ORACLE
INSURANCE

Oracle® Documaker

Internet Document
Server SDK Reference

version 2.3

Part number: E17552-01
November 2011

ORACLE’

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ""AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE

Copyright (c) 1988-1997 Sam Leftler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS "*AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved
It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.

Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

Contents

Chapter 1, Using the Internet Document Server SDK

4 Queues

5 Finding the Information You Need

7 Using the DSI APIs with C

10

12

19

21

25

Using Unicode in Attachment Variables

10 Sample Program-DSIEX

Writing Processing Rules in C
12 How the System Processes Rules
13 Creating Rules

15 Creating, Accessing, and Destroying Variables
15 Accessing the Attachment

16 Accessing the Queue
16 Using Utility Functions
16 Creating Rules for Reserved Request Types

Using the Java Libraries

20 Using the MsgClient Sample Program

Writing Processing Rules in Java

21 How the System Processes Rules
21 Developing and Deploying Java Rules

23 Java Rules vs. C Rules

23 Function Signature for Java Rules

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

26 DPRLbyPropFind
28 DPRLbyGet

30 DPRLbyPut

31 DPRLbyLock

32 DPRLbyUnlock
33 DPRLbyDelete

34 DPRLbyOptions
35 DPRLbyCopy

ix

36 DPRLbyPropPatch

37 DPRLbyMKCol

38 WebDav Request Types for Library Manager
40 Using File System Rules

42 propFind

44 get

45 put

46 lock

47 unlock

48 delete

49 options

49 copy

50 move

51 propPatch

52 mkCol

53 Using the IDSWebdavServlet

61 Writing Processing Rules in Visual Basic
66 Miscellaneous Notes

68 Samples
68 DSICoTB
69 DSITest
71 DSIDiag
71 DSIDiag.exe
72 Debug.ASP
73 DSICoSAM
74 DSICoExV
75 DSICoEx.cpp
76 DSICoAdm and ADMAsp
76 DSI COM Objects under ASP

78 Referencing Attachment Variables

Chapter 2, DSI C APIs

80 C API Functions
83 DSIAddAttachRec
84 DSIAddAttachVar
85 DSIAddAttachVarEx
86 DSIAddToAttachRec

87

89

90

92

94

96

98

100
102
104
106
108
110
112
113
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
133
134
135
136

DSIAddToAttachRecEx
DSIAddToQueue
DSIAttachCursorFirst
DSIAttachCursorFirstEx
DSIAttachCursorLast
DSIAttachCursorLastEx
DSIAttachCursorName
DSIAttachCursorNext
DSIAttachCursorNextEx
DSIAttachCursorPrev
DSIAttachCursorPrevEx
DSIAttachCursorValue
DSIAttachCursorValueEx
DSIAttachVarLength
DSIAttachVarLengthEx
DSICacheFile
DSICloseAttachCursor
DSICopyAttachVars
DSICopyQRecord
DSICreateValue
DSIDeleteAttachVar
DSIDestroyValue
DSIEncryptValue
DSIEncryptValueEx
DSIErrorMessage
DSIErrorMsg
DSIFindInQueue
DSIGetFirstFromQueue
DSIGetSOAPMessage
DSIGetSOAPMessageSize
DSIGetQError
DSIGetQField
DSIGetQFieldLength
DSIGetQueueRec
DSIGetUniqueString
DSIInit

xi

137 DSllnitInstance

138 DSIInitQueue

139 DSILocateAttachVar
140 DSILocateAttachVarEx
141 DSILocateValue

142 DSIOpenAttachCursor
143 DSIParseAttachment
144 DSIQueryEnvOptions
145 DSIQueryValueSize
146 DSIReceiveFile

147 DSIReceiveFileAsBuffer
149 DSIReceiveFileAsBufferSize
151 DSIRowset2XML

152 DSIRowset2XMLSize
153 DSISendBuffer

154 DSISendFile

155 DSISetQField

156 DSIStoreAttachment
157 DSITerm

158 DSITermlInstance

159 DSITermQueue

160 LDAPGetErrorCode
161 LDAPGetErrorMessage
162 LDAPInit

167 LDAPSearchDirectory
168 LDAPTerm

Chapter 3, DSI Java APIs

172 Using JavaBean Components
176 Returning a RecordSet Object
178 Using IDSJSP in a JSP Container
178 DSI Bean APIs
179 Using the DSI Java Messaging Library for Client Applications

180 Passing JVM Options to DSILIB

181 Generating Debug Output for Client Requests

182 Java API Classes

Chapter 4, DSI Processing Rules

184 Server Rules

186
187
189
191
192
193
194
195
202
203
204
205
206
208
209

211

213
214
215

217

223
224
225

FTPRule

Putting and Getting Multiple Files
IRLCleanDirectory
IRLClearLog
IRLCopyAttachment
IRLDecryptValue
IRLInit

IRLFileFTP
IRLInitFTP

IRLLog
IRLPurgeCache
IRLSearch
IRLSendVersion

IR LStatistics

AddJobRule
209 setupPool
209 addJob

AttachmentFilterRule
211 sendFile

212 receiveFile
BLPPurgeRule
BLPStatisticsRule
CopyDataRule

215 copyData

215 copyMessageVariables
FTPRule

218 transferFiles
IDSEncryptionRule
IDSInitRule

IDSTransactionRule

xiii

226 LogTransactionRule
226 logTransaction
226 purgeOldTransactionTables

228 processAttachments

229 Client Rules
230 ATCAppend2Attachment
231 ATCLoadAttachment
232 ATCLogTransaction
233 ATCReceiveFile
236 ATCSendFile
238 ATCSendMultipleFiles
239 ATCUnloadAttachment
241 IRClInit
242 IRCPrint
243 IRCRequest
244 IRCResult
245 IRCSendVersion
247 IRCUnloadPage

Chapter 5, DSI Visual Basic APIs

250 Using the Prototypes and Examples
250 Handling Errors
251 Using the Web Services Example

252 Visual Basic Methods
AddAttachRec 255
AddAttachVar 257
AddToAttachRec 258
AddToQueue 260
AttachCursorFirst 261
AttachCursorLast 262
AttachCursorName 264
AttachCursorNext 265
AttachCursorPrev 266
AttachCursorValue 268

AttachList 269
CacheFile 270
CloseAttachCursor 271
CopyAttachVars 272
CopyQRecord 273
CreateValue 274
CreateValueObj 276
DeleteAttachVar 278
DestroyValue 279
DestroyValueOb;j 281
DumpDebuglnfo 283
ErrorMessage 284
FindInQueue 285
GetAttachment 286
GetAttachmentAll 288
GetAttachRecSet 290
GetAttachVarSet 292
GetPriority 294
GetQField 295
GetQFieldLength 296
GetQueueRec 297
GetReqType 299
GetStatus 300
GetUniquelD 301
GetUniquelDLength 302
GetUniqueString 303
GetUserID 304

Init 305

InitInstance 306
[nitQueue 307
InitSession 308
LocateAttachVar 310
LocateValue 311
LocateValueObj 313
OpenAttachCursor 315

ParseAttachment 316

Xv

XVi

QueryValueSize 317
SetAttachment 318
SetPriority 320
SetQField 321
SetReqType 322
SetStatus 323
SetUniquelD 324
SetUserID 325
StoreAttachment 326
Submit 327

Term 329
TermInstance 330
TermQueue 331
TermSession 332
Trace 333

TraceAttach 334
TraceEnableRule 335
TraceList 336
TraceSnapshot 337
Property Instance 338
Property Signature 339
Property TraceEnable 340
Property TracePath 341

343 Index

Chapter 1

Using the Internet
Document Server SDK

This chapter tells you how to use the Document Server
Interface (DSI) APIs for creating rules and applications
to interface with Oracle Insurance's Internet Document
Server. The various API functions and processing rules
are described in detail in this manual.

You can use the API C functions, Java methods, Visual
Basic methods, and processing rules to build either a
proprietary client interface or a custom set of rules
which work with the Internet Document Server.

The APIs provide a number of services, including...
* Interprocess communication

e DPersistent variables

¢ Accessible across function calls

e Error reporting

Several general purpose functions are also available.

The DSI API includes interfaces (APIs), for C, Java, and
Visual Basic so you can use these languages to build
custom rules and applications. You will also find
sample clients which you can use as a reference. For
more information, see...

* Finding the Information You Need on page 5
e Using the DSI APIs with C on page 7

e Writing Processing Rules in C on page 12

* Using the Java Libraries on page 19

e Using the IDSWebdav Servlet Client APIs and
DPRLIB Rules on page 25

* Writing Processing Rules in Visual Basic on page
61

The illustration on the following page shows how data
flows within the system and its overall architecture.

Chapter 1
Using the Internet Document Server SDK

Distributed Clients /1,14 wide web World Wide Web
or Intranet Client or Intranet Client

World Wide Web
or Intranet Client \

Local or Batch
Client

$

| Front-End (Client) Components |

Front-end components
talk to IDS via the DSI JSP or servlet Java-based
API. These components based Web Custom Client
provide communications Application Module
and an intetface which
gather client request,
translate those requests
for the Internet Custom Client
Document Server, and Module
then translate the results
for the client’s use.

ActiveX-based

Custom Client
Module

Internet DSI API
Document
Server Request Request

Queue Queue
(input) (output)

Document Processing Server

DSI API

4 4

! Back-End Components |

Back-end components
include bridges to other
applications, the rules
which process the data,
the data or archives being
processed, and document
sets. These components
communicate with IDS
via the DSI APIL.

Bridges Processing Rules Data, Document

Sets or Archives

Two-tier and three-tier models are supported. In the three-tier model, the remote client
can take a variety of forms and paths. The remote can be a web browser using CGI, a
web browser using Java, or stand-alone, fat or #hin, Java or C clients. Notice that there are
two paths from the remote client, one through a front-end component, such as CGIL, JSP
or servlet, and the other through a Java client. The two paths merge at the DSI API, one
for C the other for Java.

The system includes a CGI client, which supports rules. Because you can write your own
front-end client, the term front-end client applies to both. Discussions about rule
processing in the front-end client, however, refer to a CGI client.

Similarly, the two-tier model can be supported by writing local applications, such as
those that do not use remote communications. You can write these local applications in
either Java or C. These local applications use their own APIs. The DSIEX.C sample
program, discussed in the topic Sample Program-DSIEX on page 10, is an example of a
local application.

Aside from the languages there are these key differences:
* The front-end CGI client supports rules and relies on HTML scripts

e The Java browser applet has a persistent connection with the Java server console
application.

* The CGI script runs on a front-end client on the HTML server; the Java applet
processing is split between the remote web browser and the server.

The general structure of a DSI session depends upon whether you are writing an
executable program or a custom set of rules in C or an applet and application in Java.
An executable program requires additional calls to initialize and terminate the Internet
Document Server and its database access subsystems. To keep things from getting too
confusing, the markers below indicate the steps unique to CGI or Java:

Java

CGI

Java

CGI

CGI

1 The browser makes a request to a web application (JSP or servlet)
2 The browser loads an HTML page with a reference to a CGI script

The web application accepts user input, creates a request and adds the request to the
3 server’s request queue

4 The client executable on the server (CGI or Java) receives user input.
5 Based upon data supplied by the user, the rules create an attachment and a queue record
6 The data compiled by the rules is added to the server's request queue.

The server retrieves the request from its queue, and, based upon the request, executes its
7 own set of rules

The rules read the attachment record and use the supplied information to create a new
38 attachment and queue record

9 The data compiled by the server rules is posted to the server's result queue

10 The client retrieves the results and executes yet another set of rules

Chapter 1
Using the Internet Document Server SDK

The rules read the attachment created by the server and use this information to format
CGI 1 output to be provided to the user

The information is passed to the web application, which formats a reply and passes the
Java 12 reply to the browser

CGI 13 An HTML page is formatted and passed to the browser

NOTE: An attachment is a block of information accessed in the form of name/value

pairs. Attachments are used to pass information between the client and the
server rules, as well as the APL

This sequence is greatly simplified, ignoring the details of how rules compile data and
determine what information needs to be provided at each stage of the process. These

details may include database accesses, requests from the user for additional information,
the creation of files, and other tasks.

Queues

Typically, you will have more than one browser active at a time so input and output to
the Internet Document Server is organized around queues. These queues serialize the
requests and process them on a first in, first out basis. The DSI queues also let you
prevent conflicts as several clients perform several tasks at a time.

FINDING THE
INFORMATION
You NEED

Finding the Information You Need

Depending on how you implement the system, you may not need to install or use all of
the components. Below is a table which shows the order in which you should read the
chapters and appendices in this manual and in the other Internet Document Server
related guides and briefly describes these chapters or appendixes.

To... Read...

Find an overview of the Internet ~ Chapter 1 of the Internet Document Server Guide.
Document Server

Install and set up the Internet Internet Document Server Installation Guide.
Document Server.

Create PDF, HTML, or XML Internet Document Server Guide.
output

Once you install the Internet Document Server, you will typically use one of the following
bridges:

Documaker Bridge This bridge lets you retrieve and display form sets stored
in Documaker’s archive module. It also lets you convert
Metacode and AFP output created by the Documerge
system into PDF files used by the Internet Document
Server.

For more information, see Using the Documaker Bridge.

Documanage Bridge This bridge lets you web-enable Documanage to search,
retrieve, and manipulate information from Documanage

See the Documanage manuals entitled, General Reference for
the Documanage Bridge and Rules Reference for the Documanage
Bridge for more information.

Docuflex Bridge This bridge lets the Internet Document Server use
Docuflex as a composition engine.

For more information, see Using the Docuflex Bridge.

If you plan to customize the Internet Document Server, either by building custom client
modules or by adding processing rules, install the Internet Server SDK and refer to the
appropriate chapters of this manual for additional information.

Install and learn about the Chapter 1, Using the Internet Document Server SDK,
Internet Document Server SDK beginning on page 1

Use C to customize the Internet ~ Chapter 2, DSI C APIs on page 79.
Document Server

Use Java to customize the Chapter 3, DSI Java APIs on page 171
Internet Document Server

Have the Internet Document Chapter 4, DSI Processing Rules on page 183
Server run specific processing

rules

Create Visual Basic programs, Chapter 5, DSI Visual Basic APIs on page 249
Active X components and ASP
components,

Chapter 1

Using the Internet Document Server SDK

To...

Read...

For help resolving any errors which may occur:

See a listing of all error messages Appendix B of the Internet Document Server Guide

For information about system files:

See this appendix

Appendix A of the Internet Document Server Guide

Keep in mind that XML standards, as defined by the W3C, require you to substitute text
characters that are not in XML tags (for example, between <entry> and </entry> tags)
as escape sequences. The characters that require substitution are listed in the following table.
If you cut and paste an XML example from this or other Docupresentment

documentation into an XML configuration file, you will have to manually make these

substitutions.

For this character

Use this escape sequence

< (less than)

> (greater than)
& (ampersand)
' (apostrophe)

«

(quotation mark)

<
>
&
'

"

USING THE DSI
APIs wiTH C

Using the DSI APIs with C

A front-end client has a number of convenient and powerful features for access to the
Internet Document Server using the DSI C APL Note that access to all of the client
functionality s not provided through the DSI C APIL.

You must handle memory management, rule processing, HTML formatting, and other
calls to the operating system. The DSI API does, however, handle communication with
the server. You can find prototypes for all of the DSI C API functions in DSILIB.H. For
executable programs, access to the DSIW32.DLL file must be explicitly included in your
link by including the implib DSTW32.lib.

In addition, a number of functions are available expressly for use in custom front-end
clients. If you are writing an executable program, note that the client must call the
DSIInit and DSIInitInstance functions before it calls any of the other DSI functions.

NOTE:You cannot call the DSIInit and DSIInitInstance functions more than once
without an intervening call to the DSITerm and DSITermInstance functions.

The DSIInit function returns a process-level handle used for calls to the DSIInitInstance
function, which in turn returns a thread-level handle. The instance handle is used for all
subsequent calls to DSI functions.

/* for .EXE only */
hApp = DSIInit();
hInstance = DSIInitInstance(hApp);

If you are writing rules and not an executable program, the opposite is true. You should
not call the DSIInit and/or DSIInitInstance functions because the program running the
rules has already made those calls. As you will see in the topic Writing Processing Rules
in C on page 12, you will be passed the instance handle every time the rule is called.

NOTE:The functions DSIInit, DSIInitInstance, DSITermInstance, and DSITerm
functions are required for EXEs only. Do not use them when writing rules.

If you are using the queue APIs, the next task is to call DSIInitQueue once for each of
the input and output queues. These calls initialize the communication channels between
a front-end client and server and create the attachment lists.

DSIInitQueue(hInstance, DSI_INPUTQUEUE, “RESULTQ”)

Once the queues have been initialized, you can implement your design. The queue fields
required by the server are:

* the request type (see the table on page 16.) DSIQSET_REQTYPE
* your user ID (your choice) DSIQSET_USERID
* aglobally unique identifier, DSIQSET_UNIQUE_ID

Once the rule processing has been completed and the attachment list filled, a front-end
client must fill the appropriate queue fields and add the record to the queue for retrieval
by the server. Additionally, if a front-end client provides attachment data to the Internet
Document Server, you must set the DSIQSET_ATTACHMENT field.

Chapter 1

Using the Internet Document Server SDK

NOTE:You set the DSIQSET_ATTACHMENT field to add a single attachment buffer
that the caller maintains. For other situations, you would use the
DSIAddAttachVar and DSIStoreAttachment functions.

Since your process or thread likely will not be the only user of the server, the
DSIQSET_UNIQUE _ID field, which you will use to locate the response, should be
unique to a given request. The easiest way to do this is to use the DSIGetUniqueString
function, as shown here:

/* set the request type */
DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET REQTYPE,
"sss,
sizeof ("SSS"));

/* set the user id */
DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET USERID,
"MyID",
sizeof ("MyID"));

/* set the unique id

first the field length */

DSIGetQFieldLength (hInstance,
DSI_OUTPUTQUEUE,
DSIQSET UNIQUE_ID)

/* next get a unique identifier from DSI */
DSIGetUniqueString(hInstance, szUnique, cbUnique);

/* put unique id into the queue record */
DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET_ UNIQUE ID,
szUnique,
cbUnique) ;

Once the above fields have been filled, call the DSIAddToQueue function to post the
message to the server.

DSIAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;

To use a proprietary attachment format, retrieve each attachment variable in turn,
copying them all into a single buffer in the format desired, and pass the result to the
DSISetQField function. The length of this buffer cannot exceed 64K.

To retrieve results from the Internet Document Server, call the DSIFindInQueue or
DSIGetQueueRec function with the pszId parameter set to the value used for the
DSIQSET_UNIQUE_ID (we recommend that you use the DSIGetUniqueString
function to generate this value).

Using the DSI APIs with C

You can then retrieve the attachment from the result record using the DSIGetQField
function and parse it into individual attachment variables. Alternatively, you can use
the DSIParseAttachment function to produce a list of name/value pairs that can be
retrieved using the DSIAttachCursorFirst, DSIAttachCursorNext,
DSIAttachCursorPrev, DSIAttachCursorLast functions, as shown below:

DSIGetQueueRec (hInstance,
DSTI_INPUTQUEUE,
szUnique,
1000L,

10000L) ;

DSIParseAttachment (hInstance, DSI_INPUTQUEUE

)i

DSIOpenAttachCursor (hInstance, DSI_INPUTQUEUE) ;

DSIAttachCursorFirst (hCursor,
szName,
sizeof (szName),
szValue,

sizeof (szValue));

DSIAttachCursorNext (hCursor,
szName,
sizeof (szName),
szValue,
sizeof (szValue));
DSICloseAttachCursor (hCursor);

/* for .EXE only*/
if (hInstance != DSINULLHANDLE) {

DSITermQueue (hInstance, DSI_INPUTQUEUE) ;
DSITermQueue (hInstance, DSI_OUTPUTQUEUE) ;

DSITermInstance(hInstance);
}
if (hApp != DSINULLHANDLE) {
DSITerm(hApp);

Chapter 1

Using the Internet Document Server SDK

USING UNICODE

10

IN
ATTACHMENT
V ARIABLES

IDS now supports Unicode, via UTF-8 encoding, in the setting and retrieving of values
from attachment variables. The support is implemented via new functions and defined
constants in the DSILIB library. The new functions are:

DSIAddAttachVarEx
DSIAddToAttachRecEx
DSILocateAttachvVarEx
DSIAttachVarLengthEx
DSIAttachCursorFirstEx
DSIAttachCursorNextEx
DSIAttachCursorPrevEx
DSIAttachCursorLastEx
DSIAttachCursorValueEx
DSIAttachCursorValueLengthEx
DSIEncryptValueEx

These functions are similar to the base versions of the functions, but have an extra
encoding parameter that you can set to either DSIENCODING_SINGLE_BYTE or
DSIENCODING_UTEF_8.

For example, when adding an attachment variable a rule writer can either use
DSIAddAttachVar (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue);
or

DSIAddAttachvarEx (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_SINGLE_BYTE) ;

or

DSIAddAttachvarEx (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_UTF_8) ;

When using the base versions of these functions, the default encoding is
DSIENCODING_SINGLE_BYTE, so the first two function calls would do the same
thing.

DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, which has a one-to-
one mapping between bytes and Unicode characters between 32 and 255, exceps from 128
to 159, which maps some Unicode characters down into this range. For example, the

Unicode character for the Euro symbol (hex 20ac) is converted to a 128 (hex 80) and
vice versa. This makes IDS compatible with how Documaker handles the Euro symbol.

DSIENCODING_UTEF_8 uses UTF-8 encoding, which is a way to translate Unicode
multibyte characters into a format compatible with null-terminated C language strings
while retaining all the character information.

SAMPLE PROGRAM-DSIEX

As an aid, the Internet Document Server includes a sample program named DSIEX.C
and its executable DSIEXW32.EXE. It is a simple, single-threaded console application,
which opens an input and output queue, requests the server status, and dumps the
results to sysout. It also checks the installation and setup.

To run DSIEXW32.EXE, follow these steps:
1 Start the Internet Document Server in the \DOCSERYV directory.

Using Unicode in Attachment Variables

2 Run DSIEXW32.EXE.

The DSIEX program will run for a few seconds and stop after producing 30+ lines of
output. If you want to look more closely at the output, which includes a listing of all
the libraries used by Internet Document Server, redirect the output to a file.

Take a look at DSIEX.C and you will see it includes all the steps outlined above,
especially those required for an executable program, such as the calls to the DSIInit,
DSIInitInstance, DSITermInstance, and DSITerm functions.

11

Chapter 1

Using the Internet Document Server SDK

WRITING
PROCESSING
RULES IN C

DSI_MSGINIT message

12

DSI_ MSGRUNF and
DSI_ MSGRUNR
messages

DSI MSGTERM
message

A rule is an entry point in a DLL that follows a standard parameter set or convention.
You can use rules to customize how your system operates. The processing rules run
either in a front-end client, such as the CGI client, or in the Internet Document Server.

Please refer to Chapter 3 in the Internet Document Server Guide, for a discussion on
configuring the rules in the configuration file. The standard rules you can use are
explained in the topic Server Rules on page 184.

The rules run by the front-end CGI client are contained in DLLs, which the system loads
when it receives a request that requires the use of a rule. Because rules run within the
process address space of the executable program, memory violations within a rule are
memory violations within the server. This is not a result you want to occur so take steps
to prevent them.

The same may be said of memory leaks and performance bottlenecks. For this reason,
you should carefully write and test the rule before you place it in service. There are some
good tools available to help you look for bugs, memory leaks and performance bottle
necks, such as Bounds Checker and Heap Agent. The results are well worth the effort. It
is assumed that you are familiar with the C programming language.

How THE SYSTEM PROCESSES RULES

To process the various rules, the system loops through a list of rules and calls each in
turn with this set of messages:

e DSI_MSGINIT

* DSI_MSGRUNF
e DSI_ MSGRUNR
e DSI_MSGTERM

The DSI_MSGINIT message lets a rule initialize lists and other data structures that will
be used during processing of the following messages or by other rules.

NOTE:This rule list is run in forward order.

The DSI_MSGRUNTF and DSI_MSGRUNR are the actual processing messages. Two
processing messages are provided so rules have a chance to provide additional processing
after other rules have done their work. The rule list is run in forward order during the
processing of the DSI_MSGRUNF message and in reverse order while processing the
DSI_MSGRUNR message.

Finally, the DSI_MSGTERM message allows rules to release any resources that were
allocated during the previous three stages.

NOTE:This rule list is run in reverse order.

Writing Processing Rules in C

The rules processing engine provides no means to abort this processing loop. It is your
responsibility to check at each stage to make sure that prior rules completed successfully,
that necessary data has been provided, and react accordingly.

Used with a front-end CGI client and Internet Document Server, most transactions
involve three runs of the rules processing engine. The first run, by the front-end CGI
client, transforms user input into data usable by the server. The second run of the rules
processing engine by the Internet Document Server performs the actual work of the
transaction. The final run of the rules processing engine is again done by a front-end
CGI client and transforms the server's results into user output.

During each run of the engine, a different set of data is available for use by the rules.
Entering the first run, a front-end client has read and parsed the request, such as a URL
provided by the web browser to the CGI client, as well as the environment variables. In
the CGI client, each element of the URL and each environment variable are added to
the output attachment list to make them available for use by rules.

To provide a front-end client with access to the attachment, be sure the
ATCUnloadAttachment rule is present in the client's rule list. The
ATCUnloadAttachment rule performs its processing during the DSI_MSGRUNR
message. Keep this in mind when you order the rule list. Make sure all necessary
attachment variables are created before the attachment is unloaded.

When the Internet Document Server rules run, certain fields in the Request queue record
are accessible. To make sure the attachment variables provided by a front-end client are
also accessible, include the ATCLoadAttachment rule in the rule list before any rules that
require attachment data.

To provide the result processing loop of the client with access to the attachment
variables created by the server, make sure the ATCUnloadAttachment rule is in the
server's rule list. The ATCUnloadAttachment rule performs its processing during the
DSI_MSGRUNR message. Keep this in mind when ordering the rule list so that all
necessary attachment variables are created before the attachment is unloaded.

INOTE:See also Chapter 3 of the Internet Document Server Guide for more
information.

When a front-end client begins to process results, certain fields of the result queue record
are again available. As with the server run, any necessary attachment data must be made
available with a call to ATCLoadAttachment in the rule list before attempting to access
that data.

CREATING RULES

The rules you write in C for the client or server must follow this prototype:

_DSIEXPORT long _DSIAPI MyRule(DSTIHANDLE hInstance,
char *pszParms,
unsigned long ulMsg,
unsigned long ulOptions) ;

* hlnstance is created by a call to the DSIInit function

13

Chapter 1
Using the Internet Document Server SDK

* pszParms contains the rule parameters, as specified in the configuration file
* #lMsgis the current message, as discussed above

* wlOptions is reserved for future use

NOTE:Rules written for use with the front-end CGI client or server must not call the
DSIInit or DSIInitInstance functions. These calls are handled elsewhere.

Each rule will generally have a switch statement with cases for each of the defined
messages. Inside the rule, you can do just about anything you want. Remember, though,
that allocated memory must be freed, and that performance bottlenecks in a rule create
performance bottlenecks for the server.

Rule template Here’s a template for a rule that will help you get started.

_DSIEXPORT long _DSIAPI MyRule (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

switch (ulMsg)
{
/* ___________________________

* Initialization Message
* Add data initialization here

*/
case DSI_MSGINIT:
break;
/*

* Run Rule Forward Message
* Do desired processing

*/
case DSI_MSGRUNF:
break;
/*

* Run Rule Reverse Message
* Do desired processing

*/
case DSI_MSGRUNR:
break;
YA e
* Termination Message
* Clear data, free any memory allocated
*/
case DSI_MSGTERM:
break;

}
return DSIERR_SUCCESS;

14

Writing Processing Rules in C

CREATING, ACCESSING, AND DESTROYING VARIABLES

The DSICreateValue, DSIQueryValueSize, DSILocateValue, and DSIDestroyValue
functions provide easy access to persistent variables you can access from any rule.

NOTE:Variable names are case sensitive and must be unique.

Accessing the Attachment

The attachment 1s attached to the queue record passed between the client and server.
Attachment variables are similar to those created by the DSICreateValue function,
except attachment variables are passed between processes. If a value does not need to find
its way from the client to the server or vice versa, use the DSICreateValue rule to create
the variable.

The functions you can use to access the attachment are...
* DSIAddAttachVar

e DSILocateAttachVar

e DSIDeleteAttachVar

e DSIOpenAttachCursor

* DSICloseAttachCursor

* DSIAttachCursorFirst

e DSIAttachCursorNext

* DSIAttachCursorPrev

e DSIAttachCursorLast

In addition to these rules, there are several additional functions and rules you can use
to access the attachment:

e The DSIAddAttachRec and DSIAddToAttachRec functions let you create stem
variables, similar to the C language struct type. These stems allow for multiple
records each with members having the same name.

e The HTML formatting rule, IRCUnloadPage, replaces special tags in an HTML
template with the values in these variables. See Chapter 3 of the Internet Document
Server Guide for more information.

e The DSICopyAttachVars function lets you copy an entire attachment from one
queue to another.

* The DSIErrorMessage function lets you send formatted error messages to the user.
The DSIErrorMessage function uses the stem variable capabilities of attachments
and the HTML formatting support of the IRCUnloadPage rule so you can precisely
report errors.

15

Chapter 1

Using the Internet Document Server SDK

Reserved request types

16

ACCESSING THE QUEUE

As a general rule, you should not have to access the queue record, as opposed to the
attachment, from within custom rules. There may be times, however, when you want to
change the request type or priority, or to use a proprietary attachment format. To query
and set queue fields, use the DSIGetQField and DSISetQField functions.

There are several field identifiers you can use with these functions. As queue field lengths
can change, call the DSIGetQFieldLength function before you retrieve the field. Be very
careful when you modify fields, particularly when you use the provided client and server
programs, because these programs rely on certain fields.

It is practically inevitable that a queue error will occur at some point. To get information
regarding the nature of the error, use the DSIGetQError function.

There are additional queue APIs that should only be used when creating an executable.

These APIs will be discussed shortly.

NOTE:The queue names DSI-INPUTQUEUE and DSI-OUTPUTQUEUE are
relative, depending on your perspective. For example, the input queue in a rule is
the output queue in a client.

USING UTILITY FUNCTIONS

At times, you may need to create and later delete temporary files. The DSI SDK includes
two APIs you can use to perform these tasks:

To... Use this function...
Generate unique file names and avoid naming conflicts DSIGetUniqueString
Remove temporary files after a specified time period DSICacheFile with the

IRLPurgeCache rule

CREATING RULES FOR RESERVED REQUEST TYPES

Several request types are reserved for use within the server and/or client. You cannot use
these request types for transactions. While a default set of rules is provided for these
reserved request types, in some cases you may want to change these defaults.

Here is a list of the reserved requests and a description of each. These requests may or
may not be in use at any given time, and the default processing for these requests is subject

to change.
Request type Description
ADM Reserved
CAD Reserved

Writing Processing Rules in C

Request type Description

CLF Clear log file

DEFAULT Used if no rules are listed for a request CAD client
administration

ERR Error message

ERS Relay daemon stop

ESS Server stop

INI Initialization/termination rules

THREADINI Initialization/termination rules for threads

RAD Relay daemon administration

RRS Relay daemon restart

RSS Server restart

SAR Server autorun

SCS Client statistics

SSS Server statistics

UNK Unknown

VLF View log file

Messages beginning with a digit Reserved for internal use. Do not override.

To extend the existing rules for one of these request types, construct the rule as
discussed. Then insert a call to the rule in the appropriate place in the configuration file
(refer to Using the Documaker Bridge for more information).

For instance, to add MyPeriodicCleanupFunction in the MYDLL.DLL library after the
IRLPurge rule has completed, modify the ReqType:SAR control group as shown here:
< gection name="ReqType:SAR” >

<entry name=”function”>irlw32->IRLPurge</entry>
<entry name=”function”>mydll->MyPeriodicCleanupFunction</entry>

</section>
If you are replacing the functionality provided for one of the reserved request types,

make sure the replacement rule provides adequate functionality. Then, simply remove
(or comment) the existing rules and insert the replacements.

NOTE:The system does not check the status of rules. Processing continues even if your
rule fails. You must make sure the previous steps of the process were completed
without error.

17

Chapter 1

Using the Internet Document Server SDK

18

USING THE
JAVA LIBRARIES

Using the Java Libraries

A front-end client has convenient Java libraries available from Oracle Insurance for
accessing IDS. The Internet Document Server Java Libraries handle communication
with the server, the bundling of data and formatting the data for sending to the server,
in addition to useful utility functions.

The libraries are available in the DocuCorpUtil.jar and DocucorpMsg.jar files. These
files must be part of the CLASSPATH of the Java client program.

You will also need files for the parsing and writing of XML files, xerces.jar and xalan.jar.
If you are running Java version 1.3 these files will need to be included in your
CLASSPATH. These files are part of the Java runtime version 1.4 and later.

The Internet Document Server Java Libraries provide support for setting up queues for
communicating with IDS. This is done through a guene factory, which creates input and
output queues. The queue factory can be created using the getQueueFactory method of
the class com.docucorp.messaging.DocucorpMsgUtil. Configuration parameters for the
queue factory are passed in using a java.util. Properties object. The queue factory can then
create the needed queues.

DSIMessageQueueFactory queueFactory =
DocucorpMsgUtil.getQueueFactory (props) ;

DSIMessageQueue inputQueue =

_queueFactory.createMessageQueue (DSIMessageQueueFactory.INPUTQUEUE)

DSIMessageQueue outputQueue =

_queueFactory.createMessageQueue (DSIMessageQueueFactory.OUTPUTQUEUE

)i
Requests sent and results retrieved from the server are held in instances of the
com.docucorp.messaging.DSIMessage class. This class has methods for storing name/
value pairs called message variables and strings or binary data in attachments. There are also
methods for setting the request type and unique ID of the request.

DSIMessage requestDSIMessage = new DSIMessage() ;
requestDSIMessage.setRequestType ("SSS") ;
requestDSIMessage.setMsgVar ("USERID", "USER");
requestDSIMessage.setMsgVar ("PASSWORD", "PASS");

Before the request can be sent the data in the DSIMessage object must be changed to a
format that can be sent through the queues. This process is called marshalling. A Java
object that marshals a DSIMessage can be created using the getMarshaller method of the
class com.docucorp.messaging.DocucorpMsgUtil. The marshaller will read the
information in the DSIMessage and create an object that can be sent through the queues.
DSIMessageMarshaller marshaller =
DocucorpMsgUtil.getMarshaller (props) ;
Object request = marshaller.marshall (requestDSIMessage) ;

Since more than one client application can be communicating with the server through
the queues, each message should be sent with a unique identifying string so the client
application can get the correct result record back from the result queue. The Java class
com.docucorp.util.UniqueStringGenerator can be used to make a unique string.

UniqueStringGenerator usg = new UniqueStringGenerator () ;
String uniqueID = generateUniqueString() ;

With the marshaled request and unique ID, IDS can send the request to the server.

outputQueue.putMessage (uniqueID, request) ;

19

Chapter 1

Using the Internet Document Server SDK

20

The client application now waits for the server to process the request and make a result
that will go in the client’s input queue. The result is marked with the unique ID string
sent with the request.

Object result = inputQueue.getMessage (uniqueID, 1000, 3);

The result is in the same format that the marshaller used to send the request. To get the
data in a usable format, the system uses the same kind of marshaller to #nmarshall the
result object into a DSIMessage.

DSIMessage resultDSIMessage = new DSIMessage() ;
marshaller.unmarshall (result, resultDSIMessage) ;

You can now use DSIMessage methods to retrieve message variables and any attachments
that the server may have sent back.

Map messageVariables = resultDSIMessage.getAllMsgVars() ;
Map attachments = resultDSIMessage.getAllAttachments() ;

Using the MsgClient Sample Program

As an aid, IDS includes a sample program named MsgClient.java and its compiled form
MsgClient.class. It is a single-threaded console Java program that will fill in a
DSIMessage from a data file, open an output and input queue, send a request, get the
result back and display the result on the screen. for this example, assume...

e IDS is running

e The Docucorp Java Libraries, supporting files, and the MsgClient.class file is in a
subdirectory called /b

e The client configuration file (dsimsgclient.properties) is in the current directory
e The data file (ssstest.txt) is in the current directory

Then you run MsgClient under Windows using this command:
java -cp lib;lib\DocucorpMsg.jar MsgClient ssstest.txt

The MsgClient sample has all the steps outlined above.

WRITING
PROCESSING
RULES IN JAVA

MSG_INIT message

MSG_RUNF and
MSG_RUNR messages

MSG_TERM message

Writing Processing Rules in Java

A rule is a method in a Java class that follows a standard parameter set or convention.
The method may be an instance method or a static (class) method. You can use rules to
customize how IDS operates.

How the System Processes Rules

Each request sent to IDS corresponds to a list of rules. Each rule in the list is called with
a set of messages (from the Java class com.docucorp.ids.data.IDSConstants):

¢ IDSConstants. MSG_INIT

e IDSConstants. MSG_RUNF
e IDSConstants. MSG_RUNR
e IDSConstants. MSG_TERM

The MSG_INIT message lets a rule initialize any data that will be used by itself or other
rules during the processing the other messages.

MSG_INIT is run in forward order, starting with the first rule in the request’s list of
rules and proceeding to the last.

These messages are intended for the main data processing the rules have to do. Two
messages are provided so every rule has a chance to run after the rules have been run
once

MSG_RUNF is run in forward order, starting with the first rule in the request’s list of
rules and proceeding to the last. MSG_RUNR is run in reverse order, starting with the
last rule in the request’s list of rules and proceeding to the first.

The MSG_TERM message lets the rules release any non-memory related resources
allocated during the run of the other messages.

Developing and Deploying Java Rules

Java rules are methods in Java classes. The Java class should include a no-argument
constructor (unless you are using a static method) and a method that has the rule
function signature, described below.

Java rules are deployed by placing the Java executable code in the ru/es subdirectory of
the main IDS directory; there is no need to modify the CLASSPATH of IDS to run the
rule. If the executable code is in a .jar file it can be put directly in the rules directory. If
the executable code is separate .class files then it needs to have a directory structure that
matches the package structure of the Java class.

For example, if the Java rule is CustomRule and its package is com.sampco, then the
CustomRule.class file would need to be in the rules/com/sampco directory under the
main IDS directory.

In addition to custom rules, any third party Java libraries needed to run the custom rules
should be put in the rules subdirectory, such as database drivers, communications code,
and so on. Java rules deployed also have access to Java code that is part of IDS. This code
is in the /b subdirectory under the main IDS directory.

21

Chapter 1

Using the Internet Document Server SDK

Every time IDS is restarted the rules subdirectory is checked for rules code. It is not
necessary to shut down IDS and start it again to deploy new or updated Java rules.

Setting up Java rules in To run a Java rule in a request, add a line to the request as follows:

the configuration file

< entry

name="function">java;classname;objectname; scope;method;arguments</

entry>

Parameter

Description

classname

objectname

scope

method

arguments

Name of your Java class, in full package form. For example, if you have class
CustomRule in the com.sampco package, the classname would be
com.sampco.CustomRule

Name used to refer to the object. Required if using global scope. Multiple Java
rules in different requests with global scope and the same object name would
refer to the same Java object.

Scope can be one of the following values.
global - The object will remain until IDS is restarted.

transaction - The object will be created during the MSG_INIT message and will
remain until the request has processed all the MSG_INIT, MSG_RUNF,
MSG_RUNR and MSG_TERM messages.

local - The object is created and destroyed for every message run during the
request.

static - No object is created; the method is a static method of the class and will
be run as such.

Name of the method in the Java class to run as the rule.

Any additional arguments from the configuration line.

Setting up IDS 1.x Java rules were also implemented in IDS version 1.x but the function signature was
Java rules in the closer to C rules, including the use of a DSI Handle. Although new Java rules should
configuration file use the new function signature, mentioned below, version 1.x Java rules will run as-is in

IDS 2.x.

To run an IDS 1.x Java rule in a request, add a line to the request as follows:

<entry name="function">dsijrule-
>JavaRunRule, ;classname;objectname; scope;method;arguments</entry>

Parameter

Description

classname

objectname

22

Name of your Java class, in full package form, using JNI formatting. For
example, if you have class CustomRule in the com.sampco package, the
classname would be com/sampco/CustomRule. This makes for easier
conversion of IDS 1.x rule lines to IDS 2.

Name used to refer to the object. Required if using global scope. Multiple
Java rules in different requests with global scope and the same object name
would refer to the same Java object.

Writing Processing Rules in Java

Parameter Description

scope Scope can be one of the following values.
global - The object will remain until IDS is restarted.

transaction - The object will be created during the MSG_INIT message and
will remain until the request has processed all the MSG_INIT, MSG_RUNF,
MSG_RUNR and MSG_TERM messages.

local - The object is created and destroyed for every message run during the
request.

static - No object is created; the method is a static method of the class and
will be run as such.

method Name of the method in the Java class to run as the rule.

arguments Any additional arguments from the configuration line.

JAVA RULES VS. C RULES

C rules are functions with no data associated with them. This means that if a C rule
needs data to operate it usually needs to allocate data structures in the DSI_MSGINIT
message, use the data in DSI_MSGRUNF and DSI_MSGRUNR, and free it in
DSI_MSGTERM.

Since the setup of Java rules can include the creation of Java objects from classes, data
can automatically be associated with the Java rule. For example a Java rule run under
transaction scope can allocate data structures it needs in the object’s member variables
at object construction or during the run of the MSG_INIT message. If the resources
allocated by the Java object are only memory resources, the memory will be de-allocated
during garbage collection some time after the object goes out of scope. If the rule
allocates non-memory resources (files, database connections, etc.) then it should follow
the usual convention of allocating resources during MSG_INIT and freeing resources
during MSG_TERM.

FUNCTION SIGNATURE FOR JAVA RULES

The methods for Java rules must follow this function signature:

public int ruleMethod (RequestState requestState, String arg, int msgqg)

Parameter Description

requestState the object that holds the current running state of the request at this point of
execution. This includes a DSIMessage with the input message variables and
attachments, a DSIMessage with the output message variables and
attachments being built, configuration information to read, and so on.

arg the arguments from the rule line of the configuration file.

msg the message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

The return code should be either IDSConstants. RET_SUCCESS if the rule ran
successfully, or IDSConstants.RET_FAIL if not.

23

Chapter 1

Using the Internet Document Server SDK

Example Here is an example of a Java class that can be used as a starting point for rule writing:

import com.docucorp.ids.data.*;
public class SampleRule {

public SampleRule() {
/*
* You may want to do some data setup here.

*/

public int runRule (RequestState requestState,
String arg,
int msg) {

try {
switch (msg) {
case IDSConstants.MSG_INIT:

/*
* Do any non-memory related setup here.
*/
break;
case IDSConstants.MSG_RUNF:
/*
* Do main processing here.
*/
break;
case IDSConstants.MSG_RUNR:
/*
* Do main processing here.
*/
break;
case IDSConstants.MSG_TERM:
/*
* Do any non-memory related cleanup here.
*/
break;

}
return IDSConstants.RET SUCCESS;
} catch (Exception ex) {

return IDSConstants.RET_FATL;

24

USING THE
IDSWEBDAV
SERVLET CLIENT
APIS AND
DPRLIB RULES

Library management
rules

File system rules

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

The IDSWebdavServlet client APIs and server side rules let you update libraries or file
systems using these WebDav client commands:

options Is cd
propgetall propfind propget
get put lock
unlock delete copy
move proppatch mkcol

You can use these DPRLIB rules to update libraries maintained by Library Manager
using WebDav commands.

DPRLbyGet on page 28

DPRLbyPut on page 30

DPRLbyLock on page 31

DPRLbyUnlock on page 32

DPRLbyDelete on page 33

DPRLbyOptions on page 34

DPRLbyCopy on page 35

DPRLbyPropPatch on

page 36

DPRLbyMKCol on page 37

You can also use the following file system rules:

propFind on page 42
get on page 44

put on page 45

lock on page 46
unlock on page 47
delete on page 48
options on page 49
copy on page 49
move on page 50
propPatch on page 51
mkCol on page 52

25

Chapter 1

Using the Internet Document Server SDK

26

Input attachments

DPRLbyPropFind
Use this rule to return:
e The properties for a file if the resource you specify is a file

e Alist of files and their properties if the resource you specify is a collection or file

type (FAP, LOG, DDT, DAL, FOR, GRP, BDF)
e Alist of collections or file types if the resource you specify is root (/).

This rule supports these WebDav commands by querying Library Manager for the
configuration specified:

Use this command To

Is [path] List the contents of a collection.
cd [path] Change directories.

propget [path] [property] Get a property.

propfind [path] [property] Find a property.

propgetall [path] List all properties for a resource.
Variable Description

RESOURCEURI A resource URI specifying a user ID, config, file type, and resource. Here
are some examples of resource URIs:

/userid/config/filetype/resource/
/userid/config/filetype/
/userid/config/

/userid/

DEPTH Enter a depth of One (1) for collections or file types in Library Manager.
Enter a depth of zero (0) for file resources.

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Variable Description
PROPERTIES A rowset of rows that match each of the file resources available
for a particular collection/file type. If DEPTH is one (1) and
RESOURCEURI specifies a collection or file type in Library
Manager, the PROPERTIES rowset returns a row for each
resource available in the collection/file type.
If DEPTH is zero (0) and RESOURCEURI specifies a file
resource, the PROPERTIES rowset returns a single row with the
properties for the resource you specified.
Each row in the PROPERTIES rowset contains the following
properties for a file resource:
supportedlock - If locking is allowed, this XML string appears:
property: <lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktype>
<write/>
</locktype>
</lockentry>
getContentLanguage - currently returns en_US.
resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type/directory.
displayname - the display name of the resource.
HREF - the resource URL for this resource
getlastmodified - the date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.
getContentLength - currently zero (0) because there is no support
for retrieving the file size of a document stored in Library
Manager (reserved for future use).
If a resource is locked these additional properties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCORPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS contains SUCCESS.
RESULTS Success or error

27

Chapter 1

Using the Internet Document Server SDK

INI options

Input attachments

28

Variable Description

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav ’not found’ error code) - The RESOURCEURI

cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav ’method error’ error code) - An internal API error
or memory error occurred.

Use these options in the DAP.INI file to see a listing of the configurations that support
Library Manager.

< LbyConfigs >
Config = RPEX1
Config = RPEX2

DPRLbyGet

Use this rule to get or check out a resource file from Library Manager. This rule can
retrieve a resource file by version and revision or by name, in which case it retrieves the
latest version and revision for the resource specified. This rule supports these WebDav
commands:

Use this command To

get [path] file Get a resource.
head [path] file Get header info for a resource. (currently works same as get)
Variable Description

RESOURCEURI The resource URI of the resource you want to retrieve from Library
Manager. Here is an example of the format for the resource URI:

/userid/config/filetype/resource

Here are some examples:

/cir/rpexl/ddt/master.ddt
/jdoe/RPEX1/DDT/MASTER_0000100001_20030707 .DDT

If the resource file name does not contain version, revision, and archive
effective date information, the DPRLbyGet rule retrieves the last version
and revision for the resource specified. Use the DPRLbyGet rule to get or
check out a resource from Library Manager.

USERID (Optional) The user ID you want to use for the get operation. If you
include this attachment variable, it overrides the user ID provided as part
of the resource URIL

If the user ID is missing as an attachment variable and in the resource
URLI, the rule will fail.

Input rule arguments

Output attachments

Argument

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Description

CHECKOUT

If you include this rule argument and set its value to Yes, the rule tries to check
out (get and lock) the resource specified. This is useful for configuring this rule
for a check-out or get request type.

Variable

Description

PROPERTIES

RESULTS

A rowset with a row for the resource specified in
RESOURCEURLI. The row contains the following properties
for a file resource:

supportedlock - If locking is allowed, this XML string appears:
property: <lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktype>
<write/>
</locktype>
</lockentry>
getContentLanguage - currently returns en_US.

resourcetype - blank if the resource is a file, otherwise co/lection if
the resource is a file type/directory.

displayname - the display name of the resource.
HREE - the resource URL for this resource

getlastmodified - a date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.

getContentLength - currently zero (0) because there is no
support for retrieving the file size of a document stored in
Library Manager.

If a resource is locked these additional properties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCORPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).

LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).

LOCKTOKEN - A unique ID that identifies the resource
locked.

This rowset is only present if RESULTS contains SUCCESS.

Success or error

29

Chapter 1

Using the Internet Document Server SDK

Variable Description

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav *method error’ error code) - An internal API
error or memory error occurred.

423 - (WebDav ’locked’ error code) - The resource is locked and
the system attempted a check out operation.

DPRLbyPut

Use this rule to add a new resource or to check in (unlock and put) an existing resource
into Library Manager. You can add a new resource or put an existing resource into
Library Manager.

If the resource is new, its version and revision will be 00001. If the resource is an existing
one and it is locked by the same user ID performing the put operation, the resource will
be put into Library Manager with a new version and revision.

This rule supports the following WebDav commands:

Use this command To

put [path] Put a file into Library Manager.

Keep in mind that if a put operation is attempted on an existing resource and the
version and revision specified is not the latest one, the put operation will fail. The system
only supports put operations for new documents or for the last existing version and
revision which must be locked prior to the put call.

Input attachments

Variable Description

RESOURCEURI A resource URI specifying the resource you want to place into
Library Manager. Here is an example of the format of the URL

/userid/config/filetype/resource/
Here are some examples:

/cjr/rpexl/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER_0000100001_20030707 .DDT

Keep in mind that if the resource file name in RESOURCEURI
does not contain version, revision, and archive effective date
information, the DPRLbyPut rule tries to put the last version and
revision of the file resource you specified.

30

Variable

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Description

USERID

ARCEFFECTIVEDATE

(Optional) The user ID you want to use for the put operation. If
this attachment variable is present, it overrides the user ID
provided in the resource URIL

If the user ID is missing from the attachment variable and from
the resource URI, the rule will fail. For put operations with an
existing resource, the user ID must match that of the locked
record or the put operation will fail.

(Optional) An archive effective date. Here is the format for this
attachment variable:

MM/DD/YYYY

If this variable is present, its value is used as the archive effective
date for the put operation. If it is missing, the rule uses the current
date as the archive effective date.

Output attachments
Variable

Description

RESULTS

WEBDAVERRORCODE

Success or error.

This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav 'not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav *method error’ error code) - An internal API
error or memory error occurred.

423 - (WebDav ’locked’ error code) - The resource is locked
under a different user ID.

DPRLbyLock

Use this rule to lock a resource in Library Manager. This rule supports the following

WebDav commands:

Use this command

lock [path] file

Locks a resource.

31

Chapter 1

Using the Internet Document Server SDK

32

Input attachments

Output attachments

Variable Description
RESOURCEURI The resource URI of the resource you want to lock in Library Manager.
Here is an example of the format for a resource URI:
/userid/config/filetype/resource
Here are some examples:
/cjr/rpexl/ddt/master.ddt
/jdoe/RPEX1/DDT/MASTER _0000100001_20030707.DDT
If the resource file name in RESOURCEURI does not contain version,
revision, and archive effective date information, the DPRLbyLock rule
tries to lock the last version and revision of the file resource you specified.
USERID (Optional) The user ID you want to use for the lock operation. If this
attachment variable is present, it overrides the user ID provided as part
of the resource URL If the user ID is omitted from the attachment
variable and from the resource URI, the rule will fail.
Variable Description
LOCKOWNER The user ID that owns the lock.
LOCKSCOPE The scope of the lock (exclusive).
LOCKSUBJECT The name of the resource locked.
LOCKDEPTH The depth of the resource locked (0).
LOCKTYPE The type of lock (write).
LOCKTIMEOUT The time-out value after which the lock will expire (infinity).
LOCKTOKEN A unique ID that identifies the resource locked.
RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals

ERROR. It can contain one of these values:

404 - (WebDav 'not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav ’method error’ error code) - An internal API
error or memory error occurred.

423 - (WebDav ’locked’ error code) - The resource is already
locked.

DPRLbyUnlock

Use this rule to unlock a resource file in a library maintained by Library Manager. This
rule supports the following WebDav commands:

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Use this command To

unlock [path] file Unlock a resource.

Input attachments

Variable Description

RESOURCEURI The resource URI of the resource you want to unlock in Library Manager.
Here is an example of the format for a resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpexl/ddt/master.ddt
/jdoe/RPEX1/DDT/MASTER_0000100001_20030707.DDT

If the resource file name in RESOURCEURI does not contain version,
revision, and archive effective date information, the DPRLbyUnlock rule
tries to unlock the last version and revision of the file resource specified.

USERID (Optional) The user ID you want to use for the unlock operation. If this
attachment variable is present, it overrides the user ID provided in the
resource URL

If the user ID is omitted from the attachment variable and from the
resource URI, the rule fails. If the user ID does not match the one for the
locked record, the rule fails.

Output attachments

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method error’ error code) - An internal API error
or memory error occurred.

423 - (WebDav ’locked’ error code) - The resource is locked by
another user.

DPRLbyDelete

Use this rule to remove a resource or collection from Library Manager. This rule can
remove a resource file by version and revision or by name, in which case the rule
removes the latest version and revision for the resource file you specified.

If the resource you specify is a collection (file type), all resources for the collection will
be removed, provided none are locked. This rule supports these WebDav commands:

Use this command To

delete [path] file Delete a resource.

33

Chapter 1

Using the Internet Document Server SDK

Input attachments
Variable

Description

RESOURCEURI

RESULTS

WEBDAVERRORCODE

The resource URI of the resource you want to delete from
Library Manager. Here is an example of the format you should
use:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpexl/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER_0000100001_20030707 .DDT

If the resource file name in RESOURCEURI does not contain
version, revision, and archive effective date information, the
DPRLbyDelete rule tries to delete the last version and revision
of the file resource you specified.

(Optional) This variable is only generated by the DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.

If this variable exists and is set to ERROR — indicating either
the DPRLbyGet or DPRLbyCopy rule failed — this rule will not
execute.

(Optional) This variable is only generated by DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.

If this variable exists — indicating that either the DPRLbyGet
or DPRLbyCopy rule failed — this rule will not execute.

Output attachments
Variable

Description

RESULTS

WEBDAVERRORCODE

Success or error.

This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav method error’ error code) - An internal API
error or memory error occurred.

423 - (WebDav ’locked’ error code) - The resource is locked.

DPRLbyOptions

Use this rule to display the WebDav commands supported by Library Manager. This
rule supports these WebDav commands:

34

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Use this command To

options [path / url] Displays the options available for a path or URL.

This rule displays the following WebDav commands that are supported by Library

Manager:
options get head
propfind propgetall lock
unlock delete copy
move proppatch mkcol

Input attachments None

Output attachments
Variable Description

OPTIONS A comma-delimited string of WebDav commands supported by Library
Manager.

RESULTS Success.

DPRLbyCopy

Use this rule to copy a resource from one location to another, such as from one library
to another. Keep in mind...

¢ The resource and destination file names wust match.

* The config value for the resource must differ from the config value for the
destination.

If the resource you are copying does not exist in the destination library, it will be added
as a new resource with a version and revision of 00001. If the resource being copied exists
in the destination, it will be added as a new version and revision; this is true regardless
of what version and revision was specified for the resource or destination file names.
The DPRLbyCopy rule supports these WebDav commands:

Use this command To
copy [source] [destination] Copies a resource from one location to another.
Input attachments
Variable Description
LBYFILE The resource you want to use for the copy operation. A full path

and file name generated by DPRLbyGet rule, which should be run
before this rule in the WEBDAVCOPY request type.

35

Chapter 1

Using the Internet Document Server SDK

Variable

DESTINATIONURI

OVERWRITE

USERID

ARCEFFECTIVEDATE

Description

A URI that contains the destination of the resource you want to
copy. Here are some examples of destination URIs:

/cjr/rpexl/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER_0000100001_20030707 .DDT

(Optional) An overwrite flag indicator. A T'means to overwrite the
destination if it exists. An F indicates the rule will fail if the
destination exists. Reserved for future use.

(Optional) The user ID you want to use for the copy operation. If
this attachment variable exists, it overrides the user ID provided in
the destination URL. If the user ID is omitted from the attachment
variable and the destination URI, the rule will fail.

(Optional) An archive effective date. Here is an example of the
format you should use:

MM/DD/YYYY

If this variable exists, its value is used as the archive effective date
for the copy operation. Otherwise, the rule uses the current date
for the archive effective date.

Output attachments
Variable

Description

RESULTS

WEBDAVERRORCODE

Success or error.

This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

403 (Webdav "forbidden’ error code) - The source and destination
URIs are the same.

409 (Webdav ’conflict’ error code) - The resource cannot be
created at the destination.

412 (Webdav ’precondition failed” error code) - The overwrite
header is F and the state of the destination resource is non-null.
420 (Webdav 'method failure’ error code) - An internal error or
memory error occurred.

423 (Webdav ’locked’ error code) - The destination resource was
locked.

DPRLbyPropPatch

Use this rule to set or remove properties defined on the resource identified by the
RESOURCEURLI. This rule supports these WebDav commands:

Use this command To

proppatch

Not supported by Library Manager.

36

Input attachments

Output attachments

Input attachments

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

The proppatch command is not supported by Library Manager. You cannot modify the
properties for records in Library Manager. This rule always returns RESULTS set to
ERROR and WEBDAVERRORCODE set to method not allowed.

None
Variable Description
RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS contains
ERROR, which in this case is always true. It will contain this value:

405 - (WebDav 'method not allowed’ error code) - The server
does not allow or support this method.

DPRLbyMKCol

Use this rule to create a collection in Library Manager. This rule supports these WebDav
commands:

Use this command To

mbkcol Not supported by Library Manager.

Keep in mind the mkcol command is not supported by Library Manager. You cannot
make new collections (file types) in Library Manager without first adding a resource of
that type.

This rule always returns RESULTS set to ERROR and WEBDAVERRORCODE set to
unsupported media type.

None
Variable Description
RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR,
which in this case is always true. It contains this value:

415 - (WebDav "unsupported media type’ error code) - The server
does not support or understand the mkcol request type.

37

Chapter 1

Using the Internet Document Server SDK

WebDav Request Types for Library Manager
You should use the following request types with Library Manager:

<gsection name="ReqType:WEBDAVOPTIONS">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRLbyOptions</entry>
</section>
<gection name="ReqgType:WEBDAVPROPFIND">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyPropFind</entry>
</section>
<section name="ReqType:WEBDAVGET">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet</entry>

<entry name="function">atcw32-
>ATCSendFile, RESOURCE, LBYFILE, BINARY</entry>

</section>

<gection name="ReqgType:WEBDAVHEAD">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet</entry>

<entry name="function">atcw32-
>ATCSendFile, RESOURCE, LBYFILE, BINARY</entry>

</section>
<gection name="ReqgType:WEBDAVPUT">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyPut</entry>
</section>
<gection name="ReqgType:WEBDAVCHECKOUT">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet, CheckOut=Yes</entry>

<entry name="function">atcw32-
>ATCSendFile, RESOURCE, LBYFILE, BINARY</entry>

</section>
<gection name="ReqgType:WEBDAVCHECKIN">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyPut</entry>
</section>

38

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<gection name="ReqType:WEBDAVLOCK">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyLock</entry>
</section>
<gection name="ReqType:WEBDAVUNLOCK">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyUnlock</entry>
</section>
<gection name="ReqType:WEBDAVDELETE">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyDelete</entry>
</section>
<gection name="ReqType:WEBDAVCOPY">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet</entry>
<entry name="function">dprw32->DPRLbyCopy</entry>
</section>
<gection name="ReqType:WEBDAVMOVE">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet</entry>
<entry name="function">dprw32->DPRLbyCopy</entry>
<entry name="function">dprw32->DPRLbyDelete</entry>
</section>
<gection name="ReqType:WEBDAVPROPPATCH">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRLbyPropPatch</entry>
</section>
<gection name="ReqType:WEBDAVMKCOL">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRLbyMKCol</entry>
</section>

39

Chapter 1

Using the Internet Document Server SDK

40

File system request
types

Using File System Rules

In addition to the DPRLIB Library Manager rules for WebDav support, version 2.0 also
comes with a set of Java rules you can use to perform file system updates on the server
side via WebDav commands submitted by the IDSWebdavServlet client component.

The file system rules include:

propFind on page 42
* get on page 44

* put on page 45

* lock on page 46

* unlock on page 47

e delete on page 48

* options on page 49

* copy on page 49

* move on page 50

e propPatch on page 51

mkCol on page 52

To use the file system rules, replace Library Manager request types with the following
file system request types:

<!-- ***Begin WebDav rules for a file system. -->
<gection name="ReqgType:WEBDAVOPTIONS">
<entry

name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;s
tatic;options;FILE,webdavfilesystem.properties</entry>

</section>
<gsection name="ReqType:WEBDAVPROPFIND">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;
ransaction;propFind;FILE,webdavfilesystem.properties</entry>
</section>
<gection name="ReqType:WEBDAVGET">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;get;FILE,webdavfilesystem.properties</entry>

</section>
<section name="ReqType:WEBDAVPUT">
<entry

name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;put;FILE,webdavfilesystem.properties</entry>

</section>
<gsection name="ReqgType:WEBDAVHEAD">
<entry

name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;get;FILE,webdavfilesystem.properties</entry>

</section>
<section name="ReqType:WEBDAVLOCK">

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;lock;FILE,webdavfilesystem.properties</entry>

</section>
<gection name="ReqgType:WEBDAVUNLOCK">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;unlock;FILE,webdavfilesystem.properties</entry>

</section>
<gection name="ReqType:WEBDAVCOPY">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;copy;FILE,webdavfilesystem.properties</entry>

</section>
<gection name="ReqgType:WEBDAVMOVE">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;move; FILE,webdavfilesystem.properties</entry>

</section>
<gection name="ReqType:WEBDAVDELETE">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;delete;FILE,webdavfilesystem.properties</entry>

</section>
<gection name="ReqType:WEBDAVPROPPATCH">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;propPatch;FILE,webdavfilesystem.properties</entry>

</section>
<gection name="ReqType:WEBDAVMKCOL">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;mkCol;FILE,webdavfilesystem.properties</entry>

</section>

You must also create a file system directory on the IDS side. The file system directory

must reside on a location accessible to IDS and should contain the resources that should
be updated via WebDav commands. In addition, each of the Java rules listed above uses
a FILE argument which points to a properties file with settings for the file system. Here
is a sample properties file:

WDROOTNAME=/idswebdav/
WDROOTDIR=c:/ids/idswebdav/

41

Chapter 1

Using the Internet Document Server SDK

propFind

Use this rule to return properties for a resource or collection. This rule supports these
WebDav commands:

Command Description
Is [path] Lists contents of a collection.
cd [path] Changes a directory.

propget [path] [property] Gets a property.
propfind [path] [property] Finds a property.

propgetall [path] Lists all properties for a resource.

Input attachments

Variable Description

RESOURCEURI A resource URI specifying a collection or resource. Here are some
examples:

/collection/resource/
/resource
/collection

/

DEPTH Enter one (1) for collections. Enter zero (0) for file resources.

42

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Variable Description
PROPERTIES A rowset of rows that match each of the file resources available for
a particular collection. If you set DEPTH to one (1) and
RESOURCEURI specifies a collection, the PROPERTIES rowset
returns a row for each resource available in the collection.
If you set DEPTH to zero (0) and RESOURCEURI specifies a file
resource, the PROPERTIES rowset returns a single row with the
properties for the resource specified.
Each row in the PROPERTIES rowset contains the following
properties for a file resource:
supportedlock - If locking is allowed, the following XML string is
displayed for this property:
<lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktype>
<write/>
</locktype>
</lockentry>
getContentLanguage - currently, the value en_US.
resourcetype - blank if the resource is a file, otherwise co/lection if the
resource is a file type or directory.
displayname - the display name of the resource.
HREEF - the resource URI for this resource.
getlastmodified - a date and time indicating when the resource was
last modified. This is a long value that contains the number of
milliseconds since January 1, 1970.
getContentLength - currently, always zero because there is no
support for retrieving the file size of a document stored in Library
Manager.
If a resource is locked, these additional properties are returned:
LOCKOWNER - The user ID that owns the lock.
LOCKSCORPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS equals SUCCESS.
RESULTS Success or error.

43

Chapter 1

Using the Internet Document Server SDK

Variable Description

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI

specified is invalid.

420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.

get
Use this rule to return a resource from the file system. This rule supports these WebDav
commands:
Command Description
get [path] file Gets a resource.
head [path] file Gets header information for a resource. (works same as get)
Input attachments
Variable Description

RESOURCEURI The resource URI of the resource you want to retrieve. Here is an example:

/collection/resource

44

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Output attachments

Variable Description

PROPERTIES A rowset with a row for the resource specified in
RESOURCEURLI. The row contains the following properties for
a resource:

supportedlock - If locking is allowed, the following XML string is
displayed for this property:
<lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktype>
<write/>
</locktype>
</lockentry>

getContentLanguage - currently, the value en_US.

resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type or directory.

displayname - the display name of the resource.
HREEF - the resource URI for this resource

getlastmodified - a date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.

getContentLength - currently, always zero because there is no
support for retrieving the file size of a document stored in Library
Manager.

LOCKOWNER -The user ID that owns the lock.
LOCKSCORPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).

LOCKTIMEOUT -The time-out value after which the lock will
expire (infinity).

LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS equals SUCCESS.

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI

specified is invalid.

420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.

put

Use this rule to put a resource into the file system. This rule supports these WebDav
commands:

45

Chapter 1

Using the Internet Document Server SDK

Command Description

put [path Puts the specified file into Library Manager.

If the resource is locked, the put operation will fail.

Input attachments
Variable

Description

RESOURCEURI

A resource URI that specifies the resource you want to place into the file
system. Here is an example:

/collection/resource/

Output attachments
Variable

Description

RESULTS

Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.

It can contain one of these values:

404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.

423 - (WebDav 'locked' error code) - The resource is locked.

lock

Use this rule to lock a resource in the file system. This rule supports these WebDav

commands:

Command

Description

lock [path] file

Locks a resource.

Input attachments
Variable

Description

RESOURCEURI

The resource URI of the resource that should be locked in the file system.
Here is an example:

/collection/resource

Output attachments
Variable

Description

LOCKOWNER

LOCKSCOPE

46

The user ID that owns the lock.

The scope of the lock (exclusive).

Input attachments

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Variable Description
LOCKSUBJECT The name of the resource locked.
LOCKDEPTH The depth of the resource locked (0).
LOCKTYPE The type of lock (write).
LOCKTIMEOUT The time-out value after which the lock will expire (infinity).
LOCKTOKEN A unique ID that identifies the resource locked.
RESULTS Success or error.
WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.
423 - (WebDav 'locked' error code) - The resource is already
locked.
unlock
Use this rule to unlock a resource in the file system. This rule supports these WebDav
commands:
Command Description
unlock [path] file Unlock a resource.
Variable Description

RESOURCEURI The resource URI of the resource that should be unlocked. Here is an
example:

/collection/resource

Variable

Description

RESULTS

Success or error.

47

Chapter 1

Using the Internet Document Server SDK

Variable Description

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.

423 - (WebDav 'locked' error code) - The resource is locked by
another user.

delete

Use this rule to remove a resource or collection from the file system. If the resource you
specified is a collection, all resources for the collection will be removed, provided none
are locked. This rule supports these WebDav commands:

Command Description

delete [path] file Delete a resource.
Input attachments

Variable Description

RESOURCEURI The resource URI of the resource you want to delete. Here are some
examples:

/collection/resource
/collection

The delete operation will fail if the resource is locked or if the resource is
a collection and any of its resources are locked.

DEPTH (Optional) If a depth value is specified for collections, its value must be
set to ifinity. If a depth value is omitted, the rule assumes a depth of
infinity. You do not have to provide a depth value for a file resource.

Output attachments

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.

423 - (WebDav 'locked' error code) - The resource is locked.

48

Input attachments

Output attachments

Input attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

options

Use this rule to display the WebDav commands supported by the file system. This rule
supports these WebDav commands:

Command Description

options [path / url] display options available for path or URL.

This rule displays these WebDav commands that are supported by the file system:

options get head

propfind propgetall lock

unlock delete copy

move proppatch mbkcol
None

Variable Description

OPTIONS A comma-delimited string of WebDav commands supported by the file system.

RESULTS Success.

copy

Use this rule to copy a resource or collection from one location to another. This rule
supports these WebDav commands:

Command Description

copy [source] [destination] Copies a resource.

If any destination resource exists and is locked, the copy operation fails. If any
destination resource exists and the overwrite flag is set to false, the copy operation fails.

Variable Description
RESOURCEURI The resource you want to use for the copy operation. Here is an
example:

/collection/resource

DESTINATIONURI A URI containing the destination of the resource you want to copy.
Here is an example:

/collection/destination

49

Chapter 1

Using the Internet Document Server SDK

Variable Description

DEPTH A depth indicator. Used for copying collections. If you omit the depth
for a collection, the rule assumes a depth of infinity. If you enter
anything other than znfinity for a collection, the rule only copies the
collection directory. You do not have to provide a depth value for a
file resource.

OVERWRITE An overwrite flag indicator. If any resource in the destination already
exists and the overwrite flag is set to True, the copy operation
proceeds, otherwise it will fail.

Output attachments

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.

It can contain one of these values:

403 (WebDav 'forbidden' error code) - The source and
destination URIs are the same.

409 (WebDav 'conflict' error code) - The resource cannot be
created at the destination.

420 (WebDav 'method failure' error code) - An internal error or
memory error occurred.

423 (WebDav 'locked' error code) - The destination resource was
locked.

move

Use this rule to move a resource or collection from one location to another. This rule
supports these WebDav commands:

Command Description

move [source] [destination] Moves a resource.

If any destination or source resource exists and is locked, the move operation fails. If
any destination resource exists and the overwrite flag is set to False, the move operation
fails. If the resource you specify is a collection and its depth value is something other
than infinity, the move operation fails.

Input attachments

Variable Description
RESOURCEURI The resource you want to use for the move operation. Here is an
example:

/collection/resource

DESTINATIONURI A URI containing the destination of the resource you want to move.
Here is an example:

/collection/destination

50

Output attachments

Input attachments

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Variable Description

DEPTH A depth indicator used for moving collections. If you omit the depth
for a collection, the rule assumes a depth of infinity. If you enter
anything other than infinity for a collection, the rule fails. You do not
have to provide a depth value for a file resource.

OVERWRITE An overwrite flag indicator. If any resource in the destination already
exists and the overwrite flag is set to True, the move operation
proceeds, otherwise it fails.

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

403 (WebDav 'forbidden' error code) - The source and
destination URIs are the same.

409 (WebDav 'conflict' error code) - The resource cannot be
created at the destination.

420 (WebDav 'method failure' error code) - An internal error or
memory error occurred.

423 (WebDav 'locked' error code) - A source or existing
destination resource was locked.

propPatch

Use this rule to set and remove properties defined on the resource identified by
RESOURCEURLI. This rule supports these WebDav commands:

Command Description

proppatch Not supported by the file system.

The proppatch command is not supported by the file system. The system does not allow
modification of properties for a resource in the file system.

None
Variable Description
RESULTS Error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR,
which in this case is always true. It will contain the following
value:

405 - (WebDav 'method not allowed' error code) - The server
does not allow or support this method.

51

Chapter 1

Using the Internet Document Server SDK

52

Input attachments

Output attachments

mkCol

Use this rule to creates a collection in the file system. This rule supports these WebDav
commands:

Command Description

mkcol Makes a collection.

The rule will fail if the collection already exists or if it failed to create the collection
because one or more parents specified in RESOURCEURI does not exist.

Variable Description

RESOURCEURI The collection you want to create. Here is an example:

/collection
Variable Description
RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:

409 (WebDav 'conflict' error code) - The resource cannot be
created at the destination.

420 (WebDav 'method failure' error code) - An internal error or
memory error occurred.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Using the IDSWebdavServlet

The IDSWebdavServlet client component is a Java servlet that receives WebDav requests
from WebDav client programs and submits them to IDS for processing.

Follow these steps to use the IDSWebdavServlet:

1

Create an idswebdav directory under the JSP engine webapps directory. Make sure the

name is in lowercase.

Add IDSWebDavServlet.jar to the common\lib directory of the JSP engine.

Make sure the idswebdav directory contains a sub directory named WEB-INF.
Make sure the name is in uppercase.

Add the following web.xml file to the WEB-INF directory.

<?xml version="1.0" encoding="IS0O-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web -app>

<servlet>

<gservlet-name>idswebdav</servlet-name>

<gervlet-class>com.docucorp.ids.webdav.IDSWebdavServlet</

servlet-class>
<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>
<init-param>

<param-name>listings</param-name>

<param-value>true</param-value>

</init-param>

<!-- Uncomment this to enable read and write access -->

<l--

<init-param>

<param-name>readonly</param-name>

<param-value>false</param-value>

</init-param>

<!--load-on-startup>1</load-on-startup-->
</servlet>
<!-- The mapping for the webdav servlet -->

<gervlet-mapping>

<servlet-name>idswebdav</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

<!-- Establish the default MIME type mappings -->

<mime-mapping>

<extension>txt</extension>

<mime-type>text/plain</mime-type>

53

Chapter 1

Using the Internet Document Server SDK

</mime-mapping>

<mime-mapping>
<extension>html</extension>
<mime-type>text/html</mime-type>

</mime-mapping>

<mime-mapping>
<extension>htm</extension>
<mime-type>text/html</mime-type>

</mime-mapping>

<mime-mapping>
<extension>gif</extension>
<mime-type>image/gif</mime-type>

</mime-mapping>

<mime-mapping>
<extension>jpg</extension>
<mime-type>image/jpeg</mime- type>

</mime-mapping>

<mime-mapping>
<extension>jpe</extension>
<mime-type>image/jpeg</mime- type>

</mime-mapping>

<mime-mapping>
<extension>jpeg</extension>
<mime-type>image/jpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extension>java</extension>
<mime-type>text/plain</mime-type>

</mime-mapping>

<mime-mapping>
<extension>body</extension>
<mime-type>text/html</mime-type>

</mime-mapping>

<mime-mapping>
<extension>rtx</extension>
<mime-type>text/richtext</mime-type>

</mime-mapping>

<mime-mapping>
<extension>tsv</extension>
<mime-type>text/tab-separated-values</mime- type>

</mime-mapping>

<mime-mapping>
<extension>etx</extension>
<mime-type>text/x-setext</mime-type>

</mime-mapping>

<mime-mapping>
<extension>ps</extension>
<mime-type>application/x-postscript</mime-type>

</mime-mapping>

<mime-mapping>
<extension>class</extension>
<mime-type>application/java</mime-type>

</mime-mapping>

<mime-mapping>
<extension>csh</extension>

54

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<mime-type>application/x-csh</mime-type>
</mime-mapping>
<mime-mapping>
<extension>sh</extension>
<mime-type>application/x-sh</mime-type>
</mime-mapping>
<mime-mapping>
<extension>tcl</extension>
<mime-type>application/x-tcl</mime-type>
</mime-mapping>
<mime-mapping>
<extension>tex</extension>
<mime-type>application/x-tex</mime-type>
</mime-mapping>
<mime-mapping>
<extension>texinfo</extension>
<mime-type>application/x-texinfo</mime-type>
</mime-mapping>
<mime-mapping>
<extension>texi</extension>
<mime-type>application/x-texinfo</mime-type>
</mime-mapping>
<mime-mapping>
<extension>t</extension>
<mime-type>application/x-troff</mime-type>
</mime-mapping>
<mime-mapping>
<extension>tr</extension>
<mime-type>application/x-troff</mime-type>
</mime-mapping>
<mime-mapping>
<extension>roff</extension>
<mime-type>application/x-troff</mime-type>
</mime-mapping>
<mime-mapping>
<extension>man</extension>
<mime-type>application/x-troff-man</mime-type>
</mime-mapping>
<mime-mapping>
<extension>me</extension>
<mime-type>application/x-troff-me</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ms</extension>
<mime-type>application/x-wais-source</mime-type>
</mime-mapping>
<mime-mapping>
<extension>src</extension>
<mime-type>application/x-wais-source</mime-type>
</mime-mapping>
<mime-mapping>
<extension>zip</extension>
<mime-type>application/zip</mime-type>
</mime-mapping>
<mime-mapping>

55

Chapter 1

Using the Internet Document Server SDK

<extension>bcpio</extension>
<mime-type>application/x-bcpio</mime-type>
</mime-mapping>
<mime-mapping>
<extension>cpio</extension>
<mime-type>application/x-cpio</mime-type>
</mime-mapping>
<mime-mapping>
<extension>gtar</extension>
<mime-type>application/x-gtar</mime-type>
</mime-mapping>
<mime-mapping>
<extension>shar</extension>
<mime-type>application/x-shar</mime-type>
</mime-mapping>
<mime-mapping>
<extension>svicpio</extension>
<mime-type>application/x-své4cpio</mime-type>
</mime-mapping>
<mime-mapping>
<extension>svédcrc</extension>
<mime-type>application/x-svdcrc</mime-type>
</mime-mapping>
<mime-mapping>
<extension>tar</extension>
<mime-type>application/x-tar</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ustar</extension>
<mime-type>application/x-ustar</mime-type>
</mime-mapping>
<mime-mapping>
<extension>dvi</extension>
<mime-type>application/x-dvi</mime-type>
</mime-mapping>
<mime-mapping>
<extension>hdf</extension>
<mime-type>application/x-hdf</mime-type>
</mime-mapping>
<mime-mapping>
<extension>latex</extension>
<mime-type>application/x-latex</mime-type>
</mime-mapping>
<mime-mapping>
<extension>bin</extension>
<mime-type>application/octet-stream</mime-type>
</mime-mapping>
<mime-mapping>
<extension>oda</extension>
<mime-type>application/oda</mime-type>
</mime-mapping>
<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>
</mime-mapping>

56

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<mime-mapping>
<extension>ps</extension>
<mime-type>application/postscript</mime-type>
</mime-mapping>
<mime-mapping>
<extension>eps</extension>
<mime-type>application/postscript</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ai</extension>
<mime-type>application/postscript</mime-type>
</mime-mapping>
<mime-mapping>
<extension>rtf</extension>
<mime-type>application/rtf</mime-type>
</mime-mapping>
<mime-mapping>
<extension>nc</extension>
<mime-type>application/x-netcdf</mime-type>
</mime-mapping>
<mime-mapping>
<extension>cdf</extension>
<mime-type>application/x-netcdf</mime-type>
</mime-mapping>
<mime-mapping>
<extension>cer</extension>
<mime-type>application/x-x509-ca-cert</mime-type>
</mime-mapping>
<mime-mapping>
<extension>exe</extension>
<mime-type>application/octet-stream</mime-type>
</mime-mapping>
<mime-mapping>
<extension>gz</extension>
<mime-type>application/x-gzip</mime-type>
</mime-mapping>
<mime-mapping>
<extension>Z</extension>
<mime-type>application/x-compress</mime-type>
</mime-mapping>
<mime-mapping>
<extension>z</extension>
<mime-type>application/x-compress</mime-type>
</mime-mapping>
<mime-mapping>
<extension>hgx</extension>
<mime-type>application/mac-binhex40</mime-type>
</mime-mapping>
<mime-mapping>
<extension>mif</extension>
<mime-type>application/x-mif</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ief</extension>
<mime-type>image/ief</mime-type>

57

Chapter 1

Using the Internet Document Server SDK

58

</mime-mapping>
<mime-mapping>
<extension>tiff</extension>
<mime-type>image/tiff</mime-type>
</mime-mapping>
<mime-mapping>
<extension>tif</extension>
<mime-type>image/tiff</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ras</extension>
<mime-type>image/x-cmu-raster</mime-type>
</mime-mapping>
<mime-mapping>
<extension>pnm</extension>
<mime-type>image/x-portable-anymap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>pbm</extension>
<mime-type>image/x-portable-bitmap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>pgm</extension>
<mime-type>image/x-portable-graymap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ppm</extension>
<mime-type>image/x-portable-pixmap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>rgb</extension>
<mime-type>image/x-rgb</mime-type>
</mime-mapping>
<mime-mapping>
<extension>xbm</extension>
<mime-type>image/x-xbitmap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>xpm</extension>
<mime-type>image/x-xpixmap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>xwd</extension>
<mime-type>image/x-xwindowdump</mime- type>
</mime-mapping>
<mime-mapping>
<extension>au</extension>
<mime-type>audio/basic</mime-type>
</mime-mapping>
<mime-mapping>
<extension>snd</extension>
<mime-type>audio/basic</mime-type>
</mime-mapping>
<mime-mapping>
<extension>aif</extension>

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<mime-type>audio/x-aiff</mime-type>

</mime-mapping>

<mime-mapping>
<extension>aiff</extension>
<mime-type>audio/x-aiff</mime-type>

</mime-mapping>

<mime-mapping>
<extension>aifc</extension>
<mime-type>audio/x-aiff</mime-type>

</mime-mapping>

<mime-mapping>
<extension>wav</extension>
<mime-type>audio/x-wav</mime-type>

</mime-mapping>

<mime-mapping>
<extension>mpeg</extension>
<mime-type>video/mpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extension>mpg</extension>
<mime-type>video/mpeg</mime- type>

</mime-mapping>

<mime-mapping>
<extension>mpe</extension>
<mime-type>video/mpeg</mime- type>

</mime-mapping>

<mime-mapping>
<extension>gt</extension>
<mime-type>video/quicktime</mime-type>

</mime-mapping>

<mime-mapping>
<extension>mov</extension>
<mime-type>video/quicktime</mime-type>

</mime-mapping>

<mime-mapping>
<extension>avi</extension>
<mime-type>video/x-msvideo</mime-type>

</mime-mapping>

<mime-mapping>
<extension>movie</extension>
<mime-type>video/x-sgi-movie</mime-type>

</mime-mapping>

<mime-mapping>
<extension>avx</extension>
<mime-type>video/x-rad-screenplay</mime-type>

</mime-mapping>

<mime-mapping>
<extension>wrl</extension>
<mime-type>x-world/x-vrml</mime-type>

</mime-mapping>

<mime-mapping>
<extension>mpv2</extension>
<mime-type>video/mpeg2</mime-type>

</mime-mapping>

59

Chapter 1
Using the Internet Document Server SDK

<!-- Establish the default list of welcome files -->

<welcome-file-1list>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>

</welcome-file-list>

<!--

<gecurity-constraint>

<web-resource-collection>

<web-resource-name>The Entire Web Application</web-resource-
name>

<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>tomcat</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Tomcat Supported Realm</realm-name>
</login-config>

<gecurity-role>
<description>
An example role defined in "conf/tomcat-users.xml"
</description>
<role-name>tomcat</role-name>
</security-role>

-->

</web -app>

5 Restart the JSP engine.

6 To send requests to the servlet, use the following URL format:
http://userid@boxname:port#/idswebdav/

where userid 1s the user ID used for the WebDav operations, boxname is the name of
the box hosting the JSP engine plus the new idswebdav directory plus the por# is
the port number, if any, of the JSP engine.

(An example WebDav client program that can be downloaded and used to send
requests to the IDSWebdavServlet is the Jakarta slide client program.)

You can also use Windows” Add Network Places wizard and add a new network
place using a URL with the following format:

http://boxname:port#/idswebdav/userid/

60

WRITING
PROCESSING
RULES IN
VISUAL BASIC

Structure

Writing Processing Rules in Visual Basic

In this topic, you will learn how to write rules for the Internet Document Server using
Microsoft Visual Basic (VB). Here you will learn how to:

* Use the VB rule wizard

* Add your rule to the DOCSERYV configuration file

e Use general debugging techniques

You will also find a general overview of server support for Visual Basic rules.

You can write rules for the Internet Document Server in Visual Basic 5 by building VB
class files into ActiveX DLLs. Using the DSI Visual Basic rule wizard and the steps
outlined below, you can easily put together a rule.

The DSI Visual Basic API includes a project in the samples with a sample rule, Fish.vpb,
which we’ll refer to in the discussion.

—> | IBASS:: StopFishing
IDS | — DSICoRul [

— | IBASS:: GoFish

——> | |Trout:: StopTheBoat

— | |Trout:: GoFish

This illustration shows the general structure of Visual Basic rule processing. Notice that:
* All VB rule processing is routed through DSICoRul.DLL

* AVB rule DLL can have many rules within multiple classes in a single DLL

An ActiveX DLL created under VB has these naming levels:
DLL name
Class module name
Rule name
VB does not articulate COM interfaces.

Multiple class modules are permitted as are multiple functions within each class
module. As in C++, the function names are valid only when attached to their class—you
can have the same function name in multiple classes.

Visual Basic maps these names to COM in this manner:
ProgID= <DLL name>.<Class Module name>

The COM ProgID appears in the registry and is the most common human-readable
means by which a COM object is identified.

For instance, if you create a VB project Fish, with two classes, IBass and ITrout, each
with two rules, the following will appear in the registry after you run regsvr32.exe

Fish.DLL
ProgID Fish.IBass

61

Chapter 1

Using the Internet Document Server SDK

Installing the DSI VB
rule wizard

Building rules with the

62

wizard

Interface: IBass
Methods: GoFish
StopFishing
ProgID Fish.ITrout
Interface: ITrout
Methods: GoFish
StopTheBoat

The DLL must be an ActiveX DLL and must contain at least one class module (.cls) with
the public functions to be called by IDS. Continuing the above example, there will be
these files in the ActiveX DLL project:

File Description
Fish.vpb Fish project
Fish.vpw Fish work space
IBass.cls [Bass Class Module

ITrout.cls ITrout Class Module

To help you create VB rules, the system includes a VB add-in wizard. To install this
wizard, run this command:

addinst.exe

The VB rule wizard will either work with an existing project or it can start a new one for
you. Likewise, the wizard will create a new class for you or use one that’s already in an

To use, start the Visual Basic IDE and select Add-Ins, DSI Rule Wizard. The wizard
guides you through the process of creating a template DSI VB rule. After the wizard has
run, you will have at least the following:

¢ A Visual Basic project (.vbp)
e A Visual Basic workgroup (.vpw)
e A Visual Basic class file (.cls)

The code the rule wizard generates contains references to all possible messages that can
be sent to a DSI rule. Although the VB compiler will drop processing of case statements
that do not have any code, remove the unneeded case statements to make your code
easier to read.

Next, add in your business logic.

Compile your ActiveX DLL. When you compile the project, DLL, LIB, and EXP files
will be created. After you debug the project, you only need to copy the DLL to the IDS
directory and register it—if and only if the server is on a different machine.

Troubleshooting

DOCSERV
configuration file

Writing Processing Rules in Visual Basic

NOTE:Ifyou are developing on a system different from IDS, you must move your DLL
into the IDS directory.

If you are developing on the same system that is running IDS you showuid not
move the DLL without registering it.

Add your rule to the DOCSERV configuration file (see below).

Test your rule under the server using DSICoTB - the DSI Test Bed program.

If you are getting messages about not being able to find your rule, consider the
following:

DSICoRul may not be able to find your DLL in the IDS directory. ActiveX DLLs must
be registered (they are COM objects). DSICoRul will register your DLL if you have not
already done so but to do this it must be able to find the DLL. If you don’t want your
DLL to be in the IDS directory, register it using this command:

regsvr32.exe <dllname>

DSICoRul first attempts to locate your rule in the system registry which contains a path
to your DLL. When you compile your rule DLL, VB automatically registers it for you.
If you then move the DLL, the registry will not be able to find it, which causes an error.
Therefore, if you are developing on the same system as IDS, do n0¢ move your DLL to the
server directory.

If the DLL is in the server directory or you have registered it yourself and DSICoRul is
still complaining that it cannot find it, then it is time to start looking with the
OLEVIEW.EXE program. If you do not already have this program on your system, you
can find it on the MDSN CD or on Microsoft’s web site.

Start the OLEVIEW program and choose the File, View option. Enter Lib and point it
at your DLL. The CoClasses folder will contain the names of your classes and within

those, eventually, your methods (which are your rules). Check the program ID against
the DOCSERYV configuration file.

All VB rules will be specified as follows

<entry name="function”>DSICoRUL->Invoke, COM OBJECT NAME -
>METHOD, OTHERPARMS</entry>

Parameter Description

DSICoRul->Invoke> Invoke provides the interface between the server and Visual Basic.
When a rule is to be executed, IDS calls the Invoke entry point of
DISCoRUL.DLL with the remainder of the line as parameters:

COM_OBJECT_NAME a COM ProgID which flows naturally from VB and is composed of
the name of the name of the DLL and the VB class separated by a
period. The server user must register the COM object before
starting the server.

METHOD your VB rule

OTHERPARMS other parameters in an alphabetic string

63

Chapter 1

Using the Internet Document Server SDK

You must add at least two entries into the configuration file:
In the ReqType:INI control group, initialize DSICoRul by including this reference:

<gection name="ReqType:THREADINI” >

<entry name=”function”>DSICORUL->Init</entry>

</section>

Then add the specifications of your rule to the appropriate request. For instance, to add
the TestRule,

<section name="ReqType:SSS”>

<entry name="function”>DSICoRul-gt;Invoke, TestRule.ITestRule-
>HelloWorld</entry>

</section>

Interface Each class module must contain at least one Public Function which will be the rule.
Functions must be used as Subs do not support return values, which all rules must
provide.

Each Public Function must conform to the following prototype:

Public Function GoFish (ByRef oDSI As DSICOAPI, _
ByVal hInstance As Long, __

ByVal pszParms As String, _

ByVal ulMsg As Long, __

ByVal ulOptions As Long) As Long

Parameter Description

ByRef 0oDSICoAPT as The DSICoAPI object will provide access to the DSI API
DSICoAPI ByVal hlnstance as long

ByVal iMsg As Long The server message,

dsiMSG_INIT

dsiMSG_RUNF
dsiMSG_RUNR
dsiMSG_TERM

ByVal sParms As String The parameter string passed in from the configuration file

ByVal ulOptions As Long Reserved for future use

The public function will return the appropriate dsiERR, usually dsiERR_SUCCESS. If
the message is unsupported, then dsiERR_MSGNOTFOUND must be returned to
avoid the overhead of subsequent calls.

Using global data You can use global methods with DSICo. This lets you store data in one location for use

methods with multiple IDS Servers. To do this, your configuration files must have identical
settings for the Path option:

64

DSI API support

Error handling

Registration

Testing with IDS

Writing Processing Rules in Visual Basic

<gection name="ReqType:SSS”>

<entry name="function”>DSICoRul-gt;Invoke, TestRule.ITestRule-
>HelloWorld</entry>

</section>

NOTE: All servers that are required to share global data must have access to a single
global data folder.You can use these global methods:

Method Description

GlobalDataCreate Lets you create a global entry file which you can retrieve later. The data
is stored in the directory you define in the configuration file.

GlobalDataDestroy Lets you remove the global data entry associated with GUID.

GlobalDataSize Use this method to get the size of the data associated with GUID. You
can use this information to create a buffer before calling the
GlobalDataRead method.

GlobalDataRead Use this method to read the contents of the global data entry.

GlobalDataClean Use this method to remove expired files from the global data directory.

The DSICoAPI object is passed into the rule to provide easy access to the DSI APL If
you want to write to the DSI API directly, DSI.bas contains the function prototypes but
the advantages are few and the details that must be managed are many. For instance, VB
strings are not null terminated so all strings must have + Chr(0) at the end.

When IDS encounters fatal errors it passes those errors to your On Error routine, if
there is one. In general, your error routine should pass the fatal error to DSI for logging.
Errors which your program is normally expected to handle, like dsiERR_NOTFOUND
(ERR.RAISE), will be available as a return value from DSIcoAPI and should not be
passed to the server.

Visual Basic automatically registers your ActiveX DLL when you compile it. DSICoRul
will automatically register your ActiveX DLL if necessary, provided it can find the DLL
and the file name is well formed.

To test under IDS you must also have the Visual C++ 5.0 debugger. The general
procedure is detailed in Microsoft knowledge base article Q166275 (http://
support.microsoft.com/support/kb/articles/q166/2/75.asp). The following procedure
assumes you have read and understood this article.

Make sure your rule is compiled with Debug Info.

Bring up OLEVIEW.EXE, locate your rule DLL under “All Objects”. Click on the “+”
sign to make OLEVIEW display the supported interfaces. This loads your ActiveX DLL.

65

Ch

apter 1

Using the Internet Document Server SDK

GUIDs

State and threads

Sharing violations

Crashing the server

Check the server log

Performance

COM, ProgIDs, and VB

66

Example

Follow the procedure outlined in the knowledge base article. Since this is a DLL you
must specify DSRVW32.EXE as the debug target in the settings. Also take care to set the
working directory to the directory in which DSRVW32.EXE normally runs.

At this point you may use any program you like to initiate the transaction your rule will
process. If you don’t have an application of your own, DSICoTB lets you build an
attachment and hand it off to the server for processing.

Miscellaneous Notes

GUIDs are 128-bit values used to identify COM objects globally. IDS handles VB rules
in such a way that you don’t have to worry about GUIDs in spite of the COM
documentation’s warnings that you should never change a GUID once it goes into
production.

IDS can call your rule on any thread—that’s what the instance handle is for—and the
thread state is held in the server. This means that your rules should be stazeless. Stateless
means that you don’t retain any information from one call to the next in the rule itself.
If you want to pass some value from one rule to another or from one thread to another,
use CreateValue and LocateValue.

IDS holds a reference to your ActiveX DLL from the first time it is called until IDS is
shut down. Expect a sharing violation if you try to replace your rule DLL without first
shutting down the server.

Remember, your rule will be running in-process. Loops (polling and bugs) can hang the
server or degrade performance. Memory leaks can exhaust server memory, given enough
time, so be careful.

Assuming the server survives the experience, many fatal errors, such as not being able to
load your rule, are logged to DUTTRACE.LOG, found in the IDS directory.

If you are concerned about first-execution performance, such as how long it takes to load
your rule DLL the first time, change the DLL load address in your VB project from the
default. Using the default makes it likely there will be an expensive collision and
relocation at load time.

The ProgID is a string that shows up in the registry to identify your classes. There are
many Win32 APIs that deal with ProgID and scripting languages, such as VB Script, use
it to locate and load ActiveX DLLs. DSI VB rule processing uses the ProgID you put into
the configuration file.

The ProgID is very important. Unless you get in the way, VB generates a ProgID from
the combination of DLL name and class name and DSI VB rule processing depends on
this convention. Unless you leave it blank, the project description in the VB project
properties will be used by VB to assign your ProgID. Therefore, it is important to leave
the Project Description field blank.

This example was created using the DSI rule wizard and can be found in the samples:

' GoFish - DSI rule

Writing Processing Rules in Visual Basic

' Arguments
! oDSI - object to access the DSI API
! pszParms - parameter string from the .INI file

! ulMsg - message number from the server. See case statement below

! ulOptions - reserved for future use

' Generated by the DSI Rule Wizard version 1.0

Public Function GoFish (ByRef oDSI As DSICOAPI,
ByVal hInstance As Long, _

ByVal pszParms As String,

ByVal ulMsg As DSI_MSG,

ByVal ulOptions As Long) As Long

ByVal hInstance As Long

On Error GoTo ErrorHandler

' TO DO: for each of the messasges you support, add logic to the

' case statement. For the messages you don't support, delete

' the entire case statement so processing falls through to the else

' TO DO: Include your rule in the docserv.ini. The syntax is

! function = DSICoRul->Invoke,Fish.IBass->GoFish

GoFish = dsiSUCCESS
Select Case ulMsg

Case dsiMSGRUNF ' Forward (ie, inbound) logic

oDSI.AddAttachvar hInstance, dsiOUTPUTQUEUE, "MyStatistics",

"Honest!"

Dim sRecName As String

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "Libraries",
sRecName

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Name", "Fish"

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Date", "date"

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Version", "1.0"

Case Else ' We don't support the other messages
GoFish = dsiMSGNOTFOUND
End Select

Exit Function

ErrorHandler:

' This error handler will pass the error on to the error handling

routine in the caller
' You should not display messages in a DSICo Rule

67

Chapter 1

Using the Internet Document Server SDK

68

Err.Raise Err.Number,
+ " " + Err.Description

GoFish = dsiRULECRASH

End Function

SAMPLES

"GoFish: " + Err.Source, "Msg=" + Str (ulMsg)

The Internet Document Server includes several samples you can use. These include:

e DSICoTB on page 68

e DSITest on page 69

e DSIDiag on page 71

e DSIDiag.exe on page 71
¢ Debug.ASP on page 72

* DSICoSAM on page 73
e DSICoExV on page 74

e DSICoEx.cpp on page 75

¢ DSICoAdm and ADMAsp on page 76

e DSI COM Objects under ASP on page 76

DSICoTB

DSICoTB—the Visual Basic Test Bed—lets you test customer rules. In addition to
executing the server administration requests, you can build your own requests and

attachment lists.

To use the custom attachment list, select the Roll Your Own button and then enter the

request code you want.

DSICoTB - DSICo Test Bed
Fle Help

Log Copy to Clpboad

Output Copy to Clipboard

[_[O[x]

ntSession

Submi

config sampeo

USERID USERID

FASSWORD FASSWORD
GellueuRecord

GethitachmertAl

corfig _sampeo

PASSWORD PASSWOFD

REPORTTD FORMAKER

RESULTS SUCCESS
TS §

SECURITY

Execute

555 -

I Tioce

4l results of pou test_ncluding the attachmenty)

The grid on the left can be filled with your name/value pairs.

Writing Processing Rules in Visual Basic

Click Execute to send your attachment to the server and return to the main form, which
displays the calls to Visual Basic and the results.

w. Transaction

Transaction name/value pairs RequestCode

M [=] E3

Name [value

LGN -

Confiy § sampeo

USERID USERID
PASSWORD PASSWORD

Erecute

Cancel

Done

This sample includes these files:

File Description
DSICoTB.frm VB form
DSICoTTr.frm VB form layout
DSICoTB.frx VB form layout
DSICoTB.vbp VB project
DSICoTB.vbw VB work space
About.frm VB form
About.frx VB form layout
DSICoTB.bas common data
DSITest

This version includes the DSITEST program which you can use to test sending files to
IDS and receiving files from IDS.

Usage dsitestw /time /waitonlast / display /nowait /regtype /msg /notrans
/noattachs /norcvs /atcfile /rcvfile

Parameter Description

Time Displays total seconds for all operations.
Do not include NoRCVs, ATCFile, or RCVFile with this parameter because
those parameters contain user prompts that affect the time.

WaitOnLast ~ Waits on the last message before capturing the ending time.

69

Chapter 1

Using the Internet Document Server SDK

Parameter Description

Display Displays the resulting DSI Soap XML message that contains the name/value
pairs for each transaction.

NoWait Do not wait for the server before adding next message to queue.
ReqType The IDS request type. The default is SSS.

MSG The name of the file that contains the request name/value pairs.
NoTrans The total number of transactions to process.

NoAttchs The total number of file attachments to send per transaction using the

DSISendFile API. If you include this parameter, the program expects an input
file named SENDFILES.MSG that contains the information for each
attachment to send.

NoRCVs The total number of file attachments to receive per transaction via the
DSIReceiveFile APIL If you include this parameter, the program expects an
input file named RECEIVEFILES.MSG that contains the information for each
attachment to receive.

ATCFile A single file attachment to send via the DSISendFile API. The program
prompts the user for the attachment ID, file name, and encoding type.

RCVFile A single file attachment to receive via the DSIReceiveFile API. The program
prompts the user for the attachment ID and file name.

Neither the case nor the order of the parameters is important.

You can include these parameters on the command line or place them in an input file
named PARAMS.MSG. On the command line, separate parameters with slashes (/),
dashes (-), or spaces:

DSITESTW /time=yes
DSITESTW -time=yes
DSITESTW time=yes

If you include the parameters in the PARAMS.MSG file, format them as shown in this
example of the PARAMS.MSG file:

time=yes
waitonlast=no
display=yes
nowait=no
reqtype=LGN
notrans=50
msg=prt.msg
noattchs=0
norcvs=0
atcfile=yes
rcviile=yes

Here is an example of how you could execute this program from the command line:

dsitesw time=yes display=yes notrans=2 regtype=prt msg=c:\prt.msg

Here is an example of the PRT.MSG file:

70

Writing Processing Rules in Visual Basic

USERID=FORMAKER

Arckey=00345A0D5600000008

regtype=PRT

config=RPEX1

company=1199999

lob=Lee

policynum=Roswell, Ga 30015

rundate=020698
printpath=\10.8.10.137\Websrvr_client\html

If the NoAttchs parameter is greater than zero, the program expects an input file named
SENDFILES.MSG which contains a list of the attachments to send. Use either NoAttchs
or ATCFile, but not both.

Use the ATCFile parameter when you only want to send one file attachment. The
ATCFile parameter uses command line parameters for the attachment ID, file name, and
encoding type.

Here is an example of the ATTACHMENTS.MSG file:

name=RPEX1INI
file=X:\IDS\AddlSrvrs\rpexl.ini
type=TEXT

name=TESTPDF
file=X:\websrvr_client\html\test.pdf
type=BINARY

If the NoCRVs parameter is greater than zero, the program expects an input file named
RECEIVEFILES.MSG, which contains a list of attachments to receive. Include either
NoCRVs or RCVFile, but not both.

Use the RCVFile parameter when you only want to receive one attachment. The RCVFile
parameter uses command line parameters for the attachment ID and file name.

Here is an example of the RECEIVEFILES.MSG file:

name=PDFFILE1l
file=X:\\IDS\\AddlSrvrs\\Output\\filel.pdf
name=PDFFILE2
file=X:\\IDS\\AddlSrvrs\\Output\\file2.pdf

If you omit the request type from the command line or the PARAMS.MSG file, the
program uses SSS as the default request type.

DSIDiag

DSIDiag consists of two samples, an application written Visual Basic (VB), DSIDiag.exe,
and an Active Server Page (ASP), Debug.ASP.

DSIDiag.exe

DSIDiag interrogates the DSI diagnostic interface to display key information, including
the current directory and the location of the queue files. You can also print the
information. You do not have to have IDS running to get this information.

The content and layout of the information displayed is context-sensitive and can change
with new system versions and updates. Refer to your latest documentation or read.me
updates for information on how to interpret the content.

71

Chapter 1

Using the Internet Document Server SDK

72

Setup

Execution

Setup

Execution

Run DSIDiag from the same directory as your client application or web server to get
accurate information.

DSIDiag displays diagnostic information as soon as you start it. You can refresh the
information, print it, or copy it to the clipboard.

DSI Diagnostics [-[O]x]

DacuCarp Server DumpDebualnfo Fri dug 14 13:32:30 1998 a

Running on the Client

Cunent working directary: F:\nt01 34 nt1 00VD5 1 DiaghW32EXE

Cunent N cartest beging -

| REQUESTA] Befiesh
hame = g \dsiserver\requestq
[RESULTE]
hame = ghdsiserver\resultq
Brint

Cunent IN| contest ends -~
Input Bueue information. Copyto
. Clipboard
Using queue handler: DCB
Queue name: q\dsiserverviesullg
Queve fields
Empty attachment list Exit

This sample includes these files:

File Description

DSIDiag.frm VB form source file
DSIDiag.frx VB form layout file
DSIDiag.vbp VB IDE project file

DSIDiag.vbw VB IDE work space file

Debug.ASP

This Active Server Page recovers the same information as DSIDiag using your browser.
Debug.asp references an ASP ActiveX component that makes the necessary calls to the
DSI library.

The content and layout of the information displayed is context-sensitive and can change
with new system versions and updates. Refer to your latest documentation or read.me
updates for information on how to interpret the content.

The IDS setup routine places the DLL and Debug.ASP files in their proper locations.

Select DEBUG.ASP using your browser. First the system PATH appears, followed by the
debug information.

Execution

Writing Processing Rules in Visual Basic

Internet Document Server Debug Info

PATH=
CAWINNT\system 32, C\WINNT,C:MSSQLIBINMN, C\MTX, ¢ \program files\devstudio\sharedide\bintide; c \program
il ciprogram fil ¢ util, CAWINDITY \ENGLISH;Ddocserv;Z:

\eltestADLLLC:DecSery

DocuCorp Server DumpDebuglafo Fri Aug 14 13:2903 1958
Ruring on the Clint

Current working dircctory: CAWINNTsystem32

Current TNT context beging -------------------

[REQUESTQ]
name = didosservirequestq
[RESULTQ |

name = d\docservireslty

Current INT context ends -------------------
Tnput Ques information.

o ||

DSICoSAM

DSICoSAM is a Visual Basic application which contains much of the sample code that
appears in the documentation. This makes it a good source of working code you can
cut-and-paste into applications you build. In addition, you can use it as a guide by taking
a working program and modifying it.

There are two list boxes to choose from before you run the test. The first, Choose Object,
chooses the COM object to test, such as DSICoAPI; the second chooses the individual

method to test.

DSI Diagnostics A=l

DocuCorp Server DumpD ebualnfo Fri dug 14 13:32:30 1938 N
Running on the Client

Current working directony: F:\nt01 35Int1004DSIDiag i 32EXE

Current IN] contest beging -

|REQUESTE] Retresh
name = g \dsiserver\iequesty
[RESULTY]
hame = g \dsizerverviesultg X
Biint
Currert INI contest grids =-rereer o
Irput Qugue informeatian. Copyto
. Cliphoard
Using queue hander: DCB
Qugue name: g \dsiservervesulty
Queue fields:
Ermply attachment list Exit

2l

To execute the test (or all the tests) select the appropriate button. The left pane shows a
log of the activity, the right the output or results. If you want to retain the log or output,
you can copy both panes to the clipboard by pressing their respective Copy To
Clipboard buttons.

Of course, IDS must be running and configured. The IDS setup routine configures IDS
for you, which includes the following:

< ReqType:INI >
Function = DSICoRul->Init
.< ReqType:ECH >
Function = atcw32->ATCLoadAttachment

73

Chapter 1

Using the Internet Document Server SDK

Function = DSICoRul->Invoke,Docucorp_IDS_SAMSupp.CSAMSupp->Echo
Function = atcw32->ATCUnloadAttachment

This sample includes these files:

File

Description

csamapi.cls
csamsupp.cls
csamtobj.cls
DSICoSAM.frm
DSICoSAM.frx

Dsicosam.vbp

Tests class file

ECH (Echo) rule class file

Test object used in some tests. Has no code.
DSICoSAM form source code

DSICoSAM layout

DSICoSAM VB project

DSICOSAM.VBW DSICoSAM VB work space

samsupp.vbp ECH (Echo) rule VB project
SAMSUPP.VBW CH (Echo) rule VB work space

samtobj.vbp Test object used in some tests; VB project
SAMTOB]J.VBW Test object used in some tests; VB work space
DSICoExV

DSICoExV is the Visual Basic version of DSIEx.c, duplicating the functionality of
DSIEx and more-or-less duplicating the logic. Instead of calling the DSI API directly, it
calls the equivalent Visual Basic COM objects.

NOTE: Although there is a simpler way under Visual Basic to accomplish the
functionality using, for instance, InitSession instead of Init, the direct calls were
used to make easier the comparison with DSIEx.c.

The application, after initializing COM, establishes a connection with IDS and places
the selected IDS Server administration command (such as SSS) in the queue. Each Visual
Basic call is logged in the left pane and the output in the right pane.

Run DSICoExV.exe. Select the server administration command to run. SSS, the server
statistics, is set up as the default.

Execution

74

Setup:

Execution:

Writing Processing Rules in Visual Basic

DSICEsx - DSICo everciser AR
Loy o o Ciboad Output Cop tolnbrad
[PtacCusalet H TEFAFIES AT InZ6 1658 B
et Cusalent LEFAIESIHAME b
Aot Cusallet LGRAFESITNE 161731
Aot Cusallest LERAFIESVERSION JtEn)
[Attact Cursorllest LIBRARIES4.DATE Jun261438
[AttackCurserllest LIBRARIESA NAME. 1343
Aachusalen UBRARESATNE 160712
Atachusale LBRAFIESAERSON o
tactCusaien UERARIESS DATE 261558
tactCusatlet O A oo
et Cusalent JEARESH TNE fi)
et Cusalent LERAFIES5 RSN e
et Cusalent LEFAFIESE DATE 3018
Aot Cusallet Beote | |LIBRAFIESS IAVE it
Aot Cusallest 5 LGRFESSTNE 112422
[Attact Cursorllest LIBRARIESBYERSION 100013.001
[AttackCurserllest LIBRARIES7.DATE Jun231438
Aachusalen Bt | |LBRARIESTAAE 5]
Atachusale UBRARESTINE 17106
tactCusaien LBRAFIESTVERSON o
tactCusatlet LERAFIESEDATE JinZ61558
et Cusalent LERAFIESEHANE R
et Cusalent LBRRESETNE 17523
et Cusalent LERAFIESEVERSION JtEn]
Aot Cusallet LERAFIES3DATE 3018
Aot Cusallest LERAIESHAE
[Attact Cursorllest LIBRARIESSTIME 11:3619
[AttackCurserllest LIBRARIESIYERSION 100013001
Aachusallen RESARTCONT 0
Cosedteckouse RESUL'S SlocEss
Temcesin SUCCESSOQUNT 3 L
UFTHE Fidug 14 T304 1958 I

This sample includes these files:

File Description
DSICoExV.frm VB form
DSICoExV.frx VB form layout
DSICoExV.vbp VB project
DSICoExV.vbw VB work space

DSICoEx.cpp

DSICoEx is the Visual Basic version of DSIEx.c. DSICoEx duplicates the functionality
of DSIEx and, essentially, duplicates its logic.

Instead of calling the DSI API directly, DSICoEx calls the equivalent Visual Basic COM
objects. Although there is a simpler way under Visual Basic to accomplish this
functionality—for instance by using InitSession instead of Init—the direct calls were used
to make easier the comparison with DSIEx.c.

The application, after initializing COM, establishes a connection with IDS and places
IDSIDS administration command S5 in the queue. The response attachment is written
in its entirety to stdout.

Visual Basic must be installed on the system. To use, the VC project file %DSICO%
must point to the head of the DSICo directory tree. To compile, load DSICoEx.dsp into
VC and compile.

DSICoEx.exe is included in the installation. DSICoEx is a console application and
should be run from the command line. It outputs to sysout. DSICo.dll should be
registered as part of the installation.

This sample includes these files:

File Description

DSICoEx.cpp source files

75

Chapter 1

Using the Internet Document Server SDK

File Description

DSICoEx.dsp VC project file

Visual Basic files used:

File Description

DSICo.hpp Visual Basic specific macros

DSICo.tlb Visual Basic type library created by the Visual Basic MIDL

DSICoAdm and ADMAsp

DSICoADM and ADMAsp are versions of the same function, which interrogates IDS
Server statistics.

¢ DSICoADM is a Visual Basic application which interrogates IDS statistics and
presents them in a Visual Basic grid.

¢ ADMAsp is an Active Server Page which does the same thing through an ActiveX
component and presents IDS statistics on the browser.

These files are included in this sample:

File Description
DSICoADM.frm VB form

DSICoADM.frx VB form layout
DSICoADM.vbp VB project

DSICoADM.vbw VB work space

ADMAsp.vbp VB project

ADMAsp.vbw VB work space

SSS.cls ASP ActiveX component class

DSI COM Objects under ASP

This sample shows you how to use DST COM objects and Visual Basic to create ActiveX
DLLs that run under the Microsoft Internet Information Server and Active Server Page
(ASP) to interface with Oracle Insurance's Internet Document Server.

Setup Load the project into the VB IDE and select the Make AdmASP.dll option. You may
have to shut down the IIS and IIS administration to unlock the DLL.

Move the ADMIN.ASP and DOCC.BMP files into the wwwroot directory. Once you
have compiled the project, you do not have to relocate or register the DLL.

76

Writing Processing Rules in Visual Basic

Execution Point your web browser to Admin.asp. The server statistics appear. Click Server Statistics
to refresh the display with new values.

Microsoft Intetnet Explorer

e . 2 0 & ‘ Q@ & @ @ B &
Back * fousi T Sp Reiesh Hame | Sewch Fovote: Wiy Choes | Fubicesn Mal P Ed
| Addes [€7 o Jgeofchamers et =k
< >DOCUCORP Internet Document Server Administration
INTERNATIONAL
\ Statistics
’U'PTDVIE [Fri Aug 14 13:52:25 1998
ASTRESTART Fri Aug 14 13:52:25 1998
RESTARTCOUNT 0
|SUCCESSCOUNT 1
ERRORCOUNT 0
ALLOCCOUNT 2996
[FREECOUNT 328
Libraries
DATE NaME TIME 'VERSION
Jun 30 1998 L 11:31.06 100.013.001
un 26 1998 TRP 181035 100.013.001
Jun 26 1998 DQOM 18:1131 100.013.001
Aug141998 TBASE 100139 100013001
Jun 26 1998 DCB 18:06:22 100.013.001
Jun 30 1998 |ATC 11:29:22 100.013.001
un29 1998 DSIV 175006 100,013,001 -
Jun 26 1998 WFX 17:52:36 100.013.001
|Aug 7 1998 DST 07:43.03 100.013.001 sl
2] | [[(2 ocalnmanet zne 7

This sample includes these files:

File Description

AdmASP.vbp Project
AdmASP.vpw Work space
SSS.cls Class file
Admin.asp ASP script file

docc.bmp Docucorp logo

77

Chapter 1

Using the Internet Document Server SDK

78

REFERENCING ATTACHMENT VARIABLES

This feature lets you reference the attachment variable from a configuration file. You

can use this technique with the DAP.INI, CONFIG.INI and DOCSERV.XML files.

NOTE:This capability was previously added for the ATCSendFile and ATCReceiveFile
rules. With version 2.0, this capability should work for all requests and rules in
DOCSERV.XML, as well as the other sections imported from a DOCSERV.INI
file.

Here is an example of how you reference an attachment variable via a configuration file
option:
< Group >
Option = ~GetAttach VARNAME, INPUT

To reference a message variable in a configuration XML file use the following syntax:

<gection name="Group">
<entry name="Option">~GetAttach VARNAME, INPUT</entry>
</section>

The VARNAME is the name of the variable. INPUT or OUTPUT specify which queue
to search for this value. For example, assume the attachment variable PRINTERTYPE
specifies the printer type to use for output. IDS rules use this configuration XML option
to determine the printer type (<Print>, PrtType =). In this case the XML can be modified
to read:

<gection name="Print">
<entry name="PrtType">~GetAttach PRINTERTYPE, INPUT</entry>
</section>

So when the rule gets a configuration option the value will equal the value of the input
queue variable PRINTERTYPE.

When the rule gets a configuration XML option, the value equals the value of
attachment variable PRINTERTYPE.

You can also use this to dynamically specify the file extension for the file created by
ATCReceiveFile rule when you want to import that file into Documanage. You can do
this as shown here in the DOCSERV.XML file:

<entry name="function">atcw32->ATCReceiveFile, IMPORTFILE,V2IMP, *.
~GetAttach FILETYPE, INPUT,KEEP</entry>
The ATCReceiveFile rule finds the attachment variable FILETYPE and uses its value as
the file extension of the generated file name. Note that there are no spaces between the
asterisk and period (*.) and the tilde (~) prefacing GetAttach. If you include a space there,
it will also be in the file extension.

Chapter 2
DSI C APIs

Use this chapter as a reference to the DSI C API
functions you can use to create applications to interface
with Oracle Insurance's Internet Document Server.

This information will help you build either a proprietary
client interface or a custom set of rules which will
interact with the Internet Document Server.

The APIs documented on the following pages provide a
large number of services, including...

* Interprocess communication

e Dersistent variables

* Accessible across function calls
* Error reporting

Several general purpose utility functions are also
available.

NOTE:The DSI API includes multiple interfaces
(APIs). This lets you use the language you
choose to build custom rules and applications.
You will also find sample clients written in each
language, which you can use as a reference as
you build your own solution.

79

Chapter 2

DSI C APIs

80

C API
FUNCTIONS

Client functions

Server functions

Common functions

Here is a list of DSI C APIs, grouped by functional area. Following this list is a discussion
of each function, listed in alphabetical order.

Use these functions for writing a client program:
¢ DSIAddToQueue on page 89

e DSICopyQRecord on page 118

e DSIFindInQueue on page 126

e DSIGetFirstFromQueue on page 127
e DSIGetSOAPMessage on page 128

e DSIGetSOAPMessageSize on page 129
¢ DSIGetQError on page 130

e DSIGetQField on page 131

e DSIGetQFieldLength on page 133

e DSISetQField on page 155

e DSIGetQueueRec on page 134

e DSIInit on page 136

e DSlInitlnstance on page 137

e DSIInitQueue on page 138

e DSIParseAttachment on page 143

e DSIStoreAttachment on page 156

e DSITerm on page 157

e DSITermlnstance on page 158

e DSITermQueue on page 159

e LDAPGetErrorCode on page 160

¢ LDAPGetErrorMessage on page 161
e LDAPInit on page 162

¢ LDAPSearchDirectory on page 167

e LDAPTerm on page 168

Use these functions for writing rules on the server:
e DSIErrorMessage on page 124

e DSIErrorMsg on page 125

You can use these functions for both a client or a server:

DSIAddAttachRec on page 83
DSIAddAttachVar on page 84
DSIAddToAttachRec on page 86
DSIAddToQueue on page 89
DSIAttachCursorFirst on page 90
DSIAttachCursorLast on page 94
DSIAttachCursorName on page 98
DSIAttachCursorNext on page 100
DSIAttachCursorPrev on page 104
DSIAttachCursorValue on page 108
DSICacheFile on page 115
DSICloseAttachCursor on page 116
DSICopyAttachVars on page 117
DSICreateValue on page 119
DSIDeleteAttachVar on page 120
DSIDestroyValue on page 121
DSIGetUniqueString on page 135
DSILocateAttachVar on page 139
DSILocateValue on page 141
DSIOpenAttachCursor on page 142
DSIQueryValueSize on page 145
DSIReceiveFile on page 146
DSIReceiveFileAsBuffer on page 147
DSIReceiveFileAsBufferSize on page 149
DSIRowset2XML on page 151
DSIRowset2XMLSize on page 152
DSISendBuffer on page 153
DSISendFile on page 154
DSISetQField on page 155
DSIStoreAttachment on page 156
DSITerm on page 157

DSITermlInstance on page 158

C API Functions

81

Chapter 2

DSI C APIs

e DSITermQueue on page 159

82

DSIAddAttachRec

DSIAddAttachRec

Use this function to create a stem variable in the attachment list. This function returns the
new record name with its sequence number.

Syntax long DSIAddAttachRec (DSIHANDLE hInstance, long iQueue, char*
szRecName, char* szRecID, size_t cbRecID);

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue attachment to which record should be added
szRecName name of stem variable to be added
szRecID buffer in which to store record name with sequence number. The calling
function should pass this to DSIAddToAttachRec

cbRecID size of szRecID parameter

Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE];
DSIAddAttachRec (hInstance,

DSI_OUTPUTQUEUE,
"Employee",

szRecName,

sizeof (szRecName));

DSIAddToAttachRec(..., szRecName, ...);

See also DSIAddToAttachRec on page 86

83

Chapter 2

DSI C APIs

DSIAddAttachVar

Use this function to add an attachment variable. This function will overwrite the variable,
if one exists, with the new value.

After you use this function, you must next call DSIStoreAttachment.

Syntax long DSIAddAttachVar (DSIHANDLE hInstance, long iQueue, char* szName,
char* szValue) ;

Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

1Queue queue attachment to which variable should be added

szName name of the variable to be added

szValue data to be associated with attachment variable
Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory

DSIERR._ UNKNOWN unknown error

Example Here is an example:

DSIAddAttachvVar (hInstance, DSI_OUTPUTQUEUE, "RESULTS", "SUCCESS”);

See also DSILocateAttachVar on page 139
DSIDeleteAttachVar on page 120
DSIStoreAttachment on page 156

84

DSIAddAttachVarEx

DSIAddAttachVarEx

Syntax

Parameters

Return values

Example

See also

Use this function to add an attachment variable. This function will overwrite the variable,
if one exists, with the new value.

After you use this function, you must next call DSIStoreAttachment.

long DSIAddAttachVarEx (DSIHANDLE hdsi, long iQueue, char*
szName, char* szValue, long IEncoding) ;

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTE _8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTFE _8 translates Unicode into a format compatible with
null-terminated C language strings.

1Queue queue attachment to which variable should be added
szName name of the variable to be added

szValue data to be associated with attachment variable
Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory

DSIERR._ UNKNOWN unknown error

Here is an example:

DSIAddAttachVarEx (hInstance, DSI_OUTPUTQUEUE, "RESULTS", "SUCCESS”
DSIENCODING_UTF_8) ;

DSILocateAttachVar on page 139
DSIDeleteAttachVar on page 120
DSIStoreAttachment on page 156

85

Chapter 2

DSI C APIs

DSIAddToAttachRec

Use this function to append a value to a stem variable.

Syntax long DSIAddToAttachRec (DSIHANDLE hInstance, long iQueue, char*
szRecName, char* szVarName, char* szValue);

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue attachment to which value should be added
szRecName record to which variable should be added, generally returned by the

DSIAddAttachRec function

szVarName name of field within record

szValue data to be associated with variable
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE 1] ;

DSIAddAttachRec (hInstance,
DSI_OUTPUTQUEUE,
"Employee",
szRecName,
sizeof (szRecName));
DSIAddToAttachRec(hInstance,
DSI_OUTPUTQUEUE,
szRecName,
"Name",
"H. R. Pufnstuf");
DSIAddToAttachRec(hInstance,
DSI_OUTPUTQUEUE,
szRecName,
"DependentName",
"Jimmy") ;

See also DSIAddAttachRec on page 83

86

DSIAddToAttachRecEx

DSIAddToAttachRecEx

Use this function to append a value to a stem variable.

Syntax

Parameters

Return values

Example

long DSIAddToAttachRecEx (DSIHANDLE hdsi, long iQueue, char*
szRecName, char* szFieldName, char* szValue, long IEncoding) ;

Parameter Description

encoding DSIENCODING_SINGLE _BYTE or DSIENCODING_UTE 8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTE 8 translates Unicode into a format compatible with
null-terminated C language strings.

hlnstance handle to instance returned by DSIInitInstance

1Queue queue attachment to which value should be added

szZRecName record to which variable should be added, generally returned by the
DSIAddAttachRec function

szVarName name of field within record

szValue data to be associated with variable

Value Description

DSIERR_SUCCESS no error

DSIERR _INVPARM
DSIERR_MEMORY

DSIERR_UNKNOWN

invalid parameter
out of memory

unknown error

Here is an example:

char szRecName [DSI_MAXNAMESIZE];

DSIAddAttachRec (

DSIAddToAttachRecEx (

DSTAddToAttachRecEx (

hInstance,

DSI_OUTPUTQUEUE,

"Employee",

szRecName,

sizeof (szRecName));
hInstance,

DSI_OUTPUTQUEUE,

szRecName,

"Name" ,

"H. R. Pufnstuf",

DSIENCODING_UTF_8) ;

hInstance,
DSI_OUTPUTQUEUE,
szRecName,
"DependentName",
n Jimyu

DSIENCODING_UTF_8) ;

87

Chapter 2

DSI C APIs

See also DSIAddAttachRec on page 83

88

DSIAddToQueue

DSIAddToQueue

Use this function to add a record to a queue.

Syntax long DSIAddToQueue (DSIHANDLE hInstance, long iQueue) ;

Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance
1Queue Queue on which to post

Return values
Value Description

DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_MEMORY
DSIERR_NOTFOUND
DSIERR_UNKNOWN
DSIERR_QERR

DSIERR_IOERR

no error

invalid parameter

out of memory

no more elements in the list
unknown error
uninitialized queue

end of file

Example Here is an example:

DSTAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;

89

Chapter 2

DSI C APIs

DSIAttachCursorFirst

Use this function to retrieve the first element from the attachment list and get the
cursor.

Syntax long DSIAttachCursorFirst (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvalue) ;

Parameters
Parameter Description
hCursor handle to cursor initialized by prior call to DSIOpenAttchCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszZName parameter
pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

Example Here is an example:

DSIHANDLE hApp;

DSTIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE 1];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;

90

See also

DSIAttachCursorFirst

if (DSIAttachCursorFirst(hCursor,

szName,
sizeof (szName) ,
szValue,
sizeof (szValue)) == DSIERR_SUCCESS)
{
printf ("The first element is: %s = %s", szName, szValue);

}

DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIAttachCursorPrev on page 104
DSICloseAttachCursor on page 116
DSIParseAttachment on page 143

91

Chapter 2

DSI C APIs

DSIAttachCursorFirstEx

Use this function to retrieve the first element from the attachment list and get the

cursor.
Syntax long DSIAttachCursorFirstEx (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvValue, long IEncoding) ;
Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTE _8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTE_8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to cursor initialized by prior call to DSIOpenAttchCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszZName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description

DSIERR_SUCCESS

DSIERR_INVPARM

no error

invalid parameter

DSIERR_NOTFOUND empty list
Example Here is an example:
DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor (

92

hInstance,
DSI_INPUTQUEUE) ;

DSIAttachCursorFirstEx

if (DSIAttachCursorFirstEx(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue)

DSIENCODING_UTF_8) == DSIERR_SUCCESS)
{
printf("The first element is: %s = %s", szName, szValue);

}

See also DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIAttachCursorPrev on page 104
DSICloseAttachCursor on page 116
DSIParseAttachment on page 143

93

Chapter 2

DSI C APIs

DSIAttachCursorlLast

94

Syntax

Parameters

Return values

Example

See also

Use this function to retrieve the last element from the attachment list.

long DSIAttachCursorLast (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvalue) ;

Parameter Description

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszZName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIERR_UNKNOWN unknown error

Here is an example:
DSIHANDLE hApp;
DSIHANDLE hInstance;
DSTIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

DSIOpenAttachCursor on page 142
DSICloseAttachCursor on page 116
DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorPrev on page 104
DSIParseAttachment on page 143

DSIAttachCursorlLast

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorLast (hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue)) == DSIERR_SUCCESS)

printf ("The last element is %s=%s", szName,szValue) ;
while(DSIAttachCursorPrev(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue))
== DSIERR_SUCCESS)
{
printf ("The previous element is %s=%s", szName,szValue) ;

}

95

Chapter 2

DSI C APIs

DSIAttachCursorLastEx

Use this function to retrieve the last element from the attachment list.

Syntax long DSIAttachCursorLastEx (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvValue, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTE_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTE_8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszZName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

DSTHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

96

DSIAttachCursorLastEx

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorLastEx(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue)

DSIENCODING _UTF_8) == DSIERR_SUCCESS)
{
printf ("The last element is %s=%s", szName,szValue);
while(DSIAttachCursorPrev(hCursor,
szName,
sizeof (szName) ,
szValue,

sizeof (szvValue)

DSIENCODING_UTF_8)
== DSIERR_SUCCESS)
{
printf ("The previous element is %s=%s", szName,szValue) ;

}

See also DSIOpenAttachCursor on page 142
DSICloseAttachCursor on page 116
DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorPrev on page 104
DSIParseAttachment on page 143

97

Chapter 2
DSI C APIs

DSIAttachCursorName

Use this function to retrieve the name of the current element from the attachment list.

Syntax long DSIAttachCursorName (DSIHANDLE hCursor, char* pszName, size_t
cbName) ;
Parameters
Parameter Description
hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor

and positioned by calls to DSIAttachCursor* call
pszName buffer in which to retrieve the name of the element of the attachment

cbName size of buffer in pszName parameter

NOTE:The parameter pszName will be zero-filled to the length specified in cbName.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR._ NOTFOUND no such element in the list

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSTHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];
hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorlast(hCursor,
NULL,
0,
NULL,
0) == DSIERR_SUCCESS)

DSIAttachCursorName (hCursor, szName, sizeof (szName)) ;

DSIAttachCursorValue (hCursor, szValue, sizeof (szvValue)) ;
printf ("The last element is %s=%s", szName,szValue);

98

See also

DSIOpenAttachCursor on page 142
DSICloseAttachCursor on page 116
DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIAttachCursorPrev on page 104
DSIAttachCursorValue on page 108

DSIParseAttachment on page 143

DSIAttachCursorName

99

Chapter 2

DSI C APIs

DSIAttachCursorNext

Use this function to retrieve the next element from the attachment list.

Syntax long DSIAttachCursorNext (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvalue) ;

Parameters
Parameter Description
hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter
pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

Example Here is an example:
DSIHANDLE hApp;
DSIHANDLE hInstance;
DSTIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 142
DSIAttachCursorPrev on page 104
DSIParseAttachment on page 143

100

DSIAttachCursorNext

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE,
szName,
sizeof (szName) ,
szValue,

sizeof (szValue)) ;
if (hCursor)

{
printf("The first element is %s", szValue);
while(DSIAttachCursorNext (hCursor,
szName,
sizeof (szName)
szValue,
sizeof (szvalue))
== DSIERR_SUCCESS)
{
printf ("The next element is %s=%s”, szName,szValue) ;
}

101

Chapter 2

DSI C APIs

DSIAttachCursorNextEx

Use this function to retrieve the next element from the attachment list.

102

Syntax

Parameters

Return values

Example

long DSIAttachCursorNextEx (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvValue, long IEncoding) ;

Parameter

Description

encoding

hCursor
pszName
cbName
pszValue

cbValue

DSIENCODING_SINGLE_BYTE or DSIENCODING_UTE_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTFEF_8 translates Unicode into a format compatible with
null-terminated C language strings.

handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
buffer in which to retrieve the name of the first element of the attachment
size of buffer in pszZName parameter

buffer in which to retrieve the value of the first element of the attachment

size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

Here is an example:

DSTHANDLE
DSIHANDLE
DSTHANDLE
char
char

hApp;

hInstance;

hCursor;

szName [DSI_MAXNAMESIZE];
szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();

hInstance
hCursor =

= DSIInitInstance(hApp);
DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;

if (hCursor)

{

if (DSIAttachCursorFirstEx(hCursor,

DSIAttachCursorNextEx

szName,
sizeof (szName) ,
szValue,
sizeof (szValue),

DSIENCODING_UTF_8)==DSIERR_SUCCESS)

printf("The first element is %s", szValue);
while(DSIAttachCursorNextEx(hCursor,
szName,
sizeof (szName)
szValue,

sizeof (szvalue)

DSIENCODING_UTF_8)
== DSIERR_SUCCESS)

printf ("The next element is %s=%s”, szName,szValue);

}

See also DSIOpenAttachCursor on page 142
DSIAttachCursorPrev on page 104
DSIParseAttachment on page 143

103

Chapter 2

DSI C APIs

DSIAttachCursorPrev

Use this function to retrieve the previous element from the attachment list.

Syntax long DSIAttachCursorPrev (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvalue) ;

Parameters
Parameter Description
hCursor handle to attachment cursor initialized by a prior call to

DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszZName parameter
pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

Example Here is an example:
DSIHANDLE haApp;
DSTIHANDLE hInstance;
DSTIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 142
DSICloseAttachCursor on page 116
DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIParseAttachment on page 143

104

DSIAttachCursorPrev

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorLast (hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue)) == DSIERR_SUCCESS)

printf ("The last element is %s=%s", szName,szValue) ;
while(DSIAttachCursorPrev(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue))
== DSIERR_SUCCESS)

printf ("The previous element is %s=%s", szName,szValue) ;

105

Chapter 2

DSI C APIs

DSIAttachCursorPrevEx

Use this function to retrieve the previous element from the attachment list.

Syntax long DSIAttachCursorPrevEX (DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbvValue, long IEncoding) ;

Parameters

Parameter

Description

encoding

hCursor

pszName
cbName
pszValue

cbValue

DSIENCODING_SINGLE_BYTE or DSIENCODING_UTE_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and
others. DSIENCODING_UTE_8 translates Unicode into a format
compatible with null-terminated C language strings.

handle to attachment cursor initialized by a prior call to
DSIOpenAttachCursor

buffer in which to retrieve the name of the first element of the attachment
size of buffer in pszZName parameter
buffer in which to retrieve the value of the first element of the attachment

size of buffer in pszValue parameter

NOTE:The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE
DSTHANDLE
DSIHANDLE
char
char

106

hApp;

hInstance;

hCursor;

szName [DSI_MAXNAMESIZE];
szValue [DSI_MAXVALUESIZE];

DSIAttachCursorPrevEx

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorLastEx(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue),

DSIENCODING_UTF_8) == DSIERR_SUCCESS)
printf ("The last element is %s=%s", szName,szValue) ;
while(DSIAttachCursorPrev(hCursor,

szName,

sizeof (szName) ,

szValue,

sizeof (szvValue))
== DSIERR_SUCCESS)

printf ("The previous element is %s=%s", szName,szValue) ;

See also DSIOpenAttachCursor on page 142
DSICloseAttachCursor on page 116
DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIParseAttachment on page 143

107

Chapter 2
DSI C APIs

DSIAttachCursorValue

Use this function to retrieve the value of the current element from the attachment list.

Syntax long DSIAttachCursorValue (DSIHANDLE hCursor, char* pszValue, size_t
cbvalue) ;
Parameters
Parameter Description
hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor

and positioned by calls to the DSIAttachCursorFirst, Next, Prev, Last calls.
pszValue buffer in which to retrieve the value of the element of the attachment

cbValue size of buffer in pszValue parameter

NOTE:The parameter pszValue will be zero-filled to the length specified in cbValue.

Return values

Description Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND the position of the cursor is invalid

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSTHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];
hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorlast(hCursor,
NULL,
0,
NULL,
0) == DSIERR_SUCCESS)

DSIAttachCursorName (hCursor, szName, sizeof (szName)) ;

DSIAttachCursorValue (hCursor, szValue, sizeof (szvValue)) ;
printf ("The last element is %s=%s”, szName,szValue);

108

See also

DSIOpenAttachCursor on page 142
DSICloseAttachCursor on page 116
DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIAttachCursorPrev on page 104
DSIAttachCursorValue on page 108

DSIParseAttachment on page 143

DSIAttachCursorValue

109

Chapter 2
DSI C APIs

DSIAttachCursorValueEx

Use this function to retrieve the value of the current element from the attachment list.

Syntax long DSIAttachCursorValueEx (DSIHANDLE hCursor, char* pszValue,
size_t cbvValue, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE BYTE or DSIENCODING_UTE 8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTE _8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
and positioned by calls to the DSIAttachCursorFirst, Next, Prev, Last calls.

pszValue buffer in which to retrieve the value of the element of the attachment

cbValue size of buffer in pszValue parameter

NOTE:The parameter pszValue will be zero-filled to the length specified in cbValue.

Return values

Description Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND the position of the cursor is invalid

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp;

DSTIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

110

See also

hApp = DSIInit();

DSIAttachCursorValueEx

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor (

if (hCursor)

{

hInstance,
DSI_INPUTQUEUE) ;

if (DSIAttachCursorLast (hCursor,

NULL,

0,

NULL,

0) == DSIERR_SUCCESS)

DSIAttachCursorName (hCursor, szName, sizeof (szName)) ;

DSIAttachCursorValueEx (hCursor, szValue, sizeof (szValue) ,DSIENCODING_

UTF_8) ;

printf ("The last element is %s=%s”, szName,szValue) ;

}

DSIOpenAttachCursor on page 142
DSICloseAttachCursor on page 116
DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIAttachCursorPrev on page 104
DSIAttachCursorValue on page 108
DSIParseAttachment on page 143

Chapter 2

DSI C APIs

DSIAttachVarLength

Locates an attachment variable and returns it’s length. Useful for getting the value when
the size is unknown and can be huge.

Syntax long DSIAttachVarLength (DSIHANDLE hdsi, long iQueue, char* szName,
size_ t *pstSize);

Parameters

Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment in which variable is to be found
pstSize the size of the value including nul terminator
szZName name of the variable to locate

Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_ NOTFOUND variable not found

DSIERR_UNKNOWN unknown error

Example Here is an example:

char *pszVar;
size_ t size;

DSIAttachvVarLength(hdsi,
DSI_INPUTQUEUE,
"FileName",
&size) ;

pszVar = malloc (size);
DSILocateAttachvar (hdsi,
DSI_TINPUTQUEUE,
“FileName”,
pszVar,
size) ;
printf (“File is: %s\n”,pszVvar) ;
free(pszvar) ;

See also DSIAddAttachVar on page 84

DSIDeleteAttachVar on page 120
DSIParseAttachment on page 143

DSIAttachVarLengthEx

Locates an attachment variable and returns it’s length. Useful for getting the value when
the size is unknown and can be huge.

Syntax

Parameters

Return values

Example

long DSIAttachVarLengthEx (DSIHANDLE hdsi,
size_t *pstSize,

long encoding) ;

DSIAttachVarLengthEx

long iQueue, char* szName,

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hlnstance handle to instance returned by DSIInitInstance

1Queue queue attachment in which variable is to be found

pstSize the size of the value including nul terminator

szName name of the variable to locate

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM
DSIERR_NOTFOUND

DSIERR_UNKNOWN

invalid parameter
variable not found

unknown error

Here is an example:

char *pszVar;
size t size;

DSIAttachVarLengthEx(hdsi,

DSTI_INPUTQUEUE,
"FileName",
&size

DSIENCODING_UTF_8) ;

pszVar = malloc(size);
DSILocateAttachvVarEx (hdsi,

printf (“File is:

free(pszvar) ;

DSI_INPUTQUEUE,
“FileName”,

pszVar,

size,
DSIENCODING_UTF_S8) ;

%s\n” ,pszvar) ;

Chapter 2

DSI C APIs

See also DSIAddAttachVar on page 84
DSIDeleteAttachVar on page 120
DSIParseAttachment on page 143

114

DSICacheFile

DSICacheFile

Use this function to add a file to the cache. You can only use this API from a server rule.

This API adds a row to the table of cached files. The server purges these files as time
expires in the autorun rules. This API only works if you have registered the IRLInit rule
as an INIT rule on the server.

Syntax long DSICacheFile (DSIHANDLE hInstance, char* szFileName, long
1Expire) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance

szFileName full name of file to be added

Expire time period until file should be purged, in seconds
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example that sets the file to expire in one hour:

DSICacheFile(hInstance, "File.dat", 3600L);

Chapter 2

DSI C APIs

DSICloseAttachCursor

Use this function to close an attachment cursor and free the associated memory.

Syntax long DSICloseAttachCursor (DSIHANDLE hCursor) ;
Parameters
Parameter Description
hCursor handle of the cursor previously created by a call to DSIOpenAttachCursor

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSTIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];
hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue)) ;
if (hCursor)
{
if (DSIAttachCursorFirst(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue))
== DSIERR_SUCCESS)
{
printf("The first element is %s=%s",szName,szValue);
}
DSICloseAttachCursor (hCursor);

}

See also DSIOpenAttachCursor on page 142

116

DSICopyAttachVars

DSICopyAttachVars

Syntax

Parameters

Return values

Example

See also

Use this function to copy all attachment variables from one queue to another.

long DSICopyAttachvars (DSIHANDLE hInstance, long iSourceQ) ;

Parameter Description

hlnstance handle to instance returned by DSIInitInstance
1SourceQ_ queue attachment from which variables are to be copied
Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

This code copies the attachment variables from the input queue to the output queue.

DSICopyAttachVars (hInstance, DSI_INPUTQUEUE) ;
DSIAddAttachVar on page 84

DSILocateAttachVar on page 139
DSIDeleteAttachVar on page 120

Chapter 2

DSI C APIs

DSICopyQRecord

Use this function to copy a queue record from one queue to another.
Syntax long DSICopyQRecord (DSIHANDLE hInstance, long iSrcQ);

Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

1SrcQ_ queue from which to copy (destination is assumed to be the other queue
belonging to the hlnstance parameter)

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory
DSIERR_EOF no queue records available

DSIERR_UNKNOWN unknown error
DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Example Here is an example:

DSICopyQRecord(hInstance, DSI_OUTPUTQUEUE); / * copy output to
input */

118

DSICreateValue

DSICreateValue

Syntax

Parameters

Return values

Example

See also

Use this function to create a persistent DSI variable. These variables are not part of the
queue records or attachments. They exist so rules can pass information to one another.
You must destroy these persistent variables using a call to the DSIDestroyValue
function.

long DSICreateValue (DSIHANDLE hInstance, char* szName, void*
pvValue, size_t cbvalueSize) ;

Parameter Description

hlnstance handle to instance returned by DSIInitInstance
szName name of the variable

pvValue pointer to the data (may be NULL)
cbValueSize size of data

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Here is an example:

int iCount;
iCount = 123;
DSICreateValue (hInstance, "MY_ICOUNT", &iCount,sizeof (iCount)) ;

DSIDestroyValue on page 121
DSILocateValue on page 141
DSIQueryValueSize on page 145

Chapter 2

DSI C APIs

DSIDeleteAttachVar

Syntax

Parameters

Return values

Example

See also

120

Use this function to remove an attachment variable.

long DSIDeleteAttachVar (DSIHANDLE hInstance, long iQueue, char*

szName) ;
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue attachment from which variable is to be removed
szName name of the variable to be removed
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not known

DSIERR_UNKNOWN unknown error

Here is an example:

DSIDeleteAttachvVar(hInstance, DSI_OUTPUTQUEUE,
DSIAddAttachVar on page 84
DSILocateAttachVar on page 139

"DonotWantThis"

)

DSIDestroyValue

DSIDestroyValue

Use this function to destroy a persistent DSI variable. To prevent resource leaks, you
must use this function to destroy a// variables created with the DSICreateValue function.

Syntax long DSIDestroyValue (DSIHANDLE hInstance, char* szName) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
szZName name of the variable to destroy

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIDestroyValue(hInstance, "DISPOSABLE");

See also DSICreateValue on page 119
DSILocateValue on page 141
DSIQueryValueSize on page 145

121

Chapter 2

DSI C APIs

DSIEncryptValue

Encrypt a text value to a unique string. It is useful for encrypting USERID or
PASSWORD, for example.

Syntax long DSIEncryptValue (DSIHANDLE hdsi, char* szName, char *pszValue,
size_t wvalSize);

Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
pszInValue Input buffer of the text string to be encrypted

pszOutValue Output buffer of the encrypted text string

valSize size of the output buffer
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

Example Here is an example:

DSIHANDLE hApp;
DSTIHANDLE hInstance;
char outValue ?? (DSI_MAXVALUESIZE ?7?);

hApp=DSIInit () ;

hInstance=DSIInitInstance(hApp);
DSIEncryptValue (hInstance, inValue, outValue, sizeoff (outValue)) ;

122

DSIEncryptValueEx

DSIEncryptValueEx

Encrypt a text value to a unique string. It is useful for encrypting USERID or
PASSWORD, for example.

Syntax long DSIEncryptValueEx (DSIHANDLE hdsi, char* szName, char *pszValue,
size_t valSize, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTE_S8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and
others. DSIENCODING_UTF_8 translates Unicode into a format
compatible with null-terminated C language strings.

hdsi handle to instance returned by DSIInitInstance
pszInValue Input buffer of the text string to be encrypted

pszOutValue Output buffer of the encrypted text string

valSize size of the output buffer
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

Example Here is an example:

DSIHANDLE hApp;
DSTHANDLE hInstance;
char outValue ?? (DSI_MAXVALUESIZE ??);

hApp=DSIInit () ;
hInstance=DSIInitInstance(hApp);

DSIEncryptValueEx (hInstance, inValue, outValue, sizeoff (outvValue),
DSIENCODING_UTF_8) ;

123

Chapter 2

DSI C APIs

DSIErrorMessage

Use this function to add an error message to an attachment.

Syntax long DSIErrorMessage (DSIHANDLE hInstance, long iQueue, char*
pszCode, ...);
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue attachment to which message should be added
pszCode error code

error parameter name/value pairs, terminated by NULL

The variable arguments must be in this format:

<ERR.MSG>, <ParameterName><ParameterValue>
<ParameterName><ParameterValue>

.. .NULL
Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIErrorMessage (hInstance,
DSI_OUTPUTQUEUE,
"IRLO023", /* error code */
"FILE", /* error parameter name */
szFile, /* error parameter value */
NULL) ; /* NULL terminator */

124

DSIErrorMsg

DSIErrorMsg

Use this function to add an error message to an attachment. This function serves as a
replacement for the DSIErrorMessage function in situations where a variable number of
arguments is not supported, such as with languages other than C and C++.

Syntax long DSIErrorMsg (DSIHANDLE hdsi, long iQueue, long lLevel, char
**pgzCode) ;

Parameters

Parameter Description

hdsi handle to instance returned by DSIInitInstance
1Queue queue attachment to which message should be added
[Level DSI_ERROPT _ value, level of the error. Valid values are:

DSI_ERROPT_INFO, DSI_ERROPT_WARNING,
DSI_ERROPT_SEVERE (not currently implemented and is ignored).

pszCode pointer to the array of strings, the last string has to be NULL, the first string is the
error code. The strings are in NAME/VALUE pairs.

To add the error message to the attachment, pass to it this array of strings:

"XXX0001", - error code
"FILENAME", - name of the parameter
"C:\docser\file.dat", - name of the file
NULL
Return values
Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_INTERNAL internal error

Example Here is an example:

char *err 2?2 (2?) =

{

"XXX0023", /* error code
"FILE", /* error parameter name
"c:\\docserv\\file.dat", /* error parameter value
NULL /* NULL terminator
}i
DSIErrorMsg (hInstance,
DSI_OUTPUTQUEUE,
err);

125

Chapter 2

DSI C APIs

DSIFindInQueue

Use this function to search for a record in a queue.

Syntax long DSIFindInQueue (DSIHANDLE hInstance, long iQueue, char* pszId);
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue in which to search
pszId unique record identifier. Use DSISetQField(..., DSIQSET_UNIQUE _ID, ...)
to place this value in the queue record

Return values
Value Description
DSIERR_SUCCESS no error

DSIERR_INVPARM
DSIERR_EOF
DSIERR_MEMORY
DSIERR_UNKNOWN
DSIERR_QERR

DSIERR_IOERR

invalid parameter
record not found
out of memory
unknown error
uninitialized queue

end of file

Example Here is an example:

char szId [11

DSIGetUniqueString (hInstance, szId, sizeof(szId));

DSISetQField(

hInstance,

DSI_OUTPUTQUEUE,
DSIQSET UNIQUE_TID,
szId,
sizeof (szId));
DSIAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;
/* wait for server to process */
DosSleep(5000);
DSIFindInQueue(hInstance, DSI_INPUTQUEUE, szId);

126

DSIGetFirstFromQueue

DSIGetFirstFromQueue

Use this function to get the first record in a queue.

Syntax long DSIGetFirstFromQueue (DSIHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue from which to retrieve

Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory
DSIERR_EOF no elements in the list
DSIERR_UNKNOWN unknown error
DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Example Here is an example:

DSIGetFirstFromQueue (hInstance, DSI_INPUTQUEUE) ;

127

Chapter 2

DSI C APIs

DSIGetSOAPMessage

Use this rule to retrieve an IDS message as an XML file in memory.

Syntax long DSIGetSOAPMessage (DSIHANDLE hdsi, long IQueue, long
szXMLBuffer, long szXMLBuffer, long stBuffSize, long IOptions;

Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
1Queue queue attachment

szXMLBuffer buffer into which the XML is to be unloaded
stBuffSize size of buffer in szZXMLBuffer including the zero (0) terminator

10ptions RFU, currently not used

Returns DSIERR_SUCCESS
DSIERR_INVPARM

Example Here is an example:

char *buf;
size_t size;

DSIGetSOAPMessageSize (hdsi,DSI_INPUT, &size,0) ;
buf = malloc(size);
DSIGetSOAPMessage (hdsi,DSI_INPUT,buf,size,0);

use buffer here

free (buf) ;

128

DSIGetSOAPMessageSize

DSIGetSOAPMessageSize

Use this rule to get the size of an IDS message as an XML file in memory.

Syntax long DSIGetSOAPMessageSize (DSIHANDLE hdsi, long IQueue, long
pstBuffSize, long IOptions;

Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
1Queue queue attachment
pstBuffSize size of buffer in szZXMLBuffer including the zero (0) terminator
1Options RFU, currently not used

Returns DSIERR_SUCCESS
DSIERR_INVPARM

Example Here is an example:

char *buf;
size_t size;

DSIGetSOAPMessageSize (hdsi,DSI_INPUT, &size,0) ;
buf = malloc(size);
DSIGetSOAPMessage (hdsi,DSI_INPUT,buf,size,0);

. use buffer here

free (buf) ;

129

Chapter 2

DSI C APIs

DSIGetQError

Use this function to get the last queue error from a queue.

Syntax long DSIGetQError (DSIHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue from which to retrieve error

Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory
DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

Example Here is an example:

long QErr;

if (DSIGetFirstFromQueue(hInstance, DSI_INPUTQUEUE, OL)
!= DSIERR_SUCCESS)

{
QErr = DSIGetQError(hInstance, DSI_INPUTQUEUE) ;

}

130

DSIGetQField

DSIGetQField

Use this function to retrieve the value of a queue field.

NOTE:Since each field has a different length which may vary from one release to the
next, the system queries the length before it allocates memory and performs this
function.

Syntax

long DSIGetQField (DSIHANDLE hInstance,

long iQueue, long iField,

void* pvValue, size t cbValue);

Parameters

Parameter

Description

hlnstance

1Queue

iField

pvValue

cbValue

handle to instance returned by DSIInitInstance

queue to which operation applies

DSIQSET _* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS

INTIME

OUTTIME

USERID

PRIORITY

UNIQUE _ID

ATTACHMENT

buffer in which the data should be placed

length of the buffer

Return values
Value

Description

DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_MEMORY
DSIERR_EOF
DSIERR_UNKNOWN

DSIERR_QERR

no error
invalid parameter

out of memory

queue record not found
unknown error

uninitialized queue

DSIERR_IOERR end of file
Example Here is an example:
char szRequest [8 1;

131

Chapter 2

DSI C APIs

DSIGetQField(hInstance,
DSI_INPUTQUEUE,
DSIQSET REQTYPE,
szRequest,
sizeof (szRequest));

if (!strcmp(szRequest, "LGN"))

{

}

See also DSISetQField on page 155

132

DSIGetQFieldLength

DSIGetQFieldLength

Use this function to get the length of one of the pre-defined fields in a queue.

Syntax long DSIGetQFieldLength (DSIHANDLE hInstance, long iQueue, long
iField);
Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

1Queue queue from which to retrieve data

iField DSIQSET _* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE ID
ATTACHMENT

Return values

Value Description
0 error
0 length of field

Example Here is an example:

void *pvAttach;
long cbField;
cbField = DSIGetQFieldLength (hInstance,
DSI_INPUTQUEUE,
DSIQSET ATTACHMENT) ;
if (cbField > 0)
{
DosAllocMem ((PPVOID) &pvAttach,
cbField,
PAG_READ | PAG_WRITE | PAG_COMMIT) ;

133

Chapter 2

DSI C APIs

DSIGetQueueRec

Use this function to search for a record in a queue.

Syntax long DSIGetQueueRec (DSIHANDLE hInstance, long iQueue, char* pszId,
long 1Wait, long 1TimeOut) ;

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue in which to search
pszld unique record identifier. Use DSISetQField(..., DSIQSET_UNIQUE _ID, ...)

to place this value in the queue record

IWait number of milliseconds to wait between retries, zero (0) is invalid for this
parameter and is replaced with 1000.

ITimeOut number of milliseconds to keep trying, if zero (0) the system does not retry
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory
DSIERR_EOF record set not found
DSIERR_UNKNOWN unknown error
DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Example Here is an example:

char szid [11 1;
DSIGetUniqueString (hInstance, szId, sizeof(szId));
DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET UNIQUE_TID,
szId,
sizeof (szId));
DSIAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;
/* wait for server to process */
DSIGetQueueRec (hInstance, DSI_INPUTQUEUE, szId, 1000L, 10000L);
/* tries every second for 10 seconds */

134

DSIGetUniqueString

DSIGetUniqueString

Use this function to fill the buffer pointed to by pszString with a unique string. You can
use this function to generate unique file names. The buffer is filled with characters of
the size specified by the cbSize parameter less one. So, if you need to generate an 8-
character unique file name, specify a buffer size of 9. The output string is unique for the
current instance of the Internet Document Server.

Syntax long DSIGetUniqueString (DSIHANDLE hInstance, char* pszString, size_t
cbSize) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
pszString pointer to the output buffer
cbSize size of buffer in pszString

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM Invalid parameter

hInstance is NULL
pszString is NULL
cbSize 1s 0

DSIERR_MEMORY memory errors

DSIERR_UNKNOWN unknown error

Example Here is an example:

char szFileName DIM (9);

if (DSIGetUniqueString (hInstance,
szFileName,
sizeof (szFileName) != DSIERR_SUCCESS)

Some code to display error message

135

Chapter 2

DSI C APIs

DSlInit

Syntax
Parameters

Return values

Example

See also

136

Use this function to initialize the systems and structures necessary for DSI calls. This
should be called by the application only once.

This rule loads the DSLINI file, which you can use to store DSI internal INI options,
such as queue names. If the INI does not exist, no error is given.

DSIHANDLE DSIInit();

None
Value Description
DSIHANDLE handle to application data to be used for subsequent calls to

DSIInitInstance and DSITerm

DSINULLHANDLE on failure

Here is an example:

DSIHANDLE hApp;

if((hApp = DSIInit()) == DSINULLHANDLE)
{

return(FALSE) ;
}

DSITerm on page 157

DSlInitInstance

DSlInitInstance

Use this function to initialize the structures necessary for DSI calls. This should be

called once per thread.

Syntax DSIHANDLE DSIInitInstance (DSIHANDLE hApp) ;
Parameters
Parameter Description
hApp handle of application data returned by a prior call to DSIInit

Return values

Value Description
DSIHANDLE hlnstance handle to instance data, returns 0 on error
DSINULLHANDLE returns on failure

Example Here is an example:

DSIHANDLE hApp;

DSTIHANDLE hInstance;

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

DoSomeStuff (hInstance, andSomeOtherParameters) ;
DSITermInstance(hInstance) ;

DSITerm(hApp);

return(-10368);

See also DSIInit on page 136
DSITermlInstance on page 158

137

Chapter 2
DSI C APIs

DSIInitQueue

Use this function to initialize a queue.

Syntax long DSIInitQueue (DSIHANDLE hInstance, long iQueue, char* pszQName) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue to initialize
pszQName name of queue to initialize.

The IQueue parameter tells the system whether to initialize the request (REQUESTQ)
or result (RESULTQ) queue. If the pszQName parameter is NULL, the rule uses the
Name INI option in the REQUESTQ or RESULTQ control group. If found, it will use
this name for the output (or input) queue name. These names have default values which
are used when the name passed in is NULL and no INI option is specified in the DSI.INI
file. The default names are REQUESTQ for output and RESULTQ for input queues.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory
DSIERR_EOF record not found

DSIERR_NOTFOUND no more elements in the list
DSIERR_UNKNOWN unknown error
DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Example Here is an example:

long rc;

if (DSIInitQueue(hInstance, DSI_INPUTQUEUE, "InputQ")
!= DSIERR_SUCCESS)
{
rc = DSIGetQError(hInstance, DSI_INPUTQUEUE) ;
}

See also DSITermQueue on page 159

138

DSIlLocateAttachVar

Syntax

Parameters

Return values

Example

See also

DSlLocateAttachVar

Use this function to locate an attachment variable. You must call the
DSIParseAttachment function before you use this function.

long DSILocateAttachVar (DSIHANDLE hInstance, long iQueue, char*

szName,

char* szValue, size_t cbValSize);

Parameter Description

hlnstance handle to instance returned by DSIInitInstance
1Queue queue attachment in which variable is to be found
szName name of the variable to locate

szValue buffer for the variable

cbValSize size of buffer in szValue

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_ NOTFOUND variable not found

DSIERR_UNKNOWN unknown error

Here is an example:

char szvar [32 1;
DSILocateAttachVar (hInstance,

DSTI_INPUTQUEUE,
"FileName",

szVar,

sizeof (szvar));

DSIAddAttachVar on page 84
DSIDeleteAttachVar on page 120

DSIParseAttachment on page 143

139

Chapter 2

DSI C APIs

DSILocateAttachVarEx

Use this function to locate an attachment variable. You must call the
DSIParseAttachment function before you use this function.

Syntax long DSILocateAttachVarEx (DSIHANDLE hdsi, long iQueue, char* szName,
char* szValue, size_t cbvalSize, long IEncoding) ;
Parameters
Parameter Description
encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTE _8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.
hlnstance handle to instance returned by DSIInitInstance
1Queue queue attachment in which variable is to be found
szName name of the variable to locate
szValue buffer for the variable
cbValSize size of buffer in szValue
Return values
Value Description
DSIERR_SUCCESS no error

DSIERR_INVPARM
DSIERR_NOTFOUND

DSIERR_UNKNOWN

invalid parameter
variable not found

unknown error

Example Here is an example:
char szvar [32
DSILocateAttachvVarEx (hInstance,
DSI_INPUTQUEUE,
"FileName",
szVar,
sizeof (szvar),
DSIENCODING_UTF_8) ;
See also DSIAddAttachVar on page 84

DSIDeleteAttachVar on page 120
DSIParseAttachment on page 143

140

DSlLocateValue

DSlLocateValue

Use this function to locate a persistent DSI variable.

Syntax long DSILocateValue (DSIHANDLE hInstance, char* szName, void*
pvValue, size_t cbvalueSize) ;

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
szName name of the variable to locate
pvValue buffer in which to place to the data

cbValueSize size of buffer

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND named value not found

DSIERR_UNKNOWN unknown error

Example Here is an example:

char szFile [CCHMAXPATH 1];
DSILocateValue(hInstance, "FILENAME", szFile, sizeof(szFile));

See also DSICreateValue on page 119
DSIDestroyValue on page 121
DSIQueryValueSize on page 145

141

Chapter 2

DSI C APIs

DSIOpenAttachCursor

Use this function to open a cursor into the attachment list for the specified queue.

142

Syntax

Parameters

Return values

Example

See also

DSTIHANDLE DSIOpenAttachCursor (DSIHANDLE hInstance, long 1Q);

Parameter Description
hlnstance handle to instance data initialized by a prior call to DSIInitInstance
iQ queue identifier
Value Description
DSIHANDLE handle to cursor which you can use for subsequent calls to the
DSIAttachCursorFirst, DSIAttachCursorNext, DSIAttachCursorPrev
and DSICloseAttachCursor functions.
DSINULLHANDLE on failure
Here is an example:
DSIHANDLE hApp;
DSTIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor (

if (DSIAttachCursorFirst (

{

hInstance,

DSI_INPUTQUEUE) ;

hCursor,

szName,

sizeof (szName) ,

szValue,

sizeof (szValue)) == DSIERR_SUCCESS)

printf("The first element is: %s = %s”, szName, szValue);

}

DSIAttachCursorFirst on page 90
DSIAttachCursorNext on page 100
DSIAttachCursorLast on page 94
DSIAttachCursorPrev on page 104
DSIAttachCursorName on page 98
DSIAttachCursorValue on page 108
DSICloseAttachCursor on page 116
DSIParseAttachment on page 143

DSlIParseAttachment

DSIParseAttachment

Use this function to parse the attachment field in the queue record into an internal
attachment list of name/value pairs.

Syntax long DSIParseAttachment (DSIHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue in which the attachment is to be parsed

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIParseAttachment (hInstance, DSI_INPUTQUEUE) ;

See also DSIStoreAttachment on page 156

143

Chapter 2

DSI C APIs

DSIQueryEnvOptions

Use this function to return DSI-specific environment options via DSIENV_* flags. You
can use this function to determine if a rule is running on the client or on the server.

Syntax _DSIEXPORT long _DSIAPI DSIQueryEnvOptions (DSIHANDLE hInstance,
long *plOptions);

These flags are currently available:

Flag Available on the...

DSIENV_SERVER server
DSIENV_CLIENT client

DSIENV_SERVICE server as an NT service

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
plOptions pointer to a long for returning the DSIENV_* values.

Return values DSIERR_SUCCESS or an error code

Example Here is an example:

long 1Opt;

if (DSIQueryEnvOptions (hInstance, &lOpt) != DSIERR_SUCCESS) {
. display error message

}

if (1O0pt & DSIENV_SERVER)

{

printf ("Running on the server\n");

}

if (1O0pt & DSIENV_CLIENT)

{

printf ("Running on the client\n");

}

144

DSlIQueryValueSize

DSIQueryValueSize

Syntax

Parameters

Return values

Example

See also

Use this function to find the length of a persistent DSI variable.

size_t DSIQueryValueSize (DSIHANDLE hInstance, char* szName) ;

Parameter Description

hlnstance handle to instance returned by DSIInitInstance
szZName name of the variable to locate

Value Description

0 error

0 variable size

Here is an example:

size_t cbVvar;
cbVar = DSIQueryValueSize(hInstance, "FILENAME") ;

DSICreateValue on page 119
DSIDestroyValue on page 121
DSILocateValue on page 141

145

Chapter 2

DSI C APIs

DSIReceiveFile

Use this function to get a file from an attachment and write that file to disk. This
function supports text (such as XML or RTF) and binary files. The size of file is limited
to the queue message size. Use this function with the DSISendFile function.

NOTE:XML files can have very long lines. If the line length is over 1K, use the binary

file send/receive option. The binary send/receive works with any file, including
XML and other text files.

Syntax DSIReceiveFile (hdsi, iQueue, pszFileName, pszAttachName, iOptions) ;
Parameters
Parameter Description
hdsi The handle to the instance returned by DSIInitInstance.
1Queue The queue attachment to which the file was added by the DSISendFile
function.
pszFileName The full name of the output file you want to create.
pszAttachName The name of the attachment variable to find file data.
1Options Currently supported options are DSIFILE_TEXT and

DSIFILE_BINARY. These options are mutually exclusive. This value
should be the same as was used with the DSISendFile function.

Return values DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_IOERR

Example Here is an example:

DSIReceiveFile (hdsi,
DSI_INPUTQUEUE,
"c:\\docserv\\a.txt", /* file name
"FILESEND", /* attachment variable name
DSIFILE_TEXT); /* option, file is text file

146

DSIReceiveFileAsBuffer

DSIReceiveFileAsBuffer

Syntax

Parameters

Return values

Example

DSIReceiveFileAsBuffer (hdsi, iQueue, pszFileName,

pBuffer, cbSize, iOptions);

Use this function to get a file from an attachment and copy it into a passed in buffer.
This function supports both text and binary files. The size of file is limited to the one
queue message size. You must use this function with the DSISendFile function.

pszAttachName,

Parameter Description

hdsi handle to instance returned by DSIInitInstance

1Queue queue attachment to which the file was added by DSISendFile

pszAttachName name of the attachment variable to find file data

pBuffer output, the buffer to receive file data, buffer should be large enough to
hold the whole file data. Use the DSIReceiveFileAsBufferSize function to
determine the size.

cbSize allocated size of buffer in pBuffer

1Options RFU, currently not used

DSIERR_SUCCESS
DSIERR_INVPARM

Here is an example:

size t size;
char *buffer;

if (DSIReceiveFileAsBufferSize (hdsi,
DSI_INPUTQUEUE,

"FILESEND",

&size,

0) != DSIERR_SUCCESS)

{

printf ("Error in DSIReceiveFileAsBufferSize\n");
return -1;

}

buffer = malloc(size); /* allocate the right size
if (buffer == NULL)

{

printf ("Cannot allocate buffer\n");
}

if (DSIReceiveFileAsBuffer (hdsi,
DSI_INPUTQUEUE,

147

Chapter 2

DSI C APIs

"FILESEND",

buffer,

size,

0) != DSIERR_SUCCESS)

{

printf ("ReceiveFile failed\n");

}

here application can do whatever is needed with the buffer ..

free(buffer); /* free the buffer

148

DSIReceiveFileAsBufferSize

DSIReceiveFileAsBufferSize

Use this function to get the actual size of file from an attachment. This function
supports both text and binary files. The size of file is limited to the one queue message
size. You must use this function with the DSISendFile function.

Syntax DSIReceiveFileAsBufferSize (hdsi, iQueue, pszAttachName, pstSize,
iOptions) ;
Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
1Queue queue attachment to which the file was added by DSISendFile
pszAttachName name of the attachment variable to find file data,
pstSize output, the size of file data in attachment
10ptions RFU, currently not used

Return values DSIERR_SUCCESS
DSIERR_INVPARM

Example Here is an example:

size t size;
char *buffer;

if (DSIReceiveFileAsBufferSize(hdsi,
DSI_INPUTQUEUE,

"FILESEND",

&size,

0) != DSIERR_SUCCESS)

{

printf ("Error in DSIReceiveFileAsBufferSize\n");
return -1;

}

buffer = malloc(size); /* allocate the right size
if (buffer == NULL)

{

printf ("Cannot allocate buffer\n");

}

if (DSIReceiveFileAsBuffer (hdsi,
DSI_INPUTQUEUE,

"FILESEND",

buffer,

size,

0) != DSIERR_SUCCESS)

{

printf ("ReceiveFile failed\n");

}

here application can do whatever is needed with the buffer

149

Chapter 2

DSI C APIs

free(buffer); /* free the buffer

On the ASP side, you can use this code:

buff = DSI.ReceiveFileAsBuffer ("ZZLPDF")

Response.ContentType = "application/PDF"

Response.BinaryWrite buff
Where ZZI.PDF is the name used in the ATCSendFile rule in DOCSERYV configuration
file.

150

DSIRowset2 XML

DSIRowset2 XML

Use this function to get a row set back as XML in memory. A row set is a collection of
attachment variables created using the DSIAddRecord and DSIAddToRecord functions.

Syntax DSIRowset2XML (hdsi, iQueue, pszRowset, szXMLBuffer stBuffSize,
iOptions) ;
Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
1Queue queue attachment to which the row set was added by DSIAddRecord
pszRowset name of the row set to get

szXMLBuffer buffer into which the XML is to be unloaded
stBuffSize size of buffer in szZXMLBuffer including the zero terminator

1Options RFU, currently not used

Returns DSIERR_SUCCESS
DSIERR_NOTFOUND
DSIERR_INVPARM

Example Here is an example:

char *buf;
size_t size;

DSIRowset2XMLSize (hdsi,DSI_INPUT, "LIBRARIES", &size,0) ;
buf = malloc(size);
DSIRowset2XML (hdsi,DSI_INPUT, "LIBRARIES",buf,size,0);

. use buffer here

free (buf) ;

See also DSIRowset2XMLSize on page 152

151

Chapter 2

DSI C APIs

DSIRowset2XMLSize

Use this function to get the size of row set back as XML in memory. A row set is a
collection of attachment variables created using the DSIAddRecord and
DSIAddToRecord functions.

Syntax DSIRowset2XMLSize (hdsi, iQueue, pszRowset, pstSize, iOptions);
Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
iQueue queue attachment to which the row set was added by DSIAddRecord
pszRowset name of the row set to get
pstSize output, the size of row set in XML format
10ptions RFU, currently not used

Returns DSIERR_SUCCESS
DSIERR_NOTFOUND
DSIERR_INVPARM

Example Here is an example:

char *buf;
size_ t size;

DSIRowset2XMLSize (hdsi,DSI_INPUT, "LIBRARIES", &size,0);
buf = malloc(size);
DSIRowset2XML (hdsi,DSI_INPUT, "LIBRARIES",buf,size,0);

. use buffer here

free (buf) ;

See also DSIRowset2XML on page 151

152

DSISendBuffer

Syntax

Parameters

Returns

Example

DSISendBuffer

Use this function to add a file to an attachment so it can be received on the other end.
This function supports text and binary files. The size of file is limited to the one queue

message size.

The file being sent is provided to this API as a buffer in memory. It can be used when
the data is in memory to eliminate unnecessary IO operation.

When text buffer is used, the new line character is the delimiter for each line. For text,
send the lines delimited only by the new line character. Do not use carriage returns. If
the line is longer than 1024 bytes, use the binary send method.

DSISendBuffer (hdsi, iQueue, pszAttachName, pBuffer, cbsize, iOptions

)i

Parameter Description
hdsi The handle to the instance returned by DSIInitInstance.
1Queue The queue attachment to which the file should be added, usually output.

pszAttachName The name of the attachment variable to use for the file data. This name is
used on the receiving end to retrieve file data from the queue.

pBuffer The buffer with file data.

cbSize The size of data in pBuffer, if text is being sent the size does not need to
include the null terminator character.

1Options Currently supported options are DSIFILE_TEXT and
DSIFILE_BINARY. These options are mutually exclusive.

DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_MEMORY

Here is an example:

DSISendBuffer(hdsi,
DSI_OUTPUTQUEUE,
"FILESEND",
buffer,
strlen (buffer),
DSIFILE TEXT);

/*
/*
/*
/*

attachment variable name
file data

length of file data
option, file is text file

153

Chapter 2

DSI C APIs

DSISendFile

Use this function to add a file to an attachment so it can be received on the other end.
This function supports text (such as XML or RTF) and binary files. The size of file is
limited to the queue message size.

NOTE:XML files can have very long lines. If the line length is over 1K, use the binary
file send/receive option. The binary send/receive works with any file, including
XML and other text files.

Syntax DSISendFile(hdsi, iQueue, pszFileName, pszAttachName, iOptions);
Parameters
Parameter Description
hdsi The handle to the instance returned by DSIInitInstance.
1Queue The queue attachment to which the file should be added.
pszFileName The full name of the output file you want to send.
pszAttachName The name of the attachment variable to use for file data. You must use this

same name in the DSIReceiveFile rule to get the file.

1Options Currently supported options are DSIFILE_TEXT and
DSIFILE_BINARY. These options are mutually exclusive.

Return values DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_IOERR

Example Here is an example:

DSISendFile(hdsi,
DSI_OUTPUTQUEUE,
"c:\\docserv\\a.txt", /* file name
"FILESEND", /* attachment variable name
DSIFILE_TEXT) ; /* option, file is text file

154

DSISetQField

Syntax

Parameters

Return values

Example

See also

DSISetQField

Use this function to set a queue field. The system includes several pre-defined queue
fields (see IQueue in the table below) which you can set and retrieve. These fields are
used by the standard rules and the rule engine.

long DSISetQField (DSIHANDLE hInstance, long iQueue, long iField,
void* pvvValue, size t cbValue);

Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue to which operation applies
1Field DSIQSET _* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE _ID
pvValue data to copy into queue field
cbValue length of pvValue parameter (including the trailing null)
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSIERR_ MEMORY out of memory
DSIERR_EOF record not found
DSIERR_QERR uninitialized queue
DSIERR_IOERR end of file

Here is an example:

DSISetQField(hInstance,

DSI_OUTPUTQUEUE,
DSIQSET REQTYPE,

n LGNII ,

sizeof ("LGN"));

DSIGetQField on page 131

155

Chapter 2

DSI C APIs

DSIStoreAttachment

Use this function to update the attachment field in the queue record from the internal
attachment list. The system does not clear the internal attachment list.

Use this function after you use the DSIAddAttachVar function to move your additions
to the attachment list.

Syntax long DSIStoreAttachment (DSTHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue in which the attachment is to be updated

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIStoreAttachment (hInstance, DSI_OUTPUTQUEUE) ;

See also DSIParseAttachment on page 143
DSIAddAttachVar on page 84
DSIAddAttachRec on page 83
DSIAddToAttachRec on page 86
DSISetQField on page 155

156

DSITerm

DSITerm

Use this function to terminate DSI use. This should be called by the application only
once.

Syntax long DSITerm (DSIHANDLE hApp) ;

Parameters

Parameter Description

hApp handle to application data returned by a prior call to DSIInit

Return values DSIERR_SUCCESS

Example Here is an example:

DSIHANDLE hApp;

DSTIHANDLE hInstance;

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

DoSomeStuff (hInstance, andSomeOtherParameters) ;
DSITermInstance(hInstance);

DSITerm(hApp);

return(-10368);

See also DSIInit on page 136

157

Chapter 2

DSI C APIs

DSITermlnstance

Use this function to terminate instance data.

Syntax long DSITermInstance (DSTHANDLE hInstance) ;
Parameters
Parameter Description
hlnstance handle of instance data previously initialized by a call to DSIInitInstance

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp = DSIInit();
DSIHANDLE hInstance = DSIInitInstance(hApp);

DoSomeStuff (hApp, SomeOtherParameters);
DSITermInstance(hInstance);

DSITerm(hApp);

return(22);

See also DSIInitInstance on page 137

158

DSITermQueue

DSITermQueue

Use this function to terminate the usage of a queue.

Syntax long DSITermQueue (DSIHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
1Queue queue to terminate

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSIERR_MEMORY out of memory
DSIERR_EOF record not found
DSIERR_QERR uninitialized queue
DSIERR_IOERR end of file

Example Here is an example:

DSITermQueue (hInstance, DSI_INPUTQUEUE) ;

See also DSIInitQueue on page 138

159

Chapter 2

DSI C APIs

LDAPGetErrorCode

Use this function to return the last LDAP error code.
Returns An integer value that represents the last LDAP error code.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,1ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;
void *1ldap = NULL;

if ((ldap = LDAPInit(args,
file)) != NULL) {

listH = LDAPSearchDirectory (userid,
ldap) ;
if (listH == VMMNULLHANDLE | |

VMMCountList (1istH) == 0) {

UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",
LDAPGetErrorCode (1ldap) ,
LDAPGetErrorMessage (1dap)) ;

LDAPTerm (1ldap) ;

LDAPTerm (1ldap) ;

See also LDAPGetErrorMessage on page 161

160

LDAPGetErrorMessage

LDAPGetErrorMessage

Use this function to return the last error message.
Returns A character pointer to the last LDAP error message.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;
void *1ldap = NULL;

if ((ldap = LDAPInit(args,
file)) != NULL) {

listH = LDAPSearchDirectory (userid,
ldap) ;
if (listH == VMMNULLHANDLE ||

VMMCountList (listH) == 0) {

UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",
LDAPGetErrorCode (1ldap) ,
LDAPGetErrorMessage (1dap)) ;

LDAPTerm (ldap) ;

LDAPTerm (1ldap) ;

See also LDAPGetErrorCode on page 160

161

Chapter 2

DSI C APIs

LDAPInit

162

Properties

Use this function to initialize and start an SSL or non-SSL connection to an LDAP
server.

This function reads the connection and search options from a comma-delimited list of
arguments, a properties file, an INI file, or from input message variables/GVMs, in that
order.

The options found in more than one location override the previous one. Option names
are not case sensitive. This function supports option values encrypted through the
cryrun program. Precede encrypted option values with the keyword ~ENCRYPTED
and a space.

Be sure to call this function before calling the LDAPSearchDirectory function to set the
connection and search options and to establish a connection session to an LDAP server.

Property Description

LDAP.HOST (Optional) The host name or IP address of the LDAP server.
The default is localhost.

LDAP.PORT (Optional) The port in which the LDAP server is listening on.
The default is 389 when SSL is not used, 636 otherwise (see
the LDAP.USE.SSL option).

LDAP.URL (Optional) The URL the LDAP server is listening on. If a
value is specified for this property, it overrides the values

specified for LDAP.HOST and LDAP.PORT.

LDAP.UID (Optional) The user ID for logging onto the LDAP server. If
this value is provided and LDAP.USER is not provided, the
user ID is derived from this value and the value provided for
LDAP.DOMAIN option, such as Administrator@pd.com.

LDAP.USER (Optional) An explicit value to use for the user ID for the
purpose of login into the LDAP server. Define this option to
override the behavior used to determine the user ID when
LDAP.UID and LDAP.DOMAIN are defined - see
LDAP.DOMAIN.

LDAP.PWD (Optional) The password used to login into the LDAP server.

LDAP.AUTHENTICATION. (Optional) The method of authentication used to login into

MODE the LDAP server. Acceptable values are (simple) which
provides clear-text password authentication and (none) which
provides anonymous authentication. The default is (simple).

LDAP.TIMEOUT (Optional) The amount of time (in milliseconds) after which a
connection attempt or query should expire. The default is
10000 (10 seconds).

LDAP.SEARCH.BASE (Optional) The base of the search in the DIT (Directory
Information Tree). This is the starting point (node location) of
a search in the DIT. If you omit this property, the system
looks for the LDAP.DOMAIN option and builds a search
base from it.

Property

LDAP.DOMAIN

LDAP.OBJECTS

LDAP.OBJECTS.SEARCH.
STRING

LDAP.OBJECT.
ATTRIBUTES

LDAP.MATCH.
ATTRIBUTES

LDAP.SEARCH.
SCOPE

LDAP.DEREF.LINK

LDAPInit

Description

(Optional) This is the domain of the LDAP server. It is used
to build the user ID for login into the LDAP server by
appending the at symbol (@) plus the value of this option to
the LDAP.UID value. The value of LDAP.DOMAIN is
further parsed into domain components which are used as the
default value for LDAP.SEARCH.BASE, if not already
defined.

(Optional) A semicolon-delimited filter list of object classes to
search in the LDAP server. If defined, it overrides the default
filter list of object classes to search: group and
groupOfNames.

(Optional) An explicit string value used as the filter of object
classes to search. If defined, it overrides any value provided
for LDAP.OBJECTS option. The value provided for this
option must be specified in the appropriate LDAP protocol
filter format. Also, if the search filter contains a question mark
(?), the system replaces it with the user ID passed in as an
argument to this function. Here are some examples:

(| (objectClass=group) (objectClass=groupO
fNames)) .

Cn=?

(Optional) The name of the attributes to retrieve for each
object class which contain a value used to determine a match
for USERID specified. The default values are member and cn
(cn is always included).

(Optional) The name of one or more attributes contained
within the value returned by a search for the
LDAP.OBJECT.ATTRIBUTES option. This is the name of
an attribute whose value is used to compare as opposed to the
USERID specified to determine a match.

For example, if LDAP.OBJECTS contains a value of
groupOfUniqueNames and LDAP.OBJECT.ATTRIBUTES
contains a value of uniqueMember and the value returned for
the uniqueMember attribute of groupOfUniqueNames object
class is uid=admin,ou=people, dc=mycompany,dc=com and
you want to match the USERID value with the value for uid,
you would supply a value of uid for this option. The default is
Cch.

(Optional) The scope of the search. Acceptable values are:
(base) - search only the named context
(

one) - search one level below the named context but not the
named context

(sub) - search the entire subtree, including the named context.
The default is (sub).

(Optional) Enter Yes or No to indicate whether or not to
remove reference links to other nodes during a search. The

default is No.

163

Chapter 2

DSI C APIs

Property

LDAP.VERSION

LDAP.SEARCH.LEVEL

LDAP.DN.IDENTIFIER

164

Description

(Optional) An integer value that indicates the LDAP protocol
version to use. You can choose from:

2 - Version 2
3 - Version 3
The default is three (3).

(Optional) An integer value that indicates the search level. You
can choose from:

1 - User type objects

2 - Group type objects

3 - Any objects

The default is one (1), user type objects.

(Optional) The value for this property is used in the following
ways:

1)-In cases were LDAP.SEARCH.LEVEL is equal to 1
(USER) and there is no

LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter of the format
identifier=userid, where identifier is the value of this property
and userid is the user ID passed in as an argument to this
function.

2)-In cases were LDAP.SEARCH.LEVEL is equal to 2
(GROUPS) and there is no
LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter from LDAP.OBJECTS
and LDAP.OBJECT.ATTRIBUTES, where each attribute
value in the search filter is an asterisk (*), which tells the
system to match any value for the attributes specified. If the
LDAP.RDNDS property is also provided, the asterisk (*) is
replaced with identifer=userid, followed by a comma and the
LDAP.RDNS value to fine tune the search, where identifier is
the value for this property and userid is the user ID passed in
as an argument to this function. Here is an example of a
default search filter:

(& ((objectClass=groupOfNames) (member=*))
)
If a value of
'CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM' is
specified for LDAP.RDNS and this property contains a value
of 'CN!, the search filter generated would look like this:

(& ((objectClass=groupOfNames) (member=CN=
Administrator,

CN=Users, DC=PDDC, DC=DOCUCORP, DC=COM))) .
3)-The default is 'CN'.

Property

LDAPInit

Description

LDAP.RDNS (Optional) This property is only used when

LDAP.SEARCH.LEVEL is equal to 2 (GROUPS) and when
LDAP.OBJECTS.SEARCH.STRING is not specified. In this
situation, the system builds a default search filter from
LDAP.OBJECTS and LDAP.OBJECT.ATTRIBUTES.
Attribute values specified in the default search filter contain an
asterisk (*), which tells the system to match any value for the
attributes specified. When you specify this property, the
system uses the value along with the value for
LDAP.DN.IDENTIFIER to replace the asterisk and fine
tune the search, thereby speeding the process. Here is an
example of a default search filter:

(& ((objectClass=groupOfNames) (member=*))
)
In a case were a value of
'CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM' is
specified for this property and LDAP.DN.IDENTIFIER
contains a value of 'CN', the search filter generated would look
like this:

(& ((objectClass=groupOfNames) (member=CN=
Administrator,

CN=Users, DC=PDDC, DC=DOCUCORP, DC=COM))) .

LDAP.USE.SSL (Optional) Enter Yes to enable encrypted communication

through an SSL channel. For SSL connections to work, the
LDAP server must be configured for SSL with a certificate
from a trusted certification authority. This configuration is
vendor specific — please consult your vendor documentation.

LDAP.DEBUG (Optional) Enter Yes to log debugging information to a trace

file.

Here is an example of a properties file:

ldap.host=localhost

ldap.port=389

ldap.timeout=5000

ldap.uid=cn=Administrator, dc=pdldap, dc=com

ldap.pwd=marks99
ldap.authentication.mode=simple

ldap.objects=groupOfNames; group
ldap.search.base=dc=pdldap, dc=com

ldap.object.attributes=member

ldap.match.attributes=cn

ldap.search.scope=sub

ldap.version=3

ldap.deref.link=Yes

ldap.debug=yes

Here is an example of an INI file:

< LDAP >

ldap.host=PDDC.pd.com
ldap.port=389
ldap.timeout=5000

165

Chapter 2

DSI C APIs

ldap.uid=jroberts

ldap.pwd=~ENCRYPTED 251U0jhIgWhSGnr702Yg5A000
ldap.authentication.mode=simple
ldap.domain=PDDC.pd.com

ldap.objects=group

ldap.debug=yes

ldap.object.attributes=member
ldap.match.attributes=cn

Returns An LDAP error code.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;
void *1ldap = NULL;

if ((ldap = LDAPInit(args,
file)) != NULL) {

listH = LDAPSearchDirectory (userid,
ldap) ;
if (listH == VMMNULLHANDLE ||

VMMCountList (1istH) == 0) {

UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",
LDAPGetErrorCode (ldap) ,
LDAPGetErrorMessage (1dap)) ;

LDAPTerm (ldap) ;

LDAPTerm (1ldap) ;

See also LDAPTerm on page 168
LDAPSearchDirectory on page 167

166

LDAPSearchDirectory

LDAPSearchDirectory

Returns

Example

See also

Use this function to search a user ID for group or role membership in an LDAP server
DIT (Directory Information Tree).

Call this function after the LDAPInit function, followed by the LDAPTerm function
when the session is no longer needed. This function supports encrypted
communications through an SSL channel (see the LDAP.USE.SSL property in the
LDAPInit function) and encrypted option values.

A VMMHANDLE to a VMMList of string values corresponding to each group or role
the user ID belongs to.

Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;

void *1ldap = NULL;

if ((ldap

LDAPInit (args,

file)) != NULL) {

listH = LDAPSearchDirectory (userid,
ldap) ;
if (listH == VMMNULLHANDLE ||

VMMCountList (1istH) == 0) {

UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",
LDAPGetErrorCode (1dap) ,
LDAPGetErrorMessage (1dap)) ;

LDAPTerm (ldap) ;

LDAPTerm (1ldap) ;

LDAPTerm on page 168
LDAPInit on page 162

167

Chapter 2

DSI C APIs

LDAPTerm

Use this function to terminate a connection to an LDAP server.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;
void *1ldap = NULL;

if ((ldap = LDAPInit(args,
file)) != NULL) {

listH = LDAPSearchDirectory (userid,
ldap) ;
if (listH == VMMNULLHANDLE ||

VMMCountList (1istH) == 0) {

UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",
LDAPGetErrorCode (ldap) ,
LDAPGetErrorMessage (1dap)) ;

LDAPTerm (ldap) ;

LDAPTerm (1ldap) ;

See also LDAPInit on page 162
LDAPSearchDirectory on page 167

168

LDAPTerm

169

Chapter 2

DSI C APIs

170

Chapter 3
DSI Java APIs

This chapter provides a reference to the Document
Server Interface (DSI) Java APIs you can use to create
applications to interface with Oracle Insurance's
Internet Document Server.

This information will help you build either a
proprietary client interface or a custom set of rules
which will interact with the Internet Document Server.

The DSI Java API provides the DST APL. Since Java is an
object-oriented language, the API is implemented as
three classes:

e Class DSIJSession
e Class DSIJException
¢ Class DSIJQueue

These classes provide access to the Internet Document
Server. All three classes are in a single package,
com.Docucorp.DIS.util, which should be imported
into any Java source file.

NOTE:The DSI API includes multiple interfaces
(APIs). This lets you choose the language to
build custom rules and applications. You will
also find sample clients written in each
language, which serve as a reference when
building your own solution.

The topic, Java API Classes on page 182 provides a list
of all Java methods, grouped by class. Each method is
then discussed in alphabetical order, by class.

You will also find information on using the included
JavaBean component in the topic, Using JavaBean
Components on page 172.

171

Chapter 3

DSI Java APIs
USING lc)om.dOC}lcorp.ids.jsp.dsi i(sJ;llgivaB(elaInDcSomllaonent which lets you create an interface
etween Java server pages s) an rules.
JAVABEAN
COMPONENTS The request name/value string from the browser is passed to JavaBean using these

methods:
¢ AddRequest(Object name, Object value)
¢ AddAllRequest(javax.servlet.ServletRequest request)

AddRequest adds one request name/value at a time. AddAlIRequest adds all name/values
from the http request object.

This illustration shows how it works:

Browser

3

Java Web Server
(Jakarta-Tomcat or 118 with the Tomcat plugin)

7]
i

Java Beans

(com.docucorp.ids.jsp.dsi)

i
IDS
(DS1java)

i

Rules

172

AddAllRequest
AddRequest

Send output to response Obj

Using JavaBean Components

The name REQTYPE is reserved for the request type to the IDS rule. Once the request
name/value has been passed to the dsi JavaBean, ProcessRequest is called to send the
name/value and request type to the IDS rules.

After the IDS rule is processed, ProcessRequest returns the name/value records from the
IDS rules as a HashMap object. sezW aittime() sets the retry time to read the return records
from IDS. sefTimeont() sets the timeout period to read the return records from IDS.

debug_on(javax.serviet. ServletResponse response) sets a flag to send the request name/value and
return name/value from IDS to the passing response object and then calls the
AddRequest and ProcessRequest methods.

ProcessRequest

Debug_on Response Obj
Debug_off

getWaittime

setTimeout

getTimeout

173

Chapter 3

DSl Java APIs

Here is a summary of how the methods work:

Step Method Description
void Sets the flag to send the request name/value and return
debug_on(javax.servlet.Ser = name/value from IDS to the passing response object.
vletResponse response) Then calls the AddRequest and ProcessRequest
1 methods.
void debug_off() Clears the debug flag.
int getWaittime() Gets the amount of retry time to read the IDS return
2 record.
int setWaittime(int Sets the retry time (in milliseconds) to read the IDS
3 waittime) return record.
4 int getTimeout() Gets the timeout to read the IDS return record.

intsetTimeout(inttimeout) Sets the timeout (in milliseconds) to read the IDS return
5 record.

void AddRequest(Object Adds the name/value field to the record to send to the
6 key, Object value) IDS rule.

void Adds all name/value fields from the request object to
AddAllRequest(javax.servl the records to send to the IDS rule.
et.ServletResponse

7 request)
HashMap Sends all name/values and request types to the IDS
ProcessRequest() rules. Processes the IDS rule and gets the return records
8 from the IDS rule. Returns the record as type HashMap.
String GetResult(Object Gets the return record value from the IDS rule index
9 key) using the key from internal result.
10 void ClearRequest() Clears the JavaBean internal request object.
1 void ClearResult() Clears the JavaBean internal result object.

174

Using JavaBean Components

echotest.jsp Here is an example:

<html>
<!--
Copyright (c) 2001 Docucorp International. All rights reserved.

-->
<%@ page language="java"%>

<body bgcolor="white">

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>

<

o°

dsi.setTimeout (20000) ; //Set Timeout

o°

>

WaitTime: is <jsp:getProperty name="dsi" property="waittime"/>
TimeOut: is <jsp:getProperty name="dsi" property="timeout"/>

<%
//dsi.debug_on (response) ;
dsi.AddRequest ("Regtype", "ECH") ; //Set IDS rule to Echo
dsi.AddRequest ("Namel", "Valuel") ; //Pass name value
dsi.AddRequest ("Name2", "Value2") ;
java.util.HashMap Rst = dsi.ProcessRequest(); //Process the rule
//dsi.debug_off () ;
java.util.Set st = Rst.entrySet();
java.util.Iterator it = st.iterator();
//Loop thorugh the return HashMap
while (it.hasNext())
{
java.util.Map.Entry me = (java.util.Map.Entry) it.next();

o°
\%

<%=(String) me.getKey()%> =

<%= (String) Rst.get (me.getKey())%>

A
o°

o°

>

</body>
</html>

This JSP calls an echo rule in IDS and pass two name/value pairs.

175

Chapter 3

DSl Java APIs

176

RETURNING A RECORDSET OBJECT

The processRequest method in dsimsg class returns a user-defined RecordSet object for
requests that execute SQL queries through the SQLQueryDB rule. The RecordSet object
is built from the output message XML rowsets: RECORDS and SELECTIONFIELDS.

Use this capability with the SQLQueryDB rule, which adds the rowsets RECORDS and
SELECTIONEFIELDS to the result message. This lets you process queries with dsimsg
class instead of using idssql package — and a RecordSet object can still be returned. The
RecordSet object is identical to the idsrs object in the idssql package, so all method
definitions and calls are the same.

Here is a sample JSP page:

<%@ page language="java" import="java.util.*,
java.net.*,

java.io.*" %>

<jsp:useBean id='dsi' scope='page'
class='com.docucorp.ids.jsp.dsimsg'/>
<jsp:useBean id='rs' scope='page'
class='com.docucorp.ids.jsp.RecordSet' />

A
o°

/***always call at the beginning of a jsp page
***xwhen calling processRequest more than
*x*once with the same dsimsg bean instance.

*/

dsi.initInstance();

for (int x = 0; x < 20; xt+){

dsi.setTimeOut (30000) ;
//dsi.debugOn (response) ;

dsi.addRequest ("REQTYPE", "TEST3") ;
dsi.addRequest ("USERID", "FORMAKER") ;
dsi.addRequest ("PASSWORD", "FORMAKER") ;
dsi.addRequest ("PROCNAME", "YYZ ");

(

dsi.addRequest ("INSTANCE", String.valueOf (x));

String record = "SQLPARAMETERS";

String rec = dsi.addAttachRec (record) ;

if (rec != null){

dsi.addToAttachRec (rec, "PARAM1", "PASSWORD") ;
dsi.addToAttachRec (rec, "PARAM2", "USERID ");
dsi.addToAttachRec (rec, "PARAM3", "SERVERTIMESPENT") ;
dsi.addToAttachRec (rec, "PARAM4", "TRANLOG20030602");
dsi.addToAttachRec (rec, "PARAM5", "FORMAKER") ;
dsi.addToAttachRec (rec, "PARAM6", "FORMAKER") ;

}

rs = dsi.processRequest () ;

Using JavaBean Components

if (rs == null) {
out.println("rs == null");
}

else(

out.println ("
INSTANCE:" + String.valueOf (x) + "
");

for(int i=1; i<= rs.getRecordCount () ;i++) {

out.println ("===========" + "
");

out.println("RECORD " + i + ":" + "
");

out.println ("===========" + "
");

for (int j=1;j<= rs.getColumnCount () ;j++) {
out.println(rs.getColumn(j) + ":" + rs.getString(j) + "
");
}

rs.next () ;

}
}

/***always call in between requests to reset / clear the messages in
the

***gqueues.

*/

dsi.resetInstance();

}

/***always call at the end of a jsp page
***xwhen calling processRequest more than
***once with the same dsimsg bean instance.
*/

dsi.termInstance() ;

o°
\%

177

Chapter 3
DSl Java APIs

UsING IDSJSP IN A JSP CONTAINER

Here is an example JSP page that uses IDSJSP to send an SSS request type using the
message bus properties in the dsimsgclient.properties file:

<%@ page language="java" import="java.util.*,
java.net.*,
java.io.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>
<

o°

dsi.setTimeout (30000) ;
dsi.debugOn (response) ;

dsi.AddRequest ("REQTYPE", "SSS");

HashMap Rst = dsi.ProcessRequest () ;
if (Rst.get ("RESULTS") == null) {
out.println("No response from server");

}
%>

Alternatively, you can specify the properties in the JSP page, in which case the
dsimsgclient.properties file is not needed. Here is an example JSP page that uses the
HTTP message bus properties to send an SSS request type to IDS:

<%@ page language="java" import="java.util.*,

java.net.*,
java.io.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>
<

o°

Properties props = new Properties();
props.put ("queuefactory.class",
"com.docucorp.messaging.http.DSIHTTPMessageQueueFactory") ;

props.put ("marshaller.class",
"com.docucorp.messaging.data.marshaller.SOAPMIMEDSIMessageMarshalle
r');

props.put ("http.url", "http://localhost:49152");
dsi.debugOn (response) ;
dsi.AddRequest ("REQTYPE", "SSS");

HashMap Rst = dsi.ProcessRequest (props) ;
if (Rst.get ("RESULTS") == null) {
out.println("No response from server");

}
%>

DSI BEaN APIs

Please refer to the docs/com/docucorp/ids/jsp/dsi.html documentation that is shipped
with the Java SDK for a description of the methods available in the dsi bean.

178

USING THE DSI
JAVA
MESSAGING
LIBRARY FOR
CLIENT
APPLICATIONS

Using the DSI Java Messaging Library for Client Applications

If you are deploying a Java client application you can use the DSI Java messaging library,
DSIJavaMsg.jar. This library provides the same functionality as the DSI Java APIs but
uses only Java code. The DSI Java APIs use native code related to the DSI C APIs.

NOTE:This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

By using only Java code, the DSI Java messaging library lets you have Java client
applications wherever you have a Java runtime so you do not need to port Document
Server Interface code to your target platform.

The DSI Java messaging library only works with IBM's MQSeries as the messaging
service. It cannot be used with Java rules for the Internet Document Server.

NOTE:If you are running the DSI Java Messaging Library inside a Java 2 Enterprise
Edition (J2EE) Application Server, such as IBM's WebSphere or BEA's
WebLogic, the JavaMail API and Javabeans Activation Framework are already
installed as a part of the application server.

The DSI Java messaging library also requires XML processing libraries from the Apache
group, xerces.jar and xalan.jar. These libraries are included. Copy these libraries into the
same directory as DocucorpMsg.jar.

179

http://www.apache.org/

PASSING JVM
OPTIONS TO
DSILIB

Windows

UNIX

DSILIB uses Java through JNI (Java Native Interface) and as such it creates a Java Virtual
Machine (JVM) at runtime. DSILIB lets you pass JVM options before the JVM is created,
so you can fine-tune what is created.

For instance, you can specify the size of memory for the JVM. This is helpful, for example,
if you need to set memory higher to handle large files transmitted via the message bus

(queue).

To pass JVM options, use the dsi_extended_properties environment variable. This

environment variable should contain acomma-delimited list of additional JVM options to
pass during creation of a JVM.

Here is an example of how you would set the environment variable from a command
prompt:

set dsi_extended properties=-Xmx256m, -
Dlog4j.configuration=logclientconf .xml

export dsi_extended_properties=-Xmx256m, -
Dlog4j.configuration=logclientconf .xml

Examples of client-based applications that use DSILIB include:

ASP pages using IDSASP.DLL

JSP pages using IDSJSP.jar

DSlJava.jar files, which use the C code (DSILIB)

The DSICOTB.EXE, DSITEST.EXE, and DSIEX.EXE test programs

180

Generating Debug Output for Client Requests

GENERATING III?S suppofrts the- foll;);ving logﬁcllj catzgcl)aries .zmd appendfers vsihich you can use in a log4j
client configuration file to produce debugging output for client requests:
DeEBUG OUTPUT
<category name="Receive-Message">
FOR CLIENT <priority value="DEBUG"/>
R EOU ESTS <appender-ref ref="receive-message" />

</category>

<category name="Send-Message">
<priority value="DEBUG"/>
<appender-ref ref="send-message"/>
</category>

<appender class="com.docucorp.util.logging.IDSFileAppender"
name="receive-message">

<param value="false" name="Append"/>

<param value="client-receive.msg" name="File"/>

<param value="true" name="Close"/>

<param value="IS0-8859-1" name="Encoding"/>

<layout class="org.apache.log4j.PatternLayout">
<param value="%m" name="ConversionPattern"/>

</layout>

</appender>

<appender class="com.docucorp.util.logging.IDSFileAppender"
name="gsend-message">

<param value="false" name="Append"/>

<param value="client-send.msg" name="File"/>

<param value="true" name="Close"/>

<param value="IS0-8859-1" name="Encoding"/>

<layout class="org.apache.log4j.PatternLayout">
<param value="%m" name="ConversionPattern"/>

</layout>

</appender>

INOTE:See the logclientconf.xml file for an example.

181

Chapter 3

DSl Java APIs

182

JAVA API
CLASSES

Here are the methods you can use with Java, grouped into these classes:

DSIJession

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

DSIJQueue

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

DSIJException

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

Chapter 4
DSI Processing Rules

The Internet Document Server includes processing rules
you can use to control what happens to data. These rules
are divided into the following groups and explained in
this chapter.

* Server Rules on page 184
e Client Rules on page 229

Within each group, the rules are listed in alphabetical
order.

These rules run on all supported platforms except where
noted.

NOTE:The rule names are case sensitive.

183

Chapter 4

DSI Processing Rules

SERVER RULES

184

These rules may only be run on the Internet Document Server.

With version 2.0, the built-in server rules in IDS were replaced with Java rules. When IDS

finds a mention of an IDS 1.x server rule, it is automatically replaced with the

corresponding IDS Java rule.

Here is a list of the IDS 1.x rules that have Java substitutes. All Java classes mentioned are

in the com.docucorp.ids.rules package.

Version 1.x rule

Version 2.x rule

ATCSendFile on page 236
ATCReceiveFile on page 233
ATCLogTransaction on page 232
ATCUnloadAttachment on page 239
IRLInitFTP on page 202
IRLFileFTP on page 195
IRLCleanDirectory on page 189
IRLClearLog on page 191
IRLCopyAttachment on page 192
IRLInit on page 194

IRLLog on page 203
IRLPurgeCache on page 204
IRLSearch on page 205
IRLSendVersion on page 206
IRLStatistics on page 208

IRLDecryptValue on page 193

AttachmentFilterRule on page 211
AttachmentFilterRule on page 211
LogTransactionRule on page 226
IDSTransactionRule on page 225
FTPRule on page 217

FTPRule on page 217

LogTransactionRule on page 226
CopyDataRule on page 215

IDSInitRule on page 224

BLPPurgeRule on page 213

BLPStatisticsRule on page 214

IDSEncryptionRule on page 223

processAttachments on page 228

NOTE:Both the old and new rules are discussed in this chapter. In future releases,
documentation on the old rules will be removed.

You can run these rules in IDS:
e AttachmentFilerRule

¢ BLPPurgeRule

e BLPStatisticsRule

CopyDataRule
FTPRule
IDSEncryptionRule
IDSInitRule
IDSTransactionRule

LogTransactionRule

185

Chapter 4

DSI Processing Rules

FTPRule

Use this rule to handle FTP file transfers. This rule is a Java class that implements an IDS
rule for this purpose. The FTPRule rule is a server rule which runs on both Windows and
Solaris, as opposed to the IRLInitFTP and IRLFileFTP rules which run only on
Windows.

Because the FTPRule rule tracks all FTP connections made across transactions, you
should run it using global scope.

There are two methods in FTPRule you must use:

e setupMethod

e transferMethod

setupMethod Use this method in the INI request type. This method creates the data needed to run
multiple FTP transfers in the DSI_MSGINIT message and destroys the data in the
DSI_MSGTERM message.

Add these lines into your INI request group:

function = dsijrule->JavaInitRule

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
FTPRule; JAVAFTP;global; setupMethod;

Like all Java rules, the FTPRule rule requires that JavalnitRule be run first in the INI
request group. In the second function description, you have these parameters:

Parameter Description

com/docucorp/ids/ Identifies the FTPRule class with full package naming required for JNI
rules/FTPRule loading.

JAVAFTP An example name for a named object with global scope; any name would
suffice here.

global Indicates that JavaRunRule will create an object with global scope and
that can be used in other transactions.

In the JavaRule control group in DOCSERV configuration file, make sure the following
Java Archive (JAR) files are in your class path via the UserClassPath option:

e DSIJava.jar
e NetComponents.jar
¢ DocucorpUtil.jar

¢ IDSRules.jar

186

transferMethod

FTPRule

Use this method in your transaction control group to do the actual file transfer via FTP.
It gets files from the FTP server in the DSI_ MSGRUNF message and puts them onto the
FTP server in the DSI_ MSGRUNR message.

Add these lines into your transaction's request group:

function = irlw32->IRLJavaFTPSetup

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
FTPRule; JAVAFTP;global; transferMethod; FTPRRCFILE->FTPRRCLOCALFILE,

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
FTPRule; JAVAFTP;global; transferMethod; , FTPUTLOCALFILE->FTPRRC2FILE

Parameter Description

com/docucorp/ids/ Identifies the FTPRule class with full package naming required for JNI
rules/FTPRule loading.

JAVAFTP An example name for a named object with global scope; use the same
name for the object that you used with setupMethod.

global Indicates that this rule is using an object with global scope, the same
object used when running setupMethod.

transferMethod The method in the FTPRule class that does the actual file transfers. The
argument after the method name follows the same convention as the
arguments for the IRLFileFTP rule. For more information, see

IRLFileFTP on page 195.

The IRLJavaFTPSetup rule must be run before JavaRunRule with FTPRule.
IRLJavaFTPSetup reads the INI settings for the IRLFileFTP rule and creates attachment
variables that can be understood by FTPRule. For more information on which
parameters, attachment variables and INI options to use with the FTPRule rule, see
IRLFileFTP on page 195.

In addition to the options for IRLFileFTP, you can use the JavalLogFileName option in
the FTP control group to specify a file for logging FTPRule's debugging messages when
the Debug option is set to Yes. If you omit this option, the system uses the name,
FTPRULE.LOG.

PUTTING AND GETTING MULTIPLE FILES

Before version 2.1, FTPRule used a message variable to hold the name of a file to get or
put, such as GETFILLEREMOTE. In version 2.1 and later, if the message variable listed
ends with an asterisk (¥), IDS scans all message variables for variables that begin with that
name. For example, if you set up FTPRule with these parameters:
<entry name="function">irlw32->IRLFileFTP,GETFILEREMOTE* -
>GETFILELOCAL*, </entry>
IDS matches the message variables GETFILEREMOTEA, GETFILEREMOTEB,
GETRFILEREMOTEC, and so on.

When a match is found on the first parameter, IDS looks for a corresponding match on
the second parameter with the same suffix. For example, for GETFILLEREMOTEA,
GETFILLEREMOTE is the matching prefix and A is the suffix, so IDS will look for a
message variable named GETFILEL.OCAL.A.

187

Chapter 4

DSI Processing Rules

188

Assuming all the message variables are there, this would be the same as running the
FTPRule three times, as shown here:

GETFILEREMOTEA->GETFILELOCALA
GETFILEREMOTEB->GETFILELOCALB
GETFILEREMOTEC->GETFILELOCALC

This also works when you are putting files. Here is an example:

<entry name="function">irlw32->IRLFileFTP, , PUTFILELOCAL* -
>PUTFILEREMOTE*</entry>

This would be the same as (with the message variables set up):

PUTFILELOCALA->PUTFILEREMOTEA
PUTFILELOCALB->PUTFILEREMOTEB
PUTFILELOCALC->PUTFILEREMOTEC

If a variable for a second parameter is missing, a unique name is generated and stored in
that variable, as happened previously.

The FTPRule now also reports its own results in the output, separate from the RESULTS
variable. If FTPRule is getting files from a remote FIP site, the results are placed in the
FTPGETRESULTS variable; for putting to a remote site, the results are placed in the
FTPPUTRESULTS variable. The variable will have either success or error. Error messages
in the output can be checked for specific errors. For multiple file rule setups, all files
must be successfully gotten or put to be reported as SUCCESS.

IRLCleanDirectory

IRLCleanDirectory

Use the IRLCleanDirectory rule to remove expired files from a directory. To determine
if a file has expired, the operating system’s local time is compared against a file's last
modified time plus the expiration time supplied.

Syntax long _DSIAPI IRLCleanDirectory (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Attachment inputs The input attachment variables for this rule are:

Variable Description

DIR (Optional) The name of the directory you want cleaned up. If this attachment
variable is present, it overrides any value specified as a rule argument. If a DIR
value is omitted as an attachment variable or as a rule argument, the rule sets the
RESULTS output attachment variable with a value of FAILURE and then exits.

EXPTIME (Optional) The expiration time in minutes after which files should be removed.
If this attachment variable is present, it overrides any value specified as a rule
argument. If an EXPTIME value is omitted as an attachment variable or rule
argument, the rule sets the RESULTS output attachment variable with a value of
FAILURE and then exits.

DEBUG (Optional) Enter Yes if you want the rule to output debug information. If this
attachment variable is present, it overrides any value specified as a rule argument.

Attachment outputs The output message variables are:

Variable Description

RESULTS Contains SUCCESS or FAILURE.

Parameters The rule parameters are:

Parameter Description

DIR (Optional) The name of the directory you want to clean up. If a DIR value is
neither specified as a rule argument nor present as an attachment variable, the
rule sets the RESULTS output attachment variable with a value of FAILURE
and then exits.

EXPTIME (Optional) The expiration time in minutes after which files should be removed.
If an EXPTIME value is neither specified as a rule argument nor present as an
attachment variable, the rule sets the RESULTS output attachment variable with
a value of FAILURE and then exits.

DEBUG (Optional) Enter Yes if you want the rule to output debug information.

189

Chapter 4

DSI Processing Rules

Example Here is an example of a request type:

<section name="ReqType:TEST REMOVE">
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>

<entry name="function">irlw32->
;IRLCleanDirectory,DIR=c:\temp, EXPTIME=10,DEBUG=T</entry>

</section>

190

IRLClearLog

IRLClearLog

Use this rule to remove all records from the server access log or error log files.

Syntax long _DSIAPI IRLClearLog (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

The default DOCSERYV configuration file sets this rule with these INI settings.

< ReqType:CLF >
Function = irlw32->IRLClearLog

Returns Success or failure

191

Chapter 4

DSI Processing Rules

IRLCopyAttachment

Use this rule to copy attachment variables from the input queue to the output queue on
the DSI_MSGRUNR message.

Syntax long _DSIAPI IRLCopyAttachment (DSIHANDLE hInstance,

Parameters
Parameter

char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Description

DSIHANDLE hlnstance
char * pszParms
unsigned long ulMsg

unsigned long ulOptions

DSI instance handle
Pointer to rule parameter string

DSI_MSG???? message, such as DSI_ MSGRUNF

Options

Returns Success or failure

192

IRLDecryptValue

IRLDecryptValue

Use this rule to encrypt the attachment variables for use in the web browser and decrypt
them back for IDS on the next request.

For example, on initial login request you can use this rule to encrypt the POLICYNUM
in the output attachment. On the subsequent requests this rule will decrypt the
POLICYNUM value in the input attachment so any other IDS rule that needs this value
will be able to access it.

On the client side, POLICYNUM will be encrypted and not easy to change to point to
some other policy in archive. If the system cannot locate the attachment variable, or if the
encryption process fails, processing continues and no error is generated.

Syntax long _DSIAPI IRLDecryptValue (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hInstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

The system supports wild cards, such as
abc*xyz, *xyz, or abc*

This rule works with attachment variables in a case insensitive manner.

193

Chapter 4

DSI Processing Rules

IRLINnit

Syntax

Parameters

Returns

194

Use this rule to initialize the server file cache and access log tables on the DSI_ MSGINIT
message. This rule also terminates them on the DSI_MSGTERM message. This rule is
used on the REQTYPE INI, which means it has to run every time you start the server.

long _DSIAPI IRLInit (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF

unsigned long ulOptions Options

Uses the following INI values to specify the locations (full file name) of the server cache
and access log tables.

< DocSrvr >
CacheTbl = SRVCACHE
LogTable = SRVLOG

The default DOCSERYV configuration file sets this rule with these INT settings.

< ReqType:INI >
Function = irlw32->IRLInit

Success or failure

IRLFileFTP

Syntax

Parameters

IRLFileFTP

Use this rule to get a file from the remote FTP server on the DSI_MSGRUNF and put
another file back on the DSI_ MSGRUNR.

NOTE:To use the IRLFileFIP rule, you must first run the IRLInitFTP rule. Be sure to

place the IRLInitFTP rule on the INI rules list to run it.

long _DSIAPI IRLFileFTP (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF

unsigned long ulOptions Options

You must register this rule using an INI request. Here is an example:

Th

o

< ReqType:INI >
function = irlw32->IRLInitFTP
< ReqType:FTPTest >
function = irlw32->IRLFileFTP,GetFileRemote->GetFileLocal,
PutFileLocal ->PutFileRemote

following rule arguments are used in the following way:
GetFileRemote and GetFileLocal rule arguments are used to look up the path and

file name of the remote and local files for the GET operation. They are looked up
in the following manner:

Look first in the input attachment and if not found look in the output attachment.

The rule argument names are just a representation and could be any other user
defined names, but there must be matching names in the input or output
attachment.

PutFileLocal and PutFileRemote rule arguments are used to look up the path and
file name of the local and remote put files for the PUT operation. They are looked
up in the following manner:

Look first in the output attachment and if not found look in the input attachment.

The rule argument names are just a representation and could be any other user-
defined names, but there must be matching names in the input or output
attachment.

195

Chapter 4

DSI Processing Rules

Parameter Description

GetFileRemote The name of the attachment variable which contains the name of the file to
get via FTP from the FTP server. This name is #oza URL, it is the name of
a file and, optionally, an FTP directory name. For instance, for fip://
servername/ incoming/ file.dat you would enter the name zncoming/ file.dat.

GetFileLocal The name of the attachment variable which contains the name of the
destination file (to be written locally to the IDS machine).

If this value is not found, the rule generates a unique name and sets the value
of the variable to the generated name.

See FTPGetFilePath, below, for information on how to prefix this name
with a path. The generated name is a long file name, so your file system has
to support long file names.

If the file exists when the GET operation is executed, it is overwritten. If
the GET operation is successful and a unique file name is generated, the file
name is added an output attachment variable.

PutFileLocal The name of the attachment variable which contains the name of the local
(to IDS) source file to be put via FTP onto the FTP server.

PutFileRemote The name of the attachment variable which contains the name under which
the destination file is to be written to the FTP server. If you supply this
variable, bear in mind that the name it holds is not a URL, it is the name of
a file and, optionally, an FIP directory name.

For instance, for
ftp://servername/incoming/file.dat
you would enter
incoming/file.dat
If this value is not found, this rule generates a unique name and sets the
value of the variable to the generated name.
See FTPPutFilePath, below, for information on how to prefix this name

with an FTP directory. The generated name is a long file name, so your file
system has to support long file names.

If the file exists when the PUT operation is executed, the file will be
overwritten. If the PUT operation is successful and a unique file name is
generated, the file name is added an output attachment variable.

If the Get names are missing, no FIP Get action is performed by this rule and no error
message is generated. If the Pu# names are missing, no FIP Puz action is performed by
this rule and no error message is generated.

You can register multiple IRLFileFTP rules on the same request type if you need to FTP
multiple files. This rule maintains the list of open FTP connections and reuses
connections when possible.

Here is an example:

To transfer a file named FILE.DAT from the incoming directory on the FIP server to
the d:/temp directory and rename it to MYFILE.DAT on the IDS server, you could set
up the IRLFileFTP rule on a rules list in the DOCSERV configuration file as follows:

Function = irlw32->IRLFileFTP, GetRem->GetLoc,

196

Input options

IRLFileFTP

In this case, you put two variables on the input attachment: one named GETREM with
the value INCOMING/FILE.DAT, and one named GETLOC with the value d:/ temp/
MYFILE.DAT. Notice that parameters for putting a file are omitted, so no PUT
operation occurs for this call to the IRLFileFTP rule.

Here is another example:

To transfer a file named FILLE.DAT from the d:/temp directory on the IDS server, and
let the IRLFileFTP rule generate the name under which it will be written to the FTP
server, you could set up the IRLFileFTP rule on a rules list in the DOCSERV
configuration file as follows:

Function = irlw32->IRLFileFTP, ,PutLoc->PutRem,

In this case, you would put one variable named PUTL.OC with the value d:/temp/
FILLE.DAT on the output attachment. You would not create a variable named PUTREM.
The IRLFileFTP rule would automatically generate a file name, write the file to the FTP
server using that name, create a variable named Px##Rex on the output attachment, and put
the generated file name into the variable. Notice that since the parameters for getting a
file were omitted, no GET operation occurs for this call to the IRLFileFTP rule.

NOTE:Keep in mind the FTP directories do not have drive letters.

If a connection is dropped, this rule reopens it. The default timeout value on an FTP
server is 900 seconds, so the connection will stay open for at least this amount of time
before it is dropped.

These options are looked up in the following manner:

GET OPERATIONS. Look for each option in the input attachment and then in the
output attachment using the value FTP value prefixed to the option name, such as
FTPDEBUG. Then look for the options in the FTP:ReqType control group, where
ReqType is the value of the REQTYPE input attachment variable and in the FTP control
group. Each search occurs in the order listed and stops when an option is found. GET
operations do not look up or use the RemoveOnPut or PutFilePath options.

PUT OPERATIONS. Look for each option in the output attachment and then in the
input attachment using the value FTP value prefixed to the option name, such as
FTPDEBUG. Then look for the options in the FTP:ReqType control group, where
ReqType is the value of the REQTYPE input attachment variable and in the FTP control
group. Each search occurs in the order listed and stops when an option is found. PUT
operations do not look up or use the RemoveOnGet, GetFilePath, or CacheGetFile
options.

Variable Description

Server The server name or IP address for the FTP connection.
UserID The user ID for the FTP connection.

Password The password for the FTP connection.

Port The server port for the FTP connection.

197

Chapter 4

DSI Processing Rules

Variable Description

GetFilePath The path to be prefixed to the unique name IRLFileFTP generates when the
variable for GetFileLocal is not found as an attachment variable. For
example, d:\zemp causes local names such as d:\semp\Oabedefg.ext to be
generated.

PutFilePath The FTP directory path (omit the drive specifier) to be prefixed to the
unique name IRLFileFTP generates when the variable for PutFileRemote is
not found as an attachment variable For example, incoming\datafiles causes
FTP names such as incoming\ datafiles\Oabedefg.ext to be generated.

RemoveOnGet If set to Yes, the rule issues the FTP command to remove the remote source
file after getting it—if the user ID used can remove files from the FTP site.
This is done to allow clean up activities. The default is No, which helps when
you are debugging.

RemoveOnPut If set to Yes, the local source file is removed as soon as the Put operation is
complete. This reduces the number of temporary files. The file is removed
even if the Put operation failed. The default is No, which helps when you are
debugging.

Debug Determines if the rule logs its actions to the DSRVTRC.LOG file. Set this
option to Yes for debugging purposes, but be sure to change the option to
No when you are ready to use the system in a production environment. The
default is No. See the Sample debug log on page 200 for an example.

CacheGetFile Enter the number of seconds the rule should store the file it got from the
remote FTP server using the IDS file cache. The default is 3600 (1 hour).

See also IRLPurgeCache on page 204.

Here is an example of the INI options:

< FTP:ReqType>
Server =
UserID =
Password =
Port =
GetFilePath
PutFilePath =

< FTP >
Server =
UserID =
Password =

Port =
GetFilePath =
PutFilePath =
RemoveOnGet =
RemoveOnPut =
Debug =
CacheGetFile =

< Attachment >
Path =

198

IRLFileFTP

Option Description

In the Attachment control group

Path Use this option to specify a path prefix for the file names this rule generates
when the names are not provided in the attachment (same as the attachment

variables FTPGetFilePath and FTPPutFilePath).

Since the value of this option can be used for a local or for an FTP file path,
you can experience problems results if the generated file names for both local
and FTP files depend on it.

For example, if you set this option to d:\zezp, it would be unsuitable as a path
for generating a file name for an FTP PUT operation. In that case, you need
to supply the variable for PutFileRemote or set the path via the
FTPPutFilePath attachment variable or the PutFilePath INT option.

Ifyou omit the user ID and password in either the attachment or in the configuration file,
the system makes an anonymous connection. Keep in mind that if you set up your FTP
server to allow anonymous connections, anyone can FIP in and see your files and anyone
can put files in. You can solve this problem by setting the FTP server to refuse all
connections except those from specified IP addresses.

Both the configuration file options and the attachment variables can provide all of the
needed information for FTP operations (server address, user ID, password, port), so the
same IDS setup can FIP to different FTP servers, if needed.

The web application is responsible for removing any file sent to it via FTP. For example,
when IDS FTPs the file to the web application, IDS removes the local file it created. The
web application must remove the file it got via FTP from IDS. IDS can also remove the
remote file it got via the FTP using the RemoveOnGet option.

NOTE:You can use multiple IRLFileFTP rules on the same request type with different
rule parameters if necessary for getting or putting multiple files.

Here is another example:

In this example, on DSI_MSGRUNR, you want to transfer a file called MYFILE.DOC
from the incoming directory on an FIP server called zs#fip into the local directory called
e\temp and you want IRLFileFTP to generate a name for the local destination file.

Additionally, on DS_MSGRUNR, you want to transfer a file called MYFILE.PDF from
the local directory called e:\7emsp into the incoming directory on the FTP server and you
want IRLFileFTP to generate a name for the remote destination file. Assume you are
using anonymous FTP. Here's one way you would could set this up:

First, add these INI options in your DOCSERV configuration file:
< ReqgType:PRT >
Function = irlw32->IRLFileFTP,GETREM->GETLOC, PUTLOC->PUTREM
< FTP:PRT >
GetFilePath = e:\temp

< FTP >
Server = testftp

199

Chapter 4

DSI Processing Rules

Attachment outputs

Returns

Sample debug log

200

PutFilePath = incoming
Debug = Yes

Then set these attachment variables:

Input attachment: GETREM = incoming\myfile.doc
Output attachment: PUTLOC = e:\temp\myfile.pdf

When running a transaction with these settings, IRLFileFTP creates the variable
GETLOC on the input attachment and will fill it with a temporary name such as
eNtemp\E0.A79110D30D11D2AA2600104BD359C8.doc. 1t also creates the variable
PUTREM on the output attachment and fills it with a temporary name such as
incoming\E0A79111D30D11D2AA2600104BD359C8.pdf.

See the sample debug log for the results of running a transaction with the settings in this
example.

Variable Description

FTPGETRESULTS A value of SUCCESS or ERROR.
FTPPUTRESULTS A value of SUCCESS or ERROR.

RESULTS A value of SUCCESS, if the GET and PUT operations succeeded,

otherwise the last error code returned.

RemotePutFile Where RemotePutFile represents the rule argument name for the remote

put file. This is only present if the rule generated a unique file name for
the remote file in a PUT operation.

LocalGetFile Where LocalGetFile represents the rule argument name for the local get

file. This is only present if the rule generated a unique file name for the
local file in a PUT operation.

Success or failure

Here is a sample debug log produced if you use the Debug option in the FTP control
group. This debug log is based on the example above.

1. IRLFileFTP after parsing using: <GETREM> for GetFileRemote,
<GETLOC> for GetFileLocal, <PUTLOC> for PutFileLocal, <PUTREM> for
PutFileRemote

2. Attachment value FTPUSERID is not found. Looking for INI value
<FTP:PRT> UserID =

3. INI value is not found. Looking for INI value <FTP> UserID =
4. USERID is not found.

5. Attachment value FTPPASSWORD is not found. Looking for INI value
<FTP:PRT> Password =

6. INI value is not found. Looking for INI value <FTP> Password =
7. PASSWORD is not found.

8. Attachment value FTPSERVER is not found. Looking for INI value
<FTP:PRT> Server =

9. INI value is not found. Looking for INI value <FTP> Server =

10. Attachment value FTPSERVERPORT is not found. Looking for INI
value <FTP:PRT> Port =

11. INI value is not found. Looking for INI value <FTP> Port =

IRLFileFTP

12. Using FTP UserID <>.

13. Using FTP Password <>.

14. Using FTP Server <testftp>.

15. Using FTP port <21>.

16. Created new FTP connection

17. Succesful get current directory </>

18. Did not find <GETLOC> in the attachment. Generated name:
e:\temp\EOA79110D30D11D2AA2600104BD359C8.DOC>

19. Did not find <PUTREM> in the attachment. Generated name:
<e:\temp\incoming\EOA79111D30D11D2AA2600104BD359C8.PDF>

20. Successful GetFile

21. IRLFileFTP after parsing using: <GETREM> for GetFileRemote,
<GETLOC> for GetFileLocal, <PUTLOC> for PutFileLocal, <PUTREM> for
PutFileRemote

22. Attachment value FTPUSERID is not found. Looking for INI value
<FTP:PRT> UserID =

23. INI value is not found. Looking for INI value <FTP> UserID =
24. USERID is not found.

25. Attachment value FTPPASSWORD is not found. Looking for INI value
<FTP:PRT> Password =

26. INI value is not found. Looking for INI value <FTP> Password =
27. PASSWORD is not found.

28. Attachment value FTPSERVER is not found. Looking for INI value
<FTP:PRT> Server =

29. INI value is not found. Looking for INI value <FTP> Server =

30. Attachment value FTPSERVERPORT is not found. Looking for INI
value <FTP:PRT> Port =

31. INI value is not found. Looking for INI value <FTP> Port =
32. Using FTP UserID <>.

33. Using FTP Password <>.

34. Using FTP Server <testftp>.

35. Using FTP port <21>.

36. Found existing FTP connection

37. Successful get current directory </>

38. Successful PutFile.

201

Chapter 4

DSI Processing Rules

IRLInitFTP

Syntax

Parameters

Returns

202

Use this rule to create and destroy an InternetSession object. This rule creates and
destroys two global DSI variables: INTERNETSESSION and FTPCONNECTIONS.

long _DSIAPI IRLInitFTP (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI._ MSGRUNF

unsigned long ulOptions ~ Options

You must register this rule using an INI request. Here is an example:

< ReqType:INI >
Function = irlw32->IRLInitFTP

Success or failure

IRLLog

Syntax

Parameters

Returns

IRLLog

Use this rule to return records from server access log or error log files.

long _DSIAPI IRLLog (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

The error log report is created in this format:

REQTYPE
TIME
USERID
RESULT
REASON
AREA

The access log includes these fields:

USERID

REM_ADDR
« REQTYPE
STATUS
RESULT

e INTIME
The default DOCSERYV configuration file sets this rule with this INI option:

< ReqgType:VLF >
Function = irlw32->IRLLog

Success or failure

203

Chapter 4

DSI Processing Rules

IRLPurgeCache

Use this rule to remove expired files. The rule runs on the timer (SAR) request and
removes all files registered in the server cache table after the specified time has expired.

Syntax long _DSIAPI IRLPurgeCache (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF

unsigned long ulOptions ~ Options

This rule uses the following INI option to remove records from the result queue which
where not picked up by a front-end client.

< DOCSRVR >
ExpireTransactions = 86400

The default value is 86400 seconds, which is 24 hours. With this setting, all records in
the result queue with an 7 #me older than 24 hours will be removed.

The default DOCSERYV configuration file sets this rule with these INT settings.

< ReqType:SAR >
Function = irlw32->IRLPurgeCache

Returns Success or failure

204

IRLSearch

IRLSearch

Use this rule to return a list of matching table records.

Syntax long _DSIAPI IRLSearch (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF

unsigned long ulOptions Options

You can use this INI option with this rule:

< ArcRet >
MaxRecords = 100

Returns Success or failure

205

Chapter 4

DSI Processing Rules

IRLSendVersion

Use this rule to report DLL version information.

Syntax

Parameters

long _DSIAPI IRLSendVersion (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF

unsigned long ulOptions ~ Options

For each of the following DLLs, this rule creates attachment variables on the
DSI_MSGRUNF message.

IRL
IRP
DQM
IBASE
DCB
ATC
DSIJ

Here is a list of the variables:

Variable Tells you the...

NAME name of the DLL

VERSION version of the DLL, such as 100.012.XXX

DATE date of the last compile in MMM DD YYYY format

TIME time of the last compile in HH:MM:SS format

These values only change when you upgrade to a newer version.

The default DOCSERYV configuration file sets this rule with this INI option.

< ReqType:SSS >
Function = irlw32->IRLSendVersion

Returns Success or failure

206

IRLSendVersion

See also IRCSendVersion on page 245

207

Chapter 4

DSI Processing Rules

IRLStatistics

Use this rule to compile server statistics.

Syntax long _DSIAPI IRLStatistics (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

This rule creates the following values in the attachment:

Value Tells you the...

UPTIME time the server started, in this format: Mon Dec 22 15:37:31 1999
SUCCESSCOUNT number of successful transactions

ERRORCOUNT number of transactions in error

ALLOCCOUNT number of memory allocations—used for debugging purposes
RESTARTCOUNT number of times the Internet Document Server been restarted
LASTRESTART time of the last restart, in this format: Mon Dec 22 15:37:31 1999

FREECOUNT number of memory deallocations—used for debugging purposes

The default DOCSERYV configuration file sets this rule with these INT settings.
< ReqType:SSS >

Function = irlw32->IRLStatistics

Returns Success or failure

208

AddJobRule

Constructors

Methods

Parameters

Returns

Methods

AddJobRule

public class com.docucorp.ids.rules.AddJobRule

This class extends com.docucorp.ids.rules.AbstractIDSJavaRule. Use the rules in this
class to help Documaker Interactive set up database information when adding a
transaction. This class contains these methods:

e setupPool

e addjob

public AddJobRule ()

setupPool

Use this method to set up a pool of database connections which can be used by the
addJob method. This helps you manage resources and improve performance.

public static int setupPool (RequestState requestState, String arg,
int msg)

Place this method in the REQTYPE:INI control group of your configuration and set it
up as a static method.

The rule creates a pool of database connections in the MSG_INIT message. Then the
addJob rule adds connections to the pool. In the MSG_TERM message, the connections
in the pool are closed.

No arguments are expected.

Here is an example from a configuration file:
<entry

name="function">java;com.docucorp.ids.rules.AddJobRule; ;static;setu
pPool;</entry>

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNFMSG_RUNR or MSG_TERM.

This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

addJob

This method adds support for the DPRAddWipRecord rule. It adds a row to the Jobs
table and passes an identifier for the row on to the DPRAddWipRecord rule.

public int addJob (RequestState requestState, String arg, int msg)

No arguments are expected from the function line.

209

Chapter 4

DSI Processing Rules

Example Here is an example from a configuration file:

function=
java;com.docucorp.ids.rules.AddJobRule;aj; transaction;addJob;

Parameter

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNFEMSG_RUNR or MSG_TERM.

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

210

AttachmentFilterRule

AttachmentFilterRule

Constructors

Methods

Parameters

Returns

public class com.docucorp.ids.rules.AttachmentFilerRule

This class contains rule functions that send and receive files through attachments in
DSIMessages. The files can be binary or text. Create objects of this class with transaction
scope since receiveFile uses information in the object in both the MSG_RUNF and
MSG_RUNR messages.

This class implements the substitution for these IDS 1.x rules:
* ATCSendFile
* ATCReceiveFile

sendFile

public AttachmentFilerRule ()

public int sendFile(
RequestState requestState,
String arg,

int msqg)

Use this method to read a file from disk in binary or text format and put it in an
attachment in the output DSIMessage to be sent back to the client application.

In the MSG_RUNR message this rule will read three parameters from arg, separated by
commas. The three parameters are attachment name, file name message variable, and file

type.

Attachment name is the name that the file data is stored in the output DSIMessage's
attachments.

File name message variable is the name of the message variable that has the file name in
it. The file type is either TEXT or BINARY, specifying the type of file to be read. For
example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.AttachmentFilerRule; ; transaction;sendFi
le;72Z%Z,IMPORTFILE, TEXT

and the message variable IMPORTFILE contains '/home/docserv/client/test.txt,' then
the file 'test.txt' is added to the DSIMessage in a text attachment named 'ZZZ'.

Parameter Description

requestState Object. that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS if successful, else RET_FAIL, usually caused by the file not being found,

missing message variable, and so on.

211

Chapter 4

DSI Processing Rules

Methods

Parameters

Returns

212

receiveFile

public int receiveFile(
RequestState requestState,
String arg,

int msg)

Use this method to write a file to disk in binary or text format from an attachment in
the input DSIMessage, usually sent from a client application.

In the MSG_RUNF message this rule reads these parameters from arg: attachment name,
file name attachment variable, file name, and disposition. The parameters should be
separated by commas.

Attachment name is the name that the file data is stored in the input DSIMessage's
attachments. The file type, text or binary, is stored in the attachment and the file is
written in the proper mode.

File name message variable is the name of the message variable that will have the file
name stored in it.

File name is the name of the file to write. If it is a regular file name the file is overwritten
each time the rule is run. If the file name has an asterisk (¥) in it, the asterisk is replaced
with a unique string, causing different files to be written each time the rule is run. In
either case the file name that is used is stored in the file name message variable.

Disposition determines if the file is erased during the MSG_RUNR message. If
disposition is set to KEEP then the file is kept, otherwise it is erased.

For example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.AttachmentFilerRule; ; transaction;receiv
eFile;Z7Z, IMPORTFILE, /home/docserv/client/test. txt, KEEP

then the file named test.txt is written to disk with data in the ZZZ attachment and the
file name is stored in the message variable IMPORTFILE.

If the file name was instead /home/docserv/client/*.txt, then a unique file name ending
with .z would be generated and that would be stored in IMPORTFILE.

In the MSG_RUNR message the rule will erase the file written in the MSG_RUNF
message, unless the disposition was set to KEEP.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNE,

MSG_RUNR or MSG_TERM.

RET_SUCCESS if successful, else RET_FAIL, an invalid or empty parameter in arg.

BLPPurgeRule

BLPPurgeRule

public class com.docucorp.ids.rules.BLPPurgeRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use this class to delete files in the file cache when the file’s expiration time has passed.
This class implements the substitution for the IDS 1.x rule IRLPurgeCache.

Constructors public BLPPurgeRule ()
Methods public int purge (
RequestState requestState,
String arg,
int msg)

During the MSG_RUNR message this rule calls a function that checks the files that have
been cached to see if any of the file lifetimes have expired, and if they have then deletes
the files. No arguments are expected from the function line.

Parameters
Parameter Description
requestState Object that holds the current running state of the request at this point of
execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT, MSG_RUNE,

MSG_RUNR or MSG_TERM.

Returns RET_SUCCESS.

213

Chapter 4

DSI Processing Rules

BLPStatisticsRule

public class com.docucorp.ids.rules.BLPStatisticsRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use the rule in this class to add statistical information to the output attachment. This
is usually called as part of a SSS request.

This class implements the substitution of the IDS 1.x rule IRLStatistics.

Constructors public BLPStatisticsRule()
Methods public int addStatistics(
RequestState requestState,
String arg,
int msg)

During the MSG_RUNF message add statistical information to the output DSIMesage.
Currently includes number of successful transactions, number of errors, number of
restarts, time when BLP was started and time of the last restart. No arguments are
expected from the function line.

Parameters
Parameter Description
requestState Object that holds the current running state of the request at this point of
execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT, MSG_RUNE,

MSG_RUNR or MSG_TERM.

Returns RET_SUCCESS if successful, else RET_FAIL.

214

CopyDataRule

Constructors

Methods

Parameters

Returns

Constructors

Methods

CopyDataRule

public class com.docucorp.ids.rules.CopyDataRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use the rule in this class to copy message variables and attachments from the input
DSIMessage to the output DSIMessage.

copyData

This class implements the substitution of the IDS 1.x rule IRLCopyAttachment.

public CopyDataRule()

public int copyData (
RequestState requestState,
String arg,

int msg)

During the MSG_RUNR message copy all message variables and attachments from the
input DSIMessage to the output DSIMessage. No arguments are expected from the
function line.

Parameter Description

requestState Object. that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET _SUCCESS if successful, else RET_FAIL.

copyMessageVariables

Use this method to copy variables from the input queue to the output queue.
public class com.docucorp.ids.rules.CopyDataRule

public int copyMessageVariables (RequestState requestState, String
arg, int msg)

During the MSG_RUNR message, this method copies the listed message variables from
the input queue to the output queue.

This method is only for non-rowset message variables, meaning variables that were not
added with the DSIAddRecord function or the DSIMessage.addMsgRec method.

Arguments from the function line are a comma-delimited list of message variables to
copy. If the message variable does not exist, the variable is not copied and no error
appears.

Here is an example from a configuration file:

215

Chapter 4

DSI Processing Rules

function= java;com.docucorp.ids.rules.CopyDataRule;copyit;
transaction;copyMessageVariables; TAG_AND_ FOLLOW, CONFIG

This example copies the message variables TAG_AND_FOLLOW and CONFIG from
the input queue to the output queue, if they exist in the input queue.

Parameters

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNFEMSG_RUNR or MSG_TERM.

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

216

FTPRule

Constructors

Methods

Parameters

Returns

FTPRule

public class com.docucorp.ids.rules.FTPRule

Extends com.docucorp.ids.rules.AbstractIDSRule

Use the rules in this class to transfer files back and forth over FTP connections. There
are two sets of rules in the class. One set is used in IDS 2.x, the other is used for IDS 1.x
Java rule compatibility. Each method is marked as to how it should be used.

There is a method that is run in the INI request that stores and caches FTP connections
and a method that does the actual file transfer. This class implements the substitution
for these IDS 1.x rules:

e JRLInitFTP
* JRLFileFTP

public FTPRule()

All of these methods are used for IDS 1.x compatibility.

public int setupMethod (
int dsih,

String arg,

int ulMsg,

int ulOptions)

public int convertParameter=Description (
RequestState requestState,

String arg,

int msg)

public int transferMethod (
int dsih,

String arg,

int ulMsg,

int ulOptions)

public int setupConnections (
RequestState requestState,
String arg,

int msg)

Use these methods to create data to run multiple FTP transfers in the MSG_INIT
message and destroy the data in the MSG_TERM message. Use this rule in the INI
request type.

Parameter Description

requestState Object that holds the current running state of the request.

arg Arguments from the rule line of the configuration file.

msg Message currently being run, either MSG_INIT, MSG_RUNEF, MSG_RUNR,
or MSG_TERM.

RET _SUCCESS if successful, otherwise RET_FAIL

217

Chapter 4

DSI Processing Rules

218

Methods

transferFiles

public int transferFiles (
RequestState requestState,
String arg,

int msg)

Use this method to do the actual file transfers through FTP. Files are retrieved during
the MSG_RUNF message and sent during the MSG_RUNR message. For example, if
the rule is specified in the configuration as:
java;com.docucorp.ids.rules.FTPRule; ;transaction; transferFiles;GetF
ileRemote- PutFileRemote
GetFileRemote is the name of the message variable which contains the name of the file
to get via FTP from the FIP server. This variable must be in the input attachment. This
name is not a URL, it is the name of a file and, optionally, an FIP directory name. For
instance, for

ftp://servername/incoming/file.dat
you would enter the name
incoming/file.dat

GetFileLocal is the name of the message variable which contains the name of the
destination file (to be written locally to the IDS machine). If this variable exists, it must
be in the input DSIMessage. If this variable is not found, the rule generates a unique
name, adds the message variable to the input attachment, and sets the value of the
variable to the generated name. See FTPGetFilePath, below, for information on how to
prefix this name with a path. If the file exists when the GET operation is executed, it is
overwritten.

PutFileLocal is the name of the message variable which contains the name of the local
(to IDS) source file to be put via FTP onto the FTP server. This variable must be in the
output DSIMessage.

PutFileRemote The name of the message variable which contains the name under which
the destination file is to be written to the FTP server. If this variable exists, it must be in
the output DSIMessage. If you supply this variable, bear in mind that the name it holds
is not a URL, it is the name of a file and, optionally, an FTP directory name. For
instance, for ftp://servername/incoming/file.dat you would enter incoming/file.dat If
this variable is not found in the output DSIMessage, this rule generates a unique name,
adds the variable to the output DSIMessage, and sets the value of the variable to the
generated name. See FTPPutFilePath, below, for information on how to prefix this name
with an FTP directory. If the file exists when the PUT operation is executed, the file is
overwritten.

If the Get names are missing, no FTP Get action is performed by this rule and no error
message is generated. If the Put names are missing, no FTP Put action is performed by
this rule and no error message is generated.

You can register multiple FTPRule rules on the same request type if you need more than
one file FTP. This rule maintains the list of open FIP connections and reuses
connections when possible. For example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.FTPRule; ; transaction; transferFiles;GetF
ileRemote->GetFileLocal,PutFileLocal->PutFileRemote

FTPRule

GetFileRemote is the name of the message variable that contains the name of the file to
get via FTP from the FTP server. This variable must be in the input attachment. This
name is not a URL, it is the name of a file and, optionally, an FTP directory name.

For instance, for
ftp://servername/incoming/file.dat

you would enter the name
incoming/file.dat.

GetFileLocal is the name of the message variable that contains the name of the
destination file (to be written locally to the IDS machine). If this variable exists, it must
be in the input DSIMessage. If this variable is not found, the rule generates a unique
name, adds the message variable to the input attachment, and sets the value of the
variable to the generated name. See below, for information on how to prefix this name
with a path. If the file exists when the GET operation is executed, it is overwritten.

PutFileLocal is the name of the message variable that contains the name of the local (to
IDS) source file to be put via FTP onto the FTP server. This variable must be in the
output DSIMessage.

PutFileRemote is the name of the message variable that contains the name under which
the destination file is to be written to the FTP server. If this variable exists, it must be in
the output DSIMessage. If you supply this variable, bear in mind that the name it holds
is not a URL, it is the name of a file and, optionally, an FTP directory name.

For instance, for
ftp://servername/incoming/file.dat
you would enter
incoming/file.dat

If this variable is not found in the output DSIMessage, this rule generates a unique
name, adds the variable to the output DSIMessage, and sets the value of the variable to
the generated name. See below, for information on how to prefix this name with an FTP
directory. If the file exists when the PUT operation is executed, the file is overwritten.

If the Get names are missing, no FTP Get action is performed by this rule and no error
message is generated. If the Put names are missing, no FTP Put action is performed by
this rule and no error message is generated.

You can register multiple FTPRule rules on the same request type if you need more than
one file FTP. This rule maintains the list of open FIP connections and reuses
connections when possible.

If a connection is dropped, this rule reopens it. The default timeout value on an FTP
server is 900 seconds, so the connection will stay open for at least this amount of time
before it is dropped.

There are several FTP setup parameters required to transfer files, for example the Internet
address of the remote machine. There are multiple ways to specify these parameters, first
through message variables then through configuration options. This is also the order in
which the parameters are searched. For example, if the remote machine is specified
through a message variable this overrides any parameters in the configuration.

219

Chapter 4

DSI Processing Rules

220

There are several optional message variables which you can use with this rule. For
instance, you can set the values represented by these message variables in the
configuration. If, however, the message variable is present, its value will override any
corresponding value in the configuration.

You must specify the server through the FTPServer attachment variable or by using a
configuration option. You can omit any of the variables you do not need.

Variable Description

FTPServer The server name or IP address for the FTP connection.
FTPUserID The user ID for the FTP connection.

FTPPassword The password for the FTP Connection

FTPServerPort The server’s FTP port.

FTPGetFilePath The path to be prefixed to the unique name transferFiles generates

when the variable for GetFileLocal does not exist on the input
attachment. For example, /home/temp causes local names such as /
home/temp/0Oabcdefg.ext to be generated.

FTPPutFilePath The FTP directory path (omit the drive specifier) to be prefixed to the
unique name transferFiles generates when the variable for
PutFileRemote does not exist on the output attachment. For example,
incoming/datafiles causes FTP names such as incoming/datafiles/
Oabcdefg.ext to be generated.

You must specify the server through the FTPServer message variable or by using a
configuration option. You can omit any configuration option you do not need. The
transferFiles rule searches for each value that can be specified in the optional message
variables in this order:

First search the input DSIMessage for a message variable that contains the value
If not found, search the FTP:ReqType section for the corresponding value
If not found, search the FTP control section for the corresponding value
For get and put paths, if not found search the Attachment section

This search order lets you have unique values for a given transaction and unique values
for any given request type, or have the same values for all transactions and request types.
For example, you may have several request types that use the transferFiles rule. One
request type could be set up with a section that provides unique values, while all other
request types could use the values defined in the FTP section.

Here is an example of the configuration options:

<gection name="FTP:ReqgType">
<entry name="Server">ftp.yourcompany.com</entry>
<entry name="UserID">customer</entry>
<entry name="Password">password</entry>
<entry name="RemoveOnGet">No</entry>
<entry name="RemoveOnPut">No</entry>
<entry name="CacheGetFile">10</entry>

FTPRule

</section>
<gection name="FTP">
<entry name="Server">ftp.yourcompany.com</entry>
<entry name="UserID">guest</entry>
<entry name="Password">guestpassword</entry>
<entry name="RemoveOnGet">No</entry>
<entry name="RemoveOnPut">No</entry>
<entry name="CacheGetFile">10</entry>
</section>
<gection name="Attachment">
<entry name="Path">ftpdir</entry>
</section>

The options for the FTP:ReqType section are:

Option Description

Server The server name or IP address for the FTP connection. Corresponds to message
variable FTPServer.

UserID The user ID for the FTP connection. Corresponds to message variable
FTPUserID.

Password The password for the FTP Connection. Corresponds to message variable
FTPPassword.

ServerPort The server’s FTP port. Corresponds to message variable FTPServerPort.

GetFilePath ~ The path to be prefixed to the unique name transferFiles generates when the
variable for GetFileLocal does not exist on the input attachment. Corresponds
to message variable FTPGetFilePath.

PutFilePath The FTP directory path (omit the drive specifier) to be prefixed to the unique
name transferFiles generates when the variable for PutFileRemote does not exist
on the output attachment. Corresponds to message variable FTPServer.

The options for the FTP section are:

Option Description

RemoveOnGet If set to Yes, the rule issues the FTP command to remove the remote source
file after getting it, if the user ID used can remove files from the FTP site.
This is done to allow clean up activities. The default is Yes. Enter No for
debugging purposes.

RemoveOnPut If set to Yes, the local source file is removed as soon as the Put operation is
complete. This reduces the number of temporary files.The default is Yes.
The file is removed even if the Put operation failed. Enter No for debugging
purposes.

CacheGetFile Enter the number of seconds the rule should store the file it got from the
remote FTP server using the IDS file cache. The default is 3600 (1 hour). See
also BLPPurgeRule.purge.

The options for the Attachment section are:

221

Chapter 4

DSI Processing Rules

222

Parameters

Returns

Option Description

Path Use this option to specify a path prefix for the file names this rule generates
when the names are not provided in the attachment (same as the attachment
variables FTPGetFilePath and FTPPutFilePath).

Since the value of this option can be used for a local or for an FTP file path, you
can experience problems results if the generated file names for both local and
FTP files depend on it.

For example, if you set this option to d:\temp, it would be unsuitable as a path
for generating a file name for an FTP PUT operation. In that case, you need to
supply the variable for PutFileRemote or set the path via the FTPPutFilePath
attachment variable or the PutFilePath INI option.

If you omit the user ID and password in either the message variable or in the
configuration, the system makes an anonymous connection. Keep in mind that if you
set up your FIP server to allow anonymous connections, anyone can FIP in and see
your files and anyone can put files in. You can solve this problem by setting the FTP
server to refuse all connections except those from specified IP addresses. Both the
configuration options and the message variables can provide all of the needed
information for FTP operations (server address, user ID, password, port), so the same
IDS setup can FTP to different FTP servers, if needed.

The web application is responsible for removing any file sent to it via FTP. For example,
when IDS FTPs the file to the web application, IDS removes the local file it created. The
web application must remove the file it got via FIP from IDS. IDS can also remove the
remote file it got via the FTP using the RemoveOnGet option.

Parameter Description

requestState Object. that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS if successful, else RET_FAIL.

IDSEncryptionRule

IDSEncryptionRule

Constructors

Methods

public class com.docucor.ids.rules.IDSEncryptionRule

Use the rule in this class to decrypt and encrypt message variables. All of the functions
in the class are static, so invoke the rule with static scope. All functions are thread-safe.
This class implements the substitution for the IDS 1.x IRLDecryptValue rule.

public IDSEncryptionRule ()

public static int cryptVariables(
RequestState requestState,

String arg,

int msqg)

Use this rule to decrypt and encrypt message variables. The argument is a comma-
delimited list of message variables to work on.

On MSG_RUNEF the variables are taken from the input message, decrypted, and put
back in the input message.

On MSG_RUNR the variables are taken from the output message, encrypted, and put
back in the output message.

If a message variable is not found in the message a warning is generated but processing
continues on the other variables.

The rule also supports wildcard message variable names by putting an asterisk (*) in the
message variable name. The asterisk can go at the beginning, middle, or end of a message
variable name.

223

Chapter 4

DSI Processing Rules

IDSInitRule

public class com.docucorp.ids.rules.IDSInitRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use the rule in this class to start IDS server utilities, such as those used for purging files
and logging transactions. This class implements the substitution for the IDS 1.x IRLInit
rule.

Constructors public IDSInitRule()

Methods public int init(
RequestState requestState,
String arg,
int msg)

Use this rule to initialize and terminate IDS server-wide utilities.

In the MSG_INIT message this rule will do initialization for the server-wide file cache
and transaction log. In the MSG_TERM message this rule will terminate the file cache
and transaction log.

Parameters
Parameter Description
requestState Object that holds the current running state of the request at this point of
execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

Returns RET_SUCCESS

224

IDSTransactionRule

IDSTransactionRule

Constructors

Methods

Parameters

Returns

public class com.docucorp.ids.rules.IDSTransactionRule

Use the rule in this class to report transaction times to IDS clients.

This class implements the substitution of the non-attachment part of the IDS 1.x rule

ATCUnloadAttachment.

public IDSTransactionRule ()

public static int reportTimes (
RequestState requestState,
String arg,

int msqg)

Use this rule to report the amount of time a request takes to run on the server. The IDS
1.x rule ATCUnloadAttachment would do this in addition to other functions now built
into IDS.

In the MSG_RUNR message this rule adds a message variable SERVERTIMESPENT to
the output DSIMessage listing the time spent on the transaction in seconds. If the
argument is INCLUDEMS then this rule also adds a message variable
SERVERTIMESPENTMS which lists the time in milliseconds.
SERVERTIMESPENTMS is useful if IDS is logging transactions since it is easier to sort
by time spent in this format.

If using this rule it should be the first rule in the request, or the second if also logging
transactions.

Parameter Description

requestState Object‘ that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS

225

Chapter 4

DSI Processing Rules

LogTransactionRule

226

Constructors

Methods

Parameters

Returns

Methods

public class com.docucorp.ids.rules.LogTransactionRule

Use the rules in this class to control the logging of transactions in databases. The rules
log message variables in a database specified in the configuration and purge expired
database tables.

All rule methods in this class should be called with static scope.

This class implements the substitution of the non-attachment part of these IDS 1.x rules:
¢ ATCLogTransaction

e IRLClearLog

logTransaction
public LogTransactionRule ()

public static int logTransaction (
RequestState requestState,

String arg,

int msg)

Use this rule to store message variables in a database table set up in the IDS
configuration. In the MSG_RUNR message this rule will add a message variables from
the output DSIMessage to a database that can be browsed by other applications.

If using this rule it should be the first rule in the request.

Parameter Description

requestState Object. that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNEF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS

purgeOldTransactionTables

public static int purgeOldTransactionTables (
RequestState requestState,

String arg,

int msg)

Use this method to delete database tables that have expired. The expiration time is set
up in the IDS configuration. In the MSG_RUNR message this rule will drop database
tables that are no longer needed.

Parameters

Returns

LogTransactionRule

Parameter Description

requestState Object. that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS.

227

Chapter 4

DSI Processing Rules

processAttachments

public class oracle.documaker.ids.rules.ucm.UCMRules

This rule extends the oracle.documaker.ids.rules.BaseIDSJavaRuleUtils class. The rules
in this class are used for Docupresentment to communicate with an Oracle UCM server.

Methods public int processAttachments (RequestState requestState, String arg,
int msg)
This rule takes a list of attachments from the input queue, retrieves the attachments
from Oracle UCM, and writes them to files for further processing.
Here is an example from a configuration file:

function =
java;oracle.documaker.ids.rules.ucm.UCMRules; ; transaction;processAt
tachments;parm

Parameters

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNEMSG_RUNR or MSG_TERM.

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET FAIL.

228

CLIENT RULES

Client Rules

These rules may only be run in the front-end client. The rules are listed in alphabetical
order, as shown below:

ATCAppend2Attachment on page 230
ATCLoadAttachment on page 231
ATCLogTransaction on page 232
ATCReceiveFile on page 233
ATCSendFile on page 236
ATCSendMultipleFiles on page 238
ATCUnloadAttachment on page 239
IRClnit on page 241

IRCPrint on page 242

IRCRequest on page 243
IRCResult on page 244
IRLSendVersion on page 206
IRCUnloadPage on page 247

229

Chapter 4

DSI Processing Rules

ATCAppend2Attachment

Use this rule to append values from an INI file to the queue attachment.

Syntax long _DSIAPI ATCAppend2Attachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF

unsigned long ulOptions ~ Options

Use these optional INI control groups when REQTYPE is the REQUEST type.

< ATTACH:Default >
< ATTACH:REQTYPE >

All of the VALUE=OPTION pairs from the ATTACH:REQTYPE control group are
appended to the input queue attachment, followed by the ATTACH:Default control

group.
The default DOCCLNT.INI file sets this rule with these INT settings.

< ResType:Default >
Function = atcw32->ATCAppend2Attachment

Returns Success or failure

230

ATCLoadAttachment

ATCLoadAttachment

Use this rule to parse the attachment from the input queue into the internal format of
the DSI_MSGRUNF message. You can then access the attachment via DSI APIs, such as
DSILocateAttachVar. This rule frees allocated memory for the internal format in the

Syntax

Parameters

Returns

See also

input queue on the DSI_ MSGTERM message.

long _DSIAPI ATCLoadAttachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,

unsigned long ulOptions

)

Parameter Description

DSIHANDLE hlInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNEF
unsigned long ulOptions options

Use these INT settings to specify the location of the attachments.

< RequestQ >
AttachmentPath =

The default DOCCLNT.INI file sets this rule with these INT settings.

< ResType:Default >
Function = atcw32->ATCLoadAttachment

The default DOCSERYV configuration file sets this rule with these INT settings.

< ReqType:SSS >
Function = atcw32->ATCLoadAttachment

Success or failure

ATCUnloadAttachment on page 239

231

Chapter 4

DSI Processing Rules

ATCLogTransaction

Use this rule to write transaction information to log file.

Syntax long _DSIAPI ATCLogTransaction (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

The default DOCSERYV configuration file sets this rule with these INT settings:

< ReqType:SSS >
Function = atcw32->ATCLogTransaction

The layout of the server log file is as follows:

Field Type Size
Userid Character 127
Rem_addr Character 15
Rem_host Character 127
Rem_user Character 32
Reqtype Character 25
Status Character 1
Result Character 8
Intime Numeric 10
Sloginfo Character 127

This rule runs on the RUNR message. It looks looking in the input attachment to get
these values. The rule locates the values with the same name as field name in the
attachment and puts those values into the record in the LOG table.

The Intime field is supplied by the rule. The Sloginfo field is available for application
use. If you want to use it, just add the value to the attachment using the name Siginfo.

Returns Success or failure

232

ATCReceiveFile

ATCReceiveFile

Syntax

Parameters

Use this rule to merge a series of attachment variables into a file and write that file to
disk. Generally, this rule is used to re-assemble a file that has been posted in segments
to an IDS queue by the ATCSendFile rule. The file that is received can be either a binary
or text file.

long _DSIAPI ATCReceiveFile (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG message, such as DSI_MSGRUNEF
unsigned long ulOptions Options

This rule accepts four parameters (Prefix, AttachmentVariable, FileName, and
Disposition) delimited with commas and specified immediately after the rule in the INI

file.

The file name you specified (see note below) is opened in write mode in the appropriate
manner (binary or text).

After the data is written into the file, the file is closed and the name of the disk file is

saved into the attachment variable indicated by the AttachmentVariable parameter. To
keep the file on disk after the IDS rules for this transaction have terminated, specify Kegp
in the Disposition parameter. Otherwise, the file is deleted.

233

Chapter 4

DSI Processing Rules

234

Example

NOTE:The file name used in the FileName parameter can be specified as a constant file
name or as a dynamically generated file name. To use a constant file name, use
a name such as:

c:\docserv\testr. txt

With a constant file name, each time the ATCReceiveFile rule runs, it will
replace the contents of this file with the file that is re-assembled from the
attachments. This approach is useful when developing or debugging.

To indicate that you want the rule to generate a unique name each time the rule
is run, specify an asterisk (*) in the path name. The rule then generates a 45-
character unique name and replaces the asterisk with that name. For example,
if you specify a dynamically generated file name such as this:

c:\docserv*.txt

the ATCReceiveFile rule generates a file name similar to this:

c:\docserv\0lypCmGu3koAfeD7E-1is_8yYxgfBlaybcSBIYihTgManZ. txt

To debug the receiving of files as attachments, use this INI option:

< Debug >
Attachments = Yes

The debug or trace information produced by specifying the Attachment option looks
something like this:

286. ATCReceiveFile: entered,
pszParms=<Z7Z, IMPORTFILE, c: \docserv\testr. txt, keep>

287. ATCReceiveFile: Constructed filename=<c:\docserv\testr.txt>
288. ATCAttachment2File: entered,

pszFileName=<c:\docserv\testr.txt>, pszAttachName=<ZZZ>,
ulOptions=<TEXT>

289. ATCAttachment2File: For attachment <ZZzZ>,szFileType=<TEXT>,
szNumRecs=<3>

290. ATCAttachment2File: Successful, created <c:\docserv\testr.txt>

291. ATCReceiveFile: Successful, Attachment
<IMPORTFILE=c:\docserv\testr.txt> added to Attachment List.

Because it degrades performance, be sure to turn off the Attachments option after you
finish debugging attachment processing.

Here is an example:

< ReqType:T1 >
function = atcw32-
>ATCReceiveFile, zZZ, IMPORTFILE, c¢:\docserv\testr. txt, KEEP

The specified file name (c:\docserv\testr.txt) is opened for write mode and text format.
Once the rule writes the contents of the three attachment variables to the file, it closes

the file.

ATCReceiveFile

Additionally, the file name is placed into the attachment variable you specified in the
AttachmentVariable parameter. If you specify the Disposition parameter Keep, the file is
kept on disk even after the rules for this transaction have terminated. This option can
be useful for debugging.

Returns Success or fail

See also ATCSendFile on page 236

235

Chapter 4

DSI Processing Rules

ATCSendFile

236

Syntax

Parameters

Use this rule to post a file in segments to the output attachment and send it over the
IDS queue. The ATCReceiveFile rule or the DSIReceiveFile API can then re-assemble the
file from the input attachment and save it. The file can be binary or text.

NOTE:Each IDS rule has a run forward and a run reverse step. The run forward step
usually contains most of the functionality. The run reverse step usually re-
initializes variables in preparation for the next request. The ATCSendFlle
function, however, does more in its reverse run than in its forward run,
including sending the file.

When a request is used in IDS, all the forward run code runs (from the first rule
in the list until the last); then, the reverse run takes place — all functions are
considered again for any back out procedures. So, the reverse run for the
ATCSendFile takes place after the forward run or RunRP rules

long _DSIAPI ATCSendFile (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

This rule accepts three parameters (Prefix, Attachment Variable, and FileType), delimited
with commas, and specified immediately following the rule in the INI file.

The file name indicated in the Attachment Variable parameter is opened in read mode
based on the FileType parameter (text or binary).

You can use the ATCReceiveFile rule to write the file to disk.

Keep in mind that this rule removes the attachment variable named in its second
parameter and does not work with the default queues.

The prefix name is an important parameter and it has to match when the file is being
received. The format of the message and how the file data is stored in the message is
described in the message layout chapter.

If you need to debug the sending of files as attachments, include this INI option:

< Debug >
Attachments = Yes

The debug or trace information produced by the Attachments option will look
something like this:

Example

Returns

See also

ATCSendFile

9. ATCSendFile: entered, pszParms=<ZZZ,IMPORTFILE, TEXT>

10. ATCFile2Attachment: entered,
pszFileName=<c:\docserv\client\test.txt>, pszAttachName=<ZZZ>,
ulOptions=<TEXT>

11. ATCFile2Attachment: Successful, added Attachment Variable
<ZZZ=; TEXT;3;>

12. ATCSendFile: Successful, Attachment Variable <IMPORTFILE>
removed from Attachment List.

Because it degrades performance, be sure to turn off the Attachments option after you
finish debugging attachment processing.

< ReqType:T1l >
function = atcw32->ATCSendFile, zZZ, IMPORTFILE, TEXT

In this example, suppose the attachment variable named IMPORTFILE contains this
value:

c:\docserv\client\test.txt

This file is added to the IDS message for later use for posting to the IDS queue.
Success or fail

ATCReceiveFile on page 233

237

Chapter 4

DSI Processing Rules

ATCSendMultipleFiles

Use the ATCSendMultipleFiles rule to send multiple files as queue attachments.

Syntax long _DSIAPI ATCSendMultipleFiles (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance ~ DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI._ MSGRUNF

unsigned long ulOptions Options

This rule accepts the name of the attachment variable that contains the name of the file
you want to send. The system uses partial name matching so if this parameter is provides
as FILETOSEND, the following attachment variables will be used to find the file names
to send:

FILETOSEND, FILETOSEND1l, FILETOSENDABC

The name of the file without an extension and path is used as the attachment delimiter.

The rule also accepts the type (binary or text) to use for sending all files. No individual
file type can be provided, as all are handled as the same type. The default is binary
because this rule is used to send multiple PNG/JPG files created during HTML

generation.
This rule does not remove the attachment variables with original file names.

This rule is executed on the RUNR message.

Example Here is an example:

function=atcw32->ATCSendMultipleFiles, FILETOSEND

238

ATCUnloadAttachment

ATCUnloadAttachment

Use this rule to convert the attachment from internal format into the queue attachment
format in the output queue on the DSI_ MSGRUNR message. This rule makes sure the
attachment name is present in the queue record. If this name is empty, this rule fills it
in with the unique name on the DSI_MSGINIT message. Use this rule to free allocated
memory for the internal format in the output queue on the DSI_MSGTERM message.

Syntax

Parameters

The reserved request type DEFAULT sets this rule.

long _DSIAPI ATCUnloadAttachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char ¥ pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI._ MSGRUNF
unsigned long ulOptions Options

This rule uses these INI options to determine the location of attachments:

< ResultQ >
AttachmentPath =

The default DOCCLNT.INI file sets this rule with these INI options:

< ReqType: Default >
Function = atcw32->ATCUnloadAttachment

The default DOC:

< ReqType: SCS >
Function = atcw32->ATCUnloadAttachment

The default DOCSERYV configuration file sets this rule with these INT options:.

< ReqType:SSS >
Function = atcw32->ATCLoadAttachment

239

Chapter 4

DSI Processing Rules

NOTE:To calculate the time spent in the queue, IDS returns the ServerTimeSpent
attachment variable on every transaction. The value returned is in a form of
seconds.milliseconds.

The difference between this value and the TotalTimeSpent attachment variable
created by the client is the guening latency, which gives you an indication of how
much time a transaction spent in the queue.

The ATCUnloadAttachment rule creates the attachment to be sent back, so the
ServerTimeSpent value is put into that attachment. If there are any rules in the
list executed after the ATCUnloadAttachment rule on RUNR message, their
time is not included. Nor is the time spent on the TERM message included. The
rules executed after the ATCUnloadAttachment rule on the RUNR message are
the rules listed before this rule in the DOCSERE configuration file.

Returns Success or failure

See also ATCLoadAttachment on page 231

240

IRClnit

IRCInit

Use this rule to initialize a client.

Syntax long _DSIAPI IRCInit (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNEF

unsigned long ulOptions ~ Options

The default DOCCNT.INI file sets this rule with this INI option.

< ReqType:INI >
Function = ircltw32->IRCInit

Returns Success or failure

241

Chapter 4

DSI Processing Rules

IRCPrint

Use this rule to locate the print file created by the Internet Document Server.

Syntax long _DSIAPI IRCPrint (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlInstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

This rule gets the REMOTEPRINTFILE attachment variable and creates a PRINTFILE
attachment variable. The rule mainly translates the file name from the file name on the
server, to the file name for a front-end client.

Returns Success or failure

242

IRCRequest

Syntax

Parameters

Returns

See also

IRCRequest

Use this rule to prepare a request for the Internet Document Server.

long _DSIAPI IRCRequest (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

This rule checks for the REQTYPE and USERID in the attachment and sets the fields
into the request (output) queue. This rule also fills in the unique name in the request
queue.

This rule only responds to the DSI_MSGRUNF message.
The default DOCCNT.INI file sets this rule with these INT settings.

< ReqType: Default >
Function = ircltw32->IRCRequest

Success or failure

IRCResult on page 244

243

Chapter 4

DSI Processing Rules

IRCResult

Syntax

Parameters

Returns

See also

244

Use this rule to retrieve a result for the Internet Document Server and prepares the result
for the client.

long _DSIAPI IRCResult (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNEF
unsigned long ulOptions Options

This rule checks results returned by the server. It checks for the RESULTS attachment
value in the result (input) queue attachment. If this value is not found or is not equal
to SUCCESS, the rule creates an attachment variable called ERROR and a value that
matches the value of the RESULTS variable. This lets you work with the ERRORS.HTM
template.

NOTE:If you have created your own rules and are using only the IRCUnloadPage base
rule, which processes the HTML template, you do not need this rule in the rule
list.

This rule only responds to the DSI_MSGRUNF message.
The default DOCCNT.INI file sets this rule with these INI settings.

< RegType:Default >
Function = ircltw32->IRCResult

Success or failure

IRCRequest on page 243

IRCSendVersion

IRCSendVersion

Use this rule to report DLL version information.

Syntax long _DSIAPI IRCSendVersion (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

For each of the following DLLs, this rule creates attachment variables on the
DSI_MSGRUNF message.

« ATC

« DCB
« IRP

« DQM
« IBASE
« DsI

« DS

Here is a list of the variables:

Variable Tells you the...

NAME name of the DLL
VERSION version of the DLL, such as 100.012. XXX
DATE date of the last compile in MMM DD YYYY format

TIME time of the last compile in HH:MM:SS format

These values only change when you upgrade to a newer version.
The default DOCCNT.INI file sets this rule with these INT settings.

< ReqType:SCS >
Function = ircltw32->IRCSendVersion

Returns Success or failure

245

Chapter 4

DSI Processing Rules

See also IRLSendVersion on page 206

246

IRCUnloadPage

IRCUnloadPage

Syntax

Parameters

Returns

Use this rule to unload an HTML page.

long _DSIAPI IRCUnloadPage (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

Uses HTML setting in DOCCLNT.INI file for configuration settings. Refer to Chapter
3 in the Internet Document Server Guide for an explanation of template variables and
their replacement by attachment variables.

The default DOCCNT.INI file sets this rule with these INT settings.

< ResType:Default >
Function = ircltw32->IRCUnloadPage

Success or failure

247

Chapter 4

DSI Processing Rules

248

Chapter 5
DSI Visual Basic APIs

Users of the DSI Visual Basic (VB) API are expected to
fall into one of these groups:

* Fat client applications written in VB or VBA
e ASP ActiveX components
* VB rules

Fat clients should start with a call to InitSession and end
with a call to TermSession. The general work flow will
be to build a request into one or more attachment lists
which are submitted to IDS by a call to Submit.

When the server has completed its work the results will
be processed with calls to GetAttachmentAll,
GetAttachRecSet, GetAttachVarSet, or (occasionally)
LocateAttachVar. Testing and debugging will be easier
with DSICoTB than the IDE because the attachment
lists can be changed with the click of a mouse and the
edit/compile/test cycle is minimized.

ASP ActiveX components are structured differently.
The Visual Basic object should be created in a
GLOBAL.ASA file and not be new’d in the ActiveX
component. InitSession either should be called in
OnStartPage and the instance handle returned by
InitSession, either...

e Kept in the Session object or
e TermSession called in OnEndPage.

The instance handle should #ozbe kept in the application
object as IIS multi-threads every session and the
instance handle must be thread-specific.

VB rules are subject to the same conditions as other
rules. Certain methods should not be called, such as
InitSession, and the rules should be stateless.

249

Chapter 5

DSI Visual Basic APIs

USING THE
PROTOTYPES
AND EXAMPLES

In VB

InC+ +

in VB

inC+ +

NOTE:COM and ActiveX are designed to be language independent—the VB API class
can be called from Visual Basic, Visual J++, C, C++, VBA (Visual Basic for
Applications), or VBScript.

Nonetheless, it is expected that most, if not all users, will be using Visual Basic.
With that in mind, prototypes and examples are targeted toward these languages.

Developers using other languages such as C++ are most likely used to this kind of
discrimination and know how to adapt. For instance, COM always returns an HRESULT
but VB handles this silently. If there is value returned from a method, VB silently extracts
it from the argument list; C++ users must handle this explicitly.

Here are some examples:

Dim 1lRet as long
1Ret = oDSI.FindInQueue (hInstance,dsiINPUTQUEUE, "TROUT")

HRESULT hr;
long 1Ret;
hr = spDSI->FindInQueue
(hInstance, dsiINPUTQUEUE, BSTR (L"TROUT") , &1Ret) ;

HANDLING ERRORS

For subs, an error may be raised for any condition that prevents normal completion, so
On Error routines are very important.

For methods, the return code usually indicates a not found (dsiERR_NOTFOUND) or
end-of-file (dsiERR_EOF) condition and should always be checked. But for fatal errors
or any condition that prevents normal completion, an error will be raised, so On Error
routines are also very important.

Exceptions are not passed across COM interfaces: the HRESULT will tell you if
[ErrorInfo should be interrogated. If the method provides a return code, it will generally
indicate an algorithmic error, such as dsiERR_NOTFOUND; in this case, the HRESULT
will also have the DSI error code in the lower two bytes.

250

USING THE WEB SERVICES EXAMPLE

The system includes a web services example which uses VB 6.0 DLL (DP018.d1l) to
communicate with a remote IDS via MQSeries APIs and SOAP attachments built with
Microsoft's Imessage Interface.

There are two versions of this DLL file, a server version for MQSeries Server and a client
version for MQSeries Client.

The MQSeries and XML APIs will work on Windows NT 4.0 and Windows 2000 Server.
The SOAP APIs will only work on Windows 2000 since Microsoft's Imessage interface is
only supported on Windows 2000 at this time. The demo resides on a Windows 2000
Server.

251

Chapter 5

DSI Visual Basic APIs

VISUAL BAsIC
METHODS

Client methods

Here is a list of Visual Basic methods, grouped by functional area. Following this list is a

discussion of each method, listed in alphabetical order.

NOTE:These methods are only available on Windows 32-bit platforms.

Use these methods for writing a client program:

AddToQueue on page 260
AttachList on page 269
CopyQRecord on page 273
FindInQueue on page 285
GetAttachment on page 286
GetAttachmentAll on page 288
GetAttachRecSet on page 290
GetAttachVarSet on page 292
GetQField on page 295
GetQFieldLength on page 296
GetQueueRec on page 297
Init on page 305

InitInstance on page 306
InitQueue on page 307
InitSession on page 308
ParseAttachment on page 316
SetAttachment on page 318
SetQField on page 321
StoreAttachment on page 326
Submit on page 327

Term on page 329
TermInstance on page 330
TermQueue on page 331
TermSession on page 332
Trace on page 333
TraceAttach on page 334

252

Server methods

Common methods

Use these methods for writing rules on the server:

ErrorMessage on page 284
GetUserID on page 304

Use these methods for both the client and server:

AddAttachRec on page 255
AddAttachVar on page 257
AttachCursorFirst on page 261
AttachCursorLast on page 262
AttachCursorName on page 264
AttachCursorNext on page 265
AttachCursorPrev on page 266
AttachCursorValue on page 268
CacheFile on page 270
CloseAttachCursor on page 271
CopyAttachVars on page 272
CreateValue on page 274
CreateValueObj on page 276
DeleteAttachVar on page 278
DestroyValue on page 279
DestroyValueObj on page 281
DumpDebuglnfo on page 283
GetPriority on page 294
GetReqType on page 299
GetStatus on page 300
GetUniquelD on page 301
GetUniquelDLength on page 302
GetUniqueString on page 303
LocateAttachVar on page 310
LocateValue on page 311
LocateValueObj on page 313
OpenAttachCursor on page 315
QueryValueSize on page 317

253

Chapter 5

DSI Visual Basic APIs

Properties

e SetPriority on page 320

e SetReqType on page 322

e SetStatus on page 323

e SetUniquelD on page 324

e SetUserID on page 325

* TraceEnableRule on page 335
e TraceList on page 336

e TraceSnapshot on page 337

You can also use these properties:

e Property Signature on page 339

e Property TraceEnable on page 340
e Property TracePath on page 341

254

AddAttachRec

AddAttachRec

Use this method to create a stem variable in the attachment list.

Syntax AddAttachRec (hInstance as Long,DSIQUEUE QueueID, RecName as String,
NewVarName as String)

IDS supports records within an attachment. For instance, the following might be returned

from a rule:
FISH1.TYPE BASS
FISH1.SIZE LARGE
FISHI.STATUS CAUGHT

FISH1.LOCATION BOAT

Using AddAttachRec, the stem variable that can be created by this call is FISH. FISH1 is
returned because it is the first FISH record in the attachment. You do not have to do
anything else to create a stem variable. The output of an SSS request is a stem variable.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
RecName The record to add the stem variable.

RecID The record ID with a variable number, such as RECORD2.

See also AddToAttachRec on page 258
GetAttachRecSet on page 290

Example From the CSamAPLcls file in the DSICoSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "FISH", sBuf

' Next we want to supply the values. To do this we use the
' add to attach record functionality. We supply the buffer

returned from or earlier add attach record call.

Add name of my DLL SBuf should be "FISH1" at this point
oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TYPE", "BASS"

Add date DLL was built

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "SIZE",
"LARGE"

'’ Add time DLL was built

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "STATUS",
"CAUGHT"

' Add my DLL version number

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "LOCATION",
"BOAT"

255

Chapter 5

DSI Visual Basic APIs

’ Put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

256

AddAttachVar

AddAttachVar

Use this method to add name/value pair to an attachment.

Syntax AddAttachvar (hInstance as Long,QueueID as DSIQUEUE, Name as String,
Value as String)

NOTE: An empty Value is allowed. An empty Name is not.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
Name A variable name.

Value A variable value.

See also LocateAttachVar on page 310
DeleteAttachVar on page 278
GetAttachmentAll on page 288
GetAttachVarSet on page 292

Example From the CSamAPLcls file in the DSICoSAM example:

oDSI.AddAttachVar hInstance, _
dsiOUTPUTQUEUE, _
"Hello", _
"Hello World!™"

oDSI.AddAttachVar hInstance, _
dsiOUTPUTQUEUE, __
"Good-bye", _
"Good-bye World!"

oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

257

Chapter 5
DSI Visual Basic APIs

AddToAttachRec

Use this method to append a value to a stem variable

Syntax AddToAttachRec (hInstance as Long,QueueID as DSIQUEUE, RecName as
String, Name as String, Value as String)

IDS supports records within an attachment. For instance, the following might be returned

from a rule:
FISHL.TYPE BASS
FISHL.SIZE LARGE
FISH1.STATUS CAUGHT

FISHL1.LOCATION BOAT
To add to the FISH1 record,

AddToAttachRec (hInstance,dsiOUTPUTQUEUE, "ANGLER", "Mom")

FISH1.TYPE BASS
FISH1.SIZE LARGE
FISH1.STATUS CAUGHT
FISH1.LOCATION BOAT
FISH1.ANGLER Mom
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
RecName The record to which variable should be added.
Name The name of the field within the record.

Value The data associated with the variable.

See also AddAttachRec on page 255
GetAttachRecSet on page 290

Example From the CSamAPLcls file in the DSICoSAM example:
oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "LIBRARIES", sBuf

' Next we want to supply the values. To do this we use the
add to attach record functionality. We supply the buffer

returned from or earlier add attach record call.

’

’

’ Add name of my DLL

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "NAME",
"DSRVRLVB"

’ Add date DLL was built
oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "DATE", "date"

’ Add time DLL was built

258

AddToAttachRec

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TIME", "time"

'’ Add my DLL version number

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "VERSION",
Ill.OIl

’ Put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

259

Chapter 5

DSI Visual Basic APIs

AddToQueue

Syntax

Arguments

See also

Example

Use this method to release a record into the queue for processing. Nothing happens on

the server until you make this call—or instead use the Submit method.

AddToQueue (hInstance as Long,QueuelID as DSIQUEUE)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

GetQueueRec on page 297
StoreAttachment on page 326

Submit on page 327

From the CSamAPIcls file in the DSICoSAM example:

’ put in our attachment

oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What",

'’ move our attachment from the buffer into the record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ set the echo request type

"Me Worry?"

oDSI.SetQField hInstance, dsiOUTPUTQUEUE, dsiQSET REQTYPE, "ECH"

oDSI.UserID = "DocExample"

' if sUnique is empty, SetUniqueID will f£ill it in for us

oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

' release the queue record for processing
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

260

AttachCursorFirst

AttachCursorFirst

Syntax

Arguments

Returns

See also

Example

Use this method to recover the first name/value pair in the attachment and position the
cursor on the next pair.

AttachCursorFirst (hCursor as Long, Name as String, Value as String)

as Long
Argument Description
hCursor the cursor obtained from OpenAttachCursor
Name returned name
Value returned value

DSIERR_SUCCESS
DSIERR_NOTFOUND

AttachCursorLast on page 262
AttachCursorName on page 264
AttachCursorNext on page 265
AttachCursorPrev on page 266
AttachCursorValue on page 268
CloseAttachCursor on page 271
OpenAttachCursor on page 315

ParseAttachment on page 316

From the CSamAPLcls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment
'’ This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' Loop through all elements of the parsed attachment printing
’ the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

' close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

261

Chapter 5

DSI Visual Basic APIs

AttachCursorlLast

Use this method to recover the last name/value pair in the attachment and retard the
cursor to previous name/value pair.

Syntax

Arguments

Returns

See also

Example

AttachCursorlLast (hCursor as Long, Name as String, Value as String)

as Long
Argument Description
hCursor cursor pointing into the attachment list
Name returned name
Value returned value

DSIERR_SUCCESS
DSIERR_NOTFOUND

AttachCursorFirst on page 261

AttachCursorName on page 264

AttachCursorNext on page 265

AttachCursorPrev on page 266

AttachCursorValue on page 268

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

From the CSamAPLcls file in the DSICoSAM example:

’

Parse and present our results.
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

Open a cursor for the attachment
This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

Position to the last element of the attachment

Dim sName As String, sValue As String

Dim 1Ret

1Ret = oDSI.AttachCursorLast (hCursor, sName, sValue)

Loop through all elements of the parsed attachment printing
the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorPrev (hCursor, sName, sValue)
Wend

262

AttachCursorlLast

'’ Close the attachment cursor’
oDSI.CloseAttachCursor hCursor

263

Chapter 5

DSI Visual Basic APIs

AttachCursorName

Syntax

Arguments

Returns:

See also

Example

Use this method to get the name value for the current position of the cursor.

AttachCursorName (hCursor as Long,Name as String) as Long

Argument Description
hCursor the cursor obtained from the OpenAttachCursor method
Name returned Name

DSIERR_SUCCESS
DSIERR_NOTFOUND

AttachCursorFirst on page 261
AttachCursorLast on page 262
AttachCursorNext on page 265
AttachCursorPrev on page 266
AttachCursorValue on page 268
CloseAttachCursor on page 271
OpenAttachCursor on page 315

ParseAttachment on page 316

From the CSamAPILcls file in the DSICoSAM example:

' Parse the attachment in the current record
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' obtain an attachment cursor
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

'’ get the first name/value pair
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' get just the name from the name/value pair
1Ret = oDSI.AttachCursorName (hCursor, sName)

' get the value from the name/value pair
1Ret = oDSI.AttachCursorValue (hCursor, sValue)

’ drop the attachment cursor
oDSI.CloseAttachCursor hCursor

264

AttachCursorNext

AttachCursorNext

Use this method to retrieve the next name/value pair from the attachment list.

Syntax AttachCursorNext (hCursor as Long, Name as String, Value as String)
as Long
Arguments
Argument Description
hCursor cursor pointing into the attachment list
Name returned name
Value returned value

Returns: DSIERR_SUCCESS
DSIERR_NOTFOUND

See also AttachCursorFirst on page 261
AttachCursorLast on page 262
AttachCursorName on page 264
AttachCursorPrev on page 266
AttachCursorValue on page 268
CloseAttachCursor on page 271
OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPLcls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment
'’ This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' Loop through all elements of the parsed attachment printing
' the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

' close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

265

Chapter 5

DSI Visual Basic APIs

AttachCursorPrev

Use this method to retrieve the next name/value pair from the attachment list.

Syntax

Arguments

Returns:

See also

Example

AttachCursorPrev (hCursor as Long, Name as String, Value as String)

as Long
Argument Description
hCursor cursor pointing into the attachment list
Name returned name
Value returned value

DSIERR_SUCCESS
DSIERR_NOTFOUND

AttachCursorFirst on page 261

AttachCursorLast on page 262

AttachCursorName on page 264

AttachCursorNext on page 265

AttachCursorValue on page 268

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

From the CSamAPLcls file in the DSICoSAM example:

’

Parse and present our results.
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

Open a cursor for the attachment
This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

Position to the last element of the attachment

Dim sName As String, sValue As String

Dim 1Ret

1Ret = oDSI.AttachCursorLast (hCursor, sName, sValue)

Loop through all elements of the parsed attachment printing
the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorPrev (hCursor, sName, sValue)
Wend

Close the attachment cursor’

266

AttachCursorPrev

oDSI.CloseAttachCursor hCursor

267

Chapter 5

DSI Visual Basic APIs

AttachCursorValue

Syntax

Arguments

See also

Example

Use this method to get the value of the attachment at the current cursor position.

AttachCursorValue (hCursor as Long, Value as String)

Argument Description
hCursor the cursor obtained from the OpenAttachCursor method
Value returned value

AttachCursorFirst on page 261
AttachCursorNext on page 265
AttachCursorLast on page 262
AttachCursorPrev on page 266
CloseAttachCursor on page 271
OpenAttachCursor on page 315

ParseAttachment on page 316

From the CSamAPLcls file in the DSICoSAM example:

' Parse the attachment in the current record
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' obtain an attachment cursor
hCursor - oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

'’ get the first name/value pair
1Ret - oDSI.AttachCursorFirst (hCursor, sName, sValue)

' get just the name from the name/value pair
1Ret - oDSI.AttachCursorName (hCursor, sName)

' get the value from the name/value pair
1Ret - oDSI.AttachCursorValue (hCursor, sValue)

’ drop the attachment cursor
oDSI.CloseAttachCursor hCursor

268

AttachList

Syntax

Arguments

See also

Example

AttachList

Use this method to attach the array of name/value pairs to the queue record.

AttachList (hInstance as Long,QueueID as DSIQUEUE,List() as String)

Argument Description

hlnstance The session/thread handle.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

List()

A two-dimensional string array with a set of name/value pairs.

AddAttachVar on page 257

GetAttachmentAll on page 288

GetAttachVarSet on page 292

GetAttachRecSet on page 290

From the CSamAPLcls file in the DSICoSAM example:

sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach(l, 0) = "Namel"
sAttach(l, 1) = "valuel"
sAttach (2, 0) = "Name2"
sAttach (2, 1) = "Value2"
sAttach (3, 0) = "Name3"
sAttach (3, 1) = "Value3"
sAttach(4, 0) = "Named"
sAttach(4, 1) = "Value4d"

’

Add the 1list to the attachment
oDSI.AttachList hInstance, dsiOUTPUTQUEUE, sAttach

every queue record must have a request
oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, sRequest

sUnique = "" ’ make sure we get a new one this time
oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

move the attachment from the local buffer to the record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

release queue record to the queue for processing
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

269

Chapter 5

DSI Visual Basic APIs

CacheFile

Syntax

Arguments

Example

Use this method to add a file name to the cache.

CacheFile (hInstance as Long,FileName as String,Expire as long)

NOTE: Only for use in rules.

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

FileName the name and path of the file

Expire the life of the file, in seconds

oDSI.CacheFile hInstance, "temp.html",20000

270

CloseAttachCursor

CloseAttachCursor

Syntax

Arguments

See also

Example

Use this method to close an attachment cursor and free the associated resources.

CloseAttachCursor (hCursor as Long)

Argument Description

hCursor The cursor obtained from the OpenAttachCursor method

AttachCursorFirst on page 261
AttachCursorLast on page 262
AttachCursorName on page 264
AttachCursorNext on page 265
AttachCursorPrev on page 266
AttachCursorValue on page 268
OpenAttachCursor on page 315

ParseAttachment on page 316

From the CSamAPLcls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' Open a cursor for the attachment
' This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' Loop through all elements of the parsed attachment printing
' the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

'’ close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

271

Chapter 5

DSI Visual Basic APIs

CopyAttachVars

Use this method to copy all attachment variables from one queue to the other.

Syntax CopyAttachVars (hInstance as Long,QueuelID as DSIQUEUE)
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

See also AddAttachVar on page 257
AttachList on page 269
LocateAttachVar on page 310
DeleteAttachVar on page 278

Example From the CSamSupp.cls file in the DSICoSAM example:

Echo = dsiERR_SUCCESS
Select Case ulMsg

Case dsiMSG_RUNF ' Forward (ie, inbound) logic

oDSI.AddAttachVvar hInstance, dsiOUTPUTQUEUE, "RESULTS",
"SUCCESS"

oDSI.CopyAttachVars hInstance, dsiINPUTQUEUE
Case Else ' We don’t support the other messages

Echo = dsiERR_MSGNOTFOUND
End Select

272

CopyQRecord

CopyQRecord

Use this method to copy a queue record from one queue to another.

Syntax CopyQRecord (hInstance as Long,QueuelID as DSIQUEUE)
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Example oDSI.CopyQueueRecord hInstance, dsiOUTPUTQUEUE

273

Chapter 5

DSI Visual Basic APIs

CreateValue

Syntax

Arguments

See also

Example

Use this method to create a DSI persistent variable.

CreateValue (hInstance as Long,Name as String,Value as VARIANT)

These variables are persistent and must be destroyed by a call to DestroyValue. They are
not associated with the queues or attachments and exist to aid communication or provide
state information between rules and calls to rules.

Keep in mind:
e SAFEARRAY’s are not supported

¢ Use the CreateValueObj method with objects

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the variable to be created

Value the variable to create (can be NULL)

CreateValueODbj on page 276
LocateValue on page 311
DestroyValue on page 279
QueryValueSize on page 317

From the CSamAPLcls file in the DSICoOSAM example:

’

save our string
sTestValue = "Hello World"
oDSI.CreateValue hInstance, sSTRING_TAG, sTestValue

'’ now get it back
Dim 1Ret
1Ret = oDSI.LocateValue (hInstance, sSTRING_TAG, sReturnedvValue)
If 1Ret <> dsiERR_SUCCESS __
Or sReturnedvValue <> sTestValue Then
MsgBox ("Failed")
Else
MsgBox ("Success")
End If

we’re through with it so we destroy it
oDSI.DestroyValue hInstance, sSTRING_TAG

’

now lets see how integers fare
iTestValue = 234
oDSI.CreateValue hInstance, sINT _TAG, iTestValue

274

1Ret = oDSI.LocateValue (hInstance, sINT_TAG,
If 1Ret <> dsiERR_SUCCESS __
Or iTestValue <> iReturnedvalue Then
MsgBox ("Failed")
Else
MsgBox ("Success")
End If

we’re through with it so we destroy it
oDSI.DestroyValue hInstance, sINT TAG

CreateValue

iReturnedvalue)

275

Chapter 5

DSI Visual Basic APIs

CreateValueObj

Syntax

Arguments

See also

Example

Use this method to create a DSI persistent variable that refers to an object (ActiveX
component).

CreateValueObj (hInstance as Long,Name as String,Value as Object)

These variables are persistent and must be destroyed by a call to DestroyValueOb;j. They
are not associated with the queues or attachments and exist to aid communication or
provide state information between rules and calls to rules.

NOTE: ActiveX components are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObj, even in On Error handlers,
you can leave a dangling reference which can tie up resources unnecessarily and
even lead to a server crash.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the variable to be created

Value the object reference to save

CreateValue on page 274
DestroyValueObj on page 281
LocateValueObj on page 313

From the CSamAPLcls file in the DSICoSAM example:

'’ Test with early bound object
oDSI.CreatevValueObj hInstance, "MY_OBJECT", oTestValue

'’ clear our reference
Set oTestValue = Nothing

' get it back

1Ret = oDSI.LocateValueObj (hInstance, "MY_OBJECT",
oOtherTestValue)

’ use the object to make sure we got back what we sent out
MsgBox (oOtherTestValue.TestReturn("Hello World"))

'’ clear our reference
Set oOtherTestValue = Nothing

' we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

276

CreateValueObj

' Test with late bound object

Dim oObject As Object
Dim oOtherObject As Object

Set oObject = CreateObject ("Docucorp_IDS_SamTObj.CSamTObj")
oDSI.CreateValueObj hInstance, "MY_OBJECT", oObject

' clear our reference
Set oObject = Nothing

' get it back
1Ret = oDSI.LocateValueObj (hInstance, "MY_ OBJECT", oOtherObject)
' use the object to make sure we got back what we sent out

MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn ("Hello
World")

' clear our reference
Set oOtherObject = Nothing

' we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

277

Chapter 5

DSI Visual Basic APIs

DeleteAttachVar

Syntax

Arguments

See also

Example

Use this method to remove an attachment variable.

DeleteAttachVar (hInstance as Long,QueuelID as DSIQUEUE, Name as

String)
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a

rule.
QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Name The name of the variable you want to delete.

LocateAttachVar on page 310
AddAttachVar on page 257
GetAttachmentAll on page 288
GetAttachVarSet on page 292
GetAttachRecSet on page 290

From the CSamAPILcls file in the DSICoSAM example:

' parse the attachment into local storage
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' delete what we do not like
oDSI.DeleteAttachVar hInstance, dsiINPUTQUEUE, "NameO"

' make sure it worked

1Ret = oDSI.LocateAttachVar (hInstance, dsiINPUTQUEUE, "NameO",
sValue)

If 1Ret <> dsiERR_SUCCESS Then

MsgBox ("Success: didn’t find NameO")
Else

MsgBox ("Failure: " + Hex(lRet), "data found")
End If

278

DestroyValue

Syntax

Arguments

See also

Example

DestroyValue

Use this method to destroy a DSI persistent variable.

DestroyValue (hInstance as Long,Name as String)

These variables are persistent and must be destroyed by a call to this method. They are
not associated with the queues or attachments and exist to aid communication or retain
state between rules and calls to rules.

NOTE:Ifyou do not call this routine for each call to CreateValue you will create memory

leaks.
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Name the name of the persistent variable to be destroyed

CreateValue on page 274
LocateValue on page 311
DestroyValueObj on page 281
QueryValueSize on page 317

From the CSamAPI.cls file in the DSICoSAM example:

’ save our string
sTestValue = "Hello World"
oDSI.CreateValue hInstance, sSTRING _TAG, sTestValue

'’ now get it back
Dim 1Ret
1Ret oDSI.LocatevValue (hInstance, sSTRING_TAG, sReturnedvValue)
If 1Ret <> dsiERR_SUCCESS _
Or sReturnedValue <> sTestValue Then
MsgBox ("Failed")
Else

MsgBox ("Success")
End If

' we’'re through with it so we destroy it
oDSI.DestroyValue hInstance, sSTRING_TAG

' now lets see how integers fare
iTestValue = 234

oDSI.CreateValue hInstance, sINT _TAG, iTestValue

1Ret = oDSI.LocateValue (hInstance, sINT TAG, iReturnedvalue)
If 1Ret <> dsiERR_SUCCESS __

279

Chapter 5
DSI Visual Basic APIs

Or iTestValue <> iReturnedValue Then
MsgBox ("Failed")

Else
MsgBox ("Success")

End If

’ we’'re through with it so we destroy it
oDSI.DestroyValue hInstance, sINT_ TAG

280

DestroyValueObj

DestroyValueObj

Syntax

Arguments

See also

Example

Use this method to destroy a DSI persistent variable that is an object (ActiveX
component).

DestroyValueObj (hInstance as Long,Name as String)

These variables are persistent and must be destroyed by a call to this method. They are
not associated with the queues or attachments and exist to aid communication or retain
state between rules and calls to rules.

NOTE: ActiveX and VB objects are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueOby, even in On Error handlers,
you can leave a dangling reference which can tie up resources unnecessarily and
perhaps even crash the server.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the persistent variable to be destroyed

CreateValueObj on page 276
LocateValueObj on page 313
DestroyValue on page 279

From the CSamAPI.cls file in the DSICoSAM example:

'’ Test with early bound object
oDSI.CreateValueObj hInstance, "MY _OBJECT", oTestValue

' clear our reference
Set oTestValue = Nothing

' get it back

1Ret = oDSI.LocateValueObj (hInstance, "MY_ OBJECT",
oOtherTestValue)

' use the object to make sure we got back what we sent out
MsgBox (oOtherTestValue.TestReturn("Hello World"))

' clear our reference
Set oOtherTestValue = Nothing

' we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

281

Chapter 5

DSI Visual Basic APIs

’ Test with late bound object

Dim oObject As Object
Dim oOtherObject As Object

Set oObject = CreateObject ("Docucorp_IDS_SamTObj.CSamTObj")
oDSI.CreatevValueObj hInstance, "MY_OBJECT", oObject

' clear our reference
Set oObject = Nothing

' get it back
1Ret = oDSI.LocateValueObj (hInstance, "MY_ OBJECT", oOtherObject)

' use the object to make sure we got back what we sent out

MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn ("Hello
World")

' clear our reference
Set oOtherObject = Nothing

' we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

282

DumpDebuglnfo

DumpDebuglnfo

Use this method to get the debug information as text for diagnostic purposes. This
information is also placed at various locations in the VB trace file and can be forced into
the VB trace file by a call to TraceSnapshot.

Syntax DumpDebugInfo (hInstance as Long,DebugInfo () as String)

To see the output run the DSICoDiag sample project or run DEBUG.ASP from your
browser.

This method is not dependent on TraceEnable.

NOTE:The information returned by this method is subject to change in both content
and format without notice. This information is provided to aid debugging only.
If you build a program around the returned contents, you will eventually get a
program that does not work.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Debuglnfo () a one-dimensional string array which contains diagnostic text

See also TraceSnapshot on page 337

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim sInfo() as String
oDSI.DumpDebugInfo hInstance, sInfo

dim i

For 1 = 0 To UBound(sInfo, 1)
ListBoxl.Add (sInfo(i))

Next 1

283

Chapter 5

DSI Visual Basic APIs

ErrorMessage

Syntax

Arguments

See also

Example

Use this method to add an error message to an attachment. It is expected that the first
element will be the error number followed by the details as name/value pairs.

ErrorMessage (hInstance as Long,QueueID as DSIQUEUE,ErrorMsg () as
String)

This method is most commonly called in rules.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by
a rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

ErrorMessage () A one-dimensional array which consists of the error message followed by

name/value pairs.

StoreAttachment on page 326

From the CSamAPILcls file in the DSICoSAM example:

Dim sMsg (0 To 2) As String

’

sMsg (0) = "SAMOOL1"
sMsg (1) = "FileName"
sMsg (2) = "lostinspace.dat"

put our error into the queue
oDSI.ErrorMessage hInstance, dsiOUTPUTQUEUE, sMsg

this is not necessary in a rule
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

284

FindInQueue

FindinQueue

Use this method to search for a record in a queue. FindInQueue is the same as
GetQueueRec except that FindInQueue does not wait.

Syntax FindInQueue (hInstance as Long,QueueID as DSIQUEUE,UniqueID as
String) as Long

If the queue record is not immediately available it will return DSIERR_NOTFOUND
and you can try again at a later time.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniquelD The search target.

Returns DSIERR_SUCCESS
DSIERR_NOTFOUND

See also GetQueueRec on page 297

Example Dim ctLook

1Ret = dsiERR_NOTFOUND

While 1Ret <> dsiERR_SUCCESS __

And ctLook < 10000
1Ret = oDSI.FindInQueue (hInstance, dsiINPUTQUEUE, sUnique)
DoEvents
ctLook = ctLook + 1

Wend

285

Chapter 5

DSI Visual Basic APIs

GetAttachment

Use this method to get the unparsed attachment for the current queue record. Since
attachments can be quite large, expect a very long string.

Syntax

Arguments

See also

Example

GetAttachment (hInstance as Long,QueueID as DSIQUEUE, Attachment as

String)
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a

rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attachment The returned attachment.

DeleteAttachVar on page 278

GetAttachmentAll on page 288

GetAttachVarSet on page 292

GetAttachRecSet on page 290

LocateAttachVar on page 310

ParseAttachment on page 316

Dim sAttach

sAttach (0,

(
(
(
sAttach (
sAttach (
sAttach (
sAttach (
sAttach (
sAttach (

(0
0)
1)
0)
1)
0)
1)
0)
1)
0)
1)

To 4, 0 To

"NameQ"
"ValueO"
"Namel"
"Valuel"
"Name2"
"Value2"
"Name3"
"Value3"
"Name4"
"Valued"

1)

As String

' put all of these name/value pairs in the attachment

oDSI.AttachList hInstance,

' set up the echo requrest

oDSI.SetReqType hInstance,

dsiOUTPUTQUEUE, sAttach

dsiOUTPUTQUEUE, "ECH"

oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

' move the attachment from local storage to the queue record

oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

' release the record to the queue

oDSI.AddToQueue hInstance,

dsiOUTPUTQUEUE

’ recover the attachment echoed back to us

286

GetAttachment

oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

get the unparsed attachment
oDSI.GetAttachment hInstance, dsiINPUTQUEUE, sAttach

text.Caption = sAttach

287

Chapter 5

DSI Visual Basic APIs

GetAttachmentAll

Use this method to return the entire parsed attachment as a two-dimensioned array of
name/value pairs.

Syntax

Arguments

See also

Example

GetAttachmentAll (hInstance as Long,QueueID as DSIQUEUE,Attach() as

String)

NOTE: Do not call the ParseAttachment method before you call this method.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attach () A two-dimensional array with the attachment name/value pairs.

DeleteAttachVar on page 278

GetAttachment on page 286

GetAttachRecSet on page 290

GetAttachVarSet on page 292

LocateAttachVar on page 310

ParseAttachment on page 316

From the CSamAPLcls file in the DSICoOSAM example:

sAttachl (0, 0) "NameQ"

sAttachl (0, 1) "ValueO"
sAttachl (1, 0) "Namel"

sAttachl (1, 1) "Valuel"
sAttachl (2, 0) "Name2"

sAttachl (2, 1) "Value2"
sAttachl (3, 0) "Name3"

sAttachl (3, 1) "Value3"
sAttachl (4, 0) "Named"

sAttachl (4, 1) "Valued"
sAttach2 (0, 0) "Name20"
sAttach2 (0, 1) "Value20"
sAttach2 (1, 0) "Name21"
sAttach2 (1, 1) "Value2l"
sAttach2 (2, 0) "Name22"
sAttach2 (2, 1) "Value22"
sAttach2 (3, 0) "Name23"
sAttach2 (3, 1) "Value23"
sAttach2 (4, 0) "Name24"
sAttach2 (4, 1) "Value24™"

288

’

GetAttachmentAll

send the attachment to the server with the request it be echoed back
sUnique = "" '’ to get us a new UniquelID
oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sAttach2

wait for the server to return the attachment
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique, 1000, nTIMEOUT

get the attachment into an array
oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

For i1 = LBound(sAttachIn, 1) To UBound(sAttachIn, 1)

MsgBox (sAttachIn(i, 0) +": " + sAttachIn(i, 1))
Next 1

289

Chapter 5
DSI Visual Basic APIs

GetAttachRecSet

Use this method for attachments which consist of a series of variables (RECORDI,
RECORD?2, and so on) with stem variables. The paradigm is that of a series of structures
or records so this method recovers the record set as a matrix. The top row in the matrix
contains the variable names, like in a spreadsheet.

Syntax GetAttachRecSet (hInstance as Long,QueueID as DSIQUEUE,RecBase as
String,Vars() as String, _

Optional Headings as Boolean, __
Optional FirstRec as Long,Optional LastRec as Long)

IDS supports records within an attachment. For instance, the following might be returned

from a rule:
FISH1.TYPE BASS
FISHL.SIZE LARGE
FISH1.STATUS CAUGHT
FISH1.LOCATION BOAT
FISH2.TYPE GUPPY
FISH2.SIZE TINY
FISH2.STATUS RETURNED
FISH2.LOCATION LAKE
FISH3.TYPE SHARK
FISH3.SIZE LARGE
FISH3.STATUS APPROACHING

FISH3.LOCATION CLOSE!

Calling this method will return:

TYPE SIZE STATUS LOCATION
BASS LARGE CAUGHT BOAT
GUPPY TINY RETURNED LAKE
SHARK LARGE APPROACHING CLOSE!

NOTE:You must use the ParseAttachment method before you call this method. You can
optionally specify the range of records to be extracted from the attachment.

Arguments

Argument Description

hlnstance The thread instance handle (from the server if invoked by a rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

RecBase The record identification string (such as FISH).

Vars The output array.

Titles (Optional) Include record names as column headings. The default is TRUE.
FirstRec (Optional) The first record to recover. The default is one (1).

290

GetAttachRecSet

Argument Description
LastRec (Optional) The last record to recover. The default is zero (0), which is translated
to LONG_MAX.

Returns: DSIERR_SUCCESS
DSIERR_NOTFOUND

See also AddToAttachRec on page 258
AttachCursorFirst on page 261
AttachCursorLast on page 262
AttachCursorNext on page 265
AttachCursorPrev on page 266
GetAttachmentAll on page 288

ParseAttachment on page 316

Example From the CSamAPILcls file in the DSICoSAM example:

' wait for the server to return the attachment
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

'’ parse the attachment
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

oDSI.GetAttachRecSet hInstance, dsiINPUTQUEUE, sRecID, sRecSet
' show results
For 1 = 0 To UBound(sRecSet, 1)

MsgBox (sRecSet (i, 0) + " " + gRecSet(i, 1))
Next 1

291

Chapter 5

DSI Visual Basic APIs

GetAttachVarSet

Use this method to help locate a set of variables in an attachment. This method lets you
pass in an array of the names you are looking for and get back the values associated with
those names.

Syntax GetAttachvarSet (hInstance as Long,QueueID as DSIQUEUE, Names () as
String,Values () as String) as Long

You will get back a dsiERR_NOTFOUND if and only if none of the names are found.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
Names The vector that contains the names you want to look for.

Values The array that contains the matching values, if any. The value can be a pointer
to an empty array, in which case the system dimensions it as a vector with the
same length as the name array.

If the array is defined before you call this method, it must be a two-dimensional
array and the method will append a column to it.

Returns DSIERR_SUCCESS
DSIERR_NOTFOUND

See also AddToAttachRec on page 258
AttachCursorFirst on page 261
AttachCursorLast on page 262
AttachCursorNext on page 265
AttachCursorPrev on page 266
GetAttachmentAll on page 288
LocateAttachVar on page 310

ParseAttachment on page 316

Example From the CSamAPLcls file in the DSICoSAM example:

Dim sDummyl () as String

Dim sDummy?2 () as String

Dim sUnique as String
' there is no attachment for SSS, so we use empty arrays.
’ gUnique is empty so we will get back the unique ID we can use to
' recover the server response

oDSI.Submit hInstance, "SSS", sUnique, sDummyl (), sDummy2 ()

’ get the server status record
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

292

GetAttachVarSet

DoEvents

' parse the attachment
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

sNames (0) = "UPTIME"
sNames (1) = "LASTRESTART"
sNames (2) = "RESTARTCOUNT"
sNames (3) = "SUCCESSCOUNT"
sNames (4) = "ERRORCOUNT"
sNames (5) = "ALLOCCOUNT"
sNames (6) = "FREECOUNT"

' Get the current statistics from IDS

1Ret = oDSI.GetAttachVarSet (hInstance, dsiINPUTQUEUE, sNames,
asStats)

If 1Ret = dsiERR_EOF Then

MsgBox ("FAILED. Code = ", Val(lRet))
Else

Dim i

Dim L, U

L = LBound (sNames)

U = UBound (sNames)

For 1 = L To U

MsgBox (sNames (i) + ": " + asStats(i))

Next 1

End If

293

Chapter 5
DSI Visual Basic APIs

GetPriority

Use this method to get the priority of the current queue record.

Syntax GetPriority (hInstance as Long,QueuelID as DSIQUEUE) as String
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Priority The priority as a string.

See also GetQFieldLength on page 296
GetUniquelD on page 301
GetReqType on page 299
GetStatus on page 300
SetPriority on page 320
SetQField on page 321

Example Dim sPri as String
sPri = oDSI.GetPriority (hInstance, dsiINPUTQUEUE)

294

GetQField

GetQField

Use this method to retrieve the value of a queue field.

Syntax GetQField (hInstance as Long,QueuelID as DSIQUEUE, FieldID as
long,Field as String)

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,
dsiQSET_INTIME, dsiQSET_OUTTIME, dsiQSET_USERID,
dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, or
dsiQSET_ATTACHMENT.

Field The returned field value as a string.

See also GetQFieldLength on page 296
GetPriority on page 294
GetUniquelD on page 301
GetReqType on page 299
GetStatus on page 300
SetPriority on page 320
SetQField on page 321
SetUserID on page 325
SetReqType on page 322
SetStatus on page 323
SetUniquelD on page 324

Example oDSI.GetQField (hInstance,dsiINPUTQUEUE,dsiQSET REQTYPE, sReq)
MsgBox ("The request was " + sReq

295

Chapter 5

DSI Visual Basic APIs

GetQFieldLength

Use this method to get the field length of a field in a queue.

Syntax GetQFieldLength (hInstance as Long,QueueID as DSIQUEUE,FieldID as
Long) as Long

NOTE:This length can change from one release to the next so it is a good practice to
interrogate the length at least once at run time rather than rely on hard-coded

values.
Arguments
Argument Description
hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,
dsiQSET_INTIME, dsiQSET_OUTTIME, dsiQSET_USERID,
dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, or
dsiQSET_ATTACHMENT.

Returns FieldLen, which provides the length of the requested queue field.
See also GetQField on page 295

Example dim cbUniqueID

cbUniqueID = GetQFieldLength
(hInstance,dsiINPUTQUEUE,dsiQSET UNIQUE_ID)

296

GetQueueRec

Syntax

Arguments

See also

Example

GetQueueRec

Use this method to look for a specific record in the queue.

GetQueueRec (hInstance as Long,QueuelID as DSIQUEUE,UniqueID as
String, _ Optional Wait as Long,Optional TimeOut as Long)

Please note:

e Oracle Insurance supplies timing defaults of 1000 and 15000 in one millisecond ticks

* If the queue record fails to appear in the specified time, dsiERR_EOF is returned

e A time-out usually indicates the server is down or unreachable

Argument Description
hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniquelD The record name.

Wait

The retry wait period in milliseconds.

TimeOut The timeout in milliseconds.

FindInQueue on page 285

From the CSamAPLcls file in the DSICoSAM example:

sAttach (0, 0) = "NameO"
sAttach (0, 1) = "valueO"
sAttach(l, 0) = "Namel"
sAttach(l, 1) = "valuel"
sAttach (2, 0) = "Name2"
sAttach (2, 1) = "Value2"
sAttach (3, 0) = "Name3"
sAttach (3, 1) = "value3"
sAttach(4, 0) = "Named"
sAttach(4, 1) = "Value4d"

dim sDummy () as String

send the attachment to the server with the request it be echoed back
sUnique = "" '’ to get us a new UniquelID

oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sDummy

Look for the result.

The DSI Document server will process our request and put the
result in our result queue. We look for it in our result queue
providing wait and lock timeout.

If OnError gets invoked here, one of the error returns could
be time out.

oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

297

Chapter 5
DSI Visual Basic APIs

’ Parse and present our results.
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

'’ Loop through all elements of the parsed attachment printing
’ the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
MsgBox (sName + ":" + sValue)
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

’ Close the attachment cursor’
oDSI.CloseAttachCursor hCursor

298

GetReqType

Syntax

Arguments

Returns

See also

Example

GetReqType

Use this method to get the DSI request type, such as SSS or IMP, from the current queue
record.

GetReqType (hInstance as Long,QueueID as DSIQUEUE) as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

ReqType, which provides the request type.

GetQFieldLength on page 296
GetPriority on page 294
GetUniquelD on page 301
GetStatus on page 300

MsgBox ("Request type was " + oDSI.GetReqType (hInstance,
dsiINPUTQUEUE))

299

Chapter 5

DSI Visual Basic APIs

GetStatus

Syntax

Arguments

Returns

See also

Example

Use this method to get the status byte from the current queue record.

GetStatus (hInstance as Long,QueueID as DSIQUEUE) as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Status, which provides the status byte from the queue record.

GetQFieldLength on page 296
GetPriority on page 294
GetUniquelD on page 301
GetReqType on page 299

Dim sStatus as String
sStatus = oDSI.GetStatus (hInstance,dsiINPUTQUEUE)

300

GetUniquelD

Syntax

Arguments

Returns

See also

Example

GetUniquelD

Use this method to get the unique ID from a queue record.

GetUniqueID (hInstance as Long,QueuelID as DSIQUEUE) as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniquelD, which provides the unique ID for this record.

GetQFieldLength on page 296
GetPriority on page 294
GetReqType on page 299

From the CSamAPLcls file in the DSICoSAM example:

MsgBox ("UniqueID is " + oDSI.GetUniquelID (hInstance, dsiINPUTQUEUE))

301

Chapter 5

DSI Visual Basic APIs

GetUniquelDLength

Syntax

Arguments

Returns

See also

Example

Use this method to get the length of the unique ID field the queue is expecting.

GetUniqueIDLength (hInstance as Long,QueuelID as DSIQUEUE) as Long

NOTE:This length can change from release to release.

Argument Description
hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniqueLen, which provides the returned length of the dsiQSET_UNIQUE_ID field.

GetQField on page 295
GetQFieldLength on page 296
GetPriority on page 294
GetReqType on page 299
GetUniquelD on page 301

From the CSamAPLcls file in the DSICoSAM example:

Dim cbField as Long
cbField = oDSI.GetUniqueIDLength (hInstance, dsiINPUTQUEUE)
MsgBox ("Unique ID field length is " + cbField)

302

GetUniqueString

GetUniqueString

Use this method to fill Unique with a unique string. You can, for instance, use this method
to generate unique file names.

Syntax GetUniqueString (hInstance as Long,Unique as String,Optional Long
LengthRequested)

If LengthRequested is zero, the length of the UniquelD field in the queue record will be
used. The GetUniquelD method is better suited for this purpose.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked
by a rule.
Unique returned unique ID. Unique will be space filled beyond 32 bytes.
LengthRequested length of string requested. If the result is zero, the default, then the

dsiQSET_UNIQUE_ID length is used.

See also GetPriority on page 294
GetQField on page 295
GetQFieldLength on page 296
GetReqType on page 299
GetUniquelD on page 301

Example Dim sUnique as String

GetUniqueString hInstance, sUnique, 8
MsgBox ("Here’s your unique filename: " + sUnique + ".dat")

303

Chapter 5

DSI Visual Basic APIs

GetUserlD

Syntax

Arguments

Returns

See also

Example

Use this method to get the user ID from the current queue record.

GetUserID (hInstance as Long,QueueID as DSIQUEUE)

as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UserID, which provides the user ID returned as a string.

GetPriority on page 294
GetQField on page 295
GetQFieldLength on page 296
GetReqType on page 299
GetUniquelD on page 301

From the CSamAPIcls file in the DSICoSAM example:

Dim sField as String
sField = oDSI.GetUserID (hInstance, dsiINPUTQUEUE)

304

Init

Syntax

Arguments
Returns

See also

Example

Init

Use this method to make an API call to initialize an IDS session. It is also called by
InitSession, which is the preferred way to link up with IDS. Unless you want to administer
the session directly, there is no need to call this method.

Init() as Long

NOTE: This method should be called only once per process—without an intervening call
to the Term method. You cannot use this method in a rule.

None
phApp, which provides the DSI session handle (not instance).

Term on page 329
InitSession on page 308

TermSession on page 332

From the CSamAPLcls file in the DSICoSAM example:

hApp = oDSI.Init()
hInstance = oDSI.InitInstance (hApp)

’ init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

305

Chapter 5
DSI Visual Basic APIs

InitiInstance

Use this method to make an API call to initialize a thread instance. This method is also
called by InitSession, which is the preferred way to link to IDS. Unless you want to
administer the session directly, there is no need to call this routine.

Syntax InitInstance (LONG hApp) as Long

NOTE:You cannot use this method in a rule.

Arguments

Argument Description

hApp IDS Server session

Returns Instance, which provides the instance handle.

See also TermInstance on page 330

InitSession on page 308

Example From the CSamAPILcls file in the DSICoSAM example:

’ initialize DSI for this process
hApp = oDSI.Init()

’ initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

' init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

’ do something useful

’ shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

306

InitQueue

Syntax

Arguments

See also

Example

InitQueue

Use this method to initialize a DSI Queue for this instance. This method is also called by
InitSession, which is the preferred way to link to IDS and the queues.

NOTE:You cannot use this method in a rule.

InitQueue (hInstance as Long, QueuelID as DSIQUEUE, FileName as String)

If the file name is empty, DSI will look for the DSLINI file in either the current working
directory or the directory which contains the DSTW32.DLL file. For greater flexibility in
your applications, do not specify the file name.

NOTE: Unless you want to administer the queues directly for a special purpose, this
method should not be used. InitSession will make the necessary calls.

Argument Description

hlInstance thread instance handle

QueuelD queue index

FileName queue path. Most applications will set this to “.

InitSession on page 308
TermQueue on page 331

TermSession on page 332

From the CSamAPILcls file in the DSICoSAM example:

' initialize DSI for this process
hApp = oDSI.Init()

’ initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

'’ init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

307

Chapter 5

DSI Visual Basic APIs

InitSession

Syntax

Arguments

Returns

See also

Example

Use this method to initialize your IDS session through the Visual Basic API for the
current thread. Most applications begin their processing with a call to InitSession.

InitSession(long hApp) as Long

NOTE:You cannot use this method in a rule.

Argument Description

hApp

The app handle returned by the Init method. This is available for diagnostic
purposes only.

The thread instance handle.

TermSession on page 332

Init on page 305

InitInstance on page 306

InitQueue on page 307

Dim sUnique as String

Dim sDummy () as String

Dim sReturn

as String

()

Dim sAttach(0 To 4, 0 To 1) As String
sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach(l, 0) = "Namel"
sAttach(1l, 1) = "vValuel"
sAttach (2, 0) = "Name2"
sAttach (2, 1) = "Value2"
sAttach (3, 0) = "Name3"
sAttach (3, 1) = "Value3d"
sAttach(4, 0) = "Name4"
sAttach (4, 1) = "Valued"

’

set up our server session

hInstance = oDSI.InitSession()

’

send the attachment to the server with the request t be echoed back
sUnique = "" ’ to get us a new UniqueID
oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sDummy

Look for the result.
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

get the attachment into an array
oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

308

InitSession

' shut down
oDSI.TermSession hInstance

309

Chapter 5

DSI Visual Basic APIs

LocateAttachVar

Syntax

Arguments

Returns

See also

Example

Use this method to locate an attachment variable in the current queue record.

LocateAttachvar (hInstance as Long,QueueID as DSIQUEUE, Name as
String, Value as String) as Long

You must call the ParseAttachment method before you use this method.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
Name The search target.

Value The value found associated with that name returned as a string.

dsiERR_SUCCESS
dsiERR_NOTFOUND

AddAttachVar on page 257

DeleteAttachVar on page 278
ParseAttachment on page 316
GetAttachVarSet on page 292
GetAttachRecSet on page 290

From the CSamAPLcls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

1Ret = oDSI.LocateAttachVar (hInstance, dsiINPUTQUEUE, "RESULTS",
sValue)

If 1Ret = dsiERR_SUCCESS Then

MsgBox ("Success: found RESULTS = " + sValue)
Else

msgBox ("Failure: " + Hex(lRet) +" No data found: ")
End If

310

LocateValue

Syntax

Arguments

Returns

See also

Example

LocateValue

Use this method to locate a persistent value by name. These variables are persistent and
must be destroyed by a call to DestroyValue method. They are not associated with the
queues or attachments and exist to aid communication or provide state information
between rules and calls to rules.

LocateValue (hInstance as Long,Name as String, Value as VARIANT) as

Long
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Name name of the persistent value
Value the value that is found

dsiERR_SUCCESS
dsiERR_NOTFOUND

CreateValue on page 274

DestroyValue on page 279

LocateValueObj on page 313

QueryValueSize on page 317

From the CSamAPLcls file in the DSICoSAM example:

’

'

save our string
sTestValue = "Hello World"

oDST.

CreateValue hInstance, sSTRING_TAG, sTestValue

now get it back
Dim 1Ret

1Ret

If 1Ret <> dsiERR_SUCCESS

= oDSI.LocateValue (hInstance, sSTRING_TAG, sReturnedvalue)

Or sReturnedValue <> sTestValue Then
MsgBox ("Failed")

Else

MsgBox ("Success")
End If

we’re through with it so we destroy it

oDST.

DestroyValue hInstance, sSTRING_TAG

now lets see how integers fare
iTestValue = 234

oDST.

1Ret

CreateValue hInstance, sINT TAG, iTestValue

= oDSI.LocateValue (hInstance, sINT TAG, iReturnedvalue)

If 1Ret <> dsiERR_SUCCESS _

311

Chapter 5

DSI Visual Basic APIs

’

Or iTestValue <> iReturnedValue Then
MsgBox ("Failed")

Else
MsgBox ("Success")

End If

we’re through with it so we destroy it
oDSI.DestroyValue hInstance, sINT_ TAG

312

LocateValueObj

LocateValueObj

Syntax

Arguments

Returns

See also

Example

Use this method to locate a persistent value containing the name of an object. These
variables are persistent and must be destroyed by a call to DestroyValueOb;j. These
variables are not associated with the queues or attachments and exist to aid
communication or provide state information between rules and calls to rules.

LocateValueObj (hInstance as Long,Name as String, oRef as Object) as
Long

NOTE: ActiveX components are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObyj, including in On Error
handlers, you can leave a dangling reference which can tie up resources
unnecessarily, perhaps even crash the server or your application.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name name of the persistent value

oRef a reference to an object

dsiERR_SUCCESS
dsiERR_NOTFOUND

CreateValueObj on page 276
DestroyValueObj on page 281
LocateValue on page 311

From the CSamAPLcls file in the DSICoSAM example:

Dim oTestValue As New CSamTObj
Dim oOtherTestValue As CSamTObj

' Test with early bound object
oDSI.CreateValueObj hInstance, "MY_OBJECT", oTestValue

' clear our reference
Set oTestValue = Nothing

' get it back

1Ret = oDSI.LocateValueObj (hInstance, "MY_ OBJECT",
oOtherTestValue)

’

use the object to make sure we got back what we sent out
MsgBox (oOtherTestValue.TestReturn("Hello World"))

313

Chapter 5

DSI Visual Basic APIs

clear our reference
Set oOtherTestValue = Nothing

we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

Test with late bound object

Dim oObject As Object
Dim oOtherObject As Object

Set oObject = CreateObject ("Docucorp_IDS_SamTObj.CSamTObj")
oDSI.CreateValueObj hInstance, "MY_OBJECT", oObject

clear our reference
Set oObject = Nothing

get it back

lRet = oDSI.LocateValueObj (hInstance, "MY_ OBJECT", oOtherObject)

use the object to make sure we got back what we sent out

MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn ("Hello

New World"))

clear our reference
Set oOtherObject = Nothing

we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

314

OpenAttachCursor

OpenAttachCursor

Syntax

Arguments

Returns

See also

Example

Use this method to open a cursor into the attachment list for the specified queue. Be sure
to call the CloseAttachCursor method when you are through to free resources.

OpenAttachCursor (hInstance as Long,QueueID as DSIQUEUE) as Long

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Cursor, which provides the newly-created cursor.

AttachCursorLast on page 262
AttachCursorNext on page 265
AttachCursorPrev on page 266
CloseAttachCursor on page 271

ParseAttachment on page 316

From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' Open a cursor for the attachment
' This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' Loop through all elements of the parsed attachment printing
' the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

'’ close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

315

Chapter 5

DSI Visual Basic APIs

ParseAttachment

Syntax

Arguments

See also

Example

Use this method to parse the attachment field in the queue record into an internal list of
name/value pairs which can be accessed by other methods.

ParseAttachment (hInstance as Long,QueueID as DSIQUEUE)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

GetAttachment on page 286
LocateAttachVar on page 310
DeleteAttachVar on page 278
GetAttachmentAll on page 288
GetAttachVarSet on page 292

From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment
’ This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' Loop through all elements of the parsed attachment printing
’ the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

'’ close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

316

QueryValueSize

QueryValueSize

Use this method to get the length of a DSI persistent variable. These variables are
persistent and must be destroyed by a call to DestroyValue method. They are not
associated with the queues or attachments and exist to aid communication or provide
state information between rules and calls to rules.

Syntax QueryValueSize (hInstance as Long,sName as String) as Long

NOTE: Use of this method with a DSI persistent variable that is an object will return a
value that is unreliable.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Name the name of the persistent variable

Returns ValueLength, which provides the length in bytes.

See also CreateValue on page 274
DestroyValue on page 279
LocateValue on page 311
CreateValueObj on page 276
LocateValueObj on page 313
DestroyValueObj on page 281

Example From the CSamAPI.cls file in the DSICoSAM example:

sTestValue = "Hello World"
oDSI.CreateValue hInstance, "START STMT", sTestValue

Dim cbvalue
cbValue = oDSI.QueryValueSize (hInstance, "START STMT")
MsgBox ("returned size=", Str(cbvalue))

317

Chapter 5

DSI Visual Basic APIs

SetAttachment

Use this method to insert an attachment as a single, continuous string (almost a BLOB)
into the queue record. Use for situations in which the name/value pair paradigm does not
support the needs of the application.

Syntax

Arguments

See also

Example

SetAttachment (hInstance as Long,QueuelID as DSIQUEUE,Attachment as
String)

Most applications which interact with IDS will not need to use this method.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attachment The attachment as a string.

GetAttachment on page 286

Here is an excerpt from the CSamAPLcls file in the DSICoSAM example:

Dim sBLOB As String

sBLOB = "Of all the dispositions and habits, which lead to political
prosperity," + _

"Religion and Morality are indispensable supports. In vain would that
man " +

"claim the tribute of Patriotism, who should labor to subvert these
great "+

"pillars of human happiness, these firmest props of the duties of Men
and " + _

"Citizens. The mere Politician, equally with the pious man, ought to
respect " + __

"and to cherish them. A volume could not trace all their connexions
with " + _

"private and public felicity. Let it simply be asked, Where is the
security " +

"for property, for reputation, for life, if the sense of religious
obligation " + _

"desert the oaths, which are the instruments of investigation in
Courts " + __

"of Justice? And let us with caution indulge the supposition, that
morality " + _

"can be maintained without religion. Whatever may be conceded to the
influence " +

"of refined education on minds of peculiar structure, reason and
experience " + __

"both forbid us to expect, that national morality can prevail in
exclusion " + _

"of religious principle. -- George Washington"

oDSI.SetAttachment hInstance,dsiOUTPUTQUEUE, sBLOB

'set the Echo request type
oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

318

’

SetAttachment

set up a unique id for our record
sUnique = "" ' make sure we get a new one this time
oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

insert record into queue for processing by the server
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

get our record back after processing by the server
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

Dim sBLOBOut
oDSI.GetAttachment hInstance, dsiINPUTQUEUE, sBLOBOut

MsgBox (sBLOBOut)

319

Chapter 5

DSI Visual Basic APIs

SetPriority

Syntax

Arguments

See also

Example

Use this method to set the priority of the current queue record.

SetPriority(hInstance as Long,QueuelID as DSIQUEUE,

Priority as

String)
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a

rule.
QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Priority The priority as a string.

SetQField on page 321
SetUserID on page 325
SetReqType on page 322
SetStatus on page 323
SetUniquelD on page 324
GetPriority on page 294

oDSI.SetPriority hInstance,dsiOUTPUTQUEUE, "1"
oDSTI.AddToQueue hInstance, dsiOUTPUTQUEUE

oDSI.SetPriority hInstance,dsiOUTPUTQUEUE, "0"
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

320

SetQField

Syntax

Arguments

See also

Example

SetQField

Use this method to set a specific queue field in the current queue record.

SetQField (hInstance as Long,QueuelID as DSIQUEUE, FieldID as
Long,Value as String)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,

Value

dsiQSET_USERID, dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, or
dsiQSET_ATTACHMENT.

The value to be updated in current queue record.

GetQField on page 295

SetPriority on page 320

SetUserID on page 325

SetReqType on page 322

SetStatus on page 323

SetUniquelD on page 324

From the CSamAPLcls file in the DSICoSAM example:

’

put our message in the attachment
oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What", "Me Worry?"

put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

set up the request type (all queue records must have a request type)
oDSI.SetQField hInstance, dsiOUTPUTQUEUE, dsiQSET REQTYPE, "ECH"

put a unique id in the queue record so we can get it from the server
sUnique = "" ' make sure we get a new one this time

oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

submit the queue record to the queue for processing by the server
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

321

Chapter 5
DSI Visual Basic APIs

SetReqType

Use this method to set the DSI request type in the current queue record.

Syntax SetReqgType (hInstance as Long,QueuelID as DSIQUEUE, Type as String)

Every queue record submitted to the server must have a request type. This request type
should also be found in the DOCSERYV configuration file. For instance, the ECH request
has the following entry in the DOCSERYV configuration file:

< ReqgType:ECH >
function = atcw32->ATCLoadAttachment
function = DSICoRul->Invoke,Docucorp_IDS_SAMSupp.CSAMSupp->Echo
function = atcw32->ATCUnloadAttachment

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Type The request type as a string.

See also GetReqType on page 299
SetQField on page 321
SetPriority on page 320
SetUserID on page 325
SetStatus on page 323
SetUniquelD on page 324

Example From the CSamAPLcls file in the DSICoSAM example:

’ put our message in the attachment
oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What", "Me Worry?"

' put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ set up the request type (all queue records must have a request type)
oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

' put a unique ID in the queue record
sUnique = "" ' make sure we get a new one this time

oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ submit the queue record to the queue for processing by the server
oDSTI.AddToQueue hInstance, dsiOUTPUTQUEUE

322

SetStatus

Syntax

Arguments

See also

Example

SetStatus

Use this method to set the status flag by OR’ing the bits, which will prevent the ERROR
bit from being reset. This field has a length of one byte.

SetStatus (hInstance as Long,QueueID as DSIQUEUE, Status as String)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Status The status as a string.

GetStatus on page 300
SetQField on page 321
SetPriority on page 320
SetUserID on page 325
SetReqType on page 322
SetUniquelD on page 324

oDSI.SetStatus hInstance,dsiINPUTQUEUE, "E"

323

Chapter 5
DSI Visual Basic APIs

SetUniquelD

Use this method to set the UniquelD for a queue record. In a multiuser environment,
this is the way to keep your stuff separated from that of the other users. This value is
supplied to the GetQueueRec method to recover your queue record after it’s processed
by the server.

Syntax SetUniquelID (hInstance as Long,QueueID as DSIQUEUE,UniqueID as
String)
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniquelD UniquelD as a string. If UniquelD is empty or “”, a new unique ID is returned.

See also GetUniquelD on page 301
SetQField on page 321
SetPriority on page 320
SetUserID on page 325
SetReqType on page 322
SetStatus on page 323

Example From the CSamAPILcls file in the DSICoSAM example:

sUnique = "" ' make sure we get a new one this time
oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

' insert our record into the queue for processing by the server
oDSTI.AddToQueue hInstance, dsiOUTPUTQUEUE

' recover our record from the server after processing
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

324

SetUserlD

Syntax

Arguments

See also

Example

SetUserlD

Use this method to set up a user ID for the current queue record. The server does not use
this, but a client can use it to keep separate various requests.

SetUserID (hInstance as Long,QueueID as DSIQUEUE,UserID as String)

If the user ID is not going to change, you only need to make this call once. You can also
use the UserID property to set this field.

Argument Description
hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UserID Any string.

GetUserID on page 304
SetQField on page 321
SetPriority on page 320
SetReqType on page 322
SetStatus on page 323
SetUniquelD on page 324

From the CSamAPLcls file in the DSICoSAM example:

oDSI.SetUserID hInstance, dsiOUTPUTQUEUE, "Walleye"

325

Chapter 5

DSI Visual Basic APIs

StoreAttachment

Use this method to update the attachment field in the queue record from the internal
attachment list buffer.

Syntax StoreAttachment (hInstance as Long, DSIQUEUE QueuelD)

If you call the AddAttachVar or AttachList methods, you must call this method
afterwards. This method is not required after calls to the Submit method.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

See also AddAttachVar on page 257
AttachList on page 269
Submit on page 327

Example From the CSamAPILcls file in the DSICoSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "FISH", sBuf

Next we want to supply the values. To do this we use the

add to attach record functionality. We supply the buffer

returned from or earlier add attach record call.

Add name of my DLL
oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TYPE", "BASS"

Add date DLL was built

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "SIZE",
"LARGE"

’ Add time DLL was built

oDSTI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "STATUS",
"CAUGHT"

' Add my DLL version number

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "LOCATION",
"BOAT"

’ Put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

326

Submit

Submit

Use this method for most client submissions to the server.

Syntax Submit (hInstance as Long,Request as String,UniquelID as
String,parmsl () as String,parms2() as String)

The lists parms1() and parms2() can be empty.

NOTE:Each call to submit generates another OUTPUT queue record.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Request A server request, such as SSS.
UniquelD The unique ID for this submission. Any empty string will be returned with the

unique ID assigned to this queue record.
Parms1() A two-dimensional array with the parameter list to attach to the queue record.

Parms2() A two-dimensional array with the second parameter list to be also attached to
the queue record.

See also AddAttachVar on page 257
AttachList on page 269

Example 1 From the CSamAPLcls file in the DSICoSAM example:

Dim sDummyl () as String
Dim sDummy?2 () as String
Dim sUnique as String
' there is no attachment for SSS, so we use empty arrays.
'’ gUnique is empty so we will get back the unique ID we can use to
'’ recover the server response
oDSI.Submit hInstance, "SSS", sUnique, sDummyl (), sDummy2 ()

' get the server status record
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique
DoEvents

'’ parse the attachment
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

sNames (0) = "UPTIME"
sNames (1) = "LASTRESTART"
sNames (2) = "RESTARTCOUNT"
sNames (3) = "SUCCESSCOUNT"
sNames (4) = "ERRORCOUNT"
sNames (5) = "ALLOCCOUNT"

327

Chapter 5

DSI Visual Basic APIs

’

sNames (6) = "FREECOUNT"

Get the current statistics from IDS

1Ret = oDSI.GetAttachvVarSet (hInstance, dsiINPUTQUEUE, sNames,
asStats)
If 1Ret = dsiERR_EOF Then
MsgBox ("FAILED. Code = ", Val(lRet))
Else
Dim i
Dim L, U
L = LBound (sNames)
U = UBound (sNames)
For i = L To U
MsgBox (sNames (i) + ": " + asStats(i))
Next 1
End If
Example 2 From the CSamAPLcls file in the DSICoSAM example:
sAttachl (0, 0) = "NameQO"
sAttachl (0, 1) = "ValueO"
sAttachl(l, 0) = "Namel"
sAttachl (1, 1) = "vValuel"
sAttachl (2, 0) = "Name2"
sAttachl (2, 1) = "value2"
sAttachl (3, 0) = "Name3"
sAttachl (3, 1) = "Value3"
sAttachl (4, 0) = "Name4d"
sAttachl (4, 1) = "Value4d"
sAttach2 (0, 0) = "Name20"
sAttach2 (0, 1) = "vValue20"
sAttach2 (1, 0) = "Name2l"
sAttach2 (1, 1) = "value2l"
sAttach2 (2, 0) = "Name22"
sAttach2 (2, 1) = "value22"
sAttach2 (3, 0) = "Name23"
sAttach2 (3, 1) = "Value23"
sAttach2 (4, 0) = "Name24"
sAttach2 (4, 1) = "vValue24"

’

send the attachment to the server with the request it be echoed back

sUnique = "" '’ to get us a new UniquelID

oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sAttach2

wait for the server to return the attachment

oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique, 1000, nTIMEOUT
get the attachment into an array

oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

For i = LBound(sAttachIn, 1) To UBound(sAttachIn, 1)
MsgBox (sAttachIn(i, 0) +": " + sAttachIn(i, 1))
Next 1

328

Term

Term

Use this method to terminate the server session.

Syntax Term ()

The InitSession and TermSession methods are the preferred means of managing your
connection to IDS. Unless you want to manage the server session directly, you should not
call this routine.

NOTE:This method will be automatically called when you exit. Most applications will
not use it. This method cannot be called from a rule.

Arguments None

See also Init on page 305

InitSession on page 308

Example From the CSamAPLcls file in the DSICoSAM example:

' initialize DSI for this process
hApp = oDSI.Init()

' initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

’ init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

329

Chapter 5
DSI Visual Basic APIs

Termlnstance

Use this method to terminate the thread instance. It is also called by TermSession, which
is the preferred way to unlink from IDS.

Syntax TermInstance (hInstance as Long)

NOTE:This method cannot be called from rules.

Arguments

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

See also InitInstance on page 306
InitSession on page 308

TermSession on page 332

Example From the CSamAPILcls file in the DSICoSAM example:

* initialize DSI for this process
hApp = oDSI.Init()

’ initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

’ init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

’ shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

330

TermQueue

TermQueue

Use this method to terminate the linkage to one of the two queues. Called by InitSession,
which is the preferred way to link to IDS.

Syntax TermQueue (hInstance as Long,QueueID as DSIQUEUE)

NOTE:This method cannot be called from rules.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

See also InitQueue on page 307
InitSession on page 308

TermSession on page 332

Example From the CSamAPLcls file in the DSICoSAM example:

' initialize DSI for this process
hApp = oDSI.Init()

' initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

' init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

331

Chapter 5
DSI Visual Basic APIs

TermSession

Use this method to end the relationship with IDS. You must pair this method with the
InitSession method.

Syntax TermSession (hInstance as Long)

NOTE:This method cannot be called from rules.

Arguments

Argument Description

hlnstance The thread instance handle.

See also InitSession on page 308

Init on page 305

Example From the CSamAPLcls file in the DSICoSAM example:

Dim sUnique as String
Dim sDummy () as String

Dim sReturn as String

()

Dim sAttach(0 To 4, 0 To 1) As String
sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach(l, 0) = "Namel"
sAttach(1l, 1) = "Valuel"
sAttach (2, 0) = "Name2"
sAttach (2, 1) = "Value2"
sAttach(3, 0) = "Name3"
sAttach (3, 1) = "Value3"
sAttach(4, 0) = "Name4"
sAttach (4, 1) = "Valued"

hInstance = oDSI.InitSession()
' send the attachment to the server with the request it be echoed back
sUnique = "" ’ to get us a new UniquelID

oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sDummy

’ Look for the result.
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

' get the attachment into an array
oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

’ shut down
oDSI.TermSession hInstance

332

Trace

Trace

Use this method to put a couple of strings in the VB trace file. If tracing is not enabled,
no action is taken.

Syntax Trace (hInstance as Long,Caller as String,Msg as String)

The trace file is named DSICO.TRC. This file is stored in the current working directory
of the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Arguments
Argument Description
hlnstance The thread instance handle.
Caller The routine making the call.
Msg A message string.

See also TraceSnapshot on page 337
TraceEnableRule on page 335
Property TracePath on page 341
TraceEnableRule on page 335

Example oDSI.Trace hInstance,"Fish Rule::GoFish", "Bass bait ignored"

333

Chapter 5

DSI Visual Basic APIs

TraceAttach

Syntax

Arguments

See also

Example

Use this method to write the entire attachment to the trace file.

TraceAttach (hInstance as Long,QueuelID as DSIQUEUE)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Trace on page 333
TraceEnableRule on page 335
TraceSnapshot on page 337
TraceEnableRule on page 335
TraceEnableRule on page 335
Property TracePath on page 341

From the CSamAPILcls file in the DSICoSAM example:

oDSI.TraceAttach hInstance,dsiINPUTQUEUE

334

TraceEnableRule

TraceEnableRule

Syntax

Arguments

See also

Example

Use this method to turn the tracing on and off in a rule. The TraceEnable property cannot
be used in rules.

TraceEnableRule (hInstance as Long,Enable as Boolean)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

bEnable Enter True to enable tracing. Enter False to disable tracing.

Trace on page 333

TraceAttach on page 334
TraceEnableRule on page 335
TraceSnapshot on page 337
Property TracePath on page 341

oDSI.TraceEnableRule hInstance, TRUE

335

Chapter 5

DSI Visual Basic APIs

TracelList

Use this method to trace an attachment list of name/value pairs.

Syntax TraceList (ID as String,List() as String
Arguments
Argument Description
ID A list identifier.
List () A two-dimensional array of name/value pairs.

See also Trace on page 333
TraceAttach on page 334
TraceEnableRule on page 335
TraceEnableRule on page 335
TraceSnapshot on page 337

Example From the CSamAPILcls file in the DSICoSAM example:

Dim sAttach(0 To 4, 0 To 1) As String
sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach(1l, 0) = "Namel"
sAttach(1l, 1) = "Valuel"
sAttach(2, 0) = "Name2"
sAttach (2, 1) = "value2"
sAttach (3, 0) = "Name3"
sAttach (3, 1) = "Value3"
sAttach (4, 0) = "Name4"
sAttach (4, 1) = "Valued"

oDSI.TraceList "Initial list state",sAttach

336

TraceSnapshot

Syntax

Arguments

See also

Example

TraceSnapshot

Use this method to dump the current state of the queues, including attachments in the
current queue record, to the trace file. This method then closes and reopens the trace file

to flush the buffers.

TraceSnapshot (hInstance as Long)

Parameter Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Trace on page 333

TraceAttach on page 334

TraceEnableRule on page 335

From the CSamAPLcls file in the DSICoSAM example:

' recover the attachment echoed back to us
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

oDSI.Trace "Fish::GoFish", "where are the worms?"
oDSI.TraceSnapshot hInstance

337

Chapter 5
DSI Visual Basic APIs

Property Instance

Use this property to return the DSI instance handle.

Syntax Property Instance as Long (read only)

This method is for diagnostic purposes only.

NOTE:In a multi-threaded context, such as an ASP Active X component running under
Microsoft IIS, you cannot rely on this value.

See also InitInstance on page 306
InitSession on page 308
TermInstance on page 330

TermSession on page 332

Example MsgBox ("Instance handle is " + Str (oDSI.Instance))

338

Property Signature

Property Signature

Use this property to return the DLL “signature” for diagnostic purposes.

Syntax Property Signature as String

NOTE:This information is subject to change in content and format without notice.

Returns A string with data identifying the VB ActiveX DLL.

Example MsgBox ("DSICoLib signature: " + Str (oDSI.Signature))

339

Chapter 5
DSI Visual Basic APIs

Property TraceEnable

Use this property to start and stop tracing.

Syntax Property TraceEnable as BOOL (read only)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

The trace file will be automatically closed when the application exits.

See also TraceSnapshot on page 337
TraceAttach on page 334
Trace on page 333
TraceEnableRule on page 335
Property TracePath on page 341

Example From the CSamAPLcls file in the DSICoSAM example:

oDSI.TraceEnable = true
oDSI.InitSession

340

Property TracePath

Property TracePath

Use this property to get the path and file name of the trace file, if the trace file has been
opened, the system will set the trace file name. This name will take effect only after the
trace file is opened.

Syntax Property TracePath as String

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using this

property.
See also TraceEnableRule on page 335
Example oDSI.TracePath = "D:\TEMP"

oDSI.TraceEnable = true
oDSI.InitSession

341

Chapter 5

DSI Visual Basic APIs

342

Index

A

accessing variables 15
Active Server Page

ADMAsp sample 76

and COM objects 76

Debug.ASP 72
ActiveX

registering DLLs 62

writing Visual Basic rules 61
AddAllRequest

JavaBeans 172
AddAttachRec

in C 15, 83

in Visual Basic 255
AddAttachVar

in C 8, 15, 84, 85

in Visual Basic 257
ADDINST program 62
addJob 209
AddJobRule 209
AddRequest

JavaBeans 172
AddToAttachRec

in C 15, 86, 87

in Visual Basic 258
AddToQueue

in C 8, 89

in Visual Basic 260
ADMAsp

sample 76

343

Index

ADMIN.ASP

sample 76
APIs

C79

Java 171

Visual Basic 249
ATCAppend2Attachment 230
ATCLoadAttachment 13, 231
ATCLogTransaction 232
ATCReceiveFile 233

referencing attachment variables 78
ATCSendFile 236

referencing attachment variables 78
ATCSendMultipleFiles rule 238
ATCUnloadAttachment 13, 239
AttachCursorFirst

in C9, 15, 90, 92

in Visual Basic 261
AttachCursorLast

in C9, 15, 94

in Visual Basic 262
AttachCursorName

in C 98

in Visual Basic 264
AttachCursorNext

in C9, 15, 100, 102

in Visual Basic 265
AttachCursorPrev

in C9, 15, 104, 106

in Visual Basic 266
AttachCursorValue

in C 108, 110

in Visual Basic 268
AttachList

in Visual Basic 269
Attachment control group 199
attachment variables

referencing 78
AttachmentPath option 231, 239

344

attachments
accessing using C 15
defined 4
DSIReceiveFile 146
DSISendFile 154
list 7
using a proprietary format with C 8
variables 9, 13
Attachments option 234, 236
autorun rules

CacheFile 115

avoiding file naming conflicts 16

Bounds Checker 12
buffer 8

C

APIs 79

creating, accessing, and destroying variables 15

DSI API 3,7
list of API functions 80
sample program 10
writing processing rules 12
cache
purging 204
CacheFile
in C 16, 115
in Visual Basic 270
CacheGetFile option 198
CAD request type 16
case statements
in VB 62
CGI client
DSI API 3

writing processing rules 12

class modules 61
classes

list of Java classes and methods 182
CLF request type 17
client rules

list of 229
CloseAttachCursor

in C 15,116

in Visual Basic 271
CoClasses folder 63
COM

and Visual Basic rules 66

GUIDS 66

interfaces and VB 61

objects under ASP 76

ProglDs 61, 63

registering objects 63
CONFIG.INI file

referencing attachment variables 78
CopyAttachVars

in C 15, 117

in Visual Basic 272
copyData 215
copyMessageVariables 215
CopyQRecord

in C 118

in Visual Basic 273
CreateValue

in C 15, 119

in Visual Basic 66, 274
CreateValueOby

in Visual Basic 276
creating

rules for reserved request types 16

rules in C 13

variables in C 15

Visual Basic rules 61

D

daemon 17

DAP.INI file

referencing attachment variables 78
Debug control group 234, 236
debug log file 200
Debug option 198, 200
Debug.ASP 72
DEFAULT request type 17

UnloadAttachment 239
DeleteAttachVar

in C 15, 120

in Visual Basic 278
destroying variables

C15
DestroyValue

in C 15,121, 122, 123

in Visual Basic 279
DestroyValueOb;

in Visual Basic 281
diagnostics

Signature property 339
DOCC.BMP sample file 76
DOCSERV.INI file

referencing attachment variables 78

specifying Visual Basic rules 63
Document Server Interface (DSI) 171
DSI

C APIs 79

COM objects (ASP) 76

Java APIs 171

processing rules 183

Visual Basic API 61
DSI Java APIs 76
DSI Visual Basic APIs 249
DSI_MSGINIT message 12
DSI_MSGRUNEF message 12
DSI_MSGRUNR message 12, 13
DSI_MSGTERM message 12
DSIAddAttachVar

inC38
DSIAddAttachVarEx 85
DSICO.TRC 340

Index

DSICoADM
sample 76
DSICoAPI 65
DSICoEx
Visual Basic version 75
DSICoExV
sample 74
DSICoRul
and VB rule processing 61
registering ActiveX DLLs 65
DSICoSAM
sample 73
DSICoTB
sample 68
testing rules 63
DSIDiag
sample 71
DSIENV_* flags 144
DSIEX.C 3, 11
DSIEXW32 program 10
DSIGetSOAPMessage 128
DSIGetSOAPMessageSize 129
DSIGetUniqueString
inC38
DSIInit 136
DSIInitInstance 137
DSIInitQueue 138
DSILIB

passing JVM options 180
DSILIB.H 7

DSILocateAttachVar 112, 113, 139, 140

DSILocateValue 141
DSIOpenAttachCursor 142
DSIParseAttachment 143
DSIQSET_ATTACHMENT
queue field 7
DSIQSET_REQTYPE
queue field 7
DSIQSET_UNIQUE_ID
queue field 7, 8
DSIQSET_USERID
queue field 7

346

DSIQueryEnvOptions 144
DSIQueryValueSize 145
DSIReceiveFile 146, 153
DSIReceiveFileAsBuffer 147
DSIReceiveFileAsBufferSize 149
DSIRowset2XML 151
DSIRowset2XMLSize 152
DSISendFile 154
DSIStoreAttachment

inC38
DSIW32.DLL 7
DSIW32.LIB 7
DSRVW32 program 66
DumpDebuglnfo

in Visual Basic 283
DUTTRACE.LOG 66

ERR request type 17
error handling

Visual Basic rules 65
error log

returning records from 203
error messages

using ErrorMessage 15
ErrorMessage

in C 15, 124

in Visual Basic 284
ErrorMsg

in C 125
ERS request type 17
ESS request type 17

F

fat clients
in Visual Basic 249

files
generating unique names 16
removing temporary files 16
FindInQueue
in C38, 126
in Visual Basic 285
firewalls
debug log file 200
IRLFileFTP 195
IRLInitFTP 202
flags
DSIENV_* 144
FTP control group 200
FTP servers
IRLFileFTP 195
FTPCONNECTIONS variable 202
FTPRule
defined 186
functions
list of C API 80

G

generating unique file names 16
GetAttach 78
GetAttachment

in Visual Basic 286
GetAttachmentAll

in Visual Basic 288
GetAttachRecSet

in Visual Basic 290
GetAttachVarSet

in Visual Basic 292
GetFirstFromQueue

in C 127
GetPriority

in Visual Basic 294
GetQError

in C 16, 130

GetQField

in C9, 16, 131

in Visual Basic 295
GetQFieldLength

in C 16, 133

in Visual Basic 296
GetQueueRec

in C8, 134

in Visual Basic 297
GetReqType

in Visual Basic 299
GetStatus

in Visual Basic 300
GetUniquelD

in Visual Basic 301
GetUniquelDLength

in Visual Basic 302
GetUniqueString

in C 8, 16, 135

in Visual Basic 303
GetUserID

in Visual Basic 304
global methods 64
GlobalDataClean method 65
GlobalDataCreate method 65
GlobalDataDestroy method 65
GlobalDataRead method 65
GlobalDataSize method 65
GUIDs 66

H

handling errors
in Visual Basic 250
Heap Agent 12
hlnstance parameter 13
how the system processes rules 12
HRESULT 250
HTML files
IRCUnloadPage formatting rule 15

347

Index

IDS Servers

storing data for multiple servers 64

INI request type 17
Init

in C7,11, 14, 136

in Visual Basic 305
initializing lists 12
InitInstance

in C7, 11, 14, 137

in Visual Basic 306
InitQueue

in C7, 138

in Visual Basic 307
InitSession

in Visual Basic 308
Instance

in Visual Basic 338
interfaces

Cc79,171

Java 76, 171

Visual Basic 61, 249
Internet Document Server

how rules are processed 13

queues 4

required queue fields 7
INTERNETSESSION variable 202
IRClInit 241
IRCPrint 242
IRCRequest 243
IRCResult 244
IRCSendVersion 245
IRCUnloadPage 15, 244, 247
IRLClearLog 191
IRLCopyAttachment 192
IRLFileFTP 195
IRLInit 194
IRLInitFTP 202
IRLLog 203
IRLPurgeCache 16, 204

348

IRLSearch 205
IRLSendVersion 206
IRLStatistics 208

J

Java

API classes 182
APIs 76, 171
DSI API 3

JNI 180

JVM 180
messaging library 179

JavaBean

L

using 172

LocateAttachVar

in C 15,112, 113, 139, 140
in Visual Basic 310

LocateValue

in C 15, 141
in Visual Basic 66, 311

LocateValueObj

in Visual Basic 313

log files

log4

clearing 17
i 181

loops

and Visual Basic rules 66

memory violations 12

messages

getting the size 129

retrieving from memory 128

Microsoft

Visual Basic 5 61
MQSeries

Java messaging library 179

multiple class modules 61

o

OLEVIEW program 63
OpenAttachCursor

in C 15, 142

in Visual Basic 315

P

ParseAttachment

in C9, 143

in Visual Basic 316
Path option 199

global data 64
performance

and Visual Basic 66
processAttachments 228
processing rules

template 14

writing 12
ProgIDs

and Visual Basic rules 66
Project Description field 66
properties

Instance 338

Signature 339

TraceEnable 340

TracePath 341
proprietary attachment format 16

C38
pszld parameter 8
pszParms parameter 14

public functions 64

PurgeCache 204

Q

QueryEnvOptions
in C 144
QueryValueSiz rule
in Visual Basic 317
QueryValueSize
in C 15, 145
queues
accessing using C 16
attachments 15, 238
fields 7
InitQueue 138
overview 4
processing rules 13

time spent in 240

RAD request type 17
registering

ActiveX DLLs 62
relay daemon 17
RemoveOnGet option 198
RemoveOnPut option 198
removing

temporary files 16
REQTYPE

DOCSERV INI file 64
request types

creating rules for reserved 16
RRS request type 17
RSS request type 17
rule wizard

example 66

Index

rules setupPool 209
checking status 17 SetUserID
client 229 in Visual Basic 325
creating 13 sharing violations
list 13 and Visual Basic rules 66
memory violations 12 Signature property 339

processing 12, 183 SSS request type 17

reserved request types 16 state and Visual Basic rules 66

server 184 stem variables 15

template 14

. StoreAttachment
VB. Processmg 61 in C8, 156
writing 12 in Visual Basic 326
Submit
S in Visual Basic 327
Subs 64
switch statements 14
samples
VB rule wizard 66
Visual Basic 68 T

SAR request type 17

SCS request type 17
SDK
Java APIs 171

using the Internet Document Server SDK 1

temporary files
creating 16

removing 16

Term
servers .
mC7 11,157
log file layout 232 . i
in Visual Basic 329
rules 184

TermInstance
mC7 11, 158
in Visual Basic 330

statistics 208
SERVERTIMESPENT attachment variable 240

SetAttach t
‘ . o .men . TermQueue
in Visual Basic 318 .
SetPriori in C 159
et florlt-y) in Visual Basic 331
in Visual Basic 320 .
SetOField TermSession
etQ, € in Visual Basic 332
in C 8, 16, 155
threads

in Visual Basic 321 . .
and Visual Basic rules 66

SetR?qu ¢ I Basic 322 InitInstance C function 137
in Visual Basic
TOTALTIMESPENT attachment variable 240

SetStatus

R . Trace

in Visual Basic 323 R .

) in Visual Basic 333

SetUniquelD

in Visual Basic 324

350

TraceAttach

in Visual Basic 334
TraceEnable property 340
TraceEnableRule

in Visual Basic 335
TraceList

in Visual Basic 336
TracePath property 341
TraceSnapshot

in Visual Basic 337
tracing

in Visual Basic 340
transactions

time spent in queues 240
troubleshooting

Visual Basic rules 63

U

ulMsg parameter 14
ulOptions parameter 14
unique file names, generating 16
UNK request type 17
using
the DSI APIs with C 7
the Internet Document Server SDK 1
Visual Basic 61
Visual Basic prototypes and examples 250

utility functions
for C 16

\"J

variables
attachment 15
creating, accessing, and destroying using C 15

stem 15

version information
IRCSendVersion 245
IRLSendVersion 206
Visual Basic
class files 62
handling errors 250
installing the rule wizard 62
list of API functions 252
loops 66
performance 66
projects 62
rule wizard 61, 66
samples 68
sharing violations 66
states 66
test bed sample 68
testing 65
threads 66
troubleshooting 63
using prototypes and examples 250
workgroups 62
writing processing rules 61
Visual C++ 5.0 debugger 65

W

web applications
firewalls 199
writing
processing rules 12

Visual Basic rules 61

351

Index

3562

	Start
	Notice
	Contents
	Using the Internet Document Server SDK
	Queues
	Finding the Information You Need
	Using the DSI APIs with C
	Using Unicode in Attachment Variables
	Sample Program-DSIEX

	Writing Processing Rules in C
	How the System Processes Rules
	Creating Rules
	Creating, Accessing, and Destroying Variables
	Accessing the Attachment

	Accessing the Queue
	Using Utility Functions
	Creating Rules for Reserved Request Types

	Using the Java Libraries
	Using the MsgClient Sample Program

	Writing Processing Rules in Java
	How the System Processes Rules
	Developing and Deploying Java Rules
	Java Rules vs. C Rules
	Function Signature for Java Rules

	Using the IDSWebdav Servlet Client APIs and DPRLIB Rules
	DPRLbyPropFind
	DPRLbyGet
	DPRLbyPut
	DPRLbyLock
	DPRLbyUnlock
	DPRLbyDelete
	DPRLbyOptions
	DPRLbyCopy
	DPRLbyPropPatch
	DPRLbyMKCol
	WebDav Request Types for Library Manager
	Using File System Rules
	propFind
	get
	put
	lock
	unlock
	delete
	options
	copy
	move
	propPatch
	mkCol
	Using the IDSWebdavServlet

	Writing Processing Rules in Visual Basic
	Miscellaneous Notes
	Samples
	DSICoTB
	DSITest
	DSIDiag
	DSIDiag.exe
	Debug.ASP
	DSICoSAM
	DSICoExV
	DSICoEx.cpp
	DSICoAdm and ADMAsp
	DSI COM Objects under ASP

	Referencing Attachment Variables

	DSI C APIs
	C API Functions
	DSIAddAttachRec
	DSIAddAttachVar
	DSIAddAttachVarEx
	DSIAddToAttachRec
	DSIAddToAttachRecEx
	DSIAddToQueue
	DSIAttachCursorFirst
	DSIAttachCursorFirstEx
	DSIAttachCursorLast
	DSIAttachCursorLastEx
	DSIAttachCursorName
	DSIAttachCursorNext
	DSIAttachCursorNextEx
	DSIAttachCursorPrev
	DSIAttachCursorPrevEx
	DSIAttachCursorValue
	DSIAttachCursorValueEx
	DSIAttachVarLength
	DSIAttachVarLengthEx
	DSICacheFile
	DSICloseAttachCursor
	DSICopyAttachVars
	DSICopyQRecord
	DSICreateValue
	DSIDeleteAttachVar
	DSIDestroyValue
	DSIEncryptValue
	DSIEncryptValueEx
	DSIErrorMessage
	DSIErrorMsg
	DSIFindInQueue
	DSIGetFirstFromQueue
	DSIGetSOAPMessage
	DSIGetSOAPMessageSize
	DSIGetQError
	DSIGetQField
	DSIGetQFieldLength
	DSIGetQueueRec
	DSIGetUniqueString
	DSIInit
	DSIInitInstance
	DSIInitQueue
	DSILocateAttachVar
	DSILocateAttachVarEx
	DSILocateValue
	DSIOpenAttachCursor
	DSIParseAttachment
	DSIQueryEnvOptions
	DSIQueryValueSize
	DSIReceiveFile
	DSIReceiveFileAsBuffer
	DSIReceiveFileAsBufferSize
	DSIRowset2XML
	DSIRowset2XMLSize
	DSISendBuffer
	DSISendFile
	DSISetQField
	DSIStoreAttachment
	DSITerm
	DSITermInstance
	DSITermQueue
	LDAPGetErrorCode
	LDAPGetErrorMessage
	LDAPInit
	LDAPSearchDirectory
	LDAPTerm

	DSI Java APIs
	Using JavaBean Components
	Returning a RecordSet Object
	Using IDSJSP in a JSP Container
	DSI Bean APIs

	Using the DSI Java Messaging Library for Client Applications
	Passing JVM Options to DSILIB
	Generating Debug Output for Client Requests
	Java API Classes

	DSI Processing Rules
	Server Rules
	FTPRule
	Putting and Getting Multiple Files
	IRLCleanDirectory
	IRLClearLog
	IRLCopyAttachment
	IRLDecryptValue
	IRLInit
	IRLFileFTP
	IRLInitFTP
	IRLLog
	IRLPurgeCache
	IRLSearch
	IRLSendVersion
	IRLStatistics
	AddJobRule
	setupPool
	addJob

	AttachmentFilterRule
	sendFile
	receiveFile

	BLPPurgeRule
	BLPStatisticsRule
	CopyDataRule
	copyData
	copyMessageVariables

	FTPRule
	transferFiles

	IDSEncryptionRule
	IDSInitRule
	IDSTransactionRule
	LogTransactionRule
	logTransaction
	purgeOldTransactionTables

	processAttachments

	Client Rules
	ATCAppend2Attachment
	ATCLoadAttachment
	ATCLogTransaction
	ATCReceiveFile
	ATCSendFile
	ATCSendMultipleFiles
	ATCUnloadAttachment
	IRCInit
	IRCPrint
	IRCRequest
	IRCResult
	IRCSendVersion
	IRCUnloadPage

	DSI Visual Basic APIs
	Using the Prototypes and Examples
	Handling Errors
	Using the Web Services Example

	Visual Basic Methods
	AddAttachRec
	AddAttachVar
	AddToAttachRec
	AddToQueue
	AttachCursorFirst
	AttachCursorLast
	AttachCursorName
	AttachCursorNext
	AttachCursorPrev
	AttachCursorValue
	AttachList
	CacheFile
	CloseAttachCursor
	CopyAttachVars
	CopyQRecord
	CreateValue
	CreateValueObj
	DeleteAttachVar
	DestroyValue
	DestroyValueObj
	DumpDebugInfo
	ErrorMessage
	FindInQueue
	GetAttachment
	GetAttachmentAll
	GetAttachRecSet
	GetAttachVarSet
	GetPriority
	GetQField
	GetQFieldLength
	GetQueueRec
	GetReqType
	GetStatus
	GetUniqueID
	GetUniqueIDLength
	GetUniqueString
	GetUserID
	Init
	InitInstance
	InitQueue
	InitSession
	LocateAttachVar
	LocateValue
	LocateValueObj
	OpenAttachCursor
	ParseAttachment
	QueryValueSize
	SetAttachment
	SetPriority
	SetQField
	SetReqType
	SetStatus
	SetUniqueID
	SetUserID
	StoreAttachment
	Submit
	Term
	TermInstance
	TermQueue
	TermSession
	Trace
	TraceAttach
	TraceEnableRule
	TraceList
	TraceSnapshot
	Property Instance
	Property Signature
	Property TraceEnable
	Property TracePath

	Index
	A
	accessing variables 15
	Active Server Page
	ActiveX
	AddAllRequest
	AddAttachRec
	AddAttachVar
	ADDINST program 62
	addJob 209
	AddJobRule 209
	AddRequest
	AddToAttachRec
	AddToQueue
	ADMAsp
	ADMIN.ASP
	APIs
	ATCAppend2Attachment 230
	ATCLoadAttachment 13, 231
	ATCLogTransaction 232
	ATCReceiveFile 233
	ATCSendFile 236
	ATCSendMultipleFiles rule 238
	ATCUnloadAttachment 13, 239
	AttachCursorFirst
	AttachCursorLast
	AttachCursorName
	AttachCursorNext
	AttachCursorPrev
	AttachCursorValue
	AttachList
	Attachment control group 199
	attachment variables
	AttachmentPath option 231, 239
	attachments
	Attachments option 234, 236
	autorun rules
	avoiding file naming conflicts 16

	B
	Bounds Checker 12
	buffer 8

	C
	C
	cache
	CacheFile
	CacheGetFile option 198
	CAD request type 16
	case statements
	CGI client
	class modules 61
	classes
	CLF request type 17
	client rules
	CloseAttachCursor
	CoClasses folder 63
	COM
	CONFIG.INI file
	CopyAttachVars
	copyData 215
	copyMessageVariables 215
	CopyQRecord
	CreateValue
	CreateValueObj
	creating

	D
	daemon 17
	DAP.INI file
	Debug control group 234, 236
	debug log file 200
	Debug option 198, 200
	Debug.ASP 72
	DEFAULT request type 17
	DeleteAttachVar
	destroying variables
	DestroyValue
	DestroyValueObj
	diagnostics
	DOCC.BMP sample file 76
	DOCSERV.INI file
	Document Server Interface (DSI) 171
	DSI
	DSI Java APIs 76
	DSI Visual Basic APIs 249
	DSI_MSGINIT message 12
	DSI_MSGRUNF message 12
	DSI_MSGRUNR message 12, 13
	DSI_MSGTERM message 12
	DSIAddAttachVar
	DSIAddAttachVarEx 85
	DSICO.TRC 340
	DSICoADM
	DSICoAPI 65
	DSICoEx
	DSICoExV
	DSICoRul
	DSICoSAM
	DSICoTB
	DSIDiag
	DSIENV_* flags 144
	DSIEX.C 3, 11
	DSIEXW32 program 10
	DSIGetSOAPMessage 128
	DSIGetSOAPMessageSize 129
	DSIGetUniqueString
	DSIInit 136
	DSIInitInstance 137
	DSIInitQueue 138
	DSILIB
	DSILIB.H 7
	DSILocateAttachVar 112, 113, 139, 140
	DSILocateValue 141
	DSIOpenAttachCursor 142
	DSIParseAttachment 143
	DSIQSET_ATTACHMENT
	DSIQSET_REQTYPE
	DSIQSET_UNIQUE_ID
	DSIQSET_USERID
	DSIQueryEnvOptions 144
	DSIQueryValueSize 145
	DSIReceiveFile 146, 153
	DSIReceiveFileAsBuffer 147
	DSIReceiveFileAsBufferSize 149
	DSIRowset2XML 151
	DSIRowset2XMLSize 152
	DSISendFile 154
	DSIStoreAttachment
	DSIW32.DLL 7
	DSIW32.LIB 7
	DSRVW32 program 66
	DumpDebugInfo
	DUTTRACE.LOG 66

	E
	ERR request type 17
	error handling
	error log
	error messages
	ErrorMessage
	ErrorMsg
	ERS request type 17
	ESS request type 17

	F
	fat clients
	files
	FindInQueue
	firewalls
	flags
	FTP control group 200
	FTP servers
	FTPCONNECTIONS variable 202
	FTPRule
	functions

	G
	generating unique file names 16
	GetAttach 78
	GetAttachment
	GetAttachmentAll
	GetAttachRecSet
	GetAttachVarSet
	GetFirstFromQueue
	GetPriority
	GetQError
	GetQField
	GetQFieldLength
	GetQueueRec
	GetReqType
	GetStatus
	GetUniqueID
	GetUniqueIDLength
	GetUniqueString
	GetUserID
	global methods 64
	GlobalDataClean method 65
	GlobalDataCreate method 65
	GlobalDataDestroy method 65
	GlobalDataRead method 65
	GlobalDataSize method 65
	GUIDs 66

	H
	handling errors
	Heap Agent 12
	hInstance parameter 13
	how the system processes rules 12
	HRESULT 250
	HTML files

	I
	IDS Servers
	INI request type 17
	Init
	initializing lists 12
	InitInstance
	InitQueue
	InitSession
	Instance
	interfaces
	Internet Document Server
	INTERNETSESSION variable 202
	IRCInit 241
	IRCPrint 242
	IRCRequest 243
	IRCResult 244
	IRCSendVersion 245
	IRCUnloadPage 15, 244, 247
	IRLClearLog 191
	IRLCopyAttachment 192
	IRLFileFTP 195
	IRLInit 194
	IRLInitFTP 202
	IRLLog 203
	IRLPurgeCache 16, 204
	IRLSearch 205
	IRLSendVersion 206
	IRLStatistics 208

	J
	Java
	JavaBean

	L
	LocateAttachVar
	LocateValue
	LocateValueObj
	log files
	log4j 181
	loops

	M
	memory violations 12
	messages
	Microsoft
	MQSeries
	multiple class modules 61

	O
	OLEVIEW program 63
	OpenAttachCursor

	P
	ParseAttachment
	Path option 199
	performance
	processAttachments 228
	processing rules
	ProgIDs
	Project Description field 66
	properties
	proprietary attachment format 16
	pszId parameter 8
	pszParms parameter 14
	public functions 64
	PurgeCache 204

	Q
	QueryEnvOptions
	QueryValueSiz rule
	QueryValueSize
	queues

	R
	RAD request type 17
	registering
	relay daemon 17
	RemoveOnGet option 198
	RemoveOnPut option 198
	removing
	REQTYPE
	request types
	RRS request type 17
	RSS request type 17
	rule wizard
	rules

	S
	samples
	SAR request type 17
	SCS request type 17
	SDK
	servers
	SERVERTIMESPENT attachment variable 240
	SetAttachment
	SetPriority
	SetQField
	SetReqType
	SetStatus
	SetUniqueID
	setupPool 209
	SetUserID
	sharing violations
	Signature property 339
	SSS request type 17
	state and Visual Basic rules 66
	stem variables 15
	StoreAttachment
	Submit
	Subs 64
	switch statements 14

	T
	temporary files
	Term
	TermInstance
	TermQueue
	TermSession
	threads
	TOTALTIMESPENT attachment variable 240
	Trace
	TraceAttach
	TraceEnable property 340
	TraceEnableRule
	TraceList
	TracePath property 341
	TraceSnapshot
	tracing
	transactions
	troubleshooting

	U
	ulMsg parameter 14
	ulOptions parameter 14
	unique file names, generating 16
	UNK request type 17
	using
	utility functions

	V
	variables
	version information
	Visual Basic
	Visual C++ 5.0 debugger 65

	W
	web applications
	writing

	Oracle Insurance
	Oracle Suppport
	Related Documents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

