

Changes in This Release for Oracle Database Globalization Support Guide

This chapter contains:

	
Changes in Oracle Database 12c Release 1 (12.1)

Changes in Oracle Database 12c Release 1 (12.1)

The following are changes in Oracle Database Globalization Support Guide for Oracle Database 12c Release 1 (12.1).

New Features

	
Support for Unicode 6.1, a major version of the Unicode Standard that supersedes all previous versions of the standard.

	
Support for new locales.

See Appendix A, "Locale Data".

	
Support for the Unicode Collation Algorithm

See Chapter 5, "Linguistic Sorting and Matching".

	
The Database Migration Assistant for Unicode (DMU)

An intuitive and user-friendly GUI product that helps you streamline the migration process through an interface that minimizes the manual workload and ensures that the migration tasks are carried out correctly and efficiently. It replaces the CSSCAN and CSALTER utilities as the supported method for migrating databases to Unicode.

See "Migrating Character Data Using the Database Migration Assistant for Unicode" for more details and Oracle Database Migration Assistant for Unicode Guide for more details.

Desupported Features

Some features previously described in this document (the CSSCAN and CSALTER utilities) are desupported in Oracle Database 12c Release 1 (12.1). See Oracle Database Upgrade Guide for a list of desupported features.

7 Programming with Unicode

This chapter describes how to use programming and access products for Oracle Database with Unicode. This chapter contains the following topics:

	
Overview of Programming with Unicode

	
SQL and PL/SQL Programming with Unicode

	
OCI Programming with Unicode

	
Pro*C/C++ Programming with Unicode

	
JDBC Programming with Unicode

	
ODBC and OLE DB Programming with Unicode

	
XML Programming with Unicode

Overview of Programming with Unicode

Oracle offers several database access products for inserting and retrieving Unicode data. Oracle offers database access products for commonly used programming environments such as Java and C/C++. Data is transparently converted between the database and client programs, which ensures that client programs are independent of the database character set and national character set. In addition, client programs are sometimes even independent of the character data type, such as NCHAR or CHAR, used in the database.

To avoid overloading the database server with data conversion operations, Oracle always tries to move them to the client side database access products. In a few cases, data must be converted in the database, which affects performance. This chapter discusses details of the data conversion paths.

Database Access Product Stack and Unicode

Oracle offers a comprehensive set of database access products that enable programs from different development environments to access Unicode data stored in the database. These products are listed in Table 7-1.

Table 7-1 Oracle Database Access Products

	Programming Environment	Oracle Database Access Products
	
C/C++

	
Oracle Call Interface (OCI) Oracle Pro*C/C++ Oracle ODBC driver Oracle Provider for OLE DB Oracle Data Provider for .NET

	
Java

	
Oracle JDBC OCI or thin driver Oracle server-side thin driver Oracle server-side internal driver

	
PL/SQL

	
Oracle PL/SQL and SQL

	
Visual Basic/C#

	
Oracle ODBC driver Oracle Provider for OLE DB

Figure 7-1 shows how the database access products can access the database.

Figure 7-1 Oracle Database Access Products

[image: Description of Figure 7-1 follows]

The Oracle Call Interface (OCI) is the lowest level API that the rest of the client-side database access products use. It provides a flexible way for C/C++ programs to access Unicode data stored in SQL CHAR and NCHAR data types. Using OCI, you can programmatically specify the character set (UTF-8, UTF-16, and others) for the data to be inserted or retrieved. It accesses the database through Oracle Net.

Oracle Pro*C/C++ enables you to embed SQL and PL/SQL in your programs. It uses OCI's Unicode capabilities to provide UTF-16 and UTF-8 data access for SQL CHAR and NCHAR data types.

The Oracle ODBC driver enables C/C++, Visual Basic, and VBScript programs running on Windows platforms to access Unicode data stored in SQL CHAR and NCHAR data types of the database. It provides UTF-16 data access by implementing the SQLWCHAR interface specified in the ODBC standard specification.

The Oracle Provider for OLE DB enables C/C++, Visual Basic, and VBScript programs running on Windows platforms to access Unicode data stored in SQL CHAR and NCHAR data types. It provides UTF-16 data access through wide string OLE DB data types.

The Oracle Data Provider for .NET enables programs running in any .NET programming environment on Windows platforms to access Unicode data stored in SQL CHAR and NCHAR data types. It provides UTF-16 data access through Unicode data types.

Oracle JDBC drivers are the primary Java programmatic interface for accessing an Oracle database. Oracle provides the following JDBC drivers:

	
The JDBC OCI driver that is used by Java applications and requires the OCI library

	
The JDBC thin driver, which is a pure Java driver that is primarily used by Java applets and supports the Oracle Net protocol over TCP/IP

	
The JDBC server-side thin driver, a pure Java driver used inside Java stored procedures to connect to another Oracle server

	
The JDBC server-side internal driver that is used inside the Oracle server to access the data in the database

All drivers support Unicode data access to SQL CHAR and NCHAR data types in the database.

The PL/SQL and SQL engines process PL/SQL programs and SQL statements on behalf of client-side programs such as OCI and server-side PL/SQL stored procedures. They allow PL/SQL programs to declare CHAR, VARCHAR2, NCHAR, and NVARCHAR2 variables and to access SQL CHAR and NCHAR data types in the database.

The following sections describe how each of the database access products supports Unicode data access to an Oracle database and offer examples for using those products:

	
SQL and PL/SQL Programming with Unicode

	
OCI Programming with Unicode

	
Pro*C/C++ Programming with Unicode

	
JDBC Programming with Unicode

	
ODBC and OLE DB Programming with Unicode

SQL and PL/SQL Programming with Unicode

SQL is the fundamental language with which all programs and users access data in an Oracle database either directly or indirectly. PL/SQL is a procedural language that combines the data manipulating power of SQL with the data processing power of procedural languages. Both SQL and PL/SQL can be embedded in other programming languages. This section describes Unicode-related features in SQL and PL/SQL that you can deploy for multilingual applications.

This section contains the following topics:

	
SQL NCHAR Data Types

	
Implicit Data Type Conversion Between NCHAR and Other Data Types

	
Exception Handling for Data Loss During Data Type Conversion

	
Rules for Implicit Data Type Conversion

	
SQL Functions for Unicode Data Types

	
Other SQL Functions

	
Unicode String Literals

	
Using the UTL_FILE Package with NCHAR Data

SQL NCHAR Data Types

There are three SQL NCHAR data types:

	
The NCHAR Data Type

	
The NVARCHAR2 Data Type

	
The NCLOB Data Type

The NCHAR Data Type

When you define a table column or a PL/SQL variable as the NCHAR data type, the length is always specified as the number of characters. For example, the following statement creates a column with a maximum length of 30 characters:

CREATE TABLE table1 (column1 NCHAR(30));

The maximum number of bytes for the column is determined as follows:

maximum number of bytes = (maximum number of characters) x (maximum number of bytes for each character)

For example, if the national character set is UTF8, then the maximum byte length is 30 characters times 3 bytes for each character, or 90 bytes.

The national character set, which is used for all NCHAR data types, is defined when the database is created. The national character set can be either UTF8 or AL16UTF16. The default is AL16UTF16.

The maximum column size allowed is 32000 characters when the national character set is UTF8 and 8000 when it is AL16UTF16. The actual data is subject to the maximum byte limit of 16000. The two size constraints must be satisfied at the same time. In PL/SQL, the maximum length of NCHAR data is 32767 bytes. You can define an NCHAR variable of up to 32767 characters, but the actual data cannot exceed 32767 bytes. If you insert a value that is shorter than the column length, then Oracle pads the value with blanks to whichever length is smaller: maximum character length or maximum byte length.

	
Note:

UTF8 may affect performance because it is a variable-width character set. Excessive blank padding of NCHAR fields decreases performance. Consider using the NVARCHAR2 data type or changing to the AL16UTF16 character set for the NCHAR data type.

The NVARCHAR2 Data Type

The NVARCHAR2 data type specifies a variable length character string that uses the national character set. When you create a table with an NVARCHAR2 column, you specify the maximum number of characters for the column. Lengths for NVARCHAR2 are always in units of characters, just as for NCHAR. Oracle subsequently stores each value in the column exactly as you specify it, if the value does not exceed the column's maximum length. Oracle does not pad the string value to the maximum length.

The maximum length for the NVARCHAR2 type is 4000 characters if MAX_STRING_SIZE = STANDARD or 32767 characters if MAX_STRING_SIZE = EXTENDED. These lengths are based on using UTF8; the values are 2000 and 16383 characters when using AL16UTF16.

In PL/SQL, the maximum length for an NVARCHAR2 variable is 32767 bytes. You can define NVARCHAR2 variables up to 32767 characters, but the actual data cannot exceed 32767 bytes.

The following statement creates a table with one NVARCHAR2 column whose maximum length in characters is 2000 and maximum length in bytes is 4000.

CREATE TABLE table2 (column2 NVARCHAR2(2000));

The NCLOB Data Type

NCLOB is a character large object containing Unicode characters, with a maximum size of 4 gigabytes. Unlike the BLOB data type, the NCLOB data type has full transactional support so that changes made through SQL, the DBMS_LOB package, or OCI participate fully in transactions. Manipulations of NCLOB value can be committed and rolled back. Note, however, that you cannot save an NCLOB locator in a PL/SQL or OCI variable in one transaction and then use it in another transaction or session.

NCLOB values are stored in the database in a format that is compatible with UCS-2, regardless of the national character set. Oracle translates the stored Unicode value to the character set requested on the client or on the server, which can be fixed-width or variable-width. When you insert data into an NCLOB column using a variable-width character set, Oracle converts the data into a format that is compatible with UCS-2 before storing it in the database.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more information about the NCLOB data type

Implicit Data Type Conversion Between NCHAR and Other Data Types

Oracle supports implicit conversions between SQL NCHAR data types and other Oracle data types, such as CHAR, VARCHAR2, NUMBER, DATE, ROWID, and CLOB. Any implicit conversions for CHAR and VARCHAR2 data types are also supported for SQL NCHAR data types. You can use SQL NCHAR data types the same way as SQL CHAR data types.

Type conversions between SQL CHAR data types and SQL NCHAR data types may involve character set conversion when the database and national character sets are different. Padding with blanks may occur if the target data is either CHAR or NCHAR.

	
See Also:

Oracle Database SQL Language Reference

Exception Handling for Data Loss During Data Type Conversion

Data loss can occur during data type conversion when character set conversion is necessary. If a character in the source character set is not defined in the target character set, then a replacement character is used in its place. For example, if you try to insert NCHAR data into a regular CHAR column and the character data in NCHAR (Unicode) form cannot be converted to the database character set, then the character is replaced by a replacement character defined by the database character set. The NLS_NCHAR_CONV_EXCP initialization parameter controls the behavior of data loss during character type conversion. When this parameter is set to TRUE, any SQL statements that result in data loss return an ORA-12713 error and the corresponding operation is stopped. When this parameter is set to FALSE, data loss is not reported and the unconvertible characters are replaced with replacement characters. The default value is FALSE. This parameter works for both implicit and explicit conversion.

In PL/SQL, when data loss occurs during conversion of SQL CHAR and NCHAR data types, the LOSSY_CHARSET_CONVERSION exception is raised for both implicit and explicit conversion.

Rules for Implicit Data Type Conversion

In some cases, conversion between data types is possible in only one direction. In other cases, conversion in both directions is possible. Oracle defines a set of rules for conversion between data types. Table 7-2 contains the rules for conversion between data types.

Table 7-2 Rules for Conversion Between Data Types

	Statement	Rule
	
INSERT/UPDATE statement

	
Values are converted to the data type of the target database column.

	
SELECT INTO statement

	
Data from the database is converted to the data type of the target variable.

	
Variable assignments

	
Values on the right of the equal sign are converted to the data type of the target variable on the left of the equal sign.

	
Parameters in SQL and PL/SQL functions

	
CHAR, VARCHAR2, NCHAR, and NVARCHAR2 are loaded the same way. An argument with a CHAR, VARCHAR2, NCHAR or NVARCHAR2 data type is compared to a formal parameter of any of the CHAR, VARCHAR2, NCHAR or NVARCHAR2 data types. If the argument and formal parameter data types do not match exactly, then implicit conversions are introduced when data is copied into the parameter on function entry and copied out to the argument on function exit.

	
Concatenation || operation or CONCAT function

	
If one operand is a SQL CHAR or NCHAR data type and the other operand is a NUMBER or other non-character data type, then the other data type is converted to VARCHAR2 or NVARCHAR2. For concatenation between character data types, see "SQL NCHAR data types and SQL CHAR data types".

	
SQL CHAR or NCHAR data types and NUMBER data type

	
Character values are converted to NUMBER data type.

	
SQL CHAR or NCHAR data types and DATE data type

	
Character values are converted to DATE data type.

	
SQL CHAR or NCHAR data types and ROWID data type

	
Character values are converted to ROWID data type.

	
SQL NCHAR data types and SQL CHAR data types

	
Comparisons between SQL NCHAR data types and SQL CHAR data types are more complex because they can be encoded in different character sets.

When CHAR and VARCHAR2 values are compared, the CHAR values are converted to VARCHAR2 values.

When NCHAR and NVARCHAR2 values are compared, the NCHAR values are converted to NVARCHAR2 values.

When there is comparison between SQL NCHAR data types and SQL CHAR data types, character set conversion occurs if they are encoded in different character sets. The character set for SQL NCHAR data types is always Unicode and can be either UTF8 or AL16UTF16 encoding, which have the same character repertoires but are different encodings of the Unicode standard. SQL CHAR data types use the database character set, which can be any character set that Oracle supports. Unicode is a superset of any character set supported by Oracle, so SQL CHAR data types can always be converted to SQL NCHAR data types without data loss.

SQL Functions for Unicode Data Types

SQL NCHAR data types can be converted to and from SQL CHAR data types and other data types using explicit conversion functions. The examples in this section use the table created by the following statement:

CREATE TABLE customers
 (id NUMBER, name NVARCHAR2(50), address NVARCHAR2(200), birthdate DATE);

Example 7-1 Populating the Customers Table Using the TO_NCHAR Function

The TO_NCHAR function converts the data at run time, while the N function converts the data at compilation time.

INSERT INTO customers VALUES (1000,
 TO_NCHAR('John Smith'),N'500 Oracle Parkway',sysdate);

Example 7-2 Selecting from the Customer Table Using the TO_CHAR Function

The following statement converts the values of name from characters in the national character set to characters in the database character set before selecting them according to the LIKE clause:

SELECT name FROM customers WHERE TO_CHAR(name) LIKE '%Sm%';

You should see the following output:

NAME

John Smith

Example 7-3 Selecting from the Customer Table Using the TO_DATE Function

Using the N function shows that either NCHAR or CHAR data can be passed as parameters for the TO_DATE function. The data types can mixed because they are converted at run time.

DECLARE
ndatestring NVARCHAR2(20) := N'12-SEP-1975';
ndstr NVARCHAR2(50);
BEGIN
SELECT name INTO ndstr FROM customers
WHERE (birthdate)> TO_DATE(ndatestring, 'DD-MON-YYYY', N'NLS_DATE_LANGUAGE =
AMERICAN');
END;

As demonstrated in Example 7-3, SQL NCHAR data can be passed to explicit conversion functions. SQL CHAR and NCHAR data can be mixed together when using multiple string parameters.

	
See Also:

Oracle Database SQL Language Reference for more information about explicit conversion functions for SQL NCHAR data types

Other SQL Functions

Most SQL functions can take arguments of SQL NCHAR data types as well as mixed character data types. The return data type is based on the type of the first argument. If a non-string data type like NUMBER or DATE is passed to these functions, then it is converted to VARCHAR2. The following examples use the customer table created in "SQL Functions for Unicode Data Types".

Example 7-4 INSTR Function

In this example, the string literal 'Sm' is converted to NVARCHAR2 and then scanned by INSTR, to detect the position of the first occurrence of this string in name.

SELECT INSTR(name, N'Sm', 1, 1) FROM customers;

Example 7-5 CONCAT Function

SELECT CONCAT(name,id) FROM customers;

id is converted to NVARCHAR2 and then concatenated with name.

Example 7-6 RPAD Function

SELECT RPAD(name,100,' ') FROM customers;

The following output results:

RPAD(NAME,100,'')
--
John Smith

The space character ' ' is converted to the corresponding character in the NCHAR character set and then padded to the right of name until the total display length reaches 100.

	
See Also:

Oracle Database SQL Language Reference

Unicode String Literals

You can input Unicode string literals in SQL and PL/SQL as follows:

	
Put a prefix N before a string literal that is enclosed with single quotation marks. This explicitly indicates that the following string literal is an NCHAR string literal. For example, N'résumé' is an NCHAR string literal. For information about limitations of this method, see "NCHAR String Literal Replacement".

	
Use the NCHR(n) SQL function, which returns a unit of character code in the national character set, which is AL16UTF16 or UTF8. The result of concatenating several NCHR(n) functions is NVARCHAR2 data. In this way, you can bypass the client and server character set conversions and create an NVARCHAR2 string directly. For example, NCHR(32) represents a blank character.

Because NCHR(n) is associated with the national character set, portability of the resulting value is limited to applications that run with the same national character set. If this is a concern, then use the UNISTR function to remove portability limitations.

	
Use the UNISTR('string') SQL function. UNISTR('string') converts a string to the national character set. To ensure portability and to preserve data, include only ASCII characters and Unicode encoding in the following form: \xxxx, where xxxx is the hexadecimal value of a character code value in UTF-16 encoding format. For example, UNISTR('G\0061ry') represents 'Gary'. The ASCII characters are converted to the database character set and then to the national character set. The Unicode encoding is converted directly to the national character set.

The last two methods can be used to encode any Unicode string literals.

NCHAR String Literal Replacement

This section provides information on how to avoid data loss when performing NCHAR string literal replacement.

Being part of a SQL or PL/SQL statement, the text of any literal, with or without the prefix N, is encoded in the same character set as the rest of the statement. On the client side, the statement is in the client character set, which is determined by the client character set defined in NLS_LANG, or specified in the OCIEnvNlsCreate() call, or predefined as UTF-16 in JDBC. On the server side, the statement is in the database character set.

	
When the SQL or PL/SQL statement is transferred from client to the database server, its character set is converted accordingly. It is important to note that if the database character set does not contain all characters used in the text literals, then the data is lost in this conversion. This problem affects NCHAR string literals more than the CHAR text literals. This is because the N' literals are designed to be independent of the database character set, and should be able to provide any data that the client character set supports.

To avoid data loss in conversion to an incompatible database character set, you can activate the NCHAR literal replacement functionality. The functionality transparently replaces the N' literals on the client side with an internal format. The database server then decodes this to Unicode when the statement is executed.

	
The sections "Handling SQL NCHAR String Literals in OCI" and "Using SQL NCHAR String Literals in JDBC" show how to switch on the replacement functionality in OCI and JDBC, respectively. Because many applications, for example, SQL*Plus, use OCI to connect to a database, and they do not control NCHAR literal replacement explicitly, you can set the client environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE to control the functionality for them. By default, the functionality is switched off to maintain backward compatibility.

Using the UTL_FILE Package with NCHAR Data

The UTL_FILE package handles Unicode national character set data of the NVARCHAR2 data type. NCHAR and NCLOB are supported through implicit conversion. The functions and procedures include the following:

	
FOPEN_NCHAR

This function opens a file in national character set mode for input or output, with the maximum line size specified. Even though the contents of an NVARCHAR2 buffer may be AL16UTF16 or UTF8 (depending on the national character set of the database), the contents of the file are always read and written in UTF8. See "Support for the Unicode Standard in Oracle Database" for more information. UTL_FILE converts between UTF8 and AL16UTF16 as necessary.

	
GET_LINE_NCHAR

This procedure reads text from the open file identified by the file handle and places the text in the output buffer parameter. The file must be opened in national character set mode, and must be encoded in the UTF8 character set. The expected buffer data type is NVARCHAR2. If a variable of another data type, such as NCHAR, NCLOB, or VARCHAR2 is specified, PL/SQL performs standard implicit conversion from NVARCHAR2 after the text is read.

	
PUT_NCHAR

This procedure writes the text string stored in the buffer parameter to the open file identified by the file handle. The file must be opened in the national character set mode. The text string will be written in the UTF8 character set. The expected buffer data type is NVARCHAR2. If a variable of another data type is specified, PL/SQL performs implicit conversion to NVARCHAR2 before writing the text.

	
PUT_LINE_NCHAR

This procedure is equivalent to PUT_NCHAR, except that the line separator is appended to the written text.

	
PUTF_NCHAR

This procedure is a formatted version of a PUT_NCHAR procedure. It accepts a format string with formatting elements \n and %s, and up to five arguments to be substituted for consecutive instances of %s in the format string. The expected data type of the format string and the arguments is NVARCHAR2. If variables of another data type are specified, PL/SQL performs implicit conversion to NVARCHAR2 before formatting the text. Formatted text is written in the UTF8 character set to the file identified by the file handle. The file must be opened in the national character set mode.

The above functions and procedures process text files encoded in the UTF8 character set, that is, in the Unicode CESU-8 encoding. See "Universal Character Sets" for more information about CESU-8. The functions and procedures convert between UTF8 and the national character set of the database, which can be UTF8 or AL16UTF16, as needed.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the UTL_FILE package

OCI Programming with Unicode

OCI is the lowest-level API for accessing a database, so it offers the best possible performance. When using Unicode with OCI, consider these topics:

	
OCIEnvNlsCreate() Function for Unicode Programming

	
OCI Unicode Code Conversion

	
Setting UTF-8 to the NLS_LANG Character Set in OCI

	
Binding and Defining SQL CHAR Data Types in OCI

	
Binding and Defining SQL NCHAR Data Types in OCI

	
Binding and Defining CLOB and NCLOB Unicode Data in OCI

	
See Also:

Chapter 10, "OCI Programming in a Global Environment"

OCIEnvNlsCreate() Function for Unicode Programming

The OCIEnvNlsCreate() function is used to specify a SQL CHAR character set and a SQL NCHAR character set when the OCI environment is created. It is an enhanced version of the OCIEnvCreate() function and has extended arguments for two character set IDs. The OCI_UTF16ID UTF-16 character set ID replaces the Unicode mode introduced in Oracle9i release 1 (9.0.1). For example:

OCIEnv *envhp;
status = OCIEnvNlsCreate((OCIEnv **)&envhp,
(ub4)0,
(void *)0,
(void *(*) ()) 0,
(void *(*) ()) 0,
(void(*) ()) 0,
(size_t) 0,
(void **)0,
(ub2)OCI_UTF16ID, /* Metadata and SQL CHAR character set */
(ub2)OCI_UTF16ID /* SQL NCHAR character set */);

The Unicode mode, in which the OCI_UTF16 flag is used with the OCIEnvCreate() function, is deprecated.

When OCI_UTF16ID is specified for both SQL CHAR and SQL NCHAR character sets, all metadata and bound and defined data are encoded in UTF-16. Metadata includes SQL statements, user names, error messages, and column names. Thus, all inherited operations are independent of the NLS_LANG setting, and all metatext data parameters (text*) are assumed to be Unicode text data types (utext*) in UTF-16 encoding.

To prepare the SQL statement when the OCIEnv() function is initialized with the OCI_UTF16ID character set ID, call the OCIStmtPrepare() function with a (utext*) string. The following example runs on the Windows platform only. You may need to change wchar_t data types for other platforms.

const wchar_t sqlstr[] = L"SELECT * FROM ENAME=:ename";
...
OCIStmt* stmthp;
sts = OCIHandleAlloc(envh, (void **)&stmthp, OCI_HTYPE_STMT, 0,
NULL);
status = OCIStmtPrepare(stmthp, errhp,(const text*)sqlstr,
wcslen(sqlstr), OCI_NTV_SYNTAX, OCI_DEFAULT);

To bind and define data, you do not have to set the OCI_ATTR_CHARSET_ID attribute because the OCIEnv() function has already been initialized with UTF-16 character set IDs. The bind variable names also must be UTF-16 strings.

/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (const text*)L":ename",
(sb4)wcslen(L":ename"),
 (void *) ename, sizeof(ename), SQLT_STR, (void
*)&insname_ind,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *)0,
OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *)
&ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0,
(ub2*)0, (ub4)OCI_DEFAULT);

The OCIExecute() function performs the operation.

	
See Also:

"Specifying Character Sets in OCI"

OCI Unicode Code Conversion

Unicode character set conversions take place between an OCI client and the database server if the client and server character sets are different. The conversion occurs on either the client or the server depending on the circumstances, but usually on the client side.

Data Integrity

You can lose data during conversion if you call an OCI API inappropriately. If the server and client character sets are different, then you can lose data when the destination character set is a smaller set than the source character set. You can avoid this potential problem if both character sets are Unicode character sets (for example, UTF8 and AL16UTF16).

When you bind or define SQL NCHAR data types, you should set the OCI_ATTR_CHARSET_FORM attribute to SQLCS_NCHAR. Otherwise, you can lose data because the data is converted to the database character set before converting to or from the national character set. This occurs only if the database character set is not Unicode.

OCI Performance Implications When Using Unicode

Redundant data conversions can cause performance degradation in your OCI applications. These conversions occur in two cases:

	
When you bind or define SQL CHAR data types and set the OCI_ATTR_CHARSET_FORM attribute to SQLCS_NCHAR, data conversions take place from client character set to the national database character set, and from the national character set to the database character set. No data loss is expected, but two conversions happen, even though it requires only one.

	
When you bind or define SQL NCHAR data types and do not set OCI_ATTR_CHARSET_FORM, data conversions take place from client character set to the database character set, and from the database character set to the national database character set. In the worst case, data loss can occur if the database character set is smaller than the client's.

To avoid performance problems, you should always set OCI_ATTR_CHARSET_FORM correctly, based on the data type of the target columns. If you do not know the target data type, then you should set the OCI_ATTR_CHARSET_FORM attribute to SQLCS_NCHAR when binding and defining.

Table 7-3 contains information about OCI character set conversions.

Table 7-3 OCI Character Set Conversions

	Data Types for OCI Client Buffer	OCI_ATTR_CHARSET_FORM	Data Types of the Target Column in the Database	Conversion Between	Comments
	
utext

	
SQLCS_IMPLICIT

	
CHAR, VARCHAR2, CLOB

	
UTF-16 and database character set in OCI

	
No unexpected data loss

	
utext

	
SQLCS_NCHAR

	
NCHAR, NVARCHAR2, NCLOB

	
UTF-16 and national character set in OCI

	
No unexpected data loss

	
utext

	
SQLCS_NCHAR

	
CHAR, VARCHAR2, CLOB

	
UTF-16 and national character set in OCI

National character set and database character set in database server

	
No unexpected data loss, but may degrade performance because the conversion goes through the national character set

	
utext

	
SQLCS_IMPLICIT

	
NCHAR, NVARCHAR2, NCLOB

	
UTF-16 and database character set in OCI

Database character set and national character set in database server

	
Data loss may occur if the database character set is not Unicode

	
text

	
SQLCS_IMPLICIT

	
CHAR, VARCHAR2, CLOB

	
NLS_LANG character set and database character set in OCI

	
No unexpected data loss

	
text

	
SQLCS_NCHAR

	
NCHAR, NVARCHAR2,NCLOB

	
NLS_LANG character set and national character set in OCI

	
No unexpected data loss

	
text

	
SQLCS_NCHAR

	
CHAR, VARCHAR2, CLOB

	
NLS_LANG character set and national character set in OCI

National character set and database character set in database server

	
No unexpected data loss, but may degrade performance because the conversion goes through the national character set

	
text

	
SQLCS_IMPLICIT

	
NCHAR, NVARCHAR2,NCLOB

	
NLS_LANG character set and database character set in OCI

Database character set and national character set in database server

	
Data loss may occur because the conversion goes through the database character set

OCI Unicode Data Expansion

Data conversion can result in data expansion, which can cause a buffer to overflow. For binding operations, you must set the OCI_ATTR_MAXDATA_SIZE attribute to a large enough size to hold the expanded data on the server. If this is difficult to do, then you must consider changing the table schema. For defining operations, client applications must allocate enough buffer space for the expanded data. The size of the buffer should be the maximum length of the expanded data. You can estimate the maximum buffer length with the following calculation:

	
Get the column data byte size.

	
Multiply it by the maximum number of bytes for each character in the client character set.

This method is the simplest and quickest way, but it may not be accurate and can waste memory. It is applicable to any character set combination. For example, for UTF-16 data binding and defining, the following example calculates the client buffer:

ub2 csid = OCI_UTF16ID;
oratext *selstmt = "SELECT ename FROM emp";
counter = 1;
...
OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char*)selstmt),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, (ub4)0, (ub4)0,
 (CONST OCISnapshot*)0, (OCISnapshot*)0,
 OCI_DESCRIBE_ONLY);
OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &myparam, (ub4)counter);
OCIAttrGet((void*)myparam, (ub4)OCI_DTYPE_PARAM, (void*)&col_width,
 (ub4*)0, (ub4)OCI_ATTR_DATA_SIZE, errhp);
...
maxenamelen = (col_width + 1) * sizeof(utext);
cbuf = (utext*)malloc(maxenamelen);
...
OCIDefineByPos(stmthp, &dfnp, errhp, (ub4)1, (void *)cbuf,
 (sb4)maxenamelen, SQLT_STR, (void *)0, (ub2 *)0,
 (ub2*)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfnp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);
...

Setting UTF-8 to the NLS_LANG Character Set in OCI

For OCI client applications that support Unicode UTF-8 encoding, use AL32UTF8 to specify the NLS_LANG character set, unless the database character set is UTF8. Use UTF8 if the database character set is UTF8.

Do not set NLS_LANG to AL16UTF16, because AL16UTF16 is the national character set for the server. If you need to use UTF-16, then you should specify the client character set to OCI_UTF16ID, using the OCIAttrSet() function when binding or defining data.

Binding and Defining SQL CHAR Data Types in OCI

To specify a Unicode character set for binding and defining data with SQL CHAR data types, you may need to call the OCIAttrSet() function to set the appropriate character set ID after OCIBind() or OCIDefine() APIs. There are two typical cases:

	
Call OCIBind() or OCIDefine() followed by OCIAttrSet() to specify UTF-16 Unicode character set encoding. For example:

...
ub2 csid = OCI_UTF16ID;
utext ename[100]; /* enough buffer for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename, sizeof(ename),
 SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
 (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0,
 (ub2*)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
...

If bound buffers are of the utext data type, then you should add a cast (text*) when OCIBind() or OCIDefine() is called. The value of the OCI_ATTR_MAXDATA_SIZE attribute is usually determined by the column size of the server character set because this size is only used to allocate temporary buffer space for conversion on the server when you perform binding operations.

	
Call OCIBind() or OCIDefine() with the NLS_LANG character set specified as UTF8 or AL32UTF8.

UTF8 or AL32UTF8 can be set in the NLS_LANG environment variable. You call OCIBind() and OCIDefine() in exactly the same manner as when you are not using Unicode. Set the NLS_LANG environment variable to UTF8 or AL32UTF8 and run the following OCI program:

...
oratext ename[100]; /* enough buffer size for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename, sizeof(ename),
 SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
 (ub4)OCI_DEFAULT);
...

Binding and Defining SQL NCHAR Data Types in OCI

Oracle recommends that you access SQL NCHAR data types using UTF-16 binding or defining when using OCI. Beginning with Oracle9i, SQL NCHAR data types are Unicode data types with an encoding of either UTF8 or AL16UTF16. To access data in SQL NCHAR data types, set the OCI_ATTR_CHARSET_FORM attribute to SQLCS_NCHAR between binding or defining and execution so that it performs an appropriate data conversion without data loss. The length of data in SQL NCHAR data types is always in the number of Unicode code units.

The following program is a typical example of inserting and fetching data against an NCHAR data column:

...
ub2 csid = OCI_UTF16ID;
ub1 cform = SQLCS_NCHAR;
utext ename[100]; /* enough buffer for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename,
 sizeof(ename), SQLT_STR, (void *)&insname_ind, (ub2 *) 0,
 (ub2 *) 0, (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
 (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &csid, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
...

Handling SQL NCHAR String Literals in OCI

By default, the NCHAR literal replacement is not performed in OCI. (Refer to "NCHAR String Literal Replacement".)

You can switch it on by setting the environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE. You can also achieve this behavior programmatically by using the OCI_NCHAR_LITERAL_REPLACE_ON and OCI_NCHAR_LITERAL_REPLACE_OFF modes in OCIEnvCreate() and OCIEnvNlsCreate(). So, for example, OCIEnvCreate(OCI_NCHAR_LITERAL_REPLACE_ON) turns on NCHAR literal replacement, while OCIEnvCreate(OCI_NCHAR_LITERAL_REPLACE_OFF) turns it off.

As an example, consider the following statement:

int main(argc, argv)
{
 OCIEnv *envhp;
if (OCIEnvCreate((OCIEnv **) &envhp,
 (ub4)OCI_THREADED|OCI_NCHAR_LITERAL_REPLACE_ON,
 (dvoid *)0, (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0,
 (size_t) 0, (dvoid **) 0))
{
 printf("FAILED: OCIEnvCreate()\n";
 return 1;
}
...
}

Note that, when the NCHAR literal replacement is turned on, OCIStmtPrepare and OCIStmtPrepare2 transforms N' literals with U' literals in the SQL text and store the resulting SQL text in the statement handle. Thus, if the application uses OCI_ATTR_STATEMENT to retrieve the SQL text from the OCI statement handle, the SQL text returns U' instead of N' as specified in the original text.

	
See Also:

Oracle Database Administrator's Guide for information regarding environment variables

Binding and Defining CLOB and NCLOB Unicode Data in OCI

In order to write (bind) and read (define) UTF-16 data for CLOB or NCLOB columns, the UTF-16 character set ID must be specified as OCILobWrite() and OCILobRead(). When you write UTF-16 data into a CLOB column, call OCILobWrite() as follows:

...
ub2 csid = OCI_UTF16ID;
err = OCILobWrite (ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
 (ub4) BUFSIZE, OCI_ONE_PIECE, (void *)0,
 (sb4 (*)()) 0, (ub2) csid, (ub1) SQLCS_IMPLICIT);

The amtp parameter is the data length in number of Unicode code units. The offset parameter indicates the offset of data from the beginning of the data column. The csid parameter must be set for UTF-16 data.

To read UTF-16 data from CLOB columns, call OCILobRead() as follows:

...
ub2 csid = OCI_UTF16ID;
err = OCILobRead(ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
 (ub4)BUFSIZE , (void *) 0, (sb4 (*)()) 0, (ub2)csid,
 (ub1) SQLCS_IMPLICIT);

The data length is always represented in the number of Unicode code units. Note one Unicode supplementary character is counted as two code units, because the encoding is UTF-16. After binding or defining a LOB column, you can measure the data length stored in the LOB column using OCILobGetLength(). The returning value is the data length in the number of code units if you bind or define as UTF-16.

err = OCILobGetLength(ctx->svchp, ctx->errhp, lobp, &lenp);

If you are using an NCLOB, then you must set OCI_ATTR_CHARSET_FORM to SQLCS_NCHAR.

Pro*C/C++ Programming with Unicode

Pro*C/C++ provides the following ways to insert or retrieve Unicode data into or from the database:

	
Using the VARCHAR Pro*C/C++ data type or the native C/C++ text data type, a program can access Unicode data stored in SQL CHAR data types of a UTF8 or AL32UTF8 database. Alternatively, a program could use the C/C++ native text type.

	
Using the UVARCHAR Pro*C/C++ data type or the native C/C++ utext data type, a program can access Unicode data stored in NCHAR data types of a database.

	
Using the NVARCHAR Pro*C/C++ data type, a program can access Unicode data stored in NCHAR data types. The difference between UVARCHAR and NVARCHAR in a Pro*C/C++ program is that the data for the UVARCHAR data type is stored in a utext buffer while the data for the NVARCHAR data type is stored in a text data type.

Pro*C/C++ does not use the Unicode OCI API for SQL text. As a result, embedded SQL text must be encoded in the character set specified in the NLS_LANG environment variable.

This section contains the following topics:

	
Pro*C/C++ Data Conversion in Unicode

	
Using the VARCHAR Data Type in Pro*C/C++

	
Using the NVARCHAR Data Type in Pro*C/C++

	
Using the UVARCHAR Data Type in Pro*C/C++

Pro*C/C++ Data Conversion in Unicode

Data conversion occurs in the OCI layer, but it is the Pro*C/C++ preprocessor that instructs OCI which conversion path should be taken based on the data types used in a Pro*C/C++ program. Table 7-4 illustrates the conversion paths:

Table 7-4 Pro*C/C++ Bind and Define Data Conversion

	Pro*C/C++ Data Type	SQL Data Type	Conversion Path
	
VARCHAR or text

	
CHAR

	
NLS_LANG character set to and from the database character set happens in OCI

	
VARCHAR or text

	
NCHAR

	
NLS_LANG character set to and from database character set happens in OCI

Database character set to and from national character set happens in database server

	
NVARCHAR

	
NCHAR

	
NLS_LANG character set to and from national character set happens in OCI

	
NVARCHAR

	
CHAR

	
NLS_LANG character set to and from national character set happens in OCI

National character set to and from database character set in database server

	
UVARCHAR or utext

	
NCHAR

	
UTF-16 to and from the national character set happens in OCI

	
UVARCHAR or utext

	
CHAR

	
UTF-16 to and from national character set happens in OCI

National character set to database character set happens in database server

Using the VARCHAR Data Type in Pro*C/C++

The Pro*C/C++ VARCHAR data type is preprocessed to a struct with a length field and text buffer field. The following example uses the C/C++ text native data type and the VARCHAR Pro*C/C++ data types to bind and define table columns.

#include <sqlca.h>
main()
{
 ...
 /* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 text ename[20] ; /* unsigned short type */
 varchar address[50] ; /* Pro*C/C++ varchar type */

 EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
 /* ename is NULL-terminated */
 printf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len, address.arr);
 ...
}

When you use the VARCHAR data type or native text data type in a Pro*C/C++ program, the preprocessor assumes that the program intends to access columns of SQL CHAR data types instead of SQL NCHAR data types in the database. The preprocessor generates C/C++ code to reflect this fact by doing a bind or define using the SQLCS_IMPLICIT value for the OCI_ATTR_CHARSET_FORM attribute. As a result, if a bind or define variable is bound to a column of SQL NCHAR data types in the database, then implicit conversion occurs in the database server to convert the data from the database character set to the national database character set and vice versa. During the conversion, data loss occurs when the database character set is a smaller set than the national character set.

Using the NVARCHAR Data Type in Pro*C/C++

The Pro*C/C++ NVARCHAR data type is similar to the Pro*C/C++ VARCHAR data type. It should be used to access SQL NCHAR data types in the database. It tells Pro*C/C++ preprocessor to bind or define a text buffer to the column of SQL NCHAR data types. The preprocessor specifies the SQLCS_NCHAR value for the OCI_ATTR_CHARSET_FORM attribute of the bind or define variable. As a result, no implicit conversion occurs in the database.

If the NVARCHAR buffer is bound against columns of SQL CHAR data types, then the data in the NVARCHAR buffer (encoded in the NLS_LANG character set) is converted to or from the national character set in OCI, and the data is then converted to the database character set in the database server. Data can be lost when the NLS_LANG character set is a larger set than the database character set.

Using the UVARCHAR Data Type in Pro*C/C++

The UVARCHAR data type is preprocessed to a struct with a length field and utext buffer field. The following example code contains two host variables, ename and address. The ename host variable is declared as a utext buffer containing 20 Unicode characters. The address host variable is declared as a uvarchar buffer containing 50 Unicode characters. The len and arr fields are accessible as fields of a struct.

#include <sqlca.h>
#include <sqlucs2.h>

main()
{
 ...
 /* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 utext ename[20] ; /* unsigned short type */
 uvarchar address[50] ; /* Pro*C/C++ uvarchar type */

 EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
 /* ename is NULL-terminated */
wprintf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len,
address.arr);
...
}

When you use the UVARCHAR data type or native utext data type in Pro*C/C++ programs, the preprocessor assumes that the program intends to access SQL NCHAR data types. The preprocessor generates C/C++ code by binding or defining using the SQLCS_NCHAR value for OCI_ATTR_CHARSET_FORM attribute. As a result, if a bind or define variable is bound to a column of a SQL NCHAR data type, then an implicit conversion of the data from the national character set occurs in the database server. However, there is no data lost in this scenario because the national character set is always a larger set than the database character set.

JDBC Programming with Unicode

Oracle provides the following JDBC drivers for Java programs to access character data in an Oracle database:

	
The JDBC OCI driver

	
The JDBC thin driver

	
The JDBC server-side internal driver

	
The JDBC server-side thin driver

Java programs can insert or retrieve character data to and from columns of SQL CHAR and NCHAR data types. Specifically, JDBC enables Java programs to bind or define Java strings to SQL CHAR and NCHAR data types. Because Java's string data type is UTF-16 encoded, data retrieved from or inserted into the database must be converted from UTF-16 to the database character set or the national character set and vice versa. JDBC also enables you to specify the PL/SQL and SQL statements in Java strings so that any non-ASCII schema object names and string literals can be used.

At database connection time, JDBC sets the server NLS_LANGUAGE and NLS_TERRITORY parameters to correspond to the locale of the Java VM that runs the JDBC driver. This operation ensures that the server and the Java client communicate in the same language. As a result, Oracle error messages returned from the server are in the same language as the client locale.

This section contains the following topics:

	
Binding and Defining Java Strings to SQL CHAR Data Types

	
Binding and Defining Java Strings to SQL NCHAR Data Types

	
Using the SQL NCHAR Data Types Without Changing the Code

	
Using SQL NCHAR String Literals in JDBC

	
Data Conversion in JDBC

	
Using oracle.sql.CHAR in Oracle Object Types

	
Restrictions on Accessing SQL CHAR Data with JDBC

Binding and Defining Java Strings to SQL CHAR Data Types

Oracle JDBC drivers allow you to access SQL CHAR data types in the database using Java string bind or define variables. The following code illustrates how to bind a Java string to a CHAR column.

int employee_id = 12345;
String last_name = "Joe";
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO" +
 "employees (last_name, employee_id) VALUES (?, ?)");
pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into first row */
employee_id += 1; /* next employee number */
last_name = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */
pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into second row */

You can define the target SQL columns by specifying their data types and lengths. When you define a SQL CHAR column with the data type and the length, JDBC uses this information to optimize the performance of fetching SQL CHAR data from the column. The following is an example of defining a SQL CHAR column.

OraclePreparedStatement pstmt = (OraclePreparedStatement)
 conn.prepareStatement("SELECT ename, empno from emp");
pstmt.defineColumnType(1,Types.VARCHAR, 3);
pstmt.defineColumnType(2,Types.INTEGER);
ResultSet rest = pstmt.executeQuery();
String name = rset.getString(1);
int id = reset.getInt(2);

You must cast PreparedStatement to OraclePreparedStatement to call defineColumnType(). The second parameter of defineColumnType() is the data type of the target SQL column. The third parameter is the length in number of characters.

Binding and Defining Java Strings to SQL NCHAR Data Types

For binding or defining Java string variables to SQL NCHAR data types, Oracle provides an extended PreparedStatement which has the setFormOfUse() method through which you can explicitly specify the target column of a bind variable to be a SQL NCHAR data type. The following code illustrates how to bind a Java string to an NCHAR column.

int employee_id = 12345;
String last_name = "Joe"
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
 conn.prepareStatement("INSERT INTO employees (last_name, employee_id)
 VALUES (?, ?)");
pstmt.setFormOfUse(1, oracle.jdbc.OraclePreparedStatement.FORM_NCHAR);
pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into first row */
employee_id += 1; /* next employee number */
last_name = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */
pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into second row */

You can define the target SQL NCHAR columns by specifying their data types, forms of use, and lengths. JDBC uses this information to optimize the performance of fetching SQL NCHAR data from these columns. The following is an example of defining a SQL NCHAR column.

OraclePreparedStatement pstmt = (OraclePreparedStatement)
 conn.prepareStatement("SELECT ename, empno from emp");
 pstmt.defineColumnType(1,Types.VARCHAR, 3,
OraclePreparedStatement.FORM_NCHAR);
 pstmt.defineColumnType(2,Types.INTEGER);
 ResultSet rest = pstmt.executeQuery();
 String name = rset.getString(1);
 int id = reset.getInt(2);

To define a SQL NCHAR column, you must specify the data type that is equivalent to a SQL CHAR column in the first argument, the length in number of characters in the second argument, and the form of use in the fourth argument of defineColumnType().

You can bind or define a Java string against an NCHAR column without explicitly specifying the form of use argument. This implies the following:

	
If you do not specify the argument in the setString() method, then JDBC assumes that the bind or define variable is for the SQL CHAR column. As a result, it tries to convert them to the database character set. When the data gets to the database, the database implicitly converts the data in the database character set to the national character set. During this conversion, data can be lost when the database character set is a subset of the national character set. Because the national character set is either UTF8 or AL16UTF16, data loss would happen if the database character set is not UTF8 or AL32UTF8.

	
Because implicit conversion from SQL CHAR to SQL NCHAR data types happens in the database, database performance is degraded.

In addition, if you bind or define a Java string for a column of SQL CHAR data types but specify the form of use argument, then performance of the database is degraded. However, data should not be lost because the national character set is always a larger set than the database character set.

New JDBC4.0 Methods for NCHAR Data Types

JDBC 11.1 adds support for the new JDBC 4.0 (JDK6) SQL data types NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB. To retrieve a national character value, an application can call one of the following methods:

	
getNString

	
getNClob

	
getNCharacterStream

The getNClob method verifies that the retrieved value is indeed an NCLOB. Otherwise, these methods are equivalent to corresponding methods without the letter N.

To specify a value for a parameter marker of national character type, an application can call one of the following methods:

	
setNString

	
setNCharacterStream

	
setNClob

These methods are equivalent to corresponding methods without the letter N preceded by a call to setFormOfUse(..., OraclePreparedStatement.FORM_NCHAR).

	
See Also:

Oracle Database JDBC Developer's Guide for more information

Using the SQL NCHAR Data Types Without Changing the Code

A Java system property has been introduced in the Oracle JDBC drivers for customers to tell whether the form of use argument should be specified by default in a Java application. This property has the following purposes:

	
Existing applications accessing the SQL CHAR data types can be migrated to support the SQL NCHAR data types for worldwide deployment without changing a line of code.

	
Applications do not need to call the setFormOfUse() method when binding and defining a SQL NCHAR column. The application code can be made neutral and independent of the data types being used in the back-end database. With this property set, applications can be easily switched from using SQL CHAR or SQL NCHAR.

The Java system property is specified in the command line that invokes the Java application. The syntax of specifying this flag is as follows:

java -Doracle.jdbc.defaultNChar=true <application class>

With this property specified, the Oracle JDBC drivers assume the presence of the form of use argument for all bind and define operations in the application.

If you have a database schema that consists of both the SQL CHAR and SQL NCHAR columns, then using this flag may have some performance impact when accessing the SQL CHAR columns because of implicit conversion done in the database server.

	
See Also:

"Data Conversion in JDBC" for more information about the performance impact of implicit conversion

Using SQL NCHAR String Literals in JDBC

When using NCHAR string literals in JDBC, there is a potential for data loss because characters are converted to the database character set before processing. See "NCHAR String Literal Replacement" for more details.

The desired behavior for preserving the NCHAR string literals can be achieved by enabling the property set oracle.jdbc.convertNcharLiterals. If the value is true, then this option is enabled; otherwise, it is disabled. The default setting is false. It can be enabled in two ways: a) as a Java system property or b) as a connection property. Once enabled, conversion is performed on all SQL in the VM (system property) or in the connection (connection property). For example, the property can be set as a Java system property as follows:

java -Doracle.jdbc.convertNcharLiterals="true" ...

Alternatively, you can set this as a connection property as follows:

Properties props = new Properties();
...
props.setProperty("oracle.jdbc.convertNcharLiterals", "true");
Connection conn = DriverManager.getConnection(url, props);

If you set this as a connection property, it overrides a system property setting.

Data Conversion in JDBC

Because Java strings are always encoded in UTF-16, JDBC drivers transparently convert data from the database character set to UTF-16 or the national character set. The conversion paths taken are different for the JDBC drivers:

	
Data Conversion for the OCI Driver

	
Data Conversion for Thin Drivers

	
Data Conversion for the Server-Side Internal Driver

Data Conversion for the OCI Driver

For the OCI driver, the SQL statements are always converted to the database character set by the driver before it is sent to the database for processing. When the database character set is neither US7ASCII nor WE8ISO8859P1, the driver converts the SQL statements to UTF-8 first in Java and then to the database character set in C. Otherwise, it converts the SQL statements directly to the database character set. For Java string bind variables, Table 7-5 summarizes the conversion paths taken for different scenarios. For Java string define variables, the same conversion paths, but in the opposite direction, are taken.

Table 7-5 OCI Driver Conversion Path

	Form of Use	SQL Data Type	Conversion Path
	
FORM_CHAR (Default)

	
CHAR

	
Conversion between the UTF-16 encoding of a Java string and the database character set happens in the JDBC driver.

	
FORM_CHAR (Default)

	
NCHAR

	
Conversion between the UTF-16 encoding of a Java string and the database character set happens in the JDBC driver. Then, conversion between the database character set and the national character set happens in the database server.

	
FORM_NCHAR

	
NCHAR

	
Conversion between the UTF-16 encoding of a Java string and the national character set happens in the JDBC driver.

	
FORM_NCHAR

	
CHAR

	
Conversion between the UTF-16 encoding of a Java string and the national character set happens in the JDBC driver. Then, conversion between the national character set and the database character set happens in the database server.

Data Conversion for Thin Drivers

SQL statements are always converted to either the database character set or to UTF-8 by the driver before they are sent to the database for processing. The driver converts the SQL statement to the database character set when the database character set is one of the following character sets:

	
US7ASCII

	
WE8ISO8859P1

	
WE8DEC

	
WE8MSWIN1252

Otherwise, the driver converts the SQL statement to UTF-8 and notifies the database that the statement requires further conversion before being processed. The database, in turn, converts the SQL statement to the database character set. For Java string bind variables, the conversion paths shown in Table 7-6 are taken for the thin driver. For Java string define variables, the same conversion paths but in the opposite direction are taken. The four character sets listed earlier are called selected characters sets in the table.

Table 7-6 Thin Driver Conversion Path

	Form of Use	SQL Data Type	Database Character Set	Conversion Path
	
FORM_CHAR (Default)

	
CHAR

	
One of the selected character sets

	
Conversion between the UTF-16 encoding of a Java string and the database character set happens in the thin driver.

	
FORM_CHAR (Default)

	
NCHAR

	
One of the selected character sets

	
Conversion between the UTF-16 encoding of a Java string and the database character set happens in the thin driver. Then, conversion between the database character set and the national character set happens in the database server.

	
FORM_CHAR (Default)

	
CHAR

	
Other than the selected character sets

	
Conversion between the UTF-16 encoding of a Java string and UTF-8 happens in the thin driver. Then, conversion between UTF-8 and the database character set happens in the database server.

	
FORM_CHAR (Default)

	
NCHAR

	
Other than the selected character sets

	
Conversion between the UTF-16 encoding of a Java string and UTF-8 happens in the thin driver. Then, conversion from UTF-8 to the database character set and then to the national character set happens in the database server.

	
FORM_NCHAR

	
CHAR

	
Any

	
Conversion between the UTF-16 encoding of a Java string and the national character set happens in the thin driver. Then, conversion between the national character set and the database character set happens in the database server.

	
FORM_NCHAR

	
NCHAR

	
Any

	
Conversion between the UTF-16 encoding of a Java string and the national character set happens in the thin driver.

Data Conversion for the Server-Side Internal Driver

All data conversion occurs in the database server because the server-side internal driver works inside the database.

Using oracle.sql.CHAR in Oracle Object Types

JDBC drivers support Oracle object types. Oracle objects are always sent from database to client as an object represented in the database character set or national character set. That means the data conversion path in "Data Conversion in JDBC" does not apply to Oracle object access. Instead, the oracle.sql.CHAR class is used for passing SQL CHAR and SQL NCHAR data of an object type from the database to the client.

This section includes the following topics:

	
oracle.sql.CHAR

	
Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR

oracle.sql.CHAR

The oracle.sql.CHAR class has a special functionality for conversion of character data. The Oracle character set is a key attribute of the oracle.sql.CHAR class. The Oracle character set is always passed in when an oracle.sql.CHAR object is constructed. Without a known character set, the bytes of data in the oracle.sql.CHAR object are meaningless.

The oracle.sql.CHAR class provides the following methods for converting character data to strings:

	
getString()

Converts the sequence of characters represented by the oracle.sql.CHAR object to a string, returning a Java string object. If the character set is not recognized, then getString() returns a SQLException.

	
toString()

Identical to getString(), except that if the character set is not recognized, then toString() returns a hexadecimal representation of the oracle.sql.CHAR data and does not returns a SQLException.

	
getStringWithReplacement()

Identical to getString(), except that a default replacement character replaces characters that have no Unicode representation in the character set of this oracle.sql.CHAR object. This default character varies among character sets, but it is often a question mark.

You may want to construct an oracle.sql.CHAR object yourself (to pass into a prepared statement, for example). When you construct an oracle.sql.CHAR object, you must provide character set information to the oracle.sql.CHAR object by using an instance of the oracle.sql.CharacterSet class. Each instance of the oracle.sql.CharacterSet class represents one of the character sets that Oracle supports.

Complete the following tasks to construct an oracle.sql.CHAR object:

	
Create a CharacterSet instance by calling the static CharacterSet.make() method. This method creates the character set class. It requires as input a valid Oracle character set (OracleId). For example:

int OracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set 832
...
CharacterSet mycharset = CharacterSet.make(OracleId);

Each character set that Oracle supports has a unique predefined OracleId. The OracleId can always be referenced as a character set specified as Oracle_character_set_name_CHARSET where Oracle_character_set_name is the Oracle character set.

	
Construct an oracle.sql.CHAR object. Pass to the constructor a string (or the bytes that represent the string) and the CharacterSet object that indicates how to interpret the bytes based on the character set. For example:

String mystring = "teststring";
...
oracle.sql.CHAR mychar = new oracle.sql.CHAR(teststring, mycharset);

The oracle.sql.CHAR class has multiple constructors: they can take a string, a byte array, or an object as input along with the CharacterSet object. In the case of a string, the string is converted to the character set indicated by the CharacterSet object before being placed into the oracle.sql.CHAR object.

The server (database) and the client (or application running on the client) can use different character sets. When you use the methods of this class to transfer data between the server and the client, the JDBC drivers must convert the data between the server character set and the client character set.

Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR

The following is an example of an object type created using SQL:

CREATE TYPE person_type AS OBJECT (
 name VARCHAR2(30), address NVARCHAR2(256), age NUMBER);
CREATE TABLE employees (id NUMBER, person PERSON_TYPE);

The Java class corresponding to this object type can be constructed as follows:

public class person implement SqlData
{
 oracle.sql.CHAR name;
 oracle.sql.CHAR address;
 oracle.sql.NUMBER age;
 // SqlData interfaces
 getSqlType() {...}
 writeSql(SqlOutput stream) {...}
 readSql(SqlInput stream, String sqltype) {...}
}

The oracle.sql.CHAR class is used here to map to the NAME attributes of the Oracle object type, which is of VARCHAR2 data type. JDBC populates this class with the byte representation of the VARCHAR2 data in the database and the CharacterSet object corresponding to the database character set. The following code retrieves a person object from the employees table:

TypeMap map = ((OracleConnection)conn).getTypeMap();
map.put("PERSON_TYPE", Class.forName("person"));
conn.setTypeMap(map);
 . . .
 . . .
ResultSet rs = stmt.executeQuery("SELECT PERSON FROM EMPLOYEES");
rs.next();
person p = (person) rs.getObject(1);
oracle.sql.CHAR sql_name = p.name;
oracle.sql.CHAR sql_address=p.address;
String java_name = sql_name.getString();
String java_address = sql_address.getString();

The getString() method of the oracle.sql.CHAR class converts the byte array from the database character set or national character set to UTF-16 by calling Oracle's Java data conversion classes and returning a Java string. For the rs.getObject(1) call to work, the SqlData interface has to be implemented in the class person, and the Typemap map has to be set up to indicate the mapping of the object type PERSON_TYPE to the Java class.

Restrictions on Accessing SQL CHAR Data with JDBC

This section contains the following topic:

	
Character Integrity Issues in a Multibyte Database Environment

Character Integrity Issues in a Multibyte Database Environment

Oracle JDBC drivers perform character set conversions as appropriate when character data is inserted into or retrieved from the database. The drivers convert Unicode characters used by Java clients to Oracle database character set characters, and vice versa. Character data that makes a round trip from the Java Unicode character set to the database character set and back to Java can suffer some loss of information. This happens when multiple Unicode characters are mapped to a single character in the database character set. An example is the Unicode full-width tilde character (0xFF5E) and its mapping to Oracle's JA16SJIS character set. The round-trip conversion for this Unicode character results in the Unicode character 0x301C, which is a wave dash (a character commonly used in Japan to indicate range), not a tilde.

Figure 7-2 shows the round-trip conversion of the tilde character.

Figure 7-2 Character Integrity

[image: Description of Figure 7-2 follows]

This issue is not a bug in Oracle's JDBC. It is an unfortunate side effect of the ambiguity in character mapping specifications on different operating systems. Fortunately, this problem affects only a small number of characters in a small number of Oracle character sets such as JA16SJIS, JA16EUC, ZHT16BIG5, and KO16KS5601. The workaround is to avoid making a full round-trip with these characters.

ODBC and OLE DB Programming with Unicode

You should use the Oracle ODBC driver or Oracle Provider for OLE DB to access the Oracle server when using a Windows platform. This section describes how these drivers support Unicode. It includes the following topics:

	
Unicode-Enabled Drivers in ODBC and OLE DB

	
OCI Dependency in Unicode

	
ODBC and OLE DB Code Conversion in Unicode

	
ODBC Unicode Data Types

	
OLE DB Unicode Data Types

	
ADO Access

Unicode-Enabled Drivers in ODBC and OLE DB

Oracle's ODBC driver and Oracle Provider for OLE DB can handle Unicode data properly without data loss. For example, you can run a Unicode ODBC application containing Japanese data on English Windows if you install Japanese fonts and an input method editor for entering Japanese characters.

Oracle provides ODBC and OLE DB products for Windows platforms only. For UNIX platforms, contact your vendor.

OCI Dependency in Unicode

OCI Unicode binding and defining features are used by the ODBC and OLE DB drivers to handle Unicode data. OCI Unicode data binding and defining features are independent from NLS_LANG. This means Unicode data is handled properly, irrespective of the NLS_LANG setting on the platform.

	
See Also:

"OCI Programming with Unicode"

ODBC and OLE DB Code Conversion in Unicode

In general, no redundant data conversion occurs unless you specify a different client data type from that of the server. If you bind Unicode buffer SQL_C_WCHAR with a Unicode data column like NCHAR, for example, then ODBC and OLE DB drivers bypass it between the application and OCI layer.

If you do not specify data types before fetching, but call SQLGetData with the client data types instead, then the conversions in Table 7-7 occur.

Table 7-7 ODBC Implicit Binding Code Conversions

	Data Types of ODBC Client Buffer	Data Types of the Target Column in the Database	Fetch Conversions	Comments
	
SQL_C_WCHAR

	
CHAR, VARCHAR2, CLOB

	
If the database character set is a subset of the NLS_LANG character set, then the conversions occur in the following order:

	
Database character set

	
NLS_LANG

	
UTF-16 in OCI

	
UTF-16 in ODBC

	
No unexpected data loss

May degrade performance if database character set is a subset of the NLS_LANG character set

	
SQL_C_CHAR

	
CHAR, VARCHAR2, CLOB

	
If database character set is a subset of NLS_LANG character set:

Database character set to NLS_LANG in OCI

If database character set is NOT a subset of NLS_LANG character set:

Database character set, UTF-16, to NLS_LANG character set in OCI and ODBC

	
No unexpected data loss

May degrade performance if database character set is not a subset of NLS_LANG character set

You must specify the data type for inserting and updating operations.

The data type of the ODBC client buffer is given when you call SQLGetData but not immediately. Hence, SQLFetch does not have the information.

Because the ODBC driver guarantees data integrity, if you perform implicit bindings, then redundant conversion may result in performance degradation. Your choice is the trade-off between performance with explicit binding or usability with implicit binding.

OLE DB Code Conversions

Unlike ODBC, OLE DB only enables you to perform implicit bindings for inserting, updating, and fetching data. The conversion algorithm for determining the intermediate character set is the same as the implicit binding cases of ODBC.

Table 7-8 OLE DB Implicit Bindings

	Data Types of OLE_DB Client Buffer	Data Types of the Target Column in the Database	In-Binding and Out-Binding Conversions	Comments
	
DBTYPE_WCHAR

	
CHAR, VARCHAR2, CLOB

	
If database character set is a subset of the NLS_LANG character set:

Database character set to and from NLS_LANG character set in OCI. NLS_LANG character set to UTF-16 in OLE DB

If database character set is NOT a subset of NLS_LANG character set:

Database character set to and from UTF-16 in OCI

	
No unexpected data loss

May degrade performance if database character set is a subset of NLS_LANG character set

	
DBTYPE_CHAR

	
CHAR, VARCHAR2, CLOB

	
If database character set is a subset of the NLS_LANG character set:

Database character set to and from NLS_LANG in OCI

If database character set is not a subset of NLS_LANG character set:

Database character set to and from UTF-16 in OCI. UTF-16 to NLS_LANG character set in OLE DB

	
No unexpected data loss

May degrade performance if database character set is not a subset of NLS_LANG character set

ODBC Unicode Data Types

In ODBC Unicode applications, use SQLWCHAR to store Unicode data. All standard Windows Unicode functions can be used for SQLWCHAR data manipulations. For example, wcslen counts the number of characters of SQLWCHAR data:

SQLWCHAR sqlStmt[] = L"select ename from emp";
len = wcslen(sqlStmt);

Microsoft's ODBC 3.5 specification defines three Unicode data type identifiers for the SQL_C_WCHAR, SQL_C_WVARCHAR, and SQL_WLONGVARCHAR clients; and three Unicode data type identifiers for servers SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR.

For binding operations, specify data types for both client and server using SQLBindParameter. The following is an example of Unicode binding, where the client buffer Name indicates that Unicode data (SQL_C_WCHAR) is bound to the first bind variable associated with the Unicode column (SQL_WCHAR):

SQLBindParameter(StatementHandle, 1, SQL_PARAM_INPUT, SQL_C_WCHAR,
SQL_WCHAR, NameLen, 0, (SQLPOINTER)Name, 0, &Name);

Table 7-9 represents the data type mappings of the ODBC Unicode data types for the server against SQL NCHAR data types.

Table 7-9 Server ODBC Unicode Data Type Mapping

	ODBC Data Type	Oracle Data Type
	
SQL_WCHAR

	
NCHAR

	
SQL_WVARCHAR

	
NVARCHAR2

	
SQL_WLONGVARCHAR

	
NCLOB

According to ODBC specifications, SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR are treated as Unicode data, and are therefore measured in the number of characters instead of the number of bytes.

OLE DB Unicode Data Types

OLE DB offers the wchar_t, BSTR, and OLESTR data types for a Unicode C client. In practice, wchar_t is the most common data type and the others are for specific purposes. The following example assigns a static SQL statement:

wchar_t *sqlStmt = OLESTR("SELECT ename FROM emp");

The OLESTR macro works exactly like an "L" modifier to indicate the Unicode string. If you need to allocate Unicode data buffer dynamically using OLESTR, then use the IMalloc allocator (for example, CoTaskMemAlloc). However, using OLESTR is not the normal method for variable length data; use wchar_t* instead for generic string types. BSTR is similar. It is a string with a length prefix in the memory location preceding the string. Some functions and methods can accept only BSTR Unicode data types. Therefore, BSTR Unicode string must be manipulated with special functions like SysAllocString for allocation and SysFreeString for freeing memory.

Unlike ODBC, OLE DB does not allow you to specify the server data type explicitly. When you set the client data type, the OLE DB driver automatically performs data conversion if necessary.

Table 7-10 illustrates OLE DB data type mapping.

Table 7-10 OLE DB Data Type Mapping

	OLE DB Data Type	Oracle Data Type
	
DBTYPE_WCHAR

	
NCHAR or NVARCHAR2

If DBTYPE_BSTR is specified, then it is assumed to be DBTYPE_WCHAR because both are Unicode strings.

ADO Access

ADO is a high-level API to access database with the OLE DB and ODBC drivers. Most database application developers use the ADO interface on Windows because it is easily accessible from Visual Basic, the primary scripting language for Active Server Pages (ASP) for the Internet Information Server (IIS). To OLE DB and ODBC drivers, ADO is simply an OLE DB consumer or ODBC application. ADO assumes that OLE DB and ODBC drivers are Unicode-aware components; hence, it always attempts to manipulate Unicode data.

XML Programming with Unicode

XML support of Unicode is essential for software development for global markets so that text information can be exchanged in any language. Unicode uniformly supports almost every character and language, which makes it much easier to support multiple languages within XML. To enable Unicode for XML within an Oracle database, the character set of the database must be UTF-8. By enabling Unicode text handling in your application, you acquire a basis for supporting any language. Every XML document is Unicode text and potentially multilingual, unless it is guaranteed that only a known subset of Unicode characters will appear on your documents. Thus Oracle recommends that you enable Unicode for XML. Unicode support comes with Java and many other modern programming environments.

This section includes the following topics:

	
Writing an XML File in Unicode with Java

	
Reading an XML File in Unicode with Java

	
Parsing an XML Stream in Unicode with Java

Writing an XML File in Unicode with Java

A common mistake in reading and writing XML files is using the Reader and Writer classes for character input and output. Using Reader and Writer for XML files should be avoided because it requires character set conversion based on the default character encoding of the run-time environment.

For example, using FileWriter class is not safe because it converts the document to the default character encoding. The output file can suffer from a parsing error or data loss if the document contains characters that are not available in the default character encoding.

UTF-8 is popular for XML documents, but UTF-8 is not usually the default file encoding for Java. Thus using a Java class that assumes the default file encoding can cause problems.

The following example shows how to avoid these problems:

import java.io.*;
import oracle.xml.parser.v2.*;

public class I18nSafeXMLFileWritingSample
{
 public static void main(String[] args) throws Exception
 {
 // create a test document
 XMLDocument doc = new XMLDocument();
 doc.setVersion("1.0");
 doc.appendChild(doc.createComment("This is a test empty document."));
 doc.appendChild(doc.createElement("root"));

 // create a file
 File file = new File("myfile.xml");

 // create a binary output stream to write to the file just created
 FileOutputStream fos = new FileOutputStream(file);

 // create a Writer that converts Java character stream to UTF-8 stream
 OutputStreamWriter osw = new OutputStreamWriter(fos, "UTF8");

 // buffering for efficiency
 Writer w = new BufferedWriter(osw);

 // create a PrintWriter to adapt to the printing method
 PrintWriter out = new PrintWriter(w);

 // print the document to the file through the connected objects
 doc.print(out);
 }
}

Reading an XML File in Unicode with Java

Do not read XML files as text input. When reading an XML document stored in a file system, use the parser to automatically detect the character encoding of the document. Avoid using a Reader class or specifying a character encoding on the input stream. Given a binary input stream with no external encoding information, the parser automatically figures out the character encoding based on the byte order mark and encoding declaration of the XML document. Any well-formed document in any supported encoding can be successfully parsed using the following sample code:

import java.io.*;
import oracle.xml.parser.v2.*;

public class I18nSafeXMLFileReadingSample
{
 public static void main(String[] args) throws Exception
 {
 // create an instance of the xml file
 File file = new File("myfile.xml");

 // create a binary input stream
 FileInputStream fis = new FileInputStream(file);

 // buffering for efficiency
 BufferedInputStream in = new BufferedInputStream(fis);

 // get an instance of the parser
 DOMParser parser = new DOMParser();

 // parse the xml file
 parser.parse(in);
 }
}

Parsing an XML Stream in Unicode with Java

When the source of an XML document is not a file system, the encoding information is usually available before reading the document. For example, if the input document is provided in the form of a Java character stream or Reader, its encoding is evident and no detection should take place. The parser can begin parsing a Reader in Unicode without regard to the character encoding.

The following is an example of parsing a document with external encoding information:

import java.io.*;
import java.net.*;
import org.xml.sax.*;
import oracle.xml.parser.v2.*;

public class I18nSafeXMLStreamReadingSample
{
 public static void main(String[] args) throws Exception
 {
 // create an instance of the xml file
 URL url = new URL("http://myhost/mydocument.xml");

 // create a connection to the xml document
 URLConnection conn = url.openConnection();

 // get an input stream
 InputStream is = conn.getInputStream();

 // buffering for efficiency
 BufferedInputStream bis = new BufferedInputStream(is);

 /* figure out the character encoding here */
 /* a typical source of encoding information is the content-type header */
 /* we assume it is found to be utf-8 in this example */
 String charset = "utf-8";

 // create an InputSource for UTF-8 stream
 InputSource in = new InputSource(bis);
 in.setEncoding(charset);

 // get an instance of the parser
 DOMParser parser = new DOMParser();

 // parse the xml stream
 parser.parse(in);
 }
}

B Unicode Character Code Assignments

This appendix offers an introduction to Unicode character assignments. This appendix contains these topics:

	
Unicode Code Ranges

	
UTF-16 Encoding

	
UTF-8 Encoding

Unicode Code Ranges

Table B-1 contains code ranges that have been allocated in Unicode for UTF-16 character codes.

Table B-1 Unicode Character Code Ranges for UTF-16 Character Codes

	Types of Characters	First 16 Bits	Second 16 Bits
	
ASCII

	
0000-007F

	
-

	
European (except ASCII), Arabic, Hebrew

	
0080-07FF

	
-

	
Iindic, Thai, certain symbols (such as the euro symbol), Chinese, Japanese, Korean

	
0800-0FFF

1000 - CFFF

D000 - D7FF

F900 - FFFF

	
-

	
Private Use Area #1

	
E000 - EFFF

F000 - F8FF

	
-

	
Supplementary characters: Additional Chinese, Japanese, and Korean characters; historic characters; musical symbols; mathematical symbols

	
D800 - D8BF

D8CO - DABF

DAC0 - DB7F

	
DC00 - DFFF

DC00 - DFFF

DC00 - DFFF

	
Private Use Area #2

	
DB80 - DBBF

DBC0 - DBFF

	
DC00 - DFFF

DC00 - DFFF

Table B-2 contains code ranges that have been allocated in Unicode for UTF-8 character codes.

Table B-2 Unicode Character Code Ranges for UTF-8 Character Codes

	Types of Characters	First Byte	Second Byte	Third Byte	Fourth Byte
	
ASCII

	
00 - 7F

	
-

	
-

	
-

	
European (except ASCII), Arabic, Hebrew

	
C2 - DF

	
80 - BF

	
-

	
-

	
Indic, Thai, certain symbols (such as the euro symbol), Chinese, Japanese, Korean

	
E0

E1 - EC

ED

EF

	
A0 - BF

80 - BF

80 - 9F

A4 - BF

	
80 - BF

80 - BF

80 - BF

80 - BF

	
-

	
Private Use Area #1

	
EE

EF

	
80 - BF

80 - A3

	
80 - BF

80 - BF

	
-

	
Supplementary characters: Additional Chinese, Japanese, and Korean characters; historic characters; musical symbols; mathematical symbols

	
F0

F1 - F2

F3

	
90 - BF

80 - BF

80 - AF

	
80 - BF

80 - BF

80 - BF

	
80 - BF

80 - BF

80 - BF

	
Private Use Area #2

	
F3

F4

	
B0 - BF

80 - 8F

	
80 - BF

80 - BF

	
80 - BF

80 - BF

	
Note:

Blank spaces represent nonapplicable code assignments. Character codes are shown in hexadecimal representation.

UTF-16 Encoding

As shown in Table B-1, UTF-16 character codes for some characters (Additional Chinese/Japanese/Korean characters and Private Use Area #2) are represented in two units of 16-bits. These are supplementary characters. A supplementary character consists of two 16-bit values. The first 16-bit value is encoded in the range from 0xD800 to 0xDBFF. The second 16-bit value is encoded in the range from 0xDC00 to 0xDFFF. With supplementary characters, UTF-16 character codes can represent more than one million characters. Without supplementary characters, only 65,536 characters can be represented. The AL16UTF16 character set in Oracle Database supports supplementary characters.

	
See Also:

"Code Points and Supplementary Characters"

UTF-8 Encoding

The UTF-8 character codes in Table B-2 show that the following conditions are true:

	
ASCII characters use 1 byte

	
European (except ASCII), Arabic, and Hebrew characters require 2 bytes

	
Indic, Thai, Chinese, Japanese, and Korean characters as well as certain symbols such as the euro symbol require 3 bytes

	
Characters in the Private Use Area #1 require 3 bytes

	
Supplementary characters require 4 bytes

	
Characters in the Private Use Area #2 require 4 bytes

In Oracle Database, the AL32UTF8 character set supports 1-byte, 2-byte, 3-byte, and 4-byte values. In Oracle Database, the UTF8 character set supports 1-byte, 2-byte, and 3-byte values, but not 4-byte values.

Glossary

accent

A mark that changes the sound of a character. Because the common meaning of the word accent is associated with the stress or prominence of the character's sound, the preferred word in Oracle Database Globalization Support Guide is diacritic.

See also diacritic.

accent-insensitive linguistic sort

A linguistic sort that uses information only about base letters, not diacritics or case.

See also linguistic collation, base letter, diacritic, case.

AL16UTF16

The default Oracle Database character set for the SQL NCHAR data type, which is used for the national character set. It encodes Unicode data in the UTF-16BE (big endian) encoding scheme.

See also national character set, UTF-16.

AL32UTF8

An Oracle Database character set for the SQL CHAR data type, which is used for the database character set. It encodes Unicode data in the UTF-8 encoding scheme.

See also database character set.

ASCII

American Standard Code for Information Interchange. A common encoded 7-bit character set for English. ASCII includes the letters A-Z and a-z, as well as digits, punctuation symbols, and control characters. The Oracle Database character set name is US7ASCII.

base letter

A character stripped of its diacritics and case. For example, the base letter for a, A, ä, and Ä is a.

See also diacritic.

binary collation

A type of collation that orders strings based on their binary representation (character encoding), treating each string as a simple sequences of bytes.

See also collation, linguistic collation, monolingual linguistic collation, multilingual linguistic collation, accent-insensitive linguistic sort, case-insensitive linguistic collation.

binary sorting

Ordering character strings using the binary collation.

byte semantics

Treatment of strings as a sequence of bytes. Offsets into strings and string lengths are expressed in bytes.

See also character semantics and length semantics.

canonical equivalence

A Unicode Standard term for describing that two characters or sequences of characters are to be semantically considered as the same character. Canonically equivalent characters cannot be distinguished when they are correctly rendered. For example, the precomposed character ñ (U+00F1 Latin Small Letter N With Tilde) is canonically equivalent to the sequence n (U+006E Latin Small Letter N) followed by ñ (U+0303 Combining Tilde).

case

Refers to the condition of being uppercase or lowercase. For example, in a Latin alphabet, A is the uppercase form for a, which is the lowercase form.

case conversion

Changing a character from uppercase to lowercase or vice versa.

case-insensitive linguistic collation

A linguistic collation that uses information about base letters and diacritics but not case but not when determining the ordering of strings.

See also base letter, case, diacritic, linguistic collation.

character

A character is an abstract element of text. A character is different from a glyph, which is a specific representation of a character. For example, the first character of the English upper-case alphabet can be displayed as monospaced A, proportional italic AA, cursive (longhand) A, and so on. These forms are different glyphs that represent the same character. A character, a character code, and a glyph are related as follows:

character --(encoding)--> character code --(font)--> glyph

For example, the first character of the English uppercase alphabet is represented in computer memory as a number. The number is called the encoding or the character code. The character code for the first character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme. The character code is 0xc1 in the EBCDIC encoding scheme.

You must choose a font to display or print the character. The available fonts depend on which encoding scheme is being used. Each font will usually use a different shape, that is, a different glyph to represent the same character.

See also character code and glyph.

character classification

Information that provides details about the type of character associated with each character code. For example, a character can be uppercase, lowercase, punctuation, or control character.

character code

A character code is a sequence of bytes that represents a specific character. The sequence depends on the character encoding scheme. For example, the character code of the first character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme, but it is 0xc1 in the EBCDIC encoding scheme.

See also character.

character encoding form

A rule that assigns numbers to all characters in a character set.

character encoding scheme

A rule that maps numbers assigned by the character encoding form to particular sequences of bytes (character codes). For example, the UTF-16 encoding form has the big-endian encoding scheme (UTF-16BE) and the little-endian encoding scheme (UTF-16LE).

Most encoding forms have only one encoding scheme. Therefore, encoding form, encoding scheme, and encoding are often used interchangeably.

Oracle character sets correspond to character encoding schemes. For example, AL16UTF16 is the Oracle name for the UTF-16BE encoding scheme.

character repertoire

The characters that are available to be used, or encoded, in a specific character set.

character semantics

Treatment of strings as a sequence of characters. Offsets into strings and string lengths are expressed in characters (character codes).

See also byte semantics and length semantics.

character set

A collection of elements that represent textual information for a specific language or group of languages. One language can be represented by more than one character set.

A character set does not always imply a specific character encoding scheme. A character encoding scheme is the assignment of a character code to each character in a character set.

In this manual, a character set usually does imply a specific character encoding scheme. Therefore, a character set is the same as an encoded character set in this manual.

character set migration

Changing the character set of an existing database.

character string

A sequence of characters.

A character string can also contain no characters. In this case, the character string is called a null string. The number of characters in a null string is 0 (zero).

client character set

The encoded character set used by the database client. A client character set can differ from the database character set. The database character set is sometimes called the server character set. If the client character set is different from the database character set, then character set conversion must occur.

See also database character set.

code point

The numeric representation of a character in a character set. For example, the code point of A in the ASCII character set is 0x41. The code point of a character is also called the encoded value of a character.

See also Unicode code point.

code unit

The unit of encoded text for processing and interchange. The size of the code unit varies depending on the character encoding scheme. In most character encodings, a code unit is 1 byte. Important exceptions are UTF-16 and UCS-2, which use 2-byte code units, and wide character, which uses 4 bytes.

See also character encoding form.

collation

Ordering of character strings according to rules about sorting characters that are associated with a language in a specific locale. Also called linguistic sort.

See also linguistic collation, monolingual linguistic collation, multilingual linguistic collation, accent-insensitive linguistic sort, case-insensitive linguistic collation.

data scanning

The process of identifying potential problems with character set conversion and truncation of data before migrating the database character set.

database character set

The encoded character set that is used to store text in the database. This includes CHAR, VARCHAR2, LONG, and fixed-width CLOB column values and all SQL and PL/SQL text.

Database Migration Assistant for Unicode (DMU)

An intuitive and user-friendly GUI tool to migrate your character set. It helps you streamline the migration process through an interface that minimizes the workload and ensures that all migration issues are addressed.

diacritic

A mark near or through a character or combination of characters that indicates a different sound than the sound of the character without the diacritical mark. For example, the cedilla in façade is a diacritic. It changes the sound of c.

EBCDIC

Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded character sets used mostly on IBM mainframe systems.

encoded character set

A character set with an associated character encoding scheme. An encoded character set specifies the byte sequence (character code) that is assigned to each character.

See also character encoding form.

encoded value

The numeric representation of a character in a character set. For example, the code point of A in the ASCII character set is 0x41. The encoded value of a character is also called the code point of a character.

font

An ordered collection of character glyphs that provides a graphical representation of characters in a character set.

globalization

The process of making software suitable for different linguistic and cultural environments. Globalization should not be confused with localization, which is the process of preparing software for use in one specific locale (for example, translating error messages or user interface text from one language to another).

glyph

A glyph (font glyph) is a specific representation (shape) of a character. A character can have many different glyphs.

See also character.

ideograph

A symbol that represents an idea. Some writing systems use ideographs to represent words through their meaning instead of using letters to represent words through their sound. Chinese is an example of an ideographic writing system.

ISO

International Organization for Standardization. A worldwide federation of national standards bodies from 130 countries. The mission of ISO is to develop and promote standards in the world to facilitate the international exchange of goods and services.

ISO 8859

A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also known as ISO Latin1), and is used for Western European languages.

ISO 14651

A multilingual linguistic collation standard that is designed for almost all languages of the world.

See also multilingual linguistic collation.

ISO/IEC 10646

A universal character set standard that defines the characters of most major scripts used in the modern world. ISO/IEC 10646 is kept synchronized with the Unicode Standard as far as character repertoire is concerned but it defines fewer properties and fewer text processing algorithms than the Unicode Standard.

ISO currency

The 3-letter abbreviation used to denote a local currency, based on the ISO 4217 standard. For example, USD represents the United States dollar.

ISO Latin1

The ISO 8859-1 character set standard. It is an 8-bit extension to ASCII that adds 128 characters that include the most common Latin characters used in Western Europe. The Oracle Database character set name is WE8ISO8859P1.

See also ISO 8859.

length semantics

Length semantics determines how you treat the length of a character string. The length can be expressed as a number of characters (character codes) or as a number of bytes in the string.

See also character semantics and byte semantics.

linguistic collation

A type of collation that takes into consideration the standards and customs of spoken languages.

See also collation, linguistic sorting, monolingual linguistic collation, multilingual linguistic collation, accent-insensitive linguistic sort, case-insensitive linguistic collation.

linguistic index

An index built on a linguistic sort order.

linguistic sorting

Ordering character strings using a linguistic binary collation.

See also multilingual linguistic collation and monolingual linguistic collation.

locale

A collection of information about the linguistic and cultural preferences from a particular region. Typically, a locale consists of language, territory, character set, linguistic, and calendar information defined in NLS data files.

localization

The process of providing language-specific or culture-specific information for software systems. Translation of an application's user interface is an example of localization. Localization should not be confused with globalization, which is the making software suitable for different linguistic and cultural environments.

monolingual linguistic collation

An Oracle Database collation that has two levels of comparison for strings. String are first ordered based on major values for their characters and if they are found equal in this comparison, they are further ordered based on minor values of their characters. Major values correspond roughly to base letters while minor values correspond to diacritics and case. Most European languages can be sorted with a monolingual collation, but monolingual collations are inadequate for Asian languages and for multilingual text.

See also multilingual linguistic collation.

monolingual support

Support for only one language.

multibyte

Two or more bytes.

When character codes are assigned to all characters in a specific language or a group of languages, one byte (8 bits) can represent 256 different characters. Two bytes (16 bits) can represent up to 65,536 different characters. Two bytes are not enough to represent all the characters for many languages. Some characters require 3 or 4 bytes.

One example is the UTF-8 Unicode encoding form. In UTF-8, there are many 2-byte and 3-byte characters.

Another example is Traditional Chinese, used in Taiwan. It has more than 80,000 characters. Some character encoding schemes that are used in Taiwan use 4 bytes to encode characters.

See also single byte.

multibyte character

A character whose character code consists of two or more bytes under a certain character encoding scheme.

Note that the same character may have different character codes under different encoding schemes. Oracle Database cannot tell whether a character is a multibyte character without knowing which character encoding scheme is being used. For example, Japanese Hankaku-Katakana (half-width Katakana) characters are one byte in the JA16SJIS encoded character set, two bytes in JA16EUC, and three bytes in AL32UTF8.

See also single-byte character.

multibyte character string

A character string encoded in a multibyte character encoding scheme.

multibyte character encoding scheme

A character encoding scheme in which character codes may have more than one byte.

See also multibyte fixed-width character encoding scheme, multibyte varying-width character encoding scheme.

multibyte fixed-width character encoding scheme

A character encoding scheme in which each character code has the same fixed number of bytes, greater than one. AL16UTF16 is a multibyte fixed-width character set.

multibyte varying-width character encoding scheme

A character encoding scheme in which each character code has a number of bytes from a given range. The range is one to the maximum character width of the character set. Depending on the encoding scheme, the maximum character width of the character set may be 2, 3, or 4 bytes. For example, ZHT16BIG5 has character codes with one or two bytes. UTF8 has character codes with one, two, or three bytes. AL32UTF8 has character codes with one, two, three, or four bytes. Oracle does not support encoding schemes with more than 4 bytes per character code.

multilingual linguistic collation

An Oracle Database collation that evaluates strings on three levels. Asian languages require a multilingual linguistic collation even if data exists in only one language. Multilingual linguistic collations are also used when data exists in several languages.

In multilingual collations, strings are first ordered based on primary weights, then, if necessary, secondary weights, then tertiary weights. For letters, primary weights correspond to base letters, secondary weights to diacritics, and tertiary weights to case and specific decoration, such as circle around the character. For ideographic scripts weights may represent other character variations.

national character set

An alternate character set from the database character set that can be specified for NCHAR, NVARCHAR2, and NCLOB columns. National character sets are AL16UTF16 and UTF8 only.

NLB files

Binary files used by the Locale Builder to define locale-specific data. They define all of the locale definitions that are shipped with a specific release of Oracle Database. You can create user-defined NLB files with Oracle Locale Builder.

See also Oracle Locale Builder and NLT files.

NLS

National Language Support. NLS enables users to interact with the database in their native languages. It also enables applications to run in different linguistic and cultural environments. The term has been replaced by the terms globalization and localization.

NLSRTL

National Language Support Runtime Library. This library is responsible for providing locale-independent algorithms for internationalization. The locale-specific information (that is, NLSDATA) is read by the NLSRTL library during run-time.

NLT files

Text files used by the Locale Builder to define locale-specific data. Because they are in text, you can view the contents.

null string

A character string that contains no characters.

Oracle Locale Builder

A GUI utility that offers a way to view, modify, or define locale-specific data.

replacement character

A character used during character conversion when the source character is not available in the target character set. For example, ? (question mark) is often used as the default replacement character in Oracle character sets.

restricted multilingual support

Multilingual support that is restricted to a group of related languages.Western European languages can be represented with ISO 8859-1, for example, but the use of ISO 8859-1 restricts the multilingual support. Thai or Chinese could not be added to the group.

SQL CHAR data types

Includes CHAR, VARCHAR, VARCHAR2, CLOB, and LONG data types.

SQL NCHAR data types

Includes NCHAR, NVARCHAR2, and NCLOB data types.

script

A particular system of writing. A collection of related graphic symbols that are used in a writing system. Some scripts can represent multiple languages, and some languages use multiple scripts. Examples of scripts include Latin, Arabic, and Han.

single byte

One byte. One byte usually consists of 8 bits. When character codes are assigned to all characters for a specific language, one byte (8 bits) can represent 256 different characters.

See also multibyte.

single-byte character

A single-byte character is a character whose character code consists of one byte under a specific character encoding scheme. Note that the same character may have different character codes under different encoding schemes. Oracle Database cannot tell which character is a single-byte character without knowing which encoding scheme is being used. For example, the euro currency symbol is one byte in the WE8MSWIN1252 encoded character set, two bytes in AL16UTF16, and three bytes in UTF8.

See also multibyte character.

single-byte character string

A single-byte character string is a string encoded in a single-byte character encoding scheme. The term may also be used to describe a multibyte varying-width character string that happens to consist only of single-byte character codes.See also multibyte varying-width character encoding scheme.

sort

An ordering of strings. This can be based on requirements from a locale instead of the binary representation of the strings, which is called a linguistic sort, or based on binary coded values, which is called a binary sort.

See also multilingual linguistic collation and monolingual linguistic collation.

supplementary characters

The first version of the Unicode Standard was a 16-bit, fixed-width encoding that used two bytes to encode each character. This enabled 65,536 characters to be represented. However, more characters need to be supported because of the large number of Asian ideograms.

Unicode Standard version 3.1 defined supplementary characters to meet this need by extending the numbering range for characters from 0000-FFFF hexadecimal to 0000-10FFFF hexadecimal. Unicode 3.1 began using two 16-bit code units (also known as surrogate pairs) to represent a single supplementary character in the UTF-16 form. This enabled an additional 1,048,576 characters to be defined. The Unicode 3.1 standard added the first group of 44,944 supplementary characters. More were added with subsequent versions of the Unicode Standard.

surrogate pairs

See also supplementary characters.

syllabary

Provide a mechanism for communicating phonetic information along with the ideographic characters used by languages such as Japanese.

UCS-2

An obsolete form for an ISO/IEC 10646 standard character set encoding form. Currently used to mean the UTF-16 encoding form without support for surrogate pairs.

UCS-4

An obsolete name for an ISO/IEC 10646 standard encoding form, synonymous with UTF-32.

Unicode Standard

Unicode Standard is a universal encoded character set that enables information from any language to be stored by using a single character set. Unicode Standard provides a unique code value for every character, regardless of the platform, program, or language.

Unicode Standard also defines various text processing algorithms and related character properties to aid in complex script processing of scripts such as Arabic or Devanagari (Hindi).

Unicode database

A database whose database character set is AL32UTF8 or UTF8.

Unicode code point

A value in the Unicode codespace, which ranges from 0 to 0x10FFFF. Unicode assigns a unique code point to every character.

Unicode data type

A SQL NCHAR data type (NCHAR, NVARCHAR2, and NCLOB). You can store Unicode characters in columns of these data types even if the database character set is not based on the Unicode Standard.

unrestricted multilingual support

The ability to use as many languages as desired. A universal character set, such as Unicode Standard, helps to provide unrestricted multilingual support because it supports a very large character repertoire, encompassing most modern languages of the world.

UTFE

An Oracle character set implementing a 4-byte subset of the Unicode UTF-EBCDIC encoding form, used only on EBCDIC platforms and deprecated.

UTF8

The UTF8 Oracle character set encodes characters in one, two, or three bytes. The UTF8 character set supports Unicode 3.0 and implements the CESU-8 encoding scheme. Although specific supplementary characters were not assigned code points in Unicode until version 3.1, the code point range was allocated for supplementary characters in Unicode 3.0. Supplementary characters are treated as two separate, user-defined characters that occupy 6 bytes. UTF8 is deprecated.

UTF-8

The 8-bit encoding form and scheme of the Unicode Standard. It is a multibyte varying-width encoding. One Unicode character can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in the UTF-8 encoding. Characters from the European scripts are represented in either 1 or 2 bytes. Characters from most Asian scripts are represented in 3 bytes. Supplementary characters are represented in 4 bytes. The Oracle Database character set that implements UTF-8 is AL32UTF8.

UTF-16

The 16-bit encoding form of Unicode. One Unicode character can be one or two 2-code units in the UTF-16 encoding. Characters (including ASCII characters) from European scripts and most Asian scripts are represented by one code unit (2 bytes). Supplementary characters are represented by two code units (4 bytes). The Oracle Database character sets that implement UTF-16 are AL16UTF16 and AL16UTF16LE. AL16UTF16 implements the big-endian encoding scheme of the UTF-16 encoding form (more significant byte of each code unit comes first in memory). AL16UTF16 is a valid national character set. AL16UTF16LE implements the little-endian UTF-16 encoding scheme. It is a conversion-only character set, valid only in character set conversion functions such as SQL CONVERT or PL/SQL UTL_I18N.STRING_TO_RAW.Note that most SQL string processing functionality treats each UTF-16 code unit in AL16UTF16 as a separate character. The functions INSTR4, SUBSTR4, and LENGTH4 are an exception.

wide character

A multibyte fixed-width character format that is useful for extensive text processing because it enables data to be processed in consistent, fixed-width chunks. Multibyte varying-width character values may be internally converted to the wide character format for faster processing.

Index

A B C D E F G H I J K L M N O P R S T U V W X

Symbols

	$ORACLE_HOME/nls/data directory, 1.1.1
	$ORACLE_HOME/oracore/zoneinfo/timezone.dat time zone file, 4.6

Numerics

	7-bit encoding schemes, 2.1.4.1, 2.1.4.1
	8-bit encoding schemes, 2.1.4.1, 2.1.4.1

A

	abbreviations
	
	languages, A.1

	abstract data type
	
	creating as NCHAR, 2.3.9

	accent, 5.5
	accent-insensitive linguistic sort, 5.5
	ADD_MONTHS SQL function, 4.4
	ADO interface and Unicode, 7.6.6
	AL16UTF16 character set, 6.2.3, A.4.5
	AL24UTFFSS character set, 6.2.3
	AL32UTF8 character set, 6.2.3, 6.3.1, A.4.5
	ALTER SESSION statement
	
	SET NLS_CURRENCY clause, 3.9.2, 3.9.3
	SET NLS_LANGUAGE clause, 3.5.2.1
	SET NLS_NUMERIC_CHARACTERS clause, 3.8.2
	SET NLS_TERRITORY clause, 3.5.2.1

	application-locales, 8.8.3
	Arial Unicode MS font, 12.1.1.1
	ASCII encoding, 2.1.3.1
	AT LOCAL clause, 4.11
	AT TIME ZONE clause, 4.11

B

	base letters, 5.3.2.1.1, 5.4.1
	BFILE data
	
	loading into LOBs, 9.3.4

	binary sorts, 5.2
	
	case-insensitive and accent-insensitive, 5.5.2
	example, 5.5.3

	binding and defining CLOB and NCLOB data in OCI, 7.3.7
	binding and defining SQL CHAR datatypes in OCI, 7.3.4
	binding and defining SQL NCHAR datatypes in OCI, 7.3.5
	BLANK_TRIMMING parameter, 11.1.1.1
	BLOBs
	
	creating indexes, 6.5.4.3

	byte semantics, 2.2, 3.12.1

C

	C number format mask, 3.9.3
	Calendar Utility, 12.12
	calendars
	
	customizing, 12.12
	parameter, 3.7
	supported, A.7

	canonical equivalence, 5.3.2, 5.4.7
	case, 5.1
	case-insensitive linguistic collation, 5.5
	case-sensitive linguistic collation, 5.5
	CDBs, 2.4
	CESU-8 compliance, A.4.5
	character data
	
	converting with CONVERT SQL function, 9.2.1

	character data conversion
	
	database character set, 11.2

	character data scanning
	
	before character set migration, 11.2

	character rearrangement, 5.4.9
	character repertoire, 2.1.1
	character semantics, 2.2, 3.12.1
	character set
	
	conversion, 12.5.2
	data loss
	
	during conversion, 2.3.3

	detecting with Globalization Development Kit, 8.7.6
	national, 7.2.1.2

	character set conversion
	
	between OCI client and database server, 7.3.2
	parameters, 3.11

	character set definition
	
	customizing, 12.5.6
	guidelines for editing files, 12.5.5
	naming files, 12.5.5

	character set migration
	
	identifying character data conversion problems, 11.2
	scanning character data, 11.2

	character sets
	
	AL16UTF16, 6.2.3
	AL24UTFFSS, 6.2.3
	AL32UTF8, 6.2.3
	Asian, A.4.1, A.4.1, A.4.1
	changing after database creation, 2.5
	choosing, 11.1
	conversion, 2.3.3, 2.6.1, 9.2.1
	conversion using OCI, 10.7
	customizing, 12.5
	data loss, 11.1.2.1
	encoding, 2.1
	European, A.4.2, A.4.2
	ISO 8859 series, 2.1.3.1
	Middle Eastern, A.4.4
	migration, 11.1, 11.1.1
	naming, 2.1.5
	national, 6.3.2, 7.2.1.1
	restrictions on character sets used to express names, 2.3.5.1
	supersets and subsets, A.4.7
	supported, A.4
	supporting different character repertoires, 2.1.3
	universal, A.4.5
	UTFE, 6.2.3

	character snational, 2.3.8
	character type conversion
	
	error reporting, 3.11.1

	characters
	
	available in all Oracle database character sets, 2.1.3
	context-sensitive, 5.4.6
	contracting, 5.4.4
	user-defined, 12.5.1

	choosing a character set, 11.1
	client operating system
	
	character set compatibility with applications, 2.3.2

	CLOB and NCLOB data
	
	binding and defining in OCI, 7.3.7

	CLOBs
	
	creating indexes, 6.5.4.2

	code chart
	
	displaying and printing, 12.4

	code point, 2.1.1
	collation
	
	case-insensitive, 5.5
	case-sensitive, 5.5
	customizing, 12.6
	Hiragana and Katakana, 5.3.3.1.4
	linguistic, 5.3
	monolingual, 5.3.1
	multilingual, 5.3.2
	Unicode Collation Algorithm, 5.3.3

	comparisons
	
	linguistic, 5.6

	compatibility
	
	client operating system and application character sets, 2.3.2

	composed characters, 5.4.4
	context-sensitive characters, 5.4.6
	contracting characters, 5.4.4
	contracting letters, 5.4.11
	control characters, encoding, 2.1.2.3
	conversion
	
	between character set ID number and character set name, 9.2.4

	CONVERT SQL function, 9.2.1
	
	character sets, A.4.6

	convert time zones, 4.11
	converting character data
	
	CONVERT SQL function, 9.2.1

	converting character data between character sets, 9.2.1
	Coordinated Universal Time, 4.2.1.3, 4.2.1.4
	creating a database with Unicode datatypes, 6.3.2
	creating a Unicode database, 6.3.1
	CSREPAIR script, 11.3
	currencies
	
	formats, 3.9.1

	CURRENT_DATE SQL function, 4.4
	CURRENT_TIMESTAMP SQL function, 4.4

D

	data conversion
	
	in Pro*C/C++, 7.4.1
	OCI driver, 7.5.5.1
	ODBC and OLE DB drivers, 7.6.3
	thin driver, 7.5.5.2
	Unicode Java strings, 7.5.5

	data dictionary views
	
	NLS_DATABASE_PARAMETERS, 3.4.1
	NLS_INSTANCE_PARAMETERS, 3.4.1
	NLS_SESSION_PARAMETER, 3.4.1

	data expansion
	
	during character set migration, 11.1.1
	during data conversion, 7.3.2.3

	data inconsistencies causing data loss, 11.1.2.2
	data loss
	
	caused by data inconsistencies, 11.1.2.2
	during character set conversion, 2.3.3
	during character set migration, 11.1.2.1
	during datatype conversion
	
	exceptions, 7.2.3

	during OCI Unicode character set conversion, 7.3.2.1
	from mixed character sets, 11.1.2.2

	Data Pump PL/SQL packages and character set migration, 11.1.2.3
	data truncation, 11.1.1
	
	restrictions, 11.1.1.1

	data types
	
	abstract, 2.3.9
	DATE, 4.2.1.1
	datetime, 4.2
	inserting values into datetime data types, 4.2.1.5
	inserting values into interval data types, 4.2.2.3
	interval, 4.2, 4.2.2
	INTERVAL DAY TO SECOND, 4.2.2.2
	INTERVAL YEAR TO MONTH, 4.2.2.1
	supported, 2.3.9
	TIMESTAMP, 4.2.1.2
	TIMESTAMP WITH LOCAL TIME ZONE, 4.2.1.4
	TIMESTAMP WITH TIME ZONE, 4.2.1.3

	database
	
	multitenant container, 2.4

	database character set
	
	character data conversion, 11.2
	choosing, 2.3
	compatibility between client operating system and applications, 2.3.2
	performance, 2.3.4

	Database Migration Assistant for Unicode (DMU), 11.2.1
	database schemas
	
	designing for multiple languages, 6.5

	database time zone, 4.9
	datatype conversion
	
	data loss and exceptions, 7.2.3
	implicit, 7.2.4
	SQL functions, 7.2.5

	date and time parameters, 3.6
	DATE data type, 4.2.1.1
	date formats, 3.6.1, 3.6.1.1, 9.3.1
	
	and partition bound expressions, 3.6.1.1

	dates
	
	ISO standard, 3.7.1.2, 9.3.2
	NLS_DATE_LANGUAGE parameter, 3.6.1.2

	datetime data types, 4.2
	
	inserting values, 4.2.1.5

	datetime format parameters, 4.5.1
	Daylight Saving Time
	
	Oracle support, 4.12
	rules, 4.7.1

	daylight saving time session parameter, 4.5.3
	Daylight Saving Time Upgrade parameter, 4.5.4
	days
	
	format element, 3.6.1.2
	language of names, 3.6.1.2

	DB_TZ database time zone, 4.10
	DBMS_LOB PL/SQL package, 9.3.4
	DBMS_LOB.LOADBLOBFROMFILE procedure, 9.3.4
	DBMS_LOB.LOADCLOBFROMFILE procedure, 9.3.4
	DBTIMEZONE SQL function, 4.4
	dest_char_set parameter, A.4.6
	detecting language and character sets
	
	Globalization Development Kit, 8.7.6

	detection
	
	supported languages and character sets, A.5

	diacritic, 5.1
	DMU
	
	Database Migration Assistant for Unicode, 11.2.1

	DST_UPGRADE_INSERT_CONV inititialization parameter, 4.5.4
	DUCET(Default Unicode Collation Element Table), 5.3.3
	dynamic performance views
	
	V$NLS_PARAMETERS, 3.4.2
	V$NLS_VALID_VALUES, 3.4.2

E

	encoding
	
	control characters, 2.1.2.3
	ideographic writing systems, 2.1.2.2
	numbers, 2.1.2.3
	phonetic writing systems, 2.1.2.1
	punctuation, 2.1.2.3
	symbols, 2.1.2.3

	encoding schemes
	
	7-bit, 2.1.4.1, 2.1.4.1
	8-bit, 2.1.4.1, 2.1.4.1
	fixed-width, 2.1.4.2
	multibyte, 2.1.4.2
	shift-sensitive variable-width, 2.1.4.2
	shift-sensitive variable-width multibyte, 2.1.4.2
	single-byte, 2.1.4.1
	variable-width, 2.1.4.2

	environment variables
	
	ORA_SDTZ, 4.5.2, 4.10
	ORA_TZFILE, 4.5.2

	error messages
	
	languages, A.2
	translation, A.2

	ERROR_ON_OVERLAP_TIME session parameter, 4.5.3
	euro
	
	Oracle support, 3.9.5

	expanding characters, 5.4.10
	
	characters
	
	expanding, 5.4.5

	EXTRACT (datetime) SQL function, 4.4

F

	fixed-width multibyte encoding schemes, 2.1.4.2
	fonts
	
	Unicode, 12.1.1
	Unicode for UNIX, 12.1.1.2
	Unicode for Windows, 12.1.1.1

	format elements, 9.3.3
	
	C, 9.3.3
	D, 9.3.3
	day, 3.6.1.2
	G, 9.3.3
	IW, 9.3.2
	IY, 9.3.2
	L, 9.3.3
	month, 3.6.1.2
	RM, 9.3.1
	RN, 9.3.3

	format masks, 3.8.2, 9.3.1
	formats
	
	currency, 3.9.1
	date, 3.6.1.1, 4.5.1
	numeric, 3.8.1
	time, 3.6.2

	FROM_TZ SQL function, 4.4

G

	GDK
	
	application configuration file, 8.6.1

	GDK application configuration file, 8.8
	
	example, 8.8.8

	GDK application framework for J2EE, 8.6, 8.6
	GDK components, 8.4
	GDK error messages, 8.11
	GDK Java API, 8.7
	GDK Java supplied packages and classes, 8.9
	GDK Localizer object, 8.6.4
	gdkapp.xml application configuration file, 8.8
	gdkapp.xml GDK application configuration file, 8.6.1
	getString() method, 7.5.6.1
	getStringWithReplacement() method, 7.5.6.1
	Globalization Development Kit, 8.1
	
	application configuration file, 8.8
	character set conversion, 8.7.3
	components, 8.4
	defining supported application locales, 8.6.5
	e-mail programs, 8.7.8
	error messages, 8.11
	framework, 8.6
	integrating locale sources, 8.6.2
	Java API, 8.7
	Java supplied packages and classes, 8.9
	locale detection, 8.6.3
	Localizer object, 8.6.4
	managing localized content in static files, 8.6.7.2
	managing strings in JSPs and Java servlets, 8.6.7.1
	non_ASCII input and output in an HTML page, 8.6.6
	Oracle binary and linguistic sorts, 8.7.5
	Oracle date, number, and monetary formats, 8.7.4
	Oracle language and character set detection, 8.7.6
	Oracle locale information, 8.7.1
	Oracle locale mapping, 8.7.2
	Oracle translated locale and time zone names, 8.7.7
	supported locale resources, 8.6.2

	globalization features, 1.2
	globalization support
	
	architecture, 1.1

	Greenwich Mean Time, 4.2.1.3, 4.2.1.4
	guessing the language or character set, 11.4

H

	Hiragana, 5.3.3.1.4

I

	IANA character sets
	
	mapping with ISO locales, 8.6.6

	ideographic writing systems, encoding, 2.1.2.2
	ignorable characters, 5.4.2
	implicit datatype conversion, 7.2.4
	indexes
	
	creating for documents stored as CLOBs, 6.5.4.2
	creating for multilingual document search, 6.5.4
	creating indexes for documents stored as BLOBs, 6.5.4.3
	linguistic, 5.7
	partitioned, 9.2.5.3

	initialization parameter
	
	DST_UPGRADE_INSERT_CONV, 4.5.4

	initialization parameters
	
	NLS_DATE_FORMAT, 4.5.1
	NLS_TIMESTAMP_FORMAT, 4.5.1
	NLS_TIMESTAMP_TZ_FORMAT, 4.5.1

	INSTR SQL functions, 7.2.6, 9.2.2, 9.2.2
	Internet application
	
	locale
	
	determination, 8.3.1

	monolingual, 8.2, 8.2.1
	multilingual, 8.2, 8.2.2

	interval data types, 4.2, 4.2.2
	
	inserting values, 4.2.2.3

	INTERVAL DAY TO SECOND data type, 4.2.2.2
	INTERVAL YEAR TO MONTH data type, 4.2.2.1
	ISO 8859 character sets, 2.1.3.1
	ISO locales
	
	mapping with IANA character sets, 8.6.6

	ISO standard
	
	date format, 9.3.2

	ISO standard date format, 3.7.1.2, 9.3.2
	ISO week number, 9.3.2
	IW format element, 9.3.2
	IY format element, 9.3.2

J

	Java
	
	Unicode data conversion, 7.5.5

	Java strings
	
	binding and defining in Unicode, 7.5.1

	JDBC drivers
	
	form of use argument, 7.5.3

	JDBC OCI driver
	
	and Unicode, 7.1.1

	JDBC programming
	
	Unicode, 7.5

	JDBC Server Side internal driver
	
	and Unicode, 7.1.1

	JDBC Server Side thin driver
	
	and Unicode, 7.1.1

	JDBC thin driver
	
	and Unicode, 7.1.1

K

	Katakana, 5.3.3.1.4

L

	language
	
	detecting with Globalization Development Kit, 8.7.6

	language abbreviations, A.1
	Language and Character Set File Scanner, 11.4
	language definition
	
	customizing, 12.2
	overriding, 3.2.2

	language support, 1.2.1
	languages
	
	error messages, A.2

	languages and character sets
	
	supported by LCSSCAN, A.5

	LAST_DAY SQL function, 4.4
	LCSCCAN
	
	error messages, 11.4.5

	LCSSCAN, 11.4
	
	supported languages and character sets, 11.4.4, A.5

	LCSSCAN command
	
	BEGIN parameter, 11.4.1
	END parameter, 11.4.1
	examples, 11.4.2
	FILE parameter, 11.4.1
	HELP parameter, 11.4.3
	online help, 11.4.3
	RESULTS parameter, 11.4.1
	syntax, 11.4.1

	length semantics, 2.2, 3.12
	LENGTH SQL functions, 9.2.2, 9.2.2
	LIKE conditions in SQL statements, 9.2.3
	LIKE2 SQL condition, 9.2.3
	LIKE4 SQL condition, 9.2.3
	LIKEC SQL condition, 9.2.3
	linguistic comparisons, 5.6
	linguistic indexes, 5.7
	linguistic sort definitions
	
	supported, A.6

	linguistic sorts
	
	accent-insensitive, 5.5
	BINARY, 5.5.2
	BINARY_AI, linguistic sorts
	
	BINARY_CI, 5.5.2

	case-insensitive, 5.5
	controlling, 9.2.5.4
	customizing, 12.6
	
	characters with diacritics, 12.6.1, 12.6.2

	levels, 5.3.2.1.1
	list of defaults, A.1
	parameters, 3.10

	list parameter, 3.8
	lmsgen utility, 10.9
	loading external BFILE data into LOBs, 9.3.4
	LOBs
	
	loading external BFILE data, 9.3.4
	storing documents in multiple languages, 6.5.3

	locale, 3.2
	
	dependencies, 3.2.3
	detection
	
	Globalization Development Kit, 8.6.3

	of Internet application
	
	determining, 8.3.1

	variant, 3.2.3

	locale information
	
	mapping between Oracle and other standards, 10.4

	locale-charset-map, 8.8.1
	locale-determine-rule, 8.8.4
	LocaleMapper class, 8.7.8
	locale-parameter-name, 8.8.5
	LOCALTIMESTAMP SQL function, 4.4
	lxegen utility, 12.12

M

	message-bundles, 8.8.6
	migration
	
	character sets, 11.1

	mixed character sets
	
	causing data loss, 11.1.2.2

	monetary parameters, 3.9
	monolingual Internet application, 8.2.1
	monolingual linguistic sorts
	
	example, 5.5.3
	supported, A.6

	months
	
	format element, 3.6.1.2
	language of names, 3.6.1.2

	MONTHS_BETWEEN SQL function, 4.4
	multibyte encoding schemes, 2.1.4.2
	
	fixed-width, 2.1.4.2
	shift-sensitive variable-width, 2.1.4.2
	variable-width, 2.1.4.2

	multilexers
	
	creating, 6.5.4.1

	multilingual data
	
	specifying column lengths, 6.5.1

	multilingual document search
	
	creating indexes, 6.5.4

	multilingual Internet application, 8.2.2
	multilingual linguistic sorts
	
	example, 5.5.3
	supported, A.6

	multiple languages
	
	designing database schemas, 6.5
	storing data, 6.5.2
	storing documents in LOBs, 6.5.3

	multitenant container databases, 2.4

N

	N SQL function, 7.2.5
	national character set, 2.3.8, 6.3.2, 7.2.1.1, 7.2.1.2
	NCHAR data type
	
	creating abstract data type, 2.3.9

	NCHAR datatype, 7.2.1.1
	NCHR SQL function, 7.2.7
	NCLOB datatype, 7.2.1.3
	NEW_TIME SQL function, 4.4
	NEXT_DAY SQL function, 4.4
	NLB data
	
	transportable, 12.10

	NLB file, 12.1.3.1
	NLB files, 12.1
	
	generating and installing, 12.7

	NLS Calendar Utility, 12.12
	NLS parameters
	
	default values in SQL functions, 9.1.1
	list, 3.1
	setting, 3.1
	specifying in SQL functions, 9.1.2
	unacceptable in SQL functions, 9.1.3

	NLS Runtime Library, 1.1.1
	NLS_CALENDAR parameter, 3.7.2
	NLS_CHARSET_DECL_LEN SQL function, 9.2.4.3
	NLS_CHARSET_ID SQL function, 9.2.4.2
	NLS_CHARSET_NAME SQL function, 9.2.4.1
	NLS_COMP parameter, 3.10.2, 9.2.5.3
	NLS_CREDIT parameter, 3.9.7
	NLS_CURRENCY parameter, 3.9.2
	NLS_DATABASE_PARAMETERS data dictionary view, 3.4.1
	NLS_DATE_FORMAT initialization parameter, 4.5.1
	NLS_DATE_FORMAT parameter, 3.6.1.1
	NLS_DATE_LANGUAGE parameter, 3.6.1.2
	NLS_DEBIT parameter, 3.9.8
	NLS_DUAL_CURRENCY parameter, 3.9.4
	NLS_INITCAP SQL function, 5.4.12, 9.1
	NLS_INSTANCE_PARAMETERS data dictionary view, 3.4.1
	NLS_ISO_CURRENCY parameter, 3.9.3
	NLS_LANG parameter, 3.2
	
	choosing a locale, 3.2
	client setting, 3.2.4
	examples, 3.2.1
	OCI client applications, 7.3.3
	specifying, 3.2.1
	UNIX client, 3.2.4
	Windows client, 3.2.4

	NLS_LANGUAGE parameter, 3.5.1
	NLS_LENGTH_SEMANTICS initialization parameter, 2.2
	NLS_LENGTH_SEMANTICS session parameter, 2.2
	NLS_LIST_SEPARATOR parameter, 3.11
	NLS_LOWER SQL function, 5.4.12, 5.5, 9.1
	NLS_MONETARY_CHARACTERS parameter, 3.9.6
	NLS_NCHAR_CONV_EXCP parameter, 3.11.1
	NLS_NUMERIC_CHARACTERS parameter, 3.8.2
	NLS_SESSION_PARAMETERS data dictionary view, 3.4.1
	NLS_SORT parameter, 3.10.1, 5.7.3.1
	NLS_TERRITORY parameter, 3.5.2
	NLS_TIMESTAMP_FORMAT initialization parameter, 4.5.1
	NLS_TIMESTAMP_FORMAT parameter, 3.6.2.1
	
	parameters
	
	NLS_TIMESTAMP_FORMAT, 3.6.2.2

	NLS_TIMESTAMP_TZ_FORMAT initialization parameter, 4.5.1
	NLS_UPPER SQL function, 5.4.12, 5.5, 9.1
	NLSRTL, 1.1.1
	NLSSORT SQL function, 9.1, 9.2.5
	
	syntax, 9.2.5.1

	NLT files, 12.1
	numbers, encoding, 2.1.2.3
	numeric formats, 3.8.1
	
	SQL masks, 9.3.3

	numeric parameters, 3.8
	NUMTODSINTERVAL SQL function, 4.4
	NUMTOYMINTERVAL SQL function, 4.4
	NVARCHAR datatype
	
	Pro*C/C++, 7.4.3

	NVARCHAR2 datatype, 7.2.1.2

O

	obsolete locale data, A.9.4
	OCI
	
	binding and defining CLOB and NCLOB data in OCI, 7.3.7
	binding and defining SQL NCHAR datatypes, 7.3.5
	setting the character set, 10.2
	SQL CHAR datatypes, 7.3.4

	OCI and Unicode, 7.1.1
	OCI character set conversion, 7.3.2.2
	
	data loss, 7.3.2.1
	performance, 7.3.2.2

	OCI client applications
	
	using Unicode character sets, 7.3.3

	OCI data conversion
	
	data expansion, 7.3.2.3

	OCI_ATTR_CHARSET_FORM attribute, 7.3.2.1
	OCI_ATTR_MAXDATA_SIZE attribute, 7.3.2.3
	OCI_UTF16ID character set ID, 7.3.1
	OCIBind() function, 7.3.4
	OCICharSetConversionIsReplacementUsed(), 10.7
	OCICharSetConvert(), 10.7
	OCICharsetToUnicode(), 10.7
	OCIDefine() function, 7.3.4
	OCIEnvNlsCreate(), 7.3.1, 10.2
	OCILobRead() function, 7.3.7
	OCILobWrite() function, 7.3.7
	OCIMessageClose(), 10.8
	OCIMessageGet(), 10.8
	OCIMessageOpen(), 10.8
	OCIMultiByteInSizeToWideChar(), 10.5
	OCIMultiByteStrCaseConversion(), 10.5
	OCIMultiByteStrcat(), 10.5
	OCIMultiByteStrcmp(), 10.5
	OCIMultiByteStrcpy(), 10.5
	OCIMultiByteStrlen(), 10.5
	OCIMultiByteStrncat(), 10.5
	OCIMultiByteStrncmp(), 10.5
	OCIMultiByteStrncpy(), 10.5
	OCIMultiByteStrnDisplayLength(), 10.5
	OCIMultiByteToWideChar(), 10.5
	OCINlsCharSetIdToName(), 10.3
	OCINlsCharSetNameTold(), 10.3
	OCINlsEnvironmentVariableGet(), 10.3
	OCINlsGetInfo(), 10.3, 10.3
	OCINlsNameMap(), 10.4
	OCINlsNumericInfoGet(), 10.3
	OCIUnicodeToCharset(), 10.7
	OCIWideCharDisplayLength(), 10.5
	OCIWideCharInSizeToMultiByte(), 10.5
	OCIWideCharIsAlnum(), 10.6
	OCIWideCharIsAlpha(), 10.6
	OCIWideCharIsCntrl(), 10.6
	OCIWideCharIsDigit(), 10.6
	OCIWideCharIsGraph(), 10.6
	OCIWideCharIsLower(), 10.6
	OCIWideCharIsPrint(), 10.6
	OCIWideCharIsPunct(), 10.6
	OCIWideCharIsSingleByte(), 10.6
	OCIWideCharIsSpace(), 10.6
	OCIWideCharIsUpper(), 10.6, 10.7
	OCIWideCharIsXdigit(), 10.6
	OCIWideCharMultibyteLength(), 10.5
	OCIWideCharStrCaseConversion(), 10.5
	OCIWideCharStrcat(), 10.5
	OCIWideCharStrchr(), 10.5
	OCIWideCharStrcmp(), 10.5
	OCIWideCharStrcpy(), 10.5
	OCIWideCharStrlen(), 10.5
	OCIWideCharStrncat(), 10.5
	OCIWideCharStrncmp(), 10.5
	OCIWideCharStrncpy(), 10.5
	OCIWideCharStrrchr(), 10.5
	OCIWideCharToLower(), 10.5
	OCIWideCharToMultiByte(), 10.5
	OCIWideCharToUpper(), 10.5
	ODBC Unicode applications, 7.6.4
	OLE DB Unicode datatypes, 7.6.5
	operating system
	
	character set compatibility with applications, 2.3.2

	ORA_DST_AFFECTED SQL function, 4.4
	ORA_DST_CONVERT SQL function, 4.4
	ORA_DST_ERROR SQL function, 4.4
	ORA_NLS10 environment variable, 1.1.1
	ORA_SDTZ environment variable, 4.5.2, 4.10
	ORA_TZFILE environment variable, 4.5.2
	Oracle Call Interface and Unicode, 7.1.1
	Oracle Data Provide for .NET and Unicode, 7.1.1
	Oracle Data Pump and character set conversion, 11.1.2.3
	Oracle Language and Character Set Detection Java classes, 8.7.6
	Oracle Locale Builder
	
	choosing a calendar format, 12.3
	choosing currency formats, 12.3
	choosing date and time formats, 12.3
	displaying code chart, 12.4
	Existing Definitions dialog box, 12.1.3.1
	fonts, 12.1.1.1, 12.1.1.2
	Open File dialog box, 12.1.3.4
	Preview NLT screen, 12.1.3.3
	restrictions on names for locale objects, 12.2
	Session Log dialog box, 12.1.3.2
	starting, 12.1.2

	Oracle ODBC driver and Unicode, 7.1.1
	Oracle OLE DB driver and Unicode, 7.1.1
	Oracle Pro*C/C++ and Unicode, 7.1.1
	oracle.i18n.lcsd package, 8.9.1
	oracle.i18n.net package, 8.9.2
	oracle.i18n.servlet package, 8.9.3
	oracle.i18n.text package, 8.9.4
	oracle.i18n.util package, 8.9.5
	oracle.sql.CHAR class
	
	character set conversion, 7.5.6.1
	getString() method, 7.5.6.1
	getStringWithReplacement() method, 7.5.6.1
	toString() method, 7.5.6.1

	ORDER BY clause, 9.2.5.4
	OS_TZ local operating system time zone, 4.10
	overriding language and territory definitions, 3.2.2

P

	page-charset, 8.8.2
	parameters
	
	BLANK_TRIMMING, 11.1.1.1
	calendar, 3.7
	character set conversion, 3.11
	linguistic sorts, 3.10
	methods of setting, 3.1
	monetary, 3.9
	NLS_CALENDAR, 3.7.2
	NLS_COMP, 3.10.2
	NLS_CREDIT, 3.9.7
	NLS_CURRENCY, 3.9.2
	NLS_DATE_FORMAT, 3.6.1.1
	NLS_DATE_LANGUAGE, 3.6.1.2
	NLS_DEBIT, 3.9.8
	NLS_DUAL_CURRENCY, 3.9.4
	NLS_ISO_CURRENCY, 3.9.3
	NLS_LANG, 3.2
	NLS_LANGUAGE, 3.5.1
	NLS_LIST_SEPARATOR, 3.11
	NLS_MONETARY_CHARACTERS, 3.9.6
	NLS_NCHAR_CONV_EXCP, 3.11.1
	NLS_NUMERIC_CHARACTERS, 3.8.2
	NLS_SORT, 3.10.1
	NLS_TERRITORY, 3.5.2
	NLS_TIMESTAMP_FORMAT, 3.6.2.1
	numeric, 3.8
	setting, 3.1
	time and date, 3.6
	time zone, 3.6.2.2

	partitioned
	
	indexes, 9.2.5.3
	tables, 9.2.5.3

	PDBs, 2.4
	performance
	
	choosing a database character set, 2.3.4
	during OCI Unicode character set conversion, 7.3.2.2

	phonetic writing systems, encoding, 2.1.2.1
	PL/SQL and SQL and Unicode, 7.1.1
	primary level sort, 5.3.2.1.1
	Private Use Area, 12.5.3
	Pro*C/C++
	
	data conversion, 7.4.1
	NVARCHAR datatype, 7.4.3
	UVARCHAR datatype, 7.4.4
	VARCHAR datatype, 7.4.2

	punctuation, encoding, 2.1.2.3

R

	REGEXP SQL functions, 5.9
	regular expressions
	
	character class, 5.9.3
	character range, 5.9.1
	collation element delimiter, 5.9.2
	equivalence class, 5.9.4
	examples, 5.9.5
	multilingual environment, 5.9

	replacement characters
	
	CONVERT SQL function, 9.2.1

	restrictions
	
	data truncation, 11.1.1.1
	passwords, 11.1.1.1
	space padding during export, 11.1.1.1
	usernames, 11.1.1.1

	reverse secondary sorting, 5.4.8
	ROUND (date) SQL function, 4.4
	RPAD SQL function, 7.2.6

S

	searching multilingual documents, 6.5.4
	searching string, 5.8
	secondary level sort, 5.3.2.1.2
	session parameters
	
	ERROR_ON_OVERLAP, 4.5.3

	session time zone, 4.10
	SESSIONTIMEZONE SQL function, 4.4
	setFormOfUse() method, 7.5.3
	shift-sensitive variable-width multibyte encoding schemes, 2.1.4.2
	single-byte encoding schemes, 2.1.4.1
	sorting
	
	reverse secondary, 5.4.8
	specifying nondefault linguistic sorts, 3.10.1, 3.10.2

	source_char_set parameter, A.4.6
	space padding
	
	during export, 11.1.1.1

	special combination letters, 5.4.4, 5.4.11
	special letters, 5.4.5, 5.4.10
	special lowercase letters, 5.4.13
	special uppercase letters, 5.4.12
	SQL CHAR datatypes, 2.3
	
	OCI, 7.3.4

	SQL conditions
	
	LIKE2, 9.2.3
	LIKE4, 9.2.3
	LIKEC, 9.2.3

	SQL function
	
	ORA_DST_AFFECTED, 4.4
	ORA_DST_CONVERT, 4.4
	ORA_DST_ERROR, 4.4

	SQL functions
	
	ADD_MONTHS, 4.4
	CONVERT, 9.2.1
	CURRENT_DATE, 4.4
	CURRENT_TIMESTAMP, 4.4
	datatype conversion, 7.2.5
	DBTIMEZONE, 4.4
	default values for NLS parameters, 9.1.1
	EXTRACT (datetime), 4.4
	FROM_TZ, 4.4
	INSTR, 7.2.6, 9.2.2, 9.2.2
	LAST_DAY, 4.4
	LENGTH, 9.2.2, 9.2.2
	LOCALTIMESTAMP, 4.4
	MONTHS_BETWEEN, 4.4
	N, 7.2.5
	NCHR, 7.2.7
	NEW_TIME, 4.4
	NEXT_DAY, 4.4
	NLS_CHARSET_DECL_LEN, 9.2.4.3
	NLS_CHARSET_ID, 9.2.4.2
	NLS_CHARSET_NAME, 9.2.4.1
	NLS_INITCAP, 5.4.12, 9.1
	NLS_LOWER, 5.4.12, 5.5, 9.1
	NLS_UPPER, 5.4.12, 5.5, 9.1
	NLSSORT, 9.1, 9.2.5
	NUMTODSINTERVAL, 4.4
	NUMTOYMINTERVAL, 4.4
	ROUND (date), 4.4
	RPAD, 7.2.6
	SESSIONTIMEZONE, 4.4
	specifying NLS parameters, 9.1.2
	SUBSTR, 9.2.2, 9.2.2
	SUBSTR2, 9.2.2
	SUBSTR4, 9.2.2
	SUBSTRB, 9.2.2
	SUBSTRC, 9.2.2
	SYS_EXTRACT_UTC, 4.4
	SYSDATE, 4.4
	SYSTIMESTAMP, 4.4
	TO_CHAR, 9.1
	TO_CHAR (datetime), 4.4
	TO_DATE, 7.2.5, 9.1
	TO_DSINTERVAL, 4.4
	TO_NCHAR, 7.2.5
	TO_NUMBER, 9.1
	TO_TIMESTAMP, 4.4
	TO_TIMESTAMP_TZ, 4.4
	TO_YMINTERVAL, 4.4
	TRUNC (date), 4.4
	TZ_OFFSET, 4.4
	unacceptable NLS parameters, 9.1.3
	UNISTR, 7.2.7

	SQL NCHAR datatypes
	
	binding and defining in OCI, 7.3.5

	SQL statements
	
	LIKE conditions, 9.2.3

	strict superset, 6.2.2.1
	string comparisons
	
	WHERE clause, 9.2.5.2

	string literals
	
	Unicode, 7.2.7

	string manipulation using OCI, 10.5
	strings
	
	searching, 5.8

	SUBSTR SQL function, 9.2.2
	SUBSTR SQL functions, 9.2.2
	
	SUBSTR, 9.2.2
	SUBSTR2, 9.2.2
	SUBSTR4, 9.2.2
	SUBSTRB, 9.2.2
	SUBSTRC, 9.2.2

	SUBSTR4 SQL function, 9.2.2
	SUBSTRB SQL function, 9.2.2
	SUBSTRC SQL function, 9.2.2
	superset, strict, 6.2.2.1
	supersets and subsets, A.4.7
	supplementary characters, 5.3.2
	
	linguistic sort support, A.6

	supported datatypes, 2.3.9
	supported territories, A.3
	syllabary, 2.1.2.2
	symbols, encoding, 2.1.2.3
	SYS_EXTRACT_UTC SQL function, 4.4
	SYSDATE SQL function, 4.4
	
	effect of session time zone, 4.10

	SYSTIMESTAMP SQL function, 4.4

T

	tables
	
	partitioned, 9.2.5.3

	territory
	
	dependencies, 3.2.3

	territory definition, 3.5.2
	
	customizing, 12.3
	overriding, 3.2.2

	territory support, 1.2.2, A.3
	territory variant, 3.2.3
	tertiary level sort, 5.3.2.1.3
	Thai and Laotian character rearrangement, 5.4.9
	tilde, 7.5.7.1
	time and date parameters, 3.6
	time zone
	
	abbreviations, 4.6
	data source, 4.6
	database, 4.9
	effect on SYSDATE SQL function, 4.10
	environment variables, 4.5.2
	file, 4.6
	names, 4.6
	parameters, 3.6.2.2
	session, 4.10

	time zone file
	
	choosing, 4.6
	default, 4.6
	upgrade steps, 4.7.3
	upgrading, 4.7

	time zones
	
	converting, 4.11
	upgrading time zone file, 4.7

	TIMESTAMP data type, 4.2.1.2
	
	when to use, 4.2.1.6

	TIMESTAMP data types
	
	choosing, 4.2.1.6

	timestamp format, 3.6.2.1
	TIMESTAMP WITH LOCAL TIME ZONE data type, 4.2.1.4
	
	when to use, 4.2.1.6

	TIMESTAMP WITH TIME ZONE data type, 4.2.1.3
	
	when to use, 4.2.1.6

	TO_CHAR (datetime) SQL function, 4.4
	TO_CHAR SQL function, 9.1
	
	default date format, 3.6.1.1, 4.5.1
	format masks, 9.3.1
	group separator, 3.8.2
	language for dates, 3.6.1.2
	spelling of days and months, 3.6.1.2

	TO_DATE SQL function, 7.2.5, 9.1
	
	default date format, 3.6.1.1, 4.5.1
	format masks, 9.3.1
	language for dates, 3.6.1.2
	spelling of days and months, 3.6.1.2

	TO_DSINTERVAL SQL function, 4.4
	TO_NCHAR SQL function, 7.2.5
	TO_NUMBER SQL function, 9.1
	
	format masks, 9.3.1

	TO_TIMESTAMP SQL function, 4.4
	TO_TIMESTAMP_TZ SQL function, 4.4
	TO_YMINTERVAL SQL function, 4.4
	toString() method, 7.5.6.1
	transportable NLB data, 12.10
	TRUNC (date) SQL function, 4.4
	TZ_OFFSET SQL function, 4.4
	TZABBREV, 4.6
	TZNAME, 4.6

U

	UCS-2 encoding, 6.2.2.3
	Unicode, 6.1
	
	binding and defining Java strings, 7.5.1
	character code assignments, B.1
	character set conversion between OCI client and database server, 7.3.2
	code ranges for UTF-16 characters, B.1
	code ranges for UTF-8 characters, B.1
	data conversion in Java, 7.5.5
	encoding, 6.2.2
	fonts, 12.1.1
	JDBC OCI driver, 7.1.1
	JDBC programming, 7.5
	JDBC Server Side internal driver, 7.1.1
	JDBC Server Side thin driver, 7.1.1
	JDBC thin driver, 7.1.1
	mode, 7.3.1
	ODBC and OLE DB programming, 7.6
	Oracle Call Interface, 7.1.1
	Oracle Data Provide for .NET, 7.1.1
	Oracle ODBC driver, 7.1.1
	Oracle OLE DB driver, 7.1.1
	Oracle Pro*C/C++, 7.1.1
	Oracle support, 6.2.3
	parsing an XML stream with Java, 7.7.3
	PL/SQL and SQL, 7.1.1
	Private Use Area, 12.5.3
	programming, 7.1
	reading an XML file with Java, 7.7.2
	string literals, 7.2.7
	UCS-2 encoding, 6.2.2.3
	UTF-16 encoding, 6.2.2.2
	UTF-8 encoding, 6.2.2.1
	writing an XML file with Java, 7.7.1
	XML programming, 7.7

	Unicode database, 6.3.1
	
	case study, 6.4

	Unicode datatypes, 6.3.2
	
	case study, 6.4

	UNISTR SQL function, 7.2.7
	upgrade
	
	Daylight Saving Time, 4.5.4

	url-rewrite-rule, 8.8.7
	US7ASCII
	
	supersets, A.4.7

	user-defined characters, 12.5.1
	
	adding to a character set definition, 12.5.6
	cross-references between character sets, 12.5.4

	UTC, 4.2.1.3, 4.2.1.4
	UTF-16 encoding, 6.2.2.2, B.2
	UTF8 character set, 6.3.1, A.4.5
	UTF-8 encoding, 6.2.2.1, B.3
	UTFE character set, 6.2.3, A.4.5
	UTL_FILE package, using with NCHAR, 7.2.9
	UTL_I18N PL/SQL package, 8.10
	UTL_LMS PL/SQL package, 8.10
	UVARCHAR datatype
	
	Pro*C/C++, 7.4.4

V

	V$NLS_PARAMETERS dynamic performance view, 3.4.2
	V$NLS_VALID_VALUES dynamic performance view, 3.4.2
	VARCHAR datatype
	
	Pro*C/C++, 7.4.2

	variable-width multibyte encoding schemes, 2.1.4.2

W

	wave dash, 7.5.7.1
	WHERE clause
	
	string comparisons, 9.2.5.2

X

	XML
	
	parsing in Unicode with Java, 7.7.3
	reading in Unicode with Java, 7.7.2
	writing in Unicode with Java, 7.7.1

	XML programming
	
	Unicode, 7.7

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/nlspg036.gif
Client-Tier Middle-Tier Sarver-Tier

=
! i
s

JBEE User
Applcaton

ank
Framawork for 2EE

i $

GDK - Java API

{
<>

OEBPS/img/csus.gif
General

Character SetName: [US7ASCII

Character Set ID;

180 Character SetID:

Base Character SetID.

Show Existing Definitions.

Filename: I cal Characte Name:

OEBPS/img/cstype.gif
Character Set Category
® ASCI_BASED EBCDIC_BASED © FIXED_WIDTH

Addtional Flags
I DISPLAY. I SHIFT 7 BYTE_UNIQUE

Special Characters (When FIXED_WIDTH is sef)
LocalChar Value

Pad Character.

Underscare Character:

Percent Character:

Shift Characters (When SHIFT is sef)
LocalChar Value

shittout
shitin

7 bit (Avhen DISPLAY s set)

Ciirue

Editing

OEBPS/img/nlspg027.gif
(JATBEUC)
Unix

(JATEEUC)

Characier

Cameron

Windows <&
ATBSIS)

OEBPS/img/nlspg035.gif
Customer

Application Server
Detabasa

Browsers.

SorverA

o1 | [ormen
oo |
i
e [lcaton Sover
s Instance 1

Lodaio

“Apalcation Sorver
" nstnca 2

M,

s
once)
Server B Database
Yot
([posme) fm | s
A,
=
o]
o Eon

WP —
Orace tit =

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Database Globalization
Support Guide, 12c¢
Release 1 (12.1)

OEBPS/img/nlspg041.png
Latin Small Letter E (ASCII Latin)
Latin Small Letter A with Circumflex (Non-ASCIl Latin)
Greek Small Letter Delta
Cyrillc Small Letter Ya
Arabic Letter Hah
Hebrew Letter Alef
Devanagari Letter AA (Hindi)
Hangul Syllabie Sios Ye Rieulpieup (Korean)
CJK Ideograph “Letter”
(Chinese, Japanese)

Musical Symbol G Clef
(Supplementary character)

c NEREEIE
{ss{calaz{ce[ea] o1[e alab] b7[s0 (E0[adles! Ec o5 e8 ESIADIs7 FolgDlBaloE]
T N W R I 1] |

L
T T T T T T T T T T
P2 2 2 2 2 3 3 3 4
byle byles byles byles byles bytes byles bytes byles bytes

OEBPS/img/terrmon.gif
General | Calendar | Date&Time Nurber and C... | Comman info | Preview NLT

Local Currency Symbo

Alternative Curtency Symhal

Gurtency Presertation
Decimal Symbal
Group Separator
Manstary Number Grouping

Monetary Precision:

Credit Symbol

Debit Symbol

Credit: +$ 1,234.123 Debit: - $ 1,234.123

International Currency Separator.

International Currency Symbal

1,234 USD

e e FEECTATEITT e SIETT

OEBPS/img/charsets.gif
Character Set(ID)

TRSPCBS7(156) 5
US 16 TSTFIXED(1001)

USBES2000(221) |
USBICL(277)
USBPC437(4) 2

Corresponding File Name: [x20001.nlb

Open Close

OEBPS/dcommon/oracle.gif

OEBPS/img/terrdate.gif
Date&Time

Short Date Format:

Short Date Sample; 2010-08

Short Time Format HH24M:95
Short Time Sample: 15:27:28

Cormbined shart date&time sample

20-10-05 15:27:26

Oratle Date Format:

Oratle Date Sample. 2010-08

Long Date Format: fimDay, Month dd, yyyy

Long Date Sample: Thursday, October 20, 2005

Timestamp Timezone Format

Timestamp Timezone Sample:

at

Editing

OEBPS/img/couni2.gif
File Edit

Unicode Calla,

©-Secondary
& Tertiary
%007a 2
WiSa 2
w245 (2)
%2469 @
w0058 Z
wida z
%2124 1
%2128 3
w4t @
wo0at 1
w0032 2
w0033 3

Search Fullview

atus: Editing

OEBPS/img/terrnum.gif
Filename: Untitled

Decimal Symbol

Negative Sign Location ®-100 C 100-

Nurneric Group Separator: |

Nurnber Grauping; 3 |

Nurnber Sample

List Separator

Measurement Systern Metric

Rounding Indicator (value greater than which to round up):

(]

Rounding Sample

10.4 is rounded to 10 and 10.5 is rounded to 11

e e

s: Editing

OEBPS/img/ex1.gif
FreComposed Form Glyph Decomposed Form Glyph

wo0fa b Ww0075w0301 u+ =

w00fb bl Wwo075w0302 u+"

w0169 bl Ww0075w0303 u+”

1 PreComposed Farm Glyph | Decomposed Form Glyph l
Ew i oy Defete. Search.

oK

OEBPS/img/coremove.gif

OEBPS/img/nlspg045c.png
Month DD " 47" YYYY

OEBPS/img/nlspg033.gif
American
Database

Sarver
(USTASCH)

Windows
WEBMSWIN1252)

OEBPS/img/nlspg029.png
(WEBISOBB59P1) (WEBDEC)

Character Character
Conversion Conversion

Unicode
Database
(AL32UTF8)

No Chafacter Character
Conversion Conversion

Japanese <
lient jont
(AL32UTF8) (JATBSUIS)

OEBPS/img/cschart.gif
0x18.

o

e
s

$

oz
a0

0

oz
3

<

nnze
£

H

ke
s

T

st
0

s
3

e
s

e

0x19.

o

s
s

%

onzs
a1

1

ozt
=

iz
£

s
s

nuss
S

sl
=

e
S

s

Oxle.
o

e
s

oz
a1

oz
s

e
En

s
st

nnse
2

ez
A

ot
A

s

Oxlb.

o

Y
a7

oz

s
7

sy

{

oo,

PR)

Oxle
o

e
s

(

g
s

4

st
0

@

)
e

L

ke
e

X

nuse
S

a

ot
0

»

)
e

e

0xld

o

o
s

)

s
s

5

nnzs
ER

A

sl
a

M

s
=)

Y

nnss
s

e

s
R

q

r1
a2

H

oz

Oxle
o

e
=n

oz
s

3

nnzg
2

B

oz
e

N

s
s

z

s
£

£

e
5

r

)
s

e

Hetage

Oxlf

o
e

oz,
ar

oz
5

ez

s
3

rs
ot

o

)

020 | 0l
!
ooz | oo
bac | oda
ooze | uonaa
a5 | ose
8 9
wovss | oo
s | ous
D | E
wooss | nnss
w0 | 0wt
P Q
wooso_ | wos
e | osa
v 1
wovse | uonsa
s | 0w
h i
woes | oo
vas | ods
t u
woore | ot
ta0 | 0wl
s} s}
| um
Print Page

022

0z
e

e
En

e
e

e
2

sz
A

e
A

s
s

v

e
a

o
am

)

sy

7y
s

o
am

Close

OEBPS/img/langnlt.gif
General | Month Names | DayNames | Miscellaneous | Character Rules

@

Copyright (c) 1995 - 2003 by Oracle Corporation. All Rights Reserved. |
#5

#

#NANE

ho03eanit

#DESCRIPTION

Language definition for AMERICAN FRENCH
#NOTES

#

<IDOCTYPE NLEDATA SYSTEM "l atd>
<NLSDATA>

<LANGUAGE>

<VERSION>3.0.0.0 0</VERSION>

<INFO/=

<Narmne>AMERICAN FRENCH(Name>
<lg>1001 <>
<DefaultTerrtoryld»4<DefaulTerritoryld>

Filename: I Name:

OEBPS/img/nlspg031.gif
Character

UTF-16

UTF-8 ucs-2
A 0041 41 | 0041
c 0063 63 | 0063
o 00F6 C3B6 | 00F6
ki3 4E9C E4BA9YC | 4E9C
& D834 DD1E FO9D 84 9E | N/A

OEBPS/img/pic16.gif
Location

Preview:

File Type: [b Files (nib)

) booo0znib
() 600003 nib
() 600004 nib
() boooos nib
) 60000 nib

File Narme: (00001 nib

7 Preview

Language

AMERICAN

OEBPS/img/co.gif
General

Callation Name: [MY_GENERIC_M

Callation ID:

Show Existing Definitions.

Defined Gallation Flags
(P GANONICAL_EQUNALENCE [~ REVERSE_SECONDARY [~ SWAP_WITH_NEXT

Filename: b31001 .nlb cal Multlingual Lingui Name: GENERIC_M s: Editing

OEBPS/img/lang.gif
Filename: I

General

Language Name:

Language ID:

Language Abbrevation

Default Territary.

Default ASCII Character Set

Default Eficdic Character Set

Default Linguistic Definition:

[AMERICAN FRENCH

WEBIS0885P1

WESEBCDIC1047

Show Existing Definitions.

TR SIETT

OEBPS/img/nlspg022.gif
(WESHSWIN1252)

Grook Windows

OEBPS/img/dn14.gif

OEBPS/img/nlspg005.gif
S0L) alter session set NLS CALENDAR =
2’ Japanese Imperial’;

Session altered,

SQL> alter session set WLS DATE FORWAT=
T Uy R BT B

Session altered,
80L) select sysdate from dual;
SYSDATE

FERI0FEBHTE

OEBPS/img/hw1.gif
2 Hello World Demo - Microsoft Internet Explorer

Hello World!

OEBPS/img/terr.gif
General

Tertitory Name: REDWOOD SHORES

Tertitory D:

Tertitory Abbreviation:

Tertitory Variation

Show Existing Definitions.

Filename: Untitled c Teritory Name: None s: Editing

OEBPS/img/pic17.gif
Language(lD)

Language Abbreviation __ Territory(ID)

ik

Territory Abbreviation

AR
BG
BN
ca
cs

Character Set(ID)

Epiceriaen
AMERICA(T)
AUSTRALIAGS)

Linguistic Sort(ID)

i
i e
i
5
o
f o

ALIBUTF16(2000)
AL24UTFFSS(870)
AL32UTFB(873)
ARBADOS7 10(557)
05710750

ARABIC(21)
ARABIC_ABI_MATCH(E2)
ARABIC_ABJ_SORT(ST)
ARABIC_MATCH(B0)

Corresponding File Name: [x00001.nlb

Open Close

OEBPS/img/ex7.gif
NLB generation has
\ complsted successfulyl For
the changes to take effect,

please copy the newly-
generated nib files and the

uptated boot ile to your
ORA_NLS10 directary.

OEBPS/img/nlspg021.gif
Databaso Server
(WEBISOB853P1)

Simplified Chinesa
irdows T
(WEBISO8853P1)

D—

OEBPS/img/coinser2.gif
File Edit

Unicode Calla,

& Tertiary
Fuotbd v
Luo1bs ¥
9 Secondary

& Tertiary
Fwoo7a 2
Fuisa 2
uoab5 (2)
Fw04e9 @
wo0sa Z
Fuida Z
w2124
w2128 3
Lvoact @

Search | Fulview |

atus: Editing

OEBPS/img/terrcal.gif
General Date&Time. Monetary | Numberand C... | Comrmon nfo | Preview NLT
First day of a calendar week

Csun ®iMon O Tue

Firstweek of a calendar year

® 180 Week rst more than halffull week) © Non-ISO Week dirstiull wesk)

Calendar Sample:

won Tue
@ weskt
@i
@ wesia
@ weska

@ weeks

Filename: Untitied egory: Territory Name: None. tatus: Editing

OEBPS/img/nlspg038.gif
Raquest Resporss

GDK Framework for J2E

@k
Contiguraion

Serviatnoquestuzapper || serviecnesponsenrapper

B

Localizer

ImanconoTEST Y

J2EE Usor Application

sommosEo

148

GDK Java AP

OEBPS/img/nlspg025.gif

OEBPS/img/startupb.gif
Oracle Locale Builder s 3 canvenient tool for
customizing locale data definitions. ORACLE LOCALE BUILDER
Use Oracle Locale Builder to view or create:

- Languages, including local month and day
names, writing directions, etc.

- Territaries, including calendar convention,
date and time formats, number and monetary
systems, etc

- Character Sets, including character set ype,
character mappings and classifications, st

- Linguistic Sorts, including collation order,
special collation rules, etc.

Filename: None. one Narme: None. tus: None.

OEBPS/img/ex6.gif
Please enter the pathname where the nlt files are located:

Directory: [cimynit Browse,
oK CANCEL

OEBPS/img/pastenod.gif
Would you like to paste the node after or before the selected node?

® After Before

Set Collation Level Difference Between New Node And Selected Node

® primary Secondary Tertiary

Paste Codepoint Value: %0034

oK CANCEL

OEBPS/img/conospac.gif
File Edit

Non-Spaci

%0340
%0306
%030~
—%030a
%0342
%0308

%0344
—%030b
%0303~
w0307

%0338/
%0327,
%0328
%0304

search |

Fulview |

atus: Editing

OEBPS/img/nlspg037.gif
J2sE
Runtime

ava characterset | | GDK charactar sat
Gonverson abke | | conversion tabla

OEBPS/img/couni.gif
File Edit

Unicode Calla,

& Tertiary

a4
o7 @)

Fvo4sp 4

w483 @

o074 ¢

0084

w0854

054

L @024

& Secondary

& Tertiary

| %0035 5

Y g

Pasle || Search Fulview |

atus: Editing

OEBPS/img/langmon.gif
Month Names

Capitalize iniial letier of month names?
{ @ Yes No (or non-applicabl)

Full Month Names Abbreviated Month Names

Month 01: [janvier jany.
Manth 02 [féwier e

Manth 03; [mars mars
Manth 04: [avril .
Manth 05: [mai mai
Month 06: [uin juin
Month 07: [uilet it
Manth 08: [a0it aoit

Month 09: [septerbre sept
Manth 10: [octobre et

Manth 11: [noverbre nov.
Month 12; [dgcembre éc.

Filename: bl e sa Narme: FRENCH

OEBPS/img/cschar.gif
File Edit To

LocalChar Value Unicade Value
wioodd
woode
wino4f
w0050
woos1
w0052
w0054
wooss
woose
w0057
wooss

LocalChar Value Glyph Unicode Value
w0053

New) Modiy | Delete | Search |

View CadeChart

OEBPS/img/iso88591.gif
H0IE 10100100 4 8313 T T A

1 QDD D D i

PEOOCOO X BDDOD A

R I N S —

o HNmL Se . o AREE
2

S CwRm—o: Oa YT
QTLOP D> E X N2 D

. MOUTOE BEThX—ECO

oM DEEX > N

@LOOOWLOTHAY EZ0

S NP FINON OG-y A
Gio: mersesss wms + o1
WonmexzZmz_mo
L0000EErE=00unan
2238882hLdEnulBEs
SrxxEg¥a
S5EESS By araxon
2RnLEEReRE=52060

SrNmYTmOn®aCEOALL

OEBPS/img/csmychar.gif
General

Character SetName: [MYCHARSET

Character Set ID;

180 Character SetID:

Base Character SetID.

Show Existing Definitions.

Filename: I c Characte s Editing

OEBPS/img/hw2.gif
A i 3 BRIFEI5T5E (GDK) - Microsoft Internet Explorer.
i Fle Edt Vew Favortes Took Help

EHM 200552630 B 093425

P [zh_ON] | [&FLocale |

SR IR s

& T Gioaae

OEBPS/img/coinsert.gif
File Edit To

General | Unicode Colla.. | Non-Spaci.. | Punctuafi. | ContedS.. | Expanding

w39 Y
w24ce @
%0268 ¥
w028 ¥ Would you lie to inserthe new nod afte or before the selected node?
© Secondary ® ater - Betore
o Tertiary
w01b4 v
w0163 Y
¢ Secondary Cossportvana fioves
o Tertiary
007a z
wfSa =
w24b5 (2]
w2469 @

Set Calation Level Difierence Between New Node And Selected Node

® Primary Secondary Tertiary

ok Cancel

Search Fullview

GENERIC_M Editing

OEBPS/img/cs.gif
General

Character Set Name:

Character Set ID;

180 Character SetID:

Base Character SetID.

Show Existing Definitions.

Filename: Untitled c Characte Name: None s: Editing

