The procedure for enabling automatic shared memory management (ASMM) differs depending on whether you are changing to ASMM from manual shared memory management or from automatic memory management.

To change to ASMM from manual shared memory management:

	
Run the following query to obtain a value for SGA_TARGET:

SELECT (
 (SELECT SUM(value) FROM V$SGA) -
 (SELECT CURRENT_SIZE FROM V$SGA_DYNAMIC_FREE_MEMORY)
) "SGA_TARGET"
FROM DUAL;

	
Set the value of SGA_TARGET, either by editing the text initialization parameter file and restarting the database, or by issuing the following statement:

ALTER SYSTEM SET SGA_TARGET=value [SCOPE={SPFILE|MEMORY|BOTH}]

where value is the value computed in step 1 or is some value between the sum of all SGA component sizes and SGA_MAX_SIZE. For more information on the ALTER SYSTEM statement and its SCOPE clause, see Oracle Database SQL Language Reference.

	
Do one of the following:

	
For more complete automatic tuning, set the values of the automatically sized SGA components listed in Table 6-2 to zero. Do this by editing the text initialization parameter file or by issuing ALTER SYSTEM statements.

	
To control the minimum size of one or more automatically sized SGA components, set those component sizes to the desired value. (See the next section for details.) Set the values of the other automatically sized SGA components to zero. Do this by editing the text initialization parameter file or by issuing ALTER SYSTEM statements.

To change to ASMM from automatic memory management:

	
Set the MEMORY_TARGET initialization parameter to 0.

ALTER SYSTEM SET MEMORY_TARGET = 0;

The database sets SGA_TARGET based on current SGA memory allocation.

	
Do one of the following:

	
For more complete automatic tuning, set the sizes of the automatically sized SGA components listed in Table 6-2 to zero. Do this by editing the text initialization parameter file or by issuing ALTER SYSTEM statements.

	
To control the minimum size of one or more automatically sized SGA components, set those component sizes to the desired value. (See the next section for details.) Set the sizes of the other automatically sized SGA components to zero. Do this by editing the text initialization parameter file or by issuing ALTER SYSTEM statements.

Example

For example, suppose you currently have the following configuration of parameters for an instance configured for manual shared memory management and with SGA_MAX_SIZE set to 1200M:

	
SHARED_POOL_SIZE = 200M

	
DB_CACHE_SIZE = 500M

	
LARGE_POOL_SIZE=200M

Also assume the following query results:

	Query	Result
	SELECT SUM(value) FROM V$SGA	1200M
	SELECT CURRENT_SIZE FROM V$SGA_DYNAMIC_FREE_MEMORY	208M

You can take advantage of automatic shared memory management by issuing the following statements:

ALTER SYSTEM SET SGA_TARGET = 992M;
ALTER SYSTEM SET SHARED_POOL_SIZE = 0;
ALTER SYSTEM SET LARGE_POOL_SIZE = 0;
ALTER SYSTEM SET JAVA_POOL_SIZE = 0;
ALTER SYSTEM SET DB_CACHE_SIZE = 0;
ALTER SYSTEM SET STREAMS_POOL_SIZE = 0;

where 992M = 1200M minus 208M.

Automatic Shared Memory Management Advanced Topics

This section provides a closer look at automatic shared memory management. It includes the following topics:

	
Setting Minimums for Automatically Sized SGA Components

	
Dynamic Modification of SGA_TARGET

	
Modifying Parameters for Automatically Sized Components

	
Modifying Parameters for Manually Sized Components

Setting Minimums for Automatically Sized SGA Components

You can exercise some control over the size of the automatically sized SGA components by specifying minimum values for the parameters corresponding to these components. Doing so can be useful if you know that an application cannot function properly without a minimum amount of memory in specific components. You specify the minimum amount of SGA space for a component by setting a value for its corresponding initialization parameter.

Manually limiting the minimum size of one or more automatically sized components reduces the total amount of memory available for dynamic adjustment. This reduction in turn limits the ability of the system to adapt to workload changes. Therefore, this practice is not recommended except in exceptional cases. The default automatic management behavior maximizes both system performance and the use of available resources.

Dynamic Modification of SGA_TARGET

The SGA_TARGET parameter can be dynamically increased up to the value specified for the SGA_MAX_SIZE parameter, and it can also be reduced. If you reduce the value of SGA_TARGET, the system identifies one or more automatically tuned components for which to release memory. You can reduce SGA_TARGET until one or more automatically tuned components reach their minimum size. Oracle Database determines the minimum allowable value for SGA_TARGET taking into account several factors, including values set for the automatically sized components, manually sized components that use SGA_TARGET space, and number of CPUs.

The change in the amount of physical memory consumed when SGA_TARGET is modified depends on the operating system. On some UNIX platforms that do not support dynamic shared memory, the physical memory in use by the SGA is equal to the value of the SGA_MAX_SIZE parameter. On such platforms, there is no real benefit in setting SGA_TARGET to a value smaller than SGA_MAX_SIZE. Therefore, setting SGA_MAX_SIZE on those platforms is not recommended.

On other platforms, such as Solaris and Windows, the physical memory consumed by the SGA is equal to the value of SGA_TARGET.

For example, suppose you have an environment with the following configuration:

	
SGA_MAX_SIZE = 1024M

	
SGA_TARGET = 512M

	
DB_8K_CACHE_SIZE = 128M

In this example, the value of SGA_TARGET can be resized up to 1024M and can also be reduced until one or more of the automatically sized components reaches its minimum size. The exact value depends on environmental factors such as the number of CPUs on the system. However, the value of DB_8K_CACHE_SIZE remains fixed at all times at 128M

	
Note:

When enabling automatic shared memory management, it is best to set SGA_TARGET to the desired nonzero value before starting the database. Dynamically modifying SGA_TARGET from zero to a nonzero value may not achieve the desired results because the shared pool may not be able to shrink. After startup, you can dynamically tune SGA_TARGET up or down as required.

Modifying Parameters for Automatically Sized Components

When SGA_TARGET is not set, the automatic shared memory management feature is not enabled. Therefore the rules governing resize for all component parameters are the same as in earlier releases. However, when automatic shared memory management is enabled, the manually specified sizes of automatically sized components serve as a lower bound for the size of the components. You can modify this limit dynamically by changing the values of the corresponding parameters.

If the specified lower limit for the size of a given SGA component is less than its current size, there is no immediate change in the size of that component. The new setting only limits the automatic tuning algorithm to that reduced minimum size in the future. For example, consider the following configuration:

	
SGA_TARGET = 512M

	
LARGE_POOL_SIZE = 256M

	
Current actual large pool size = 284M

In this example, if you increase the value of LARGE_POOL_SIZE to a value greater than the actual current size of the component, the system expands the component to accommodate the increased minimum size. For example, if you increase the value of LARGE_POOL_SIZE to 300M, then the system increases the large pool incrementally until it reaches 300M. This resizing occurs at the expense of one or more automatically tuned components.If you decrease the value of LARGE_POOL_SIZE to 200, there is no immediate change in the size of that component. The new setting only limits the reduction of the large pool size to 200 M in the future.

Modifying Parameters for Manually Sized Components

Parameters for manually sized components can be dynamically altered as well. However, rather than setting a minimum size, the value of the parameter specifies the precise size of the corresponding component. When you increase the size of a manually sized component, extra memory is taken away from one or more automatically sized components. When you decrease the size of a manually sized component, the memory that is released is given to the automatically sized components.

For example, consider this configuration:

	
SGA_TARGET = 512M

	
DB_8K_CACHE_SIZE = 128M

In this example, increasing DB_8K_CACHE_SIZE by 16M to 144M means that the 16M is taken away from the automatically sized components. Likewise, reducing DB_8K_CACHE_SIZE by 16M to 112M means that the 16M is given to the automatically sized components.

Using Manual Shared Memory Management

If you decide not to use automatic memory management or automatic shared memory management, you must manually configure several SGA component sizes, and then monitor and tune these sizes on an ongoing basis as the database workload changes. This section provides guidelines on setting the parameters that control the sizes of these SGA components.

If you create your database with DBCA and choose manual shared memory management, DBCA provides fields where you must enter sizes for the buffer cache, shared pool, large pool, and Java pool. It then sets the corresponding initialization parameters in the server parameter file (SPFILE) that it creates. If you instead create the database with the CREATE DATABASE SQL statement and a text initialization parameter file, you can do one of the following:

	
Provide values for the initialization parameters that set SGA component sizes.

	
Omit SGA component size parameters from the text initialization file. Oracle Database chooses reasonable defaults for any component whose size you do not set.

This section contains the following topics:

	
Enabling Manual Shared Memory Management

	
Setting the Buffer Cache Initialization Parameters

	
Specifying the Shared Pool Size

	
Specifying the Large Pool Size

	
Specifying the Java Pool Size

	
Specifying the Streams Pool Size

	
Specifying the Result Cache Maximum Size

	
Specifying Miscellaneous SGA Initialization Parameters

Enabling Manual Shared Memory Management

There is no initialization parameter that in itself enables manual shared memory management. You effectively enable manual shared memory management by disabling both automatic memory management and automatic shared memory management.

To enable manual shared memory management:

	
Set the MEMORY_TARGET initialization parameter to 0.

	
Set the SGA_TARGET initialization parameter to 0.

You must then set values for the various SGA components, as described in the following sections.

Setting the Buffer Cache Initialization Parameters

The buffer cache initialization parameters determine the size of the buffer cache component of the SGA. You use them to specify the sizes of caches for the various block sizes used by the database. These initialization parameters are all dynamic.

The size of a buffer cache affects performance. Larger cache sizes generally reduce the number of disk reads and writes. However, a large cache may take up too much memory and induce memory paging or swapping.

Oracle Database supports multiple block sizes in a database. If you create tablespaces with non-standard block sizes, you must configure non-standard block size buffers to accommodate these tablespaces. The standard block size is used for the SYSTEM tablespace. You specify the standard block size by setting the initialization parameter DB_BLOCK_SIZE. Legitimate values are from 2K to 32K.

If you intend to use multiple block sizes in your database, you must have the DB_CACHE_SIZE and at least one DB_nK_CACHE_SIZE parameter set. Oracle Database assigns an appropriate default value to the DB_CACHE_SIZE parameter, but the DB_nK_CACHE_SIZE parameters default to 0, and no additional block size caches are configured.

The sizes and numbers of non-standard block size buffers are specified by the following parameters:

DB_2K_CACHE_SIZE
DB_4K_CACHE_SIZE
DB_8K_CACHE_SIZE
DB_16K_CACHE_SIZE
DB_32K_CACHE_SIZE

Each parameter specifies the size of the cache for the corresponding block size.

	
Note:

	
Platform-specific restrictions regarding the maximum block size apply, so some of these sizes might not be allowed on some platforms.

	
A 32K block size is valid only on 64-bit platforms.

	
See Also:

"Specifying Nonstandard Block Sizes for Tablespaces"

Example of Setting Block and Cache Sizes

DB_BLOCK_SIZE=4096
DB_CACHE_SIZE=1024M
DB_2K_CACHE_SIZE=256M
DB_8K_CACHE_SIZE=512M

In the preceding example, the parameter DB_BLOCK_SIZE sets the standard block size of the database to 4K. The size of the cache of standard block size buffers is 1024MB. Additionally, 2K and 8K caches are also configured, with sizes of 256MB and 512MB, respectively.

	
Note:

The DB_nK_CACHE_SIZE parameters cannot be used to size the cache for the standard block size. If the value of DB_BLOCK_SIZE is nK, it is invalid to set DB_nK_CACHE_SIZE. The size of the cache for the standard block size is always determined from the value of DB_CACHE_SIZE.

The cache has a limited size, so not all the data on disk can fit in the cache. When the cache is full, subsequent cache misses cause Oracle Database to write dirty data already in the cache to disk to make room for the new data. (If a buffer is not dirty, it does not need to be written to disk before a new block can be read into the buffer.) Subsequent access to any data that was written to disk and then overwritten results in additional cache misses.

The size of the cache affects the likelihood that a request for data results in a cache hit. If the cache is large, it is more likely to contain the data that is requested. Increasing the size of a cache increases the percentage of data requests that result in cache hits.

You can change the size of the buffer cache while the instance is running, without having to shut down the database. Do this with the ALTER SYSTEM statement.

Use the fixed view V$BUFFER_POOL to track the sizes of the different cache components and any pending resize operations.

Multiple Buffer Pools

You can configure the database buffer cache with separate buffer pools that either keep data in the buffer cache or make the buffers available for new data immediately after using the data blocks. Particular schema objects (tables, clusters, indexes, and partitions) can then be assigned to the appropriate buffer pool to control the way their data blocks age out of the cache.

	
The KEEP buffer pool retains the schema object's data blocks in memory.

	
The RECYCLE buffer pool eliminates data blocks from memory as soon as they are no longer needed.

	
The DEFAULT buffer pool contains data blocks from schema objects that are not assigned to any buffer pool, as well as schema objects that are explicitly assigned to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools are DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE.

	
Note:

Multiple buffer pools are only available for the standard block size. Non-standard block size caches have a single DEFAULT pool.

	
See Also:

Oracle Database Performance Tuning Guide for information about tuning the buffer cache and for more information about multiple buffer pools

Specifying the Shared Pool Size

The SHARED_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or adjust the size of the shared pool component of the SGA. Oracle Database selects an appropriate default value.

In releases before Oracle Database 10g, the amount of shared pool memory that was allocated was equal to the value of the SHARED_POOL_SIZE initialization parameter plus the amount of internal SGA overhead computed during instance startup. The internal SGA overhead refers to memory that is allocated by Oracle Database during startup, based on the values of several other initialization parameters. This memory is used to maintain state for different server components in the SGA. For example, if the SHARED_POOL_SIZE parameter is set to 64MB and the internal SGA overhead is computed to be 12MB, the real size of the shared pool is 64+12=76MB, although the value of the SHARED_POOL_SIZE parameter is still displayed as 64MB.

Starting with Oracle Database 10g, the size of the internal SGA overhead is included in the user-specified value of SHARED_POOL_SIZE. If you are not using automatic memory management or automatic shared memory management, the amount of shared pool memory that is allocated at startup is equal to the value of the SHARED_POOL_SIZE initialization parameter, rounded up to a multiple of the granule size. You must therefore set this parameter so that it includes the internal SGA overhead in addition to the desired value for shared pool size. In the previous example, if the SHARED_POOL_SIZE parameter is set to 64MB at startup, then the available shared pool after startup is 64-12=52MB, assuming the value of internal SGA overhead remains unchanged. In order to maintain an effective value of 64MB for shared pool memory after startup, you must set the SHARED_POOL_SIZE parameter to 64+12=76MB.

When migrating from a release that is earlier than Oracle Database 10g, the Oracle Database 12c migration utilities recommend a new value for this parameter based on the value of internal SGA overhead in the pre-upgrade environment and based on the old value of this parameter. Beginning with Oracle Database 10g, the exact value of internal SGA overhead, also known as startup overhead in the shared pool, can be queried from the V$SGAINFO view. Also, in manual shared memory management mode, if the user-specified value of SHARED_POOL_SIZE is too small to accommodate even the requirements of internal SGA overhead, then Oracle Database generates an ORA-00371 error during startup, with a suggested value to use for the SHARED_POOL_SIZE parameter.When you use automatic shared memory management in Oracle Database 12c, the shared pool is automatically tuned, and an ORA-00371 error would not be generated.

The Result Cache and Shared Pool Size

The result cache takes its memory from the shared pool. Therefore, if you expect to increase the maximum size of the result cache, take this into consideration when sizing the shared pool.

	
See Also:

"Specifying the Result Cache Maximum Size"

Specifying the Large Pool Size

The LARGE_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or adjust the size of the large pool component of the SGA. The large pool is an optional component of the SGA. You must specifically set the LARGE_POOL_SIZE parameter to create a large pool. Configuring the large pool is discussed in Oracle Database Performance Tuning Guide.

Specifying the Java Pool Size

The JAVA_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or adjust the size of the java pool component of the SGA. Oracle Database selects an appropriate default value. Configuration of the java pool is discussed in Oracle Database Java Developer's Guide.

Specifying the Streams Pool Size

The STREAMS_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or adjust the size of the Streams Pool component of the SGA. If STREAMS_POOL_SIZE is set to 0, then the Oracle Streams product transfers memory from the buffer cache to the Streams Pool when it is needed. For details, see the discussion of the Streams Pool in Oracle Streams Replication Administrator's Guide.

Specifying the Result Cache Maximum Size

The RESULT_CACHE_MAX_SIZE initialization parameter is a dynamic parameter that enables you to specify the maximum size of the result cache component of the SGA. Typically, there is no need to specify this parameter, because the default maximum size is chosen by the database based on total memory available to the SGA and on the memory management method currently in use. You can view the current default maximum size by displaying the value of the RESULT_CACHE_MAX_SIZE parameter. To change this maximum size, you can set RESULT_CACHE_MAX_SIZE with an ALTER SYSTEM statement, or you can specify this parameter in the text initialization parameter file. In each case, the value is rounded up to the nearest multiple of 32K.

If RESULT_CACHE_MAX_SIZE is 0 upon instance startup, the result cache is disabled. To reenable it you must set RESULT_CACHE_MAX_SIZE to a nonzero value (or remove this parameter from the text initialization parameter file to get the default maximum size) and then restart the database.

Note that after starting the database with the result cache disabled, if you use an ALTER SYSTEM statement to set RESULT_CACHE_MAX_SIZE to a nonzero value but do not restart the database, querying the value of the RESULT_CACHE_MAX_SIZE parameter returns a nonzero value even though the result cache is still disabled. The value of RESULT_CACHE_MAX_SIZE is therefore not the most reliable way to determine if the result cache is enabled. You can use the following query instead:

SELECT dbms_result_cache.status() FROM dual;

DBMS_RESULT_CACHE.STATUS()

ENABLED

The result cache takes its memory from the shared pool, so if you increase the maximum result cache size, consider also increasing the shared pool size.

The view V$RESULT_CACHE_STATISTICS and the PL/SQL package procedure DBMS_RESULT_CACHE.MEMORY_REPORT display information to help you determine the amount of memory currently allocated to the result cache.

The PL/SQL package function DBMS_RESULT_CACHE.FLUSH clears the result cache and releases all the memory back to the shared pool.

	
See Also:

	
Oracle Database Performance Tuning Guide for more information about the result cache

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_RESULT_CACHE package procedures and functions.

	
Oracle Database Reference for more information about the V$RESULT_CACHE_STATISTICS view.

	
Oracle Real Application Clusters Administration and Deployment Guide for information on setting RESULT_CACHE_MAX_SIZE for a cluster database.

Specifying Miscellaneous SGA Initialization Parameters

You can set a few additional initialization parameters to control how the SGA uses memory.

Physical Memory

The LOCK_SGA parameter, when set to TRUE, locks the entire SGA into physical memory. This parameter cannot be used with automatic memory management or automatic shared memory management.

SGA Starting Address

The SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS parameters specify the SGA's starting address at run time. These parameters are rarely used. For 64-bit platforms, HI_SHARED_MEMORY_ADDRESS specifies the high order 32 bits of the 64-bit address.

Extended Buffer Cache Mechanism

The USE_INDIRECT_DATA_BUFFERS parameter enables the use of the extended buffer cache mechanism for 32-bit platforms that can support more than 4 GB of physical memory. On platforms that do not support this much physical memory, this parameter is ignored. This parameter cannot be used with automatic memory management or automatic shared memory management.

	
See Also:

	
Oracle Database Reference for more information on these initialization parameters

	
"Using Automatic Memory Management"

	
"Using Automatic Shared Memory Management"

Using Automatic PGA Memory Management

By default, Oracle Database automatically and globally manages the total amount of memory dedicated to the instance PGA. You can control this amount by setting the initialization parameter PGA_AGGREGATE_TARGET. Oracle Database then tries to ensure that the total amount of PGA memory allocated across all database server processes and background processes never exceeds this target.

If you create your database with DBCA, you can specify a value for the total instance PGA. DBCA then sets the PGA_AGGREGATE_TARGET initialization parameters in the server parameter file (SPFILE) that it creates. If you do not specify the total instance PGA, DBCA chooses a reasonable default.

If you create the database with the CREATE DATABASE SQL statement and a text initialization parameter file, you can provide a value for PGA_AGGREGATE_TARGET. If you omit this parameter, the database chooses a default value for it.

With automatic PGA memory management, sizing of SQL work areas is automatic and all *_AREA_SIZE initialization parameters are ignored. At any given time, the total amount of PGA memory available to active work areas on the instance is automatically derived from the parameter PGA_AGGREGATE_TARGET. This amount is set to the value of PGA_AGGREGATE_TARGET minus the PGA memory allocated for other purposes (for example, session memory). The resulting PGA memory is then allotted to individual active work areas based on their specific memory requirements.

There are dynamic performance views that provide PGA memory use statistics. Most of these statistics are enabled when PGA_AGGREGATE_TARGET is set.

	
Statistics on allocation and use of work area memory can be viewed in the following dynamic performance views:

	V$SYSSTAT
	V$SESSTAT
	V$PGASTAT
	V$SQL_WORKAREA
	V$SQL_WORKAREA_ACTIVE

	
The following three columns in the V$PROCESS view report the PGA memory allocated and used by an Oracle Database process:

	PGA_USED_MEM
	PGA_ALLOC_MEM
	PGA_MAX_MEM

The PGA_AGGREGATE_TARGET setting is a target. Therefore, Oracle Database tries to limit PGA memory usage to the target, but usage can exceed the setting at times. To specify a hard limit on PGA memory usage, use the PGA_AGGREGATE_LIMIT initialization parameter. Oracle Database ensures that the PGA size does not exceed this limit. If the database exceeds the limit, then the database aborts calls from sessions that have the highest untunable PGA memory allocations. You can set PGA_AGGREGATE_LIMIT whether or not you use automatic memory management. If PGA_AGGREGATE_LIMIT is not set, then Oracle Database determines an appropriate default limit. See Oracle Database Reference for more information about this parameter.

	
Note:

The automatic PGA memory management method applies to work areas allocated by both dedicated and shared server process. See Oracle Database Concepts for information about PGA memory allocation in dedicated and shared server modes.

	
See Also:

	
Oracle Database Reference for information about the initialization parameters and views described in this section

	
Oracle Database Performance Tuning Guide for information about using the views described in this section

Using Manual PGA Memory Management

Oracle Database supports manual PGA memory management, in which you manually tune SQL work areas.

In releases earlier than Oracle Database 10g, the database administrator controlled the maximum size of SQL work areas by setting the following parameters: SORT_AREA_SIZE, HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and CREATE_BITMAP_AREA_SIZE. Setting these parameters is difficult, because the maximum work area size is ideally selected from the data input size and the total number of work areas active in the system. These two factors vary greatly from one work area to another and from one time to another. Thus, the various *_AREA_SIZE parameters are difficult to tune under the best of circumstances.

For this reason, Oracle strongly recommends that you leave automatic PGA memory management enabled.

If you decide to tune SQL work areas manually, you must set the WORKAREA_SIZE_POLICY initialization parameter to MANUAL.

	
Note:

The initialization parameter WORKAREA_SIZE_POLICY is a session- and system-level parameter that can take only two values: MANUAL or AUTO. The default is AUTO. You can set PGA_AGGREGATE_TARGET, and then switch back and forth from auto to manual memory management mode. When WORKAREA_SIZE_POLICY is set to AUTO, your settings for *_AREA_SIZE parameters are ignored.

Configuring Database Smart Flash Cache

This section contains the following topics on configuring Database Smart Flash Cache:

	
When to Configure Database Smart Flash Cache

	
Sizing Database Smart Flash Cache

	
Tuning Memory for Database Smart Flash Cache

	
Database Smart Flash Cache Initialization Parameters

	
Database Smart Flash Cache in an Oracle Real Applications Clusters Environment

	
See Also:

"Memory Architecture Overview" for a description of Database Smart Flash Cache

When to Configure Database Smart Flash Cache

Consider adding Database Smart Flash Cache when all of the following are true:

	
Your database is running on the Solaris or Oracle Linux operating systems. Database Smart Flash Cache is supported on these operating systems only.

	
The Buffer Pool Advisory section of your Automatic Workload Repository (AWR) report or STATSPACK report indicates that doubling the size of the buffer cache would be beneficial.

	
db file sequential read is a top wait event.

	
You have spare CPU.

	
Note:

You cannot share one flash file among multiple instances. However, you can share a single flash device among multiple instances if you use a logical volume manager or similar tool to statically partition the flash device.

Sizing Database Smart Flash Cache

As a general rule, size Database Smart Flash Cache to be between 2 times and 10 times the size of the buffer cache. Any multiplier less than two would not provide any benefit. If you are using automatic shared memory management, make Database Smart Flash Cache between 2 times and 10 times the size of SGA_TARGET. Using 80% of the size of SGA_TARGET instead of the full size would also suffice for this calculation.

Tuning Memory for Database Smart Flash Cache

For each database block moved from the buffer cache to Database Smart Flash Cache, a small amount of metadata about the block is kept in the buffer cache. For a single instance database, the metadata consumes approximately 100 bytes. For an Oracle Real Application Clusters (Oracle RAC) database, it is closer to 200 bytes. You must therefore take this extra memory requirement into account when adding Database Smart Flash Cache.

	
If you are managing memory manually, increase the size of the buffer cache by an amount approximately equal to the number of database blocks that fit into the Database Smart Flash Cache as configured, multiplied by 100 (or 200 for Oracle RAC).

	
If you are using automatic memory management, increase the size of MEMORY_TARGET using the algorithm described above. You may first have to increase the size of MEMORY_MAX_TARGET.

	
If you are using automatic shared memory management, increase the size of SGA_TARGET.

Also, for an Oracle RAC database that uses the flash cache, additional memory must be allocated to the shared pool for Global Cache Service (GCS) resources. Each GCS resource requires approximately 208 bytes in the shared pool.

	
Note:

You can choose to not increase the buffer cache size to account for Database Smart Flash Cache. In this case, the effective size of the buffer cache is reduced. In some cases, you can offset this loss by using a larger Database Smart Flash Cache.

	
See Also:

"About Memory Management"

Database Smart Flash Cache Initialization Parameters

Table 6-4 describes the initialization parameters that you use to configure Database Smart Flash Cache.

Table 6-4 Database Smart Flash Cache Initialization Parameters

	Parameter	Description
	
DB_FLASH_CACHE_FILE

	
Specifies a list of paths and file names for the files to contain Database Smart Flash Cache, in either the operating system file system or an Oracle Automatic Storage Management disk group. If a specified file does not exist, then the database creates it during startup. Each file must reside on a flash device. If you configure Database Smart Flash Cache on a disk drive (spindle), then performance may suffer. A maximum of 16 files is supported.

	
DB_FLASH_CACHE_SIZE

	
Specifies the size of each file in your Database Smart Flash Cache. Each size corresponds with a file specified in DB_FLASH_CACHE_FILE. The files and sizes correspond in the order that they are specified. An error is raised if the number of specified sizes does not match the number of specified files.

Each size specification must be less than or equal to the physical memory size of its flash device. The size is expressed as nG, indicating the number of gigabytes (GB). For example, to specify a 16 GB Database Smart Flash Cache, set DB_FLASH_CACHE_SIZE value to 16G.

For example, assume that your Database Smart Flash Cache uses following flash devices:

	File	Size
	/dev/sda	32G
	/dev/sdb	32G
	/dev/sdc	64G

You can set the initialization parameters to the following values:

DB_FLASH_CACHE_FILE = /dev/sda, /dev/sdb, /dev/sdc

DB_FLASH_CACHE_SIZE = 32G, 32G, 64G

You can query the V$FLASHFILESTAT view to determine the cumulative latency and read counts of each file and compute the average latency.

You can use ALTER SYSTEM to set DB_FLASH_CACHE_SIZE to zero for each flash device you wish to disable. You can also use ALTER SYSTEM to set the size for any disabled flash device back to its original size to reenable it. However, dynamically changing the size of Database Smart Flash Cache is not supported.

	
See Also:

Oracle Database Reference for more information about the initialization parameters described in this section and for more information about the V$FLASHFILESTAT view

Database Smart Flash Cache in an Oracle Real Applications Clusters Environment

Oracle recommends that you configure a Database Smart Flash Cache on either all or none of the instances in an Oracle Real Application Clusters environment. Also, the total flash cache size configured on each instance should be approximately the same.

Memory Management Reference

This section contains the following reference topics for memory management:

	
Platforms That Support Automatic Memory Management

	
Memory Management Data Dictionary Views

Platforms That Support Automatic Memory Management

The following platforms support automatic memory management—the Oracle Database ability to automatically tune the sizes of the SGA and PGA, redistributing memory from one to the other on demand to optimize performance:

	
Linux

	
Solaris

	
Windows

	
HP-UX

	
AIX

Memory Management Data Dictionary Views

The following dynamic performance views provide information on memory management:

	View	Description
	V$SGA	Displays summary information about the system global area (SGA).
	V$SGAINFO	Displays size information about the SGA, including the sizes of different SGA components, the granule size, and free memory.
	V$SGASTAT	Displays detailed information about how memory is allocated within the shared pool, large pool, Java pool, and Streams pool.
	V$PGASTAT	Displays PGA memory usage statistics as well as statistics about the automatic PGA memory manager when it is enabled (that is, when PGA_AGGREGATE_TARGET is set). Cumulative values in V$PGASTAT are accumulated since instance startup.
	V$MEMORY_DYNAMIC_COMPONENTS	Displays information on the current size of all automatically tuned and static memory components, with the last operation (for example, grow or shrink) that occurred on each.
	V$SGA_DYNAMIC_COMPONENTS	Displays the current sizes of all SGA components, and the last operation for each component.
	V$SGA_DYNAMIC_FREE_MEMORY	Displays information about the amount of SGA memory available for future dynamic SGA resize operations.
	V$MEMORY_CURRENT_RESIZE_OPS	Displays information about resize operations that are currently in progress. A resize operation is an enlargement or reduction of the SGA, the instance PGA, or a dynamic SGA component.
	V$SGA_CURRENT_RESIZE_OPS	Displays information about dynamic SGA component resize operations that are currently in progress.
	V$MEMORY_RESIZE_OPS	Displays information about the last 800 completed memory component resize operations, including automatic grow and shrink operations for SGA_TARGET and PGA_AGGREGATE_TARGET.
	V$SGA_RESIZE_OPS	Displays information about the last 800 completed SGA component resize operations.
	V$MEMORY_TARGET_ADVICE	Displays information that helps you tune MEMORY_TARGET if you enabled automatic memory management.
	V$SGA_TARGET_ADVICE	Displays information that helps you tune SGA_TARGET.
	V$PGA_TARGET_ADVICE	Displays information that helps you tune PGA_AGGREGATE_TARGET.

	
See Also:

Oracle Database Reference for detailed information on memory management views.

Part II

Oracle Database Structure and Storage

Part II describes database structure in terms of storage components and explains how to create and manage those components. It contains the following chapters:

	
Chapter 10, "Managing Control Files"

	
Chapter 11, "Managing the Redo Log"

	
Chapter 12, "Managing Archived Redo Log Files"

	
Chapter 13, "Managing Tablespaces"

	
Chapter 14, "Managing Data Files and Temp Files"

	
Chapter 15, "Transporting Data"

	
Chapter 16, "Managing Undo"

	
Chapter 17, "Using Oracle Managed Files"

11 Managing the Redo Log

This chapter contains the following topics:

	
What Is the Redo Log?

	
Planning the Redo Log

	
Creating Redo Log Groups and Members

	
Relocating and Renaming Redo Log Members

	
Dropping Redo Log Groups and Members

	
Forcing Log Switches

	
Verifying Blocks in Redo Log Files

	
Clearing a Redo Log File

	
Redo Log Data Dictionary Views

	
See Also:

Chapter 17, "Using Oracle Managed Files" for information about redo log files that are both created and managed by the Oracle Database server

What Is the Redo Log?

The most crucial structure for recovery operations is the redo log, which consists of two or more preallocated files that store all changes made to the database as they occur. Every instance of an Oracle Database has an associated redo log to protect the database in case of an instance failure.

Redo Threads

When speaking in the context of multiple database instances, the redo log for each database instance is also referred to as a redo thread. In typical configurations, only one database instance accesses an Oracle Database, so only one thread is present. In an Oracle Real Application Clusters environment, however, two or more instances concurrently access a single database and each instance has its own thread of redo. A separate redo thread for each instance avoids contention for a single set of redo log files, thereby eliminating a potential performance bottleneck.

This chapter describes how to configure and manage the redo log on a standard single-instance Oracle Database. The thread number can be assumed to be 1 in all discussions and examples of statements. For information about redo log groups in an Oracle Real Application Clusters environment, see Oracle Real Application Clusters Administration and Deployment Guide.

Redo Log Contents

Redo log files are filled with redo records. A redo record, also called a redo entry, is made up of a group of change vectors, each of which is a description of a change made to a single block in the database. For example, if you change a salary value in an employee table, you generate a redo record containing change vectors that describe changes to the data segment block for the table, the undo segment data block, and the transaction table of the undo segments.

Redo entries record data that you can use to reconstruct all changes made to the database, including the undo segments. Therefore, the redo log also protects rollback data. When you recover the database using redo data, the database reads the change vectors in the redo records and applies the changes to the relevant blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the SGA (see "How Oracle Database Writes to the Redo Log") and are written to one of the redo log files by the Log Writer (LGWR) database background process. Whenever a transaction is committed, LGWR writes the transaction redo records from the redo log buffer of the SGA to a redo log file, and assigns a system change number (SCN) to identify the redo records for each committed transaction. Only when all redo records associated with a given transaction are safely on disk in the online logs is the user process notified that the transaction has been committed.

Redo records can also be written to a redo log file before the corresponding transaction is committed. If the redo log buffer fills, or another transaction commits, LGWR flushes all of the redo log entries in the redo log buffer to a redo log file, even though some redo records may not be committed. If necessary, the database can roll back these changes.

How Oracle Database Writes to the Redo Log

The redo log for a database consists of two or more redo log files. The database requires a minimum of two files to guarantee that one is always available for writing while the other is being archived (if the database is in ARCHIVELOG mode). See "Managing Archived Redo Log Files" for more information.

LGWR writes to redo log files in a circular fashion. When the current redo log file fills, LGWR begins writing to the next available redo log file. When the last available redo log file is filled, LGWR returns to the first redo log file and writes to it, starting the cycle again. Figure 11-1 illustrates the circular writing of the redo log file. The numbers next to each line indicate the sequence in which LGWR writes to each redo log file.

Filled redo log files are available to LGWR for reuse depending on whether archiving is enabled.

	
If archiving is disabled (the database is in NOARCHIVELOG mode), a filled redo log file is available after the changes recorded in it have been written to the data files.

	
If archiving is enabled (the database is in ARCHIVELOG mode), a filled redo log file is available to LGWR after the changes recorded in it have been written to the data files and the file has been archived.

Figure 11-1 Reuse of Redo Log Files by LGWR

[image: Description of Figure 11-1 follows]

Active (Current) and Inactive Redo Log Files

Oracle Database uses only one redo log file at a time to store redo records written from the redo log buffer. The redo log file that LGWR is actively writing to is called the current redo log file.

Redo log files that are required for instance recovery are called active redo log files. Redo log files that are no longer required for instance recovery are called inactive redo log files.

If you have enabled archiving (the database is in ARCHIVELOG mode), then the database cannot reuse or overwrite an active online log file until one of the archiver background processes (ARCn) has archived its contents. If archiving is disabled (the database is in NOARCHIVELOG mode), then when the last redo log file is full, LGWR continues by overwriting the next log file in the sequence when it becomes inactive.

Log Switches and Log Sequence Numbers

A log switch is the point at which the database stops writing to one redo log file and begins writing to another. Normally, a log switch occurs when the current redo log file is completely filled and writing must continue to the next redo log file. However, you can configure log switches to occur at regular intervals, regardless of whether the current redo log file is completely filled. You can also force log switches manually.

Oracle Database assigns each redo log file a new log sequence number every time a log switch occurs and LGWR begins writing to it. When the database archives redo log files, the archived log retains its log sequence number. A redo log file that is cycled back for use is given the next available log sequence number.

Each online or archived redo log file is uniquely identified by its log sequence number. During crash, instance, or media recovery, the database properly applies redo log files in ascending order by using the log sequence number of the necessary archived and redo log files.

Planning the Redo Log

This section provides guidelines you should consider when configuring a database instance redo log and contains the following topics:

	
Multiplexing Redo Log Files

	
Placing Redo Log Members on Different Disks

	
Planning the Size of Redo Log Files

	
Planning the Block Size of Redo Log Files

	
Choosing the Number of Redo Log Files

	
Controlling Archive Lag

Multiplexing Redo Log Files

To protect against a failure involving the redo log itself, Oracle Database allows a multiplexed redo log, meaning that two or more identical copies of the redo log can be automatically maintained in separate locations. For the most benefit, these locations should be on separate disks. Even if all copies of the redo log are on the same disk, however, the redundancy can help protect against I/O errors, file corruption, and so on. When redo log files are multiplexed, LGWR concurrently writes the same redo log information to multiple identical redo log files, thereby eliminating a single point of redo log failure.

Multiplexing is implemented by creating groups of redo log files. A group consists of a redo log file and its multiplexed copies. Each identical copy is said to be a member of the group. Each redo log group is defined by a number, such as group 1, group 2, and so on.

Figure 11-2 Multiplexed Redo Log Files

[image: Description of Figure 11-2 follows]

In Figure 11-2, A_LOG1 and B_LOG1 are both members of Group 1, A_LOG2 and B_LOG2 are both members of Group 2, and so forth. Each member in a group must be the same size.

Each member of a log file group is concurrently active—that is, concurrently written to by LGWR—as indicated by the identical log sequence numbers assigned by LGWR. In Figure 11-2, first LGWR writes concurrently to both A_LOG1 and B_LOG1. Then it writes concurrently to both A_LOG2 and B_LOG2, and so on. LGWR never writes concurrently to members of different groups (for example, to A_LOG1 and B_LOG2).

	
Note:

Oracle recommends that you multiplex your redo log files. The loss of the log file data can be catastrophic if recovery is required. Note that when you multiplex the redo log, the database must increase the amount of I/O that it performs. Depending on your configuration, this may impact overall database performance.

Responding to Redo Log Failure

Whenever LGWR cannot write to a member of a group, the database marks that member as INVALID and writes an error message to the LGWR trace file and to the database alert log to indicate the problem with the inaccessible files. The specific reaction of LGWR when a redo log member is unavailable depends on the reason for the lack of availability, as summarized in the table that follows.

	Condition	LGWR Action
	LGWR can successfully write to at least one member in a group	Writing proceeds as normal. LGWR writes to the available members of a group and ignores the unavailable members.
	LGWR cannot access the next group at a log switch because the group must be archived	Database operation temporarily halts until the group becomes available or until the group is archived.
	All members of the next group are inaccessible to LGWR at a log switch because of media failure	Oracle Database returns an error, and the database instance shuts down. In this case, you may need to perform media recovery on the database from the loss of a redo log file.
If the database checkpoint has moved beyond the lost redo log, media recovery is not necessary, because the database has saved the data recorded in the redo log to the data files. You need only drop the inaccessible redo log group. If the database did not archive the bad log, use ALTER DATABASE CLEAR LOGFILE UNARCHIVED to disable archiving before the log can be dropped.

	All members of a group suddenly become inaccessible to LGWR while it is writing to them	Oracle Database returns an error and the database instance immediately shuts down. In this case, you may need to perform media recovery. If the media containing the log is not actually lost--for example, if the drive for the log was inadvertently turned off--media recovery may not be needed. In this case, you need only turn the drive back on and let the database perform automatic instance recovery.

Legal and Illegal Configurations

In most cases, a multiplexed redo log should be symmetrical: all groups of the redo log should have the same number of members. However, the database does not require that a multiplexed redo log be symmetrical. For example, one group can have only one member, and other groups can have two members. This configuration protects against disk failures that temporarily affect some redo log members but leave others intact.

The only requirement for an instance redo log is that it have at least two groups. Figure 11-3 shows legal and illegal multiplexed redo log configurations. The second configuration is illegal because it has only one group.

Figure 11-3 Legal and Illegal Multiplexed Redo Log Configuration

[image: Description of Figure 11-3 follows]

Placing Redo Log Members on Different Disks

When setting up a multiplexed redo log, place members of a group on different physical disks. If a single disk fails, then only one member of a group becomes unavailable to LGWR and other members remain accessible to LGWR, so the instance can continue to function.

If you archive the redo log, spread redo log members across disks to eliminate contention between the LGWR and ARCn background processes. For example, if you have two groups of multiplexed redo log members (a duplexed redo log), place each member on a different disk and set your archiving destination to a fifth disk. Doing so will avoid contention between LGWR (writing to the members) and ARCn (reading the members).

Data files should also be placed on different disks from redo log files to reduce contention in writing data blocks and redo records.

Planning the Size of Redo Log Files

When setting the size of redo log files, consider whether you will be archiving the redo log. Redo log files should be sized so that a filled group can be archived to a single unit of offline storage media (such as a tape or disk), with the least amount of space on the medium left unused. For example, suppose only one filled redo log group can fit on a tape and 49% of the tape storage capacity remains unused. In this case, it is better to decrease the size of the redo log files slightly, so that two log groups could be archived on each tape.

All members of the same multiplexed redo log group must be the same size. Members of different groups can have different sizes. However, there is no advantage in varying file size between groups. If checkpoints are not set to occur between log switches, make all groups the same size to guarantee that checkpoints occur at regular intervals.

The minimum size permitted for a redo log file is 4 MB.

	
See Also:

Your operating system–specific Oracle documentation. The default size of redo log files is operating system dependent.

Planning the Block Size of Redo Log Files

Unlike the database block size, which can be between 2K and 32K, redo log files always default to a block size that is equal to the physical sector size of the disk. Historically, this has typically been 512 bytes (512B).

Some newer high-capacity disk drives offer 4K byte (4K) sector sizes for both increased ECC capability and improved format efficiency. Most Oracle Database platforms are able to detect this larger sector size. The database then automatically creates redo log files with a 4K block size on those disks.

However, with a block size of 4K, there is increased redo wastage. In fact, the amount of redo wastage in 4K blocks versus 512B blocks is significant. You can determine the amount of redo wastage by viewing the statistics stored in the V$SESSTAT and V$SYSSTAT views.

SQL> SELECT name, value FROM v$sysstat WHERE name = 'redo wastage';

NAME VALUE
-------------------------------- ----------
redo wastage 17941684

To avoid the additional redo wastage, if you are using emulation-mode disks—4K sector size disk drives that emulate a 512B sector size at the disk interface—you can override the default 4K block size for redo logs by specifying a 512B block size or, for some platforms, a 1K block size. However, you will incur a significant performance degradation when a redo log write is not aligned with the beginning of the 4K physical sector. Because seven out of eight 512B slots in a 4K physical sector are not aligned, performance degradation typically does occur. Thus, you must evaluate the trade-off between performance and disk wastage when planning the redo log block size on 4K sector size emulation-mode disks.

You can specify the block size of online redo log files with the BLOCKSIZE keyword in the CREATE DATABASE, ALTER DATABASE, and CREATE CONTROLFILE statements. The permissible block sizes are 512, 1024, and 4096.

The following statement adds a redo log file group with a block size of 512B. The BLOCKSIZE 512 clause is valid but not required for 512B sector size disks. For 4K sector size emulation-mode disks, the BLOCKSIZE 512 clause overrides the default 4K size.

ALTER DATABASE orcl ADD LOGFILE
 GROUP 4 ('/u01/logs/orcl/redo04a.log','/u01/logs/orcl/redo04b.log')
 SIZE 100M BLOCKSIZE 512 REUSE;

To ascertain the redo log file block size, run the following query:

SQL> SELECT BLOCKSIZE FROM V$LOG;

BLOCKSIZE

 512

	
See Also:

	
Oracle Database SQL Language Reference for information about the ALTER DATABASE command.

	
Oracle Database Reference for information about the V$SESSTAT and V$SYSSTAT views

Choosing the Number of Redo Log Files

The best way to determine the appropriate number of redo log files for a database instance is to test different configurations. The optimum configuration has the fewest groups possible without hampering LGWR from writing redo log information.

In some cases, a database instance may require only two groups. In other situations, a database instance may require additional groups to guarantee that a recycled group is always available to LGWR. During testing, the easiest way to determine whether the current redo log configuration is satisfactory is to examine the contents of the LGWR trace file and the database alert log. If messages indicate that LGWR frequently has to wait for a group because a checkpoint has not completed or a group has not been archived, add groups.

Consider the parameters that can limit the number of redo log files before setting up or altering the configuration of an instance redo log. The following parameters limit the number of redo log files that you can add to a database:

	
The MAXLOGFILES parameter used in the CREATE DATABASE statement determines the maximum number of groups of redo log files for each database. Group values can range from 1 to MAXLOGFILES. You can exceed the MAXLOGFILES limit, and the control files expand as needed. If MAXLOGFILES is not specified for the CREATE DATABASE statement, then the database uses an operating system specific default value.

	
The MAXLOGMEMBERS parameter used in the CREATE DATABASE statement determines the maximum number of members for each group. As with MAXLOGFILES, the only way to override this upper limit is to re-create the database or control file. Therefore, it is important to consider this limit before creating a database. If no MAXLOGMEMBERS parameter is specified for the CREATE DATABASE statement, then the database uses an operating system default value.

	
See Also:

	
Your operating system specific Oracle documentation for the default and legal values of the MAXLOGFILES and MAXLOGMEMBERS parameters

	
Oracle Database SQL Tuning Guide

Controlling Archive Lag

You can force all enabled redo log threads to switch their current logs at regular time intervals. In a primary/standby database configuration, changes are made available to the standby database by archiving redo logs at the primary site and then shipping them to the standby database. The changes that are being applied by the standby database can lag behind the changes that are occurring on the primary database, because the standby database must wait for the changes in the primary database redo log to be archived (into the archived redo log) and then shipped to it. To limit this lag, you can set the ARCHIVE_LAG_TARGET initialization parameter. Setting this parameter lets you specify in seconds how long that lag can be.

Setting the ARCHIVE_LAG_TARGET Initialization Parameter

When you set the ARCHIVE_LAG_TARGET initialization parameter, you cause the database to examine the current redo log for the instance periodically. If the following conditions are met, then the instance will switch the log:

	
The current log was created before n seconds ago, and the estimated archival time for the current log is m seconds (proportional to the number of redo blocks used in the current log), where n + m exceeds the value of the ARCHIVE_LAG_TARGET initialization parameter.

	
The current log contains redo records.

In an Oracle Real Application Clusters environment, the instance also causes other threads to switch and archive their logs if they are falling behind. This can be particularly useful when one instance in the cluster is more idle than the other instances (as when you are running a 2-node primary/secondary configuration of Oracle Real Application Clusters).

The ARCHIVE_LAG_TARGET initialization parameter provides an upper limit for how long (in seconds) the current log of the database can span. Because the estimated archival time is also considered, this is not the exact log switch time.

The following initialization parameter setting sets the log switch interval to 30 minutes (a typical value).

ARCHIVE_LAG_TARGET = 1800

A value of 0 disables this time-based log switching functionality. This is the default setting.

You can set the ARCHIVE_LAG_TARGET initialization parameter even if there is no standby database. For example, the ARCHIVE_LAG_TARGET parameter can be set specifically to force logs to be switched and archived.

ARCHIVE_LAG_TARGET is a dynamic parameter and can be set with the ALTER SYSTEM SET statement.

	
Caution:

The ARCHIVE_LAG_TARGET parameter must be set to the same value in all instances of an Oracle Real Application Clusters environment. Failing to do so results in unpredictable behavior.

Factors Affecting the Setting of ARCHIVE_LAG_TARGET

Consider the following factors when determining if you want to set the ARCHIVE_LAG_TARGET parameter and in determining the value for this parameter.

	
Overhead of switching (as well as archiving) logs

	
How frequently normal log switches occur as a result of log full conditions

	
How much redo loss is tolerated in the standby database

Setting ARCHIVE_LAG_TARGET may not be very useful if natural log switches already occur more frequently than the interval specified. However, in the case of irregularities of redo generation speed, the interval does provide an upper limit for the time range each current log covers.

If the ARCHIVE_LAG_TARGET initialization parameter is set to a very low value, there can be a negative impact on performance. This can force frequent log switches. Set the parameter to a reasonable value so as not to degrade the performance of the primary database.

Creating Redo Log Groups and Members

Plan the redo log for a database and create all required groups and members of redo log files during database creation. However, there are situations where you might want to create additional groups or members. For example, adding groups to a redo log can correct redo log group availability problems.

To create new redo log groups and members, you must have the ALTER DATABASE system privilege. A database can have up to MAXLOGFILES groups.

	
See Also:

Oracle Database SQL Language Reference for a complete description of the ALTER DATABASE statement

Creating Redo Log Groups

To create a new group of redo log files, use the SQL statement ALTER DATABASE with the ADD LOGFILE clause.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE
 ADD LOGFILE ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo') SIZE 100M;

	
Note:

Provide full path names of new log members to specify their location. Otherwise, the files are created in either the default or current directory of the database server, depending upon your operating system.

You can also specify the number that identifies the group using the GROUP clause:

ALTER DATABASE
 ADD LOGFILE GROUP 10 ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo')
 SIZE 100M BLOCKSIZE 512;

Using group numbers can make administering redo log groups easier. However, the group number must be between 1 and MAXLOGFILES. Do not skip redo log file group numbers (that is, do not number your groups 10, 20, 30, and so on), or you will consume unnecessary space in the control files of the database.

In the preceding statement, the BLOCKSIZE clause is optional. See "Planning the Block Size of Redo Log Files" for more information.

Creating Redo Log Members

In some cases, it might not be necessary to create a complete group of redo log files. A group could already exist, but not be complete because one or more members of the group were dropped (for example, because of a disk failure). In this case, you can add new members to an existing group.

To create new redo log members for an existing group, use the SQL statement ALTER DATABASE with the ADD LOGFILE MEMBER clause. The following statement adds a new redo log member to redo log group number 2:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2b.rdo' TO GROUP 2;

Notice that filenames must be specified, but sizes need not be. The size of the new members is determined from the size of the existing members of the group.

When using the ALTER DATABASE statement, you can alternatively identify the target group by specifying all of the other members of the group in the TO clause, as shown in the following example:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2c.rdo'
 TO ('/oracle/dbs/log2a.rdo', '/oracle/dbs/log2b.rdo');

	
Note:

Fully specify the filenames of new log members to indicate where the operating system files should be created. Otherwise, the files will be created in either the default or current directory of the database server, depending upon your operating system. You may also note that the status of the new log member is shown as INVALID. This is normal and it will change to active (blank) when it is first used.

Relocating and Renaming Redo Log Members

You can use operating system commands to relocate redo logs, then use the ALTER DATABASE statement to make their new names (locations) known to the database. This procedure is necessary, for example, if the disk currently used for some redo log files is going to be removed, or if data files and several redo log files are stored on the same disk and should be separated to reduce contention.

To rename redo log members, you must have the ALTER DATABASE system privilege. Additionally, you might also need operating system privileges to copy files to the desired location and privileges to open and back up the database.

Before relocating your redo logs, or making any other structural changes to the database, completely back up the database in case you experience problems while performing the operation. As a precaution, after renaming or relocating a set of redo log files, immediately back up the database control file.

Use the following steps for relocating redo logs. The example used to illustrate these steps assumes:

	
The log files are located on two disks: diska and diskb.

	
The redo log is duplexed: one group consists of the members /diska/logs/log1a.rdo and /diskb/logs/log1b.rdo, and the second group consists of the members /diska/logs/log2a.rdo and /diskb/logs/log2b.rdo.

	
The redo log files located on diska must be relocated to diskc. The new filenames will reflect the new location: /diskc/logs/log1c.rdo and /diskc/logs/log2c.rdo.

Steps for Renaming Redo Log Members

	
Shut down the database.

SHUTDOWN

	
Copy the redo log files to the new location.

Operating system files, such as redo log members, must be copied using the appropriate operating system commands. See your operating system specific documentation for more information about copying files.

	
Note:

You can execute an operating system command to copy a file (or perform other operating system commands) without exiting SQL*Plus by using the HOST command. Some operating systems allow you to use a character in place of the word HOST. For example, you can use an exclamation point (!) in UNIX.

The following example uses operating system commands (UNIX) to move the redo log members to a new location:

mv /diska/logs/log1a.rdo /diskc/logs/log1c.rdo
mv /diska/logs/log2a.rdo /diskc/logs/log2c.rdo

	
Startup the database, mount, but do not open it.

CONNECT / as SYSDBA
STARTUP MOUNT

	
Rename the redo log members.

Use the ALTER DATABASE statement with the RENAME FILE clause to rename the database redo log files.

ALTER DATABASE
 RENAME FILE '/diska/logs/log1a.rdo', '/diska/logs/log2a.rdo'
 TO '/diskc/logs/log1c.rdo', '/diskc/logs/log2c.rdo';

	
Open the database for normal operation.

The redo log alterations take effect when the database is opened.

ALTER DATABASE OPEN;

Dropping Redo Log Groups and Members

In some cases, you may want to drop an entire group of redo log members. For example, you want to reduce the number of groups in an instance redo log. In a different case, you may want to drop one or more specific redo log members. For example, if a disk failure occurs, you may need to drop all the redo log files on the failed disk so that the database does not try to write to the inaccessible files. In other situations, particular redo log files become unnecessary. For example, a file might be stored in an inappropriate location.

Dropping Log Groups

To drop a redo log group, you must have the ALTER DATABASE system privilege. Before dropping a redo log group, consider the following restrictions and precautions:

	
An instance requires at least two groups of redo log files, regardless of the number of members in the groups. (A group comprises one or more members.)

	
You can drop a redo log group only if it is inactive. If you must drop the current group, then first force a log switch to occur.

	
Make sure a redo log group is archived (if archiving is enabled) before dropping it. To see whether this has happened, use the V$LOG view.

SELECT GROUP#, ARCHIVED, STATUS FROM V$LOG;

 GROUP# ARC STATUS
--------- --- ----------------
 1 YES ACTIVE
 2 NO CURRENT
 3 YES INACTIVE
 4 YES INACTIVE

Drop a redo log group with the SQL statement ALTER DATABASE with the DROP LOGFILE clause.

The following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

When a redo log group is dropped from the database, and you are not using the Oracle Managed Files feature, the operating system files are not deleted from disk. Rather, the control files of the associated database are updated to drop the members of the group from the database structure. After dropping a redo log group, ensure that the drop completed successfully, and then use the appropriate operating system command to delete the dropped redo log files.

When using Oracle Managed Files, the cleanup of operating systems files is done automatically for you.

Dropping Redo Log Members

To drop a redo log member, you must have the ALTER DATABASE system privilege. Consider the following restrictions and precautions before dropping individual redo log members:

	
It is permissible to drop redo log files so that a multiplexed redo log becomes temporarily asymmetric. For example, if you use duplexed groups of redo log files, you can drop one member of one group, even though all other groups have two members each. However, you should rectify this situation immediately so that all groups have at least two members, and thereby eliminate the single point of failure possible for the redo log.

	
An instance always requires at least two valid groups of redo log files, regardless of the number of members in the groups. (A group comprises one or more members.) If the member you want to drop is the last valid member of the group, you cannot drop the member until the other members become valid. To see a redo log file status, use the V$LOGFILE view. A redo log file becomes INVALID if the database cannot access it. It becomes STALE if the database suspects that it is not complete or correct. A stale log file becomes valid again the next time its group is made the active group.

	
You can drop a redo log member only if it is not part of an active or current group. To drop a member of an active group, first force a log switch to occur.

	
Make sure the group to which a redo log member belongs is archived (if archiving is enabled) before dropping the member. To see whether this has happened, use the V$LOG view.

To drop specific inactive redo log members, use the ALTER DATABASE statement with the DROP LOGFILE MEMBER clause.

The following statement drops the redo log /oracle/dbs/log3c.rdo:

ALTER DATABASE DROP LOGFILE MEMBER '/oracle/dbs/log3c.rdo';

When a redo log member is dropped from the database, the operating system file is not deleted from disk. Rather, the control files of the associated database are updated to drop the member from the database structure. After dropping a redo log file, ensure that the drop completed successfully, and then use the appropriate operating system command to delete the dropped redo log file.

To drop a member of an active group, you must first force a log switch.

Forcing Log Switches

A log switch occurs when LGWR stops writing to one redo log group and starts writing to another. By default, a log switch occurs automatically when the current redo log file group fills.

You can force a log switch to make the currently active group inactive and available for redo log maintenance operations. For example, you want to drop the currently active group, but are not able to do so until the group is inactive. You may also want to force a log switch if the currently active group must be archived at a specific time before the members of the group are completely filled. This option is useful in configurations with large redo log files that take a long time to fill.

To force a log switch, you must have the ALTER SYSTEM privilege. Use the ALTER SYSTEM statement with the SWITCH LOGFILE clause.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Verifying Blocks in Redo Log Files

You can configure the database to use checksums to verify blocks in the redo log files. If you set the initialization parameter DB_BLOCK_CHECKSUM to TYPICAL (the default), the database computes a checksum for each database block when it is written to disk, including each redo log block as it is being written to the current log. The checksum is stored the header of the block.

Oracle Database uses the checksum to detect corruption in a redo log block. The database verifies the redo log block when the block is read from an archived log during recovery and when it writes the block to an archive log file. An error is raised and written to the alert log if corruption is detected.

If corruption is detected in a redo log block while trying to archive it, the system attempts to read the block from another member in the group. If the block is corrupted in all members of the redo log group, then archiving cannot proceed.

The value of the DB_BLOCK_CHECKSUM parameter can be changed dynamically using the ALTER SYSTEM statement.

	
Note:

There is a slight overhead and decrease in database performance with DB_BLOCK_CHECKSUM enabled. Monitor your database performance to decide if the benefit of using data block checksums to detect corruption outweighs the performance impact.

	
See Also:

Oracle Database Reference for a description of the DB_BLOCK_CHECKSUM initialization parameter

Clearing a Redo Log File

A redo log file might become corrupted while the database is open, and ultimately stop database activity because archiving cannot continue. In this situation the ALTER DATABASE CLEAR LOGFILE statement can be used to reinitialize the file without shutting down the database.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR LOGFILE GROUP 3;

This statement overcomes two situations where dropping redo logs is not possible:

	
If there are only two log groups

	
The corrupt redo log file belongs to the current group

If the corrupt redo log file has not been archived, use the UNARCHIVED keyword in the statement.

ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;

This statement clears the corrupted redo logs and avoids archiving them. The cleared redo logs are available for use even though they were not archived.

If you clear a log file that is needed for recovery of a backup, then you can no longer recover from that backup. The database writes a message in the alert log describing the backups from which you cannot recover.

	
Note:

If you clear an unarchived redo log file, you should make another backup of the database.

To clear an unarchived redo log that is needed to bring an offline tablespace online, use the UNRECOVERABLE DATAFILE clause in the ALTER DATABASE CLEAR LOGFILE statement.

If you clear a redo log needed to bring an offline tablespace online, you will not be able to bring the tablespace online again. You will have to drop the tablespace or perform an incomplete recovery. Note that tablespaces taken offline normal do not require recovery.

Redo Log Data Dictionary Views

The following views provide information on redo logs.

	View	Description
	V$LOG	Displays the redo log file information from the control file
	V$LOGFILE	Identifies redo log groups and members and member status
	V$LOG_HISTORY	Contains log history information

The following query returns the control file information about the redo log for a database.

SELECT * FROM V$LOG;

GROUP# THREAD# SEQ BYTES MEMBERS ARC STATUS FIRST_CHANGE# FIRST_TIM
------ ------- ----- ------- ------- --- --------- ------------- ---------
 1 1 10605 1048576 1 YES ACTIVE 11515628 16-APR-00
 2 1 10606 1048576 1 NO CURRENT 11517595 16-APR-00
 3 1 10603 1048576 1 YES INACTIVE 11511666 16-APR-00
 4 1 10604 1048576 1 YES INACTIVE 11513647 16-APR-00

To see the names of all of the member of a group, use a query similar to the following:

SELECT * FROM V$LOGFILE;

GROUP# STATUS MEMBER
------ ------- ----------------------------------
 1 D:\ORANT\ORADATA\IDDB2\REDO04.LOG
 2 D:\ORANT\ORADATA\IDDB2\REDO03.LOG
 3 D:\ORANT\ORADATA\IDDB2\REDO02.LOG
 4 D:\ORANT\ORADATA\IDDB2\REDO01.LOG

If STATUS is blank for a member, then the file is in use.

	
See Also:

Oracle Database Reference for detailed information about these views

18 Managing Schema Objects

This chapter contains the following topics:

	
Creating Multiple Tables and Views in a Single Operation

	
Analyzing Tables, Indexes, and Clusters

	
Truncating Tables and Clusters

	
Enabling and Disabling Triggers

	
Managing Integrity Constraints

	
Renaming Schema Objects

	
Managing Object Dependencies

	
Managing Object Name Resolution

	
Switching to a Different Schema

	
Managing Editions

	
Displaying Information About Schema Objects

Creating Multiple Tables and Views in a Single Operation

You can create several tables and views and grant privileges in one operation using the CREATE SCHEMA statement. If an individual table, view or grant fails, the entire statement is rolled back. None of the objects are created, nor are the privileges granted.

Specifically, the CREATE SCHEMA statement can include only CREATE TABLE, CREATE VIEW, and GRANT statements. You must have the privileges necessary to issue the included statements. You are not actually creating a schema, that is done when the user is created with a CREATE USER statement. Rather, you are populating the schema.

The following statement creates two tables and a view that joins data from the two tables:

CREATE SCHEMA AUTHORIZATION scott
 CREATE TABLE dept (
 deptno NUMBER(3,0) PRIMARY KEY,
 dname VARCHAR2(15),
 loc VARCHAR2(25))
 CREATE TABLE emp (
 empno NUMBER(5,0) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5,0),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3,0) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
 CREATE VIEW sales_staff AS
 SELECT empno, ename, sal, comm
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst
 GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA statement does not support Oracle Database extensions to the ANSI CREATE TABLE and CREATE VIEW statements, including the STORAGE clause.

	
See Also:

Oracle Database SQL Language Reference for syntax and other information about the CREATE SCHEMA statement

Analyzing Tables, Indexes, and Clusters

You analyze a schema object (table, index, or cluster) to:

	
Collect and manage statistics for it

	
Verify the validity of its storage format

	
Identify migrated and chained rows of a table or cluster

	
Note:

Do not use the COMPUTE and ESTIMATE clauses of ANALYZE to collect optimizer statistics. These clauses have been deprecated. Instead, use the DBMS_STATS package, which lets you collect statistics in parallel, collect global statistics for partitioned objects, and fine tune your statistics collection in other ways. The cost-based optimizer, which depends upon statistics, will eventually use only statistics that have been collected by DBMS_STATS. See Oracle Database PL/SQL Packages and Types Reference for more information on the DBMS_STATS package.
You must use the ANALYZE statement (rather than DBMS_STATS) for statistics collection not related to the cost-based optimizer, such as:

	
To use the VALIDATE or LIST CHAINED ROWS clauses

	
To collect information on freelist blocks

The following topics are discussed in this section:

	
Using DBMS_STATS to Collect Table and Index Statistics

	
Validating Tables, Indexes, Clusters, and Materialized Views

	
Listing Chained Rows of Tables and Clusters

Using DBMS_STATS to Collect Table and Index Statistics

You can use the DBMS_STATS package or the ANALYZE statement to gather statistics about the physical storage characteristics of a table, index, or cluster. These statistics are stored in the data dictionary and can be used by the optimizer to choose the most efficient execution plan for SQL statements accessing analyzed objects.

Oracle recommends using the more versatile DBMS_STATS package for gathering optimizer statistics, but you must use the ANALYZE statement to collect statistics unrelated to the optimizer, such as empty blocks, average space, and so forth.

The DBMS_STATS package allows both the gathering of statistics, including utilizing parallel execution, and the external manipulation of statistics. Statistics can be stored in tables outside of the data dictionary, where they can be manipulated without affecting the optimizer. Statistics can be copied between databases or backup copies can be made.

The following DBMS_STATS procedures enable the gathering of optimizer statistics:

	
GATHER_INDEX_STATS

	
GATHER_TABLE_STATS

	
GATHER_SCHEMA_STATS

	
GATHER_DATABASE_STATS

	
See Also:

	
Oracle Database SQL Tuning Guide for information about using DBMS_STATS to gather statistics for the optimizer

	
Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_STATS package

Validating Tables, Indexes, Clusters, and Materialized Views

To verify the integrity of the structure of a table, index, cluster, or materialized view, use the ANALYZE statement with the VALIDATE STRUCTURE option. If the structure is valid, no error is returned. However, if the structure is corrupt, you receive an error message.

For example, in rare cases such as hardware or other system failures, an index can become corrupted and not perform correctly. When validating the index, you can confirm that every entry in the index points to the correct row of the associated table. If the index is corrupt, you can drop and re-create it.

If a table, index, or cluster is corrupt, you should drop it and re-create it. If a materialized view is corrupt, perform a complete refresh and ensure that you have remedied the problem. If the problem is not corrected, drop and re-create the materialized view.

The following statement analyzes the emp table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all dependent objects (for example, indexes) by including the CASCADE option. The following statement validates the emp table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

By default the CASCADE option performs a complete validation. Because this operation can be resource intensive, you can perform a faster version of the validation by using the FAST clause. This version checks for the existence of corruptions using an optimized check algorithm, but does not report details about the corruption. If the FAST check finds a corruption, you can then use the CASCADE option without the FAST clause to locate it. The following statement performs a fast validation on the emp table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE FAST;

If fast validation takes an inordinate amount of time, then you have the option of validating individual indexes with a SQL query. See "Cross Validation of a Table and an Index with a Query".

You can specify that you want to perform structure validation online while DML is occurring against the object being validated. There can be a slight performance impact when validating with ongoing DML affecting the object, but this is offset by the flexibility of being able to perform ANALYZE online. The following statement validates the emp table and all associated indexes online:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE ONLINE;

	
See Also:

Oracle Database SQL Language Reference for more information on the ANALYZE statement

Cross Validation of a Table and an Index with a Query

In some cases, an ANALYZE statement takes an inordinate amount of time to complete. In these cases, you can use a SQL query to validate an index. If the query determines that there is an inconsistency between a table and an index, then you can use an ANALYZE statement for a thorough analysis of the index. Since typically most objects in a database are not corrupt, you can use this quick query to eliminate a number of tables as candidates for corruption and only use the ANALYZE statement on tables that might be corrupt.

To validate an index, run the following query:

SELECT /*+ FULL(ALIAS) PARALLEL(ALIAS, DOP) */ SUM(ORA_HASH(ROWID))
 FROM table_name ALIAS
 WHERE ALIAS.index_column IS NOT NULL
 MINUS SELECT /*+ INDEX_FFS(ALIAS index_name)
 PARALLEL_INDEX(ALIAS, index_name, DOP) */ SUM(ORA_HASH(ROWID))
 FROM table_name ALIAS WHERE ALIAS.index_column IS NOT NULL;

When you run the query, make the following substitutions:

	
Enter the table name for the table_name placeholder.

	
Enter the index column for the index_column placeholder.

	
Enter the index name for the index_name placeholder.

If the query returns any rows, then there is a possible inconsistency, and you can use an ANALYZE statement for further diagnosis.

	
See Also:

Oracle Database SQL Language Reference for more information about the ANALYZE statement

Listing Chained Rows of Tables and Clusters

You can look at the chained and migrated rows of a table or cluster using the ANALYZE statement with the LIST CHAINED ROWS clause. The results of this statement are stored in a specified table created explicitly to accept the information returned by the LIST CHAINED ROWS clause. These results are useful in determining whether you have enough room for updates to rows.

Creating a CHAINED_ROWS Table

To create the table to accept data returned by an ANALYZE...LIST CHAINED ROWS statement, execute the UTLCHAIN.SQL or UTLCHN1.SQL script. These scripts are provided by the database. They create a table named CHAINED_ROWS in the schema of the user submitting the script.

	
Note:

Your choice of script to execute for creating the CHAINED_ROWS table depends on the compatibility level of your database and the type of table you are analyzing. See the Oracle Database SQL Language Reference for more information.

After a CHAINED_ROWS table is created, you specify it in the INTO clause of the ANALYZE statement. For example, the following statement inserts rows containing information about the chained rows in the emp_dept cluster into the CHAINED_ROWS table:

ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO CHAINED_ROWS;

	
See Also:

	
Oracle Database Reference for a description of the CHAINED_ROWS table

	
"Using the Segment Advisor" for information on how the Segment Advisor reports tables with excess row chaining.

Eliminating Migrated or Chained Rows in a Table

You can use the information in the CHAINED_ROWS table to reduce or eliminate migrated and chained rows in an existing table. Use the following procedure.

	
Use the ANALYZE statement to collect information about migrated and chained rows.

ANALYZE TABLE order_hist LIST CHAINED ROWS;

	
Query the output table:

SELECT *
FROM CHAINED_ROWS
WHERE TABLE_NAME = 'ORDER_HIST';

OWNER_NAME TABLE_NAME CLUST... HEAD_ROWID TIMESTAMP
---------- ---------- -----... ------------------ ---------
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAA 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAB 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAC 04-MAR-96

The output lists all rows that are either migrated or chained.

	
If the output table shows that you have many migrated or chained rows, then you can eliminate migrated rows by continuing through the following steps:

	
Create an intermediate table with the same columns as the existing table to hold the migrated and chained rows:

CREATE TABLE int_order_hist
 AS SELECT *
 FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST');

	
Delete the migrated and chained rows from the existing table:

DELETE FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST');

	
Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist
 SELECT *
 FROM int_order_hist;

	
Drop the intermediate table:

DROP TABLE int_order_history;

	
Delete the information collected in step 1 from the output table:

DELETE FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST';

	
Use the ANALYZE statement again, and query the output table.

Any rows that appear in the output table are chained. You can eliminate chained rows only by increasing your data block size. It might not be possible to avoid chaining in all situations. Chaining is often unavoidable with tables that have a LONG column or large CHAR or VARCHAR2 columns.

Truncating Tables and Clusters

You can delete all rows of a table or all rows in a group of clustered tables so that the table (or cluster) still exists, but is completely empty. For example, consider a table that contains monthly data, and at the end of each month, you must empty it (delete all rows) after archiving its data.

To delete all rows from a table, you have the following options:

	
Use the DELETE statement.

	
Use the DROP and CREATE statements.

	
Use the TRUNCATE statement.

These options are discussed in the following sections

Using DELETE

You can delete the rows of a table using the DELETE statement. For example, the following statement deletes all rows from the emp table:

DELETE FROM emp;

If there are many rows present in a table or cluster when using the DELETE statement, significant system resources are consumed as the rows are deleted. For example, CPU time, redo log space, and undo segment space from the table and any associated indexes require resources. Also, as each row is deleted, triggers can be fired. The space previously allocated to the resulting empty table or cluster remains associated with that object. With DELETE you can choose which rows to delete, whereas TRUNCATE and DROP affect the entire object.

	
See Also:

Oracle Database SQL Language Reference for syntax and other information about the DELETE statement

Using DROP and CREATE

You can drop a table and then re-create the table. For example, the following statements drop and then re-create the emp table:

DROP TABLE emp;
CREATE TABLE emp (...);

When dropping and re-creating a table or cluster, all associated indexes, integrity constraints, and triggers are also dropped, and all objects that depend on the dropped table or clustered table are invalidated. Also, all grants for the dropped table or clustered table are dropped.

Using TRUNCATE

You can delete all rows of the table using the TRUNCATE statement. For example, the following statement truncates the emp table:

TRUNCATE TABLE emp;

Using the TRUNCATE statement provides a fast, efficient method for deleting all rows from a table or cluster. A TRUNCATE statement does not generate any undo information and it commits immediately. It is a DDL statement and cannot be rolled back. A TRUNCATE statement does not affect any structures associated with the table being truncated (constraints and triggers) or authorizations. A TRUNCATE statement also specifies whether space currently allocated for the table is returned to the containing tablespace after truncation.

You can truncate any table or cluster in your own schema. Any user who has the DROP ANY TABLE system privilege can truncate a table or cluster in any schema.

Before truncating a table or clustered table containing a parent key, all referencing foreign keys in different tables must be disabled. A self-referential constraint does not have to be disabled.

As a TRUNCATE statement deletes rows from a table, triggers associated with the table are not fired. Also, a TRUNCATE statement does not generate any audit information corresponding to DELETE statements if auditing is enabled. Instead, a single audit record is generated for the TRUNCATE statement being issued.

A hash cluster cannot be truncated, nor can tables within a hash or index cluster be individually truncated. Truncation of an index cluster deletes all rows from all tables in the cluster. If all the rows must be deleted from an individual clustered table, use the DELETE statement or drop and re-create the table.

The TRUNCATE statement has several options that control whether space currently allocated for a table or cluster is returned to the containing tablespace after truncation.

These options also apply to any associated indexes. When a table or cluster is truncated, all associated indexes are also truncated. The storage parameters for a truncated table, cluster, or associated indexes are not changed as a result of the truncation.

These TRUNCATE options are:

	
DROP STORAGE, the default option, reduces the number of extents allocated to the resulting table to the original setting for MINEXTENTS. Freed extents are then returned to the system and can be used by other objects.

	
DROP ALL STORAGE drops the segment. In addition to the TRUNCATE TABLE statement, DROP ALL STORAGE also applies to the ALTER TABLE TRUNCATE (SUB)PARTITION statement. This option also drops any dependent object segments associated with the partition being truncated.

DROP ALL STORAGE is not supported for clusters.

TRUNCATE TABLE emp DROP ALL STORAGE;

	
REUSE STORAGE specifies that all space currently allocated for the table or cluster remains allocated to it. For example, the following statement truncates the emp_dept cluster, leaving all extents previously allocated for the cluster available for subsequent inserts and deletes:

TRUNCATE CLUSTER emp_dept REUSE STORAGE;

	
See Also:

	
Oracle Database SQL Language Reference for syntax and other information about the TRUNCATE TABLE and TRUNCATE CLUSTER statements

	
Oracle Database Security Guide for information about auditing

Enabling and Disabling Triggers

Database triggers are procedures that are stored in the database and activated ("fired") when specific conditions occur, such as adding a row to a table. You can use triggers to supplement the standard capabilities of the database to provide a highly customized database management system. For example, you can create a trigger to restrict DML operations against a table, allowing only statements issued during regular business hours.

Database triggers can be associated with a table, schema, or database. They are implicitly fired when:

	
DML statements are executed (INSERT, UPDATE, DELETE) against an associated table

	
Certain DDL statements are executed (for example: ALTER, CREATE, DROP) on objects within a database or schema

	
A specified database event occurs (for example: STARTUP, SHUTDOWN, SERVERERROR)

This is not a complete list. See the Oracle Database SQL Language Reference for a full list of statements and database events that cause triggers to fire

Create triggers with the CREATE TRIGGER statement. They can be defined as firing BEFORE or AFTER the triggering event, or INSTEAD OF it. The following statement creates a trigger scott.emp_permit_changes on table scott.emp. The trigger fires before any of the specified statements are executed.

CREATE TRIGGER scott.emp_permit_changes
 BEFORE
 DELETE OR INSERT OR UPDATE
 ON scott.emp
 .
 .
 .
pl/sql block
 .
 .
 .

You can later remove a trigger from the database by issuing the DROP TRIGGER statement.

A trigger can be in either of two distinct modes:

	
Enabled

An enabled trigger executes its trigger body if a triggering statement is issued and the trigger restriction, if any, evaluates to true. By default, triggers are enabled when first created.

	
Disabled

A disabled trigger does not execute its trigger body, even if a triggering statement is issued and the trigger restriction (if any) evaluates to true.

To enable or disable triggers using the ALTER TABLE statement, you must own the table, have the ALTER object privilege for the table, or have the ALTER ANY TABLE system privilege. To enable or disable an individual trigger using the ALTER TRIGGER statement, you must own the trigger or have the ALTER ANY TRIGGER system privilege.

	
See Also:

	
Oracle Database Concepts for a more detailed description of triggers

	
Oracle Database SQL Language Reference for syntax of the CREATE TRIGGER statement

	
Oracle Database PL/SQL Language Reference for information about creating and using triggers

Enabling Triggers

You enable a disabled trigger using the ALTER TRIGGER statement with the ENABLE option. To enable the disabled trigger named reorder on the inventory table, enter the following statement:

ALTER TRIGGER reorder ENABLE;

To enable all triggers defined for a specific table, use the ALTER TABLE statement with the ENABLE ALL TRIGGERS option. To enable all triggers defined for the INVENTORY table, enter the following statement:

ALTER TABLE inventory
 ENABLE ALL TRIGGERS;

	
See Also:

Oracle Database SQL Language Reference for syntax and other information about the ALTER TRIGGER statement

Disabling Triggers

Consider temporarily disabling a trigger if one of the following conditions is true:

	
An object that the trigger references is not available.

	
You must perform a large data load and want it to proceed quickly without firing triggers.

	
You are loading data into the table to which the trigger applies.

You disable a trigger using the ALTER TRIGGER statement with the DISABLE option. To disable the trigger reorder on the inventory table, enter the following statement:

ALTER TRIGGER reorder DISABLE;

You can disable all triggers associated with a table at the same time using the ALTER TABLE statement with the DISABLE ALL TRIGGERS option. For example, to disable all triggers defined for the inventory table, enter the following statement:

ALTER TABLE inventory
 DISABLE ALL TRIGGERS;

Managing Integrity Constraints

Integrity constraints are rules that restrict the values for one or more columns in a table. Constraint clauses can appear in either CREATE TABLE or ALTER TABLE statements, and identify the column or columns affected by the constraint and identify the conditions of the constraint.

This section discusses the concepts of constraints and identifies the SQL statements used to define and manage integrity constraints. The following topics are contained in this section:

	
Integrity Constraint States

	
Setting Integrity Constraints Upon Definition

	
Modifying, Renaming, or Dropping Existing Integrity Constraints

	
Deferring Constraint Checks

	
Reporting Constraint Exceptions

	
Viewing Constraint Information

	
See Also:

	
Oracle Database Concepts for a more thorough discussion of integrity constraints

	
Oracle Database Development Guide for detailed information and examples of using integrity constraints in applications

Integrity Constraint States

You can specify that a constraint is enabled (ENABLE) or disabled (DISABLE). If a constraint is enabled, data is checked as it is entered or updated in the database, and data that does not conform to the constraint is prevented from being entered. If a constraint is disabled, then data that does not conform can be allowed to enter the database.

Additionally, you can specify that existing data in the table must conform to the constraint (VALIDATE). Conversely, if you specify NOVALIDATE, you are not ensured that existing data conforms.

An integrity constraint defined on a table can be in one of the following states:

	
ENABLE, VALIDATE

	
ENABLE, NOVALIDATE

	
DISABLE, VALIDATE

	
DISABLE, NOVALIDATE

For details about the meaning of these states and an understanding of their consequences, see the Oracle Database SQL Language Reference. Some of these consequences are discussed here.

Disabling Constraints

To enforce the rules defined by integrity constraints, the constraints should always be enabled. However, consider temporarily disabling the integrity constraints of a table for the following performance reasons:

	
When loading large amounts of data into a table

	
When performing batch operations that make massive changes to a table (for example, changing every employee's number by adding 1000 to the existing number)

	
When importing or exporting one table at a time

In all three cases, temporarily disabling integrity constraints can improve the performance of the operation, especially in data warehouse configurations.

It is possible to enter data that violates a constraint while that constraint is disabled. Thus, you should always enable the constraint after completing any of the operations listed in the preceding bullet list.

Enabling Constraints

While a constraint is enabled, no row violating the constraint can be inserted into the table. However, while the constraint is disabled such a row can be inserted. This row is known as an exception to the constraint. If the constraint is in the enable novalidated state, violations resulting from data entered while the constraint was disabled remain. The rows that violate the constraint must be either updated or deleted in order for the constraint to be put in the validated state.

You can identify exceptions to a specific integrity constraint while attempting to enable the constraint. See "Reporting Constraint Exceptions". All rows violating constraints are noted in an EXCEPTIONS table, which you can examine.

Enable Novalidate Constraint State

When a constraint is in the enable novalidate state, all subsequent statements are checked for conformity to the constraint. However, any existing data in the table is not checked. A table with enable novalidated constraints can contain invalid data, but it is not possible to add new invalid data to it. Enabling constraints in the novalidated state is most useful in data warehouse configurations that are uploading valid OLTP data.

Enabling a constraint does not require validation. Enabling a constraint novalidate is much faster than enabling and validating a constraint. Also, validating a constraint that is already enabled does not require any DML locks during validation (unlike validating a previously disabled constraint). Enforcement guarantees that no violations are introduced during the validation. Hence, enabling without validating enables you to reduce the downtime typically associated with enabling a constraint.

Efficient Use of Integrity Constraints: A Procedure

Using integrity constraint states in the following order can ensure the best benefits:

	
Disable state.

	
Perform the operation (load, export, import).

	
Enable novalidate state.

	
Enable state.

Some benefits of using constraints in this order are:

	
No locks are held.

	
All constraints can go to enable state concurrently.

	
Constraint enabling is done in parallel.

	
Concurrent activity on table is permitted.

Setting Integrity Constraints Upon Definition

When an integrity constraint is defined in a CREATE TABLE or ALTER TABLE statement, it can be enabled, disabled, or validated or not validated as determined by your specification of the ENABLE/DISABLE clause. If the ENABLE/DISABLE clause is not specified in a constraint definition, the database automatically enables and validates the constraint.

Disabling Constraints Upon Definition

The following CREATE TABLE and ALTER TABLE statements both define and disable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY DISABLE, . . . ;

ALTER TABLE emp
 ADD PRIMARY KEY (empno) DISABLE;

An ALTER TABLE statement that defines and disables an integrity constraint never fails because of rows in the table that violate the integrity constraint. The definition of the constraint is allowed because its rule is not enforced.

Enabling Constraints Upon Definition

The following CREATE TABLE and ALTER TABLE statements both define and enable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) CONSTRAINT emp.pk PRIMARY KEY, . . . ;

ALTER TABLE emp
 ADD CONSTRAINT emp.pk PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an integrity constraint can fail because rows of the table violate the integrity constraint. If this case, the statement is rolled back and the constraint definition is not stored and not enabled.

When you enable a UNIQUE or PRIMARY KEY constraint an associated index is created.

	
Note:

An efficient procedure for enabling a constraint that can make use of parallelism is described in "Efficient Use of Integrity Constraints: A Procedure".

	
See Also:

"Creating an Index Associated with a Constraint"

Modifying, Renaming, or Dropping Existing Integrity Constraints

You can use the ALTER TABLE statement to enable, disable, modify, or drop a constraint. When the database is using a UNIQUE or PRIMARY KEY index to enforce a constraint, and constraints associated with that index are dropped or disabled, the index is dropped, unless you specify otherwise.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot disable or drop the PRIMARY or UNIQUE key constraint or the index.

Disabling Enabled Constraints

The following statements disable integrity constraints. The second statement specifies that the associated indexes are to be kept.

ALTER TABLE dept
 DISABLE CONSTRAINT dname_ukey;

ALTER TABLE dept
 DISABLE PRIMARY KEY KEEP INDEX,
 DISABLE UNIQUE (dname, loc) KEEP INDEX;

The following statements enable novalidate disabled integrity constraints:

ALTER TABLE dept
 ENABLE NOVALIDATE CONSTRAINT dname_ukey;

ALTER TABLE dept
 ENABLE NOVALIDATE PRIMARY KEY,
 ENABLE NOVALIDATE UNIQUE (dname, loc);

The following statements enable or validate disabled integrity constraints:

ALTER TABLE dept
 MODIFY CONSTRAINT dname_key VALIDATE;

ALTER TABLE dept
 MODIFY PRIMARY KEY ENABLE NOVALIDATE;

The following statements enable disabled integrity constraints:

ALTER TABLE dept
 ENABLE CONSTRAINT dname_ukey;

ALTER TABLE dept
 ENABLE PRIMARY KEY,
 ENABLE UNIQUE (dname, loc);

To disable or drop a UNIQUE key or PRIMARY KEY constraint and all dependent FOREIGN KEY constraints in a single step, use the CASCADE option of the DISABLE or DROP clauses. For example, the following statement disables a PRIMARY KEY constraint and any FOREIGN KEY constraints that depend on it:

ALTER TABLE dept
 DISABLE PRIMARY KEY CASCADE;

Renaming Constraints

The ALTER TABLE...RENAME CONSTRAINT statement enables you to rename any currently existing constraint for a table. The new constraint name must not conflict with any existing constraint names for a user.

The following statement renames the dname_ukey constraint for table dept:

ALTER TABLE dept
 RENAME CONSTRAINT dname_ukey TO dname_unikey;

When you rename a constraint, all dependencies on the base table remain valid.

The RENAME CONSTRAINT clause provides a means of renaming system generated constraint names.

Dropping Constraints

You can drop an integrity constraint if the rule that it enforces is no longer true, or if the constraint is no longer needed. You can drop the constraint using the ALTER TABLE statement with one of the following clauses:

	
DROP PRIMARY KEY

	
DROP UNIQUE

	
DROP CONSTRAINT

The following two statements drop integrity constraints. The second statement keeps the index associated with the PRIMARY KEY constraint:

ALTER TABLE dept
 DROP UNIQUE (dname, loc);

ALTER TABLE emp
 DROP PRIMARY KEY KEEP INDEX,
 DROP CONSTRAINT dept_fkey;

If FOREIGN KEYs reference a UNIQUE or PRIMARY KEY, you must include the CASCADE CONSTRAINTS clause in the DROP statement, or you cannot drop the constraint.

Deferring Constraint Checks

When the database checks a constraint, it signals an error if the constraint is not satisfied. You can defer checking the validity of constraints until the end of a transaction.

When you issue the SET CONSTRAINTS statement, the SET CONSTRAINTS mode lasts for the duration of the transaction, or until another SET CONSTRAINTS statement resets the mode.

	
Notes:

	
You cannot issue a SET CONSTRAINT statement inside a trigger.

	
Deferrable unique and primary keys must use nonunique indexes.

Set All Constraints Deferred

Within the application being used to manipulate the data, you must set all constraints deferred before you actually begin processing any data. Use the following DML statement to set all deferrable constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

	
Note:

The SET CONSTRAINTS statement applies only to the current transaction. The defaults specified when you create a constraint remain as long as the constraint exists. The ALTER SESSION SET CONSTRAINTS statement applies for the current session only.

Check the Commit (Optional)

You can check for constraint violations before committing by issuing the SET CONSTRAINTS ALL IMMEDIATE statement just before issuing the COMMIT. If there are any problems with a constraint, this statement fails and the constraint causing the error is identified. If you commit while constraints are violated, the transaction is rolled back and you receive an error message.

Reporting Constraint Exceptions

If exceptions exist when a constraint is validated, an error is returned and the integrity constraint remains novalidated. When a statement is not successfully executed because integrity constraint exceptions exist, the statement is rolled back. If exceptions exist, you cannot validate the constraint until all exceptions to the constraint are either updated or deleted.

To determine which rows violate the integrity constraint, issue the ALTER TABLE statement with the EXCEPTIONS option in the ENABLE clause. The EXCEPTIONS option places the rowid, table owner, table name, and constraint name of all exception rows into a specified table.

You must create an appropriate exceptions report table to accept information from the EXCEPTIONS option of the ENABLE clause before enabling the constraint. You can create an exception table by executing the UTLEXCPT.SQL script or the UTLEXPT1.SQL script.

	
Note:

Your choice of script to execute for creating the EXCEPTIONS table depends on the type of table you are analyzing. See the Oracle Database SQL Language Reference for more information.

Both of these scripts create a table named EXCEPTIONS. You can create additional exceptions tables with different names by modifying and resubmitting the script.

The following statement attempts to validate the PRIMARY KEY of the dept table, and if exceptions exist, information is inserted into a table named EXCEPTIONS:

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO EXCEPTIONS;

If duplicate primary key values exist in the dept table and the name of the PRIMARY KEY constraint on dept is sys_c00610, then the following query will display those exceptions:

SELECT * FROM EXCEPTIONS;

The following exceptions are shown:

fROWID OWNER TABLE_NAME CONSTRAINT
------------------ --------- -------------- -----------
AAAAZ9AABAAABvqAAB SCOTT DEPT SYS_C00610
AAAAZ9AABAAABvqAAG SCOTT DEPT SYS_C00610

A more informative query would be to join the rows in an exception report table and the master table to list the actual rows that violate a specific constraint, as shown in the following statement and results:

SELECT deptno, dname, loc FROM dept, EXCEPTIONS
 WHERE EXCEPTIONS.constraint = 'SYS_C00610'
 AND dept.rowid = EXCEPTIONS.row_id;

DEPTNO DNAME LOC
---------- -------------- -----------
10 ACCOUNTING NEW YORK
10 RESEARCH DALLAS

All rows that violate a constraint must be either updated or deleted from the table containing the constraint. When updating exceptions, you must change the value violating the constraint to a value consistent with the constraint or to a null. After the row in the master table is updated or deleted, the corresponding rows for the exception in the exception report table should be deleted to avoid confusion with later exception reports. The statements that update the master table and the exception report table should be in the same transaction to ensure transaction consistency.

To correct the exceptions in the previous examples, you might issue the following transaction:

UPDATE dept SET deptno = 20 WHERE dname = 'RESEARCH';
DELETE FROM EXCEPTIONS WHERE constraint = 'SYS_C00610';
COMMIT;

When managing exceptions, the goal is to eliminate all exceptions in your exception report table.

	
Note:

While you are correcting current exceptions for a table with the constraint disabled, it is possible for other users to issue statements creating new exceptions. You can avoid this by marking the constraint ENABLE NOVALIDATE before you start eliminating exceptions.

	
See Also:

Oracle Database Reference for a description of the EXCEPTIONS table

Viewing Constraint Information

Oracle Database provides the following views that enable you to see constraint definitions on tables and to identify columns that are specified in constraints:

	View	Description
	DBA_CONSTRAINTS
ALL_CONSTRAINTS

USER_CONSTRAINTS

	DBA view describes all constraint definitions in the database. ALL view describes constraint definitions accessible to current user. USER view describes constraint definitions owned by the current user.
	DBA_CONS_COLUMNS
ALL_CONS_COLUMNS

USER_CONS_COLUMNS

	DBA view describes all columns in the database that are specified in constraints. ALL view describes only those columns accessible to current user that are specified in constraints. USER view describes only those columns owned by the current user that are specified in constraints.

	
See Also:

Oracle Database Reference contains descriptions of the columns in these views

Renaming Schema Objects

To rename an object, it must be in your schema. You can rename schema objects in either of the following ways:

	
Drop and re-create the object

	
Rename the object using the RENAME statement

	
Rename the object using the ALTER ... RENAME statement (for indexes and triggers)

If you drop and re-create an object, all privileges granted for that object are lost. Privileges must be regranted when the object is re-created.

A table, view, sequence, or a private synonym of a table, view, or sequence can be renamed using the RENAME statement. When using the RENAME statement, integrity constraints, indexes, and grants made for the object are carried forward for the new name. For example, the following statement renames the sales_staff view:

RENAME sales_staff TO dept_30;

	
Note:

You cannot use RENAME for a stored PL/SQL program unit, public synonym, or cluster. To rename such an object, you must drop and re-create it.

Before renaming a schema object, consider the following effects:

	
All views and PL/SQL program units dependent on a renamed object become invalid, and must be recompiled before next use.

	
All synonyms for a renamed object return an error when used.

	
See Also:

Oracle Database SQL Language Reference for syntax of the RENAME statement

Managing Object Dependencies

This section provides background information about object dependencies and object invalidation, and explains how invalid objects can be revalidated. The following topics are included:

	
About Object Dependencies and Object Invalidation

	
Manually Recompiling Invalid Objects with DDL

	
Manually Recompiling Invalid Objects with PL/SQL Package Procedures

About Object Dependencies and Object Invalidation

Some types of schema objects reference other objects. For example, a view contains a query that references tables or other views, and a PL/SQL subprogram might invoke other subprograms and might use static SQL to reference tables or views. An object that references another object is called a dependent object, and an object being referenced is a referenced object. These references are established at compile time, and if the compiler cannot resolve them, the dependent object being compiled is marked invalid.

Oracle Database provides an automatic mechanism to ensure that a dependent object is always up to date with respect to its referenced objects. When a dependent object is created, the database tracks dependencies between the dependent object and its referenced objects. When a referenced object is changed in a way that might affect a dependent object, the dependent object is marked invalid. An invalid dependent object must be recompiled against the new definition of a referenced object before the dependent object can be used. Recompilation occurs automatically when the invalid dependent object is referenced.

It is important to be aware of changes that can invalidate schema objects, because invalidation affects applications running on the database. This section describes how objects become invalid, how you can identify invalid objects, and how you can validate invalid objects.

Object Invalidation

In a typical running application, you would not expect to see views or stored procedures become invalid, because applications typically do not change table structures or change view or stored procedure definitions during normal execution. Changes to tables, views, or PL/SQL units typically occur when an application is patched or upgraded using a patch script or ad-hoc DDL statements. Dependent objects might be left invalid after a patch has been applied to change a set of referenced objects.

Use the following query to display the set of invalid objects in the database:

SELECT object_name, object_type FROM dba_objects
WHERE status = 'INVALID';

The Database Home page in Oracle Enterprise Manager Cloud Control displays an alert when schema objects become invalid.

Object invalidation affects applications in two ways. First, an invalid object must be revalidated before it can be used by an application. Revalidation adds latency to application execution. If the number of invalid objects is large, the added latency on the first execution can be significant. Second, invalidation of a procedure, function or package can cause exceptions in other sessions concurrently executing the procedure, function or package. If a patch is applied when the application is in use in a different session, the session executing the application notices that an object in use has been invalidated and raises one of the following 4 exceptions: ORA-04061, ORA-04064, ORA-04065 or ORA-04068. These exceptions must be remedied by restarting application sessions following a patch.

You can force the database to recompile a schema object using the appropriate SQL statement with the COMPILE clause. See "Manually Recompiling Invalid Objects with DDL" for more information.

If you know that there are a large number of invalid objects, use the UTL_RECOMP PL/SQL package to perform a mass recompilation. See "Manually Recompiling Invalid Objects with PL/SQL Package Procedures" for details.

The following are some general rules for the invalidation of schema objects:

	
Between a referenced object and each of its dependent objects, the database tracks the elements of the referenced object that are involved in the dependency. For example, if a single-table view selects only a subset of columns in a table, only those columns are involved in the dependency. For each dependent of an object, if a change is made to the definition of any element involved in the dependency (including dropping the element), the dependent object is invalidated. Conversely, if changes are made only to definitions of elements that are not involved in the dependency, the dependent object remains valid.

In many cases, therefore, developers can avoid invalidation of dependent objects and unnecessary extra work for the database if they exercise care when changing schema objects.

	
Dependent objects are cascade invalidated. If any object becomes invalid for any reason, all of that object's dependent objects are immediately invalidated.

	
If you revoke any object privileges on a schema object, dependent objects are cascade invalidated.

	
See Also:

Oracle Database Concepts for more detailed information about schema object dependencies

Manually Recompiling Invalid Objects with DDL

You can use an ALTER statement to manually recompile a single schema object. For example, to recompile package body Pkg1, you would execute the following DDL statement:

ALTER PACKAGE pkg1 COMPILE REUSE SETTINGS;

	
See Also:

Oracle Database SQL Language Reference for syntax and other information about the various ALTER statements

Manually Recompiling Invalid Objects with PL/SQL Package Procedures

Following an application upgrade or patch, it is good practice to revalidate invalid objects to avoid application latencies that result from on-demand object revalidation. Oracle provides the UTL_RECOMP package to assist in object revalidation. The RECOMP_SERIAL procedure recompiles all invalid objects in a specified schema, or all invalid objects in the database if you do not supply the schema name argument. The RECOMP_PARALLEL procedure does the same, but in parallel, employing multiple CPUs.

Examples

Execute the following PL/SQL block to revalidate all invalid objects in the database, in parallel and in dependency order:

begin
 utl_recomp.recomp_parallel();
end;
/

You can also revalidate individual invalid objects using the package DBMS_UTILITY. The following PL/SQL block revalidates the procedure UPDATE_SALARY in schema HR:

begin
 dbms_utility.validate('HR', 'UPDATE_SALARY', namespace=>1);
end;
/

The following PL/SQL block revalidates the package body HR.ACCT_MGMT:

begin
 dbms_utility.validate('HR', 'ACCT_MGMT', namespace=>2);
end;
/

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on the UTL_RECOMP and DBMS_UTILITY packages.

Managing Object Name Resolution

Object names referenced in SQL statements can consist of several pieces, separated by periods. The following describes how the database resolves an object name.

	
Oracle Database attempts to qualify the first piece of the name referenced in the SQL statement. For example, in scott.emp, scott is the first piece. If there is only one piece, the one piece is considered the first piece.

	
In the current schema, the database searches for an object whose name matches the first piece of the object name. If it does not find such an object, it continues with step b.

	
The database searches for a public synonym that matches the first piece of the name. If it does not find one, it continues with step c.

	
The database searches for a schema whose name matches the first piece of the object name. If it finds one, then the schema is the qualified schema, and it continues with step d.

If no schema is found in step c, the object cannot be qualified and the database returns an error.

	
In the qualified schema, the database searches for an object whose name matches the second piece of the object name.

If the second piece does not correspond to an object in the previously qualified schema or there is not a second piece, then the database returns an error.

	
A schema object has been qualified. Any remaining pieces of the name must match a valid part of the found object. For example, if scott.emp.deptno is the name, scott is qualified as a schema, emp is qualified as a table, and deptno must correspond to a column (because emp is a table). If emp is qualified as a package, deptno must correspond to a public constant, variable, procedure, or function of that package.

When global object names are used in a distributed database, either explicitly or indirectly within a synonym, the local database resolves the reference locally. For example, it resolves a synonym to global object name of a remote table. The partially resolved statement is shipped to the remote database, and the remote database completes the resolution of the object as described here.

Because of how the database resolves references, it is possible for an object to depend on the nonexistence of other objects. This situation occurs when the dependent object uses a reference that would be interpreted differently were another object present. For example, assume the following:

	
At the current point in time, the company schema contains a table named emp.

	
A PUBLIC synonym named emp is created for company.emp and the SELECT privilege for company.emp is granted to the PUBLIC role.

	
The jward schema does not contain a table or private synonym named emp.

	
The user jward creates a view in his schema with the following statement:

CREATE VIEW dept_salaries AS
 SELECT deptno, MIN(sal), AVG(sal), MAX(sal) FROM emp
 GROUP BY deptno
 ORDER BY deptno;

When jward creates the dept_salaries view, the reference to emp is resolved by first looking for jward.emp as a table, view, or private synonym, none of which is found, and then as a public synonym named emp, which is found. As a result, the database notes that jward.dept_salaries depends on the nonexistence of jward.emp and on the existence of public.emp.

Now assume that jward decides to create a new view named emp in his schema using the following statement:

CREATE VIEW emp AS
 SELECT empno, ename, mgr, deptno
 FROM company.emp;

Notice that jward.emp does not have the same structure as company.emp.

As it attempts to resolve references in object definitions, the database internally makes note of dependencies that the new dependent object has on "nonexistent" objects--schema objects that, if they existed, would change the interpretation of the object's definition. Such dependencies must be noted in case a nonexistent object is later created. If a nonexistent object is created, all dependent objects must be invalidated so that dependent objects can be recompiled and verified and all dependent function-based indexes must be marked unusable.

Therefore, in the previous example, as jward.emp is created, jward.dept_salaries is invalidated because it depends on jward.emp. Then when jward.dept_salaries is used, the database attempts to recompile the view. As the database resolves the reference to emp, it finds jward.emp (public.emp is no longer the referenced object). Because jward.emp does not have a sal column, the database finds errors when replacing the view, leaving it invalid.

In summary, you must manage dependencies on nonexistent objects checked during object resolution in case the nonexistent object is later created.

	
See Also:

"Schema Objects and Database Links" for information about name resolution in a distributed database

Switching to a Different Schema

The following statement sets the schema of the current session to the schema name specified in the statement.

ALTER SESSION SET CURRENT_SCHEMA = <schema name>

In subsequent SQL statements, Oracle Database uses this schema name as the schema qualifier when the qualifier is omitted. In addition, the database uses the temporary tablespace of the specified schema for sorts, joins, and storage of temporary database objects. The session retains its original privileges and does not acquire any extra privileges by the preceding ALTER SESSION statement.

In the following example, provide the password when prompted:

CONNECT scott
ALTER SESSION SET CURRENT_SCHEMA = joe;
SELECT * FROM emp;

Because emp is not schema-qualified, the table name is resolved under schema joe. But if scott does not have select privilege on table joe.emp, then scott cannot execute the SELECT statement.

Managing Editions

Application developers who are upgrading their applications using edition-based redefinition may ask you to perform edition-related tasks that require DBA privileges.

In this section:

	
About Editions and Edition-Based Redefinition

	
DBA Tasks for Edition-Based Redefinition

	
Setting the Database Default Edition

	
Querying the Database Default Edition

	
Setting the Edition Attribute of a Database Service

	
Using an Edition

	
Editions Data Dictionary Views

About Editions and Edition-Based Redefinition

Edition-based redefinition enables you to upgrade an application's database objects while the application is in use, thus minimizing or eliminating down time. This is accomplished by changing (redefining) database objects in a private environment known as an edition. Only when all changes have been made and tested do you make the new version of the application available to users.

	
See Also:

Oracle Database Development Guide for a complete discussion of edition-based redefinition

DBA Tasks for Edition-Based Redefinition

Table 18-1 summarizes the edition-related tasks that require privileges typically granted only to DBAs. Any user that is granted the DBA role can perform these tasks.

Table 18-1 DBA Tasks for Edition-Based Redefinition

	Task	See
	
Grant or revoke privileges to create, alter, and drop editions

	
The CREATE EDITION and DROP EDITION commands in Oracle Database SQL Language Reference

	
Enable editions for a schema

	
Oracle Database Development Guide

	
Set the database default edition

	
"Setting the Database Default Edition"

	
Set the edition attribute of a database service

	
"Setting the Edition Attribute of a Database Service"

Setting the Database Default Edition

There is always a default edition for the database. This is the edition that a database session initially uses if it does not explicitly indicate an edition when connecting.

To set the database default edition:

	
Connect to the database as a user with the ALTER DATABASE privilege.

	
Enter the following statement:

ALTER DATABASE DEFAULT EDITION = edition_name;

	
See Also:

"Connecting to the Database with SQL*Plus"

Querying the Database Default Edition

The database default edition is stored as a database property.

To query the database default edition:

	
Connect to the database as any user.

	
Enter the following statement:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES WHERE
 PROPERTY_NAME = 'DEFAULT_EDITION';

PROPERTY_VALUE

ORA$BASE

	
Note:

The property name DEFAULT_EDITION is case sensitive and must be supplied as upper case.

Setting the Edition Attribute of a Database Service

You can set the edition attribute of a database service when you create the service, or you can modify an existing database service to set its edition attribute. When you set the edition attribute of a service, all subsequent connections that specify the service, such as client connections and DBMS_SCHEDULER jobs, use this edition as the initial session edition. However, if a session connection specifies a different edition, then the edition specified in the session connection is used for the session edition. To check the edition attribute of a database service, query the EDITION column in the ALL_SERVICES view or the DBA_SERVICES view.

	
Note:

The number of database services for an instance has an upper limit. See Oracle Database Reference for more information about this limit.

Setting the Edition Attribute During Database Service Creation

Follow the instructions in "Creating Database Services" and use the appropriate option for setting the edition attribute for the database service:

	
If your single-instance database is being managed by Oracle Restart, use the SRVCTL utility to create the database service and specify the -edition option to set its edition attribute.

For the database with the DB_UNIQUE_NAME of dbcrm, this example creates a new database service named crmbatch and sets the edition attribute of the database service to e2:

srvctl add service -db dbcrm -service crmbatch -edition e2

	
If your single-instance database is not being managed by Oracle Restart, use the DBMS_SERVICE.CREATE_SERVICE procedure, and specify the edition parameter to set the edition attribute of the database service.

Setting the Edition Attribute of an Existing Database Service

You can use the SRVCTL utility or the DBMS_SERVICE package to set the edition attribute of an existing database service.

To set the edition attribute of an existing database service:

	
Stop the database service.

	
Set the edition attribute of the database service using the appropriate option:

	
If your single-instance database is being managed by Oracle Restart, use the SRVCTL utility to modify the database service and specify the -edition option to set its edition attribute.

For the database with the DB_UNIQUE_NAME of dbcrm, this example modifies a database service named crmbatch and sets the edition attribute of the service to e3:

srvctl modify service -db dbcrm -service crmbatch -edition e3

	
If your single-instance database is not being managed by Oracle Restart, use the DBMS_SERVICE.MODIFY_SERVICE procedure, and specify the edition parameter to set the edition attribute of the database service. Ensure that the modify_edition parameter is set to TRUE when you run the MODIFY_SERVICE procedure.

	
Start the database service.

	
See Also:

	
Chapter 4, "Configuring Automatic Restart of an Oracle Database" for information managing database services using Oracle Restart

	
Oracle Database PL/SQL Packages and Types Reference for information about managing database services using the DBMS_SERVICE package

Using an Edition

To view or modify objects in a particular edition, you must use the edition first. You can specify an edition to use when you connect to the database. If you do not specify an edition, then your session starts in the database default edition. To use a different edition, submit the following statement:

ALTER SESSION SET EDITION=edition_name;

The following statements first set the current edition to e2 and then to ora$base:

ALTER SESSION SET EDITION=e2;
...
ALTER SESSION SET EDITION=ora$base;

	
See Also:

	
Oracle Database Development Guide for more information about using editions, and for instructions for determining the current edition

	
"Connecting to the Database with SQL*Plus"

Editions Data Dictionary Views

There are several data dictionary views that aid with managing editions. The following table lists three of them. For a complete list, see Oracle Database Development Guide.

	View	Description
	*_EDITIONS	Lists all editions in the database. (Note: USER_EDITIONS does not exist.)
	*_OBJECTS	Describes every object in the database that is visible (actual or inherited) in the current edition.
	*_OBJECTS_AE	Describes every actual object in the database, across all editions.

Displaying Information About Schema Objects

Oracle Database provides a PL/SQL package that enables you to determine the DDL that created an object and data dictionary views that you can use to display information about schema objects. Packages and views that are unique to specific types of schema objects are described in the associated chapters. This section describes views and packages that are generic in nature and apply to multiple schema objects.

Using a PL/SQL Package to Display Information About Schema Objects

The Oracle-supplied PL/SQL package procedure DBMS_METADATA.GET_DDL lets you obtain metadata (in the form of DDL used to create the object) about a schema object.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_METADATA package

Example: Using the DBMS_METADATA Package

The DBMS_METADATA package is a powerful tool for obtaining the complete definition of a schema object. It enables you to obtain all of the attributes of an object in one pass. The object is described as DDL that can be used to (re)create it.

In the following statements the GET_DDL function is used to fetch the DDL for all tables in the current schema, filtering out nested tables and overflow segments. The SET_TRANSFORM_PARAM (with the handle value equal to DBMS_METADATA.SESSION_TRANSFORM meaning "for the current session") is used to specify that storage clauses are not to be returned in the SQL DDL. Afterwards, the session-level transform parameters are reset to their defaults. Once set, transform parameter values remain in effect until specifically reset to their defaults.

EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(
 DBMS_METADATA.SESSION_TRANSFORM,'STORAGE',false);
SELECT DBMS_METADATA.GET_DDL('TABLE',u.table_name)
 FROM USER_ALL_TABLES u
 WHERE u.nested='NO'
 AND (u.iot_type is null or u.iot_type='IOT');
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(
 DBMS_METADATA.SESSION_TRANSFORM,'DEFAULT');

The output from DBMS_METADATA.GET_DDL is a LONG data type. When using SQL*Plus, your output may be truncated by default. Issue the following SQL*Plus command before issuing the DBMS_METADATA.GET_DDL statement to ensure that your output is not truncated:

SQL> SET LONG 9999

Schema Objects Data Dictionary Views

These views display general information about schema objects:

	View	Description
	DBA_OBJECTS
ALL_OBJECTS

USER_OBJECTS

	DBA view describes all schema objects in the database. ALL view describes objects accessible to current user. USER view describes objects owned by the current user.
	DBA_CATALOG
ALL_CATALOG

USER_CATALOG

	List the name, type, and owner (USER view does not display owner) for all tables, views, synonyms, and sequences in the database.
	DBA_DEPENDENCIES
ALL_DEPENDENCIES

USER_DEPENDENCIES

	List all dependencies between procedures, packages, functions, package bodies, and triggers, including dependencies on views without any database links.

	
See Also:

Oracle Database Reference for a complete description of data dictionary views

The following are examples of using some of these views:

	
Example 1: Displaying Schema Objects By Type

	
Example 2: Displaying Dependencies of Views and Synonyms

Example 1: Displaying Schema Objects By Type

The following query lists all of the objects owned by the user issuing the query:

SELECT OBJECT_NAME, OBJECT_TYPE
 FROM USER_OBJECTS;

The following is the query output:

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------
EMP_DEPT CLUSTER
EMP TABLE
DEPT TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Example 2: Displaying Dependencies of Views and Synonyms

When you create a view or a synonym, the view or synonym is based on its underlying base object. The ALL_DEPENDENCIES, USER_DEPENDENCIES, and DBA_DEPENDENCIES data dictionary views can be used to reveal the dependencies for a view. The ALL_SYNONYMS, USER_SYNONYMS, and DBA_SYNONYMS data dictionary views can be used to list the base object of a synonym. For example, the following query lists the base objects for the synonyms created by user jward:

SELECT TABLE_OWNER, TABLE_NAME, SYNONYM_NAME
 FROM DBA_SYNONYMS
 WHERE OWNER = 'JWARD';

The following is the query output:

TABLE_OWNER TABLE_NAME SYNONYM_NAME
---------------------- ----------- -----------------
SCOTT DEPT DEPT
SCOTT EMP EMP

20 Managing Tables

This chapter contains the following topics:

	
About Tables

	
Guidelines for Managing Tables

	
Creating Tables

	
Loading Tables

	
Automatically Collecting Statistics on Tables

	
Altering Tables

	
Redefining Tables Online

	
Researching and Reversing Erroneous Table Changes

	
Recovering Tables Using Oracle Flashback Table

	
Dropping Tables

	
Using Flashback Drop and Managing the Recycle Bin

	
Managing Index-Organized Tables

	
Managing External Tables

	
Tables Data Dictionary Views

About Tables

Tables are the basic unit of data storage in an Oracle Database. Data is stored in rows and columns. You define a table with a table name, such as employees, and a set of columns. You give each column a column name, such as employee_id, last_name, and job_id; a data type, such as VARCHAR2, DATE, or NUMBER; and a width. The width can be predetermined by the data type, as in DATE. If columns are of the NUMBER data type, define precision and scale instead of width. A row is a collection of column information corresponding to a single record.

You can specify rules for each column of a table. These rules are called integrity constraints. One example is a NOT NULL integrity constraint. This constraint forces the column to contain a value in every row.

You can invoke Transparent Data Encryption to encrypt data before storing it. If users attempt to circumvent the database access control mechanisms by looking inside Oracle data files directly with operating system tools, encryption prevents these users from viewing sensitive data.

Tables can also include virtual columns. A virtual column is like any other table column, except that its value is derived by evaluating an expression. The expression can include columns from the same table, constants, SQL functions, and user-defined PL/SQL functions. You cannot explicitly write to a virtual column.

Some column types, such as LOBs, varrays, and nested tables, are stored in their own segments. LOBs and varrays are stored in LOB segments, while nested tables are stored in storage tables. You can specify a STORAGE clause for these segments that will override storage parameters specified at the table level.

After you create a table, you insert rows of data using SQL statements or using an Oracle bulk load utility. Table data can then be queried, deleted, or updated using SQL.

	
See Also:

	
Oracle Database Concepts for an overview of tables

	
Oracle Database SQL Language Reference for descriptions of Oracle Database data types

	
Chapter 19, "Managing Space for Schema Objects" for guidelines for managing space for tables

	
Chapter 18, "Managing Schema Objects" for information on additional aspects of managing tables, such as specifying integrity constraints and analyzing tables

	
Oracle Database Advanced Security Guide for a discussion of Transparent Data Encryption

Guidelines for Managing Tables

This section describes guidelines to follow when managing tables. Following these guidelines can make the management of your tables easier and can improve performance when creating the table, as well as when loading, updating, and querying the table data.

The following topics are discussed:

	
Design Tables Before Creating Them

	
Specify the Type of Table to Create

	
Specify the Location of Each Table

	
Consider Parallelizing Table Creation

	
Consider Using NOLOGGING When Creating Tables

	
Consider Using Table Compression

	
Consider Using Segment-Level and Row-Level Compression Tiering

	
Understand Invisible Columns

	
Consider Encrypting Columns That Contain Sensitive Data

	
Understand Deferred Segment Creation

	
Estimate Table Size and Plan Accordingly

	
Restrictions to Consider When Creating Tables

Design Tables Before Creating Them

Usually, the application developer is responsible for designing the elements of an application, including the tables. Database administrators are responsible for establishing the attributes of the underlying tablespace that will hold the application tables. Either the DBA or the applications developer, or both working jointly, can be responsible for the actual creation of the tables, depending upon the practices for a site.

Working with the application developer, consider the following guidelines when designing tables:

	
Use descriptive names for tables, columns, indexes, and clusters.

	
Be consistent in abbreviations and in the use of singular and plural forms of table names and columns.

	
Document the meaning of each table and its columns with the COMMENT command.

	
Normalize each table.

	
Select the appropriate data type for each column.

	
Consider whether your applications would benefit from adding one or more virtual columns to some tables.

	
Define columns that allow nulls last, to conserve storage space.

	
Cluster tables whenever appropriate, to conserve storage space and optimize performance of SQL statements.

Before creating a table, you should also determine whether to use integrity constraints. Integrity constraints can be defined on the columns of a table to enforce the business rules of your database automatically.

Specify the Type of Table to Create

Here are the types of tables that you can create:

	Type of Table	Description
	Ordinary (heap-organized) table	This is the basic, general purpose type of table which is the primary subject of this chapter. Its data is stored as an unordered collection (heap).
	Clustered table	A clustered table is a table that is part of a cluster. A cluster is a group of tables that share the same data blocks because they share common columns and are often used together.
Clusters and clustered tables are discussed in Chapter 22, "Managing Clusters".

	Index-organized table	Unlike an ordinary (heap-organized) table, data for an index-organized table is stored in a B-tree index structure in a primary key sorted manner. Besides storing the primary key column values of an index-organized table row, each index entry in the B-tree stores the nonkey column values as well.
Index-organized tables are discussed in "Managing Index-Organized Tables".

	Partitioned table	Partitioned tables enable your data to be broken down into smaller, more manageable pieces called partitions, or even subpartitions. Each partition can have separate physical attributes, such as compression enabled or disabled, type of compression, physical storage settings, and tablespace, thus providing a structure that can be better tuned for availability and performance. In addition, each partition can be managed individually, which can simplify and reduce the time required for backup and administration.
Partitioned tables are discussed in Oracle Database VLDB and Partitioning Guide.

Specify the Location of Each Table

It is advisable to specify the TABLESPACE clause in a CREATE TABLE statement to identify the tablespace that is to store the new table. For partitioned tables, you can optionally identify the tablespace that is to store each partition. Ensure that you have the appropriate privileges and quota on any tablespaces that you use. If you do not specify a tablespace in a CREATE TABLE statement, the table is created in your default tablespace.

When specifying the tablespace to contain a new table, ensure that you understand implications of your selection. By properly specifying a tablespace during the creation of each table, you can increase the performance of the database system and decrease the time needed for database administration.

The following situations illustrate how not specifying a tablespace, or specifying an inappropriate one, can affect performance:

	
If users' objects are created in the SYSTEM tablespace, the performance of the database can suffer, since both data dictionary objects and user objects must contend for the same data files. Users' objects should not be stored in the SYSTEM tablespace. To avoid this, ensure that all users are assigned default tablespaces when they are created in the database.

	
If application-associated tables are arbitrarily stored in various tablespaces, the time necessary to complete administrative operations (such as backup and recovery) for the data of that application can be increased.

Consider Parallelizing Table Creation

You can use parallel execution when creating tables using a subquery (AS SELECT) in the CREATE TABLE statement. Because multiple processes work together to create the table, performance of the table creation operation is improved.

Parallelizing table creation is discussed in the section "Parallelizing Table Creation".

Consider Using NOLOGGING When Creating Tables

To create a table most efficiently use the NOLOGGING clause in the CREATE TABLE...AS SELECT statement. The NOLOGGING clause causes minimal redo information to be generated during the table creation. This has the following benefits:

	
Space is saved in the redo log files.

	
The time it takes to create the table is decreased.

	
Performance improves for parallel creation of large tables.

The NOLOGGING clause also specifies that subsequent direct loads using SQL*Loader and direct load INSERT operations are not logged. Subsequent DML statements (UPDATE, DELETE, and conventional path insert) are unaffected by the NOLOGGING attribute of the table and generate redo.

If you cannot afford to lose the table after you have created it (for example, you will no longer have access to the data used to create the table) you should take a backup immediately after the table is created. In some situations, such as for tables that are created for temporary use, this precaution may not be necessary.

In general, the relative performance improvement of specifying NOLOGGING is greater for larger tables than for smaller tables. For small tables, NOLOGGING has little effect on the time it takes to create a table. However, for larger tables the performance improvement can be significant, especially when also parallelizing the table creation.

Consider Using Table Compression

As your database grows in size, consider using table compression. Compression saves disk space, reduces memory use in the database buffer cache, and can significantly speed query execution during reads. Compression has a cost in CPU overhead for data loading and DML. However, this cost is offset by reduced I/O requirements. Because compressed table data stays compressed in memory, compression can also improve performance for DML operations, as more rows can fit in the database buffer cache (and flash cache if it is enabled).

Table compression is completely transparent to applications. It is useful in decision support systems (DSS), online transaction processing (OLTP) systems, and archival systems.

You can specify compression for a tablespace, a table, or a partition. If specified at the tablespace level, then all tables created in that tablespace are compressed by default.

Oracle Database supports several methods of table compression. They are summarized in Table 20-1.

Table 20-1 Table Compression Methods

	Table Compression Method	Compression Level	CPU Overhead	Applications	Notes
	
Basic table compression

	
High

	
Minimal

	
DSS

	
None.

	
Advanced row compression

	
High

	
Minimal

	
OLTP, DSS

	
None.

	
Warehouse compression (Hybrid Columnar Compression)

	
Higher

	
Higher

	
DSS

	
The compression level and CPU overhead depend on compression level specified (LOW or HIGH).

	
Archive compression (Hybrid Columnar Compression)

	
Highest

	
Highest

	
Archiving

	
The compression level and CPU overhead depend on compression level specified (LOW or HIGH).

When you use basic table compression, warehouse compression, or archive compression, compression only occurs when data is bulk loaded into a table.

When you use advanced row compression, compression occurs while data is being inserted, updated, or bulk loaded into a table. Operations that permit compression include:

	
Single-row or array inserts and updates

	
The following direct-path INSERT methods:

	
Direct path SQL*Loader

	
CREATE TABLE AS SELECT statements

	
Parallel INSERT statements

	
INSERT statements with an APPEND or APPEND_VALUES hint

Basic table compression compresses data inserted by direct path load only and supports limited data types and SQL operations. Advanced row compression is intended for OLTP applications and compresses data manipulated by any SQL operation.

Warehouse compression and archive compression achieve the highest compression levels because they use Hybrid Columnar Compression technology. Hybrid Columnar Compression technology uses a modified form of columnar storage instead of row-major storage. This enables the database to store similar data together, which improves the effectiveness of compression algorithms. For data that is updated, Hybrid Columnar Compression uses more CPU and moves the updated rows to row format so that future updates are faster. Because of this optimization, you should use it only for data that is updated infrequently.

The higher compression levels of Hybrid Columnar Compression are achieved only with data that is direct-path inserted. Conventional inserts and updates are supported, but cause rows to be moved from columnar to row format, and reduce the compression level. You can use Automatic Data Optimization (ADO) policies to move these rows back to the desired level of Hybrid Columnar Compression automatically.

Table 20-2 lists characteristics of each table compression method.

Table 20-2 Table Compression Characteristics

	Table Compression Method	CREATE/ALTER TABLE Syntax	Direct-Path INSERT	Notes
	
Basic table compression

	
ROW STORE COMPRESS [BASIC]

	
Rows are compressed with basic table compression.

	
ROW STORE COMPRESS and ROW STORE COMPRESS BASIC are equivalent.

Rows inserted without using direct-path insert and updated rows are uncompressed.

	
Advanced row compression

	
ROW STORE COMPRESS ADVANCED

	
Rows are compressed with advanced row compression.

	
Rows inserted without using direct-path insert and updated rows are compressed using advanced row compression.

	
Warehouse compression (Hybrid Columnar Compression)

	
COLUMN STORE COMPRESS FOR QUERY [LOW|HIGH]

	
Rows are compressed with warehouse compression.

	
This compression method can result in high CPU overhead.

Updated rows and rows inserted without using direct-path insert are stored in row format instead of column format, and thus have a lower compression level.

	
Archive compression (Hybrid Columnar Compression)

	
COLUMN STORE COMPRESS FOR ARCHIVE [LOW|HIGH]

	
Rows are compressed with archive compression.

	
This compression method can result in high CPU overhead.

Updated rows and rows inserted without using direct-path insert are stored in row format instead of column format, and thus have a lower compression level.

You specify table compression with the COMPRESS clause of the CREATE TABLE statement. You can enable compression for an existing table by using these clauses in an ALTER TABLE statement. In this case, only data that is inserted or updated after compression is enabled is compressed. Using the ALTER TABLE MOVE statement also enables compression for data that is inserted and updated, but it compresses existing data as well. Similarly, you can disable table compression for an existing compressed table with the ALTER TABLE...NOCOMPRESS statement. In this case, all data that was already compressed remains compressed, and new data is inserted uncompressed.

The COLUMN STORE COMPRESS FOR QUERY HIGH option is the default data warehouse compression mode. It provides good compression and performance when using Hybrid Columnar Compression on Exadata storage. The COLUMN STORE COMPRESS FOR QUERY LOW option should be used in environments where load performance is critical. It loads faster than data compressed with the COLUMN STORE COMPRESS FOR QUERY HIGH option.

The COLUMN STORE COMPRESS FOR ARCHIVE LOW option is the default archive compression mode. It provides a high compression level and is ideal for infrequently-accessed data. The COLUMN STORE COMPRESS FOR ARCHIVE HIGH option should be used for data that is rarely accessed.

A compression advisor, provided by the DBMS_COMPRESSION package, helps you determine the expected compression level for a particular table with a particular compression method.

	
Note:

Hybrid Columnar Compression is dependent on the underlying storage system. See Oracle Database Licensing Information for more information.

	
See Also:

	
Oracle Database Concepts for an overview of table compression

	
"Compressed Tablespaces"

Examples Related to Table Compression

The following examples are related to table compression:

	
Example 20-1, "Creating a Table with Advanced Row Compression"

	
Example 20-2, "Creating a Table with Basic Table Compression"

	
Example 20-3, "Using Direct-Path Insert to Insert Rows Into a Table"

	
Example 20-4, "Creating a Table with Warehouse Compression"

	
Example 20-5, "Creating a Table with Archive Compression"

Example 20-1 Creating a Table with Advanced Row Compression

The following example enables advanced row compression on the table orders:

CREATE TABLE orders ... ROW STORE COMPRESS ADVANCED;

Data for the orders table is compressed during both direct-path INSERT and conventional DML.

Example 20-2 Creating a Table with Basic Table Compression

The following statements, which are equivalent, enable basic table compression on the sales_history table, which is a fact table in a data warehouse:

CREATE TABLE sales_history ... ROW STORE COMPRESS BASIC;

CREATE TABLE sales_history ... ROW STORE COMPRESS;

Frequent queries are run against this table, but no DML is expected.

Example 20-3 Using Direct-Path Insert to Insert Rows Into a Table

This example demonstrates using the APPEND hint to insert rows into the sales_history table using direct-path INSERT.

INSERT /*+ APPEND */ INTO sales_history SELECT * FROM sales WHERE cust_id=8890;
COMMIT;

Example 20-4 Creating a Table with Warehouse Compression

This example enables Hybrid Columnar Compression on the table sales_history:

CREATE TABLE sales_history ... COLUMN STORE COMPRESS FOR QUERY;

The table is created with the default COLUMN STORE COMPRESS FOR QUERY HIGH option. This option provides a higher level of compression than basic table compression or advanced row compression. It works well when frequent queries are run against this table and no DML is expected.

Example 20-5 Creating a Table with Archive Compression

The following example enables Hybrid Columnar Compression on the table sales_history:

CREATE TABLE sales_history ... COLUMN STORE COMPRESS FOR ARCHIVE;

The table is created with the default COLUMN STORE COMPRESS FOR ARCHIVE LOW option. This option provides a higher level of compression than basic, advanced row, or warehouse compression. It works well when load performance is critical and data is accessed infrequently. The default COLUMN STORE COMPRESS FOR ARCHIVE LOW option provides a lower level of compression than the COLUMN STORE COMPRESS FOR ARCHIVE HIGH option.

Compression and Partitioned Tables

A table can have both compressed and uncompressed partitions, and different partitions can use different compression methods. If the compression settings for a table and one of its partitions do not match, then the partition setting has precedence for the partition.

To change the compression method for a partition, do one of the following:

	
To change the compression method for new data only, use ALTER TABLE ... MODIFY PARTITION ... COMPRESS ...

	
To change the compression method for both new and existing data, use either ALTER TABLE ... MOVE PARTITION ... COMPRESS ... or online table redefinition.

When you execute these statements, specify the compression method. For example, run the following statement to change the compression method to advanced row compression for both new and existing data:

ALTER TABLE ... MOVE PARTITION ... ROW STORE COMPRESS ADVANCED...

Determining If a Table Is Compressed

In the *_TABLES data dictionary views, compressed tables have ENABLED in the COMPRESSION column. For partitioned tables, this column is null, and the COMPRESSION column of the *_TAB_PARTITIONS views indicates the partitions that are compressed. In addition, the COMPRESS_FOR column indicates the compression method in use for the table or partition.

SQL> SELECT table_name, compression, compress_for FROM user_tables;

TABLE_NAME COMPRESSION COMPRESS_FOR
---------------- ------------ -----------------
T1 DISABLED
T2 ENABLED BASIC
T3 ENABLED ADVANCED
T4 ENABLED QUERY HIGH
T5 ENABLED ARCHIVE LOW

SQL> SELECT table_name, partition_name, compression, compress_for
 FROM user_tab_partitions;

TABLE_NAME PARTITION_NAME COMPRESSION COMPRESS_FOR
----------- ---------------- ----------- ------------------------------
SALES Q4_2004 ENABLED ARCHIVE HIGH
 ...
SALES Q3_2008 ENABLED QUERY HIGH
SALES Q4_2008 ENABLED QUERY HIGH
SALES Q1_2009 ENABLED ADVANCED
SALES Q2_2009 ENABLED ADVANCED

Determining Which Rows Are Compressed

To determine the compression level of a row, use the GET_COMPRESSION_TYPE function in the DBMS_COMPRESSION package.

For example, the following query returns the compression type for a row in the hr.employees table:

SELECT DECODE(DBMS_COMPRESSION.GET_COMPRESSION_TYPE(
 ownname => 'HR',
 objname => 'EMPLOYEES',
 subobjname => '',
 row_id => 'AAAVEIAAGAAAABTAAD'),
 1, 'No Compression',
 2, 'Advanced Row Compression',
 4, 'Hybrid Columnar Compression for Query High',
 8, 'Hybrid Columnar Compression for Query Low',
 16, 'Hybrid Columnar Compression for Archive High',
 32, 'Hybrid Columnar Compression for Archive Low',
 4096, 'Basic Table Compression',
 'Unknown Compression Type') compression_type
FROM DUAL;

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for additional information about GET_COMPRESSION_TYPE

Changing the Compression Level

You can change the compression level for a partition, table, or tablespace. For example, suppose a company uses warehouse compression for its sales data, but sales data older than six months is rarely accessed. If the sales data is stored in a table that is partitioned based on the age of the data, then the compression level for the older data can be changed to archive compression to free disk space.

To change the compression level for a partition or subpartition, you can use the following statements:

	
ALTER TABLE ... MOVE PARTITION ... ONLINE

	
ALTER TABLE ... MOVE SUBPARTITION ... ONLINE

These two statements support the ONLINE keyword, which enables DML operations to run uninterrupted on the partition or subpartition that is being moved. These statements also automatically keep all the indexes updated while the partition or subpartition is being moved. You can also use the ALTER TABLE...MODIFY PARTITION statement or online redefinition to change the compression level for a partition.

If a table is not partitioned, then you can use the ALTER TABLE...MOVE...COMPRESS FOR... statement to change the compression level. The ALTER TABLE...MOVE statement does not permit DML statements against the table while the command is running. However, you can also use online redefinition to compress a table, which keeps the table available for queries and DML statements during the redefinition.

To change the compression level for a tablespace, use the ALTER TABLESPACE statement.

	
See Also:

	
"Moving a Table to a New Segment or Tablespace" for additional information about the ALTER TABLE command

	
"Redefining Tables Online"

	
Oracle Database PL/SQL Packages and Types Reference for additional information about the DBMS_REDEFINITION package

Adding and Dropping Columns in Compressed Tables

The following restrictions apply when adding columns to compressed tables:

	
Basic table compression: You cannot specify a default value for an added column.

	
Advanced row compression, warehouse compression, and archive compression: If a default value is specified for an added column and the table is already populated, then the conditions for optimized add column behavior must be met. These conditions are described in Oracle Database SQL Language Reference.

The following restrictions apply when dropping columns in compressed tables:

	
Basic table compression: Dropping a column is not supported.

	
Advanced row compression, warehouse compression, and archive compression: DROP COLUMN is supported, but internally the database sets the column UNUSED to avoid long-running decompression and recompression operations.

Exporting and Importing Hybrid Columnar Compression Tables

Hybrid Columnar Compression tables can be imported using the impdp command of the Data Pump Import utility. By default, the impdp command preserves the table properties, and the imported table is a Hybrid Columnar Compression table. On tablespaces not supporting Hybrid Columnar Compression, the impdp command fails with an error. The tables can also be exported using the expdp command.

You can import the Hybrid Columnar Compression table as an uncompressed table using the TRANSFORM=SEGMENT_ATTRIBUTES:n option clause of the impdp command.

An uncompressed or advanced row-compressed table can be converted to Hybrid Columnar Compression format during import. To convert a non-Hybrid Columnar Compression table to a Hybrid Columnar Compression table, do the following:

	
Specify default compression for the tablespace using the ALTER TABLESPACE ... SET DEFAULT COMPRESS command.

	
Override the SEGMENT_ATTRIBUTES option of the imported table during import.

	
See Also:

	
Oracle Database Utilities for additional information about the Data Pump Import utility

	
Oracle Database SQL Language Reference for additional information about the ALTER TABLESPACE command

Restoring a Hybrid Columnar Compression Table

There may be times when a Hybrid Columnar Compression table must be restored from a backup. The table can be restored to a system that supports Hybrid Columnar Compression, or to a system that does not support Hybrid Columnar Compression. When restoring a table with Hybrid Columnar Compression to a system that supports Hybrid Columnar Compression, restore the file using Oracle Recovery Manager (RMAN) as usual.

When a Hybrid Columnar Compression table is restored to a system that does not support Hybrid Columnar Compression, you must convert the table from Hybrid Columnar Compression to advanced row compression or an uncompressed format. To restore the table, do the following:

	
Ensure there is sufficient storage in environment to hold the data in uncompressed or advanced row compression format.

	
Use RMAN to restore the Hybrid Columnar Compression tablespace.

	
Complete one of the following actions to convert the table from Hybrid Columnar Compression to advanced row compression or an uncompressed format:

	
Use the following statement to change the data compression from Hybrid Columnar Compression to ROW STORE COMPRESS ADVANCED:

ALTER TABLE table_name MOVE ROW STORE COMPRESS ADVANCED;

	
Use the following statement to change the data compression from Hybrid Columnar Compression to NOCOMPRESS:

ALTER TABLE table_name MOVE NOCOMPRESS;

	
Use the following statement to change each partition to NOCOMPRESS:

ALTER TABLE table_name MOVE PARTITION partition_name NOCOMPRESS;

Change each partition separately.

If DML is required on the partition while it is being moved, then include the ONLINE keyword:

ALTER TABLE table_name MOVE PARTITION partition_name NOCOMPRESS ONLINE;

Moving a partition online might take longer than moving a partition offline.

	
Use the following statement to move the data to NOCOMPRESS in parallel:

ALTER TABLE table_name MOVE NOCOMPRESS PARALLEL;

	
See ALso:

	
Oracle Database Backup and Recovery User's Guide for additional information about RMAN

	
Oracle Database SQL Language Reference for additional information about the ALTER TABLE command

Notes and Other Restrictions for Compressed Tables

The following are notes and restrictions related to compressed tables:

	
Online segment shrink is not supported for tables compressed with the following compression methods:

	
Basic table compression using ROW STORE COMPRESS BASIC

	
Warehouse compression using COLUMN STORE COMPRESS FOR QUERY

	
Archive compression using COLUMN STORE COMPRESS FOR ARCHIVE

	
The table compression methods described in this section do not apply to SecureFiles large objects (LOBs). SecureFiles LOBs have their own compression methods. See Oracle Database SecureFiles and Large Objects Developer's Guide for more information.

	
Compression technology uses CPU. Ensure that you have enough available CPU to handle the additional load.

	
Tables created with basic table compression have the PCT_FREE parameter automatically set to 0 unless you specify otherwise.

Packing Compressed Tables

If you use conventional DML on a table compressed with basic table compression or Hybrid Columnar Compression, then all inserted and updated rows are stored uncompressed or in a less-compressed format. To "pack" the compressed table so that these rows are compressed, use an ALTER TABLE MOVE statement. This operation takes an exclusive lock on the table, and therefore prevents any updates and loads until it completes. If this is not acceptable, then you can use online table redefinition.

When you move a partition or subpartition, you can use the ALTER TABLE MOVE statement to compress the partition or subpartition while still allowing DML operations to run interrupted on the partition or subpartition that is being moved.

	
See Also:

	
Oracle Database SQL Language Reference for more details on the CREATE TABLE...COMPRESS, ALTER TABLE...COMPRESS, and ALTER TABLE...MOVE statements, including restrictions

	
Oracle Database VLDB and Partitioning Guide for more information on table partitioning

	
"Improving INSERT Performance with Direct-Path INSERT"

	
"Redefining Tables Online"

	
"Moving a Table to a New Segment or Tablespace" for more information about moving a table, partition, or subpartition

Consider Using Segment-Level and Row-Level Compression Tiering

Segment-level compression tiering enables you to specify compression at the segment level within a table. Row-level compression tiering enables you to specify compression at the row level within a table. You can use a combination of these on the same table for fine-grained control over how the data in the table is stored and managed.

As user modifications to segments and rows change over time, it is often beneficial to change the compression level for them. For example, some segments and rows might be modified often for a short period of time after they are added to the database, but modifications might become less frequent over time.

You can use compression tiering to specify which segments and rows are compressed based on rules. For example, you can specify that rows that have not been modified in two weeks are compressed with advanced row compression. You can also specify that segments that have not been modified in six months are compressed with warehouse compression.

The following prerequisites must be met before you can use segment-level and row-level compression tiering:

	
The HEAT_MAP initialization parameter must be set to ON.

	
The COMPATIBLE initialization parameter must be set to 12.0.0 or higher.

To use segment-level compression tiering or row-level compression tiering, execute one of the following SQL statements and include an Automatic Data Optimization (ADO) policy that specifies the rules:

	
CREATE TABLE

	
ALTER TABLE

Example 20-6 Row-Level Compression Tiering

This example specifies row-level compression tiering for the oe.orders table. Oracle Database compresses rows using advanced row compression after 14 days with no modifications.

ALTER TABLE oe.orders ILM ADD POLICY
 ROW STORE COMPRESS ADVANCED
 ROW
 AFTER 14 DAYS OF NO MODIFICATION;

Example 20-7 Segment-Level Compression Tiering

This example specifies segment-level compression tiering for the oe.order_items table. Oracle Database compresses segments using warehouse (ARCHIVE HIGH) compression after six months with no modifications to any rows in the segment and no queries accessing any rows in the segment.

ALTER TABLE oe.order_items ILM ADD POLICY
 COLUMN STORE COMPRESS FOR ARCHIVE HIGH
 SEGMENT
 AFTER 6 MONTHS OF NO ACCESS;

	
See Also:

	
"Consider Using Table Compression" for information about different compression levels

	
Oracle Database VLDB and Partitioning Guide for more information about segment-level and row-level compression tiering

Understand Invisible Columns

You can make individual table columns invisible. Any generic access of a table does not show the invisible columns in the table. For example, the following operations do not display invisible columns in the output:

	
SELECT * FROM statements in SQL

	
DESCRIBE commands in SQL*Plus

	
%ROWTYPE attribute declarations in PL/SQL

	
Describes in Oracle Call Interface (OCI)

You can use a SELECT statement to display output for an invisible column only if you explicitly specify the invisible column in the column list. Similarly, you can insert a value into an invisible column only if you explicitly specify the invisible column in the column list for the INSERT statement. If you omit the column list in the INSERT statement, then the statement can only insert values into visible columns.

You can make a column invisible during table creation or when you add a column to a table, and you can later alter the table to make the same column visible. You can also alter a table to make a visible column invisible.

You might use invisible columns if you want to make changes to a table without disrupting applications that use the table. After you add an invisible column to a table, queries and other operations that must access the invisible column must refer to the column explicitly by name. When you migrate the application to account for the invisible columns, you can make the invisible columns visible.

Virtual columns can be invisible. Also, you can use an invisible column as a partitioning key during table creation.

The following restrictions apply to invisible columns:

	
The following types of tables cannot have invisible columns:

	
External tables

	
Cluster tables

	
Temporary tables

	
Attributes of user-defined types cannot be invisible.

	
Note:

Invisible columns are not the same as system-generated hidden columns. You can make invisible columns visible, but you cannot make hidden columns visible.

	
See Also:

	
"Creating Tables"

	
"Adding Table Columns"

	
"Modifying an Existing Column Definition"

Invisible Columns and Column Ordering

The database usually stores columns in the order in which they were listed in the CREATE TABLE statement. If you add a new column to a table, then the new column becomes the last column in the table's column order.

When a table contains one or more invisible columns, the invisible columns are not included in the column order for the table. Column ordering is important when all of the columns in a table are accessed. For example, a SELECT * FROM statement displays columns in the table's column order. Because invisible columns are not included in this type of generic access of a table, they are not included in the column order.

When you make an invisible column visible, the column is included in the table's column order as the last column. When you make a visible column invisible, the invisible column is not included in the column order, and the order of the visible columns in the table might be re-arranged.

For example, consider the following table with an invisible column:

CREATE TABLE mytable (a INT, b INT INVISIBLE, c INT);

Because column b is invisible, this table has the following column order:

	Column	Column Order
	a	1
	c	2

Next, make column b visible:

ALTER TABLE mytable MODIFY (b VISIBLE);

When you make column b visible, it becomes the last column in the table's column order. Therefore, the table has the following column order:

	Column	Column Order
	a	1
	c	2
	b	3

Consider another example that illustrates column ordering in tables with invisible columns. The following table does not contain any invisible columns:

CREATE TABLE mytable2 (x INT, y INT, z INT);

This table has the following column order:

	Column	Column Order
	x	1
	y	2
	z	3

Next, make column y invisible:

ALTER TABLE mytable2 MODIFY (y INVISIBLE);

When you make column y invisible, column y is no longer included in the table's column order, and it changes the column order of column z. Therefore, the table has the following column order:

	Column	Column Order
	x	1
	z	2

Make column y visible again:

ALTER TABLE mytable2 MODIFY (y VISIBLE);

Column y is now last in the table's column order:

	Column	Column Order
	x	1
	z	2
	y	3

Consider Encrypting Columns That Contain Sensitive Data

You can encrypt individual table columns that contain sensitive data. Examples of sensitive data include social security numbers, credit card numbers, and medical records. Column encryption is transparent to your applications, with some restrictions.

Although encryption is not meant to solve all security problems, it does protect your data from users who try to circumvent the security features of the database and access database files directly through the operating system file system.

Column encryption uses the Transparent Data Encryption feature of Oracle Database, which requires that you create a keystore to store the master encryption key for the database. The keystore must be open before you can create a table with encrypted columns and before you can store or retrieve encrypted data. When you open the keystore, it is available to all sessions, and it remains open until you explicitly close it or until the database is shut down.

Transparent Data Encryption supports industry-standard encryption algorithms, including the following Advanced Encryption Standard (AES) and Triple Data Encryption Standard (3DES) algorithms:

	
AES256

	
AES192

	
AES128

	
3DES168

You choose the algorithm to use when you create the table. All encrypted columns in the table use the same algorithm. The default is AES192. The encryption key length is implied by the algorithm name. For example, the AES128 algorithm uses 128-bit keys.

If you plan on encrypting many columns in one or more tables, you may want to consider encrypting an entire tablespace instead and storing these tables in that tablespace. Tablespace encryption, which also uses the Transparent Data Encryption feature but encrypts at the physical block level, can perform better than encrypting many columns. Another reason to encrypt at the tablespace level is to address the following limitations of column encryption:

	
Certain data types, such as object data types, are not supported for column encryption.

	
You cannot use the transportable tablespace feature for a tablespace that includes tables with encrypted columns.

	
Other restrictions, which are detailed in Oracle Database Advanced Security Guide.

	
See Also:

	
"Encrypted Tablespaces"

	
"Example: Creating a Table"

	
Oracle Database Advanced Security Guide for more information about Transparent Data Encryption

	
Oracle Database Enterprise User Security Administrator's Guide for instructions for creating and opening keystores

	
Oracle Database SQL Language Reference for information about the CREATE TABLE statement

	
Oracle Real Application Clusters Administration and Deployment Guide for information on using a keystore in an Oracle Real Application Clusters environment

	
"Transporting Tablespaces Between Databases"

Understand Deferred Segment Creation

When you create heap-organized tables in a locally managed tablespace, the database defers table segment creation until the first row is inserted.

In addition, segment creation is deferred for any LOB columns of the table, any indexes created implicitly as part of table creation, and any indexes subsequently explicitly created on the table.

The advantages of this space allocation method are the following:

	
It saves a significant amount of disk space in applications that create hundreds or thousands of tables upon installation, many of which might never be populated.

	
It reduces application installation time.

There is a small performance penalty when the first row is inserted, because the new segment must be created at that time.

To enable deferred segment creation, compatibility must be set to 11.2.0 or higher.

The new clauses for the CREATE TABLE statement are:

	
SEGMENT CREATION DEFERRED

	
SEGMENT CREATION IMMEDIATE

These clauses override the default setting of the DEFERRED_SEGMENT_CREATION initialization parameter, TRUE, which defers segment creation. To disable deferred segment creation, set this parameter to FALSE.

Note that when you create a table with deferred segment creation, the new table appears in the *_TABLES views, but no entry for it appears in the *_SEGMENTS views until you insert the first row.

You can verify deferred segment creation by viewing the SEGMENT_CREATED column in *_TABLES, *_INDEXES, and *_LOBS views for nonpartitioned tables, and in *_TAB_PARTITIONS, *_IND_PARTITIONS, and *_LOB_PARTITIONS views for partitioned tables.

	
Note:

With this new allocation method, it is essential that you do proper capacity planning so that the database has enough disk space to handle segment creation when tables are populated. See "Capacity Planning for Database Objects".

The following example creates two tables to demonstrate deferred segment creation. The first table uses the SEGMENT CREATION DEFERRED clause. No segments are created for it initially. The second table uses the SEGMENT CREATION IMMEDIATE clause and, therefore, segments are created for it immediately.

CREATE TABLE part_time_employees (
 empno NUMBER(8),
 name VARCHAR2(30),
 hourly_rate NUMBER (7,2)
)
 SEGMENT CREATION DEFERRED;

CREATE TABLE hourly_employees (
 empno NUMBER(8),
 name VARCHAR2(30),
 hourly_rate NUMBER (7,2)
)
 SEGMENT CREATION IMMEDIATE
 PARTITION BY RANGE(empno)
 (PARTITION empno_to_100 VALUES LESS THAN (100),
 PARTITION empno_to_200 VALUES LESS THAN (200));

The following query against USER_SEGMENTS returns two rows for HOURLY_EMPLOYEES, one for each partition, but returns no rows for PART_TIME_EMPLOYEES because segment creation for that table was deferred.

SELECT segment_name, partition_name FROM user_segments;

SEGMENT_NAME PARTITION_NAME
-------------------- ------------------------------
HOURLY_EMPLOYEES EMPNO_TO_100
HOURLY_EMPLOYEES EMPNO_TO_200

The USER_TABLES view shows that PART_TIME_EMPLOYEES has no segments:

SELECT table_name, segment_created FROM user_tables;

TABLE_NAME SEGMENT_CREATED
------------------------------ --
PART_TIME_EMPLOYEES NO
HOURLY_EMPLOYEES N/A

For the HOURLY_EMPLOYEES table, which is partitioned, the segment_created column is N/A because the USER_TABLES view does not provide that information for partitioned tables. It is available from the USER_TAB_PARTITIONS view, shown below.

SELECT table_name, segment_created, partition_name
 FROM user_tab_partitions;

TABLE_NAME SEGMENT_CREATED PARTITION_NAME
-------------------- -------------------- ------------------------------
HOURLY_EMPLOYEES YES EMPNO_TO_100
HOURLY_EMPLOYEES YES EMPNO_TO_200

The following statements add employees to these tables.

INSERT INTO hourly_employees VALUES (99, 'FRose', 20.00);
INSERT INTO hourly_employees VALUES (150, 'LRose', 25.00);

INSERT INTO part_time_employees VALUES (50, 'KReilly', 10.00);

Repeating the same SELECT statements as before shows that PART_TIME_EMPLOYEES now has a segment, due to the insertion of row data. HOURLY_EMPLOYEES remains as before.

SELECT segment_name, partition_name FROM user_segments;

SEGMENT_NAME PARTITION_NAME
-------------------- ------------------------------
PART_TIME_EMPLOYEES
HOURLY_EMPLOYEES EMPNO_TO_100
HOURLY_EMPLOYEES EMPNO_TO_200

SELECT table_name, segment_created FROM user_tables;

TABLE_NAME SEGMENT_CREATED
-------------------- --------------------
PART_TIME_EMPLOYEES YES
HOURLY_EMPLOYEES N/A

The USER_TAB_PARTITIONS view does not change.

	
See Also:

Oracle Database SQL Language Reference for notes and restrictions on deferred segment creation

Materializing Segments

The DBMS_SPACE_ADMIN package includes the MATERIALIZE_DEFERRED_SEGMENTS() procedure, which enables you to materialize segments for tables, table partitions, and dependent objects created with deferred segment creation enabled.

You can add segments as needed, rather than starting with more than you need and using database resources unnecessarily.

The following example materializes segments for the EMPLOYEES table in the HR schema.

BEGIN
 DBMS_SPACE_ADMIN.MATERIALIZE_DEFERRED_SEGMENTS(
 schema_name => 'HR',
 table_name => 'EMPLOYEES');
END;

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for details about this procedure

Estimate Table Size and Plan Accordingly

Estimate the sizes of tables before creating them. Preferably, do this as part of database planning. Knowing the sizes, and uses, for database tables is an important part of database planning.

You can use the combined estimated size of tables, along with estimates for indexes, undo space, and redo log files, to determine the amount of disk space that is required to hold an intended database. From these estimates, you can make correct hardware purchases.

You can use the estimated size and growth rate of an individual table to better determine the attributes of a tablespace and its underlying data files that are best suited for the table. This can enable you to more easily manage the table disk space and improve I/O performance of applications that use the table.

	
See Also:

"Capacity Planning for Database Objects"

Restrictions to Consider When Creating Tables

Here are some restrictions that may affect your table planning and usage:

	
Tables containing object types cannot be imported into a pre-Oracle8 database.

	
You cannot merge an exported table into a preexisting table having the same name in a different schema.

	
You cannot move types and extent tables to a different schema when the original data still exists in the database.

	
Oracle Database has a limit on the total number of columns that a table (or attributes that an object type) can have. See Oracle Database Reference for this limit.

Further, when you create a table that contains user-defined type data, the database maps columns of user-defined type to relational columns for storing the user-defined type data. This causes additional relational columns to be created. This results in "hidden" relational columns that are not visible in a DESCRIBE table statement and are not returned by a SELECT * statement. Therefore, when you create an object table, or a relational table with columns of REF, varray, nested table, or object type, be aware that the total number of columns that the database actually creates for the table can be more than those you specify.

	
See Also:

Oracle Database Object-Relational Developer's Guide for more information about user-defined types

Creating Tables

To create a new table in your schema, you must have the CREATE TABLE system privilege. To create a table in another user's schema, you must have the CREATE ANY TABLE system privilege. Additionally, the owner of the table must have a quota for the tablespace that contains the table, or the UNLIMITED TABLESPACE system privilege.

Create tables using the SQL statement CREATE TABLE.

This section contains the following topics:

	
Example: Creating a Table

	
Creating a Temporary Table

	
Parallelizing Table Creation

	
See Also:

Oracle Database SQL Language Reference for exact syntax of the CREATE TABLE and other SQL statements discussed in this chapter

Example: Creating a Table

When you issue the following statement, you create a table named admin_emp in the hr schema and store it in the admin_tbs tablespace:

CREATE TABLE hr.admin_emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 ssn NUMBER(9) ENCRYPT USING 'AES256',
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 photo BLOB,
 sal NUMBER(7,2),
 hrly_rate NUMBER(7,2) GENERATED ALWAYS AS (sal/2080),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
 CONSTRAINT admin_dept_fkey REFERENCES hr.departments
 (department_id),
 comments VARCHAR2(32767),
 status VARCHAR2(10) INVISIBLE)
 TABLESPACE admin_tbs
 STORAGE (INITIAL 50K);

COMMENT ON TABLE hr.admin_emp IS 'Enhanced employee table';

Note the following about this example:

	
Integrity constraints are defined on several columns of the table.

	
The STORAGE clause specifies the size of the first extent. See Oracle Database SQL Language Reference for details on this clause.

	
Encryption is defined on one column (ssn), through the Transparent Data Encryption feature of Oracle Database. The keystore must therefore be open for this CREATE TABLE statement to succeed.

	
The photo column is of data type BLOB, which is a member of the set of data types called large objects (LOBs). LOBs are used to store semi-structured data (such as an XML tree) and unstructured data (such as the stream of bits in a color image).

	
One column is defined as a virtual column (hrly_rate). This column computes the employee's hourly rate as the yearly salary divided by 2,080. See Oracle Database SQL Language Reference for a discussion of rules for virtual columns.

	
The comments column is a VARCHAR2 column that is larger than 4000 bytes. Beginning with Oracle Database 12c, the maximum size for the VARCHAR2, NVARCHAR2, and RAW data types is increased to 32767 bytes.

To use extended data types, set the MAX_STRING_SIZE initialization parameter to EXTENDED. See Oracle Database Reference for information about setting this parameter.

	
The status column is invisible.

	
A COMMENT statement is used to store a comment for the table. You query the *_TAB_COMMENTS data dictionary views to retrieve such comments. See Oracle Database SQL Language Reference for more information.

	
See Also:

	
Oracle Database SQL Language Reference for a description of the data types that you can specify for table columns

	
"Managing Integrity Constraints"

	
"Understand Invisible Columns"

	
Oracle Database Advanced Security Guide for information about Transparent Data Encryption

	
Oracle Database SecureFiles and Large Objects Developer's Guide for more information about LOBs.

Creating a Temporary Table

Temporary tables are useful in applications where a result set is to be buffered (temporarily persisted), perhaps because it is constructed by running multiple DML operations. For example, consider the following:

A Web-based airlines reservations application allows a customer to create several optional itineraries. Each itinerary is represented by a row in a temporary table. The application updates the rows to reflect changes in the itineraries. When the customer decides which itinerary she wants to use, the application moves the row for that itinerary to a persistent table.

During the session, the itinerary data is private. At the end of the session, the optional itineraries are dropped.

The definition of a temporary table is visible to all sessions, but the data in a temporary table is visible only to the session that inserts the data into the table.

Use the CREATE GLOBAL TEMPORARY TABLE statement to create a temporary table. The ON COMMIT clause indicates if the data in the table is transaction-specific (the default) or session-specific, the implications of which are as follows:

	ON COMMIT Setting	Implications
	DELETE ROWS	This creates a temporary table that is transaction specific. A session becomes bound to the temporary table with a transactions first insert into the table. The binding goes away at the end of the transaction. The database truncates the table (delete all rows) after each commit.
	PRESERVE ROWS	This creates a temporary table that is session specific. A session gets bound to the temporary table with the first insert into the table in the session. This binding goes away at the end of the session or by issuing a TRUNCATE of the table in the session. The database truncates the table when you terminate the session.

This statement creates a temporary table that is transaction specific:

CREATE GLOBAL TEMPORARY TABLE admin_work_area
 (startdate DATE,
 enddate DATE,
 class CHAR(20))
 ON COMMIT DELETE ROWS;

Indexes can be created on temporary tables. They are also temporary and the data in the index has the same session or transaction scope as the data in the underlying table.

By default, rows in a temporary table are stored in the default temporary tablespace of the user who creates it. However, you can assign a temporary table to another tablespace upon creation of the temporary table by using the TABLESPACE clause of CREATE GLOBAL TEMPORARY TABLE. You can use this feature to conserve space used by temporary tables. For example, if you must perform many small temporary table operations and the default temporary tablespace is configured for sort operations and thus uses a large extent size, these small operations will consume lots of unnecessary disk space. In this case it is better to allocate a second temporary tablespace with a smaller extent size.

The following two statements create a temporary tablespace with a 64 KB extent size, and then a new temporary table in that tablespace.

CREATE TEMPORARY TABLESPACE tbs_t1
 TEMPFILE 'tbs_t1.f' SIZE 50m REUSE AUTOEXTEND ON
 MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 64K;

CREATE GLOBAL TEMPORARY TABLE admin_work_area
 (startdate DATE,
 enddate DATE,
 class CHAR(20))
 ON COMMIT DELETE ROWS
 TABLESPACE tbs_t1;

	
See Also:

"Temporary Tablespaces"

Unlike permanent tables, temporary tables and their indexes do not automatically allocate a segment when they are created. Instead, segments are allocated when the first INSERT (or CREATE TABLE AS SELECT) is performed. Therefore, if a SELECT, UPDATE, or DELETE is performed before the first INSERT, then the table appears to be empty.

DDL operations (except TRUNCATE) are allowed on an existing temporary table only if no session is currently bound to that temporary table.

If you rollback a transaction, the data you entered is lost, although the table definition persists.

A transaction-specific temporary table allows only one transaction at a time. If there are several autonomous transactions in a single transaction scope, each autonomous transaction can use the table only as soon as the previous one commits.

Because the data in a temporary table is, by definition, temporary, backup and recovery of temporary table data is not available in the event of a system failure. To prepare for such a failure, you should develop alternative methods for preserving temporary table data.

Parallelizing Table Creation

When you specify the AS SELECT clause to create a table and populate it with data from another table, you can use parallel execution. The CREATE TABLE...AS SELECT statement contains two parts: a CREATE part (DDL) and a SELECT part (query). Oracle Database can parallelize both parts of the statement. The CREATE part is parallelized if one of the following is true:

	
A PARALLEL clause is included in the CREATE TABLE...AS SELECT statement

	
An ALTER SESSION FORCE PARALLEL DDL statement is specified

The query part is parallelized if all of the following are true:

	
The query includes a parallel hint specification (PARALLEL or PARALLEL_INDEX) or the CREATE part includes the PARALLEL clause or the schema objects referred to in the query have a PARALLEL declaration associated with them.

	
At least one of the tables specified in the query requires either a full table scan or an index range scan spanning multiple partitions.

If you parallelize the creation of a table, that table then has a parallel declaration (the PARALLEL clause) associated with it. Any subsequent DML or queries on the table, for which parallelization is possible, will attempt to use parallel execution.

The following simple statement parallelizes the creation of a table and stores the result in a compressed format, using table compression:

CREATE TABLE hr.admin_emp_dept
 PARALLEL COMPRESS
 AS SELECT * FROM hr.employees
 WHERE department_id = 10;

In this case, the PARALLEL clause tells the database to select an optimum number of parallel execution servers when creating the table.

	
See Also:

	
Oracle Database VLDB and Partitioning Guide for detailed information on using parallel execution

	
"Managing Processes for Parallel SQL Execution"

Loading Tables

This section describes techniques for loading data into tables. In contains the following topics:

	
Methods for Loading Tables

	
Improving INSERT Performance with Direct-Path INSERT

	
Using Conventional Inserts to Load Tables

	
Avoiding Bulk INSERT Failures with DML Error Logging

	
Note:

The default size of the first extent of any new segment for a partitioned table is 8 MB instead of 64 KB. This helps improve performance of inserts and queries on partitioned tables. Although partitioned tables will start with a larger initial size, once sufficient data is inserted, the space consumption will be the same as in previous releases. You can override this default by setting the INITIAL size in the storage clause for the table. This new default only applies to table partitions and LOB partitions.

Methods for Loading Tables

There are several means of inserting or initially loading data into your tables. Most commonly used are the following:

	Method	Description
	SQL*Loader	This Oracle utility program loads data from external files into tables of an Oracle Database.
Starting with Oracle Database 12c, SQL*Loader supports express mode. SQL*Loader express mode eliminates the need for a control file. Express mode simplifies loading data from external files. With express mode, SQL*Loader attempts to use the external table load method. If the external table load method is not possible, then SQL*Loader attempts to use direct path. If direct path is not possible, then SQL*Loader uses conventional path.

SQL*Loader express mode automatically identifies the input datatypes based on the table column types and controls parallelism. SQL*Loader uses defaults to simplify usage, but you can override many of the defaults with command line parameters. You optionally can specify the direct path or the conventional path load method instead of using express mode.

For information about SQL*Loader, see Oracle Database Utilities.

	CREATE TABLE ... AS SELECT statement (CTAS)	Using this SQL statement you can create a table and populate it with data selected from another existing table, including an external table.
	INSERT statement	The INSERT statement enables you to add rows to a table, either by specifying the column values or by specifying a subquery that selects data from another existing table, including an external table.
One form of the INSERT statement enables direct-path INSERT, which can improve performance, and is useful for bulk loading. See "Improving INSERT Performance with Direct-Path INSERT".

If you are inserting a lot of data and want to avoid statement termination and rollback if an error is encountered, you can insert with DML error logging. See "Avoiding Bulk INSERT Failures with DML Error Logging".

	MERGE statement	The MERGE statement enables you to insert rows into or update rows of a table, by selecting rows from another existing table. If a row in the new data corresponds to an item that already exists in the table, then an UPDATE is performed, else an INSERT is performed.

See Oracle Database SQL Language Reference for details on the CREATE TABLE ... AS SELECT, INSERT, and MERGE statements.

	
Note:

Only a few details and examples of inserting data into tables are included in this book. Oracle documentation specific to data warehousing and application development provide more extensive information about inserting and manipulating data in tables. See:
	
Oracle Database Data Warehousing Guide

	
Oracle Database SecureFiles and Large Objects Developer's Guide

	
See Also:

"Managing External Tables"

Improving INSERT Performance with Direct-Path INSERT

When loading large amounts of data, you can improve load performance by using direct-path INSERT.

This section contains:

	
About Direct-Path INSERT

	
How Direct-Path INSERT Works

	
Loading Data with Direct-Path INSERT

	
Specifying the Logging Mode for Direct-Path INSERT

	
Additional Considerations for Direct-Path INSERT

About Direct-Path INSERT

Oracle Database inserts data into a table in one of two ways:

	
During conventional INSERT operations, the database reuses free space in the table, interleaving newly inserted data with existing data. During such operations, the database also maintains referential integrity constraints.

	
During direct-path INSERT operations, the database appends the inserted data after existing data in the table. Data is written directly into data files, bypassing the buffer cache. Free space in the table is not reused, and referential integrity constraints are ignored. Direct-path INSERT can perform significantly better than conventional insert.

The database can insert data either in serial mode, where one process executes the statement, or in parallel mode, where multiple processes work together simultaneously to run a single SQL statement. The latter is referred to as parallel execution.

The following are benefits of direct-path INSERT:

	
During direct-path INSERT, you can disable the logging of redo and undo entries to reduce load time. Conventional insert operations, in contrast, must always log such entries, because those operations reuse free space and maintain referential integrity.

	
Direct-path INSERT operations ensure atomicity of the transaction, even when run in parallel mode. Atomicity cannot be guaranteed during parallel direct path loads (using SQL*Loader).

When performing parallel direct path loads, one notable difference between SQL*Loader and INSERT statements is the following: If errors occur during parallel direct path loads with SQL*Loader, the load completes, but some indexes could be marked UNUSABLE at the end of the load. Parallel direct-path INSERT, in contrast, rolls back the statement if errors occur during index update.

	
Note:

A conventional INSERT operation checks for violations of NOT NULL constraints during the insert. Therefore, if a NOT NULL constraint is violated for a conventional INSERT operation, then the error is returned during the insert. A direct-path INSERT operation checks for violations of NOT NULL constraints before the insert. Therefore, if a NOT NULL constraint is violated for a direct-path INSERT operation, then the error is returned before the insert.

How Direct-Path INSERT Works

You can use direct-path INSERT on both partitioned and nonpartitioned tables.

Serial Direct-Path INSERT into Partitioned or Nonpartitioned Tables

The single process inserts data beyond the current high water mark of the table segment or of each partition segment. (The high-water mark is the level at which blocks have never been formatted to receive data.) When a COMMIT runs, the high-water mark is updated to the new value, making the data visible to users.

Parallel Direct-Path INSERT into Partitioned Tables

This situation is analogous to serial direct-path INSERT. Each parallel execution server is assigned one or more partitions, with no more than one process working on a single partition. Each parallel execution server inserts data beyond the current high-water mark of its assigned partition segment(s). When a COMMIT runs, the high-water mark of each partition segment is updated to its new value, making the data visible to users.

Parallel Direct-Path INSERT into Nonpartitioned Tables

Each parallel execution server allocates a new temporary segment and inserts data into that temporary segment. When a COMMIT runs, the parallel execution coordinator merges the new temporary segments into the primary table segment, where it is visible to users.

Loading Data with Direct-Path INSERT

You can load data with direct-path INSERT by using direct-path INSERT SQL statements, inserting data in parallel mode, or by using the Oracle SQL*Loader utility in direct-path mode. A direct-path INSERT can be done in either serial or parallel mode.

Serial Mode Inserts with SQL Statements

You can activate direct-path INSERT in serial mode with SQL in the following ways:

	
If you are performing an INSERT with a subquery, specify the APPEND hint in each INSERT statement, either immediately after the INSERT keyword, or immediately after the SELECT keyword in the subquery of the INSERT statement.

	
If you are performing an INSERT with the VALUES clause, specify the APPEND_VALUES hint in each INSERT statement immediately after the INSERT keyword. Direct-path INSERT with the VALUES clause is best used when there are hundreds of thousands or millions of rows to load. The typical usage scenario is for array inserts using OCI. Another usage scenario might be inserts in a FORALL statement in PL/SQL.

If you specify the APPEND hint (as opposed to the APPEND_VALUES hint) in an INSERT statement with a VALUES clause, the APPEND hint is ignored and a conventional insert is performed.

The following is an example of using the APPEND hint to perform a direct-path INSERT:

INSERT /*+ APPEND */ INTO sales_hist SELECT * FROM sales WHERE cust_id=8890;

The following PL/SQL code fragment is an example of using the APPEND_VALUES hint:

FORALL i IN 1..numrecords
 INSERT /*+ APPEND_VALUES */ INTO orderdata
 VALUES(ordernum(i), custid(i), orderdate(i),shipmode(i), paymentid(i));
COMMIT;

Parallel Mode Inserts with SQL Statements

When you are inserting in parallel mode, direct-path INSERT is the default. However, you can insert in parallel mode using conventional INSERT by using the NOAPPEND PARALLEL hint.

To run in parallel DML mode, the following requirements must be met:

	
You must have Oracle Enterprise Edition installed.

	
You must enable parallel DML in your session. To do this, submit the following statement:

ALTER SESSION { ENABLE | FORCE } PARALLEL DML;

	
You must meet at least one of the following requirements:

	
Specify the parallel attribute for the target table, either at create time or subsequently

	
Specify the PARALLEL hint for each insert operation

	
Set the database initialization parameter PARALLEL_DEGREE_POLICY to AUTO

To disable direct-path INSERT, specify the NOAPPEND hint in each INSERT statement. Doing so overrides parallel DML mode.

	
Note:

You cannot query or modify data inserted using direct-path INSERT immediately after the insert is complete. If you attempt to do so, an ORA-12838 error is generated. You must first issue a COMMIT statement before attempting to read or modify the newly-inserted data.

	
See Also:

	
"Using Conventional Inserts to Load Tables"

	
Oracle Database SQL Tuning Guide for more information on using hints

	
Oracle Database SQL Language Reference for more information on the subquery syntax of INSERT statements and for additional restrictions on using direct-path INSERT

Specifying the Logging Mode for Direct-Path INSERT

Direct-path INSERT lets you choose whether to log redo and undo information during the insert operation.

	
You can specify logging mode for a table, partition, index, or LOB storage at create time (in a CREATE statement) or subsequently (in an ALTER statement).

	
If you do not specify either LOGGING or NOLOGGING at these times:

	
The logging attribute of a partition defaults to the logging attribute of its table.

	
The logging attribute of a table or index defaults to the logging attribute of the tablespace in which it resides.

	
The logging attribute of LOB storage defaults to LOGGING if you specify CACHE for LOB storage. If you do not specify CACHE, then the logging attributes defaults to that of the tablespace in which the LOB values resides.

	
You set the logging attribute of a tablespace in a CREATE TABLESPACE or ALTER TABLESPACE statements.

	
Note:

If the database or tablespace is in FORCE LOGGING mode, then direct-path INSERT always logs, regardless of the logging setting.

Direct-Path INSERT with Logging

In this mode, Oracle Database performs full redo logging for instance and media recovery. If the database is in ARCHIVELOG mode, then you can archive redo logs to tape. If the database is in NOARCHIVELOG mode, then you can recover instance crashes but not disk failures.

Direct-Path INSERT without Logging

In this mode, Oracle Database inserts data without redo or undo logging. Instead, the database logs a small number of block range invalidation redo records and periodically updates the control file with information about the most recent direct write.

Direct-path INSERT without logging improves performance. However, if you subsequently must perform media recovery, the invalidation redo records mark a range of blocks as logically corrupt, because no redo data was logged for them. Therefore, it is important that you back up the data after such an insert operation.

You can significantly improve the performance of unrecoverable direct-path inserts by disabling the periodic update of the control files. You do so by setting the initialization parameter DB_UNRECOVERABLE_SCN_TRACKING to FALSE. However, if you perform an unrecoverable direct-path insert with these control file updates disabled, you will no longer be able to accurately query the database to determine if any data files are currently unrecoverable.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide for more information about unrecoverable data files

	
The section "Determining If a Backup Is Required After Unrecoverable Operations" in Oracle Data Guard Concepts and Administration

Additional Considerations for Direct-Path INSERT

The following are some additional considerations when using direct-path INSERT.

Compressed Tables

If a table is created with the basic table compression, then you must use direct-path INSERT to compress table data as it is loaded. If a table is created with advanced row, warehouse, or archive compression, then best compression ratios are achieved with direct-path INSERT.

See "Consider Using Table Compression" for more information.

Index Maintenance with Direct-Path INSERT

Oracle Database performs index maintenance at the end of direct-path INSERT operations on tables (partitioned or nonpartitioned) that have indexes. This index maintenance is performed by the parallel execution servers for parallel direct-path INSERT or by the single process for serial direct-path INSERT. You can avoid the performance impact of index maintenance by making the index unusable before the INSERT operation and then rebuilding it afterward.

	
See Also:

"Making an Index Unusable"

Space Considerations with Direct-Path INSERT

Direct-path INSERT requires more space than conventional path INSERT.

All serial direct-path INSERT operations, as well as parallel direct-path INSERT into partitioned tables, insert data above the high-water mark of the affected segment. This requires some additional space.

Parallel direct-path INSERT into nonpartitioned tables requires even more space, because it creates a temporary segment for each degree of parallelism. If the nonpartitioned table is not in a locally managed tablespace in automatic segment-space management mode, you can modify the values of the NEXT and PCTINCREASE storage parameter and MINIMUM EXTENT tablespace parameter to provide sufficient (but not excess) storage for the temporary segments. Choose values for these parameters so that:

	
The size of each extent is not too small (no less than 1 MB). This setting affects the total number of extents in the object.

	
The size of each extent is not so large that the parallel INSERT results in wasted space on segments that are larger than necessary.

After the direct-path INSERT operation is complete, you can reset these parameters to settings more appropriate for serial operations.

Locking Considerations with Direct-Path INSERT

During direct-path INSERT, the database obtains exclusive locks on the table (or on all partitions of a partitioned table). As a result, users cannot perform any concurrent insert, update, or delete operations on the table, and concurrent index creation and build operations are not permitted. Concurrent queries, however, are supported, but the query will return only the information before the insert operation.

Using Conventional Inserts to Load Tables

During conventional INSERT operations, the database reuses free space in the table, interleaving newly inserted data with existing data. During such operations, the database also maintains referential integrity constraints. Unlike direct-path INSERT operations, conventional INSERT operations do not require an exclusive lock on the table.

Several other restrictions apply to direct-path INSERT operations that do not apply to conventional INSERT operations. See Oracle Database SQL Language Reference for information about these restrictions.

You can perform a conventional INSERT operation in serial mode or in parallel mode using the NOAPPEND hint.

The following is an example of using the NOAPPEND hint to perform a conventional INSERT in serial mode:

INSERT /*+ NOAPPEND */ INTO sales_hist SELECT * FROM sales WHERE cust_id=8890;

The following is an example of using the NOAPPEND hint to perform a conventional INSERT in parallel mode:

INSERT /*+ NOAPPEND PARALLEL */ INTO sales_hist
 SELECT * FROM sales;

To run in parallel DML mode, the following requirements must be met:

	
You must have Oracle Enterprise Edition installed.

	
You must enable parallel DML in your session. To do this, submit the following statement:

ALTER SESSION { ENABLE | FORCE } PARALLEL DML;

	
You must meet at least one of the following requirements:

	
Specify the parallel attribute for the target table, either at create time or subsequently

	
Specify the PARALLEL hint for each insert operation

	
Set the database initialization parameter PARALLEL_DEGREE_POLICY to AUTO

Avoiding Bulk INSERT Failures with DML Error Logging

When you load a table using an INSERT statement with subquery, if an error occurs, the statement is terminated and rolled back in its entirety. This can be wasteful of time and system resources. For such INSERT statements, you can avoid this situation by using the DML error logging feature.

To use DML error logging, you add a statement clause that specifies the name of an error logging table into which the database records errors encountered during DML operations. When you add this error logging clause to the INSERT statement, certain types of errors no longer terminate and roll back the statement. Instead, each error is logged and the statement continues. You then take corrective action on the erroneous rows at a later time.

DML error logging works with INSERT, UPDATE, MERGE, and DELETE statements. This section focuses on INSERT statements.

To insert data with DML error logging:

	
Create an error logging table. (Optional)

You can create the table manually or use the DBMS_ERRLOG package to automatically create it for you. See "Creating an Error Logging Table" for details.

	
Execute an INSERT statement and include an error logging clause. This clause:

	
Optionally references the error logging table that you created. If you do not provide an error logging table name, the database logs to an error logging table with a default name. The default error logging table name is ERR$_ followed by the first 25 characters of the name of the table that is being inserted into.

	
Optionally includes a tag (a numeric or string literal in parentheses) that gets added to the error log to help identify the statement that caused the errors. If the tag is omitted, a NULL value is used.

	
Optionally includes a REJECT LIMIT subclause.

This subclause indicates the maximum number of errors that can be encountered before the INSERT statement terminates and rolls back. You can also specify UNLIMITED. The default reject limit is zero, which means that upon encountering the first error, the error is logged and the statement rolls back. For parallel DML operations, the reject limit is applied to each parallel execution server.

	
Note:

If the statement exceeds the reject limit and rolls back, the error logging table retains the log entries recorded so far.

See Oracle Database SQL Language Reference for error logging clause syntax information.

	
Query the error logging table and take corrective action for the rows that generated errors.

See "Error Logging Table Format", later in this section, for details on the error logging table structure.

Example The following statement inserts rows into the DW_EMPL table and logs errors to the ERR_EMPL table. The tag 'daily_load' is copied to each log entry. The statement terminates and rolls back if the number of errors exceeds 25.

INSERT INTO dw_empl
 SELECT employee_id, first_name, last_name, hire_date, salary, department_id
 FROM employees
 WHERE hire_date > sysdate - 7
 LOG ERRORS INTO err_empl ('daily_load') REJECT LIMIT 25

For more examples, see Oracle Database SQL Language Reference and Oracle Database Data Warehousing Guide.

Error Logging Table Format

The error logging table consists of two parts:

	
A mandatory set of columns that describe the error. For example, one column contains the Oracle error number.

Table 20-3 lists these error description columns.

	
An optional set of columns that contain data from the row that caused the error. The column names match the column names from the table being inserted into (the "DML table").

The number of columns in this part of the error logging table can be zero, one, or more, up to the number of columns in the DML table. If a column exists in the error logging table that has the same name as a column in the DML table, the corresponding data from the offending row being inserted is written to this error logging table column. If a DML table column does not have a corresponding column in the error logging table, the column is not logged. If the error logging table contains a column with a name that does not match a DML table column, the column is ignored.

Because type conversion errors are one type of error that might occur, the data types of the optional columns in the error logging table must be types that can capture any value without data loss or conversion errors. (If the optional log columns were of the same types as the DML table columns, capturing the problematic data into the log could suffer the same data conversion problem that caused the error.) The database makes a best effort to log a meaningful value for data that causes conversion errors. If a value cannot be derived, NULL is logged for the column. An error on insertion into the error logging table causes the statement to terminate.

Table 20-4 lists the recommended error logging table column data types to use for each data type from the DML table. These recommended data types are used when you create the error logging table automatically with the DBMS_ERRLOG package.

Table 20-3 Mandatory Error Description Columns

	Column Name	Data Type	Description
	
ORA_ERR_NUMBER$

	
NUMBER

	
Oracle error number

	
ORA_ERR_MESG$

	
VARCHAR2(2000)

	
Oracle error message text

	
ORA_ERR_ROWID$

	
ROWID

	
Rowid of the row in error (for update and delete)

	
ORA_ERR_OPTYP$

	
VARCHAR2(2)

	
Type of operation: insert (I), update (U), delete (D)

Note: Errors from the update clause and insert clause of a MERGE operation are distinguished by the U and I values.

	
ORA_ERR_TAG$

	
VARCHAR2(2000)

	
Value of the tag supplied by the user in the error logging clause

Table 20-4 Error Logging Table Column Data Types

	DML Table Column Type	Error Logging Table Column Type	Notes
	
NUMBER

	
VARCHAR2(4000)

	
Able to log conversion errors

	
CHAR/VARCHAR2(n)

	
VARCHAR2(4000)

	
Logs any value without information loss

	
NCHAR/NVARCHAR2(n)

	
NVARCHAR2(4000)

	
Logs any value without information loss

	
DATE/TIMESTAMP

	
VARCHAR2(4000)

	
Logs any value without information loss. Converts to character format with the default date/time format mask

	
RAW

	
RAW(2000)

	
Logs any value without information loss

	
ROWID

	
UROWID

	
Logs any rowid type

	
LONG/LOB

	
	
Not supported

	
User-defined types

	
	
Not supported

Creating an Error Logging Table

You can create an error logging table manually, or you can use a PL/SQL package to automatically create one for you.

Creating an Error Logging Table Automatically

You use the DBMS_ERRLOG package to automatically create an error logging table. The CREATE_ERROR_LOG procedure creates an error logging table with all of the mandatory error description columns plus all of the columns from the named DML table, and performs the data type mappings shown in Table 20-4.

The following statement creates the error logging table used in the previous example.

EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('DW_EMPL', 'ERR_EMPL');

See Oracle Database PL/SQL Packages and Types Reference for details on DBMS_ERRLOG.

Creating an Error Logging Table Manually

You use standard DDL to manually create the error logging table. See "Error Logging Table Format" for table structure requirements. You must include all mandatory error description columns. They can be in any order, but must be the first columns in the table.

Error Logging Restrictions and Caveats

Oracle Database logs the following errors during DML operations:

	
Column values that are too large

	
Constraint violations (NOT NULL, unique, referential, and check constraints)

	
Errors raised during trigger execution

	
Errors resulting from type conversion between a column in a subquery and the corresponding column of the table

	
Partition mapping errors

	
Certain MERGE operation errors (ORA-30926: Unable to get a stable set of rows for MERGE operation.)

Some errors are not logged, and cause the DML operation to terminate and roll back. For a list of these errors and for other DML logging restrictions, see the discussion of the error_logging_clause in the INSERT section of Oracle Database SQL Language Reference.

Space Considerations

Ensure that you consider space requirements before using DML error logging. You require available space not only for the table being inserted into, but also for the error logging table.

Security

The user who issues the INSERT statement with DML error logging must have INSERT privileges on the error logging table.

	
See Also:

Oracle Database SQL Language Reference and Oracle Database Data Warehousing Guide for DML error logging examples.

Automatically Collecting Statistics on Tables

The PL/SQL package DBMS_STATS lets you generate and manage statistics for cost-based optimization. You can use this package to gather, modify, view, export, import, and delete statistics. You can also use this package to identify or name statistics that have been gathered.

Formerly, you enabled DBMS_STATS to automatically gather statistics for a table by specifying the MONITORING keyword in the CREATE (or ALTER) TABLE statement. The MONITORING and NOMONITORING keywords have been deprecated and statistics are collected automatically. If you do specify these keywords, they are ignored.

Monitoring tracks the approximate number of INSERT, UPDATE, and DELETE operations for the table since the last time statistics were gathered. Information about how many rows are affected is maintained in the SGA, until periodically (about every three hours) SMON incorporates the data into the data dictionary. This data dictionary information is made visible through the DBA_TAB_MODIFICATIONS,ALL_TAB_MODIFICATIONS, or USER_TAB_MODIFICATIONS views. The database uses these views to identify tables with stale statistics.

The default for the STATISTICS_LEVEL initialization parameter is TYPICAL, which enables automatic statistics collection. Automatic statistics collection and the DBMS_STATS package enable the optimizer to generate accurate execution plans. Setting the STATISTICS_LEVEL initialization parameter to BASIC disables the collection of many of the important statistics required by Oracle Database features and functionality. To disable monitoring of all tables, set the STATISTICS_LEVEL initialization parameter to BASIC. Automatic statistics collection and the DBMS_STATS package enable the optimizer to generate accurate execution plans.

	
See Also:

	
Oracle Database Reference for detailed information on the STATISTICS_LEVEL initialization parameter

	
Oracle Database SQL Tuning Guide for information on managing optimizer statistics

	
Oracle Database PL/SQL Packages and Types Reference for information about using the DBMS_STATS package

	
"About Automated Maintenance Tasks" for information on using the Scheduler to collect statistics automatically

Altering Tables

You alter a table using the ALTER TABLE statement. To alter a table, the table must be contained in your schema, or you must have either the ALTER object privilege for the table or the ALTER ANY TABLE system privilege.

Many of the usages of the ALTER TABLE statement are presented in the following sections:

	
Reasons for Using the ALTER TABLE Statement

	
Altering Physical Attributes of a Table

	
Moving a Table to a New Segment or Tablespace

	
Manually Allocating Storage for a Table

	
Modifying an Existing Column Definition

	
Adding Table Columns

	
Renaming Table Columns

	
Dropping Table Columns

	
Placing a Table in Read-Only Mode

	
Caution:

Before altering a table, familiarize yourself with the consequences of doing so. The Oracle Database SQL Language Reference lists many of these consequences in the descriptions of the ALTER TABLE clauses.
If a view, materialized view, trigger, domain index, function-based index, check constraint, function, procedure of package depends on a base table, the alteration of the base table or its columns can affect the dependent object. See "Managing Object Dependencies" for information about how the database manages dependencies.

Reasons for Using the ALTER TABLE Statement

You can use the ALTER TABLE statement to perform any of the following actions that affect a table:

	
Modify physical characteristics (INITRANS or storage parameters)

	
Move the table to a new segment or tablespace

	
Explicitly allocate an extent or deallocate unused space

	
Add, drop, or rename columns, or modify an existing column definition (data type, length, default value, NOT NULL integrity constraint, column expression (for virtual columns), and encryption properties.)

	
Modify the logging attributes of the table

	
Modify the CACHE/NOCACHE attributes

	
Add, modify or drop integrity constraints associated with the table

	
Enable or disable integrity constraints or triggers associated with the table

	
Modify the degree of parallelism for the table

	
Rename a table

	
Put a table in read-only mode and return it to read/write mode

	
Add or modify index-organized table characteristics

	
Alter the characteristics of an external table

	
Add or modify LOB columns

	
Add or modify object type, nested table, or varray columns

	
Modify table partitions

Starting with Oracle Database 12c, you can perform some operations on more than two partitions or subpartitions at a time, such as split partition and merge partitions operations. See Oracle Database VLDB and Partitioning Guide for information.

Many of these operations are discussed in succeeding sections.

Altering Physical Attributes of a Table

When altering the transaction entry setting INITRANS of a table, note that a new setting for INITRANS applies only to data blocks subsequently allocated for the table.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new settings for the other storage parameters (for example, NEXT, PCTINCREASE) affect only extents subsequently allocated for the table. The size of the next extent allocated is determined by the current values of NEXT and PCTINCREASE, and is not based on previous values of these parameters.

	
See Also:

The discussions of the physical attributes clause and the storage clause in Oracle Database SQL Language Reference

Moving a Table to a New Segment or Tablespace

The ALTER TABLE...MOVE statement enables you to relocate data of a nonpartitioned table or of a partition of a partitioned table into a new segment, and optionally into a different tablespace for which you have quota. This statement also lets you modify any of the storage attributes of the table or partition, including those which cannot be modified using ALTER TABLE. You can also use the ALTER TABLE...MOVE statement with a COMPRESS clause to store the new segment using table compression.

Tables are usually moved either to enable compression or to perform data maintenance. For example, you can move a table from one tablespace to another.

Most ALTER TABLE...MOVE statements do not permit DML against the table while the statement is executing. The exceptions are the following statements:

	
ALTER TABLE ... MOVE PARTITION ... ONLINE

	
ALTER TABLE ... MOVE SUBPARTITION ... ONLINE

These two statements support the ONLINE keyword, which enables DML operations to run uninterrupted on the partition or subpartition that is being moved. For operations that do not move a partition or subpartition, you can use online redefinition to leave the table available for DML while moving it. See "Redefining Tables Online".

This section includes the following topics:

	
Moving a Table

	
Moving a Table Partition or Subpartition Online

	
See Also:

	
"Consider Encrypting Columns That Contain Sensitive Data" for more information on Transparent Data Encryption

	
"Consider Using Table Compression"

Moving a Table

Use the ALTER TABLE...MOVE statement to move a table to a new segment or tablespace. Moving a table changes the rowids of the rows in the table. This causes indexes on the table to be marked UNUSABLE, and DML accessing the table using these indexes receive an ORA-01502 error. The indexes on the table must be dropped or rebuilt. Likewise, any statistics for the table become invalid, and new statistics should be collected after moving the table.

If the table includes LOB column(s), then this statement can be used to move the table along with LOB data and LOB index segments (associated with this table) which the user explicitly specifies. If not specified, then the default is to not move the LOB data and LOB index segments.

To move a table:

	
In SQL*Plus, connect as a user with the necessary privileges to alter the table.

See Oracle Database SQL Language Reference for information about the privileges required to alter a table.

See "Connecting to the Database with SQL*Plus".

	
Run the ALTER TABLE ... MOVE statement.

Example 20-8 Moving a Table to a New Segment and Tablespace

The following statement moves the hr.jobs table to a new segment and tablespace, specifying new storage parameters:

ALTER TABLE hr.jobs MOVE
 STORAGE (INITIAL 20K
 NEXT 40K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 0)
 TABLESPACE hr_tbs;

	
See Also:

Oracle Database SQL Language Reference

Moving a Table Partition or Subpartition Online

Use the ALTER TABLE...MOVE PARTITION statement or ALTER TABLE...MOVE SUBPARTITION statement to move a table partition or subpartition, respectively. When you use the ONLINE keyword with either of these statements, DML operations can continue to run uninterrupted on the partition or subpartition that is being moved. If you do not include the ONLINE keyword, then DML operations are not permitted on the data in the partition or subpartition until the move operation is complete.

When you include the UPDATE INDEXES clause, these statements maintain both local and global indexes during the move. Therefore, using the ONLINE keyword with these statements eliminates the time it takes to regain partition performance after the move by maintaining global indexes and manually rebuilding indexes.

Some restrictions apply to moving table partitions and subpartitions. See Oracle Database SQL Language Reference for information about these restrictions.

To move a table partition or subpartition online:

	
In SQL*Plus, connect as a user with the necessary privileges to alter the table and move the partition or subpartition.

See Oracle Database SQL Language Reference for information about the required privileges.

See "Connecting to the Database with SQL*Plus".

	
Run the ALTER TABLE ... MOVE PARTITION or ALTER TABLE ... MOVE SUBPARTITION statement.

Example 20-9 Moving a Table Partition to a New Segment

The following statement moves the sales_q4_2003 partition of the sh.sales table to a new segment with advanced row compression and index maintenance included:

ALTER TABLE sales MOVE PARTITION sales_q4_2003
 ROW STORE COMPRESS ADVANCED UPDATE INDEXES ONLINE;

	
See Also:

	
Oracle Database VLDB and Partitioning Guide

	
Oracle Database SQL Language Reference

Manually Allocating Storage for a Table

Oracle Database dynamically allocates additional extents for the data segment of a table, as required. However, perhaps you want to allocate an additional extent for a table explicitly. For example, in an Oracle Real Application Clusters environment, an extent of a table can be allocated explicitly for a specific instance.

A new extent can be allocated for a table using the ALTER TABLE...ALLOCATE EXTENT clause.

You can also explicitly deallocate unused space using the DEALLOCATE UNUSED clause of ALTER TABLE. This is described in "Reclaiming Unused Space".

Modifying an Existing Column Definition

Use the ALTER TABLE...MODIFY statement to modify an existing column definition. You can modify column data type, default value, column constraint, column expression (for virtual columns), column encryption, and visible/invisible property.

You can increase the length of an existing column, or decrease it, if all existing data satisfies the new length. Beginning with Oracle Database 12c, you can specify a maximum size of 32767 bytes for the VARCHAR2, NVARCHAR2, and RAW data types. Before this release, the maximum size was 4000 bytes for the VARCHAR2 and NVARCHAR2 data types, and 2000 bytes for the RAW data type. To use extended data types, set the MAX_STRING_SIZE initialization parameter to EXTENDED.

You can change a column from byte semantics to CHAR semantics or vice versa. You must set the initialization parameter BLANK_TRIMMING=TRUE to decrease the length of a non-empty CHAR column.

If you are modifying a table to increase the length of a column of data type CHAR, then realize that this can be a time consuming operation and can require substantial additional storage, especially if the table contains many rows. This is because the CHAR value in each row must be blank-padded to satisfy the new column length.

If you modify the visible/invisible property of a column, then you cannot include any other column modification options in the same SQL statement.

Example 20-10 Changing the Length of a Column to a Size Larger Than 4000 Bytes

This example changes the length of the product_description column in the oe.product_information table to 32767 bytes.

ALTER TABLE oe.product_information MODIFY(product_description VARCHAR2(32767));

	
See Also:

	
Oracle Database SQL Language Reference for additional information about modifying table columns and additional restrictions

	
Oracle Database Reference for information about the MAX_STRING_SIZE initialization parameter

Adding Table Columns

To add a column to an existing table, use the ALTER TABLE...ADD statement.

The following statement alters the hr.admin_emp table to add a new column named bonus:

ALTER TABLE hr.admin_emp
 ADD (bonus NUMBER (7,2));

If a new column is added to a table, then the column is initially NULL unless you specify the DEFAULT clause. If you specify the DEFAULT clause for a nullable column for some table types, then the default value is stored as metadata, but the column itself is not populated with data. However, subsequent queries that specify the new column are rewritten so that the default value is returned in the result set. This behavior optimizes the resource usage and storage requirements for the operation.

You can add a column with a NOT NULL constraint only if the table does not contain any rows, or you specify a default value.

	
See Also:

Oracle Database SQL Language Reference for rules and restrictions for adding table columns

Adding a Column to a Compressed Table

If you enable basic table compression on a table, then you can add columns only if you do not specify default values.

If you enable advanced row compression on a table, then you can add columns to that table with or without default values. If a default value is specified, then the column must be NOT NULL.

	
See Also:

"Consider Using Table Compression"

Adding a Virtual Column

If the new column is a virtual column, its value is determined by its column expression. (Note that a virtual column's value is calculated only when it is queried.)

	
See Also:

	
Oracle Database Concepts

	
"Example: Creating a Table" for an example of a virtual column

Renaming Table Columns

Oracle Database lets you rename existing columns in a table. Use the RENAME COLUMN clause of the ALTER TABLE statement to rename a column. The new name must not conflict with the name of any existing column in the table. No other clauses are allowed with the RENAME COLUMN clause.

The following statement renames the comm column of the hr.admin_emp table.

ALTER TABLE hr.admin_emp
 RENAME COLUMN comm TO commission;

As noted earlier, altering a table column can invalidate dependent objects. However, when you rename a column, the database updates associated data dictionary tables to ensure that function-based indexes and check constraints remain valid.

Oracle Database also lets you rename column constraints. This is discussed in "Renaming Constraints".

	
Note:

The RENAME TO clause of ALTER TABLE appears similar in syntax to the RENAME COLUMN clause, but is used for renaming the table itself.

Dropping Table Columns

You can drop columns that are no longer needed from a table, including an index-organized table. This provides a convenient means to free space in a database, and avoids your having to export/import data then re-create indexes and constraints.

You cannot drop all columns from a table, nor can you drop columns from a table owned by SYS. Any attempt to do so results in an error.

	
See Also:

Oracle Database SQL Language Reference for information about additional restrictions and options for dropping columns from a table

Removing Columns from Tables

When you issue an ALTER TABLE...DROP COLUMN statement, the column descriptor and the data associated with the target column are removed from each row in the table. You can drop multiple columns with one statement.

The following statements are examples of dropping columns from the hr.admin_emp table. The first statement drops only the sal column:

ALTER TABLE hr.admin_emp DROP COLUMN sal;

The next statement drops both the bonus and comm columns:

ALTER TABLE hr.admin_emp DROP (bonus, commission);

Marking Columns Unused

If you are concerned about the length of time it could take to drop column data from all of the rows in a large table, you can use the ALTER TABLE...SET UNUSED statement. This statement marks one or more columns as unused, but does not actually remove the target column data or restore the disk space occupied by these columns. However, a column that is marked as unused is not displayed in queries or data dictionary views, and its name is removed so that a new column can reuse that name. All constraints, indexes, and statistics defined on the column are also removed.

To mark the hiredate and mgr columns as unused, execute the following statement:

ALTER TABLE hr.admin_emp SET UNUSED (hiredate, mgr);

You can later remove columns that are marked as unused by issuing an ALTER TABLE...DROP UNUSED COLUMNS statement. Unused columns are also removed from the target table whenever an explicit drop of any particular column or columns of the table is issued.

The data dictionary views USER_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS, or DBA_UNUSED_COL_TABS can be used to list all tables containing unused columns. The COUNT field shows the number of unused columns in the table.

SELECT * FROM DBA_UNUSED_COL_TABS;

OWNER TABLE_NAME COUNT
--------------------------- --------------------------- -----
HR ADMIN_EMP 2

For external tables, the SET UNUSED statement is transparently converted into an ALTER TABLE DROP COLUMN statement. Because external tables consist of metadata only in the database, the DROP COLUMN statement performs equivalently to the SET UNUSED statement.

Removing Unused Columns

The ALTER TABLE...DROP UNUSED COLUMNS statement is the only action allowed on unused columns. It physically removes unused columns from the table and reclaims disk space.

In the ALTER TABLE statement that follows, the optional clause CHECKPOINT is specified. This clause causes a checkpoint to be applied after processing the specified number of rows, in this case 250. Checkpointing cuts down on the amount of undo logs accumulated during the drop column operation to avoid a potential exhaustion of undo space.

ALTER TABLE hr.admin_emp DROP UNUSED COLUMNS CHECKPOINT 250;

Dropping Columns in Compressed Tables

If you enable advanced row compression on a table, you can drop table columns. If you enable basic table compression only, you cannot drop columns.

	
See Also:

"Consider Using Table Compression"

Placing a Table in Read-Only Mode

You can place a table in read-only mode with the ALTER TABLE...READ ONLY statement, and return it to read/write mode with the ALTER TABLE...READ WRITE statement. An example of a table for which read-only mode makes sense is a configuration table. If your application contains configuration tables that are not modified after installation and that must not be modified by users, your application installation scripts can place these tables in read-only mode.

To place a table in read-only mode, you must have the ALTER TABLE privilege on the table or the ALTER ANY TABLE privilege. In addition, the COMPATIBLE initialization parameter must be set to 11.1.0 or higher.

The following example places the SALES table in read-only mode:

ALTER TABLE SALES READ ONLY;

The following example returns the table to read/write mode:

ALTER TABLE SALES READ WRITE;

When a table is in read-only mode, operations that attempt to modify table data are disallowed. The following operations are not permitted on a read-only table:

	
All DML operations on the table or any of its partitions

	
TRUNCATE TABLE

	
SELECT FOR UPDATE

	
ALTER TABLE ADD/MODIFY/RENAME/DROP COLUMN

	
ALTER TABLE SET COLUMN UNUSED

	
ALTER TABLE DROP/TRUNCATE/EXCHANGE (SUB)PARTITION

	
ALTER TABLE UPGRADE INCLUDING DATA or ALTER TYPE CASCADE INCLUDING TABLE DATA for a type with read-only table dependents

	
Online redefinition

	
FLASHBACK TABLE

The following operations are permitted on a read-only table:

	
SELECT

	
CREATE/ALTER/DROP INDEX

	
ALTER TABLE ADD/MODIFY/DROP/ENABLE/DISABLE CONSTRAINT

	
ALTER TABLE for physical property changes

	
ALTER TABLE DROP UNUSED COLUMNS

	
ALTER TABLE ADD/COALESCE/MERGE/MODIFY/MOVE/RENAME/SPLIT (SUB)PARTITION

	
ALTER TABLE MOVE

	
ALTER TABLE ENABLE ROW MOVEMENT and ALTER TABLE SHRINK

	
RENAME TABLE and ALTER TABLE RENAME TO

	
DROP TABLE

	
ALTER TABLE DEALLOCATE UNUSED

	
ALTER TABLE ADD/DROP SUPPLEMENTAL LOG

	
See Also:

Oracle Database SQL Language Reference for more information about the ALTER TABLE statement

Redefining Tables Online

In any database system, it is occasionally necessary to modify the logical or physical structure of a table to:

	
Improve the performance of queries or DML

	
Accommodate application changes

	
Manage storage

Oracle Database provides a mechanism to make table structure modifications without significantly affecting the availability of the table. The mechanism is called online table redefinition. Redefining tables online provides a substantial increase in availability compared to traditional methods of redefining tables.

When a table is redefined online, it is accessible to both queries and DML during much of the redefinition process. Typically, the table is locked in the exclusive mode only during a very small window that is independent of the size of the table and complexity of the redefinition, and that is completely transparent to users. However, if there are many concurrent DML operations during redefinition, then a longer wait might be necessary before the table can be locked.

Online table redefinition requires an amount of free space that is approximately equivalent to the space used by the table being redefined. More space may be required if new columns are added.

You can perform online table redefinition with the Oracle Enterprise Manager Cloud Control (Cloud Control) Reorganize Objects wizard or with the DBMS_REDEFINITION package.

	
Note:

To invoke the Reorganize Objects wizard:
	
On the Tables page of Cloud Control, click in the Select column to select the table to redefine.

	
In the Actions list, select Reorganize.

	
Click Go.

This section describes online redefinition with the DBMS_REDEFINITION package. It contains the following topics:

	
Features of Online Table Redefinition

	
Performing Online Redefinition with the REDEF_TABLE Procedure

	
Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION

	
Results of the Redefinition Process

	
Performing Intermediate Synchronization

	
Aborting Online Table Redefinition and Cleaning Up After Errors

	
Restrictions for Online Redefinition of Tables

	
Online Redefinition of One or More Partitions

	
Online Table Redefinition Examples

	
Privileges Required for the DBMS_REDEFINITION Package

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_REDEFINITION package

Features of Online Table Redefinition

Online table redefinition enables you to:

	
Modify the storage parameters of a table or cluster

	
Move a table or cluster to a different tablespace

	
Note:

If it is not important to keep a table available for DML when moving it to another tablespace, then you can use the simpler ALTER TABLE MOVE command. See "Moving a Table to a New Segment or Tablespace".

	
Add, modify, or drop one or more columns in a table or cluster

	
Add or drop partitioning support (non-clustered tables only)

	
Change partition structure

	
Change physical properties of a single table partition or subpartition, including moving it to a different tablespace in the same schema

Starting with Oracle Database 12c, you can move a partition or subpartition online without using online table redefinition. DML operations can continue to run uninterrupted on the partition or subpartition that is being moved. See "Moving a Table to a New Segment or Tablespace".

	
Change physical properties of a materialized view log or an Oracle Database Advanced Queuing queue table

	
Add support for parallel queries

	
Re-create a table or cluster to reduce fragmentation

	
Note:

In many cases, online segment shrink is an easier way to reduce fragmentation. See "Reclaiming Unused Space".

	
Change the organization of a normal table (heap organized) to an index-organized table, or do the reverse.

	
Convert a relational table into a table with object columns, or do the reverse.

	
Convert an object table into a relational table or a table with object columns, or do the reverse.

	
Compress, or change the compression type for, a table, partition, index key, or LOB columns.

	
Convert LOB columns from BasicFiles LOB storage to SecureFiles LOB storage, or do the reverse.

You can combine two or more of the usage examples above into one operation. See "Example 8" in "Online Table Redefinition Examples" for an example.

Performing Online Redefinition with the REDEF_TABLE Procedure

You can use the REDEF_TABLE procedure in the DBMS_REDEFINITION package to perform online redefinition of a table's storage properties. See Oracle Database PL/SQL Packages and Types Reference for procedure details.

The REDEF_TABLE procedure enables you to perform online redefinition a table's storage properties in a single step when you want to change the following properties:

	
Tablespace changes, including a tablespace change for a table, partition, index, or LOB columns

	
Compression type changes, including a compression type change for a table, partition, index key, or LOB columns

	
For LOB columns, a change to SECUREFILE or BASICFILE storage

When your online redefinition operation is not limited to these changes, you must perform online redefinition of the table using multiple steps. The steps include invoking multiple procedures in the DBMS_REDEFINITION package, including the following procedures: CAN_REDEF_TABLE, START_REDEF_TABLE, COPY_TABLE_DEPENDENTS, and FINISH_REDEF_TABLE.

	
See Also:

	
Example 1 in "Online Table Redefinition Examples"

	
"Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION" for more information

Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION

You use the DBMS_REDEFINITION package to perform online redefinition of a table. See Oracle Database PL/SQL Packages and Types Reference for package details.

To redefine a table online using multiple steps:

	
Choose the redefinition method: by key or by rowid

By key—Select a primary key or pseudo-primary key to use for the redefinition. Pseudo-primary keys are unique keys with all component columns having NOT NULL constraints. For this method, the versions of the tables before and after redefinition should have the same primary key columns. This is the preferred and default method of redefinition.

By rowid—Use this method if no key is available. In this method, a hidden column named M_ROW$$ is added to the post-redefined version of the table. It is recommended that this column be dropped or marked as unused after the redefinition is complete, and the final phase of redefinition automatically sets this column unused. You can then use the ALTER TABLE ... DROP UNUSED COLUMNS statement to drop it.

You cannot use this method on index-organized tables.

	
Verify that the table can be redefined online by invoking the CAN_REDEF_TABLE procedure. If the table is not a candidate for online redefinition, then this procedure raises an error indicating why the table cannot be redefined online.

	
Create an empty interim table (in the same schema as the table to be redefined) with all of the desired logical and physical attributes. If columns are to be dropped, then do not include them in the definition of the interim table. If a column is to be added, then add the column definition to the interim table. If a column is to be modified, then create it in the interim table with the properties that you want.

It is not necessary to create the interim table with all the indexes, constraints, grants, and triggers of the table being redefined, because these will be defined in step 7 when you copy dependent objects.

	
If you are redefining a partitioned table with the rowid method, then enable row movement on the interim table.

ALTER TABLE ... ENABLE ROW MOVEMENT;

	
(Optional) If you are redefining a large table and want to improve the performance of the next step by running it in parallel, issue the following statements:

ALTER SESSION FORCE PARALLEL DML PARALLEL degree-of-parallelism;
ALTER SESSION FORCE PARALLEL QUERY PARALLEL degree-of-parallelism;

	
Start the redefinition process by calling START_REDEF_TABLE, providing the following:

	
The schema and table name of the table to be redefined in the uname and orig_table parameters, respectively

	
The interim table name in the int_table parameter

	
A column mapping string that maps the columns of table to be redefined to the columns of the interim table in the col_mapping parameter

See "Constructing a Column Mapping String" for details.

	
The redefinition method in the options_flag parameter

Package constants are provided for specifying the redefinition method. DBMS_REDEFINITION.CONS_USE_PK is used to indicate that the redefinition should be done using primary keys or pseudo-primary keys. DBMS_REDEFINITION.CONS_USE_ROWID is use to indicate that the redefinition should be done using rowids. If this argument is omitted, the default method of redefinition (CONS_USE_PK) is assumed.

	
Optionally, the columns to be used in ordering rows in the orderby_cols parameter

	
The partition name or names in the part_name parameter when redefining one partition or multiple partitions of a partitioned table

See "Online Redefinition of One or More Partitions" for details.

	
The method for handling Virtual Private Database (VPD) policies defined on the table in the copy_vpd_opt parameter

See "Handling Virtual Private Database (VPD) Policies During Online Redefinition" for details.

Because this process involves copying data, it may take a while. The table being redefined remains available for queries and DML during the entire process.

	
Note:

	
You can query the DBA_REDEFINITION_OBJECTS view to list the objects currently involved in online redefinition.

	
If START_REDEF_TABLE fails for any reason, you must call ABORT_REDEF_TABLE, otherwise subsequent attempts to redefine the table will fail.

	
Copy dependent objects (such as triggers, indexes, materialized view logs, grants, and constraints) and statistics from the table being redefined to the interim table, using one of the following two methods. Method 1 is the preferred method because it is more automatic, but there may be times that you would choose to use method 2. Method 1 also enables you to copy table statistics to the interim table.

	
Method 1: Automatically Creating Dependent Objects

Use the COPY_TABLE_DEPENDENTS procedure to automatically create dependent objects on the interim table. This procedure also registers the dependent objects. Registering the dependent objects enables the identities of these objects and their copied counterparts to be automatically swapped later as part of the redefinition completion process. The result is that when the redefinition is completed, the names of the dependent objects will be the same as the names of the original dependent objects.

For more information, see "Creating Dependent Objects Automatically".

	
Method 2: Manually Creating Dependent Objects

You can manually create dependent objects on the interim table and then register them. For more information, see "Creating Dependent Objects Manually".

	
Note:

In Oracle9i, you were required to manually create the triggers, indexes, grants, and constraints on the interim table, and there may still be situations where you want to or must do so. In such cases, any referential constraints involving the interim table (that is, the interim table is either a parent or a child table of the referential constraint) must be created disabled. When online redefinition completes, the referential constraint is automatically enabled. In addition, until the redefinition process is either completed or aborted, any trigger defined on the interim table does not execute.

	
Execute the FINISH_REDEF_TABLE procedure to complete the redefinition of the table. During this procedure, the original table is locked in exclusive mode for a very short time, independent of the amount of data in the original table. However, FINISH_REDEF_TABLE will wait for all pending DML to commit before completing the redefinition.

You can use the dml_lock_timeout parameter in the FINISH_REDEF_TABLE procedure to specify how long the procedure waits for pending DML to commit. The parameter specifies the number of seconds to wait before the procedure ends gracefully. When you specify a non-NULL value for this parameter, you can restart the FINISH_REDEF_TABLE procedure, and it continues from the point at which it timed out. When the parameter is set to NULL, the procedure does not time out. In this case, if you stop the procedure manually, then you must abort the online table redefinition using the ABORT_REDEF_TABLE procedure and start over from step 6.

	
Wait for any long-running queries against the interim table to complete, and then drop the interim table.

If you drop the interim table while there are active queries running against it, you may encounter an ORA-08103 error ("object no longer exists").

	
See Also:

"Online Table Redefinition Examples"

Constructing a Column Mapping String

The column mapping string that you pass as an argument to START_REDEF_TABLE contains a comma-delimited list of column mapping pairs, where each pair has the following syntax:

[expression] column_name

The column_name term indicates a column in the interim table. The optional expression can include columns from the table being redefined, constants, operators, function or method calls, and so on, in accordance with the rules for expressions in a SQL SELECT statement. However, only simple deterministic subexpressions—that is, subexpressions whose results do not vary between one evaluation and the next—plus sequences and SYSDATE can be used. No subqueries are permitted. In the simplest case, the expression consists of just a column name from the table being redefined.

If an expression is present, its value is placed in the designated interim table column during redefinition. If the expression is omitted, it is assumed that both the table being redefined and the interim table have a column named column_name, and the value of that column in the table being redefined is placed in the same column in the interim table.

For example, if the override column in the table being redefined is to be renamed to override_commission, and every override commission is to be raised by 2%, the correct column mapping pair is:

override*1.02 override_commission

If you supply '*' or NULL as the column mapping string, it is assumed that all the columns (with their names unchanged) are to be included in the interim table. Otherwise, only those columns specified explicitly in the string are considered. The order of the column mapping pairs is unimportant.

For examples of column mapping strings, see "Online Table Redefinition Examples".

Data Conversions When mapping columns, you can convert data types, with some restrictions.

If you provide '*' or NULL as the column mapping string, only the implicit conversions permitted by SQL are supported. For example, you can convert from CHAR to VARCHAR2, from INTEGER to NUMBER, and so on.

To perform other data type conversions, including converting from one object type to another or one collection type to another, you must provide a column mapping pair with an expression that performs the conversion. The expression can include the CAST function, built-in functions like TO_NUMBER, conversion functions that you create, and so on.

Handling Virtual Private Database (VPD) Policies During Online Redefinition

If the original table being redefined has VPD policies specified for it, then you can use the copy_vpd_opt parameter in the START_REDEF_TABLE procedure to handle these policies during online redefinition.

You can specify the following values for this parameter:

	Parameter Value	Description
	DBMS_REDEFINITION.CONS_VPD_NONE	Specify this value if there are no VPD policies on the original table. This value is the default.
If this value is specified, and VPD policies exist for the original table, then an error is raised.

	DBMS_REDEFINITION.CONS_VPD_AUTO	Specify this value to copy the VPD policies automatically from the original table to the new table during online redefinition.
	DBMS_REDEFINITION.CONS_VPD_MANUAL	Specify this value to copy the VPD policies manually from the original table to the new table during online redefinition.

If there are no VPD policies specified for the original table, then specify the default value of DBMS_REDEFINITION.CONS_VPD_NONE for the copy_vpd_opt parameter.

Specify DBMS_REDEFINITION.CONS_VPD_AUTO for the copy_vpd_opt parameter when the column names and column types are the same for the original table and the interim table. To use this value, the column mapping string between original table and interim table must be NULL or '*'. When you use DBMS_REDEFINITION.CONS_VPD_AUTO for the copy_vpd_opt parameter, only the table owner and the user invoking online redefinition can access the interim table during online redefinition.

Specify DBMS_REDEFINITION.CONS_VPD_MANUAL for the copy_vpd_opt parameter when either of the following conditions are true:

	
There are VPD policies specified for the original table, and there are column mappings between the original table and the interim table.

	
You want to add or modify VPD policies during online redefinition of the table.

To copy the VPD policies manually, you specify the VPD policies for the interim table before you run the START_REDEF_TABLE procedure. When online redefinition of the table is complete, the redefined table has the modified policies.

	
See Also:

	
"Restrictions for Online Redefinition of Tables" for restrictions related to tables with VPD policies

	
"Online Table Redefinition Examples" for an example that redefines a table with VPD policies

	
Oracle Database Security Guide

Creating Dependent Objects Automatically

You use the COPY_TABLE_DEPENDENTS procedure to automatically create dependent objects on the interim table.

You can discover if errors occurred while copying dependent objects by checking the num_errors output argument. If the ignore_errors argument is set to TRUE, the COPY_TABLE_DEPENDENTS procedure continues copying dependent objects even if an error is encountered when creating an object. You can view these errors by querying the DBA_REDEFINITION_ERRORS view.

Reasons for errors include:

	
A lack of system resources

	
A change in the logical structure of the table that would require recoding the dependent object.

See Example 3 in "Online Table Redefinition Examples" for a discussion of this type of error.

If ignore_errors is set to FALSE, the COPY_TABLE_DEPENDENTS procedure stops copying objects as soon as any error is encountered.

After you correct any errors you can again attempt to copy the dependent objects by reexecuting the COPY_TABLE_DEPENDENTS procedure. Optionally you can create the objects manually and then register them as explained in "Creating Dependent Objects Manually". The COPY_TABLE_DEPENDENTS procedure can be used multiple times as necessary. If an object has already been successfully copied, it is not copied again.

Creating Dependent Objects Manually

If you manually create dependent objects on the interim table with SQL*Plus or Cloud Control, then you must use the REGISTER_DEPENDENT_OBJECT procedure to register the dependent objects. Registering dependent objects enables the redefinition completion process to restore dependent object names to what they were before redefinition.

The following are examples changes that require you to create dependent objects manually:

	
Moving an index to another tablespace

	
Modifying the columns of an index

	
Modifying a constraint

	
Modifying a trigger

	
Modifying a materialized view log

When you run the REGISTER_DEPENDENT_OBJECT procedure, you must specify that type of the dependent object with the dep_type parameter. You can specify the following constants in this parameter:

	
DEMS_REDEFINITION.CONS_INDEX when the dependent object is an index

	
DEMS_REDEFINITION.CONS_CONSTRAINT when the dependent object type is a constraint

	
DEMS_REDEFINITION.CONS_TRIGGER when the dependent object is a trigger

	
DEMS_REDEFINITION.CONS_MVLOG when the dependent object is a materialized view log

You would also use the REGISTER_DEPENDENT_OBJECT procedure if the COPY_TABLE_DEPENDENTS procedure failed to copy a dependent object and manual intervention is required.

You can query the DBA_REDEFINITION_OBJECTS view to determine which dependent objects are registered. This view shows dependent objects that were registered explicitly with the REGISTER_DEPENDENT_OBJECT procedure or implicitly with the COPY_TABLE_DEPENDENTS procedure. Only current information is shown in the view.

The UNREGISTER_DEPENDENT_OBJECT procedure can be used to unregister a dependent object on the table being redefined and on the interim table.

	
Note:

	
Manually created dependent objects do not have to be identical to their corresponding original dependent objects. For example, when manually creating a materialized view log on the interim table, you can log different columns. In addition, the interim table can have more or fewer dependent objects.

	
If the table being redefined includes named LOB segments, then the LOB segment names are replaced by system-generated names during online redefinition. To avoid this, you can create the interim table with new LOB segment names.

	
See Also:

Example 4 in "Online Table Redefinition Examples" for an example that registers a dependent object

Results of the Redefinition Process

The following are the end results of the redefinition process:

	
The original table is redefined with the columns, indexes, constraints, grants, triggers, and statistics of the interim table, assuming that either REDEF_TABLE or COPY_TABLE_DEPENDENTS was used.

	
Dependent objects that were registered, either explicitly using REGISTER_DEPENDENT_OBJECT or implicitly using COPY_TABLE_DEPENDENTS, are renamed automatically so that dependent object names on the redefined table are the same as before redefinition.

	
Note:

If no registration is done or no automatic copying is done, then you must manually rename the dependent objects.

	
The referential constraints involving the interim table now involve the redefined table and are enabled.

	
Any indexes, triggers, materialized view logs, grants, and constraints defined on the original table (before redefinition) are transferred to the interim table and are dropped when the user drops the interim table. Any referential constraints involving the original table before the redefinition now involve the interim table and are disabled.

	
Some PL/SQL objects, views, synonyms, and other table-dependent objects may become invalidated. Only those objects that depend on elements of the table that were changed are invalidated. For example, if a PL/SQL procedure queries only columns of the redefined table that were unchanged by the redefinition, the procedure remains valid. See "Managing Object Dependencies" for more information about schema object dependencies.

Performing Intermediate Synchronization

After the redefinition process has been started by calling START_REDEF_TABLE and before FINISH_REDEF_TABLE has been called, a large number of DML statements might have been executed on the original table. If you know that this is the case, then it is recommended that you periodically synchronize the interim table with the original table. This is done by calling the SYNC_INTERIM_TABLE procedure. Calling this procedure reduces the time taken by FINISH_REDEF_TABLE to complete the redefinition process. There is no limit to the number of times that you can call SYNC_INTERIM_TABLE.

The small amount of time that the original table is locked during FINISH_REDEF_TABLE is independent of whether SYNC_INTERIM_TABLE has been called.

Aborting Online Table Redefinition and Cleaning Up After Errors

In the event that an error is raised during the redefinition process, or if you choose to terminate the redefinition process manually, call ABORT_REDEF_TABLE. This procedure drops temporary logs and tables associated with the redefinition process. After this procedure is called, you can drop the interim table and its dependent objects.

If the online redefinition process must be restarted, if you do not first call ABORT_REDEF_TABLE, then subsequent attempts to redefine the table will fail.

	
Note:

It is not necessary to call the ABORT_REDEF_TABLE procedure if the redefinition process stops because the FINISH_REDEF_TABLE procedure has timed out. The dml_lock_timeout parameter in the FINISH_REDEF_TABLE procedure controls the time-out period. See step 8 in "Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION" for more information

Restrictions for Online Redefinition of Tables

The following restrictions apply to the online redefinition of tables:

	
If the table is to be redefined using primary key or pseudo-primary keys (unique keys or constraints with all component columns having not null constraints), then the post-redefinition table must have the same primary key or pseudo-primary key columns. If the table is to be redefined using rowids, then the table must not be an index-organized table.

	
After redefining a table that has a materialized view log, the subsequent refresh of any dependent materialized view must be a complete refresh.

	
Tables that are replicated in an n-way master configuration can be redefined, but horizontal subsetting (subset of rows in the table), vertical subsetting (subset of columns in the table), and column transformations are not allowed.

	
The overflow table of an index-organized table cannot be redefined online independently.

	
Tables for which Flashback Data Archive is enabled cannot be redefined online. You cannot enable Flashback Data Archive for the interim table.

	
Tables with BFILE columns cannot be redefined online.

	
Tables with LONG columns can be redefined online, but those columns must be converted to CLOBS. Also, LONG RAW columns must be converted to BLOBS. Tables with LOB columns are acceptable.

	
On a system with sufficient resources for parallel execution, and in the case where the interim table is not partitioned, redefinition of a LONG column to a LOB column can be executed in parallel, provided that:

	
The segment used to store the LOB column in the interim table belongs to a locally managed tablespace with Automatic Segment Space Management (ASSM) enabled.

	
There is a simple mapping from one LONG column to one LOB column, and the interim table has only one LOB column.

In the case where the interim table is partitioned, the normal methods for parallel execution for partitioning apply.

	
Tables in the SYS and SYSTEM schema cannot be redefined online.

	
Temporary tables cannot be redefined.

	
A subset of rows in the table cannot be redefined.

	
Only simple deterministic expressions, sequences, and SYSDATE can be used when mapping the columns in the interim table to those of the original table. For example, subqueries are not allowed.

	
If new columns are being added as part of the redefinition and there are no column mappings for these columns, then they must not be declared NOT NULL until the redefinition is complete.

	
There cannot be any referential constraints between the table being redefined and the interim table.

	
Table redefinition cannot be done NOLOGGING.

	
For materialized view logs and queue tables, online redefinition is restricted to changes in physical properties. No horizontal or vertical subsetting is permitted, nor are any column transformations. The only valid value for the column mapping string is NULL.

	
You cannot perform online redefinition on a table that is partitioned if the table includes one or more nested tables.

	
You can convert a VARRAY to a nested table with the CAST operator in the column mapping. However, you cannot convert a nested table to a VARRAY.

	
When the columns in the col_mapping parameter of the DBMS_REDEFINITION.START_REDEF_TABLE procedure include a sequence, the orderby_cols parameter must be NULL.

	
For tables with a Virtual Private Database (VPD) security policy, when the copy_vpd_opt parameter is specified as DBMS_REDEFINITION.CONS_VPD_AUTO, the following restrictions apply:

	
The column mapping string between the original table and interim table must be NULL or '*'.

	
No VPD policies can exist on the interim table.

See "Handling Virtual Private Database (VPD) Policies During Online Redefinition". Also, see Oracle Database Security Guide for information about VPD policies.

	
Online redefinition cannot run on multiple tables concurrently in separate DBMS_REDEFINITION sessions if the tables are related by reference partitioning.

See Oracle Database VLDB and Partitioning Guide for more information about reference partitioning.

Online Redefinition of One or More Partitions

You can redefine online one or more partitions of a table. This is useful if, for example, you want to move partitions to a different tablespace and keep the partitions available for DML during the operation.

You can redefine multiple partitions in a table at one time. If you do, then multiple interim tables are required during the table redefinition process. Ensure that you have enough free space and undo space to complete the table redefinition.

When you redefine multiple partitions, you can specify that the redefinition continues even if it encounters an error for a particular partition. To do so, set the continue_after_errors parameter to TRUE in redefinition procedures in the DBMS_REDEFINITION package. You can check the DBA_REDEFINITION_STATUS view to see if any errors were encountered during the redefinition process. The STATUS column in this view shows whether the redefinition process succeeded or failed for each partition.

You can also redefine an entire table one partition at a time to reduce resource requirements. For example, to move a very large table to a different tablespace, you can move it one partition at a time to minimize the free space and undo space required to complete the move.

Redefining partitions differs from redefining a table in the following ways:

	
There is no need to copy dependent objects. It is not valid to use the COPY_TABLE_DEPENDENTS procedure when redefining a single partition.

	
You must manually create and register any local indexes on the interim table.

See "Creating Dependent Objects Manually".

	
The column mapping string for START_REDEF_TABLE must be NULL.

	
Note:

Starting with Oracle Database 12c, you can use the simpler ALTER TABLE...MOVE PARTITION ... ONLINE statement to move a partition or subpartition online without using online table redefinition. DML operations can continue to run uninterrupted on the partition or subpartition that is being moved. See "Moving a Table to a New Segment or Tablespace".

	
See Also:

Oracle Database VLDB and Partitioning Guide

Rules for Online Redefinition of a Single Partition

The underlying mechanism for redefinition of a single partition is the exchange partition capability of the database (ALTER TABLE...EXCHANGE PARTITION). Rules and restrictions for online redefinition of a single partition are therefore governed by this mechanism. Here are some general restrictions:

	
No logical changes (such as adding or dropping a column) are permitted.

	
No changes to the partitioning method (such as changing from range partitioning to hash partitioning) are permitted.

Here are the rules for defining the interim table:

	
If the partition being redefined is a range, hash, or list partition, then the interim table must be nonpartitioned.

	
If the partition being redefined is a range partition of a composite range-hash partitioned table, then the interim table must be a hash partitioned table. In addition, the partitioning key of the interim table must be identical to the subpartitioning key of the range-hash partitioned table, and the number of partitions in the interim table must be identical to the number of subpartitions in the range partition being redefined.

	
If the partition being redefined is a hash partition that uses the rowid redefinition method, then row movement must be enabled on the interim table before redefinition starts.

	
If the partition being redefined is a range partition of a composite range-list partitioned table, then the interim table must be a list partitioned table. In addition, the partitioning key of the interim table must be identical to the subpartitioning key of the range-list partitioned table, and the values lists of the interim table's list partitions must exactly match the values lists of the list subpartitions in the range partition being redefined.

	
If you define the interim table as compressed, then you must use the by-key method of redefinition, not the by-rowid method.

These additional rules apply if the table being redefined is a partitioned index-organized table:

	
The interim table must also be index-organized.

	
The original and interim tables must have primary keys on the same columns, in the same order.

	
If key compression is enabled, then it must be enabled for both the original and interim tables, with the same prefix length.

	
Both the original and interim tables must have overflow segments, or neither can have them. Likewise for mapping tables.

	
Both the original and interim tables must have identical storage attributes for any LOB columns.

	
See Also:

	
The section "Exchanging Partitions" in Oracle Database VLDB and Partitioning Guide

	
"Online Table Redefinition Examples" for examples that redefine tables with partitions

Online Table Redefinition Examples

For the following examples, see Oracle Database PL/SQL Packages and Types Reference for descriptions of all DBMS_REDEFINITION subprograms.

	Example	Description
	Example 1
	Redefines a table's storage properties in a single step with the REDEF_TABLE procedure.
	Example 2
	Redefines a table by adding new columns and adding partitioning.
	Example 3
	Demonstrates redefinition with object data types.
	Example 4
	Demonstrates redefinition with manually registered dependent objects.
	Example 5
	Redefines multiple partitions, moving them to different tablespaces.
	Example 6
	Redefines a table with virtual private database (VPD) policies without changing the properties of any of the table's columns.
	Example 7
	Redefines a table with VPD policies and changes the properties of one of the table's columns.
	Example 8
	Redefines a table by making multiple changes using online redefinition.

Example 1

This example illustrates online redefinition of a table's storage properties using the REDEF_TABLE procedure.

The original table, named print_ads, is defined in the pm schema as follows:

 Name Null? Type
 --- -------- ----------------------------
 AD_ID NUMBER(6)
 AD_TEXT CLOB

In this table, the LOB column ad_text uses BasicFiles LOB storage.

An index for the table was created with the following SQL statement:

CREATE INDEX pm.print_ads_ix
 ON print_ads (ad_id)
 TABLESPACE example;

The table is redefined as follows:

	
The table is compressed with advanced row compression.

	
The table's tablespace is changed from EXAMPLE to NEWTBS. This example assumes that the NEWTBS tablespace exists.

	
The index is compressed with COMPRESS 1 compression.

	
The index's tablespace is changed from EXAMPLE to NEWIDXTBS. This example assumes that the NEWIDXTBS tablespace exists.

	
The LOB column in the table is compressed with COMPRESS HIGH compression.

	
The tablespace for the LOB column is changed from EXAMPLE to NEWLOBTBS. This example assumes that the NEWLOBTBS tablespace exists.

	
The LOB column is changed to SecureFiles LOB storage.

The steps in this redefinition are illustrated below.

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

	
Run the REDEF_TABLE procedure:

BEGIN
 DBMS_REDEFINITION.REDEF_TABLE(
 uname => 'PM',
 tname => 'PRINT_ADS',
 table_compression_type => 'ROW STORE COMPRESS ADVANCED',
 table_part_tablespace => 'NEWTBS',
 index_key_compression_type => 'COMPRESS 1',
 index_tablespace => 'NEWIDXTBS',
 lob_compression_type => 'COMPRESS HIGH',
 lob_tablespace => 'NEWLOBTBS',
 lob_store_as => 'SECUREFILE');
END;
/

	
Note:

If an errors occurs, then the interim table is dropped, and the REDEF_TABLE procedure must be re-executed.

Example 2

This example illustrates online redefinition of a table by adding new columns and adding partitioning.

The original table, named emp_redef, is defined in the hr schema as follows:

 Name Type
 --------- ----------------------------
 EMPNO NUMBER(5) <- Primary key
 ENAME VARCHAR2(15)
 JOB VARCHAR2(10)
 DEPTNO NUMBER(3)

The table is redefined as follows:

	
New columns mgr, hiredate, sal, and bonus are added.

	
The new column bonus is initialized to 0 (zero).

	
The column deptno has its value increased by 10.

	
The redefined table is partitioned by range on empno.

The steps in this redefinition are illustrated below.

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

	
Verify that the table is a candidate for online redefinition. In this case you specify that the redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'hr',
 tname =>'emp_redef',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

	
Create an interim table hr.int_emp_redef.

CREATE TABLE hr.int_emp_redef
 (empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 deptno NUMBER(3) NOT NULL,
 bonus NUMBER (7,2) DEFAULT(0))
 PARTITION BY RANGE(empno)
 (PARTITION emp1000 VALUES LESS THAN (1000) TABLESPACE admin_tbs,
 PARTITION emp2000 VALUES LESS THAN (2000) TABLESPACE admin_tbs2);

Ensure that the specified tablespaces exist.

	
Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef',
 col_mapping => 'empno empno, ename ename, job job, deptno+10 deptno,
 0 bonus',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

	
Copy dependent objects. (Automatically create any triggers, indexes, materialized view logs, grants, and constraints on hr.int_emp_redef.)

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

Note that the ignore_errors argument is set to TRUE for this call. The reason is that the interim table was created with a primary key constraint, and when COPY_TABLE_DEPENDENTS attempts to copy the primary key constraint and index from the original table, errors occur. You can ignore these errors, but you must run the query shown in the next step to see if there are other errors.

	
Query the DBA_REDEFINITION_ERRORS view to check for errors.

SET LONG 8000
SET PAGES 8000
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A20
COLUMN BASE_TABLE_NAME HEADING 'Base Table Name' FORMAT A10
COLUMN DDL_TXT HEADING 'DDL That Caused Error' FORMAT A40

SELECT OBJECT_NAME, BASE_TABLE_NAME, DDL_TXT FROM
 DBA_REDEFINITION_ERRORS;

Object Name Base Table DDL That Caused Error
-------------------- ---------- --
SYS_C006796 EMP_REDEF CREATE UNIQUE INDEX "HR"."TMP$$_SYS_C006
 7960" ON "HR"."INT_EMP_REDEF" ("EMPNO")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MIN
 EXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GRO
 UPS 1
 BUFFER_POOL DEFAULT)
 TABLESPACE "ADMIN_TBS"
SYS_C006794 EMP_REDEF ALTER TABLE "HR"."INT_EMP_REDEF" MODIFY
 ("ENAME" CONSTRAINT "TMP$$_SYS_C0067940"
 NOT NULL ENABLE NOVALIDATE)
SYS_C006795 EMP_REDEF ALTER TABLE "HR"."INT_EMP_REDEF" MODIFY
 ("DEPTNO" CONSTRAINT "TMP$$_SYS_C0067950
 " NOT NULL ENABLE NOVALIDATE)
SYS_C006796 EMP_REDEF ALTER TABLE "HR"."INT_EMP_REDEF" ADD CON
 STRAINT "TMP$$_SYS_C0067960" PRIMARY KEY
 ("EMPNO")
 USING INDEX PCTFREE 10 INITRANS 2 MAXT
 RANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MIN
 EXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GRO
 UPS 1
 BUFFER_POOL DEFAULT)
 TABLESPACE "ADMIN_TBS" ENABLE NOVALID
 ATE

These errors are caused by the existing primary key constraint on the interim table and can be ignored. Note that with this approach, the names of the primary key constraint and index on the post-redefined table are changed. An alternate approach, one that avoids errors and name changes, would be to define the interim table without a primary key constraint. In this case, the primary key constraint and index are copied from the original table.

	
Note:

The best approach is to define the interim table with a primary key constraint, use REGISTER_DEPENDENT_OBJECT to register the primary key constraint and index, and then copy the remaining dependent objects with COPY_TABLE_DEPENDENTS. This approach avoids errors and ensures that the redefined table always has a primary key and that the dependent object names do not change.

	
(Optional) Synchronize the interim table hr.int_emp_redef.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef');
END;
/

	
Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef');
END;
/

The table hr.emp_redef is locked in the exclusive mode only for a small window toward the end of this step. After this call the table hr.emp_redef is redefined such that it has all the attributes of the hr.int_emp_redef table.

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION" for more information.

	
Wait for any long-running queries against the interim table to complete, and then drop the interim table.

Example 3

This example redefines a table to change columns into object attributes. The redefined table gets a new column that is an object type.

The original table, named customer, is defined as follows:

Name Type
------------ -------------
CID NUMBER <- Primary key
NAME VARCHAR2(30)
STREET VARCHAR2(100)
CITY VARCHAR2(30)
STATE VARCHAR2(2)
ZIP NUMBER(5)

The type definition for the new object is:

CREATE TYPE addr_t AS OBJECT (
 street VARCHAR2(100),
 city VARCHAR2(30),
 state VARCHAR2(2),
 zip NUMBER(5, 0));
/

Here are the steps for this redefinition:

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

	
Verify that the table is a candidate for online redefinition. Specify that the redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'steve',
 tname =>'customer',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

	
Create the interim table int_customer.

CREATE TABLE int_customer(
 CID NUMBER,
 NAME VARCHAR2(30),
 ADDR addr_t);

Note that no primary key is defined on the interim table. When dependent objects are copied in step 6, the primary key constraint and index are copied.

	
Because customer is a very large table, specify parallel operations for the next step.

ALTER SESSION FORCE PARALLEL DML PARALLEL 4;
ALTER SESSION FORCE PARALLEL QUERY PARALLEL 4;

	
Start the redefinition process using primary keys.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer',
 col_mapping => 'cid cid, name name,
 addr_t(street, city, state, zip) addr');
END;
/

Note that addr_t(street, city, state, zip) is a call to the object constructor.

	
Copy dependent objects.

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => FALSE,
 num_errors => num_errors,
 copy_statistics => TRUE);
END;
/

Note that for this call, the final argument indicates that table statistics are to be copied to the interim table.

	
Optionally synchronize the interim table.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer');
END;
/

	
Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer');
END;
/

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION" for more information.

	
Wait for any long-running queries against the interim table to complete, and then drop the interim table.

Example 4

This example addresses the situation where a dependent object must be manually created and registered.

The table to be redefined is defined as follows:

CREATE TABLE steve.t1
 (c1 NUMBER);

The table has an index for column c1:

CREATE INDEX steve.index1 ON steve.t1(c1);

Consider the case where column c1 becomes column c2 after the redefinition. In this case, COPY_TABLE_DEPENDENTS tries to create an index on the interim table corresponding to index1, and tries to create it on a column c1, which does not exist in the interim table. This results in an error. You must therefore manually create the index on column c2 and register it.

Here are the steps for this redefinition:

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

	
Ensure that t1 is a candidate for online redefinition with CAN_REDEF_TABLE, and then begin the redefinition process with START_REDEF_TABLE.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'steve',
 tname => 't1',
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID);
END;
/

	
Create the interim table int_t1 and create an index int_index1 on column c2.

CREATE TABLE steve.int_t1
 (c2 NUMBER);

CREATE INDEX steve.int_index1 ON steve.int_t1(c2);

	
Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1',
 col_mapping => 'c1 c2',
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID);
END;
/

	
Register the original (index1) and interim (int_index1) dependent objects.

BEGIN
 DBMS_REDEFINITION.REGISTER_DEPENDENT_OBJECT(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1',
 dep_type => DBMS_REDEFINITION.CONS_INDEX,
 dep_owner => 'steve',
 dep_orig_name => 'index1',
 dep_int_name => 'int_index1');
END;
/

	
Copy the dependent objects.

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

	
Optionally synchronize the interim table.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1');
END;
/

	
Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1');
END;
/

	
Wait for any long-running queries against the interim table to complete, and then drop the interim table.

Example 5

This example demonstrates redefining multiple partitions. It moves two of the partitions of a range-partitioned sales table to new tablespaces. The table containing the partitions to be redefined is defined as follows:

CREATE TABLE steve.salestable
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 TABLESPACE users
 PARTITION BY RANGE(s_saledate)
 (PARTITION sal10q1 VALUES LESS THAN (TO_DATE('01-APR-2010', 'DD-MON-YYYY')),
 PARTITION sal10q2 VALUES LESS THAN (TO_DATE('01-JUL-2010', 'DD-MON-YYYY')),
 PARTITION sal10q3 VALUES LESS THAN (TO_DATE('01-OCT-2010', 'DD-MON-YYYY')),
 PARTITION sal10q4 VALUES LESS THAN (TO_DATE('01-JAN-2011', 'DD-MON-YYYY')));

This example moves the sal10q1 partition to the sales1 tablespace and the sal10q2 partition to the sales2 tablespace. The sal10q3 and sal10q4 partitions are not moved.

To move the partitions, the tablespaces sales1 and sales2 must exist. The following examples create these tablespaces:

CREATE TABLESPACE sales1 DATAFILE '/u02/oracle/data/sales01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TABLESPACE sales2 DATAFILE '/u02/oracle/data/sales02.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

	
Note:

You can also complete this operation by executing two ALTER TABLE ... MOVE PARTITION ... ONLINE statements. See "Moving a Table to a New Segment or Tablespace".

The table has a local partitioned index that is defined as follows:

CREATE INDEX steve.sales_index ON steve.salestable
 (s_saledate, s_productid, s_custid) LOCAL;

Here are the steps. In the following procedure calls, note the extra argument: partition name (part_name).

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

	
Ensure that salestable is a candidate for redefinition.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'steve',
 tname => 'salestable',
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID,
 part_name => 'sal10q1, sal10q2');
END;
/

	
Create the interim tables in the new tablespaces. Because this is a redefinition of a range partition, the interim tables are nonpartitioned.

CREATE TABLE steve.int_salestb1
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 TABLESPACE sales1;

CREATE TABLE steve.int_salestb2
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 TABLESPACE sales2;

	
Start the redefinition process using rowid.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'salestable',
 int_table => 'int_salestb1, int_salestb2',
 col_mapping => NULL,
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID,
 part_name => 'sal10q1, sal10q2',
 continue_after_errors => TRUE);
END;
/

Notice that the part_name parameter specifies both of the partitions and that the int_table parameter specifies the interim table for each partition. Also, the continue_after_errors parameter is set to TRUE so that the redefinition process continues even if it encounters an error for a particular partition.

	
Manually create any local indexes on the interim tables.

CREATE INDEX steve.int_sales1_index ON steve.int_salestb1
(s_saledate, s_productid, s_custid)
TABLESPACE sales1;

CREATE INDEX steve.int_sales2_index ON steve.int_salestb2
(s_saledate, s_productid, s_custid)
TABLESPACE sales2;

	
Optionally synchronize the interim tables.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'steve',
 orig_table => 'salestable',
 int_table => 'int_salestb1, int_salestb2',
 part_name => 'sal10q1, sal10q2',
 continue_after_errors => TRUE);
END;
/

	
Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'salestable',
 int_table => 'int_salestb1, int_salestb2',
 part_name => 'sal10q1, sal10q2',
 continue_after_errors => TRUE);
END;
/

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION" for more information.

	
Wait for any long-running queries against the interim tables to complete, and then drop the interim tables.

	
(Optional) Query the DBA_REDEFINITION_STATUS view to ensure that the redefinition succeeded for each partition.

SELECT BASE_TABLE_OWNER, BASE_TABLE_NAME, PREV_OPERATION, STATUS
 FROM DBA_REDEFINITION_STATUS;

If redefinition failed for any partition, then query the DBA_REDEFINITION_ERRORS view to determine the cause of the failure. Correct the conditions that caused the failure, and rerun online redefinition.

The following query shows that two of the partitions in the table have been moved to the new tablespaces:

SELECT PARTITION_NAME, TABLESPACE_NAME FROM DBA_TAB_PARTITIONS
 WHERE TABLE_NAME = 'SALESTABLE';

PARTITION_NAME TABLESPACE_NAME
------------------------------ ------------------------------
SAL10Q1 SALES1
SAL10Q2 SALES2
SAL10Q3 USERS
SAL10Q4 USERS

4 rows selected.

Example 6

This example illustrates online redefinition of a table with virtual private database (VPD) policies. The example disables all triggers for a table without changing any of the column names or column types in the table.

The table to be redefined is defined as follows:

CREATE TABLE hr.employees(
 employee_id NUMBER(6) PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn NOT NULL,
 email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL,
 phone_number VARCHAR2(20),
 hire_date DATE
 CONSTRAINT emp_hire_date_nn NOT NULL,
 job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn NOT NULL,
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4),
 CONSTRAINT emp_salary_min
 CHECK (salary > 0),
 CONSTRAINT emp_email_uk
 UNIQUE (email));

If you installed the Oracle-supplied sample schemas when you created your Oracle database, then this table exists in your database.

Assume that the following auth_emp_dep_100 function is created for the VPD policy:

CREATE OR REPLACE FUNCTION hr.auth_emp_dep_100(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 AS
 return_val VARCHAR2 (400);
 unm VARCHAR2(30);
 BEGIN
 SELECT USER INTO unm FROM DUAL;
 IF (unm = 'HR') THEN
 return_val := NULL;
 ELSE
 return_val := 'DEPARTMENT_ID = 100';
 END IF;
 RETURN return_val;
END auth_emp_dep_100;
/

The following ADD_POLICY procedure specifies a VPD policy for the original table hr.employees using the auth_emp_dep_100 function:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'employees_policy',
 function_schema => 'hr',
 policy_function => 'auth_emp_dep_100',
 statement_types => 'select, insert, update, delete'
);
 END;
/

In this example, the hr.employees table is redefined to disable all of its triggers. No column names or column types are changed during redefinition. Therefore, specify DBMS_REDEFINITION.CONS_VPD_AUTO for the copy_vpd_opt in the START_REFEF_TABLE procedure.

The steps in this redefinition are illustrated below.

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table and the required privileges for managing VPD policies.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package" and EXECUTE privilege on the DBMS_RLS package.

See "Connecting to the Database with SQL*Plus".

	
Verify that the table is a candidate for online redefinition. In this case you specify that the redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE('hr','employees',
 DBMS_REDEFINITION.CONS_USE_PK);
END;
/

	
Create an interim table hr.int_employees.

CREATE TABLE hr.int_employees(
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4));

	
Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE (
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees',
 col_mapping => NULL,
 options_flag => DBMS_REDEFINITION.CONS_USE_PK,
 orderby_cols => NULL,
 part_name => NULL,
 copy_vpd_opt => DBMS_REDEFINITION.CONS_VPD_AUTO);
END;
/

When the copy_vpd_opt parameter is set to DBMS_REDEFINITION.CONS_VPD_AUTO, only the table owner and the user invoking online redefinition can access the interim table during online redefinition.

Also, notice that the col_mapping parameter is set to NULL. When the copy_vpd_opt parameter is set to DBMS_REDEFINITION.CONS_VPD_AUTO, the col_mapping parameter must be NULL or '*'. See "Handling Virtual Private Database (VPD) Policies During Online Redefinition".

	
Copy dependent objects. (Automatically create any triggers, indexes, materialized view logs, grants, and constraints on hr.int_employees.)

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => FALSE,
 num_errors => num_errors);
END;
/

	
Disable all of the triggers on the interim table.

ALTER TABLE hr.int_employees
 DISABLE ALL TRIGGERS;

	
(Optional) Synchronize the interim table hr.int_employees.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees');
END;
/

	
Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees');
END;
/

The table hr.employees is locked in the exclusive mode only for a small window toward the end of this step. After this call the table hr.employees is redefined such that it has all the attributes of the hr.int_employees table.

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION" for more information.

	
Wait for any long-running queries against the interim table to complete, and then drop the interim table.

Example 7

This example illustrates online redefinition of a table with virtual private database (VPD) policies. The example changes the name of a column in the table.

The table to be redefined is defined as follows:

CREATE TABLE oe.orders(
 order_id NUMBER(12) PRIMARY KEY,
 order_date TIMESTAMP WITH LOCAL TIME ZONE CONSTRAINT order_date_nn NOT NULL,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6) CONSTRAINT order_customer_id_nn NOT NULL,
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 CONSTRAINT order_mode_lov
 CHECK (order_mode in ('direct','online')),
 CONSTRAINT order_total_min
 check (order_total >= 0));

If you installed the Oracle-supplied sample schemas when you created your Oracle database, then this table exists in your database.

Assume that the following auth_orders function is created for the VPD policy:

CREATE OR REPLACE FUNCTION oe.auth_orders(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 AS
 return_val VARCHAR2 (400);
 unm VARCHAR2(30);
 BEGIN
 SELECT USER INTO unm FROM DUAL;
 IF (unm = 'OE') THEN
 return_val := NULL;
 ELSE
 return_val := 'SALES_REP_ID = 159';
 END IF;
 RETURN return_val;
END auth_orders;
/

The following ADD_POLICY procedure specifies a VPD policy for the original table oe.orders using the auth_orders function:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'oe',
 object_name => 'orders',
 policy_name => 'orders_policy',
 function_schema => 'oe',
 policy_function => 'auth_orders',
 statement_types => 'select, insert, update, delete');
 END;
/

In this example, the table is redefined to change the sales_rep_id column to sale_pid. When one or more column names or column types change during redefinition, you must specify DBMS_REDEFINITION.CONS_VPD_MANUAL for the copy_vpd_opt in the START_REFEF_TABLE procedure.

The steps in this redefinition are illustrated below.

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table and the required privileges for managing VPD policies.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package" and EXECUTE privilege on the DBMS_RLS package.

See "Connecting to the Database with SQL*Plus".

	
Verify that the table is a candidate for online redefinition. In this case you specify that the redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'oe',
 tname => 'orders',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

	
Create an interim table oe.int_orders.

CREATE TABLE oe.int_orders(
 order_id NUMBER(12),
 order_date TIMESTAMP WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_pid NUMBER(6),
 promotion_id NUMBER(6));

Note that the sales_rep_id column is changed to the sales_pid column in the interim table.

	
Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE (
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders',
 col_mapping => 'order_id order_id, order_date order_date, order_mode
 order_mode, customer_id customer_id, order_status
 order_status, order_total order_total, sales_rep_id
 sales_pid, promotion_id promotion_id',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK,
 orderby_cols => NULL,
 part_name => NULL,
 copy_vpd_opt => DBMS_REDEFINITION.CONS_VPD_MANUAL);
END;
/

Because a column name is different in the original table and the interim table, DBMS_REDEFINITION.CONS_VPD_MANUAL must be specified for the copy_vpd_opt parameter. See "Handling Virtual Private Database (VPD) Policies During Online Redefinition".

	
Create the VPD policy on the interim table.

In this example, complete the following steps:

	
Create a new function called auth_orders_sales_pid for the VPD policy that specifies the sales_pid column instead of the sales_rep_id column:

CREATE OR REPLACE FUNCTION oe.auth_orders_sales_pid(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 AS
 return_val VARCHAR2 (400);
 unm VARCHAR2(30);
 BEGIN
 SELECT USER INTO unm FROM DUAL;
 IF (unm = 'OE') THEN
 return_val := NULL;
 ELSE
 return_val := 'SALES_PID = 159';
 END IF;
 RETURN return_val;
END auth_orders_sales_pid;
/

	
Run the ADD_POLICY procedure and specify the new function auth_orders_sales_pid and the interim table int_orders:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'oe',
 object_name => 'int_orders',
 policy_name => 'orders_policy',
 function_schema => 'oe',
 policy_function => 'auth_orders_sales_pid',
 statement_types => 'select, insert, update, delete');
 END;
/

	
Copy dependent objects. (Automatically create any triggers, indexes, materialized view logs, grants, and constraints on oe.int_orders.)

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

Note that the ignore_errors argument is set to TRUE for this call. The reason is that the original table has an index and a constraint related to the sales_rep_id column, and this column is changed to sales_pid in the interim table. The next step shows the errors and describes how to create the index and the constraint on the interim table.

	
Query the DBA_REDEFINITION_ERRORS view to check for errors.

SET LONG 8000
SET PAGES 8000
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A20
COLUMN BASE_TABLE_NAME HEADING 'Base Table Name' FORMAT A10
COLUMN DDL_TXT HEADING 'DDL That Caused Error' FORMAT A40

SELECT OBJECT_NAME, BASE_TABLE_NAME, DDL_TXT FROM
 DBA_REDEFINITION_ERRORS;

Object Name Base Table DDL That Caused Error
-------------------- ---------- --
ORDERS_SALES_REP_FK ORDERS ALTER TABLE "OE"."INT_ORDERS" ADD CONSTR
 AINT "TMP$$_ORDERS_SALES_REP_FK1" FOREIG
 N KEY ("SALES_REP_ID")
 REFERENCES "HR"."EMPLOYEES"
 ("EMPLOYE
 E_ID") ON DELETE SET NULL DISABLE
ORD_SALES_REP_IX ORDERS CREATE INDEX "OE"."TMP$$_ORD_SALES_REP_I
 X0" ON "OE"."INT_ORDERS" ("SALES_REP_ID"
)
 PCTFREE 10 INITRANS 2 MAXTRANS 255 COM
 PUTE STATISTICS
 STORAGE(INITIAL 65536 NEXT 1048576 MIN
 EXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GRO
 UPS 1
 BUFFER_POOL DEFAULT)
 TABLESPACE "EXAMPLE"
TMP$$_ORDERS_SALES_R ORDERS ALTER TABLE "OE"."INT_ORDERS" ADD CONSTR
EP_FK0 AINT "TMP$$_TMP$$_ORDERS_SALES_RE0" FORE
 IGN KEY ("SALES_REP_ID")
 REFERENCES "HR"."INT_EMPLOYEES"
 ("EMP
 LOYEE_ID") ON DELETE SET NULL DISABLE

If necessary, correct the errors reported in the output.

In this example, original table has an index and a foreign key constraint on the sales_rep_id column. The index and the constraint could not be copied to the interim table because the name of the column changed from sales_rep_id to sales_pid.

To correct the problems, add the index and the constraint on the interim table by completing the following steps:

	
Add the index:

ALTER TABLE oe.int_orders
 ADD (CONSTRAINT orders_sales_pid_fk
 FOREIGN KEY (sales_pid)
 REFERENCES hr.employees(employee_id)
 ON DELETE SET NULL);

	
Add the foreign key constraint:

CREATE INDEX ord_sales_pid_ix ON oe.int_orders (sales_pid);

	
(Optional) Synchronize the interim table oe.int_orders.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders');
END;
/

	
Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders');
END;
/

The table oe.orders is locked in the exclusive mode only for a small window toward the end of this step. After this call the table oe.orders is redefined such that it has all the attributes of the oe.int_orders table.

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION" for more information.

	
Wait for any long-running queries against the interim table to complete, and then drop the interim table.

Example 8

This example illustrates making multiple changes to a table using online redefinition.

The table to be redefined is defined as follows:

CREATE TABLE testredef.original(
 col1 NUMBER PRIMARY KEY,
 col2 VARCHAR2(10),
 col3 CLOB,
 col4 DATE)
ORGANIZATION INDEX;

The table is redefined as follows:

	
The table is compressed with advanced row compression.

	
The LOB column is changed to SecureFiles LOB storage.

	
The table's tablespace is changed from example to testredeftbs, and the table's block size is changed from 8KB to 16KB.

This example assumes that the database block size is 8KB. This example also assumes that the DB_16K_CACHE_SIZE initialization parameter is set and that the testredef tablespace was created with a 16KB block size. For example:

CREATE TABLESPACE testredeftbs
 DATAFILE '/u01/app/oracle/oradata/testredef01.dbf' SIZE 500M EXTENT MANAGEMENT LOCAL AUTOALLOCATE
 SEGMENT SPACE MANAGEMENT AUTO
 BLOCKSIZE 16384;

	
The table is partitioned on the col1 column.

	
The col5 column is added.

	
The col2 column is dropped.

	
Columns col3 and col4 are renamed, and their position in the table is changed.

	
The type of the col3 column is changed from DATE to TIMESTAMP.

	
The table is changed from an index-organized table (IOT) to a heap-organized table.

	
The table is defragmented.

To demonstrate defragmentation, the table must be populated. For the purposes of this example, you can use this PL/SQL block to populate the table:

DECLARE
 V_CLOB CLOB;
BEGIN
 FOR I IN 0..999 LOOP
 V_CLOB := NULL;
 FOR J IN 1..1000 LOOP
 V_CLOB := V_CLOB||TO_CHAR(I,'0000');
 END LOOP;
 INSERT INTO testredef.original VALUES(I,TO_CHAR(I),V_CLOB,SYSDATE+I);
 COMMIT;
 END LOOP;
 COMMIT;
END;
/

Run the following SQL statement to fragment the table by deleting every third row:

DELETE FROM testredef.original WHERE (COL1/3) <> TRUNC(COL1/3);

You can confirm the fragmentation by using the DBMS_SPACE.SPACE_USAGE procedure.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_SPACE.SPACE_USAGE procedure

The steps in this redefinition are illustrated below.

	
In SQL*Plus, connect as a user with the required privileges for performing online redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

	
Verify that the table is a candidate for online redefinition. In this case you specify that the redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'testredef',
 tname => 'original',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

	
Create an interim table testredef.interim.

CREATE TABLE testredef.interim(
 col1 NUMBER,
 col3 TIMESTAMP,
 col4 CLOB,
 col5 VARCHAR2(3))
 LOB(col4) STORE AS SECUREFILE (NOCACHE FILESYSTEM_LIKE_LOGGING)
 PARTITION BY RANGE (COL1) (
 PARTITION par1 VALUES LESS THAN (333),
 PARTITION par2 VALUES LESS THAN (666),
 PARTITION par3 VALUES LESS THAN (MAXVALUE))
 TABLESPACE testredeftbs
 ROW STORE COMPRESS ADVANCED;

	
Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim',
 col_mapping => 'col1 col1, TO_TIMESTAMP(col4) col3, col3 col4',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

	
Copy the dependent objects.

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

	
Optionally synchronize the interim table.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim');
END;
/

	
Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim');
END;
/

Privileges Required for the DBMS_REDEFINITION Package

Execute privileges on the DBMS_REDEFINITION package are required to run subprograms in the package. Execute privileges on the DBMS_REDEFINITION package are granted to EXECUTE_CATALOG_ROLE.

In addition, for a user to redefine a table in the user's schema using the package, the user must be granted the following privileges:

	
CREATE TABLE

	
CREATE MATERIALIZED VIEW

The CREATE TRIGGER privilege is also required to execute the COPY_TABLE_DEPENDENTS procedure.

For a user to redefine a table in other schemas using the package, the user must be granted the following privileges:

	
CREATE ANY TABLE

	
ALTER ANY TABLE

	
DROP ANY TABLE

	
LOCK ANY TABLE

	
SELECT ANY TABLE

The following additional privileges are required to execute COPY_TABLE_DEPENDENTS on tables in other schemas:

	
CREATE ANY TRIGGER

	
CREATE ANY INDEX

Researching and Reversing Erroneous Table Changes

To enable you to research and reverse erroneous changes to tables, Oracle Database provides a a group of features that you can use to view past states of database objects or to return database objects to a previous state without using point-in-time media recovery. These features are known as Oracle Flashback features, and are described in Oracle Database Development Guide.

To research an erroneous change, you can use multiple Oracle Flashback queries to view row data at specific points in time. A more efficient approach would be to use Oracle Flashback Version Query to view all changes to a row over a period of time. With this feature, you append a VERSIONS clause to a SELECT statement that specifies a system change number (SCN) or timestamp range between which you want to view changes to row values. The query also can return associated metadata, such as the transaction responsible for the change.

After you identify an erroneous transaction, you can use Oracle Flashback Transaction Query to identify other changes that were made by the transaction. You can then use Oracle Flashback Transaction to reverse the erroneous transaction. (Note that Oracle Flashback Transaction must also reverse all dependent transactions—subsequent transactions involving the same rows as the erroneous transaction.) You also have the option of using Oracle Flashback Table, described in "Recovering Tables Using Oracle Flashback Table".

	
Note:

You must be using automatic undo management to use Oracle Flashback features. See "Introduction to Automatic Undo Management".

	
See Also:

Oracle Database Development Guide for information about Oracle Flashback features.

Recovering Tables Using Oracle Flashback Table

Oracle Flashback Table enables you to restore a table to its state as of a previous point in time. It provides a fast, online solution for recovering a table that has been accidentally modified or deleted by a user or application. In many cases, Oracle Flashback Table eliminates the need for you to perform more complicated point-in-time recovery operations.

Oracle Flashback Table:

	
Restores all data in a specified table to a previous point in time described by a timestamp or SCN.

	
Performs the restore operation online.

	
Automatically maintains all of the table attributes, such as indexes, triggers, and constraints that are necessary for an application to function with the flashed-back table.

	
Maintains any remote state in a distributed environment. For example, all of the table modifications required by replication if a replicated table is flashed back.

	
Maintains data integrity as specified by constraints. Tables are flashed back provided none of the table constraints are violated. This includes any referential integrity constraints specified between a table included in the FLASHBACK TABLE statement and another table that is not included in the FLASHBACK TABLE statement.

	
Even after a flashback operation, the data in the original table is not lost. You can later revert to the original state.

	
Note:

You must be using automatic undo management to use Oracle Flashback Table. See "Introduction to Automatic Undo Management".

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about the FLASHBACK TABLE statement.

Dropping Tables

To drop a table that you no longer need, use the DROP TABLE statement. The table must be contained in your schema or you must have the DROP ANY TABLE system privilege.

	
Caution:

Before dropping a table, familiarize yourself with the consequences of doing so:
	
Dropping a table removes the table definition from the data dictionary. All rows of the table are no longer accessible.

	
All indexes and triggers associated with a table are dropped.

	
All views and PL/SQL program units dependent on a dropped table remain, yet become invalid (not usable). See "Managing Object Dependencies" for information about how the database manages dependencies.

	
All synonyms for a dropped table remain, but return an error when used.

	
All extents allocated for a table that is dropped are returned to the free space of the tablespace and can be used by any other object requiring new extents or new objects. All rows corresponding to a clustered table are deleted from the blocks of the cluster. Clustered tables are the subject of Chapter 22, "Managing Clusters".

The following statement drops the hr.int_admin_emp table:

DROP TABLE hr.int_admin_emp;

If the table to be dropped contains any primary or unique keys referenced by foreign keys of other tables and you intend to drop the FOREIGN KEY constraints of the child tables, then include the CASCADE clause in the DROP TABLE statement, as shown below:

DROP TABLE hr.admin_emp CASCADE CONSTRAINTS;

When you drop a table, normally the database does not immediately release the space associated with the table. Rather, the database renames the table and places it in a recycle bin, where it can later be recovered with the FLASHBACK TABLE statement if you find that you dropped the table in error. If you should want to immediately release the space associated with the table at the time you issue the DROP TABLE statement, include the PURGE clause as shown in the following statement:

DROP TABLE hr.admin_emp PURGE;

Perhaps instead of dropping a table, you want to truncate it. The TRUNCATE statement provides a fast, efficient method for deleting all rows from a table, but it does not affect any structures associated with the table being truncated (column definitions, constraints, triggers, and so forth) or authorizations. The TRUNCATE statement is discussed in "Truncating Tables and Clusters".

Using Flashback Drop and Managing the Recycle Bin

When you drop a table, the database does not immediately remove the space associated with the table. The database renames the table and places it and any associated objects in a recycle bin, where, in case the table was dropped in error, it can be recovered at a later time. This feature is called Flashback Drop, and the FLASHBACK TABLE statement is used to restore the table. Before discussing the use of the FLASHBACK TABLE statement for this purpose, it is important to understand how the recycle bin works, and how you manage its contents.

This section contains the following topics:

	
What Is the Recycle Bin?

	
Viewing and Querying Objects in the Recycle Bin

	
Purging Objects in the Recycle Bin

	
Restoring Tables from the Recycle Bin

What Is the Recycle Bin?

The recycle bin is actually a data dictionary table containing information about dropped objects. Dropped tables and any associated objects such as indexes, constraints, nested tables, and the likes are not removed and still occupy space. They continue to count against user space quotas, until specifically purged from the recycle bin or the unlikely situation where they must be purged by the database because of tablespace space constraints.

Each user can be thought of as having his own recycle bin, because, unless a user has the SYSDBA privilege, the only objects that the user has access to in the recycle bin are those that the user owns. A user can view his objects in the recycle bin using the following statement:

SELECT * FROM RECYCLEBIN;

Only the DROP TABLE SQL statement places objects in the recycle bin. It adds the table and its associated objects so that they can be recovered as a group. In addition to the table itself, the associated objects that are added to the recycle bin can include the following types of objects:

	
Nested tables

	
LOB segments

	
Indexes

	
Constraints (excluding foreign key constraints)

	
Triggers

	
Clusters

When you drop a tablespace including its contents, the objects in the tablespace are not placed in the recycle bin and the database purges any entries in the recycle bin for objects located in the tablespace. The database also purges any recycle bin entries for objects in a tablespace when you drop the tablespace, not including contents, and the tablespace is otherwise empty. Likewise:

	
When you drop a user, any objects belonging to the user are not placed in the recycle bin and any objects in the recycle bin are purged.

	
When you drop a cluster, its member tables are not placed in the recycle bin and any former member tables in the recycle bin are purged.

	
When you drop a type, any dependent objects such as subtypes are not placed in the recycle bin and any former dependent objects in the recycle bin are purged.

Object Naming in the Recycle Bin

When a dropped table is moved to the recycle bin, the table and its associated objects are given system-generated names. This is necessary to avoid name conflicts that may arise if multiple tables have the same name. This could occur under the following circumstances:

	
A user drops a table, re-creates it with the same name, then drops it again.

	
Two users have tables with the same name, and both users drop their tables.

The renaming convention is as follows:

BIN$unique_id$version

where:

	
unique_id is a 26-character globally unique identifier for this object, which makes the recycle bin name unique across all databases

	
version is a version number assigned by the database

Enabling and Disabling the Recycle Bin

When the recycle bin is enabled, dropped tables and their dependent objects are placed in the recycle bin. When the recycle bin is disabled, dropped tables and their dependent objects are not placed in the recycle bin; they are just dropped, and you must use other means to recover them (such as recovering from backup).

Disabling the recycle bin does not purge or otherwise affect objects already in the recycle bin. The recycle bin is enabled by default.

You enable and disable the recycle bin by changing the recyclebin initialization parameter. This parameter is not dynamic, so a database restart is required when you change it with an ALTER SYSTEM statement.

To disable the recycle bin:

	
Issue one of the following statements:

ALTER SESSION SET recyclebin = OFF;

ALTER SYSTEM SET recyclebin = OFF SCOPE = SPFILE;

	
If you used ALTER SYSTEM, restart the database.

To enable the recycle bin:

	
Issue one of the following statements:

ALTER SESSION SET recyclebin = ON;

ALTER SYSTEM SET recyclebin = ON SCOPE = SPFILE;

	
If you used ALTER SYSTEM, restart the database.

	
See Also:

	
"About Initialization Parameters and Initialization Parameter Files" for more information on initialization parameters

	
"Changing Initialization Parameter Values" for a description of dynamic and static initialization parameters

Viewing and Querying Objects in the Recycle Bin

Oracle Database provides two views for obtaining information about objects in the recycle bin:

	View	Description
	USER_RECYCLEBIN	This view can be used by users to see their own dropped objects in the recycle bin. It has a synonym RECYCLEBIN, for ease of use.
	DBA_RECYCLEBIN	This view gives administrators visibility to all dropped objects in the recycle bin

One use for these views is to identify the name that the database has assigned to a dropped object, as shown in the following example:

SELECT object_name, original_name FROM dba_recyclebin
 WHERE owner = 'HR';

OBJECT_NAME ORIGINAL_NAME
------------------------------ --------------------------------
BIN$yrMKlZaLMhfgNAgAIMenRA==$0 EMPLOYEES

You can also view the contents of the recycle bin using the SQL*Plus command SHOW RECYCLEBIN.

SQL> show recyclebin

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
EMPLOYEES BIN$yrMKlZaVMhfgNAgAIMenRA==$0 TABLE 2003-10-27:14:00:19

You can query objects that are in the recycle bin, just as you can query other objects. However, you must specify the name of the object as it is identified in the recycle bin. For example:

SELECT * FROM "BIN$yrMKlZaVMhfgNAgAIMenRA==$0";

Purging Objects in the Recycle Bin

If you decide that you are never going to restore an item from the recycle bin, you can use the PURGE statement to remove the items and their associated objects from the recycle bin and release their storage space. You need the same privileges as if you were dropping the item.

When you use the PURGE statement to purge a table, you can use the name that the table is known by in the recycle bin or the original name of the table. The recycle bin name can be obtained from either the DBA_ or USER_RECYCLEBIN view as shown in "Viewing and Querying Objects in the Recycle Bin". The following hypothetical example purges the table hr.int_admin_emp, which was renamed to BIN$jsleilx392mk2=293$0 when it was placed in the recycle bin:

PURGE TABLE "BIN$jsleilx392mk2=293$0";

You can achieve the same result with the following statement:

PURGE TABLE int_admin_emp;

You can use the PURGE statement to purge all the objects in the recycle bin that are from a specified tablespace or only the tablespace objects belonging to a specified user, as shown in the following examples:

PURGE TABLESPACE example;
PURGE TABLESPACE example USER oe;

Users can purge the recycle bin of their own objects, and release space for objects, by using the following statement:

PURGE RECYCLEBIN;

If you have the SYSDBA privilege or the PURGE DBA_RECYCLEBIN system privilege, then you can purge the entire recycle bin by specifying DBA_RECYCLEBIN, instead of RECYCLEBIN in the previous statement.

You can also use the PURGE statement to purge an index from the recycle bin or to purge from the recycle bin all objects in a specified tablespace.

	
See Also:

Oracle Database SQL Language Reference for more information on the PURGE statement

Restoring Tables from the Recycle Bin

Use the FLASHBACK TABLE ... TO BEFORE DROP statement to recover objects from the recycle bin. You can specify either the name of the table in the recycle bin or the original table name. An optional RENAME TO clause lets you rename the table as you recover it. The recycle bin name can be obtained from either the DBA_ or USER_RECYCLEBIN view as shown in "Viewing and Querying Objects in the Recycle Bin". To use the FLASHBACK TABLE ... TO BEFORE DROP statement, you need the same privileges required to drop the table.

The following example restores int_admin_emp table and assigns to it a new name:

FLASHBACK TABLE int_admin_emp TO BEFORE DROP
 RENAME TO int2_admin_emp;

The system-generated recycle bin name is very useful if you have dropped a table multiple times. For example, suppose you have three versions of the int2_admin_emp table in the recycle bin and you want to recover the second version. You can do this by issuing two FLASHBACK TABLE statements, or you can query the recycle bin and then flashback to the appropriate system-generated name, as shown in the following example. Including the create time in the query can help you verify that you are restoring the correct table.

SELECT object_name, original_name, createtime FROM recyclebin;

OBJECT_NAME ORIGINAL_NAME CREATETIME
------------------------------ --------------- -------------------
BIN$yrMKlZaLMhfgNAgAIMenRA==$0 INT2_ADMIN_EMP 2006-02-05:21:05:52
BIN$yrMKlZaVMhfgNAgAIMenRA==$0 INT2_ADMIN_EMP 2006-02-05:21:25:13
BIN$yrMKlZaQMhfgNAgAIMenRA==$0 INT2_ADMIN_EMP 2006-02-05:22:05:53

FLASHBACK TABLE "BIN$yrMKlZaVMhfgNAgAIMenRA==$0" TO BEFORE DROP;

Restoring Dependent Objects

When you restore a table from the recycle bin, dependent objects such as indexes do not get their original names back; they retain their system-generated recycle bin names. You must manually rename dependent objects to restore their original names. If you plan to manually restore original names for dependent objects, ensure that you make note of each dependent object's system-generated recycle bin name before you restore the table.

The following is an example of restoring the original names of some of the indexes of the dropped table JOB_HISTORY, from the HR sample schema. The example assumes that you are logged in as the HR user.

	
After dropping JOB_HISTORY and before restoring it from the recycle bin, run the following query:

SELECT OBJECT_NAME, ORIGINAL_NAME, TYPE FROM RECYCLEBIN;

OBJECT_NAME ORIGINAL_NAME TYPE
------------------------------ ------------------------- --------
BIN$DBo9UChtZSbgQFeMiAdCcQ==$0 JHIST_JOB_IX INDEX
BIN$DBo9UChuZSbgQFeMiAdCcQ==$0 JHIST_EMPLOYEE_IX INDEX
BIN$DBo9UChvZSbgQFeMiAdCcQ==$0 JHIST_DEPARTMENT_IX INDEX
BIN$DBo9UChwZSbgQFeMiAdCcQ==$0 JHIST_EMP_ID_ST_DATE_PK INDEX
BIN$DBo9UChxZSbgQFeMiAdCcQ==$0 JOB_HISTORY TABLE

	
Restore the table with the following command:

FLASHBACK TABLE JOB_HISTORY TO BEFORE DROP;

	
Run the following query to verify that all JOB_HISTORY indexes retained their system-generated recycle bin names:

SELECT INDEX_NAME FROM USER_INDEXES WHERE TABLE_NAME = 'JOB_HISTORY';

INDEX_NAME

BIN$DBo9UChwZSbgQFeMiAdCcQ==$0
BIN$DBo9UChtZSbgQFeMiAdCcQ==$0
BIN$DBo9UChuZSbgQFeMiAdCcQ==$0
BIN$DBo9UChvZSbgQFeMiAdCcQ==$0

	
Restore the original names of the first two indexes as follows:

ALTER INDEX "BIN$DBo9UChtZSbgQFeMiAdCcQ==$0" RENAME TO JHIST_JOB_IX;
ALTER INDEX "BIN$DBo9UChuZSbgQFeMiAdCcQ==$0" RENAME TO JHIST_EMPLOYEE_IX;

Note that double quotes are required around the system-generated names.

Managing Index-Organized Tables

This section describes aspects of managing index-organized tables, and contains the following topics:

	
What Are Index-Organized Tables?

	
Creating Index-Organized Tables

	
Maintaining Index-Organized Tables

	
Creating Secondary Indexes on Index-Organized Tables

	
Analyzing Index-Organized Tables

	
Using the ORDER BY Clause with Index-Organized Tables

	
Converting Index-Organized Tables to Regular Tables

What Are Index-Organized Tables?

An index-organized table has a storage organization that is a variant of a primary B-tree. Unlike an ordinary (heap-organized) table whose data is stored as an unordered collection (heap), data for an index-organized table is stored in a B-tree index structure in a primary key sorted manner. Each leaf block in the index structure stores both the key and nonkey columns.

The structure of an index-organized table provides the following benefits:

	
Fast random access on the primary key because an index-only scan is sufficient. And, because there is no separate table storage area, changes to the table data (such as adding new rows, updating rows, or deleting rows) result only in updating the index structure.

	
Fast range access on the primary key because the rows are clustered in primary key order.

	
Lower storage requirements because duplication of primary keys is avoided. They are not stored both in the index and underlying table, as is true with heap-organized tables.

Index-organized tables have full table functionality. They support features such as constraints, triggers, LOB and object columns, partitioning, parallel operations, online reorganization, and replication. And, they offer these additional features:

	
Key compression

	
Overflow storage area and specific column placement

	
Secondary indexes, including bitmap indexes.

Index-organized tables are ideal for OLTP applications, which require fast primary key access and high availability. For example, queries and DML on an orders table used in electronic order processing are predominantly based on primary key access, and heavy volume of concurrent DML can cause row chaining and inefficient space usage in indexes, resulting in a frequent need to reorganize. Because an index-organized table can be reorganized online and without invalidating its secondary indexes, the window of unavailability is greatly reduced or eliminated.

Index-organized tables are suitable for modeling application-specific index structures. For example, content-based information retrieval applications containing text, image and audio data require inverted indexes that can be effectively modeled using index-organized tables. A fundamental component of an internet search engine is an inverted index that can be modeled using index-organized tables.

These are but a few of the applications for index-organized tables.

	
See Also:

	
Oracle Database Concepts for a more thorough description of index-organized tables

	
Oracle Database VLDB and Partitioning Guide for information about partitioning index-organized tables

Creating Index-Organized Tables

You use the CREATE TABLE statement to create index-organized tables, but you must provide additional information:

	
An ORGANIZATION INDEX qualifier, which indicates that this is an index-organized table

	
A primary key, specified through a column constraint clause (for a single column primary key) or a table constraint clause (for a multiple-column primary key).

Optionally, you can specify the following:

	
An OVERFLOW clause, which preserves dense clustering of the B-tree index by enabling the storage of some of the nonkey columns in a separate overflow data segment.

	
A PCTTHRESHOLD value, which, when an overflow segment is being used, defines the maximum size of the portion of the row that is stored in the index block, as a percentage of block size. Rows columns that would cause the row size to exceed this maximum are stored in the overflow segment. The row is broken at a column boundary into two pieces, a head piece and tail piece. The head piece fits in the specified threshold and is stored along with the key in the index leaf block. The tail piece is stored in the overflow area as one or more row pieces. Thus, the index entry contains the key value, the nonkey column values that fit the specified threshold, and a pointer to the rest of the row.

	
An INCLUDING clause, which can be used to specify the nonkey columns that are to be stored in the index block with the primary key.

Example: Creating an Index-Organized Table

The following statement creates an index-organized table:

CREATE TABLE admin_docindex(
 token char(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(2000),
 CONSTRAINT pk_admin_docindex PRIMARY KEY (token, doc_id))
 ORGANIZATION INDEX
 TABLESPACE admin_tbs
 PCTTHRESHOLD 20
 OVERFLOW TABLESPACE admin_tbs2;

This example creates an index-organized table named admin_docindex, with a primary key composed of the columns token and doc_id. The OVERFLOW and PCTTHRESHOLD clauses specify that if the length of a row exceeds 20% of the index block size, then the column that exceeded that threshold and all columns after it are moved to the overflow segment. The overflow segment is stored in the admin_tbs2 tablespace.

	
See Also:

Oracle Database SQL Language Reference for more information about the syntax to create an index-organized table

Restrictions for Index-Organized Tables

The following are restrictions on creating index-organized tables.

	
The maximum number of columns is 1000.

	
The maximum number of columns in the index portion of a row is 255, including both key and nonkey columns. If more than 255 columns are required, you must use an overflow segment.

	
The maximum number of columns that you can include in the primary key is 32.

	
PCTTHRESHOLD must be in the range of 1–50. The default is 50.

	
All key columns must fit within the specified threshold.

	
If the maximum size of a row exceeds 50% of the index block size and you do not specify an overflow segment, the CREATE TABLE statement fails.

	
Index-organized tables cannot have virtual columns.

Creating Index-Organized Tables that Contain Object Types

Index-organized tables can store object types. The following example creates object type admin_typ, then creates an index-organized table containing a column of object type admin_typ:

CREATE OR REPLACE TYPE admin_typ AS OBJECT
 (col1 NUMBER, col2 VARCHAR2(6));
CREATE TABLE admin_iot (c1 NUMBER primary key, c2 admin_typ)
 ORGANIZATION INDEX;

You can also create an index-organized table of object types. For example:

CREATE TABLE admin_iot2 OF admin_typ (col1 PRIMARY KEY)
 ORGANIZATION INDEX;

Another example, that follows, shows that index-organized tables store nested tables efficiently. For a nested table column, the database internally creates a storage table to hold all the nested table rows.

CREATE TYPE project_t AS OBJECT(pno NUMBER, pname VARCHAR2(80));
/
CREATE TYPE project_set AS TABLE OF project_t;
/
CREATE TABLE proj_tab (eno NUMBER, projects PROJECT_SET)
 NESTED TABLE projects STORE AS emp_project_tab
 ((PRIMARY KEY(nested_table_id, pno))
 ORGANIZATION INDEX)
 RETURN AS LOCATOR;

The rows belonging to a single nested table instance are identified by a nested_table_id column. If an ordinary table is used to store nested table columns, the nested table rows typically get de-clustered. But when you use an index-organized table, the nested table rows can be clustered based on the nested_table_id column.

	
See Also:

	
Oracle Database SQL Language Reference for details of the syntax used for creating index-organized tables

	
Oracle Database VLDB and Partitioning Guide for information about creating partitioned index-organized tables

	
Oracle Database Object-Relational Developer's Guide for information about object types

Choosing and Monitoring a Threshold Value

Choose a threshold value that can accommodate your key columns, as well as the first few nonkey columns (if they are frequently accessed).

After choosing a threshold value, you can monitor tables to verify that the value you specified is appropriate. You can use the ANALYZE TABLE ... LIST CHAINED ROWS statement to determine the number and identity of rows exceeding the threshold value.

	
See Also:

	
"Listing Chained Rows of Tables and Clusters" for more information about chained rows

	
Oracle Database SQL Language Reference for syntax of the ANALYZE statement

Using the INCLUDING Clause

In addition to specifying PCTTHRESHOLD, you can use the INCLUDING clause to control which nonkey columns are stored with the key columns. The database accommodates all nonkey columns up to and including the column specified in the INCLUDING clause in the index leaf block, provided it does not exceed the specified threshold. All nonkey columns beyond the column specified in the INCLUDING clause are stored in the overflow segment. If the INCLUDING and PCTTHRESHOLD clauses conflict, PCTTHRESHOLD takes precedence.

	
Note:

Oracle Database moves all primary key columns of an indexed-organized table to the beginning of the table (in their key order) to provide efficient primary key–based access. As an example:

CREATE TABLE admin_iot4(a INT, b INT, c INT, d INT,
 primary key(c,b))
 ORGANIZATION INDEX;

The stored column order is: c b a d (instead of: a b c d). The last primary key column is b, based on the stored column order. The INCLUDING column can be the last primary key column (b in this example), or any nonkey column (that is, any column after b in the stored column order).

The following CREATE TABLE statement is similar to the one shown earlier in "Example: Creating an Index-Organized Table" but is modified to create an index-organized table where the token_offsets column value is always stored in the overflow area:

CREATE TABLE admin_docindex2(
 token CHAR(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(2000),
 CONSTRAINT pk_admin_docindex2 PRIMARY KEY (token, doc_id))
 ORGANIZATION INDEX
 TABLESPACE admin_tbs
 PCTTHRESHOLD 20
 INCLUDING token_frequency
 OVERFLOW TABLESPACE admin_tbs2;

Here, only nonkey columns before token_offsets (in this case a single column only) are stored with the key column values in the index leaf block.

Parallelizing Index-Organized Table Creation

The CREATE TABLE...AS SELECT statement enables you to create an index-organized table and load data from an existing table into it. By including the PARALLEL clause, the load can be done in parallel.

The following statement creates an index-organized table in parallel by selecting rows from the conventional table hr.jobs:

CREATE TABLE admin_iot3(i PRIMARY KEY, j, k, l)
 ORGANIZATION INDEX
 PARALLEL
 AS SELECT * FROM hr.jobs;

This statement provides an alternative to parallel bulk-load using SQL*Loader.

Using Key Compression

Creating an index-organized table using key compression enables you to eliminate repeated occurrences of key column prefix values.

Key compression breaks an index key into a prefix and a suffix entry. Compression is achieved by sharing the prefix entries among all the suffix entries in an index block. This sharing can lead to huge savings in space, allowing you to store more keys in each index block while improving performance.

You can enable key compression using the COMPRESS clause while:

	
Creating an index-organized table

	
Moving an index-organized table

You can also specify the prefix length (as the number of key columns), which identifies how the key columns are broken into a prefix and suffix entry.

CREATE TABLE admin_iot5(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k))
 ORGANIZATION INDEX COMPRESS;

The preceding statement is equivalent to the following statement:

CREATE TABLE admin_iot6(i INT, j INT, k INT, l INT, PRIMARY KEY(i, j, k))
 ORGANIZATION INDEX COMPRESS 2;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the repeated occurrences of (1,2), (1,3) are compressed away.

You can also override the default prefix length used for compression as follows:

CREATE TABLE admin_iot7(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k))
 ORGANIZATION INDEX COMPRESS 1;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4), the repeated occurrences of 1 are compressed away.

You can disable compression as follows:

ALTER TABLE admin_iot5 MOVE NOCOMPRESS;

One application of key compression is in a time-series application that uses a set of time-stamped rows belonging to a single item, such as a stock price. Index-organized tables are attractive for such applications because of the ability to cluster rows based on the primary key. By defining an index-organized table with primary key (stock symbol, time stamp), you can store and manipulate time-series data efficiently. You can achieve more storage savings by compressing repeated occurrences of the item identifier (for example, the stock symbol) in a time series by using an index-organized table with key compression.

	
See Also:

Oracle Database Concepts for more information about key compression

Maintaining Index-Organized Tables

Index-organized tables differ from ordinary tables only in physical organization. Logically, they are manipulated in the same manner as ordinary tables. You can specify an index-organized table just as you would specify a regular table in INSERT, SELECT, DELETE, and UPDATE statements.

Altering Index-Organized Tables

All of the alter options available for ordinary tables are available for index-organized tables. This includes ADD, MODIFY, and DROP COLUMNS and CONSTRAINTS. However, the primary key constraint for an index-organized table cannot be dropped, deferred, or disabled

You can use the ALTER TABLE statement to modify physical and storage attributes for both primary key index and overflow data segments. All the attributes specified before the OVERFLOW keyword are applicable to the primary key index segment. All attributes specified after the OVERFLOW key word are applicable to the overflow data segment. For example, you can set the INITRANS of the primary key index segment to 4 and the overflow of the data segment INITRANS to 6 as follows:

ALTER TABLE admin_docindex INITRANS 4 OVERFLOW INITRANS 6;

You can also alter PCTTHRESHOLD and INCLUDING column values. A new setting is used to break the row into head and overflow tail pieces during subsequent operations. For example, the PCTHRESHOLD and INCLUDING column values can be altered for the admin_docindex table as follows:

ALTER TABLE admin_docindex PCTTHRESHOLD 15 INCLUDING doc_id;

By setting the INCLUDING column to doc_id, all the columns that follow token_frequency and token_offsets, are stored in the overflow data segment.

For index-organized tables created without an overflow data segment, you can add an overflow data segment by using the ADD OVERFLOW clause. For example, you can add an overflow segment to table admin_iot3 as follows:

ALTER TABLE admin_iot3 ADD OVERFLOW TABLESPACE admin_tbs2;

Moving (Rebuilding) Index-Organized Tables

Because index-organized tables are primarily stored in a B-tree index, you can encounter fragmentation as a consequence of incremental updates. However, you can use the ALTER TABLE...MOVE statement to rebuild the index and reduce this fragmentation.

The following statement rebuilds the index-organized table admin_docindex:

ALTER TABLE admin_docindex MOVE;

You can rebuild index-organized tables online using the ONLINE keyword. The overflow data segment, if present, is rebuilt when the OVERFLOW keyword is specified. For example, to rebuild the admin_docindex table but not the overflow data segment, perform a move online as follows:

ALTER TABLE admin_docindex MOVE ONLINE;

To rebuild the admin_docindex table along with its overflow data segment perform the move operation as shown in the following statement. This statement also illustrates moving both the table and overflow data segment to new tablespaces.

ALTER TABLE admin_docindex MOVE TABLESPACE admin_tbs2
 OVERFLOW TABLESPACE admin_tbs3;

In this last statement, an index-organized table with a LOB column (CLOB) is created. Later, the table is moved with the LOB index and data segment being rebuilt and moved to a new tablespace.

CREATE TABLE admin_iot_lob
 (c1 number (6) primary key,
 admin_lob CLOB)
 ORGANIZATION INDEX
 LOB (admin_lob) STORE AS (TABLESPACE admin_tbs2);
.
.
.
ALTER TABLE admin_iot_lob MOVE LOB (admin_lob) STORE AS (TABLESPACE admin_tbs3);

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information about LOBs in index-organized tables

Creating Secondary Indexes on Index-Organized Tables

You can create secondary indexes on an index-organized tables to provide multiple access paths. Secondary indexes on index-organized tables differ from indexes on ordinary tables in two ways:

	
They store logical rowids instead of physical rowids. This is necessary because the inherent movability of rows in a B-tree index results in the rows having no permanent physical addresses. If the physical location of a row changes, its logical rowid remains valid. One effect of this is that a table maintenance operation, such as ALTER TABLE ... MOVE, does not make the secondary index unusable.

	
The logical rowid also includes a physical guess which identifies the database block address at which the row is likely to be found. If the physical guess is correct, a secondary index scan would incur a single additional I/O once the secondary key is found. The performance would be similar to that of a secondary index-scan on an ordinary table.

Unique and non-unique secondary indexes, function-based secondary indexes, and bitmap indexes are supported as secondary indexes on index-organized tables.

Syntax for Creating the Secondary Index

The following statement shows the creation of a secondary index on the docindex index-organized table where doc_id and token are the key columns:

CREATE INDEX Doc_id_index on Docindex(Doc_id, Token);

This secondary index allows the database to efficiently process a query, such as the following, the involves a predicate on doc_id:

SELECT Token FROM Docindex WHERE Doc_id = 1;

Maintaining Physical Guesses in Logical Rowids

A logical rowid can include a guess, which identifies the block location of a row at the time the guess is made. Instead of doing a full key search, the database uses the guess to search the block directly. However, as new rows are inserted, guesses can become stale. The indexes are still usable through the primary key-component of the logical rowid, but access to rows is slower.

Collect index statistics with the DBMS_STATS package to monitor the staleness of guesses. The database checks whether the existing guesses are still valid and records the percentage of rows with valid guesses in the data dictionary. This statistic is stored in the PCT_DIRECT_ACCESS column of the DBA_INDEXES view (and related views).

To obtain fresh guesses, you can rebuild the secondary index. Note that rebuilding a secondary index on an index-organized table involves reading the base table, unlike rebuilding an index on an ordinary table. A quicker, more light weight means of fixing the guesses is to use the ALTER INDEX ... UPDATE BLOCK REFERENCES statement. This statement is performed online, while DML is still allowed on the underlying index-organized table.

After you rebuild a secondary index, or otherwise update the block references in the guesses, collect index statistics again.

Bitmap Indexes

Bitmap indexes on index-organized tables are supported, provided the index-organized table is created with a mapping table. This is done by specifying the MAPPING TABLE clause in the CREATE TABLE statement that you use to create the index-organized table, or in an ALTER TABLE statement to add the mapping table later.

	
See Also:

Oracle Database Concepts for a description of mapping tables

Analyzing Index-Organized Tables

Just like ordinary tables, index-organized tables are analyzed using the DBMS_STATS package, or the ANALYZE statement.

Collecting Optimizer Statistics for Index-Organized Tables

To collect optimizer statistics, use the DBMS_STATS package.

For example, the following statement gathers statistics for the index-organized countries table in the hr schema:

EXECUTE DBMS_STATS.GATHER_TABLE_STATS ('HR','COUNTRIES');

The DBMS_STATS package analyzes both the primary key index segment and the overflow data segment, and computes logical as well as physical statistics for the table.

	
The logical statistics can be queried using USER_TABLES, ALL_TABLES or DBA_TABLES.

	
You can query the physical statistics of the primary key index segment using USER_INDEXES, ALL_INDEXES or DBA_INDEXES (and using the primary key index name). For example, you can obtain the primary key index segment physical statistics for the table admin_docindex as follows:

SELECT LAST_ANALYZED, BLEVEL,LEAF_BLOCKS, DISTINCT_KEYS
 FROM DBA_INDEXES WHERE INDEX_NAME= 'PK_ADMIN_DOCINDEX';

	
You can query the physical statistics for the overflow data segment using the USER_TABLES, ALL_TABLES or DBA_TABLES. You can identify the overflow entry by searching for IOT_TYPE = 'IOT_OVERFLOW'. For example, you can obtain overflow data segment physical attributes associated with the admin_docindex table as follows:

SELECT LAST_ANALYZED, NUM_ROWS, BLOCKS, EMPTY_BLOCKS
 FROM DBA_TABLES WHERE IOT_TYPE='IOT_OVERFManaging Indexes

21 Managing Indexes

This chapter contains the following topics:

	
About Indexes

	
Guidelines for Managing Indexes

	
Creating Indexes

	
Altering Indexes

	
Monitoring Space Use of Indexes

	
Dropping Indexes

	
Indexes Data Dictionary Views

About Indexes

Indexes are optional structures associated with tables and clusters that allow SQL queries to execute more quickly against a table. Just as the index in this manual helps you locate information faster than if there were no index, an Oracle Database index provides a faster access path to table data. You can use indexes without rewriting any queries. Your results are the same, but you see them more quickly.

Oracle Database provides several indexing schemes that provide complementary performance functionality. These are:

	
B-tree indexes: the default and the most common

	
B-tree cluster indexes: defined specifically for cluster

	
Hash cluster indexes: defined specifically for a hash cluster

	
Global and local indexes: relate to partitioned tables and indexes

	
Reverse key indexes: most useful for Oracle Real Application Clusters applications

	
Bitmap indexes: compact; work best for columns with a small set of values

	
Function-based indexes: contain the precomputed value of a function/expression

	
Domain indexes: specific to an application or cartridge.

Indexes are logically and physically independent of the data in the associated table. Being independent structures, they require storage space. You can create or drop an index without affecting the base tables, database applications, or other indexes. The database automatically maintains indexes when you insert, update, and delete rows of the associated table. If you drop an index, all applications continue to work. However, access to previously indexed data might be slower.

	
See Also:

	
Oracle Database Concepts for an overview of indexes

	
Chapter 19, "Managing Space for Schema Objects"

Guidelines for Managing Indexes

This section discusses guidelines for managing indexes and contains the following topics:

	
Create Indexes After Inserting Table Data

	
Index the Correct Tables and Columns

	
Order Index Columns for Performance

	
Limit the Number of Indexes for Each Table

	
Drop Indexes That Are No Longer Required

	
Indexes and Deferred Segment Creation

	
Estimate Index Size and Set Storage Parameters

	
Specify the Tablespace for Each Index

	
Consider Parallelizing Index Creation

	
Consider Creating Indexes with NOLOGGING

	
Understand When to Use Unusable or Invisible Indexes

	
Understand When to Create Multiple Indexes on the Same Set of Columns

	
Consider Costs and Benefits of Coalescing or Rebuilding Indexes

	
Consider Cost Before Disabling or Dropping Constraints

	
See Also:

	
Oracle Database Concepts for conceptual information about indexes and indexing, including descriptions of the various indexing schemes offered by Oracle

	
Oracle Database SQL Tuning Guide and Oracle Database Data Warehousing Guide for information about bitmap indexes

	
Oracle Database Data Cartridge Developer's Guide for information about defining domain-specific operators and indexing schemes and integrating them into the Oracle Database server

Create Indexes After Inserting Table Data

Data is often inserted or loaded into a table using either the SQL*Loader or an import utility. It is more efficient to create an index for a table after inserting or loading the data. If you create one or more indexes before loading data, then the database must update every index as each row is inserted.

Creating an index on a table that already has data requires sort space. Some sort space comes from memory allocated for the index creator. The amount for each user is determined by the initialization parameter SORT_AREA_SIZE. The database also swaps sort information to and from temporary segments that are only allocated during the index creation in the user's temporary tablespace.

Under certain conditions, data can be loaded into a table with SQL*Loader direct-path load, and an index can be created as data is loaded.

	
See Also:

Oracle Database Utilities for information about using SQL*Loader for direct-path load

Index the Correct Tables and Columns

Use the following guidelines for determining when to create an index:

	
Create an index if you frequently want to retrieve less than 15% of the rows in a large table. The percentage varies greatly according to the relative speed of a table scan and how the row data is distributed in relation to the index key. The faster the table scan, the lower the percentage; the more clustered the row data, the higher the percentage.

	
To improve performance on joins of multiple tables, index columns used for joins.

	
Note:

Primary and unique keys automatically have indexes, but you might want to create an index on a foreign key.

	
Small tables do not require indexes. If a query is taking too long, then the table might have grown from small to large.

Columns That Are Suitable for Indexing

Some columns are strong candidates for indexing. Columns with one or more of the following characteristics are candidates for indexing:

	
Values are relatively unique in the column.

	
There is a wide range of values (good for regular indexes).

	
There is a small range of values (good for bitmap indexes).

	
The column contains many nulls, but queries often select all rows having a value. In this case, use the following phrase:

WHERE COL_X > -9.99 * power(10,125)

Using the preceding phrase is preferable to:

WHERE COL_X IS NOT NULL

This is because the first uses an index on COL_X (assuming that COL_X is a numeric column).

Columns That Are Not Suitable for Indexing

Columns with the following characteristics are less suitable for indexing:

	
There are many nulls in the column, and you do not search on the not null values.

LONG and LONG RAW columns cannot be indexed.

Virtual Columns

You can create unique or non-unique indexes on virtual columns. A table index defined on a virtual column is equivalent to a function-based index on the table.

	
See Also:

"Creating a Function-Based Index"

Order Index Columns for Performance

The order of columns in the CREATE INDEX statement can affect query performance. In general, specify the most frequently used columns first.

If you create a single index across columns to speed up queries that access, for example, col1, col2, and col3; then queries that access just col1, or that access just col1 and col2, are also speeded up. But a query that accessed just col2, just col3, or just col2 and col3 does not use the index.

	
Note:

In some cases, such as when the leading column has very low cardinality, the database may use a skip scan of this type of index. See Oracle Database Concepts for more information about index skip scan.

Limit the Number of Indexes for Each Table

A table can have any number of indexes. However, the more indexes there are, the more overhead is incurred as the table is modified. Specifically, when rows are inserted or deleted, all indexes on the table must be updated as well. Also, when a column is updated, all indexes that contain the column must be updated.

Thus, there is a trade-off between the speed of retrieving data from a table and the speed of updating the table. For example, if a table is primarily read-only, then having more indexes can be useful; but if a table is heavily updated, then having fewer indexes could be preferable.

Drop Indexes That Are No Longer Required

Consider dropping an index if:

	
It does not speed up queries. The table could be very small, or there could be many rows in the table but very few index entries.

	
The queries in your applications do not use the index.

	
The index must be dropped before being rebuilt.

	
See Also:

"Monitoring Index Usage"

Indexes and Deferred Segment Creation

Index segment creation is deferred when the associated table defers segment creation. This is because index segment creation reflects the behavior of the table with which it is associated.

	
See Also:

"Understand Deferred Segment Creation" for further information

Estimate Index Size and Set Storage Parameters

Estimating the size of an index before creating one can facilitate better disk space planning and management. You can use the combined estimated size of indexes, along with estimates for tables, the undo tablespace, and redo log files, to determine the amount of disk space that is required to hold an intended database. From these estimates, you can make correct hardware purchases and other decisions.

Use the estimated size of an individual index to better manage the disk space that the index uses. When an index is created, you can set appropriate storage parameters and improve I/O performance of applications that use the index. For example, assume that you estimate the maximum size of an index before creating it. If you then set the storage parameters when you create the index, then fewer extents are allocated for the table data segment, and all of the index data is stored in a relatively contiguous section of disk space. This decreases the time necessary for disk I/O operations involving this index.

The maximum size of a single index entry is approximately one-half the data block size.

Storage parameters of an index segment created for the index used to enforce a primary key or unique key constraint can be set in either of the following ways:

	
In the ENABLE ... USING INDEX clause of the CREATE TABLE or ALTER TABLE statement

	
In the STORAGE clause of the ALTER INDEX statement

Specify the Tablespace for Each Index

Indexes can be created in any tablespace. An index can be created in the same or different tablespace as the table it indexes. If you use the same tablespace for a table and its index, then it can be more convenient to perform database maintenance (such as tablespace or file backup) or to ensure application availability. All the related data is always online together.

Using different tablespaces (on different disks) for a table and its index produces better performance than storing the table and index in the same tablespace. Disk contention is reduced. But, if you use different tablespaces for a table and its index, and one tablespace is offline (containing either data or index), then the statements referencing that table are not guaranteed to work.

Consider Parallelizing Index Creation

You can parallelize index creation, much the same as you can parallelize table creation. Because multiple processes work together to create the index, the database can create the index more quickly than if a single server process created the index sequentially.

When creating an index in parallel, storage parameters are used separately by each query server process. Therefore, an index created with an INITIAL value of 5M and a parallel degree of 12 consumes at least 60M of storage during index creation.

	
See Also:

Oracle Database VLDB and Partitioning Guide for information about using parallel execution

Consider Creating Indexes with NOLOGGING

You can create an index and generate minimal redo log records by specifying NOLOGGING in the CREATE INDEX statement.

	
Note:

Because indexes created using NOLOGGING are not archived, perform a backup after you create the index.

Creating an index with NOLOGGING has the following benefits:

	
Space is saved in the redo log files.

	
The time it takes to create the index is decreased.

	
Performance improves for parallel creation of large indexes.

In general, the relative performance improvement is greater for larger indexes created without LOGGING than for smaller ones. Creating small indexes without LOGGING has little effect on the time it takes to create an index. However, for larger indexes the performance improvement can be significant, especially when you are also parallelizing the index creation.

Understand When to Use Unusable or Invisible Indexes

Use unusable or invisible indexes when you want to improve the performance of bulk loads, test the effects of removing an index before dropping it, or otherwise suspend the use of an index by the optimizer.

Unusable indexes

An unusable index is ignored by the optimizer and is not maintained by DML. One reason to make an index unusable is to improve bulk load performance. (Bulk loads go more quickly if the database does not need to maintain indexes when inserting rows.) Instead of dropping the index and later re-creating it, which requires you to recall the exact parameters of the CREATE INDEX statement, you can make the index unusable, and then rebuild it.

You can create an index in the unusable state, or you can mark an existing index or index partition unusable. In some cases the database may mark an index unusable, such as when a failure occurs while building the index. When one partition of a partitioned index is marked unusable, the other partitions of the index remain valid.

An unusable index or index partition must be rebuilt, or dropped and re-created, before it can be used. Truncating a table makes an unusable index valid.

When you make an existing index unusable, its index segment is dropped.

The functionality of unusable indexes depends on the setting of the SKIP_UNUSABLE_INDEXES initialization parameter. When SKIP_UNUSABLE_INDEXES is TRUE (the default), then:

	
DML statements against the table proceed, but unusable indexes are not maintained.

	
DML statements terminate with an error if there are any unusable indexes that are used to enforce the UNIQUE constraint.

	
For nonpartitioned indexes, the optimizer does not consider any unusable indexes when creating an access plan for SELECT statements. The only exception is when an index is explicitly specified with the INDEX() hint.

	
For a partitioned index where one or more of the partitions is unusable, the optimizer can use table expansion. With table expansion, the optimizer transforms the query into a UNION ALL statement, with some subqueries accessing indexed partitions and other subqueries accessing partitions with unusable indexes. The optimizer can choose the most efficient access method available for a partition. See Oracle Database SQL Tuning Guide for more information about table expansion.

When SKIP_UNUSABLE_INDEXES is FALSE, then:

	
If any unusable indexes or index partitions are present, then any DML statements that would cause those indexes or index partitions to be updated are terminated with an error.

	
For SELECT statements, if an unusable index or unusable index partition is present, but the optimizer does not choose to use it for the access plan, then the statement proceeds. However, if the optimizer does choose to use the unusable index or unusable index partition, then the statement terminates with an error.

Invisible Indexes

You can create invisible indexes or make an existing index invisible. An invisible index is ignored by the optimizer unless you explicitly set the OPTIMIZER_USE_INVISIBLE_INDEXES initialization parameter to TRUE at the session or system level. Unlike unusable indexes, an invisible index is maintained during DML statements. Although you can make a partitioned index invisible, you cannot make an individual index partition invisible while leaving the other partitions visible.

Using invisible indexes, you can do the following:

	
Test the removal of an index before dropping it.

	
Use temporary index structures for certain operations or modules of an application without affecting the overall application.

	
Add an index to a set of columns on which an index already exists.

	
See Also:

	
"Creating an Unusable Index"

	
"Creating an Invisible Index"

	
"Making an Index Unusable"

	
"Making an Index Invisible or Visible"

Understand When to Create Multiple Indexes on the Same Set of Columns

You can create multiple indexes on the same set of columns when the indexes are different in some way. For example, you can create a B-tree index and a bitmap index on the same set of columns. When you have multiple indexes on the same set of columns, only one of these indexes can be visible at a time, and any other indexes must be invisible.

You might create different indexes on the same set of columns because they provide the flexibility to meet your requirements. You can also create multiple indexes on the same set of columns to perform application migrations without dropping an existing index and recreating it with different attributes.

Different types of indexes are useful in different scenarios. For example, B-tree indexes are often used in online transaction processing (OLTP) systems with many concurrent transactions, while bitmap indexes are often used in data warehousing systems that are mostly used for queries. Similarly, locally and globally partitioned indexes are useful in different scenarios. Locally partitioned indexes are easy to manage because partition maintenance operations automatically apply to them. Globally partitioned indexes are useful when you want the partitioning scheme of an index to be different from its table's partitioning scheme.

You can create multiple indexes on the same set of columns when at least one of the following index characteristics is different:

	
The indexes are of different types.

See "About Indexes" and Oracle Database Concepts for information about the different types of indexes.

However, the following exceptions apply:

	
You cannot create a B-tree index and a B-tree cluster index on the same set of columns.

	
You cannot create a B-tree index and an index-organized table on the same set of columns.

	
The indexes use different partitioning.

Partitioning can be different in any of the following ways:

	
Indexes that are not partitioned and indexes that are partitioned

	
Indexes that are locally partitioned and indexes that are globally partitioned

	
Indexes that differ in partitioning type (range or hash)

	
The indexes have different uniqueness properties.

You can create both a unique and a non-unique index on the same set of columns.

	
See Also:

	
"Creating Multiple Indexes on the Same Set of Columns"

	
"Understand When to Use Unusable or Invisible Indexes"

Consider Costs and Benefits of Coalescing or Rebuilding Indexes

Improper sizing or increased growth can produce index fragmentation. To eliminate or reduce fragmentation, you can rebuild or coalesce the index. But before you perform either task weigh the costs and benefits of each option and choose the one that works best for your situation. Table 21-1 is a comparison of the costs and benefits associated with rebuilding and coalescing indexes.

Table 21-1 Costs and Benefits of Coalescing or Rebuilding Indexes

	Rebuild Index	Coalesce Index
	
Quickly moves index to another tablespace

	
Cannot move index to another tablespace

	
Higher costs: requires more disk space

	
Lower costs: does not require more disk space

	
Creates new tree, shrinks height if applicable

	
Coalesces leaf blocks within same branch of tree

	
Enables you to quickly change storage and tablespace parameters without having to drop the original index

	
Quickly frees up index leaf blocks for use

In situations where you have B-tree index leaf blocks that can be freed up for reuse, you can merge those leaf blocks using the following statement:

ALTER INDEX vmoore COALESCE;

Figure 21-1 illustrates the effect of an ALTER INDEX COALESCE on the index vmoore. Before performing the operation, the first two leaf blocks are 50% full. Therefore, you have an opportunity to reduce fragmentation and completely fill the first block, while freeing up the second.

Figure 21-1 Coalescing Indexes

[image: Description of Figure 21-1 follows]

Consider Cost Before Disabling or Dropping Constraints

Because unique and primary keys have associated indexes, you should factor in the cost of dropping and creating indexes when considering whether to disable or drop a UNIQUE or PRIMARY KEY constraint. If the associated index for a UNIQUE key or PRIMARY KEY constraint is extremely large, then you can save time by leaving the constraint enabled rather than dropping and re-creating the large index. You also have the option of explicitly specifying that you want to keep or drop the index when dropping or disabling a UNIQUE or PRIMARY KEY constraint.

	
See Also:

"Managing Integrity Constraints"

Creating Indexes

This section describes how to create indexes.

	
Note:

These operations also collect index statistics.

To create an index in your own schema, at least one of the following prerequisites must be met:

	
The table or cluster to be indexed is in your own schema.

	
You have INDEX privilege on the table to be indexed.

	
You have CREATE ANY INDEX system privilege.

To create an index in another schema, all of the following prerequisites must be met:

	
You have CREATE ANY INDEX system privilege.

	
The owner of the other schema has a quota for the tablespaces to contain the index or index partitions, or UNLIMITED TABLESPACE system privilege.

This section contains the following topics:

	
Creating an Index Explicitly

	
Creating a Unique Index Explicitly

	
Creating an Index Associated with a Constraint

	
Creating a Large Index

	
Creating an Index Online

	
Creating a Function-Based Index

	
Creating a Key-Compressed Index

	
Creating an Unusable Index

	
Creating an Invisible Index

	
Creating Multiple Indexes on the Same Set of Columns

Creating an Index Explicitly

You can create indexes explicitly (outside of integrity constraints) using the SQL statement CREATE INDEX. The following statement creates an index named emp_ename for the ename column of the emp table:

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k);

Notice that several storage settings and a tablespace are explicitly specified for the index. If you do not specify storage options (such as INITIAL and NEXT) for an index, then the default storage options of the default or specified tablespace are automatically used.

	
See Also:

Oracle Database SQL Language Reference for syntax and restrictions on the use of the CREATE INDEX statement

Creating a Unique Index Explicitly

Indexes can be unique or non-unique. Unique indexes guarantee that no two rows of a table have duplicate values in the key column (or columns). Non-unique indexes do not impose this restriction on the column values.

Use the CREATE UNIQUE INDEX statement to create a unique index. The following example creates a unique index:

CREATE UNIQUE INDEX dept_unique_index ON dept (dname)
 TABLESPACE indx;

Alternatively, you can define UNIQUE integrity constraints on the desired columns. The database enforces UNIQUE integrity constraints by automatically defining a unique index on the unique key. This is discussed in the following section. However, it is advisable that any index that exists for query performance, including unique indexes, be created explicitly.

	
See Also:

Oracle Database SQL Tuning Guide for more information about creating an index for performance

Creating an Index Associated with a Constraint

Oracle Database enforces a UNIQUE key or PRIMARY KEY integrity constraint on a table by creating a unique index on the unique key or primary key. This index is automatically created by the database when the constraint is enabled. No action is required by you when you issue the CREATE TABLE or ALTER TABLE statement to create the index, but you can optionally specify a USING INDEX clause to exercise control over its creation. This includes both when a constraint is defined and enabled, and when a defined but disabled constraint is enabled.

To enable a UNIQUE or PRIMARY KEY constraint, thus creating an associated index, the owner of the table must have a quota for the tablespace intended to contain the index, or the UNLIMITED TABLESPACE system privilege. The index associated with a constraint always takes the name of the constraint, unless you optionally specify otherwise.

	
Note:

An efficient procedure for enabling a constraint that can make use of parallelism is described in "Efficient Use of Integrity Constraints: A Procedure".

Specifying Storage Options for an Index Associated with a Constraint

You can set the storage options for the indexes associated with UNIQUE and PRIMARY KEY constraints using the USING INDEX clause. The following CREATE TABLE statement enables a PRIMARY KEY constraint and specifies the storage options of the associated index:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY, age INTEGER)
 ENABLE PRIMARY KEY USING INDEX
 TABLESPACE users;

Specifying the Index Associated with a Constraint

If you require more explicit control over the indexes associated with UNIQUE and PRIMARY KEY constraints, the database lets you:

	
Specify an existing index that the database is to use to enforce the constraint

	
Specify a CREATE INDEX statement that the database is to use to create the index and enforce the constraint

These options are specified using the USING INDEX clause. The following statements present some examples.

Example 1:

CREATE TABLE a (
 a1 INT PRIMARY KEY USING INDEX (create index ai on a (a1)));

Example 2:

CREATE TABLE b(
 b1 INT,
 b2 INT,
 CONSTRAINT bu1 UNIQUE (b1, b2)
 USING INDEX (create unique index bi on b(b1, b2)),
 CONSTRAINT bu2 UNIQUE (b2, b1) USING INDEX bi);

Example 3:

CREATE TABLE c(c1 INT, c2 INT);
CREATE INDEX ci ON c (c1, c2);
ALTER TABLE c ADD CONSTRAINT cpk PRIMARY KEY (c1) USING INDEX ci;

If a single statement creates an index with one constraint and also uses that index for another constraint, the system will attempt to rearrange the clauses to create the index before reusing it.

	
See Also:

"Managing Integrity Constraints"

Creating a Large Index

When creating an extremely large index, consider allocating a larger temporary tablespace for the index creation using the following procedure:

	
Create a new temporary tablespace using the CREATE TABLESPACE or CREATE TEMPORARY TABLESPACE statement.

	
Use the TEMPORARY TABLESPACE option of the ALTER USER statement to make this your new temporary tablespace.

	
Create the index using the CREATE INDEX statement.

	
Drop this tablespace using the DROP TABLESPACE statement. Then use the ALTER USER statement to reset your temporary tablespace to your original temporary tablespace.

Using this procedure can avoid the problem of expanding your usual, and usually shared, temporary tablespace to an unreasonably large size that might affect future performance.

Creating an Index Online

You can create and rebuild indexes online. Therefore, you can update base tables at the same time you are building or rebuilding indexes on that table. You can perform DML operations while the index build is taking place, but DDL operations are not allowed. Parallel execution is not supported when creating or rebuilding an index online.

The following statements illustrate online index build operations:

CREATE INDEX emp_name ON emp (mgr, emp1, emp2, emp3) ONLINE;

	
Note:

Keep in mind that the time that it takes on online index build to complete is proportional to the size of the table and the number of concurrently executing DML statements. Therefore, it is best to start online index builds when DML activity is low.

	
See Also:

"Rebuilding an Existing Index"

Creating a Function-Based Index

Function-based indexes facilitate queries that qualify a value returned by a function or expression. The value of the function or expression is precomputed and stored in the index.

In addition to the prerequisites for creating a conventional index, if the index is based on user-defined functions, then those functions must be marked DETERMINISTIC. Also, you just have the EXECUTE object privilege on any user-defined function(s) used in the function-based index if those functions are owned by another user.

	
Note:

CREATE INDEX stores the timestamp of the most recent function used in the function-based index. This timestamp is updated when the index is validated. When performing tablespace point-in-time recovery of a function-based index, if the timestamp on the most recent function used in the index is newer than the timestamp stored in the index, then the index is marked invalid. You must use the ANALYZE INDEX...VALIDATE STRUCTURE statement to validate this index.

To illustrate a function-based index, consider the following statement that defines a function-based index (area_index) defined on the function area(geo):

CREATE INDEX area_index ON rivers (area(geo));

In the following SQL statement, when area(geo) is referenced in the WHERE clause, the optimizer considers using the index area_index.

SELECT id, geo, area(geo), desc
 FROM rivers
 WHERE Area(geo) >5000;

Table owners should have EXECUTE privileges on the functions used in function-based indexes.

Because a function-based index depends upon any function it is using, it can be invalidated when a function changes. If the function is valid, then you can use an ALTER INDEX...ENABLE statement to enable a function-based index that has been disabled. The ALTER INDEX...DISABLE statement lets you disable the use of a function-based index. Consider doing this if you are working on the body of the function.

	
Note:

An alternative to creating a function-based index is to add a virtual column to the target table and index the virtual column. See "About Tables" for more information.

	
See Also:

	
Oracle Database Concepts for more information about function-based indexes

	
Oracle Database Development Guide for information about using function-based indexes in applications and examples of their use

Creating a Key-Compressed Index

As your database grows in size, consider using index compression to save disk space. Creating an index using key compression eliminates repeated occurrences of key column prefix values. Key compression is most useful for non-unique indexes with a large number of duplicates on the leading columns.

Key compression breaks an index key into a prefix and a suffix entry. Compression is achieved by sharing the prefix entries among all the suffix entries in an index block. This sharing can lead to substantial savings in space, allowing you to store more keys for each index block while improving performance.

Key compression can be useful in the following situations:

	
You have a non-unique index where ROWID is appended to make the key unique. If you use key compression here, then the duplicate key is stored as a prefix entry on the index block without the ROWID. The remaining rows become suffix entries consisting of only the ROWID.

	
You have a unique multicolumn index.

You enable key compression using the COMPRESS clause. The prefix length (as the number of key columns) can also be specified to identify how the key columns are broken into a prefix and suffix entry. For example, the following statement compresses duplicate occurrences of a key in the index leaf block:

CREATE INDEX hr.emp_ename ON emp(ename)
 TABLESPACE users
 COMPRESS 1;

You can also specify the COMPRESS clause during rebuild. For example, during rebuild you can disable compression as follows:

ALTER INDEX hr.emp_ename REBUILD NOCOMPRESS;

	
See Also:

	
Oracle Database SQL Language Reference

	
Oracle Database Concepts for a more detailed discussion of key compression

Creating an Unusable Index

When you create an index in the UNUSABLE state, it is ignored by the optimizer and is not maintained by DML. An unusable index must be rebuilt, or dropped and re-created, before it can be used.

If the index is partitioned, then all index partitions are marked UNUSABLE.

The database does not create an index segment when creating an unusable index.

The following procedure illustrates how to create unusable indexes and query the database for details about the index.

To create an unusable index:

	
If necessary, create the table to be indexed.

For example, create a hash-partitioned table called hr.employees_part as follows:

sh@PROD> CONNECT hr
Enter password: **
Connected.

hr@PROD> CREATE TABLE employees_part
 2 PARTITION BY HASH (employee_id) PARTITIONS 2
 3 AS SELECT * FROM employees;

Table created.

hr@PROD> SELECT COUNT(*) FROM employees_part;

 COUNT(*)

 107

	
Create an index with the keyword UNUSABLE.

The following example creates a locally partitioned index on employees_part, naming the index partitions p1_i_emp_ename and p2_i_emp_ename, and making p1_i_emp_ename unusable:

hr@PROD> CREATE INDEX i_emp_ename ON employees_part (employee_id)
 2 LOCAL (PARTITION p1_i_emp_ename UNUSABLE, PARTITION p2_i_emp_ename);

Index created.

	
(Optional) Verify that the index is unusable by querying the data dictionary.

The following example queries the status of index i_emp_ename and its two partitions, showing that only partition p2_i_emp_ename is unusable:

hr@PROD> SELECT INDEX_NAME AS "INDEX OR PARTITION NAME", STATUS
 2 FROM USER_INDEXES
 3 WHERE INDEX_NAME = 'I_EMP_ENAME'
 4 UNION ALL
 5 SELECT PARTITION_NAME AS "INDEX OR PARTITION NAME", STATUS
 6 FROM USER_IND_PARTITIONS
 7 WHERE PARTITION_NAME LIKE '%I_EMP_ENAME%';

INDEX OR PARTITION NAME STATUS
------------------------------ --------
I_EMP_ENAME N/A
P1_I_EMP_ENAME UNUSABLE
P2_I_EMP_ENAME USABLE

	
(Optional) Query the data dictionary to determine whether storage exists for the partitions.

For example, the following query shows that only index partition p2_i_emp_ename occupies a segment. Because you created p1_i_emp_ename as unusable, the database did not allocate a segment for it.

hr@PROD> COL PARTITION_NAME FORMAT a14
hr@PROD> COL SEG_CREATED FORMAT a11
hr@PROD> SELECT p.PARTITION_NAME, p.STATUS AS "PART_STATUS",
 2 p.SEGMENT_CREATED AS "SEG_CREATED",
 3 FROM USER_IND_PARTITIONS p, USER_SEGMENTS s
 4 WHERE s.SEGMENT_NAME = 'I_EMP_ENAME';

PARTITION_NAME PART_STA SEG_CREATED
-------------- -------- -----------
P2_I_EMP_ENAME USABLE YES
P1_I_EMP_ENAME UNUSABLE NO

	
See Also:

	
"Understand When to Use Unusable or Invisible Indexes"

	
"Making an Index Unusable"

	
Oracle Database SQL Language Reference for more information on creating unusable indexes, including restrictions.

Creating an Invisible Index

An invisible index is an index that is ignored by the optimizer unless you explicitly set the OPTIMIZER_USE_INVISIBLE_INDEXES initialization parameter to TRUE at the session or system level.

To create an invisible index:

	
Use the CREATE INDEX statement with the INVISIBLE keyword.

The following statement creates an invisible index named emp_ename for the ename column of the emp table:

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k)
 INVISIBLE;

	
See Also:

	
"Understand When to Use Unusable or Invisible Indexes"

	
"Making an Index Invisible or Visible"

	
Oracle Database SQL Language Reference for more information on creating invisible indexes

Creating Multiple Indexes on the Same Set of Columns

You can create multiple indexes on the same set of columns when the indexes are different in some way. See "Understand When to Create Multiple Indexes on the Same Set of Columns" for information.

To create multiple indexes on the same set of columns, the following prerequisites must be met:

	
The prerequisites for required privileges in "Creating Indexes".

	
Only one index on the same set of columns can be visible at any point in time.

If you are creating a visible index, then any existing indexes on the set of columns must be invisible. See "Making an Index Invisible or Visible".

Alternatively, you can create an invisible index on the set of columns. See "Creating an Invisible Index".

For example, the following steps create a B-tree index and a bitmap index on the same set of columns in the oe.orders table:

	
Create a B-tree index on the customer_id and sales_rep_id columns in the oe.orders table:

CREATE INDEX oe.ord_customer_ix1 ON oe.orders (customer_id, sales_rep_id);

The oe.ord_customer_ix1 index is visible by default.

	
Alter the index created in Step 1 to make it invisible:

ALTER INDEX oe.ord_customer_ix1 INVISIBLE;

Alternatively, you can add the INVISIBLE clause in Step 1 to avoid this step.

	
Create a bitmap index on the customer_id and sales_rep_id columns in the oe.orders table:

CREATE BITMAP INDEX oe.ord_customer_ix2 ON oe.orders (customer_id, sales_rep_id);

The oe.ord_customer_ix2 index is visible by default.

If the oe.ord_customer_ix1 index created in Step 1 is visible, then the CREATE BITMAP INDEX statement in this step returns an error.

	
See Also:

	
"Understand When to Create Multiple Indexes on the Same Set of Columns"

	
"Understand When to Use Unusable or Invisible Indexes"

Altering Indexes

To alter an index, your schema must contain the index, or you must have the ALTER ANY INDEX system privilege. With the ALTER INDEX statement, you can:

	
Rebuild or coalesce an existing index

	
Deallocate unused space or allocate a new extent

	
Specify parallel execution (or not) and alter the degree of parallelism

	
Alter storage parameters or physical attributes

	
Specify LOGGING or NOLOGGING

	
Enable or disable key compression

	
Mark the index unusable

	
Make the index invisible

	
Rename the index

	
Start or stop the monitoring of index usage

You cannot alter index column structure.

More detailed discussions of some of these operations are contained in the following sections:

	
Altering Storage Characteristics of an Index

	
Rebuilding an Existing Index

	
Making an Index Unusable

	
Making an Index Invisible or Visible

	
Monitoring Index Usage

	
See Also:

	
Oracle Database SQL Language Reference for details on the ALTER INDEX statement

Altering Storage Characteristics of an Index

Alter the storage parameters of any index, including those created by the database to enforce primary and unique key integrity constraints, using the ALTER INDEX statement. For example, the following statement alters the emp_ename index:

ALTER INDEX emp_ename
 STORAGE (NEXT 40);

The parameters INITIAL and MINEXTENTS cannot be altered. All new settings for the other storage parameters affect only extents subsequently allocated for the index.

For indexes that implement integrity constraints, you can adjust storage parameters by issuing an ALTER TABLE statement that includes the USING INDEX subclause of the ENABLE clause. For example, the following statement changes the storage options of the index created on table emp to enforce the primary key constraint:

ALTER TABLE emp
 ENABLE PRIMARY KEY USING INDEX;

	
See Also:

Oracle Database SQL Language Reference for syntax and restrictions on the use of the ALTER INDEX statement

Rebuilding an Existing Index

Before rebuilding an existing index, compare the costs and benefits associated with rebuilding to those associated with coalescing indexes as described in Table 21-1.

When you rebuild an index, you use an existing index as the data source. Creating an index in this manner enables you to change storage characteristics or move to a new tablespace. Rebuilding an index based on an existing data source removes intra-block fragmentation. Compared to dropping the index and using the CREATE INDEX statement, re-creating an existing index offers better performance.

The following statement rebuilds the existing index emp_name:

ALTER INDEX emp_name REBUILD;

The REBUILD clause must immediately follow the index name, and precede any other options. It cannot be used with the DEALLOCATE UNUSED clause.

You have the option of rebuilding the index online. Rebuilding online enables you to update base tables at the same time that you are rebuilding. The following statement rebuilds the emp_name index online:

ALTER INDEX emp_name REBUILD ONLINE;

To rebuild an index in a different user's schema online, the following additional system privileges are required:

	
CREATE ANY TABLE

	
CREATE ANY INDEX

	
Note:

Online index rebuilding has stricter limitations on the maximum key length that can be handled, compared to other methods of rebuilding an index. If an ORA-1450 (maximum key length exceeded) error occurs when rebuilding online, try rebuilding offline, coalescing, or dropping and recreating the index.

If you do not have the space required to rebuild an index, you can choose instead to coalesce the index. Coalescing an index is an online operation.

	
See Also:

	
"Creating an Index Online"

	
"Monitoring Space Use of Indexes"

Making an Index Unusable

When you make an index unusable, it is ignored by the optimizer and is not maintained by DML. When you make one partition of a partitioned index unusable, the other partitions of the index remain valid.

You must rebuild or drop and re-create an unusable index or index partition before using it.

The following procedure illustrates how to make an index and index partition unusable, and how to query the object status.

To make an index unusable:

	
Query the data dictionary to determine whether an existing index or index partition is usable or unusable.

For example, issue the following query (output truncated to save space):

hr@PROD> SELECT INDEX_NAME AS "INDEX OR PART NAME", STATUS, SEGMENT_CREATED
 2 FROM USER_INDEXES
 3 UNION ALL
 4 SELECT PARTITION_NAME AS "INDEX OR PART NAME", STATUS, SEGMENT_CREATED
 5 FROM USER_IND_PARTITIONS;

INDEX OR PART NAME STATUS SEG
------------------------------ -------- ---
I_EMP_ENAME N/A N/A
JHIST_EMP_ID_ST_DATE_PK VALID YES
JHIST_JOB_IX VALID YES
JHIST_EMPLOYEE_IX VALID YES
JHIST_DEPARTMENT_IX VALID YES
EMP_EMAIL_UK VALID NO
.
.
.
COUNTRY_C_ID_PK VALID YES
REG_ID_PK VALID YES
P2_I_EMP_ENAME USABLE YES
P1_I_EMP_ENAME UNUSABLE NO

22 rows selected.

The preceding output shows that only index partition p1_i_emp_ename is unusable.

	
Make an index or index partition unusable by specifying the UNUSABLE keyword.

The following example makes index emp_email_uk unusable:

hr@PROD> ALTER INDEX emp_email_uk UNUSABLE;

Index altered.

The following example makes index partition p2_i_emp_ename unusable:

hr@PROD> ALTER INDEX i_emp_ename MODIFY PARTITION p2_i_emp_ename UNUSABLE;

Index altered.

	
(Optional) Query the data dictionary to verify the status change.

For example, issue the following query (output truncated to save space):

hr@PROD> SELECT INDEX_NAME AS "INDEX OR PARTITION NAME", STATUS,
 2 SEGMENT_CREATED
 3 FROM USER_INDEXES
 4 UNION ALL
 5 SELECT PARTITION_NAME AS "INDEX OR PARTITION NAME", STATUS,
 6 SEGMENT_CREATED
 7 FROM USER_IND_PARTITIONS;

INDEX OR PARTITION NAME STATUS SEG
------------------------------ -------- ---
I_EMP_ENAME N/A N/A
JHIST_EMP_ID_ST_DATE_PK VALID YES
JHIST_JOB_IX VALID YES
JHIST_EMPLOYEE_IX VALID YES
JHIST_DEPARTMENT_IX VALID YES
EMP_EMAIL_UK UNUSABLE NO
.
.
.
COUNTRY_C_ID_PK VALID YES
REG_ID_PK VALID YES
P2_I_EMP_ENAME UNUSABLE NO
P1_I_EMP_ENAME UNUSABLE NO

22 rows selected.

A query of space consumed by the i_emp_ename and emp_email_uk segments shows that the segments no longer exist:

hr@PROD> SELECT SEGMENT_NAME, BYTES
 2 FROM USER_SEGMENTS
 3 WHERE SEGMENT_NAME IN ('I_EMP_ENAME', 'EMP_EMAIL_UK');

no rows selected

	
See Also:

	
"Understand When to Use Unusable or Invisible Indexes"

	
"Creating an Unusable Index"

	
Oracle Database SQL Language Reference for more information about the UNUSABLE keyword, including restrictions

Making an Index Invisible or Visible

An invisible index is ignored by the optimizer unless you explicitly set the OPTIMIZER_USE_INVISIBLE_INDEXES initialization parameter to TRUE at the session or system level. Making an index invisible is an alternative to making it unusable or dropping it. You cannot make an individual index partition invisible. Attempting to do so produces an error.

To make an index invisible:

	
Submit the following SQL statement:

ALTER INDEX index INVISIBLE;

To make an invisible index visible again:

	
Submit the following SQL statement:

ALTER INDEX index VISIBLE;

	
Note:

If there are multiple indexes on the same set of columns, then only one of these indexes can be visible at any point in time. If you try to make an index on a set of columns visible, and another index on the same set of columns is visible, then an error is returned.

To determine whether an index is visible or invisible:

	
Query the dictionary views USER_INDEXES, ALL_INDEXES, or DBA_INDEXES.

For example, to determine if the index ind1 is invisible, issue the following query:

SELECT INDEX_NAME, VISIBILITY FROM USER_INDEXES
 WHERE INDEX_NAME = 'IND1';

INDEX_NAME VISIBILITY
---------- ----------
IND1 VISIBLE

	
See Also:

	
"Understand When to Use Unusable or Invisible Indexes"

	
"Creating an Invisible Index"

	
"Creating Multiple Indexes on the Same Set of Columns"

Renaming an Index

To rename an index, issue this statement:

ALTER INDEX index_name RENAME TO new_name;

Monitoring Index Usage

Oracle Database provides a means of monitoring indexes to determine whether they are being used. If an index is not being used, then it can be dropped, eliminating unnecessary statement overhead.

To start monitoring the usage of an index, issue this statement:

ALTER INDEX index MONITORING USAGE;

Later, issue the following statement to stop the monitoring:

ALTER INDEX index NOMONITORING USAGE;

The view USER_OBJECT_USAGE can be queried for the index being monitored to see if the index has been used. The view contains a USED column whose value is YES or NO, depending upon if the index has been used within the time period being monitored. The view also contains the start and stop times of the monitoring period, and a MONITORING column (YES/NO) to indicate if usage monitoring is currently active.

Each time that you specify MONITORING USAGE, the USER_OBJECT_USAGE view is reset for the specified index. The previous usage information is cleared or reset, and a new start time is recorded. When you specify NOMONITORING USAGE, no further monitoring is performed, and the end time is recorded for the monitoring period. Until the next ALTER INDEX...MONITORING USAGE statement is issued, the view information is left unchanged.

Monitoring Space Use of Indexes

If key values in an index are inserted, updated, and deleted frequently, the index can lose its acquired space efficiency over time. Monitor index efficiency of space usage at regular intervals by first analyzing the index structure, using the ANALYZE INDEX...VALIDATE STRUCTURE statement, and then querying the INDEX_STATS view:

SELECT PCT_USED FROM INDEX_STATS WHERE NAME = 'index';

The percentage of index space usage varies according to how often index keys are inserted, updated, or deleted. Develop a history of average efficiency of space usage for an index by performing the following sequence of operations several times:

	
Analyzing statistics

	
Validating the index

	
Checking PCT_USED

	
Dropping and rebuilding (or coalescing) the index

When you find that index space usage drops below its average, you can condense the index space by dropping the index and rebuilding it, or coalescing it.

	
See Also:

"Analyzing Tables, Indexes, and Clusters"

Dropping Indexes

To drop an index, the index must be contained in your schema, or you must have the DROP ANY INDEX system privilege.

Some reasons for dropping an index include:

	
The index is no longer required.

	
The index is not providing anticipated performance improvements for queries issued against the associated table. For example, the table might be very small, or there might be many rows in the table but very few index entries.

	
Applications do not use the index to query the data.

	
The index has become invalid and must be dropped before being rebuilt.

	
The index has become too fragmented and must be dropped before being rebuilt.

When you drop an index, all extents of the index segment are returned to the containing tablespace and become available for other objects in the tablespace.

How you drop an index depends on whether you created the index explicitly with a CREATE INDEX statement, or implicitly by defining a key constraint on a table. If you created the index explicitly with the CREATE INDEX statement, then you can drop the index with the DROP INDEX statement. The following statement drops the emp_ename index:

DROP INDEX emp_ename;

You cannot drop only the index associated with an enabled UNIQUE key or PRIMARY KEY constraint. To drop a constraints associated index, you must disable or drop the constraint itself.

	
Note:

If a table is dropped, all associated indexes are dropped automatically.

	
See Also:

	
Oracle Database SQL Language Reference for syntax and restrictions on the use of the DROP INDEX statement

	
"Managing Integrity Constraints"

	
"Making an Index Invisible or Visible" for an alternative to dropping indexes

Indexes Data Dictionary Views

The following views display information about indexes:

	View	Description
	DBA_INDEXES
ALL_INDEXES

USER_INDEXES

	DBA view describes indexes on all tables in the database. ALL view describes indexes on all tables accessible to the user. USER view is restricted to indexes owned by the user. Some columns in these views contain statistics that are generated by the DBMS_STATS package or ANALYZE statement.
	DBA_IND_COLUMNS
ALL_IND_COLUMNS

USER_IND_COLUMNS

	These views describe the columns of indexes on tables. Some columns in these views contain statistics that are generated by the DBMS_STATS package or ANALYZE statement.
	DBA_IND_PARTITIONS
ALL_IND_PARTITIONS

USER_IND_PARTITIONS

	These views display, for each index partition, the partition-level partitioning information, the storage parameters for the partition, and various partition statistics that are generated by the DBMS_STATS package.
	DBA_IND_EXPRESSIONS
ALL_IND_EXPRESSIONS

USER_IND_EXPRESSIONS

	These views describe the expressions of function-based indexes on tables.
	DBA_IND_STATISTICS
ALL_IND_STATISTICS

USER_IND_STATISTICS

	These views contain optimizer statistics for indexes.
	INDEX_STATS	Stores information from the last ANALYZE INDEX...VALIDATE STRUCTURE statement.
	INDEX_HISTOGRAM	Stores information from the last ANALYZE INDEX...VALIDATE STRUCTURE statement.
	USER_OBJECT_USAGE	Contains index usage information produced by the ALTER INDEX...MONITORING USAGE functionality.

	
See Also:

Oracle Database Reference for a complete description of these views

Managing Hash Clusters

23 Managing Hash Clusters

This chapter contains the following topics:

	
About Hash Clusters

	
When to Use Hash Clusters

	
Creating Hash Clusters

	
Altering Hash Clusters

	
Dropping Hash Clusters

	
Hash Clusters Data Dictionary Views

About Hash Clusters

Storing a table in a hash cluster is an optional way to improve the performance of data retrieval. A hash cluster provides an alternative to a non-clustered table with an index or an index cluster. With an indexed table or index cluster, Oracle Database locates the rows in a table using key values that the database stores in a separate index. To use hashing, you create a hash cluster and load tables into it. The database physically stores the rows of a table in a hash cluster and retrieves them according to the results of a hash function.

Oracle Database uses a hash function to generate a distribution of numeric values, called hash values, that are based on specific cluster key values. The key of a hash cluster, like the key of an index cluster, can be a single column or composite key (multiple column key). To find or store a row in a hash cluster, the database applies the hash function to the cluster key value of the row. The resulting hash value corresponds to a data block in the cluster, which the database then reads or writes on behalf of the issued statement.

To find or store a row in an indexed table or cluster, a minimum of two (there are usually more) I/Os must be performed:

	
One or more I/Os to find or store the key value in the index

	
Another I/O to read or write the row in the table or cluster

In contrast, the database uses a hash function to locate a row in a hash cluster; no I/O is required. As a result, a minimum of one I/O operation is necessary to read or write a row in a hash cluster.

	
See Also:

Chapter 19, "Managing Space for Schema Objects" is recommended reading before attempting tasks described in this chapter.

When to Use Hash Clusters

This section helps you decide when to use hash clusters by contrasting situations where hashing is most useful against situations where there is no advantage. If you find your decision is to use indexing rather than hashing, then you should consider whether to store a table individually or as part of a cluster.

	
Note:

Even if you decide to use hashing, a table can still have separate indexes on any columns, including the cluster key.

Situations Where Hashing Is Useful

Hashing is useful when you have the following conditions:

	
Most queries are equality queries on the cluster key:

SELECT ... WHERE cluster_key = ...;

In such cases, the cluster key in the equality condition is hashed, and the corresponding hash key is usually found with a single read. In comparison, for an indexed table the key value must first be found in the index (usually several reads), and then the row is read from the table (another read).

	
The tables in the hash cluster are primarily static in size so that you can determine the number of rows and amount of space required for the tables in the cluster. If tables in a hash cluster require more space than the initial allocation for the cluster, performance degradation can be substantial because overflow blocks are required.

Situations Where Hashing Is Not Advantageous

Hashing is not advantageous in the following situations:

	
Most queries on the table retrieve rows over a range of cluster key values. For example, in full table scans or queries such as the following, a hash function cannot be used to determine the location of specific hash keys. Instead, the equivalent of a full table scan must be done to fetch the rows for the query.

SELECT . . . WHERE cluster_key < . . . ;

With an index, key values are ordered in the index, so cluster key values that satisfy the WHERE clause of a query can be found with relatively few I/Os.

	
The table is not static, but instead is continually growing. If a table grows without limit, the space required over the life of the table (its cluster) cannot be predetermined.

	
Applications frequently perform full-table scans on the table and the table is sparsely populated. A full-table scan in this situation takes longer under hashing.

	
You cannot afford to preallocate the space that the hash cluster will eventually need.

Creating Hash Clusters

You create a hash cluster using a CREATE CLUSTER statement, but you specify a HASHKEYS clause. The following statement creates a cluster named trial_cluster, clustered by the trialno column (the cluster key):

CREATE CLUSTER trial_cluster (trialno NUMBER(5,0))
 TABLESPACE users
 STORAGE (INITIAL 250K
 NEXT 50K
 MINEXTENTS 1
 MAXEXTENTS 3
 PCTINCREASE 0)
 HASH IS trialno
 HASHKEYS 150;

The following statement creates the trial table in the trial_cluster hash cluster:

CREATE TABLE trial (
 trialno NUMBER(5,0) PRIMARY KEY,
 ...)
 CLUSTER trial_cluster (trialno);

As with index clusters, the key of a hash cluster can be a single column or a composite key (multiple column key). In the preceding example, the key is the trialno column.

The HASHKEYS value, in this case 150, specifies and limits the number of unique hash values that the hash function can generate. The database rounds the number specified to the nearest prime number.

If no HASH IS clause is specified, then the database uses an internal hash function. If the cluster key is already a unique identifier that is uniformly distributed over its range, then you can bypass the internal hash function and specify the cluster key as the hash value, as in the preceding example. You can also use the HASH IS clause to specify a user-defined hash function.

You cannot create a cluster index on a hash cluster, and you need not create an index on a hash cluster key.

The following sections explain and provide guidelines for setting the parameters of the CREATE CLUSTER statement specific to hash clusters:

	
Creating a Sorted Hash Cluster

	
Creating Single-Table Hash Clusters

	
Controlling Space Use Within a Hash Cluster

	
Estimating Size Required by Hash Clusters

	
See Also:

Chapter 22, "Managing Clusters" for additional information about creating tables in a cluster, guidelines for setting parameters of the CREATE CLUSTER statement common to index and hash clusters, and the privileges required to create any cluster

Creating a Sorted Hash Cluster

A sorted hash cluster stores the rows corresponding to each value of the hash function in such a way that the database can efficiently return them in sorted order. For applications that always consume data in sorted order, sorted hash clusters can retrieve data faster by minimizing logical I/Os.

Assume that a telecommunications company stores detailed call records for a fixed number of originating telephone numbers through a telecommunications switch. From each originating telephone number there can be an unlimited number of calls.

The application stores calls records as calls are made. Each call has a detailed call record identified by a timestamp. For example, the application stores a call record with timestamp 0, then a call record with timestamp 1, and so on.

When generating bills for each originating phone number, the application processes them in first-in, first-out (FIFO) order. The following table shows sample details for three originating phone numbers:

	telephone_number	call_timestamp
	6505551212	0, 1, 2, 3, 4, ...
	6505551213	0, 1, 2, 3, 4, ...
	6505551214	0, 1, 2, 3, 4, ...

In the following SQL statements, the telephone_number column is the hash key. The hash cluster is sorted on the call_timestamp and call_duration columns. The example uses the same names for the clustering and sorting columns in the table definition as in the cluster definition, but this is not required. The number of hash keys is based on 10-digit telephone numbers.

CREATE CLUSTER call_detail_cluster (
 telephone_number NUMBER,
 call_timestamp NUMBER SORT,
 call_duration NUMBER SORT)
 HASHKEYS 10000
 HASH IS telephone_number
 SIZE 256;

CREATE TABLE call_detail (
 telephone_number NUMBER,
 call_timestamp NUMBER SORT,
 call_duration NUMBER SORT,
 other_info VARCHAR2(30))
 CLUSTER call_detail_cluster (
 telephone_number, call_timestamp, call_duration);

Suppose that you seed the call_detail table with the rows in FIFO order as shown in Example 23-1.

Example 23-1 Data Inserted in Sequential Order

INSERT INTO call_detail VALUES (6505551212, 0, 9, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 1, 17, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 2, 5, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 3, 90, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 0, 35, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 1, 6, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 2, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 3, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 0, 15, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 1, 20, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 2, 1, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 3, 25, 'misc info');
COMMIT;

In Example 23-2, you SET AUTOTRACE ON, and then query the call_detail table for the call details for the phone number 6505551212.

Example 23-2 Querying call_detail

SQL> SET AUTOTRACE ON;
SQL> SELECT * FROM call_detail WHERE telephone_number = 6505551212;

TELEPHONE_NUMBER CALL_TIMESTAMP CALL_DURATION OTHER_INFO
---------------- -------------- ------------- ------------------------------
 6505551212 0 9 misc info
 6505551212 1 17 misc info
 6505551212 2 5 misc info
 6505551212 3 90 misc info

Execution Plan
--
Plan hash value: 2118876266

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 1 | 56 | 0 (0)|
|* 1 | TABLE ACCESS HASH| CALL_DETAIL | 1 | 56 | |
--

Example 23-2 shows that the query retrieves the rows ordered by timestamp even though no sort appears in the query plan.

Suppose you then delete the existing rows and insert the same rows out of sequence:

DELETE FROM call_detail;
INSERT INTO call_detail VALUES (6505551213, 3, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 0, 15, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 0, 9, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 1, 20, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 2, 1, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 1, 6, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 2, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 3, 25, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 1, 17, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 2, 5, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 3, 90, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 0, 35, 'misc info');
COMMIT;

If you rerun the same query of call_detail, the database again retrieves the rows in sorted order even though no ORDER BY clause is specified. No SORT ORDER BY operation appears in the query plan because the database performs an internal sort.

Now assume that you create a nonclustered table call_detail_nonclustered and then load it with the same sample values in Example 23-1. To retrieve the data in sorted order, you must use an ORDER BY clause as follows:

SQL> SELECT * FROM call_detail_nonclustered WHERE telephone_number = 6505551212
 2 ORDER BY call_timestamp, call_duration;

TELEPHONE_NUMBER CALL_TIMESTAMP CALL_DURATION OTHER_INFO
---------------- -------------- ------------- ------------------------------
 6505551212 0 9 misc info
 6505551212 1 17 misc info
 6505551212 2 5 misc info
 6505551212 3 90 misc info

Execution Plan
--
Plan hash value: 2555750302

--
|Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		4	224	4 (25)	00:00:01
1	SORT ORDER BY		4	224	4 (25)	00:00:01
*2	TABLE ACCESS FULL	CALL_DETAIL_NONCLUSTERED	4	224	3 (0)	00:00:01
--

The preceding plan shows that in the nonclustered case the sort is more expensive than in the clustered case. The rows, bytes, cost, and time are all greater in the case of the table that is not stored in a sorted hash cluster.

Creating Single-Table Hash Clusters

You can also create a single-table hash cluster, which provides fast access to rows in a table. However, this table must be the only table in the hash cluster. Essentially, there must be a one-to-one mapping between hash keys and data rows. The following statement creates a single-table hash cluster named peanut with the cluster key variety:

CREATE CLUSTER peanut (variety NUMBER)
 SIZE 512 SINGLE TABLE HASHKEYS 500;

The database rounds the HASHKEYS value up to the nearest prime number, so this cluster has a maximum of 503 hash key values, each of size 512 bytes. The SINGLE TABLE clause is valid only for hash clusters. HASHKEYS must also be specified.

	
See Also:

Oracle Database SQL Language Reference for the syntax of the CREATE CLUSTER statement

Controlling Space Use Within a Hash Cluster

When creating a hash cluster, it is important to choose the cluster key correctly and set the HASH IS, SIZE, and HASHKEYS parameters so that performance and space use are optimal. The following guidelines describe how to set these parameters.

Choosing the Key

Choosing the correct cluster key is dependent on the most common types of queries issued against the clustered tables. For example, consider the emp table in a hash cluster. If queries often select rows by employee number, the empno column should be the cluster key. If queries often select rows by department number, the deptno column should be the cluster key. For hash clusters that contain a single table, the cluster key is typically the entire primary key of the contained table.

The key of a hash cluster, like that of an index cluster, can be a single column or a composite key (multiple column key). A hash cluster with a composite key must use the internal hash function of the database.

Setting HASH IS

Specify the HASH IS parameter only if the cluster key is a single column of the NUMBER data type, and contains uniformly distributed integers. If these conditions apply, you can distribute rows in the cluster so that each unique cluster key value hashes, with no collisions (two cluster key values having the same hash value), to a unique hash value. If these conditions do not apply, omit this clause so that you use the internal hash function.

Setting SIZE

SIZE should be set to the average amount of space required to hold all rows for any given hash key. Therefore, to properly determine SIZE, you must be aware of the characteristics of your data:

	
If the hash cluster is to contain only a single table and the hash key values of the rows in that table are unique (one row for each value), SIZE can be set to the average row size in the cluster.

	
If the hash cluster is to contain multiple tables, SIZE can be set to the average amount of space required to hold all rows associated with a representative hash value.

Further, once you have determined a (preliminary) value for SIZE, consider the following. If the SIZE value is small (more than four hash keys can be assigned for each data block) you can use this value for SIZE in the CREATE CLUSTER statement. However, if the value of SIZE is large (four or fewer hash keys can be assigned for each data block), then you should also consider the expected frequency of collisions and whether performance of data retrieval or efficiency of space usage is more important to you.

	
If the hash cluster does not use the internal hash function (if you specified HASH IS) and you expect few or no collisions, you can use your preliminary value of SIZE. No collisions occur and space is used as efficiently as possible.

	
If you expect frequent collisions on inserts, the likelihood of overflow blocks being allocated to store rows is high. To reduce the possibility of overflow blocks and maximize performance when collisions are frequent, you should adjust SIZE as shown in the following chart.

	Available Space for each Block / Calculated SIZE	Setting for SIZE
	1	SIZE
	2	SIZE + 15%
	3	SIZE + 12%
	4	SIZE + 8%
	>4	SIZE

Overestimating the value of SIZE increases the amount of unused space in the cluster. If space efficiency is more important than the performance of data retrieval, disregard the adjustments shown in the preceding table and use the original value for SIZE.

Setting HASHKEYS

For maximum distribution of rows in a hash cluster, the database rounds the HASHKEYS value up to the nearest prime number.

Controlling Space in Hash Clusters

The following examples show how to correctly choose the cluster key and set the HASH IS, SIZE, and HASHKEYS parameters. For all examples, assume that the data block size is 2K and that on average, 1950 bytes of each block is available data space (block size minus overhead).

Controlling Space in Hash Clusters: Example 1

You decide to load the emp table into a hash cluster. Most queries retrieve employee records by their employee number. You estimate that the maximum number of rows in the emp table at any given time is 10000 and that the average row size is 55 bytes.

In this case, empno should be the cluster key. Because this column contains integers that are unique, the internal hash function can be bypassed. SIZE can be set to the average row size, 55 bytes. Note that 34 hash keys are assigned for each data block. HASHKEYS can be set to the number of rows in the table, 10000. The database rounds this value up to the next highest prime number: 10007.

CREATE CLUSTER emp_cluster (empno
NUMBER)
. . .
SIZE 55
HASH IS empno HASHKEYS 10000;

Controlling Space in Hash Clusters: Example 2

Conditions similar to the previous example exist. In this case, however, rows are usually retrieved by department number. At most, there are 1000 departments with an average of 10 employees for each department. Department numbers increment by 10 (0, 10, 20, 30, . . .).

In this case, deptno should be the cluster key. Since this column contains integers that are uniformly distributed, the internal hash function can be bypassed. A preliminary value of SIZE (the average amount of space required to hold all rows for each department) is 55 bytes * 10, or 550 bytes. Using this value for SIZE, only three hash keys can be assigned for each data block. If you expect some collisions and want maximum performance of data retrieval, slightly alter your estimated SIZE to prevent collisions from requiring overflow blocks. By adjusting SIZE by 12%, to 620 bytes (see "Setting SIZE"), there is more space for rows from expected collisions.

HASHKEYS can be set to the number of unique department numbers, 1000. The database rounds this value up to the next highest prime number: 1009.

CREATE CLUSTER emp_cluster (deptno NUMBER)
. . .
SIZE 620
HASH IS deptno HASHKEYS 1000;

Estimating Size Required by Hash Clusters

As with index clusters, it is important to estimate the storage required for the data in a hash cluster.

Oracle Database guarantees that the initial allocation of space is sufficient to store the hash table according to the settings SIZE and HASHKEYS. If settings for the storage parameters INITIAL, NEXT, and MINEXTENTS do not account for the hash table size, incremental (additional) extents are allocated until at least SIZE*HASHKEYS is reached. For example, assume that the data block size is 2K, the available data space for each block is approximately 1900 bytes (data block size minus overhead), and that the STORAGE and HASH parameters are specified in the CREATE CLUSTER statement as follows:

STORAGE (INITIAL 100K
 NEXT 150K
 MINEXTENTS 1
 PCTINCREASE 0)
SIZE 1500
HASHKEYS 100

In this example, only one hash key can be assigned for each data block. Therefore, the initial space required for the hash cluster is at least 100*2K or 200K. The settings for the storage parameters do not account for this requirement. Therefore, an initial extent of 100K and a second extent of 150K are allocated to the hash cluster.

Alternatively, assume the HASH parameters are specified as follows:

SIZE 500 HASHKEYS 100

In this case, three hash keys are assigned to each data block. Therefore, the initial space required for the hash cluster is at least 34*2K or 68K. The initial settings for the storage parameters are sufficient for this requirement (an initial extent of 100K is allocated to the hash cluster).

Altering Hash Clusters

You can alter a hash cluster with the ALTER CLUSTER statement:

ALTER CLUSTER emp_dept . . . ;

The implications for altering a hash cluster are identical to those for altering an index cluster, described in "Altering Clusters". However, the SIZE, HASHKEYS, and HASH IS parameters cannot be specified in an ALTER CLUSTER statement. To change these parameters, you must re-create the cluster, then copy the data from the original cluster.

Dropping Hash Clusters

You can drop a hash cluster using the DROP CLUSTER statement:

DROP CLUSTER emp_dept;

A table in a hash cluster is dropped using the DROP TABLE statement. The implications of dropping hash clusters and tables in hash clusters are the same as those for dropping index clusters.

	
See Also:

"Dropping Clusters"

Hash Clusters Data Dictionary Views

The following views display information about hash clusters:

	View	Description
	DBA_CLUSTERS
ALL_CLUSTERS

USER_CLUSTERS

	DBA view describes all clusters (including hash clusters) in the database. ALL view describes all clusters accessible to the user. USER view is restricted to clusters owned by the user. Some columns in these views contain statistics that are generated by the DBMS_STATS package or ANALYZE statement.
	DBA_CLU_COLUMNS
USER_CLU_COLUMNS

	These views map table columns to cluster columns.
	DBA_CLUSTER_HASH_EXPRESSIONS
ALL_CLUSTER_HASH_EXPRESSIONS

USER_CLUSTER_HASH_EXPRESSIONS

	These views list hash functions for hash clusters.

	
See Also:

Oracle Database Reference for complete descriptions of these views

Managing a Multitenant Environment

Part VI

Managing a Multitenant Environment

Part VI discusses the Oracle Multitenant option and managing a multitenant environment. It contains the following chapters:

	
Chapter 36, "Overview of Managing a Multitenant Environment"

	
Chapter 37, "Creating and Configuring a CDB"

	
Chapter 38, "Creating and Removing PDBs with SQL*Plus"

	
Chapter 39, "Creating and Removing PDBs with Cloud Control"

	
Chapter 40, "Administering a CDB with SQL*Plus"

	
Chapter 41, "Administering CDBs and PDBs with Cloud Control"

	
Chapter 42, "Administering PDBs with SQL*Plus"

	
Chapter 43, "Viewing Information About CDBs and PDBs with SQL*Plus"

	
Chapter 44, "Using Oracle Resource Manager for PDBs with SQL*Plus"

	
Chapter 45, "Using Oracle Resource Manager for PDBs with Cloud Control"

	
Chapter 46, "Using Oracle Scheduler with a CDB"

Creating and Removing PDBs with Cloud Control

39 Creating and Removing PDBs with Cloud Control

This chapter explains how you can create, clone, unplug, and remove pluggable databases (PDBs) in a multitenant container database (CDB) using Oracle Enterprise Manager Cloud Control (Cloud Control).

In particular, this chapter covers the following topics:

	
Getting Started

	
Overview

	
Provisioning a PDB

	
Removing PDBs

	
Viewing PDB Job Details

	
See Also:

	
"About Creating and Removing PDBs"

	
"Preparing for PDBs"

Getting Started

This section helps you get started with this chapter by providing an overview of the steps involved in creating a new PDB, cloning a PDB, migrating a non-CDB as a PDB, unplugging a PDB, and deleting PDBs. Consider this section to be a documentation map to understand the sequence of actions you must perform to successfully perform these tasks using Cloud Control. Click the reference links provided against the steps to reach the relevant sections that provide more information.

Table 39-1 Getting Started with PDBs

	Step	Description	Reference Links
	
Step 1

	
Obtaining an Overview

Obtain a conceptual overview of PDBs.

	
To obtain a conceptual overview of PDBs, see "Overview".

For detailed conceptual information, see "Overview of Managing a Multitenant Environment" and Oracle Database Concepts

	
Step 2

	
Selecting the Use Case

Among the following use cases, select the one that best matches your requirement:

	
Creating a new PDB

	
Plugging in an unplugged PDB

	
Cloning a PDB

	
Migrating a non-CDB as a PDB

	
Unplugging and dropping a PDB

	
Deleting PDBs

	

	
Step 3

	
Meeting the Prerequisites

Meet the prerequisites for the selected use case.

	
	
To meet the prerequisites for creating a new PDB, see "Prerequisites".

	
To meet the prerequisites for plugging in an unplugged PDB, see "Prerequisites".

	
To meet the prerequisites for cloning a PDB, see "Prerequisites".

	
To meet the prerequisites for migrating a non-CDB to a PDB, see "Prerequisites".

	
To meet the prerequisites for unplugging and dropping a PDB, see "Prerequisites".

	
To meet the prerequisites for deleting PDBs, see "Prerequisites".

	
Step 4

	
Following the Procedure

Follow the procedure for the selected use case.

	
	
To create a new PDB, see "Procedure".

	
To plug in an unplugged PDB, see "Procedure".

	
To clone a PDB, see "Procedure".

	
To migrate a non-CDB to a PDB, see "Procedure".

	
To unplug and drop a PDB, see "Procedure".

	
To delete PDBs, see "Procedure".

Overview

An Oracle Database can contain a portable collection of schemas, schema objects, and nonschema objects, that appear to an Oracle Net client as a separate database. This self-contained collection is called a PDB. A CDB can include one or more PDBs. Oracle Database 12c allows you to create many PDBs within a single CDB. Applications that connect to databases view PDBs and earlier versions of Oracle Database in the same manner.

Cloud Control enables administrators to manage the entire PDB lifecycle, including provisioning CDBs, provisioning PDBs (from the seed or from an unplugged PDB), cloning existing PDBs, migrating non-CDBs as PDBs, unplugging PDBs, and deleting PDBs.

	
Important:

To manage the PDB lifecycle using Cloud Control, you must have the 12.1.0.3 Enterprise Manager for Oracle Database plug-in, or a later version, deployed. To delete PDBs using Cloud Control, you must have the 12.1.0.5 Enterprise Manager for Oracle Database plug-in deployed.
For information on how to deploy a plug-in and upgrade an existing plug-in, see Oracle Enterprise Manager Cloud Control Administrator's Guide.

Figure 39-1 provides a graphical overview of how you can manage the PDB lifecycle in Cloud Control.

Figure 39-1 Managing PDBs

[image: Description of Figure 39-1 follows]

Provisioning a PDB

You can provision PDBs by creating a new PDB within a CDB, by cloning an existing PDB, or by migrating existing non-CDBs to a CDB as PDBs. You can also use unplugged PDBs for provisioning, by plugging them into a CDB.

This section provides information about provisioning a PDB. In particular, it contains the following topics:

	
Creating a New PDB

	
Plugging In an Unplugged PDB

	
Cloning a PDB

	
Migrating a Non-CDB to a PDB

Creating a New PDB

This section provides information about creating a new PDB. In particular, it contains the following topics:

	
Prerequisites

	
Procedure

Prerequisites

	
Oracle Software Library (Software Library) must be set up in Cloud Control.

For information on how to set up Software Library in Cloud Control, see Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

	
The CDB within which you want to create a PDB must exist, and must be a Cloud Control target.

	
The CDB (within which you want to create a PDB) must be in read/write mode.

	
The target host user must be the owner of the Oracle Home that the CDB (within which you want to create the PDB) belongs to.

Procedure

To create a new PDB in a CDB, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Database Provisioning. In the Database Provisioning page, in the Related Links section of the left menu pane, click Provision Pluggable Databases.

	
Note:

You can also access the Provision Pluggable Database Console from the Home page of the CDB. To do so, in the CDB's Home page, from the Oracle Database menu, select Provisioning, then select Provision Pluggable Database.

	
In the Provision Pluggable Database Console, in the Container Database section, select the CDB within which you want to create new PDBs.

	
Note:

Skip this step if you have accessed the Provision Pluggable Database Console from the CDB's Home page.

	
In the PDB Operations section, select Create New Pluggable Databases.

	
Click Launch.

	
Note:

You will be prompted to log in to the database if you have not already logged in to it through Enterprise Manager. Make sure you log in using SYSDBA user account credentials.

	
In the Creation Options page of the Create Pluggable Database Wizard, in the Pluggable Database Creation Options section, select Create a New PDB.

	
In the Container Database Host Credentials section, select or specify the target CDB Oracle Home owner host credentials. If you have already registered the credentials with Enterprise Manager, then you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

	
Click Next.

	
In the Identification page, enter a unique name for the PDB you are creating.

If you prefer to create more than one PDB in this procedure, then select Create Multiple Copies, and set the number of PDBs you want to create. Note that you can create a maximum of 252 PDBs.

	
Note:

If you choose to create multiple PDBs, then the unique name you enter here is used as a prefix for all PDBs, and the suffix is a numeric value that indicates the count of PDBs.
For example, if you create five PDBs with the name accountsPDB, then the PDBs are created with the names accountsPDB1, accountsPDB2, accountsPDB3, accountsPDB4, and accountsPDB5.

	
In the PDB Administrator section, enter the credentials of the admin user account you need to create for administering the PDB.

	
Note:

If you choose to create multiple PDBs, then an admin user account is created for each PDB that you create, with the same set of the specified credentials.

	
Click Next.

	
In the Storage page, in the PDB Datafile Locations section, select the type of location where you want to store the datafiles.

	
If the target CDB (CDB in which you are creating the PDB) is enabled with Oracle Managed Files and if you want to use the same, then select Use Oracle Managed Files (OMF).

	
If you want to enter a custom location, then select Use Common Location for PDB Datafiles. Select the storage type and the location where the datafiles can be stored.

	
In the Temporary Working Directory section, enter a location where the temporary files generated during the PDB creation process can be stored.

	
In the Post-Creation Scripts section, select a custom SQL script you want to run as part of this procedure, once the PDB is created.

	
Click Next.

	
In the Schedule page, enter a unique deployment procedure instance name and a schedule for the deployment. The instance name you enter here helps you identify and track the progress of this procedure on the Procedure Activity page.

If you want to run the procedure immediately, then retain the default selection, that is, Immediately. Otherwise, select Later and provide time zone, start date, and start time details.

You can optionally set a grace period for this schedule. A grace period is a period of time that defines the maximum permissible delay when attempting to run a scheduled procedure. If the procedure does not start within the grace period you have set, then the procedure skips running. To set a grace period, select Grace Period, and set the permissible delay time.

	
Click Next.

	
In the Review page, review the details you have provided for the deployment procedure. If you are satisfied with the details, click Submit.

If you want to modify the details, then click Back repeatedly to reach the page where you want to make the changes.

	
In the Procedure Activity page, view the status of the procedure. From the Procedure Actions menu, you can select Debug to set the logging level to Debug, and select Stop to stop the procedure execution.

When you create a new PDB, the Enterprise Manager job system creates a Create Pluggable Database job. For information about viewing the details of this job, refer "Viewing Create PDB Job Details".

Plugging In an Unplugged PDB

This section provides information about plugging an unplugged PDB into a CDB. In particular, it contains the following topics:

	
Prerequisites

	
Procedure

Prerequisites

Before plugging an unplugged PDB, ensure that you meet the following prerequisites:

	
Oracle Software Library (Software Library) must be set up in Cloud Control.

For information on how to set up Software Library in Cloud Control, see Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

	
The target CDB (the CDB within which you want to plug in the unplugged PDB) must exist, and must be a Cloud Control target.

	
The target CDB must be in read/write mode.

	
The XML file that describes the unplugged PDB, and the other files associated with the unplugged PDB, such as the data files, must exist and must be readable.

	
The target host user must be the owner of the Oracle Home that the CDB (into which you want to plug the unplugged PDB) belongs to.

	
The platforms of the source CDB host (the host on which the CDB that previously contained the unplugged PDB is installed) and the target CDB host (the host on which the target CDB is installed) must have the same endianness, and must have the same set of database options installed.

	
The CDB that contained the unplugged PDB and the target CDB must have compatible character sets and national character sets. To be compatible, the character sets and national character sets must meet all of the requirements specified in Oracle Database Globalization Support Guide.

Procedure

To plug an unplugged PDB into a CDB, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Database Provisioning. In the Database Provisioning page, in the Related Links section of the left menu pane, click Provision Pluggable Databases.

	
Note:

You can also access the Provision Pluggable Database Console from the Home page of the CDB. To do so, in the CDB's Home page, from the Oracle Database menu, select Provisioning, then select Provision Pluggable Database.

	
In the Provision Pluggable Database Console, in the Container Database section, select the CDB to which you want to add the unplugged PDBs.

	
Note:

Skip this step if you have accessed the Provision Pluggable Database Console from the CDB's Home page.

	
In the PDB Operations section, select Create New Pluggable Databases.

	
Click Launch.

	
Note:

You will be prompted to log in to the database if you have not already logged in to it through Enterprise Manager. Make sure you log in using SYSDBA user account credentials.

	
In the Creation Options page of the Create Pluggable Database Wizard, in the Pluggable Database Creation Options section, select Plug an Unplugged PDB.

	
In the Container Database Host Credentials section, select or specify the target CDB Oracle Home owner host credentials. If you have already registered the credentials with Enterprise Manager, then you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

	
Click Next.

	
In the Identification page, enter a unique name for the PDB you are plugging in.

Select Create As Clone if you are plugging a PDB into a CDB that contains one or more PDBs that were created by plugging in the same PDB. Selecting this option ensures that Oracle Database generates unique PDB DBID, GUID, and other identifiers expected for the new PDB.

If you prefer to create more than one PDB in this procedure, then select Create Multiple Copies, and set the number of PDBs you want to create. Note that you can create a maximum of 252 PDBs.

	
Note:

If you choose to create multiple PDBs, then the unique name you enter here is used as a prefix for all PDBs, and the suffix is a numeric value that indicates the count of PDBs.
For example, if you create five PDBs with the name accountsPDB, then the PDBs are created with the names accountsPDB1, accountsPDB2, accountsPDB3, accountsPDB4, and accountsPDB5.

	
In the PDB Administrator section, do one of the following to administer the PDB:

	
If you prefer to use the admin user account that was created as part of the source PDB that you are plugging in, then deselect Create PDB Administrator.

	
If you want to create a brand new admin user account for the PDB you are plugging in, then select Create PDB Administrator, and enter the desired credentials.

	
Note:

If you choose to create multiple PDBs, then an admin user account is created for each PDB that you create, with the same set of the specified credentials.

To lock and expire all the users in the newly created PDB, (except the newly created Admin), select Lock All Existing PDB Users.

	
In the PDB Template Location section, select the location where the source PDB's template is available, and then select the type of PDB template.

	
If the PDB template is available on your CDB host (CDB to which you are plugging in the unplugged PDB), then select Target Host File System.

	
If the PDB template is a single archive file—a TAR file with data files and metadata XML file included in it, then select Create Pluggable Database from Pluggable Database Archive, then select the PDB template.

	
If the PDB template is a PDB file set—a separate DFB file with all the data files and a separate metadata XML file, then select Create the PDB using PDB File Set, then select the DBF and XML files.

	
If you want to plug in a PDB using the PDB metadata XML file and the existing data files, then select Create PDB using Metadata file.

	
If the PDB template is available in Oracle Software Library (Software Library), then select Software Library, then select the component in the Software Library that contains the PDB template.

	
Click Next.

	
In the Storage page, do one of the following:

	
In the previous page, if you chose to create the PDB from a PDB archive (single TAR file) or using a PDB file set (DFB file and an XML file), then select the type of location where you want to store the target data files for the PDB you are plugging in.

	
If the target CDB (CDB to which you are plugging in the unplugged PDB) is enabled with Oracle Managed Files and if you want to use the same, then select Use Oracle Managed Files (OMF).

	
If you want to enter a common custom location, then select Use Common Location for PDB datafiles. Select the storage type and the location where the data files can be stored.

	
In the previous page, if you chose to create the PDB using a PDB template (XML file only), then do the following:

In the PDB Datafile Locations section, validate the locations mapped for the data files. If they are incorrect, correct the paths. Alternatively, if you have a single location where the data files are all available, then enter the absolute path in the Set Common Source File Mapping Location field, and click Set.

You can choose to store the target data files for the PDB you are plugging in, in the same location as the source data files. However, if you want the target data files to be stored in a different location, then select Copy Datafiles, and select the type of location:

	
If the target CDB (CDB to which you are plugging in the unplugged PDB) is enabled with Oracle Managed Files and if you want to use the same, then select Use Oracle Managed Files (OMF).

	
If you want to enter a common custom location, then select Use Common Location for Pluggable Database Files. Select the storage type and the location where the data files can be stored.

	
If you prefer to use different custom locations for different data files, then select Customized Location, and enter the custom location paths.

	
In the Temporary Working Directory section, enter a location where the temporary files generated during the PDB creation process can be stored.

	
In the Post-Creation Scripts section, select a custom SQL script you want to run as part of this procedure, once the PDB is plugged in.

If the script is available in the Software Library, select Select from Software Library, then select the component that contains the custom script.

	
Click Next.

	
In the Schedule page, enter a unique deployment procedure instance name and a schedule for the deployment. The instance name you enter here helps you identify and track the progress of this procedure on the Procedure Activity page.

If you want to run the procedure immediately, then retain the default selection, that is, Immediately. Otherwise, select Later and provide time zone, start date, and start time details.

You can optionally set a grace period for this schedule. A grace period is a period of time that defines the maximum permissible delay when attempting to run a scheduled procedure. If the procedure does not start within the grace period you have set, then the procedure skips running. To set a grace period, select Grace Period, then set the permissible delay time.

	
Click Next.

	
In the Review page, review the details you have provided for the deployment procedure. If you are satisfied with the details, click Submit.

If you want to modify the details, then click Back repeatedly to reach the page where you want to make the changes.

	
In the Procedure Activity page, view the status of the procedure. From the Procedure Actions menu, you can select Debug to set the logging level to Debug, and select Stop to stop the procedure execution.

When you plug in an unplugged PDB, the Enterprise Manager job system creates a Create Pluggable Database job. For information about viewing the details of this job, refer "Viewing Create PDB Job Details".

Cloning a PDB

You can clone a PDB using either the Full Clone method, or the Snap Clone method. This section provides information about cloning a PDB using these methods. In particular, it contains the following topics:

	
Prerequisites

	
Procedure

Prerequisites

To clone a PDB, you must meet the following prerequisites:

	
Oracle Software Library (Software Library) must be set up in Cloud Control.

For information on how to set up Software Library in Cloud Control, see Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

	
The source PDB (the PDB that you want to clone) must exist, and must be a Cloud Control target.

	
Note:

For information on how to create a new PDB, refer to "Creating a New PDB".

	
The source PDB must be open.

	
The target CDB (the CDB into which you want to plug in the cloned PDB) must exist, and must be a Cloud Control target.

	
The target CDB must be in read/write mode.

	
The target host user must be the owner of the Oracle Home that the source CDB belongs to.

To clone a PDB using the Snap Clone method, you must meet the following additional prerequisites:

	
The 12.1.0.5 Enterprise Manager for Oracle Database plug-in must be downloaded and deployed. Also, the 12.1.0.3 SMF plug-in or higher must be downloaded and deployed.

	
The PDB that you want to clone must reside on a registered storage server. This storage server must be synchronized.

For information on how to register a storage server and synchronize storage servers, see Oracle Enterprise Manager Cloud Administration Guide.

	
All the datafiles of the PDB that you want to clone must reside on the storage volumes of the storage server, and not on the local disk.

	
Metric collections must be run on the source CDB (the CDB containing the PDB that you want to clone), the source CDB host, and the PDB that you want to clone.

	
The Snap Clone feature must be enabled for the PDB that you want to clone.

For information on how to enable the Snap Clone feature, see Oracle Enterprise Manager Cloud Administration Guide.

Procedure

To clone an existing PDB, follow these steps:

	
Important:

If you use the Full Clone method to clone a PDB, you can clone the PDB only to the source CDB (the CDB containing the PDB that you are cloning).

	
From the Enterprise menu, select Provisioning and Patching, then select Database Provisioning. In the Database Provisioning page, in the Related Links section of the left menu pane, click Provision Pluggable Databases.

	
Note:

You can also access the Provision Pluggable Database Console from the Home page of the CDB. To do so, in the CDB's Home page, from the Oracle Database menu, select Provisioning, then select Provision Pluggable Database.

	
In the Provision Pluggable Database Console, in the CDB section, select the source CDB, that is, the CDB containing the PDB that you want to clone.

	
Note:

Skip this step if you have accessed the Provision Pluggable Database Console from the CDB's Home page.

	
In the PDB Operations section, select Create New Pluggable Databases.

	
Click Launch.

	
Note:

You will be prompted to log in to the database if you have not already logged in to it through Enterprise Manager. Make sure you log in using SYSDBA user account credentials.

	
In the Creation Options page of the Create Pluggable Database Wizard, in the PDB Creation Options section, select Clone an Existing PDB.

To clone a PDB using the traditional method of cloning the PDB datafiles, select Full Clone. Use this method if you want to clone a PDB for long term usage. This method is ideal for load testing, when you plan to make significant data updates to the PDB clone. However, this method takes a longer period of time, and a clone that is created using this method occupies a fairly large amount of space, as compared to the Snap Clone method.

To clone a PDB using the Storage Management Framework (SMF) Snap Clone feature, select Snap Clone. Use this method if you want to clone a PDB for short term purposes. This method is ideal for functional testing, as the cloning process is quick, and a PDB clone that is created using this method occupies very little space. However, this method is not suitable if you plan to make significant data updates to the PDB clone.

For Source PDB, select the PDB that you want to clone.

	
In the CDB Host Credentials section, select or specify the source CDB Oracle Home owner host credentials. If you have already registered the credentials with Enterprise Manager, you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

	
Click Next.

	
In the Identification page, enter a unique name for the PDB you are cloning.

If you prefer to create more than one PDB in this procedure, then select Create Multiple Copies, and set the number of PDBs you want to create. Note that you can create a maximum of 252 PDBs.

	
Note:

If you choose to create multiple PDBs, then the unique name you enter here is used as a prefix for all the cloned PDBs, and the suffix is a numeric value that indicates the count of PDBs.
For example, if you create five PDBs with the name accountsPDB, then the PDBs are created with the names accountsPDB1, accountsPDB2, accountsPDB3, accountsPDB4, and accountsPDB5.

	
In the PDB Administrator section, do one of the following to administer the PDB:

	
If you prefer to use the admin user account that was created as part of the source PDB that you are cloning, then deselect Create PDB Administrator.

	
If you want to create a brand new admin user account for the PDB you are cloning, then select Create PDB Administrator, and enter the desired credentials.

	
Note:

If you choose to create multiple PDBs, then an admin user account is created for each PDB that you create, with the same set of the specified credentials.

	
In the Source CDB Login Credentials section, select or specify the login credentials of the source CDB. If you have already registered the credentials with Enterprise Manager, you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

The credentials are used to bring the source PDB to read-only mode before the cloning operation begins, and to restore it to the original state after the cloning operation ends.

If you chose the Snap Clone method (on the Source page of the Create Pluggable Database Wizard) to clone the PDB, specify the host credentials for the source CDB.

	
Note:

If you are cloning the source PDB to the source CDB itself, then the Source CDB Login Credentials section is not displayed, that is, you do not need to provide the source CDB login credentials or the source CDB host credentials.
If you are cloning the source PDB to a CDB different from the source CDB, and this CDB resides on the source CDB host, then you must provide the source CDB login credentials. You do not need to provide the source CDB host credentials.

If you are cloning the source PDB to a CDB different from the source CDB, and this CDB resides on a host different from the source CDB host, then you must provide the source CDB login credentials and the source CDB host credentials.

	
Click Next.

	
In the Storage page, specify the storage information.

If you chose the Full Clone method to clone the PDB, select the type of location where you want to store the PDB datafiles in the following manner:

	
If the source CDB is enabled with Oracle Managed Files and if you want to use the same, then select Use Oracle Managed Files (OMF).

	
If you want to enter a custom location, then select Use Common Location for PDB datafiles. Select the storage type and the location where the datafiles can be stored.

If you chose the Snap Clone method to clone the PDB, do the following:

	
In the PDB Datafile Locations section, specify a value for Mount Point Prefix, that is, the mount location for the storage volumes. You can choose to specify the same prefix for all the volumes, or a different prefix for each volume. Also, specify a value for Writable Space, that is, the space that you want to allocate for writing the changes made to the PDB clone. You can choose to specify the same writable space value for all the volumes, or a different value for each volume.

	
In the Privileged Host Credentials section, select or specify the credentials of the root user. These credentials are used for mounting the cloned volumes on the destination host.

If you have already registered the credentials with Enterprise Manager, you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

	
In the Temporary Working Directory section, enter a location where the temporary files generated during the PDB creation process can be stored.

	
In the Post-Creation Scripts section, select a custom SQL script you want to run as part of this procedure, once the PDB is cloned.

	
Click Next.

	
In the Schedule page, enter a unique deployment procedure instance name and a schedule for the deployment. The instance name you enter here helps you identify and track the progress of this procedure on the Procedure Activity page.

If you want to run the procedure immediately, then retain the default selection, that is, Immediately. Otherwise, select Later and provide time zone, start date, and start time details.

You can optionally set a grace period for this schedule. A grace period is a period of time that defines the maximum permissible delay when attempting to run a scheduled procedure. If the procedure does not start within the grace period you have set, then the procedure skips running. To set a grace period, select Grace Period, and set the permissible delay time.

	
Click Next.

	
In the Review page, review the details you have provided for the deployment procedure. If you are satisfied with the details, click Submit.

If you want to modify the details, then click Back repeatedly to reach the page where you want to make the changes.

	
In the Procedure Activity page, view the status of the procedure. From the Procedure Actions menu, you can select Debug to set the logging level to Debug, and select Stop to stop the procedure execution.

When you clone a PDB, the Enterprise Manager job system creates a Create Pluggable Database job. For information about viewing the details of this job, refer "Viewing Create PDB Job Details".

Migrating a Non-CDB to a PDB

This section provides information about migrating a non-CDB to a PDB. In particular, it contains the following topics:

	
Prerequisites

	
Procedure

Prerequisites

Before migrating a non-CDB to a PDB, ensure that you meet the following prerequisites:

	
Oracle Software Library (Software Library) must be set up in Cloud Control.

For information on how to set up Software Library in Cloud Control, see Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

	
The target CDB (the CDB to which you want to migrate a non-CDB to a PDB) must exist, and must be a Cloud Control target.

	
The target CDB must be in read/write mode.

	
The non-CDB that you want to migrate and the target CDB must be running in ARCHIVELOG mode.

	
The database administrators of the database you want to migrate and the target CDB must have SYSDBA privileges.

	
The target host user must be the owner of the Oracle Home that the target CDB belongs to.

Procedure

To migrate a non-CDB to a PDB, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Database Provisioning. In the Database Provisioning page, in the Related Links section of the left menu pane, click Provision Pluggable Databases.

	
Note:

You can also access the Provision Pluggable Database Console from the Home page of the CDB. To do so, in the CDB's Home page, from the Oracle Database menu, select Provisioning, then select Provision Pluggable Database.

	
In the Provision Pluggable Database Console, in the Container Database section, select the CDB to which you want to migrate a non-CDB to a PDB.

	
Note:

Skip this step if you have accessed the Provision Pluggable Database Console from the CDB's Home page.

	
In the PDB Operations section of the Provision Pluggable Database page, select the Migrate Existing Databases option and click Launch.

	
On the Database Login page, select the Credential Name from the drop-down list. Click Login.

	
On the Migrate Non-CDBs launch page, select a data migration method, that is, Export/Import or Plug as a PDB. If you select Plug as a PDB, ensure that the non-CDB that you want to migrate is open, and is in read-only mode.

Enter the appropriate credentials for the Oracle Home Credential section.

Click Next.

	
On the Database page, select a Non-CDB to be migrated. You can select more than one. Click Add. In the database pane, provide the appropriate credential, properties, export, import, and datafile location information. Click Next.

	
On the Schedule page, enter the appropriate job and scheduling details. Click Next.

	
On the Review page, review all details entered. If there are no changes required, click Submit.

Removing PDBs

This section provides information about unplugging PDBs and deleting PDBs. In particular, it contains the following topics:

	
Unplugging and Dropping a PDB

	
Deleting PDBs

Unplugging and Dropping a PDB

This section provides information about unplugging and dropping a PDB. In particular, it contains the following topics:

	
Prerequisites

	
Procedure

Prerequisites

Before unplugging and dropping a PDB, ensure that you meet the following prerequisites:

	
Oracle Software Library (Software Library) must be set up in Cloud Control.

For information on how to set up Software Library in Cloud Control, see Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

	
The PDB that you want to unplug and drop must have been opened at least once.

	
The target host user must be the owner of the Oracle Home that the CDB (containing the PDB that you want to unplug and drop) belongs to.

Procedure

To unplug a PDB from its CDB, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Database Provisioning. In the Database Provisioning page, in the Related Links section of the left menu pane, click Provision Pluggable Databases.

	
Note:

You can also access the Provision Pluggable Database Console from the Home page of the CDB. To do so, in the CDB's Home page, from the Oracle Database menu, select Provisioning, then select Provision Pluggable Database.

	
In the Provision Pluggable Database Console, in the Container Database section, select the CDB from which you want to unplug the PDBs.

	
Note:

Skip this step if you have accessed the Provision Pluggable Database Console from the CDB's Home page.

	
In the PDB Operations section, select Unplug Pluggable Database.

	
Click Launch.

	
Note:

You will be prompted to log in to the database if you have not already logged in to it through Enterprise Manager. Make sure you log in using SYSDBA user account credentials.

	
In the Select PDB page of the Unplug Pluggable Database Wizard, in the Select Pluggable Database section, select the PDB you want to unplug. Note that the PDB once unplugged will be stopped and dropped.

	
In the Container Database Host Credentials section, select or specify the target CDB Oracle Home owner host credentials. If you have already registered the credentials with Enterprise Manager, you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

	
In the Destination page, select the type of PDB template you want to generate for unplugging the PDB, and the location where you want to store it. The PDB template consists of all data files as well as the metadata XML file.

	
If you want to store the PDB template on your CDB host (CDB from which you are unplugging the PDB), then select Target Host File System.

	
If you want to generate a single archive file—a TAR file with the data files and the metadata XML file included in it, then select Generate PDB Archive. Select a location where the archive file can be created.

	
Note:

Oracle recommends that you select this option if the source and target CDBs are using file system for storage. This option is not supported for PDBs using ASM as storage.

	
If you want to generate an archive file set—a separate DFB file with all the data files and a separate metadata XML file, then select Generate PDB File Set. Select the locations where the DBF and XML files can be created.

	
Note:

Oracle recommends that you select this option if the source and target CDBs are using ASM for storage.

	
If you want to generate only a metadata XML file, leaving the data files in their current location, then select Generate PDB Metadata File. Select a location where the metadata XML file can be created.

	
If you want to store the PDB template in Oracle Software Library (Software Library), then select Software Library.

	
If you want to generate a single archive file—a TAR file with the data files and the metadata XML file included in it, then select Generate PDB Archive. If you want to generate an archive file set—a separate DFB file with all the data files and a separate metadata XML file, then select Generate PDB File Set. If you want to generate only a metadata XML file, leaving the data files in their current location, then select Generate PDB Metadata File.

	
Enter a unique PDB template name.

The template is created in the default location that has the following format:

Database Configuration/db_release/platform/Database Templates

For example,

Database Configuration/12.1.0.0.2/unix/Database Templates

	
Enter a temporary location where the archive can be created by Enterprise Manager before it is uploaded to the Software Library.

	
In the Schedule page, enter a unique deployment procedure instance name and a schedule for the deployment. The instance name you enter here helps you identify and track the progress of this procedure on the Procedure Activity page.

If you want to run the procedure immediately, then retain the default selection, that is, Immediately. Otherwise, select Later and provide time zone, start date, and start time details.

You can optionally set a grace period for this schedule. A grace period is a period of time that defines the maximum permissible delay when attempting to run a scheduled procedure. If the procedure does not start within the grace period you have set, then the procedure skips running. To set a grace period, select Grace Period, and set the permissible delay time.

	
Click Next.

	
In the Review page, review the details you have provided for the deployment procedure. If you are satisfied with the details, click Submit.

If you want to modify the details, then click Back repeatedly to reach the page where you want to make the changes.

	
In the Procedure Activity page, view the status of the procedure. From the Procedure Actions menu, you can select Debug to set the logging level to Debug, and select Stop to stop the procedure execution.

When you unplug and drop a PDB, the Enterprise Manager job system creates an Unplug Pluggable Database job. For information about viewing the details of this job, refer "Viewing Unplug PDB Job Details".

Deleting PDBs

This section provides information about permanently deleting PDBs from a CDB. In particular, it contains the following topics:

	
Prerequisites

	
Procedure

Prerequisites

Before permanently deleting a set of PDBs from a CDB, ensure that you meet the following prerequisites:

	
The 12.1.0.5 Enterprise Manager for Oracle Database plug-in must be downloaded and deployed.

For information on how to download and deploy a plug-in, see Oracle Enterprise Manager Cloud Control Administrator's Guide.

	
Oracle Software Library (Software Library) must be set up in Cloud Control.

For information on how to set up Software Library in Cloud Control, see Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

	
The PDBs that you want to delete must have been opened at least once.

	
The target host user must be the owner of the Oracle home that the CDB (containing the PDBs that you want to delete) belongs to.

Procedure

To permanently delete a set of PDBs from a CDB, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Database Provisioning. In the Database Provisioning page, in the Related Links section of the left menu pane, click Provision Pluggable Databases.

	
Note:

You can also access the Provision Pluggable Database Console from the Home page of the CDB. To do so, in the CDB's Home page, from the Oracle Database menu, select Provisioning, then select Provision Pluggable Database.

	
In the Provision Pluggable Database Console, in the CDB section, select the CDB from which you want to delete the PDBs.

	
Note:

Skip this step if you have accessed the Provision Pluggable Database Console from the CDB's home page.

	
In the PDB Operations section, select Delete Pluggable Databases.

	
Click Launch.

	
Note:

You will be prompted to log in to the database if you have not already logged in to it through Enterprise Manager. Make sure you log in using SYSDBA user account credentials.

	
In the Select PDBs page of the Delete Pluggable Databases Wizard, click Add. Select the PDBs that you want to delete, then click Select.

	
Note:

If you choose to delete a PDB that was created using the Snap Clone method, the PDB mount points on the CDB host are cleaned up. The corresponding storage volumes on the storage server are also deleted. This action is irreversible.

	
In the CDB Host Credentials section, select or specify the target CDB Oracle Home owner host credentials. If you have already registered the credentials with Enterprise Manager, you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

If one (or more) of the PDBs that you selected for deletion is the Snap Clone of another PDB, you must also provide the privileged host credentials, that is, the credentials of the root user. If you have already registered the credentials with Enterprise Manager, you can select Preferred or Named. Otherwise, you can select New and enter the credentials.

	
In the Schedule page, enter a unique deployment procedure instance name and a schedule for the deployment. The instance name you enter here helps you identify and track the progress of this procedure on the Procedure Activity page.

If you want to run the procedure immediately, then retain the default selection, that is, Immediately. Otherwise, select Later and provide time zone, start date, and start time details.

You can optionally set a grace period for this schedule. A grace period is a period of time that defines the maximum permissible delay when attempting to run a scheduled procedure. If the procedure does not start within the grace period you have set, then the procedure skips running. To set a grace period, select Grace Period, and set the permissible delay time.

	
Click Next.

	
In the Review page, review the details you have provided for the deployment procedure. If you are satisfied with the details, click Submit.

If you want to modify the details, then click Back repeatedly to reach the page where you want to make the changes.

	
In the Procedure Activity page, view the status of the procedure. From the Procedure Actions menu, you can select Debug to set the logging level to Debug, and select Stop to stop the procedure execution.

When you delete a PDB, the Enterprise Manager job system creates a Delete Pluggable Database job. For information about viewing the details of this job, refer "Viewing Delete PDB Job Details".

Viewing PDB Job Details

This section provides information about viewing the details of the jobs that are created by the Enterprise Manager job system when you create a PDB, unplug a PDB, or delete a PDB. It contains the following topics:

	
Viewing Create PDB Job Details

	
Viewing Unplug PDB Job Details

	
Viewing Delete PDB Job Details

Viewing Create PDB Job Details

To view the details of a create PDB job, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Procedure Activity.

	
Click the deployment procedure that contains the required create PDB job.

	
Expand the deployment procedure steps. Select the PDB creation job.

	
Click Job Summary.

	
To view a summary of the job details, click Summary.

In the Prepare Configuration Data step, the system prepares for PDB creation.

In the Check Prerequisites step, the system checks the prerequisites for PDB creation.

In the Verify and Prepare step, the system runs tasks prior to PDB creation.

In the Perform Configuration step, the PDB creation is performed. For details of the performed tasks and their status, refer to the remote log files present on the host.

In the Post Configuration step, Enterprise Manager is updated with the newly created PDB details, and the custom scripts are run.

	
To view a visual representation of the create PDB job progress, click Results.

In the Configuration Progress section, you can view the completion percentage of the job, and a list of pending, currently running, and completed job steps. You can also view errors, warnings, and logs. The tail of the log for the currently running job step is displayed.

Viewing Unplug PDB Job Details

To view the details of an unplug PDB job, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Procedure Activity.

	
Click the deployment procedure that contains the required unplug PDB job.

	
Expand the deployment procedure steps. Select the unplug PDB job.

	
Click Job Summary.

	
To view a summary of the job details, click Summary.

In the Prepare Configuration Data step, the system prepares for unplugging a PDB.

In the Check Prerequisites step, the system checks the prerequisites for unplugging a PDB.

In the Verify and Prepare step, the system runs tasks prior to unplugging the PDB.

In the Perform Configuration step, the PDB unplugging is performed. For details of the performed tasks and their status, refer to the remote log files present on the host.

In the Post Configuration step, Enterprise Manager is updated with the unplugged PDB details.

	
To view a visual representation of the unplug PDB job progress, click Results.

In the Configuration Progress section, you can view the completion percentage of the job, and a list of pending, currently running, and completed job steps. You can also view errors, warnings, and logs. The tail of the log for the currently running job step is displayed.

Viewing Delete PDB Job Details

To view the details of a delete PDB job, follow these steps:

	
From the Enterprise menu, select Provisioning and Patching, then select Procedure Activity.

	
Click the deployment procedure that contains the required delete PDB job.

	
Expand the deployment procedure steps. Select the delete PDB job.

	
Click Job Summary.

	
To view a summary of the job details, click Summary.

In the Prepare Configuration Data step, the system prepares for deleting the PDBs.

In the Verify and Prepare step, the system runs tasks prior to deleting the PDBs.

In the Perform Configuration step, the PDB deletion is performed. For details of the performed tasks and their status, refer to the remote log files present on the host.

In the Post Configuration step, Enterprise Manager is updated with the deleted PDB details.

	
To view a visual representation of the delete PDB job progress, click Results.

In the Configuration Progress section, you can view the completion percentage of the job, and a list of pending, currently running, and completed job steps. You can also view errors, warnings, and logs. The tail of the log for the currently running job step is displayed.

Appendixes

Part VII

Appendixes

Part VI contains the following appendixes for the Oracle Database Administrator's Guide:

	
Appendix A, "Support for DBMS_JOB"

Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Data