Oracle® Objects for OLE
Developer's Guide

11g Release 2 (11.2) for Microsoft Windows
E12245-01

February 2010

ORACLE

Oracle Objects for OLE Developer's Guide, 11g Release 2 (11.2) for Microsoft Windows
E12245-01

Copyright © 1994, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Janis Greenberg, Christian Shay

Contributing Authors: Riaz Ahmed, Kiminari Akiyama, Steven Caminez, Naveen Doraiswamy, Neeraj
Gupta, Sinclair Hsu, Alex Keh, Chithra Ramamurthy, Ashish Shah, Martha Woo

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PREIQACE ... XVii
What's New in Oracle Objects for OLE? ... XXi

1 Introducing Oracle Objects for OLE

Overview of Oracle Objects for OLE ... 1-1
Oracle Objects for OLE In-Process Automation Server...............cccccccciiviniiiciniiiiiccnes 1-2
Oracle Data Control ... s 1-4
Oracle Objects for OLE C++ Class Library ... 1-4
Required Setups ... 1-5
INSAILAtION......cviviiiiciicii e 1-5
System ReqUIrementsccocooueieiiiiiiiiiiiii s 1-5
Other REQUITEMENLSccuiiiiiiiiiiiiiiic e 1-5
Oracle Objects for OLE File LOCations.............ccccccooiviiiiiiiiiiiiiiicces 1-6
Component Certifications ... 1-6
Oracle Objects for OLE Redistributable Files..............cccccccccciiiiiiiiiiiiiiccce 1-6
Redistributable File LOCAtIONScccoviviiiiiiiiiiiiciic e 1-6
Updating Files and Registrationsccooeuoioiiiieiiiiiciec e 1-7

2 Using Oracle Objects for OLE with Automation Clients

Using Automation Clients OVerview ... 2-1
Demonstration Schema and Code Examplesccccooviviiiiininninnnccccne 2-1
Demonstration Schema Creation ... 2-2
Demonstration SChemacccocoviiiiiiiiniiiiini s 2-2

Other SChEMIASc.coviiiiiiiiice ettt 2-2

Related FIles ..o 2-2

Using Oracle Objects for OLE Automation with Visual Basiccccccccoviiiiniiiinnicnnn, 2-2
Using O040 Automation with Active Server Pages (ASP).........cccccovvvvnnnnnnnnnnniccc, 2-4
Using Oracle Objects for OLE Automation with Excel ..., 2-6
UsSing Microsoft CH4 ..o 2-8
Using Oracle Data Control with Visual Basic..........c.cccocovviiiiniinnc, 2-8
Setting Oracle Data Control Properties with the Properties Windowc.cccccceveeviiiinnnns 2-9
Setting Oracle Data Control Properties Programmaticallycococoooiiiiieinicciii, 2-11
Using the Oracle Data Control with MS Visual C++ccoovviiiiiiiiiincnc 2-12

3 Basic Features

Overview of Client Applications ..o 3-1
Accessing the Oracle Objects for OLE Automation Server..............cccccoovvviiiniiniiinniiinn, 3-1
Obtaining an OraSession ObJECtcceiiiiiiiiiiiiieci e 3-2
Obtaining an OraServer ObJect ... 3-2
Connecting to Oracle Database ... 3-2
Using OraServer for Connection MultipleXingcccoovieieiiioiniieiiicccee e, 3-3
Executing ComMmMAands...........ccoooiiiiiiiiii s 3-3
QUBTIES .ttt ettt ett et e et e et e estae e be e baeebeebaesebe e asessseesssassseeaseessseenseassseassaeasseasseesssaanseesssessseenseenns 3-3
Data Manipulation Language Statementsc.coooiiieiiiriiiiinic e 3-5
Updating Database Records.........ccoirriiiiiiiiii e 3-6
Deleting Rows from @ Tablecccccccoeiiiiiiiiiiiniiiiicieeccceece e 3-6
Inserting New Rows into @ Tablec.coiiiiiii e 3-7

Thread Safety ... 3-7
Using the Connection Pool Management Facility ..., 3-8
Creating the Connection POOL ... 3-8
Obtaining from and Returning Objects to the POOL.........cccccooiiiiiiiiii 3-8
Destroying the POOLccccoviiiiiiiiiiiicccecse e 3-8
Accessing the Pool attributes. ..., 3-8
Processing Transactions Using the Database from the Connection Poolcc.ccccoooeeiinii. 3-8
Detection of Lost CONNECHONS............ccuiuimiiiiiiiiccc s 3-9
PL/SQL SUPPOLL.....coomiiiiiiiiiiiiiiic bbb 3-9
PL/SQL Integration with Oracle Objects for OLEccoooiiiiie, 3-10
Executing PL/SQL Blocks Using ExecuteSQL and CreateSQLcccccccevvviiivrvvnnnnenes 3-10
Returning PL/SQL Cursor Variables.............ccoiiiiiiiiiiiiieeecs 3-11
Returning PL/SQL TabIesccccoviiiiiiiiiiiiiiiiiiiicc s 3-13
Executing Data Definition Language Statements..........c.ccccccccueueiiiieniiicinneiceeeeeeeeees 3-14
Transaction COnEIOL............ccocoiiiiiiiiiiiiiii s 3-14
Microsoft Transaction Server SUPPOTItcccccvvviviiiiiiiiii s 3-15
AsSynchronous Processing ... 3-16
NONDIOCKING MOAEvoviiiiiiiiiiccic s 3-16
Checking the Status of a Nonblocking Operationcccccevvviinninninnniininne, 3-16
Canceling a Nonblocking Operation ... 3-17
Executing Multiple Queries in Asynchronous Modecccoooeiiiiiiiiiii 3-17
Limitations on NONDbIOCKINGcccoiiiiiiiiiiiiiiiiicc s 3-18

4 Advanced 0040 Features

Support for Oracle Object-Relational and LOB Data Typesc.cccovueueinnecinininciccnneecenes 4-1
Instantiating Oracle LOBs, Objects, and Collections................cccccocovininiiiiiniiniiiiiis 4-2
Oracle LOBs, Objects, and Collections...........ccccuiiiiiniiiiiiniiiciicccicceeeins 4-2
Using Large Objects (LOBS)...........ccccovuiiiiiiiiiiiiiii e 4-3
LOB Data TYPES.....coviuiuiiiiiiiiiiiiiiictii s 4-4
Using OraBLOB and OraCLOB..........cccoiii 4-5
Retrieving LOBs From the Database ..., 4-5
Using an OraDynaset ODJECtcciiuiiiiiiiiiceiccceeeeeerce e senenennes 4-5

Using a Parameter ObJeCtc.ocrueiiiiiiieic e 4-5
Performance Considerations with LOB Read and Write ..., 4-6

Single-Piece OPeration ...t 4-6

Multiple-Piece Operation...........ccocuiiiiciiieiiicieie e 4-6

LOB Buffering Optionccccocueueiiiiiiiiiriiccceeieeeeeeeeeeeeeee e 4-6
WIiting LOB Dataououiiiici s 4-6
Single-Piece Write Operation.........c...oocueioiiiiiieiiiiceec e 4-7
Multiple-Piece Write Operation..........ccccceiieiciiiiciieieiiieieieeeeieteieierereie e 4-7
Reading LOB Datacooiuriiiiiiii ettt 4-8
Single-Piece Read Operation.............oooceiiiiiiiiiiiiiicci e 4-8
Multiple-Piece Read Operation.........c.coccccucucueieiiuiieiiieiiiiieieieieeeieieieieieneieneseeenenesenesesenenenenenas 4-9

Oracle Object Data TYPESccceiimiiiiiiimiiiiiiccit ettt 4-10
About the OraObject Interfacecooueviiiiiiiiii 4-10
Using the OraObject INTErface ..ot 4-11
Retrieving an Embedded /Value Instance from the Databaseccccccevviininnnnnn 4-11
Accessing Attributes of an Embedded/Value Instance............cccccoceeviiniiiiiniinnnnnn, 4-12
Modifying Attributes of an Embedded/Value Instance...........cccccccoceicciciccicccnnne. 4-12
Executing a Member Method of an Oracle Object Instancec..ccccoeoeuviniiieiiiciicnnnes 4-12

About the OraRef INterface............cccoviiiiiiiiiiiiiii s 4-13
Using the OraRef INerface ..o 4-14
Retrieving a REF from the Databasecccoiii 4-14
Accessing Attributes of a Referenceable Instance............cccooiiiiiic 4-15
Modifying Attributes of a Referenceable Instance..........c.cccoeevvvviiriirvnnnnnnicrrene 4-15

Oracle ColleCHONSooiiiiiiiiiiii ettt 4-16
About the OraCollection Interface...........ccoooiiiiiiiiiiiiiie 4-16
Retrieving a Collection Type Instance from the Database............ccccccoevivvvinnnnnnnncne. 4-17
Using a Dynaset OBbJectc.oiiiiii 4-17

Using a Parameter ODJect ... 4-17
Accessing Collection EIEmMEnts...........cccccceiiiiiiiiiiiiiccceeceeeeeeeeeeeeeeeeseeeee e 4-17
Modifying Collection Elements............c.ccoueviiiiiiiiiiieiic 4-18
Creating a VARRAY Collection TYPecccueiiiuiiiiiieieieci i 4-18
Creating a Dynaset from an OraCollection ObjJect..........ccccevuvuvuverirrininiriiirrrrcrrreceeeeeees 4-18
Advanced Queueing INterfaces ... 4-20
MONItOring MESSAZESceriiiiiiiiiiiiiiciiiit s 4-21
Database EVeNtSs............oooiiiiiicctt e 4-22
Application Failover Notificationscco.cceivieiriiinininicincinciectreesree e 4-24
Failover Notification Registrationcccccccevvviiiiiniiiniiiiiiiicccs 4-24
ENabling FailOVETccciiiiiiiiiicceccccece e 4-25
XML GeNerationccccooviiiiiiiiiiiiiiiiiiiece s 4-26
Datetime and Interval Data TyPesccccocviiiiiiiiiiiniiiiiiiiiic s 4-28
Obtaining Datetime and Interval Data TYPeS.......ccceeeuiuiuiuiiiememiieceeceeeeneeieereneneenenenenens 4-28
Descriptions of Datetime and Interval Data Types........ccccccovieiiiiieiiiiiiicccceceeens 4-29
Database Schema ODjJects...........ccccoouviiiiiiiiiiiiiiiiiii s 4-29

5 Tuning and Troubleshooting

Tips and Techniques for Performance TUning.............cccococovviviiinnninnnnnnniinnccccee 5-1
Early Binding of OO40 ODJECESc.cceueuiuiiririiiiiiicieicieecieieieieeeeeereeeeee s 5-1
Tuning and CusStomMIZAtioNoeviiiiiiiei 5-2
Avoiding Multiple Object Reference............ccccocvviiiniiniiininniiiniicnnnecc e 5-2

Parameter BINdINgs.........cccooviiiiiiiiiiiiiiiiiiiicc s 5-3

ATTAY PrOCESSING ..ovivtitiiititieieictttct s 5-4
Using Read-Only, Forward-Only Dynaset............cooeiiiiiiiiiciiiceeeeeeeeeneenenennes 5-4
Using the PL/SQL Bulk Collection Feature............cooviiiiiiiiiiiiiiiiccieceeeinas 5-4
Migration from LONG RAW to LOB or BFILEccooiiiiii e, 5-5
Using Connection POOING ... 5-6
Oracle Objects for OLE Error Handling ... 5-6
OLE AUtOmMation EITOTScocciiiiiiiiieieeie ettt ettt eteesteeste e saeebesbeessvaesseesnsesssasnseenns 5-7
INONDIOCKING EITOTS.ooiiiiiiiiiiiiiciciciicceeee e 5-9
Find Method ParSer EITOISccveviiiieiiiieiecteieiete ettt te st sae e vesaessessaessesssesseessessessnesseensas 5-9
Find Method RUN-TIME EITOIS......ciciiiiiiiiiiteeteieeteeteeteeteete ettt ettt v e sveesnesaeeenas 5-10
OraObject INStANCe EITOTS ..o 5-10
LOB EXTOTS ... ietietieiiettetteteste et et e te s e st e eeste s e estasseessessaassessaessesssassesssesseessansaessenseessesseessesseessenses 5-11
Oracle Streams Advanced Queuing Errors ... 5-12
OT1aCOllECtiON EITOTS ..cviiiieeieeieeieeieeietsteieterte ettt et sesseesessesbessebessessessesseseessesansesensensas 5-12
OraNUMDET EITOIS ...cuiiitiiiiciiciiceee ettt ettt st e ste st ae st e sbesssesbeessasseessesseessesseessesssessensens 5-13
OFACLE EITOTS ..ottt ettt ettt ettt ere et e e b e s beesaesbeesaesbeessasssessasseensesseessesseessenseas 5-13
Oracle Data CONtIOl EITOTSccviiiiriiiiieiiieieetet ettt este e se s s b ss s ssesseseesaesaesessensensas 5-13
TroubleShOOting...........ccooviiiiiiiii s 5-14
OLE Initialization or OLE Automation EITOIS.........cccccieuieviiiiieieniiciececeeere et nenens 5-14
Oracle NEtWOTK EITOTS ..c..oviieiieieiieieieesieistese ettt ettt sestessessessessessessessessessesseseesessenses 5-15
ACCESS VIOIAtIONS....c.vveutieeieiiceieieeiese ettt ettt et eete e b e s teesbesaeesaesseesseeseessesseensesseessesseessensens 5-16

6 Quick Tour with Visual Basic

vi

INtrOAUCHON ... s 6-1
About the Employee Database Application.........cccooiiiieiiiiiiiiiicc e, 6-1
EMPLOYEE FOTIN ..ot 6-2

Batch INsert FOIM......coiiiiiiiiiiiiiic s 6-2
Getting Started: Steps to Accessing Oracle Dataccccoeiiiiiiiiiiiiiiie 6-3
Completed Sample Form_Load Procedure..........c.cccccueueueieiiiiiiiiiiiiciieiciceeieieeeneeeneneenenenenes 6-5
Programming a Data Entry FOIm............cccoooiiiiiiii s 6-6
About the EMployee FOIML........ccccciiiiiiiiiiiiiiiicccc e 6-6
Navigating Through Data...........cccococeiiiiiiiiiicceeceeeeee e 6-7
Moving to First or Last ROWSccccccoeiiiiiiiiiiiiiiiic 6-7
Moving to the Previous ROW ..o 6-8
Moving to the Next ROWccccoiiiiiiiiiiccccccee e 6-8
AddINg RECOTS......ouiviiiiiiieti et 6-8
Coding the Add BUtONcccciiiiiiiiiiiiiiiiiiicc e 6-8
Coding the Commit Button (Add)......ccccoeiiiiiiiiiiiiiccccceceeeeeee e 6-9
Updating RECOTAScvoviiiieiit b 6-12
Coding the Update BULtONccccciiiiiiiiiiiiiiiiiiicicccs 6-12
Coding the Commit Button to Add and Update Records.........c.ccccceuccmiciiicicccnnnen. 6-13
Deleting RECOTASccueieiiiiiieiiictcie e 6-15
Querying the Database...........ccccoiiiiiiiiiiiii s 6-15
USING BatCh INSETTc.oueeeeiiiiicccccceeece et 6-16
Programming a Batch FOrm ... 6-16
About the Batch INSert FOIMNLc.ccooiiiiiiiiiiciiiiiecccce et 6-16

Coding the Batch Insert Form_Load() Procedure ... 6-17
Coding the CmdAddtoGrid() Procedurecccccoeiiviiiiiiiniiiniiiiiinncecces 6-18
Coding the CommitGrid_Click() Procedure ... 6-18

7 Code Wizard for Stored Procedures

Oracle Objects for OLE Code Wizard Componentsccoovueuiininiiiinniiinncecenes 7-1
Data Types Supported by the 0040 Code Wizard.............ccovuiiiiiiiiiiiiinniiiiceccns 7-2
Using the O040 Code Wizard ..o 7-2
0040 Code Wizard Command-Line UtIEYccccooiveiiiiiiiiiiiecccececceeeeeeeeennes 7-2
0040 Code Wizard Visual Basic Wizard Add-incccocevviiiiiininniii, 7-3
Code Wizard EXampIes............cccooiiiiiiiiiiiiiiiiic s 7-5
Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages 7-5
Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic...................... 7-6
Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic 7-6

Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual Basic.. 7-6

8 Introduction to Automation Objects

Overview of Automation ODbJects ... 8-1
OraSession Object OVeIVIEW ..ot 8-2
OraServer ODbject OVEIrVIEWcccoiuiiiiiiiiiiiiii s 8-2
OraDatabase Object OVervVIiew ..o 8-3
OraDynaset Object OVeIrVIEW..........c..coiuiiiiiiiiiiiiiii s 8-3
OraField ODbject OVEIVIEWccocoiuiiiiiiiiiiiiiiiii s 8-4
OraParameters Object OVeIVIEW..........cccoiiiiiiiiiiiiiii e 8-4
OraParameter Object OVeIVIEW ..o s 8-4
OraParamArray Object OVeIVIEW ..o 8-5
OraSQLStmt Object OVeIrVIeW ... 8-5

9 Server Objects

OTaAQ ODJECE ... 9-3
OraAQAZENt ODJECt ...ttt s 9-5
O1aAQMSE ODJOCt ... 9-6
OraAttribute Object ..o 9-7
OFaBFILE ODJECt ...ttt 9-9
OraBLOB, OraCLOB ODbjects...........ccccooiiiiiiiiiiiiiiiiiiccccse s 9-11
OraClient ODjJectcccooiiiiiiiiiiii s 9-18
OraCollection ODBJeCtccoiiiiiiiiiii e 9-19
OraConnection ODJect............ccoiiiiiiiiiiiiii e 9-27
OraDatabase Object ..o 9-28
OraDynaset ODJect..........cooiiiiiiiiiiic e 9-30
OraField ODJECtooiiiiiiiiiii e 9-33
OralntervalDS ODBject...........ccooiiiiiiiiiii s 9-35
OraInterval YIM ODbject...........coiiiiiiiiiiiiictt st 9-37
OraMDACttribute Object............cccooooiiiiiii 9-38
OraMetaData ODbject...........cccoiiiiiiiiiiii s 9-39
OraNUumber ODJect ..o 9-41

vii

10

viii

OraODbject ODbjJect..........ooiiiiiii e 9-43

OraParamATITay ODJect..... ..o 9-47
OraParameter ODbject ... 9-50
OraRef ODJECt ...ttt 9-52
OraServer ODJect ... 9-56
OraSession ODjJect..........cccoiiiiiiiiiiiiiii s 9-58
OraSQLSEME ODBJECtc.ooiiiiiiiii et 9-60
OraSubscription ODJeCtccoiiiiiiiiiiiiiiii e 9-61
OraTimeStamp ODbject...........cccoooiiiiiiiiiiiii s 9-62
OraTimeStampTZ ODBJeCtcooiiviiiiiiiiii e 9-64
OraConnections ColleCtion ..o s 9-66
OraFields Collection ..o s 9-67
OraParameters Collection.............ccoociiiiiiiiiiiiiiii s 9-68
OraSessions ColleCtion ... s 9-69
OraSubscriptions COILECHIONc..ccooveiriiiiiiiiiiceeree e 9-70

Server Methods

N o 2301V = s U Y I ST 10-7
s U 01 =13 Vo T SRR 10-8
Add (OralntervalDS) Method.............ccoooiiiiiiciececeeee et e eeaas 10-11
Add (Oralnterval YIM) Method..........coooveiiriiiieiiiceeeeeetete sttt s enees 10-12
Add (OraNumber) Method.............ccooviiiiiieieiceeceeeet ettt e sae e eseeneas 10-13
Add (OraSubscriptions Collection) Method.............cccooiiiiiii, 10-14
AddINtervalDS Methodoooieiiieeieeeeeeeee ettt st ese et eseessesrnesseennes 10-17
AddIntervalYM Methodc.oooviiiiiieeieeceeeeeee ettt ettt e s e e saesaesrnesseeneas 10-19
AAANEW MEEROdc..ooiiiieeeceeeee ettt ettt s e et st te b e bsebeeseesbeessebeersenseennas 10-21
s e M -1 o) =0\ =1 U Y TSR 10-23
Append (OraCollection) Methodccoiiiiiiiiiiiii s 10-25
Append (O1raLOB) Method.ccooiiririiiicc ettt 10-27
AppendChunk Methodccoccoiiiiiiiiiieeeceee ettt 10-28
AppendChunkByte Method...............ccoiiiiiiiiiii s 10-30
AQAgent (OraAQMsg) Method ... 10-32
AQMsg (OraAQ) Method ... 10-33
ArcCos (OraNumber) Methodcocoioiiiiieiiiceeeeeee ettt s eneas 10-34
ArcSin (OraNumber) Methodc.ocovoiieiiiiiiiiececeee ettt e 10-35
ArcTan (OraNumber) Methodccooovviieieiiieieceeteeee et enees 10-36
ArcTan2 (OraNumber) Methodccooooiiiiiiiieceeeee et e 10-37
Attribute (OraMetaData) Methodccooviiiiiiiiiee ettt e 10-38
AutoBindDisable Methodcccooiriiieieieeceeee et enees 10-39
AutoBindEnable Method ..ottt sttt be e seennas 10-41
BeginTrans Method............ccooooiiiiiiiic e 10-43
CanCel MEthoOdoooiiiieeeeee ettt ettt et e et esse e sesseessesneensesneensenneens 10-45
CancelEdit (OraRef) Methodoocvooiieiiiieiiceeeceeeseee ettt st saesre e se s eseennens 10-46
Ceil (OraNumber) MethoOdc.oouooiiiioiiiceeeeeee ettt ettt eae e ae e sveereens 10-47
ChangePassword (OraServer) Method.............c..cccoooiiiiiii 10-48
ChangePassword (OraSession) Methodccoooviiiiiiie 10-50
CIONE MEEROM.........oiieiiieeee ettt et ettt e st et e eta e re e e e sseersesseensesseernans 10-52

Clone (OraLOB/BFILE) MEtROooovviiiiiiiieieeeeeeeee ettt esaeeeenes 10-53

Clone (OraCollection) Methodooooiiiiiiiiiiieieeceeeee et s anens 10-54
Clone (OralntervalDS) Method...........coooieiiriiiiiiieieeeeeeeeee et nneens 10-55
Clone (Oralnterval YIM) Methodc.coooiiiiiiiiieiececeeeeeeete ettt a e ae e essannnens 10-56
Clone (OraNumber) Method..............ocoooiieiiiiiiiiececeeeeetee ettt s a e s e eaeenens 10-57
Clone (OraObject/Ref) Method ..o 10-58
Clone (OraTimeStamp) Method............ccoooiiiiiiiiiii e 10-61
Clone (OraTimeStampTZ) Method..............ccccooiiiiiiiiiiiines 10-62
CLOSE MELhOd ...ttt ettt e e e st e s st e st e s s e ensesneessesseensesneensenseens 10-63
Close (OraBFILE) IMEthodc.ccoooiiiieiieieiecieeeteste ettt ste et s sae e esae e essannnens 10-64
CloseAll (OraBFILE) MethoOd..............cooooiieiiiiiiiieceececeeeetete ettt ve et s ae s ve e s eeaasanens 10-65
CommitTrans Method............ooooiieiiiieeee ettt aesse e s neesennnens 10-66
Compare (OraLOB) Method..........cccocoiiniiiiiiiii e 10-68
ConnectSession IMEthodcooouiiiiiioiiicece ettt sre e s aesraenneas 10-69
CopyToClipboard Method..............cccocoiiiiiiiiiii e 10-71
Copy (OraLOB) Method............ccooiiiiiiiiii e 10-72
CopyFromFile (OraLOB) Method ... 10-73
CopyFromBFILE (OraLOB) Method............ccccooiiiiiiiiiiiiiices 10-75
CopyToFile (OraLOB/BFILE) Method............cccooooiiiiiiiiiiiiiecicccieeieeeeie e eneeenenes 10-76
Cos (OraNumber) Method. ..ottt s ae st aeeaasanens 10-78
Create AQ Methodoooviiiiiecececee ettt e et e e b e e te e s tbe e be e aaeebeesaeease e seeesseeares 10-79
CreateCustomDynaset Method ... 10-80
CreateDatabasePo0ol Method...............cooovioiiiiiiiiiicceceeeeee ettt st aeanens 10-83
CreateDynaset Method..............cccccooiiiiiiii e 10-85
CreateIterator Methodoovieiiiieieiece ettt ae e e ae e e aesseessannnens 10-88
CreateNamedSession IMethodc.ooioiiiiiiiiiiieeceeeee e sanens 10-90
CreateOraIntervalDS Method............cccoooiieiiiiiieieeecceeeeee et 10-92
CreateOraIlnterval YM Method...........ccoooiieiiiiiiiicececeeeeeete ettt snnens 10-94
CreateOraNumber Methodccoooiiiiiiiiicceeeeeeeee ettt s a e aesanens 10-96
CreateOraObject (OraDatabase) Methodccoooviiiiiii 10-97
CreateOraTimeStamp Method..............cooiiiiiiias 10-100
CreateOraTimeStampTZ Method ... 10-102
CreatePLSQLCustomDynaset Method ... 10-104
CreatePLSQLDynaset Method ... 10-106
CreateSession MeEthOd.oouiiiiiiiiiiccceeccee ettt ettt et e re et ere s 10-109
CreateSQL Method ..ottt e e et e et e e teeeebe e baeease e saeeabeessaesaseas 10-111
CreateTempBLOB/CLOB Method ... 10-114
Delete MEthOdooviiiiieeeeeceeeet ettt ettt et s reeeteebeebe e teeabeeraeateereeareereenes 10-116
Delete (OraCollection) Methodccccoooiiiriiiiiniiniiicieeeeeee et senas 10-118
Delete (OraRef) Methodooioiiiieiiiecieeeeeeeeee et ae s e s e s ve e s e seessesraensenns 10-120
DeleteIterator MEethodc.oooviiiiiiiiiceeceeec ettt ettt e a e e v e re b ereenns 10-121
Dequeue (OraAQ) Method...........ccoooiiiiiiiieceee et 10-122
B 1314 1 o X0\ =13 (U Y AR USRS 10-124
DestroyDatabasePool Method ... 10-128
DisableBuffering (OraLOB) Method.............ccccccoiiiiiiiiiiices 10-129
Div (OralntervalDS) Method...........ccooiiiiiiieiiicieeeeeete ettt st sa s s s 10-130
Div (Oralnterval YM) MethoOd...........ccoouooiiiiiiiiicieeceeeeete ettt et re s 10-131

Div (OraNumber) Method. ..ot enae e s 10-132

DynasetCacheParams Method ..o 10-133
Edit METROd ...ttt ettt ettt bttt e et e et e e sesse st e b e sesessensessessess 10-134
Edit (OraRef) Method..........c.ooooiiiieieieeeeeeete ettt ettt et eseebe e e sbessneaeesaennas 10-136
ElementValue Methodooooiiiiiiiiiiieceeeetee ettt b e e be et saa b e sneeas 10-138
EnableBuffering (OraLOB) Methodccccocooiiiiiiiiiiiiii 10-139
Enqueue (OraAQ) Methodccoiiiiiiiiiii s 10-141
Erase (OraLOB) IMethod............cooooiiiiiiiiiiececeeeeees ettt ettt v e et e sa e eaa e e eas 10-143
ExecuteSQL MetROdooouiiiiieiieeeeee ettt ettt et v e e be e s tb e e beesaaeeabe e saeeabe e baeearaens 10-144
Exist (OraCollection) Methodcccoovieiieiieieicice ettt e sa e s 10-147
Exp (OraNumber) Method..............cccccooiiiiii e 10-148
FetchOraRef Methodcoooioieiieiee ettt sttt s e e e essesseennenns 10-149
FieldSize Methodccooouiiiiieeceeeee ettt sbeesa e e ss e b e essessaessesseesnenns 10-150
FindFirst, FindLast, FindNext, and FindPrevious Methods.............c..cccccoooieiinieciinieeeeeene 10-151
Floor (OraNumber) Methodcooviviiiieiiieececeeceeet ettt se e e 10-153
FlushBuffer (OraLOB) Method.............ccooiiiiiiiieiiceeeeeeeeeere ettt s e ss e sse e esne e 10-154
GetDatabaseFromPool Methodoc.ooviiiiiiiiiiicceecee et 10-155
GetCRUNK MEtROdc.ooeiieeeeee ettt sttt e et e eneessesneessesnnesesnnenees 10-156
GetChunkByte Method ... 10-158
GetChunkByteEx Method ... 10-160
GEetXIML MEthOd..........ooiieieeeeeee ettt sttt e e et e s e eneesseeneensesnnensesneenees 10-163
GetXMLTOFile MethoOd..........cc.oooviiieiiieieceeeete ettt ettt e ae e et e ssneseeseeeas 10-164
GetROWS MEthOd..........coiiiiieceeee ettt ettt e b e e re e b e e reebeernebeesneneas 10-165
Get_Valte MEROAoooooeeeieieeeeee ettt e et e e e e s eaate e e e s ssasteesessnasaeeesssaseeeessssnnnees 10-167
HypCos (OraNumber) Method............c.ccccooviiiiiiiiiiii 10-168
HypSin (OraNumber) Method ... 10-169
HypTan (OraNumber) Method ..o 10-170
INItIEerator MEthOdoooviiieieeeeeee ettt et reebe s reebessneseeseeeas 10-171
IsEqual (OraIlntervalDS) Method...............cocooiiiiiiiiis 10-172
IsEqual (OralntervalYM) Method..........cccocooiiiiiniiniceeee e 10-173
IsEqual (OraNumber) Method.............ccccoooiiiiiiiiiiiieas 10-174
IsEqual (OraTimeStamp) Method..............cccccoiiiiiiiiics 10-175
IsEqual (OraTimeStampTZ) Method ... 10-176
IsGreater (OralntervalDS) Method.............coooiiiiiiiiiiceee et e 10-177
IsGreater (Oralnterval YIM) Method..........c.ocoioiiiiiiiiiiiiiceceeeeeeeeee ettt 10-178
IsGreater (OraNumber) Methodccoooviieiiiieie e 10-179
IsGreater (OraTimeStamp) Method.............cccocooiiiiiis 10-180
IsGreater (OraTimeStampTZ) Method ..o 10-181
IsLess (OraIntervalDS) Methodccooveieiiiiiiieiee e s 10-182
IsLess (OralntervalYM) Methodccoooieiiiiiiiiiee ettt s 10-183
IsLess (OraNumber) Method ..ottt et e 10-184
IsLess (OraTimeStamp) Method ... 10-185
IsLess (OraTimeStampTZ) Method ... 10-186
TEEINEXE IMEIOA ...ttt ettt be et ettt eereebeereesteeraeseersennas 10-187
TREIPIEV MEthOdc.ooiieeeeeeee ettt sttt et e s esesreesesnneseeneenees 10-188
LastServerErrReset Method.............ccooiiiiiiiiiiices ettt s 10-189

L (OraNUmMDber) Method.........ooooviiiiiieee ettt ettt e e et e e s e e e s saeesennee s 10-190

Log (OraNumber) Method..............ccooiiiiiiiii s 10-191

MatchPos (OraLOB/BFILE) Methodccocoooiiiiiiiiiiiciceceeeee ettt 10-192
Mod (OraNumber) Methodccoooiiiieieiiieeeeeeeeeee ettt st ese s 10-193
MonitorForFailover Methodccooioiiiiieiiiieieeceeeese ettt re s 10-194
MonitorStart (OraAQ) Method...........cocoiuiiiiiiiiee ettt e 10-196
MonitorStop (OraAQ) Method ..o 10-198
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods.............c.ccccoevveeiiireennnnnen. 10-199
MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods.............ccccccevvevveeviereecnennen. 10-202
Mul (OralntervalDS) Method...........ccooieiiiiieiiiiceeeeeee ettt s ene s 10-204
Mul (Oralnterval YIM) Methodcc.ooveiiiiieiiiiciececceee ettt st se s 10-205
Mul (OraNumber) Method..............ooooiiiiiiiicicceeeeeee et re s 10-206
Neg (OralntervalDS) Methodccccovviiiiiiiiiii s 10-207
Neg (Oralnterval YM) Methodcccccoviiiiiiiiiiiii s 10-208
Neg (OraNumber) Method ... 10-209
Open (OraServer) Method............ccociiiiiiiiceeee e 10-210
Open (OraBFILE) Method ..o 10-211
OpenDatabase Method ... 10-212
Originalltem Method ... 10-215
OriginalNaAINEooiiiiiiii e 10-217
Power (OraNumber) Methodooooiriiiiiiiceceeeee et 10-219
PUt_Valte MEtIO.......cooooeeeeieieeeeeeeeeeeeeeeeeee ettt ettt ese et e e s e s saareeessssnteeessssnraeeessssnnaeees 10-220
Read (OraLOB/BFILE) Method...........ccooioiiiiieiiieectceeeetetee ettt e e ne s 10-221
ReadChunk Methodcc.ooiiiiiiieecectce ettt et et e e s be e be s e ereenns 10-224
RefreSh IMEtROMo.ooeeieeeeeee ettt et e et e s e e seessaensenseensenseenes 10-225
Refresh (OraRef) Methodoooooiieiiiieiiceccceeseee ettt ettt e e s se s e s nes 10-228
Register Method ... 10-229
RemMOVE MEEROd.c..ooiiieieeee ettt ettt e s e s stesseessessannsenseensenneenes 10-230
Remove (OraSubscriptions Collection) Method.................cccooooiiiiiii, 10-231
RemoveFromPool MethoOd.............ccocuooiiiiiiiiicicceecetete ettt 10-232
ReSetTrans IMEtNOdcccoovvirieiieieieeeeee ettt ettt e s e s tesseeseesranssesseensenseenes 10-233
ROIIDACK MELROMooiiiieeceeeee ettt et e e et e e b e s seesaesbaessenseessesseenes 10-235
Round (OraNumber) Methodcccooioiiiiiiiiiiiecceeeeeteee ettt re s 10-237
SetPi (OraNumber) Methodccoovoiiiieiieieeeeeeeee et ene s 10-238
Sin (OraNumber) Methodccoooviiiioieieccecee ettt s re e be s e s nes 10-239
Sqrt (OraNumber) Method.............cocoooiiiiiic e 10-240
Sub (OralntervalDS) Methodcoocviieiieieieeeeeeee ettt ene s 10-241
Sub (Oralnterval YM) Methodccooioiiiieiiieeceeteeeeeeete ettt s be e re s 10-242
Sub (OraNumber) Methodcooiiiiiiiiecee ettt re s 10-243
Tan (OraNumber) Method............ooooiiiieieieeeeeeeee ettt st ene s 10-244
TODAte MEthOdoooeiiieiieeeeeeeee ettt te e st e b e s reeae s b e esbesseessessaessenseessenseenes 10-245
ToOraNumber (OralntervalDS) Methodcccooueiiiiieiiieiieeceeeee e 10-247
ToOraTimeStamp Method ..o 10-248
ToOraTimeStampLTZ Method ... 10-249
ToOraTimeStampTZ Method...........cocoviiiiiiiiiii e 10-250
ToUniversalTime Method...........ccooieiiiiiiiieeeeeeeeee ettt s ese s 10-251
Trim (OraCollection) Methodcoooiiiiieiiiiceeeeeeeeeeee et re e 10-252
Trim (OraLOB) IMethodccooooviiiiiieeeeceeceeeec ettt ettt s re e re e be b e ereenes 10-254

xi

1

Xii

Trunc (OraNUumMDber) Methodooovviiiiiiiieeeeee e 10-255

Unregister Methodcccooiiiiiiiii 10-256
Update Methodc.covoiiiiriiiiiicceeee ettt sttt 10-257
Update (OraRef) Method ... 10-259
Write (OraLOB) Method..........c.ooiuiiiiii s 10-261

Server Properties

Address (OraAQAgent) Property ... 11-7
ATTaYSIzZe PIOPertY ... 11-8
AutoCommit PropPerty ... 11-9
BOQC PIOPEILY ...t 11-10
BOF PIOPEItYcooviiiiiiiiiiiiiiicic e 11-11
BOOKMAIK PrOPerty ..ottt 11-13
BookMarkable Property ... 11-15
CacheBlocKks PrOperty ... 11-16
CacheChanged Property ... 11-17
CacheMaximumSize Property ... 11-18
CacheOptimalSize Property ... 11-19
CacheSliceSize Property ... 11-20
CacheSlicesPerBlock Property ... 11-21
Client Property ... 11-22
CoNNECt PIOPOILY ..o 11-23
ConNection Property ... 11-25
ConnectioNOK Property ... 11-26
CoNNections PrOPETLYcccoiiiiiiiiiiiiiiiici e 11-27
Consumer (OraAQ) Property ... 11-28
Correlate (OraAQ) Property ... 11-29
Correlation (OraAQMSg) Property ... 11-30
CoUNt PIOPEItYoviviiiii e 11-31
Count (OraMetaData) Property ..o s 11-33
Count (OraObject/Ref) Property ... 11-34
Database Property ... 11-36
DatabaseName Property ... 11-37
Databases PrOperty ... 11-39
Day (OraTimeStamp) Property ... 11-40
Day (OraTimeStampTZ) Property..........ccocooiviiiiiiniiiiiiiiiicc e 11-41
DaYs PrOPETrtYcccooviiiiiiiiiiiiiiici s 11-42
DDbPoolCurrentSize PrOPerty ..o 11-43
DbPoollnitialSize PrOperty ... 11-44
DDbP00IMaxSize PrOPerty ..o 11-45
Delay (OraAQMSg) PIOPETItLYcooiiiiiiiiiiiiiiiiccc e 11-46
DequeueMode (OraAQ) Property ... 11-47
DequeueMsgld (OraAQ) Property ... 11-48
DirectoryName Property ... s 11-49
DynasetOption Property ... 11-50
EditMode Property ...t 11-51
EditOption (OraRef) PrOPerty ... 11-52

ElementType Property ...t 11-54

EOC PIOPEILY ...ttt et n e 11-55
EOF PrOPETLYcoiiiiiiiiiic s 11-56
ExceptionQueue Property ... 11-58
EXASES PIOPEILY ..ottt 11-59
Expiration (OraAQMSg) Property ...ttt 11-60
FetchLimit PrOpertyccccocoviviiiiiiiiii s 11-61
FetchSize Property.......ccoooviiiiiiiii e 11-62
FieldIndex Property ... s 11-63
FieldName Property ... 11-64
FieldOriginalName Property ... 11-65
FieldOriginalNameIndex Property...........cccoooiiviiiiiininiiiiiiicaes 11-66
Fields Property ... 11-67
FileName Property ... 11-68
Filter PrOPertyccocooviiimiiiiiiiic s 11-69
Format (OraNumber) Property ... 11-70
Format (OraTimeStamp) Property..........ccccocoviiiiiiiiiiiiiiiiccccnnes 11-71
Format (OraTimeStampTZ) Property ... 11-72
HexValue (OraRef) Property ... 11-73
Hour (OraTimeStamp) Property ... 11-74
Hour (OraTimeStampTZ) Property..........ccccoveiiiiiiiininiiiiiniiic s 11-75
HOULS PrOPEItY ...ttt s 11-76
IsLocator (OraCollection) Property ... 11-77
ISMDODjJect POPETLYcocooiiiiiiiiiiiiiiiic s 11-78
IsNull (OraCollection) Property ... 11-79
IsNull (OraLOB/BFILE) Property ..o 11-80
IsNull (OraObject) Property ... 11-81
IsOpen (OraBFILE) PrOPerty ... 11-83
IsRefNull (OraRef) Property ... 11-84
LastErrorText PrOPerty ..o 11-85
LastModified Property ...t 11-86
LastServerErr PrOPerty ... 11-87
LastServerErrPos Property ... 11-89
LastServerErrText Property.........oii e 11-90
MaxSize (OraCollection) Property ... 11-92
MinimumsSize Property..........ccoiiiiiiiiiiii s 11-93
Minute (OraTimeStamp) Property ... 11-95
Minute (OraTimeStampTZ) Property ... 11-96
MiNUtEs PrOPETLY........coiiiiiiiiiiiiiiiic s 11-97
Month (OraTimeStamp) Property ... 11-98
Month (OraTimeStampTZ) Property ...t 11-99
MONEhS PrOPertYccoiiiiiiiiiiiiiiic s 11-100
NAME PIOPEILY ..coooeiiii s 11-101
Name (AQAZENt) Property ... 11-103
Name (OraAttribute) Property ... 11-104
Name (OraMDAttribute) Property ... 11-105
Nanosecond(OraTimeStamp) Property...........ccccooviiiiiiniiiiiiiiiiiccccccccenes 11-106

xiii

Xiv

Nanonsecond (OraTimeStampTZ) Property ..o 11-107

Nanonseconds Property ... 11-108
Navigation (OraAQ) Property.........cccoviiiiiiiiiiiic s 11-109
NOMatch Property ..o s 11-110
NonBlockingState Property............cccovviiiiiiiiiiiiii s 11-111
Offset (OraLOB/BFILE) Propertycccccoviiiiiiiiiiiiiiiciiccnnas 11-112
OIPVersionNumber PrOpPerty ... 11-113
OPtioNS ProPertyocoooiiiiiiiiiiicc s 11-114
OralDataType Property ... 11-115
OraMaxDSize PrOPErtY ..o 11-117
OraMaxSize PIoperty ... 11-118
OraNUIIOK Propertyccooiiiiiiiiiiiiiiiiici s 11-119
OraPrecision Property ... 11-120
OraScale PIOPerty ... 11-121
Parameters Property ... 11-122
PinOption (OraRef) Property..........ccccoiiiiiiiiiiiiiiiiiiceenas 11-123
Polling Amount Property ... 11-125
Priority (OraAQMSg) Property ..o 11-126
RDMSVersion PrOPerty ... 11-127
RecordCount PrOPerty ... 11-128
RelMsgld (OraAQ) Property ... 11-131
ROWPOSItION PIOPerty.......ccoiiiiiiiiiiiiiiiiiiiiicicicic s 11-132
SafeArray (OraCollection) Property ..o 11-133
Second (OraTimeStamp) Property ... 11-134
Second (OraTimeStampTZ) Property..........cccooooiiiiiiiininiiiiiicicceenas 11-135
SeCONAS PrOPEItYcoiviiiiiiiiiiiiiiiiiicc 11-136
SeIVET PIOPETLYoviiiiiiiiiic s 11-137
ServerType Property ... 11-138
SeSSION PIOPeItY ... 11-141
SeSSI0NS PrOPETLYc.ooiiiiiiiiiiiii s 11-142
SHZE PrOPEITY ..o 11-143
Size (OraCollection) Property ...t 11-144
Size (OraLOB and OraBFILE) Propertycccoviiiininiiiiiniiiiicccccccnns 11-145
SNAPSHOt PPOPEILY ..o s 11-146
SOTt PrOPEItY....c.ooiiiiiiiiiiiiiicc s 11-149
SQL PIOPEILY ...cocviiiiiiiicict s 11-150
Status Property ... s 11-152
Status (OraLOB/BFILE) PIOperty ..o 11-154
Subscriptions Property ... 11-155
TableName (OraRef) Property ... 11-156
TableSize (OraCollection) Property ..o 11-157
TimeZone (OraTimeStampTZ) Property ... 11-158
TotalDays Property ... 11-160
TotalYears PrOPerty ... 11-161
Transactions Property ... 11-162
Truncated Property ... 11-163
TYPE PIOPEILY ..o 11-164

12

13

Type (OraAttribute) Property..........ccocooiiiiii e 11-166

Type (OraCollection) Property ... 11-167
Type (OraMetaData) Property............ccococoviviniiiiiiiniiii e 11-168
TypeName (OraObject and OraRef) Property ..o 11-170
Updatable Property ... 11-171
Valie Property ... s 11-173
Value (OraAttribute) Property ... 11-175
Value (O1raAQMSg) Property........ccccooiiiiiiiiiiiiiiiii s 11-176
Value (OralntervalDS) Propertycccooviiiiiiiiiiiiiiiiiiiiee s 11-177
Value (Oralnterval YM) Property ... 11-179
Value (OraMDAttribute) Property.........cccoooviiiinniiiiiiiiiiicnics 11-181
Value (OraNumber) Property ... 11-182
Value (OraTimeStamp) Property ... 11-183
Value (OraTimeStampTZ) Property..........cccoovviiiiiininiiiniiiiiiccccccnnnes 11-184
Version (OraObject and Ref) Property ..o 11-185
Visible (OraAQ) Property ... 11-186
Wait (OraA Q) Property ... 11-187
XMLASsAttribute Property ... 11-188
XMLCOIIID PrOPETLYcocooviiiiiiiiiiiiiiiie s s aans 11-189
XMLEncodingTag Property ... 11-190
XMLNullIndicator ProOperty ..o 11-191
XMLOmitEncodingTag Property..........ccocooviiiiiiiiiiii e 11-192
XMLROWID PrOPerty......ocoiiiiiiiiiiiiiicictcietec sttt 11-193
XMLRoWSsetTag PrOperty ... s 11-194
XMLROWTAag PrOPeItYcoovoviiiiiiciiie ettt 11-195
XMLTagName Property ..ot s 11-196
XMLUPPerCase Property ... s 11-197
Year (OraTimeStamp) Property..........ccccoiiiiiiiiniiiiiiiciii s 11-198
Year (OraTimeStampTZ) Property ... 11-199
YEars PrOPEItYccovuiiiiiiiiiiii s 11-200
Data Control Events

DragDrop EVent ... 12-2
DragOver EVent ... 12-3
Error EVeNt ... 12-4
MouseDOWN EVeNt...........cccoooiiiiiiiiii s 12-5
MouseMoOVe EVeNLt ... 12-6
MouseUp EVENt ... s 12-7
RePoSition EVENL ..ottt s 12-8
Validate EVENtcccccoiiiiiiiiiii s 12-9
Data Control Methods

Drag Methodcccovoiiiiiiiiiiic s 13-2
MOVE MEEROQ ...ttt 13-3
Refresh Method ... 13-4
UpdateControls Method ... 13-5

XV

14

UpdateRecord Method ... s 13-6
ZOrder Methodc.coiiiiiiiiii e 13-7

Data Control Properties

AlloWMoVeLast PTOPEIty ..o s 14-3
AutoBinding Property ... 14-4
BackColor PIOPertYccciiiiiiiiiiiiiii s 14-7
CaAPtion PrOPEItYcoovoviiiiiiiiic s 14-8
CoNNeCct PrOPerty ..o 14-9
Database Property ... 14-10
DatabaseName Property ..o 14-11
DirtyWrite PrOPETrtYccocoviiiiiiiiiiiiiiiic e 14-12
Draglcon Property ... s 14-13
DragMode PrOPerty ... 14-14
EditMode Property ... 14-15
Enabled Property ...t 14-16
FONt Property ... 14-17
ForeColor PIOPerty ... 14-18
Height Property ..o 14-19
INAEX PIOPEILY......oouiiiiiiiiii s 14-20
Left PIOPerty......ccocooiiiiiiiii e 14-21
MousePointer PrOPerty ... 14-22
NamMe Property ... 14-23
NORefetch Property ..o 14-24
OPIONS PTOPEILYcooiiiiiiiiiiii e 14-25
OracleMode Property ... 14-27
ReadOnly Property ... 14-28
Recordset PIOPerty ...t 14-29
RecordSource Property ... 14-31
SeSSION PIOPeItY ..o 14-33
TaG PIOPEITY ..o s 14-34
TOP PrOPEITY ..ottt 14-35
TrailingBlanks Property ... 14-36
ViSible PIOPertYc.coovvviiiiiiiiiiiiii s 14-37
WIAER PIOPETtYcoooiviiiiiiiii s 14-38

A Appendix A

Oracle Data TYPESccoouiuiiiiiiiiiiiiicc bbb A-1
Additional SCREMAS.............ccoveviiii s A-2
Schema Objects Used in OraMetaData Examples............ccccoieiiiiiiiiiiiieiiiccn A-3
Schema Objects Used in LOB Data Type Examples.........ccccocovoieieiiiiiiiniiiceiccceeccce, A-3
Schema Objects Used in the OraObject and OraRef Examplesccccccccceuecincicinnniccennne. A-3
Schema Objects Used in OraCollection Examplescccccoeviviiiiiiiiinine A-3
Glossary
Index

XVi

Audience

Preface

This document explains how to install, configure, and use Oracle Objects for OLE
(O040). It covers features of Oracle Database that apply to Microsoft Windows
operating systems.

Oracle Objects for OLE (OO40) allows easy access to data stored in Oracle databases
with any programming or scripting language that supports the Microsoft COM
Automation.

= Audience
= Documentation Accessibility
= Related Documents

s Conventions

Oracle Objects for OLE Developer’s Guide is intended for programmers developing
applications to access an Oracle database using Oracle Objects for OLE. This
documentation is also valuable to systems analysts, project managers, and others
interested in the development of database applications.

To use this document, you must have a working knowledge of application
programming using Visual Basic or Microsoft C/C++ and knowledge of Component
Object Model (COM) concepts.

Readers should also be familiar with the use of structured query language (SQL) to
access information in relational database systems.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

xvii

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

xviii

For more information, see these Oracle resources:

» Oracle Objects for OLE C++ Class Library Developer’s Guide, available as online help
» Oracle Services for Microsoft Transaction Server Developer’s Guide

» Oracle Database Platform Guide for Windows

» Oracle Database Concepts

» Oracle Database Performance Tuning Guide

» Oracle Database Reference

» Oracle Database Advanced Application Developer’s Guide

» Oracle Database SecureFiles and Large Objects Developer’s Guide

» Oracle Database Object-Relational Developer’s Guide

» Oracle Streams Advanced Queuing User’s Guide

» Oracle XML DB Developer’s Guide

» Oracle XML Developer’s Kit Programmer’s Guide

» Oracle Database PL/SQL User's Guide and Reference

» Oracle Net Services Reference Guide

» Oracle Database Globalization Support Guide

» Oracle Database Oracle Real Application Clusters Administration and Deployment Guide

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/contact/welcome.html

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

For additional information, see:

http://www.microsoft.com

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xix

XX

What's New in Oracle Objects for OLE?

This section describes new features of Oracle Database 11g Release 2 (11.2) and
provides pointers to additional information. New features information from previous
releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Oracle Objects for OLE:

Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New Features
Oracle Database 10g Release 2 (10.2) New Features
Oracle Database 10g Release 1 (10.1) New Features

Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New

Features

There are no new features for these releases.

Oracle Database 10g Release 2 (10.2) New Features

There are no new features for this release.

Documentation for Oracle Objects for OLE was improved and reorganized, although
there is no additional content. The documentation was reformatted to a printable, PDF
format. PDF and HTML are provided in the Documentation Library. Online Help in
WinHelp format is no longer provided.

Oracle Database 10g Release 1 (10.1) New Features

Support for Oracle Grid Computing

Oracle Objects for OLE is grid-enabled, allowing developers to take advantage of
Oracle database grid support without having to make changes to their application
code.

Support for New Data Types

Oracle Objects for OLE provides support for the BINARY_DOUBLE and BINARY__
FLOAT data types introduced in Oracle Database 10g. Instances of these types can
be fetched from the database or passed as input or output variables to SQL
statements and PL/SQL locks, including stored procedures and functions.

The following constants were added in the oraconst. txt tobind the BINARY
DOUBLE and BINARY_FLOAT data types.

- ORATYPE_BDOUBLE, Oracle data type BINARY_DOUBLE, value 101

XXi

- ORATYPE_BFLOAT, Oracle data type BINARY_FLOAT, value 100
= Support for Multiple Oracle Homes

Oracle Objects for OLE can be installed in multiple Oracle homes, starting with
release 10.1. However, being a Component Object Model (COM) component, only
one instance can be active on the computer. This means that the current (latest)
installation renders the previous one inactive.

To make multiple Oracle homes available, the use of a KEY_HOMENAME is required.
Also, some of the Oracle Objects for OLE files include a version number.

See Also:
= 'Installation” on page 1-5
= "Oracle Objects for OLE Redistributable Files" on page 1-6

s "Tuning and Customization" on page 5-2 for information about the
Windows registry subkey

XXii

1

Introducing Oracle Objects for OLE

This chapter introduces Oracle Objects for OLE (O040).

This chapter contains these topics:

Overview of Oracle Objects for OLE

Oracle Objects for OLE In-Process Automation Server
Oracle Data Control

Oracle Objects for OLE C++ Class Library

Required Setups

Oracle Objects for OLE File Locations

Component Certifications

Oracle Objects for OLE Redistributable Files

Overview of Oracle Objects for OLE

Oracle Objects for OLE (OO40) allows you to access data stored in Oracle databases
with any programming or scripting language that supports Microsoft COM
Automation and ActiveX technology. This includes Visual Basic, Visual C++, Visual
Basic for Applications (VBA), IIS Active Server Pages (VBScript and JavaScript), and
others.

Figure 1-1 illustrates the software layers that comprise the OO4O product.

Introducing Oracle Objects for OLE 1-1

Oracle Objects for OLE In-Process Automation Server

Figure 1-1 Software Layers of 0040

Data Aware ActiveX Controls

C++ Class Oracle Data Automation Controllers
Libraries Control (VB, Excel, ASP)

COM/DCOM

Q040 In-Process
tion Server

Automa

Oracle Client Libraries
{OCI. CORE, NLS)

QOracle
Database

0040 provides the following:

= Oracle Objects for OLE In-Process Automation Server
= Oracle Data Control

= Oracle Objects for OLE C++ Class Library

Oracle Objects for OLE In-Process Automation Server

The OO40 In-Process Automation Server is a set of COM Automation Objects for
connecting to Oracle databases, executing SQL statements and PL/SQL blocks, and
accessing the results.

Figure 1-2 illustrates the object model that comprise the OO40O product.

Figure 1-2 Automation Objects
OraSession
OraServer
OraDatabase
OraSQLStmt

OraDynaset OraField

OraParameters OraParameter

OraParameterArray

OraMetaData QOraMDAttribute

OraAQ OraAQMsg

1-2 Oracle Objects for OLE Developer's Guide

Oracle Objects for OLE In-Process Automation Server

Unlike other COM-based database connectivity APIs, such as Microsoft ActiveX Data
Objects (ADO), the OO40 Automation Server was created specifically for use with
Oracle databases. It provides an optimized API for accessing features that are unique
to the Oracle database and are otherwise cumbersome or unavailable from ODBC or
OLE DB components.

0040 provides key features for accessing Oracle databases efficiently and easily in
environments ranging from the typical two-tier client/server applications, such as
those developed in Visual Basic or Excel, to application servers deployed in
multitiered application server environments such as Web server applications in
Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).

See Also: "Introduction to Automation Objects" on page 8-1

Features include:

s Oracle 11g is grid enabled, allowing developers to take full advantage of grid
support without changes being required to existing code.

= Tunable client-side, scrollable and updatable cursors for easy and efficient access
to result sets of queries.

s PL/SQL support for execution of PL/SQL anonymous blocks and stored
procedures. This includes support for the Oracle data types, such as PL/SQL
cursors, that are needed for parameters of PL/SQL stored procedures.

= Support for array fetches, updates, and inserts resulting in reduced network
round-trips.

= Connection pooling to allow development of scalable middle tier application
components, such as IIS Active Server Pages, that use and serve dynamic content
stored in Oracle databases.

= Support for COM+ and Microsoft Transaction Server (MTS) co-ordinated
transactions.

= Seamless access to instances of advanced Oracle data types:

= Object references (REFs)

= Object instances (Objects)

= Nested tables

s VARRAYs

= BLOBs, CLOBs, NCLOBs, and BFILES
= XML generation.
s Full support for advanced queuing.
= Support for publishing, detecting, and subscribing to database events.
= Support for asynchronous processing of SQL statements and PL/SQL blocks.
= Easy to use interface for describing schema objects.

s The Oracle code wizard for stored procedures, which automatically generates
0040 code to execute PL/SQL or Java stored procedures.

s Thread safety, allowing safe access to automation objects in multithreaded
environments.

Introducing Oracle Objects for OLE 1-3

Oracle Data Control

See Also:

s Chapter 9, "Server Objects"

s Chapter 11, "Server Properties"

s Chapter 10, "Server Methods"

s Chapter 4, "Advanced OO40 Features"

Oracle Data Control

Oracle Data Control is an ActiveX control that is designed to simplify the exchange of
data among an Oracle database and visual controls such as edit, text, list, and grid
controls in Visual Basic and other development tools that support custom controls.

A data control enables you to perform most data access operations without writing
any code. To create a dynaset with a data control, set the Connect, DatabaseName,
and RecordSource properties, and execute the Refresh command.

A data control enables you to bind it to other controls that display a field, a record, or
multiple records of the underlying dynaset. When record movement occurs, data in
bound controls stay synchronized with the current record of the dynaset. If a user
changes data in a control that is bound to a data control, the changes are automatically
reflected in the underlying dynaset and database.

The Oracle Data Control is compatible with the Microsoft data control included with
Visual Basic. If you are familiar with the Visual Basic data control, learning to use
Oracle Data Control is quick and easy. Communication between data-aware controls
and a Data Control is governed by a protocol specified by Microsoft.

See Also:

» "Setting Oracle Data Control Properties with the Properties
Window" on page 2-9

» "Setting Oracle Data Control Properties Programmatically” on
page 2-11

= "Data Control Events" on page 12-1

Oracle Objects for OLE C++ Class Library

The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that
provide programmatic access to the OO40 Automation server. Although the class
library is implemented using OLE Automation, neither the OLE development kit nor
any OLE development knowledge is necessary to use it. This library helps C++
developers avoid writing COM client code to access the OO40 interfaces.

In addition to the object classes, the class library provides a bound class, which allows
controls such as text and list boxes to be linked directly to a field of a dynaset (columns
of a table in the database). The bound class supports late, run-time binding, as is
available in Visual Basic. The Oracle Objects for OLE C++ Class Library is supported
for Microsoft Visual C++ and the Microsoft Foundation Classes for the bound class.

See Also: Oracle Objects for OLE C++ Class Library Developer's
Guide available as online help

1-4 Oracle Objects for OLE Developer's Guide

Required Setups

Required Setups

This section discusses the required setups for using Oracle Objects for OLE.

Installation

Oracle Objects for OLE can be installed in multiple Oracle homes, starting with Oracle
Database 10g. However, being a COM component, only one instance can be active on
the computer. This means that the current (latest) installation renders the previous one
inactive. You can switch Oracle homes by using the Oracle installer.

System Requirements

The following system requirements are necessary to install Oracle Objects for OLE:

Windows Operating System:

- 32-bit: Windows 7 (Professional, Enterprise, and Ultimate Editions), Windows
Vista (Business, Enterprise, and Ultimate Editions), Windows Server 2008
(Standard, Enterprise, Datacenter, Web, and Foundation Editions), Windows
Server 2003 R2 (all editions), Windows Server 2003 (all editions), or Windows
XP Professional Edition.

Oracle supports 32-bit Oracle Objects for OLE on x86, AMD64, and Intel
EMB64T processors on these operating systems.

A local or remote Oracle database (Oracle9i Release 2 or higher)

Oracle Client. Oracle Universal Installer ensures that the RSFs are installed as part
of the OO40 installation.

The OO40 automation server requires an application that supports COM
Automation such as:

» Microsoft Visual Basic

= Microsoft Excel

= Microsoft Access

s Microsoft Internet Information Server (IIS)

= Borland Delphi

Other Requirements

The following other requirements may be necessary:

The Oracle Data Control requires Visual Basic.

The Oracle Objects for OLE C++ Class Library requires Microsoft Visual C++
Version 6.0 or later.

The O0O40 Code Wizard requires Visual Basic 6. Visual Basic 6 must be installed
before installing the Code Wizard.

The Oracle In-Process Server Type library (oipVER. t 1b) must be referenced
when an O040 Visual Basic project is developed.

To do this, select References from the Project menu (VB 5.0/6.0) and check the box
next to the Oracle In-Process Server 5.0 Type Library, which should be pointing to
the ORACLE_BASE\ORACLE_HOME\bin\oipVER. t1b file. See "Using Oracle
Objects for OLE Automation with Visual Basic" on page 2-2 for detailed
information.

Introducing Oracle Objects for OLE 1-5

Oracle Objects for OLE File Locations

See Also: "Oracle Objects for OLE Redistributable Files" on
page 1-6 and "Troubleshooting" on page 5-14 for further
information on Oracle Objects for OLE requirements

Oracle Objects for OLE File Locations

As part of the OO40 installation, the following directories are created and contain the
corresponding files:

s ORACLE_BASE\ORACLE_HOME\0O040 - SQL scripts and constants file

m ORACLE_BASE\ORACLE_HOME\OO40O\CPP - Libraries, include files, DLLs, and
source for the class library

s ORACLE_BASE\ORACLE_HOME\OO40\CPP\MFC - Libraries, include files, and
source for the MFC Bound Class Library

s ORACLE_BASE\ORACLE_HOME\OO40\EXCEL\SAMPLES - Excel samples
" ORACLE_BASE\ORACLE_HOMEOO40\VB\ SAMPLES - Visual Basic samples

» ORACLE_BASE\ORACLE_HOME\OO40O\VB\SAMPLES\QT - Visual Basic Quick Tour
guide

» ORACLE_BASE\ORACLE_HOME\OO40\IIS\SAMPLES - IIS samples

s ORACLE_BASE\ORACLE_HOME\0040\codewiz - OO40 Code Wizard samples

Component Certifications

Find the latest certification information at My Oracle Support (formerly
OracleMetaLink):

http://metalink.oracle.com/

You must register online before using My Oracle Support. After logging into My
Oracle Support, select Product Lifecycle from the left column. From the Products
Lifecycle page, click Certifications. Other Product Lifecycle options include Product
Availability, Desupport Notices, and Alerts.

Oracle Objects for OLE Redistributable Files

This section discusses files that can be redistributed or updated on a computer that
belongs to an end user or a developer.

If you cannot guarantee that your end users have the current release of Oracle Objects
for OLE installed on their computers, you need to redistribute specific files that are
part of Oracle Objects for OLE along with your OO4O application. A typical scenario
might be if OO40 is installed as a patch without use of Oracle Universal Installer.

Redistributable File Locations

Table 1-1 lists the Redistributable file locations with comments and further actions that
are needed.

1-6 Oracle Objects for OLE Developer's Guide

Oracle Objects for OLE Redistributable Files

Table 1-1 Redistributable File Locations
Files Place in Directory Further Actions Comments
0ipVER.dl1l ORACLE_BASE\ Execute the following from a None.
ORACLE_HOME\bin command prompt:
drive: \path>
regsvr32.exe
0ipVER.d11l
0ipVER.t1lb ORACLE_BASE\ None. None.
ORACLE_HOME\bin
oraansiVER.d1ll ORACLE_BASE\ None. Change VER to the current

oodoparm.reg

oiplang.msb

oraclm32.d1ll
(for Microsoft

VC++)

ORACLE_HOME\bin

ORACLE_BASE\
ORACLE_HOME\oo4o

ORACLE_BASE\
ORACLE_HOME
\oodo\mesg

ORACLE_BASE\
ORACLE_HOME\bin

Edit for the correct ORACLE_
HOME location and HOME ID on
your computer. Execute the
following froma command
prompt: drive: \path>

oodoparm.reg

None.

For oradc. ocx, execute:

regsvr32.exe

version.

File provided to register OO40
configuration information.

This message file is
language-specific. oipus.msb
is the English version, and
oipja.msb is the Japanese
version.

Distribute the files that
correspond to the development
software used in your
application.

oradc.ocx drive:\path>
or

oradc.ocx

Additionally, ensure that the system requirements described in "Overview of Oracle
Objects for OLE" on page 1-1 are met.

You must also distribute the files from the following list that correspond to the
development software you used to build your application:

» oraclm32.d1ll (for Microsoft Visual C++)

m oradc.ocx

Updating Files and Registrations

The codoparm. reg file is provided to register OO40O configuration information.
Review this file and edit it as necessary to reflect the correct ORACLE_HOME location
and HOME ID on your computer. To register oipVER.d11 and enter the OO40
configuration information for co4oparm. reg in the registry, execute the following
from a command prompt:

drive:\path> regsvr32.exe oipVER.dll
drive:\path> oodoparm.reg

The message file oiplang.msb should also be provided and copied to the ORACLE_
BASE\ORACLE_HOME\oo4o\mesg directory. The message file is specific to a
language. For example, oipus .msb is the English version and oipja.msb is the
Japanese version.

Introducing Oracle Objects for OLE 1-7

Oracle Objects for OLE Redistributable Files

Note: Oracle Data Control (oradc . ocx) must be registered to
function. The OLE Control Extension (OCX) can be registered by
executing the following at the command prompt:

drive:\path> regsvr32.exe oradc.ocx

See Also: "Oracle Data Control" on page 1-4

1-8 Oracle Objects for OLE Developer's Guide

2

Using Oracle Objects for OLE with
Automation Clients

This chapter describes the use of automation clients to access Oracle data.
This chapter contains these topics:

s Using Automation Clients Overview

= Demonstration Schema and Code Examples

= Using Oracle Objects for OLE Automation with Visual Basic

s Using O040 Automation with Active Server Pages (ASP)

= Using Oracle Objects for OLE Automation with Excel

» Using Microsoft C++

s Using Oracle Data Control with Visual Basic

= Using the Oracle Data Control with MS Visual C++

Using Automation Clients Overview

Oracle Objects for OLE (OO40) is designed to provide quick and efficient access to the
data in an Oracle database using various programming or scripting languages.

0040 can be easily used with Visual Basic, Excel, Active Server Pages, Internet
Information Server (IIS), and other development tools.

Oracle Data Control with Visual Basic allows another method of accessing Oracle data.

Examples are provided for specific methods and properties in this developer's guide.
Additionally, example programs are installed with Oracle Objects for OLE and are
located in the ORACLE_BASE\ORACLE_HOME\oo4o\ directory under VB, EXCEL, IIS,
CPP, and so on.

A Quick Tour of OO40 with Visual Basic is also provided.

See Also: Chapter 6, "Quick Tour with Visual Basic"

Demonstration Schema and Code Examples

The code examples included in this developer's guide and the example applications
shipped with Oracle Objects for OLE are designed to work with a demonstration
schema (database tables and other objects) and a demonstration user and password,
scott/tiger. Code examples are located in the ORACLE_BASE\ORACLE_

HOME\ oo4o directory.

Using Oracle Objects for OLE with Automation Clients 2-1

Using Oracle Objects for OLE Automation with Visual Basic

Demonstration Schema Creation

You can create the OO40O demonstration schema with the demob1d7 . sqgl script
located in the ORACLE_BASE\ORACLE_HOME\oo4o directory. You can drop the
demonstration schema with the demodrp7 . sql script.

Demonstration Schema
The demonstration schema includes the following references:

s Demonstration tables EMP and DEPT.
s The user scott with password tiger (scott/tiger).
s The network alias, ExampleDb.

Refer to Oracle Net Services Administrator’s Guide for assistance in setting up the
network service (database) alias and the tnsnames . ora file.

In many of the examples, you can access a local database using " " (a null string)
for the network alias.

Other Schemas

Occasionally other schemas are required to run examples. The introductions to the
examples contain names and locations of the schemas (in the appendix).

See Also: "Additional Schemas" on page A-2

Related Files
The ORACLE_BASE\ORACLE_HOME\oo4o directory contains the following items:

s 0040 example programs.
Subdirectories contain both C++ and Visual Basic examples.

» The oraexamp. sql script, used to create stored procedures. Additional scripts,
such asmulticur.sqgl and empcur. sql, are provided to set up other example
programs.

= Oracle Objects for OLE global constant file, oraconst . txt, which contains
constant values used for option flags and property values. This file is usually not
needed as these constants are also included with the Oracle In-Process Server type
library.

Using Oracle Objects for OLE Automation with Visual Basic

This example contains code fragments that demonstrate how to create all objects
required by a dynaset and then create the dynaset itself.

1. Start Visual Basic and create a new project. From the Project menu, select
References and check InProcServer 5.0 Type Library.

Oracle Objects for OLE Developer's Guide

Using Oracle Objects for OLE Automation with Visual Basic

References - Project1

Available References: CF,

Xl
] offProv 1.0 Tvpe Library d Cancel |
[10LE DE Errars Type Library

[Joleprn 1.0 Type Library

[k 1.0 Tvpe Library Browse. ..

] opksHold 1.0 Type Library

[oracle Data Control ﬂ
| InProc Server 5,0 Tvpe Library

[]Ora0LEDE 1.0 Type Library Priarity

[[JPackage and Deployment Wizard = |

[“IPageMavbar DT 1.0 Tvpe Library ﬂ

[CIPDCube 1.0 Tvpe Library

[IPerformance Logs and Alerts 1.0 Type Library

[IPItPkg 1.0 Type Library

HIPPNaviuatorBridue 1.0 Tvoe Lib'rarv _Ij
] »

—iracle InProc Serwver 5.0 Type Library

Location: Ciloracleloraldibintoiplo, b
Language: Standard

2. Start Visual Basic and create a new project. Then, add the following code to the
Declarations section of a form:

' Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraFields As OraFields

3. Add the following code to the load procedure associated with the form to display
the Oracle data:

' Create the OraSession Object. The argument to CreateObject is the
' name by which the OraSession object is known to the OLE system.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

' Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

' Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

' You can now display or manipulate the data in the dynaset. For example:
Set OraFields = OraDynaset.fields

OraDynaset.movefirst

Do While Not OraDynaset.EOF

MsgBox OraFields("ename").Value

OraDynaset .movenext

Loop

End Sub

4. Run the form to view the results.

Using Oracle Objects for OLE with Automation Clients 2-3

Using 0040 Automation with Active Server Pages (ASP)

See Also:

s "Using Oracle Objects for OLE with Automation Clients" on
page 6-1 for more information about using OO40 with Visual
Basic

s OraClient Object on page 9-18

s OraDatabase Object on page 9-28
s OraDynaset Object on page 9-30

s OraField Object on page 9-33

s OraParameter Object on page 9-50
= OraSession Object on page 9-58

Using 0040 Automation with Active Server Pages (ASP)

This example uses Active Server Pages (ASP) in a Microsoft Internet Information
Server (IIS) to demonstrate the connection pooling feature of Oracle Objects for OLE.
The sample code executes a SQL SELECT query and returns the result as an HTML
table. The database connection used in this script is obtained from a pool that is
created when the global . asa file is executed.

To use Oracle Objects for OLE with OLE Automation and IIS, you need to install IIS
3.0 or later, including all ASP extensions. On the computer where IIS is running, an
Oracle database must also be accessible.

Note: The sample code for this example is available in the
ORACLE_BASE\ORACLE_
HOME\oo4o\iis\samples\asp\connpool directory.

1. Start SQL*Plus and log in to the Oracle database as scott/tiger.
Create the following PL/SQL procedures:

-- creates PL/SQL package to be used in ASP demos
create or replace package ASP_demo as
--cursor cl is select * from emp;
type empCur is ref cursor;
PROCEDURE GetCursor (p_cursorl in out empCur, indeptno IN NUMBER,
p_errorcode OUT NUMBER) ;
END ASP_demo;
/

Create or replace the ASP_demo package body as follows:

PROCEDURE GetCursor (p_cursorl in out empCur, indeptno IN NUMBER,
p_errorcode OUT NUMBER) is
BEGIN
p_errorcode:= 0;
open p_cursorl for select * from emp where deptno = indeptno;
EXCEPTION
When others then
p_errorcode:= SQLCODE;
END GetCursor;

END ASP_demo;
/

2-4 Oracle Objects for OLE Developer's Guide

Using 0040 Automation with Active Server Pages (ASP)

Create the Active Server Pages (ASP) sample code. The OO40 related code is in
bold.

'GLOBAL.ASA

<OBJECT RUNAT=Server SCOPE=Application ID=OraSession
PROGID="OracleInProcServer.XOraSession"></OBJECT>

<SCRIPT LANGUAGE=VBScript RUNAT=Server>

Sub Application_ OnStart

'Get an instance of the Connection Pooling object and

'create a pool of OraDatabase

OraSession.CreateDatabasePool 1,40,200, "exampledb", "scott/tiger", 0
End Sub

'O040DEMO.ASP

<html>

<head>

<title>Oracle Objects For OLE (0040) </title>

</head>

<body BGCOLOR="#FFFFFF">

<h2 align="center">0Oracle Objects For OLE (0040) </h2>

<form ACTION="OO40DEMO.asp" METHOD="POST">

<%

SglQuery = Request.Form("sglquery")

%>

<p>This sample executes a SQL SELECT query and returns the result as an HTML
table. The database connection used in this script is obtained from a pool that
is created when the global.asa is executed. </p>

<p>SQL Select Query: <input SIZE="48" NAME="sglquery"> </p>

<p><input TYPE="SUBMIT"> <input TYPE="RESET"> <input LANGUAGE="VBScript"
TYPE="button" VALUE="Show ASP Source" ONCLICK="Window.location.href =
"oodoasp.htm" "

NAME="ShowSrc"></p>

</form>

<%

If SglQuery = "" Then

%>

<% Else %>

<table BORDER="1">

<%

Set OraDatabase = OraSession.GetDatabaseFromPool (10)
Set OraDynaset = OraDatabase.CreateDynaset (SglQuery,0)
Set Columns = OraDynaset.Fields

%>

<tr>

<td><table BORDER="1">

<tr>

<% For i = 0 to Columns.Count - 1 %>
<td><% = Columns(i).Name %></td>
<% Next %>

</tr>

<% while NOT OraDynaset.EOF %>

<tr>

<% For col = 0 to Columns.Count - 1 %>
<td><% = Columns(col) %>

</td>

Using Oracle Objects for OLE with Automation Clients 2-5

Using Oracle Objects for OLE Automation with Excel

<% Next %>

</tr>

<% OraDynaset .MoveNext %>
<% WEnd %>

</table>

<p><%End If%> </p>
<hr>

</td>

</tr>

</table>

</body>

</html>

Create a virtual directory from Microsoft Internet Service Manager with read and

execute access, and place all . asp and . asa files in that directory.

Create an HTML page from which to launch the co4odemo . asp file. Add a link

in the page as follows:

<a href="/<your_path>/0040DEMO.ASP">This link launches the demo!

Load the page in a web browser and click the link to the demonstration.

Enter a query, such as ' SELECT * FROM EMP',in the SQL SELECT Query field,
and select the Submit Query button. Do not include a semicolon (;) at the end of

the query.

SOL Select Query:

|semct*ﬂnw1emp

Submit Cluery | Resetl

S 334 36 36 36 36 36 3636 3 3 3 3 3 o S e e 438 8 36 36 36 36 36 3 3 3 3 3 o e e e 866 36 36 36 3 36 3 3 3 3 3 o o o e e 4 636 36 36 36 36 3 3 3 3 3 3 o e e e 8386 36 3 36 3 3 3 3 3 3 o oo o 3% 4 KKK

Using Oracle Objects for OLE Automation with Excel

This sample shows how to insert Oracle data into an Excel worksheet.

EMPNO ENAME |JOB MGR HIREDATE SAL |COMM DEPTNO
7839 |KING |[PRESIDENT 111781 5000 10
7698 BLAKE |MANAGER (7839 |5/1/81 2850 30
7782 |CLARE |[MANAGER (7839 |6/9/81 2450 10
7566 TONES |MANAGER (7839 l4/2/81 2975 20
7654 |MARTIN |SALESMAMN (7698 |9/28/81 [1250 (1400 |30
7499 |ALLEN |SALESMAN 7698 [2/20/81 [1600 (300 |30
7844 | TURMER |SALESMAN (7693 [9/8/81 1500 |0 30
7900 TAMES |CLERK (7698 (1213181 (950 30

Note: The sample code for this example is available in the

ORACLE_BASE\ORACLE_HOME\oo4o\excel\samples\

directory.

2-6 Oracle Objects for OLE Developer's Guide

Using Oracle Objects for OLE Automation with Excel

To use OLE Automation with Microsoft Excel to insert Oracle data into a worksheet,
perform the following steps:

1. Start Excel and create a new worksheet.

2. Use the Macro options in the Tools menu to create and edit new macros for
manipulating the Oracle data.

Macro
I%fﬂc:; :::meﬂﬁeference:
|ElearDala _I Cancel |
Step |
Edit |
Delete |
Ophiong. . |
[
Dezcription

3. Enter Visual Basic code for macros to create and access an Oracle dynaset, such as
the following EmpData () and ClearData () procedures (macros):

Sub EmpData ()

'Declare variables

Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim EmpDynaset As OraDynaset

Dim flds() As OraField

Dim fldcount As Integer
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase ("ExampleDB", "scott/tiger", 0&)
Set EmpDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)
Range ("Al:H15") .Select
Selection.ClearContents

'Declare and create an object for each column.
'This will reduce objects references and speed up your application.
fldcount = EmpDynaset.Fields.Count
ReDim flds (0 To fldcount - 1)
For Colnum = 0 To fldcount - 1
Set flds(Colnum) = EmpDynaset.Fields (Colnum)
Next

'Insert Column Headings

For Colnum = 0 To EmpDynaset.Fields.Count - 1
ActiveSheet.Cells(1l, Colnum + 1) = flds(Colnum) .Name

Next

'Display Data
For Rownum = 2 To EmpDynaset.RecordCount + 1
For Colnum = 0 To fldcount - 1
ActiveSheet.Cells (Rownum, Colnum + 1) = flds(Colnum).Value

Using Oracle Objects for OLE with Automation Clients 2-7

Using Microsoft C++

Next
EmpDynaset .MoveNext
Next

Range("Al:Al") .Select
End Sub

Sub ClearData ()
Range ("Al1:H15") .Select
Selection.ClearContents
Range ("Al:Al") .Select
End Sub

4. Assign the procedures (macros) that were created, such as EmpData () and
ClearData (), to command buttons in the worksheet for easy access. When you
select the buttons, you can clear and refresh the data in the worksheet. In the
following screenshot, ClearData () is assigned to the Clear button and
EmpData () is assigned to the Refresh button.

B1 =] | ENAME
A B C | o | E | F | & | H

| 1 [EmPNO [ENAME TIOB MGR HIREDATE SAL COMM DEPTNO
| 2 | 7369SMITH CLERK 7902 1241780 8O0 20
| 3 | 7499 ALLEN |SALESMAN 7698 2720/ 1600 300 30
[4] 7521 WARD | SALESMAN 7698 2 1250 &00 30
| 5 | 7566 JOMNES |MAMAGER 7839 42481 2975 20
| 6 | 7654 MARTIN | SALESMAN 7698 9728/ 1250 1400 30
| 7 | 7698 BLAKE | MAMAGER 7830 E/1/31 2850 30
| 8 | 7782/ CLARK MAMAGER 7839 B/9/81 2450 10
EX 7788/5COTT ANALYST 7566 4/19/57 3000 20
[10 | 7839 KING PRESIDENT 11417481 &000 10
11] 7544 TURMER |SALESMAN 7698 /a1 1500 0 30
[12 | 7576 ADAMS | CLERK 7788 &/2387 1100 20
[13 | 7900 JAMES |CLERK 7698 12431 950 30
[14 | 7902/ FORD | AMNALYST 7566 12/ 3000 20
[15 | 7934 MILLER | CLERK 772 /e 1300 10
[16 |
17 | |
E Refrash Clear

Using Microsoft C++

For details about Oracle Objects for OLE with Visual C++, see Oracle Objects for OLE
C++ Class Library Developer’s Guide, available as online help.

Using Oracle Data Control with Visual Basic

Oracle Data Control, when refreshed, automatically creates a client (if needed),
session, database, and dynaset. For a basic application, little or no code is required.

This section shows two ways to set the properties of Oracle Data Control:
= Using the Visual Basic Properties window

= Programming the properties

2-8 Oracle Objects for OLE Developer's Guide

Using Oracle Data Control with Visual Basic

Setting Oracle Data Control Properties with the Properties Window

1. Start Visual Basic and create a new project.

2. In the Components option of the Project menu, add Oracle Data Control to the
project.

Components

LContrals | Designers | Insertable Objects I

[CIMSwebDVD 1.0 Type Library
[T ModeMar 1.0 Type Library
[Jaleprn 1.0 Type Library
[l optsHald 1.0 Type Library

foracle Data Control
[[]Package and Deplovment 'Wizard
[[1PageMavbar OTC 1.0 Type Library
[Preview 1.0 Tvpe Library
[IProjwiz 1.0 Type Library
[IROCClientHost 1.0 Type Library
[[Treal Plaver Activer Control Library
[IRef Edit Contral
[JReqwizctrl 1.0 Type Library

< I

_IJ Browse, ., |
-
D [™ selected Items Only

—Cracle Data Conkrol

Location: Crhoradeloral dbindorade, oo

ak I Cancel Lpply

The Oracle Data Control is added to your Visual Basic tool palette and looks like

3. To add Oracle Data Control to a project, drag and drop the control onto a form.
Resize and position the control.

this:

4. Change the name of the control to OraDataControl. Set up the Connect,
DatabaseName, and RecordSource properties as follows to access the Oracle

database:

Using Oracle Objects for OLE with Automation Clients 2-9

Using Oracle Data Control with Visual Basic

ORAD ataContro
|orADataCentrol CRADC =l
Alphabetic - Categorized
Caption Oracle Data Control ;I
Conneck okt tiget]
Databasehame ExampleDb
Dirky'\rite False
EditMode 0
Enabled True
FekchLimnit 0
FetchSize 0
Fonk {Faonk)
ForeCaolor B =Hs000001 28
HelpConkextID i}
Index
MNoRefetch False
Options u]
CracleMode False
ReadCnly False
RecordSource select * from emp LI
Connect

5. When Oracle Data Control is set up, you can drag and drop a Visual Basic control
onto the same form and access the data in the control. Set the Data properties to
access the data field and source that you want. The following figure shows a
TextBox control that sets up display of the employee numbers.

|Text1(0) Textgox
Alphabetic Categorized

]
Appearance -
Behavior
E Data
DrataField EMPMNC -

DakaSource CORADataControl
DDE
Font
= Misc
(Marne) Texkl LI

DataField

Returns)sets a value that binds a contral to a field in
the current record,

6. When the project is run, the data identified by the RecordSource property is
displayed using Oracle Data Control.

2-10 Oracle Objects for OLE Developer's Guide

Using Oracle Data Control with Visual Basic

&, Form1 =] 3

Emploves Mumber
|?359

Emplovee Mame
ISMITH

Emplovee Job
IELEF!K

N ‘ Oracle Data Conkral } N

You can also use Microsoft Grid Control to display all the data in the table. You
need to add the grid control with the Components option of the Project menu.

Setting Oracle Data Control Properties Programmatically

The following code fragment demonstrates how to programmatically set the
properties of Oracle Data Control required to create a dynaset. These are the same
properties that you can set with the Properties window in Visual Basic.

1. Create a new project, and then in the Components option of the Project menu, add
Oracle Data Control to the project.

2. Drag and drop Oracle Data Control onto a form. Change the name of the control
to OraDataControl.

3. After you have inserted Oracle Data Control onto a form, add the following code
to the load procedure associated with the form:

'Set the username and password.
OraDataControl.Connect = "scott/tiger"

'Set the database name.
OraDataControl.DatabaseName = "ExampleDb"

'Set the record source.
OraDataControl.RecordSource = "select * from emp"

'Refresh the data control.
OraDataControl.Refresh

You now have a valid session, database, and dynaset that can be referenced as

follows:
Object Reference
orasession oradatacontrol.oradatabase.orasession
oradatabase oradatacontrol.oradatabase
oradynaset oradatacontrol.recordset

Using Oracle Objects for OLE with Automation Clients 2-11

Using the Oracle Data Control with MS Visual C++

4.

You can access the data in the RecordSource property using Visual Basic
controls, such as the TextBox, as shown in the previous example.

Using the Oracle Data Control with MS Visual C++

This example shows how to create a basic Win32 Application with Oracle Data
Control using MS Visual C++. This example assumes that both the Oracle data and DB
Grid controls were registered on the system.

1.
2
3.

10.

11.

12.

Insert ActivelX Control

Start the Microsoft Visual C++ program.
From the File Menu, select New.

In the Projects tab of the New Window, select MFC AppWizard.exe. Enter a
project name, such as 0040, and determine the location of the project. Click OK.

In Step 1 of the MFC AppWizard, select Dialog based application, then click
Next.

In Step 2 of the wizard, make sure the ActiveX Controls box is checked; accept the
defaults; and enter a title for the dialog box. Click Next.

In Step 3 of the wizard, accept the defaults. Click Next.
In Step 4, click Finish. At the New Project Information screen, click OK.

In the Project Workspace dialog box, select the ResourceView tab. Expand the
Resources folder, then expand the Dialog folder.

Double-click the main project dialog box to edit the dialog box.
Note: If you used OO40 as the project name, it is named IDD_0040_DIALOG.

Delete the default controls that are on the dialog box. Resize the dialog box to
make it larger.

With the dialog box selected, click the right mouse button to display the menu.
Select Properties from the menu. In the General tab of the Properties window,
change the caption to Oracle Data Control Example. Close the Properties
window.

With the dialog box selected, click the right mouse button to display the menu.
Select Insert ActiveX Control... from the menu. Select ORADC Control in the
window and then click OK.

Achiverd control;

ObjectBrowsger Control
ObjectLizt Control

Oracle Image Contral
Oracle InterQffice Server
Oracle PowerBrowser DK
Oracle Sound Control
Oracle Yideo Control

Cancel

il

ORADC Control -
Popup Control
Popupkdenu Object LI

Path:

2-12 Oracle Objects for OLE Developer's Guide

Using the Oracle Data Control with MS Visual C++

13.

14.

15.

16.

17.

18.
19.
20.

Position the ORADC Control at the bottom of the dialog box. With the data
control selected, click the right mouse button to display the menu. Select
Properties from the menu.

In the General tab of the Properties window, change the ID to IDC_
ORADATACONTROL. Deselect the check mark for Visible so that the control is
hidden when the application is run.

Display the All tab of the Properties window and set the following:

Connect: scott/tiger
DatabaseName: exampledb
RecordSource: select * from emp

ORADC Control Properties
- ? General Contral Al
Froperty Walue
Caption ORADCCHN -
Connect zootthiger
[atabazeM ame exampledb
Diirtytarite Falze
E dittdode Il
Enabled True [
FetchLimit 0
FetchSize 0
Fant k5 Sanz S e LI

With the dialog box selected, click the right mouse button to display the menu.
Select the Insert ActiveX control from the menu. Locate the DBGrid Control and
click OK.

Position the DBGrid Control at the top of the dialog box and resize it. Display the
properties for the control. In the All tab of the Properties window, set the
DataSource property to Oracle Data Control (IDC_ORADATACONTROL). Accept
the defaults for the other properties. These can be changed later.

From the File Menu, select Save All.
Build and Execute the project.

The DBGrid Control displays the records from the emp table as in the following
illustration:

Using Oracle Objects for OLE with Automation Clients 2-13

Using the Oracle Data Control with MS Visual

C++

&Dlacle Data Control Example

EMPMO JOB MGHR HIREDATE

3 363 CLERK | 7902 12417480
SALESM| YB35 2420431

B2 WaRD |SALESM| 7E33 2422/
FOEG[JONES |MAMAGE) 7333 442/
7E54|MARTIN |SALESM| 7E33 3/28/31
FE9B8|BLAKE | MAMAGE| 7833 51481

72| CLARK. |MAMNAGE| 7833 E/3/81
F788|SCOTT |AMALYS| 7VBEE 4/19/87

73| KING PRESIDE 114741

7844| TURMER |SALESM| 7833 3/3/31
7876|ADAMS |CLERK | 7733 5/23/87

‘I I OO0 LARACC T CoOr FCad 17002004

2-14 Oracle Objects for OLE Developer's Guide

3

Basic Features

This chapter describes basic features of Oracle Objects for OLE.

This chapter contains these topics:

Overview of Client Applications

Accessing the Oracle Objects for OLE Automation Server
Connecting to Oracle Database

Executing Commands

Thread Safety

Using the Connection Pool Management Facility
Detection of Lost Connections

PL/SQL Support

Transaction Control

Microsoft Transaction Server Support

Asynchronous Processing

Overview of Client Applications

Oracle Objects for OLE enables client applications to connect to Oracle databases,
execute commands, and access and manipulate the results returned. While some
flexibility exists in the order in which specific tasks can be performed, every
application using OO40 Automation objects performs the following basic steps:

Accessing the Oracle Objects for OLE Automation Server
Connecting to Oracle Database
Executing Commands

Disconnect from the servers and free the OO4O objects used

Accessing the Oracle Objects for OLE Automation Server

To connect to an Oracle database with the OO40 Automation Server, you must first
create an instance of the server. In Visual Basic (VB), this is usually done by calling the
CreateObject method, although the NEW keyword can also be used.

Basic Features 3-1

Connecting to Oracle Database

You can use the Visual Basic CreateObject method with either of the following two
0040 server objects. The interfaces of these objects can provide access to OO40 and
enable a connection to Oracle Database.

s OraSession

Highest level object for an application. It manages collections of OraDatabase,
OraConnection, and OraDynaset objects.

n OraServer

Represents a physical connection to a database instance and allows for connection
multiplexing

The CreateObject method uses the ID of the component and object as arguments.

Obtaining an OraSession Object

The following script demonstrates how to obtain an OraSession object in Visual
Basic. 0040Session is the object variable that holds an instance of the OraSession
object.

Dim 0040Session as Object
Set 0040Session = CreateObject (“OracleInProcServer.XOraSession")

or

Dim 0040Session as OraSession

Set 0040Session = New OraSessionClass

or

Dim 0040Session as New OraSessionClass

The following example demonstrates how to obtain an OraSession object in IIS
Active Server Pages.

<OBJECT RUNAT=Server SCOPE=APPLICATION ID=0040Session
PROGID="OracleInProcServer.XOraSession">
</OBJECT>

OracleInProcServer.XOraSession is the version independent program ID for
0040 that the Oracle client installation program registers in the Windows registry. It
is the symbolic name for a globally unique identifier (CLSID) that identifies the OO40
component.

Obtaining an OraServer Object

You can also use the OraServer object interface for accessing the OO40O Automation
Server.

Dim 0040Server as Object
Set 0040Server = CreateObject ("OracleInProcServer.XOraServer")

Now you can connect to Oracle Database.

See Also: "Connecting to Oracle Database" on page 3-2

Connecting to Oracle Database

Once you have obtained an interface, you can use it to establish a user session in an
Oracle database by invoking the OpenDatabase method.

3-2 Oracle Objects for OLE Developer's Guide

Executing Commands

Set EmpDb= 0040Session.OpenDatabase ("ExampleDb", "Scott/Tiger", 0)

or

Set EmpDb= 0040Server.OpenDatabase ("Scott/Tiger")

The variable EmpDb represents a user session. It holds an OraDatabase interface and
can be used to send commands to Oracle Database using ExampleDb for the network
connection alias and scott/tiger for the user name and password.

See Also: OpenDatabase Method on page 10-212

Using OraServer for Connection Multiplexing

The OraServer interface allows multiple user sessions to share a physical network
connection to the database. This reduces resource usage on the network and the
database, and allows for better server scalability. However, execution of commands by
multiple user sessions is serialized on the connection. Therefore, this feature is not
recommended for use in multithreaded applications in which parallel command
execution is needed for performance.

The following code example shows how to use the OraServer interface to establish
two user sessions:

Set 0040Server = CreateObject ("OracleInProcServer.XOraServer")
0040Server.Open (" ExampleDb")

Set EmpDbl = 0040Server.OpenDatabase("Scott/Tiger")

Set EmpDb2 = 0040Server.OpenDatabase ("Scott/Tiger")

You can also obtain user sessions from a previously created pool of objects.

See Also: "Using the Connection Pool Management Facility" on
page 3-8

Executing Commands

Queries

Commands that can be sent to Oracle databases using OO40 Automation objects are
divided into the following categories:

s "Queries" on page 3-3

s "Data Manipulation Language Statements" on page 3-5

Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in the
following example:

SELECT ename, empno FROM emp

In OO40, SELECT statements such as this are used with the CreateDynaset method
of the OraDatabase interface to execute queries. This method returns an
OraDynaset object that is then used to access and manipulate the set of rows
returned. An OraDynaset object encapsulates the functions of a client-side scrollable
(forward and backward) cursor that allows browsing the set of rows returned by the
query it executes.

Basic Features 3-3

Executing Commands

Note: Caching result sets on the client's local disk can be disabled if
backward scrollability is not a requirement. This is strongly
recommended and can provide significant performance
improvements. Passing the ORADYN_NOCACHE option in the
CreateDynaset method disables caching. This constant is defined in
the oraconst. txt file and can be found in the root directory where
0040 is installed, ORACLE_BASE\ORACLE_HOME\0040.

See Also:
= OraDynaset Object on page 9-30
»s CreateDynaset Method on page 10-85

The following code example shows how to connect to the ExampleDb database,
execute a query, move through the result set of rows, and displays the column values
of each row in a simple message box.

Set 0040Session = CreateObject (“OracleInProcServer.XOraSession")
Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "Scott/Tiger", 0)

' SELECT query described above used in next line

Set Employees = EmpDb.CreateDynaset ("SELECT ename, empno FROM" & _
"emp" , ORADYN_NOCACHE)

While NOT Employees.EOF

MsgBox "Name: " & Employees("ENAME").value & "Employee #: " & _

Employees ("EMPNO") .value

Employees.MoveNext

Wend

In the previous example, Employees("ENAME") and Employees("EMPNO") return
values of the ENAME and the EMPNO columns from the current row in the result set,
respectively. An alternative method of accessing the column values is to use the
positions of the columns, Employees (0) for the ENAME column and Employee (1)
for EMPNO. This method obtains the column value faster than referencing a column by
its name.

The Employees .MoveNext statement in the example sets the current row of the
result set to the next row. The EOF property of the OraDynaset is set to True if an
attempt is made to move past the last row in the result set.

The MoveNext method is one navigational method in the OraDynaset interface.
Other methods include MoveFirst, MoveLast, MoveNext, MovePrevious,
MoveNextn, MovePreviousn, MoveRel, and MoveTo.

An OraDynaset object also provides methods to update and delete rows retrieved
from base tables or views that can be updated. In addition, it provides a way to insert
new rows. See "OraDynaset Object” on page 9-30.

Queries can also require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name, empno
FROM employees
WHERE ename = :ENAME

In the SQL statement, : ENAME is a placeholder for a value that is supplied by the
application.

3-4 Oracle Objects for OLE Developer's Guide

Executing Commands

In 0040, the OraParameter object is used to supply data values for placeholders.

To define a parameter, use the OraParameters collection object. This object is
obtained by referencing the Parameters property of an OraDatabase interface. The
OraParameters collection provides methods for adding, removing, and obtaining
references to OraParameter objects.

The following statement adds an input parameter, ORAPARM_INPUT, to the
OraParameters collection contained in the EmpDb object.

EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT

ENAME is the name of the parameter and must be the same as the name of the
placeholder in the SQL statement, : ENAME in the sample code. JONES is provided as
the initial value, and ORAPARM_INPUT notifies OO40 that it is used as an INPUT
parameter.

The following example creates an OraDynaset object that contains only one row for
an employee whose name is ' JONES '.

Set 0040Session = CreateObject (“OracleInProcServer.XOraSession")

Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "Scott/Tiger", 0)

EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT

Set Employees = EmpDb.CreateDynaset ("SELECT ename, empno FROM emp" & _
"WHERE ename = :ENAME", ORADYN_NOCACHE)

While NOT Employees.EOF
MsgBox "Name: " & Employees("ename").value & "Employee #: " &
Employees ("empno") .value
Employees.MoveNext
Wend

See Also:
s OraParameter Object on page 9-50
s OraParameters Collection on page 9-68

m MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

s MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods
on page 10-202

s OraDatabase Object on page 9-28

Data Manipulation Language Statements

Data manipulation language (DML) statements can change data in the database tables.
For example, DML statements are used to:

s Updating Database Records
s Deleting Rows from a Table
= Inserting New Rows into a Table

The OraDatabase interface in OO40 provides two methods for executing DML
statements: ExecuteSQL and CreatesSQL. The following discussion describes how
these methods can be used to execute various types of DML statements.

Basic Features 3-5

Executing Commands

See Also:
= ExecuteSQL Method on page 10-144
s CreateSQL Method on page 10-111

Updating Database Records

The following example uses the ExecuteSQL method to execute an UPDATE
statement.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT

EmpDb.ExecuteSQL ("UPDATE emp SET sal = sal + 1000 WHERE ename = :ENAME")

Another way to execute the UPDATE statement is to use the CreateSQL method:

Set sglStatement = EmpDb.CreateSQL ("UPDATE emp SET sal = sal + 1000" & _
"WHERE ename = :ENAME", 0&)

Both the ExecuteSQL and CreateSQL methods execute the UPDATE statement
provided. The difference is that the CreateSQL method returns a reference to an
OraSQLStmt interface, in addition to executing the statement. This interface can later
be used to execute the same query using the Refresh method. Because the query has
already been parsed by the database, subsequent execution of the same query results
in faster execution, especially if bind parameters are used.

For example, to increase the salary of an employee named KING by 1000, change the
value of the placeholder, and refresh the sglStatement object as follows:

EmpDb.Parameters ("ENAME") .Value = "KING"
sglStatement.Refresh

For DML statements that are frequently executed, using parameters with OrasglStmt
objects is more efficient than using the ExecutesSqgl statement repeatedly. When the
Refresh method of the OraSQLStmt is executed, the statement no longer needs to be
parsed by the database. In application servers, such as Web servers, where the same
queries are frequently executed with different parameter values, this can lead to
significant savings in Oracle Database processing.

See Also:
= ExecuteSQL Method on page 10-144

s CreateSQL Method on page 10-111
s OraSQLStmt Object on page 9-60

Deleting Rows from a Table

The following example uses the CreateSQL method to delete rows from the emp
table.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT

Set sglStatement = EmpDb.CreateSQL ("DELETE from emp WHERE ename = :ENAME")

To delete another row from the emp table, the value of the parameter is changed, and
the sglStatement object is refreshed.

EmpDb.Parameters ("ENAME") .Value = "KING"

3-6 Oracle Objects for OLE Developer's Guide

Thread Safety

sglStatement.Refresh

Inserting New Rows into a Table
The following example adds a new row into the table.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)

EmpDb.ExecuteSQL ("INSERT INTO emp (empno, ename, job, mgr, deptno)" & _
"VALUES (1233, 'OERTEL', 'WRITER', 7839, 30) ")

Inserting Multiple Rows Using Parameter Arrays

You can use parameter arrays to fetch, update, insert, or delete multiple rows in a
table. Using parameter arrays for manipulating multiple rows is more efficient than
executing multiple statements that operate on individual rows.

The following example demonstrates how the AddTable method of the
OraDatabase interface is used to create parameter arrays. The arrays are then
populated with values, and used as placeholders in the execution of an INSERT
statement that inserts two rows into the emp table.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set EmpDb = 0040Session.OpenDatabase ("Exampledb", "scott/tiger", 0)

'Creates parameter arrays for the empno, ename, job, and salary columns
EmpDb.Parameters.AddTable "EMPNO_ARRAY", ORAPARM INPUT, ORATYPE_NUMBER, 2
EmpDb.Parameters.AddTable "ENAME_ARRAY", ORAPARM INPUT, ORATYPE VARCHAR2, 2, 10
EmpDb.Parameters.AddTable "JOB_ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 9
EmpDb.Parameters.AddTable "MGR_ARRAY", ORAPARM_INPUT, ORATYPE_NUMBER, 2
EmpDb.Parameters.AddTable "DEPT ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 10
Set EmpnoArray = EmpDb.Parameters ("EMPNO_ARRAY")

Set EnameArray = EmpDb.Parameters ("ENAME_ARRAY")

Set JobArray = EmpDb.Parameters ("JOB_ARRAY")

Set MgrArray = EmpDb.Parameters ("MGR_ARRAY")

Set DeptArray = EmpDb.Parameters ("DEPT_ARRAY")

'Populate the arrays with values
EmpnoArray(0) = 1234

EnameArray (0) = "JORDAN"
JobArray(0) = "SALESMAN"
MgrArray(0) = 7839
DeptArray(0) = 30
EmpnoArray (1) = 1235
EnameArray (1) = "YOUNG"
JobArray(l) = "SALESMAN"
MgrArray(l) = 7839
DeptArray(1l) = 30

'Insert two rows
EmpDb.ExecuteSQL ("INSERT INTO emp (empno, ename, job, mgr, deptno) VALUES" & _
" (:EMPNO_ARRAY, :ENAME_ARRAY, :JOB_ARRAY, :MGR_ARRAY, :DEPT_ARRAY)")

See Also: AddTable Method on page 10-23

Thread Safety

0040 is thread-safe and can be used effectively in multithreaded applications and
environments such as the Microsoft Internet Information Server (IIS). OO40O supports
both the free and apartment threading models in COM/DCOM.

Basic Features 3-7

Using the Connection Pool Management Facility

Access to OO40 object attributes is serialized when used with multiple threads of
execution. To achieve maximum concurrency in query execution in a multithreaded
application with OO40, avoid sharing objects in multiple threads.

Avoid using commit and rollback operations on a session object that is shared among
multiple threads because all connections associated with that session are committed or
rolled back. To perform commit and rollback operations on a session object, create a
unique session object for each database object used.

Using the Connection Pool Management Facility

The connection pool in OO40 is a pool of OraDatabase objects. An 0040
connection pool is a group of (possibly) already connected OraDatabase objects. For
applications that require constant connections and disconnections to the database,
such as ASP Web applications, using a connection pool results in enhanced
performance.

Creating the Connection Pool

The connection pool is created by invoking the CreateDatabasePool method of the
OraSession interface. An OraDatabase object represents a connection to an Oracle
database and contains methods for executing SQL statements and PL/SQL blocks.

See Also: CreateDatabasePool Method on page 10-83

Obtaining from and Returning Objects to the Pool

To retrieve an OraDatabase object from the pool, call the GetDatabaseFromPool
method. This function returns a reference to an OraDatabase object.

See Also: GetDatabaseFromPool Method on page 10-155

Destroying the Pool

The pool is implicitly destroyed if the parent session object that it belongs to is
destroyed. It can also be destroyed at any time by invoking the
DestroyDatabasePool method.

See Also: DestroyDatabasePool Method on page 10-128

Accessing the Pool attributes

The following are the database pool properties. These properties are read-only:
s DbPoolMaxSize - maximum pool size
= DbPoolCurrentSize - current size of the pool

s DbPoolInitialSize -initial size of the pool

Processing Transactions Using the Database from the Connection Pool

The following example shows the recommended way to process transactions:

set Odb = OraSession.GetDatabaseFromPool (0)
Odb.Connection.BeginTrans

0db.Connection.CommitTrans

3-8 Oracle Objects for OLE Developer's Guide

PL/SQL Support

Detection of Lost Connections

0040, linked with clients from releases 8.1.6 or higher, supports detection of lost
connections.

Applications can verify the status of the database connection by invoking the
ConnectionOK property of the OraDatabase object. The
OraSession.GetDatabaseFromPool method now verifies the connection before
returning the OraDatabase to the application.

If the connection is lost, the GetDatabaseFromPool method drops the lost
connection and fetches a new connection.

Dim MyDatabase As OraDatabase
Set MySession = CreateObject ("OracleInProcServer.XOraSession")
Set MyDatabase = MySession.OpenDatabase("ora90", "scott/tiger", 0&)

' Other code

' Check if the database connection has not timed out
if MyDatabase.ConnectionOK

MsgBox " The database connection is valid"
endif

See Also:

s ConnectionOK Property on page 11-26

s OraDatabase Object on page 9-28

s GetDatabaseFromPool Method on page 10-155

PL/SQL Support

PL/SQL is the Oracle procedural extension to the SQL language. PL/SQL processes
complicated tasks that simple queries and SQL data manipulation language
statements cannot perform. Without PL/SQL, Oracle Database would have to process
SQL statements one at a time. Each SQL statement results in another call to the
database and consequently higher performance overhead. In a networked
environment, the overhead can be significant. Every time a SQL statement is issued, it
must be sent over the network, creating more traffic. However, with PL/SQL, an entire
block of statements can be sent to a database at one time. This can greatly reduce
communication between an application and a database.

PL/SQL allows a number of constructs to be grouped into a single block and executed
as a unit. These include:

s One or more SQL statements

= Variable declarations

= Assignment statements

s Procedural control statements (IF. . .THEN. . . ELSE statements and loops)
s Exception handling statements

= Calls to other Oracle stored procedures and stored functions

= Special PL/SQL features such as records, tables, and cursor FOR loops

s Cursor variables

Basic Features 3-9

PL/SQL Support

PL/SQL Integration with Oracle Objects for OLE

Oracle Objects for OLE (O040) provides tight integration with PL/SQL stored
procedures. OO40 supports PL/SQL stored procedures, PL/SQL tables, PL/SQL,
cursors and so on. The PL/SQL bind variables are supported through the
OraParameter Add method.

The stored procedure block is executed either through the CreateSQL method or the
ExecuteSQL method.

Oracle Objects for OLE can return a cursor created in the stored procedure or
anonymous PL/SQL block as a READONLY dynaset object.To do this, you must assign
the cursor variable as an OraParameter object of type ORATYPE_CURSOR.

After executing the stored procedure, the Value property of this OraParameter
object returns a read-only dynaset object.

This dynaset object can be treated the same as other dynaset objects.

See Also:

= AddTable Method on page 10-23

= Add Method on page 10-8

= ExecuteSQL Method on page 10-144
s CreateSQL Method on page 10-111

= Value Property on page 11-173

s OraParameter Object on page 9-50

Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL

In 0040, you can use the ExecuteSQL or CreateSQL methods of the OraDatabase
object to execute PL/SQL blocks, as the following example shows:

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)

'Add EMPNO as an Input parameter and set its initial value.
EmpDb.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
EmpDb.Parameters ("EMPNO") .ServerType = ORATYPE_NUMBER

'Add ENAME as an Output parameter and set its initial value.
EmpDb.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
EmpDb.Parameters ("ENAME") .ServerType = ORATYPE_VARCHAR2

'Add SAL as an Output parameter
EmpDb.Parameters.Add "SAL", 0, ORAPARM_ OUTPUT
EmpDb.Parameters ("SAL") .ServerType = ORATYPE_NUMBER

'Add COMMISSION as an Output parameter and set its initial value.

EmpDb.Parameters.Add "COMMISSION", 0, ORAPARM_OUTPUT

EmpDb. Parameters ("COMMISSION") .ServerType = ORATYPE_NUMBER

EmpDb.ExecuteSQL ("BEGIN SELECT ename, sal, comm INTO :ENAME, :SAL," & _
":COMMISSION FROM emp WHERE empno = :EMPNO; END;")

'display the values of Ename, Sal, Commission parameters
MsgBox "Name: " & EmpDb.Parameters ("ENAME") .Value

MsgBox "Salary " & EmpDb.Parameters("SAL") .Value

MsgBox "Commission: " & EmpDb.Parameters ("COMMISSION") .Value

3-10 Oracle Objects for OLE Developer's Guide

PL/SQL Support

The following example executes a PL/SQL block that calls a stored procedure using
the CreatesQL method in O0O40. The procedure takes a department number as input
and returns the name and location of the department.

This example is used for creating the stored procedure in the employee database.

CREATE OR REPLACE PACKAGE Department as

PROCEDURE GetDeptName (inDeptNo IN NUMBER, outDeptName OUT VARCHAR2,
outDeptLoc OUT VARCHAR2) ;

END Department;

/

CREATE OR REPLACE PACKAGE BODY Department as
PROCEDURE GetDeptName (inDeptNo IN NUMBER, outDeptName OUT VARCHAR2,
outDeptLoc OUT VARCHAR2) is

BEGIN

SELECT dname, loc into outDeptName, outDeptLoc from DEPT

WHERE deptno = inDeptNo;

END;
END Department;
/

The following example executes the previously created procedure to get the name and
location of the department where deptno is 10.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)

empDb . Parameters.Add "DEPTNO", 10, ORAPARM_INPUT

empDb. Parameters ("DEPTNO") . ServerType = ORATYPE_NUMBER

empDb. Parameters.Add "DNAME", 0, ORAPARM_OUTPUT

empDb.Parameters ("DNAME") . ServerType = ORATYPE_VARCHAR2

empDb. Parameters.Add "DLOC", 0, ORAPARM_OUTPUT

empDb. Parameters ("DLOC") .ServerType = ORATYPE_VARCHAR2

Set P1SglStmt = empDb.CreateSQL("Begin Department.GetDeptname" & _
" (:DEPTNO, :DNAME, :DLOC); end;", 0&)

'Display Department name and location
MsgBox empDb.Parameters ("DNAME") .Value & empDb.Parameters("DLOC") .Value

See Also:
= ExecuteSQL Method on page 10-144
s CreateSQL Method on page 10-111

Returning PL/SQL Cursor Variables

PL/SQL cursor variables are mainly used for accessing one or more query result sets
from PL/SQL blocks and stored procedures and functions. The OraParameter object
in O040 can be used to hold a PL/SQL cursor variable.

The OraParameter object representing a cursor variable should be of type ORATYPE_
CURSOR, and can only be defined as an output variable. After the PL/SQL block is
executed, the Value property of the OraParameter object contains a read-only
OraDynaset object. This OraDynaset object can be used to scroll through the
returned rows.

In some cases, it is better to use the CreateSQL method for executing PL/SQL
procedures than the ExecuteSQL method. The Refresh method on the OrasSQLStmt
object can result in modified PL/SQL cursors. If the CreateSQL method is used, these

Basic Features 3-11

PL/SQL Support

modified cursors are automatically associated with the existing dynaset object, and no
new dynaset object is created.

See Also: "Executing PL/SQL Blocks Using ExecuteSQL and
CreateSQL" on page 3-10

You cannot set the SQL property of the dynaset object; this raises an error.

Note: PL/SQL stored procedures that contain cursors as table
parameters are not supported.

You should call the Remove method on the parameter object. This helps in cleaning the
dynaset object and local temporary cache files.

The following example contains a stored procedure that gets the cursors for the emp
and dept tables and a small application that executes the procedure.

Stored Procedure

CREATE PACKAGE EmpAndDept AS
cursor emp is select * from emp;
cursor dept is select * from dept;
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;
PROCEDURE GetEmpAndDeptData (emp_cv OUT EmpCurTyp,
dept_cv OUT DeptCurTyp) ;
END EmpAndDept;
/

CREATE PACKAGE BODY EmpAndDept AS
PROCEDURE GetEmpAndDeptData (emp_cv OUT EmpCurTyp,
dept_cv OUT DeptCurTyp) IS
BEGIN

OPEN emp_cv FOR SELECT * FROM emp;

OPEN dept_cv FOR SELECT * FROM dept; END GetEmpAndDeptData;
END EmpAndDept;
/

Application

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)

empDb . Parameters.Add "EMPCUR", 0, ORAPARM_OUTPUT

empDb. Parameters ("EMPCUR") .serverType = ORATYPE_CURSOR

empDb.Parameters.Add "DEPTCUR", 0, ORAPARM_OUTPUT

empDb. Parameters ("DEPTCUR") .serverType = ORATYPE_CURSOR

Set P1SglStmt = empDb.CreateSql ("Begin EmpAndDept.GetEmpAndDeptData (:EMPCUR," & _
":DEPTCUR); end;", 0)

Set EmpDynaset = empDb.Parameters ("EmpCur").Value

Set DeptDynaset = empDb.Parameters("DeptCur").Value

MsgBox EmpDynaset.Fields("ENAME") .Value

MsgBox DeptDynaset.Fields("DNAME") .Value

3-12 Oracle Objects for OLE Developer's Guide

PL/SQL Support

See Also:

s OraParameter Object on page 9-50

= ServerType Property on page 11-138

= Value Property on page 11-173

s OraDynaset Object on page 9-30

s OraSQLStmt Object on page 9-60

= DynasetOption Property on page 11-50
s CreateSQL Method on page 10-111

s Refresh Method on page 10-225

= Remove Method on page 10-230

s DynasetCacheParams Method on page 10-133
= Recordset Property on page 14-29

Returning PL/SQL Tables

PL/SQL tables are mainly used for accessing arrays of PL/SQL data. The
OraParamArray object in OO40 can be used to hold a PL/SQL cursor variable.

The OraParamArray object representing a table variable should be created first the
using the AddTable method. Table values are accessed or set using the Get_value
and Put_Value methods of the OraParamArray object.

The PL/SQL procedure Get EmpNamesInArray returns an array of ENAME values for
array of EMPNOs.

CREATE PACKAGE EmpNames AS
type NUMARRAY is table of NUMBER index by
BINARY_INTEGER; --Define EMPNOS array
type VCHAR2ARRAY is table of VARCHAR2(10) index by
BINARY_INTEGER; --Define ENAMES array
PROCEDURE GetEmpNamesInArray (ArraySize IN INTEGER,
inEmpnos IN NUMARRAY, outEmpNames OUT VCHAR2ARRAY) ;
END EmpNames;
/

CREATE PACKAGE BODY EmpNames AS
PROCEDURE GetEmpNamesInArray (ArraySize IN INTEGER,
inEmpnos IN NUMARRAY, outEmpNames OUT VCHAR2ARRAY) is
BEGIN
FOR I in 1..ArraySize loop
SELECT ENAME into outEmpNames (I) from EMP
WHERE EMPNO = inEmpNos (I);
END LOOP;
END;

END EmpNames;
/

The following example executes the previous procedure to get the ename table.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set Empdb = 0040Session.OpenDatabase ("Exampledb", "scott/tiger", 0)
Empdb.Parameters.Add "ArraySize", 3, ORAPARM_INPUT

Basic Features 3-13

Transaction Control

Empdb.Parameters.AddTable "EMPNOS", ORAPARM_INPUT, ORATYPE_NUMBER, 3, 22
Empdb.Parameters.AddTable "ENAMES", ORAPARM_OUTPUT, ORATYPE_VARCHAR2, 3, 10
Set EmpnoArray = Empdb.Parameters ("EMPNOS")

Set EnameArray = Empdb.Parameters ("ENAMES")

'Initialize the newly created input parameter table EMPNOS
EmpnoArray (0) = 7698

EmpnoArray (1) 7782

EmpnoArray (2) = 7654

Empdb.ExecuteSQL ("Begin EmpNames.GetEmpNamesInArray (:ArraySize," & _

":EMPNOS, :ENAMES); End;")

MsgBox EnameArray(0)

MsgBox EnameArray (1)

MsgBox EnameArray(2)

See Also:
s Get_Value Method on page 10-167
s Put_Value Method on page 10-220

Executing Data Definition Language Statements

Data Definition Language (DDL) statements manage schema objects in the database.
DDL statements create new tables, drop old tables, and establish other schema objects.
They also control access to schema objects. For example:

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
EmpDb.ExecuteSQL ("create table employees (name VARCHAR2 (20)," & _

"ssn VARCHAR2 (12), empno NUMBER(6), mgr NUMBER(6), salary NUMBER(6)")

EmpDb.ExecuteSQL ("GRANT UPDATE, INSERT, DELETE ON employees TO donna")
EmpDb . ExecuteSQL ("REVOKE UPDATE ON employees FROM jamie")

DDL statements also allow you to work with objects in Oracle Database, for example:

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

Set EmpDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)

EmpDb.ExecuteSQL ("create type person_t as object (name VARCHAR2 (30)," & _
"ssn VARCHAR2 (12),address VARCHAR2 (50))")

EmpDb.ExecuteSQL ("create table person_tab OF person_t")

Transaction Control

A transaction is a logical unit of work that comprises one or more SQL statements
executed by a single user. A typical example is transferring money from one bank
account to another. Two operations take place:

1. Money is taken out of one account.
2. Money is put into the other account.

These operations need to be performed together. If one operation was completed but
not the other (for example, if the network connection went down), the bank's books
would not balance correctly.

Normally, when you execute an update method on a dynaset, the changes are
committed to the database immediately. Each operation is treated as a distinct
transaction. The BeginTrans, CommitTrans, and Rollback transactional control

3-14 Oracle Objects for OLE Developer's Guide

Microsoft Transaction Server Support

methods of the OraSession object allow operations to be grouped into larger
transactions.

The BeginTrans method tells the session that you are starting a group of operations.
The CommitTrans method makes the entire group of operations permanent. The
Rollback method cancels the entire group. The CommitTrans and Rollback
methods end the transaction, and the program returns to normal operation: one
transaction for each operation. Experienced Oracle Database users should note the
following differences between the operation of Oracle Objects for OLE and many
Oracle Database tools:

s Oracle Database tools, such as SQL*Plus, execute as if the BeginTrans method
was called when the tool was started. This means that updates are not committed
immediately; they are held until a commit or rollback is executed.

= SQL*Plus starts a new transaction every time a commit or rollback is executed.

s SQL*Plus does not take a row lock in the case of a failed UPDATE or DELETE
statement. However, in the case of OO40, if UPDATE or DELETE methods fail on a
given row in a dynaset in a global transaction (such as cases in which you issued a
BeginTrans method), be aware that locks remain on those rows. These locks
persist until you call a CommitTrans or Rollback method.

If you are connected to more than one database and use the transaction methods, be
aware that Oracle Objects for OLE commits each database separately. This is not the
same as the two-phase commit that Oracle Database provides. If your application
needs to guarantee data integrity across databases, connect to a single database and
then access additional databases by way of the Oracle Database link feature. This
method gives you the benefit of the Oracle Database two-phase commit. Consult your
Oracle Database documentation for more information about two-phase commit,
database links, and distributed transactions.

Transactions apply only to the Data Manipulation Language (DML) portion of the SQL
language (such as INSERT, UPDATE, and DELETE statements). Transactions do not
apply to the Data Control Language (DCL) or Data Definition Language (DDL)
portions (such as CREATE, DROP, and ALTER statements) of the SQL language. DCL
and DDL commands always force a commit, which in turn commits everything done
previously.

See Also:

= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66

= OraConnection Object on page 9-27

= OraSession Object on page 9-58

= ResetTrans Method on page 10-233

= Rollback Method on page 10-235

Microsoft Transaction Server Support

Oracle database transactions initiated in Oracle Objects for OLE (OO40) automatically
participate in global transactions coordinated by the Microsoft Distributed Transaction
Coordinator (DTC) in the Microsoft Transaction Server (MTS), if all the following
conditions are true:

s The OpenDatabase method of OraSession uses the ORADB_ENLIST_IN_MTS
option.

Basic Features 3-15

Asynchronous Processing

s OO40 determines that it is running in the context of a global transaction in MTS.

s Oracle Service for Microsoft Transaction Server is installed and running.

See Also:
» Oracle Services for Microsoft Transaction Server Developer’s Guide

s OpenDatabase Method on page 10-212

Asynchronous Processing

In OO40 Automation, you can execute commands using asynchronous processing.
This enables you to execute SQL statements and PL/SQL blocks in nonblocking mode.
Nonblocking mode is an option of the CreateSQL method.

See Also: CreateSQL Method on page 10-111

Nonblocking Mode

In nonblocking mode, control is returned to the application immediately even if the
execution is not complete. This allows the application to execute other tasks that are
not dependent on the results of the last execution.

To enable nonblocking mode, pass in the ORASQL_NONBLK option to the CreateSQL
method while creating the OraSQLStmt object. If this mode is not specified, the
OraSQLStmt object executes in blocking mode (default behavior).

'Create the statement in NON-BLOCKING mode
OraSQL = Oradb.CreateSQL("delete from emp", ORASQL_NONBLK)

An OrasSQLStmt object created in nonblocking mode executes in nonblocking mode
for the lifetime of the object.

See Also: OraSQLStmt Object on page 9-60

This section contains the following topics:

» Checking the Status of a Nonblocking Operation

s Canceling a Nonblocking Operation

= Executing Multiple Queries in Asynchronous Mode

= Limitations on Nonblocking

Checking the Status of a Nonblocking Operation

To determine the status of an OraSQLStmt object executing asynchronously,
applications need to poll the NonBlockingState property. The
NonBlockingState property returns ORASQL_STILL_EXECUTING if execution is
still pending or ORASQL_SUCCESS if execution has completed successfully.

Any failures are thrown as exceptions.

On successful completion, the output parameters, if any, are placed in the bound
parameter buffers. The application can then access the parameters as in the blocking
case.

The following example demonstrates the usage of the NonBlockingState property.

Dim OraDatabase as OraDatabase
Dim OraStmt as OraSQLStmt

3-16 Oracle Objects for OLE Developer's Guide

Asynchronous Processing

Dim stat as long

Dim OraSess as OraSession

Set OraSess = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase =OraSess.OpenDatabase ("ExampleDb", "scott/tiger", 0)

'execute the select statement with NONBLOCKING mode on
set OraStmt = OraDatabase.CreateSQL ("update emp set sal = sal + 1000", _
ORASQL_NONBLK)

'Check if the call has completed

stat = OraStmt.NonBlockingState

while stat = ORASQL_STILL_EXECUTING

MsgBox "Asynchronous Operation under progress"

stat = OraStmt.NonBlockingState

wend

MsgBox "Asynchronous Operation completed successfully"

See Also: NonBlockingState Property on page 11-111

Canceling a Nonblocking Operation

You can cancel a nonblocking operation that is underway by calling the Cancel
method on the OraSQLStmt object that is executing the asynchronous call.

Dim OraDatabase as OraDatabase

Dim OraStmt as OraSQLStmt

Dim stat as long

Dim OraSess as OraSession

Set OraSess = CreateObject("OracleInProcServer.XOraSession")

Set OraDatabase =OraSess.OpenDatabase ("ExampleDb", "scott/tiger", 0)

'execute the select statement with NONBLOCKING mode on
set OraStmt = OraDatabase.CreateSQL ("update emp set sal = sal + 1000", _
ORASQL_NONBLK)

'Check if the call has completed

stat = OraStmt.NonBlockingState

if stat = ORASQL_STILL_EXECUTING

MsgBox "Cancelling the asynchronous operation that is underway"
OraStmt.Cancel

End if

See Also: Cancel Method on page 10-45

Executing Multiple Queries in Asynchronous Mode

Multiple queries can be executed in asynchronous mode. In this example, while the
first connection is executing a non-blocking call, the second connection executes a SQL
statement in blocking mode.

Dim OraSess as OraSession

Dim OraServ as OraServer

Dim OraDbl as OraDatabase

Dim OraDb2 as OraDatabase

Dim OraStmtnonblk as OraSQLStmt

Dim OraStmtblk as OraSQLStmt

Dim stat as long

set OraSess = CreateObject ("OracleInProcServer.XOraSession")
set OraDbl = OraSess.OpenDatabase ("exampledb", "scott/tiger", 0&)

Basic Features 3-17

Asynchronous Processing

Set OraServ = CreateObject("OracleInProcServer.XOraServer")
set OraDb2 = OraServ.OpenDatabase ("Exampledb", "scott/tiger", 0&)

'execute the select statement with NONBLOCKING mode on
set OraStmtnonblk = OraDbl.CreateSQL ("update emp set sal = sal + 1000", _
ORASQL_NONBLK)

'Check if the call has completed
stat = OraStmt.NonBlockingState
while stat = ORASQL_STILL_EXECUTING
MsgBox "Asynchronous Operation under progress"
stat = OraStmt.NonBlockingState
wend
MsgBox "Asynchronous Operation completed successfully"

'execute on the second connection in BLOCKING mode
set OraStmtblk = OraDb2.CreateSQL ("update emp set sal = sal + 500",0&)

Limitations on Nonblocking
The following are limitations on nonblocking mode:

= When a nonblocking operation is running on an OraSQLStmt object, you cannot
change the properties or attributes of this object, as it can affect the execution that
is in progress.

= You cannot create an OraSQLStmt object in nonblocking mode if there are other
objects that are already instantiated on the connection. In other words, creating an
OraSQLStmt object to execute in nonblocking mode only succeeds if no other
objects, such as OraDynaset and OraAQ, are currently active on the same
database session. The only exceptions are OraParameter and OraObject
objects. These are permitted, as they may be required for the nonblocking
execution.

See Also: "Executing Multiple Queries in Asynchronous Mode"
on page 3-17

3-18 Oracle Objects for OLE Developer's Guide

4

This chapter describes advanced Oracle Objects for OLE features.

Advanced 0040 Features

This chapter contains these topics:

Support for Oracle Object-Relational and LOB Data Types
Instantiating Oracle LOBs, Objects, and Collections
Using Large Objects (LOBs)

Oracle Object Data Types

Oracle Collections

Advanced Queueing Interfaces

Database Events

Application Failover Notifications

XML Generation

Datetime and Interval Data Types

Database Schema Objects

Support for Oracle Object-Relational and LOB Data Types

Oracle Objects for OLE provides support for accessing and manipulating instances of

REFs, value instances, variable-length arrays (VARRAYs), nested tables, and large

objects (LOBs) in an Oracle database.

Table 4-1 illustrates the containment hierarchy for instances of all types in Oracle

Objects for OLE.

Advanced O040 Features 4-1

Instantiating Oracle LOBs, Objects, and Collections

Figure 4-1 Object-Relational and LOB Data Types Diagram

OraObject OraAftribute Il
Lo)

OraCollection Elernent Values II

CraField

OraCLOB

OraBFILE

Value of all other scalar types

Instances of these types can be fetched from the database or passed as input or output
variables to SQL statements and PL/SQL blocks, including stored procedures and
functions. All instances are mapped to COM Automation interfaces that provide
methods for dynamic attribute access and manipulation. These interfaces can be

obtained from:

s The Value property of an OraField object in a dynaset.

s The Value property of an OraParameter object used as an input or an output
parameter in SQL Statements or PL/SQL blocks.

= An attribute of another object/REF instance.

s Anelement in a collection (VARRAY or a nested table).

Instantiating Oracle LOBs, Objects, and Collections

Oracle Objects for OLE provides COM Automation interfaces for working with LOBs,
Oracle objects, and collection types. These interfaces provide methods and properties
to access data associated with LOBs, Oracle objects, and collection instances.

Oracle LOBs, Objects, and Collections

Table 4-1 lists Oracle LOBs, Objects, and collection types with associated OO40

interfaces.

Table 4-1 Oracle LOBs, Objects, and Collections

Type 0040 Interface
Object OraObject

REF OraRef

VARRAY and Nested Table OraCollection
BLOB OraBlob

4-2 Oracle Objects for OLE Developer's Guide

Using Large Objects (LOBS)

Table 4-1 (Cont.) Oracle LOBs, Objects, and Collections

Type 0040 Interface
CLOB OraClob
BFILE OraBFile

How the preceding interfaces are retrieved in OO40 depend on how they are stored in
the database or accessed in a SQL statement. These are the possible scenarios:

s Column of a table

If a table contains LOBs, object types, and collections as columns and the dynaset
SELECT statement is based on this table, then the Value property of the
OraField object representing that column returns corresponding O0O40
interfaces for that type.

s Bind variable in a SQL statement or PL/SQL block

If a SQL statement or PL/SQL block has LOBs, object types, and collections as
bind variables, then an OraParameter object should be created with a
corresponding server type using the Add method. The Value property of the
OraParameter object representing that bind variable returns the corresponding
0040 interfaces for that type.

= Attribute of an Oracle object instance

If an Oracle object instance has LOBs, object types, or collections as attributes, then
the corresponding OO40 interface for any attribute is retrieved by using the
subscript or name of the attribute from the OraObject or OraRef, or by using
the Value property of an OraAttribute object.

s FElement of VARRAY and nested table

If an Oracle VARRAY and nested table has object types and REF as its elements,
then the corresponding OO40 interface is retrieved using the element index as the
subscript from the OraCollection object.

When O0O40 interfaces for these types are retrieved as part of a dynaset, then the
0040 interfaces represent instances of LOBs, objects, and collection types for the
current row of the dynaset. If the current row changes due to a move operation, then
the OO40 interfaces represent instances of LOBs, objects, and collection types for the
new current row. When OO40 interfaces for these types are retrieved as part of an
OraParameter object and the OraParameter value changes to due to a
OraSQLStmt Refresh method, then the OO40 interface represents a new instance
LOB, object, and collection type for that OraParameter.

Internally, OO40 maintains one OO40 interface for each OraField, OraParameter,
and OraAttribute object. To retain the instance of LOBs, objects, and collection
types independent of a dynaset move operation or an OraSQLStmt refresh operation,
use the C1lone method on the corresponding OO40 interface. This method makes a
copy of LOBs, objects, and collection types instance and returns a corresponding
0040 interface associated with that copy.

Using Large Objects (LOBSs)

The large object (LOB) data types (BLOB, CLOB, NCLOB, and BFILE) can provide
storage for large blocks of unstructured data, such as text, images, video clips, and
sound waveforms, up to 4 gigabytes in size. They provide efficient, random,

Advanced O040 Features 4-3

Using Large Objects (LOBs)

piece-wise access to the data. In Oracle Objects for OLE, instances of LOB data types
are represented as interfaces.

See Also:
s OraBLOB, OraCLOB Objects on page 9-11
s OraBFILE Object on page 9-9
= "Schema Objects Used in LOB Data Type Examples" on
page A-3 for schema objects used in the OraLOB and BFILE
examples
This section includes the following topics:
s LOB Data Types
s Using OraBLOB and OraCLOB
s Retrieving LOBs From the Database
s Performance Considerations with LOB Read and Write
s Writing LOB Data
= Reading LOB Data

LOB Data Types
Table 4-2 lists the four LOB data types and their corresponding OO40O interfaces.

Table 4-2 LOB Data Types

LOB Data Corresponding 0040
Types a LOB whose value is composed of Interface
BLOB Unstructured binary (raw) data. OraBLOB
CLOB Fixed-width, single-byte character data that OraCLOB

corresponds to the database character set defined
for Oracle Database.

NCLOB Fixed-width, multiple-byte character data that OraCLOB
corresponds to the national character set defined
for Oracle Database.

BFILE A LOB whose large binary data is stored in OraBFILE
operating system files outside of database
tablespaces. BFILEs can also be located on tertiary
storage devices such as hard disks, CD-ROMs,
Photo CDs, and DVDs.

The following example creates a table that has BLOB and CLOB columns, and inserts
rows into the table using the ExecuteSQL method on an OraDatabase object.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set InvDb = 0040Session.OpenDatabase("INVDB", "scott/tiger", 0)

InvDb.ExecuteSQL ("create table part(part_id NUMBER, part_name
VARCHAR2 (20) ,part_image BLOB, part_desc CLOB)")

InvDb.ExecuteSQL ("insert into part values (1, 'ORACLE NETWORK',EMPTY_ BLOB()," & _
"EMPTY_CLOB())")
InvDb.ExecuteSQL ("insert into part values (2, 'ORACLE SERVER', EMPTY_BLOB()," & _
"EMPTY_CLOB())")

4-4 Oracle Objects for OLE Developer's Guide

Using Large Objects (LOBS)

The EMPTY_BLOB () and EMPTY_CLOB () PL/SQL functions provide an empty LOB to
insert into the LOB column.

See Also: ExecuteSQL Method on page 10-144

Using OraBLOB and OraCLOB

OraBLOB and OraCLOB interfaces in OO40 provide methods for performing
operations on large objects in the database including BLOB, CLOB, and NCLOB, and
BFILE data types.

The following Visual Basic example illustrates how to read the Part Image from the
part table:

Dim Buffer as Variant
Set Part = OraDatabase.CreateDynaset ("select * from part", 0&)
set PartImage = OraDynaset.Fields("part_image").Value

'read the data into the buffer
amount_read = PartImage.Read(buffer)

'copy the image content into the file
PartImage.CopyToFile "d:\image\partimage.jpg"

See Also: OraBLOB, OraCLOB Objects on page 9-11

Retrieving LOBs From the Database

OraBlob, OraClob, and OraBFile objects can be retrieved using an OraDynaset
object or a parameter object:

Using an OraDynaset Object

If a table contains a LOB column and a dynaset query selects against that LOB column,
then the Value property of the OraField object returns a OraBlob, OraClob, or a
OraBFile object.

The following example selects LOB columns from the part table. PartDesc and
PartImage are OraBlob and OraClob objects that are retrieved from the OraField
object.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set InvDb = 0040Session.OpenDatabase ("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset ("select * from part", 0&)

Set PartDesc = Part.Fields("part_desc") .Value

Set PartImage = Part.Fields("part_image").Value

Using a Parameter object

If a SQL statement or PL/SQL block has a bind variable of type LOB, you create a
OraParameter object using the OraParameters Add method. The Value property
of the OraParameter object for that bind variable returns an OraBlob, OraClob, or
OraBFile object.

The following example illustrates how to use a LOB data type as a bind variable in a
PL/SQL anonymous block. This block selects a LOB column from the database.

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set InvDb = 0040Session.OpenDatabase ("INVDB", "scott/tiger", 0)
InvDb.Parameters.Add "PartDesc", Null, ORAPARM_OUTPUT, ORATYPE_CLOB

Advanced O040 Features 4-5

Using Large Objects (LOBs)

InvDb.Parameters.Add "PartImage", Null, ORAPARM_OUTPUT, ORATYPE_BLOB

InvDb.ExecuteSQL ("BEGIN select part_desc, part_image into :PARTDESC," & _
":PARTIMAGE from part where part_id = 1 for update NOWAIT; END;") & _
"for update NOWAIT; END;")

Set PartDesc = InvDb.Parameters("PartDesc") .Value

Set PartImage = InvDb.Parameters("PartImage").Value

Performance Considerations with LOB Read and Write

When reading and writing LOBs, there are several options that can optimize an
application's memory usage and reduce the number of network round-trips.

Single-Piece Operation
The contents of a buffer are read or written to the database in one round-trip.

Multiple-Piece Operation

A small buffer is used for multiple calls to read or write methods. In this mode, the
data is streamed, rather than requiring a complete round-trip for each read or write
call. This method is quicker than doing several small single-piece operations. It has the
restriction that the data must be read and written sequentially, meaning that the offset
increases automatically with each read or write. The total amount must be known
before it is written, and the operation cannot be aborted before completion.

See Also:

= OraBLOB, OraCLOB Objects on page 9-11

s Read (OraLOB/BFILE) Method on page 10-221
= Write (OraLOB) Method on page 10-261

LOB Buffering Option

The LOB buffering option automatically buffers any read or write operations. A
network round-trip occurs only when the FlushBuffer method is called. This is
most useful when there are many small writes that occur all across the LOB. This
method has significant restrictions.

See Also: EnableBuffering (OraLOB) Method on page 10-139

Writing LOB Data

The Write method of the OraBlob and OraClob objects writes data from a local
buffer to a LOB in the database. The CopyFromFile (OraLOB) method writes content
of a local file to a LOB in the database.

Any operation that changes the value of a LOB, including the Write method, can only
occur when the row the LOB is associated with has been locked. If a LOB field is null,
it must first be updated with an empty LOB before a method can write to the LOB
field.

LOB data can be written in one piece or in a series of multiple pieces., as described in
the following topics:

= Single-Piece Write Operation
= Multiple-Piece Write Operation

4-6 Oracle Objects for OLE Developer's Guide

Using Large Objects (LOBs)

See Also:
= Write (OraLOB) Method on page 10-261
s CopyFromFile (OraLOB) Method on page 10-73

Single-Piece Write Operation

The entire contents of a buffer can be written in a single piece in one network
round-trip. The following example writes 10 KB of data from the local file
partimage.dat to part_image column at the offset of 1000.

Dim buffer() as byte

ReDim buffer (10000)

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set InvDb = 0040Session.OpenDatabase ("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset("select * from part", 0&)

Set PartImage = Part.Fields("part_image").Value
PartImage.Offset = 1000

FNum = FreeFile

Open "PartImage.Dat" For Binary As #FNum

Get #FNum, , buffer

Part.Edit

amount_written = PartImage.Write (buffer)
Part.Update
Close FNum

The CopyFromFile (OraLOB) method writes data directly to a LOB from a local file.
The following code is functionally the same as the previous code:

Part.Edit
PartImage.CopyFromFile "PartImage.dat" , 10000, 1000
Part.Update

See Also: CopyFromFile (OraLOB) Method on page 10-73

Multiple-Piece Write Operation

This mechanism is used when the size of the buffer available is smaller than the total
amount of data to be written. The total amount of data to be written is set by using the
PollingAmount (OraLOB/BFILE) property.

The 0ffset (OraLOB/BFILE) property is used only once to set the offset for the first
piece Write operation. After the first time, it is automatically increased by the size of
the previous piece. The Status (OraLOB/BFILE) property must be checked for
success of each piece Write operation. If the Status property returns ORALOB_
NEED_DATA, the Write method must be called again. This must continue until the
amount specified by the PollingAmount property has been sent.

The piecetype argument of the Write method must be set to ORALOB_FIRST
PIECE for the first piece that is sent, and last piece Write operation ends with setting
the piecetype argument to ORALOB_LAST_PIECE. At the end of multiple piece
operation, the Status property returns ORALOB_NO_DATA.

The following example writes 102 KB of data in 10 KB chunks to the part_image
column from the local file partimage.dat at offset of 1000.

Dim buffer() as byte
chunksize = 10000
ReDim buffer (chunksize)

Advanced O040 Features 4-7

Using Large Objects (LOBs)

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set InvDb = 0040Session.OpenDatabase("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset("select * from part", 0&)

Set PartImage = Part.Fields("part_image").Value

FNum = FreeFile

Open "PartImage.Dat" For Binary As #FNum

PartImage.Offset = 1000

PartImage.PollingAmount =102000

remainder = 102000

Part.Edit

Get #FNum, , buffer

amount_written = PartImage.Write(buffer, chunksize, ORALOB_FIRST PIECE)

While PartImage.Status = ORALOB_NEED_DATA
remainder = remainder - chunksize

If remainder < chunksize Then

piecetype = ORALOB_LAST PIECE

chunksize = remainder

Else

piecetype = ORALOB_NEXT PIECE

End If

Get #FNum, , buffer

amount_written = PartImage.Write (buffer, chunksize, piecetype)
Wend

Close FNum

Part.Update

See Also:

= PollingAmount Property on page 11-125

» Offset (OraLOB/BFILE) Property on page 11-112
= Status (OraLOB/BFILE) Property on page 11-154

Reading LOB Data

The OraBlob and OraClob Read method reads data to a local buffer from a LOB in
the database. The CopyFromFile method reads the contents of a LOB into a local file.

LOB data can be read in one piece or in a series of multiple pieces, as described in the
following topics:

= Single-Piece Read Operation
= Multiple-Piece Read Operation

See Also: Read (OraLOB/BFILE) Method on page 10-221

Single-Piece Read Operation

The entire contents of a buffer can be read in a single piece in one network round-trip.
The following example reads 10 KB of data from the part_image column at an offset
of 1000 to the local file image.dat.

Dim buffer as Variant

Dim buf () As Byte

chunksize = 10000

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set InvDb = 0040Session.OpenDatabase ("INVDB", "scott/tiger", 0)

4-8 Oracle Objects for OLE Developer's Guide

Using Large Objects (LOBs)

Set Part = InvDb.CreateDynaset ("select * from part", 0&)
Set PartImage = Part.Fields("part_image").Value

FNum = FreeFile

Open "image.dat" For Binary As #FNum

PartImage.Offset = 1000

amount_read = PartImage.Read(buffer,10000)

buf = buffer

Put #FNum, , buf

Close FNum

The CopyToFile (OraLOB/BFILE) method writes data directly to a local file from a
LOB. The following code is functionally the same as the previous code:

PartImage.CopyToFile "image.dat" , 10000, 1000

See Also: CopyToFile (OraLOB/BFILE) Method on page 10-76

Multiple-Piece Read Operation

This mechanism is used when the size of the buffer available is smaller than the total
amount of data to be read. The total amount of data to be read is set by using the
PollingAmount (OraLOB/BFILE) property. The Of £set (OraLOB/BFILE) property
is used only once to set the offset for the first piece Read operation. After the first time,
it is automatically increased by the size of the previous piece.

The Status (OraLOB/BFILE) property must be checked for success for each piece
Read operation. If the Status property returns ORALOB_NEED_DATA, the Read
method must be called again. This must continue until the amount specified by the
PollingAmount property has been read. At the end of multiple piece operations, the
Status property returns ORALOB_NO_DATA.

The following example reads 102 KB of data in 10 KB chunks from the part_image
column at offset of 1000 to the local file image.dat.

Dim buffer as Variant

Dim buf () As Byte

Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
Set InvDb = 0040Session.OpenDatabase ("INVDB", "scott/tiger", 0)
Set Part = InvDb.CreateDynaset ("select * from part", 0&)

Set PartImage = Part.Fields("part_image").Value

FNum = FreeFile

Open "image.dat" For Binary As #FNum

PartImage.offset = 1000

PartImage.PollingAmount = 102000

amount_read = PartImage.Read(buffer, chunksize)

buf = buffer

Put #FNum, , buf

While PartImage.Status = ORALOB_NEED_DATA

amount_read = PartImage.Read(buffer, chunksize)

buf = buffer

Put #FNum, , buf

Wend

Close FNum

Advanced O040 Features 4-9

Oracle Object Data Types

See Also:

= PollingAmount Property on page 11-125

s Offset (OraLOB/BFILE) Property on page 11-112
= Status (OraLOB/BFILE) Property on page 11-154

Oracle Object Data Types

An object type is a user-defined composite data type created in the database. A column
can represent an object type or a row can represent an object type. An instance of the
Object type can be stored in the database. This object instance can be fetched to the
client side and modified using Oracle Objects for OLE.

See Also: Oracle Database Object-Relational Developer’s Guide

There are two types of object instances.
= OraObject object

If a column represents an object type, then an instance of this object type is
referred to as an embedded instance or a value instance. In OO40, this type is
represented by an OraObject object. For example, an ADDRESS object type is
stored as a column in the PERSON table. OraObject objects can be embedded
within other structures. An embedded instance or a value instance can also be the
attributes of another object instance.

See Also: "About the OraObject Interface” on page 4-11

= OraRef object

If a row in an object table represents an object type, then the instance of this type is
referred to as a referenceable object. In OO40, this type is represented by an
OraRef object. An internally referenceable object has a unique object identifier
that is represented by the REF data type. A REF column can be thought of as a
pointer to a referenceable object. OO40 applications can retrieve a REF data type
from a referenceable object, fetch (pin) the associated referenceable object to the
client side, and update (flush) the modified referenceable object to the database.

See Also: "About the OraRef Interface" on page 4-13

About the OraObject Interface

The OraObject interface is a representation of an Oracle embedded object or a value
instance. It contains a collection interface (OraAttributes) for accessing and
manipulating (updating and inserting) individual attributes of a value instance.

Individual attributes of an OraAttributes collection interface can be accessed by
using a subscript or the name of the attribute.

The following Visual Basic example illustrates how to access attributes of the Address
object in the person_tab table:

Set Person = OraDatabase.CreateDynaset("select * from person_tab", 0&)
set Address = Person.Fields("Addr").Value

msgbox Address.Zip

msgbox.Address.City

4-10 Oracle Objects for OLE Developer's Guide

Oracle Object Data Types

See Also: OraObject Object on page 9-43

Using the OraObject Interface

The following example creates an ADDRESS object type having street, city, state and
zip as its attributes and a PERSON table having an ADDRESS object type column. It also
inserts data using the ExecuteSQL method of the OraDatabase object.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
HRDb.ExecuteSQL ("create type ADDRESS as object (street
VARCHAR2 (200), city varchar2(20), state CHAR(2), zip varchar2(10))")
HRDb.ExecuteSQL("create table person (name varchar2(20), age number," & _
"addr ADDRESS) ")
HRDb.ExecuteSQL("insert into person values('nasser', 640, " & _
"address ('Wine Blvd', 'Pleasanton', 'CA', '94065'))")
HRDb.ExecuteSQL ("insert into person values('Maha', 25," & _
"address ('Continental Way', 'Belmont', 'CA', '94002'))")
HRDb.ExecuteSQL ("insert into person values('chris', 30, address('First " & _
"Street', 'San Francisco', 'CA' ,'94123"))")

The following topics discuss manipulating the OraObject interface:
= Retrieving an Embedded/Value Instance from the Database

» Accessing Attributes of an Embedded/Value Instance

= Modifying Attributes of an Embedded/Value Instance

See Also: ExecuteSQL Method on page 10-144

Retrieving an Embedded/Value Instance from the Database

An OraObject object can be retrieved using OO40 using a dynaset or parameter
object:

Using a Dynaset Object If a table contains an object type column and a dynaset query
selects against that column, then the Value property of the OraField object returns
an OraObject.

The following code selects an ADDRESS column from the person table, and then an
Address object is retrieved from the OraField object.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
set Person = hrDb.CreateDynaset("select * from person", 0&)

set Address = Person.Fields("Addr").Value

Using a Parameter Object If a SQL statement or a PL/SQL block has a bind variable of
object type, you create an OraParameter object using the OraParameters Add
method. The Value property of the OraParameter object for that bind variable
returns an OraObject object.

The following example uses an object data type as a bind variable in a PL/SQL
anonymous block. This block selects an object column from the database.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
hrDb.Parameters.Add "ADDRESS", Null, ORAPARM OUTPUT, ORATYPE_OBJECT, "ADDRESS"
'execute the sgl statement which selects Address from the person_tab
hrDb.ExecuteSQL ("BEGIN select Addr into :ADDRESS from person where " & _

Advanced O040 Features 4-11

Oracle Object Data Types

"age = 40; end;")
'retrieve Address object from the OraParameter
set address = hrDb.Parameters ("ADDRESS") .Value

See Also:

= OraObject Object on page 9-43

» OraField Object on page 9-33

s OraParameter Object on page 9-50

Accessing Attributes of an Embedded/Value Instance

Individual attributes can be accessed by using a subscript or the name of the attribute.
The following example illustrates how to access attribute values of an ADDRESS object
instance.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
set Person = hrDb.CreateDynaset("select * from person", 0&)

set Address = Person.Fields("Addr") .Value

msgbox Address.City

msgbox Address.Street

msgbox Address.State

msgbox Address.Zip

The following code accesses all of the attribute values:

For I=1 to Address.Count
msgbox Address(I)
Next I

Modifying Attributes of an Embedded/Value Instance

If the object instance is retrieved using a dynaset object, its attribute values can be
modified between a dynaset Edit/Update pair. The following example modifies the
street and city attribute values of the ADDRESS object instance.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
set Person = hrDb.CreateDynaset ("select * from person", 0&)
set Address = Person.Fields("Addr") .Value
Person.Edit

Address.Street = ‘"Oracle Parkway"

Address.City = "Redwood shores"
Person.Update

Executing a Member Method of an Oracle Object Instance

Oracle object type member methods are created during type creation. Oracle object
instance member methods are executed in OO40 as PL/SQL procedures or functions.
Arguments and return values to the member methods should be bound using the
OraParameter object. The first argument to the member method should always be
the object instance. This object instance can be bound with the ORAPARM_INPUT or
ORAPARM_BOTH mode. If the member method modifies the attributes of an object
instance and a new object instance needs to be retrieved to the OO40 application, then
this object instance must be bound with the ORAPARM_BOTH mode.

4-12 Oracle Objects for OLE Developer's Guide

Oracle Object Data Types

For example, if a bank_account object type has open, close, and deposit as
member methods, then the schema for the bank_account object type is the
following:

CREATE OR REPLACE TYPE bank_account AS OBJECT (
acct_number INTEGER(5),
balance REAL,
MEMBER PROCEDURE open (amount IN REAL),
MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL),
MEMBER PROCEDURE deposit (SELF IN OUT bank_bccount,num IN
INTEGER, amount IN REAL),
)i

In 0040, BankObj is an OraObject object representing a valid bank object instance
from the database. To execute the deposit method, the SELF, num, and amount
arguments need to be bound using the OraParameter object.

Dim BankObj as OraObject
assumes that we have valid BankObj
set BankObj =

'create a OraParameter object for bank_account object and set it to BankObj
OraDatabase.Parameters.Add "BANK", BankObj, ORAPARM_BOTH, ORATYPE_OBJECT, _
"BANK_ACCOUNT"

'create a OraParameter object for num argument and set the value to 100
OraDatabase.Parameters.Add "ACCOUNT_NO", 100, ORAPARM_INPUT, ORATYPE_NUMBER

'create a OraParameter object for amount argument and set the value to 1200
OraDatabase.Parameters.Add "AMOUNT", 1200, ORAPARM OUTPUT, ORATYPE NUMBER

'display the balance from the bank object
Bankobj.balance

'now execute the PL/SQL block for member method execution
OraDatabase.ExecuteSQL ("BEGIN BANK_ACCOUNT.DEPOSIT :BANK," & _
(" :ACCOUNT_NO, :AMOUNT) ; END;")

'get the modified bank object from the parameter
set Bankobj = OraDatabase.Parameters ("BANK").Value

'display the new balance
Bankobj.balance

About the OraRef Interface

The OraRef interface represents an instance of a referenceable object (REF) in client
applications. The object attributes are accessed in the same manner as attributes of an
object represented by the OraObject interface. The OraRef interface is derived from
an OraObject interface through the containment mechanism in COM. REF objects are
updated and deleted independently of the context from which they originated, such as
dynasets. The OraRef interface also encapsulates the functionality for navigating
through graphs of objects utilizing the Complex Object Retrieval Capability (COR) in
Oracle Call Interface (OCI).

See Also: "OraRef Object" on page 9-52

Advanced O040 Features 4-13

Oracle Object Data Types

Using the OraRef Interface

This section demonstrates the creation of an object table named PERSON_TAB. The
object table is based on the object type PERSONOBJ. Each reference to the rows of this
object table is stored in an aperson REF type column of the CUSTOMERS table. The
following code creates database schemas:

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
HRDb.ExecuteSQL("create type PERSONOBJ as object (name varchar2(20), " &
"age number, addr ADDRESS)")
HRDb.ExecuteSQL ("create table person_tab of personobj")
HRDb.ExecuteSQL ("insert into person_tab values('nasser',40," & _
"address ('Wine Blvd', 'Pleasanton', 'CA', '94065'))")

HRDb.ExecuteSQL("insert into person_tab values('Maha', 25, " & _
"address ('Continental Way', 'Belmont', 'CA', '94002'))")

HRDb.ExecuteSQL ("insert into person_tab values('chris',30, " & _
"address ('First Street', 'San Francisco', 'CA' , '94123'))")

The following code creates a CUSTOMERS table having an aperson REF column
referencing rows of the object table:

HRDb.ExecuteSQL("create table CUSTOMERS (account number,
aperson REF personobj)")

HRDb.ExecuteSQL ("insert into customers values (10, null)")
HRDb.ExecuteSQL ("insert into customers values (20, null)")
HRDb.ExecuteSQL ("insert into customers values (30, null)")
HRDb.ExecuteSQL ("update customers set aperson = (select ref(p) from "
"person_tab p where p.name = 'nasser') where account
HRDb.ExecuteSQL ("update customers set aperson = (select ref(p) from "
"person_tab p where p.name = 'Maha') where account =
HRDb.ExecuteSQL ("update customers set aperson = (select ref(p) from "
"person_tab p where p.name = 'chris') where account = 30")

gl

R DN Rl
o

The following topics discuss manipulating the OraRef Interface:
s Retrieving a REF from the Database
= Accessing Attributes of a Referenceable Instance

» Modifying Attributes of a Referenceable Instance

See Also: OraRef Object on page 9-52

Retrieving a REF from the Database
An OraRef object can be retrieved using OO4O0 in the following ways:

Using a Dynaset Object If a table contains a REF type column and a dynaset query selects
against that column, then the Value property of the OraField object returns an
OraREF.

The following example selects an aperson column from the person table, and the
aperson object is retrieved from the OraField object.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
set Customer = hrDb.CreateDynaset ("select * from customers", 0&)
set Person = Customer.Fields("aperson").Value

4-14 Oracle Objects for OLE Developer's Guide

Oracle Object Data Types

Using an OraParameter Object If a SQL statement or PL/SQL block has a bind variable of
REF type, you create an OraParameter object using the OraParameters Add
method. The Value property of the OraParameter object for that bind variable
returns an OraREF.

The example illustrates using a REF object data type as a bind variable in a PL/SQL
anonymous block. The block selects an object column from the database.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
hrDb.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF, "PERSONOBJ"

'execute the sgl statement which selects Address from the person_tab
hrDb.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
"where account = 10; end;")

'retrieve Person object from the OraParameter
set Person = hrDb.Parameters("PERSON") .Value

See Also: OraRef Object on page 9-52

Accessing Attributes of a Referenceable Instance

Before accessing attributes of a referenceable instance, it should be fetched (pinned) on
the client side. OO40 implicitly pins the REF value when attribute values are accessed
from the OraRef object. After the pin operation, attributes of the referenceable
instance are accessed in the same manner as attributes of a value instance represented
by the OraObject object.

The following example pins the APERSON REF value (implicitly) and accesses its name
and address attributes. Note that accessing the address attribute returns an Address
OraObject object.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
set Customer = hrDb.CreateDynaset ("select * from customers", 0&)
set Person = Customer.Fields ("APERSON") .Value

msgbox Person.Name

set Address = Person.Addr

msgbox Address.City

See Also: OraRef Object on page 9-52

Modifying Attributes of a Referenceable Instance

Because a referenceable instance is stored in a row of an object table, modifying
attributes of referenceable instance requires an object lock. Therefore, rows
corresponding to the object instance in an object table should be locked, which can be
done by calling the Edit method of the OraRef object. The OraRef Update method
releases the object lock.

The following example modifies the age attribute of Person object.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
set Customer = hrDb.CreateDynaset ("select * from customers", 0&)
set Person = Customer.Fields("APERSON").Value

Person.Edit

Person.Age = 45

Person.Update

Advanced O040 Features 4-15

Oracle Collections

See Also:

s OraRef Object on page 9-52

= Update (OraRef) Method on page 10-259
s Edit (OraRef) Method on page 10-136

Oracle Collections

A collection is an ordered group of elements, all of the same type. Each element has a
unique subscript, called an index, that determines its position in the collection.

Note: An OraCollection elementindex starts at 1.

A collection can be subdivided into the following types:
= Nested table type

Viewed as a table stored in the column of a database table. When retrieved, the
rows of a nested table are given consecutive subscripts starting at 1, and
individual rows are accessed using array-like access.

» VARRAY type

Viewed as an array stored in the column of a database table. To reference an
element in a VARRAY type, standard subscripting syntax can be used. For example,
Grade (3) references the third element in VARRAY Grades.

In Oracle Objects for OLE, an Oracle collection type is represented by the
OraCollection interface. The following topics provide more information:

= About the OraCollection Interface

= Retrieving a Collection Type Instance from the Database
= Accessing Collection Elements

= Modifying Collection Elements

» Creating a VARRAY Collection Type

s Creating a Dynaset from an OraCollection Object

See Also:
= "OraCollection Object" on page 9-19
= "Schema Objects Used in OraCollection Examples" on page A-3

About the OraCollection Interface

The OraCollection interface provides methods for accessing and manipulating
Oracle collection types, namely variable-length arrays (VARRAYs) and nested tables in
0040. Elements contained in a collection are accessed by subscripts.

The following Visual Basic example illustrates how to access attributes of the
EnameList object from the department table:

Set Person = OraDatabase.CreateDynaset ("select * from department", 0&)
set EnameList = Department.Fields("Enames") .Value

'access all elements of the EnameList VArray

4-16 Oracle Objects for OLE Developer's Guide

Oracle Collections

for I=1 to I=EnamelList.Size
msgbox EnameList (I)
Next I

See Also: OraCollection Object on page 9-19

Retrieving a Collection Type Instance from the Database

A collection type can be retrieved using OO40 in the following ways:

Using a Dynaset Object

If a table contains a collection type column and a dynaset query selects against that
column, then the Value property of the OraField object returns an OraCollection
object.

The following example selects the ENAMES column from the department table, and
an EnameList object is retrieved from the OraField object:

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
Set Dept = hrDb.CreateDynaset ("select * from department", 0&)

Set EnameList = Dept.Fields("ENAMES").Value

Using a Parameter Object

If a SQL statement or PL/SQL block has a bind variable of collection type, then you
create a OraParameter object using the OraParameters Add method. The Value
property of the OraParameter object for that bind variable returns an
OraCollection object.

The following example uses a collection data type as a bind variable in a PL/SQL
anonymous block and selects a collection type from the database:

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
hrDb.Parameters.Add "ENAMES", Null, ORAPARM OUTPUT, ORATYPE_VARRAY, "ENAMELIST"
hrDb.ExecuteSQL ("BEGIN select enames into :ENAMES from department" & _

"where dept_id = 10; END;")
set EnameList = hrDb.Parameters ("ENAMES") .Value

See Also:
= OraCollection Object on page 9-19
= OraField Object on page 9-33

Accessing Collection Elements

Individual element values are accessed by using a subscript. For example, the Value
returned by the OraCollection object for subscript 1 is the element value at index 1.
The maximum value of the subscript is equal to the total number of elements in the

collection including any deleted elements. The OraCollection subscript starts from
1.

The following example code retrieves the Enamelist collection instance and accesses
its elements at the first and second index.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)

Advanced O040 Features 4-17

Oracle Collections

Set Dept = hrDb.CreateDynaset ("select * from department", 0&)
Set EnameList = Dept.Fields("ENAMES").Value

msgbox EnameList (1)

msgbox EnameList (2)

This code displays all the element values of the EnameList collection.

For I = 1 to EnameList.Size
msgbox EnameList (I)
Next I

See Also: OraCollection Object on page 9-19

Modifying Collection Elements

If the collection instance is retrieved using a dynaset object, element values can be
modified between a dynaset Edit and Update pair. The following example code
modifies the second element value of an Enamelist collection instance.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger",

Set OraDynaset = hrDb.CreateDynaset ("select * from department",
Set EnameList = OraDynaset.Fields("ENAMES").Value

OraDynaset .Edit

EnameList (2) = "Chris"
OraDynaset .Update

Creating a VARRAY Collection Type

0)

0&)

The example code that follows creates a VARRAY collection type ENAMELIST and a

department table having ENAMELIST collection type column.

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set hrDb = 0040Session.OpenDatabase ("Exampledb", "scott/tiger",

0)

hrDb.ExecuteSQL ("CREATE TYPE ENAMELIST AS VARRAY(20) OF VARCHAR2 (30)")
hrDb.ExecuteSQL ("CREATE TABLE department (dept_id NUMBER(2),name" & _

"VARCHAR2 (15) , ENAMES ENAMELIST)")

The following script inserts some collection data into department table:

hrDb.ExecuteSQL ("INSERT INTO department VALUES (10, 'ACCOUNTING',
"ENAMELIST ('KING', 'CLARK', 'MILLER'))")

hrDb.ExecuteSQL ("INSERT INTO department VALUES (20, 'RESEARCH',"
"ENAMELIST('JONES', 'SCOTT', 'ADAMS', 'SMITH', 'FORD'

L

& _
) ")

hrDb.ExecuteSQL ("INSERT INTO department VALUES(30, 'SALES'," & _
"ENAMELIST ('BLAKE', 'MARTIN', 'ALLEN', 'TURNER', 'JAMES'))")

See Also: OraCollection Object on page 9-19

Creating a Dynaset from an OraCollection Object

A SELECT query can be issued against instances of the VARRAY and nested table
collection types using SQL THE or TABLE operators and individual elements can be
accessed as rows. If these collection types have object types for element types, then

individual attributes of the object type represents fields of a row.

4-18 Oracle Objects for OLE Developer's Guide

Oracle Collections

For example, if an object type X has attributes a, b, and ¢, and the element type of the
collection is object type X, then the SELECT query on this collection returns a, b, and c
fields.

In OO40, read-only dynaset objects can be created from SELECT queries on the
collection. Individual elements are accessed using row navigation. If the collection
type has an object type as its element type, then attributes of that object type (element)
are accessed using the OraField object.

This discussion assumes you have a Course object type and a CourseList nested
table collection type with Course as its element type, as described here:

CREATE TYPE Course AS OBJECT (
course_no NUMBER(4),
title VARCHAR2 (35),
credits NUMBER (1)
)i
CREATE TYPE CourseList AS TABLE OF Course;

In 0040, CourseList OraCollection represents an instance of the CourseList
collection type.

Dim CourseList as OraCollection

Assume that you have valid a CourseList collection instance:

set CourseList =

The SQL THE or TABLE operator needs collection type as a bind variable. Create a

OraParameter object for the CourseList OraCollection as follows:

OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
ORATYPE_TABLE, "COURSELIST"

Create a read-only dynaset based on the CourseList using the SQL THE operator:

Set CourseListDyn = OraDatabase.CreateDynaset ("select * from THE (select" & _
"CAST (:COURSELIST AS COURSELIST) from dual)", ORADYN_READONLY)

You can also create a read-only dynaset based on the CourseList using the SQL
TABLE operator, which is available only in OO40 with libraries from release Oracle9i
and on:

Set CourseListDyn = OraDatabase.CreateDynaset ("select * from" & _
"TABLE (CAST (: COURSELIST AS COURSELIST))", ORADYN_READONLY)

'display the course_no field
msgbox CourseListDyn.Fields("course_no").Value

'display the title field
msgbox CourseListDyn.Fields("title").Value

'move to next row
OraDynaset .MoveNext

See Also: OraCollection Object on page 9-19
Example: Creating a Dynaset from an OraCollection Object

The following example illustrates how to create a dynaset from an OraCollection
object. Before running the sample code, make sure that you have the necessary data

Advanced O040 Features 4-19

Advanced Queueing Interfaces

types and tables in the database. See "Schema Objects Used in OraCollection
Examples" on page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject

Dim CourseListDyn as OraDynaset

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset ("select * from division", 0&)

'retrieve a Courses column from Division. Here Value property
'of OraField object 'returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value

'create a input parameter for CourseList for nested table dynaset
OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
ORATYPE_TABLE, "COURSELIST"

'create a read only dynaset based on the CourseList.

Set CourseListDyn = OraDatabase.CreateDynaset("select * from" & _
"THE (select CAST(:COURSELIST AS COURSELIST) from dual)", _
ORADYN_READONLY)

'dynaset can also be created from Oracle8 collection using the
'following statement

'Set CourseListDyn = OraDatabase.CreateDynaset ("select * from
'TABLE (CAST (: COURSELIST AS COURSELIST))", ORADYN_READONLY)

'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields ("course_no").Value

'move the original dynaset to second row
Oradynaset .MoveNext

'set the new value of CourseList collection from the second row
'of main dynaset to the "COURSELIST" parameter
OraDatabase.Parameters ("COURSELIST") .Value = CourseList

'refresh the collection dynaset. Now the collection dynaset values are refreshed
'with new collection value. CourseListDyn.Refresh

'get the field values of the collection dynaset

msgbox CourseListDyn.Fields("title").Value

msgbox CourseListDyn.Fields ("course_no").Value

Advanced Queueing Interfaces

Oracle Objects for OLE provides the OraAQ Automation interface with methods for
enqueuing and dequeuing messages. The OraAQMsg object contains the message to be
enqueued or dequeued. The message can be a RAW message or any user-defined type.

4-20 Oracle Objects for OLE Developer's Guide

Advanced Queueing Interfaces

The following examples illustrate how to enqueue RAW messages from the DBQ queue.
Note that the DBQ queue must already be created in the database.

Dim Q as OraAQ

Dim Msg as OraAQMsg

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set empDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)
Set Q = empDb.CreateAQ("DBQ")

Retrieve the message object from the Q object.

set Msg = Q.AQMsg

Specify the message value.

Msg.Value = "This is the first Test message"
Enqueue the message.
Q.Enqueue

The following lines enqueue a high priority message.

Msg.Priority = ORAQMSG_HIGH_PRIORITY
Msg.Delay = 5

Msg.Value = "Urgent message"
Q.Enqueue

The following example dequeues the RAW messages from Oracle Database and
displays the message content.

Q.Dequeue

MsgBox Msg.value

Dequeue and display the first high priority message
Msg.Priority = ORAQMSG_HIGH_PRIORITY

Q.Dequeue

MsgBox Msg.value

See Also: OraAQ Object on page 9-3

Monitoring Messages

The 0OraaAQ monitor methods (MonitorStart and MonitorStop) provide
asynchronous dequeuing through notifications. This is suitable for applications that
prefer to process messages in nonblocking mode. Applications can request to be
notified on arrival of messages, by supplying an Automation object to the Monitor
method. This object implements a method called Not i fyMe to receive notifications.
Messages can be monitored based on consumer name, message ID, or correlation.

The following sample code demonstrates a simple use of this facility. It illustrates a
computerized trading system that executes buy/sell limit orders.

The sample instantiates a queue object for the STOCKS_TO_TRADE queue and
monitors messages intended for consumer BROKER_AGENT. STOCKS_TO_TRADE
queues messages of the user-defined type TRADEORDER_TYPE. This encapsulates all
the information required to initiate a trade order. When messages addressed to the
BROKER_AGENT are dequeued, the NotifyMe method of the CallbackClient object
is invoked, and a stock trade is performed.

'First instantiate the CallbackClient. The queue monitor
' will invoke the NotifyMe on this class module.
Public CB_Client As New CallbackClient

Dim DB As OraDatabase

Dim Q as OraAQ
set Q = DB.CreateAQ("STOCKS_TO_TRADE")

Advanced O040 Features 4-21

Database Events

'Notify by calling cbclient::NotifyMe when there are messages
' for consumer '"BROKER_AGENT"
Q.consumer = "BROKER_AGENT"

'Note that cbclient is a dispatch interface that supports the NotifyMe method.
Dim s as string
s = "BROKER_AGENT"

'Notify the client only when there are messages for "BROKER_AGENT"
Q.MonitorStart CB_Client, Q, s, 1

'other processing is performed here...

Q.MonitorStop
Return
'Now implement the NotifyMe method of the CallbackClient class module
'and the necessary arguments that will contain the dequeued message
'NotifyMe is the callback interface defined by user. Ctx here is the
'Q object passed in at the time of MontiorStart.
Public sub NotifyMe (ByVal Ctx As Variant, ByVal Msgid As Variant)
On Error GoTo NotifyMeErr
Dim tradingSignal as OraAQMsg
'Tradeorder contains details of the customer order
Dim tradeorder as OraObject
If IsNull(Msgid) Then
MsgBox "No Message"
'Get Error
MsgBox OraDatabase.LastServerErrText

Else
mvarMsgid = Msgid
Set tradingSignal = Ctx.AQMsg(1l,"STOCK_TYPE", "TRADER")
set tradeorder = tradingSignal.Value
'Tradeorder is the object of UDT "STOCK_TYPE"Access signal attribute
'of tradeorder as tradeorder("signal).Value or tradeorder!signal
if (tradeorder!signal = "SELL")
'Sell the stock
SellStock (tradeorder !NoOfShares, tradeorder!Ticker, _
tradeorder!Price, tradeorder!ValidUntil)
else if (tradeorder!signal = "BUY")
'Buy the stock
BuyStock (tradeorder !NoOfShares, tradeorder!Ticker, _
tradeorder!Price, tradeorder!Validintil)
end if
End If
NotifyMeErr:
Call RaiseError (MyUnhandledError, "newcallback:NotifyMe Method")
End Sub
Database Events

Oracle Database supports detection and run-time publication of database events.

The database event publication feature allows applications to subscribe to database
events just as they subscribe to messages from other applications.

Users can enable the publication of the following events:
s DML events (DELETE, INSERT, UPDATE)

s DDL events (CREATE, ALTER, DROP)

4-22 Oracle Objects for OLE Developer's Guide

Database Events

= Database events (SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN)

The event publication subsystem is integrated with the AQ publish and subscribe
engine.

See Also:

Oracle Database SQL Language Reference for a complete description of
triggers for data and system events

Oracle Objects for OLE provides functionality to enable COM users to subscribe to
Oracle Database events.

This feature supports asynchronous notification of database events to interested
subscribers. Under this model, the client can subscribe to be notified of a database or
system event, with each request stored as a subscription.

When the database event of interest fires, the subscriber is notified by the database
event handler. The event handler was registered at the time of the event’s subscription.

0040 provides the OraSubscription object that represents the subscription to a
database event and the OraSubscriptions collection that maintains a list of
OraSubscription objects.

To subscribe to a database event, you must:
n Create a subscription, based on the database event of interest.

= Provide a database event handler. The database event handler should be an
automation object that implements the NotifyDBEvents method. The
NotifyDBEvents method is invoked by OO40 when the subscribed database
events are fired.

= Register the subscription, using the Register method.

Example: Registering an Application for Notification of Database Events

In the following example, an application subscribes for notification of database logon
events (such as all logons to the database). When a user logs on to the database, the
NotifyDBEvents method of the DBEventsHdlr that was passed in at the time of
subscription is invoked. The context-sensitive information and the event-specific
information are passed into the NotifyDBEvents method.

The DBEventsHdlr in this example is DBEventCls, which is defined later.
The main application is as follows:

' First instantiate the dbevent handler. The dbevent notification
' will fire the NotifyDBEvents on the callback handler.

Public DBEventsHdlr As New DBEventCls

Private Sub Form_Load()
Dim gOraSession As Object
Dim gOraSubscriptions As OraSubscriptions
Dim gOraDatabase As OraDatabase

'Create the OraSession Object
Set gOraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set gOraDatabase = gOraSession.DbOpenDatabase
("ora90.us.oracle.com", "pubsub/pubsub",
ORADB_ENLIST FOR_CALLBACK)

Advanced O040 Features 4-23

Application Failover Notifications

Set gOraSubscriptions = gOraDatabase.Subscriptions
gOraSubscriptions.Add "PUBSUB.LOGON:ADMIN", DBEventsHdlr,
gOraDatabase
gOraSubscriptions(0) .Register
MsgBox "OK"
End Sub

The database event handler class that defines the Not i fyDBEvents method is as
follows:

Public countofMsgs as integer
Public Function NotifyDBEvents (Ctx As Variant, Payload As Variant)
On error goto NotifyMeErr

MsgBox "Retrieved payload " + Payload
' do something - here the subscription is unregistered after
' receiving 3 notifications
countofMsgs = countofMsgs + 1
If countofMsgs > 3 Then
Ctx.Subscriptions(0) .UnRegister
End If
Exit Sub
NotifyMeErr:
Call RaiseError (MyUnhandledError, "newcallback:NotifyMe Method")

End Sub

See Also:

s OraSubscription Object on page 9-61

s OraSubscriptions Collection on page 9-70
= Register Method on page 10-229

= "Triggers on System Events and User Events" in Oracle Database
Concepts

Application Failover Notifications

Application failover notifications can be used in the event of the failure of one
database instance and failover to another instance. Because delay can occur during a
failover, the application developer may want to inform the user that a failover is in
progress, and request that the user stand by. Additionally, the session on the initial
instance may have received some ALTER SESSION commands. These are not
automatically replayed on the second instance. Therefore, the developer may want to
replay these ALTER SESSION commands on the second instance.

Failover Notification Registration

To address the problems described, OO40O supports application failover notifications.
To receive failover notifications, a notification handler must be registered with the
MonitorForFailover method of the OraDatabase object. The notification handler
must be an automation object (class module in Visual Basic) that implements the
OnFailover method. An IDispatch pointer to this automation object must be
passed in, along with any client-specific context, at the time of registering for failover
notifications.

4-24 Oracle Objects for OLE Developer's Guide

Application Failover Notifications

In the event of failover, the OnFailover method is invoked several times during the
course of reestablishing the user's session. The first call to the OnFailover method of
the notification handler occurs when the database first detects an instance connection
loss. This is intended to allow the application to inform the user of an upcoming delay.
If a failover is successful, a second call to the OnFailover method occurs when the
connection is reestablished and usable. At this time, the client may want to replay the
ALTER SESSION commands and inform the user that a failover has happened.

If a failover is unsuccessful, then the OnFailover method is called to inform the
application that the failover will not take place.

An example of failover registration is included as part of the example in the next
section.

See Also:
= MonitorForFailover Method on page 10-194
s OraDatabase Object on page 9-28

m Oracle Net Services Administrator’s Guidefor detailed information
about application failover

Enabling Failover

To enable failover notifications, the option ORADB_ENLIST_FOR_CALLBACK must be
passed into the call to the OpenDatabase method.

See Also: OpenDatabase Method on page 10-212

Example: Failover Notification

The following sample shows a typical developer-defined OnFailover
implementation and demonstrates how to register an application.

'Implement the OnFailover method of the FailoverClient class module and the
necessary arguments that will contain the dequeued message. Ctx here is

' the application-defined context sensitive object that was passed

' in while registering with MonitorForFailover.

' An error of OO40_FO_ERROR indicates that failover was unsuccessful, but the
' application can handle the and retry failover by returning

' a value of 0040_FO_RETRY

Public Function OnFailover (Ctx As Variant, fo_type As Variant,fo_event _
as variant, fo_OraDB as Variant)
Dim str As String

OnFailover=0
str = Switch(fo_type = 1&, "NONE", fo_type = 2&, "SESSION", fo_type = _
4&, "SELECT")
If IsNull(str) Then
str = "UNKNOWN!"
End If
If fo_event= 0040_FO_ERROR Then
MsgBox "Failover error gotten. Retrying "
OnFailover = 0040_FO_RETRY

End If
If fo_event = 0040_FO_BEGIN Then

MsgBox " Failing Over with failover type : " & str
Else

MsgBox "Failover Called with event : " & fo_event
End If

Advanced O040 Features 4-25

XML Generation

End Function

Registering the Application to Receive Failover Notifications

' First instantiate the Failover_Client. The Failover notification
' will invoke the OnFailover on this class module

Public Failover_Client As New FailoverClient

Dim OraDatabase As OraDatabase

Dim OraSession As OraSession

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

' Pass in the entire database name (ie., the entire Tnsnames entry

' with the domain name)in the opendatabase call

Set OraDatabase = OraSession.DbOpenDatabase ("Exampledb.us.oracle.com", _
"scott/tiger", ORADB_ENLIST_FOR_CALLBACK)

OraDatabase.MonitorForFailover Failover_Client, OraDatabase

XML Generation

Oracle Objects for OLE support for XML enables you to extract data in XML format
from an Oracle database.

Data in XML markup language can be integrated with other software components that
support XML. Web servers can provide XML documents along with a style sheet, thus
separating the data content from its presentation, and preserving the data in its native

form for easy searching.

Using Extensible Stylesheet Language Transformations (XSLT), developers can
reformat XML documents received from other businesses into their desired style.

For more information about XML, go to

http://www.w3.org/XML/

XML Generation Example

0040 renders XML from the contents of any OraDynaset method based on a
starting row number and continuing for up to a specified amount of rows. For
example:

0040 Code

Dim XMLString As String

Dim startrow as Integer

Dim maxrows as Integer

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

Set OraDynaset = OraDatabase.CreateDynaset ("select EMPNO, ENAME, COMM, JOB " & _
"from EMP", 0&)

startrow = 4

maxrows = 2

'Output at most 2 rows beginning at row 4
XMLString = OraDynaset.GetXML (startrow, maxrows)

XML Output

<?xml version = "1.0"?>
<ROWSET>

4-26 Oracle Objects for OLE Developer's Guide

XML Generation

<ROW id="4">
<EMPNO>7566</EMPNO>
<ENAME>JONES< /ENAME>
<JOB>MANAGER</JOB>
</ROW>

<ROW id="5">
<EMPNO>7654</EMPNO>
<ENAME>MARTIN</ENAME>
<COMM>1400</COMM>
<JOB>SALESMAN</JOB>
</ROW>

</ROWSET>

The format of the XML can be customized through the OraDynaset and OraField

methods:

Dim XMLString As String
Dim startrow as Integer
Dim maxrows as Integer

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb",

"scott/tiger", 0&)

Set OraDynaset = OraDatabase.CreateDynaset ("select EMPNO, ENAME, COMM," & _

"JOB from EMP", 0&)

'Change the root tag of the XML document
OraDynaset .XMLRowsetTag = "ALL_EMPLOYEES"

'Change the row tag of the XML document
OraDynaset .XMLRowTag = "EMPLOYEE"

'Remove the rowid attribute
OraDynaset . XMLRowID = ""

'Turn on the null indicator
OraDynaset.XMLNullIndicator = True

'Change the EMPNO tag name
Set EmpnoField = OraDynaset.Fields("EMPNO")
EmpnoField.XMLTagName = "EMP_ID"

'and make it an attribute rather than an element
EmpnoField.XMLAsAttribute = True

'Change the ENAME tag name
Set EnameField = OraDynaset.Fields("ENAME")
EnameField.XMLTagName = "NAME"

'Change the COMM tag name
Set CommField = OraDynaset.Fields("COMM")
CommField.XMLTagName = "COMMISSION"

'Change the JOB tag name

Set JobField = OraDynaset.Fields("JOB")
JobField.XMLTagName = "JOB_TITLE"
startrow = 4

maxrows = 2

'Output at most 2 rows beginning at row 4
XMLString = OraDynaset.GetXML (startrow, maxrows)

Advanced O040 Features 4-27

Datetime and Interval Data Types

Output

<?xml version = "1.0"?>
<ALL_EMPLOYEES>

<EMPLOYEE EMP_ID="7566">
<NAME>JONES< /NAME>

<COMMISSION NULL="TRUE"></COMMISSION>
<JOB_TITLE>MANAGER</JOB_TITLE>
</EMPLOYEE>

<EMPLOYEE EMP_ID="7654">

<NAME NULL>MARTIN</NAME>
<COMMISSION>1400</COMMISSION>
<JOB_TITLE>SALESMAN</JOB_TITLE>
</EMPLOYEE>

</ALL_EMPLOYEES>

See Also: OraDynaset Object on page 9-30

Datetime and Interval Data Types

From Release 9.2.0.4 and later, OO40 provides four new objects that enable developers
to access and manipulate the new datetime and interval data types introduced in
Oracle9i. Table 4-3 describes the OO4O objects and matching data types.

Table 4-3 Datetime and Interval Data Types

0040 Objects Oracle Data Types
OralntervalDS INTERVAL DAY TO SECOND
OralntervalYM INTERVAL YEAR TO MONTH
OraTimeStamp TIMESTAMP

OraTimeStamp TIMESTAMP WITH LOCAL TIME ZONE
OraTimeStampT?Z TIMESTAMP WITH TIME ZONE

Instances of these types can be fetched from the database or passed as input or output
variables to SQL statements and PL/SQL blocks, including stored procedures and
functions.

These new data types are not supported as elements in collections such as PL/SQL
indexed tables, VARRAYsS, or nested tables.

Obtaining Datetime and Interval Data Types
0040 datetime and interval data types can be obtained using:

s The Value property of an OraField object in a dynaset.

s The Value property of an OraParameter object as an input or an output
parameter in SQL statements or PL/SQL blocks.

= An attribute of another object or REF.
» The following OraSession methods:
— CreateOralntervalDS
— CreateOralntervalYM

— CreateOraTimeStamp

4-28 Oracle Objects for OLE Developer's Guide

Database Schema Objects

- CreateOraTimeStampTZ

Descriptions of Datetime and Interval Data Types

= OraTimeStamp object

Provides methods for operations on Oracle TIMESTAMP or TIMESTAMP WITH
LOCAL TIME ZONE data types. Operations include accessing the datetime values
and performing datetime operations.

s OraTimeStampTZ object

Provides methods for operations on Oracle TIMESTAMP WITH TIME ZONE data
types. Operations include accessing the datetime and time zone values and
performing datetime operations.

» OralIntervalDS object

Provides methods for operations on the Oracle INTERVAL DAY TO SECOND. This
data type represents a period of time in terms of days, hours, minutes, seconds,
and nanoseconds.

» OralIntervalYM object

Provides methods for operations on the Oracle INTERVAL YEAR TO MONTH. This
data type represents a period of time in terms of years and months.

Database Schema Objects

The OraMetaData interface provides access to the schema information of database
objects. It is returned by invoking the Describe method of the OraDatabase
interface. The Describe method takes the name of a schema object, such as the emp
table and returns an OraMetaData object. The OraMetaData object provides
methods for dynamically navigating and accessing all the attributes
(OraMDAttribute collection) of a schema object described.

The following Visual Basic script shows a simple example of the OraMetaData
interface. The sample retrieves and displays several attributes of the emp table.

Dim empMD as OraMetaData

set 0040Session = CreateObject ("OracleInProcServer.XOraSession")
set empDb = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0)

'Add EMPNO as an Input parameter and set its initial value.
Set empMd = empDb.Describe("emp")

'Get the column attribute collections.
Set empColumnsMd = empMd("ColumnList").Value

'Display name, data type, and size of each column in the emp table.
For I = 0 To empColumnsMd.Count - 1

Set ColumnMd = empColumnsMd(I).Value

MsgBox ColumnMd("data type").Value

MsgBox ColumnMd ("Name") .Value
Next I

Advanced O040 Features 4-29

Database Schema Objects

See Also:
s OraMetaData Object on page 9-39
s OraMDAttribute Object on page 9-38

4-30 Oracle Objects for OLE Developer's Guide

O

Tuning and Troubleshooting

This chapter provides information about tuning, troubleshooting, and error handing in
Oracle Objects for OLE (OO40).

This chapter contains these topics:
s Tips and Techniques for Performance Tuning
s Oracle Objects for OLE Error Handling

s Troubleshooting

Tips and Techniques for Performance Tuning

The following topics are intended to help tune the performance of applications that
use Oracle Objects for OLE.

This section contains these topics:

= Early Binding of OO40 Objects

s Tuning and Customization

» Avoiding Multiple Object Reference

» Parameter Bindings

= Array Processing

= Using Read-Only, Forward-Only Dynaset

= Using the PL/SQL Bulk Collection Feature

= Migration from LONG RAW to LOB or BFILE

= Using Connection Pooling

Early Binding of 0040 Objects

The early binding technique tightly typecasts OO4O objects to their native object types
rather than the generic object type provided by Visual Basic. These objects are declared
directly as OO4O objects, rather than as generic objects which are later reclassified as
0040 objects. Early binding improves performance by reducing frequent access to the
0040 type library. For example:

'Early binding of 0040 objects
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset

Tuning and Troubleshooting 5-1

Tips and Techniques for Performance Tuning

'Generic binding of 0040 objects

Dim OraSession as Object
Dim OraDatabase as Object
Dim OraDynaset as Object

To use early binding of OO4O objects, the Oracle In-Process Server type library must
be referenced in the Visual Basic projects.

See Also: "Using Oracle Objects for OLE Automation with Visual
Basic" on page 2-2

Tuning and Customization

Data access can be tuned and customized by altering the cache and fetch parameters of
a dynaset. Setting the FetchLimit parameter to a higher value increases the number
of rows that are fetched with each request, thus reducing the number of network trips
to Oracle Database, and improving performance.

The cost of increasing the size of the FetchLimit parameter is that it increases
memory requirements on the client side, and causes more data to be swapped to and
from the temporary cache file on disk. The proper FetchLimit value should be set
according to the client computer configuration and the anticipated size of the query
result.

The FetchLimit value can be set in the following ways:
» By using the CreateCustomDynaset method
= By modifying parameters of the OO40 entry in the Windows registry

For Windows, the registry key is HKEY_LOCAL_MACHINE and the subkey is
software\oracle\KEY_ HOMENAME\oo4o, where HOMENAME is the appropriate
Oracle home. The OO40 installation creates the following section in the registry:

"FetchLimit" = 100

See Also:

s FetchLimit Property on page 11-61

» CreateDynaset Method on page 10-85
= OraDynaset Object on page 9-30

Avoiding Multiple Object Reference

Improper coding techniques with unnecessary object references can also affect
performance. During dynaset object navigation, you should reduce the number of
object references to the OraFields collections and OraField objects. The following
is an inefficient code block:

'Create the OraDynaset Object
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Traverse until EOF is reached
Do Until OraDynaset.EOF
msgbox OraDynaset.Fields("sal").value
OraDynaset .MoveNext
Loop

5-2 Oracle Objects for OLE Developer's Guide

Tips and Techniques for Performance Tuning

The OraDynaset, OraFields collections, and OraField objects are referenced for
each iteration. Although OO4O provides improvement in handling the field
collections object, multiple references to the automation object goes though the
underlying OLE/COM automation layer, which slows down the execution.

The following example shows how to reference fields through a field object and not
through the fields collection of the dynaset. Testing has determined that this small
amount of extra code greatly improves performance.

Dim flds() As OraField
Dim i, fldcount As Integer

' Create the OraDynaset Object

Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
' Get the field count, and output the names

fldcount = OraDynaset.Fields.Count

ReDim flds (0 To fldcount - 1)

For i = 0 To fldcount - 1

Set flds(i) = OraDynaset.Fields(i)
Next I

'Traverse until EOF is reached

Do Until OraDynaset.EOF
msgbox Flds(5).Value
msgbox Flds(6) .Value

OraDynaset .MoveNext

Loop

Any method or object that is referenced through more than one object is potentially
inefficient, but the extra coding to avoid this is not always worth the time saved. The
best place to start is with field references, because they are most likely to occur
multiple times.

Parameter Bindings

0040 provides a way of enabling and disabling parameter object binding at the time
it processes the SQL statement. This can be done through the AutoBindDisable and
AutoBindEnable methods of the OraParameter object. If the SQL statement does
not contain the parameter name, it is better to disable the OraParameter object
because it avoids an unnecessary reference to the parameter object. This is most
effective when the application is written primarily using PL/SQL procedures. For
example:

Set OraDatabase = OraSession. OpenDatabase("Exampledb", "scott/tiger", 0&)

'Add the job input parameter with initial value MANAGER.
OraDatabase.Parameters.Add "job", "MANAGER", 1

'Add the deptno input parameter with initial value 10.
OraDatabase.Parameters.Add "deptno", 10, 1

'Add the job input parameter with initial value MANAGER.
OraDatabase.Parameters.Add "EmpCur", 0, 1
OraDatabase.Parameters ("Empcur") .ServerType = ORATYPE_CURSOR

'Disable the job parameter for now.
OraDatabase.Parameters ("job") .AutoBindDisable

set OraSqglStmt = CreateSQL("Begin GetEmpData (:Empcur, :deptno) End;",0&)

Tuning and Troubleshooting 5-3

Tips and Techniques for Performance Tuning

Note how the job parameter object is not referenced while processing the PL/SQL
statement.

See Also:
= AutoBindDisable Method on page 10-39
= AutoBindEnable Method on page 10-41

Array Processing

0040 supports an array interface to an Oracle database through the OraParamArray
object. The array interface enables the transfer of bulk of data in single network trip.
This is especially helpful while processing a PL/SQL or SQL statement through the
ExecuteSQL or CreateSQL method. For example, in order to insert 100 rows into
remote database without array processing, ExecuteSQL or CreateSQL must be
called 100 times, which in turn makes 100 network trips. For example:

For I =1 to 100

OraParameter ("EMPNO") .Value = xxxx

OraParameter ("ENAME") .Value = 'yyyy'

OraParameter ("DEPTNO") .Value = zz

OraDatabase.ExecuteSqgl ("insert into emp values (:EMPNO, :ENAME, :DEPTNO)") ;
Next I

The following example makes use of arrays and makes only one network trip.

'ENAMEARR, : EMPNOARR, :DEPTNOARR are parameter arrays

For I =1 to 100
OraParameter ("EMPNOARR") .Put_Value xxxx, I
OraParameter ("ENAMEARR") .Put_Value 'yyyy' ,I
OraParameter ("DEPTNOARR") .Put_Value zz, I
Next I

'Now call the ExecuteSQL only once
OraDatabase.ExecuteSql ("insert into emp values (:EMPNOARR," & _
":ENAMEARR, :DEPTNOARR)");

See Also: OraParamArray Object on page 9-47 for more
information on using arrays

Using Read-Only, Forward-Only Dynaset

If your application does not make any updates to the dynaset, then you can create a
read-only dynaset with the ORADYN_READONLY (H4) option. With this option,
performance improvement can be gained by eliminating the overhead of parsing SQL
statements locally and reducing network trips for SQL statement execution.

If your application does not need a scrollable dynaset, then you can create a
forward-only dynaset with the ORADYN_NOCACHE (H8) option. With this option,
performance improvement can be gained by eliminating the overhead of creating a
local cache file and the overhead of reading/writing data from that file.

Using the PL/SQL Bulk Collection Feature

The PL/SQL bulk collection feature enables the selecting of bulk data in a single
network trip using PL/SQL anonymous blocks. The OO40 OraDynaset object selects

5-4 Oracle Objects for OLE Developer's Guide

Tips and Techniques for Performance Tuning

arrays of data during SQL statement execution. This involves overhead such as
performing more network round-trips, creating more cache files and internal objects. If
you do not want to use a dynaset due to its overhead, then this feature is useful for
selecting arrays of data. The data to be selected can be bound either as an
OraParamArray object or as an OraCollection object.

The following example illustrates PL/SQL bulk collection features using the
OraCollection interface. It shows how arrays of enames are selected with one
network round-trip and less overload.

Set OraDatabase = OraSession.OpenDatabase ("Exampledb", "scott/tiger", 0&)

'create a VARRAY type ENAMELIST in the database
OraDatabase.ExecuteSQL ("create type ENAMELIST as VARRAY (50) OF VARCHAR2 (20)")

'create a parameter for ENAMELIST VARRAY
OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_OUTPUT, 247, "ENAMELIST"

'execute the statement to select all the enames from ename column of emp table
OraDatabase.ExecuteSQL ("BEGIN select ENAME bulk collect into" & _
":ENAMES from emp; END;")

'here OraParameter object returns EnameList OraCollection
Set EnameList = OraDatabase.Parameters ("ENAMES") .Value

'display all the selected enames

FOR I = 1 to EnameList.Size
msgbox Enamelist (I)

NEXT I

See Also: OraDynaset Object on page 9-30

Migration from LONG RAW to LOB or BFILE

Oracle8i introduced the following new types described in "Using Large Objects
(LOBs)" on page 4-3:

= BLOB
= CLOB
= BFILE

The design of these types allows OO4O to access them much faster than using LONG or
LONG RAW types. For this reason, convert existing LONG RAW code to BLOB, CLOB, and
BFILE, and only use LOBs and BFILEs for new applications. The OraLOB object
should be used to access LOB and BFILE types, rather than these LONG RAW chunking
methods, which are provided for backward compatibility only. Note that OraLOB
offers maximum control.

LOB data types differ from LONG and LONG RAW data types in several ways:

= A table can contain multiple LOB columns, but can contain only one LONG
column.

= A table containing one or more LOB columns can be partitioned, but a table
containing a LONG column cannot be partitioned.

s The maximum size of a LOB is 4 gigabytes, but the maximum size of a LONG is 2
gigabytes.

Tuning and Troubleshooting 5-5

Oracle Objects for OLE Error Handling

s LOBs support random access to data, but LONGs data types support only
sequential access.

= LOB data types (except NCLOB) can be attributes of a user-defined object type, but
LONG data types cannot.

= LOB client-side buffering is used to optimize multiple small writes.

= LOB data can be stored in operating system files outside of database tablespaces
(BFILE types).

To make migration easier, the following methods can be used with BLOB, CLOB, and
BFILE types:

s AppendChunk Method on page 10-28

s AppendChunkByte Method on page 10-30
s GetChunk Method on page 10-156

s GetChunkByte Method on page 10-158

s GetChunkByteEx Method on page 10-160
s ReadChunk Method on page 10-224

For older applications using the LONG RAW chunking methods, migration should not
require a lot of changes to the code. The primary code changes involve the
requirement that null BLOB and CLOB types be updated with empty before being used.

Using Connection Pooling

The connection pool in OO40 is a pool of OraDatabase objects. An 0040
connection pool is a group of (possibly) already connected OraDatabase objects. For
applications that require constant connections and disconnections to the database,
such as ASP Web applications, using a connection pool results in enhanced
performance.

See Also: "Using the Connection Pool Management Facility" on
page 3-8

Oracle Objects for OLE Error Handling

0040 errors are grouped in the following categories:
s OLE Automation Errors

= Nonblocking Errors

» Find Method Parser Errors

s Find Method Run-Time Errors

s OraObject Instance Errors

s LOB Errors

s Oracle Streams Advanced Queuing Errors
s OraCollection Errors

s OraNumber Errors

» Oracle Errors

s Oracle Data Control Errors

5-6 Oracle Objects for OLE Developer's Guide

Oracle Objects for OLE Error Handling

OLE Automation Errors

The programmatic interface of the OO40 automation server is the OO4O In-Process
Automation server. Errors that occur during execution of methods are frequently
reported as an OLE Automation Error (ERR = 440, ERRORS="OLE Automation
Error").

When an error occurs, check the LastServerErr property of the OraSession and
OraDatabase objects to determine whether an Oracle database error has occurred. If
the LastServerErr is not zero, then an error has been raised by the 0040
automation server.

To find 0040 automation server errors, scan the string returned by the ERRORS
function for the string "OIP-NNNN" where NNNN is an error number included in the
Table 5-1.

Note: These values are included in the oraconst. txt file in the
ORACLE_BASE\ORACLE_HOME\ oo4o directory.

See Also:

= "Oracle Objects for OLE In-Process Automation Server" on
page 1-2

»s LastServerErr Property on page 11-87
= OraSession Object on page 9-58
s OraDatabase Object on page 9-28

Table 5-1 lists the Oracle OLE automation errors.

Table 5-1 Oracle OLE Automation Errors

Constant Value Description

OERROR_ADVISEULINK 4096 Internal error: Invalid advisory connection.

OERROR_POSITION 4098 An attempt was made to retrieve a field value from
an empty dynaset.

OERROR_NOFIELDNAME 4099 An invalid field name was specified.

OERROR_NOFIELDINDEX 4100 An invalid field index was specified. The range of

indexes is 0 to FieldCount-1.

OERROR_TRANSIP 4101 A BeginTrans operation was specified while a
transaction was already in progress.

OERROR_TRANSNIPC 4104 A CommitTrans operation was specified without
first executing a BeginTrans.

OERROR_TRANSNIPR 4105 A Rollback operation was specified without first
executing a BeginTrans.

OERROR_NODSET 4106 Internal error: System attempted to remove a
nonexistent dynaset.

OERROR_INVROWNUM 4108 An attempt was made to reference an invalid row.
This happens when EOF or BOF is True, or when
the current row was deleted and no record
movement occurred.

OERROR_TEMPFILE 4109 An error occurred while trying to create a
temporary file for data caching.

Tuning and Troubleshooting 5-7

Oracle Objects for OLE Error Handling

Table 5-1 (Cont.) Oracle OLE Automation Errors

Constant Value Description

OERROR_DUPSESSION 4110 An attempt was made to create a named session
that already exists, using the CreateSession or
CreateNamedSession method.

OERROR_NOSESSION 4111 Internal error: System attempted to remove a
nonexistent session.

OERROR_NOOBJECTN 4112 An attempt was made to reference a named object
of a collection (other than the fields collection) that
does not exist.

OERROR_DUPCONN 4113 Internal error: Duplicate connection name.

OERROR_NOCONN 4114 Internal error: System attempted to remove a
nonexistent connection.

OERROR_BFINDEX 4115 An invalid field index was specified. The range of
indexes is 0 to Count -1.

OERROR_CURNREADY 4116 Internal error: System attempted to move to a row
but the dynaset does not support this operation.

OERROR_NOUPDATES 4117 An attempt was made to change the data of a
nonupdatable dynaset.

OERROR_NOTEDITING 4118 An attempt was made to change the value of a
field without first executing the Edit method.

OERROR_DATACHANGE 4119 An attempt was made to edit data in the local
cache, but the data on Oracle Database was
changed.

OERROR_NOBUFMEM 4120 Out of memory for data binding buffers.

OERROR_INVBKMRK 4121 An invalid bookmark was specified.

OERROR_BNDVNOEN 4122 Internal error: Bind variable was not enabled.

OERROR_DUPPARAM 4123 An attempt was made to create a named parameter
using the Add method, but that name already
exists.

OERROR_INVARGVAL 4124 An invalid offset or length parameter was passed
to the GetChunk method, or an internal error
occurred using the AppendChunk method.

OERROR_INVFLDTYPE 4125 An attempt was made to use the GetChunk or
AppendChunk method on a field that was not
either Long or Long Raw type.

OERROR_INVARG 4126 An invalid argument value was entered.

OERROR_TRANSFORUP 4127 A SELECT FOR UPDATE operation was
specified without first executing the BeginTrans
operation.

OERROR_NOTUPFORUP 4128 A SELECT FOR UPDATE operation was
specified, but the query is nonupdatable.

OERROR_TRANSLOCK 4129 A Commit or Rollback was executed while a
SELECT FOR UPDATE operation was in
progress.

OERROR_CACHEPARM 4130 An invalid cache parameter was specified. Note

5-8 Oracle Objects for OLE Developer's Guide

that the maximum value for the CacheBlocks
parameter is 127.

Oracle Objects for OLE Error Handling

Table 5-1 (Cont.) Oracle OLE Automation Errors

Constant Value Description

OERROR_FLDRQROWID 4131 An attempt was made to reference a field that
requires a ROWID (Long or Long Raw), but the
ROWID value was not available.

OERROR_OUTOFMEMORY 4132 Internal Error: Out of memory.

OERROR_MAXSIZE 4135 Element size specified in the AddTable method
exceeds the maximum size allowed for that
variable type. See "AddTable Method" on
page 10-23 for more details.

OERROR_INVDIMENSION 4136 Dimension specified in the AddTable method is
invalid (that is, negative). See "AddTable Method"
on page 10-23 for more details.

OERROR_ARRAYSIZ 4138 Dimensions of array parameters used in the
INSERT, UPDATE, and DELETE statements are not
equal.

OERROR_ARRAYFAILP 4139 Error processing arrays. For details see the
oodoerr. log in the Windows directory.

OE_CLIPFAIL 4141 Internal error: Clipboard could not be opened or
closed.

OE_NOSOURCE 4143 No source string was provided for the
UpdateResource method.

OE_INVSOURCE 4144 Invalid source type was provided for
UpdateSource method.

OE_PLSQLDYN 4145 An attempt was made to set SQL property for
dynaset created from PL/SQL cursor.

OERROR_CREATEPOOL 4147 Database pool already exists for this session.

OERROR_GETDB 4148 Unable to obtain a free database object from the
pool.

OE_INVINPUTTYP 4149 Input type is not compatible with the field or
parameter type.

OE_NOEDITONCLONE 4150 An attempt was made to edit a cloned object.

OE_BNDCHGTYPERR 4152 An attempt was made to change the type of a

parameter array or an array of extended type.

Nonblocking Errors
Table 5-2 lists the nonblocking errors.

Table 5-2 Nonblocking Errors

Constant Value Description

OERROR_NONBLKINPROGRESS 4153 Nonblocking operation in
progress.

OERROR_NONONBLKINPROGRESS 4154 Operation is valid only when
nonblocking operation is in
progress.

Find Method Parser Errors

Find method parser errors occur when the parser cannot evaluate the expression in
the Find method. These errors specify the part of the expression that caused the error.

Tuning and Troubleshooting 5-9

Oracle Objects for OLE Error Handling

Table 5-3 lists the Find method parser errors.

Table 5-3 Find Method Parser Errors

Constant Value Description
OERROR_STACK_OVER 4496 Stack overflow.

OERROR_SYNTAX 4497 Syntax error.
OERROR_MISPLACED_ 4498 Misplaced parenthesis.

PAREN

OERROR_MISPLACED_ 4499 Misplaced quotation marks.
QUOTE

OERROR_MISSING PAREN 4500 Warning: Missing closing parenthesis.
OERROR_EXPECTED_PAREN 4501 Open parenthesis expected.
OERROR_PARSER_UNKNOWN 4502 Unknown parser error condition.
OERROR_INVALID_ 4503 Syntax not supported.

FUNCTION

OERROR_INVALID_COLUMN 4504 Invalid column name.
OERROR_MAX_TOKEN 4505 Maximum size exceeded in token.
OERROR_PARSER_DATA_ 4506 Unsupported data type.

TYPE

OERROR_UNEXPECTED_ 4507 Unexpected token found.

TOKEN

OERROR_END_OF_CLAUSE 4508 Unexpected end of clause.

Find Method Run-Time Errors

Find method run-time errors occur when the system cannot evaluate a find
expression. Such errors are rare. When one occurs, the parser could have generated

incorrect code.

Table 5—4 lists the Find method run-time errors.

Table 5-4 Find Method Run-Time Errors

Constant Value Description

OERROR_INVALID_INSTR 4516 Internal error: Invalid instruction.
OERROR_STACK_ERROR 4517 Internal error: Stack overflow or underflow.
OERROR_CONVERT_TYPES 4518 Invalid type conversion.
OERROR_RUNTIME_DATA_TYPE 4519 Invalid data type.
OERROR_INVALID_SQL_ARG 4520 SQL function missing an argument.
OERROR_INVALID_COMPARE 4521 Invalid comparison.
OERROR_SELECT_DUAL 4522 SELECT from dual failed.
OERROR_DUAIL_DATATYPE 4523 Invalid data type in SELECT from dual.
OER_OPER 4524 Invalid use of operator.

OraObiject Instance Errors

Table 5-5 lists the OraObject instance errors.

5-10 Oracle Objects for OLE Developer's Guide

Oracle Objects for OLE Error Handling

LOB Errors

Table 5-5 OraObject Instance Errors

Constant Value Description

OERROR_NOOBJECT 4796 Creating an OraObject object instance in the
client-side object cache failed.

OERROR_BINDERR 4797 Binding an OraObject object instance to a SQL
statement failed.

OERROR_NOATTRNAME 4798 Getting the attribute name of an OraObject
object instance failed.

OERROR_NOATTRINDEX 4799 Getting the attribute index of an OraObject
object instance failed.

OERROR_INVINPOBJECT 4801 Invalid input object type for the binding
operation.

OERROR_BAD_INDICATOR 4802 Fetched OraObject instance has an invalid
indicator structure.

OERROR_OBJINSTNULL 4803 Operation on the NULL OraObject instance
failed. See the "IsNull (OraObject) Property” on
page 11-81.

OERROR_REFNULL 4804 Pin operation on the NULL Ref value failed. See

the "IsRefNull (OraRef) Property" on page 11-84.

See Also:

= IsNull (OraObject) Property on page 11-81
» IsRefNull (OraRef) Property on page 11-84
= OraObject Object on page 9-43

= OraRef Object on page 9-52

Table 5-6 lists the LOB errors.

Table 5-6 LOB Errors

Constant Value Description

OERROR_INVSEEKPARAMS 4897 Invalid seek value is specified for the LOB read /write
operation.

OERROR_LOBREAD 4898 Read operation failed.

OERROR_LOBWRITE 4899 Write operation failed.

OEL_INVCLOBBUF 4900 Input buffer type for CLOB write operation is not
string.

OEL_INVBLOBBUF 4901 Input buffer type for BLOB write operation is not
byte.

OERROR_INVLOBLEN 4902 Invalid buffer length for the LOB write operation.

OERROR_NOEDIT 4903 Write, Trim, Append, Copy operations are not
allowed in this mode.

OERROR_INVINPUTLOB 4904 Invalid input LOB for the bind operation.

OERROR_NOEDITONCLONE 4905 Write, Trim, Append, Copy operations are not

allowed for a cloned LOB object.

Tuning and Troubleshooting 5-11

Oracle Objects for OLE Error Handling

Table 5-6 (Cont.) LOB Errors

Constant Value Description

OERROR_LOBFILEOPEN 4906 Specified file could not be opened during a LOB
operation.

OERROR_LOBFILEIOERR 4907 File Read or Write operation failed during a LOB
operation.

OERROR_LOBNULL 4908 Operation on NULL LOB failed. See "IsNull

(OraLOB/BFILE) Property" on page 11-80.

See Also:

= OraBLOB, OraCLOB Objects on page 9-11
s IsNull (OraLOB/BFILE) Property on page 11-80

Oracle Streams Advanced Queuing Errors

Table 5-7 lists the Oracle Streams Advanced Queuing errors.

Table 5-7 Oracle Streams Advanced Queuing Errors

Constant Value Description

OERROR_AQCREATEERR 4996 Error creating the OraaQ Object.
OERROR_MSGCREATEERR 4997 Error creating the AQMsg object.
OERROR_PAYLOADCREATEERR 4998 Error creating the payload object.
OERROR_MAXAGENTS 4999 Maximum number of subscribers exceeded.
OERROR_AGENTCREATEERR 5000 Error creating the AQAgent object.

See Also: OraAQ Object on page 9-3

OraCollection Errors

Table 5-8 lists the OraCollection errors.

Table 5-8 OraCollection Errors

Constant

Value Description

OERROR_COLLINSTNULL

OERROR_NOELEMENT
OERROR_INVINDEX

OERROR_NODELETE

OERROR_SAFEARRINVELEM

5196 Operation on NULL OraCollection failed.
See "IsNull (OraCollection) Property" on

page 11-79.
5197 Element does not exist for the given index.
5198 Invalid collection index is specified.

5199 Delete operation is not supported for the
VARRAY collection type.

5200 Variant SafeArray cannot be created from
the collection having nonscalar element

types.

5-12 Oracle Objects for OLE Developer's Guide

Oracle Objects for OLE Error Handling

See Also:
s OraCollection Object on page 9-19
s IsNull (OraCollection) Property on page 11-79

OraNumber Errors

Oracle Errors

Table 5-9 lists the OraNumber errors.

Table 5-9 OraNumber Errors

Constant Value Description

OERROR_NULLNUMBER 5296 Operation on NULL OraNumber object failed.

See Also: OraNumber Object on page 9-41

The most recent Oracle error text is available from the LastServerErr and
LastServerErrText properties of the OraSession or OraDatabase objects.

= OraSession object

The LastServerErr and LastServerErrText properties of the OraSession
object return all errors related to connections, such as errors on the
OpenDatabase method.

s OraDatabase object

The LastServerErr and LastServerErrText properties of the OraDatabase
object return all errors related to an Oracle cursor, such as errors on the
CreateDynaset, CreateSQL, and ExecuteSQL methods.

See Also:

s LastServerErr Property on page 11-87

s LastServerErrText Property on page 11-90
= OraSession Object on page 9-58

s OraDatabase Object on page 9-28

Oracle Data Control Errors

Oracle Data Control errors are specific to the Oracle data control. During the visual
access of the data control, the OO40O automation server-specific errors are reported as
OLE automation server errors with the error code of ODCERR_AUTOMATION. Specific
Oracle Data Control error codes are retrieved from the DataErr parameter of the
Error () event.

Table 5-10 lists the Oracle Data Control errors.

Table 5-10 Oracle Data Control Errors

Constant Value Description

ODCERR_INITOIP 28000 Initialization of Oracle In-Process Server failed. Check
the registry for the correct location of Oracle
In-Process Server.

Tuning and Troubleshooting 5-13

Troubleshooting

Table 5-10 (Cont.) Oracle Data Control Errors

Constant Value Description

ODCERR_OLEQE 28001 Internal error. Querying In-Process Server interface
failed.

ODCERR_AUTOMATION 28003 Oracle In-Process Server error occurred.

ODCERR_NODYNASET 28007 Attempted to access Oracle Data Control before
initialization.

ODCERR_FIELDINDEX 28009 Bound controls trying to access with invalid field
index.

ODCERR_FIELDNAME 28013 Bound controls tried to access with an invalid field
name.

ODCERR_MEMORY 28014 Internal error. Failed to allocate memory for the
requested bindings from the bound control.

ODCERR_BMKTYPE 28015 Oracle Data Control does not support the requested
bookmark type.

ODCERR_CONVERSION 28016 Oracle Data Control cannot convert the field value to
the requested type.

ODCERR_SETSESSION 28017 Setting the session property is not allowed.

ODCERR_SETDATABASE 28018 Setting the database property is not allowed.

ODCERR_BLOBUPDATE 28019 Oracle Data Control does not update picture or raw
data directly from the bound control. Use
AppendChunk () method.

ODCERR_DYN_NOCACHE 28020 Recordset property cannot be set to a dynaset
created with the ORADYN_NOCACHE option (bound
control connected to data control often requires
bidirectional navigation).

ODCERR_DYN_ 28021 Recordset property cannot be set to a dynaset

NOMOVEFIRST

created with the ORADYN_NOMOVEFIRST option.

See Also: AppendChunk Method on page 10-28

Troubleshooting

This topic describes common errors related to the following:

OLE Initialization or OLE Automation Errors

5-14 Oracle Objects for OLE Developer's Guide

s OLE Initialization or OLE Automation Errors

s Oracle Network Errors

s Access Violations

See Also:

information about errors

Oracle Database Error Messages for additional

The most frequent cause of OLE initialization and automation errors is missing or
incorrectly installed software. Ensure correct installation of the software specified.
Then make sure that you have specified method and property names correctly and
that you have declared all Oracle objects as type object.

Table 5-11 lists the causes and solutions for OLE errors.

Troubleshooting

Table 5-11

Causes and Solutions for OLE Errors

Possible Cause

Solution

Your system does not
contain the Microsoft OLE
Automation or run-time,
files or these files are out of
date.

The Oracle Objects for OLE
object information was not
registered in the Windows
registration database.

Your system does not
contain the Oracle Required
Support Files:

m oraclient*.dll
. orageneric*.dll
m oracommon*.dll
] oracore*.dll

u oranls*.dll

Your system does not
contain the Oracle
networking product or its
files are not on the PATH.

You misspelled a method or
property name.

You referenced a method or
property from the wrong
object.

Your system does not
contain the
oraansiVER.d11 file.

Make sure you have the latest versions of files such as the
following installed.

s mfc42.d11
] oleaut32.d1l1l
s o0le32.d11

Either reinstall Oracle Objects for OLE or run the
regedt32. exe file to register information. See "Oracle Objects
for OLE Redistributable Files" on page 1-6.

Check the OO40 readme.htm file to see what version of the
Oracle Database client is required and install it.

Install an Oracle networking product, or add to your PATH an
environment variable that indicates the directory containing
these files.

Check Oracle Objects for OLE Developer’s Guide (this guide) to
determine the correct spelling.

Check Oracle Objects for OLE Developer’s Guide (this guide) to
determine the correct object.

Reinstall Oracle Objects for OLE or add to your PATH
environment variable the directory in which these files are
located.

Note: VER refers to the version.

See Also:

Oracle Network Errors

"Oracle Objects for OLE Redistributable Files" on page 1-6

The most frequent cause of Oracle network errors is incorrectly specified connection
information. The connection information for Oracle Objects for OLE is specified
differently than when using Open Database Connectivity (ODBC). Please verify that
you specified connection information correctly, and then make sure your network
connection is working properly before using Oracle Objects for OLE. The appropriate
Oracle network documentation contains information about testing your connection
and about any Oracle networking error that you may receive.

Table 5-12 lists the Oracle network errors.

Tuning and Troubleshooting 5-15

Troubleshooting

Table 5-12 Oracle Networking Errors

Possible Cause Solution

Incorrect Connect property or See the topics on the Connect property or the
argument to the OpenDatabase OpenDatabase method for examples.

method.

Incorrect DatabaseName See the topics on the DatabaseName property or the
property or argument to the OpenDatabase method for examples.

OpenDatabase method.

Your system does not contain the Install Oracle networking software.
Oracle networking product.

See Also:

= Connect Property on page 11-23

= DatabaseName Property on page 11-37
s OpenDatabase Method on page 10-212

Access Violations

The most frequent cause of access violations is installing Oracle Objects for OLE while
other applications are running that require the OO40 automation server, Oracle
Required Support Files, or OLE. To avoid this, install Oracle Objects for OLE
immediately after starting Windows and before running any other application.

Table 5-13 lists the access violations.

Table 5-13 Access Violations

Possible Cause Solution

Duplicate Oracle Objects for Remove any duplicate files. The files oipVER.d11 and
OLE files exist in SYSTEM 0ipVER. t1b should only be located in the ORACLE_
directories or along the BASE\ORACLE_HOME\bin directory.

PATH.

Duplicate Oracle Required =~ Remove any duplicate files. Typically, the Oracle Required
Support Files DLLs existin ~ Support Files DLLs are located in the ORACLE_BASE\ORACLE_
the SYSTEM directories or HOME \bin directory:

along the PATH.

m oraclient*.dll
n orageneric*.dll
u oracommon*.dll
] oracore*.dll

s oranls*.dll
Duplicate OLE DLLs existin Remove any duplicate files. The OLE DLLs (listed in the OO40

the SYSTEM directories or File Locations section) should only be located in \system
along the PATH. directories.

See Also: "Oracle Objects for OLE File Locations" on page 1-6

5-16 Oracle Objects for OLE Developer's Guide

6

Quick Tour with Visual Basic

This quick tour is designed to get you started with Oracle Objects for OLE for Visual
Basic. An example application, the employee database application, demonstrates how
to program basic database operations, such as navigating through data and, adding,
modifying, and querying records. A more advanced section demonstrates how to
perform batch inserts using parameter arrays and SQL statement objects. This quick
tour and example application assume that the Scott/Tiger schema is installed.

See Also: "Demonstration Schema and Code Examples" on page 2-1
The entire code for this example application is provided in the ORACLE
BASE\ORACLE_HOME\OO40\VB\SAMPLES\QT\ directory.
This quick tour covers the following topics:
s Introduction
» Getting Started: Steps to Accessing Oracle Data
s Programming a Data Entry Form

= Programming a Batch Form

Introduction

This section introduces the employee database application and the two Visual Basic
forms that users interact with to use the application.

About the Employee Database Application

The employee database application lets the user do the following;:
= Browse through data

= Add records

= Update records

s Query the database

= Add records in a batch operation

To provide these functions, this example uses the following forms:
= Employee Form

s Batch Insert Form

Quick Tour with Visual Basic 6-1

Introduction

6-2

Employee Form
The Employee Form displays the fields of the database EMP table and has functional
buttons that allow the user to browse, add, update, and query records.

Figure 6-1 shows the Employee Form.

Figure 6—-1 Employee Form

= Employee Form n o
Exit!

Employee Number: |?839
Employee Name: [KING
Job: [PRESIDENT

Manager: I
Hire Date: IW
Salary: W
Commission: I
Department Number: |1l]—

L] L]] B

[add | [update] [Comme |

See Also:

s "Completed Sample Form_Load Procedure" on page 6-5 for the
code for the Form_Load procedure that initializes the Employee
Form

= "Programming a Data Entry Form" on page 6-6 for a detailed
description of the Employee Form and code for the navigational
buttons

Batch Insert Form
The Batch Insert Form allows users to enter records in a batch operation.

See Also: "Programming a Batch Form" on page 6-16 for a detailed
description of the Batch Insert Form and code for its commands

Figure 6-2 shows the Batch Insert Form.

Oracle Objects for OLE Developer's Guide

Getting Started: Steps to Accessing Oracle Data

Figure 6—2 Batch insert Form

= Batch Insert 'l‘
Employee |Employes Mame |Department
100 an
200 Scott 20
300 Frank, 20
Employes Mumber Employes Name Department Humber
300 IFrank |2n
Add to Grid
{Cammitiarnid:

Getting Started: Steps to Accessing Oracle Data

Before server data can be manipulated, the application must accomplish the four steps
that are described in this section. Sample code for this example is provided in
"Completed Sample Form_Load Procedure" on page 6-5.

1.

Start the Oracle In-Process Automation Server.

The Oracle In-Process Server (OIP) provides the interface between the Visual Basic
application and Oracle Database. To start the Oracle In-Process Server, you must
create an OraSession object using the Visual Basic CreateObject () function,
as follows:

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

When creating the OraSession object, the argument supplied to the
CreateObject () function must always be
OracleInProcServer.XOraSession. The left side of the argument defines the
application name as registered in your system, in this case,
OracleInProcServer. The right side identifies the type of object to create, in
this case, the XOraSession object. Executing this command starts the Oracle
In-Process Server.

Connect to Oracle Database.

After the OIP server is running, you can connect to a local or remote Oracle
database. To do so, you must create the OraDatabase object as follows:

Set OraDatabase = OraSession.OpenDatabase ("Exampledb", "scott/tiger", _
ORADB_DEFAULT)

The OraSession.OpenDatabase () method creates the OraDatabase object.
The method call must specify the database name, the connection string, and a bit
flag that represents the database mode. The constant ORADB_DEFAULT represents

Quick Tour with Visual Basic 6-3

Getting Started: Steps to Accessing Oracle Data

the default database mode. When Visual Basic executes this line, a connection is
created to the specified database.

3. Create a global OraDynaset object to manipulate the data.

Oracle Objects for OLE lets users browse and update data using an object called a
dynaset.

The Employee application needs a global dynaset that the rest of the program can
access. The OraDatabase.CreateDynaset () method creates the dynaset
specifying a valid SQL SELECT statement. In the example, the statement selects all
the rows from the emp table and assigns the resulting dynaset to the global
EmpDynaset variable as follows:

Set EmpDynaset = OraDatabase.CreateDynaset ("select * from emp", _
ORADYN_DEFAULT)

The CreateDynaset () method returns a pointer to the result of the SQL
SELECT statement.

The ORADYN_DEFAULT parameter value specifies the default dynaset state. In the
default state, Oracle Objects for OLE sets unset fields to NULL while adding
records using the AddNew method. This behavior is preferable because the emp
table has no column defaults defined. You can also specify other options to allow
server column defaults when adding records.

See Also: "CreateDynaset Method" on page 10-85

4. Refresh the Employee Form with dynaset data.

The Employee Form displays database records one row at a time. Changes to the
current row, such as those caused by navigating to a different row, must be
reflected on the screen. The EmpRefresh () subroutine updates fields with the
current dynaset row. For NULL field values, empty strings are displayed.

The following is an example of an EmpRefresh () subroutine:

Private Sub EmpRefresh()
'check if the current dynaset row is valid
If EmpDynaset.BOF <> True And EmpDynaset.EOF <> True Then

txtEmpno = EmpDynaset.Fields("empno").Value

' we can't display nulls, so display "" for NULL fields
If Not IsNull (EmpDynaset.Fields("ename").Value) Then
txtEname = EmpDynaset.Fields("ename") .Value
Else
txtEname = ""
End If

If Not IsNull (EmpDynaset.Fields("job").Value) Then
txtJob = EmpDynaset.Fields("job").Value
Else
txtJob = ""
End If

'check if mgr=nul
If Not IsNull (EmpDynaset.Fields("mgr").Value) Then
txtMgr = EmpDynaset.Fields("mgr").Value
Else
txtMgr = ""
End If

6-4 Oracle Objects for OLE Developer's Guide

Getting Started: Steps to Accessing Oracle Data

If Not IsNull (EmpDynaset.Fields("hiredate").Value) Then
txtHireDate = EmpDynaset.Fields("hiredate") .Value
Else
txtHireDate = ""
End If

If Not IsNull (EmpDynaset.Fields("hiredate").Value) Then
txtSal = EmpDynaset.Fields("sal").Value
Else
txtSal = ""
End If

'check if comm=nul

If Not IsNull (EmpDynaset.Fields("comm").Value) Then
txtComm = EmpDynaset.Fields("comm").Value

Else

txtComm = ""

End If

txtDeptno = EmpDynaset.Fields("deptno").Value

'if the current dynaset row is invalid, display nothing
Else

txtEmpno = ""
txtEname = ""
txtJob = ""
txtMgr = ""
txtHireDate = ""
txtSal = ""
txtComm = ""
txtDeptno = ""

End If

End Sub

Completed Sample Form_Load Procedure

In the employee application described in the previous section, the Form_Load ()
procedure creates the OIP server, connects to the database, creates a global dynaset,
and calls the EmpRefresh function to display the field values on the Employee Form.
The following is an example of a Form_Load () procedure:

Private Sub Form_Load()

'OraSession and OraDatabase are global

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.OpenDatabase ("Exampledb", "scott/tiger", 0&)
Set EmpDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

Call EmpRefresh
End Sub

The following variables must be defined globally in EMP_QT . BAS:

Global OraSession As Object
Global OraDatabase As Object

Quick Tour with Visual Basic 6-5

Programming a Data Entry Form

Global EmpDynaset As Object

Programming a Data Entry Form

This section describes the Employee Form in detail and then describes the functions

that it uses.

About the Employee Form

The Employee form displays the fields of the database EMP table and has functional
buttons that allow the user to browse, add, update, and query records.

Each field corresponds to a column in the database EMP table. The Employee field
(ENAME) is the indexed column and is mandatory for each record. The field data types
and sizes are defined as follows in the EMP table:

EMPNO NOT NULL

MGR
HIREDATE
SAL
coMM

DEPTNO NOT NULL

NUMBER (4)
VARCHAR2 (10)
VARCHAR2 (9)
NUMBER (4)
DATE
NUMBER (7
NUMBER (7
NUMBER (2

)
)

’

2
, 2
)

The Employee Number (EMPNO) and Department (DEPTNO) columns are NOT NULL,
and, therefore, always require a value when a record is added. The length of each field
is enforced by setting the MaxLength property of each TextBox to the appropriate

number.

Figure 6-3 shows the Employee Form.

Figure 6-3 Employee Form

= Employee Form
Exit!

ME

Employee Number: |?839

Employee Name: [KING

Job: [PRESIDENT

Manager: I
Hire Date: IW
Salary: W
Commission: I
Department Number: |1l]—

L] L]] B

[add | [update] [Comme |

The initial code for the actual Form_Load procedure is provided in "Completed
Sample Form_Load Procedure" on page 6-5.

6-6 Oracle Objects for OLE Developer's Guide

Programming a Data Entry Form

The Employee form is initialized by the Form_Load () procedure and includes the
following features:

= Navigating Through Data
= Adding Records

= Updating Records

s Deleting Records

= Querying the Database

Navigating Through Data

Database applications typically require that the user be able to view data in the
database. The Employee form has four buttons that let the user scroll through data.
Table 6-1 lists the buttons, what they do, which dynaset move method enables the
action of the button, and where to look for further information.

Table 6—-1 Navigational Buttons and Dynaset Move Methods

Button Action Method See...

| < Moves to the first record MoveFirst Moving to First or Last Rows

< Moves to the previous MovePrevious Moving to the Previous Row
record

> Moves to the next record ~ MoveNext Moving to the Next Row

> | Moves to the last record MoveLast Moving to First or Last Rows

To enable navigation through the records of the Employee database, you must first
create a global dynaset that selects all the records (rows). Then use the dynaset move
methods to program the navigation buttons.

Moving to First or Last Rows

To enable a move to the first row of a dynaset, use the MoveFirst method. Then call
the EmpRefresh () routine to refresh the data in the Employee form.

The following example code shows the first-click event procedure for the employee
example:

Private Sub cmdFirst_Click()

EmpDynaset .MoveFirst
Call EmpRefresh

End Sub

For a move to the last row, use the MoveLast method. Then, call the EmpRefresh ()
routine to refresh the data in the Employee form.

The following example code shows the last-click event procedure for the employee
example:

Private Sub cmdlLast_Click()

EmpDynaset .MoveLast
Call EmpRefresh

End Sub

Quick Tour with Visual Basic 6-7

Programming a Data Entry Form

Moving to the Previous Row

Navigation is possible to any row of a dynaset. If a user is positioned in the middle of
a dynaset (that is, the current row is not the first row), the MovePrevious method
enables navigation to the previous row.

However, when a user is positioned on the first row (current row is the first row) and
executes the MovePrevious method, the beginning-of-file (BOF) condition becomes
TRUE and the current row becomes invalid. In this case, the current row must be reset
to the first row using the MoveFirst method.

The following example code shows the click-event procedure for the Previous button:

Private Sub cmdPrevious_Click()

If EmpDynaset.BOF <> True Then
EmpDynaset . DbMovePrevious

If EmpDynaset.BOF = True Then
MsgBox WarnFirstEmp$
EmpDynaset .DbMoveFirst

End If

End If

Moving to the Next Row
If a user is positioned in the middle of a dynaset (that is, the current row is not the last
row), the MoveNext method enables navigation to the next row.

However, when a user is positioned on the last row (current row is the last row) and
then executes MoveNext, the end-of-file condition (EOF) becomes TRUE and the
current row becomes invalid. In this case, the current row must be reset to the last row
using the MoveLast method.

The following example code shows the click-event procedure for the Next button:
Private Sub cmdNext_ Click()
If EmpDynaset.EOF <> True Then
EmpDynaset . DbMoveNext
If EmpDynaset.EOF = True Then
MsgBox WarnLastEmp$
EmpDynaset .DbMoveLast

End If
End If

Adding Records

In the example application, the following buttons allow users to add employee records
to the database:

= Add
s Commit

To add a record, the user clicks on the Add button, enters the new fields in the text
boxes, and then clicks the Commit button to save the data to the database.

Coding the Add Button

The Add event procedure must perform the following steps:

6-8 Oracle Objects for OLE Developer's Guide

Programming a Data Entry Form

1. Clear the fields on the form.

2. Disable the Add button.

3. Enable the Commit button.

4. Let the user enter new field values.

The following example code shows the Add event procedure for the Add button:

Private Sub AddNew_Click()
'Blank out the fields

txtEmpno = ""

txtEname = ""

txtJob = ""

txtMgr = ""

txtHireDate = ""

txtSal = ""

txtComm = ""

txtDeptno = ""

'Disable the Add button and enable the commit button
AddNew.Enabled = False
Commit.Enabled = True
'Disable the navigation buttons
DisableNavButtons
'Set doadd to true for commit procedure
DoAdd = True
End Sub

When the AddNew_C1lick () method exits, control returns to the Employee Form
where the user enters values in the fields.

Coding the Commit Button (Add)

To commit an addition, you must place the dynaset in add mode using the AddNew
method. Then, you assign the new data to the dynaset fields and update the database
using the Update method. To make the program robust, the software validates some
fields before adding them to the database.

The Commit_Click () event procedure for adding records must do the following;:
1. Check that the Employee Number and Department fields are not null.
2. Check that the new Employee Number is not a duplicate entry.

Steps 1 and 2 are performed by the DovalidationChecks () function which is
described following the Commit_Click() .

3. Place the dynaset in add mode using the AddNew method.

4. Assign entered data to dynaset fields using the Fields () . Value property. This
step is performed by the UpdateDynasetFields function.

5. Update the database with new records, using the Update method.
6. Disable the Commit button.

7. Enable the Add button.

The code for the Commi t function is broken into the following routines:
s "Commit_Click Event Procedure (Add)" on page 6-10

= "DoValidationChecks() Function" on page 6-10

Quick Tour with Visual Basic 6-9

Programming a Data Entry Form

s "UpdateDynasetFields() Function" on page 6-11

Commit_Click Event Procedure (Add) The following is a typical Commit_Click() event
procedure for adding records:

Private Sub Commit_Click()
On Error GoTo err_commit

ErrMsg = ""
'Do validation checks on entered data
If DoValidationChecks Then 'If validation checks have passed

'Add the new record to dynaset
EmpDynaset . AddNew

'Update the dynaset fields and then update database if there is no error.
If UpdateDynasetFields Then

'Update the database
EmpDynaset .Update

Commit.Enabled = False
AddNew.Enabled = True

Exit Sub

err_commit:
If ErrMsg <> "" Then
MsgBox ErrMsg
Else
MsgBox Error$
End If

End Sub

DoValidationChecks() Function To check for duplicate entries as suggested in Step 2, you
must create a local dynaset with the NOCACHE option, using a SQL statement that
counts the rows matching the entered Employee Number field. If a match is found
(row count greater than 0), the entered employee number is a duplicate entry and an
error is displayed. In this case, because the SQL SELECT statement returns only a
number, creating the dynaset without a cache is a more efficient error check than the
server finding a duplicate entery.

DoValidationChecks () returns True if the entered data is valid; otherwise, it
returns False.

Function DoValidationChecks () As Boolean

Dim DupDyn As Object
Dim DupDynQry As String

On Error GoTo err_ValidationCheck

ErrMsg = ""
'Empno cannot be changed while in Update mode, so we can skip over validation
If DoAdd Then
If txtEmpno = "" Then
ErrMsg = "You must enter a value for Employee Number"

6-10 Oracle Objects for OLE Developer's Guide

Programming a Data Entry Form

Error 1
End If
End If

If txtHireDate <> "" And Not IsDate(txtHireDate) Then
ErrMsg = "Enter date as dd-mmm-yy."

Error 2

End If

If txtDeptno = "" Then
ErrMsg = "You must enter a value for Department Number"
Error 3

End If

'If adding a record, check for Duplicate empno value by

'attempting to count rows with same value

'Build Query:

If DoAdd Then
DupDynQry = "select count(*) from emp where empno = " & txtEmpno
Set DupDyn = OraDatabase.CreateDynaset (DupDynQry, ORADYN_NOCACHE)

If DupDyn.Fields(0).Value <> 0 Then
ErrNum = DUPLICATE_KEY
ErrMsg = "Employee Number already exists."
Error ErrNum
End If
End If
'Succesful validation with no errors returns True
DoValidationChecks = True
Exit Function

err_ValidationCheck:
If ErrMsg <> "" Then
MsgBox ErrMsg
Else
MsgBox Errors$
End If
'Validation returns false on failure
DoValidationChecks = False

End Function

UpdateDynasetFields() Function The commit event procedure calls this function after
putting the dynaset in either Edit or AddNew mode. The UpdateDynasetFields ()
function sets the dynaset fields to the values entered in the text boxes. The function
returns TRUE if successful, or returns FALSE if there is an error.

Function UpdateDynasetFields() As Integer
'This function sets the dynaset field value to those entered in the text boxes.
'The function returns true on success, false on error.

ErrMsg = ""
On Error GoTo err_updatedynasetfields
EmpDynaset.Fields ("empno") .Value = txtEmpno
EmpDynaset.Fields ("ename") .Value = txtEname
(
(

EmpDynaset.Fields("job") .Value = txtJob
EmpDynaset.Fields ("mgr") .Value = txtManager

Quick Tour with Visual Basic 6-11

Programming a Data Entry Form

EmpDynaset.Fields("hiredate").Value = txtHireDate
EmpDynaset.Fields("sal").Value = txtSal
EmpDynaset.Fields ("comm") .Value = txtComm
EmpDynaset.Fields ("deptno") .Value = txtDeptno

UpdateDynasetFields = True
Exit Function

err_updatedynasetfields:
If ErrMsg <> "" Then
MsgBox ErrMsg
Else
MsgBox Error$
End If
UpdateDynasetFields = False

Updating Records

To allow users to update existing records in the database, you need to include an
Update button in the Employee Form. Users navigate to a particular record, click the
Update button, make changes, and then click the Commit button.

While in update mode, the application makes the following restrictions:
= Users cannot navigate to another record or perform another function.
= Users cannot change the employee number because this is the primary key.

To program the Update function, write an event procedure for the Update button and
modify the Commit procedure so that it handles both updating and adding records.

Coding the Update Button

To code the Update button, disable the Employee Number text box to prevent changes
to this field while updating records, because this is a primary key. You must also
disable the other buttons to disable other functions, such as navigation, while
updating records.

Set the DoUpdate Boolean expression to TRUE, so the commit procedure recognizes
the current process as an update operation, not an addition.

The update event procedure must do the following:
1. Disable the Update button.
2. Enable the Commit button.

3. Disable other buttons to disable functions, such as navigation, during the update
operation.

4. Disable the Employee Number text box.

5. Set the DoUpdate flag to True.

6. Let the user enter changes.

The following example code shows the update event procedure:

Private Sub cmdUpdate_Click()

'Disable the Update button and enable the commit button
cmdUpdate.Enabled = False
Commit.Enabled = True

'Disable all other buttons

6-12 Oracle Objects for OLE Developer's Guide

Programming a Data Entry Form

DisableNavButtons

txtEmpno.Enabled = False
DoUpdate = True
End Sub

The update and add event procedures call the DisableNavButtons () subroutine to
disable navigation and other functions during an add or update operation.

Private Sub DisableNavButtons()

'disable all buttons while adding and updating
cmdFirst.Enabled = False

cmdPrevious.Enabled = False

cmdNext .Enabled = False

cmdLast.Enabled = False

cmdFind.Enabled = False

cmdUpdate.Enabled = False

AddNew.Enabled = False

End Sub

Coding the Commit Button to Add and Update Records

The procedure for committing an update operation is similar to committing an add,
except that the dynaset is set in edit mode using the Edit method and then the new
dynaset values are assigned.

Because the same commit button and the same commit event procedure are used to
add and update, two global flags DoAdd and DoUpdate are added to distinguish
between adding and updating. The Add and Update click event procedures set these
flags.

The Commit event procedure for adding and updating must do the following:
1. Validate entered data using the DovalidationChecks () function as before.
2, Use AddNew to add records or else use Edit for updates.

3. Assign entered data to dynaset fields, using the Fields () . Value property using
UpdateDynasetFields () as before.

4. Update database with new records, using Update.

5. Disable the Commit button.

6. Reenable all other functional buttons including the Add and Update buttons.
7. Set the DoUpdate and DoAdd flags to False.

The code that changes button and flag states in Steps 5 through 7 is provided in a new
subroutine called SetAfterCommitFlags (). This replaces the lines of code that
originally enabled Commit and AddNew.

The code for this Commit function is broken into the following routines:
s "Commit_Click() Event Procedure Example" on page 6-14

s "DoValidationChecks() Function" on page 6-10, also used in the original Commi t
function

= "UpdateDynasetFields() Function" on page 6-11, also used in the original Commit
function

Quick Tour with Visual Basic 6-13

Programming a Data Entry Form

"SetAfterCommitFlags() Subroutine Example" on page 6-14, which is a new
subroutine

Commit_Click() Event Procedure Example
The following example shows the Commit_Click Event Procedure.

Private Sub Commit_Click()
On Error GoTo err_commit

ErrMsg = ""
'Do validation checks on entered data
If DoValidationChecks Then 'If validation checks have passed

'If we are adding a record use AddNew

If DoAdd = True Then
EmpDynaset . AddNew

End If

'If we are updating a record use Edit

If DoUpdate = True Then
EmpDynaset.Edit

End If

'Update the dynaset fields and then update database if there is no error.

If UpdateDynasetFields Then
EmpDynaset .Update

End If

SetAfterCommitFlags
End If 'Endif for DoValidationChecks
Exit Sub

err_commit:
If ErrMsg <> "" Then
MsgBox ErrMsg
Else
MsgBox Error$
End If

End Sub

SetAfterCommitFlags() Subroutine Example
The following example shows the SetAfterCommitFlag () Subroutine.

The SetAfterCommitFlags () subroutine is called at the end of the commit event
procedure. The SetAfterCommitFlags () subroutine reenables disabled buttons
and text boxes and sets the DoUpdate and DoAdd flags to False.

Sub SetAfterCommitFlags ()

'disable commit and re-enable add and update buttons
Commit.Enabled = False

AddNew.Enabled = True

cmdUpdate.Enabled = True

'enable the other buttons
cmdFirst.Enabled = True
cmdPrevious.Enabled = True
cmdNext .Enabled = True

6-14 Oracle Objects for OLE Developer's Guide

Programming a Data Entry Form

cmdLast.Enabled = True
cmdFind.Enabled = True
cmdUpdate.Enabled = True
AddNew.Enabled = True

DoUpdate = False
DoAdd = False

txtEmpno.Enabled = True

End Sub

Deleting Records

Users can delete records by navigating to a particular record and clicking the Delete
button. The application prompts the user to verify the deletion, then the application
deletes the record using the Delete method. The program then refreshes the screen
with the next record or with the previous record if the user deleted the last record in
the dynaset.

The following example shows the delete-click event procedure:

Private Sub cmdDelete_Click()
'prompt user
Response = MsgBox("Do you really want to Delete?", vbYesNo + vbExclamation)

If Response = vbYes Then
EmpDynaset .Delete
'attempt to move to next record
EmpDynaset .MoveNext
If EmpDynaset.EOF Then 'If deleted last record
EmpDynaset .MovePrevious
End If
Call EmpRefresh
End If
End Sub

Querying the Database

The employee application can be configured to allow users to search for particular
records in the database. For demonstration purposes, a Find button is included to
allow users to query only employee names. At any time, the user can enter the query
in the Employee Name field, and click the Find button. The application then displays
the result or displays a message if the name cannot be found.

To search for records, the FindFirst method is used. When the find operation
succeeds, the record is displayed. If the find fails, a message is displayed. The current
row is reset to the first row, because failures cause the dynaset to be BOF
(beginning-of-file), effectively making the current row invalid.

The Find_Click () event procedure must do the following:

1. Build a find clause to find the record where the ENAME column matches the
entered string.

2. Execute the find using the FindFirst method.

3. Display the record if it is found; if the record was not found, display a message
and reset the current row to the first row.

Quick Tour with Visual Basic 6-15

Programming a Batch Form

The following example shows a typical find click event procedure:

Private Sub cmdFind_Click()
Dim FindClause As String
Dim SingleQuote As String

ErrMsg = ""
SingleQuote = "'"

On Error GoTo err_find

'build the find clause:

'Can make our query case insensitive by converting the names to upper case
'FindClause = "UPPER(ename) = " & SingleQuote & UCase(txtEname) & SingleQuote
FindClause = "ename = " & SingleQuote & txtEname & SingleQuote

EmpDynaset .DbFindFirst FindClause

If EmpDynaset.NoMatch Then
MsgBox "Could not find record matching Employee Name " & txtEname
EmpDynaset .DbMoveFirst

End If

Call EmpRefresh

Exit Sub

Using Batch Insert
A typical command to load the Batch Insert form looks like this:

Private Sub BInsert_Click()
Load BatchInsert
BatchInsert.Show

End Sub

See Also: "Programming a Batch Form" on page 6-16

Programming a Batch Form

This section describes the Batch Insert Form and then describes the functions that it
uses.

About the Batch Insert Form

The Batch Insert Form allows users to insert rows in a batch operation, that is, to insert
more than one record into the database by using only one command. This feature is
implemented using parameter arrays and SQL statements.

Table 64 shows a typical Batch Insert Form:

6-16 Oracle Objects for OLE Developer's Guide

Programming a Batch Form

Figure 6—4 Batch Insert Form

= Batch Insert 'l‘
Employee |Employes Mame |Department
100 an
200 Scott 20
300 Frank, 20
Employes Mumber Employes Name Department Humber
300 IFrank |2n
Add to Grid

Users navigate to the Batch Insert Form by clicking the Batch Insert button on the
Employee Form. The Batch Insert Form has a grid that displays the entered data and a
row of fields where the user enters each record. To keep the example simple, users are
only allowed to enter information into the Employee Number, Employee Name, and
Department Number fields.

Users enter records in the fields and click the Add to Grid button. The program
displays the entered records in the grid. To insert the entire batch to the database, users
click the CommitGrid button.

The Batch Insert Form uses three procedures. The Form_Load () procedure initializes
the grid with the column headers. The CmdAddtoGrid_click () procedure copies
the entered data from the fields to the grid. The CommitGrid_Click() procedure
contains the parameter array and SQL statements used to make the batch insert.

These procedures are described as follows:

s Coding the Batch Insert Form_Load() Procedure
s Coding the CmdAddtoGrid() Procedure

s Coding the CommitGrid_Click() Procedure

Coding the Batch Insert Form_Load() Procedure

The following examples show how the Batch Insert Form_Load () procedure sets the
column headings for the grid:

Private Sub Form Load()
Gridl.Enabled = True
CurrRow = 0 'Top row
ReadRow = 0

ReadCol = 0

'Set column headings

Quick Tour with Visual Basic 6-17

Programming a Batch Form

Gridl.Row = CurrRow
Gridl.Col =0
Gridl.Text = "Employee Number"

Gridl.Col =1
Gridl.Text = "Employee Name"

Gridl.Col = 2
Gridl.Text = "Department Number"

NoOfCols = 3
CurrRow = CurrRow + 1

End Sub

Coding the CmdAddtoGrid() Procedure

The CmdAaddtoGrid_Click () procedure copies the data entered in the fields to the
next empty grid row. The global variable CurrRow always points to the first empty
row in the grid.

The following example shows the CmdAddtoGrid Click():

Private Sub CmdAddtoGrid_Click()

'Update the grid
'Update Empno column
Gridl.Row = CurrRow
Gridl.Col =0
Gridl.Text = txtEmpno
'Update Ename column
Gridl.Row = CurrRow
Gridl.Col =1
Gridl.Text = txtEname
'Update Deptno column
Gridl.Row = CurrRow
Gridl.Col = 2
Gridl.Text = txtDeptno

'Increment CurrCol
CurrRow = CurrRow + 1

NoOfRows = CurrRow - 1

End Sub

Coding the CommitGrid_Click() Procedure

The CommitGrid_Click() procedure inserts the grid data into the database. To do
so, this procedure creates a parameter array object for each column in the EMP table
that corresponds to a column in the grid. The OraParameters.AddTable () method
defines each parameter array. For example, a parameter array called EMPNO_ARR holds
all Employee Number column elements.

After the parameter arrays are defined, the Put_value method populates them with
grid column elements.

6-18 Oracle Objects for OLE Developer's Guide

Programming a Batch Form

To commit the parameter array elements to the database, this procedure uses the
CreateSQL () method with a SQL INSERT statement containing the parameter
arrays. Because the CreateSQL () method executes the SQL INSERT statement in
addition to creating a SQL statement object, all column elements (parameter array
elements) are inserted into the EMP table with this one statement.

If an error occurs during a SQL INSERT statement that contains parameter arrays, the
SQL statement object is still created with no explicitly raised error. To identify such
errors, always check the OraDatabase.LastServerErr and
OraDatabase.LastServerErrText properties immediately after executing the
CreateSQL method.

The CreatesQL method updates the database directly and has no effect on the
dynaset. The EmpDynaset. Refresh method must used to refresh this dynaset so that
it reflects the newly inserted records.

The CommitGrid_Click() event procedure must do the following;:

1. Define a parameter array for each grid (database) column, using the AddTable
method.

2. Copy grid column elements into parameter arrays, using the Put_value method
within a nested loop.

3. Create a SQL statement object using the CreateSQL method to insert parameter
array elements into the EMP table.

4, Check the LastServerErrText and LastServerErr properties to catch SQL
statement execution errors.

5. Refresh the global dyanset to reflect newly inserted records, using the Refresh
method.

The following example shows a typical cmdCommitGrid_Click() procedure:

Private Sub cmdCommitGrid_Click()
Dim OraSqglStmt As Object
Dim OraPArray(2) As Object

On Error GoTo err_CommitGrid
ErrMsg = ""

'Define parameter arrays, one for each column

OraDatabase.Parameters.AddTable "EMPNO_ARR", ORAPARM_INPUT, ORATYPE_NUMBER, _
NoOfRows

OraDatabase.Parameters.AddTable "ENAME_ARR", ORAPARM_INPUT, ORATYPE_VARCHAR2, _
NoOfRows, 10

OraDatabase.Parameters.AddTable "DEPTNO_ARR", ORAPARM_INPUT, ORATYPE_NUMBER, _

NoOfRows
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
Error 1
End If

'Initialize local array to hold parameter arrays

Set OraPArray(0) = OraDatabase.Parameters ("EMPNO_ARR")
Set OraPArray(l) = OraDatabase.Parameters ("ENAME_ARR")
Set OraPArray(2) = OraDatabase.Parameters ("DEPTNO_ARR")

'Init the param array variables. Add loop to read thru grid ROWS
For ReadRow = 0 To (NoOfRows - 1)
Gridl.Row = ReadRow + 1
'Loop to read thru grid CELLS
For ReadCol = 0 To NoOfCols - 1

Quick Tour with Visual Basic 6-19

Programming a Batch Form

Gridl.Col = ReadCol
OraPArray (ReadCol) .Put_Value Gridl.Text, ReadRow
Next ReadCol
Next ReadRow

'create a sglstmt to insert array values into table
Set OraSglStmt = OraDatabase.CreateSgl ("insert into emp (empno,ename,deptno)" & _
"values (:EMPNO_ARR, :ENAME_ARR, :DEPTNO_ARR) ", 0&)

If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
ErrMsg = OraDatabase.LastServerErrText
Error 1

End If

'Refresh the Dynaset
EmpDynaset .Refresh

OraDatabase.Parameters.Remove "EMPNO_ARR"
OraDatabase.Parameters.Remove "ENAME_ARR"
OraDatabase.Parameters.Remove "DEPTNO_ARR"

Exit Sub

err_CommitGrid:
If ErrMsg <> "" Then
MsgBox ErrMsg
Else
MsgBox Error$
End If

End Sub

6-20 Oracle Objects for OLE Developer's Guide

7

Code Wizard for Stored Procedures

The Oracle Objects for OLE (O040) Code Wizard generates OO40 code that executes
Oracle PL/SQL and Java stored procedures.

The wizard generates code into individual Microsoft Visual Basic or Active Server
Page and VBScript subroutines from existing Oracle stored procedures and packages.
Additionally, the wizard can generate complete implementations of COM Automation
objects in the form of VB class files. The generated COM Automation object methods
act as client stubs for the execution of stored procedures contained in a given package.
All the OO40 code necessary for input/output parameter binding and stored
procedure execution is automatically generated.

The wizard can be used as a command-line utility or as a Visual Basic add-in. The
wizard automates the entire process of accessing stored procedures using COM
interfaces, thereby significantly reducing development time and the likelihood of
programming errors.

Note: The Code Wizard requires Visual Basic 6.

This chapter contains these topics:

s Oracle Objects for OLE Code Wizard Components
= Data Types Supported by the OO40 Code Wizard
= Using the OO40 Code Wizard

s Code Wizard Examples

Oracle Objects for OLE Code Wizard Components
The O0O40 Code Wizard includes the following components:

= A command line utility, 0040CodeWiz . exe, that converts PL/SQL and Java
stored procedures to OO40 code.

= A Visual Basic Add-in wizard that guides you through a series of steps to generate
0040 code for PL/SQL and Java stored procedures. The wizard displays Oracle
packages and stored procedures from a tree control so that the user can choose
which items to generate code.

Both of these components allow users to convert entire stored procedure packages to
0040 code.

Code Wizard for Stored Procedures 7-1

Data Types Supported by the 0040 Code Wizard

Data Types Supported by the 0040 Code Wizard

The code wizard supports all data types, except for PL/SQL tables. When a PL/SQL
table is used, an unsupportedType key word is used instead, and the generated code
does not compile.

The output code may have to be modified for handling Nul1 values. For example,
when a VB variable is initialized to a parameter value, an isNull () check may have
to be added if Null values are expected. Null values are correctly handled for VB
variables of type Variant and Object.

Using the 0040 Code Wizard

The O0O40 Code Wizard can be used as a command line utility or as a Visual Basic
Add-in.

0040 Code Wizard Command-Line Utility

The 0040CodeWiz . exe is a command-line utility that generates a Visual Basic class, a
Visual Basic file, or an Active Server Page/VB Script file from existing PL/SQL or Java
stored procedures, as well as packages, within an Oracle database. Call the utility in
the following manner:

0040CodeWiz [-o output_file] username/password@connect_string package

Where Specifies the following
username User name to log in to the database
password Password for the user name
connect_string Database connection string
package Package name
stored_procedure Stored procedure name (optional)
Example

0040CodeWiz -o empfile.asp scott/tiger@Exampledb employee.example

Option
Option Description
-0 Specifies the output file name (optional)

Files Generated
The code wizard uses the information specified on the command line to determine
which type of output file to generate.

If a file name and one of the permitted file extensions are specified, then they are used.
In the preceding example, an ASP file is generated in the empfile.asp output. The
user can specify the following extensions:

7-2 Oracle Objects for OLE Developer's Guide

Using the 0040 Code Wizard

Extension File Type Generated
.cls VB class file

.bas VB file

.asp ASP or VB script file
.vbs ASP or VB script file

If no file extension is specified, the following rules indicate what type of file is
generated, depending on other command-line specifications.

= Package names without a stored procedure name generate a . c1s file.
= Package names with procedure names generate a .bas file.

Table 7-1 and Table 7-2 provide examples.

Table 7-1 Package Name Without Stored Procedure Name

File Specified Command File Type Generated
File name with no file 0040CodeWiz -o empfile empfile.cls
extension generates scott/tiger@Exampledb employee

filename.cls.

No file name or 0040CodeWiz employee.cls
extension: generates scott/tiger@Exampledb

packagename.cls. employee

File name with file 0040CodeWiz -o empfile.asp empfile.asp
extension generates scott/tiger@Exampledb employee

filename. fileexten.

Table 7-2 Package Name With Stored Procedure Name

File Specified Command File Type Generated
File name with no file 0040CodeWiz -o empfile empfile.bas
extension generates scott/tiger@Exampledb

filename.bas. employee.example

No file name or 0040CodeWiz employee.bas
extension: generates scott/tiger@Exampledb

packagename. bas. employee.example

File name with file 0040CodeWiz -oempfile.asp empfile.asp
extension generates scott/tiger@Exampledb

filename. fileexten. employee.example

0040 Code Wizard Visual Basic Wizard Add-in

1. Launch the OO40 Code Wizard by selecting Oracle Code Wizard for Stored
Procedures in the Add-Ins menu of Microsoft Visual Basic.

The Connect To Oracle Database dialog box appears:

Code Wizard for Stored Procedures 7-3

Using the 0040 Code Wizard

. Connect To Oracle Database E2

Uszer Marme: ||

Paszword: I

Connect String: I

QK Cancel

2. Enter the user name and password to connect to the database. A connection string
is required if the database is not installed on the user's local computer.

3. Click OK.

The wizard displays the Oracle packages and stored procedures available to the
user in a tree.

&, 0040 Code Wizard for Stored Proce x|

Select Stored Procedures and enter a filename to host pour Stored
Procedures. Upaon clicking 0K, 0040 Code ‘Wizard will add the file
to wour Yisual B asic project.

Select Stored Procedures

Eﬂ Oracle DB =

- (T CTHBUG_IDISPATCH

@ EMPLOYEE

GETEMPDATA
GETEMPDATE
GETEMPHAME
GETEMPMAMESIMNARRAY
- [&RRAYSIZE in Number
-) INEMPMOS in
- [OUTEMPMAMES out
= B GETEMPSAL

i [ot Humber
- M) INEMPNO in Mumber

- (T8 _EMPLOYEE TEST LI
Enter the filenarme

D:MMicrosoft Visual Studic'WB38W5P1 . cls Browsze. .. |

% Append execution code tathe fle

(= Diwenarite the fle content with the execution code

Component Re: | Ciss Module (% cls) |

[+ iConnect to the databaze nest brme this addin s launched

Ok | Cancel |

4. Select one of the stored procedures or packages displayed.

5. Enter an output file name or click the Browse... button to navigate to a different
directory in which to place the file.

6. Choose the file type from the Component type list. There are three choices: a VB
class module (* . c1s), a VB file (* . bas), or other. The other option generates a VB
file (* . bas), but enables you to specify your own file extension.

7. Click OK.

7-4 Oracle Objects for OLE Developer's Guide

Code Wizard Examples

A dialog box appears indicating that a new OO4O file was created.

8. Click Yes to create another file, or click No to return to Visual Basic.

Code Wizard Examples

The ORACLE_BASE\ORACLE_HOME\oo4o\codewiz\samples directory contains
sample applications incorporating code generated by the wizard. The following
examples show the generated VB code output from Oracle stored procedures using the
0040 code wizard:

» Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages
»s Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic
» Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic

» Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual
Basic

Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages

This example shows a PL/SQL stored function, GetEmpSal, and then the Visual Basic
(* . cls) file that the code wizard generates for it.

FUNCTION GetEmpSal (inEmpno IN NUMBER)

RETURN NUMBER is
outEmpsal NUMBER(7,2);

BEGIN
SELECT SAL into outEmpsal from EMP WHERE EMPNO = inEmpno;
RETURN (outEmpsal);

END;

The generated code for the GetEmpSal stored function is:

Public Function GETEMPSAL (INEMPNO As Variant) As Variant

OraDatabase.Parameters.Add "INEMPNO", INEMPNO, ORAPARM_INPUT, 2

OraDatabase.Parameters.Add "result", 0, ORAPARM_OUTPUT

OraDatabase.Parameters ("result") .serverType = 2

OraDatabase.ExecuteSQL ("declare result Number; Begin :result := " & _
"Employee.GETEMPSAL (: INEMPNO) ; end;")

OraDatabase.Parameters.Remove "INEMPNO"

GETEMPSAL = OraDatabase.Parameters("result").Value
OraDatabase.Parameters.Remove "result"

End Function

In a VB class, OraDatabase appears as an attribute of the class. This attribute has to
be set before any methods of the class can be invoked. For a VB file (* . bas), the
generated code for the GetEmpSal stored function is the same as the VB class file,
except for the function declaration:

Public Function GETEMPSAL (INEMPNO As Variant, ByRef OraDatabase As OraDatabase)

End Function

For an ASP file (* . asp), the function declaration also differs for the GetEmpSal
stored function as follows, but the body of the code remains the same:

Public Function GETEMPSAL (INEMPNO, ByRef OraDatabase)

Code Wizard for Stored Procedures 7-5

Code Wizard Examples

End Function

Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic

The following example shows how a Visual Basic file accesses a PL/SQL stored
procedure with LOBs:

PROCEDURE getchapter (chapno in NUMBER, chap out CLOB) is

BEGIN

SELECT chapters into chap from mybook where chapterno = chapno
for update;

END;

The following shows the generated Visual Basic code for the GETCHAPTER stored
procedure:

Public Sub GETCHAPTER (CHAPNO As Variant, ByRef CHAP As OraCLOB)
OraDatabase.Parameters.Add "CHAPNO", CHAPNO, ORAPARM_ INPUT, 2
OraDatabase.Parameters.Add "CHAP", Null, ORAPARM OUTPUT, 112
OraDatabase.ExecuteSQL ("Begin MYBOOKPKG.GETCHAPTER (:CHAPNO, :CHAP); end;")
Set CHAP = OraDatabase.Parameters ("CHAP") .Value
OraDatabase.Parameters.Remove "CHAPNO"

OraDatabase.Parameters.Remove "CHAP"

End Sub

Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic

The following example shows how a PL/SQL stored procedure uses the Oracle
collection type VARRAY:

PROCEDURE getnames (deptid in NUMBER, name out ENAMELIST) is
BEGIN

SELECT ENAMES into name from department where dept_id = deptid for update;
END;

The wizard generates the following Visual Basic code for this stored procedure:

Public Sub GETNAMES (DEPTID As Variant, ByRef NAME As OraCollection)
OraDatabase.Parameters.Add "DEPTID", DEPTID, ORAPARM_INPUT, 2
OraDatabase.Parameters.Add "NAME", Null, ORAPARM OUTPUT, 247, "ENAMELIST"
OraDatabase.ExecuteSQL ("Begin DEPTPKG.GETNAMES (:DEPTID, :NAME); end;")
Set NAME = OraDatabase.Parameters ("NAME") .Value
OraDatabase.Parameters.Remove "DEPTID"

OraDatabase.Parameters.Remove "NAME"

End Sub

Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual
Basic

The following example shows how a PL/SQL stored procedure uses the Oracle object
type:
PROCEDURE getaddress (person_name in varchar2, person_address out address) is
BEGIN

SELECT addr into person_address from person_table where name =

person_name for update;
END;

7-6 Oracle Objects for OLE Developer's Guide

Code Wizard Examples

The wizard generates the following Visual Basic code for this stored procedure:

Public Sub GETADDRESS (PERSON_NAME As String, ByRef PERSON_ADDRESS As OraObject)
OraDatabase.Parameters.Add "PERSON_NAME", PERSON_NAME, ORAPARM_INPUT, 1
OraDatabase.Parameters.Add "PERSON_ADDRESS", Null, ORAPARM_ OUTPUT, _
108, "ADDRESS"
OraDatabase.ExecuteSQL ("Begin PERSONPKG.GETADDRESS (:PERSON_NAME, " & _
":PERSON_ADDRESS); end;")
Set PERSON_ADDRESS = OraDatabase.Parameters ("PERSON_ADDRESS") .Value
OraDatabase.Parameters.Remove "PERSON_NAME"
OraDatabase.Parameters.Remove "PERSON_ADDRESS"
End Sub

Code Wizard for Stored Procedures 7-7

Code Wizard Examples

7-8 Oracle Objects for OLE Developer's Guide

8

Introduction to Automation Objects

This chapter introduces commonly used OO40 Automation Objects.

This chapter contains these topics:

Overview of Automation Objects
OraSession Object Overview
OraServer Object Overview
OraDatabase Object Overview
OraDynaset Object Overview
OraField Object Overview
OraParameters Object Overview
OraParameter Object Overview
OraParamArray Object Overview

OraSQLStmt Object Overview

Overview of Automation Objects

The OO40 operational hierarchy of the objects expresses has-a and belongs-to
relationships.

Figure 8-1 shows the operational hierarchy.

Introduction to Automation Objects 8-1

OraSession Object Overview

Figure 8—-1 0040 Automation Objects

OraSession
OraServer
OraDatabase
OraSQLStmt

OraDynaset OraField

OraParameters OraParameter

OraParameterArray

OraMetaData QOraMDAttribute

OraAQ OraAQMsg

The Automation objects diagram illustrates this hierarchy.

OraSession Object Overview

The OraSession object is returned when an instance of the OO40 Automation Server
is created. It mainly serves as an interface for establishing connections to Oracle
databases. It also contains methods for starting, committing, and canceling
transactions on the connections contained in the OraDatabase objects created. The
following Visual Basic example creates an instance of the OO40 Automation Server.

'OracleInProcServer.XOraSession is the symbolic name for a
'globally unique component identifier.
Set 0040Session = CreateObject ("OracleInProcServer.XOraSession")

See Also:
= OraSession Object on page 9-58

= "Accessing the Oracle Objects for OLE Automation Server" on
page 3-1

= "Connecting to Oracle Database" on page 3-2

OraServer Object Overview

The OraServer object represents a physical connection to an Oracle database
instance. It provides a method, OpenDatabase, for creating user sessions, which
represents OraDatabase objects. It makes it possible to do "connection multiplexing."

See Also:
= OraServer Object on page 9-56

= "Accessing the Oracle Objects for OLE Automation Server" on
page 3-1

s "Using OraServer for Connection Multiplexing" on page 3-3

8-2 Oracle Objects for OLE Developer's Guide

OraDynaset Object Overview

OraDatabase Object Overview

The OraDatabase object represents a user connection to an Oracle database instance,
and provides methods to execute SQL statements and PL/SQL code. The
OraDatabase object is returned by the OpenDatabase method of the OraSession
or the OraServer object.

The following example illustrates the use of the OpenDatabase method of the
OraSession. OraDatabase objects created by this method contain a distinct
physical connection to an Oracle database.

'Establish a connection to the ExampleDb database
Set hrDBSession = 0040Session.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

The following example demonstrates how a physical network connection to an Oracle
database can be shared by multiple user sessions. Using a single connection that is
shared by multiple user sessions results in reduced resource usage in an Oracle
Database and can increase scalability.

'Create a server connection
Set hrDBServer = CreateObject ("OracleInProcServer.XOraServer")

Set hrDBServer = o0o040.0pen ("ExampleDb")
Set userSessionl = hrDBServer.OpenDatabase("scott/tiger", 0)

'execute queries ...
Set userSession2= hrDBServer.OpenDatabase ("scott/tiger", 0)

'execute queries ...

See Also: OraDatabase Object on page 9-27

OraDynaset Object Overview

An OraDynaset object represents the result set of a SQL SELECT query or a PL/SQL
cursor variable returned from a stored procedure or function. It is essentially a
client-side scrollable and updatable cursor that allows for browsing the set of rows
generated by the query it executes. It is created by the CreateDynaset or
CreateCustomDynaset method of an OraDatabase interface.

The following Visual Basic example executes a query, loops through the result set, and
displays values of columns returned.

Set employees = OraDatabase.CreateDynaset ("select empno, ename from emp", 0&)

'While there are more rows
while not employees.EOF

'Display the values of empno and ename column of the current row
msgbox employees ("empno") & employees("ename")

'Move to the next row

employees.MoveNext
wend

Introduction to Automation Objects 8-3

OraField Object Overview

See Also:

s OraDynaset Object on page 9-30

s CreateCustomDynaset Method on page 10-80
s CreateDynaset Method on page 10-85

OraField Object Overview

The OraField object is an abstraction of a column in an OraDynaset object. It
contains the value as well as the metadata that describes a column of the current row
in the dynaset. In the previous example for the OraDynaset object, the Field
interface for empno can be obtained using this additional code:

set empno = employees.Fields("empno")
msgbox "Employee Number: " & empno.Value

OraFields is a collection object representing all columns in the current row.

OraField objects can represent instances of any data type supported by Oracle
Database. This includes all primitive types, such as VARCHAR2, NUMBER, INT, and
FLOAT, as well all the object-relational types introduced in Oracle8i.

See Also:

= OraField Object on page 9-33

= "Support for Oracle Object-Relational and LOB Data Types" on
page 4-1

OraParameters Object Overview

The OraParameters object is a collection container for OraParameter objects. An
OraParameter object is used to supply data values for placeholders used in the SQL
statements or PL/SQL blocks at run time. It can be used to provide input values as
well as contain values that are returned from the database. The following sample
creates two parameter objects and uses them in an update query.

OraDatabase.Parameters.Add "SALARY", 4000, ORAPARM_INPUT

OraDatabase.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT

Set updateStmt = OraDatabase.CreateSQL("update emp set sal = :SALARY" & _
"where ename = :ENAME ")

See Also: OraParameters Collection on page 9-68

OraParameter Object Overview

8-4

OraParameter objects can contain values for all the data types supported by Oracle9i
including object-relational data types. They can be passed as input or output
arguments to PL/SQL stored procedures and functions. The values of the
OraParameter objects can also represent PL/SQL cursors in the form of
OraDynaset objects.

See Also:
s OraParameter Object on page 9-50
= '"PL/SQL Support" on page 3-9

Oracle Objects for OLE Developer's Guide

OraSQLStmt Object Overview

OraParamArray Object Overview

An OraParamArray object provides the mechanism for binding and fetching an array
of values. It is typically used for performing bulk inserts and updates.

'Create a table
OraDatabase.ExecuteSQL ("create table part_nos(partno number," & _
"description char(50), primary key(partno))")

'Create two parameter arrays of size 10 to hold values for
'part numbers (size 22 bytes), and their description (50 bytes long).
OraDatabase.Parameters.AddTable "PARTNO", ORAPARM INPUT, ORATYPE NUMBER, 10, 22
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, _

ORATYPE_CHAR, 10, 50

'Initialize the arrays
For I = 0 To 10
OraDatabase.Parameters ("PARTNO") .put_Value = I, I
OraDatabase.Parameters ("DESCRIPTION ") = "some description", I
Next I

'Execute the query
Set OraSqglStmt = OraDatabase.CreateSql ("insert into " & _
"part_nos (partno, description) values(:PARTNO, :DESCRIPTION)", 0&)

See Also: OraParamArray Object on page 9-47

OraSQLStmt Object Overview

The OrasQLStmt object is typically used for executing non-select SQL queries and
PL/SQL blocks. The following line of code executes an update query and displays the
number of rows affected.

Set updateStmt = OraDatabase.CreateSQL("update emp set sal = 3000" & _
"where ename = 'JONES' ")
MsgBox updateStmt.RecordCount

The OrasQLStmt object (updateStmt) can be used later to execute the same query
with a different value for the : SALARY placeholder. For example:

OraDatabase.Parameters ("SALARY") .value = 200000
updateStmt.Parameters ("ENAME") .value = "KING"
updateStmt.Refresh

See Also: OraSQLStmt Object on page 9-60

Introduction to Automation Objects 8-5

OraSQLStmt Object Overview

8-6 Oracle Objects for OLE Developer's Guide

9

Server Objects

This chapter describes the Oracle Objects for OLE Server Objects.

See Also:
= "Overview of Oracle Objects for OLE" on page 1-1

= "Oracle Objects for OLE In-Process Automation Server" on
page 1-2

s "Using Automation Clients Overview" on page 2-1

= "Required Setups" on page 1-5

This chapter contains these topics:

OraAQ Object
OraAQAgent Object
OraAQMsg Object
OraAttribute Object
OraBFILE Object
OraBLOB, OraCLOB Objects
OraClient Object
OraCollection Object
OraConnection Object
OraDatabase Object
OraDynaset Object
OraField Object
OralntervalDS Object
OralntervalYM Object
OraMDAttribute Object
OraMetaData Object
OraNumber Object
OraObject Object
OraParamArray Object
OraParameter Object

Server Objects 9-1

s OraRef Object

= OraServer Object

= OraSession Object

s OraSQLStmt Object

s OraSubscription Object

s OraTimeStamp Object

s OraTimeStampTZ Object
s OraConnections Collection
= OraFields Collection

s OraParameters Collection
= OraSessions Collection

s OraSubscriptions Collection

9-2 Oracle Objects for OLE Developer's Guide

OraAQ Object

OraAQ Object

Description

Remarks

Properties

Methods

An OraAQ object is instantiated by invoking the CreateAQ method of the
OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle Database Advanced
Queuing (AQ) feature. It makes AQ accessible from popular COM-based development
environments such as Visual Basic.

The OraAQ Automation interface provides methods for enqueuing and dequeuing
messages (encapsulated in the OraAQMsg object). It also provides a method for
monitoring queues for message arrivals.

Client applications provide a Dispatch interface to the monitor. The monitor checks
the queue for messages that meet the application criteria. It then invokes the
NotifyMe method of the Dispatch interface when these messages are dequeued.

The following diagram illustrates the OO40O AQ Automation objects and their
properties.

Recipient

OraAQMsg OraAQAgent

User-Defined Types
Raw Types

s Consumer (OraAQ) Property on page 11-28

» Correlate (OraAQ) Property on page 11-29

s DequeueMode (OraAQ) Property on page 11-47
s DequeueMsgld (OraAQ) Property on page 11-48
= Navigation (OraAQ) Property on page 11-109

= RelMsgld (OraAQ) Property on page 11-131

= Visible (OraAQ) Property on page 11-186

s Wait (OraAQ) Property on page 11-187

s AQMsg (OraAQ) Method on page 10-33

Server Objects 9-3

OraAQ Object

= Enqueue (OraAQ) Method on page 10-141
s Dequeue (OraAQ) Method on page 10-122
= MonitorStart (OraAQ) Method on page 10-196
= MonitorStop (OraAQ) Method on page 10-198

Examples

Example: Enqueuing Messages
Enqueuing messages of type RAW

"Enqueuing Messages of Type RAW" on page 10-141
Enqueuing messages of Oracle object types

"Enqueuing Messages of Oracle Object Types" on page 10-142

Example: Dequeuing messages
NOTE: The following code samples serve as models for dequeuing messages.

A complete AQ sample can be found in \0O040\VB\ SAMPLES\AQ
Dequeuing messages of the RAW type

"Example: Dequeuing Messages of RAW Type" on page 10-122
Dequeuing messages of Oracle object types

"Example: Dequeuing Messages of Oracle Object Types" on page 10-123

Example: Monitoring messages

See "Monitoring Messages" on page 4-21 for examples illustrating the use of the
MonitorStart and MonitorStop methods.

See Also:
s OraAQAgent Object on page 9-5
s OraAQMsg Object on page 9-6

» Oracle Streams Advanced Queuing User’s Guide for a detailed
description of Oracle Advanced Queuing

9-4 Oracle Objects for OLE Developer's Guide

OraAQAgent Object

OraAQAgent Object

Description

Remarks

Methods

Properties

Example

The OraAQAgent object represents a message recipient and is only valid for queues
that allow multiple consumers.

An OraAQAgent object can be instantiated by invoking the AQAgent method. For
example:

Set agent = gMsg.AQAgent (name)

None.

= Address (OraAQAgent) Property on page 11-7
= Name (AQAgent) Property on page 11-103

The following Visual Basic example illustrates a simple use of the advanced queuing
feature. A message of a user-defined type, MESSAGE_TYPE, is enqueued into a queue,
msg_queue, that supports multiple consumers.

Dim g as OraAQ

Dim gMsg as OraAQMsg

Dim agent as OraAQAgent

Set g = OraDatabase.CreateAQ("msg_queue")
Set gMsg = g.AQMsg (1, "MESSAGE_TYPE")

'To add SCOTT as a recipient for the message,
Set agent = gMsg.AQAgent ("SCOTT")

'To enqueue,
g.Enqueue

See Also:

» Oracle Streams Advanced Queuing User’s Guide for a detailed
description of Oracle Advanced Queuing

s OraAQ Object on page 9-3
s OraAQMsg Object on page 9-6

Server Objects 9-5

OraAQMsg Object

OraAQMsg Object

Description

The 0OraAQMsg object encapsulates the message to be enqueued or dequeued. The
message can be of any user-defined or raw type.

Properties
n Correlation (OraAQMsg) Property on page 11-30
s Delay (OraAQMsg) Property on page 11-46
= ExceptionQueue Property on page 11-58
= Expiration (OraAQMsg) Property on page 11-60
» Priority (OraAQMsg) Property on page 11-126
= Value (OraAQMsg) Property on page 11-176
Methods

= AQAgent (OraAQMsg) Method on page 10-32

See Also:

» Oracle Streams Advanced Queuing User’s Guide for a detailed
description of Oracle Advanced Queuing

s OraAQ Object on page 9-3
s OraAQAgent Object on page 9-5

9-6 Oracle Objects for OLE Developer's Guide

OraAttribute Object

OraAttribute Object

Description

Remarks

Properties

Methods

Examples

The OraAttribute object represents an attribute of a Value or REF instance of an
OraObject or an OraRef.

The OraAttribute object can be accessed from the OraObject or OraRef object by
creating a subscript that uses ordinal integers or by using the name attribute.

See the Value (OraAttribute) property for a table that identifies the attribute type
and the return value of the Value property of the OraAttribute object:

= Value (OraAttribute) Property on page 11-175
= Name (OraAttribute) Property on page 11-104
Type (OraAttribute) Property on page 11-166

None.

The following example accesses the attributes of the ADDRESS value instance in the
server. Before running the sample code, make sure that you have the necessary data
types and tables in the database. See "Schema Objects Used in the OraObject and
OraRef Examples" on page A-3.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim Address As OraObject

Dim City As OraAttribute

Dim State As OraAttribute

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
Set OraDynaset = OraDatabase.CreateDynaset ("select * from person_tab", 0&)

'retrieve an address column from person_tab
'the Value property of OraField object returns Address OraObject
Set Address = OraDynaset.Fields("Addr").Value

'access the City attribute object
Set City = Address("City")

' display the value of City attribute Object
MsgBox City.Value

Server Objects 9-7

OraAttribute Object

'access the State attribute object
Set State = Address("State")

'display the value of State attribute Object
MsgBox State.Value

See Also:

= OraCollection Object on page 9-19
s OraParameter Object on page 9-50
= OraObject Object on page 9-43

= OraRef Object on page 9-52

9-8 Oracle Objects for OLE Developer's Guide

OraBFILE Object

OraBFILE Object

Description

Remarks

Properties

Methods

Examples

The OraBFile interface in OO40 provides methods for performing operations on the
BFILE LOB data type in the database.

The BFILE types are large binary data objects stored in operating system files
(external) outside of the database tablespaces.

s DirectoryName Property on page 11-49

» FileName Property on page 11-68

= Exists Property on page 11-59

s IsNull (OraLOB/BFILE) Property on page 11-80

s IsOpen (OraBFILE) Property on page 11-83

» Offset (OraLOB/BFILE) Property on page 11-112

= PollingAmount Property on page 11-125

s Size (OraLOB and OraBFILE) Property on page 11-145
= Status (OraLOB/BFILE) Property on page 11-154

s Clone (OraLOB/BFILE) Method on page 10-53

» Close (OraBFILE) Method on page 10-64

s CloseAll (OraBFILE) Method on page 10-65

s Compare (OraLOB) Method on page 10-68

» CopyToFile (OraLOB/BFILE) Method on page 10-76
= MatchPos (OraLOB/BFILE) Method on page 10-192
s Open (OraBFILE) Method on page 10-211

= Read (OraLOB/BFILE) Method on page 10-221

See "Schema Objects Used in LOB Data Type Examples" on page A-3 for schema
objects that are used in the OraLOB/BFILE examples.

NOTE: To add the required tables for the following examples, run the 1ob. sql file in
the \OO40\VB\ SAMPLES\LOB directory.

Example: Accessing the BFILE Value

BFILE data can be read using the Read method. The OraBFILE object allows
piecewise read operations. Before reading the BFILE content, the BFILE file should be
opened using the Open method.

Dim PartColl as OraBFile

Server Objects 9-9

OraBFILE Object

Dim buffer As Variant

'Create a Dynaset containing a BLOB and a CLOB column
set part = OraDatabase.CreateDynaset ("select * from part",0)
Set PartColl = part.Fields("part_collateral").Value

'open the bfile for read operation
PartColl.Open

'read the entire bfile
amount_read = PartColl.Read(buffer)

'close the bfile
PartColl.Close

Example: Reading and Inserting BFILEs Using Dynasets

To modify the directory and file names of the BFILE value of an OraBFILE object,
first obtain a lock and then use the DirectoryName and FileName properties.

To insert a new row containing a BFILE column, initialize the BFILE column with
new directory and file name values using the DirectoryName and FileName
properties.

Dim PartColl as OraBFile

Dim buffer As Variant

'Create a Dynaset containing a BLOB and a CLOB column
set part = OraDatabase.CreateDynaset ("select * from part",0)
Set PartColl = part.Fields("part_collateral").Value

'insert a new BFILE in the part_collateral column
part .AddNew

'Directory objects will be upper-case by default
PartColl.DirectoryName = "NEWDIRECTORYNAME"
PartColl.FileName = "NewPartCollatoral"

part.Update

'move to the newly added row
part.MoveLast

'open the Bfile for read operation
PartColl.Open

'read the entire bfile
amount_read = PartColl.Read(buffer)

'close the Bfile
PartColl.Close

See Also:
= OraBLOB, OraCLOB Objects on page 9-11

» Oracle Database SecureFiles and Large Objects Developer’s Guide
for a detailed description of Oracle BFILE types

9-10 Oracle Objects for OLE Developer's Guide

OraBLOB, OraCLOB Objects

OraBLOB, OraCLOB Objects

Description

Remarks

The 0raBLOB and OraCLOB interfaces in OO40 provide methods for performing
operations in a database on the large object data types BLOB, CLOB, and NCLOB. In this
developer's guide, BLOB, CLOB, and NCLOB data types are also referred to as LOB data

types.

0040 supports the creation of temporary BLOB or CLOB types that can be
manipulated and then bound to SQL statements or PL/SQL blocks, or copied into
permanent LOBs.

LOB data is accessed using the Read and CopyToFile methods.

LOB data is modified using the Write, Append, Erase, Trim, Copy, CopyFromFile,
and CopyFromBFile methods. A row lock must be obtained before modifying the
contents of a LOB column in a row. If the LOB column is a field of an OraDynaset
object, then the lock is obtained by invoking the Edit method.

None of the LOB operations are allowed on NULL LOBs. To avoid errors, use the
IsNull property to detect NULL LOBs. To perform write operations on a LOB that is
null, first the LOB column must be initialized with an Empty value.

To insert a new row having a LOB column, first initialize the LOB column with an
Empty value by setting the Value property of the OraField or OraParameter
object to the keyword Empty and commit the change to the database. The newly
updated Empty LOB must be selected again from the database before it can be used.
This is done automatically in the case of the OraDynaset object: If a LOB field in an
OraDynaset object is set to Empty and the Update method is called, OO40
automatically reselects the Empty LOB into the dynaset making it available for use in
subsequent write operations.

There are two modes of operation for read and write operations for LOBs.
1. Multiple-piece read /write operations

In this mode, the total amount of data to be read or written is more than the size of
the buffer for an individual read /write operation. Rather than make a complete
round-trip for each operation, the pieces are streamed. To begin the multiple piece
operation, the PollingAmount property is first set to the total amount of data to
be read or written. The Of fset property is set at this time to specify the initial
offset for the first piece read/write operation. The offset is automatically
incremented after the first read /write operation, and cannot be changed again
until the multiple piece operation has completed. The Status property must be
checked for the success of each piecewise operation and the operation must
continue until all the pieces are read or written (it cannot be aborted). To start
another multiple-piece read /write operation on the same LOB, the
PollingAmount property has to be reset to the desired amount. See "Example:
Multiple-Piece Read of a LOB" on page 10-221.

2. Single-piece read/write operation

In this mode, the reading and writing of data occurs in one operation. This mode
is enabled when the PollingAmount property is set to 0. See "Example:
Single-Piece Read of a LOB" on page 10-222.

Server Objects 9-11

OraBLOB, OraCLOB Objects

Properties

Methods

The Of fset property in both modes of operation is 1-based.

By design, LOBs cannot span transactions started by SELECT . . FOR UPDATE,
INSERT, and UPDATE statements. Selecting or modifying LOB values using these SQL
statements makes LOBs invalid outside the current transaction. In Oracle Objects for
OLE, transactions can be started and ended in the following ways.

1.

Dynaset Edit/Update method

The Edit method executes the SELECT FOR UPDATE statement to lock the row
and start the transaction. The Update method ends the transaction. If the LOB
column value is modifed between the Edit and Update pair, OO40 reselects the
value of LOB column after the Update call. This is transparent to the user. Note
that OO40 does not reselect the LOB value if the LOB is an attribute of an Oracle
objects instance or element of an Oracle collection. If the transaction is started by
the Orasession/OraDatabase or OraServer object and the LOB data is
modified between the Edit and Update methods, O0O40 does not reselect the
LOB value from the database. LOBs are invalid after committing transactions
initiated by OraSession/OraDatabase or OraServer objects.

See "Example: Dynasets Containing LOBs and Transactions" on page 9-16.

Executing an INSERT or UPDATE statement through the ExecuteSQL or
CreateSQL method.

An INSERT or UPDATE statement starts the transaction, and the transaction is
implicitly ended by Oracle Objects for OLE (auto-commit). If a statement has a
LOB output bind parameter, as in the case of the RETURNING . . INTO clause, then
it will become invalid after the ExecuteSQL or CreateSQL method is executed
To avoid this, the user must execute these statement between the
BeginTrans/CommitTrans pair of OraSession, OraServer or OraDatabase
objects.

See "Example: INSERT or UPDATE Statements with LOBs and Transactions" on
page 9-16.
See Also:

= "Using Large Objects (LOBs)" on page 4-3 for more information
about LOB operations and LOB performance issues

» Oracle Database SecureFiles and Large Objects Developer’s Guide for a
detailed description of Oracle LOBs

IsNull (OraLOB/BFILE) Property on page 11-80
PollingAmount Property on page 11-125

Offset (OraLOB/BFILE) Property on page 11-112

Size (OraLOB and OraBFILE) Property on page 11-145
Status (OraLOB/BFILE) Property on page 11-154

Append (OraLOB) Method on page 10-27
Clone (OraLOB/BFILE) Method on page 10-53
Compare (OraLOB) Method on page 10-68

9-12 Oracle Objects for OLE Developer's Guide

OraBLOB, OraCLOB Objects

Examples

Copy (OraLOB) Method on page 10-72
CopyFromFile (OraLOB) Method on page 10-73
CopyFromBFILE (OraLOB) Method on page 10-75
CopyToFile (OraLOB/BFILE) Method on page 10-76
DisableBuffering (OraLOB) Method on page 10-129
EnableBuffering (OraLOB) Method on page 10-139
Erase (OraLOB) Method on page 10-143
FlushBuffer (OraLOB) Method on page 10-154
MatchPos (OraLOB/BFILE) Method on page 10-192
Read (OraLOB/BFILE) Method on page 10-221
Trim (OraLOB) Method on page 10-254

Write (OraLOB) Method on page 10-261

See "Schema Objects Used in LOB Data Type Examples" on page A-3 for schema

objects that are used in the OraLOB and BFILE examples.

Example: Accessing a LOB Value

Dim
Dim
Dim
Dim
Dim

OraSession As OraSession
OraDatabase As OraDatabase
OraDynaset As OraDynaset
PartImage as OraBlob
buffer As Variant

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set

OraDatabase = OraSession.OpenDatabase ("ExampleDb", _

"scott/tiger", 0&)

'execute the select statement
OraDynaset = OraDatabase.CreateDynaset ("select * from part",0&)

set

'retrieve photo field from the dynaset

set

'read the entire LOB column in one piece into the buffer

PartImage = OraDynaset.Fields("part_image").Value

amount_read = PartImage.Read(buffer, 10)
'use the buffer for internal processing

Example: Modifying a LOB Value

Dim
Dim
Dim
Dim
Dim

OraSession As OraSession
OraDatabase As OraDatabase
OraDynaset As OraDynaset

PartDesc as OraClob
buffer As String

Server Objects 9-13

OraBLOB, OraCLOB Objects

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'execute the select statement
set OraDynaset = OraDatabase.CreateDynaset ("select * from part", 0&)
set PartDesc = OraDynaset.Fields("part_desc").Value

'To get a free file number

FNum = FreeFile

'Open the file for reading

Open "partdesc.dat" For Binary As #FNum

'Allocate buffer to the size of file FNum and read the entire file
buffer = String$ (LOF (FNum), 32)
Get #FNum, , buffer

'lock the row for write operation
OraDynaset .Edit
amount_written = PartDesc.Write (buffer)

'commit the operation and release the lock
OraDynaset .Update
Close FNum

Example: Inserting LOBs Using Dynasets

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim Part As OraDynaset

Dim PartImage as OraBLOB

Dim ImageChunk() As Byte

Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create a Dynaset containing a BLOB and a CLOB column

set part = OraDatabase.CreateDynaset ("select * from part",0)
set PartImage = part.Fields("part_image").Value

'First insert Empty LOB in the part_image column
part .AddNew
part.Fields("part_id").Value = 1234
part.Fields ("part_image").Value = Empty
part.Update

'move to the newly added row
Part.MoveLast

'To get a free file number

9-14 Oracle Objects for OLE Developer's Guide

OraBLOB, OraCLOB Objects

FNum = FreeFile

'Open the file for reading PartImages
Open "part_picture.gif" For Binary As #FNum

'Re adjust the buffer size to hold entire file data
Redim ImageChunk (LOF (FNum))

'read the entire file and put it into buffer
Get #FNum, , ImageChunk

'call dynaset's Edit method to lock the row
part.Edit

amount_written = OraBlob.Write (ImageChunk)
part.Update

'close the file
Close FNum

Example: Inserting LOBs Using an OraParameter Object

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraBlob As OraBlob

Dim ImageChunk() As Byte

Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)
Set OraParameters = OraDatabase.Parameters

OraParameters.Add "PartImage", Empty,ORAPARM OUTPUT

OraParameters ("PartImage") .ServerType = ORATYPE_BLOB

'BeginTrans needs to be called since LOB locators become

'invalid after the ExecuteSQL call

OraSession.BeginTrans

OraDatabase.ExecuteSQL ("insert into part values (1234, 'Oracle Application'," & _
"EMPTY_BLOB () ,NULL,NULL) RETURNING part_image INTO :PartImage")

set PartImage = OraDatabase.Parameters ("PARTIMAGE") .Value

FNum = FreeFile
'Open the file for reading PartImages
Open "part_picture.gif" For Binary As #FNum

'read the file and put it into buffer
Redim ImageChunk (LOF (FNum))
Get #FNum, , ImageChunk

Set OraBlob = OraDatabase.Parameters ("PartImage") .Value
amount_written = OraBlob.Write(ImageChunk, 10, ORALOB_ONE_PIECE)

' commit the transaction and close the file

OraSession.CommitTrans
Close FNum

Server Objects 9-15

OraBLOB, OraCLOB Objects

Example: Dynasets Containing LOBs and Transactions

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraBlob As OraBlob

Dim PartImage as OraBLOB

Dim ImageChunk() As Byte

Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create a Dynaset containing a BLOB and a CLOB column

set part = OraDatabase.CreateDynaset ("select * from part " & _
"where part_id = 1234",0)

set PartImage = part.Fields("part_image").Value

'To get a free file number
FNum = FreeFile

'Open the file for reading PartImages
Open "c:\part_picture.gif" For Binary As #FNum
Redim ImageChunk (LOF (FNum))

'read the file and put it into buffer
Get #FNum, , ImageChunk

'starts the transaction on OraSession
OraSession.BeginTrans

'call dynaset's Edit method to lock the row

part.Edit

Set OraBlob = PartImage

amount_written = OraBlob.Write(ImageChunk, 10, ORALOB_ONE_PIECE)
part.Update

'ends the transaction
OraSession.CommitTrans

'the following lines of code will raise error
'LOB locator cannot span transaction'

msgbox Partimage.Size

Close FNum

Example: INSERT or UPDATE Statements with LOBs and Transactions

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim ImageChunk() As Byte

Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

9-16 Oracle Objects for OLE Developer's Guide

OraBLOB, OraCLOB Objects

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

Set OraParameters = OraDatabase.Parameters
OraParameters.Add "PartImage", Empty, ORAPARM_ OUTPUT
OraParameters ("PartImage") .ServerType = ORATYPE_BLOB

'Create a Dynaset containing a LOB,column

OraDatabase.ExecuteSQL ("insert into part values (1234, 'Oracle Application'," & _
"EMPTY_BLOB () ,NULL,NULL) RETURNING part_image INTO :PartImage")

set PartImage = OraDatabase.Parameters ("PARTIMAGE") .Value

'the following lines of code will raise error
'LOB locator cannot span transaction'
msgbox Partimage.Size

Example: Using the CopyToFile Method
See "Example:Using the CopyToFile Method" on page 10-76.

Example: Using the CopyFromFile Method
See "Example: Using the CopyFromFile Method" on page 10-73.

Example: Multiple-Piece Read of a LOB
See "Example: Multiple-Piece Read of a LOB" on page 10-221.

Example: Single-Piece Read of a LOB
See "Example: Single-Piece Read of a LOB" on page 10-222.

Example: Multiple-Piece Write of a LOB
See "Multiple-Piece Write of a LOB Example" on page 10-262.

Example: Single-Piece Write of a LOB
See "Single-Piece Write of a LOB Example" on page 10-263.

Example: Passing a Temporary CLOB to a Stored Procedure
See "Example: Passing a Temporary CLOB to a Stored Procedure" on page 10-114.

See Also:
s OraBFILE Object on page 9-9
s CreateTempBLOB/CLOB Method on page 10-114

Server Objects 9-17

OraClient Object

OraClient Object

Description
An OraClient object defines a workstation domain, and all of the OraSession
objects of that workstation are listed in the OraSessions collection of the
OraClient object.

Remarks
Only one OraClient object can exist for each workstation, and it is created
automatically by the system when it is needed.

Properties
= Name Property on page 11-101
= Sessions Property on page 11-142

Methods

» CreateSession Method on page 10-109

See Also:
= OraSession Object on page 9-58

» OraSessions Collection on page 9-69

9-18 Oracle Objects for OLE Developer's Guide

OraCollection Object

OraCollection Object

Description

Remarks

The OraCollection interface represents Oracle collection types, such as
variable-length arrays (VARRAYs) and nested tables.

A collection is an ordered group of elements, all of the same type. For example, the
students in a class or the grades for each student in a class. Each element has a unique
subscript, called an index, that determines its position in the collection.

The collection type nested table is viewed as a table stored in the column of database
tables. When retrieved, rows of a nested table are given consecutive subscripts that
start at 1. Individual rows are accessed using an array-like access.

The collection type VARRAY is viewed as an array stored in the column of database
tables. To reference an element in a VARRAY data type, standard subscripting syntax
can be used. For example, Grade (3) references the third element in the VARRAY data
type named Grades.

The OraCollection provides methods for accessing and manipulating an Oracle
collection. Implicitly an OraCollection object contains an OLE Automation
collection interface for accessing and manipulating (updating and inserting)
individual elements of an Oracle collection. Individual elements can be accessed by
using a subscript. An OraCollection element index starts at 1.

Element values are retrieved as Variant types. The Variant type of the element
depends on the element type of the collection. Element values can be Null and can be
set to Null. For elements of type objects and REFs, element values are returned as
corresponding 0040 objects for that type. VARRAYs and nested tables do not support
the elements of LOBs, VARRAYs, and Nested tables.

Table 9-1 lists the element type and return value of the elements.

Table 9—-1 Element Type and Return Value of Elements

Element Type Element Value
Object OraObject
REF OraRef

Date String
Number String
CHAR, VARCHAR2 String

Real Real
Integer Integer

Element values are converted into a Variant SAFEARRAY format using the
SafeArray property. Only elements of primitive types are supported. A Variant
SAFEARRAY index starts at 0.

The CreateOraObject method on the OraDatabase object returns the
OraCollection object. The Oracle collection associated with this OraCollection
object is created in the client-side object cache.

Server Objects 9-19

OraCollection Object

For information about creating a dynaset from a collection, see to "Creating a Dynaset
from an OraCollection Object" on page 4-18.

Properties

s BOC Property on page 11-10

= ElementType Property on page 11-54

s EOC Property on page 11-55

= IsLocator (OraCollection) Property on page 11-77

s IsNull (OraCollection) Property on page 11-79

= MaxSize (OraCollection) Property

» SafeArray (OraCollection) Property on page 11-133

= Size (OraCollection) Property on page 11-144

» TableSize (OraCollection) Property on page 11-157

» Type (OraCollection) Property on page 11-167
Methods

= Append (OraCollection) Method on page 10-25

s Clone (OraCollection) Method on page 10-54

» Createlterator Method on page 10-88

» Delete (OraCollection) Method on page 10-118

» Deletelterator Method on page 10-121

s ElementValue Method on page 10-138

s Exist (OraCollection) Method on page 10-147

» Initlterator Method on page 10-171

» IterNext Method on page 10-187

» IterPrev Method on page 10-188

s Trim (OraCollection) Method on page 10-252
Examples

Before running the sample code, make sure that you have the necessary data types and
tables in the database. See "Schema Objects Used in OraCollection Examples" on
page A-3 for schema objects that are used in the OraCollection examples.

Example: Accessing Collection Elements
The following example illustrates how to access collection elements.
OraDynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

9-20 Oracle Objects for OLE Developer's Guide

OraCollection Object

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames") .Value

'access the first element of EnameList
msgbox EnameList (1)

'move to next to row
OraDynaset .MoveNext

'access all the elements of EnameList for the second row
For index = 1 To EnameList.Size

msgbox EnameList (index)
Next Index

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameList as OraCollection

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object representing EnameList collection bind Variable
OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM OUTPUT, _
ORATYPE_VARRAY, "ENAMELIST"

'execute the sgl statement which selects ENAMES VARRAY from the department table

OraDatabase.ExecuteSQL ("BEGIN select enames into :ENAMES from department " & _
"where dept_id = 10; END;")

'get the EnameList collection from OraParameter
set EnameList = OraDatabase.Parameters("ENAMES").Value

'access all the elements of EnameList

For index = 1 To EnameList.Size
msgbox EnameList (index)

Next Index

Example: Modifying Collection Elements
The following example illustrates how to modify collection elements.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.

Server Objects 9-21

OraCollection Object

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department. Here Value property of OraField object
'returns EnameList OraCollection

set EnameList = OraDynaset.Fields("Enames") .Value

'lock the row for editing and set the 2nd element of the EnamelList to new value
OraDynaset.Edit

EnameList(2) = "Eric"

OraDynaset .Update

Example: Inserting in a Collection
The following example illustrates how to insert elements into an Oracle collection.
OraDynaset Example

Dim OraSession as OraSession

Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset

Dim EnameListNew as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a new OraCollection object from the database
set EnameListNew = OraDatabase.CreateOraObject ("ENAMELIST")

'set EnameListNew's element values

EnameListNew(l) = "Nasser"
EnameListNew(2) = "Chris"
EnameListNew(3) = "Gopal"

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'start the AddNew operation and insert the EnameListNew collection
OraDynaset . AddNew

OraDynaset.Fields("dept_id") = 40

OraDynaset.Fields("name") = "DEVELOPMENT"

'set the EnameListNew to enames column
OraDynaset.Fields("enames") = EnameListNew
OraDynaset .Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameListNew as OraCollection

9-22 Oracle Objects for OLE Developer's Guide

OraCollection Object

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a new OraCollection object from the database
set EnameListNew = OraDatabase.CreateOraObject ("ENAMELIST")

'set EnameListNew's element values

EnameListNew(1l) = "Nasser"
EnameListNew(2) = "Chris"
EnameListNew(3) = "Gopal"

'create an input OraParameter object representing EnameList collection bind
'Variable

OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_INPUT, ORATYPE_VARRAY, _
"ENAMELIST"

'set the ENAMES parameter value to EnameListNew
OraDatabase.Parameters ("ENAMES") .Value = EnameListNew

'execute the insert sgl statement
OraDatabase.ExecuteSQL ("insert into department values (40, 'DEVELOPMENT', " & _
" :ENAMES) ")

Example: Collection with Object Type Elements

The following example illustrates the use of an Oracle collection having elements of
object type.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)

'retrieve a Courses column from Division.
'Here Value property of OraField object returns CourseList OraCollection

set CourseList = OraDynaset.Fields("Courses").Value
'retrieve the element value of the CourseList at index 1.
'Here element value is returned as Course OraObject

set Course = CourseList (1)

'retrieve course_no and title attribute of the Course
msgbox Course.course_no

msgbox Course.title

'move to next row

Server Objects 9-23

OraCollection Object

OraDynaset .MoveNext

'now CourseList object represents collection value for the second row
'and course OraObject 'represents the element value at index 1.
'retrieve course_no and title attribute of the Course.

msgbox Course.course_no

msgbox Course.title

Example: Creating a SAFEARRAY Variant from a Collection

The following example illustrates how to get and set a SAFEARRAY Variant with an
Oracle collection.

Creating SAFEARRAY Variant from a Collection

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection
Dim EnameArray as Variant

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField objectreturns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames") .Value

'get the Variant SAFEARRAY from the collection.
EnameArray = EnamelList.SafeArray

'display the individual elements of EnameArray
msgbox EnameArray (0)
msgbox EnameArray (1)
msgbox EnameArray (2)

Setting SAFEARRAY Variant to the Collection

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameList as OraCollection
Dim EnameArray() As String
ReDim EnameArray (3)

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an Empty uninitialized input OraParameter object

'represent EnameList collection bind Variable

OraDatabase.Parameters.Add "ENAMES", Empty, ORAPARM INPUT, _
ORATYPE_VARRAY, "ENAMELIST"

9-24 Oracle Objects for OLE Developer's Guide

OraCollection Object

'get the Empty uninitialized ENAMES parameter value
set EnameList = OraDatabase.Parameters ("ENAMES") .Value

'initialize the EnameArray

EnameArray (0) = "Nasser"
EnameArray (1) = "Chris"
EnameArray(2) = "Gopal"

'set the EnameArray to EnameList's SafeArray
EnameList.SafeArray = EnameArray

'execute the insert sgl statement
OraDatabase.ExecuteSQL ("insert into department " & _
"values (40, 'DEVELOPMENT', :ENAMES)")

Example: Creating a Dynaset from a Collection
The following example illustrates how to create a dynaset from an Oracle collection.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject

Dim CourseListDyn as OraDynaset

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset ("select * from division", 0&)

'retrieve a Courses column from Division. Here Value
'property of OraField object returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value

'create a input parameter for CourseList for nested table dynaset
OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
ORATYPE_TABLE, "COURSELIST"

'create a read only dynaset based on the CourseList.
Set CourseListDyn = OraDatabase.CreateDynaset ("select * from THE" & _
"(select CAST(:COURSELIST AS COURSELIST) from dual)", ORADYN_READONLY)

'dynaset can also be created from Oracle8 collection
'using the following statement, which requires 0040 v8.1.x later

Set CourseListDyn = OraDatabase.CreateDynaset("select * from " & _
"TABLE (CAST (: COURSELIST AS COURSELIST))", ORADYN_READONLY)

'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value

msgbox CourseListDyn.Fields("course_no").Value

'move the original dynaset to second row
Oradynaset .MoveNext

Server Objects 9-25

OraCollection Object

'set the new value of CourseList collection from the second row of main dynaset
'to the "COURSELIST" parameter
OraDatabase.Parameters ("COURSELIST") .Value = CourselList

'refresh the collection dynaset. Now the collection dynaset values are refreshed
' with new collection value.
CourseListDyn.Refresh

'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields ("course_no").Value

Example: Collection Iterator
See "Example: OraCollection Iterator" on page 10-88.
See Also:
s OraParameter Object on page 9-50
s CreateOraObject (OraDatabase) Method on page 10-97

» 'Instantiating Oracle LOBs, Objects, and Collections" on
page 4-2

= "Oracle Collections" on page 4-16

9-26 Oracle Objects for OLE Developer's Guide

OraConnection Object

OraConnection Object

Description

An OraConnection object represents a single connection to an Oracle database.

Remarks

An OraConnection object is created automatically whenever an OrabDatabase
object is instantiated within the session, and it is destroyed automatically whenever all
databases using the connection are discarded.

Currently, there is no way to create an OraConnection object explicitly, only by
creating an OraDatabase object that requires a connection.

Properties
= Connect Property on page 11-23

s ConnectionOK Property on page 11-26
= DatabaseName Property on page 11-37
= Session Property on page 11-141

Methods
= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66
= ResetTrans Method on page 10-233
= Rollback Method on page 10-235

See Also:
s OraConnections Collection on page 9-66

s OraDatabase Object on page 9-28

Server Objects 9-27

OraDatabase Object

OraDatabase Object

Description

An OraDatabase interface represents a user session to an Oracle database and
provides methods for SQL and PL/SQL execution.

Remarks

An OraDatabase interface in Oracle8i and higher releases adds additional methods
for controlling transactions and creating interfaces representing instances of Oracle
object types. Attributes of schema objects can be retrieved using the Describe
method of the OraDatabase interface.

In previous releases, an OraDatabase object is created by invoking the
OpenDatabase method of an OraSession interface. The network alias, user name,
and password are passed as arguments to this method. In Oracle8i and higher releases,
invocation of this method results in implicit creation of an OraServer object.

As described in the OraServer interface description, an OraDatabase object can
also be created using the OpenDatabase method of the OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level.
These methods include:

s BeginTrans
s CommitTrans
m Rollback

For example:

MyDatabase.BeginTrans
MyDatabase.ExecuteSQL("delete from emp where empno = 1234")
MyDatabase.CommitTrans

Note: If the AutoCommit property is set to True, transactions are
committed automatically, and you do not need to use the
transaction control methods.

Properties
s AutoCommit Property on page 11-9

s CacheMaximumSize Property on page 11-18
s CacheOptimalSize Property on page 11-19

s Connect Property on page 11-23

s Connection Property on page 11-25

s ConnectionOK Property on page 11-26

= DatabaseName Property on page 11-37

s LastServerErr Property on page 11-87

s LastServerErrPos Property on page 11-89

s LastServerErrText Property on page 11-90

9-28 Oracle Objects for OLE Developer's Guide

OraDatabase Object

Methods

Options Property on page 11-114
Server Property on page 11-137
Parameters Property on page 11-122
RDMSVersion Property on page 11-127
Subscriptions Property on page 11-155

BeginTrans Method on page 10-43

Close Method on page 10-63

CommitTrans Method on page 10-66

CreateAQ Method on page 10-79
CreateCustomDynaset Method on page 10-80
CreateTempBLOB/CLOB Method on page 10-114
CreateDynaset Method on page 10-85
CreateOraObject (OraDatabase) Method on page 10-97
CreateSQL Method on page 10-111

Describe Method on page 10-124

ExecuteSQL Method on page 10-144

FetchOraRef Method on page 10-149
LastServerErrReset Method on page 10-189
MonitorForFailover Method on page 10-194
Open (OraServer) Method on page 10-210
RemoveFromPool Method on page 10-232
Rollback Method on page 10-235

See Also:

s OpenDatabase Method on page 10-212
m OraServer Object on page 9-56

s OraServer Object on page 9-56

Server Objects 9-29

OraDynaset Object

OraDynaset Object

Description

An OraDynaset object permits browsing and updating of data created from a SQL
SELECT statement.

Remarks

An OraDynaset object represents the result set of a SQL SELECT query or a PL/SQL
cursor variable returned from a stored procedure or function. It is essentially a
client-side scrollable and updatable cursor that allows browsing the set of rows
generated by the query it executes. It is created by the CreateDynaset or
CreateCustomDynaset method of an OraDatabase interface. An OraDynaset
object can be used to scroll result sets that contain instances of relational and
object-relational columns such as VARRAYs, nested tables, Objects, REFs, and LOBs
and BFILE types.

This object provides transparent mirroring of database operations, such as updates.
When data is updated through the Update method, the local mirror image of the
query is updated so that the data appears to have been changed without reevaluating
the query. The same procedure is used automatically when records are added to the
dynaset. Integrity checking is performed to ensure that the mirrored image of the data
always matches the actual data present on Oracle Database. This integrity checking is
performed only when necessary (such as just before updates occur).

During create and refresh operations, the OraDynaset objects automatically bind all
relevant enabled input parameters to the specified SQL statement, using the parameter
names as placeholders in the SQL statement. This can simplify dynamic query
building and increase the efficiency of multiple queries using the same SQL statement
with varying WHERE clauses.

When you use Oracle Objects for OLE, locks are not placed on data until an Edit
method is executed. The Edit method attempts to obtain a lock using the "SELECT
... FORUPDATE" statement on the current record of the dynaset. This is done as late
as possible to minimize the time that locks are placed on the records. The Edit
method can fail for several reasons:

s The SQL query violates the Oracle SQL update rules; for example, using calculated
columns or table joins.

» The user does not have the privileges needed to obtain a lock.

» The record has been locked already by another user. Note that the OpenDatabase
method has an option so that you can decide whether to wait on locks.

Properties

BOF Property on page 11-11 LastModified Property on page 11-86
Bookmark Property on page 11-13 NoMatch Property on page 11-110

BookMarkable Property on Options Property on page 11-114
page 11-15

CacheBlocks Property on page 11-16 ~ RecordCount Property on page 11-128

CacheChanged Property on RowPosition Property on page 11-132
page 11-17

9-30 Oracle Objects for OLE Developer's Guide

OraDynaset Object

Methods

CacheSliceSize Property on
page 11-20

CacheSlicesPerBlock Property on
page 11-21

Connection Property on page 11-25
Database Property on page 11-36
EditMode Property on page 11-51
EOF Property on page 11-56
FetchLimit Property on page 11-61
FetchSize Property on page 11-62
FieldIndex Property on page 11-63

FieldName Property on page 11-64

FieldOriginalName Property on
page 11-65

FieldOriginalNamelndex Property on
page 11-66

Fields Property on page 11-67

s AddNew Method on page 10-21
s Clone Method on page 10-52
s Close Method on page 10-63

Session Property on page 11-141
SnapShot Property on page 11-146

SQL Property on page 11-150

Transactions Property on page 11-162
Updatable Property on page 11-171
XMLCollID Property on page 11-189
XMLEncodingTag Property on page 11-190
XMLNullIndicator Property on page 11-191

XMLOmitEncodingTag Property on
page 11-192

XMLRowsetTag Property on page 11-194
XMLRowlID Property on page 11-193

XMLRowTag Property on page 11-195

XMLUpperCase Property on page 11-197

s CopyToClipboard Method on page 10-71

s Delete Method on page 10-116
= Edit Method on page 10-134

» FindFirst, FindLast, FindNext, and FindPrevious Methods on page 10-151

s GetRows Method on page 10-165
s GetXML Method on page 10-163

s GetXMLIoFile Method on page 10-164

= MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on page 10-199

= MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods on page 10-202

= Refresh Method on page 10-225
= Update Method on page 10-257

Server Objects 9-31

OraDynaset Object

See Also:

CreateDynaset Method on page 10-85
CreateCustomDynaset Method on page 10-80
OraParameter Object on page 9-50
RowPosition Property on page 11-132
Update Method on page 10-257

9-32 Oracle Objects for OLE Developer's Guide

OraField Object

OraField Object

Description
An OraField object represents a single column or data item within a row of a
dynaset.

Remarks
An OraField object is accessed indirectly by retrieving a field from the OraFields
collection of an OraDynaset object.
If the current row is being updated, then the OraField object represents the currently
updated value, although the value may not yet have been committed to the database.
Assignment to the Value property of a field is permitted only if a record is being
edited (using the Edit method) or a new record is being added (using the AddNew
method). Other attempts to assign data to the Value property of a field results in an
error.

Properties
s OralDataType Property on page 11-115
s OraMaxDSize Property on page 11-117
s OraMaxSize Property on page 11-118
s OraNullOK Property on page 11-119
s OraPrecision Property on page 11-120
s OraScale Property on page 11-121
= Name Property on page 11-101
» Size Property on page 11-143
s Truncated Property on page 11-163
s Type Property on page 11-164
= Value Property on page 11-173
= XMLAsAttribute Property on page 11-188
s XMLTagName Property on page 11-196

Methods

s AppendChunk Method on page 10-28

s AppendChunkByte Method on page 10-30
» FieldSize Method on page 10-150

s GetChunk Method on page 10-156

s GetChunkByteEx Method on page 10-160
s OriginalName on page 10-217

s ReadChunk Method on page 10-224

Server Objects 9-33

OraField Object

See Also:

AddNew Method on page 10-21
Edit Method on page 10-134
OraDynaset Object on page 9-30
OraFields Collection on page 9-67
Value Property on page 11-173

9-34 Oracle Objects for OLE Developer's Guide

OralntervalDS Object

OralntervalDS Object

Description

Remarks

Properties

Methods

Days Property on page 11-42

Hours Property on page 11-76

Minutes Property on page 11-97
Nanonseconds Property on page 11-108
Seconds Property on page 11-136

TotalDays Property on page 11-160

Value (OralntervalDS) Property on page 11-177

Add (OralntervalDS) Method on page 10-11

Clone (OralntervalDS) Method on page 10-55

Div (OralntervalDS) Method on page 10-130

IsEqual (OralntervalDS) Method on page 10-172
IsGreater (OralntervalDS) Method on page 10-177
IsLess (OralntervalDS) Method on page 10-182

Mul (OralntervalDS) Method on page 10-204

Neg (OralntervalDS) Method on page 10-207

Sub (OralntervalDS) Method on page 10-241
ToOraNumber (OralntervalDS) Method on page 10-247

The OraIntervalDS object provides methods for operations on the Oracle
INTERVAL DAY TO SECOND.This data type represents a period of time in terms of days,
hours, minutes, seconds, and nanoseconds.

The OraIntervalbDSs objectis created by the OraSession.CreateOraIntervalDS
method or by calling the Clone method on an existing OraIntervalDS object.

An OraIntervalDs object can be bound using the ServerType ORATYPE
INTERVALDS. This allows the binding of a value to a parameter associated with an
Oracle INTERVAL DAY TO SECOND data type in a SQL or PL/SQL statement.

When binding a string associated with an INTERVAL DAY TO SECOND data type, the
ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2,
ORATYPE_STRING) and the string must be in the format specified by Day
HH:MI:SSxFF.

Server Objects 9-35

OralntervalDS Object

See Also:

s CreateOralntervalDS Method on page 10-92
s OraNumber Object on page 9-41

= ServerType Property on page 11-138

9-36 Oracle Objects for OLE Developer's Guide

OralntervalYM Object

OralntervalYM Object

Description

Remarks

Properties

Methods

The OraIntervalYM object provides methods for operations on the Oracle
INTERVAL YEAR TO MONTH.This data type represents a period of time in terms of years
and months.

The OraIntervalYM objectis created by the OraSession.CreateOraIntervalYM
method or by calling the Clone method on an existing OraInterval¥YM object.

An OraIntervalYM object can be bound using ServerType ORATYPE_
INTERVALYM. This allows the binding of a value to a parameter associated with an
Oracle INTERVAL YEAR TO MONTH data type in a SQL or PL/SQL statement.

When binding a string associated with an INTERVAL YEAR TO MONTH data type, the
ServerType must be specified to be a string type (for example, ORATYPE_
VARCHAR2, ORATYPE_STRING), and the string must be in the format specified by
YEARS-MONTHS.

= Months Property on page 11-100

= Years Property on page 11-200

= TotalYears Property on page 11-161
= Value Property on page 11-173

= Add (Oralnterval YM) Method on page 10-12

s Clone (Oralnterval YM) Method on page 10-56

s Div (OralntervalYM) Method on page 10-131

s IsEqual (OralntervalYM) Method on page 10-173

» IsGreater (OralntervalYM) Method on page 10-178
s IsLess (OralntervalYM) Method on page 10-183

s Mul (OralntervalYM) Method on page 10-205

= Neg (OralntervalYM) Method on page 10-208

= Sub (OralntervalYM) Method on page 10-242

See Also:

s CreateOralntervalYM Method on page 10-94
s OraNumber Object on page 9-41

s ServerType Property on page 11-138

Server Objects 9-37

OraMDAttribute Object

OraMDAttribute Object

Description

Each OraMDAttribute object describes an individual attribute. It represents an entry
to the attribute table of the OraMetaData object. It can be accessed by creating a
subscript that uses ordinal integers or by using the name of the attribute.

Remarks
None.

Properties
= Name (OraMDAttribute) Property on page 11-105
= Value (OraMDAttribute) Property on page 11-181
= IsMDObject Property on page 11-78

Methods
None.

Examples

See "Schema Objects Used in OraMetaData Examples" on page A-3 for OraMetaData
Schema Definitions used in these examples.

Example: Describing a Table
See "Describing a Table Example" on page 10-125.

Example: Describing a User-Defined Type
See "Example: Describing a User-Defined Type" on page 10-126.

Example: Describing Unknown Schema Objects
See "Example: Describing Unknown Schema Objects" on page 10-126.

See Also:
s OraMetaData Object on page 9-39
= Describe Method on page 10-124

9-38 Oracle Objects for OLE Developer's Guide

OraMetaData Object

OraMetaData Object

Description

Remarks

Properties

The OraMetabData object is returned by invoking the Describe method of the
OraDatabase interface. The Describe method takes the name of a schema object,
such as the emp table, and returns an OraMetaData object. The OraMetaData object
provides methods for dynamically navigating and accessing all the attributes
(oraMDAttribute collection) of a schema object described.

An OraMetaData object is a collection of OraMDAt tribute objects that represent the
description information about a particular schema object in the database. The
following table is an example of attributes for a OraMetaData object of type table
(ORAMD_TABLE).

Table 9-2 list the ORAMD_TABLE attributes.

Table 9-2 ORAMD_TABLE Attributes

Attribute Name Value Type Description

ObjectID Integer Object ID.

NumCols Integer Number of columns.

ColumnList OraMetaData Column list.

IsTyped Boolean Is the table typed?

IsTemporary Boolean Is the table temporary?

Duration String Duration - can be session, transaction, or null.
DBA Integer Data block address of the segment header.
TableSpace Integer Tablespace in which the table resides.
IsClustered Boolean Is the table clustered?

IsPartitioned Boolean Is the table partitioned?

IsIndexOnly Boolean Is the table index-only?

See Also: "Type (OraMetaData) Property" on page 11-168

The OraMetaData object can be visualized as a table with three columns:
= Metadata attribute name

= Metadata attribute value

» Flag specifying whether the Value is another OraMetaData object

The OraMDAttribute objects contained in the OraMetaData object can be accessed
by creating a subscript that uses ordinal integers or by using the name of the property.
Referencing a subscript that is not in the collection (0 to Count-1) results in the return
of a NULL OraMDAttribute object.

s Count (OraMetaData) Property on page 11-33
s Type (OraMetaData) Property on page 11-168

Server Objects 9-39

OraMetaData Object

Methods
= Attribute (OraMetaData) Method on page 10-38

Examples

See "Schema Objects Used in OraMetaData Examples" on page A-3 for OraMetaData
schema definitions used in these examples.

The following Visual Basic example illustrates a simple use of this facility. It retrieves
and displays several attributes of the emp table.

Set empMD = OraDatabase.Describe("emp")

'Display the name of the Tablespace
msgbox empMD ("tablespace")

'Display name, data type, and size of each column in the emp table.
Set empColumnsMD = empMD("Columns")
for I = 1 to empColumns.Count
Set ColumnMD = empColumnsMD(I)
MsgBox ColumnMD ("Name") & ColumnMD("Data Type") & ColumnMD ("Length")
Next I

Example: Describing a User-Defined Type
See "Example: Describing a User-Defined Type" on page 10-126

Example: Describing Unknown Schema Objects
See "Example: Describing Unknown Schema Objects" on page 10-126

See Also:
s OraMDAttribute Object on page 9-38
= Describe Method on page 10-124

9-40 Oracle Objects for OLE Developer's Guide

OraNumber Object

OraNumber Object

Description

Remarks

Properties

Methods

The OraNumber interface provides methods for operations on the Oracle Number data
types. This interface exposes a set of math operations that provide greater precision
than is available in some programming environments, such as Visual Basic.

The OraNumber object can be obtained through the CreateOraNumber method of
the OraSession object or by calling the C1one method on an existing OraNumber.

All of the methods of the OraNumber object that take a numeric argument accept a
string, another numeric type, such as a 1ong in Visual Basic, or another OraNumber
object.

Note: If a Visual Basic numeric value (or constant) is used as an
argument, it is limited to the maximum precision provided by the
language.

The OraNumber on which the math operation is called holds the result of the
operation (overwriting any previous value). If a Format was specified (through the
Format property), the value of an OraNumber must match this format or an error is
raised when the Value property is accessed.

s Format (OraNumber) Property on page 11-70
= Value (OraNumber) Property on page 11-182

= Abs Method on page 10-7

s Add (OraNumber) Method on page 10-13

s ArcCos (OraNumber) Method on page 10-34
= ArcSin (OraNumber) Method on page 10-35

s ArcTan (OraNumber) Method on page 10-36

s ArcTan2 (OraNumber) Method on page 10-37
» Ceil (OraNumber) Method on page 10-47

s Clone (OraNumber) Method on page 10-57

s Cos (OraNumber) Method on page 10-78

s Div (OraNumber) Method on page 10-132

= Exp (OraNumber) Method on page 10-148

= Floor (OraNumber) Method on page 10-153

= HypCos (OraNumber) Method on page 10-168
= HypSin (OraNumber) Method on page 10-169

Server Objects 9-41

OraNumber Object

s HypTan (OraNumber) Method on page 10-170
s IsEqual (OraNumber) Method on page 10-174
s IsGreater (OraNumber) Method on page 10-179
s IsLess (OraNumber) Method on page 10-184

s Ln (OraNumber) Method on page 10-190

s Log (OraNumber) Method on page 10-191

= Mod (OraNumber) Method on page 10-193

= Mul (OraNumber) Method on page 10-206

s Neg (OraNumber) Method on page 10-209

s Power (OraNumber) Method on page 10-219

= Round (OraNumber) Method on page 10-237
s SetPi (OraNumber) Method on page 10-238

s Sin (OraNumber) Method on page 10-239

s Sqrt (OraNumber) Method on page 10-240

= Sub (OraNumber) Method on page 10-243

s Tan (OraNumber) Method on page 10-244

s Trunc (OraNumber) Method on page 10-255

Example

A scientific calculator example program is included as part on the samples installed
with Oracle Objects for OLE. See "Demonstration Schema and Code Examples" on
page 2-1.

See Also: OraSession Object on page 9-58

9-42 Oracle Objects for OLE Developer's Guide

OraObject Object

OraObject Object

Description

Remarks

Properties

Methods

Examples

The OraObject interface is a representation of an Oracle value instance
(non-referenceable object instance or embedded objects). Value instances are instances
of an Oracle object type stored in the column of a table or attribute of an another
Oracle object instance or element of an Oracle collection.

Implicitly an OraObject object contains a collection interface for accessing and
manipulating (updating and inserting) individual attributes of an value instance.
Individual attributes can be accessed by using a subscript or the name of the attribute.

The OraObject attribute index starts at 1. The Count property returns the total
number of attributes. Each attribute of the underlying value instance is represented as
an OraAttribute object.

Attribute values are retrieved as variants. The Variant type of the attribute depends
on the attribute type of the object. Attribute values can be null and can be set to Null.
For object types REF, LOB, and collection, attribute values are returned as
corresponding O0O40 objects for that type.

The CreateOraObject method on the OraDatabase object returns the OraObject
object. The value instance associated with this OraObject object is created in the
client-side object cache.

For information about executing a member method of a value instance, see "Executing
a Member Method of an Oracle Object Instance" on page 4-12.

For information about initializing an OraObject object representing a value instance
in OO40 or executing a member method of a value instance, see "Instantiating Oracle
LOBs, Objects, and Collections" on page 4-2.

= Count (OraObject/Ref) Property on page 11-34

= IsNull (OraObject) Property on page 11-81

s TypeName (OraObject and OraRef) Property

= Version (OraObject and Ref) Property on page 11-185

» Clone (OraObject/Ref) Method on page 10-58

See "Schema Objects Used in the OraObject and OraRef Examples" on page A-3 for
schema descriptions used in examples of OraObject/OraRef objects.

Example: Accessing Attributes of an OraObject Object

The following example accesses the attributes of the ADDRESS value instance in the
database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase

Server Objects 9-43

OraObject Object

Dim OraDynaset as OraDynaset
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset ("select * from person_tab",0&)

'retrieve a address column from person_tab. Here Value property of OraField
'object returns Address OraObject
set Address = OraDynaset.Fields("Addr").Value

'access the attribute by dot notation
msgbox Address.Street

'access the attribute using '!' notation (early binding application)
msgbox Address!Street

'access the attribute by index
msgbox Address (1)

'access the attribute by name
msgbox Address("Street")

'access all the attributes of Address OraObject in the dynaset
Do Until OraDynaset.EOF
For index = 1 To Address.Count
msgbox Address (index)
Next Index
OraDynaset .MoveNext
Loop

Example: Updating Attributes of an OraObject Object

The following examples modify the attributes of the ADDRESS value instance in the
database.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

'retrieve a address column from person_tab.
'Here Value property of OraField object returns Address OraObject

9-44 Oracle Objects for OLE Developer's Guide

OraObject Object

set Address = OraDynaset.Fields("Addr").Value

'start the Edit operation and modify the Street attribute
OraDynaset.Edit

Address.Street = "Oracle Parkway"

OraDynaset .Update

Parameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Empty, ORAPARM_INPUT, ORATYPE_OBJECT, _
"ADDRESS"

'get the uninitialized 'Empty' Address object from OraParameter
set Address = OraDatabase.Parameters ("ADDRESS") .Value

'modify the 'Street' attribute of the Address
Address.Street = "Oracle Parkway"

'execute the sqgl statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("update person_tab set addr = :ADDRESS where age = 40")

Example: Inserting an OraObject Object
The following examples insert a new field (value instance) called ADDRESS in the
database.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset ("select * from person_tab", 0&)

' create a new Address object in 0040
set AddressNew = OraDatabase.CreateOraObject ("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"

AddressNew.State = "CA"

'start the dynaset AddNew operation and set the Address field to new address

Server Objects 9-45

OraObject Object

' value

OraDynaset .Addnew
OraDynaset.Fields ("ADDR") .Value = AddressNew
OraDynaset .Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Null, ORAPARM_INPUT, ORATYPE_OBJECT, _
"ADDRESS"

' create a new Address object in 0040
set AddressNew = OraDatabase.CreateObject ("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"

'set the Address to ADDRESS parameter
Oradatabase.Parameters ("ADDRESS") .Value = AddressNew

'execute the sgl statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("insert into person_tab values (30, 'Eric', :ADDRESS))

See Also:

= "Oracle Object Data Types" on page 4-10 for information on
support of Oracle object-relational features

s OraParameter Object on page 9-50

s OraParamArray Object on page 9-47

s OraRef Object on page 9-52

s OraAttribute Object on page 9-7

s CreateOraObject (OraDatabase) Method on page 10-97

= "Executing a Member Method of an Oracle Object Instance" on
page 4-12

9-46 Oracle Objects for OLE Developer's Guide

OraParamArray Object

OraParamArray Object

Description

Remarks

Properties

An OraParamArray object represents an array type bind variable in a SQL statement
or PL/SQL block, as opposed to a scalar type bind variable represented by the
OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value.

Implicitly an OraParamArray object contains an OLE automation collection interface
for accessing and manipulating individual elements of an array. Individual elements
can be accessed using a subscript or the Get_Value method. Individual elements can
be modified by using a subscript or the Put_Value method.

Element values are retrieved as Variant types. The Variant type of the element
depends on the ServerType of the OraParamArray object. Element values can be
null and can be set to Nul1l. For elements of type objects and REFs, element values are
returned as corresponding OO40O objects for that type.

You can automatically bind a parameter to SQL and PL/SQL statements of other
objects (as noted in the objects descriptions) by using the name of the parameter as a
placeholder in the SQL or PL/SQL statement. Using parameters can simplify dynamic
queries and increase program performance. Parameters are bound to SQL statements
and PL/SQL blocks before execution.

The OraParameters collection is part of the OraDatabase object so that all
parameters are available to any SQL statement or PL/SQL block executed within the
database (through CreateDynaset, ExecuteSQL, or CreateSQL methods). Before a
SQL statement or PL/SQL block is executed, an attempt is made to bind all parameters
of the associated OraDatabase object. The bindings that fail (because the parameter
does not apply to that particular SQL statement or PL/SQL block) are noted and no
attempt is made to bind them again if the SQL statement or PL/SQL block is
reexecuted but does not change.

Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is
done by Oracle Database), any unnecessary binding results in performance
degradation. To prevent unnecessary parameter binding, use the AutoBindDisable
and AutoBindEnable methods.

= ArraySize Property on page 11-8

s LastErrorText Property on page 11-85
= MinimumSize Property on page 11-93
= Name Property on page 11-101

= ServerType Property on page 11-138

= Status Property on page 11-152

= Type Property on page 11-164

Server Objects 9-47

OraParamArray Object

Methods
= AutoBindDisable Method on page 10-39
= AutoBindEnable Method on page 10-41
s Get_Value Method on page 10-167
s Put_Value Method on page 10-220
Example

Example: Using OraParamArrays with SQL Statements

The following example shows how to use the OraParamArray object with SQL
statements:

Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraSqlStmt As OraSQLStmt

Dim PartNoArray As OraParamArray
Dim DescArray As OraParamArray
Dim I As Integer

'Test case for inserting/updating/deleting multiple rows using parameter

' arrays with SQL statements
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase ("exampledb", "scott/tiger", 0&)

'Create table
OraDatabase.ExecuteSQL ("create table part_nos(partno number," & _

"description char(50), primary key(partno))")
OraDatabase.Parameters.AddTable "PARTNO", ORAPARM INPUT, ORATYPE NUMBER, 10, 22
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, _

ORATYPE_CHAR, 10, 50
Set PartNoArray = OraDatabase.Parameters ("PARTNO")
Set DescArray = OraDatabase.Parameters ("DESCRIPTION")

'Initialize arrays
For T =0 To 9

achar = "Description" + Str(I)
PartNoArray (I) = 1000 + I
DescArray(I) = achar

Next I

Set OraSglStmt = OraDatabase.CreateSql ("insert into
part_nos (partno, description) values(:PARTNO, :DESCRIPTION)", 0&)

'Update the newly created part_nos table
For I =0 To 9

achar = "Description" + Str (1000 + I)
DescArray(I) = achar
Next I

'Update table
Set OraSglStmt = OraDatabase.CreateSql ("update part_nos set DESCRIPTION" & _
"=:DESCRIPTION where PARTNO = :PARTNO", 0&)

'Deleting rows

Set OraSglStmt = OraDatabase.CreateSqgl ("delete from part_nos where" & _
"DESCRIPTION=: Description ", 0&)

9-48 Oracle Objects for OLE Developer's Guide

OraParamArray Object

'Drop the table
OraDatabase.ExecuteSQL ("drop table part_nos")

Example: Using OraParamArrays with PL/SQL

The following is an example using OraParamArray objects with PL/SQL. The
Employee PL/SQL package can be set up with the ORAEXAMP . SQL script. See
"Demonstration Schema and Code Examples" on page 2-1.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim EmpnoArray As OraParamArray
Dim EnameArray As OraParamArray

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase ("exampledb", "scott/tiger", 0&)
OraDatabase.Parameters.Add "ArraySize", 3, ORAPARM_INPUT
OraDatabase.Parameters.AddTable "EMPNOS", ORAPARM_INPUT, ORATYPE_NUMBER,3, 22
OraDatabase.Parameters.AddTable "ENAMES", ORAPARM_OUTPUT, _

ORATYPE_VARCHAR2, 3, 10
Set EmpnoArray = OraDatabase.Parameters ("EMPNOS")
Set EnameArray = OraDatabase.Parameters ("ENAMES")

'Initialize the newly created input parameter table EMPNOS
EmpnoArray (0) 7698
EmpnoArray (1) = 7782
EmpnoArray(2) = 7654

'Execute the PLSQL package

OraDatabase.ExecuteSQL ("Begin Employee.GetEmpNamesInArray (:ArraySize," & _
":EMPNOS, :ENAMES); End;")

'Print out Enames

MsgBox EnameArray (0)

MsgBox EnameArray (1)

MsgBox EnameArray (2)

See Also:
s OraParameters Collection on page 9-68

s OraParameter Object on page 9-50

Server Objects 9-49

OraParameter Object

OraParameter Object

Description

Remarks

Properties

An OraParameter object represents a bind variable in a SQL statement or PL/SQL
block.

OraParameter objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value. You can automatically bind a parameter to
SQL and PL/SQL statements of other objects (as noted in the object descriptions), by
using the parameter name as a placeholder in the SQL or PL/SQL statement. Using
parameters can simplify dynamic queries and increase program performance.

Parameters are bound to SQL statements and PL/SQL blocks before execution. In the
case of a SQL SELECT statement, binding occurs before dynaset creation.

The OraParameters collection is part of the OraDatabase object. Therefore, all
parameters are available to any SQL statement or PL/SQL block executed within the
database (through the CreateDynaset or ExecuteSQL methods).

Before a SQL statement or PL/SQL block is executed, an attempt is made to bind all
parameters of the associated OraDatabase object. The bindings that fail (because the
parameter does not apply to that particular SQL statement or PL/SQL block), are
noted and no attempt is made to bind them again if the SQL statement or PL/SQL
block is reexecuted but does not change.

Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is
done by Oracle Database), any unnecessary binding results in performance
degradation. To prevent unnecessary parameter binding, use the AutoBindDisable
and AutoBindEnable methods.

By default, the maximum size of the ORAPARM_OUTPUT variable for ServerType
CHAR and VARCHAR? is set to 127 bytes. Use the MinimumSize property to change
this value. The minimum size of an ORAPARM_OUTPUT variable for CHAR, VARCHAR?2,
and ORATYPE_RAW_BIN must always be greater than the size of the expected data
from the database column.

ServerType ORATYPE RAW_BIN is used when binding to Oracle Raw columns. A
byte array is used to put or get values. The maximum allowable size of ORATYPE__
RAW_BIN bind buffers is 2000 bytes when bound to a column of a table, 32 KB when
bound to a stored procedure. For example code, see the samples in the ORACLE_
BASE\ORACLE_HOME\0040\VB\Raw directory.

= DynasetOption Property on page 11-50
= MinimumSize Property on page 11-93
= Name Property on page 11-101

»s ServerType Property on page 11-138

= Status Property on page 11-152

= Type Property on page 11-164

= Value Property on page 11-173

9-50 Oracle Objects for OLE Developer's Guide

OraParameter Object

Methods

= AutoBindDisable Method on page 10-39
= AutoBindEnable Method on page 10-41

= DynasetCacheParams Method on page 10-133

See Also:

CreateDynaset Method on page 10-85
DynasetOption Property on page 11-50
ExecuteSQL Method on page 10-144
OraDatabase Object on page 9-28

OraParameters Collection on page 9-68

Server Objects 9-51

OraRef Object

OraRef Object

Description

Remarks

Properties

Methods

The OraRef interface represents an Oracle REF (reference) as well as a referenceable
object (standalone instance).

An Oracle REF is an identifier to a referenceable object. Referenceable objects are
stored in rows of an object table. By pinning a REF object, referenceable objects are
fetched to the client side. An OraRef object implicitly pins the underlying REF when
the attributes of a referenceable object are accessed for the first time. The OraRef also
encapsulates the functionality for an object navigational operation utilizing the
Complex Object Retrieval Capability (COR).

Attributes of a referenceable object represented by the OraRef object are accessed in
the same manner as attributes of an value instance represented by the OraObject
interface. When pinned, OraRef contains an OraObject interface through the
containment mechanism in COM. At run time, the OraRef interface can be typecast to
the OraObject interface.

OraRef provides methods for update and delete operations on a referenceable object,
independent of the context from which they originated, such as dynasets, parameters,
and so on.

An object-level lock should be obtained before modifying the attributes of a
referenceable object. This is done though the Edit method of the OraRefobject.

The CreateOraObject method on the OraDatabase object creates a new
referenceable object in the database and returns information associated with the
OraRef Object. The CreateOraObject and Update methods pair inserts a new
referenceable object in the database.

For information about initializing an OraRef object representing a referenceable object
in OO40 or executing a member method of a referenceable object, see "Instantiating
Oracle LOBs, Objects, and Collections" on page 4-2.

s Count (OraObject/Ref) Property on page 11-34

» EditOption (OraRef) Property on page 11-52

= HexValue (OraRef) Property on page 11-73

» IsRefNull (OraRef) Property on page 11-84

= PinOption (OraRef) Property on page 11-123

» TableName (OraRef) Property on page 11-156

s TypeName (OraObject and OraRef) Property

= Version (OraObject and Ref) Property on page 11-185

s CancelEdit (OraRef) Method on page 10-46
» Clone (OraObject/Ref) Method on page 10-58

9-52 Oracle Objects for OLE Developer's Guide

OraRef Object

Examples

s Delete (OraRef) Method on page 10-120
s Edit (OraRef) Method on page 10-136

= Refresh (OraRef) Method on page 10-228
= Update (OraRef) Method on page 10-259

Before running the sample code, make sure that you have the necessary data types and
tables in the database. See "Schema Objects Used in the OraObject and OraRef
Examples" on page A-3 for schema descriptions used in examples of
OraObject/OraRef.

Example: Pinning Ref Values

The following example pins the attributes of the PERSON referenceable object in the
database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value property of
' OraField object returns Person OraRef
set Person = OraDynaset.Fields("aperson") .Value

'access the attribute of person. This operation pins the Person ref
'value and fetches the Person referenceable object to the client.
msgbox Person.Name

Example: Accessing Attribute Values

The following example accesses the attributes of the PERSON referenceable object in
the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

Server Objects 9-53

OraRef Object

'retrieve a aperson column from customers. Here Value property of OraField
'object returns Person OraRef
set Person = OraDynaset.Fields("aperson") .Value

'access the attribute by dot notation.
msgbox Person.Name

'access the attribute using '!' notation (early binding application)
msgbox Person!Name

'access the attribute by index
msgbox Person (1)

'access the attribute by name
msgbox Person ("Name")

'access Addr attribute . This returns Address OraObject.
set Address = Person.Addr

Example: Updating Attribute Values
The following example updates the attributes of the PERSON referenceable object in the
database.

Dynaset Example
See "Updating Attribute Values: Dynaset Example" on page 10-259.
Parameter Example

See "Updating Attribute Values: Parameter Example" on page 10-259.

Example: Inserting Referenceable Objects
The following example inserts the new PERSON referenceable object in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'CreateOraObject creates a new referenceable object in the PERSON_TAB object
'table and returns associated OraRef
set Person = OraDatabase.CreateOraObject ("PERSON", "PERSON_TAB")

'modify the attributes of Person
Person.Name = "Eric"
Person.Age = 35

'Update method inserts modified referenceable object in the PERSON_TAB.
Person.Update

9-54 Oracle Objects for OLE Developer's Guide

OraRef Object

See Also:

= OraObject Object on page 9-43

s OraParameter Object on page 9-50

s OraParamArray Object on page 9-47

Server Objects 9-55

OraServer Object

OraServer Object

Description

The OrasServer interface represents a physical network connection to an Oracle
database.

Remarks

The OraServer interface exposes the connection multiplexing feature provided in the
Oracle Call Interface. After an OraServer object is created, multiple user sessions
(OrabDatabase) can be attached to it by invoking the OpenDatabase method. This
feature is particularly useful for application components, such as Internet Information
Server (1IS), that use Oracle Objects for OLE in n-tier distributed environments. The
use of connection multiplexing when accessing Oracle databases with a large number
of user sessions active can help reduce server processing and resource requirements
while improving the database scalability.

As illustrated in Figure 9-1, the OraServer interface contains a connection to an
Oracle database and provides a method (OpenDatabase) for creating user sessions
(OraDatabase objects) on the database connection it contains.

Figure 9-1 OraServer to Oracle Database Relationship

DraSession

OraServer Oracle
Database

]
«L OraDatabase
—— User Sessions

Properties
= Name Property on page 11-101

= Session Property on page 11-141
= Databases Property on page 11-39

Methods
s ChangePassword (OraServer) Method on page 10-48
= OpenDatabase Method on page 10-212
= Open (OraServer) Method on page 10-210

9-56 Oracle Objects for OLE Developer's Guide

OraServer Object

See Also:

OraConnection Object on page 9-27
OraDatabase Object on page 9-28
OraClient Object on page 9-18
OraDynaset Object on page 9-30

Server Objects 9-57

OraSession Object

OraSession Object

Description

An OraSession object manages collections of OraDatabase, OraConnection, and
OraDynaset objects used within an application.

Remarks

Typically, a single OraSession object is created for each application, but you can
create named OraSession objects for shared use within and between applications.

The OrasSession object is the highest level object for an application. OraSession
and OraServer objects are the only objects created by the CreateObject Visual
Basic or Visual Basic for Applications APIs and not by an Oracle Objects for OLE
method.

Properties
» Client Property on page 11-22

= Connections Property on page 11-27

s LastServerErr Property on page 11-87

s LastServerErrText Property on page 11-90

= Name Property on page 11-101

s OIPVersionNumber Property on page 11-113
= DbPoolCurrentSize Property on page 11-43
= DbPoollnitialSize Property on page 11-44

= DbPoolMaxSize Property on page 11-45

Methods
= BeginTrans Method on page 10-43

= ChangePassword (OraSession) Method on page 10-50
s CommitTrans Method on page 10-66

= ConnectSession Method on page 10-69

s CreateDatabasePool Method on page 10-83

» CreateNamedSession Method on page 10-90

» CreateOralnterval DS Method on page 10-92

s CreateOralntervalYM Method on page 10-94

s CreateOraNumber Method on page 10-96

» CreateOraTimeStamp Method on page 10-100

» CreateOraTimeStampTZ Method on page 10-102
s DestroyDatabasePool Method on page 10-128

s GetDatabaseFromPool Method on page 10-155

s OpenDatabase Method on page 10-212

9-58 Oracle Objects for OLE Developer's Guide

OraSession Object

Examples

s LastServerErrReset Method on page 10-189

= ResetTrans Method on page 10-233
= Rollback Method on page 10-235

The following code fragments show how to create an OraSession object:

Dim oo4oSession as Object

Set oodoSession = CreateObject ("OracleInProcServer.XOraSession")

or

Dim oodoSession as New OraSessionClass

or

Dim oo4oSession as OraSession
Set oodoSession = New OraSessionClass

See Also:

OraClient Object on page 9-18
OraConnection Object on page 9-27
OraDatabase Object on page 9-28
OraDynaset Object on page 9-30
OraServer Object on page 9-56

Server Objects 9-59

OraSQLStmt Object

OraSQLStmt Object

Description

An OrasQLStmt object represents a single SQL statement. Use the CreateSQL
method to create the OraSQLStmt object from an OraDatabase object.

During create and refresh operations, OraSQLStmt objects automatically bind all
relevant, enabled input parameters to the specified SQL statement, using the
parameter names as placeholders in the SQL statement. This can improve the
performance of SQL statement execution without parsing the SQL statement again.

Properties
= Connection Property on page 11-25

= Database Property on page 11-36

= Options Property on page 11-114

= RecordCount Property on page 11-128

= Session Property on page 11-141

= SQL Property on page 11-150

= NonBlockingState Property on page 11-111

Methods
= Refresh Method on page 10-225

= Cancel Method on page 10-45
» Close Method on page 10-63

See Also:
s CreateSQL Method on page 10-111
s OraParameter Object on page 9-50

= "Asynchronous Processing" on page 3-16

9-60 Oracle Objects for OLE Developer's Guide

OraSubscription Object

OraSubscription Object

Description
An OraSubscription object that represents the subscription to a database event.

Remarks
OraSubscription objects are created, accessed, and removed indirectly through the
OraSubscriptions collection of an OraDatabase object. Each subscription has a
name that associates with an Oracle database event.
The OraSubscriptions collection is part of the OraDatabase object.

Properties
= Name Property on page 11-101

Methods

= Register Method on page 10-229
= Unregister Method on page 10-256

See Also:

s OraDatabase Object on page 9-28

s OraSubscriptions Collection on page 9-70
s "Database Events" on page 4-22

Server Objects 9-61

OraTimeStamp Object

OraTimeStamp Object

Description

The OraTimeStamp object represents the Oracle TIMESTAMP and Oracle TIMESTAMP
WITH LOCAL TIME ZONE data types and provides methods for operations on these two
Oracle data types. The OraTimeStamp represents a date-time value that stores the
following information: year, day, hour, minute, second, and nanosecond.

Remarks

The OraTimeStamp object is created by the OraSession.OraCreateTimeStamp
method or by calling the C1one method on an existing OraTimeStamp object.

An OraTimeStamp object can be bound using ServerType ORATYPE_TIMESTAMP
or ORATYPE_TIMESTAMPLTZ. This allows the binding of a value to a parameter
associated with an Oracle TIMESTAMP or an Oracle TIMESTAMP WITH LOCAL TIME
ZONE data type in a SQL or PL/SQL statement respectively.

When binding a string associated with a TIMESTAMP or a TIMESTAMP WITH LOCAL
TIME ZONE data types, the ServerType must be specified to be a string type (for
example, ORATYPE_VARCHAR2, ORATYPE_STRING) and the string must be in the
format specified by the NLS_TIMESTAMP_FORMAT.

Properties
» Day (OraTimeStamp) Property on page 11-40

= Format (OraTimeStamp) Property on page 11-71

= Hour (OraTimeStamp) Property on page 11-74

= Minute (OraTimeStamp) Property on page 11-95

= Month (OraTimeStamp) Property on page 11-98

= Nanosecond(OraTimeStamp) Property on page 11-106
= Second (OraTimeStamp) Property on page 11-134

= Value (OraTimeStamp) Property on page 11-183

= Year (OraTimeStamp) Property on page 11-198

Methods
= AddIntervalDS Method on page 10-17

» AddIntervalYM Method on page 10-19

s Clone (OraTimeStamp) Method on page 10-61

s IsEqual (OraTimeStamp) Method on page 10-175

» IsGreater (OraTimeStamp) Method on page 10-180
» IsLess (OraTimeStamp) Method on page 10-185

= ToDate Method on page 10-245

s ToOraTimeStampTZ Method on page 10-250

9-62 Oracle Objects for OLE Developer's Guide

OraTimeStamp Object

See Also:

s CreateOraTimeStamp Method on page 10-100
s OraNumber Object on page 9-41

s ServerType Property on page 11-138

Server Objects 9-63

OraTimeStampTZ Object

OraTimeStampTZ Object

Description

Remarks

Properties

Methods

The OraTimeStampTZ object represents an Oracle TIMESTAMP WITH TIME ZONE
data type and provides methods for operations on this Oracle data type. The
OraTimeStampTZ represents a date-time value in a specific time zone that stores the
following information: year, day, hour, minute, second, nanosecond, and the time
zone.

The OraTimeStampTZ object is created by the
OraSession.OraCreateTimeStampTZ method or by calling the C1lone method on
an existing OraTimeStampTZ object.

An OraTimeStampTZ object can be bound using ServerType ORATYPE_
TIMESTAMPTZ. This allows the binding of a value to a parameter associated with an
Oracle TIMESTAMP WITH TIME ZONE data type in a SQL or PL/SQL statement.

When binding a string associated with an TIMESTAMP WITH TIME ZONE data type, the
ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2,
ORATYPE_STRING) and the string must be in the format specified by NLS_
TIMESTAMP_TZ_FORMAT.

s Day (OraTimeStampTZ) Property on page 11-41

s Format (OraTimeStampTZ) Property on page 11-72

» Hour (OraTimeStampTZ) Property on page 11-75

= Minute (OraTimeStampTZ) Property on page 11-96

= Month (OraTimeStampTZ) Property on page 11-99

= Nanonsecond (OraTimeStampTZ) Property on page 11-107
= Second (OraTimeStampTZ) Property on page 11-135

= TimeZone (OraTimeStampTZ) Property on page 11-158

s Value (OraTimeStampTZ) Property on page 11-184

= Year (OraTimeStampTZ) Property on page 11-199

= AddIntervalDS Method on page 10-17

» AddIntervalYM Method on page 10-19

s Clone (OraTimeStampTZ) Method on page 10-62

s IsEqual (OraTimeStampTZ) Method on page 10-176
» IsGreater (OraTimeStampTZ) Method on page 10-181
» IsLess (OraTimeStampTZ) Method on page 10-186

= ToDate Method on page 10-245

s ToOraTimeStamp Method on page 10-248

9-64 Oracle Objects for OLE Developer's Guide

OraTimeStampTZ Object

s ToOraTimeStampLTZ Method on page 10-249
s ToUniversalTime Method on page 10-251

See Also:

s CreateOraTimeStampTZ Method on page 10-102
s OraNumber Object on page 9-41

= ServerType Property on page 11-138

Server Objects 9-65

OraConnections Collection

OraConnections Collection

Description
The OraConnections collection maintains a list of OraConnection objects. The list
is not modifiable; you cannot add to or remove from this collection.

Remarks
You can access the OraConnection objects in this collection by creating a subscript
(using ordinal integers) or by using the name the object was given at its creation. You
can obtain the number of OraConnection objects in the collection by using the
Count property. Referencing a subscript that is not within the collection (0 to
Count-1) results in the return of a NULL OraConnection object.

Properties
= Count Property on page 11-31

Methods

None.

See Also: OraConnection Object on page 9-27

9-66 Oracle Objects for OLE Developer's Guide

OraFields Collection

OraFields Collection

Description
The OraFields collection maintains a list of the OraField objects. The list is not
modifiable; you cannot add to or remove from this collection.

Remarks
You can access the OraField objects in this collection by creating a subscript (using
ordinal integers) or by using the name the object was given at its creation. You can
obtain the number of OraField objects in the collection by using the Count property.
Referencing a subscript that is not within the collection (0 to Count-1) results in the
return of a null OraField object.

Properties
= Count Property on page 11-31

Methods

s Originalltem Method on page 10-215

See Also: OraField Object on page 9-33

Server Objects 9-67

OraParameters Collection

OraParameters Collection

Description

The OraParameters collection maintains a list of OraParameter objects. Unlike the
other collection objects, this list is modifiable; you can add to and remove from the
collection.

Remarks

You can access the OraParameter objects in this collection by creating a subscript
(using ordinal integers) or by using the name the object was given at its creation. You
can obtain the number of OraParameter objects in the collection by using the Count
property. Referencing a subscript that is not within the collection (0 to Count-1)
results in the return of a null OraParameter object.

In addition to accessing the OraParameter objects of the collection, you can use the
collection to create and destroy parameters by using the Add and Remove methods,
respectively.

Properties
= Count Property on page 11-31

Methods
= Add Method on page 10-8

= AddTable Method on page 10-23
= Remove Method on page 10-230

See Also:
s OraParameter Object on page 9-50
s OraParamArray Object on page 9-47

9-68 Oracle Objects for OLE Developer's Guide

OraSessions Collection

OraSessions Collection

Description
The OraSessions collection maintains a list of OraSession objects. The list is not
modifiable; you cannot add to or remove from this collection.

Remarks
You can access the OraSession objects in this collection by creating a subscript (using
ordinal integers) or by using the name the object was given at its creation. You can
obtain the number of OraSession objects in the collection by using the Count
property. Referencing a subscript that is not within the collection (0 to Count-1)
results in the return of a null OraSession object.

Properties
= Count Property on page 11-31

Methods

None.

See Also: OraSession Object on page 9-58

Server Objects 9-69

OraSubscriptions Collection

OraSubscriptions Collection

Description

Remarks

Properties

Methods

The Orasubscriptions collection maintains a list of OraSubscription objects,
which represent the subscription to a database event. Unlike the other collection
objects, this list is modifiable; you can add to and remove from the collection.

You can access the OraSubscription objects in this collection by creating a subscript
(using ordinal integers) or by using the name the object was given at its creation. You
can obtain the number of OraSubscription objects in the collection by using the
Count property. Referencing a subscript that is not within the collection (0 to
Count-1) results in the return of a null Orasubscription object.

In addition to accessing the OraSubscription objects of the collection, you can use
the collection to create and destroy subscriptions by using the Add and Remove
methods, respectively.

= Count Property on page 11-31

= Add (OraSubscriptions Collection) Method on page 10-14
= Remove (OraSubscriptions Collection) Method on page 10-231

See Also:

s OraSubscription Object on page 9-61
s OraDatabase Object on page 9-28

= "Database Events" on page 4-22

9-70 Oracle Objects for OLE Developer's Guide

10

Server Methods

This chapter describes the Oracle Objects for OLE Server methods.

For an introduction to OO40 server objects, see "Oracle Objects for OLE In-Process
Automation Server" on page 1-2.

This chapter contains these topics:
= Server Methods: A to B

s Server Methods: C

= Server Methods: D to H

s Server Methods: [to L

= Server Methods: M to S

= Server Methods: T to Z

Server Methods: A to B
s Abs Method

= Add Method

s Add (OralntervalDS) Method

s Add (OralntervalYM) Method

s Add (OraNumber) Method

s Add (OraSubscriptions Collection) Method
» AddIntervalDS Method

» AddIntervalYM Method

» AddNew Method

» AddTable Method

= Append (OraCollection) Method
= Append (OraLOB) Method

s AppendChunk Method

s AppendChunkByte Method

= AQAgent (OraAQMsg) Method
. AQMsg (OraAQ) Method

s ArcCos (OraNumber) Method

Server Methods 10-1

ArcSin (OraNumber) Method
ArcTan (OraNumber) Method
ArcTan2 (OraNumber) Method
Attribute (OraMetaData) Method
AutoBindDisable Method
AutoBindEnable Method
BeginTrans Method

Server Methods: C

Cancel Method

CancelEdit (OraRef) Method

Ceil (OraNumber) Method
ChangePassword (OraServer) Method
ChangePassword (OraSession) Method
Clone Method

Clone (OraLOB/BFILE) Method
Clone (OraCollection) Method

Clone (OralntervalDS) Method

Clone (OralntervalYM) Method
Clone (OraNumber) Method

Clone (OraObject/Ref) Method

Clone (OraTimeStamp) Method
Clone (OraTimeStampTZ) Method
Close Method

Close (OraBFILE) Method

CloseAll (OraBFILE) Method
CommitTrans Method

Compare (OraLOB) Method
ConnectSession Method
CopyToClipboard Method

Copy (OraLOB) Method
CopyFromFile (OraLOB) Method
CopyFromBFILE (OraLOB) Method
CopyToFile (OraLOB/BFILE) Method
Cos (OraNumber) Method

CreateAQ Method
CreateCustomDynaset Method
CreateDatabasePool Method

10-2 Oracle Objects for OLE Developer's Guide

CreateDynaset Method
Createlterator Method
CreateNamedSession Method
CreateOralntervalDS Method
CreateOralntervalYM Method
CreateOraNumber Method

CreateOraObject (OraDatabase) Method

CreateOraTimeStamp Method
CreateOraTimeStampTZ Method

CreatePLSQLCustomDynaset Method

CreatePLSQLDynaset Method
CreateSession Method

CreateSQL Method
CreateTempBLOB/CLOB Method

Server Methods: D to H

Delete Method

Delete (OraCollection) Method
Delete (OraRef) Method
Deletelterator Method
Dequeue (OraAQ) Method
Describe Method
DestroyDatabasePool Method
DisableBuffering (OraLOB) Method
Div (OralntervalDS) Method
Div (OralntervalYM) Method
Div (OraNumber) Method
DynasetCacheParams Method
Edit Method

Edit (OraRef) Method
ElementValue Method
EnableBuffering (OraLOB) Method
Enqueue (OraAQ) Method
Erase (OraLOB) Method
ExecuteSQL Method

Exist (OraCollection) Method
Exp (OraNumber) Method
FetchOraRef Method

Server Methods 10-3

» FieldSize Method

s FindFirst, FindLast, FindNext, and FindPrevious Methods
s Floor (OraNumber) Method

» FlushBuffer (OraLOB) Method
» GetDatabaseFromPool Method
» GetChunk Method

s GetChunkByte Method

s GetChunkByteEx Method

n GetXML Method

» GetXMLToFile Method

» GetRows Method

» Get_Value Method

s HypCos (OraNumber) Method
s HypSin (OraNumber) Method
s HypTan (OraNumber) Method

Server Methods: I to L
s Initlterator Method

s IsEqual (OralntervalDS) Method

s IsEqual (OralntervalYM) Method

s IsEqual (OraNumber) Method

s IsEqual (OraTimeStamp) Method

s IsEqual (OraTimeStampTZ) Method
n IsGreater (OralntervalDS) Method

» IsGreater (Oralnterval YM) Method
n IsGreater (OraNumber) Method

» IsGreater (OraTimeStamp) Method
» IsGreater (OraTimeStampTZ) Method
» IsLess (OralntervalDS) Method

m IsLess (OralntervalYM) Method

» IsLess (OraTimeStamp) Method

» IsLess (OraTimeStampTZ) Method
» IterNext Method

» IterPrev Method

» LastServerErrReset Method

s Ln (OraNumber) Method

= Log (OraNumber) Method

10-4 Oracle Objects for OLE Developer's Guide

Server Methods: Mto S
= MatchPos (OraLOB/BFILE) Method

s Mod (OraNumber) Method

s MonitorForFailover Method

s MonitorStart (OraAQ) Method
= MonitorStop (OraAQ) Method
m MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
m MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods
s Mul (OralntervalDS) Method

s Mul (OralntervalYM) Method
s Mul (OraNumber) Method

= Neg (OralntervalDS) Method

= Neg (OralntervalYM) Method
= Neg (OraNumber) Method

= Open (OraServer) Method

= Open (OraBFILE) Method

= OpenDatabase Method

= Originalltem Method

= OriginalName

s Power (OraNumber) Method

s Put_Value Method

s Read (OraLOB/BFILE) Method
s ReadChunk Method

= Refresh Method

= Refresh (OraRef) Method

= Register Method

= Remove Method

= Remove (OraSubscriptions Collection) Method
= RemoveFromPool Method

= ResetTrans Method

= Rollback Method

= Round (OraNumber) Method

= SetPi (OraNumber) Method

= Sin (OraNumber) Method

= Sqrt (OraNumber) Method

= Sub (OralntervalDS) Method

= Sub (OralntervalYM) Method

Server Methods 10-5

s Sub (OraNumber) Method

Server Methods: Tto Z
s Tan (OraNumber) Method

= ToDate Method

s ToOraNumber (OralntervalDS) Method
s ToOraTimeStamp Method

s ToOraTimeStampLTZ Method
s ToOraTimeStampTZ Method
» ToUniversalTime Method

s Trim (OraCollection) Method
s Trim (OraLOB) Method

s Trunc (OraNumber) Method

s Unregister Method

= Update Method

= Update (OraRef) Method

s Write (OraLOB) Method

10-6 Oracle Objects for OLE Developer's Guide

Abs Method

Abs Method
Applies To
OraNumber Object on page 9-41
Description
Calculates the absolute value of an OraNumber object.
Usage
OraNumber . Abs
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Server Methods 10-7

Add Method

Add Method

Applies To

Description

Usage

Arguments

OraParameters Collection on page 9-68

Adds a parameter to the OraParameters collection.

oraparameters.Add Name, Value, IOType, ServerType, ObjectName

The arguments for the method are:

Arguments Description

Name The name of the parameter to be added to the parameters collection. This
name is issued both for parameter identification and as the placeholder in
associated SQL and PL/SQL statements.

Value A variant specifying the initial value of the parameter. The initial value of
the parameter is significant; it defines the data type of the parameter.

IOType An integer code specifying how the parameter is to be used in SQL
statements and PL/SQL blocks.

ServerType Specifies Oracle Database type to which this parameter is to be bound. This
is required when binding to BLOB, CLOB, BFILE, OBJECT, REF, NESTED
TABLE, or VARRAY. For a list of possible values, see the OraParameter
"ServerType Property" on page 11-138.

ObjectName A case-sensitive string containing the name of the Object. This is only
required if ServerTypeis ORATYPE_OBJECT, ORATYPE_VARRAY, or
ORATYPE_TABLE. ServerType is required for ORATYPE_REF when the
REF is used in PL/SQL.

I0Type Settings
The I0Type settings are:

Settings Values Description

ORAPARM_INPUT 1 Used for input variables only

ORAPARM_OUTPUT 2 Used for output variables only

ORAPARM_BOTH 3 Used for variables that are both input and output

These values can be found in the oraconst . txt file.

By default, the maximum size of the ORAPARM_OUTPUT variable for ServerType
VAR, VARCHAR2, and ORATYPE_RAW_BIN is set to 128 bytes. Use the MinimumSize
property to change this value. The minimum size of an ORAPARM_OUTPUT variable for
VAR and VARCHAR2 must always be greater than the size of the expected data from the
database column.

10-8 Oracle Objects for OLE Developer's Guide

Add Method

Remarks

Examples

Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH
for the IN stored procedure parameter type, this can result in errors. ORAPARM_BOTH
is for IN and OUT parameters only. It is not used against one stored procedure that has
an IN parameter and another that has an OUT parameter. For this case, use two
parameters. Errors caused this way are rare, if there is a parameter-related error, verify
that the TOType is correct.

The Value argument can be an Oracle Database 10g object, such as an OraBLOB. Note
that a copy of the object is made at that point in time and the Value property must be
accessed to obtain a new object that refers to the value of the parameter. For example,
if TOType is ORATYPE_BOTH and an OraBLOB obtained from a dynaset is passed in as
the input value, the Parameter Value property needs to be accessed one time after
the SQL has been executed to obtain the newly updated output value of the parameter.
The object is obtained from the parameter in the same manner as from a dynaset.

The Value property always refers to the latest value of the parameter. The Visual Basic
value Null can also be passed as a value. The Visual Basic EMPTY value can be used
for BLOB and CLOB data types to mean an empty LOB, and the EMPTY value can be
used for OBJECT, VARRAY, and NESTED TABLE data types to mean an object whose
attributes are all Nul1l.

Use parameters to represent SQL bind variables (as opposed to rebuilding the SQL
statement). SQL bind variables are useful because you can change a parameter value
without having to parse the query again. Use SQL bind variables only as input
variables.

You can also use parameters to represent PL/SQL bind variables. You can use PL/SQL
bind variables as both input and output variables.

The ORATYPE_RAW_BIN ServerType value is used when binding to Oracle Raw
columns. A byte array is used to Put or Get values. The maximum allowable size of
an ORATYPE_RAW_BIN bind bulffers is 2000 bytes when bound to a column of a table
and 32 KB when bound to a stored procedure. For example code, see the samples in
the ORACLE_BASE\ORACLE_HOME\OO40\VB\Raw directory.

This example demonstrates using the Add and Remove parameter methods, the
ServerType parameter property, and the ExecuteSQL database method to call a
stored procedure and function (located in ORAEXAMP . SQL). Copy and paste this code
into the definition section of a form. Then, press F5.

Sub Form_Load ()
'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Add EMPNO as an Input/Output parameter and set its initial value.

OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
OraDatabase.Parameters ("EMPNO") .ServerType = ORATYPE_NUMBER

Server Methods 10-9

Add Method

'Add ENAME as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
OraDatabase.Parameters ("ENAME") . ServerType = ORATYPE_VARCHAR2

'Add SAL as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
OraDatabase.Parameters ("SAL") .ServerType = ORATYPE_NUMBER

'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
' This Stored Procedure can be found in the file ORAEXAMP.SQL.

OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")

'Display the employee number and name.

'Execute the Stored Function Employee.GetSal to retrieve SAL.

' This Stored Function can be found in the file ORAEXAMP.SQL.

OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _
":SAL:=Employee.GetEmpSal (:EMPNO); end;")

'Display the employee name, number and salary.

MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" & _
OraDatabase.Parameters ("EMPNO") .value & ",Salary=" & _
OraDatabase.Parameters ("SAL") .value

'Remove the Parameters.
OraDatabase.Parameters.Remove "EMPNO"
OraDatabase.Parameters.Remove "ENAME"
OraDatabase.Parameters.Remove "SAL"

End Sub

See Also:

s OraParameter Object on page 9-50

= Remove Method on page 10-230

ms ServerType Property on page 11-138

10-10 Oracle Objects for OLE Developer's Guide

Add (OralntervalDS) Method

Add (OralntervalDS) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OralntervalDS Object on page 9-35

Adds an argument to the OraIntervalDS object.

OraIntervalDS.Add operand

The arguments for the method are:

Arguments Description
[in] operand A Vvariant of type String, a numeric value, or an OraIntervalDS
object to be added.

The result of the operation is stored in an OraIntervalDS object, overwriting any
previous value. There is no return value.

If operandis a Variant of type String, it must be in the following format: [+/-]Day
HH:MI:SSxFF.

If operandis a numeric value, the value provided should represent the total number
of days that the constructed OraIntervalDS object represents.

Dim oraIDS as OralntervalDS

'Create an OralntervalDS using a string which represents
'l day and 12 hours
Set oraIDS = oodoSession.CreateOraIntervalDS("1 12:0:0.0")

'Add an interval using a string, which represents 2 days
'and 12 hours, to oralDS.

'The resulting oraIDS is an interval which represents 4 days
oraIDS.Add "2 12:0:0.0"

See Also: "CreateOralntervalDS Method" on page 10-92

Server Methods 10-11

Add (OralntervalYM) Method

Add (OralntervalYM) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OralntervalYM Object on page 9-37

Adds an argument to the OraIntervalYM object.

OralIntervalYMObj.Add operand

The arguments for the method are:

Arguments Description
[in] operand A Vvariant of type String, a numeric value, or an OraIntervalYM
object to be added.

The result of the operation is stored in the OraIntervalYM object, overwriting any
previous value. There is no return value.

If operandis a Variant of type String, it must be in the following format:
[+/-]YEARS-MONTHS.

If operandis a numeric value, the value provided should represent the total number
of years that the constructed OraIntervalYM object represents.

Dim oraIYM as OralntervalYM

'Create an OralntervalYM using a string which represents 1 year and 6 months
Set oralYM = oo4oSession.CreateOraIntervalYM("1-6")

'Add an interval using a string, which represents 2 years
'and 6 months, to oralI¥YM.

'The resulting oraIYM is an interval which represents 4 years
oralYM.Add "2-6"

See Also: CreateOralntervalYM Method on page 10-94

10-12 Oracle Objects for OLE Developer's Guide

Add (OraNumber) Method

Add (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Adds a numeric argument to the OraNumber object.

OraNumber .Add operand

The arguments for the method are:

Arguments Description

[in] operand A Vvariant of type String, OraNumber object, or a numeric value.

The result of the operation is stored in an OraNumber object. There is no return value.

Server Methods 10-13

Add (OraSubscriptions Collection) Method

Add (OraSubscriptions Collection) Method

Applies To

Description

Usage

Arguments

Remarks

OraSubscriptions Collection on page 9-70

Adds a subscription to the OraSubscriptions collection.

orasubscriptions.Add Name, DbeventsHdl, Ctx

The arguments for the method are:

Variants Description

[in] Name The database event of interest. The appropriate event trigger and AQ
queue must be set up prior to this.

Name refers to the subscription name in the form of the string

' SCHEMA.QUEUE' if the registration is for a single consumer queue
and ' SCHEMA . QUEUE : CONSUMER_NAME' if the registration is for a
multiple consumer queue.

The Name string should be in uppercase.

[in] DbeventsHdl The database event handler. An IDispatch interface implementing
the NotifyDBEvents method, which is invoked when the database
event of interest is fired.

[in] ctx Context-specific information that the application wants passed to the
NotifyDbEvents method when it is invoked.

To register for subscription of a database event, the name identifying the subscription
of interest and the name of the dbevent handler that handles the event must be
passed in when the Add method is called. The queues and event triggers necessary to
support the database event must be set up before the subscriptions can be fired.

The dbevent handler should be an automation object that implements the
NotifyDBEvents method.

NotifyDBEvents Handler

The NotifyDBEvents method is invoked by Oracle Objects for OLE when database
events of interest are fired.

For more detailed information about setting up the queues and triggers for Oracle
Database events, see to Triggers on System Events and User Events in Oracle Database
Concepts.

The syntax of the method is:

Public Function NotifyDBEvents (ByVal Ctx As Variant, ByVal Payload As Variant

10-14 Oracle Objects for OLE Developer's Guide

Add (OraSubscriptions Collection) Method

Variants

Examples

The variants for the method are:

Variants Description

[in] Ctx Passed into the OraSubscriptions.Add method by the application.
Context-sensitive information that the application wants passed on to
the dbevent handler.

[in] Payload The payload for this notification.

Database events are fired by setting up event trigger and queues.
Payload here refers to the payload, if any, that was enqueued in the
queue when the event triggered.

Example: Registering an Application for Notification of Database Events

In the following example, an application subscribes for notification of database logon
events (such as all logons to the database). When a user logs on to the database, the
NotifyDBEvents method of the DBEventsHdlr that was passed in at the time of
subscription is invoked. The context-sensitive information and the event-specific
information are passed into the Not i fyDBEvents method.

The DBEventsHALr in this example is DBEventC1ls, which is defined later.
The main application:

' First instantiate the dbevent handler. The dbevent notification
' will fire the NotifyDBEvents on the callback handler.

Public DBEventsHdlr As New DBEventCls

Private Sub Form_Load()
Dim gOraSession As Object
Dim gOraSubscriptions As OraSubscriptions
Dim gOraDatabase As OraDatabase

'Create the OraSession Object
Set gOraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set gOraDatabase = gOraSession.DbOpenDatabase
("ora90.us.oracle.com", "pubsub/pubsub",
ORADB_ENLIST_FOR_CALLBACK)

Set gOraSubscriptions = gOraDatabase.Subscriptions

gOraSubscriptions.Add "PUBSUB.LOGON:ADMIN", DBEventsHdlr,
gOraDatabase

gOraSubscriptions(0) .Register

MsgBox "OK"

End Sub

The database event handler class that defines the Not i fyDBEvents method.

Public countofMsgs as integer
Public Function NotifyDBEvents (Ctx As Variant, Payload As Variant)
On error goto NotifyMeErr

MsgBox "Retrieved payload " + Payload

' do something - here the subscription is unregistered after
' receiving 3 notifications

countofMsgs = countofMsgs + 1

Server Methods 10-15

Add (OraSubscriptions Collection) Method

If countofMsgs > 3 Then
Ctx.Subscriptions(0) .UnRegister
End If
Exit Sub
NotifyMeErr:
Call RaiseError (MyUnhandledError, "newcallback:NotifyMe Method")

End Sub

See Also:

= "Database Events" on page 4-22 for a complete discussion of the
concepts involved in this example

» Triggers on System Events and User Events in Oracle Database
Concepts for detailed information about setting up the queues
and triggers for Oracle Database Events

s OraSubscription Object on page 9-61
= Remove (OraSubscriptions Collection) Method on page 10-231

10-16 Oracle Objects for OLE Developer's Guide

AddIntervalDS Method

AddintervalDS Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraTimeStamp Object on page 9-62
OraTimeStampTZ Object on page 9-64

Adds an interval that represents an interval from days to seconds, to the
OraTimeStamp or OraTimeStampTZ object.

OraTimeStampObj.AddIntervalDS operand
OraTimeStampTZObj.AddIntervalDS operand

The arguments for the method are:

Arguments Description

[in] operand A Vvariant of type String, a numeric value, or an OraIntervalDS
object that represents an interval from days to seconds to be added to
the current OraTimeStamp or OraTimeStampTZ object.

The result of adding an interval to the current OraTimeStamp or OraTimeStampTZ
object is stored in the current object, overwriting any previous value. There is no
return value.

If operandis a Variant of type String, it must be in the following format: [+/-]
Day HH:MI:SSxFF.

If operandis a numeric value, the value provided should represent the total number
of days that the constructed OraIntervalDS object represents.

Using OraTimeStamp

Dim OraTimeStamp As OraTimeStamp

'Create OraTimeStamp using a string
Set OraTimeStamp = OraSession.CreateOraTimeStamp("2000-12-28 00:00:00", _
"YYYY-MM-DD HH:MI:SS")

'Add an interval using numeric value that represents 5 days and 12 hours
OraTimeStamp.AddIntervalDS 5.5

'Value should now be "2001-1-2 12:00:00"
tsStr = OraTimeStamp.Value

Using OraTimeStampTZ

Server Methods 10-17

AddIntervalDS Method

Dim OraTimeStampTZ As OraTimeStampTZ

'Create OraTimeStampTZ using a string

Set OraTimeStamp = OraSession.CreateOraTimeStampTZ("2000-12-28 00:00:00 -07:00", _

"YYYY-MM-DD HH:MI:SS TZH:TZM")

'Add an interval using numeric value that represents 5 days and 12 hours
OraTimeStampTZ.AddIntervalDS 5.5

'Value should now be "2001-1-2 12:00:00"
tstzStr = OraTimeStampTZ.Value

10-18 Oracle Objects for OLE Developer's Guide

AddIntervalYM Method

AddintervalYM Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraTimeStamp Object on page 9-62
OraTimeStampTZ Object on page 9-64

Adds an interval that represents an interval from years to months, to the
OraTimeStamp or OraTimeStampTZ object.

OraTimeStampObj.AddIntervalYM operand
OraTimeStampTZObj.AddIntervalYM operand

The arguments for the method are:

Arguments Description

[in] operand A Vvariant of type String, a numeric value, or an OraIntervalYM
object that represents an interval from years to months, to be added to
the current OraTimeStamp or OraTimeStampTZ object.

The result of adding an interval to the current OraTimeStamp or OraTimeStampTZ
object is stored in the current object, overwriting any previous value. There is no
return value.

If operandis a Variant of type String, it must be in following format: [+/-]
YEARS-MONTHS.

If operandis a numeric value, the value provided should represent the total number
of years that the constructed OraIntervalYM object represents.

Example: Using the OraTimeStamp Object
Dim OraTimeStamp As OraTimeStamp

'Create OraTimeStamp using a string
Set OraTimeStamp = OraSession.CreateOraTimeStamp ("2000-12-28 00:00:00", _
"YYYY-MM-DD HH:MI:SS")

'Add an interval using numeric value that represents 2 years
OraTimeStamp.AddIntervalYM 2

'Value should now be "2002-12-28 00:00:00"
tsStr = OraTimeStamp.Value

Server Methods 10-19

AddIntervalYM Method

Example: Using the OraTimeStampTZ Object
Dim OraTimeStampTZ As OraTimeStampTZ

'Create OraTimeStampTZ using a string

Set OraTimeStampTZ =OraSession.CreateOraTimeStampTZ("2000-12-28 00:00:00" & _

"-07:00" "YYYY-MM-DD HH:MI:SS TZH:TZM")

'Add an interval using numeric value that represents 2 years
OraTimeStampTZ.AddIntervalYM 2

'Value should now be "2002-12-28 00:00:00"
tstzStr = OraTimeStampTZ.Value

10-20 Oracle Objects for OLE Developer's Guide

AddNew Method

AddNew Method

Applies To

Description

Usage

Remarks

Examples

OraDynaset Object on page 9-30

Clears the copy buffer and begins a record insertion operation into the specified
dynaset and associated database.

oradynaset .AddNew
oradynaset . DbAddNew

When an AddNew operation is initiated, values of fields present within the dynaset are
maintained in a copy buffer and do not reflect the actual contents of the database.

The values of the fields are modified through the OraField object, and committed
with an Update operation or when database movement occurs, which discards the
new row. Field values that have not been explicitly assigned are either set to Null or
allowed to default by way of the Oracle default mechanism, depending on the Column
Defaulting mode of the options flag used when the OpenDatabase method was
called. In either case, fields that appear in the database table but not in the dynaset are
always defaulted by the Oracle default mechanism.

Internally, records are inserted by the AddNew method using the "INSERT into
TABLE (...) VALUES (...)" SQL statement, and are added to the end of the table.

When adding a row that has object, collection, and REF columns, these column values
should be set to a valid OraObject, OraCollection, or OraRef interface or to the
Null value. The column values can also be set with the automation object returned by
the CreateOraObject method. When adding a row having a BLOB, CLOB, or BFILE
column, the column value should be set to a valid OraBLOB, OraCLOB, or OraBFILE
interface, Null, or Empty. Setting a BLOB, CLOB, and BFILE column to an Empty
value inserts an empty LOB value into the database.

Note: A call to Edit, AddNew, or Delete methods cancels any
outstanding Edit or AddNew method calls before proceeding. Any
outstanding changes not saved using an Update method are lost
during the cancellation.

This example demonstrates the use of the AddNew and Update methods to add a new
record to a dynaset. Copy this code into the definition section of a form. Then, press
F5.

Sub Form_Load ()
'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

Server Methods 10-21

AddNew Method

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", _
"scott/tiger", 0&)

'Create the OraDynaset Object.

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)
'Begin an AddNew.

OraDynaset .AddNew

'Set the field(column) values.
OraDynaset.Fields ("EMPNO") .Value = "1000"
OraDynaset.Fields ("ENAME") .Value = "WILSON"
OraDynaset.Fields("JOB") .Value = "SALESMAN"

OraDynaset.Fields ("MGR") .Value = "7698"

OraDynaset.Fields ("HIREDATE") .Value = "19-SEP-92"
OraDynaset.Fields("SAL") .Value = 2000
(
(

OraDynaset.Fields ("COMM") .Value = 500
OraDynaset.Fields ("DEPTNO") .Value = 30

'End the AddNew and Update the dynaset.
OraDynaset.Update

MsgBox "Added one new employee."
End Sub

See Also:

s Delete Method on page 10-116

» Edit Method on page 10-134

» EditMode Property on page 11-52

m MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

= Update Method on page 10-257
= Validate Event on page 12-9

10-22 Oracle Objects for OLE Developer's Guide

AddTable Method

AddTable Method

Applies To

OraParameters Collection on page 9-68

Description

Adds an array parameter to the OraParameters collection.

Usage

oraparamarray.AddTable Name, IOType, ServerType, ArraySize , ElementSize,

ObjectName

Arguments

The arguments for the method are:

Arguments

Description

Name

IOType

ServerType

ArraySize

ElementSize
[optional]

ObjectName

The name of the parameter to be added to the parameters collection.
This name is used both for parameter identification and as the
placeholder in associated SQL and PL/SQL statements.

An integer code specifying how the parameter is to be used in SQL
statements and PL/SQL blocks.

Specifies Oracle Database type to which this array parameter is to be
bound. For a list of possible values, see the OraParameter ServerType
Property on page 11-138.

Defines the number of elements in the parameter array. This parameter
is used to calculate the maximum buffer length.

Defines the size of the element. Valid for only character and string type
table (array) parameters. The valid size for ElementSize depends on
the VarType.

ElementSizeis optional in all cases except when bound to char and
string types.

A case-sensitive string containing the name of the Object. This is only
required if ServerType is ORATYPE_OBJECT, ORATYPE_VARRAY, or
ORATYPE_TABLE. It is required for ORATYPE_REF when the REF is
used in PL/SQL.

10 Type Settings

The I0Type settings are:

Constant Value Description

ORAPARM_INPUT 1 Used for input variables only.

ORAPARM_OUTPUT 2 Used for output variables only.

ORAPARM_BOTH 3 Used for variables that are both input and output.

Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH
for the stored procedure parameter type IN, this can result in errors. ORAPARM_BOTH
is for IN and OUT parameters only. It is not used against one stored procedure that has

Server Methods 10-23

AddTable Method

Remarks

Examples

an IN parameter and another that has an OUT parameter. In this case, use two
parameters. Errors caused in this way are rare, but if there are parameter-related
errors, verify that the TO0Type is correct.

Server Type
See ServerType Property on page 11-138 for valid types and note the following;:

Note:
= External data type ORATYPE_NUMBER allows decimal precision of 1 to 38.

s The maximum positive number is 0.99999999999999999999 E + 38.
s The minimum positive numberis 0.1 E-38.
s The minimum negative number is -0.99999999999999999999 E + 38.

s The maximum negative numberis 0.1 E -38.

ElementSize (Optional)

Valid for character, string, and raw types. The valid size for ElementSize depends on
the VarType. This represents the length of each individual string or raw array
element. These ranges are listed.

VarType Size

ORATYPE_VARCHAR2 Valid range from 1 to 1999
ORATYPE_VARCHAR Valid range from 1 to 1999
ORATYPE_STRING Valid range from 1 to 1999
ORATYPE_CHAR Valid range from 1 to 255
ORATYPE_CHARZ Valid range from 1 to 255
ORATYPE_RAW_BIN Valid range from 1 to 4000 (see remarks)

Use parameters to represent SQL bind variables for array insert, update, and delete

operations, rather than rebuilding the SQL statement. SQL bind variables are useful
because you can change a parameter value without having to parse the query again.
Use SQL bind variables only as input variables.

You can also use parameters to represent PL/SQL bind (IN/OUT) variables. You can
use PL/SQL bind variables as both input and output variables.

The ServerType value ORATYPE_RAW_BIN is used when binding to Oracle Raw
columns. A byte array is used to Put or Get values. The maximum allowable size of
ORATYPE_RAW_BIN bind buffers is 2000 bytes when bound to a column of a table: the
maximum allowable size is 32 KB when bound to a stored procedure. No element (see
ElementSize argument) can be greater than 4000 bytes when binding to stored
procedures, 2000 bytes against columns of tables. For example code, see the samples in
the ORACLE_BASE\ORACLE_HOME\0040\VB\Raw directory.

See "Example: Using OraParamArrays with PL/SQL" on page 9-49.

See Also: ServerType Property on page 11-138

10-24 Oracle Objects for OLE Developer's Guide

Append (OraCollection) Method

Append (OraCollection) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraCollection Object on page 9-19

Extends the size of the collection by one and appends the Variant value at the end of
the collection.

OraCollection.Append element

The arguments for the method are:

Arguments Description

[in] element A Variant representing the value to be appended.

If an OraCollection represents a collection of Object types or Refs, the element
argument should represent a valid OraObject or OraRef.

The following example illustrates the Append method. Before running the sample
code, make sure that you have the necessary data types and tables in the database. See
"Schema Objects Used in OraCollection Examples" on page A-3.

Example: Append Method for the OraCollection Object Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset ("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value

'Append an "Eric" to the collection.

'Before that row level lock should be obtained
OraDynaset.Edit

EnameList.Append "Eric"

Server Methods 10-25

Append (OraCollection) Method

OraDynaset .Update

10-26 Oracle Objects for OLE Developer's Guide

Append (OraLOB) Method

Append (OralLOB) Method
Applies To
OraBLOB, OraCLOB Objects on page 9-11
Description
Appends the LOB content of the input OraLOB object to the internal LOB value of this
instance.
Usage
OraBlob.Append srcBlob
OraClob.Append srcClob
Arguments
The arguments for the method are:
Arguments Description
[in] srcLOB A valid object of type OraBLOB or OraCLOB.
Remarks

Appends the LOB content of input LOB to the end of current LOB value. Obtain either
a row-level lock or an object-level lock before calling this method.

Server Methods 10-27

AppendChunk Method

AppendChunk Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraField Object on page 9-33

Appends data from a string to a LONG or LONG RAW field in the copy buffer.

orafield.AppendChunk (string)
orafield.DbAppendChunk (string)

The arguments for the method are:

Arguments Description

string Data to append to the specified field.

The AppendChunk method allows the manipulation of data fields that are larger than
64 KB.

Note: This example cannot be run as is. It requires a defined form
named frmChunk

This example demonstrates the use of the AppendChunk method to read a file into a
LONG RAW column of a database. This example expects a valid dynaset named
OraDynaset representing a table with a column named longraw. Copy this code
into the definition section of a form named frmChunk. Call this procedure with a valid
filename.

Sub AppendChunkExample (FName As String)

'Declare various variables.

Dim NumChunks As Integer, RemChunkSize As Integer

Dim TotalSize As Long, CurChunk As String

Dim I As Integer, FNum As Integer, ChunkSize As Integer

'Set the size of each chunk.
ChunkSize = 10240

frmChunk.MousePointer = HOURGLASS

'Begin an add operation.
OraDynaset .AddNew

'Clear the LONGRAW field.

10-28 Oracle Objects for OLE Developer's Guide

AppendChunk Method

OraDynaset.Fields ("LONGRAW") .Value = ""

'Get a free file number.
FNum = FreeFile

'Open the file.
Open FName For Binary As #FNum

'Get the total size of the file.
TotalSize = LOF (FNum)

'Set number of chunks.
NumChunks = TotalSize \ ChunkSize

'Set number of remaining bytes.
RemChunkSize = TotalSize Mod ChunkSize

'Loop through the file.
For I = 0 To NumChunks

'Calculate the new chunk size.
If I = NumChunks Then
ChunkSize = RemChunkSize
End If
CurChunk = String$ (ChunkSize, 32)

'Read a chunk from the file.
Get #FNum, , CurChunk

'Append chunk to LONGRAW field.
OraDynaset.Fields ("LONGRAW") . AppendChunk

Next I

(CurChunk)

'Complete the add operation and update the database.

OraDynaset .Update

'Close the file.
Close FNum

frmChunk.MousePointer = DEFAULT

End Sub

See Also:

= "Migration from LONG RAW to LOB or BFILE" on page 5-5

s FieldSize Method on page 10-150

s GetChunk Method on page 10-156

= Type Property on page 11-164

Server Methods 10-29

AppendChunkByte Method

AppendChunkByte Method

Applies To
OraField Object on page 9-33
Description
Appends data from a byte array to a LONG or LONG RAW field in the copy buffer.
Usage
orafield.AppendChunkByte (ByteArray, numbytes)
Arguments
The arguments for the method are:
Arguments Description
Byte Array Data to append to the specified field.
numbytes Number of bytes to copy.
Remarks
The AppendChunkByte method allows the manipulation of data fields that are larger
than 64 KB.
Examples

Note: This is an incomplete code sample, provided for your
reference. A complete Visual Basic sample called LONGRAW that is
based on this code sample, is provided in the OO40 samples
directory.

This sample code demonstrates the use of the AppendChunkByte method to read a
file into a LONG RAW column of a database. This code expects a valid dynaset named
OraDynaset representing a table with a column named longraw.

Sub AppendChunkByteExample (FName As String)

'Declare various variables.

Dim NumChunks As Integer, RemChunkSize As Integer

Dim TotalSize As Long, CurChunkByte() As Byte

Dim I As Integer, FNum As Integer, ChunkSize As Integer

'Set the size of each chunk.
ChunkSize = 10240
frmChunk.MousePointer = HOURGLASS

'Begin an add operation.
OraDynaset . AddNew

'Clear the LONGRAW field.
OraDynaset.Fields ("LONGRAW") .Value = ""

'Get a free file number.

10-30 Oracle Objects for OLE Developer's Guide

AppendChunkByte Method

FNum = FreeFile

'Open the file.
Open FName For Binary As #FNum

'Get the total size of the file.
TotalSize = LOF (FNum)

'Set number of chunks.
NumChunks = TotalSize \ ChunkSize

'Set number of remaining bytes.
RemChunkSize = TotalSize Mod ChunkSize

'Loop through the file.
For I = 0 To NumChunks

'Calculate the new chunk size.
If I = NumChunks Then
ChunkSize = RemChunkSize

End If

ReDim CurChunkByte (ChunkSize)

'Read a chunk from the file.
Get #FNum, , CurChunkByte

'Append chunk to LONGRAW field.
OraDynaset.Fields ("LONGRAW") .AppendChunkByte (CurChunkByte)
Next I

'Complete the add operation and update the database.
OraDynaset .Update

'Close the file.
Close FNum

frmChunk.MousePointer = DEFAULT

End Sub

See Also: "Migration from LONG RAW to LOB or BFILE" on

page 5-5

Server Methods 10-31

AQAgent (OraAQMsg) Method

AQAgent (OraAQMsg) Method

Applies To

Description

Usage

Arguments

Remarks

OraAQMsg Object on page 9-6

Creates an instance of the OraAQAgent for the specified consumer and adds it to the
OraAQAgents list of the message.

Set agent = gMsg.AQAgent (name)

The arguments for the method are:

Arguments Description

[in] name A string up to 30 bytes representing the name of the consumer of the
message.

[in] [optional] A 128-byte String representing the protocol specific address of a

Address recipient, such as [schema . Jqueue[@dblink].

The OraAQAgent object represents a message recipient and is only valid for queues
that allow multiple consumers. Queue subscribers are recipients by default. Use this
object to override the default consumers.

An OraAQAgent object can be instantiated by invoking the AQAgent method. For
example:

Set agent = gMsg.AQAgent (consumer)

The maximum number of agents that a message can support is 10.

The AQAgent method returns an instance of an OraAQAgent object.

Note: Address is not supported in this release, but is provided for
future enhancements.

10-32 Oracle Objects for OLE Developer's Guide

AQMsg (OraAQ) Method

AQMsg (OraAQ) Method

Applies To

Description

Usage

Arguments

Remarks

OraAQ Object on page 9-3

Creates an OraAQMsg for the specified options.

Set gMsg = Q.AQMsg (msgtype, typename, schema)

The arguments for the method are:

Arguments

Description

[in] msgtype

[in] typename

[in] [optional]
schema

An Integer representing a RAW or user-defined type. Optional for RAW
type. Possible values are:

= ORATYPE_RAW (23) - Message type is RAW.
= ORATYPE_OBJECT (108) - Message type is user-defined.

A String representing the name of the type. Optional for RAW type.
Defaultis 'RAW'.

A String representing the schema where the type is defined. Default
is 'SYS"'.

The method could be used as follows:

set QMsg = Q.AQMsg (ORATYPE_OBJECT, "MESSAGE_TYPE", "SCOTT")

set QMsg = Q.AQMsg

Server Methods 10-33

ArcCos (OraNumber) Method

ArcCos (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the arc cosine of an OraNumber object. The result is in radians.
Usage
OraNumber .ArcCos
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber value is less than -1 or greater than 1.

10-34 Oracle Objects for OLE Developer's Guide

ArcSin (OraNumber) Method

ArcSin (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the arc sine of an OraNumber object. Result is in radians.
Usage
OraNumber.ArcSin
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber object is less than -1 or greater than 1.

Server Methods 10-35

ArcTan (OraNumber) Method

ArcTan (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the arc tangent of an OraNumber object. Result is in radians.
Usage
OraNumber.ArcTan
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

10-36 Oracle Objects for OLE Developer's Guide

ArcTan2 (OraNumber) Method

ArcTan2 (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Calculates the arc tangent of two numbers using the operand provided. The result is
in radians.

OraNumber .ArcTan2 operand

The arguments for the method are:

Arguments Description

[in] operand A variant of type String, OraNumber, or a numeric value.

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if operand is zero.

Server Methods 10-37

Attribute (OraMetaData) Method

Attribute (OraMetaData) Method

Applies To

Description

Usage

Arguments

Remarks

OraMetaData Object on page 9-39

Returns the OraMDAt tribute object at the specified index.

Set OraMDAttribute = OraMetaData.Attribute(2)
Set OraMDAttribute = OraMetaData.Attribute("AttributeName")

The arguments for the method are:

Arguments Description

[in] index An Integer index between 0 and count-1, or a String representing
the name of an attribute.

None.

See Also: OraMetaData Object on page 9-39 for a list of possible
attribute names

10-38 Oracle Objects for OLE Developer's Guide

AutoBindDisable Method

AutoBindDisable Method

Applies To

Description

Usage

Remarks

Examples

OraParameter Object on page 9-50
OraParamArray Object on page 9-47

Resets the AutoBind status of a parameter.

oraparameter.AutoBindDisable

If a parameter has AutoBindDisabled status, it is not automatically bound to a SQL

or PL/SQL statement.

This example demonstrates the use of the AutoBindDisable and AutoBindEnable
methods to prevent unnecessary parameter binding while creating various dynasets

that use different parameters. Copy this code into the definition section of a form.

Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _
"scott/tiger", 0&)

'Add the job input parameter with initial value MANAGER.
OraDatabase.Parameters.Add "job", "MANAGER", 1

'Add the deptno input parameter with initial value 10.
OraDatabase.Parameters.Add "deptno", 10, 1

'Disable the deptno parameter for now.
OraDatabase.Parameters ("deptno") .AutoBindDisable

'Create the OraDynaset Object using the job parameter.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _
"where job = :job", 0&)

'Only employees with job=MANAGER will be contained in the dynaset.

MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
"Job=" & OraDynaset.Fields("job").value

Server Methods

10-39

AutoBindDisable Method

'Enable the deptno parameter and disable the job parameter.
OraDatabase.Parameters ("deptno") .AutoBindEnable
OraDatabase.Parameters("job") .AutoBindDisable

'Create the OraDynaset Object using the deptno parameter.

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp" & _
"where deptno = :deptno", 0&)

'Only employees with deptno=10 will be contained in the dynaset.

MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," & _
"DeptNo=" & OraDynaset.Fields("deptno").value

End Sub

See Also: AutoBindEnable Method on page 10-41

10-40 Oracle Objects for OLE Developer's Guide

AutoBindEnable Method

AutoBindEnable Method

Applies To

Description

Usage

Remarks

Examples

OraParameter Object on page 9-50
OraParamArray Object on page 9-47

Sets the AutoBind status of a parameter.

oraparameter.AutoBindEnable

If a parameter has AutoBindEnabled status, it is automatically bound to a SQL or
PL/SQL statement.

This example demonstrates the use of the AutoBindDisable and AutoBindEnable
methods to prevent unnecessary parameter binding while creating various dynasets
that use different parameters. Copy this code into the definition section of a form.
Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _
"scott/tiger", 0&)

'Add the job input parameter with initial value MANAGER.
OraDatabase.Parameters.Add "job", "MANAGER", 1

'Add the deptno input parameter with initial value 10.
OraDatabase.Parameters.Add "deptno", 10, 1

'Disable the deptno parameter for now.
OraDatabase.Parameters ("deptno") .AutoBindDisable

'Create the OraDynaset Object using the job parameter.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _
"where job = :job", 0&)

'Only employees with job=MANAGER will be contained in the dynaset.

MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," &
"Job=" & OraDynaset.Fields("job").value

Server Methods 10-41

AutoBindEnable Method

'Enable the deptno parameter and disable the job parameter.
OraDatabase.Parameters ("deptno") .AutoBindEnable
OraDatabase.Parameters("job") .AutoBindDisable

'Create the OraDynaset Object using the deptno parameter.

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp" & _
"where deptno = :deptno", 0&)

'Only employees with deptno=10 will be contained in the dynaset.

MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," & _
"DeptNo=" & OraDynaset.Fields("deptno").value

End Sub

See Also: AutoBindDisable Method on page 10-39

10-42 Oracle Objects for OLE Developer's Guide

BeginTrans Method

BeginTrans Method

Applies To

Description

Usage

Remarks

Examples

OraConnection Object on page 9-27
OraDatabase Object on page 9-28
OraSession Object on page 9-58

Begins a database transaction within the specified session.

oraconnection.BeginTrans
oradatabase.BeginTrans
orasession.BeginTrans

After this method has been called, no database transactions are committed until a
CommitTrans is issued. Alternatively, the session can be rolled back using the
Rollback method. If a transaction has already been started, repeated use of the
BeginTrans method causes an error.

If Update or Delete methods fail on a given row in a dynaset in a global transaction
after you issue a BeginTrans, be aware that locks remain on those rows on which
you called the Update or Delete method. These locks persist until you call a
CommitTrans or Rollback method.

Note: If an OraDatabase object has been enlisted with Microsoft
Transaction Server (MTS) and is part of a global MTS transaction, this
method has no effect.

This example demonstrates the use of the BeginTrans method to group a set of
dynaset edits into a single transaction and uses the Rol1back method to cancel those
changes. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim fld As OraField

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession. OpenDatabase ("ExampleDb", _
"scott/tiger", 0&)

Server Methods 10-43

BeginTrans Method

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

'Start Transaction processing.
OraSession.BeginTrans

'Setup a field object to save object references.
Set fld = OraDynaset.Fields("sal")

'Traverse until EOF is reached, setting each employees salary to zero
Do Until OraDynaset.EOF = True
OraDynaset .Edit
fld.value = 0
OraDynaset .Update
OraDynaset .MoveNext
Loop
MsgBox "All salaries set to ZERO."

'Currently, the changes have NOT been committed to the database.
'End Transaction processing. Using RollbackTrans

'means the rollback can be canceled in the Validate event.
OraSession.Rollback

'MsgBox "Salary changes rolled back."

End Sub

See Also:

s AutoCommit Property on page 11-9
s CommitTrans Method on page 10-66
s ResetTrans Method on page 10-233

= Rollback Method on page 10-235

= "Microsoft Transaction Server Support" on page 3-15

10-44 Oracle Objects for OLE Developer's Guide

Cancel Method

Cancel Method
Applies To
OraSQLStmt Object on page 9-60 created with the ORASQL_NONBLK option
Description
Cancels the currently executing SQL operation.
Usage

status = OraSQL.NonBlockingState

if status = ORASQL_STILL_EXECUTING
OraSQL.Cancel
Endif

Return Values
ORASQIL,_SUCCESS(0) - Any errors are thrown as exceptions.

See Also: "Asynchronous Processing" on page 3-16

Server Methods 10-45

CancelEdit (OraRef) Method

CancelEdit (OraRef) Method

Applies To
OraRef Object on page 9-52
Description
Unlocks the referenceable object in the database and cancels the object update
operation.
Usage
OraRef.CancelEdit
Remarks

Care should be taken before using this method; it cancels any pending transaction on
the connection.

10-46 Oracle Objects for OLE Developer's Guide

Ceil (OraNumber) Method

Ceil (OraNumber) Method
Applies To
OraNumber Object on page 9-41
Description
Calculates the ceiling value of an OraNumber object.
Usage
OraNumber.Ceil
Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

Server Methods 10-47

ChangePassword (OraServer) Method

ChangePassword (OraServer) Method

Applies To

Description

Usage

Arguments

Remarks

OraServer Object on page 9-56

Changes the password for a given user.

OraServer.ChangePassword user_name, current_password, new_password

The arguments for the method are:

Arguments Description

[in] user_name A String representing the user for whom the password is
changed.

[in] current_password A String representing the current password for the user.

[in] new_password A sString representing the new password for whom the user

account is set.

The Oraserver object should be attached to an Oracle database using the Open
method before to using this method.

This method is useful when a password has expired. In that case, the OpenDatabase
method could return the following error:

ORA-28001 "the password has expired".

10-48 Oracle Objects for OLE Developer's Guide

ChangePassword (OraServer) Method

See Also:

BeginTrans Method on page 10-43

Close Method on page 10-63

CommitTrans Method on page 10-66

CreateAQ Method on page 10-79
CreateCustomDynaset Method on page 10-80
CreateTempBLOB/CLOB Method on page 10-114
CreateDynaset Method on page 10-85
CreateOraObject (OraDatabase) Method on page 10-97
CreateSQL Method on page 10-111

Describe Method on page 10-124

ExecuteSQL Method on page 10-144

FetchOraRef Method on page 10-149
LastServerErrReset Method on page 10-189
MonitorForFailover Method on page 10-194
Open (OraServer) Method on page 10-210
OpenDatabase Method on page 10-212
RemoveFromPool Method on page 10-232
Rollback Method on page 10-235

Server Methods 10-49

ChangePassword (OraSession) Method

ChangePassword (OraSession) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraSession Object on page 9-58

Changes the password for a given user.

OraSession.ChangePassword database_name, user_name, current_password, new_password

The arguments for the method are:

Arguments Description

[in] database_name A String representing the Oracle network specifier used
when connecting to a database.

[in] user_name A string representing the user for whom the password is
changed.

[in] current_password A String representing the current password for the user.

[in] new_password A string representing the new password for whom the

user account is set.

This method is especially useful when a password has expired. In that case, the
OpenDatabase or CreateDatabasePool method could return the following error:

ORA-28001 "the password has expired".

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim password as String

'Note: The DBA could expire scott's password by issuing
'ALTER USER SCOTT PASSWORD EXPIRE

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")
password = "tiger"

On Error GoTo err:
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/" & password, 0&)
End

err:
'Check for password expiration error

If OraSession.LastServerErr = 28001 Then
OraSession.ChangePassword "ExampleDb", "scott", password, "newpass"
'reset our password variable, then try OpenDatabase again

10-50 Oracle Objects for OLE Developer's Guide

ChangePassword (OraSession) Method

password = "newpass"
Resume
End If
End
See Also:

s OpenDatabase Method on page 10-212
»s CreateDatabasePool Method on page 10-83

Server Methods 10-51

Clone Method

Clone Method

Applies To

Description

Usage

Remarks

OraDynaset Object on page 9-30

Returns a duplicate dynaset of the specified dynaset.

Set oradynaset2 = oradynasetl.Clone
Set oradynaset2 = oradynasetl.DbClone

This method creates a duplicate dynaset of the one specified. The original and
duplicate dynasets have their own current record. However, the new dynaset is not
positioned on any row and has its EOF and BOF conditions set to True. To change this,
you must explicitly set a current row on the new duplicate with a Move or Find
method.

Using the Clone method has no effect on the original dynaset. You cannot add,
update, or remove records from a dynaset clone.

Use the C1one method to perform an operation on a dynaset that requires multiple
current records.

A cloned dynaset does not have all the property settings of the original. The
CacheBlock, CacheSliceSize, CacheSlicePerBlock, and FetchLimit
properties are all set to Null.

Bookmarks of a dynaset and its clone are interchangeable; bookmarks of dynasets
created with separate CreateDynaset methods are not interchangeable.

See Also:
= Bookmark Property on page 11-13
» CreateDynaset Method on page 10-85

10-52 Oracle Objects for OLE Developer's Guide

Clone (OraLOB/BFILE) Method

Clone (OraLOB/BFILE) Method

Applies To

OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9
Description

Returns the clone of an OraLOB or OraBFILE object.
Usage

OraBlobl = OraBlob.Clone

OraClobl = OraClob.Clone

OraBfile = OraBfile.Clone
Arguments

The arguments for the method are:

Arguments Description

[in] oraroB A valid object of type OraBLOB, OraCLOB, or OraBFILE.
Remarks

This method makes a copy of an OraBLOB or OraCLOB object. This copy does not
change due to a dynaset move operation or OraSQLStmt Refresh operation. No
operation that modifies the LOB content of an OraBLOB or OraCLOB object can be
performed on a clone.

This method makes a copy of Oracle BFILE locator and returns an OraBFILE
associated with that copy. The copy of an OraBFILE does not change due to a dynaset
move operation or a OraSQLStmt refresh operation.

Server Methods 10-53

Clone (OraCollection) Method

Clone (OraCollection) Method

Applies To

Description

Usage

Arguments

Remarks

OraCollection Object on page 9-19

Returns the clone of an OraCollection object.

set OraCollectionl = OraCollection.Clone

The arguments for the method are:

Arguments Description

[in] oraCollectionl A valid OraCollection object

This method makes a copy of an Oracle collection and returns an OraCollection
object associated with that copy. This copy of an Oracle collection does not change due
to a dynaset move operation or OraSQLStmt Refresh operation. An
OraCollection object returned by this method allows operations to access its
element values of the underlying Oracle collection and prohibits any operation that
modifies its element values.

10-54 Oracle Objects for OLE Developer's Guide

Clone (OralntervalDS) Method

Clone (OralntervalDS) Method

Applies To

OralntervalDS Object on page 9-35
Description

Returns a copy of the OraIntervalDSs object.
Usage

Set OralIntervalDSObjClone = OraIntervalDSObj.Clone
Remarks

Returns a new OraIntervalDS object with the same value as the original.

Server Methods 10-55

Clone (OralntervalYM) Method

Clone (OralntervalYM) Method

Applies To

OralntervalYM Object on page 9-37
Description

Returns a copy of the OraIntervalYM object.
Usage

Set OraIntervalYMObjClone = OraIntervalYMObj.Clone
Remarks

Returns a new OraIntervalYM object with the same value as the original.

10-56 Oracle Objects for OLE Developer's Guide

Clone (OraNumber) Method

Clone (OraNumber) Method

Applies To

OraNumber Object on page 9-41
Description

Returns a copy of the OraNumber object .
Usage

Set OraNumber2 = OraNumber.Clone
Remarks

Returns a new OraNumber object with the same value as the original.

Server Methods 10-57

Clone (OraObject/Ref) Method

Clone (OraObject/Ref) Method

Applies To

Description

Usage

Remarks

Examples

OraObject Object on page 9-43
OraRef Object on page 9-52

Returns the clone of an OraObject or OraRef object.

Set OraObjectClone = OraObject.Clone
Set OraRefClone = OraRef.Clone

This method makes a copy of a Value instance or REF value and returns an
OraObject or OraRef object associated with that copy. This copy does not change
due to a dynaset move operation or OraSQLStmt refresh operation. An OraObject
object returned by this method allows an operation to access its attribute values of an
underlying value instance and disallows any operation to modify its attribute values.

Before running the sample code, make sure that you have the necessary data types and
tables in the database. For the following examples, see "Schema Objects Used in the
OraObject and OraRef Examples" on page A-3

Example: Clone Method for the OraObject Object
The following example shows the use of the C1one method.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject

Dim AddressClone as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset ("select * from person_tab", 0&)

'retrieve a address column from person_tab. Here Value property of OraField object
'returns Address OraObject
set Address = OraDynaset.Fields("Addr").Value

'here Address OraObject points to Address value instance in the server
'for the first row
msgbox Address.Street

10-58 Oracle Objects for OLE Developer's Guide

Clone (OraObject/Ref) Method

'move to second row
OraDynaset .MoveNext

'here Address OraObject points to Address value instance in the server
'for the second row
msgbox Address.Street

'get the clone of Address object. This clone points to the copy of
'the value instance for second row
set AddressClone = Address.Clone

'move to third row
OraDynaset .MoveNext

'here Address OraObject points to Address value instance in the server
'for third row
msgbox Address.Street

'here AddressClone OraObject points to copy of Address value instance
' in the server for second row
msgbox AddressClone.Street

Example: Clone Method for the OraRef Object

The following example shows the usage of the C1one method. Before running the
sample code, make sure that you have the necessary data types and tables in the
database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

Dim PersonClone as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers.
'Here Value property of OraField object 'returns Person OraRef
set Person = OraDynaset.Fields("aperson") .Value

'here Person OraRef points to Person Ref value in the server for the first row
msgbox Person.Name

'move to second row
OraDynaset .MoveNext

'here Person OraRef points to Person Ref value in the server for the second row
msgbox Person.Name

'get the clone of Person object.

'This clone points to the copy of the Ref for second row
set PersonClone = Person.Clone

Server Methods 10-59

Clone (OraObject/Ref) Method

'move to third row
OraDynaset .MoveNext

'here Person OraRef points to Person Ref value
'in the server for the third row
msgbox Person.Name

'here PersonClone OraRef points to Person Ref value
'in the server for the second row
msgbox PersonClone.Name

10-60 Oracle Objects for OLE Developer's Guide

Clone (OraTimeStamp) Method

Clone (OraTimeStamp) Method

Applies To

OraTimeStamp Object on page 9-62
Description

Returns a copy of the OraTimeStamp object.
Usage

Set OraTimeStampObjl = OraTimeStampObj.Clone
Remarks

Returns a new OraTimeStamp object with the same value as the current object.

Server Methods 10-61

Clone (OraTimeStampTZ) Method

Clone (OraTimeStampTZ) Method

Applies To

OraTimeStampTZ Object on page 9-64
Description

Returns a copy of the OraTimeStampTZ object.
Usage

Set OraTimeStampTZObjl = OraTimeStampTZObj.Clone
Remarks

Returns a new OraTimeStampTZ object with the same value as the current object.

10-62 Oracle Objects for OLE Developer's Guide

Close Method

Close Method

Applies To

OraDatabase Object on page 9-28

OraDynaset Object on page 9-30

OraSQLStmt Object on page 9-60

OraServer Object on page 9-56
Description

Does nothing. Added for compatibility with Visual Basic.
Remarks

Neither the OraDatabase nor the OraDynaset object supports this method. Once an
OraDatabase or OraDynaset object has gone out of scope and there are no
references to it, the object closes automatically.

See Also:
s CreateDynaset Method on page 10-85
s OpenDatabase Method on page 10-212

Server Methods 10-63

Close (OraBFILE) Method

Close (OraBFILE) Method
Applies To

OraBFILE Object on page 9-9
Description

Closes an opened BFILE data type.
Usage

OraBfile = OraBfile.Close
Arguments

The arguments for the method are:

Arguments Description

[in] OraBfile A valid object of type OraBFILE.
Remarks

This method only applies to BFILEs, not LOBs.

10-64 Oracle Objects for OLE Developer's Guide

CloseAll (OraBFILE) Method

CloseAll (OraBFILE) Method

Applies To

OraBFILE Object on page 9-9
Description

This method closes all open OraBFILE objects on this connection.
Usage

OraBfile.CloseAll

Server Methods 10-65

CommitTrans Method

CommitTrans Method

Applies To

Description

Usage

Remarks

Examples

OraConnection Object on page 9-27
OraDatabase Object on page 9-28
OraSession Object on page 9-58

Ends the current transaction and commits all pending changes to the database.

oraconnection.CommitTrans
oradatabase.CommitTrans
orasession.CommitTrans

The Commit Trans method acts differently for these objects:
s OraConnectionand OraDatabase

The Commit Trans method commits all pending transactions for the specified
connection. This method has no effect if a transaction has not started. When a

sessionwide transaction is in progress, you can use this method to commit the
transactions for the specified connection prematurely.

s OraSession

The CommitTrans method commits all transactions present within the session.
The Commit Trans method is valid only when a transaction has been started. If a
transaction has not been started, using the Commi t Trans method causes an error.

Note: If an OraDatabase object has been enlisted with Microsoft Transaction Server
(MTS) and is part of a global MTS transaction, this method has no effect.

This example demonstrates the use of the BeginTrans method to group a set of
dynaset edits into a single transaction. The CommitTrans method then accepts the
changes. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
'Declare variables
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

Dim fl1d As OraField

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession. OpenDatabase ("ExampleDb", "scott/tiger", 0&)

10-66 Oracle Objects for OLE Developer's Guide

CommitTrans Method

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

'Start Transaction processing.
OraSession.BeginTrans

'Setup a field object to save object references.
Set fld = OraDynaset.Fields("sal")

'Traverse until EOF is reached, setting each employees salary to zero.
Do Until OraDynaset.EOF = True
OraDynaset.Edit
fld.value = 0
OraDynaset .Update
OraDynaset .MoveNext
Loop
MsgBox "All salaries set to ZERO."

'Currently, the changes have NOT been committed
'to the database.

'End Transaction processing. Commit the changes to the database
OraSession.CommitTrans
MsgBox "Salary changes committed."

End Sub

See Also:

s AutoCommit Property on page 11-9
= BeginTrans Method on page 10-43

= ResetTrans Method on page 10-233
= Rollback Method on page 10-235

= "Microsoft Transaction Server Support" on page 3-15

Server Methods 10-67

Compare (OraLOB) Method

Compare (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11
OraBFILE Object on page 9-9

Description

Compares the specified portion of the LOB value of an OraBLOB or OraCLOB object

(or OraBFILE object) to the LOB value of the input OraBLOB or OraCLOB object (or

OraBFILE object).

Usage

IsEqual = OraBlob.Compare srcBlob, amount, Offset, srcOffset

IsEqual = OraClob.Compare srcClob, amount, Offset, srcOffset

IsEqual = OraBfile.Compare srcBfile, amount, Offset, srcOffset

Arguments

The arguments for the method are:

Arguments Description

[in] srcLOB Input OraBLOB, OraCLOB, or OraBFILE object whose value is to be
compared.

[in] [optional] amount An Integer specifying the number of bytes or characters to
compare. The default value of amount is from the Offset to the
end of each LOB.

[in] [optional] Offset An Integer specifying the 1-based Offset in bytes (OraBLOB or
OraBFILE) or characters (OraCLOB) in the value of this object.
Default value is 1.

[in] [optional] An Integer specifying the 1-based Offset in bytes (OraBLOB or

srcOffset OraBFILE) or characters (OraCLOB) in the value of the srcLob
object. Default value is 1.

[out] IsEqual A Boolean representing the result of a compare operation.

Remarks

The Compare method returns True if comparison succeeds; otherwise, it returns

False.

If the amount to be compared causes the comparison to take place beyond the end of
one LOB but not beyond the end of the other, the comparison fails. Such a comparison
could succeed only if the amount of data from the Offset to the end is the exactly the

same for both LOBs.

This call is currently implemented by executing a PL/SQL block that utilizes DBMS_

LOB.INSTR().

10-68 Oracle Objects for OLE Developer's Guide

ConnectSession Method

ConnectSession Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraSession Object on page 9-58

Returns the OraSession object with the specified name that is associated with the
OraClient object of the specified session.

Set orasession2 = orasessionl.ConnectSession(session_name)

The arguments for the method are:

Arguments Description

session_name A String specifying the name of the session.

This method is provided for simplicity and is equivalent to iterating through the
OraSessions collection of the OraClient object of the current session and searching
for a session named session_name. The OraSessions collection contains only
sessions created through the current application. This means that it is not possible to
share sessions across applications, only within applications.

This example demonstrates the use of the ConnectSession and
CreateNamedSession methods to allow an application to use a session it previously
created, but did not save. Copy this code into the definition section of a form. Then,
press F5.

Sub Form_Load ()

'Declare variables
Dim dfltsess As OraSession
Dim OraSession As OraSession

'Create the default OraSession Object.
Set dfltsess = CreateObject ("OracleInProcServer.XOraSession")

'Try to connect to "ExampleSession". If it does not exist
'an error is generated.

On Error GoTo SetName

Set OraSession = dfltsess.ConnectSession("ExampleSession")
On Error GoTo 0

'You can specify other processing here, such as creating a
' database and/or dynaset.

Exit Sub

Server Methods 10-69

ConnectSession Method

SetName:

'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.Client.CreateSession("ExampleSession")
Resume Next

End Sub

See Also:
s CreateSession Method on page 10-109
s OraClient Object on page 9-18

» OraSessions Collection on page 9-69

10-70 Oracle Objects for OLE Developer's Guide

CopyToClipboard Method

CopyToClipboard Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraDynaset Object on page 9-30

Copy the rows from the dynaset to the clipboard in text format.

OraDynaset .CopyToClipboard (NumOfRows, colsep, rowsep)

The arguments for the method are:

Arguments Description

NumOfRows Number of rows to be copied to the dynaset

colsep [optional] Column separator in the CHAR data type to be inserted between
columns

rowsep [optional] Row separator in the CHAR data type to be inserted between rows

This method is used to help transfer data between the Oracle Object for OLE cache
(dynaset) and Windows applications, such as Excel or Word. The CopyToClipboard
method copies data starting from the current position of the dynaset up to the last row.

The default column separator is TAB (ASCII 9).
The default row separator is ENTER (ASCII 13).

The following example copies data from the dynaset to the clipboard. Paste this code
into the definition section of a form, then press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

'Now call CopyToClipboard to copy the entire dynaset

OraDynaset.CopyToClipboard -1, chr(9), chr(13)
End Sub

Server Methods 10-71

Copy (OraLOB) Method

Copy (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11
Description
Copies a portion of the internal LOB value of an input OraBLOB or OraCLOB object to
internal LOB value of this instance.
Usage
OraBlob.Copy srcBlob, amount, destOffset, srcOffset
OraClob.Copy srcClob, amount, destOffset, srcOffset
Arguments
The arguments for the method are:
Arguments Description
[in] srcLOB An OraCLob or OraBLOB object whose value is to be copied.
[in] [optional] amount An Integer specifying number of bytes or characters to copy.
Default value is the size of the BLOB or CLOB value of the srcLOB
object.
[in] [optional] An Integer specifying the offset in bytes or characters for the value
destOffset of this object. Default value is 1.
[in] [optional] An Integer specifying the offset in bytes or characters, for the
srcOffset value of the srcLOB object. Default value is 1.
Remarks

Obtain either a row-level lock or object-level lock before calling this method.

10-72 Oracle Objects for OLE Developer's Guide

CopyFromFile (OraLOB) Method

CopyFromFile (OraLOB) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraBLOB, OraCLOB Objects on page 9-11

Loads or copies a portion or all of a local file to the internal LOB value of this object.

OraBlob.CopyFromFile "blob.bmp" amount, offset, chunksize
OraClob.CopyFromFile "clob.txt" amount, offset, chunksize

The arguments for the method are:

Arguments Description

[in] filename A string specifying the absolute name and path for the file to
be read.

[in] [optional] amount An Integer specifying the maximum number in bytes to be

copied. Default value is total file size.

[in] [optional] offset An Integer specifying the absolute offset of the BLOB or
CLOB value of this object, in bytes for OraBLOB or OraBFILE
and characters for OraCLOB. Default value is 1.

[in] [optional] chunksize An Integer specifying the size for each read operation, in
bytes. If chunksize parameter is not set or 0, the value of the
amount argument is used, which means the entire amount is
transferred in one chunk.

Obtain either a row-level lock or object-level lock before calling this method.

The file should be in the same format as the NL.S_ LANG setting.

Note: When manipulating LOBs using LOB methods, such as
Write and CopyFromFile, the LOB object is not automatically
trimmed if the length of the new data is smaller than the old data.
Use the Trim (OraLOB) method to shrink the LOB object to the size
of the new data.

Example: Using the CopyFromFile Method
This example demonstrates the use of the CopyFromFile method.

Be sure that you have the PART table in the database with valid LOB data in it. Also,
be sure that you have installed the OraLOB Schema Objects as described in "Schema
Objects Used in LOB Data Type Examples" on page A-3.

Dim OraSession As OraSession

Server Methods 10-73

CopyFromFile (OraLOB) Method

Dim OraDatabase As OraDatabase
Dim PartImage as OraBLOB

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create a Dynaset containing a BLOB and a CLOB column

set part = OraDatabase.CreateDynaset ("select * from part where" & _
"part_id = 1234",0)

set PartImage = part.Fields("part_image").Value

'copy the entire content of partimage.jpg file to LOBS
part.Edit

PartImage.CopyFromFile "partimage.jpg"
part.Update

See Also: Trim (OraLOB) Method on page 10-254

10-74 Oracle Objects for OLE Developer's Guide

CopyFromBFILE (OraLOB) Method

CopyFromBFILE (OraLOB) Method

Applies To

Description

Usage

Arguments

Remarks

OraBLOB, OraCLOB Objects on page 9-11

Copies a portion or all of the LOB value of an OraBFILE object to the LOB value of
this object.

OraBlob.CopyFromBFile srcBFile, amount, destOffset, srcOffset

OraClob.CopyFromBFile srcBFile, amount, destOffset, srcOffset

The arguments for the method are:

Arguments Description
[in] srcBFile An OraBFILE object from which the data is to be copied.
[in] [optional] amount An Integer specifying the maximum number to be copied, in

characters for OraCLOB or bytes for OraBLOB or OraBFILE.
Default value is the size of BFILE value of the srcBFile
object.

[in] [optional] destOffset An Integer specifying the absolute offset for this instance.
Default is 1.

[in] [optional] srcOffset An Integer specifying the absolute offset for the BFILE value
of the source OraBFILE object. Default is 1.

Obtain either a row-level lock or object-level lock before calling this method.

For a single-byte character set, the OraBFile object should be of the same character
set as the database.

If the database has a variable width character set, the OraBFile object passed to the
OraClob.CopyFromBFile method must point to a file that uses the UCS2 character
set.

Server Methods 10-75

CopyToFile (OraLOB/BFILE) Method

CopyToFile (OraLOB/BFILE) Method

Applies To

OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9
Description

Copies a portion or all of the internal LOB value of this object to the local file.
Usage

OraBlob.CopyToFile "blob.bmp" amount,offset, chunksize

OraClob.CopyToFile "clob.txt" amount,offset, chunksize

OraBfile.CopyToFile "bfile.bmp" amount, offset, chunksize

Arguments

The arguments for the method are:

Arguments Description

[in] filename A string specifying the absolute name and path for which the
file is to be written.

[in] [optional] amount An Integer specifying the maximum amount to be copied, in
bytes for OraBLOB/OraBFILE and characters for OraCLOB
Default value is the size of the LOB or BFILE.

[in] [optional] offset An Integer specifying absolute offset of the LOB or BFILE
value of this instance, in bytes for OraBLOB/OraBFILE and
characters for OraCLOB. Default value is 1.

[in] [optional] chunksize An Integer specifying the size, in bytes, for each write
operation. If the chunksize parameter is not set or is 0, the
value of the amount argument is used which means the entire
amount is transferred in one chunk.

Remarks
The file is in the same format as the NL'S_LANG setting.
If the file exists, its contents is overwritten.

Examples

Example:Using the CopyToFile Method
This example demonstrates the use of the CopyToFile method.

Be sure that you have the PART table in the database with valid LOB data in it. Also,
be sure that you have installed the OraLOB Schema Objects as described in "Schema
Objects Used in LOB Data Type Examples" on page A-3.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim PartDesc as OraCLOB

'Create the OraSession Object.

10-76 Oracle Objects for OLE Developer's Guide

CopyToFile (OraLOB/BFILE) Method

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&

'Create a Dynaset containing a BLOB and a CLOB column

set part = OraDatabase.CreateDynaset ("select * from part where" & _
"part_id = 1234",0)

set PartDesc = part.Fields("part_desc").Value

'Copy the entire LOB content to partdesc.txt file
PartDesc.CopyToFile "partdesc.txt"

Server Methods 10-77

Cos (OraNumber) Method

Cos (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the cosine of an OraNumber object given in radians.
Usage
OraNumber.Cos
Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

10-78 Oracle Objects for OLE Developer's Guide

CreateAQ Method

OraDatabase Object on page 9-28

Creates an instance of the OraAQ object.

Set OraAqg = OraDatabase.CreateAQ (Qname)

The arguments for the method are:

Description

A string representing the name of the queue in the database.

CreateAQ Method
Applies To
Description
Usage
Arguments
Arguments
[in] Oname
Remarks

None.

Server Methods 10-79

CreateCustomDynaset Method

CreateCustomDynaset Method

Applies To
OraDatabase Object on page 9-28
Description
Creates a dynaset using custom cache and fetch parameters
Usage
Set oradynaset = oradatabase.CreateCustomDynaset (sqgl_statement, options,
slicesize, perblock, blocks, FetchLimit, FetchSize, SnapShotID)
Arguments

The arguments for the method are:

Arguments Description

sgl_statement Any valid Oracle SQL SELECT statement.

slicesize Cache slice size.

perblock Cache slices for each block.

blocks Cache maximum number of blocks.

FetchLimit Fetch array size.

FetchSize Fetch array buffer size.

options A bit flag indicating the status of any optional states of the dynaset. You

can combine one or more options by adding their respective values.
Specifying the constant ORADYN_DEFAULT or the value &HO& gives the
following defaults for the dynaset:

s Behave like Visual Basic Mode for a database: Field values not
explicitly set are set to Null, overriding database column defaults.

= Perform automatic binding of database parameters.

= Remove trailing blanks from character string data retrieved from
the database.

» Create an updatable dynaset.
s Cache data on the client.
= Force a MoveFirst operation when the dynaset is created.

= Maintain read-consistency.

SnapShotID The ID of a Snapshot obtained from the SnapShot property of an
[optional] OraDynaset.
Constants

The following table lists constants and values for the options flag.

Constant Value Description

ORADYN_DEFAULT &HO& Accept the default behavior.

10-80 Oracle Objects for OLE Developer's Guide

CreateCustomDynaset Method

Remarks

Constant Value Description

ORADYN_NO_AUTOBIND &H1& Do not perform automatic binding of database
parameters.

ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character string
data retrieved from the database.

ORADYN_READONLY &HA& Force dynaset to be read-only.

ORADYN_NOCACHE &H8& Do not create a local dynaset data cache. Without the

local cache, previous rows within a dynaset are
unavailable; however, increased performance results
during retrieval of data from the database (move
operations) and from the rows (field operations). Use
this option in applications that make single passes
through the rows of a dynaset for increased
performance and decreased resource usage.

ORADYN_ORAMODE &H10& Same as Oracle Mode for a database except it affects
only the dynaset being created. If database was
created in Oracle Mode, the dynaset inherits the
property from it (for compatibility).

ORADYN_NO_REFETCH &H20& Behaves same as ORADB_NO_REFETCH mode for a
database except this mode affects only the dynaset
being created. If the database was created in ORADB_
NO_REFETCH mode, the dynaset inherits the
property for compatibility.

ORADYN_N_MOVEFIRST &H40& Does not force a MoveFirst when the dynaset is
created. BOF and EOF are both true.

ORADYN_DIRTY WRITE &H80& Update and Delete methods do not check for read
consistency.

These values can be found in the oraconst . txt file located in:

ORACLE_BASE\ORACLE_HOME\rdbms\oo4o

The SQL statement must be a SELECT statement or an error is returned. Features such
as simple views and synonyms can be used freely. You can also use schema references,
column aliases, table joins, nested select statements, and remote database references,
but in each case you end up with a read-only dynaset.

If you use a complex expression or SQL function on a column, such as "sal + 100"
or "abs (sal) ", you get an updatable dynaset, but the column associated with the
complex expression is not updatable.

Object names generally are not modifed, but in certain cases, they can be changed. For
example, if you use a column alias, you must use the alias to refer to the field by name.
If you use spaces in a complex expression, you must refer to the column without the
spaces, because the database removes spaces. Note that you can always refer to a field
by number, that is, by its ordinal position in the SELECT statement.

Executing the SQL SELECT statement generates a commit operation to the database by
default. To avoid this, use the BeginTrans method on the session object before using
the CreateDynaset method.

The updatability of the resultant dynaset depends on the Oracle SQL rules of
updatability, on the access you have been granted, and on the options flag.

Server Methods 10-81

CreateCustomDynaset Method

Updatability Conditions
For the dynaset to be updatable, three conditions must be met:

= A SQL statement must refer to a simple column list or to the entire column list (*).
s The statement must not set the read-only flag of the options argument.
= Oracle must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are
not updatable and the Updatable property of the dynaset returns False.

This method automatically moves to the first row of the created dynaset.

You can use SQL bind variables in conjunction with the OraParameters collection.

Examples

This example demonstrates the CreateCustombDynaset method. Copy and paste this
code into the definition section of a form, then press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object using sliceSize as 256,perblock size as 16, no. of
'blocks as 20, fetchLimit as 20,FetchSize as 4096

Set OraDynaset = OraDatabase.CreateCustomDynaset ("select empno, " & _
"ename from emp", 0&,256,16,20,20,4096)

'Display the first record.
MsgBox "Employee " & OraDynaset.Fields("empno").value & ", #" & _

OraDynaset .Fields ("ename") .value

End Sub

See Also: SnapShot Property on page 11-146

10-82 Oracle Objects for OLE Developer's Guide

CreateDatabasePool Method

CreateDatabasePool Method

Applies To

Description

Usage

Arguments

Remarks

OraSession Object on page 9-58

Creates a pool of OraDatabase objects. Only one pool can be created for each
OraSession object.

CreateDatabasePool (long initialSize, long maxSize, long timeoutValue, BSTR
database_name, BSTR connect_string, long options)

The arguments for the method are:

Arguments Description

initialSize The initial size of the pool.

maxSize The maximum size to which the pool can grow.

timeoutValue If an OraDatabase object in the pool is idle for the timeoutValue

value specified, the database connection that it contains is disconnected.
The connection is reopened if the pool item is used again. This value is

in seconds.

database_name The Oracle network specifier used when connecting the data control to
a database.

connectString The user name and password to be used when connecting to an Oracle
database.

options A bit flag word used to set the optional modes of the database. If

options = 0, the default mode settings apply. "Constants" on
page 10-212 shows the available modes.

The OpenDatabase method of the OraSession object is used to establish a
connection to an Oracle database. This method returns a reference to the
OraDatabase object which is then used for executing SQL statements and PL/SQL
blocks. The connection pool in OO40 is a pool of OraDatabase objects. The pool is
created by invoking the CreateDatabasePool method of the OraSession
interface.

Exceptions are raised by this call if:

= A pool already exists.

= An error occurs in creating a connection to Oracle Database.

» Invalid values for arguments are passed (that is, initialSize > maxSize).

The LastServerErr property of the OraSession object contains the code for the
specific cause of the exception resulting from an Oracle Database error.

One possible connection error that could be returned is:

Server Methods 10-83

CreateDatabasePool Method

ORA-28001 "the password has expired"

The user can change the password using the ChangePassword method.

See Also:

DestroyDatabasePool Method on page 10-128
GetDatabaseFromPool Method on page 10-155
RemoveFromPool Method on page 10-232
ChangePassword (OraSession) Method on page 10-50
LastServerErr Property on page 11-87

10-84 Oracle Objects for OLE Developer's Guide

CreateDynaset Method

CreateDynaset Method

Applies To

OraDatabase Object on page 9-28

Description

Creates an OraDynaset object from the specified SQL SELECT statement and options.

Usage

Set oradynaset = oradatabase.CreateDynaset (sql_statement, options, SnapShotID)
Set oradynaset = oradatabase.DbCreateDynaset (sql_statement, options, SnapShotID)

Arguments

The arguments for the method are:

Arguments Description
sgl_statement A String containing any valid Oracle SQL SELECT statement.
options A bit flag indicating the status of any optional states of the dynaset.

You can combine one or more options by adding their respective
values. Specifying the constant ORADYN_DEFAULT or the value &HO&
gives the following defaults for the dynaset:

Behave like Visual Basic Mode for a database: Field values not
explicitly set are set to Null, overriding database column defaults.

Perform automatic binding of database parameters.

Remove trailing blanks from character string data retrieved from
the database.

Create an updatable dynaset.

Cache data on client.

Force a MoveFirst when the dynaset is created.

Maintain read-consistency.

SnapShotID A 1D of the snapshot obtained from the SnapShot property of an
[optional] OraDynaset object.
Constants

The following table lists constants and values for the options flag.

Constant Value Description

ORADYN_DEFAULT &HO& Accept the default behavior.

ORADYN_NO_AUTOBIND &H1& Do not perform automatic binding of database
parameters.

ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character string
data retrieved from the database.

ORADYN_READONLY &HA& Force dynaset to be read-only.

Server Methods 10-85

CreateDynaset Method

Remarks

Constant Value Description

ORADYN_NOCACHE &HB8& Do not create a local dynaset data cache. Without the
local cache, previous rows within a dynaset are
unavailable; however, increased performance results
during retrieval of data from the database (move
operations) and from the rows (field operations). Use
this option in applications that make single passes
through the rows of a dynaset for increased
performance and decreased resource usage.

ORADYN_ORAMODE &H10& Behave the same as Oracle Mode for a database except
affect only the dynaset being created. If database was
created in Oracle Mode, the dynaset inherits the
property from it (for compatibility).

ORADYN_NO_REFETCH &H20& Behave the same as ORADB_NO_REFETCH mode for a
database except affect only the dynaset being created.
If the database was created in ORADB_NO_REFETCH
mode, the dynaset inherits the property for
compatibility.

ORADYN_NO_MOVEFIRST &H40& Does not force a MoveFirst when the dynaset is
created. BOF and EOF are both true.

ORADYN_DIRTY_ WRITE &H80& Update and Delete methods do not check for read
consistency.

These values can be found in the oraconst . txt file.

Features such as simple views and synonyms can be used freely. You can also use
schema references, column aliases, table joins, nested select statements and remote
database references, but in each case, the dynaset is read-only.

If you use a complex expression or SQL function on a column, such as "sal + 100"
or "abs (sal) ", you get an updatable dynaset, but the column associated with the
complex expression is not updatable.

Object names generally are not modifed, but in certain cases they can be changed. For

example, if you use a column alias, you must use the alias to refer to the field by name.
Also, if you use spaces in a complex expression, you must refer to the column without
the spaces, since the database strips spaces. Note that you can always refer to a field by
number, that is, by its ordinal position in the SELECT statement.

Executing the Update method generates a commit operation to the database by
default. To avoid this, use the BeginTrans method on the session object before using
the CreateDynaset method.

The updatability of the resultant dynaset depends on the Oracle SQL rules of
updatability, on the access you have been granted, and on the options flag. For the
dynaset to be updatable, these conditions must be met:

s A SQL statement must refer to a simple column list or to the entire column list (*).
s The statement must not set the read-only flag of the options argument.
s Oracle Database must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are
not updatable and the Updatable property of the dynaset returns False. This
method automatically moves to the first row of the created dynaset. You can use SQL
bind variables in conjunction with the OraParameters collection.

10-86 Oracle Objects for OLE Developer's Guide

CreateDynaset Method

Examples

The SnapsShotID option causes a snapshot descriptor to be created for the SQLStmt
object created. This property can later be obtained and used in creation of other
SQLStmt or OraDynaset objects. Execution snapshots provide the ability to ensure
that multiple commands executed in the context of multiple OraDatabase objects
operate on the same consistent snapshot of the committed data in the database.

This example demonstrates CreateObject, OpenDatabase and CreateDynaset
methods. Copy and paste this code into the definition section of a form. Then, press

F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
"scott/tiger", 0&)

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb",

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select empno, ename from emp", 0&)

'Display the first record.
MsgBox "Employee " & OraDynaset.Fields("empno").value & ", #"

End Sub

OraDynaset.Fields("ename") .value

See Also:

Clone Method on page 10-52

&

MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

on page 10-199

MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

on page 10-202

OpenDatabase Method on page 10-212
Updatable Property on page 11-171
OraDynaset Object on page 9-30
OraParameter Object on page 9-50
OraParameters Collection on page 9-68
Update Method on page 10-257
BeginTrans Method on page 10-43
SnapShot Property on page 11-146

Server Methods 10-87

Createlterator Method

Createlterator Method

Applies To
OraCollection Object on page 9-19

Description
Creates an iterator to scan the elements of a collection.

Usage
OraCollection.CreateIterator

Remarks
This method creates an iterator for scanning the elements of an Oracle collection.
Accessing collection elements using the iterator is faster than using an index on the
instance of a collection.

Examples

Example: OraCollection Iterator
The following example illustrates the use of an Oracle collection iterator.

Before running the sample code, make sure that you have the necessary data types and
tables in the database. See "Schema Objects Used in OraCollection Examples” on
page A-3.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim CourseList As OraCollection
Dim Course As OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", scott/tiger", 0&)

'Create a dynaset object from division
Set OraDynaset = OraDatabase.CreateDynaset ("select courses from" & _
"division where name='History'", 0&)

'Retrieve a Courses column from Division.
Set CourseList = OraDynaset.Fields("Courses").Value

'Create the iterator
CourseList.Createlterator

'Initialize the iterator to point to the beginning of a collection
CourseList.InitIterator

'Call IterNext to read CourseList until the end

While CourseList.EOC = False
Set Course = CourseList.ElementValue

10-88 Oracle Objects for OLE Developer's Guide

Createlterator Method

course_no = Course.course_no
Title = Course.Title
Credits = Course.Credits
CourseList.IterNext

Wend

'Call IterPrev to read CourseList until the beginning
CourseList.IterPrev

While CourseList.BOC = False
Set Course = CourseList.ElementValue
course_no = Course.course_no
Title = Course.Title
Credits = Course.Credits
CourseList.IterPrev

Wend

See Also:
= Deletelterator Method on page 10-121
= Initlterator Method on page 10-171

Server Methods 10-89

CreateNamedSession Method

CreateNamedSession Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraSession Object on page 9-58

Creates and returns a new named OraSession object.

orasession = orasession.CreateNamedSession (session _name)

The arguments for the method are:

Arguments Description

session_name A sString specifying the name of the session.

Using this method, you can create named sessions that can be referenced later in the
same application as long as the session object referred to is in scope. Once a session
has been created, the application can reference it by way of the ConnectSession
method or the OraSessions collection of their respective OraClient object. The
OraSessions collection only contains sessions created within the current application.
Therefore, it is not possible to share sessions across applications, only within
applications.

This method is provided for simplicity and is equivalent to the CreateSession
method of the OraClient object.

This example demonstrates the use of ConnectSession and CreateNamedSession
methods to allow an application to use a session it previously created, but did not
save. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim dfltsess As OraSession

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the default OraSession Object.
Set dfltsess = CreateObject ("OracleInProcServer.XOraSession")

'Try to connect to "ExampleSession". If it does not exist
'an error is generated.

On Error GoTo SetName

Set OraSession = dfltsess.ConnectSession("ExampleSession")
On Error GoTo 0

10-90 Oracle Objects for OLE Developer's Guide

CreateNamedSession Method

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

'Display or manipulate data here
Exit Sub

SetName:

'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.CreateNamedSession ("ExampleSession")
Resume Next

End Sub

See Also:

» CreateSession Method on page 10-109
= ConnectSession Method on page 10-69
= OraClient Object on page 9-18

= OraSessions Collection on page 9-69

Server Methods 10-91

CreateOralntervalDS Method

CreateOralntervalDS Method

Applies To
OraSession Object on page 9-58
Description
Creates the OraIntervalDS object. This OraIntervalDS represents an Oracle
INTERVAL DAY TO SECOND data type.
Usage
Set OraIntervalDSObj = OraSession.CreateOralntervalDS value
Arguments

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, an OraIntervalDs,
or an OraNumber object.

Return Values
OralntervalDS Object

Remarks

An OraSession object must be created before an OraIntervalDS object can be
created.

If valueis a Variant of type String, it must be in the following format: [+/-] Day
HH:MI:SSxFF.

If valueis a numeric value, the value provided should represent the total number of
days that the constructed OraIntervalDS represents.

A Variant of type OraIntervalDS can also be passed. A cloned OraIntervalDsS
is returned.

Examples

Dim oraIDS as OralntervalDS
Dim oraIDS2 as OralntervalDS
Dim oraNum as OraNumber

'Create an OralntervalDS using a string which represents 1 days, 2 hours,
'3 minutes, 4 seconds and 500000 nanoseconds
Set oraIDS = oodoSession.CreateOralntervalDS ("1l 2:3:4.005")

'Create an OralntervalDS using a numeric value which represents
'l days and 12 hours

Set oralIDS = oodoSession.CreateOraIntervalDS(1.5)

'Create an OraIntervalDS using an OralntervalDS
Set oraIDS2 = oo4oSession.CreateOralIntervalDS (oraIDS)

10-92 Oracle Objects for OLE Developer's Guide

CreateOralntervalDS Method

See Also:
s OraNumber Object on page 9-41
s OralntervalDS Object on page 9-35

Server Methods 10-93

CreateOralntervalYM Method

CreateOralntervalYM Method

Applies To

Description

Usage

Arguments

Return Values

Remarks

Examples

OraSession Object on page 9-58

Creates the OraIntervalYM object. This OraIntervalYM represents an Oracle
INTERVAL YEAR TO MONTH data type.

Set OraIntervalYMObj = OraSession.CreateOralntervalYM value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, or an
OraIntervalYM object.

OralntervalYM Object

An OraSession object must be created before an OraIntervalYM object can be
created.

If valueis a Variant of type String, it must be in the following format: [+/-]
YEARS-MONTHS.

If valueis a numeric value, the value provided should represent the total number of
years that the constructed OraIntervalYM object represents.

A Variant of type OraIntervalYM can also be passed. A cloned OraIntervalYM
object is returned.

Dim oraIYM as Oralnterval¥YM
Dim oraIYM2 as OralntervalYM

'Create an OralntervalYM using a string which represents 1 year and 2 months
Set oralYM = oo4oSession.CreateOraIntervalYM("1l- 2")

'Create an OralntervalYM using a numeric value which represents
'l year and 6 months
Set oraIYM = oo4oSession.CreateOraIntervalYM(1.5)

'Create an OralntervalYM using an OralntervalYM
Set oraIYM2 = oodoSession.CreateOraIntervalYM(oraIYM)

10-94 Oracle Objects for OLE Developer's Guide

CreateOralntervalYM Method

See Also:
s OralntervalYM Object on page 9-37
s OraNumber Object on page 9-41

Server Methods 10-95

CreateOraNumber Method

CreateOraNumber Method

Applies To

Description

Usage

Arguments

Return Value

Remarks

OraSession Object on page 9-58

Creates an OraNumber object. This OraNumber represents an Oracle NUMBER data

type.

OraNumber = OraSession.CreateOraNumber (inital value, format)

The arguments for the method are:

Arguments Description

initial_value Initial value of OraNumber. A Variant of type OraNumber, string
or a numeric value.

format [optional] Format string to be used when displaying OraNumber value.

OraNumber Object

For more information about format strings, see the format property on the OraNumber

object.

See Also:

ConnectSession Method on page 10-69
CreateSession Method on page 10-109
OraClient Object on page 9-18
OraNumber Object on page 9-41

OraSessions Collection on page 9-69

10-96 Oracle Objects for OLE Developer's Guide

CreateOraObject (OraDatabase) Method

CreateOraObject (OraDatabase) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraDatabase Object on page 9-28

Creates a value instance or referenceable object in the cache and returns the associated
0040 object.

OraObjectl = OraDatabase.CreateOraObject (schema_name)
OraRefl = OraDatabase.CreateOraObject (schema_name, table_name)
OraCollectionl = OraDatabase.CreateOraObject (schema_name)

The arguments for the method are:

Arguments Description

OraObjectl A valid OraObject object representing a newly created value instance.

OraRefl A valid OoraRef object representing a newly created referenceable
object.

OraCollection A valid OraCollection object representing a newly created collection
instance.

schema_name A string specifying the schema name of the value instance to be
created.

table_name A string specifying the table name of the referenceable object to be
created.

If the table_name argument is not specified, it creates a value instance in the client
and returns an OraObject or OraCollection object. If the table_name argument
is specified, it creates a referenceable object in the database and returns an associated
OraRef object.

OraObject and OraRef object examples are provided. Before running the sample
code, make sure that you have the necessary data types and tables in the database. See
"Schema Objects Used in the OraObject and OraRef Examples" on page A-3.

Example: Creating an OraObject Object

The following example illustrates the use of the CreateOraObject method to insert
a value instance. The row containing ADDRESS is inserted as a value instance in the
database.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase

Server Methods 10-97

CreateOraObject (OraDatabase) Method

Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

' create a new Address object in 0040
set AddressNew = OraDatabase.CreateOraObject ("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"

'start the dynaset AddNew operation and

'set the Address field to new address value
OraDynaset .Addnew
OraDynaset.Fields ("ADDR") .Value = AddressNew
OraDynaset .Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Null, ORAPARM_ INPUT, _
ORATYPE_OBJECT, "ADDRESS"

' create a new Address object in 0040
set AddressNew = OraDatabase.CreateOraObject ("ADDRESS")

'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"

'set the Address to ADDRESS parameter
Oradatabase.Parameters ("ADDRESS") .Value = AddressNew

'execute the sgl statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("insert into person_tab values ('Eric',30, :ADDRESS)")

Example: Creating an OraRef Object

The following example illustrates the use of the CreateOraObject method to insert
referenceable objects.

10-98 Oracle Objects for OLE Developer's Guide

CreateOraObject (OraDatabase) Method

In this example, a new PERSON is inserted as a referenceable object in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'CreteOraObject creates a new referenceable
'object in the PERSON_TAB object table and returns associated OraRef
set Person = OraDatabase.CreateOraObject ("PERSON", "PERSON_TAB")

'modify the attributes of Person
Person.Name = "Eric"

Person.Age = 35

'Update method inserts modified referenceable object in the PERSON_TAB.
Person.Update

Server Methods 10-99

CreateOraTimeStamp Method

CreateOraTimeStamp Method

Applies To

Description

Usage

Arguments

Return Values

Remarks

Examples

OraSession Object on page 9-58

Creates a new OraTimeStamp object. This OraTimeStamp method represents an
Oracle TIMESTAMP or an Oracle TIMESTAMP WITH LOCAL TIME ZONE data type.

Set OraTimeStampObj = OraSession.CreateOraTimeStamp value format

The arguments for the method are:

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStamp.

[in] [optional] TimeStamp format string to be used when displaying or
format interpreting an OraTimeStamp object as a string. If format is not

specified, the TimeStamp string is interpreted using the session
TIMESTAMP format (NLS_TIMESTAMP_FORMAT format).

OraTimeStamp Object

An OraSession object must created before an OraTimeStamp object can be created.

If valueis a Variant of type String, the string format must match the datetime
format specified in the format argument. If format is not specified, the string format
must match the session TIMESTAMP format (NLS_TIMESTAMP_FORMAT).

If format is specified, it is stored in the Format property of the OraTimeStamp ;
otherwise, the session TIMESTAMP format is stored in the OraTimeStamp Format

property.

Dim oraTS as OraTimeStamp
Dim oraTSl as OraTimeStamp
Dim date as Date

'Create an OraTimeStamp using a string assuming the session
'TIMESTAMP format is "DD-MON-RR HH.MI.SSXFF AM"
Set oraTS = oo4oSession.CreateOraTimeStamp ("12-JAN-2003 12.0.0.0 PM")

'Create an OraTimeStamp using a string and a format
Set oraTS = oo4oSession.CreateOraTimeStamp ("2003-01-12 12:00:00 PM", _
"YYYY-MM-DD HH:MI:SS AM")

'Create an OraTimeStamp using a Date
date = #1/12/2003#

10-100 Oracle Objects for OLE Developer's Guide

CreateOraTimeStamp Method

Set oraTS = oo4oSession.CreateOraTimeStamp (date)

'Create an OraTimeStamp using an OraTimeStamp
Set oraTSl = oodoSession.CreateOraTimeStamp (oraTS)

See Also:
s OraTimeStamp Object on page 9-62
= OraNumber Object on page 9-41

Server Methods 10-101

CreateOraTimeStampTZ Method

CreateOraTimeStampTZ Method

Applies To

Description

Usage

Arguments

Return Values

Remarks

Examples

OraSession Object on page 9-58

Creates a new OraTimeStampTZ object. This OraTimeStampTZ object represents an
Oracle TIMESTAMP WITH TIME ZONE data type.

Set OraTimeStampTZObj = OraSession.CreateOraTimeStampTZ value format

The arguments for the method are:

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStampTZ.

[[in] [optional] TIMESTAMP WITH TIME ZONE format string to be used when
format displaying or interpreting an OraTimeStampTZ object as a string. If

format is not specified, the TIMESTAMP WITH TIME ZONE string is
interpreted using the session TIMESTAMP WITH TIME ZONE format
(NLS_TIMESTAMP_TZ_FORMAT format).

OraTimeStampTZ Object

An OraSession object must be created before an OraTimeStampTZ object can be
created.

If valueis a Variant of type String, the string format must match the datetime
format specified in the format argument if format is specified; otherwise, the string
format must match the session TIMESTAMP WITH TIME ZONE format (NLS_
TIMESTAMP_TZ_FORMAT).

If value is a Variant of type Date, the date-time value in the Date is interpreted as
the date-time value in the time zone of the session. The TimeZone property in the
OraTimeStampTZ object contains the time zone of the session.

If format is specified, it is stored in the Format property of the OraTimeStampTz
object, otherwise the session TIMESTAMP WITH TIME ZONE format is stored in the
Format property of OraTimeStampTZ object.

Dim oraTSZ as OraTimeStampTZ
Dim oraTSzl as OraTimeStampTZ
Dim date as Date

'Create an OraTimeStampTZ using a string assuming the session
'TIMESTAMP WITH TIME ZONE format is "DD-MON-RR HH.MI.SSXFF AM TZH:TZM"

10-102 Oracle Objects for OLE Developer's Guide

CreateOraTimeStampTZ Method

Set oraTSZ = oo4oSession.CreateOraTimeStampTZ("12-JAN-2003" & _
"12.0.0.0 PM -03:00")

'Create an OraTimeStampTZ using a string and a format
Set oraTSZ = oodoSession.CreateOraTimeStampTZ("2003-01-12" & _
"12:00:00 PM -03:00", "YYYY-MM-DD HH:MI:SS AM TZH:TZM")

'Create an OraTimeStampTZ using a Date
date = #1/12/2003#
Set oraTSZ = oodoSession.CreateOraTimeStampTZ (date)

'Create an OraTimeStampTZ using an OraTimeStampTZ

Set oraTSZl = oodoSession.CreateOraTimeStampTZ (oraTSZ)

See Also:
s OraTimeStampTZ Object on page 9-64
s OraNumber Object on page 9-41

Server Methods 10-103

CreatePLSQLCustomDynaset Method

CreatePLSQLCustomDynaset Method

Applies To

Description

Usage

Arguments

OraDatabase Object on page 9-28
Deprecated.

For information on how to perform these tasks, see "Returning PL/SQL Cursor
Variables" on page 3-11.

Creates a dynaset from a PL/SQL cursor using custom cache and fetch parameters.
The SQL statement should be a stored procedure or anonymous block. The resulting
dynaset is read-only. Attempting to set the SQL property results in an error. The
dynaset can be refreshed with new parameters.

set OraDynaset = CreatePlsglCustomDynaset (SQLStatement, CursorName, options,
slicesize, perblock, blocks, FetchLimit, FetchSize)

The arguments for the method are:

Arguments Description

SQLStatement Any valid Oracle PL/SQL stored procedure or anonymous block.

CursorName Name of the cursor created in the PL/SQL stored procedure.

options A bit flag indicating the status of any optional states of the dynaset. You
can combine one or more options by adding their respective values.

slicesize Cache slice size.

perblock Cache slices for each block.

blocks Cache maximum number of blocks.

FetchLimit Fetch array size.

FetchSize Fetch array buffer size.

Constants

The options flag values are:

Constant Value Description

ORADYN_DEFAULT &HO& Accept the default behavior.

ORADYN_NO_AUTOBIND &H1& Do not perform automatic binding of database
parameters.

ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character

string data retrieved from the database.

10-104 Oracle Objects for OLE Developer's Guide

CreatePLSQLCustomDynaset Method

Remarks

Constant Value Description

ORADYN_NOCACHE &H8& Do not create a local dynaset data cache. Without
the local cache, previous rows within a dynaset
are unavailable; however, increased performance
results during retrieval of data from the database
(move operations) and from the rows (field
operations). Use this option in applications that
make single passes through the rows of a dynaset
for increased performance and decreased resource
use.

ORADYN_NO_MOVEFIRST &H40& Do not force a MoveFirst when the dynaset is
created. BOF and EOF are both true.

These values can be found in the oraconst . txt file.

The SQL statement must be a PL/SQL stored procedure with BEGIN and END around
the call, as if it were executed as an anonymous PL/SQL block; otherwise, an error is
returned. The CursorName argument should exactly match the cursor created inside
the stored procedure or anonymous PL/SQL block; otherwise an error is returned. The
cursor created inside the stored procedure should represent a valid SQL SELECT
statement.

You do not need to bind the PL/SQL cursor variable using the OraParameters Add
method if the stored procedure returns a cursor as an output parameter. You can still
use PL/SQL bind variables in conjunction with the OraParameters collection.

This method automatically moves to the first row of the created dynaset.

Specifying ORADYN_READONLY, ORADYN_ORAMODE, ORADYN_NO_REFETCH, ORADYN__
DIRTY_WRITE options have no effect on the dynaset creation.

See Also:
s OraParameters Collection on page 9-68

= Add Method on page 10-8

Server Methods 10-105

CreatePLSQLDynaset Method

CreatePLSQLDynaset Method

Applies To
OraDatabase Object on page 9-28
Deprecated.

For information on how to perform these tasks, see "Returning PL/SQL Cursor
Variables" on page 3-11.

Description

Creates a dynaset from a PL/SQL cursor. The SQL statement should be a stored
procedure or an anonymous block. The resulting dynaset is read-only and attempting
to set SQL property results in an error. Dynasets can be refreshed with new parameters
similar to dynasets without cursors.

Usage
set OraDynaset = CreatePLSQLDynaset (SQLStatement, CursorName, options)

Arguments

Arguments Description

SQLStatement Any valid Oracle PL/SQL stored procedure or anonymous block.
CursorName Name of the cursor created in the PL/SQL stored procedure.

options A bit flag indicating the status of any optional states of the dynaset.
You can combine one or more options by adding their respective
values.

Constants
The options flag values are:

Constant Value Description
ORADYN_DEFAULT &HO& Accept the default behavior.
ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character string

data retrieved from the database.

ORADYN_NOCACHE &H8& Do not create a local dynaset data cache. Without
the local cache, previous rows within a dynaset are
unavailable; however, increased performance results
during retrieval of data from the database (move
operations) and from the rows (field operations).
Use this option in applications that make single
passes through the rows of a dynaset for increased
performance and decreased resource usage.

ORADYN_NO_MOVEFIRST &H40& Do not force a MoveFirst operation when the
dynaset is created. BOF and EOF are both true.

These values can be found in the oraconst . txt file.

10-106 Oracle Objects for OLE Developer's Guide

CreatePLSQLDynaset Method

Remarks

Examples

The SQL statement must be a PL/SQL stored procedure with BEGIN and END
statements around the call, as if it were executed as an anonymous PL/SQL block;
otherwise an error is returned. The CursorName argument should exactly match the
cursor created inside the stored procedure or anonymous PL/SQL block; otherwise, an
error is returned. Cursors created inside the stored procedure should represent a valid
SQL SELECT statement.

You do not need to bind the PL/SQL cursor variable using the OraParameters.Add
method if the stored procedure returns a cursor as a output parameter. You can still
use PL/SQL bind variables in conjunction with the OraParameters collection.

This method automatically moves to the first row of the created dynaset.

Specifying the ORADYN_READONLY, ORADYN_ORAMODE, ORADYN_NO_REFETCH, or
ORADYN_DIRTY_WRITE options have no effect on the dynaset creation.

This example demonstrates the use of PL/SQL cursor in the CreatePlsglDynaset
method and Refresh method. This example returns a PL/SQL cursor as a dynaset for
the different values of the DEPTNO parameter. Make sure that corresponding stored
procedure (found in EMPCUR. SQL) is available in the Oracle database. and paste this
code into the definition section of a form. Then, press F5.

Sub Form_Load ()
'Declare variables
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

' Create the Deptno parameter
OraDatabase.Parameters.Add "DEPTNO", 10, ORAPARM INPUT
OraDatabase.Parameters ("DEPTNO") .ServerType = ORATYPE_NUMBER
' Create OraDynaset based on "EmpCursor" created in stored procedure.
Set OraDynaset = OraDatabase.CreatePLSQLDynaset ("Begin Employee.GetEmpData" & _
" (:DEPTNO, :EmpCursor); end;", "EmpCursor", 0&)

'Should display KING
MsgBox OraDynaset.Fields("ENAME").Value

'Should display 7839
MsgBox OraDynaset.Fields("EMPNO").Value

' Now set the deptno value to 20
OraDatabase.Parameters ("DEPTNO") .Value = 20

'Refresh the dynaset
OraDynaset .Refresh

'Should display JONES

Server Methods 10-107

CreatePLSQLDynaset Method

MsgBox OraDynaset.Fields("ENAME") .Value

'Should display 7566
MsgBox OraDynaset.Fields("EMPNO") .Value

'Remove the parameter.
OraDatabase.Parameters.Remove ("DEPTNO")

End Sub

10-108 Oracle Objects for OLE Developer's Guide

CreateSession Method

CreateSession Method

Applies To
OraClient Object on page 9-18

Description
Creates a new named OraSession object.

Usage
orasession = oraclient.CreateSession(session_name)

Arguments
The arguments for the method are:
Arguments Description
session_name A String specifying the name of the session.

Remarks
Use this method to create named sessions that can be referenced later in the same
application without having to explicitly save the OraSession object when it is
created. Once a session has been created, the application can reference it by way of the
ConnectSession method or the OraSessions collection of their respective
OraClient object. The OraSessions collection only contains sessions created within
the current application. This means that it is not possible to share sessions across
applications, only within applications.

Examples

This example demonstrates how to create a session object using the CreateSession
method of the client object. Copy and paste this code into the definition section of a
form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraClient As OraClient

Dim OraSession As OraSession

Dim NamedOraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Get the OraClient object.
Set OraClient = OraSession.Client

'Create a named OraSession Object

'Alternatively, you could use the CreateNamedSession
'method of the OraSession Object.

Server Methods 10-109

CreateSession Method

Set NamedOraSession = OraClient.CreateSession("ExampleSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = NamedOraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

End Sub

See Also: OraSession Object on page 9-58

10-110 Oracle Objects for OLE Developer's Guide

CreateSQL Method

CreateSQL Method

Applies To

Description

Usage

Arguments

Remarks

OraDatabase Object on page 9-28

Executes the SQL statement and creates an OraSQLStmt object from the specified SQL
statement and options.

Set orasglstmt = oradatabase.CreateSQL(sqgl_statement, options)

The arguments for the method are:

Arguments Description
sqgl_statement Any valid Oracle SQL statement.
options A Dbit flag indicating the status of any optional states of the

OraSQLStmt object. You can combine one or more options by
adding their respective values.

Constants
The options flag values are:

Constant Value Description

ORASQL_NO_AUTOBIND &H1& Do not perform automatic binding of database
parameters.

ORASQL_FAILEXEC &H2& Raise error and do not create SQL statement
object.

ORASQL_NONBLK &HA& Execute SQL in a nonblocking state.

These values can be found in the oraconst . txt file.

The SQL statement can be one continuous line with no breaks. If it is necessary to
break the line, be sure to use line feeds (ASCII 10). Do not use carriage returns (ASCII
13), because the underlying Oracle Database functions treat carriage returns as null
terminators.

You can use PL/SQL bind variables in conjunction with the OraParameters
collection.

Executing the SQL statement generates a commit to the database by default. To avoid
this, use the BeginTrans method on the session object before using the CreateSQL
method.

When executing PL/SQL blocks or calling stored procedures, you must include a
BEGIN and END statement around your call as if you were executing an anonymous

Server Methods 10-111

CreateSQL Method

Data Type

Examples

PL/SQL block. This is equivalent to the EXECUTE command of SQL*Plus and
SQL*DBA.

If the ORASQL_FAILEXEC option is used, an error is raised during SQLstmt object
creation failure (on SQLstmt object refresh). The SQLstmt object is not created and
cannot be refreshed.

Note: Use the CreateSQL method with care, because any SQL
statement or PL/SQL block that is executed might cause errors
afterward when you use the Edit method on open dynasets.

String

This example demonstrates the use of parameters, the CreateSQL method, the
Refresh method, and the SQL property for OraSQLStmt object. Copy and paste this
code into the definition section of a form. Then, press F5.

Sub Form_Load ()
'Declare variables
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraSqglStmt As OraSQLStmt

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

OraDatabase.Parameters.Add "EMPNO", 7369, 1
OraDatabase.Parameters ("EMPNO") .ServerType = 2 'ORATYPE_NUMBER

OraDatabase.Parameters.Add "ENAME", 0, 2
OraDatabase.Parameters ("ENAME") .ServerType = 1 'ORATYPE_VARCHAR2

Set OraSglStmt = OraDatabase.CreateSQL("Begin Employee.GetEmpName" & _
" (:EMPNO, :ENAME); end;", 0&)

'Notice that the SQL statement is NOT modified.
MsgBox OraSqglStmt.SQL

'Should display SMITH
MsgBox OraDatabase.Parameters ("ENAME") .Value

'Change the value of the empno parameter.
OraDatabase.Parameters ("EMPNO") .Value = 7499

'Refresh the sglstmt
OraSglStmt.Refresh

'Should display ALLEN
MsgBox OraDatabase.Parameters ("ENAME") .Value

'Notice that the SQL statement is NOT modified.

10-112 Oracle Objects for OLE Developer's Guide

CreateSQL Method

MsgBox OraSqglStmt.SQL

'Remove the parameter.
OraDatabase.Parameters.Remove ("job")

End Sub

See Also:

= "Asynchronous Processing" on page 3-16 for more information
about the ORASQL_NONBLK option

= BeginTrans Method on page 10-43

= OraSQLStmt Object on page 9-60

s CreateSQL Method on page 10-111

= ExecuteSQL Method on page 10-144
= Refresh Method on page 10-225

Server Methods 10-113

CreateTempBLOB/CLOB Method

CreateTempBLOB/CLOB Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraDatabase Object on page 9-28

Creates a temporary LOB in the database.

Set OraBLOB = OraDatabase.CreateTempBLOB (use_caching)
Set OraCLOB = OraDatabase.CreateTempCLOB (use_caching)

The arguments for the method are:

Arguments Description

use_caching A boolean value that specifies whether Oracle Database uses
caching when accessing this LOB. The default value is False.

Temporary LOBs are LOBs that do not exist permanently in the database. 0040
programmers commonly use temporary LOBs to pass into stored procedures and
functions that have LOB arguments.

Temporary LOBs do not require or take part in transactions. (It is not necessary to
acquire a lock before write operations, and rollbacks have no effect on temporary
LOBs.)

The use_caching argument directs Oracle to use caching when accessing the
temporary LOB. This is suggested when multiple accesses are expected on a single
LOB. Caching is not required for the typical case, where a LOB is created, filled with
data, passed to a stored procedure, and then discarded.

Temporary LOBs exist on the database until no more references to the corresponding
OraBLOB or OraCLOB exist on the client. Note that these references include any
OraParameter or OraParamArray that contain a temporary OraBLOB or OraCLOB
object.

Example: Passing a Temporary CLOB to a Stored Procedure

The following example illustrates the use of the CreateTempClob method to create a
OraCLOB. The OraCLOB is then populated with data and passed to a stored procedure
which has an argument of type CLOB.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraClob as OraClob

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

10-114 Oracle Objects for OLE Developer's Guide

CreateTempBLOB/CLOB Method

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the stored procedure used in this example

OraDatabase.ExecuteSQL ("create or replace procedure GetClobSize" & _
"(in_clob IN CLOB, clobsize OUT NUMBER) as Begin clobsize" & _
" := DBMS_LOB.GETLENGTH(in_clob); End;")

'create an OraParameter object to represent Clob bind Variable
OraDatabase.Parameters.Add "CLOB", Null, ORAPARM_ INPUT, ORATYPE_CLOB

'the size will go into this bind variable
OraDatabase.Parameters.Add "CLOBSIZE", Null, ORAPARM_OUTPUT, ORATYPE_NUMBER

' create a temporary CLOB
set OraClob = OraDatabase.CreateTempClob

'Populate the OraClob with some data. Note that no row locks are needed.
OraClob.Write "This is some test data"

'set the Parameter Value to the temporary Lob
OraDatabase.Parameters ("CLOB") .Value = OraClob

'execute the sgl statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("Begin GetClobSize(:CLOB, :CLOBSIZE); end;")

'Display the size
MsgBox OraDatabase.Parameters("CLOBSize") .Value

'these two lines force the temporary clob to be freed immediately

OraDatabase.Parameters.Remove "CLOB"
Set OraClob = nothing

Server Methods 10-115

Delete Method

Delete Method

Applies To
OraDynaset Object on page 9-30

Description

Deletes the current row of the specified dynaset.

Usage

oradynaset.Delete
oradynaset.DbDelete

Remarks

A row must be current before you can use the Delete method; otherwise, an error
occurs.

Note that after you call the Delete method on a given row in a dynaset in a global
transaction (that is, once you issue a BeginTrans method), locks remain on the
selected rows until you call a CommitTrans or Rollback method.

Any references to the deleted row produce an error. The deleted row, as well as the
next and previous rows, remain current until database movement occurs (using the
MoveFirst, MovePrevious, MoveNext, or MoveLast methods). Once movement
occurs, you cannot make the deleted row current again.

You cannot restore deleted records except by using transactions.

Note: A call to an Edit, AddNew, or Delete method, cancels any
outstanding Edit or AddNew calls before proceeding. Any
outstanding changes not saved using an Update method are lost
during the cancellation.

Examples

This example demonstrates the use of the Delete method to remove records from a
database. Copy and paste this code into the definition section of a form. Then, press
F5.

Sub Form_Load ()
'Declare variables
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("exampledb", "scott/tiger", 0&)

'Create the OraDynaset Object. Only select the employees in Department 10.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where" & _

10-116 Oracle Objects for OLE Developer's Guide

Delete Method

"deptno=10", 0&)

Do Until OraDynaset.EOF
OraDynaset .Delete
OraDynaset .MoveNext
Loop
MsgBox "All employees from department 10 removed."

End Sub

See Also:

» AddNew Method on page 10-21

= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66
» Edit Method on page 10-134

s MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

= ResetTrans Method on page 10-233
= Rollback Method on page 10-235

Server Methods 10-117

Delete (OraCollection) Method

Delete (OraCollection) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraCollection Object on page 9-19

Deletes an element at given index. This method is available only in an
OraCollection of type ORATYPE_TABLE (nested table).

OraCollection.Delete index

The arguments for the method are:

Arguments Description

[in] index An Integer specifying the index of the element to be deleted.

The Delete method creates holes in the client-side nested table. This method returns
an error if the element at the given index has already been deleted or if the given index
is not valid for the given table.

The following example illustrates the Delete method. Before running the sample
code, make sure that you have the necessary data types and tables in the database. See
"Schema Objects Used in OraCollection Examples" on page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)

'retrieve a Courses column from Division.
'Here Value property of OraField object returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value

'Delete the Courselist NestedTable at index 2.
'Before that lock should be obtained
OraDynaset.Edit

CourseList.Delete 2

10-118 Oracle Objects for OLE Developer's Guide

Delete (OraCollection) Method

OraDynaset .Update

See Also: Type (OraCollection) Property on page 11-167

Server Methods 10-119

Delete (OraRef) Method

Delete (OraRef) Method

Applies To

Description

Usage

Remarks

Examples

OraRef Object on page 9-52

Deletes a referenceable object in the database.

OraRef .Delete

Accessing attributes on the deleted instance results in an error.

The following example illustrates the Delete method. Before running the sample
code, make sure that you have the necessary data types and tables in the database. See
"Schema Objects Used in the OraObject and OraRef Examples" on page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Person object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF, "PERSON"

'execute the sgl statement which selects person

'from the customers table for account = 10

OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
"where account = 10; END;")

'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value

'delete the Person object in the server for modifying its attributes
Person.Delete

10-120 Oracle Objects for OLE Developer's Guide

Deletelterator Method

Deletelterator Method
Applies To

OraCollection Object on page 9-19
Description

Deletes a collection iterator.
Usage

OraCollection.Deletelterator
Remarks

None.
Examples

See "Example: OraCollection Iterator" on page 10-88

See Also: "Createlterator Method" on page 10-88

Server Methods 10-121

Dequeue (OraAQ) Method

Dequeue (OraAQ) Method

Applies To
OraAQ Object on page 9-3

Description
Dequeues a message.

Usage
Q.Dequeue ()

Remarks
The message attributes can be accessed with the OraAQMsg interface contained in this
object. On success, this method returns the message identifier as an array of bytes.
Otherwise, it returns an empty array (null).

Examples

Note: The following code sample are models for dequeuing
messages.

A complete AQ sample can be found in the \0O040\VB\ SAMPLES
\AQ directory.

Example: Dequeuing Messages of RAW Type

'Dequeue the first message available
Q.Dequeue
Set Msg = Q.QMsg

'Display the message content
MsgBox Msg.Value

'Dequeue the first message available without removing it
' from the queue
Q.DequeueMode = ORAAQ DQ BROWSE

'Dequeue the first message with the correlation identifier
' equal to "RELATIVE_MSG_ID"

Q.Navigation = ORAAQ_DQ FIRST MSG

Q.correlate = "RELATIVE_MESSAGE_ID"

Q.Dequeue

'Dequeue the next message with the correlation identifier
' of "RELATIVE_MSG_ID"
Q.Navigation = ORAAQ_DQ_NEXT MSG

Q.Dequeue

'Dequeue the first high priority message
Msg.Priority = ORAQMSG_HIGH_PRIORITY

10-122 Oracle Objects for OLE Developer's Guide

Dequeue (OraAQ) Method

Q.Dequeue

'Dequeue the message enqueued with message id of Msgid_1
Q.DequeueMsgid = Msgid_1
Q.Dequeue

'Dequeue the message meant for the consumer "ANDY"
Q.consumer = "ANDY"
Q.Dequeue

'Return immediately if there is no message on the queue

Q.wait = ORAAQ DQ NOWAIT
Q.Dequeue

Example: Dequeuing Messages of Oracle Object Types

Set OraObj = DB.CreateOraObject ("MESSAGE_TYPE")
Set QMsg = Q.AQMsg (23, "MESSAGE_TYPE", "SCOTT")

'Dequeue the first message available without removing it
Q.Dequeue
OraObj = QMsg.Value

'Display the subject and data
MsgBox OraObj ("subject").Value & OraObj("Data").Value

Server Methods 10-123

Describe Method

Describe Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraDatabase Object on page 9-28

Describes a schema object. This method returns an instance of the OraMetabData
interface.

OraMetaDataObj = OraDatabase.Describe (SchemaObjectName)

The arguments for the method are:

Arguments Description

[in] SchemaObjectName A String representing the name of the schema object to be
described.

The following schema object types can be described:
m Tables

m Views

m Procedures

s Functions

m Packages

n Sequences

s Collections (VARRAYS or nested tables)

= Types

Describing any other schema object (for example, a column) or an invalid schema
object name raises an error. You should navigate to schema objects not listed here,
rather than describing them directly.

This method takes the name of a schema object, such as emp, and returns a COM
Automation object (OraMetaData). The OraMetaData object provides methods for
dynamically navigating and accessing all the attributes (OraMDAttribute collection)
of a schema object described.

Simple Describe Example

The following Visual Basic code illustrates a how to use the Describe method to
retrieve and display several attributes of the emp table.

Set emp = OraDatabase.Describe("emp")

10-124 Oracle Objects for OLE Developer's Guide

Describe Method

'Display the name of the Tablespace

MsgBox emp!tablespace

'Display name and data type of each column in the emp table.
Set empColumns = emp!ColumnList

Set ColumnList = empColumns.Value

for 1 = 0 to ColumnList.Count - 1

Set Column = ColumnList (i) .Value

MsgBox "Column: " & Column!Name & " Data Type: " & Column!Data Type
Next i

Describing a Table Example

Before running the following example, make sure that you have the necessary
datatypes and tables in the database. See "Schema Objects Used in OraMetaData
Examples" on page A-3.

Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

Dim OraMetaData As OraMetaData

Dim OraMDAttribute As OraMDAttribute
Dim ColumnList As OraMetaData

Dim Column As OraMetaData

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDB", "scott/tiger", 0&)

'Use Describe to retrieve the metadata object
Set OraMetaData = OraDatabase.Describe ("EMP")

'Display the type of the metadata
MsgBox TypeofMetaData & OraMetaData.Type

'Display the count of attributes belonging to the table
MsgBox NumberOfAttributes & OraMetaData.Count

'Attribute can be accessed using the explicit OraMetaData property: Attribute
'The index can be an integer or the attribute name

Set OraMDAttribute = OraMetaData.Attribute(0)

MsgBox "ObjectID: " & OraMDAttribute.Value

'Since Attribute is the default property of OraMetaData, an attribute can
' be accessed as follows. Here, we use attribute name as an index

Set OraMDAttribute = OraMetaData ("ObjectID")

MsgBox "Name: " & OraMDAttribute.Name

MsgBox "Value: " & OraMDAttribute.Value

'Value is the default property of OraMDAttribute, the following shows
'the Value of property "IsClustered" for the table

MsgBox "Is Clustered: " & OraMetaData!IsClustered

MsgBox "Is Partitioned: " & OraMetaData!IsPartitioned

'Retrieve the Column List
Set OraMDAttribute = OraMetaData!ColumnList

Server Methods 10-125

Describe Method

' Use IsMDObject property to check whether an attribute's value is an OraMetaData
If (OraMDAttribute.IsMDObject()) Then
Set ColumnList = OraMDAttribute.Value
'Display the name and data type of each column
For I = 0 To ColumnList.Count - 1
Set Column = ColumnList (I).Value

' Each column is again an OraMetaData
MsgBox "Column: " & Column!Name & " data type: " & Column!Data Type
Next I
End If

Example: Describing a User-Defined Type

Before running the following example, make sure that you have the necessary
datatypes and tables in the database. See "Schema Objects Used in OraMetaData
Examples" on page A-3.

Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

Dim OraMetaData As OraMetaData

Dim OraMDAttribute As OraMDAttribute
Dim attrList As OraMetaData

Dim attr As OraMetaData

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession.OpenDatabase ("ExampleDB", "scott/tiger", 0&)
Set OraMetaData = OraDatabase.Describe ("ORAMD_ADDRESS")

NumAttributes = OraMetaData!NumAttributes

NumMethods = OraMetaData!NumMethods

MsgBox "The Address type has " & NumAttributes & " attributes"

MsgBox "Address Object has " & NumMethods & " methods"

'Retrieve the attribute list of this type object
Set attrList = OraMetaData!Attributes.Value

'Display the name and data type of each attribute
For I = 0 To attrList.Count - 1

Set attr = attrList(I).Value

' each attr is actually an OraMetaData

MsgBox "Attribute Name: " & attr!Name

MsgBox "Attribute Type: " & attr!TypeName

Next I

Example: Describing Unknown Schema Objects

Before running the following example, make sure that you have the necessary
datatypes and tables in the database. See "Schema Objects Used in OraMetaData
Examples" on page A-3.

Sub RecursiveDescribe (name$, xMD As OraMetaData)
Dim xMDAttr As OraMDAttribute
For T = 0 To xMD.Count - 1

Set xMDAttr = xMD.Attribute(I)

' If an attribute can be described further, describe 1it,

10-126 Oracle Objects for OLE Developer's Guide

Describe Method

' otherwise display its attribute name & value
If (xMDAttr.IsMDObject) Then
RecursiveDescribe xMDAttr.name, xMDAttr.Value
Else
MsgBox name & "->" & xMDAttr.name & " = " & xMDAttr.Value
End If
Next I

End Sub
Sub Main()

'This example displays all the attributes of any schema object given
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

Dim xMD As OraMetaData

Dim x As String

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDB", "scott/tiger", 0&)

' x 1s any database object, here the EMP table is used as an example
x = "EMP"

Set xXMD = OraDatabase.Describe (x)

MsgBox x & " is of the type " & xMD.Type

RecursiveDescribe x, xMD

End Sub

See Also:
s OraMetaData Object on page 9-39
= OraMDAttribute Object on page 9-38

Server Methods 10-127

DestroyDatabasePool Method

DestroyDatabasePool Method

Applies To
OraSession Object on page 9-58
Description
The pool is implicitly destroyed if its parent session object is destroyed. It can also be
destroyed at any time by invoking the DestroyDatabasePool method.
Usage
DestroyDatabasePool ()
Remarks

An exception is raised by this call if the pool does not exist.

See Also: CreateDatabasePool Method on page 10-83

10-128 Oracle Objects for OLE Developer's Guide

DisableBuffering (OraLOB) Method

DisableBuffering (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11
Description
Disables buffering of LOB operations.
Usage
OraBlob.DisableBuffering
OraClob.DisableBuffering
Remarks

This method does not automatically flush the buffers. The FlushBuf fer method
should be used to flush any changes before buffering is disabled.

See Also:
= EnableBuffering (OraLOB) Method on page 10-139
» FlushBuffer (OraLOB) Method on page 10-154

Server Methods 10-129

Div (OralntervalDS) Method

Div (OralntervalDS) Method

Applies To
OralntervalDS Object on page 9-35
Description
Divides the OraIntervalDS object by a divisor.
Usage
OralIntervalDSObj.Div divisor
Arguments
The arguments for the method are:
Arguments Description
[in] divisor A vVariant for type numeric value or an OraNumber object to be
used as the divisor.
Remarks

The result of the operation is stored in the OraIntervalDS object, overwriting any
previous value. There is no return value.

10-130 Oracle Objects for OLE Developer's Guide

Div (OralntervalYM) Method

Div (OralntervalYM) Method

Applies To
OralntervalYM Object on page 9-37
Description
Divides the OraIntervalYM object by a divisor.
Usage
OralIntervalYMObj.Div divisor
Arguments
The arguments for the method are:
Arguments Description
[in] divisor A variant for type numeric value or an OraNumber object to be
used as the divisor.
Remarks

The result of the operation is stored in the OraIntervalYM object, overwriting any
previous value. There is no return value.

Server Methods 10-131

Div (OraNumber) Method

Div (OraNumber) Method

Applies To

OraNumber Object on page 9-41
Description

Divides an OraNumber object by a numeric argument.
Usage

OraNumber .Div operand
Arguments

The arguments for the method are:

Arguments Description

[in] operand AVvariant of type String, OraNumber object, or a numeric value.
Remarks

The result of the operation is stored in an OraNumber object . There is no return value.

The operand must not be equal to zero, or a divide by zero error is raised.

10-132 Oracle Objects for OLE Developer's Guide

DynasetCacheParams Method

DynasetCacheParams Method

Applies To
OraParameter Object on page 9-50
Description
Specifies the dynaset cache and fetch parameters for the dynaset created from the
PL/SQL cursor.
Usage
oraparameter.DynasetCacheParams SliceSize,perblock, Blocks, FetchLimit,FetchSize
Arguments
The arguments for the method are:
Arguments Description
SliceSize Cache slice size.
perblock Cache slices for each block.
Blocks Cache maximum number of blocks.
FetchLimit Fetch array size.
FetchSize Fetch array buffer size.
Remarks

This method should be called before executing the PL/SQL procedure containing a
cursor variable. By default, the dynaset is created with default cache and fetch
parameters specified in the registry.

Server Methods 10-133

Edit Method

Edit Method

Applies To

Description

Usage

Remarks

Examples

OraDynaset Object on page 9-30

Begins an edit operation on the current row by copying the data to the copy buffer.

oradynaset.Edit
oradynaset .DbEdit

The Edit method causes the locally cached data to be compared to the corresponding
row of an Oracle Database. An error is generated if Oracle Database data is not the
same as the data currently being browsed. If this operation succeeds, the row is locked
using a "SELECT . .. FOR UPDATE" statement until the edit is completed with an
Update method or until database movement occurs, which discards any edits in
progress. The behavior of the "SELECT ... FOR UPDATE" statement is affected by the
Lock Wait mode of the options flag used when the OpenDatabase method was
called.

Note: The cached data is not compared to the database with BLOB
and CLOB, Object, REF, and collection types, and the data is
updated regardless (dirty writes).

During editing, changes made to fields are kept in a shadowed copy buffer and do not
yet reflect the actual contents of the database. However, all references to the row return
the newly modified data as long as the edit operation is still in progress.

When data is modified within a data control attached to this dynaset, the Edit
method is invoked automatically upon the next record movement. Thus, this method
is required only when modifications are made to field data within code.

Note: A call to an Edit, AddNew, or Delete method cancels any
outstanding Edit or AddNew calls before proceeding. Any
outstanding changes not saved using an Update operation are lost
during the cancellation.

This example demonstrates the use of the Edit and Update methods to update
values in a database. Copy and paste this code into the definition section of a form.
Then, press F5.

Sub Form_Load ()
'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

10-134 Oracle Objects for OLE Developer's Guide

Edit Method

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Traverse until EOF is reached, settingeach employee's salary to zero
Do Until OraDynaset.EOF
OraDynaset.Edit
OraDynaset.Fields("sal").value = 0
OraDynaset .Update
OraDynaset .MoveNext
Loop
MsgBox "All salaries set to ZERO."

End Sub

See Also:

» AddNew Method on page 10-21

s CreateDynaset Method on page 10-85
s Delete Method on page 10-116

s OpenDatabase Method on page 10-212
s Update Method on page 10-257

Server Methods 10-135

Edit (OraRef) Method

Edit (OraRef) Method

Applies To
OraRef Object on page 9-52

Description
Locks a referenceable object in the database.

Usage
OraRef .Edit

Remarks
Call this method before modifying any attributes of an underlying referenceable object
of OraRef or an error is raised. This call makes a network round-trip to lock the object
in the database. An error is raised if the object is changed by another user in the
database. The object can also be locked during the pin operation using the
EditOption property.

Examples

The following examples update the attributes of the "PERSON" referenceable object in
the database.

Before running the sample code, make sure that you have the necessary data types and
tables in the database. See "Schema Objects Used in the OraObject and OraRef
Examples" on page A-3.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset ("select * from customers", 0&)

'retrieve a aperson column from customers.
'Here Value property of OraField object 'returns Person OraRef
set Person = OraDynaset.Fields("aperson") .Value

'locks the Person object in the server for modifying its attributes
Person.Edit

Person.Name = "Eric"

Person.Age = 35
'Update method flushes the modified referenceable object in the server
Person.Update

10-136 Oracle Objects for OLE Developer's Guide

Edit (OraRef) Method

Parameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM OUTPUT, _
ORATYPE_REF, "PERSON"

'execute the sgl statement which selects person from the customers table
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON" & _
"from customers where account = 10; END;")

'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value

'locks the Person object in the server for modifying its attributes
Person.Edit

Person.Name = "Eric"

Person.Age = 35
'Update method flushes the modified referenceable object in the server

Person.Update

See Also: EditOption (OraRef) Property on page 11-52

Server Methods 10-137

ElementValue Method

ElementValue Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraCollection Object on page 9-19

Returns the current value of the collection element to which the iterator points.

elem val = OraCollection.ElementValue

The arguments for the method are:

Arguments Description
elem_val A vVariant representing element value of the collection.
ElementType

For elements of type Object and REF, element values are returned as corresponding
0040 objects for that type. The following table shows the element type and return
value of the elements:

ElementType Element Value
Object OraObject
REF OraRef

Date String
Number String
CHAR,VARCHAR2 String

Real Real
Integer Integer

Calling this method when the EOC or BOC property returns True raises an error. The
Variant type of the element depends on the element type of the collection.

See "Example: OraCollection Iterator" on page 10-88

See Also:

» Createlterator Method on page 10-88
» IterNext Method on page 10-187

» IterPrev Method on page 10-188

10-138 Oracle Objects for OLE Developer's Guide

EnableBuffering (OraLOB) Method

EnableBuffering (OraLOB) Method

Applies To

Description

Usage

Remarks

OraBLOB, OraCLOB Objects on page 9-11

Enables buffering of LOB operations.

OraBlob.EnableBuffering
OraClob.EnableBuffering

When enabled, buffering uses the LOB Buffering subsystem to minimize network
round-trips by buffering changes until the FlushBuf fer method is called. This can
be beneficial to applications that perform a series of repeated small reads and writes to
specific areas of a LOB.

There are many caveats and restrictions for using LOB buffering. These are
summarized here, but for complete information, see the Oracle Database SecureFiles and
Large Objects Developer’s Guide.

Restrictions

The following LOB methods cannot be used while buffering is enabled:

- Append

- Copy

- Erase

- Size

- Trim

— CopyFromBFILE

— CopyFromFile

— CopyToFile

There is currently a 512 KB limit to the amount of a single read /write operation.
Error reporting for buffered operations is delayed until the next database access.

Transactional support is not guaranteed. Users must roll back changes manually if
an error occurs.

Do not perform updates to a LOB column that bypasses the buffering system
while in the same transaction as a buffer-enabled LOB. Performing an INSERT
statement can cause this.

Only one LOB object is allowed to perform buffered writes to a given LOB. Other
LOB objects that point to the same LOB raise an error if they attempt a buffered
write.

A LOB object taken from an OraParameter object raises an error if it is
buffer-enabled and bound to an OUT parameter.

Server Methods 10-139

EnableBuffering (OraLOB) Method

s The Clone method can raise an error for buffer enabled LOBs.

= Appending directly to the end of the LOB is allowed, but any write operation
whose offset extends beyond the end of the LOB and results in blank padding (for
CLOB) or zero padding (for BLOB) raises an error.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide

10-140 Oracle Objects for OLE Developer's Guide

Enqueue (OraAQ) Method

Enqueue (OraAQ) Method

Applies To
OraAQ Object on page 9-3
Description
Enqueues the message (OraAQMsg) contained in this object.
Usage
Msgid = Q.Enqueue
Remarks
On success, this method returns the message identifier as an array of bytes. Otherwise,
it returns an empty array (null).
Examples

Note: The following code samples are models for enqueuing
messages, but cannot be run as is.

A complete AQ sample can be found in the \OO40\VB\ SAMPLES\AQ
directory.

Enqueuing Messages of Type RAW

'Create an OraAQ object for the queue "DBQ"
Dim Q as OraAQ

Dim Msg as OraAQMsg

Dim OraSession as OraSession

Dim DB as OraDatabase

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")
Set DB = OraSession.OpenDatabase ("mydb", “scott/tiger" 0&)
Set Q = DB.CreateAQ("DBQ")

'Get a reference to the AQMsg object
Set Msg = Q.AQMsg
Msg.Value = "Enqueue the first message to a RAW queue."

'Enqueue the message
Q.Enqueue

'Enqueue another message.
Msg.Value = "Another message"
Q.Enqueue

'Enqueue a message with non-default properties.
Msg.Priority = ORAQMSG_HIGH_PRIORITY
Msg.Delay = 5

Msg.Value = "Urgent message"
Q.Enqueue
Msg.Value = "The visibility option used in the enqueue call" & _

Server Methods 10-141

Enqueue (OraAQ) Method

"is ORAAQ ENQ IMMEDIATE"
0.Visible = ORAAQ ENQ IMMEDIATE
Msgid = Q.Enqueue

'Enqueue Ahead of message Msgid_ 1
Msg.Value = "First Message to test Relative Message id"
Msg.Correlation = "RELATIVE MESSAGE_ID"

Msg.delay = ORAAQ_MSG_NO_DELAY

Msgid_1 = Q.Enqueue

Msg.Value = "Second message to test RELATIVE_MESSAGE_ID is queued" & _
" ahead of the First Message "

Q.RelMsgId = Msgid_1

Msgid = Q.Engueue

Enqueuing Messages of Oracle Object Types

'Prepare the message. MESSAGE_TYPE is a user defined type in the "AQ" schema
Set OraMsg = Q.AQMsg (23, "MESSAGE_TYPE", "SCOTT")
Set OraObj = DB.CreateOraObject ("MESSAGE_TYPE")

OraObj ("subject") .Value = "Greetings from 0040"
OraObj ("text").Value = "Text of a message originated from 0040"

Msgid = Q.Engueue

10-142 Oracle Objects for OLE Developer's Guide

Erase (OraLOB) Method

Erase (OraLOB) Method

Applies To

Description

Usage

Arguments

Remarks

OraBLOB, OraCLOB Objects on page 9-11

Erases the specified portion of the LOB value of this object starting at the specified
offset.

OraBlob.Erase amount, offset
OraClob.Erase amount, offset

The arguments for the method are:

Arguments Description

[in] amount An Integer specifying the maximum number of characters or
bytes to be erased.

[in] offset An Integer specifying absolute offset of the LOB value from which

[optional] to start erasing. Default value is 1.

Obtain either a row-level lock or object-level lock before calling this method. The
actual number of characters or bytes and the requested number differ if the end of the
LOB value is reached before erasing the requested number of characters or bytes. For
BLOB types, erasing means that zero-byte fillers overwrite the existing LOB value. For
CLOB types, erasing means that spaces overwrite the existing LOB value.

Server Methods 10-143

ExecuteSQL Method

ExecuteSQL Method

Applies To

Description

Usage

Arguments

Remarks

OraDatabase Object on page 9-28

Executes a single non-SELECT SQL statement or a PL/SQL block.

rowcount = oradatabase.ExecuteSQL(sql_statement)
rowcount = oradatabase.DbExecuteSQL(sql_statement)

The arguments for the method are:

Arguments Description

sgl_statement Any valid Oracle non-SELECT SQL statement.

Executes a SQL statement and returns the number of rows processed by that
statement.

The sgl_statement argument can be one continuous line with no breaks. If it is
necessary to break the line, be sure to use line feeds (ASCII 10). Do not use carriage
returns (ASCII 13), because the underlying Oracle Database functions treat carriage
returns as null terminators.

Executing the SQL statement generates a commit to the database by default. To avoid
this, use the BeginTrans method on the session object before using the ExecuteSQL
method.

You can use PL/SQL bind variables in conjunction with the OraParameters
collection.

When executing PL/SQL blocks or calling stored procedures, you must include a
BEGIN and END statement around your call as if you were executing an anonymous
PL/SQL block. This is equivalent to the EXECUTE command of SQL*Plus and
SQL*DBA.

Note: The ExecuteSQL method should be used with care because
any SQL statement or PL/SQL block that is executed can adversely
affect open dynasets. This is true if the OrabDatabase object used
for the ExecuteSQL method is the same as the one that was used
to create the dynaset. Use a different OraDatabase object if you
are unsure.

Normal dynaset operations can be adversely affected, if in transactional mode, a
database commit is issued. This can happen if a SQL commit statement, a Data Control
Language (DCL), or Data Definition Language (DDL) command is issued. DCL and
DDL SQL commands, such as CREATE, DROP, ALTER, GRANT, and REVOKE always

10-144 Oracle Objects for OLE Developer's Guide

ExecuteSQL Method

Data Type

Examples

force a commit, which in turn commits everything done before them. See the Oracle
Database SQL Language Reference for more details about DCL, DDL, and transactions.

Long Integer

Example: ExecuteSQL

This example uses the Add and Remove parameter methods, the ServerType
parameter property, and the ExecuteSQL database method to call the stored
procedure GetEmpName and the stored function Get Sal. Before running the example,
run the ORAEXAMP . SQL file to create Get EmpName and GetSal as well as other
necessary object types and LOBs in Oracle Database. Then, copy and paste this OO40
code example into the definition section of a form and run the program.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDatabase

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Add EMPNO as an Input/Output parameter and set its initial value.
OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_ INPUT
OraDatabase.Parameters ("EMPNO") .ServerType = ORATYPE_ NUMBER

'Add ENAME as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "ENAME", 0, ORAPARM OUTPUT
OraDatabase.Parameters ("ENAME") .ServerType = ORATYPE_VARCHAR2

'Add SAL as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
OraDatabase.Parameters ("SAL") .ServerType = ORATYPE_NUMBER

'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.

' This Stored Procedure can be found in the file ORAEXAMP.SQL.
OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
'Display the employee number and name.

'Execute the Stored Function Employee.GetSal to retrieve SAL.

' This Stored Function can be found in the file ORAEXAMP.SQL.

OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _
":SAL:=Employee.GetEmpSal (:EMPNO); end;")

'Display the employee name, number and salary.

MsgBox "Employee " & OraDatabase.Parameters("ENAME") .value & ", #" & _
OraDatabase.Parameters ("EMPNO") .value & ",Salary=" & _
OraDatabase.Parameters ("SAL") .value

'Remove the Parameters.
OraDatabase.Parameters.Remove "EMPNO"

Server Methods 10-145

ExecuteSQL Method

OraDatabase.Parameters.Remove "ENAME"

OraDatabase.Parameters.Remove "SAL"
End Sub

See Also:

» Oracle Database SQL Language Reference
» CreateDynaset Method on page 10-85

s OraParameters Collection on page 9-68

s Transactions Property on page 11-162

10-146 Oracle Objects for OLE Developer's Guide

Exist (OraCollection) Method

Exist (OraCollection) Method

Applies To
OraCollection Object on page 9-19
Description
Returns True if an element exists at a given index; otherwise, returns. Valid only for
OraCollection of Type ORATYPE_TABLE.
Usage
exists = OraCollection.Exist index
Arguments
The arguments for the method are:
Arguments Description
[out] exists A Boolean value specifying the existence status of the element.
[in] index An Integer specifying the index of the element.
Remarks
None.

Server Methods 10-147

Exp (OraNumber) Method

Exp (OraNumber) Method
Applies To
OraNumber Object on page 9-41
Description
Calculates e to the power of an OraNumber object.
Usage
OraNumber . Exp
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

10-148 Oracle Objects for OLE Developer's Guide

FetchOraRef Method

FetchOraRef Method

Applies To

OraDatabase Object on page 9-28
Description

Fetches a referenceable object into the cache and returns the associated OraRef object.
Usage

Set OraRef = OraDatabase.FetchOraRef (hex value)
Arguments

The arguments for the method are:

Arguments Description

hex_value A String containing the hexadecimal value of the REF.
Remarks

The hex_value argument can be obtained through the OraRef . HexValue property
or from an XML document generated by the OraDynaset . Get XML method.

See Also:
= HexValue (OraRef) Property on page 11-73
s GetXML Method on page 10-163

Server Methods 10-149

FieldSize Method

FieldSize Method

Applies To
OraField Object on page 9-33

Description
Returns the number of bytes stored in a LONG or LONG RAW field. Not available at

design time and read-only at run time.

Usage

data_size orafield.FieldSize()
data_size = orafield.DbFieldSize()

Remarks

Returns the number of bytes stored in a LONG or LONG RAW field, up to a value of
around 64 KB. If the field contains more than 64 KB, then the FieldSize method
returns -1.

Oracle Database does not return the length of columns that are greater than 64 KB; The
only way to determine the length is to retrieve the column. To conserve resources,
columns of lengths greater than 64 KB are not retrieved automatically.

Data Type
Long Integer
See Also:
s AppendChunk Method on page 10-28
s GetChunk Method on page 10-156
= OraField Object on page 9-33
s Type Property on page 11-164

10-150 Oracle Objects for OLE Developer's Guide

FindFirst, FindLast, FindNext, and FindPrevious Methods

FindFirst, FindLast, FindNext, and FindPrevious Methods

Applies To

Description

Usage

Remarks

OraDynaset Object on page 9-30

Find the indicated rows in the dynaset that matches the FindClause. The
FindClause can be any valid WHERE clause without the WHERE. If the current
FindClause matches the last clause from the previous find operation, then the
current FindClause is not parsed again.

These methods move the current row directly to a matched row without calling any
advisories except when the matched row is reached. If a matching row cannot be
found, the NoMatch property is set to True, and the current row remains the same.

oradynaset.FindFirst FindClause
oradynaset.FindLast FindClause
oradynaset.FindNext FindClause
oradynaset.FindPrevious FindClause

The following types of expressions can be used in the FindClause:
= Simple queries, such as "deptno = 20"
= Queries involving complex expressions, such as "sal + 100 >1000".

s SQL function calls, such as "UPPER (ename) = 'SCOTT' " or "NVL (comm, 0) =
o".

= Subqueries, such as "deptno in (select deptno fromdept) ".

The SQL LIKE operator does not work in multiple byte languages. Table or synonym
DUAL is required in the user's schema. Date values are retrieved and compared in
Visual Basic format, which is the format specified in the Control Panel. Therefore, date
comparisons fail if any other format such as the default Oracle format,
DD-MON-YYYY is used.

The SQL function TO_CHAR (date, fmt) cannot be used because the first argument
must be a date value in native Oracle format, and OO40 only handles ' string
dates'.

The SQL function TO_DATE converts a string to a date, but OO40 converts it back to a
string in Visual Basic format, as previously described, and the comparison may still
fail.

The FindPrevious and FindLast methods in a NO_CACHE dynaset do not work;
NoMatch is set to True.

Note: To avoid raising an error, check for EOF or BOF before calling a Find method.

Server Methods 10-151

FindFirst, FindLast, FindNext, and FindPrevious Methods

Examples

This example demonstrates the use of the FindFirst, FindNext, FindPrevious
methods. Copy and paste this code into the definition section of a form. Then, press
F5.

Sub Form_Load ()

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraFields As OraFields

Dim FindClause As String

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "SCOTT/TIGER", 0&)

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp where empno" & _
">= 7654 and empno <= 7844 ", ORADYN_NO_BLANKSTRIP)

Set OraFields = OraDynaset.Fields
OraDynaset .MoveFirst

'FindClause for job as MANAGER
FindClause = "job LIKE '$GER'"

OraDynaset.FindFirst FindClause

'NoMatch property set to true , if no rows found
If OraDynaset.NoMatch Then
MsgBox "Couldn't find rows "
else
MsgBox OraFields("ename").Value ' Should display BLAKE

OraDynaset.FindNext FindClause
MsgBox OraFields("ename").Value ' Should display CLARK

OraDynaset.FindPrevious FindClause
MsgBox OraFields("ename").Value ' Should display BLAKE

endif

End Sub

See Also:

s MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

= NoMatch Property on page 11-110
s OraDatabase Object on page 9-28

10-152 Oracle Objects for OLE Developer's Guide

Floor (OraNumber) Method

Floor (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the floor, that is, lowest value, of an OraNumber object.
Usage
OraNumber.Floor
Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

Server Methods 10-153

FlushBuffer (OraLOB) Method

FlushBuffer (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Flushes, that is, empties, the content of the LOB to the database if LOB buffering has
been enabled.

Usage

OraBlob.FlushBuffer
OraClob.FlushBuffer

See Also: EnableBuffering (OraLOB) Method on page 10-139

10-154 Oracle Objects for OLE Developer's Guide

GetDatabaseFromPool Method

GetDatabaseFromPool Method

Applies To

Description

Usage

Arguments

Remarks

OraSession Object on page 9-58

Returns the next available OraDatabase object from the pool.

GetDatabaseFromPool (long waitTime)

The arguments for the method are:

Arguments Description

waitTime The number of milliseconds this call waits for an object to be
available, if the pool contains the maximum number of objects and
all are used.

To retrieve an OraDatabase object from the pool, the GetDatabaseFromPool
method is called. This function returns a reference to an OraDatabase object. If the
pool does not contain the maximum number of objects allowed, and all objects in the
pool are used, then an additional OraDatabase object is created implicitly. In
addition, if a pool item contains an OraDatabase object that has been timed out, then
a new object is created and returned. The OraDatabase object obtained from the pool
is then marked as in use and is returned to the pool when the object is no longer
referenced by the application.

Exceptions are raised by this call if:

s The connection pool does not exist.
= The pool contains no objects.

= A time-out has occurred.

The LastServerErr property of the OraSession object contains the code for the
specific cause of the exception.

See Also: CreateDatabasePool Method on page 10-83

Server Methods 10-155

GetChunk Method

GetChunk Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraField Object on page 9-33

Returns a string containing the bytes of all or a portion of a LONG or LONG RAW field.

data_string = orafield.GetChunk (offset, numbytes)
data_string = orafield.DbGetChunk (offset, numbytes)

The arguments for the method are:

Arguments Description
offset The number of bytes of the field to skip before copying data.
numbytes The number of bytes to copy.

The GetChunk method typically retrieves the specified bytes from the local cache. If
data is not found in the cache, then the GetChunk method requests it from the
database. Data from all fields (except the LONG or LONG RAW field) in the dynaset are
retrieved and compared to the cached values for consistency. If any changes have
occurred since the last fetch, then the GetChunk method stops the operation which
causes an error and returns a Null string.

If a LONG or LONG RAW field is less than 65280 bytes, it is quicker to retrieve the data
using the Value property than using the GetChunk method. You cannot use the
GetChunk method on a LONG or LONG RAW field for which you have created an alias.

See "Migration from LONG RAW to LOB or BFILE" on page 5-5.

This example demonstrates the use of the GetChunk method to retrieve a LONG RAW
column of a database and save it as a file. This example expects a valid dynaset named
OraDynaset representing a table with a column named longraw. Copy and paste
this code into the definition section of a form. Call this procedure with a valid file
name.

Sub GetChunkExample (FName As String)
'Declare various variables
Dim CurSize As Integer, ChunkSize As Long

Dim I As Integer, FNum As Integer, CurChunk As String

'Set the size of each chunk
ChunkSize = 10240

frmChunk .MousePointer = HOURGLASS

10-156 Oracle Objects for OLE Developer's Guide

GetChunk Method

'Get a free file number
FNum = FreeFile

'Open the file
Open FName For Binary As #FNum

I=0
'Loop through all of the chunks. Oracle does not return the size of columns >
' 64KB. We should loop until the length of our block is less than we asked for.
Do
CurChunk = OraDynaset.Fields ("LONGRAW") .GetChunk (I * ChunkSize, ChunkSize)
CurSize = Len(CurChunk) 'Get the length of the current chunk.

Put #FNum, , CurChunk '"Write chunk to file.
I=1I+1
Loop Until CurSize < ChunkSize

'Close the file.
Close FNum

frmChunk.MousePointer = DEFAULT

End Sub

See Also:

= "Migration from LONG RAW to LOB or BFILE" on page 5-5
= AppendChunk Method on page 10-28

» FieldSize Method on page 10-150

s GetChunk Method on page 10-156

s Type Property on page 11-164

= Value Property on page 11-173

= OraField Object on page 9-33

Server Methods 10-157

GetChunkByte Method

GetChunkByte Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraField Object on page 9-33

Reads the data from the LONG or LONG RAW field into byte array and returns the size of
data read.

Size_read = orafield.GetChunkByte (ByteArray, offset, numbytes)

The arguments for the method are:

Arguments Description

ByteArray The first element of the ByteArray to hold the data.
offset The number of bytes in the field to skip before copying data.
numbytes The number of bytes to copy.

When possible, the GetChunkByte method retrieves the specified bytes from the local
cache. However, to conserve resources, some of the data might not be stored locally. In
these cases, the GetChunkByte method requests the necessary data from the database
as required. As part of this process, data from all fields (except the Long or LONG RAW
field) in the dynaset are retrieved and compared with the cached values for
consistency. If any changes have occurred since the fetch of the original partial data,
then the GetChunkByte method stops the operation and an error occurs. In the case
of an abort, the returned string is Null.

If a LONG or LONG RAW field is less than 65280 bytes in size, it is quicker to retrieve the
data using the Value property than using the GetChunkByte method. You cannot
use the GetChunkByte method on a LONG or LONG RAW field for which you have
created an alias.

This example demonstrates the use of the GetChunkByte method to retrieve a LONG
RAW column of a database and save it as a file. This example expects a valid dynaset
named OraDynaset representing a table with a column named longraw. Copy and
paste this code into the definition section of a form. Call this procedure with a valid
file name.

Sub GetChunkByteExample (FName As String)
'Declare various variables
Dim CurSize As Integer, ChunkSize As Long

Dim I As Integer, FNum As Integer, CurChunk() As Byte

'Set the size of each chunk

10-158 Oracle Objects for OLE Developer's Guide

GetChunkByte Method

ChunkSize = 10240
'Redim CurChunk Array
ReDim CurChunk (ChunkSize)

frmChunk .MousePointer = HOURGLASS

'Get a free file number
FNum = FreeFile

'Open the file
Open FName For Binary As #FNum

I=0

'Loop through all of the chunks

'Oracle does not return the size of columns > 64KB. We should loop until the
'length of our block is less than we asked for.

Do
CurSize = OraDynaset.Fields("type_longraw") .GetChunkByte (CurChunk(0), I *
ChunkSize, ChunkSize)

If CurSize > 0 AND CurSize < ChunkSize Then
ReDim CurChunk (CurSize)
CurSize = OraDynaset.Fields("type_longraw") .GetChunkByte (CurChunk(0), I *
ChunkSize, CurSize)
End If
Put #FNum, , CurChunk '"Write chunk to file.
I=1+1
Loop Until CurSize <= 0

'Close the file.
Close FNum

frmChunk.MousePointer = DEFAULT

End Sub

See Also: "Migration from LONG RAW to LOB or BFILE" on
page 5-5 for additional information

Server Methods 10-159

GetChunkByteEx Method

GetChunkByteEx Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraField Object on page 9-33

Reads the data from a LONG or LONG RAW field into a Variant and returns the amount
of data read.

amount_read = orafield.GetChunkByteEx (ByteArray, offset, numbytes)

The arguments for the method are:

Arguments Description

ByteArray The name of the Variant ByteArray to hold the data.
offset The number of bytes in the field to skip before copying data.
numbytes The number of bytes to copy.

When possible, the Get ChunkByteEx method retrieves the specified bytes from the
local cache. However, to conserve resources, some of the data might not be stored
locally. In these cases, the GetChunkByteEx method requests the necessary data from
the database as required. As part of this process, data from all fields (except the LONG
or LONG RAW field) in the dynaset are retrieved and compared to the cached values for
consistency. If any changes have occurred since the fetch of the original partial data,
then the GetChunkByteEx method aborts the operation with an error.

Because the GetChunkByteEx method takes in a Variant as the first parameter,
instead of the first element of the ByteArray as in the GetChunkByte method, only
the GetChunkByteEx method can be used within an ASP/IIS environment.

If a LONG or LONG RAW field is less than 65280 bytes in size, it is quicker to retrieve the
data using the Value property than using the GetChunkByteEx method.

See "Migration from LONG RAW to LOB or BFILE" on page 5-5.

Using the GetChunkByteEx Method to Retrieve a LONG RAW Example

This example demonstrates the use of the GetChunkByteEx method to retrieve a
LONG RAW column of a database and save it as a file. This example expects a valid
dynaset named OraDynaset representing a table with a column named type_
longraw. Copy and paste this code into the definition section of a form. Call this
procedure with a valid file name.

Sub GetChunkByteExExample (FName As String)
'Declare various variables
Dim bytesread As Integer, ChunkSize As Long ,

10-160 Oracle Objects for OLE Developer's Guide

GetChunkByteEx Method

bytearr() as byte

Dim I As Integer, FNum As Integer, CurChunk
'Set the size of each chunk

ChunkSize = 10240

frmChunk.MousePointer = HOURGLASS
'Get a free file number
FNum = FreeFile
'Open the file
Open FName For Binary As #FNum
I=0
'Loop through all of the chunks
'Oracle does not return the size of columns > 64KB.
'We should loop until the length of our block is
'less than we asked for.
Do
bytesread = OraDynaset.Fields("type_longraw") .GetChunkByteEx (CurChunk,_
I * ChunkSize, ChunkSize)
'redim byte array
redim bytearr (bytesread - 1)
bytearr = CurChunk
Put #FNum, , bytearr 'Write chunk to file.
I=I+1
Loop Until bytesread < ChunkSize
'Close the file.
Close FNum
frmChunk.MousePointer = DEFAULT
End Sub

Using the GetChunkByteEx Method with Active Server Pages (ASP) Example

'This example is for use with ASP (Active Server Pages)

<%@ LANGUAGE = VBScript %>

<%Response.ContentType = "image/JPEG"%$>

<%

Dim OraDatabase, Oradynaset

Dim Chunksize, BytesRead, CurChunkEx

'This assumes a pool of database connections have been created in the global.asa

Set OraDatabase = OraSession.getDatabaseFromPool (10)

'This assumes a table called "art_gallery" and

'displays JPEG images stored in the table

Set OraDynaset = OraDatabase.CreateDynaset("select art from art_gallery " & _
"where artist = 'Picasso'", 0)

BytesRead = 0
'Reading in 32K chunks
ChunkSize= 32768
Do
BytesRead = OraDynaset.Fields("picture") .GetChunkByteEx (CurChunkEx, _
1 * ChunkSize, ChunkSize)
if BytesRead > 0 then
Response.BinaryWrite CurChunkEx
end if
Loop Until BytesRead < ChunkSize
'Cleanup, remove all local references
Set OraDynaset = Nothing
Set Oradatabase = Nothing
%>

Server Methods 10-161

GetChunkByteEx Method

See Also: "Migration from LONG RAW to LOB or BFILE" on
page 5-5

10-162 Oracle Objects for OLE Developer's Guide

GetXML Method

GetXML Method

Applies to

Description

Usage

Arguments

Remarks

OraDynaset Object on page 9-30

Generates an XML document based on the contents of the dynaset.

XMLstring = oradynaset.GetXML(startrow, maxrows)

The arguments for the method are:

Arguments Description

startrow The row identifier indicating from which row to start (see
OraDynaset.RowPosition). The default value of this argument is
zero (the first row).

maxrows The maximum number of rows to retrieve (if the end of the record
set is reached; fewer rows may be returned). If this argument is
omitted, then all rows are returned.

This method returns a string containing the XML document.

The formatting of the output XML can be customized through the XML properties of
the OraDynaset and OraField objects.

See Also:

s OraDynaset Object on page 9-30

= OraField Object on page 9-33

s RowPosition Property on page 11-132

Server Methods 10-163

GetXMLToFile Method

GetXMLToFile Method

Applies To

Description

Usage

Arguments

Remarks

OraDynaset Object on page 9-30

Generates an XML document and writes it to a file.

oradynaset.GetXMLToFile (filename, startrow, maxrows)

The arguments for the method are:

Arguments Description

filename The file name that the XML is written to. Existing files by the same
name are overwritten.

startrow The row identifier indicating from which row to start (see
OraDynaset .RowPosition). The default value of this argument is
0 (the first row).

maxrows The maximum number of rows to retrieve (if the end of the record
set is reached; fewer rows may be returned). If this argument is
omitted, then all rows are returned.

There is no return value.

The formatting of the XML output can be customized through the XML properties of
the OraDynaset and OraField objects.

See Also:

= OraDynaset Object on page 9-30

= OraField Object on page 9-33

= RowPosition Property on page 11-132

10-164 Oracle Objects for OLE Developer's Guide

GetRows Method

GetRows Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraDynaset Object on page 9-30

Retrieves multiple records of a dynaset object into Variant safe array.

Array =OraDynaset.GetRows (num_rows, start, fields)

The arguments for the method are:

Arguments Description

num_rows [optional] An Integer representing the number of records to retrieve. Default
value is the total number of rows in the dynaset.

start [optional] An Integer representing the starting position of the dynaset from
which the GetRows operation begins. Default value is the current
position of the dynaset.

fields [optional] A Variant representing a single field name or field position, or an
array of field names or array of field position numbers. The
GetRows method returns only the data in these fields.

Use the GetRows method to copy records from a dynaset into a two-dimensional
array. The first subscript identifies the field and the second identifies the row number.
The Array variable is automatically dimensioned to the correct size when the
GetRows method returns the data.

Calling the GetRows method does not change the current row position of the dynaset
object.

The following example retrieves data using the GetRows method.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim row, col As Integer

Dim fields() As String

'Create the OraSession Object
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", _

"scott/tiger", 0&)

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

Server Methods 10-165

GetRows Method

'The following line executes GetRows to get all records
data_array = OraDynaset.GetRows ()

'Now display all the data in data_array
For row = 0 To UBound(data_array, 2)
For col = 0 To UBound(data_array, 1)
Debug.Print data_array(col, row)
Next col
Next row

'The following lines execute GetRows to get the data from
'the ename and empno fields starting at 5

ReDim fields(2)

fields(0) = "EMPNO"
fields (1) = "ENAME"

'Execute GetRows
data_array = OraDynaset.GetRows(, 5, fields)

'Now display all the data in data_array
For row = 0 To UBound(data_array, 2)
For col = 0 To UBound(data_array, 1)
Debug.Print data_array(col, row)
Next col
Next row

10-166 Oracle Objects for OLE Developer's Guide

Get_Value Method

Get_Value Method

Applies To

OraParamArray Object on page 9-47
Description

Returns the value of a particular element of the array at the specified index.
Usage

OraParamArray.Get_Value (array, index)
Arguments

The arguments for the method are:

Arguments Description

[in] array A String representing the name of the array.

[in] index An Integer representing the index value of the object.
Remarks

The OraParamArray.Get_Value method returns the value of the field as a
Variant. The value of data_value = oraparameter.Value sets the contents of
the parameter.

Note that fields of type DATE are returned in the default Visual Basic format as
specified in the Control Panel, even though the default Oracle date format is
"DD-MMM-YY".

The Value argument can be an Oracle Database 10g object, such as an OraBLOB
object. For Put_Value, a copy of the object is made at that point in time, and Get_
Value must be accessed to obtain a new object that refers to that index value. For
example, if iotype is ORATYPE_BOTH and an OraBLOB object obtained from a
dynaset is passed in as the input value, Get_Value needs to be called after the SQL
code has been executed to obtain the newly updated output value of the
ParamaterArray object.

Similar to a dynaset, the object obtained from the ParamaterArray Get_Value
property refers to the latest value for that ParamaterArray index. The Visual Basic
value Null can also be passed as a value. The Visual Basic value EMPTY can be used
for BLOB and CLOB to indicate an empty LOB, and for Object, VARRAY, and nested
table data types to indicate an object whose attributes are all Null.

This method is not available at design time and is read-only at run time.

When binding to RAW columns (ServerType ORATYPE_RAW_BIN), the value should
be a byte array.

Server Methods 10-167

HypCos (OraNumber) Method

HypCos (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the hyperbolic cosine of an OraNumber object.
Usage
OraNumber . HypCos
Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

10-168 Oracle Objects for OLE Developer's Guide

HypSin (OraNumber) Method

HypSin (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the hyperbolic sine of an OraNumber object.
Usage
OraNumber .HypSin
Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

Server Methods 10-169

HypTan (OraNumber) Method

HypTan (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the hyperbolic tangent of an OraNumber object.
Usage
OraNumber .HypTan
Remarks

The result of the operation is stored in an OraNumber object. There is no return value.

10-170 Oracle Objects for OLE Developer's Guide

Initlterator Method

Initlterator Method

Applies To
OraCollection Object on page 9-19

Description
Initializes an iterator to scan a collection.

Usage
OraCollection.InitIterator

Remarks
This method initializes an iterator to point to the beginning of a collection. If this
method is called for same Oracle Database 10g collection instance, then this method
resets the iterator to point back to the beginning of the collection. The
OraCollection object automatically reinitializes the iterator when the underlying
collection changes due to a dynaset row navigation or a parameter Refresh method.
After you call the InitIterator method, you need to call the IterNext method or
the first element in the collection repeats an extra time.

Examples

See "Example: OraCollection Iterator" on page 10-88.

See Also:
s IterNext Method on page 10-187
s IterPrev Method on page 10-188

Server Methods 10-171

IsEqual (OralntervalDS) Method

IsEqual (OraintervalDS) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalDS Object on page 9-35

Checks if the OraIntervalDs object is equal to an argument.

isEqual = OraIntervalDSObj.IsEqual value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, or an
OraIntervalDS object to be compared.

Returns a Boolean value: The value is True if the OraIntervalDS object is equal to
the argument; otherwise, it is False.

If valueis a Variant of type String, it must be in the following format: [+/-] Day
HH:MI:SSxFF.

If valueis a numeric value, the value provided should represent the total number of
days that the constructed OraIntervalDS object represents.

10-172 Oracle Objects for OLE Developer's Guide

IsEqual (OralntervalYM) Method

IsEqual (OralntervalYM) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalYM Object on page 9-37

Checks if the OraIntervalYM object is equal to an argument.

isEqual = OraIntervalYMObj.IsEqual value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, or an
OraIntervalYM object to be compared.

Returns a Boolean value: The value is True if the OraIntervalYM object is equal to
the argument; otherwise, it is False.

If valueis a Variant of type String, it must be in the following format: [+/-]
YEARS-MONTHS.

If valueis a numeric value, the value provided should represent the total number of
years that the constructed OraIntervalYM object represents.

Server Methods 10-173

IsEqual (OraNumber) Method

IsEqual (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Checks if an OraNumber object is equal to an argument value.

bool = OraNumber.IsEqual value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, OraNumber, or a numeric value.

Returns a Boolean value: The value is True if all values are equal; otherwise, it is
False.

10-174 Oracle Objects for OLE Developer's Guide

IsEqual (OraTimeStamp) Method

IsEqual (OraTimeStamp) Method

Applies To

Description

Usage

Arguments

Remarks

OraTimeStamp Object on page 9-62

Checks if the OraTimeStamp object is equal to an argument.

isEqual = OraTimeStampObj.IsEqual value format

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, Date, or OraTimeStamp to be
compared.

[in] [optional] Specifies the TIMESTAMP format string to be used to interpret

format value when value is of type String. If format is not specified, the

value is interpreted using the Format property of the current
OraTimeStamp object.

Returns a Boolean value: The value is True if the OraTimeStamp object is equal to the
argument; otherwise, it is False. The IsEqual method compares all the date-time
values stored in the OraTimeStamp object.

If valueis of type String, the string format must match the format specified in the
format argument. If format is not specified, the string format must match the
Format property of the current OraTimeStamp object.

Server Methods 10-175

IsEqual (OraTimeStampTZ) Method

IsEqual (OraTimeStampTZ) Method

Applies To

Description

Usage

Arguments

Remarks

OraTimeStampTZ Object on page 9-64

Checks if the OraTimeStampTZ object is equal to an argument.

isEqual = OraTimeStampTZOb.IsEqual value, format

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, Date, or OraTimeStampTZ to be
compared.

[in] [optional] Specifies the TIMESTAMP WITH TIME ZONE format string to be used

format to interpret value when valueis type String. If format is not

specified, value is interpreted using the Format property of the
current OraTimeStampTZ object.

Returns a Boolean value: The value is True if the OraTimeStampTZ object is equal to
the argument; otherwise, it is False. The IsEqual method only compares the
Coordinated Universal Time (UTC) date-time values stored in the OraTimeStampTZ
object; the time zone information is ignored.

Note: UTC was formerly known as Greenwich Mean Time.)

If valueis of type String, the string format must match the format specified in the
format argument. If format is not specified, the string format must match the
Format property of the current session OraTimeStampTZ object.

If valueis of Date type, the date-time value in Date is interpreted as the date-time
value in the time zone of the session.

10-176 Oracle Objects for OLE Developer's Guide

IsGreater (OralntervalDS) Method

IsGreater (OralntervalDS) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalDS Object on page 9-35

Checks if the OraIntervalDS object is greater than an argument.

isGreater = OralntervalDSObj.IsGreater value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, or an
OraIntervalDS object to be compared.

Returns a Boolean value: The value is True if the OraIntervalDS object is greater
than the argument; otherwise, it is False.

If valueis a Variant of type String, it must be in the following format: Day [+/-]
HH:MI:SSxFF.

If valueis a numeric value, the value provided should represent the total number of
days that the constructed OraIntervalDS object represents.

Server Methods 10-177

IsGreater (OralntervalYM) Method

IsGreater (OralntervalYM) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalYM Object on page 9-37

Checks if the OraInterval¥YM object is greater than an argument.

isGreater = OralntervalYMObj.IsGreater value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, or an
OraIntervalYM object to be compared.

Returns a Boolean value: The value is True if the OraIntervalYM object is greater
than the argument; otherwise, it is False.

If valueis a Variant of type String, it must be in the following format: [+/-]
YEARS-MONTHS.

If valueis a numeric value, the value provided should represent the total number of
years that the constructed OraIntervalYM object represents.

10-178 Oracle Objects for OLE Developer's Guide

IsGreater (OraNumber) Method

IsGreater (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Checks if an OraNumber object is greater than an argument value.

bool = OraNumber.IsGreater value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, OraNumber object, or a numeric value.

Returns a Boolean value: The value is True if the OraNumber object is greater than the
argument; otherwise, it is False.

Server Methods 10-179

IsGreater (OraTimeStamp) Method

IsGreater (OraTimeStamp) Method

Applies To

Description

Usage

Arguments

Remarks

OraTimeStamp Object on page 9-62

Checks if the OraTimeStamp object is greater than an argument.

isGreater = OraTimeStampObj.IsGreater value format

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, Date, or OraTimeStamp to be
compared.

[in] [optional] Specifies the TIMESTAMP format string to be used to interpret value

format when valueis of type String. If format is not specified, the value

is interpreted using the Format property of the current
OraTimeStamp object.

Returns a Boolean value: The value is True if the OraTimeStamp object is greater
than the argument; otherwise, it is False. The IsGreater method compares all the
date-time values stored in the OraTimeStamp object.

If valueis of type String, the string format must match the format specified in the
format argument. If format is not specified, the string format must match the
Format property of the current OraTimeStamp object.

10-180 Oracle Objects for OLE Developer's Guide

IsGreater (OraTimeStampTZ) Method

IsGreater (OraTimeStampTZ) Method

Applies To

Description

Usage

Arguments

Remarks

OraTimeStampTZ Object on page 9-64

Checks if the OraTimeStampTZ object is greater than an argument.

isGreater = OraTimeStampTZObj.IsGreater value, format

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, Date, or OraTimeStampTZ object to
be compared.

[in] [optional] Specifies the TIMESTAMP WITH TIME ZONE format string to be used

format to interpret a value when valueis type String. If format is not

specified, value is interpreted using the Format property of the
current OraTimeStampTZ object.

Returns a Boolean value: The value is True if the OraTimeStampTZ object is greater
than the argument; otherwise, it is False. The IsGreater method only compares the
UTC date-time values stored in the OraTimeStampTZ object; the time zone
information is ignored.

If valueis of type String, the string format must match the format specified in the
format argument. If format is not specified, the string format must match the
Format property of the current OraTimeStampTZ object.

If valueis of type Date, the date-time value in Date is interpreted as the date-time
value in the time zone of the session.

Server Methods 10-181

IsLess (OralntervalDS) Method

IsLess (OralntervalDS) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalDS Object on page 9-35

Checks if the OraIntervalDs object is less than an argument.

isLess = OralntervalDSObj.IsLess value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, or an
OraIntervalDS object to be compared.

Returns a Boolean value: The value is True if the OraIntervalDS object is less than
the argument; otherwise, it is False.

If valueis a Variant of type String, it must be in the following format: [+/-] Day
HH:MI:SSxFF.

If valueis a numeric value, the value provided should represent the total number of
days that the constructed OraIntervalDS object represents.

10-182 Oracle Objects for OLE Developer's Guide

IsLess (OralntervalYM) Method

IsLess (OralntervalYM) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalYM Object on page 9-37

Checks if the OraIntervalYM object is less than an argument.

isLess = OralntervalYMObj.IsLess value

The arguments for the method are:

Arguments Description

[in] value A Vvariant of type String, a numeric value, or an
OraIntervalYM object to be compared.

Returns a Boolean value: The value is True if the OraIntervalYM object is less than
the argument; otherwise, it is False.

If valueis a Variant of type String, it must be in the following format: [+/-]
YEARS-MONTHS.

If valueis a numeric value, the value provided should represent the total number of
years that the constructed OraIntervalYM object represents.

Server Methods 10-183

IsLess (OraNumber) Method

IsLess (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Checks if an OraNumber object is less than an argument value.

bool = OraNumber.IsLess value

The arguments for the method are:

Arguments Description

[in] value AVvariant of type String, OraNumber object, or a numeric value.

Returns a Boolean value: The value is True if the OraNumber object is less than the
argument; otherwise, it is False.

10-184 Oracle Objects for OLE Developer's Guide

IsLess (OraTimeStamp) Method

IsLess (OraTimeStamp) Method

Applies To
OraTimeStamp Object on page 9-62
Description
Checks if the OraTimeStamp object is less than an argument.
Usage
isLessr = OraTimeStampObj.IsLess value format
Arguments
The arguments for the method are:
Arguments Description
[in] value A Variant of type String, Date, or OraTimeStamp.
[in] [optional] Specifies the TIMESTAMP format string to be used to interpret value
format when value is of type String. If format is not specified, the value is
interpreted using the Format property of the current
OraTimeStamp object.
Remarks

Returns a Boolean value: The value is True if the OraTimeStamp is less than the
argument; otherwise, it is False. The IsLess method compares all the date-time
values stored in the OraTimeStamp object.

If valueis of type String, the string format must match the format specified in the
format argument. If format is not specified, the string format must match the
Format property of the current OraTimeStamp object.

Server Methods 10-185

IsLess (OraTimeStampTZ) Method

IsLess (OraTimeStampTZ) Method

Applies To

Description

Usage

Arguments

Remarks

OraTimeStampTZ Object on page 9-64

Checks if the OraTimeSTampTZ object is less than an argument.

isLess = OraTimeStampTZObj.IsLess value, format

The arguments for the method are:

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStampTZ.

[[in] [optional] Specifies the TIMESTAMP WITH TIME ZONE format string to be used
format to interpret value when valueis type String. If format is not

specified, value is interpreted using the Format property of the
current OraTimeStampTZ object.

Returns a Boolean value: The value is True if the OraTimeStampTZ object is less than
the argument; otherwise, it is False. IsLess only compares the UTC date-time
values stored in the OraTimeStampTZ object; the time zone information is ignored.

If valueis of type String, the string format must match the format specified in the
format argument. If format is not specified, the string format must match the
Format property of the current OraTimeStampTZ object.

If valueis of type Date, the date-time value in Date is interpreted as the date-time
value in the time zone of the session.

10-186 Oracle Objects for OLE Developer's Guide

IterNext Method

IterNext Method

Applies To
OraCollection Object on page 9-19

Description
Moves the iterator to point to the next element in the collection.

Usage
OraCollection.IterNext

Remarks
Using an iterator is faster than using an index when accessing collection elements.
If the iterator is pointing to the last element of the collection before to executing this
function, then calling this method makes the EOC property return True. Also, the
iterator is not changed. Check the EOC property when calling this method repetitively.
Call the TterNext method after the InitIterator method, or the first element in
the collection is repeated an extra time.

Examples

See "Example: OraCollection Iterator" on page 10-88.

See Also:
s IterPrev Method on page 10-188
s Initlterator Method on page 10-171

Server Methods 10-187

IterPrev Method

IterPrev Method
Applies To
OraCollection Object on page 9-19
Description
Moves the iterator to point to the previous element in the collection.
Usage
OraCollection.IterPrev
Remarks
Using an iterator is faster than using an index when accessing collection elements.
If the iterator is pointing to the first element of the collection prior to executing this
function, then calling this method makes the BOC property return True. Also, the
iterator is not changed. Check the BOC property when calling this method repetitively.
Examples

See "Example: OraCollection Iterator" on page 10-88.

See Also:
s IterNext Method on page 10-187
s Initlterator Method on page 10-171

10-188 Oracle Objects for OLE Developer's Guide

LastServerErrReset Method

LastServerErrReset Method

Applies To

OraDatabase Object on page 9-28

OraSession Object on page 9-58

Description

Clears the LastServerErr property to a zero value and sets the
LastServerErrText property to Null for the specified object.

Usage

oradatabase.LastServerErrReset
orasession.LastServerErrReset

Remarks

This method allows user programs to better determine which program request
generated the Oracle error.

See Also:

OraDatabase Object on page 9-28
OraSession Object on page 9-58
LastServerErr Property on page 11-87
LastServerErrText Property on page 11-90

Server Methods 10-189

Ln (OraNumber) Method

Ln (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the natural logarithm (base ¢) of an OraNumber object.
Usage
OraNumber.Ln
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method raises an error if the OraNumber object is less than or equal to zero.

10-190 Oracle Objects for OLE Developer's Guide

Log (OraNumber) Method

Log (OraNumber) Method

Applies To

OraNumber Object on page 9-41
Description

Calculates the logarithm of operand using the OraNumber object as the base.
Usage

OraNumber .Log operand
Arguments

The arguments for the method are:

Arguments Description

[in] operand A variant of type String, OraNumber, or a numeric value.
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method raises an error if the OraNumber object or operand is less than or equal
to zero.

Server Methods 10-191

MatchPos (OraLOB/BFILE) Method

MatchPos (OraLOB/BFILE) Method

Applies To

Description

Usage

Arguments

Remarks

OraBLOB, OraCLOB Objects on page 9-11
OraBFILE Object on page 9-9

Returns the position of the nth occurrence of the pattern starting at the offset.

position = OraBlob.MatchPos pattern, offset, nth
position = OraClob.MatchPos pattern, offset, nth
position = OraBFile.MatchPos pattern, offset, nth

The arguments for the method are:

Arguments Description

[in] pattern A string for CLOB, or byte array for BLOB or BFILE that is searched
for in the LOB.

[in] Offset The starting position in the LOB or BFILE for the search.

[in] nth The occurrence number.

This call is currently implemented by executing a PL/SQL block that uses DBMS_
LOB.INSTR().

10-192 Oracle Objects for OLE Developer's Guide

Mod (OraNumber) Method

Mod (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Gets the modulus from the division of the OraNumber object by operand.

OraNumber .Mod operand

The arguments for the method are:

Arguments Description

[in] operand A variant of type String, OraNumber, or a numeric value.

The result of the operation is stored in the OraNumber object. There is no return value.

If operandis equal to zero, an error is raised.

Server Methods 10-193

MonitorForFailover Method

MonitorForFailover Method

Applies To

Description

Usage

Arguments

Remarks

OraDatabase Object on page 9-28

Registers the failover notification handler of the application.

OraDatabase.MonitorForFailover FOSink, FOCtx

The arguments for the method are:

Arguments Description

[in] FOSink An IDispatch interface implementing the OnFailover method
which is notified in event of a failover.

[in] Foctx Context-specific information that the application wants passed into
the OnFailover method in the event of a failover.

To receive failover notifications, a notification handler must be registered with the
MonitorForFailover method. The notification handler must be an automation
object (a class module in Visual Basic) that implements the OnFailover method.

The syntax of the method is:

Public Function OnFailover (Ctx As Variant, fo_type As Variant,fo_event as Variant,
fo_OraDB as Variant)

Variants Description

[in] Ctx Passed into the MonitorForFailover method by the
application. Context-sensitive information that the application
wants passed in event of a failover.

[in] fo_type Failover type. This is the type of failover that the client has
requested. The values are:

= O0O40_FO_SESSION indicates only session failover
requested.

s 0040_FO_SELECT indicates select failover and session
failover requested.

10-194 Oracle Objects for OLE Developer's Guide

MonitorForFailover Method

Variants Description
[in] Failover event. This indicates the state of the failover. It has
fo event several possible values:
B s 0040_FO_BEGIN indicates that failover has detected a lost
connection and failover is starting.

= 0040_FO_END indicates successful completion of a failover.

s 0040_FO_ABORT indicates that a failover was
unsuccessful, and there is no option of retrying.

s 0040_FO_ERROR indicates that a failover was
unsuccessful, and gives the application the opportunity to
handle the error and retry the failover. The application can
retry the failover, by programming the OnFailover
method to return 0040_FO_RETRY.

s 0040_FO_REAUTH indicates that a user handle has been
reauthenticated. This applies to the situation where a client
has multiple user sessions on a single database connection.
During the initial failover, only the active user session is
failed over. Other sessions are failed over when the
application tries to use them. This is the value passed to the
callback during these subsequent failovers.

[in] fo_OraDB The OraDatabase object of the user session that is being failed
over. Valid only when the fo_event variant is 0040_FO_

REAUTH.

Examples

Failover Notification Example
See Example: Failover Notification on page 4-25.

See Also: "Application Failover Notifications" on page 4-24

Server Methods 10-195

MonitorStart (OraAQ) Method

MonitorStart (OraAQ) Method

Applies To
OraAQ Object on page 9-3

Description

Starts a monitor thread for dequeuing the messages specified.

Usage

Q.MonitorStart NotificationHandler, CallbackCtx, MsgFilterVal,MsgFilter

Arguments

The arguments for the method are:

Arguments

Description

[in] NotificationHandler

[in] callbackCtx

[in] [optional] MsgFilterVal

[in] [optional] MsgFilter

An IDispatch interface containing the callback method
(NotifyMe) which should be notified of new messages.

Context-specific information that the application wants to
pass to the NotifyMe method. This is passed into the
NotifyMe method whenever a new message satisfying the
user criteria is dequeued.

A byte array containing a value for the message filter.
Ignored if MsgFilteris ORAAQ_ANY.

An Integer constant specifying the selection criteria for
messages. Possible values for MsgFilter are:

= ORAAQ_ANY = 0 - Invokes the callback for any message
that arrives on the queue. This is the default value.

= ORAAQ_CONSUMER = 1 - Invokes the callback when the
message intended for the consumer given in the
MsgFilterValue is dequeued.

= ORAAQ_MSGID = 2 - Invokes the callback when message
with the identifier specified in MsgFilterval is
dequeued.

Remarks

NotifyMe is the callback method of the notification object. The syntax of the method

1S:

Public Sub NotifyMe (ByVal Ctx As Variant, ByVal Msgid As Variant)

Variants Description

[in] Ctx Value passed into the MonitorStart method by the application.
Context-sensitive information that the application wants to pass in
when messages are dequeued.

[in] Msgid The message ID of the newly dequeued message. The Msgid variant
is null when there is an error while monitoring.

10-196 Oracle Objects for OLE Developer's Guide

MonitorStart (OraAQ) Method

By default, the message is passed into Not i fyMe in Remove mode. The default
dequeue options can be overridden by setting the properties of this instance (OraAQ).

The MonitorStart method returns ORAAQ_SUCCESS or ORAAQ_FATIL.

See Also: "Monitoring Messages" on page 4-21

Server Methods 10-197

MonitorStop (OraAQ) Method

MonitorStop (OraAQ) Method

Applies To
OraAQ Object on page 9-3
Description
Stops the monitor thread that was started earlier.
Usage
Q.MonitorStop
Remarks

Does nothing if a monitor is not running.

See Also: "Monitoring Messages" on page 4-21

10-198 Oracle Objects for OLE Developer's Guide

MoveFirst, MovelLast, MoveNext, and MovePrevious Methods

MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

Applies To

Description

Usage

Remarks

OraDynaset Object on page 9-30

Change the cursor position to the first, last, next, or previous row within the specified
dynaset. These move methods move the cursor to the next (previous, and so on) valid
row, skipping rows that have been deleted.

oradynaset .MoveFirst
oradynaset .DbMoveFirst

oradynaset.MoveLast
oradynaset .DbMoveLast

oradynaset .MovePrevious
oradynaset .DbMovePrevious

oradynaset .MoveNext
oradynaset .DbMoveNext

The data control buttons map (from left to right or from top to bottom) to the
MoveFirst, MovePrevious, MoveNext, and MoveLast methods. The BOF and EOF
properties are never true when using the data control buttons.

When the first or last record is current, record movement does not occur if you use the
MoveFirst or MoveLast methods, respectively. You force the query to completion if
you use the MoveLast method on a dynaset.

If you use the MovePrevious method and the first record is current, there is no
current record and BOF is true. Using the MovePrevious method again causes an
error, although BOF remains True. If you use the MoveNext method and the last
record is current, there is no current record and EOF is true. Using the MoveNext
method again causes an error, although EOF remains true. Note that when the dynaset
is created with the ORADYN_NO_MOVEFIRST option, BOF and EOF are true whether the
dynaset is empty or not.

When you open a dynaset, BOF is False and the first record is current. If a dynaset is
empty, BOF and EOF are both true, and there is no current record.

If an EAdit or AddNew operation is pending and you use one of the Move methods
indirectly by way of the data control, then the Update method is invoked
automatically, although, it can be stopped during the Validate event.

If an EAdit or AddNew operation is pending and you use one of the Move methods
directly without the data control, pending Edit or AddNew operations cause existing
changes to be lost, although no error occurs.

Data is fetched from the database, as necessary, so performing a MoveFirst operation
followed by a MoveNext operation incrementally builds the mirrored (cached) local

Server Methods 10-199

MoveFirst, MovelLast, MoveNext, and MovePrevious Methods

set without requiring read-ahead of additional data. However, executing a MoveLast
operation requires that the entire query be evaluated and stored locally.

When a dynaset is attached to a data control, these methods first notify the validate
event of the data control that record motion is about to occur. The Validate handler
can deny the request for motion, in which case the request is ignored. If the record
pointer is successfully moved, then all custom controls attached to the data control are
notified automatically of the new record position.

Examples

This example demonstrates record movement within a dynaset using the MoveFirst,
MoveNext, MoveLast, MovePrevious methods. Copy and paste this code into the
definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select empno, ename from emp", 0&)

MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
OraDynaset.Fields("ename") .value

'Move to the next record and display it.

OraDynaset .MoveNext

MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " &
OraDynaset.Fields ("ename") .value

'Move to the last record and display it.

OraDynaset.MovelLast

MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " &
OraDynaset.Fields ("ename") .value

'Move to the previous record and display it.
OraDynaset .MovePrevious

MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
OraDynaset.Fields("ename") .value

End Sub

10-200 Oracle Objects for OLE Developer's Guide

MoveFirst, MovelLast, MoveNext, and MovePrevious Methods

See Also:

s AddNew Method on page 10-21

= BOF Property on page 11-11

s EOF Property on page 11-56

= Edit Method on page 10-134

» EditMode Property on page 11-51

s RecordCount Property on page 11-128
= Update Method on page 10-257

= Validate Event on page 12-9

Server Methods 10-201

MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

Applies To

Description

Usage

Remarks

Data Type

Examples

OraDynaset Object on page 9-30

Change the cursor position to the specified row within the specified dynaset.

oradynaset .MovePreviousn offset
oradynaset .MoveNextn offset
oradynaset .MoveRel offset
oradynaset .MoveTo offset

MoveNextn Method
Moves offset records forward.

MovePreviousn Method
Moves offset records backward.

MoveRel Method

Moves offset records relative to the current row. A positive value, represented by a
plus (+) sign, moves the cursor down the table, and a negative value moves the cursor
up the table.

MoveTo Method
Moves directly to row number offset.

EOF is set when the cursor moves beyond the end of a dynaset using MoveNextn,
MoveRel, or MoveTo methods. BOF is set when the cursor moves beyond the start of a
dynaset using MovePreviousn, MoveRel, or MoveTo methods. The MoveNextn,
MovePreviousn, and MoveTo methods accept offset as a positive integer only. The
MoveRel methods accepts offset as either a positive or a negative integer.

The MoveTo rownum always gets the same row unless the row has been deleted. If the
requested row has been deleted, the MoveTo method moves to the next valid row. The
MoveNextn, MovePreviousn, MoveRel, and MoveTo methods do not take into
account deleted rows, so be cautious when using these methods based on relative
positions of row numbers.

Long Integer

This example demonstrates the use of the MovePreviousn, MoveNextn, MoveRel,
and MoveTo methods. Copy and paste this code into the definition section of a form.
Then, press F5.

10-202 Oracle Objects for OLE Developer's Guide

MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

Private Sub Form_Load()

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraFields As OraFields

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "SCOTT/TIGER", 0&)

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp where empno" & _
">=7654 and empno <= 7844 ", ORADYN_NO LANKSTRIP)

Set OraFields = OraDynaset.Fields

'Move to 3rd record from the first record
OraDynaset.MoveNextn 3 'Should set EOF to true
MsgBox OraFields("ename").Value ' Should be display SCOTT

If OraDynaset.EOF = True Then
MsgBox "End of the record reached"
End If

'Move back from the current record by the offset 2
OraDynaset .MovePreviousn 2
MsgBox OraFields("ename").Value ' Should be display BLAKE

If OraDynaset.BOF = True Then
MsgBox "Start of the record reached"
End If

'Move relative in the forward direction
OraDynaset.MoveRel 2
MsgBox OraFields("ename").Value ' Should be display SCOTT

If OraDynaset.EOF = True Then
MsgBox "End of the record reached"
End If

'Move relative in the backward direction
OraDynaset .MoveRel -2
MsgBox OraFields("ename").Value ' Should be display BLAKE

If OraDynaset.BOF = True Then
MsgBox "Start of the record reached"
End If
'Move to the record position 4 in the current dynaset
OraDynaset .MoveTo 4

MsgBox OraFields("ename").Value ' Should be display SCOTT

End Sub

Server Methods 10-203

Mul (OralntervalDS) Method

Mul (OralntervalDS) Method

Applies To
OralntervalDS Object on page 9-35
Description
Multiplies the OraIntervalDS object by a multiplier.
Usage
OralIntervalDSObj.Mul multiplier
Arguments
The arguments for the method are:
Arguments Description
[in] multiplier A vVariant for type numeric value or an OraNumber object to be
used as the multiplier.
Remarks

The result of the operation is stored in the OraIntervalDS object, overwriting any
previous value. There is no return value.

10-204 Oracle Objects for OLE Developer's Guide

Mul (OralntervalYM) Method

Mul (OralntervalYM) Method

Applies To
OralntervalYM Object on page 9-37
Description
Multiplies the OraIntervalYM object by a multiplier.
Usage
OraIntervalYMObj.Mul multiplier
Arguments
The arguments for the method are:
Arguments Description
[in] multiplier A variant for type numeric value or an OraNumber object to be
used as the multiplier.
Remarks

The result of the operation is stored in the OraIntervalYM object, overwriting any
previous value. There is no return value.

Server Methods 10-205

Mul (OraNumber) Method

Mul (OraNumber) Method

Applies To

OraNumber Object on page 9-41
Description

Multiplies the OraNumber object by operand.
Usage

OraNumber .Mul operand
Arguments

The arguments for the method are:

Arguments Description

[in] operand A Vvariant of type String, OraNumber, or a numeric value.
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

10-206 Oracle Objects for OLE Developer's Guide

Neg (OralntervalDS) Method

Neg (OraintervalDS) Method

Applies To

OralntervalDS Object on page 9-35
Description

Negates the OraIntervalDS object.
Usage

OralIntervalDSObj.Neg
Remarks

The result of the operation is stored in the OraIntervalDS object, overwriting any
previous value. There is no return value.

Server Methods 10-207

Neg (OralntervalYM) Method

Neg (OralntervalYM) Method

Applies To

OralntervalYM Object on page 9-37
Description

Negates the OraIntervalYM object.
Usage

OralIntervalYMObj.Neg
Remarks

The result of the operation is stored in the OraInterval¥YM object, overwriting any
previous value. There is no return value.

10-208 Oracle Objects for OLE Developer's Guide

Neg (OraNumber) Method

Neg (OraNumber) Method
Applies To

OraNumber Object on page 9-41
Description

Negates an OraNumber object.
Usage

OraNumber .Neg
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Server Methods 10-209

Open (OraServer) Method

Open (OraServer) Method

Applies To
OraDatabase Object on page 9-28
OraServer Object on page 9-56
Description
Establishes a connection to an Oracle database.
Usage
OraServer.Open serverAlias
Arguments
The arguments for the method are:
Arguments Description
[in] serverAlias A String containing the Network alias used for connecting to the
database.
Remarks
If no arguments is supplied, this method attaches to a database that was detached
previously.
See Also:

= BeginTrans Method on page 10-43

s Close Method on page 10-63

s CommitTrans Method on page 10-66

s CreateAQ Method on page 10-79

s CreateCustomDynaset Method on page 10-80

s CreateTempBLOB/CLOB Method on page 10-114
s CreateDynaset Method on page 10-85

s CreateOraObject (OraDatabase) Method on page 10-97
= Describe Method on page 10-124

= ExecuteSQL Method on page 10-144

s FetchOraRef Method on page 10-149

s LastServerErrReset Method on page 10-189

= MonitorForFailover Method on page 10-194

= RemoveFromPool Method on page 10-232

10-210 Oracle Objects for OLE Developer's Guide

Open (OraBFILE) Method

Open (OraBFILE) Method
Applies To
OraBFILE Object on page 9-9
Description
Opens a BFILE.
Usage
OraBfile.Open
Remarks

This method should be called before accessing the BFILE value.

Server Methods 10-211

OpenDatabase Method

OpenDatabase Method

Applies To
OraSession Object on page 9-58
OraServer Object on page 9-56

Description
Establishes a user session to the database. It creates a new OraDatabase object using
the given database name, connection string, and specified options.

Usage
Set oradatabase = orasession.OpenDatabase (database_name, connect_string, options)
Set oradatabase = oraserver.OpenDatabase (connect_string, options)

Arguments

The arguments for the method are:

Arguments Description

database_name The Oracle Network specifier used when connecting the data
control to a database.

connect_string The user name and password to be used when connecting to an
Oracle database.

options A bit flag word used to set the optional modes of the database. If
options = 0, the default mode settings apply. The following table
shows the possible modes, which can be combined by adding their
respective values.

Constants
The following table lists constants and values for the options flag.

Constant Value Description

ORADB_DEFAULT &HO& Visual Basic Mode (Default):

Field (column) values not explicitly set are set to
Null when using the AddNew or Edit method.
The Null values override any database column
defaults. Wait on row locks when using Edit
("SELECT...FOR UPDATE").

Nonblocking SQL functionality is not enabled.

ORADB_ ORAMODE &H1& Oracle Mode:

Lets Oracle Database set the default field
(column) values when using the AddNew method.
The Oracle default column values are fetched
again from database immediately after an insert
or add operation.

Note: If you use triggers, fetch the data again
using the full Oracle Mode.

10-212 Oracle Objects for OLE Developer's Guide

OpenDatabase Method

Remarks

Constant Value Description

ORADB_NOWAIT &H2& Lock No-Wait Mode:

Does not wait on row locks. When you use the
Edit method to update a row that is locked by
another user or process, Lock No-Wait mode
results in an immediate return of an error code.

Note: This option only applies to the
OraDynaset object. It has no effect on
OraSQLStmt objects or ExecuteSQL calls. It
only raises an error in the case of a locked row.

ORADB_NO_REFETCH &HA& Oracle Mode (No Refetch):

Performs like the Oracle Mode, but does not
refetch data to the local cache. This boosts
performance.

Note: Use the No Refetch mode only when you
intend to insert rows without editing them,
because database column defaults cause
inconsistencies between database data and the
local cache. Attempting to edit after inserting in
this mode causes a Data has beenmodified
(4119) error.

ORADB_NONBLK &H8& Nonblocking Mode:

Turns on Nonblocking mode on SQL statement
execution. Nonblocking mode affects the SQL
statements processed using the ExecuteSQL,
CreateDynaset, or CreateSQL methods.

Note: This feature has been deprecated.

ORADB_ENLIST IN_MTS &H10& Enlist in MTS Mode:

Determine whether the OraDatabase object
enlists in the Microsoft Transaction Server (MTS)
mode.

ORADB_ENLIST FOR_ &H20& Enlist For Callbacks Mode:

CALLLBACK Turn on the event notification. This mode has to

be enabled to receive Failover Notifications.

These values can be found in the oraconst . txt file. For creating a valid database
alias, see the Oracle Net Services Administrator’s Guide.

Examples of valid connect_string arguments include:

m "scott/tiger"
] "system/manager"
- ll/ll

An OraConnection object is created automatically and appears within the
OraConnections collection of the session. Opening a database has the effect of
opening a connection but does not perform any SQL actions.

One possible connection error that could be returned is:

ORA-28001 "the password has expired"

The user can change the password using the ChangePassword method.

Server Methods 10-213

OpenDatabase Method

Examples

This example demonstrates how to programmatically create a dynaset and all of the
underlying objects. Copy and paste this code into the definition section of a form with
text boxes named txtEmpNo and txtEName. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select empno, ename from emp", 0&)

'Display the first record.
txtEmpNo = OraDynaset.Fields("empno").value
txtEName = OraDynaset.Fields("ename").value

End Sub

See Also:

= "Microsoft Transaction Server Support" on page 3-15
s ChangePassword (OraServer) Method on page 10-48
= "Application Failover Notifications" on page 4-24

» AddNew Method on page 10-21

» Edit Method on page 10-134

= ExecuteSQL Method on page 10-144

s ChangePassword (OraSession) Method on page 10-50
s OraConnection Object on page 9-27

= OraConnections Collection on page 9-66

10-214 Oracle Objects for OLE Developer's Guide

Originalltem Method

Originalltem Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraFields Collection on page 9-67

Returns the OraField object based on the original column name used in the SELECT
statement in the dynaset. Not available at design time and read-only at run time.

set OraField = OraFields.Originalltem(field_index)
set OraField = OraFields.Originalltem(original_name)

The arguments for the method are:

Arguments Description
field index Field index of the original column name.
original_ name Original field name specified in the SQL statement.

This is property is useful when a SQL statement contains ' schema.table.col' as
the Name of the field, and retrieves the field object specific to that original name.

The following example shows the use of the OriginalItem method. Copy and paste
this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset
Dim OraFields As OraFields

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

Set OraDynaset = OraDatabase.CreateDynaset ("select scott.emp.deptno," & _
"dept.deptno from scott.emp, scott.dept where dept.deptno = emp.deptno", 0&)

'Get the Field collection object
Set OraFields = OraDynaset.Fields

'get the original field object. Returns "scott.emp.deptno"

Server Methods 10-215

Originalltem Method

MsgBox OraField.OriginalName

Set OraField = OraFields.OriginalItem(1)

'Returns "dept.deptno"
MsgBox OraField.OriginalName

End Sub

10-216 Oracle Objects for OLE Developer's Guide

OriginalName

OriginalName

Applies To
OraField Object on page 9-33

Description
Returns the original column name used in the SELECT statement in the dynaset (as
opposed to the name of the field as it appears on the server returned by the Name
property). Not available at design time and read-only at run time.

Usage
field_name = Orafield.OriginalName

Remarks
The orafield.OriginalName method returns the name of the specified OraField
object. This returns the Original column name specified in the SQL statement during
dynaset creation. This property is useful when a SQL statement contains
'schema.table.col' as the Name of the field. It enables duplicate column names to
be referenced. (Duplicate column names can be avoided by using aliases in the SQL
statement.)

Examples

The following example shows the use of the OriginalName property. Copy and paste
this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset
Dim OraFields As OraFields

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

Set OraDynaset = OraDatabase.CreateDynaset ("select scott.emp.deptno," & _
"dept.deptno from scott.emp, scott.dept where dept.deptno = emp.deptno", 0&)

Set OraFields = OraDynaset.Fields

'Returns "DEPTNO"
MsgBox OraFields(0) .Name

'Returns "scott.emp.deptno"
MsgBox OraFields(0) .0OriginalName

'Returns "dept.deptno"
MsgBox OraFields (1) .0OriginalName

Server Methods 10-217

OriginalName

End Sub

10-218 Oracle Objects for OLE Developer's Guide

Power (OraNumber) Method

Power (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Raises the OraNumber object to the power of the operand.

OraNumber .Power operand

The arguments for the method are:

Arguments Description

[in] operand A variant of type String, OraNumber, or a numeric value.

The result of the operation is stored in the OraNumber object. There is no return value.

Server Methods 10-219

Put_Value Method

Put_Value Method

Applies To
OraParamArray Object on page 9-47
Description
Inserts values into the table parameter.
Usage
OraParamArray.Put_Value(value, index)
Arguments
The arguments for the method are:
Arguments Description
[in] value A Variant representing the value to insert.
[in] index An Integer representing the index value of the object.
Remarks

This method should be used to insert a value before accessing a row in a table. A row
does not contain a valid value until a row is assigned a value. Any reference to an
unassigned row in the table raises an OLE Automation error.

The value argument can be an Oracle Database 10g object, such as an OraBLOB. For
Put_Value, a copy of the object is made at that point in time, and Get_value must
be accessed to obtain a new object that refers to that index value. For example, if
iotype is ORATYPE_BOTH and an OraBLOB obtained from a dynaset is passed in as
the input value, Get_Value needs to be called after the SQL has been executed to
obtain the newly updated output value of the ParamaterArray.

Similar to a dynaset, the object obtained from ParamaterArray Get_Value method
always refers to the latest value for that ParamaterArray index. The Visual Basic
value Null can also be passed as a value. The Visual Basic value EMPTY can be used
for BLOB and CLOB to indicate an empty LOB, and for OBJECT, VARRAY and NESTED
TABLE to indicate an object whose attributes are all Nul1l.

When binding to RAW columns (ServerType ORATYPE_RAW_BIN) value should be a
byte array.

10-220 Oracle Objects for OLE Developer's Guide

Read (OraLOB/BFILE) Method

Read (OraLOB/BFILE) Method

Applies To

Description

Usage

Arguments

Remarks

Examples

OraBLOB, OraCLOB Objects on page 9-11
OraBFILE Object on page 9-9

Reads into a buffer a specified portion of a BLOB, CLOB, or BFILE value. Returns the
total amount of data read.

amount_read = OraBlob.Read buffer, chunksize
amount_read = OraClob.Read buffer, chunksize
amount_read = OraBfile.Read buffer, chunksize

The arguments for the method are:

Arguments Description

[out] buffer Variant of type character array for OraCLOB, Variant of type
byte array for OraBLOB, or OraBFILE from which the piece is read.

[in] [optional] An Integer specifying the amount to be read. Default value is the

chunksize size of the LOB. In bytes for OraBLOB or OraBF ILE; characters for
OraCLOB.

[out] amount_read An Integer representing the total amount of data read. In bytes for
OraBLOB or OraBFILE; characters for OraCLOB.

Reads the LOB or BFILE data from the offset specified by the Of £set property. For
multiple piece read operation, the PollingAmount property must be set to the value
of the total amount of data to be read, and the Status property must be checked for
the success of each piece operation.

Note: When reading a portion of a LOB, it is recommended that
you set the PollingAmount property, rather than using the
chunksize parameter. This avoids the possibility of raising an
error if the entire LOB is not read before to executing another LOB
method.

Be sure that you have installed the OraLOB Schema Objects as described in "Schema
Objects Used in LOB Data Type Examples" on page A-3.

Example: Multiple-Piece Read of a LOB

Dim OraSession As OraSession

Server Methods 10-221

Read (OraLOB/BFILE) Method

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim PartImage As OraBlob

Dim chunksize As Long

Dim AmountRead As Long

Dim buffer As Variant

Dim buf As String

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from part", 0&)

'Get OraBlob from OraDynaset
Set PartImage = OraDynaset.Fields("part_image").Value

'Set Offset and PollingAmount property for piecewise Read operation
PartImage.offset = 1

PartImage.PollingAmount = PartImage.Size

chunksize = 50000

'Get a free file number
FNum = FreeFile

'Open the file
Open "image.dat" For Binary As #FNum

'Do the first read on PartImage, buffer must be a variant
AmountRead = PartImage.Read(buffer, chunksize)

'put will not allow Variant type
buf = buffer
Put #FNum, , buf

' Check for the Status property for polling read operation
While PartImage.Status = ORALOB_NEED_DATA

AmountRead = PartImage.Read(buffer, chunksize)

buf = buffer

Put #FNum, , buf
Wend

Close FNum

Example: Single-Piece Read of a LOB

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim PartDesc As OraClob

Dim AmountRead As Long

Dim buffer As Variant

Dim buf As String

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

10-222 Oracle Objects for OLE Developer's Guide

Read (OraLOB/BFILE) Method

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Add PartDesc as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "PartDesc", Null, ORAPARM_OUTPUT
OraDatabase.Parameters ("PartDesc") .ServerType = ORATYPE_CLOB

'Execute the statement returning 'PartDesc'
OraDatabase.ExecuteSQL ("BEGIN select part_desc into :PARTDESC from" & _
"part where part_id = 1 for update NOWAIT; END;")

'Get 'PartDesc' from Parameters collection
Set PartDesc = OraDatabase.Parameters ("PartDesc") .Value

'Get a free file number
FNum = FreeFile

'Open the file.
Open "Desc.Dat" For Binary As #FNum

'Read entire CLOB value, buffer must be a Variant
AmountRead = PartDesc.Read(buffer)

'put will not allow Variant type
buf = buffer
Put #FNum, , buf

Close FNum

See Also:

s Offset (OraLOB/BFILE) Property on page 11-112
= PollingAmount Property on page 11-125

= Status (OraLOB/BFILE) Property on page 11-154

Server Methods 10-223

ReadChunk Method

ReadChunk Method
Applies To
OraField Object on page 9-33
Description
Returns a String containing the bytes of all or a portion of a LONG or LONG RAW field.
Usage
data_string = orafield.ReadChunk (offset, numbytes, bytesread)
Arguments
The arguments for the method are:
Arguments Description
offset The number of bytes in the field to skip before copying data.
numbytes The number of bytes to copy.
bytesread The number of bytes read.
Remarks

The ReadChunk method behaves like the GetChunk method, but it returns the actual
number of bytes read in the by tesread argument.

See Also:
= "Migration from LONG RAW to LOB or BFILE" on page 5-5
s GetChunk Method on page 10-156

10-224 Oracle Objects for OLE Developer's Guide

Refresh Method

Refresh Method

Applies To

Description

Usage

Remarks

OraDynaset Object on page 9-30
OraSQLStmt Object on page 9-60

Forces an immediate update of the dynaset given the current Connect,
DatabaseName, and SQL properties.

Forces an immediate update of the dynaset by reexecuting the SQL statement in the
SQL statement object.

oradynaset.Refresh
oradynaset.DbRefresh
orasglstmt.Refresh
orasglstmt.DbRefresh

This method cancels all edit operations (Edit and AddNew methods), executes the
current contents of the SQL statement buffer, and moves to the first row of the
resulting dynaset. Any dynaset objects created before issuing the Refresh method,
including bookmarks, record counts, and field collections, are considered invalid. The
OraConnection and OraSession objects associated with the previous dynaset
remain unchanged.

Performing a refresh operation with this method can be more efficient than refreshing
with a data control. This method also lets you execute a modified SQL statement
without creating a new dynaset or OraSQLStmt object.

The preferred refresh methods when changing parameter values are
oradynaset.Refresh or orasglstmt .Refresh, because required database
operations are minimized (SQL parsing, binding, and so on). This can improve
performance when only parameter values have changed.

If you call the Refresh method after assigning an invalid SQL statement to the SQL
property of a dynaset or SQL statement object, these objects remain valid. However, a
dynaset in this state does not permit any row or field operations. Bound controls also
exhibit unusual behaviors similar to those that occur when the standard Visual Basic
data control RecordSource is set to an invalid SQL statement at run time and then
refreshed.

You can regain the normal dynaset and SQL statement operations by refreshing the
object with a valid SQL statement. The Refresh method treats Null or empty SQL
statements as invalid.

Server Methods 10-225

Refresh Method

Examples

Refresh Method Example (OraDynaset)

This example demonstrates the use of parameters, the Refresh method, and the SQL
property to restrict selected records. Copy and paste this code into the definition
section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create a parameter with an initial value.
OraDatabase.Parameters.Add "job", "MANAGER", 1

'Create the OraDynaset Object.
Set OraDynaset =OraDatabase.CreateDynaset("select * from emp where job=:job",0&)

'Notice that the SQL statement is NOT modified.
MsgBox OraDynaset.SQL

'Currently, OraDynaset only contains employees whose job is MANAGER.
'Change the value of the job parameter.

OraDatabase.Parameters("job").Value = "SALESMAN"

'Refresh the dynaset.
OraDynaset.Refresh

'Currently, OraDynaset only contains employees whose job is SALESMAN.
'Notice that the SQL statement is NOT modified.
MsgBox OraDynaset.SQL

'Remove the parameter.
OraDatabase.Parameters.Remove ("job")

End Sub

Refresh Method Example (OraSQLStmt)

This example demonstrates the use of parameters, the Refresh method, and the SQL
property for the . object. Copy and paste this code into the definition section of a form.
Then, press F5.

Sub Form_Load ()
'Declare variables
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraSqglStmt As OraSQLStmt

10-226 Oracle Objects for OLE Developer's Guide

Refresh Method

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

OraDatabase.Parameters.Add "EMPNO", 7369, 1
OraDatabase.Parameters ("EMPNO") .ServerType = 2 'ORATYPE_NUMBER
OraDatabase.Parameters.Add "ENAME", 0, 2
OraDatabase.Parameters ("ENAME") .ServerType = 1 'ORATYPE_VARCHAR2

Set OraSglStmt = OraDatabase.CreateSQL("Begin Employee.GetEmpName (:EMPNO," & _
":ENAME) ; end;", 0&)

'Notice that the SQL statement is NOT modified.
MsgBox OraSglStmt.SQL

'Should display SMITH
MsgBox OraDatabase.Parameters ("ENAME") .Value

'Change the value of the empno parameter.
OraDatabase.Parameters ("EMPNO") .Value = 7499

'Refresh the dynaset.
OraSqglStmt.Refresh

'Should display ALLEN
MsgBox OraDatabase.Parameters ("ENAME") .Value

'Notice that the SQL statement is NOT modified.
MsgBox OraSqglStmt.SQL

'Remove the parameter.
OraDatabase.Parameters.Remove ("job")

End Sub

See Also:

s AddNew Method on page 10-21

s Connect Property on page 11-23

s CreateDynaset Method on page 10-85
= DatabaseName Property on page 11-37
» Edit Method on page 10-134

= OraConnection Object on page 9-27

= OraDynaset Object on page 9-30

= OraSession Object on page 9-58

= SQL Property on page 11-150

= RecordSource Property on page 14-31

Server Methods 10-227

Refresh (OraRef) Method

Refresh (OraRef) Method

Applies To

OraRef Object on page 9-52
Description

Refreshes the referenceable object from the most current database snapshot.
Usage

OraRef .Refresh

10-228 Oracle Objects for OLE Developer's Guide

Register Method

Register Method
Applies To
OraSubscription Object on page 9-61
Description
Activates the subscription.
Usage
orasubscription.Register
Remarks
When the specified database event is fired, the Not i fyDBevents method of the
dbevent handler that was passed in while creating this subscription is invoked.
Examples

See "Example: Registering an Application for Notification of Database Events" on
page 10-15 for a complete example.

See Also:

s "Database Events" on page 4-22

s OraSubscription Object on page 9-61

s OraSubscriptions Collection on page 9-70

Server Methods 10-229

Remove Method

Remove Method

Applies To
OraParameters Collection on page 9-68
Description
Removes a parameter from the OraParameters collection.
Usage
oraparameters.Remove (member_name)
Arguments
The arguments for the method are:
Arguments Description
member_name A vVariant specifying an integer subscript from 0 to Count 1, or
the parameter name.
Remarks
Instead of repeatedly removing and adding unwanted parameters, use the
AutoBindDisable and AutoBindEnable methods.
For an OraParameter of type ORATYPE_CURSOR, this method destroys the dynaset
object associated with the cursor, and clears the local cache temporary files.
Examples

See "Example: ExecuteSQL" on page 10-145.

See Also:

= Add Method on page 10-8

= AutoBindDisable Method on page 10-39
= AutoBindEnable Method on page 10-41
s OraDatabase Object on page 9-28

s OraParameter Object on page 9-50

s OraParameters Collection on page 9-68

10-230 Oracle Objects for OLE Developer's Guide

Remove (OraSubscriptions Collection) Method

Remove (OraSubscriptions Collection) Method

Applies To
OraSubscriptions Collection on page 9-70
Description
Removes a subscription from the OraSubscriptions collection.
Usage
orasubscriptions.Remove (member)
Arguments
The arguments for the method are:
Arguments Description
member A Variant specifying an integer subscript from 0 to Count, or the
subscription name.
Remarks

This method unregisters (removes) the subscription if it is active, and destroys the
subscription associated with it.

See Also:

s Add (OraSubscriptions Collection) Method on page 10-14
s OraSubscription Object on page 9-61

s OraSubscriptions Collection on page 9-70

Server Methods 10-231

RemoveFromPool Method

RemoveFromPool Method

Applies To
OraDatabase Object on page 9-28
Description
Removes the OraDatabase object from the pool.
Usage
OraDatabase.RemoveFromPool
Remarks

This method applies only to those OraDatabase objects that are retrieved from the
pool using the GetDatabaseFromPool method.

No exceptions or errors are raised if the OraDatabase object is not a member the
pool.

This method is useful for removing OraDatabase objects from the pool whose
connections are no longer valid.

See Also:

» CreateDatabasePool Method on page 10-83

s DestroyDatabasePool Method on page 10-128
= GetDatabaseFromPool Method on page 10-155

10-232 Oracle Objects for OLE Developer's Guide

ResetTrans Method

ResetTrans Method

Applies To

Description

Usage

Remarks

Examples

OraConnection Object on page 9-27
OraSession Object on page 9-58

Unconditionally rolls back all transactions and clears the transaction mode initiated by
BeginTrans method.

oraconnection.ResetTrans
orasession.ResetTrans

This method does not generate events or produce errors. Because the ResetTrans
method does not generate events, you cannot cancel the ResetTrans method in a
Validate event, as you can with a rollback or commit operation.

Note: If an OraDatabase object has been enlisted with Microsoft Transaction Server
(MTS) and is part of a global MTS transaction, this method has no effect.

This example demonstrates the use of the BeginTrans and ResetTrans methods to
group a set of dynaset edits into a single transaction. Copy and paste this code into the
definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.

Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Start Transaction processing.
OraDynaset.Session.BeginTrans

'Traverse until EOF is reached, setting each employee's salary to zero.
Do Until OraDynaset.EOF
OraDynaset.Edit
OraDynaset.Fields("sal").value = 0
OraDynaset .Update
OraDynaset .MoveNext
Loop
MsgBox "All salaries set to ZERO."

Server Methods 10-233

ResetTrans Method

'Currently, the changes have NOT been committed to the database.

'End Transaction processing.

'Using ResetTrans means the rollback cannot be canceled in the Validate event.
OraDynaset.Session.ResetTrans

MsgBox "Salary changes rolled back."

End Sub

See Also:

= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66

= OraSession Object on page 9-58

= Rollback Method on page 10-235

= Microsoft Transaction Server Support on page 3-15

= Validate Event on page 12-9

10-234 Oracle Objects for OLE Developer's Guide

Rollback Method

Rollback Method

Applies To

Description

Usage

Remarks

Examples

OraConnection Object on page 9-27
OraDatabase Object on page 9-28
OraSession Object on page 9-58

Ends the current transaction and rolls back all pending changes to the database.

oraconnection.Rollback
orasession.Rollback
oradatabase.Rollback

When this method is invoked, all OraDynaset objects that share the specified session
or connection are given the opportunity to cancel the rollback request. If they do not
cancel the request, they are advised when the rollback succeeds.

This feature is useful primarily for dynasets that are created as part of an Oracle Data
Control operation. For these dynasets, the Validate event is sent to allow them to
cancel the rollback request.

n OraConnection and OraDatabase:

The Rollback method rolls back all pending transactions within the specified
connection. This method has no effect if a transaction has not begun. When a
session-wide transaction is in progress, you can use this call to prematurely roll
back the transactions for the specified connection.

m OraSession:

The Rollback method rolls back all pending transactions within the specified
session. The Rol1lback method is valid only when a transaction has been started.
If a transaction has not been started, the use of the Rol1back method results in an
error.

Note: If an OraDatabase object has been enlisted with Microsoft
Transaction Server (MTS) and is part of a global MTS transaction,
this method has no effect.

This example demonstrates the use of the BeginTrans and Rol1back methods to
group a set of dynaset edits into a single transaction. Copy and paste this code into the
definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables
Dim OraSession As OraSession

Server Methods 10-235

Rollback Method

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.

Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Start Transaction processing.
OraDynaset.Session.BeginTrans

'Traverse until EOF is reached, setting each employee's salary to zero.
Do Until OraDynaset.EOF
OraDynaset .Edit
OraDynaset.Fields("sal").value = 0
OraDynaset .Update
OraDynaset .MoveNext
Loop
MsgBox "All salaries set to ZERO."

'Currently, the changes have NOT been committed to the database.
'End Transaction processing.

OraDynaset.Session.Rollback

MsgBox "Salary changes rolled back."

End Sub

See Also:

s AutoCommit Property on page 11-9

= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66

= OraSession Object on page 9-58

s OraConnection Object on page 9-27

= ResetTrans Method on page 10-233

= "Microsoft Transaction Server Support" on page 3-15

= Validate Event on page 12-9

10-236 Oracle Objects for OLE Developer's Guide

Round (OraNumber) Method

Round (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Rounds the OraNumber object to the specified decimal place.
Usage
OraNumber .Power decplaces
Arguments
The arguments for the method are:
Arguments Description
[in] decplaces An Integer specifying the number of digits to the right of the decimal
point from which to round. Negative values are allowed and signify
digits to the left of the decimal point.
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Server Methods 10-237

SetPi (OraNumber) Method

SetPi (OraNumber) Method

Applies To

OraNumber Object on page 9-41
Description

Sets an OraNumber object to Pi.
Usage

OraNumber . SetPi
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

10-238 Oracle Objects for OLE Developer's Guide

Sin (OraNumber) Method

Sin (OraNumber) Method
Applies To
OraNumber Object on page 9-41
Description
Calculates the sine of an OraNumber object given in radians.
Usage
OraNumber. Sin
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Server Methods 10-239

Sqrt (OraNumber) Method

Sqrt (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Calculates the square root of an OraNumber object.
Usage
OraNumber. Sqrt
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber object is less than zero.

10-240 Oracle Objects for OLE Developer's Guide

Sub (OralntervalDS) Method

Sub (OralntervalDS) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalDS Object on page 9-35

Subtracts an argument from the OraIntervalDS object.

OralIntervalDSObj.Sub operand

The arguments for the method are:

Arguments Description
[in] operand A Vvariant of type String, a numeric value, or an OraIntervalDs,
object to be subtracted.

The result of the operation is stored in the OraIntervalDS object, overwriting any
previous value. There is no return value.

If operandis a Variant of type String, it must be in the following format: [+/-]
Day HH:MI:SSxFF.

If operandis a numeric value, the value provided should represent the total number
of days that the constructed OraIntervalDS object represents.

Server Methods 10-241

Sub (OralntervalYM) Method

Sub (OralntervalYM) Method

Applies To

Description

Usage

Arguments

Remarks

OralntervalYM Object on page 9-37

Subtracts an argument from the OraIntervalYM object.

OralIntervalYMObj.Sub operand

The arguments for the method are:

Arguments Description
[in] operand A Vvariant of type String, a numeric value, or an OraIntervalYM
object to be subtracted.

The result of the operation is stored in the OraIntervalYM object, overwriting any
previous value. There is no return value.

If operandis a Variant of type String, it must be in the following format: [+/-]
YEARS-MONTHS.

If operandis a numeric value, the value provided should represent the total number
of years that the constructed OraIntervalYM object represents.

10-242 Oracle Objects for OLE Developer's Guide

Sub (OraNumber) Method

Sub (OraNumber) Method

Applies To

Description

Usage

Arguments

Remarks

OraNumber Object on page 9-41

Subtracts a numeric argument from the OraNumber object.

OraNumber.Sub operand

The arguments for the method are:

Arguments Description

[in] operand A variant of type String, type OraNumber, or a numeric value.

The result of the operation is stored in the OraNumber object. There is no return value.

Server Methods 10-243

Tan (OraNumber) Method

Tan (OraNumber) Method
Applies To
OraNumber Object on page 9-41
Description
Calculates the tangent of an OraNumber object given in radians.
Usage
OraNumber.Tan
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

10-244 Oracle Objects for OLE Developer's Guide

ToDate Method

ToDate Method

Applies To

Description

Usage

Remarks

Examples

OraTimeStamp Object on page 9-62
OraTimeStampTZ Object on page 9-64

Returns a copy of the Date type from an OraTimeStamp or OraTimeStampTZ object.

Set date = OraTimeStampObj.ToDate
Set date = OraTimeStampTZObj.ToDate

This method returns the datetime values in the Date data type. As a result, the
date-time values can be adjusted if they fall outside the range allowed by a VB date.

s For an OraTimeStamp object:

Returns a new Date object with the same date-time values as the current
OraTimeStamp object, but the nanosecond portion is truncated.

s Foran OraTimeStampTZ object:

Returns a new Date object with the same date-time values as the current
OraTimeStampTZ object, but the nanosecond portion and time zone portion are
truncated.

Using the OraTimeStamp Object

Dim OraTimeStamp As OraTimeStamp

'Create OraTimeStamp using a string

Set OraTimeStamp = OraSession.CreateOraTimeStamp ("1999-APR-29 12:10:23.444 AM", _
"YYYY-MON-DD HH:MI:SS.FF AM")

' returns a Date type with date value set to "1999-APR-29 12:10:23 AM"

' note that the fractional part is dropped
Set date = OraTimeStamp.ToDate

Using the OraTimeStampTZ Object

Dim OraTimeStampTZ As OraTimeStampTZ

'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2000-12-28" & _
"12:10:23.444 -07:00", "YYYY-MM-DD HH:MI:SS.FF TZH:TZM")

'returns a Date type with date value set to "2000-12-28 12:10:23"

Server Methods 10-245

ToDate Method

'note that Time Zone and nanosecond portions are dropped
Set date = OraTimeStampTZ.ToDate

10-246 Oracle Objects for OLE Developer's Guide

ToOraNumber (OralntervalDS) Method

ToOraNumber (OralntervalDS) Method

Applies To
OralntervalDS Object on page 9-35

Description
Returns an OraNumber object containing a value that represents the total number of
days that the OraIntervalDS object specifies.

Usage

Set OraNumberObj = OraIntervalDSObj.ToOraNumber

Server Methods 10-247

ToOraTimeStamp Method

ToOraTimeStamp Method

Applies To
OraTimeStampTZ Object on page 9-64
Description
Returns a copy of the OraTimeStamp object that has the date-time value in the
specified time zone of the current OraTimeStampTZ object.
Returns a copy of the OraTimeStamp object from an OraTimeStampTZ object.
Usage
Set OraTimeStampObj = OraTimeStampTZObj.ToOraTimeStamp
Remarks
Returns a new OraTimeStamp object that has the date-time values in the specified
time zone of the current OraTimeStampTZ object.
Examples

Dim OraTimeStampTZ As OraTimeStampTZ

'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2000-12-28" & _
"12:10:23.444 -07:00", "YYYY-MM-DD HH:MI:SS.FF TZH:TZM")

'returns a new OraTimeStamp object with date value equal to
' "2000-12-28 12:10:23.444"

'note that Time Zone portion is dropped

Set OraTimeStamp = OraTimeStampTZ.ToOraTimeStamp

10-248 Oracle Objects for OLE Developer's Guide

ToOraTimeStampLTZ Method

ToOraTimeStampLTZ Method

Applies To

Description

Usage

Remarks

Examples

OraTimeStampTZ Object on page 9-64

Returns a copy of the OraTimeStamp object that has the date-time value normalized
to the session time zone of the current OraTimeStampTZ object.

Set OraTimeStampObj = OraTimeStampTZObj.ToOraTimeStampLTZ

Returns a new OraTimeStamp object that has the date-time values normalized to the
session time zone of the current OraTimeStampTZ object.

Dim OraTimeStampTZ As OraTimeStampTZ

'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29" & _
"12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TzZM")

'Assuming that the Session Time Zone is "-08:00"
'returns a new OraTimeStamp object with date value normalized to

'session Time Zone, "2003-APR-29 11:00:00"

Set OraTimeStamp = OraTimeStampTZ.ToOraTimeStampLTZ

Server Methods 10-249

ToOraTimeStampTZ Method

ToOraTimeStampTZ Method

Applies To
OraTimeStamp Object on page 9-62
Description
Returns a copy of the OraTimeStampTZ object from an OraTimeStamp object.
Usage
Set OraTimeStampTZObj = OraTimeStampObj.ToOraTimeStampTZ
Remarks
Returns a new OraTimeStampTZ object with the same date-time values as the current
OraTimeStamp object. The time zone information in the returned OraTimeStampTZ
object is set to the session time zone.
Examples

Dim OraTimeStamp As OraTimeStamp

'Create OraTimeStamp using a string
Set OraTimeStamp = OraSession.CreateOraTimeStamp ("1999-APR-29" & _
"12:10:23.444 AM", "YYYY-MON-DD HH:MI:SS.FF AM")

' assuming that the session Time Zone is "-07:00" returns a new

' OraTimeStampTZ object with date value equal to "1999-APR-29 12:10:23 -07:00"
Set OraTimeStampTZ = OraTimeStamp.ToOraTimeStampTZ

10-250 Oracle Objects for OLE Developer's Guide

ToUniversalTime Method

ToUniversalTime Method

Applies To

Description

Usage

Remarks

Examples

OraTimeStampTZ Object on page 9-64

Returns a copy of the OraTimeStampTZ object that has the date-time value
normalized to Coordinated Universal Time (UTC) of the current OraTimeStampTZ
object.

Set OraTimeStampTZObjl = OraTimeStampTZObj.ToUniversalTime

Returns a new OraTimeStampTZ object that has the date-time values normalized to
the UTC of the current OraTimeStampTZ object.

Note: UTC was formerly known as Greenwich Mean Time.

Dim OraTimeStampTZ As OraTimeStampTZ
Dim OraTimeStampTZ_UTC As OraTimeStampTZ

'Create OraTimeStampTZ using a string
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29 " & _
"12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")

'returns a new OraTimeStampTZ object with date value normalized to

'UTC time, "2003-APR-29 19:00:00 00:00"
Set OraTimeStampTZ_UTC = OraTimeStampTZ.ToUniversalTime

Server Methods 10-251

Trim (OraCollection) Method

Trim (OraCollection) Method

Applies To
OraCollection Object on page 9-19
Description
Trims a given number of elements from the end of the collection.
Usage
OraCollection.Trim size
Arguments
The arguments for the method are:
Arguments Description
[in] size An Integer specifying the number of elements to trim.
Remarks
The elements are removed from the end of the collection. An error is returned if the
size is greater than the current size of the collection.
Examples

The following example illustrates the Trim method. Before running the sample code,
make sure that you have the necessary data types and tables in the database. See
"Schema Objects Used in OraCollection Examples" on page A-3.

Example: Trim Method for the OraCollection Object

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection

'create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset ("select * from department", 0&)

'retrieve a Enames column from Department.
'Here Value property of OraField object returns EnameList OraCollection

set EnameList = OraDynaset.Fields("Enames").Value

'display the size of the collection
msgbox EnameList.Size

10-252 Oracle Objects for OLE Developer's Guide

Trim (OraCollection) Method

'Trim the EnameList collection by one. Before that row level
'lock should be obtained

OraDynaset.Edit
EnameList.Trim 1
OraDynaset .Update

'display the new size of the collection
msgbox EnameList.Size

Server Methods 10-253

Trim (OraLOB) Method

Trim (OraLOB) Method

Applies To

Description

Usage

Arguments

Remarks

OraBLOB, OraCLOB Objects on page 9-11

Trims or truncates the LOB value to shorter length.

OraBlob.Trim NewLen
OraClob.Trim NewLen

The arguments for the method are:

Arguments Description

[in] NewLen An Integer specifying the new length of the LOB value; must be less
than or equal to the current length.

Either a row-level lock or object-level lock should be obtained before calling this
method.

Note: When manipulating LOBs using LOB methods, such as the
Write and CopyFromFile, the LOB object is not automatically
trimmed if the length of the new data is shorter than the old data.
Use the Trim (OraLOB) method to shrink the LOB object to the size
of the new data.

10-254 Oracle Objects for OLE Developer's Guide

Trunc (OraNumber) Method

Trunc (OraNumber) Method

Applies To
OraNumber Object on page 9-41
Description
Truncates an Oracle number at a specified decimal place.
Usage
OraNumber.Trunc decplaces
Arguments
The arguments for the method are:
Arguments Description
[in] decplaces An Integer specifying the number of digits to the right of the decimal
point from which to truncate. Negative values are allowed and signify
digits to the left of the decimal point.
Remarks

The result of the operation is stored in the OraNumber object. There is no return value.

Server Methods 10-255

Unregister Method

Unregister Method

Applies To
OraSubscription Object on page 9-61

Description
Unregisters this subscription, which turns off notifications on the specific database
event.

Usage
orasubscription.UnRegister

Remarks
Unregistering a subscription ensures that the user does not receive notifications related
to that subscription or database event in the future. If the user wants to resume
notification, then the only option is to re-register the subscription.

Examples

Registering an Application for Notification of Database Events Example
See "Example: Registering an Application for Notification of Database Events" on

page 10-15.
See Also:
s "Database Events" on page 4-22
s OraSubscription Object on page 9-61
s OraSubscriptions Collection on page 9-70

10-256 Oracle Objects for OLE Developer's Guide

Update Method

Update Method

Applies To
OraDynaset Object on page 9-30

Description
Saves the copy buffer to the specified dynaset.

Usage

oradynaset.Update
oradynaset .DbUpdate

Remarks

The Update method completes an AddNew or Edit operation and immediately
commits changes to the database unless a BeginTrans operation is pending for the
session.

Once the Update method is called on a given row in a dynaset in a global transaction
(thatis, a BeginTrans operation is issued), locks remain on the selected rows until a
CommitTrans or Rollback method is called.

The mirrored data image is also updated so that the query does not have to be
reevaluated to continue browsing and updating data. The method used for updating
the mirror image is subject to the options flag that was passed to the OpenDatabase
method that created the OraDatabase object of this dynaset.

If this dynaset is attached to a data control, then the Validate event of the data
control code may optionally cancel the update request. If the update completes, then
all bound controls associated with the dynaset are notified of the update so they can
reflect the data changes automatically.

Examples

This example demonstrates the use of AddNew and Update methods to add a new
record to a dynaset. Copy and paste this code into the definition section of a form.
Then, press F5.

Sub Form_Load ()
'Declare variables
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

'Begin an AddNew.
OraDynaset . AddNew

Server Methods 10-257

Update Method

'Set the field(column) values.

OraDynaset.Fields ("EMPNO") .Value = "1000"
OraDynaset.Fields ("ENAME") .Value = "WILSON"
OraDynaset.Fields("JOB").Value = "SALESMAN"
OraDynaset.Fields("MGR") .Value = "7698"
OraDynaset.Fields ("HIREDATE") .Value = "19-SEP-92"
OraDynaset.Fields("SAL") .Value = 2000
OraDynaset.Fields("COMM") .Value = 500

OraDynaset.Fields ("DEPTNO") .Value = 30

'End the AddNew and Update the dynaset.
OraDynaset .Update

End Sub

See Also:

= AddNew Method on page 10-21

» Edit Method on page 10-134

s OpenDatabase Method on page 10-212
s OraDatabase Object on page 9-28

= Validate Event on page 12-9

10-258 Oracle Objects for OLE Developer's Guide

Update (OraRef) Method

Update (OraRef) Method

Applies To

Description

Usage

Remarks

Examples

OraRef Object on page 9-52

Flushes the modified referenceable object to the database.

OraRef .Update

The Update method completes the Edit operation and commits the changes to the
database unless a BeginTrans operation is pending for the session.

The following example updates the attributes of the PERSON referenceable object in the
database. Before running the sample code, make sure that you have the necessary data
types and tables in the database. See "Schema Objects Used in the OraObject and
OraRef Examples" on page A-3.

Updating Attribute Values: Dynaset Example
Dim OraSession as OraSession

Dim OraDatabase as OraDatabase

Dim OraDynaset as OraDynaset

Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value property of OraField
'object returns Person OraRef
set Person = OraDynaset.Fields("aperson") .Value

'locks the Person object in the server for modifying its attributes
Person.Edit

Person.Name = "Eric"

Person.Age = 35

'Update method flushes the modified referenceable object in the server
Person.Update

Updating Attribute Values: Parameter Example

Dim OraSession as OraSession

Server Methods 10-259

Update (OraRef) Method

Dim OraDatabase as OraDatabase
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create an OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM OUTPUT, ORATYPE_ REF, "PERSON"

'execute the sgl statement which selects person from the customers table
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
"where account = 10; END;")

'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value

'locks the Person object in the server for modifying its attributes
Person.Edit

Person.Name = "Eric"
Person.Age = 35

'Update method flushes the modified referenceable object in the server
Person.Update

10-260 Oracle Objects for OLE Developer's Guide

Write (OraLOB) Method

Write (OraLOB) Method

Applies To

Description

Usage

Arguments

Remarks

OraBLOB, OraCLOB Objects on page 9-11

Writes a buffer into the BLOB or CLOB value of this object and returns the total amount
of the data written.

amount_written = OraBlob.Write buffer, chunksize, piece
amount_written = OraClob.Write buffer, chunksize, piece

The arguments for the method are:

Arguments Description

in] buffer The character array for an OraCLOB object or byte array for the
OraBLOB object from which the piece is written.

[in] [optional] An Integer specifying the length of the buffer, in characters for

chunksize an OraCLOB object and bytes for an OraBLOB or OraBF ILE object.

Default value is the size of the buffer argument.

[in] [optional] piece An Integer specifying which piece of the buffer is being written.
Possible values include:

= ORALOB_ONE_PIECE - Buffer is written in a single piece. This
is the default.

= ORALOB_FIRST_PIECE - Buffer represents the piece of LOB
data to be written.

= ORALOB_NEXT_PIECE - Buffer represents the next piece of
LOB data to be written.

= ORALOB_LAST_PIECE - Buffer represents the last piece of
LOB data to be written.

[out] amount_written An Integer representing the amount written, in characters for an
OraCLOB object and bytes for an OraBLOB or OraBF ILE object.

Obtain either a row-level lock or object-level lock before calling the Write method.
This method writes the BLOB or CLOB data from the offset specified by the Of £set
property. For a multiple-piece write operation, the Pol1ingAmount property can be
set to the value of the total amount of data to be written, and the Status property
must be checked for the success of each piece operation. If the total amount is not
known, then the PollingAmount property can be set to 0 and polling still occurs as
long as the piece type is not OraLob_piece.

For the last piece, set the piece argument to ORALOB_LAST_PIECE. You must write
the polling amount in bytes or characters. It is not possible to terminate the Write
operation early if the Pol1lingAmount property is not zero.

Server Methods 10-261

Write (OraLOB) Method

When the OraLOB Pollingamount = 0 but the piece type on OraLOB Write is not
ORALOB_ONE_PIECE, polling still occurs. Polling completes when ORALOB_LAST_
PIECE is sent as an argument to a call to the Write method. This is useful when
calling the OraCLOB.Write method in a variable-width character set, when counting
the total amount of characters ahead of time may be costly.

Note: When manipulating LOBs using LOB methods, such as the
Write and CopyFromFile, the LOB object is not automatically
trimmed if the length of the new data is shorter than the old data.
Use the Trim (OraLOB) method to shrink the LOB object to the size
of the new data.

Examples

Be sure that you have installed the OraLOB Schema Objects as described in "Schema
Objects Used in LOB Data Type Examples" on page A-3.

Multiple-Piece Write of a LOB Example

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim PartDesc As OraClob

Dim buffer As String

Dim chunksize As Long

Dim amount_written As Long

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object

Set OraDynaset = OraDatabase.CreateDynaset("select * from part", 0&)
Set PartDesc = OraDynaset.Fields("part_desc").Value

chunksize = 32000

'Re adjust the buffer size
buffer = String$ (chunksize, 32)
FNum = FreeFile

'Open the file.
Open "partdesc.dat" For Binary As #FNum

'set the offset and PollingAmount properties for piece wise
'Write operation

PartDesc.offset = 1

PartDesc.PollingAmount = LOF (FNum)

remainder = LOF (FNum)

'Lock the row for write operation
OraDynaset.Edit
Get #FNum, , buffer

'Do first write operation
amount_written = PartDesc.Write(buffer, chunksize, ORALOB_FIRST PIECE)

While PartDesc.Status = ORALOB_NEED_ DATA

10-262 Oracle Objects for OLE Developer's Guide

Write (OraLOB) Method

remainder = remainder - chunksize
If remainder < chunksize Then
piecetype = ORALOB_LAST PIECE
chunksize = remainder
Else
piecetype = ORALOB_NEXT PIECE
End If
Get #FNum, , buffer

amount_written = PartDesc.Write(buffer, chunksize, piecetype)
Wend

Close FNum

'call Update method to commit the transaction
OraDynaset .Update

Single-Piece Write of a LOB Example
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim PartImage As OraBlob

Dim buffer() As Byte

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Add PartDesc as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "PartImage", Null, ORAPARM_OUTPUT
OraDatabase.Parameters ("PartImage") .ServerType = ORATYPE_BLOB

'Begin the transaction
OraSession.BeginTrans

'Execute the statement returning 'PartDesc'
OraDatabase.ExecuteSQL ("BEGIN select part_image into :PARTIMAGE" & _
"from part where part_id = 1 for update NOWAIT; END;")

'Get 'PartDesc' from Parameters collection
Set PartImage = OraDatabase.Parameters("PartImage").Value

'Get a free file number
FNum = FreeFile

'Open the file.
Open "PartImage.Dat" For Binary As #FNum

'Re adjust the buffer size to hold entire file data
ReDim buffer (LOF (FNum))
Get #FNum, , buffer

'Do one write operation
amount_written = PartImage.Write(buffer)

Close FNum
MsgBox "Amount written to the LOB data is " & amount_written

Server Methods 10-263

Write (OraLOB) Method

'Ends the transaction
OraSession.CommitTrans

See Also:

Offset (OraLOB/BFILE) Property on page 11-112
PollingAmount Property on page 11-125

Status (OraLOB/BFILE) Property on page 11-154
Trim (OraLOB) Method on page 10-254

Writing LOB Data on page 4-6

10-264 Oracle Objects for OLE Developer's Guide

11

Server Properties

This chapter describes the Oracle Objects for OLE Server properties.

For an introduction to Server Objects, see "Oracle Objects for OLE In-Process
Automation Server" on page 1-2.

This chapter contains these topics:
= Server Properties: A to F

= Server Properties: Eto L

= Server Properties: M to O

= Server Properties: P to T

m Server Properties: U to Z

Server Properties: Ato F
= Address (OraAQAgent) Property

» ArraySize Property

s AutoCommit Property

s BOC Property

= BOF Property

= Bookmark Property

= BookMarkable Property

s CacheBlocks Property

s CacheChanged Property

s CacheMaximumSize Property
s CacheOptimalSize Property

s CacheSliceSize Property

s CacheSlicesPerBlock Property
s Client Property

s Connect Property

= Connection Property

s ConnectionOK Property

s Connections Property

Server Properties 11-1

Consumer (OraAQ) Property
Correlate (OraAQ) Property
Correlation (OraAQMsg) Property
Count Property

Count (OraMetaData) Property
Count (OraObject/Ref) Property
Database Property
DatabaseName Property
Databases Property

Day (OraTimeStamp) Property
Day (OraTimeStampTZ) Property
Days Property
DbPoolCurrentSize Property
DbPoollnitialSize Property
DbPoolMaxSize Property

Delay (OraAQMsg) Property
DequeueMode (OraAQ) Property
DequeueMsgld (OraAQ) Property
DirectoryName Property
DynasetOption Property

Server Properties: Eto L

EditMode Property

EditOption (OraRef) Property
ElementType Property

EOC Property

EOF Property

ExceptionQueue Property

Exists Property

Expiration (OraAQMsg) Property
FetchLimit Property

FetchSize Property

FieldIndex Property

FieldName Property
FieldOriginalName Property
FieldOriginalNamelndex Property
Fields Property

FileName Property

11-2 Oracle Objects for OLE Developer's Guide

Filter Property

Format (OraNumber) Property
Format (OraTimeStamp) Property
Format (OraTimeStampTZ) Property
HexValue (OraRef) Property

Hour (OraTimeStamp) Property
Hour (OraTimeStampTZ) Property
Hours Property

IsLocator (OraCollection) Property
IsMDObject Property

IsNull (OraCollection) Property
IsNull (OraLOB/BFILE) Property
IsNull (OraObject) Property
IsOpen (OraBFILE) Property
IsRefNull (OraRef) Property
LastErrorText Property
LastModified Property
LastServerErr Property
LastServerErrPos Property
LastServerErrText Property

Server Properties: M to O

MaxSize (OraCollection) Property
MinimumSize Property

Minute (OraTimeStamp) Property
Minute (OraTimeStampTZ) Property
Minutes Property

Month (OraTimeStamp) Property
Month (OraTimeStampTZ) Property
Months Property

Name Property

Name (AQAgent) Property

Name (OraAttribute) Property

Name (OraMDAttribute) Property
Nanosecond(OraTimeStamp) Property
Nanonsecond (OraTimeStampTZ) Property
Nanonseconds Property

Navigation (OraAQ) Property

Server Properties 11-3

= NoMatch Property

= NonBlockingState Property

s Offset (OraLOB/BFILE) Property
s OIPVersionNumber Property

= Options Property

s OralDataType Property

s OraMaxDSize Property

s OraMaxSize Property

s OraNullOK Property

s OraPrecision Property

s OraScale Property

Server Properties: Pto T
»s Parameters Property

= PinOption (OraRef) Property

= PollingAmount Property

» Priority (OraAQMsg) Property

s RDMSVersion Property

= RecordCount Property

= RelMsgld (OraAQ) Property

= RowPosition Property

s SafeArray (OraCollection) Property
s Second (OraTimeStamp) Property

s Second (OraTimeStampTZ) Property
= Seconds Property

» Server Property

»n ServerType Property

m Session Property

m Sessions Property

m Size Property

s Size (OraCollection) Property

s Size (OraLOB and OraBFILE) Property
= SnapShot Property

= Sort Property

= SQL Property

= Status Property

= Status (OraLOB/BFILE) Property

= Subscriptions Property

11-4 Oracle Objects for OLE Developer's Guide

TableName (OraRef) Property
TableSize (OraCollection) Property
TimeZone (OraTimeStampTZ) Property
TotalDays Property

TotalYears Property

Transactions Property

Truncated Property

Type Property

Type (OraAttribute) Property
Type (OraCollection) Property
Type (OraMetaData) Property

TypeName (OraObject and OraRef) Property

Server Properties: U to Z

Updatable Property

Value Property

Value (OraAttribute) Property
Value (OraAQMsg) Property
Value (OralntervalDS) Property
Value (OralntervalYM) Property
Value (OraMDAttribute) Property
Value (OraNumber) Property
Value (OraTimeStamp) Property
Value (OraTimeStampTZ) Property
Version (OraObject and Ref) Property
Visible (OraAQ) Property

Wait (OraAQ) Property
XMLAsAttribute Property
XMLCollID Property
XMLEncodingTag Property
XMLNullIndicator Property
XMLOmitEncodingTag Property
XMLRowlID Property
XMLRowsetTag Property
XMLRowTag Property
XMLTagName Property
XMLUpperCase Property

Year (OraTimeStamp) Property

Server Properties 11-5

s Year (OraTimeStampTZ) Property
= Years Property

11-6 Oracle Objects for OLE Developer's Guide

Address (OraAQAgent) Property

Address (OraAQAgent) Property

Applies To
OraAQAgent Object on page 9-5
Description
Returns a 128-byte string representing the protocol-specific address of the recipient.
The format is: [schema.]queue[@dblink]
Usage
agent_address = gMsg.AQAgent.Address
Data Type

String

Server Properties 11-7

ArraySize Property

ArraySize Property
Applies To
OraParamArray Object on page 9-47
Description
Specifies the array size (that is, number of elements in an array) of an OraParameter
string buffer. Not available at design time and read-only at run time.
Usage
OraParamArray.ArraySize
Data Type
Integer
Remarks

You specify the ArraySize during AddTable. See the AddTable method for the
OraParamArray object.

See Also: AddTable Method on page 10-23

11-8 Oracle Objects for OLE Developer's Guide

AutoCommit Property

AutoCommit Property

Applies To
OraDatabase Object on page 9-28
Description
Returns or sets the AutoCommit property of the OraDatabase object.
Usage
autocommit = OraDatabase.AutoCommit
OraDatabase.AutoCommit = [True | False
Data Type
Boolean
Remarks
If the AutoCommit property is set to True, all the data operations that modify data in
the database are automatically committed after the statement is executed.
If the AutoCommit property is set to False, you need to use the OraDatabase
transaction methods (BeginTrans, CommitTrans, and Rollback) or SQL
statements to control transactions.
Examples

The following example shows how to control transactions with SQL statements after
setting the AutoCommit property to False.

Dim session As OraSession
Dim MyDb As OraDatabase
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")
Set MyDb = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0)
MyDb.AutoCommit = False
MyDb.ExecuteSQL ("update emp set sal = 100000" & _
"where ename = 'JOHN SMITH' ")
MyDb.ExecuteSQL ("commit")

See Also:

= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66
= Rollback Method on page 10-235

Server Properties 11-9

BOC Property

BOC Property
Applies To
OraCollection Object on page 9-19
Description
Indicates True if the collection iterator moves before the first element of a collection.
Usage
boc_flag = OraCollection.BOC
Data Type
boolean
Examples

See "Example: OraCollection Iterator" on page 10-88

11-10 Oracle Objects for OLE Developer's Guide

BOF Property

BOF Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraDynaset Object on page 9-30

Returns whether the current record position in a dynaset is before the first record. Not
available at design time and read-only at run time.

bof_status = oradynaset.BOF

Integer (Boolean)

Returns True if an attempt has been made to move before the first record in the
dynaset using the MovePrevious method. Returns False otherwise.

If a recordset is empty, both BOF and EOF return True.

This example demonstrates the use of the BOF and EOF properties to detect the limits
of a record set. Copy and paste this code into the definition section of a form. Then,
press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object
Set OraDynaset = OraDatabase.CreateDynaset ("select empno, ename from emp", 0&)

'Traverse until EOF is reached
Do Until OraDynaset.EOF
OraDynaset .MoveNext
Loop
MsgBox "Reached EOF"

'When EOF is True there is no current record.

'The current recordset position is now AFTER the last record.
OraDynaset .MoveLast

Server Properties 11-11

BOF Property

Do Until OraDynaset.BOF
OraDynaset .MovePrevious
Loop

MsgBox "Reached BOF"

'When BOF is True there is no current record.

'The current recordset position is now BEFORE
'AFTER the last record.

OraDynaset .MoveFirst
'The recordset is now positioned at the first record.

End Sub
See Also:

s EOF Property on page 11-56

m MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

11-12 Oracle Objects for OLE Developer's Guide

Bookmark Property

Bookmark Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraDynaset Object on page 9-30

Determines the current record of a record set. Not available at design time and
read/write at run time.

row_bookmark = oradynaset.Bookmark
oradynaset.Bookmark = row_bookmark

The value is a string of binary data, but can be stored in a variable of String or
Variant data type. The length of the string cannot be predicted, so do not use a
fixed-length string.

The first form returns a Bookmark property for the current row. The second form
repositions the Bookmark property to refer to a specific record within the dynaset.

Bookmark objects exist only for the life of the dynaset and are specific to a particular
dynaset. They cannot be shared among dynasets. However, Bookmark objects of a
dynaset and their clones are interchangeable.

Before attempting to use Bookmark objects, check the BookMarkable property of
that dynaset to see if it supports bookmarks.

This example demonstrates the use of the Bookmark property to return to a
previously known record quickly. Copy and paste this code into the definition section
of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraClient As OraClient

Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

Dim Bookmark2 As String

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Get the client object.
Set OraClient = OraSession.Client

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

Server Properties 11-13

Bookmark Property

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

'Move to the second record and display empno.

OraDynaset .MoveNext
MsgBox "Second Record, Employee #" & OraDynaset.Fields ("EMPNO").value

Bookmark2 = OraDynaset.Bookmark

'Move to the last record and display empno.

OraDynaset.MoveLast
MsgBox "Last Record, Employee #" & OraDynaset.Fields ("EMPNO") .value

'Move back to the second record using the bookmark.

OraDynaset .Bookmark = Bookmark2
MsgBox "Second Record, Employee #" & OraDynaset.Fields ("EMPNO").value

End Sub

See Also:

= BookMarkable Property on page 11-15
s Clone Method on page 10-52

» LastModified Property on page 11-86

11-14 Oracle Objects for OLE Developer's Guide

BookMarkable Property

BookMarkable Property

Applies To
OraDynaset Object on page 9-30
Description
Indicates whether the specified dynaset can supports Bookmark objects. Not available
at design time and read-only at run time.
Usage
if_bookmarkable = oradynaset.Bookmarkable
Data Type
Integer (Boolean)
Remarks

This property returns True unless the No Cache mode was set when the specified
dynaset was created; otherwise, it returns False.

See Also:
= Bookmark Property on page 11-13
s CreateDynaset Method on page 10-85

Server Properties 11-15

CacheBlocks Property

CacheBlocks Property
Applies To
OraDynaset Object on page 9-30
Description
Gets or set cache maximum number of blocks.
Usage
set blocks = oradynaset.CacheBlocks
oradynaset.CacheBlocks = blocks
Data Type

Integer

11-16 Oracle Objects for OLE Developer's Guide

CacheChanged Property

CacheChanged Property
Applies To
OraDynaset Object on page 9-30
Description
True if cache or fetch parameters have been changed.
Usage
set Changed = oradynaset.CacheChanged
Data Type

Boolean

Server Properties 11-17

CacheMaximumSize Property

CacheMaximumsSize Property

Applies To
OraDatabase Object on page 9-28
Description
Sets the maximum size (high watermark) for the client-side object cache as a
percentage of the optimal size. The default value is 10%.
Usage
Oradatabase.CacheMaximumSize maxsize
Data Type
Long
Remarks

If the memory occupied by the objects currently in the cache exceeds the high
watermark (maximum object cache size), then the cache automatically begins to free
unmarked objects that have a pin count of zero. The cache continues freeing those
objects until memory use in the cache reaches the optimal size, or until it runs out of
objects eligible for freeing.

11-18 Oracle Objects for OLE Developer's Guide

CacheOptimalSize Property

CacheOptimalSize Property

Applies To

Description

Usage

Data Type

Remarks

OraDatabase Object on page 9-28

Sets the optimal size for the client-side object cache in bytes. The default value is 200
KB.

Oradatabase.CacheOptimalSize optimalsize

Long

This parameter increases the client-side object cache size. If the memory occupied by
the objects currently in the cache exceeds the high watermark (maximum object cache
size), then the cache automatically begins to free unmarked objects that have a pin
count of zero. The cache continues freeing those objects until memory use in the cache
reaches the optimal size, or until it runs out of objects eligible for freeing. This
parameter should be set to an appropriate value so that object cache can accommodate
all the fetched object instance from Oracle Database 10g. This is property is useful in
performance tuning for accessing an Oracle Database 10g object instance.

Server Properties 11-19

CacheSliceSize Property

CacheSliceSize Property

Applies To
OraDynaset Object on page 9-30
Description
Gets or sets cache slice size.
Usage
set Slicesize = oradynaset.CacheSliceSize
oradynaset.CacheSliceSize = Slicesize
Data Type

Integer

11-20 Oracle Objects for OLE Developer's Guide

CacheSlicesPerBlock Property

CacheSlicesPerBlock Property

Applies To
OraDynaset Object on page 9-30
Description
Gets or sets cache slices for each block.
Usage
set Perblock = oradynaset.CacheSlicePerBlock
oradynaset.CacheSlicePerBlock = Perblock
Data Type

Integer

Server Properties 11-21

Client Property

Client Property

Applies To
OraSession Object on page 9-58
Description
Returns the OraClient object associated with the specified session. Not available at
design time and read-only at run time.
Usage
Set oraclient = orasession.Client
Data Type
OLE Object (OraClient)
Remarks

Each computer has only one client object, so this property returns the same object for
all sessions on the same computer.

See Also: OraClient Object on page 9-18

11-22 Oracle Objects for OLE Developer's Guide

Connect Property

Connect Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraConnection Object on page 9-27
OraDatabase Object on page 9-28

Returns the user name of the connection string associated with the connection. Not
available at design time and read-only at run time.

connect_string = oraconnection.Connect
connect_string = oradatabase.Connect

String

n OraConnection.Connect
Returns the user name of the connection string associated with the connection.
m OraDatabase.Connect

Returns the user name of the connection string associated with the specified
database. It is equivalent to referencing OraDatabase.Connection.Connect.

The password associated with the user name is never returned.

This example demonstrates the use of the Connect and DatabaseName properties to
display the user name and database name to which the user is connected. Copy and
paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Display the username and database to which we are connected.
MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName

End Sub

Server Properties 11-23

Connect Property

See Also:
s OpenDatabase Method on page 10-212
= DatabaseName Property on page 11-37

11-24 Oracle Objects for OLE Developer's Guide

Connection Property

Connection Property

Applies To

Description

Usage

Data Type

Remarks

OraDatabase Object on page 9-28
OraDynaset Object on page 9-30
OraSQLStmt Object on page 9-60

Returns the OraConnection object associated with the specified database, dynaset,
or OraSQLStmt object. Not available at design time and read-only at run time.

Set oraconnection = oradatabase.Connection
Set oraconnection = oradynaset.Connection
Set oraconnection = orasglstmt.Connection

OLE Object (OraConnection)

n OraDatabase.Connection

Returns the connection object associated with the specified database. Each
database is associated with one connection object, but many databases can share
the same connection object.

s OraDynaset.Connection

Returns the connection object associated with this dynaset. This is equivalent to
referencing oradynaset.Database.Connection.

s OraSQLStmt.Connection

Returns the connection object associated with this OrasQLStmt object. This is
equivalent to referencing orasglstmt .Database.Connection.

See Also: OraConnection Object on page 9-27

Server Properties 11-25

ConnectionOK Property

ConnectionOK Property

Applies To
OraDatabase Object on page 9-28
OraConnection Object on page 9-27
Description
Returns a Boolean value indicating the status of the database connection associated
with the OraConnection object. A return value of True implies that the connection
is alive in the connection object associated with the specified database. If the
connection has been dropped, this property returns False.
Not available at design time and read-only at run time.
Usage
ConnectionStat = OraDatabase.ConnectionOK
ConnectionStat = OraDatabase.Connection.ConnectionOK
Data Type
Boolean
Remarks

n OraDatabase.ConnectionOK

Returns the connection status of the connection object associated with the
specified database. Each database is associated with one connection object, but
many databases can share the same connection object.

s OraConnection.ConnectionOK

Returns the status of the underlying connection to the database. This is equivalent
to OraDatabase.OraConnection.ConnectionOK.

See Also:
= Connection Property on page 11-25

» "Detection of Lost Connections" on page 3-9

11-26 Oracle Objects for OLE Developer's Guide

Connections Property

Connections Property

Applies To
OraSession Object on page 9-58
Description
Returns the OraConnections collection of the specified session. Not available at
design time and read-only at run time.
Usage
Set oraconnections_collection = orasession.Connections
Data Type
OLE Object (OraParameters)
Remarks

You can access the connections in this collection by subscripting (using ordinal integer
numbers). You can obtain the number of connections in the collection using the Count
property of the returned collection. Integer subscripts begin with 0 and end with
Count - 1. Out-of-range indexes and invalid names return a Null OraConnection
object.

See Also:

s Count Property on page 11-31

s OraConnection Object on page 9-27

s OraConnections Collection on page 9-66

Server Properties 11-27

Consumer (OraAQ) Property

Consumer (OraAQ) Property

Applies To
OraAQ Object on page 9-3
Description
Applicable only for a dequeue operation.
Usage
Q.Consumer = consumer_name
Data Type
String
Remarks
The value is a string representing the name of the consumer. Only those messages
matching the consumer name are accessed.
Examples

Dim DB As OraDatabase
Dim Q as OraAQ
set Q = DB.CreateAQ("Q_MSG_MULTIPLE")
'Dequeue only message meant for ANDY

Q.consumer = "ANDY"
'other processing...
Q.Dequeue

11-28 Oracle Objects for OLE Developer's Guide

Correlate (OraAQ) Property

Correlate (OraAQ) Property

Applies To
OraAQ Object on page 9-3
Description
Specifies the identification to look for while dequeuing messages.
Usage
Q.Correlate = "RELATIVE_MESSAGE_ID"
Data Type
String
Remarks

Applicable only for a dequeue operation.

Server Properties 11-29

Correlation (OraAQMsg) Property

Correlation (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6
Description
Specifies the identification for the message. This can then be used as a means of
dequeuing specific messages.
Usage
Msg.Correlation = my_message
Data Type
String
Remarks

Applicable only for a message that is being enqueued. Returns any string up to 128
bytes.

See Correlate for dequeuing using this identifier.

See Also: Correlate (OraAQ) Property on page 11-29

11-30 Oracle Objects for OLE Developer's Guide

Count Property

Count Property

Applies To

OraConnections Collection on page 9-66
OraFields Collection on page 9-67
OraParameters Collection on page 9-68
OraSessions Collection on page 9-69

OraSubscriptions Collection on page 9-70

Description

Returns the number of objects in the specified collection. Not available at design time
and read-only at run time.

Usage

connection_count = oraconnections.Count
field_count = orafields.Count
parameter_count = oraparameters.Count
session_count = orasessions.Count
subscriptions_count = OraSubscriptions.Count

Data Type

Integer

Remarks

Use this property to determine the number of objects in the specified collection.

Examples

This example demonstrates the use of the Count property to display the number of
objects in the OraSessions, OraConnections, and OraFields collections. Copy
and paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraClient As OraClient

Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Get the client object.
Set OraClient = OraSession.Client

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object.

Server Properties 11-31

Count Property

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)
MsgBox "You have " & OraClient.Sessions.Count & " OraSession Object(s)."
MsgBox "You have " & OraSession.Connections.Count & " OraConnection Object(s)."

MsgBox "You have " & OraDynaset.Fields.Count & " OraField Object(s)."

End Sub

See Also:
s OraConnection Object on page 9-27
s OraField Object on page 9-33

11-32 Oracle Objects for OLE Developer's Guide

Count (OraMetaData) Property

Count (OraMetaData) Property

Applies To
OraMetaData Object on page 9-39
Description
An integer representing the number of OraMDAt tribute objects contained in this
collection.
Usage
count = OraMetaData.Count
Data Type

Integer

See Also: OraMDAttribute Object on page 9-38

Server Properties 11-33

Count (OraObject/Ref) Property

Count (OraObject/Ref) Property

Applies To
OraObject Object on page 9-43
OraRef Object on page 9-52
Description
Returns the number of OraAttribute objects in the collection. This is same as the
total number of attributes of the underlying referenceable object of OraRef or
underlying value instance of OraObject. Read-only at run time.
Usage
attrcount = OraRef.Count
attrcount = OraObject.Count
Data Type
Integer
Remarks
Individual attributes can be accessed by using a subscript or the name of the attribute.
The OraObject or OraRef attribute index starts at 1.
Examples

The following example shows the use of the Count property. Before running the
sample code, make sure that you have the necessary data types and tables in the
database. See "Schema Objects Used in the OraObject and OraRef Examples" on

page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab",0&)

'retrieve a address column from person_tab.
'Here Value property of OraField object returns Address OraObject
set Address = OraDynaset.Fields("Addr").Value

'access the attribute by dot notation
msgbox Address.Street

'access the attribute using '!' notation (early binding application)

11-34 Oracle Objects for OLE Developer's Guide

Count (OraObject/Ref) Property

msgbox Address!Street

'access the attribute by index
msgbox Address(1)

'access the attribute by name
msgbox Address("Street")

'access all the attributes of Address OraObject in the dynaset
Do Until OraDynaset.EOF
For index = 1 To Address.Count
msgbox Address (index)
Next Index
OraDynaset .MoveNext

Loop

See Also: OraAttribute Object on page 9-7

Server Properties 11-35

Database Property

Database Property

Applies To
OraDynaset Object on page 9-30

OraSQLStmt Object on page 9-60

Description
Returns the OraDatabase object associated with the specified dynaset or SQL
statement object. Not available at design time and read-only at run time.
Usage
Set oradatabase = oradynaset.Database
Set oradatabase = orasglstmt.Database
Data Type
OLE Object (OraDatabase)
Remarks

The OraDynaset . Database property returns the OraDatabase object from which
the specified dynaset was created.

The OrasQLStmt . Database property returns the OraDatabase object from which
the specified SQLStmt object was created.

See Also:
s CreateDynaset Method on page 10-85
s OraDatabase Object on page 9-28

11-36 Oracle Objects for OLE Developer's Guide

DatabaseName Property

DatabaseName Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraConnection Object on page 9-27
OraDatabase Object on page 9-28

Returns the name of the database associated with the specified object. Not available at
design time and read-only at run time.

database_name = oraconnection.DatabaseName
database_name = oradatabase.DatabaseName

String

n oraconnection.DatabaseName
Returns the name of the database, as specified in the OpenDatabase method.
m oradatabase.DatabaseName

Returns the database name associated with the connection. It is the same as the
referencing oradatabase.Connection.DatabaseName.

This example demonstrates the use of the Connect and DatabaseName properties to
display the user name and database to which you have connected. Copy and paste this
code into the definition section of a form. Then, press F5.

Sub Form_Load ()
'Declare variables
Dim OraSession As OraSession
Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Display the username and database to which you have connected.
MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName

End Sub

Server Properties 11-37

DatabaseName Property

See Also:

s Connect Property on page 11-23

s Connection Property on page 11-25

s OpenDatabase Method on page 10-212

11-38 Oracle Objects for OLE Developer's Guide

Databases Property

Databases Property

Applies To
OraServer Object on page 9-56
Description
Returns a collection interface containing all user sessions that have been established
using this object.
Usage
Set myCollection = oraserver.Databases
Data Type

OLE Object (OraCollection)

See Also: OraCollection Object on page 9-19

Server Properties 11-39

Day (OraTimeStamp) Property

Day (OraTimeStamp) Property

Applies To

OraTimeStamp Object on page 9-62
Description

Gets and sets the Day attribute of an OraTimeStamp object.
Usage

day= OraTimeStampObj.Day

OraTimeStampObj.Day= day
Arguments

Arguments Description

[in] day The Day attribute of an OraTimeStamp object.
Data Type

Integer

11-40 Oracle Objects for OLE Developer's Guide

Day (OraTimeStampTZ) Property

Day (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object on page 9-64
Description

Returns or sets the Day attribute of an OraTimeStampTZ object.
Usage

day= OraTimeStampTZObj .Day

OraTimeStampTZObj.Day= day
Arguments

Arguments Description

[in] day The Day attribute of an OraTimeStampTZ object.
Data Type

Integer

Server Properties 11-41

Days Property

Days Property
Applies To
OralntervalDS Object on page 9-35
Description
Gets and sets the Days attribute of an OraIntervalDS object
Usage
days = OralntervalDSObj.Days
OralIntervalDSObj.Days = days
Arguments
Arguments Description
[in] days An Integer specifying the value of the Days attribute of the
OraIntervalDS object.
Data Type

Integer

11-42 Oracle Objects for OLE Developer's Guide

DbPoolCurrentSize Property

DbPoolCurrentSize Property

Applies To
OraSession Object on page 9-58
Description
Contains the number of currently active database objects in the pool. It is a read-only
property.
Usage
curr_size = OraSession.DbPoolCurrentSize
Data Type
Integer
Remarks

An active database object in the pool that contains a live connection to the database.

Server Properties 11-43

DbPoollnitialSize Property

DbPoollnitialSize Property

Applies To
OraSession Object on page 9-58
Description
Contains the initial size of the pool. It is a read-only property.
Usage
init_size = OraSession.DbPoolInitialSize
Data Type

Integer

11-44 Oracle Objects for OLE Developer's Guide

DbPoolMaxSize Property

DbPoolMaxSize Property
Applies To
OraSession Object on page 9-58
Description
Contains the maximum pool size. It is a read-only property.
Usage
max_size = OraSession.DbPoolMaxSize
Data Type

Integer

Server Properties 11-45

Delay (OraAQMsg) Property

Delay (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6
Description
Specifies the number of seconds to delay this enqueued message. Set this property to
delay the immediate consumption of the message.
Usage
Msg.Delay = seconds
Data Type
Integer
Remarks

Applicable only for a message that is enqueued.

This delay represents the number of seconds after which the message is available for
dequeuing.

Possible values are:
= Any valid positive integer.
] ORAAQ_MSG_NO_DELAY

Default is 0 seconds. The message is available immediately.

11-46 Oracle Objects for OLE Developer's Guide

DequeueMode (OraAQ) Property

DequeueMode (OraAQ) Property

Applies To
OraAQ Object on page 9-3
Description
Specifies the locking behavior associated with the dequeue operation.
Usage
Q.DequeueMode = Iocking mode
Data Type
Integer
Remarks

Possible values are:
= ORAAQ_DQ_BROWSE (1)
Does not lock the message when dequeuing.
= ORAAQ_DQ_LOCKED (2)
Reads and obtains a write lock on the message.
s ORAAQ_DQ_REMOVE (3)(Default)

Reads the message, and updates or deletes it.

Server Properties 11-47

DequeueMsgld (OraAQ) Property

DequeueMsgld (OraAQ) Property

Applies To
OraAQ Object on page 9-3
Description
Returns an array of raw bytes, specifying the message identifier of the message to be
dequeued.
Usage
Q.DequeueMsgid = msg_id
Data Type
String
Remarks

Applicable only for a dequeue operation.

11-48 Oracle Objects for OLE Developer's Guide

DirectoryName Property

DirectoryName Property

Applies To
OraBFILE Object on page 9-9
Description
Gets or sets the directory alias name.
Usage
diralias = OraBFile.DirectoryName
OraBFile.DirectoryName = diralias
Arguments
Arguments Description
[in] [out] A string specifying the directory name to be retrieved or set.
diralias
Data Type
String
Remarks

This String is case-sensitive.

Server Properties 11-49

DynasetOption Property

DynasetOption Property

Applies To
OraParameter Object on page 9-50
Description
Specifies the dynaset option for a dynaset created from the PL/SQL cursor.
Usage
oraparameter.DynasetOption = dyn_opts
Remarks

This property should be called before executing a PL/SQL procedure containing a
cursor variable. By default, the dynaset is created with the ORADYN_READONLY option.

The possible values are:

Possible Values Value Description
ORADYN_DEFAULT &HO& Accepts the default behavior.
ORADYN_NO_BLANKSTRIP &H2& Does not remove trailing blanks from character

string data retrieved from the database.

ORADYN_NOCACHE &H8& Does not create a local dynaset data cache. Without
the local cache, previous rows within a dynaset are
unavailable; however, increased performance
results during retrieval of data from the database
(move operations) and from the rows (field
operations). Use this option in applications that
make single passes through the rows of a dynaset
for increased performance and decreased resource
usage.

ORADYN_NO_MOVEFIRST &H40& Does not force a MoveFirst operation when a
dynaset is created. BOF and EOF are both True.

See Also:

m MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

= BOF Property on page 11-11
s EOF Property on page 11-56

11-50 Oracle Objects for OLE Developer's Guide

EditMode Property

EditMode Property

Applies To

Description

Usage

Data Type

Remarks

OraDynaset Object on page 9-30

Returns the editing state for the current row. Not available at design time and
read-only at run time.

edit_mode = oradynaset.EditMode

Integer

The EditMode property values are:

Constant Value Description

ORADATA_EDITNONE 0 No editing in progress.

ORADATA_EDITMODE 1 Editing is in progress on an existing row.
ORADATA_EDITADD 2 A new record is being added and the copy buffer does

not currently represent an actual row in the database.

These values are located in the ORACLE_BASE\ORACLE_HOME\oo4o\oraconst.txt
file and are intended to match similar constants in the Visual Basic constant . txt

file.
This property is affected only by the Edit, AddNew, and Update methods.

See Also:

s AddNew Method on page 10-21
= Edit Method on page 10-134

= Update Method on page 10-257

Server Properties 11-51

EditOption (OraRef) Property

EditOption (OraRef) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

Examples

OraRef Object on page 9-52

Specifies whether the object is to be locked during the pin operation.

edit_option = OraRef.EditOption
OraRef.EditOption = edit_option

Arguments Description

[in] [out] edit_ An Integer representing the edit option.
option

Integer

This property should be called before a pin operation on a Ref value, before accessing
an attribute for the first time on the OraRef object. This option is useful if the object
attributes are modified immediately after the pin operation. Locking the object
instance during the pin operation saves the round-trip to the database during the
Edit (OraRef) operation.

Possible values of edit_option are:

Constant Value Description

ORAREF_NO_LOCK 1 Does not lock the object in the database
(default).

ORAREF_EXCLUSIVE_LOCK 2 Maintains an exclusive lock on the object in the
database.

ORAREF_NOWAIT_ LOCK 3 Maintains an exclusive lock on the object in the

database with the nowait option.

The following example shows the usage of the EditOption property. Before running
the sample code, make sure that you have the necessary data types and tables in the
database. See "Schema Objects Used in the OraObject and OraRef Examples" on

page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase

11-52 Oracle Objects for OLE Developer's Guide

EditOption (OraRef) Property

Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value property of OraField object

'returns Person OraRef
set Person = OraDynaset.Fields("aperson") .Value

'set the ORAREF_EXCLUSIVE_LOCK EditOption on the Person object.
Person.EditOption = ORAREF_EXCLUSIVE_LOCK

'pin the Person Ref. This operation also locks the underlying
'referenceable 'object in the server
MsgBox Person.Name

'call Edit method on Person OraRef.
'This method does not make any network round-trip

Person.Edit
Person.Name = "Eric"

Person.Age = 35
Person.Update

See Also: Edit (OraRef) Method on page 10-136

Server Properties 11-53

ElementType Property

ElementType Property
Applies To
OraCollection Object on page 9-19
Description
An integer code representing the server type of an element. This property is read-only
at run time.
Usage
elem_type = OraCollection.ElementType
Data Type
Integer
Remarks

The codes correspond to the Oracle external data types. The following Oracle element
data types are supported:

11-54 Oracle Objects for OLE Developer's Guide

Constant Value External Data Type
ORATYPE_VARCHAR? 1 VARCHAR?2
ORATYPE_NUMBER 2 NUMBER
ORATYPE_SINT 3 STIGNED INTEGER
ORATYPE_FLOAT 4 FLOAT
ORATYPE_VARCHAR 9 VARCHAR
ORATYPE_DATE 12 DATE
ORATYPE_UINT 68 UNSIGNED INTEGER
ORATYPE_CHAR 96 CHAR
ORATYPE_CHARZ 97 Null Terminated CHAR
ORATYPE_BFLOAT 100 BINARY_FLOAT
ORATYPE_BDOUBLE 101 BINARY_DOUBLE
ORATYPE_OBJECT 108 Object
ORATYPE_REF 110 Ref

EOC Property

EOC Property
Applies To
OraCollection Object on page 9-19
Description
Returns True if the collection iterator moves past the last element of a collection.
Usage
eoc_flag = OraCollection.EOC
Data Type
Boolean
Examples

See "Example: OraCollection Iterator" on page 10-88.

Server Properties 11-55

EOF Property

EOF Property

Applies To
OraDynaset Object on page 9-30
Description
Indicates whether the current record position in a dynaset is after the last record. Not
available at design time and read-only at run time.
Usage
eof_status = oradynaset.EOF
Data Type
Integer (Boolean)
Remarks
Returns True if an attempt has been made to move after the last record in the dynaset
using the MoveNext method. Otherwise, returns False.
If a recordset is empty, both BOF and EOF return True.
Examples

This example demonstrates the use of the BOF and EOF properties to detect the limits
of a recordset. Copy and paste this code into the definition section of a form. Then,
press F5.

Sub Form_Load ()

'Declare variables

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the OraDynaset Object
Set OraDynaset = OraDatabase.CreateDynaset ("select empno, ename from emp", 0&)

'Traverse until EOF is reached
Do Until OraDynaset.EOF
OraDynaset .MoveNext
Loop
MsgBox "Reached EOF"

'When EOF is True there is no current record. The current recordset

' position is now AFTER the last record
OraDynaset.MoveLast

11-56 Oracle Objects for OLE Developer's Guide

EOF Property

Do Until OraDynaset.BOF
OraDynaset .MovePrevious
Loop

MsgBox "Reached BOF"

'When BOF is True there is no current record. The current recordset
'position is now BEFORE AFTER the last record.

OraDynaset .MoveFirst
'The recordset is now positioned at the first record.

End Sub

See Also:
= BOF Property on page 11-11

s MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

Server Properties 11-57

ExceptionQueue Property

ExceptionQueue Property

Applies To

Description

Usage

Data Type

Remarks

OraAQMsg Object on page 9-6

Specifies the name of the queue to which message should be moved if it cannot be
processed successfully.

Msg.ExceptionQueue queue_name

String

Applicable only for a message that is being enqueued.
Possible values are:

= A String containing a valid queue name

s Null (Default)

A message is moved to the exception queue if the number of dequeue attempts has
expired or has exceeded max_retries specified in the DBMS_AQADM. CREATE_QUEUE
command.

11-58 Oracle Objects for OLE Developer's Guide

Exists Property

Exists Property

Applies To

Description

Usage

Data Type

Remarks

OraBFILE Object on page 9-9

Returns True if the OraBFILE points to a BFILE that exists on the database.

exists = OraBFile.Exists

Boolean

Read privileges on the directory where the BFILE is located are required to use this
property. The operating system-specific permissions must have been set for the
directory to make sure that the user can read the directory.

Appropriate privileges must be set up in the database previously. For example, to
ensure that a user (scott) can read a directory (BfileDirectory) through the
Exists property, the following SQL statement must be executed:

GRANT READ ON DIRECTORY BfileDirectory TO scott;

Server Properties 11-59

Expiration (OraAQMsg) Property

Expiration (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6
Description
Specifies, in seconds, the time for which the message is available for dequeuing.
Usage
Msg.Expiration = seconds
Data Type
Integer
Remarks

This property is an offset from the delay. It is applicable only for a message that is
being enqueued.

Possible Values are:
= Any integer.
s ORAAQ_MSG_NO_XPIRE (0)

Default 0 - The message will never expire.

11-60 Oracle Objects for OLE Developer's Guide

FetchLimit Property

FetchLimit Property
Applies To
OraDynaset Object on page 9-30
Description
Gets or sets the array size of the fetch.
Usage
set Limit = oradynaset.FetchLimit
oradynaset.FetchLimit = Limit
Data Type

Integer

Server Properties 11-61

FetchSize Property

FetchSize Property
Applies To
OraDynaset Object on page 9-30
Description
Gets or sets the array buffer size of the fetch.
Usage
set Size = oradynaset.FetchSize
oradynaset.FetchSize = Size
Data Type

Integer

11-62 Oracle Objects for OLE Developer's Guide

FieldIndex Property

Fieldindex Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

OraDynaset Object on page 9-30

Returns the index of the field indicated by the field name argument.

set index = oradynaset.FieldIndex(field name)

Arguments Description

[in] field_name The name of the field as it appears in the SQL statement that the
dynaset used most recently.

Integer

Accessing fields of a dynaset using an index is more efficient than accessing them by
name. If you need to access a particular field many times, use this method to translate
its name into its index.

See Also:

» FieldName Property on page 11-64

s FieldOriginalName Property on page 11-65

» FieldOriginalNamelndex Property on page 11-66

Server Properties 11-63

FieldName Property

FieldName Property
Applies To

OraDynaset Object on page 9-30
Description

Returns the field name in the SELECT statement in the dynaset.
Usage

set field name = oradynaset.FieldName (index)
Arguments

Arguments Description

[in] index Index of the name of the field as it appears in the SQL statement.
Data Type

String

See Also:

» FieldIndex Property on page 11-63
» FieldOriginalName Property on page 11-65
» FieldOriginalNamelndex Property on page 11-66

11-64 Oracle Objects for OLE Developer's Guide

FieldOriginalName Property

FieldOriginalName Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

OraDynaset Object on page 9-30

Gets the original field name used in the SELECT statement in the dynaset.

set field _name = oradynaset.FieldOriginalName (index)

Arguments Description

[in] index An Integer specifying the field index of the original field name as it
appears in the SQL statement.

String

The FieldOriginalName property returns a string containing the original column
name specified in the SQL statement during dynaset creation. This property is useful
when a SQL statement contains SCHEMA . TABLE . COL as the name of the field. This
enables duplicate column names to be referenced. Another way to avoid duplicate
columns is to specify an alias in the SQL statement.

See Also:

» FieldIndex Property on page 11-63

» FieldName Property on page 11-65

» FieldOriginalNamelndex Property on page 11-66

Server Properties 11-65

FieldOriginalNamelIndex Property

FieldOriginaINamelndex Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

OraDynaset Object on page 9-30

Returns the index of the field indicated by the original field name used in the SQL
SELECT statement.

set index = oradynaset.FieldOriginalNameIndex (name)

Arguments Description
[in] name The original name of the field as it appears in the SQL statement.
Integer

Accessing fields of a dynaset by index is more efficient than accessing them by name.
If you need to access a particular field many times, use this method to translate its
original name into its index.

See Also:

s FieldIndex Property on page 11-63

s FieldName Property on page 11-65

= FieldOriginalName Property on page 11-65

11-66 Oracle Objects for OLE Developer's Guide

Fields Property

Fields Property

Applies To
OraDynaset Object on page 9-30
Description
Returns the collection of fields for the current row. Not available at design time and
read-only at run time.
Usage
Set orafields_collection = oradynaset.Fields
Data Type
OLE Object (OraFields)
Remarks

You can access the fields in this collection by subscripting (using ordinal integer
numbers) or by using a string denoting the field (column) name. You can obtain the
count of the number of fields using the Count property on the returned collection. A
subscript that is not within the collection (0 to Count - 1) results in the return of a
Null OraField object.

See Also:

s Count Property on page 11-31

s OraFields Collection on page 9-67

Server Properties 11-67

FileName Property

FileName Property
Applies To
OraBFILE Object on page 9-9
Description
Gets or sets a filename. Read and write at run time.
Usage
filename = OraBFile.FileName
OraBFile.FileName = filename
Arguments
Arguments Description
[in] [out] A string specifying the directory name to be retrieved or set.
filename
Data Type
String
Remarks

This string can be case-sensitive depending on the database operating system.

See Also: OraField Object on page 9-33

11-68 Oracle Objects for OLE Developer's Guide

Filter Property

Filter Property

Remarks

The OraDynaset object does not support this property. Refine your record selection
by using a SQL WHERE clause or by using SQL parameters.

See Also:

» CreateDynaset Method on page 10-85
= OraDynaset Object on page 9-30

= OraFields Collection on page 9-67

s OraParameter Object on page 9-50

Server Properties 11-69

Format (OraNumber) Property

Format (OraNumber) Property

Applies To
OraNumber Object on page 9-41
Description
The format string used in OraNumber operations. For details about format strings, see
Oracle Database SQL Quick Reference. Read and write at run time.
Usage
OraNumber.Format = formatstring
formatstring = OraNumber.Format
Arguments
Arguments Description
[in] formatstring A format string used in OraNumber operations.
Data Type
String
Remarks

An error is returned if the format string is set to an invalid value. To reset the format to
the default, set it to an empty string.

See Also: Oracle Database SQL Quick Reference

11-70 Oracle Objects for OLE Developer's Guide

Format (OraTimeStamp) Property

Format (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62
Description
Returns or sets the TIMESTAMP format used to display the OraTimeStamp object as a
string.
Usage
format = OraTimeStampObj.Format
OraTimeStampObj.Format = format
Arguments
Arguments Description
[in] format The format used to display an OraTimeStamp object as a string.
Data Type
String
Remarks

If Format is Null, the session TIMESTAMP format is used to display the
OraTimeStamp object as a string.

Server Properties 11-71

Format (OraTimeStampTZ) Property

Format (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64
Description
Returns or sets the TIMESTAMP WITH TIME ZONE format used to display the
OraTimeStampTZ object as a string.
Usage
format = OraTimeStampTZObj.Format
OraTimeStampTZObj.Format = format
Arguments
Arguments Description
[in] format The format used to display an OraTimeStampTZ object as a string.
Data Type
String
Remarks

If Format is Null, the session TIMESTAMP WITH TIME ZONE format is used to display
the OraTimeStampTZ object as a string.

11-72 Oracle Objects for OLE Developer's Guide

HexValue (OraRef) Property

HexValue (OraRef) Property

Applies To
OraRef Object on page 9-52
Description
Returns the hexidecimal value of the REF.
Usage
hexstring = OraRef.HexValue
Remarks

The hexidecimal value of the REF can be used by the OraDatabase.FetchOraRef
method.

See Also: FetchOraRef Method on page 10-149

Server Properties 11-73

Hour (OraTimeStamp) Property

Hour (OraTimeStamp) Property

Applies To

OraTimeStamp Object on page 9-62
Description

Returns or sets the Hour attribute of an OraTimeStamp object.
Usage

hour = OraTimeStampObj.Hour

OraTimeStampObj.Hour = hour
Arguments

Arguments Description

[in] hour The Hour attribute of an OraTimeStamp object.
Data Type

Integer

11-74 Oracle Objects for OLE Developer's Guide

Hour (OraTimeStampTZ) Property

Hour (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object on page 9-64
Description

Returns or sets the Hour attribute of an OraTimeStampTZ object.
Usage

hour = OraTimeStampTZObj.Hour

OraTimeStampTZObj.Hour = hour
Arguments

Arguments Description

[in] hour The Hour attribute of an OraTimeStampTZ object.
Data Type

Integer

Server Properties 11-75

Hours Property

Hours Property

Applies To
OralntervalDS Object on page 9-35
Description
Gets and sets the Hours attribute of an OraIntervalDS object.
Usage
hours = OralntervalDSObj.Hours
OralIntervalDSObj.Hours = hours
Arguments
Arguments Description
[in] hours An Integer specifying the value of the Hours attribute of the
OraIntervalDS object.
Data Type

Integer

11-76 Oracle Objects for OLE Developer's Guide

IsLocator (OraCollection) Property

IsLocator (OraCollection) Property

Applies To
OraCollection Object on page 9-19
Description
Returns True if the collection instance of the OraCollection object is locator-based;
otherwise, returns False.
Usage
islocator = OraCollection.IsLocator
Data Type

Integer (Boolean)

Server Properties 11-77

IsMDObject Property

IsMDObject Property
Applies To

OraMDAttribute Object
Description

Returns True if the Value property is another OraMetaData object; otherwise, the
property is False.

Usage
isobject = OraMDAttribute.IsMDObject

Data Type

Boolean

11-78 Oracle Objects for OLE Developer's Guide

IsNull (OraCollection) Property

IsNull (OraCollection) Property

Applies To
OraCollection Object on page 9-19
Description
Returns True if the collection value of the OraCollection objectis Null.
Usage
isnull = OraObject.IsNull
Data Type
Integer (Boolean)
Remarks

Accessing elements of a Null collection results in an error. The IsNull property
should be checked before accessing elements of an underlying collection.

Server Properties 11-79

IsNull (OraLOB/BFILE) Property

IsNull (OraLOB/BFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11
OraBFILE Object on page 9-9
Description
Returns True if the LOB or BFILE refers to a Null value in the database; otherwise,
returns False. This property is read-only.
Usage
IsNull = OraBfile.IsNull
IsNull = OraBlob.IsNull
IsNull = OraClob.IsNull
Data Type
Boolean
Remarks

Some LOB or BFILE properties and methods are not valid when a LOB or BFILE is
Null.

This property makes it possible to check for Null values and avoid these errors.

11-80 Oracle Objects for OLE Developer's Guide

IsNull (OraObject) Property

IsNull (OraObject) Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraObject Object on page 9-43

Returns True if underlying value instance of the OraObject object is Null.
Read-only at run time.

isnull = OraObject.IsNull

Integer (Boolean)

Accessing attributes of a Null value instance results in an error. The IsNull property
can be checked before accessing attributes of an underlying value instance.

The following example shows the use of the IsNull property. Before running the
sample code, make sure that you have the necessary data types and tables in the
database. See "Schema Objects Used in the OraObject and OraRef Examples" on
page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject

Dim AddressClone as OraObject

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)

' insert a Null Address value instance in the table
OraDynaset . AddNew

OraDynaset.Fields("Name").value = "Eric"
OraDynaset.Fields("Addr").Value = Null
OraDynaset.update

'move to the newly added value instance
OraDynaset .MoveLast

'retrieve a address column from person_tab. This Address object points to Null
' value instance

Server Properties 11-81

IsNull (OraObject) Property

set Address = OraDynaset.Fields("Addr").Value

'try to access attributes of Address. the following line will result an error
msgbox Address.Street fmmm e ERROR------------ !

'use the IsNull property to check the nullstatus
If Address.IsNull = False Then

MsgBox Address!Street
End if

11-82 Oracle Objects for OLE Developer's Guide

IsOpen (OraBFILE) Property

IsOpen (OraBFILE) Property

Applies To
OraBFILE Object on page 9-9
Description
Returns True if the OraBFILE object is open.
Usage
IsOpen = OraBFile.IsOpen
Data Type
Boolean
Remarks

The openness of an object OraBFILE is local to this OraBFILE object. If two
OraBFILE objects point to the same BFILE in the database, and one OraBFILE object
calls the Open method and the other does not, one OraBFILE object will return True
for the IsOpen property. The other will return False.

See Also: Open (OraBFILE) Method on page 10-211

Server Properties 11-83

IsRefNull (OraRef) Property

IsRefNull (OraRef) Property

Applies To
OraRef Object on page 9-52
Description
Returns True if the underlying Ref value of the OraRef object is Null.
Usage
isnull = OraRef.IsRefNull
Data Type
Integer (Boolean)
Remarks

Accessing the attributes of a Null Ref value results in an error. The IsRefNull
property should be checked before accessing attributes of an underlying referenceable
object. This property is read-only at run time.

11-84 Oracle Objects for OLE Developer's Guide

LastErrorText Property

LastErrorText Property

Applies To
OraParamArray Object on page 9-47
Description
Gets the last error message. Not available at design time and read-only at run time.
Usage
OraParamArray.LastErrorText
Data Type

String

Server Properties 11-85

LastModified Property

LastModified Property

Applies To
OraDynaset Object on page 9-30
Description
Returns the Bookmark object of the row that was last modified by an Edit or an
AddNew operation. Not available at design time and read-only at run time.
Usage
last_modified_bookmark = oradynaset.LastModified
Data Type
The value is a string of binary data, but can be stored in a variable of String or
Variant data type. The length of the string cannot be predicted, so do not use a
fixed-length string.
Remarks

Use this property to make the last modified record the current record.

See Also:

s AddNew Method on page 10-21

s Bookmark Property on page 11-13
= Edit Method on page 10-134

11-86 Oracle Objects for OLE Developer's Guide

LastServerErr Property

LastServerErr Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraDatabase Object on page 9-28
OraSession Object on page 9-58

Returns the last nonzero error code generated by an Oracle database function for the
specified object. Not available at design time and read-only at run time.

error_number = oradatabase.LlLastServerErr
error_number = orasession.LastServerErr

Long Integer

This property represents the last nonzero return value from an Oracle Call Interface
(OCI) database function, or zero if no error has occurred since the last
LastServerErrReset request. For efficiency, only nonzero return values are
returned; therefore, a nonzero value does not necessarily indicate that the most
recently called OCI database function generated the error (because zero return values
are not returned by way of the Last ServerErr method).

m Orasession.LastServerErr

Returns all errors related to connections, such as errors on OpenDatabase,
BeginTrans, CommitTrans, Rollback, and ResetTrans method.

m Oradatabase.LastServerErr

Returns all errors related to an Oracle cursor, such as errors on dynasets and from
ExecuteSQL method.

This example demonstrates the use of the CreateDynaset method and the
LastServerErr and LastServerErrText properties to determine whether an
Oracle error has occurred, and to display the error message, respectively. Copy and
paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Set up an error handler.

Server Properties 11-87

LastServerErr Property

On Error GoTo errhandler

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Attempt to Create the OraDynaset Object.
'Notice that the FROM keyword is missing from the SQL statement.
Set OraDynaset = OraDatabase.CreateDynaset ("select * emp", 0&)

Exit Sub

errhandler:
'Check to see if an Oracle error has occurred.
If OraDatabase.LastServerErr <> 0 Then

MsgBox OraDatabase.LastServerErrText
Else 'Must be some non-Oracle error

MsgBox "VB:" & Err & " " & Error(Err)
End If
Exit Sub
End Sub
See Also:

= ExecuteSQL Method on page 10-144

» LastServerErrReset Method on page 10-189
s LastServerErrText Property on page 11-90
= OpenDatabase Method on page 10-212

= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66

= Rollback Method on page 10-235

= ResetTrans Method on page 10-233

11-88 Oracle Objects for OLE Developer's Guide

LastServerErrPos Property

LastServerErrPos Property

Applies To

OraDatabase Object on page 9-28

Description

Returns the position at which a parsing error occurred in a SQL statement. Not
available at design time and read-only at run time.

Usage

error_pos = oradatabase.LastServerErrPos

Data Type

Integer

Remarks

The LastServerErrPos property returns 0 if no SQL statements have been parsed;
-1 if the last parse was successful; and >= 0 if the last parse failed. Parsing is done on
SQL statements before execution (using the CreateDynaset or ExecuteSQL

method).

See Also:

CreateDynaset Method on page 10-85
ExecuteSQL Method on page 10-144
LastServerErr Property on page 11-87
LastServerErrText Property on page 11-90

Server Properties 11-89

LastServerErrText Property

LastServerErrText Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraDatabase Object on page 9-28
OraSession Object on page 9-58

Returns the textual message associated with the current LastServerErr property of
the specified object. Not available at design time and read-only at run time.

error_text = orasession.LastServerErrText
error_text = oradatabase.LastServerErrText

String

The returned value indicates one of three possible states:

1. If Null is returned, an Oracle Call Interface (OCI) database function has not
returned an error since the most recent LastServerErrReset property.

2. If anon-Null value is returned, an OCI function has returned an error code; the
returned string is the associated message.

3. If the message is empty, then no additional information was available.

This example demonstrates the use of the CreateDynaset method and the
LastServerErr and LastServerErrText properties to determine whether an
Oracle error has occurred and to display the error message. Copy and paste this code
into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Set up an error handler.
On Error GoTo errhandler

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Attempt to Create the OraDynaset Object.
'Notice that the FROM keyword is missing from the SQL statement.

11-90 Oracle Objects for OLE Developer's Guide

LastServerErrText Property

Set OraDynaset = OraDatabase.CreateDynaset("select * emp", 0&)

Exit Sub

errhandler:

'"Check to see if an Oracle error has occurred.
If OraDatabase.LastServerErr <> 0 Then

MsgBox OraDatabase.LastServerErrText

Else 'Must be some non-Oracle error.

MsgBox "VB:" & Err & " " & Error(Err)
End If
Exit Sub
End Sub
See Also:

s LastServerErr Property on page 11-87
s LastServerErrReset Method on page 10-189
s CreateDynaset Method on page 10-85

Server Properties 11-91

MaxSize (OraCollection) Property

MaxSize (OraCollection) Property

Applies To

OraCollection Object on page 9-19
Description

Returns the maximum size of the collection.
Usage

max_size = OraCollection.MaxSize
Data Type

Integer
Remarks

For an OraCollection object of type ORATYPE_TABLE, this property returns the
current size of the collection including deleted elements. For an OraCollection
object of type ORATYPE_VARRAY, the property returns the maximum size of the
collection.

11-92 Oracle Objects for OLE Developer's Guide

MinimumSize Property

MinimumSize Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraParameter Object on page 9-50
OraParamArray Object on page 9-47

Returns the minimum size of an OraParameter or OraParamArray string buffer or
ByteArray (for ORATYPE_RAW_BIN). For OraParamArray objects, the minimum
size property is read-only at run time. For OraParameter objects, the minimum size
is read /write at run time.

oraparameter.MinimumSize
oraparamarray.MinimumSize

Integer

This property gets the minimum number of characters or bytes to be allocated for each
element of the array. For OraParamArray objects, the size is specified using the
AddTable method.

Note: This example needs the following to be run: a PL/SQL procedure called
EmployeeLong with a Get EmpName procedure that uses a table with the column
name ENAME_LONG that returns a long ename of approximately 200 characters.

Sub Form_Load ()

' Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

' Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

' Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

' Add EMPNO
OraDatabase

' Add ENAME
OraDatabase
OraDatabase

as an Input/Output parameter and set its initial value.
.Parameters.Add "EMPNO", 9999, ORAPARM_INPUT

as an Output parameter and set its initial value.
.Parameters.Add "ENAME_LONG", "foo", ORAPARM_OUTPUT
.Parameters ("ENAME_LONG") .MinimumSize = 201

'Since we require to hold a value of more than 128 bytes

' Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME LONG.

Server Properties 11-93

MinimumSize Property

OraDatabase.ExecuteSQL ("Begin EmployeeLong.GetEmpName (:EMPNO," & _
"NAME_LONG) ; end;")

See Also:

= Add Method on page 10-8

s AddTable Method on page 10-23

s ExecuteSQL Method on page 10-144

11-94 Oracle Objects for OLE Developer's Guide

Minute (OraTimeStamp) Property

Minute (OraTimeStamp) Property

Applies To

OraTimeStamp Object on page 9-62
Description

Returns or sets the Minute attribute of an OraTimeStamp object.
Usage

minute = OraTimeStampObj.Minute

OraTimeStampObj.Minute = minute
Arguments

Arguments Description

[in] minute The Minute attribute of an OraTimeStamp object.
Data Type

Integer

Server Properties 11-95

Minute (OraTimeStampTZ) Property

Minute (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object on page 9-64
Description

Returns or sets the Minute attribute of an OraTimeStampTZ object.
Usage

minute = OraTimeStampTZObj.Minute

OraTimeStampTZObj.Minute = minute
Arguments

Arguments Description

[in] minute The Minute attribute of an OraTimeStampTZ object.
Data Type

Integer

11-96 Oracle Objects for OLE Developer's Guide

Minutes Property

Minutes Property
Applies To
OralntervalDS Object on page 9-35
Description
Gets and sets the Minutes attribute of an OraIntervalDS object.
Usage
minutes = OraIntervalDSObj.Minutes
OraIntervalDSObj.Minutes = minutes
Arguments
Arguments Description
[in] minutes An Integer specifying the value of the Minutes attribute of the
OraIntervalDS object.
Data Type

Integer

Server Properties 11-97

Month (OraTimeStamp) Property

Month (OraTimeStamp) Property

Applies To

OraTimeStamp Object on page 9-62
Description

Returns or sets the Month attribute of an OraTimeStamp object.
Usage

month = OraTimeStampObj.Month

OraTimeStampObj.Month = month
Arguments

Arguments Description

[in] month The Month attribute of an OraTimeStamp object.
Data Type

Integer

11-98 Oracle Objects for OLE Developer's Guide

Month (OraTimeStampTZ) Property

Month (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object on page 9-64
Description

Returns or sets the Month attribute of an OraTimeStampTZ object.
Usage

month = OraTimeStampTZObj.Month

OraTimeStampTZObj.Month = month
Arguments

Arguments Description

[in] month The Month attribute of an OraTimeStampTZ object.
Data Type

Integer

Server Properties 11-99

Months Property

Months Property
Applies To
OralntervalYM Object on page 9-37
Description
Gets and sets the Months attribute of an OraIntervalYM object.
Usage
months = OralIntervalYMObj.Months
OralntervalYMObj.Months = months
Arguments
Arguments Description
[in] month An Integer specifying the value of the Months attribute of the
OraIntervalYM object.
Data Type

Integer

11-100 Oracle Objects for OLE Developer's Guide

Name Property

Name Property

Applies To

OraClient Object on page 9-18
OraField Object on page 9-33

OraParameter Object on page 9-50

OraSession Object on page 9-58

OraParamArray Object on page 9-47

OraServer Object on page 9-56

OraSubscription Object on page 9-61

Description

Returns the name used to identify the given object. Not available at design time and
read-only at run time.

Usage

client_name = oraclient.Name

field_name = orafield.Name
parameter_name = oraparameter.Name
paramarray_name = oraparamarray.Name
session_name = orasession.Name
server_name = oraserver.Name
subscription_name = orasubscription.Name

Data Type

String

Remarks

oraclient.Name
Returns the name of the specified OraClient object. This value is always local.
orafield.Name

Returns the name of the specified OraField object. If this is a true database field
(not an alias), this use returns the name of the field as it appears in the database. If
a SQL statement was executed that contains, for example, calculated select list
items or column aliases, then the name is the actual text provided in the SQL
SELECT statement.

oraparameter .Name

Returns the name of the specified OraParameter object. In addition to
identifying the parameter within a parameters collection, the parameter name is
also used to match placeholders within SQL and PL/SQL statements for the
purposes of parameter binding.

oraparamarray .Name

Returns the name of the specified OraParamArray object. In addition to
identifying the parameter within a parameters collection, the parameter name is

Server Properties 11-101

Name Property

also used to match placeholders within SQL and PL/SQL statements for the
purposes of parameter binding.

m orasession.Name

Returns the name of the specified OraSession object. For automatically created
sessions, this is the name assigned by the system (usually a hexadecimal number).
For user-created sessions, this is the name originally provided in the
CreateSession method. Once created, a session name cannot be changed.

m oraserver.Name
Returns the name of the physical connection of the specified OraServer object.
m orasubscription.Name

Returns the name used to represent the subscription. Name here refers to the
subscription name in the form of the string ' SCHEMA . QUEUE" if the registration is
for a single consumer queue and ' SCHEMA . QUEUE : CONSUMER_NAME ' if the
registration is for a multiple consumer queue.

See Also:
» CreateSession Method on page 10-109

s Oracle Database Concepts for more information about Oracle
Database events

11-102 Oracle Objects for OLE Developer's Guide

Name (AQAgent) Property

Name (AQAgent) Property

Applies To
OraAQAgent Object on page 9-5
Description
Returns a 30-byte string representing the name of agent.
Usage
agent_name = gMsg.AQAgent.Name
Data Type

String

Server Properties 11-103

Name (OraAttribute) Property

Name (OraAttribute) Property

Applies To
OraAttribute Object on page 9-7
Description
A string containing the name of the attribute.
Usage
name = OraAttribute.Name
Data Type
String
Remarks

Read-only at run time.

See Also: OraAttribute Object on page 9-7

11-104 Oracle Objects for OLE Developer's Guide

Name (OraMDAttribute) Property

Name (OraMDAttribute) Property

Applies To

OraMDAttribute Object on page 9-38
Description

A string containing the name of the attribute.
Usage

name = OraMDAttribute.Name
Data Type

String

Server Properties 11-105

Nanosecond(OraTimeStamp) Property

Nanosecond(OraTimeStamp) Property

Applies To

OraTimeStamp Object on page 9-62
Description

Returns or sets the Nanosecond attribute of an OraTimeStamp object.
Usage

nanosecond = OraTimeStampObj.Nanosecond

OraTimeStampObj.Nanosecond= nanosecond
Arguments

Arguments Description

[in] nanosecond The Nanosecond attribute of an OraTimeStamp object.
Data Type

Integer

11-106 Oracle Objects for OLE Developer's Guide

Nanonsecond (OraTimeStampTZ) Property

Nanonsecond (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64
Description
Returns or sets the Nanosecond attribute of an OraTimeStampTZ object.
Usage
nanosecond = OraTimeStampTZObj.Nanosecond
OraTimeStampTZObj.Nanosecond= nanosecond
Arguments
Arguments Description
[in] nanosecond The Nanosecond attribute of an OraTimeStampTZ object.
Data Type
Integer

Server Properties 11-107

Nanonseconds Property

Nanonseconds Property

Applies To

Description

Usage

Arguments

Data Type

OralntervalYM Object on page 9-37

Gets and sets the Nanoseconds attribute of an OraIntervalDS object.

nanoseconds = OraIntervalDSObj.Nanoseconds
OralIntervalDSObj.Nanoseconds = nanoseconds

Arguments Description

[in] nanoseconds An Integer specifying the value of the Nanoseconds attribute of the
OraIntervalDS object.

Integer

11-108 Oracle Objects for OLE Developer's Guide

Navigation (OraAQ) Property

Navigation (OraAQ) Property

Applies To
OraAQ Object on page 9-3
Description
Specifies the position of the message that will be retrieved.
Usage
Q.Navigation = position
Data Type
Integer
Remarks

Possible values are:
s ORAAQ_DQ_FIRST_MSG (1)

Retrieves the first message that is available and matches the search criteria.
= ORAAQ DQ NEXT_TRANS (2)

Skips the remainder of the current transaction group, if any, and retrieves the first
message of the next transaction group. Used only if message grouping is enabled
for the queue.

s ORAAQ_DQ_NEXT_MSG (3) (Default)

Retrieves the next message that is available and matches the search criteria.

Server Properties 11-109

NoMatch Property

NoMatch Property
Applies To
OraDynaset Object on page 9-30 using the Address (OraAQAgent) Property Property
Description
Returns True if the last call to the FindFirst, FindLast, FindNext, or
FindPrevious method failed.
Usage
Set nomatch_status = oradynaset.NoMatch
Data Type

Boolean

See Also: FindFirst, FindLast, FindNext, and FindPrevious
Methods on page 10-151

11-110 Oracle Objects for OLE Developer's Guide

NonBlockingState Property

NonBlockingState Property

Applies To

Description

Usage

Return Values

"OraSQLStmt Object” on page 9-60 created with ORASQL_NONBLXK option.

Returns the status of the currently executing SQL as follows:

= ORASQL_STILL_EXECUTING
If operation is still underway.
s ORASQL_SUCCESS
If operation has completed successfully.

Any failures are thrown as exceptions.

The application can access the output parameters, if any, as in the blocking case, after

successful execution of the SQL statement.

status = OraSQL.NonBlockingState
if status = ORASQL_STILL_EXECUTING
MsgBox "Still in execution"
else
MsgBox "Execution completed successfully"

ORASQL_STILL_EXECUTING(-3123) or ORASQL_SUCCESS (0)
Errors are thrown as exceptions.

See Also:
s CreateSQL Method on page 10-111

= "Asynchronous Processing" on page 3-16

Server Properties 11-111

Offset (OraLOB/BFILE) Property

Offset (OraLOB/BFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11
OraBFILE Object on page 9-9
Description
Gets or sets the 1-based offset into the LOB or BFILE for the next Read or Write
operation. This property is read /write at run time.
Usage
offsetbytes = OraBFile.Offset
OraBFile.Offset = offsetbytes
offsetbytes = OraBlob.Offset
OraBlob.Offset = offsetbytes
offsetchars = OraClob.Offset
OraClob.Offset = offsetchars
Data Type
Integer
Remarks

This value is expressed in bytes for OraBLOB and OraBFILE or characters for the
OraCLOB object. The default value is 1. Setting this value to 0 raises an error. When
the PollingAmount property is not 0 (polling is enabled), the Of fset property can
only be set before the first Read or Write operation, or after the current polling
operation has completed.

See Also: PollingAmount Property on page 11-125

11-112 Oracle Objects for OLE Developer's Guide

OIPVersionNumber Property

OIPVersionNumber Property

Applies To
OraSession Object on page 9-58
Description
Returns the version number of Oracle Object for OLE. Not available at design time and
read-only at run time.
Usage
version_number = orasession.OIPVersionNumber
Data Type
String
Remarks

This property returns a unique identifier for each release of Oracle Object for OLE.

Server Properties 11-113

Options Property

Options Property

Applies To
OraDatabase Object on page 9-28

OraDynaset Object on page 9-30
OraSQLStmt Object on page 9-60

Description
Returns the options flag originally passed to the specified object. Not available at
design time and read-only at run time.
Usage
options = oradatabase.Options
options = oradynaset.Options
options = orasglstmt.Options
Data Type
Long Integer
Remarks

See the OpenDatabase method for a description of the possible values of
oradatabase.Options.

See the CreateDynaset method for a description of the possible values of
oradynaset.Options.

See the CreateSQL method for a description of the possible values of
orasglstmt.Options

See Also:

» CreateDynaset Method on page 10-85
s CreateSQL Method on page 10-111

s OpenDatabase Method on page 10-212

11-114 Oracle Objects for OLE Developer's Guide

OralDataType Property

OralDataType Property

Applies To

Description

Usage

Data Type

Remarks

OraField Object on page 9-33

Returns the Oracle internal data type code for the field specified. Not available at

design time and read-only at run time.

field_idatatype = orafield.OraIDataType

Long Integer

The following Oracle Internal data types are returned.

Constant Value Internal Data Type
ORATYPE_VARCHAR? 1 VARCHAR?2
ORATYPE_NUMBER 2 NUMBER

ORATYPE_LONG 8 LONG

ORATYPE_DATE 12 DATE

ORATYPE_RAW 23 RAW

ORATYPE_LONGRAW 24 LONG RAW
ORATYPE_CHAR 96 CHAR

ORATYPE_BFLOAT 100 BINARY_FLOAT
ORATYPE_BDOUBLE 101 BINARY_DOUBLE
ORATYPE_MLSLABEL 105 MLSLABEL
ORATYPE_OBJECT 108 OBJECT

ORATYPE_REF 110 REF

ORATYPE_CLOB 112 CLOB

ORATYPE_BLOB 113 BLOB

ORATYPE_BFILE 114 BFILE
ORATYPE_TIMESTAMP 187 TIMESTAMP
ORATYPE_TIMESTAMPTZ 188 TIMESTAMP WITH TIME ZONE
ORATYPE_INTERVALYM 189 INTERVAL YEAR TO MONTH
ORATYPE_INTERVALDS 190 INTERVAL DAY TO SECOND
ORATYPE_TIMESTAMPLTZ 232 TIMESTAMPWITHLOCALTIMEZONE
ORATYPE_VARRAY 247 VARRAY

Server Properties 11-115

OralDataType Property

Constant Value Internal Data Type

ORATYPE_TABLE 248 NESTED TABLE

These values can be found in the ORACLE BASE\ORACLE._
HOME\oo4o\oraconst . txt file.

See Also:

s OraMaxDSize Property on page 11-117
s OraMaxSize Property on page 11-118

s OraNullOK Property on page 11-119

s OraPrecision Property on page 11-120
s OraScale Property on page 11-121

11-116 Oracle Objects for OLE Developer's Guide

OraMaxDSize Property

OraMaxDSize Property

Applies To

Description

Usage

Data Type

Remarks

OraField Object on page 9-33

Returns the Oracle maximum display size for the field specified. Not available at
design time and read-only at run time.

field_maxdisplaysize = orafield.OraMaxDSize

Long Integer

This value is meaningful only when the value is returned as a character string,
especially when using functions such as SUBSTR or TO_CHAR to modify the
representation of the column.

See Also:

OralDataType Property on page 11-115
OraMaxSize Property on page 11-118
OraNullOK Property on page 11-119
OraPrecision Property on page 11-120
OraScale Property on page 11-121

Server Properties 11-117

OraMaxSize Property

OraMaxSize Property
Applies To
OraField Object on page 9-33
Description
Returns the Oracle maximum column size as stored in the Oracle data dictionary. Not
available at design time and read-only at run time.
Usage
field maxsize = orafield.OraMaxSize
Data Type
Long Integer
Remarks

The return value is dependent on the Oracle internal data type. The following values
will be returned:

Oracle Column Type Value
CHAR, VARCHAR2, RAW Length of the column in the table
NUMBER 22 (the internal length)
DATE 7 (the internal length)
LONG, LONG RAW 0
ROWID System dependent
Functions returning internal data type 1, such Same as orafield.MaxDSize
as TO_CHAR()
See Also:

s OralDataType Property on page 11-115
s OraMaxDSize Property on page 11-117
= OraNullOK Property on page 11-119

s OraPrecision Property on page 11-120
= OraScale Property on page 11-121

11-118 Oracle Objects for OLE Developer's Guide

OraNullOK Property

OraNullOK Property

Applies To
OraField Object on page 9-33
Description
Indicates whether or not Null values are permitted for this column. Not available at
design time and read-only at run time.
Usage
field nullok = orafield.OraNullOK
Data Type
Integer (Boolean)
Remarks

This property returns True if Null values are permitted, otherwise, it returns False.

See Also:

s OralDataType Property on page 11-115
s OraMaxDSize Property on page 11-117
s OraMaxSize Property on page 11-118

s OraPrecision Property on page 11-120
= OraScale Property on page 11-121

Server Properties 11-119

OraPrecision Property

OraPrecision Property

Applies To
OraField Object on page 9-33
Description
Returns the precision of a numeric column. Not available at design time and read-only
at run time.
Usage
field precision = orafield.OraPrecision
Data Type
Long Integer
Remarks

This value is meaningful only when the value returned is numeric. Precision is the
total number of digits of a number.

See Also:

s OralDataType Property on page 11-115

s OraMaxDSize Property on page 11-117

s OraMaxSize Property on page 11-118

s OraNullOK Property on page 11-119

= OraScale Property on page 11-121

11-120 Oracle Objects for OLE Developer's Guide

OraScale Property

OraScale Property
Applies To
OraField Object on page 9-33
Description
Returns the scale of a numeric column. Not available at design time and read-only at
run time.
Usage
field _scale = orafield.OraScale
Data Type
Long Integer
Remarks

This value is meaningful only when the value returned is numeric. The SQL types
REAL, DOUBLE PRECISION, FLOAT, and FLOAT(N) return a scale of -127.

See Also:

s OralDataType Property on page 11-115
s OraMaxDSize Property on page 11-117
s OraMaxSize Property on page 11-118

s OraNullOK Property on page 11-119

s OraPrecision Property on page 11-120

Server Properties 11-121

Parameters Property

Parameters Property

Applies To

Description

Usage

Data Type

Remarks

OraDatabase Object on page 9-28

Returns the OraParameters collection of the specified database. Not available at
design time and read-only at run time.

Set oraparameters_collection = oradatabase.Parameters

OLE Object (OraParameters)

You can access the parameters in this collection by subscripting (using ordinal integer
numbers) or by using the name the parameter that was given at its creation. You can
obtain the number of parameters in the collection using the Count property of the
returned collection. Integer subscripts begin with 0 and end with Count-1.
Out-of-range indexes and invalid names return a Null OraParameter object.

In addition to accessing the parameters of the collection, you can also use the
collection to create and destroy parameters using the Add and Remove methods,
respectively.

See Also:

= Add Method on page 10-8

s Count Property on page 11-31

s OraParameter Object on page 9-50

s OraParameters Collection on page 9-68

= Remove Method on page 10-230

11-122 Oracle Objects for OLE Developer's Guide

PinOption (OraRef) Property

PinOption (OraRef) Property

Applies To
OraRef Object on page 9-52
Description
Gets and sets the Pin option for the referenceable object during the pin operation.
Usage
pin_option = OraRef.PinOption
OraRef.PinOption = pin_option
Arguments
Arguments Description
[in] PinOption An Integer representing the Pin option.
Data Type
Integer (Boolean)
Remarks
Possible values returned by the pin_option property are:
Constant Value Description
ORAREF_READ_ANY 3 If the object is already in the object cache, returns it,
otherwise, retrieves it from the database(default).
ORAREF_READ_RECENT 4 If the object is retrieved into the cache during a
transaction, returns it from the cache, otherwise
retrieves the object from the database.
ORAREF_READ_LATEST 5 Always retrieves the latest values from the database.
Examples

The following example shows the usage of the PinOption property. Before running
the sample code, make sure that you have the necessary data types and tables in the
database. See "Schema Objects Used in the OraObject and OraRef Examples" on
page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

Server Properties 11-123

PinOption (OraRef) Property

'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)

'retrieve a aperson column from customers. Here Value
'property of OraField object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value

'set the ORAREF_READ_LATEST read option on the Person object.
Person.PinOption = ORAREF_READ_LATEST

'pin the Person Ref and get the latest copy of referenceable
'object for Ref from the database

MsgBox Person.Name

MsgBox Person.Age

11-124 Oracle Objects for OLE Developer's Guide

PollingAmount Property

PollingAmount Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description

Gets or sets the total amount to be read or written for multiple chunk Read and Write
operations (polling). A value of zero means that polling is not used. This property is
read/write at run time.

Usage

pollamountbytes = OraBFile.PollingAmount
OraBfile.PollingAmount = pollamountbytes

pollamountbytes = OraBlob.PollingAmount
OraBlob.PollingAmount = pollamountbytes

pollamountchars= OraClob.PollingAmount
OraClob.PollingAmount = pollamountchars

Data Type

Integer

Remarks

This value is expressed in bytes for the OraBLOB and OraBFILE objects, or characters
for the OraCLOB object. It is set before beginning a multiple-chunk read or write
operation. After it is set, a series of Read or Write operations must be issued until the
LOB status property no longer returns ORALOB_NEED_DATA .This occurs when the
PollingAmount bytes or characters have been read. Attempting to do other LOB
operations before the end of the polling operation results in an error.

Server Properties 11-125

Priority (OraAQMsg) Property

Priority (OraAQMsg) Property

Applies To

OraAQMsg Object on page 9-6
Description

Specifies the priority of the message.
Usage

Msg.Priority = msg_priority
Data Type

Integer
Remarks

A smaller number indicates higher priority.
Possible Values are:

= Any integer including negative numbers.
s ORAAQ_NORMAL (Default): 0

n ORAAQ_HIGH:-10

n ORAAQ_LOW:10

This property can be set while enqueuing and can then be used for priority-based
dequeuing.

11-126 Oracle Objects for OLE Developer's Guide

RDMSVersion Property

RDMSVersion Property
Applies To

OraDatabase Object on page 9-28
Description

Returns the database version.
Usage

Set Version = oradatabase.RDBMSVersion
Data Type

String

Server Properties 11-127

RecordCount Property

RecordCount Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraDynaset Object on page 9-30
OraSQLStmt Object on page 9-60

n OraDynaset
Returns the total number of records in the dynaset.
n OraSQLStmt

Returns the number of records processed in an insert, update, or delete statement,
even when there is a failure executing the SQL statement.

Not available at design time and read-only at run time.

record_count = oradynaset.RecordCount
record_count = orasglstmt.RecordCount

Long Integer

Referencing this property requires that the entire result table be fetched immediately
from an Oracle database to determine the count of records. Due to the potentially
severe performance impact of this, the user should avoid using this property and
instead execute an additional query using the COUNT (*) clause, and use the
Snapshot ID property to guarantee time consistency. For an example, see the
Snapshot property.

Referencing this property while using the ORADYN_NOCACHE option of the
CreateDynaset method causes an implicit MoveLast operation and makes the
current record the last record in the dynaset.

RecordCount Example (OraDynaset)

This example demonstrates the use of the RecordCount property to determine the
number of records retrieved with a SELECT statement and OraDynaset. Copy and
paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.

11-128 Oracle Objects for OLE Developer's Guide

RecordCount Property

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the dynaset.
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)

'Display the number of records. Note that this causes
'all records to be fetched to ensure an accurate count.

MsgBox OraDynaset.RecordCount & " records retrieved."

End Sub

Record Count Example (OraSQLStmt)

The following example shows the number of records inserted into the database after
using an INSERT statement with OraSQLStmt.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraSglStmt As OraSQLStmt
Dim OraPArrayl As OraParamArray
Dim OraPArray2 As OraParamArray
Dim I As Integer

On Error GoTo ERR_array_sql

'Test case for inserting/updating/deleting multiple rows using parameter arrays
'with SQL statements

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.OpenDatabase ("exampledb", "scott/tiger", 0&)

'Create table
OraDatabase.ExecuteSQL ("create table part_nos(partno number, description" & _
"char (50), primary key(partno))")

OraDatabase.Parameters.AddTable "PARTNO", ORAPARM_INPUT, ORATYPE NUMBER, 10, 22
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM INPUT, ORATYPE_CHAR, _
10, 50
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
MsgBox "Error"
End If

Set OraPArrayl = OraDatabase.Parameters ("PARTNO")
Set OraPArray2 = OraDatabase.Parameters ("DESCRIPTION")

'Initialize arrays

For I =0 To 9
achar = "Description" + Str(I)
OraPArrayl.put_Value 1000 + I, I
OraPArray2.put_Value achar, I

Next I

Set OraSglStmt = OraDatabase.CreateSqgl("insert into" & _
"part_nos (partno, description) values(:PARTNO, :DESCRIPTION)", 0&)

Server Properties 11-129

RecordCount Property

If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
MsgBox "Error"

End If

MsgBox "# of records inserted : " & OraSglStmt.RecordCount

Exit Sub

ERR_array_sqgl:

MsgBox Err.Description

See Also:
= SnapShot Property on page 11-146
= CreateDynaset Method on page 10-85

s MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
on page 10-199

11-130 Oracle Objects for OLE Developer's Guide

RelMsgld (OraAQ) Property

RelMsgld (OraAQ) Property

Applies To
OraAQ Object on page 9-3
Description
Specifies that the message of this queue object is enqueued ahead of the message
specified by the message ID.
Usage
OraAqg.RelMsgid = msg_id
Data Type
String
Remarks

This method is applicable only for an enqueue operation.

Possible values include:

= Any valid message identifier, specified by an array of bytes.

= ORAAQ NULL_MSGID (Default): No message identifier specified.

Setting this property invokes enqueue with the ORAAQ_ENQ_BEFORE option. Set this
property to ORAAQ_NULL_MSGID to place the message on top of the queue.

Server Properties 11-131

RowPosition Property

RowPosition Property

Applies To
OraDynaset Object on page 9-30
Description
Returns the row number of the current row in the dynaset. Not available in design
time and read-only in run time.
Usage
rownum = OraDynaset.RowPosition
Data Type

Integer

See Also: OraField Object on page 9-33

11-132 Oracle Objects for OLE Developer's Guide

SafeArray (OraCollection) Property

SafeArray (OraCollection) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

OraCollection Object on page 9-19

Gets or sets the element values from the Variant SAFEARRAY.

SafeArray = OraCollection.SafeArray
OraCollection.SafeArray = SafeArray

Arguments Description

SafeArray A Variant representing SafeArray format.

A Variant representing a SafeArray format.

This property is only valid for simple scalar elements types, such as VARCHAR2 and
NUMBER. This property raises an error for element type LOBS, Objects, Refs, and so on.

The Variant SAFEARRAY index starts at 0. When converting to SAFEARRAY format,
the OraCollection object converts its element value to its corresponding
SAFEARRAY Variant type. The following table explains collection element types and
their corresponding SAFEARRAY Variant types:

Collection Element Type SAFEARRAY of
Date String
Number String

CHAR, VARCHAR?2 String

Real Real

Integer Integer

For setting a SAFEARRAY to a collection, OraCollection converts the SAFEARRAY
elements to its nearest collection element type.

Server Properties 11-133

Second (OraTimeStamp) Property

Second (OraTimeStamp) Property

Applies To

OraTimeStamp Object on page 9-62
Description

Returns or sets the Second attribute of an OraTimeStamp object.
Usage

second = OraTimeStampObj.Second

OraTimeStampObj.Second= second
Arguments

Arguments Description

[in] second The Second attribute of an OraTimeStamp object.
Data Type

Integer

11-134 Oracle Objects for OLE Developer's Guide

Second (OraTimeStampTZ) Property

Second (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object on page 9-64
Description

Returns or sets the Second attribute of an OraTimeStampTZ object.
Usage

second = OraTimeStampTZObj.Second

OraTimeStampTZObj.Second= second
Arguments

Arguments Description

[in] second The Second attribute of an OraTimeStampTZ object.
Data Type

Integer

Server Properties 11-135

Seconds Property

Seconds Property

Applies To
OralntervalDS Object on page 9-35
Description
Gets and sets the Seconds attribute of an OraIntervalDS object.
Usage
seconds = OralntervalDSObj.Seconds
OralIntervalDSObj.Seconds = seconds
Arguments
Arguments Description
[in] seconds An Integer specifying the value of the Seconds attribute of the
OraIntervalDS object.
Data Type

Integer

11-136 Oracle Objects for OLE Developer's Guide

Server Property

Server Property

Applies To

Description

Usage

Data Type

OraDatabase Object on page 9-28

Returns the OraServer object to which this object is attached.

Set oraserver = oradatabase.Server

OLE Object (OraServer)

See Also: OraServer Object on page 9-56

Server Properties 11-137

ServerType Property

ServerType Property

Specifies the Oracle external type of a SQL or PL/SQL bind variable. Not available at

Read-only for the OraParamArray object. Specify the ServerType property during

Applies To
OraParameter Object on page 9-50
OraParamArray Object on page 9-47
Description
design time and read/write at run time.
the AddTable method.
Usage
oraparameter.ServerType = oracle_type
Data Type
Integer
Remarks

Used to specify the external data type of SQL or PL/SQL (in/out) bind variables. This
is necessary because no local parsing of the SQL statement or PL/SQL block is done to
match the data types of placeholders in the SQL statement or PL/SQL block.

After an OraParameter object has been set to ServerType BLOB, CLOB, BFILE,
OBJECT, REF, VARRAY, or NESTED TABLE, it cannot be changed to any other
ServerType property.

The following Oracle external data types are supported.

Constant Value Internal Data Type
ORATYPE_VARCHAR2 1 VARCHAR2
ORATYPE_NUMBER 2 NUMBER
ORATYPE_SINT 3 SIGNED INTEGER
ORATYPE_FLOAT 4 FLOAT
ORATYPE_STRING 5 Null Terminated STRING
ORATYPE_LONG 8 LONG
ORATYPE_VARCHAR 9 VARCHAR
ORATYPE_DATE 12 DATE

ORATYPE_RAW 23 RAW
ORATYPE_LONGRAW 24 LONG RAW
ORATYPE_UINT 68 UNSIGNED INTEGER
ORATYPE_CHAR 96 CHAR
ORATYPE_CHARZ 97 Null Terminated CHAR

11-138 Oracle Objects for OLE Developer's Guide

ServerType Property

Examples

Constant Value Internal Data Type
ORATYPE_BFLOAT 100 BINARY_ FLOAT
ORATYPE_BDOUBLE 101 BINARY_ DOUBLE
ORATYPE_CURSOR 102 PLSQL CURSOR
ORATYPE_MLSLABEL 105 MLSLABEL
ORATYPE_OBJECT 108 OBJECT

ORATYPE_REF 110 REF

ORATYPE_CLOB 112 CLOB

ORATYPE_BLOB 113 BLOB

ORATYPE_BFILE 114 BFILE
ORATYPE_TIMESTAMP 187 TIMESTAMP
ORATYPE_TIMESTAMPTZ 188 TIMESTAMP WITH TIMEZONE
ORATYPE_INTERVALYM 189 INTERVAL YEAR TO MONTH
ORATYPE_INTERVALDS 190 INTERVAL DAY TO SECOND
ORATYPE_TIMESTAMPLTZ 232 TIMESTAMP WITH LOCAL TIME ZONE
ORATYPE_VARRAY 247 VARRAY

ORATYPE_TABLE 248 NESTED TABLE
ORATYPE_RAW_BIN 2000 RAW

These values can be found in the ORACLE BASE\ORACLE_
HOME\oo4o\oraconst. txt file.

This example demonstrates the Add and Remove parameter methods, the
ServerType parameter property, and the ExecuteSQL database method to call a
stored procedure and function (located in ORAEXAMP . SQL). Copy and paste this code
into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Add EMPNO as an Input/Output parameter and set its initial value.
OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
OraDatabase.Parameters ("EMPNO") .ServerType = ORATYPE_NUMBER

'Add ENAME as an Output parameter and set its initial value.

OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
OraDatabase.Parameters ("ENAME") . ServerType = ORATYPE_VARCHAR2

Server Properties 11-139

ServerType Property

'Add SAL as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
OraDatabase.Parameters ("SAL") .ServerType = ORATYPE_NUMBER

'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.

' This Stored Procedure can be found in the file ORAEXAMP.SQL.
OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
'Display the employee number and name.

'Execute the Stored Function Employee.GetSal to retrieve SAL.

' This Stored Function can be found in the file ORAEXAMP.SQL.

OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _
":SAL:=Employee.GetEmpSal (:EMPNO); end;")

'Display the employee name, number and salary.

MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" &
OraDatabase.Parameters ("EMPNO") .value & ",Salary=" &
OraDatabase.Parameters ("SAL") .value

'Remove the Parameters.
OraDatabase.Parameters.Remove "EMPNO"
OraDatabase.Parameters.Remove "ENAME"
OraDatabase.Parameters.Remove "SAL"

End Sub

See Also:

= Add Method on page 10-8

= Remove Method on page 10-230

= AddTable Method on page 10-23

= ExecuteSQL Method on page 10-144

11-140 Oracle Objects for OLE Developer's Guide

Session Property

Session Property

Applies To
OraCollection Object on page 9-27

OraDatabase Object on page 9-28
OraDynaset Object on page 9-30
OraSQLStmt Object on page 9-60
OraServer Object on page 9-56

Description

Returns the OraSession object associated with the specified object. Not available at
design time and read-only at run time.

Usage

Set orasession = oraconnection.Session
Set orasession = oradatabase.Session
Set orasession = oradynaset.Session
Set orasession = orasglstmt.Session
Set orasession = oraserver.Session

Data Type
OLE Object (OraSession)

Remarks

m oraconnection.Session
Returns the OraSession object in which this OraConnection object resides.
s oradatabase.Session

Returns the OraSession object associated with this OraDatabase object. Each
database is a part of one session, which is, by default, the session associated with
the application.

s oradynaset.Session
Returns the OraSession object associated with this OraDynaset object.
m orasglstmt.Session

Returns the OraSession object associated with this OraSQLStmt object.

See Also:
= OraSession Object on page 9-58

= OraSessions Collection on page 9-69

Server Properties 11-141

Sessions Property

Sessions Property

Applies To
OraClient Object on page 9-18
Description
Returns the collection of all sessions for the specified Oraclient object. Not available
at design time and read-only at run time.
Usage
Set orasessions_collection = oraclient.Sessions
Data Type
OLE Object (OraSessions)
Remarks

You can access a session in this collection by subscripting (using ordinal numbers) or
by using the name the session was given at its creation. You can obtain the total
number of sessions in the collection by using the Count property of the returned
collection. Integer subscripts begin with 0 and end with Count-1. Out-of-range
indexes and invalid names return a Null OraSession object.

See Also:

s Count Property on page 11-31

= OraSession Object on page 9-58

» OraSessions Collection on page 9-69

11-142 Oracle Objects for OLE Developer's Guide

Size Property

Size Property
Applies To
OraField Object on page 9-33
Description
Returns the number of characters or bytes of the Variant associated with the
returned value of this field. Not available at design time and read-only at run time.
Usage
field size = orafield.Size
Data Type
Long Integer
Remarks

This property returns 0 for LONG or LONG RAW fields. Use the FieldSize method to
determine the length of LONG or LONG RAW fields.

See Also:

s OraFields Collection on page 9-67
s FieldSize Method on page 10-150
= Type Property on page 11-164

Server Properties 11-143

Size (OraCollection) Property

Size (OraCollection) Property

Applies To
OraCollection Object on page 9-19
Description
Returns the current size of the given collection. Read-only at run time.
Usage
coll_size = OraCollection.Size
Data Type
Integer
Remarks

For an OraCollection object of type ORATYPE_TABLE, this property returns the
current size of the collection including deleted elements.

See Also: OraField Object on page 9-33

11-144 Oracle Objects for OLE Developer's Guide

Size (OraLOB and OraBFILE) Property

Size (OraLOB and OraBFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11
OraBFILE Object on page 9-9
Description
Returns the number of bytes in OraBLOB and OraBFILE objects or the number of
characters in an OraCLOB object. Read-only.
Usage

bytes = OraBFile.Size
bytes = OraBlob.Size

chars = OraClob.Size

Server Properties 11-145

SnapShot Property

SnapShot Property

Applies To
OraDynaset Object on page 9-30

Description
Returns the SnapshotID.

Read and write at run time.

Usage
SnapshotID = OraDynaset.Snapshot

Remarks

The SnapshotID represents the snapshot from which this dynaset was created. It can
be thought of as a timestamp. It can be passed into other CreateDynaset method
calls to cause them to be created using data from the same point in time as the original
dynaset.

The Snapshot property can be set with the value of another Snapshot. That new
snapshot is used during the next Refresh operation when the query is reexecuted.
The snapshot property always returns the SnapshotID on which this OraDynaset
object was based, not any other SnapshotID set through the snapshot property.

The SnapshotID becomes invalid after a certain amount of time; that amount of time
is dependent on the amount of activity and the configuration of the database. When
this happens, you get a Snapshot too old error message. For more information
about snapshots, see the Oracle Database Concepts.

This SnapshotID represents the point in time when this dynaset was created.
Changes to this dynaset (Edit, Delete, and AddNew operations) is not reflected in
additional dynasets created using this SnapshotID because they occurred after that
point in time.

Snapshot ID objects are only meaningful for SELECT statements where the tables
referenced are real database tables, as opposed to pseudo tables such as DUAL.

One valuable use of the SnapshotID is to calculate the number of rows in a table
without using the RecordCount property which causes every row to be fetched. See
"Example: Counting Rows in a Dynaset" on page 11-147.

Data Type
Object

Examples

Example: Using the SnapShot Property

This example shows the use of the SnapShot property.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim OraDynasetl As OraDynaset
Dim OraDynaset2 As OraDynaset

11-146 Oracle Objects for OLE Developer's Guide

SnapShot Property

Dim SnapshotID as SnapshotID

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'ALLEN's JOB is initially SALESMAN
OraDatabase.ExecuteSql ("Update EMP set JOB = 'SALESMAN' where ENAME = 'ALLEN'")

'Create initial OraDynaset Object.
Set OraDynasetl = OraDatabase.CreateDynaset ("select empno, ename," & _
"job from emp", 0&)
MsgBox "OraDynasetl -- Value of JOB is " & OraDynasetl.Fields("JOB").Value

'Change Allen's JOB
OraDatabase.ExecuteSql ("Update EMP set JOB = 'CLERK' where ENAME = 'ALLEN'")

'This SnapshotID represents the point in time in which OraDynasetl was created
Set SnapshotID = OraDynasetl.Snapshot

'Create OraDynaset2 from the same point in time as OraDynasetl
Set OraDynaset2 = OraDatabase.CreateDynaset ("select JOB from EMP" & _
"where ENAME = 'ALLEN'", 0&, SnapshotID)

MsgBox "OraDynaset2 -- Value of JOB from point of time of OraDynasetl is " & _
OraDynaset2.Fields("JOB") .Value

'We set the snapshot to NULL which will get us current point in time.
OraDynaset?2.Snapshot = Null

'We refresh it and it will get us the data from the current point in time

OraDynaset2.Refresh

MsgBox "OraDynaset2 -- Value of JOB from current point of time is " & _
OraDynaset2.Fields ("JOB") .Value

'And back again to the old point in time --

OraDynaset2.Snapshot = SnapshotID

OraDynaset2.Refresh

MsgBox "OraDynaset2 -- Value of JOB from point of time of OraDynasetl is " & _
OraDynaset2.Fields ("JOB") .Value

Example: Counting Rows in a Dynaset

This example counts the number of rows in a dynaset without using the
RecordCount property, which fetches every row. Note that the record count this
returns cannot take into account any AddNew or Delete operations, making the
information meaningful only immediately after the dynaset is created

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim OraDynCount As OraDynaset
Dim SnapshotID as SnapshotID

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.

Server Properties 11-147

SnapShot Property

Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create the Dynaset
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

Set SnapshotID = OraDynaset.Snapshot

'Use the snapshot for count query to guarantee the same point in time
Set OraDynCount = OraDatabase.CreateDynaset ("select count(*) NUMROWS" & _

"from emp", 0&, SnapshotID)
MsgBox "Number of rows in the table is " & OraDynCount.Fields ("NUMROWS") .Value

See Also:
= CreateDynaset Method on page 10-85
s CreateCustomDynaset Method on page 10-80

» Oracle Database Concepts

11-148 Oracle Objects for OLE Developer's Guide

Sort Property

Sort Property

Remarks

The OraDynaset object does not support this property. Sort your record set by using
a SQL ORDER BY clause.

See Also:
» CreateDynaset Method on page 10-85
= OraDynaset Object on page 9-30

Server Properties 11-149

SQL Property

SQL Property

Applies To
OraDynaset Object on page 9-30

OraSQLStmt Object on page 9-60

Description

Returns or sets the SQL statement used to create the specified dynaset or OraSQLStmt
object. Not available at design time and read/write at run time.

Usage
SQL_statement = oradynaset.SQL
SQL_statement = orasglstmt.SQL

oradynaset.SQL = SQL_statement
orasglstmt.SQL = SQL_statement

Data Type
String

Remarks

The first use returns the contents of the SQL statement buffer, and the second use sets
the contents of the SQL statement buffer.

The SQL statement buffer initially contains the SQL statement used to create the
dynaset or OrasQLStmt object. The contents of the SQL statement buffer are executed
whenever the Refresh method is issued.

Examples

This example demonstrates the use of parameters, the Refresh method, and the SQL
property to restrict selected records. Copy and paste this code into the definition
section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create a parameter with an initial value.
OraDatabase.Parameters.Add "job", "MANAGER", 1

'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp where " & _

11-150 Oracle Objects for OLE Developer's Guide

SQL Property

"job=:job", 0&)

'Notice that the SQL statement is NOT modified.
MsgBox OraDynaset.SQL

'Currently, OraDynaset only contains employees whose job is MANAGER.

'Change the value of the job parameter.
OraDatabase.Parameters ("job").Value = "SALESMAN"

'Refresh the dynaset.
OraDynaset.Refresh

'Currently, OraDynaset only contains employees whose 'job is SALESMAN.

'Notice that the SQL statement is NOT modified.
MsgBox OraDynaset.SQL

'Remove the parameter.
OraDatabase.Parameters.Remove ("job")

End Sub

See Also: Refresh Method on page 10-225

Server Properties 11-151

Status Property

Status Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraParameter Object on page 9-50
OraParamArray Object on page 9-47

Returns an integer indicating the status of the specified parameter. Not available at
design time and read-only at run time.

parameter_status = oraparameter.Status
parameter_status = oraparamarray.Status

Integer

The Status property is interpreted as a series of bits, each providing information
about the parameter. Parameters can be bound only if they are enabled, and can be
enabled only if they are auto-enabled.

The parameter Status property bit values are:

Constant Value Description

ORAPSTAT_INPUT &H1& Parameter can be used for input.
ORAPSTAT OUTPUT &H2& Parameter can be used for output.
ORAPSTAT_AUTOENABLE &HA& Parameter is AutoBindEnabled.
ORAPSTAT_ENABLE &H8& Parameter is Enabled. This bit is always set.

These values are located in the ORACLE_BASE\ORACLE_HOME\oo4o\oraconst.txt
file.

This example demonstrates the use of parameters and the ExecuteSQL method to call
a stored procedure (located in ORAEXAMP . SQL). After calling the stored procedure, the
Status property of each parameter is checked. Copy and paste this code into the
definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

11-152 Oracle Objects for OLE Developer's Guide

Status Property

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Add EMPNO as an Input parameter and set its initial value.
OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT

'Add ENAME as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT

'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
' This Stored Procedure is located in the file ORAEXAMP.SQL.
OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")

If OraDatabase.Parameters ("EMPNO") .Status & ORAPSTAT_INPUT Then
MsgBox "Parameter EMPNO used for input."
End If

If OraDatabase.Parameters("ENAME").Status & ORAPSTAT OUTPUT Then
MsgBox "Parameter ENAME used for output."
End If

'Display the employee number and name.
MsgBox OraDatabase.Parameters ("EMPNO") .value
MsgBox OraDatabase.Parameters ("ENAME") .value

'Remove the Parameters.
OraDatabase.Parameters.Remove "EMPNO"
OraDatabase.Parameters.Remove "ENAME"

End Sub

See Also:

= Add Method on page 10-8

= AutoBindDisable Method on page 10-39
= AutoBindEnable Method on page 10-41
= ExecuteSQL Method on page 10-144

= Remove Method on page 10-230

Server Properties 11-153

Status (OraLOB/BFILE) Property

Status (OraLOB/BFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11
OraBFILE Object on page 9-9
Description
Returns the status of the current polling operation.
Read-only.
Usage
status = OraBFile.Status
status = OraBlob.Status
status = OraClob.Status
Data Type
Integer
Remarks

This value only has meaning when the PollingAmount property is not zero, and a
Read operation has occurred. Possible return values are:

= ORALOB_NEED_DATA

There is more data to be read or written.
= ORALOB_NODATA

There is no data to be read or written, usually due to an error condition.
= ORALOB_SUCCESS LOB

The data was read or written successfully.

See Also: PollingAmount Property on page 11-125

11-154 Oracle Objects for OLE Developer's Guide

Subscriptions Property

Subscriptions Property

Applies To
OraDatabase Object on page 9-28

Description
Returns the OraSubscriptions collection of the specified database. Not available at
design time and read-only at run time.

Usage
Set orasubscriptions_collection = oradatabase.Subscriptions

Data Type
OLE Object (OraSubscriptions)

Remarks
You can access the subscriptions in this collection by subscripting (using ordinal
integer numbers). You can obtain the number of subscriptions in the collection using
the Count property of the returned collection. Integer subscripts begin with 0 and end
with Count-1. Out-of-range indexes return a Null OraSubscription object.
In addition to accessing the subscriptions of the collection, you can also use the
collection to create and destroy subscriptions using the Add and Remove methods,
respectively.

Examples

See "Example: Registering an Application for Notification of Database Events" on
page 10-15 for a complete example.

See Also:

= "Database Events" on page 4-22

s OraSubscription Object on page 9-61

s OraSubscriptions Collection on page 9-70

Remove (OraSubscriptions Collection) Method on page 10-231

Server Properties 11-155

TableName (OraRef) Property

TableName (OraRef) Property

Applies To
OraRef Object on page 9-52
Description
A string containing the name of the object table in which the underlying
referenceable object resides.
Usage
table_name = OraRef.TableName
Data Type
String
Remarks

This property is read-only.

11-156 Oracle Objects for OLE Developer's Guide

TableSize (OraCollection) Property

TableSize (OraCollection) Property

Applies To
OraCollection Object on page 9-19
Description
Returns the current size of the given collection. Read-only at run time.
Usage
table_size = OraCollection.TableSize
Data Type
Integer
Remarks

For an OraCollection object of type ORATYPE_TABLE, it returns the current size of
the collection, excluding deleted elements.

Server Properties 11-157

TimeZone (OraTimeStampTZ) Property

TimeZone (OraTimeStampTZ) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

OraTimeStampTZ Object on page 9-64

Returns or sets the time zone information of an OraTimeStampTZ object.

timezone = OraTimeStampTZObj.TimeZone
OraTimeStampTZObj.TimeZone= timezone

Arguments Description
[in] timezone The time zone attribute of an OraTimeStampTZ object.
String

Setting the TimeZone property does not change the Coordinated Universal Time
(UTC) datetime values stored in the OraTimeStampTZ object. However, the local
datetime values in the specified time zone can change.

The following table shows the UTC datetime values that correspond to the datetime
and time zone values of the OraTimeStampTZ object in the example.

OraTSTZ Object UTC Date Time Values of the

Properties Values OraTSTZ Object
Year 2003 2003

Month 4 4

Day 29 29

Hour 12 19

Minute, Second, Nanosecond 0 0

TimeZone -07:00 00:00

Setting the TimeZone property to -08: 00 changes the datetime values in the
specified time zone of the OraTimeStampTZ object, but does not change the UTC
datetime values.

New OraTSTZ UTC Date Time Values of the
Properties Object Values New OraTSTZ Object
Year 2003 2003
Month 4 4

11-158 Oracle Objects for OLE Developer's Guide

TimeZone (OraTimeStampTZ) Property

Examples

New OraTSTZ UTC Date Time Values of the
Properties Object Values New OraTSTZ Object
Day 29 29
Hour 11 19
Minute, Second, Nanosecond 0 0
TimeZone -08:00 00:00

Dim OraTSTZ as OraTimeStampTZ

Dim OraTSTZ_new as OraTimeStampTZ
Dim OraTSTZStr as String

Dim OraTSTZStr_new as String

Set OraTSTZ = oo4oSession.CreateOraTimeStampTZ("2003-APR-29" & _
"12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")

'Change Time Zone to "-08:00"
Set OraTSTZ_new = OraTSTZ.Clone
oraTSTZ_new.TimeZone = "-08:00"

'OraTSTZStr has value as (29-APR-03 12.00.00.000000000 PM -07:00)

OraTSTZStr = OraTSTZ.value

'OraTSTZStr new has value as (29-APR-03 11.00.00.000000000 PM -08:00)

OraTSTZStr_new = OraTSTZ_new.value

Server Properties 11-159

TotalDays Property

TotalDays Property
Applies To
OralntervalDS Object on page 9-35
Description
Gets and sets the total number of days that this OraIntervalDS object represents.
Usage
totalDays = OraIntervalDSObj.TotalDays
OralIntervalDSObj.TotalDays = totalDays
Arguments
Arguments Description
[in] totalDays A Variant type of any numeric value or an OraNumber object
specifying the OraIntervalDS object as the total number of days.
Data Type
Double
Examples

Dim oraIDS as OralIntervalDS
'Create an OralntervalDS using a string which represents 1 day and 12 hours
Set oraIDS = oo4oSession.CreateOraIntervalDS("1l 12:0:0.0")

'totalDays is set to 1.5 which represents an interval of 1.5 days
totalDays = oralIDS.TotalDays

See Also: OraNumber Object on page 9-41

11-160 Oracle Objects for OLE Developer's Guide

TotalYears Property

TotalYears Property

Applies To

Description

Usage

Arguments

Data Type

Examples

OralntervalYM Object on page 9-37

Gets and sets the total number of years that this OraIntervalYM object represents.

totalYears = OralIntervalYMObj.TotalYears
OraIntervalYMObj.TotalYears= totalYears

Arguments Description

[in] totalYears A Variant type of any numeric value specifying the OraIntervalYM
object as the total number of years.

Double

Dim oraIYM as OralntervalYM

'Create an OralntervalYM using a string which represents 1 year and 6 months
Set oraIYM = oodoSession.CreateOraIntervalYM("1-6")

'totalYears is set to 1.5 which represents an interval of 1.5 years
totalYears = oralYM.TotalYears

Server Properties 11-161

Transactions Property

Transactions Property

Applies To
OraDynaset Object on page 9-30
Description
Indicates whether or not the given dynaset can support transaction processing. Not
available at design time and read-only at run time.
Usage
if_transactions = oradynaset.Transactions
Data Type
Integer (Boolean)
Remarks

This property always returns True.

See Also:

= BeginTrans Method on page 10-43

s CommitTrans Method on page 10-66
s OraDynaset Object on page 9-30

s ResetTrans Method on page 10-233

= Rollback Method on page 10-235

11-162 Oracle Objects for OLE Developer's Guide

Truncated Property

Truncated Property

Applies To
OraField Object on page 9-33
Description
Indicates whether or not a field value was truncated when fetched. Not available at
design time and read-only at run time.
Usage
field status = orafield.Truncated
Data Type
Integer (Boolean)
Remarks

This property returns True if truncated data is returned; otherwise, it returns False.
Truncation can only occur for LONG or LONG RAW fields. Use this property to decide
whether more data needs to be retrieved from an Oracle database using the GetChunk
method.

See Also:
s GetChunk Method on page 10-156
= Type Property on page 11-164

Server Properties 11-163

Type Property

Type Property

Applies To
OraField Object on page 9-33
OraParameter Object on page 9-50
OraParamArray Object on page 9-47
Description
Returns the Variant type of the specified object. Not available at design time and
read-only at run time.
Usage
data_type = orafield.Type
data_type = oraparameter.Type
data_type = oraparamarray.Type
Data Type
Integer
Remarks

m orafield.Type

Returns the Variant data type (see Visual Basic documentation) associated with

the returned value of this field.

n Ooraparameter.Type

Returns an integer indicating the Variant data type that is actually bound to the

SQL statement. This may differ from the Variant data type of

oraparameter.Value, because internal conversions may be necessary to obtain

a data type common to both Visual Basic and Oracle Database.

Users can expect the following mapping from Oracle internal data types:

Oracle Data Type Constant Value Data Type
BINARY_DOUBLE ORADB_DOUBLE 7 Double
BINARY_FLOAT ORADB_SINGLE 6 Single

BLOB ORADB_OBJECT 9 OraBLOB

CHAR ORADB_TEXT 10 String

CLOB ORADB_OBJECT 9 OraCLOB

DATE ORADB_DATE 8 Variant

DATE ORADB_DATE 8 Date

INTERVAL DAY TO SECOND ORADB_OBJECT 9 OraIntervalDS
INTERVAL YEAR TO MONTH ORADB_OBJECT 9 OraIntervalYM
LONG ORADB_MEMO 12 String

LONG RAW ORADB_LONGBINARY 11 String

11-164 Oracle Objects for OLE Developer's Guide

Type Property

Oracle Data Type Constant Value Data Type
NESTED TABLE ORADB_OBJECT 9 OraBFILE
NUMBER (1-4, 0) ORADB_INTEGER 3 Integer
NUMBER (5-9, 0) ORADB_LONG 4 Long Integer
NUMBER (10-15, 0) ORADB_DOUBLE 7 Double

NUMBER (16-38, 0) ORADB_TEXT 10 String

NUMBER (1-15, n) ORADB_DOUBLE 7 Double

NUMBER (16-38, n) ORADB_TEXT 10 String

RAW ORADB_LONGBINARY 11 String

REF ORADB_OBJECT 9 OraCollection
TIMESTAMP ORADB_OBJECT OraTimeStamp
TIMESTAMP WITH LOCAL TIME ZONE ORADB_OBJECT 9 OraTimeStamp
TIMESTAMP WITH TIME ZONE ORADB_OBJECT 9 OraTimeStampTZ
VARRAY ORADB_OBJECT 9 OraCollection
VARCHAR?2 ORADB_TEXT 10 String

These values are located in the ORACLE_BASE\ORACLE_HOME\oo4o\oraconst.txt
file and are intended to match similar constants in the Visual Basic file datacons. txt

file.

Note that fields of type DATE are returned in the default Visual Basic format as
specified in the Control Panel, even though the default Oracle date format is

"DD-MMM-YY".

Note that columns defined as NUMBER instead of NUMBER (precision, scale) are,
by definition, floating point numbers with a precision of 38. This means that the Type

property returns a type of ORADB_TEXT for these columns.

See Also: Value Property on page 11-173

Server Properties 11-165

Type (OraAttribute) Property

Type (OraAttribute) Property

Applies To
OraAttribute Object on page 9-7
Description
A integer code representing the type of this attribute.
Usage
typecode = OraAttribute.Type
Data Type
Integer
Remarks

These integer codes correspond to external data types in Oracle Call Interface (OCI).
See Oracle data types.

See Also: "Oracle Data Types" on page A-1

11-166 Oracle Objects for OLE Developer's Guide

Type (OraCollection) Property

Type (OraCollection) Property

Applies To

OraCollection Object on page 9-19
Description

Returns the type code of the collection.
Usage

coll_type = OraCollection.Type
Data Type

Integer
Remarks

This property returns one of the following values:

Constant Value Description
ORATYPE_VARRAY 247 Collection is VARRAY type.
ORATYPE_TABLE 248 Collection is nested table type.

Server Properties 11-167

Type (OraMetaData) Property

Type (OraMetaData) Property

Applies To
OraMetaData Object on page 9-39
Description
Returns type of the schema object described by the OraMetaData object.
Usage
type = OraMetaData.Type
Remarks

The possible values include the following constants:

Constants Value
ORAMD_TABLE 1
ORAMD_VIEW 2
ORAMD_COLUMN 3
ORAMD_COLUMN_LIST 4
ORAMD_TYPE 5
ORAMD_TYPE_ATTR 6
ORAMD_TYPE_ATTR_LIST 7
ORAMD_TYPE_METHOD 8
ORAMD_TYPE_METHOD_LIST 9
ORAMD_TYPE_ARG 10
ORAMD_TYPE_RESULT 11
ORAMD_ PROC 12
ORAMD_ FUNC 13
ORAMD_ARG 14
ORAMD_ARG_LIST 15
ORAMD_ PACKAGE 16
ORAMD_ SUBPROG_LIST 17
ORAMD_COLLECTION 18
ORAMD_ SYNONYM 19
ORAMD_SEQENCE 20
ORAMD_SCHEMA 21
ORAMD_OBJECT_LIST 22
ORAMD_OBJECT_LIST 23
ORAMD_DATABASE 24

11-168 Oracle Objects for OLE Developer's Guide

Type (OraMetaData) Property

Note: If this version of the OraMetaData object is used on Oracle
Database release 8.1 or later, values higher than 24 are possible if the
database is enhanced to introduce new schema types.

See Also: ORAMD_TABLE Attributes on page 9-39

Server Properties 11-169

TypeName (OraObject and OraRef) Property

TypeName (OraObject and OraRef) Property

Applies To
OraObject Object on page 9-43
OraRef Object on page 9-52
Description
Specifies a String containing the name of the user-defined type of the object.
Usage
typename = OraRef.TypeName
typename = OraObject.TypeName
Data Type
String
Remarks

This property is read-only at run time.

11-170 Oracle Objects for OLE Developer's Guide

Updatable Property

Updatable Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraDynaset Object on page 9-30

Returns whether or not the specified dynaset is updatable. Not available at design
time and read-only at run time.

if_updatable = oradynaset.Updatable

Integer (Boolean)

Returns True if the rows in the specified dynaset can be updated; otherwise, it returns
False.

The updatability of the resultant dynaset depends on the Oracle SQL rules of
updatability, on the access you have been granted, and on the read-only flag of the
CreateDynaset method.

To be updatable, three conditions must be met:

1. The SQL statement must refer to a simple column list or to the entire column list
)

2. The SQL statement must not set the read-only flag of the options argument.

3. Oracle Database must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are
not updatable and this property returns False.

This example demonstrates the use of the Updatable method. Copy and paste this
code into the definition section of a form. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase

Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

'Create an updatable dynaset using a simple query.

Server Properties 11-171

Updatable Property

Set OraDynaset = OraDatabase.CreateDynaset ("select * from emp", 0&)
Call IsDynUpdatable (OraDynaset)

'Create a non-updatable dynaset using column aliases.

Set OraDynaset = OraDatabase.CreateDynaset ("select ename EmployeeName," & _
"empno EmployeeNumber, sal Salary from emp", 0&)

Call IsDynUpdatable(OraDynaset)

'Create a non-updatable dynaset using a join.
Set OraDynaset = OraDatabase.CreateDynaset ("select ename, emp.deptno," & _
"loc from emp, dept where emp.deptno = dept.deptno", 0&)
Call IsDynUpdatable(OraDynaset)
End Sub

Sub IsDynUpdatable (odyn As OraDynaset)

'Check to see if the dynaset is updatable.
If odyn.Updatable = True Then

MsgBox "Created an UPDATABLE dynaset from: '" & odyn.SQL & "'"
Else
MsgBox "Created a READ-ONLY dynaset from: '" & odyn.SQL & "'"
End If
End Sub
See Also:

s CreateDynaset Method on page 10-85
= SQL Property on page 11-150
= RecordSource Property of Data Control on page 14-31

11-172 Oracle Objects for OLE Developer's Guide

Value Property

Value Property

Applies To

OraField Object on page 9-33

OraParameter Object on page 9-50

Description

Returns or sets the value of the given object. Not available at design time and
read/write at run time.

Usage

orafield.Value = data_value
data_value = orafield.Value

oraparameter.Value = data_value
data_value = oraparameter.Value

Data Type

Variant

Remarks

Orafield.Value
Returns the value of the field as a Variant.

data_value = orafield.Value sets the contents of the field. Fields can contain
Null values. You can test the Value property with the Visual Basic function
IsNull () to determine whether the value is null upon return. You can also assign
Null to the Value property whenever the current record is editable. Field values
are cached locally as the data is retrieved from the database. However, in the case
of a LONG or LONG RAW fields, some data may not be retrieved and stored locally.
In these cases, data is retrieved as required using the methods described in the
GetChunk field method. The maximum size of a LONG or LONG RAW field that can
be retrieved directly through the Value property is approximately 64 KB. You
must retrieve data fields larger than 64 KB indirectly, using the GetChunk
method.

OraParameter.Value
Returns the value of the parameter as a Variant.

data_value = oraparameter .Value sets the contents of the parameter. Note
that changing the Variant data type of the value can have significant impact on
the processing of associated SQL and PL/SQL statements.

Note that fields of type DATE are returned in the default Visual Basic format of
"MM/DD/YY" even though the default Oracle date format is "DD-MMM-YY".

The Value argument can be an Oracle Database 10g object, such as an OraBLOB.

Similar to a dynaset, the object obtained from parameter Value property always refers
to the latest value of the Parameter. The Visual Basic value Null can also be passed
as a value. The Visual Basic value EMPTY can be used for BLOB and CLOB to mean an

Server Properties 11-173

Value Property

empty LOB, and for OBJECT, VARRAY, and NESTED TABLE to mean an object whose
attributes are all Null.

See Also:

s GetChunk Method on page 10-156

s OraParamArray Object on page 9-47
= Type Property on page 11-164

11-174 Oracle Objects for OLE Developer's Guide

Value (OraAttribute) Property

Value (OraAttribute) Property

Applies To
OraAttribute Object on page 9-7
Description
Gets or sets the value of the attribute. This value could be an instance of an
OraObject, OraRef, or OraCollection object, or any of the supported scalar
types, such as Integer or Float.
Usage
attr_value = OraAttribute.Value
OraAttribute.Value = attr_value
Data Type
Variant
Remarks

This is the default property for this object.

The Value property of the OraAttribute object returns the value of the attribute as
aVariant. The Variant type of the attribute depends on the attribute type of the
attribute. Attribute values can be Null and can be set to Nul1l. For attribute of type
objects, REF, LOB and Collection, attribute values are returned as corresponding
0040 objects for that type.

The following table identifies the attribute type and the return value of the Value
property of the OraAttribute object:

Element Type Element Value

Object OraObject
REF OraRef
VARRAY, Nested Table OraCollection
BLOB OraBLOB
CLOB OraCLOB
BFILE OraBFILE
Date String
Number String
CHAR,VARCHAR2 String
Real Real
Integer Integer

Server Properties

11-175

Value (OraAQMsg) Property

Value (OraAQMsg) Property

Applies To

Description

Usage

Data Type

Remarks

Examples

OraAQMsg Object on page 9-6

Returns or sets the value of the given object.

Msg.Value = my_string
set Msg.Value = OraObj

my_string = Msg.Value
Set OraObj = Msg.Value

String

The Value property represents the actual message for RAW as well as user-defined
types.

This property is not available at design time and read /write at run time.

'To set the value for a message of Raw type
OraAQMsg.Value = "This is a test message"
myString = "Another way of setting the message"
OraAQMsg.Value = myString

'To set the value for a message of user-defined type
Dim OraObj as OraObject

OraObj ("subject") .Value = txtdesc

OraObj ("text") .Value = txtmsg

set OraAQMsg.Value = OraObj

'To get the value from a message of raw type
myString = OraAQMsg.Value

'To get the value from a message of object type(user-defined type)
Set OraObj = OraMsg.Value

txtdesc = OraObj ("subject").Value

txtmsg = OraObj("text").Value

11-176 Oracle Objects for OLE Developer's Guide

Value (OralntervalDS) Property

Value (OralntervalDS) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

Examples

OralntervalDS Object on page 9-35

When read, the Value property provides a string representation of the value of the
OraIntervalDS object using the format [+/-]Day HH:MI:SSxFF. When set, the
Value property accepts a Variant of type String, a numeric value, or an
OraIntervalDS object.

string = OralntervalDSObj.Value
OralIntervalDSObj.Value = value

Arguments Description

[in] value A Variant of type String, a numeric value, or an OraIntervalDS
object.

Variant

If the value set is a Variant of type String, it must be in the following format: [+/-]
Day HH:MI:SSxFF.

If the value set is a numeric value, the value provided should represent the total
number of days that the OraIntervalDS object represents.

Dim oraIDS as OraIntervalDS

'Create an OralntervalDS using a string which represents 1 day and 12 hours
Set oraIDS = oo4oSession.CreateOraIntervalDS("1l 12:0:0.0")

'get the OralntervalDS.Value return a string for the Value
' property, idsStr is set to "01 12:00:00.000000"
idsStr = oraIDS.Value

'can also return a string for the Value property as follows
idsStr = oralDS

'set the OralntervalDS.Value using a string which represents 1 days and 12 hours
oraIDS.Value = "1 12:0:0.0"

'set the OralntervalDS.Value using a numeric value which represents

'l days and 12 hours
oralDS.Value = 1.5

Server Properties 11-177

Value (OralntervalDS) Property

See Also: CreateOralntervalDS Method on page 10-92

11-178 Oracle Objects for OLE Developer's Guide

Value (OralntervalYM) Property

Value (OralntervalYM) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

Examples

OralntervalYM Object on page 9-37

When read, the Value property provides a string representation of the value of the
OraIntervalYM object using the format YEARS-MONTHS.

When set, the Value property accepts a Variant of type String, a numeric value, or
an OraIntervalYM object.

string = OraIntervalYMObj.Value
OralIntervalYMObj.Value= value

Arguments Description

[in] value A Variant of type String, a numeric value, or an OraIntervalYM
object.

String

If the value set is a Variant of type String, it must be in following format: [+/-]
YEARS-MONTHS.

If the value set is a numeric value, the value provided should represent the total
number of years that the OraIntervalYM object represents.

Dim oraIYM as OraIntervalYM

'Create an OralntervalYM using a string which represents 1 year and 6 months
Set oralIYM = oodoSession.CreateOraInterval¥YM("1-6")

'get the OralntervalYM.Value return a string for the Value property,
' iymStr is set to "01-06"
iymStr = oralYM.Value

'can also return a string for the Value property as follows
iymStr = oralYM

'set the OralntervalDS.Value using a string which represents 1 year and 6 months
oralYM.Value = "1-6"

'set the OralIntervalYM.Value using a numeric value which represents

'l years and 6 months
oralYM.Value = 1.5

Server Properties 11-179

Value (OralntervalYM) Property

See Also: CreateOralntervalYM Method on page 10-94

11-180 Oracle Objects for OLE Developer's Guide

Value (OraMDAttribute) Property

Value (OraMDAttribute) Property

Applies To

OraMDAttribute Object on page 9-38
Description

A String containing the value of the attribute.
Usage

value = OraMDAttribute.Value
Data Type

String
Remarks

This is the default property.

Server Properties 11-181

Value (OraNumber) Property

Value (OraNumber) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

OraNumber Object on page 9-41

When read, the Value property provides a string representation of the value of the
OraNumber object using the current format string. When set, the Value property
accepts a Variant of type String, OraNumber, or a numeric value. Read and write
at run time.

string = OraNumber.Value
OraNumber.Value = variantval

Arguments Description
[in] variantval A Vvariant of type String, OraNumber, or a numeric value.
Variant

If the Value property is set to a numeric type, such as a LONG, it is limited to the
maximum precision Visual Basic provides for numerical values.

If the current format cannot be applied successfully to the value, an error is raised. An
error is also raised if this property is set to a Variant value that cannot be converted
to a number, such as a string of nonnumeric characters.

11-182 Oracle Objects for OLE Developer's Guide

Value (OraTimeStamp) Property

Value (OraTimeStamp) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

Examples

OraTimeStamp Object on page 9-62

When read, the Value property provides a string representation of the value of the
OraTimeStamp object. If the Format property is not null, the output string format is
in the format specified by the Format property; otherwise, the output string format is
in the session TIMESTAMP format (NLS_TIMESTAMP_ FORMAT). When set, the Value
property accepts a Variant of type String, Date, or OraTimeStamp.

string = OraTimeStampObj.Value
OraTimeStampObj.Value= value

Arguments Description
[in] value A Variant of type String, Date, or OraTimeStamp.
String

If the value is of type String and Format is not null, the string format must match
the Format property. If the Format property is null, the string format must match the
session TIMESTAMP format.

Set OraTimeStamp = OraSession.CreateOraTimeStamp("1999-APR-29 " & _
"12:10:23.444 AM", "YYYY-MON-DD HH:MI:SS.FF AM")

'returns a string for the Value property
tsStr = OraTimeStamp.Value

'set OraTimeStamp.Value using a string

OraTimeStamp.Value = "1999-APR-29 12:10:23.444 AM"

See Also: CreateOraTimeStamp Method on page 10-100

Server Properties 11-183

Value (OraTimeStampTZ) Property

Value (OraTimeStampTZ) Property

Applies To

Description

Usage

Arguments

Data Type

Remarks

Examples

OraTimeStampTZ Object on page 9-64

When read, the Value property provides a string representation of the value of the
OraTimeStampTZ object. If the Format property is not null, the output string format
is in the format specified by the Format property; otherwise, the output string format
is in the session TIMESTAMP WITH TIME ZONE format (NLS_TIMESTAMP_TZ_
FORMAT). When set, the Value property accepts a Variant of type String, Date, or
OraTimeStampTZ.

string = OraTimeStampTZObj.Value
OraTimeStampObjTZ.Value= value

Arguments Description
[in] value A Vvariant of type String, Date, or OraTimeStampTZ.
String

If the Variant is of type String and the Format property is not null, the string
format must match the Format property. If the Format property is null, the string
format must match the session TIMESTAMP WITH TIME ZONE format.

If the variant is of type Date, the date-time value in Date is interpreted as the
date-time value in the session time zone. The time zone information in the
OraTimeStampTZ object contains the session time zone.

Dim OraTimeStampTZ As OraTimeStampTZ

Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29" & _
"12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")
'returns a string for the Value property

tstzStr = OraTimeStampTZ.Value

'set OraTimeStampTZ.Value using a string
OraTimeStampTZ.Value = "2003-APR-29 12:00:00 -07:00"

See Also: CreateOraTimeStampTZ Method on page 10-102

11-184 Oracle Objects for OLE Developer's Guide

Version (OraObject and Ref) Property

Version (OraObject and Ref) Property

Applies To

Description

Usage

Data Type

Remarks

OraObject Object on page 9-43
OraRef Object on page 9-52

Returns a String containing user-assigned version of the type of underlying value

instance.

version = OraRef.Version
version = OraObject.Version
String

This property is read-only at run time.

Server Properties 11-185

Visible (OraAQ) Property

Visible (OraAQ) Property

Applies To
OraAQ Object on page 9-3
Description
Specifies the transactional behavior of the enqueue request.
Usage
Q.Visible = transaction_mode
Data Type
Integer
Remarks
This property is applicable only for an enqueue operation.
Possible values are:
= ORAAQ_ENQ_TIMMEDIATE (1)
The enqueue operation constitutes a transaction of its own. Set this property to
make the message visible immediately after the enqueue operation.
= ORAAQ_ENQ_ON_COMMIT (2) (Default)
The enqueue is part of the current transaction, and the message is visible only after
the transaction commits.
Examples

Msg.Value = "The visibility option used in the enqueue call is " & _
"ORAAQ_ENQ IMMEDIATE"

Q.Visible = ORAAQ ENQ IMMEDIATE

Q.Enqueue

11-186 Oracle Objects for OLE Developer's Guide

Wait (OraAQ) Property

Wait (OraAQ) Property
Applies To
OraAQ Object on page 9-3
Description
Specifies the wait time (in seconds), if there is currently no message available.
Usage
Q.Wait = seconds
Data Type
Integer
Remarks

Applicable only for a dequeue operation.

Possible values are:

s ORAAQ_DQ_WAIT_FOREVER (-1) (Default)
Waits forever.

= ORAAQ_DQ_NOWAIT (0)

Does not wait.

Server Properties 11-187

XMLAsAttribute Property

XMLAsAttribute Property

Applies To
OraField Object on page 9-33

Description
Gets and sets a Boolean value that indicates whether this field name is given as an
attribute. If the value is False, the field name is given as an element. Readable and
writable at run time.

Usage
OraField.XMLAsAttribute = True

Remarks

The default value for this property is False.

Fields of type BLOB, CLOB, BFILE, Object, VARRAY, Nested Table, Long or
LongRaw cannot be XML attributes.

11-188 Oracle Objects for OLE Developer's Guide

XMLCollID Property

XMLCollID Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets the attribute name that replaces 1d (as in <TYPENAME_ITEM id = "1">)
in the rendering of collection items that occurs when Get XML or GetXMLToFile
methods are called. Readable and writable at run time.

Usage
oradynaset.XMLCollID = "NEWID"

Remarks

The default value for this property is 1d. If this property is set to Null or an empty
String (" "), the collectionid attribute is omitted. The attribute name must be
valid or an error is raised. The case is preserved.

See Also:
s GetXML Method on page 10-163
s GetXMLToFile Method on page 10-164

Server Properties 11-189

XMLEncodingTag Property

XMLEncodingTag Property

Applies To

Description

Usage

Remarks

OraDynaset Object on page 9-30

Gets or sets a string value in the encoding tag of the generated XML document.

OraDynaset .XMLEncodingTag = "SHIFT_JIS"

This property is useful when the XML document generated by OO40 is converted to a
different character set encoding before it is stored or parsed. This might occur if the
property is to be loaded into a database or stored in a file system.

This property only sets the encoding tag value; it does not change the actual encoding
of the document. The document generated by the Get XML method in Visual Basic is
encoded in UCS2. The documents generated by the GetXMLToFile method use the
same character set as the current NLS_LANG setting.

If this property is set to an empty String, the default encoding tags are used. To omit
the tag entirely, use OraDynaset . XMLOmitEncodingTag.

No validity checking of the chosen encoding is done.

See Also:

s GetXML Method on page 10-163

s GetXMLToFile Method on page 10-164

s XMLOmitEncodingTag Property on page 11-192

11-190 Oracle Objects for OLE Developer's Guide

XMLNullindicator Property

XMLNullindicator Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets a Boolean value that indicates whether a null indicator attribute is used
in the case of Null field values. If the property is False, tags with Null values are
omitted. Readable and writable at run time.

Usage
oradynaset.XMLNullIndicator = True

Remarks

The default value for this property is False.

Server Properties 11-191

XMLOmitEncodingTag Property

XMLOmitEncodingTag Property

Applies To
OraDynaset Object on page 9-30
Description
Gets or sets a Boolean value that determines if the encoding tag should be omitted.
Usage
OraDynaset .XMLOmitEncodingTag = True
Remarks

The default value is False.

If this property is set to False, the value of the XML.EncodingTag property is used in
the encoding tag.

See Also: XMLEncodingTag Property on page 11-190

11-192 Oracle Objects for OLE Developer's Guide

XMLRowID Property

XMLRowlID Property

Applies To
OraDynaset Object on page 9-30
Description
Gets and sets the attribute name that replaces id (as in <ROW 1d= "1">) in the
rendering of XML that occurs when GetXML or GetXMLToFile methods are called.
Readable and writable at run time.
Usage
oradynaset .XMLRowID = "NEWID"
Remarks

The default value for this property is 1d. If this property is set to Null or an empty
string (" "), the rowid attribute is omitted. The attribute name must be valid or an
error is raised. The case is preserved.

See Also:
s GetXML Method on page 10-163
s GetXMLToFile Method on page 10-164

Server Properties 11-193

XMLRowsetTag Property

XMLRowsetTag Property

Applies To
OraDynaset Object on page 9-30
Description
Gets or sets the tag name that replaces the rowset tag <ROWSET> in the rendering of
XML that occurs when GetXML or GetXMLToFile methods are called. Readable and
writable at run time.
Usage
oradynaset .XMLRowSetTag = "NEWROWSET"
Remarks

The default value for this property is ROWSET. The tag name must be valid or an error
is raised. The case is preserved. This tag is the root, unless schema metadata is
requested with the document.

See Also:
s GetXML Method on page 10-163
s GetXMLToFile Method on page 10-164

11-194 Oracle Objects for OLE Developer's Guide

XMLRowTag Property

XMLRowTag Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets the tag name that replaces <ROW> in the rendering of XML that occurs
when GetXML or GetXMLToF1ile methods are called. Readable and writable at run
time.

Usage
oradynaset.XMLRowTag = "NEWROW"

Remarks

The default value for this property is ROW. If this property is set to Null or an empty
string (" "), the <ROW> tag is omitted. The tag name must be valid or an error is raised.
The case is preserved.

See Also:
s GetXML Method on page 10-163
s GetXMLToFile Method on page 10-164

Server Properties 11-195

XMLTagName Property

XMLTagName Property

Applies To
OraField Object on page 9-33

Description
Gets and sets the tag name that is used for this field in the rendering of XML that
occurs when GetXML or GetXMLToFile methods are called. Readable and writable at
run time.

Usage
orafield.XMLTagName = "EmployeeName"

Remarks

The default value for this property is the value of the Name property. If this property is
set to Null or an empty string (" "), this field is omitted. The name must be valid or an
error is raised. The case is preserved.

See Also:
s GetXML Method on page 10-163
s GetXMLToFile Method on page 10-164

11-196 Oracle Objects for OLE Developer's Guide

XMLUpperCase Property

XMLUpperCase Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets a Boolean value that indicates whether tag and attribute names are
uppercase when GetXML or GetXMLToF1ile methods are called. Readable and
writable at run time.

Usage
oradynaset .XMLUpperCase = True

Remarks

The default value for this property is False. If this property is set to True, all of the
tag and attribute names are in upper case. This method should be called only after all
custom tag or attribute names have been set by the user.

See Also:
s GetXML Method on page 10-163
s GetXMLToFile Method on page 10-164

Server Properties 11-197

Year (OraTimeStamp) Property

Year (OraTimeStamp) Property

Applies To

Description

Usage

Arguments

Data Type

OraTimeStamp Object on page 9-62

Returns or sets the Year attribute of an OraTimeStamp object.

year = OraTimeStampObj.Year
OraTimeStampObj.Year = year

Arguments Description
[in] year The Year attribute of an OraTimeStamp object.
Integer

11-198 Oracle Objects for OLE Developer's Guide

Year (OraTimeStampTZ) Property

Year (OraTimeStampTZ) Property

Applies To

OraTimeStampTZ Object on page 9-64
Description

Returns or sets the Year attribute of an OraTimeStampTZ object.
Usage

year = OraTimeStampObjTZ.Year

OraTimeStampObjTZ.Year = year
Arguments

Arguments Description

[in] year The Year attribute of an OraTimeStampTZ object.
Data Type

Integer

Server Properties 11-199

Years Property

Years Property

Applies To
OralntervalYM Object on page 9-37
Description
Gets and sets the Years attribute of an OraIntervalYM object.
Usage
years = OralntervalYMObj.Years
OralIntervalYMObj.Years = years
Arguments
Arguments Description
[in] years An Integer specifying the value of the Years attribute of the
OraIntervalYM object.
Data Type

Integer

11-200 Oracle Objects for OLE Developer's Guide

12

Data Control Events

This chapter describes Oracle Data Control Events. For an introduction to Data
Control, see "Oracle Data Control"” on page 1-4.

See Also: For more information, see the Microsoft Visual Basic help
and documentation.

This chapter contains these topics:

DragDrop Event
DragOver Event
Error Event
MouseDown Event
MouseMove Event
MouseUp Event
Reposition Event

Validate Event

Data Control Events 12-1

DragDrop Event

DragDrop Event

Applies To

Oracle Data Control on page 1-4

Description

Occurs when a drag-and-drop operation is completed as a result of either dragging a
control over a form or control and releasing the mouse button, or using the Drag
method with its action argument = 2 (Drop).

See Also:

Drag Method on page 13-2
Draglcon Property on page 14-13
DragMode Property on page 14-14
DragOver Event on page 12-3
MouseDown Event on page 12-5
MouseMove Event on page 12-6
MouseUp Event on page 12-7

12-2 Oracle Objects for OLE Developer's Guide

DragOver Event

DragOver Event

Applies To

Oracle Data Control on page 1-4

Description

Occurs when a drag-and-drop operation is in progress. You can use this event to
monitor when the mouse pointer enters, leaves, or is directly over a valid target. The
mouse pointer position determines which target object receives this event.

See Also:

Drag Method on page 13-2
DragDrop Event on page 12-2
Draglcon Property on page 14-13
DragMode Property on page 14-14
MouseDown Event on page 12-5
MouseMove Event on page 12-6
MouseUp Event on page 12-7

Data Control Events 12-3

Error Event

Error Event

Applies To
Oracle Data Control on page 1-4

Description

This event is fired whenever an interactive operation causes an error. You can perform
some operations directly with the data control, such as using the data control buttons
or when the data control refreshes automatically when the form loads. In these cases,
the Error event is fired instead of causing a normal run-time error.

See Also:

= AddNew Method on page 10-19

s Delete Method on page 10-116

s MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on
page 10-199

12-4 Oracle Objects for OLE Developer's Guide

MouseDown Event

MouseDown Event

Applies To
Oracle Data Control on page 1-4

Description

This event is fired whenever a mouse button is pressed (MouseDown) and the mouse
pointer is over the data control, or has been captured by the data control. The mouse is
captured if a mouse button has been pressed previously over the data control until all
corresponding MouseUp events have been received.

See Also:

= MouseMove Event on page 12-6

s MousePointer Property on page 14-22
s MouseUp Event on page 12-7

Data Control Events 12-5

MouseMove Event

MouseMove Event

Applies To
Oracle Data Control on page 1-4

Description
This event is fired continuously whenever the mouse pointer moves across the data

control. Unless another object has not captured the mouse, the data control recognizes
a MouseMove event whenever the mouse position is within its borders.

See Also:

s MouseDown Event on page 12-5

s MousePointer Property on page 14-22
s MouseUp Event on page 12-7

12-6 Oracle Objects for OLE Developer's Guide

MouseUp Event

MouseUp Event

Applies To
Oracle Data Control on page 1-4

Description

This event is fired whenever a mouse button is released (MouseUp) and the mouse
pointer is over the data control, or has been captured by the data control. The mouse is
captured if a mouse button has been pressed previously over the data control until all
corresponding MouseUp events have been received.

See Also:

s MouseDown Event on page 12-5

s MousePointer Property on page 14-22
= MouseMove Event on page 12-6

Data Control Events 12-7

Reposition Event

Reposition Event

Applies To
Oracle Data Control on page 1-4

Description
This event is fired whenever the database record pointer is successfully repositioned to

a new location. The Validate event is always fired before Reposition.
See Also:
s Error Event on page 12-4

s FindFirst, FindLast, FindNext, and FindPrevious Methods on
page 10-151

» MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on
page 10-199

= Validate Event on page 12-9

12-8 Oracle Objects for OLE Developer's Guide

Validate Event

Validate Event

Applies To

Description

Oracle Data Control on page 1-4

This method is called whenever a variety of circumstances occur. It is sent when an
attempt is made to move to a new record position, to delete a record, add a record,
move to a bookmark, or to roll back the dynasets in the session. Validate is always
called before the operation proceeds and any action is taken.

See Also:

AddNew Method on page 10-21
Bookmark Property on page 11-13
Close Method on page 10-63
Delete Method on page 10-116
Edit Method on page 10-134
EditMode Property on page 11-51

FindFirst, FindLast, FindNext, and FindPrevious Methods on
page 10-151

MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on
page 10-199

UpdateRecord Method on page 13-6

Data Control Events 12-9

Validate Event

12-10 Oracle Objects for OLE Developer's Guide

13

Data Control Methods

This chapter describes Oracle Data Control methods. For an introduction to Data
Control, see "Oracle Data Control"” on page 1-4.

See Also: For more information, see the Microsoft Visual Basic help
and documentation.

This chapter contains these topics:

Drag Method

Move Method

Refresh Method
UpdateControls Method
UpdateRecord Method
ZOrder Method

Data Control Methods 13-1

Drag Method

Drag Method

Applies To

Oracle Data Control on page 1-4

Description

Begins, ends, or cancels dragging controls.

See Also:

DragDrop Event on page 12-2
Draglcon Property on page 14-13
DragMode Property on page 14-14
DragOver Event on page 12-3
MousePointer Property on page 14-22

13-2 Oracle Objects for OLE Developer's Guide

Move Method

Move Method

Applies To

Oracle Data Control on page 1-4

Description

Moves a form or control.

See Also:

Height Property on page 14-19
Left Property on page 14-21
Top Property on page 14-35
Width Property on page 14-38

Data Control Methods 13-3

Refresh Method

Refresh Method

Applies To
Oracle Data Control on page 1-4

Description
This method recreates the OraDatabase and OraDynaset objects referenced within
the data control and reestablishes a dynaset using the SQL statement from the
RecordSource property and the connection information from the Connect and
DatabaseName properties.

Usage
oradatal.Refresh

Remarks

If an existing dynaset has been assigned to an object variable in Visual Basic, then
Refresh creates a new dynaset for the data control, but the old dynaset continues to
be available for use until all references to it are removed.

See Also:

s Connect Property on page 14-9

s Database Property on page 14-10

s OraDatabase Object on page 9-28

s OraDynaset Object on page 9-30

= RecordSource Property on page 14-31
s SQL Property on page 11-150

13-4 Oracle Objects for OLE Developer's Guide

UpdateControls Method

UpdateControls Method

Applies To
Recordset Property on page 14-29 of the Oracle Data Control.

Description
Gets the current record from a data control's recordset and displays the appropriate
data in controls bound to that data control.

Usage
oradatal.Recordset.UpdateControls

Example
NOTE: This code snippet is intended to be placed in a complete application. The code
snippet cancels changes made to bound controls and restores the data to the original
values. To use this code snippet, copy it into the definition section of a form that has a
data control named oradatal (which has been successfully refreshed) and has the
KeyPreview property set to True.
Sub Form_KeyDown (KeyCode As Integer, Shift As Integer)
Const KEY_ESCAPE = &HIB
If KeyCode = KEY_ESCAPE Then
oradatal.recordset.UpdateControls
End If
End Sub

Remarks

Use this method to allow the user to cancel changes made to bound controls and
restore the contents of those controls to their original values.

This method has the effect of making the current record current again, except that no
events occur.

Note: For backward compatibility with earlier .VBX control, this
method is also available as the method of data control's Recordset.

See Also:
= Recordset Property on page 14-29
s UpdateRecord Method on page 13-6

Data Control Methods 13-5

UpdateRecord Method

UpdateRecord Method

Applies To

Recordset Property on page 14-29 of the Oracle Data Control.
Description

Saves the current values of bound controls.

oradatal .UpdateRecord
Remarks

This method enables you to save the current value of bound controls during a Validate
event without generating another validate event.

This method has the effect of executing the Edit method, changing a field, and
executing the Update method, except that no events occur.

Note: For backward compatibility with earlier .VBX control, this
method is also available as the method of data control's
Recordset.

See Also:

» Edit Method on page 10-134

= Recordset Property on page 14-29
» Update Method on page 10-257

= Validate Event on page 12-9

13-6 Oracle Objects for OLE Developer's Guide

ZOrder Method

ZOrder Method

Applies To
Oracle Data Control on page 1-4

Description

Places a specified form or control at the front or back of the z-order within its graphical
level.

Data Control Methods 13-7

ZOrder Method

13-8 Oracle Objects for OLE Developer's Guide

14

Data Control Properties

This chapter describes the Oracle Data Control Properties. For an introduction to Data

Control, see "Oracle Data Control” on page 1-4.

This chapter contains these topics:

See Also: For more information, see the Microsoft Visual Basic help

and documentation.

AllowMoveLast Property

AutoBinding Property
BackColor Property
Caption Property
Connect Property
Database Property
DatabaseName Property
DirtyWrite Property
Draglcon Property
DragMode Property
EditMode Property
Enabled Property
Font Property
ForeColor Property
Height Property
Index Property

Left Property
MousePointer Property
Name Property
NoRefetch Property
Options Property
OracleMode Property
ReadOnly Property

Data Control Properties 14-1

= Recordset Property

= RecordSource Property
= Session Property

» Tag Property

s Top Property

s TrailingBlanks Property
= Visible Property

= Width Property

The following properties apply to the OraDynaset object and to the Oracle Data
Control.

s CacheBlocks Property on page 11-16

» CacheSliceSize Property on page 11-20

s CacheSlicesPerBlock Property on page 11-21
s FetchLimit Property on page 11-61

s FetchSize Property on page 11-62

14-2 Oracle Objects for OLE Developer's Guide

AllowMovelast Property

AllowMoveLast Property

Applies To

Description

Usage

Remarks

Datatype

Oracle Data Control on page 1-4

Determines whether the user can move to the last record using the Data Control's
MoveLast button. Read/write at design time and run time.

oradatal.AllowMoveLast = [True | False]

By default, AllowMoveLast is True, in which case the user has no restriction upon
record motion, even when moving to the last record may be very time consuming.

When AllowMoveLast is False, the Data Control's MoveLast button is grayed out
and disabled. However, once the last record has been encountered (either because the
user has navigated to the end of the set, or because code has positioned the record
pointer to the last record), the button is enabled. This gives the user visual feedback
about whether or not the entire query has been fetched. Setting this property to False
does not prevent you from using the MoveLast method.

Changing this property has no effect until a Refresh method is sent to the data
control.

Integer (Boolean)

See Also:

s MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on
page 10-199

= Refresh Method on page 10-225

Data Control Properties 14-3

AutoBinding Property

AutoBinding Property

Applies To

Description

Usage

Remarks

Data Type

Example

Oracle Data Control on page 1-4

Determines whether the automatic binding of database object parameters will occur.
Read/write at design time and run time.

oradatal.AutoBinding = [True | False

By default, AutoBinding is True, in which case the parameters in the
OraParameters collection are bound to the SQL statement of the RecordSource
property before data control refresh (before the SQL statement is executed).
Technically speaking, the parameters are rebound when the recordset is re-created.

Setting Autobinding to False takes effect only if the SQL statement of the
RecordSource property needs to be rebound and reexecuted. This is not the case
when you simply change a parameter value and refresh the data control or simply
refresh the recordset (the SQL statement only needs to be reexecuted). This is the case
if you alter the RecordsSource property and change the SQL statement.

Use this property to disable all parameter binding when executing a SQL statement
that does not contain any parameters (using CreateDynaset, Refresh, or
ExecuteSQL).

Changing this property does not take effect until a Refresh method is sent to the data
control (and the appropriate conditions apply). Changing this property has no effect
when a recordset .Refresh is executed.

Integer (Boolean)

This example demonstrates the use of AutoBinding to show how it affects data
control and recordset refresh. Copy this code into the definition section of a new form
containing the Oracle Data Control named oradatal, Then, press F5 to run.

Sub Form_Load ()

'Set the username and password.
oradatal.Connect = "scott/tiger"

'Set the databasename.
oradatal.DatabaseName = "ExampleDb"

'Refresh the data control without setting the RecordSource. This has the
'effect of creatingthe underlying database object so that parameters
'can be added.

oradatal.Refresh

14-4 Oracle Objects for OLE Developer's Guide

AutoBinding Property

'Set the RecordSource and use a SQL parameter for job.
oradatal.RecordSource = "select * from emp where job = :job"

'Add the job input parameter with initial value MANAGER.
oradatal.Database.Parameters.Add "job", "MANAGER", 1

'Add the deptno input parameter with initial value 10.
oradatal.Database.Parameters.Add "deptno", 10, 1

'Refresh the data control.
oradatal.Refresh

MsgBox "Employee #" & oradatal.Recordset.fields("empno") & ", Job=" & _
oradatal.Recordset.fields("job")

'Only employees with job=MANAGER will be contained in the dynaset.
'Turn off Automatic parameter binding.
oradatal.AutoBinding = False

'Change the value of the job parameter to SALESMAN.
oradatal.Database.Parameters("job").Value = "SALESMAN"

'Refresh ONLY the recordset.
oradatal.Recordset.Refresh

MsgBox "Employee #" & oradatal.Recordset.fields("empno") & ", Job=" & _
oradatal.Recordset.fields("job")

'The query will still execute even with AutoBinding=False

'because the dynaset has not been re-created.

'Set the RecordSource and use a SQL parameter for deptno.
oradatal.RecordSource = "select * from emp where deptno = :deptno"

On Error GoTo paramerr

'Attempt to refresh the data control. An error should occur, because
' AutoBind=False, the SQL statement contains a parameter, and the
'SQL statement needs to be bound before execution.

oradatal.Refresh

Exit Sub
paramerr:
MsgBox oradatal.Database.Session.LastServerErrText

Exit Sub

End Sub

Data Control Properties 14-5

AutoBinding Property

See Also: sAdd Method on page 10-8

AutoBindDisable Method on page 10-39
AutoBindEnable Method on page 10-41
CreateDynaset Method on page 10-85
ExecuteSQL Method on page 10-144
OraParameter Object on page 9-50
OraParameters Collection on page 9-68
RecordSource Property on page 14-31
Refresh Method on page 13-4

14-6 Oracle Objects for OLE Developer's Guide

BackColor Property

BackColor Property

Applies To
Oracle Data Control on page 1-4

Description

Determines the background color of an object.

See Also: ForeColor Property on page 14-18

Data Control Properties 14-7

Caption Property

Caption Property

Applies To
Oracle Data Control on page 1-4

Description
Determines the text displayed in or next to a control.

14-8 Oracle Objects for OLE Developer's Guide

Connect Property

Connect Property

Applies To

Description

Usage

Remarks

Data Type

Oracle Data Control on page 1-4

The username and password to be used when connecting the data control to an Oracle
database. Read /write at design time and run time.

oradatal.Connect = [username/password

This string is passed to the OpenDatabase method of the OraSession object when
the control is refreshed. Changing this property does not take effect until a Refresh
method is sent to the data control.

If the data control is refreshed and the Connect property has not been specified, the
refresh will fail.

Examples of valid Connect properties include:

"scott/tiger"
"system/manager"

String

See Also:

s OpenDatabase Method on page 10-212
= OraSession Object on page 9-58

= Refresh Method on page 13-4

Data Control Properties 14-9

Database Property

Database Property

Applies To
Oracle Data Control on page 1-4

Description
Returns the OraDatabase object associated with the data control. Not available at
design time and read-only at run time.

Usage
oradatabase = oradatal.Database

Remarks
If the data control has not been refreshed, any references to this property results in an
Object variable not set runtime error.
Changing this property has no effect until a Refresh method is sent to the data
control.

Data Type

OLE Object (OraDatabase)

See Also:
s OraDatabase Object on page 9-28
s Refresh Method on page 13-4

14-10 Oracle Objects for OLE Developer's Guide

DatabaseName Property

DatabaseName Property

Applies To
Oracle Data Control on page 1-4

Description

The Oracle SQL*Net specifier used when connecting the data control to an Oracle
database. Read /write at design time and run time.

Usage

oradatal.DatabaseName = [DatabaseName]

Remarks

The Oracle SQL*Net specifier should include the Oracle SQL*Net protocol identifier,
Oracle database name, and optional database instance. (SQL*Net aliases can also be
used.) This string is passed to the OpenDatabase method of the OraSession object
when the control is refreshed. Changing this property does not take effect until a
Refresh method is sent to the data control.

If the data control is refreshed and DatabaseName has not been specified, the refresh
fails.

Examples of valid DatabaseName properties include:

"t:oracle:PROD"

"p:0raclel(:demo"

"X:orasrv"

"mydbalias" (Where mydbalias represents "t:mfg:prod")

Data Type
String
See Also:
s OpenDatabase Method on page 10-212
= OraSession Object on page 9-58
s Refresh Method on page 13-4

Data Control Properties 14-11

DirtyWrite Property

DirtyWrite Property

Applies To
Oracle Data Control on page 1-4
Description
Determines whether or not Update and Delete will or will not check for read
inconsistencies.
Usage
oradatal.DirtyWrite = [True \ False]
Data Type
Integer (Boolean)
Remarks

By default, DirtyWrite is False, meaning that read consistency will be maintained
for Update and Delete operation on underlying recordset/dynaset object. Changing
this property has no effect until a Refresh method is sent to the data control.

14-12 Oracle Objects for OLE Developer's Guide

Draglcon Property

Draglcon Property

Applies To
Oracle Data Control on page 1-4

Description
Determines the icon to be displayed as the pointer in a drag-and-drop operation.
See Also:
= Drag Method on page 13-2
s DragDrop Event on page 12-2
s DragMode Property on page 14-14
s DragOver Event on page 12-3

Data Control Properties 14-13

DragMode Property

DragMode Property

Applies To
Oracle Data Control on page 1-4

Description

Determines manual or automatic dragging mode for a drag-and-drop operation.

See Also:

= Drag Method on page 13-2

s DragDrop Event on page 12-2

s Draglcon Property on page 14-13
s DragOver Event on page 12-3

14-14 Oracle Objects for OLE Developer's Guide

EditMode Property

EditMode Property

Applies To

Description

Usage

Remarks

Data Type

Oracle Data Control on page 1-4

Returns the current editing state for the current row. Not available at design time and
read-only at run time.

edit_mode = oradatal.EditMode

The possible EditMode property values are:

Constant Value Description

ORADATA_EDITNONE 0 No editing in progress

ORADATA_EDITMODE 1 Editing is in progress on an existing row
ORADATA_EDITADD 2 A new record is being added and the copy buffer does

not currently represent an actual row in the database.

These values are located in the oraconst . txt file and are intended to match similar
constants in the Visual Basic oraconst . txt file.

This property is affected only by the Edit, AddNew, and Update methods.

Integer

See Also:

s AddNew Method on page 10-21
= Edit Method on page 10-134

= Update Method on page 10-257

Data Control Properties 14-15

Enabled Property

Enabled Property

Applies To
Oracle Data Control on page 1-4

Description

Determines whether the control can respond to user-generated events.

See Also: Visible Property on page 14-37

14-16 Oracle Objects for OLE Developer's Guide

Font Property

Font Property
Applies To
Oracle Data Control on page 1-4
Description
Determines the font object to be used for text displayed in a data control.
Usage

Oradatal.Font.Bold = True

Data Control Properties 14-17

ForeColor Property

ForeColor Property

Applies To
Oracle Data Control on page 1-4

Description
Determines the foreground color used to display text and graphics in an object.

See Also: BackColor Property on page 14-7

14-18 Oracle Objects for OLE Developer's Guide

Height Property

Height Property

Applies To

Oracle Data Control on page 1-4

Description

Determines the height dimension of an object.

See Also:

Left Property on page 14-21
Move Method on page 13-3
Top Property on page 14-35
Width Property on page 14-38

Data Control Properties 14-19

Index Property

Index Property

Applies To
Oracle Data Control on page 1-4

Description
Specifies the number that uniquely identifies a control in a control array. Available at
design time only if the control is part of a control array; read-only at run time.

See Also:

Tag Property on page 14-34

14-20 Oracle Objects for OLE Developer's Guide

Left Property

Left Property

Applies To
Oracle Data Control on page 1-4

Description

Determines the distance between the internal left edge of an object and the left edge of
its container.

See Also:
= Move Method on page 13-3
s Top Property on page 14-35

Data Control Properties 14-21

MousePointer Property

MousePointer Property

Applies To
Oracle Data Control on page 1-4

Description
Determines the type of mouse pointer displayed when the mouse is over a particular
part of a form or control at run time.
See Also:
s Draglcon Property on page 14-13
= MouseMove Event on page 12-6

14-22 Oracle Objects for OLE Developer's Guide

Name Property

Name Property

Applies To
Oracle Data Control on page 1-4

Description

Specifies the name used in code to identify a form, control, or data access object. Not
available at run time.

Data Control Properties 14-23

NoRefetch Property

NoRefetch Property

Applies To
Oracle Data Control on page 1-4

Description
By default, NoRefetch is False, this means that default data set by Oracle Database
will not be refetched to the local cache. If the ORADB_NO_REFETCH option is True, by
default, the underlying recordset or dynaset will inherit this property.
Changing this property has no effect until a Refresh method is sent to the data
control.

Usage
oradatal .NoRefetch = [True | False]

Data Type

Integer (Boolean)

14-24 Oracle Objects for OLE Developer's Guide

Options Property

Options Property

Applies To

Description

Usage

Data Type

Remarks

Oracle Data Control on page 1-4

Determines one or more characteristics of the database and all dynasets associated
with the data control. Read /write at design time and run time.

oradatal.Options = database_options
database_options = oradatal.Options

Long Integer

This property is a bit flag word used to set the optional modes of the database. If
options = 0, the default settings will apply. The following modes are available:

Column Defaulting mode

The default mode is called VB mode. In VB mode, field (column) values not
explicitly set are set to NULL when using AddNew or Edit.

Optionally, you can use Oracle mode. Oracle mode indicates that changes made to
fields (columns) are immediately reflected in the local mirror by retrieving the
changed row from the database, thus allowing Oracle Database to set defaults for
the columns and perform required calculations. Column Defaulting mode affects
the behavior of the AddNew and Edit methods.

Lock Wait mode

The default mode is called Wait mode. In Wait mode, when dynaset rows are
about to be modified (using Edit), the existing row in the database is retrieved
using the SQL "SELECT ... FOR UPDATE" statement to lock the row in the
database. If the row about to be changed has been locked by another process (or
user), the "SELECT ... FOR UPDATE" statement, waits until the row is unlocked
before proceeding.

Optionally, you can use NoWait mode. NoWait mode results in an immediate
return of an error code, indicating that the row about to be updated is locked.

Lock Wait mode also affects any SQL statements processed using ExecuteSQL.
No Refetch mode

In this mode NULLs are not explicitly inserted as in the ORADB_ ORAMODE. In
ORADB_NO_REFETCH mode, performance is boosted, because data is not refetched
to the local cache.

Options Property Flag Values
The Options property flag values are:

Data Control Properties 14-25

Options Property

Constant Value Description

ORADB_DEFAULT &HO& Accepts the default behavior.

ORADB_ORAMODE &H1& Lets Oracle Database set default field (column)
values.

ORADB_NOWAIT &H2& Does not wait on row locks when executing a

SQL "SELECT ... FOR UPDATE" statement.

These values can be found in the oraconst . txt file. Options may be combined by
adding their respective values.

This property is the same as the options passed to the OpenDatabase method. Just as
with OpenDatabase, these options affect the OraDatabase object and all associated

dynasets created from that database.

Changing this property does not take effect until a Refresh method is sent to the data

control.

See Also:

» AddNew Method on page 10-21

s Edit Method on page 10-134

s CreateDynaset Method on page 10-85

s OpenDatabase Method on page 10-212

s OraDatabase Object on page 9-28

s OraDynaset Object on page 9-30
s Refresh Method on page 13-4

14-26 Oracle Objects for OLE Developer's Guide

OracleMode Property

OracleMode Property

Applies To
Oracle Data Control on page 1-4

Description
Determine whether the changes made to fields (columns) are immediately reflected in
the local mirror by retrieving the changed row from the database, thus allowing Oracle
to set defaults for the columns and perform required calculations.

Usage
oradatal.OracleMode = [True \ False]

Data Type
Integer (Boolean)

Remarks

This property value is set to True by default, which means that fields (columns)
changes are reflected in the local cache immediately. Changing this property value has
no effect until the Refresh method is invoked. If the ORADB_ORAMODE mode is used
for the database option, the underlying recordset/dynaset inherits this mode.

Data Control Properties 14-27

ReadOnly Property

ReadOnly Property

Applies To

Description

Usage

Data Type

Remarks

Oracle Data Control on page 1-4

Determines whether the dynaset will be used for read-only operations. Read /write at
design time and run time.

oradatal.ReadOnly = [True | False]

Integer (Boolean)

By default, ReadOnly is False which means that an attempt will be made to create
an updatable dynaset by selecting ROWIDs from the database. If ReadOnly is set to
True, a non-updatable dynaset is created (ROWIDs are not selected from the database
and cached) and operations will be somewhat faster.

If the SELECT statement contains a LONG or LONG RAW column, ROWIDs are needed
whether the dynaset will be updatable or not.

Changing this property does not take effect until a Refresh method is sent to the data
control.

See Also:
s CreateDynaset Method on page 10-85
= Refresh Method on page 13-4

14-28 Oracle Objects for OLE Developer's Guide

Recordset Property

Recordset Property

Applies To

Description

Usage

Data Type

Remarks

Example

Oracle Data Control on page 1-4

Returns a dynaset defined by the data control's Connect, DatabaseName, and
RecordSource properties. Not available at design time and read and write at run
time.

Set oradynaset = oradatal.Recordset
Set oradatal.Recordset = Oradynaset

OLE Object (OraDynaset)

The properties and methods of this dynaset are the same as those of any other dynaset
object. The Recordset property of the Oracle Data Control (. 0CX) can be set to
external dynaset, or the Recordset property of the other data control. After the setting,
Oracle Data control Database, session, and options properties now set to the
corresponding properties of the external dynaset. Oracle data control shares the
advisories of the external dynaset. This is very useful when attaching dynaset returned
from the PL/SQL cursor by CreatePlsglDynaset Method.

This example demonstrates setting Recordset property to external dynaset created
by CreatePlsglDynaset method. This example returns a PL/SQL cursor as a
external dynaset for the different values of DEPTNO parameter. Make sure that
corresponding stored procedure (found in EMPCUR. SQL) is available in the Oracle
Database. Copy this code into the definition section of a form containing the Oracle
Data Control named oradatal. Then, press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As OraSession

Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset

'Create the OraSession Object.
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase ("ExampleDb", "scott/tiger", 0&)

' Create the Deptno parameter
OraDatabase.Parameters.Add "DEPTNO", 10, ORAPARM_INPUT

Data Control Properties 14-29

Recordset Property

OraDatabase.Parameters ("DEPTNO") . ServerType = ORATYPE_NUMBER

' Create OraDynaset based on "EmpCursor" created in stored procedure.
Set OraDynaset = OraDatabase.CreatePLSQLDynaset ("Begin Employee.GetEmpData
(:DEPTNO, :EmpCursor); end;", "EmpCursor", 0&)

' Now attach the Oradynaset to Data control's recordset.
set oradatal.recordset = OraDynaset

' Do some operation

' Now set the deptno value to 20
OraDatabase.Parameters ("DEPTNO") .Value = 20

'Refresh the sglstmt
Oradatal.recordset.Refresh

'Remove the parameter.
OraDatabase.Parameters.Remove ("DEPTNO")

End Sub

See Also:
= Connect Property on page 14-9
= DatabaseName Property on page 14-11

s MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on
page 10-199

= OraDynaset Object on page 9-30
= OraFields Collection on page 9-67
s OraParameters Collection on page 9-68

= RecordSource Property on page 14-31

14-30 Oracle Objects for OLE Developer's Guide

RecordSource Property

RecordSource Property

Applies To

Description

Usage

Data Type

Remarks

Example

Oracle Data Control on page 1-4

The SQL SELECT statement to be used to create the data control's RecordSet.
Read/write at design time and run time.

oradatal.RecordSource = [SQL SELECT Statement]

String

The SQL statement must be a SELECT statement; otherwise an error is returned.
Features such as views, synonyms, column aliases, schema references, table joins,
nested selects, and remote database references can be used freely; object names are not
modified in any way.

Whether or not the resultant dynaset can be updated depends on the Oracle SQL rules
of updatability, the access you have been granted, and the ReadOnly property. In
order to be updatable, three conditions must be met:

1. The SQL statement must refer to a simple column list or to the entire column list
)
2. The SQL statement must not set the read-only flag of the options argument.

3. Oracle must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are
not updatable and the dynaset's Updatable property returns False.

Changing this property does not take effect until a Refresh method is sent to the data
control.

You can use SQL bind variables in conjunction with the OraParameters collection.

If this property is NULL or empty, then an OraDynaset object is not created, but
OraSession, OraConnection, and OraDatabase objects are created for the data
control. This behavior enables access to these objects prior to creation of a dynaset. For
example, a NULL RecordSource might be used to instantiate the database object to
add parameters. The RecordSource property can then be set at run time, making use
of the automatic binding of database parameters.

Changing this property and calling the Refresh method of the RecordSet property
will create a new dynaset object, but the old dynaset continues to be available for use
until all references to it are removed.

This example demonstrates the use of SQL bind variables (parameters) in the
RecordSource property of the data control. To run this demonstration, copy this

Data Control Properties 14-31

RecordSource Property

code into the definition section of a form containing a data control named oradatal,
then, press F5.

Sub Form_Load ()

'Set the username and password.
oradatal.Connect = "scott/tiger"

'Set the databasename.
oradatal.DatabaseName = "ExampleDb"

'Refresh the data control without setting the
' RecordSource. This has the effect of creating

' the underlying database object so that parameters may be added.
oradatal.Refresh

'Set the RecordSource and use a SQL parameter.
oradatal.RecordSource = "select * from emp where job = :job"

'Add the job input parameter with initial value MANAGER.
oradatal.Database.Parameters.Add "job", "MANAGER", 1

'Refresh the data control.
'Only employees with the job MANAGER will be contained in the dynaset.
oradatal.Refresh

'Change the value of the job parameter to SALESMAN.
oradatal.Database.Parameters("job").Value = "SALESMAN"

'Refresh ONLY the recordset.
'Only employees with the job SALESMAN will be contained in the dynaset.
oradatal.Recordset.Refresh

End Sub

See Also:

s Connect Property on page 14-9

= DatabaseName Property on page 14-11
s OraConnection Object on page 9-27

s OraDatabase Object on page 9-28

s OraDynaset Object on page 9-30

s OraParameters Collection on page 9-68
= OraSession Object on page 9-58

= Recordset Property on page 14-29

s Refresh Method on page 13-4

= Updatable Property on page 11-171

14-32 Oracle Objects for OLE Developer's Guide

Session Property

Session Property

Applies To
Oracle Data Control on page 1-4
Description
The session object associated with the data control. Not available at design time and
read-only at run time.
Usage
orasession = oradatal.Session
Data Type
OLE Object (OraSession)
Remarks

This property is equivalent to referencing oradatal.Database.Session. If the
data control has not been refreshed, any references to this property result in an
Object variable not set runtime error.

See Also:
s OraDatabase Object on page 9-28
» OraSession Object on page 9-58

» OraSessions Collection on page 9-69

Data Control Properties 14-33

Tag Property

Tag Property

Applies To
Oracle Data Control on page 1-4

Description
Stores any extra data needed by your application.

14-34 Oracle Objects for OLE Developer's Guide

Top Property

Top Property

Applies To
Oracle Data Control on page 1-4

Description

Determines the distance between the internal top edge of an object and the top edge of
its container.

See Also:
= Move Method on page 13-3
» Left Property on page 14-21

Data Control Properties 14-35

TrailingBlanks Property

TrailingBlanks Property

Applies To
Oracle Data Control on page 1-4
Description
Determines whether trailing blanks should be removed from character string data
retrieved from the database. Read/write at design time and run time.
Usage
oradatal.TrailingBlanks = [True | False]
Data Type
Integer (Boolean)
Remarks

By default, TrailingBlanks is False. This means that trailing blanks will be
removed from character string data retrieved from the database.

Changing this property has no effect until a Refresh method is sent to the data
control.

See Also:
s CreateDynaset Method on page 10-85
= Refresh Method on page 13-4

14-36 Oracle Objects for OLE Developer's Guide

Visible Property

Visible Property

Applies To
Oracle Data Control on page 1-4

Description

Determines whether an object is visible or hidden.

See Also: Enabled Property on page 14-16

Data Control Properties 14-37

Width Property

Width Property

Applies To

Oracle Data Control on page 1-4

Description

Determines the width dimension of an object.

See Also:

Height Property on page 14-19
Left Property on page 14-21
Move Method on page 13-3
Top Property on page 14-35

14-38 Oracle Objects for OLE Developer's Guide

Appendix A

This appendix includes the following:
s Oracle Data Types
= Additional Schemas

Oracle Data Types

The following are code for Oracle data types.

Table A-1 Oracle Data Type Codes

Oracle Data Type Codes
ORATYPE_VARCHAR?2 1
ORATYPE_NUMBER 2
ORATYPE_SINT 3
ORATYPE_FLOAT 4
ORATYPE_STRING 5
ORATYPE_DECIMAL 7
ORATYPE_LONG 8
ORATYPE_VARCHAR 9
ORATYPE_DATE 12
ORATYPE_REAL 21
ORATYPE_DOUBLE 22
ORATYPE_UNSIGNEDS 23
ORATYPE_RAW 23
ORATYPE_LONGRAW 24
ORATYPE_UNSIGNED16 25
ORATYPE_UNSIGNED32 26
ORATYPE_SIGNEDS 27
ORATYPE_SIGNED16 28
ORATYPE_SIGNED32 29
ORATYPE_PTR 32
ORATYPE_OPAQUE 58

Appendix A A-1

Additional Schemas

Table A-1 (Cont.) Oracle Data Type Codes

Oracle Data Type Codes
ORATYPE_UINT 68
ORATYPE_CHAR 96
ORATYPE_CHARZ 97
ORATYPE_BFLOAT 100
ORATYPE_BDOUBLE 101
ORATYPE_CURSOR 102
ORATYPE_ROWID 104
ORATYPE_MLSLABEL 105
ORATYPE_OBJECT 108
ORATYPE_REF 110
ORATYPE_CLOB 112
ORATYPE_BLOB 113
ORATYPE_BFILE 114
ORATYPE_CFILE 115
ORATYPE_RSLT 116
ORATYPE_NAMEDCOLLECTION 122
ORATYPE_COLL 122
ORATYPE_TIMESTAMP 187
ORATYPE_TIMESTAMPTZ 188
ORATYPE_INTERVALYM 189
ORATYPE_INTERVALDS 190
ORATYPE_SYSFIRST 228
ORATYPE_TIMESTAMPLTZ 232
ORATYPE_SYSLAST 235
ORATYPE_OCTET 245
ORATYPE_SMALLINT 246
ORATYPE_VARRAY 247
ORATYPE_TABLE 248
ORATYPE_OTMLAST 320
ORATYPE_RAW_BIN 2000

These codes are also listed in the oraconst. txt file located in the ORACLE
BASE\ORACLE_HOME\oo4o directory.

Additional Schemas

Occasionally other schemas are required to run examples. These schemas are listed in
the following sections.

A-2 Oracle Objects for OLE Developer's Guide

Additional Schemas

Schema Objects Used in OraMetaData Examples

This section presents OraMetaData schema definitions.

CREATE TYPE ORAMD_ADDRESS AS OBJECT (no NUMBER,

street VARCHAR(60),

state CHAR(2),

zip CHAR(10),
MEMBER PROCEDURE ChangeStreetName (newstreet IN VARCHAR2)
)i

Schema Objects Used in LOB Data Type Examples

The following schema objects are used in the OraLOB and BFILE examples. Run the
SQL script ORAEXAMP . SQL on your database to set up the schema.

CREATE TABLE part (
part_id NUMBER,
part_name VARCHAR2 (20),
part_image BLOB,
part_desc CLOB,
part_collateral BFILE
)i

Create Directory NewDirectoryName as 'C:\valid\path'

Schema Objects Used in the OraObject and OraRef Examples

The following schema objects are used in the OraObject and OraRef examples. Data
for the following tables can be inserted with the ORAEXAMP . SQL script that is
provided with the OO40 installation.

CREATE TYPE address AS OBJECT (
street VARCHAR2 (200),
city VARCHAR2(200),
state CHAR(2),
zip VARCHAR2 (20)

)i

CREATE TYPE person as OBJECT (
name VARCHAR2 (20),
age NUMBER,
addr ADDRESS) ;

CREATE TABLE person_tab of PERSON;

CREATE TABLE customers (
account NUMBER,
aperson REF PERSON) ;

Schema Objects Used in OraCollection Examples

The following schema is used in examples of OraCollection methods

CREATE TYPE ENAMELIST AS VARRAY (20) OF VARCHAR2(30);
CREATE TABLE department (
dept_id NUMBER(2),
name VARCHAR2 (15),
ENAMES ENAMELIST) ;

Appendix A A-3

Additional Schemas

DROP TYPE COURSE;

CREATE TYPE Course AS OBJECT (
course_no NUMBER(4),
title VARCHAR2 (35),
credits NUMBER (1)) ;

CREATE TYPE CourseList AS TABLE OF Course;

CREATE TABLE division (
name VARCHAR2 (20),
director VARCHAR2(20),
office VARCHAR2 (20),
courses Courselist)
NESTED TABLE courses STORE AS courses_tab;

A-4 Oracle Objects for OLE Developer's Guide

Glossary

BFILEs

External binary files that exist outside the database tablespaces residing in the
operating system. BFILEs are referenced from the database semantics, and are also
known as external LOBs.

Binary Large Object (BLOB)

A large object data type whose content consists of binary data. Additionally, this data
is considered raw as its structure is not recognized by the database.

Character Large Object (CLOB)

The LOB data type whose value is composed of character data corresponding to the
database character set. A CLOB may be indexed and searched by the Oracle Text search
engine.

coordinated universal time (UTC)

UTC was formerly known as Greenwich Mean Time.

Large Object (LOB)

The class of SQL data type that is further divided into internal LOBs and external
LOBs. Internal LOBs include BLOBs, CLOBs, and NCLOBs while external LOBs include
BFILESs.

National Character Large Object (NCLOB)

The LOB data type whose value is composed of character data corresponding to the
database national character set.

PL/SQL

Oracle procedural language extension to SQL.

primary key

The column or set of columns included in the definition of a table's PRIMARY KEY
constraint.

uTC

UTC (Coordinated Universal Time) was formerly known as Greenwich Mean Time.

Glossary-1

UTC

Glossary-2

A

Abs method, 10-7
Access Violations, 5-16
accessing

collection elements, 4-17

OraObject, 4-15

OraObject attributes, 4-12

referenceable instance, 4-15
accessing the OO40 Automation Server, 3-1
Active Server Pages, 1-1,2-1,2-4
Active Server Pages with OO40 Automation, 2-4
ActiveX Control, 1-4,2-12
AddTable method, 3-13
advanced features of Oracle Objects for OLE, 4-1
advanced queuing interfaces, 4-20
AllowMovelLast property, 14-3
application failover notifications, 4-24
application notifications, 4-24
array processing, 5-4
ASP, 1-1,24
asynchronous dequeuing, 4-21
AutoBindDisable method, 5-3
AutoBindEnable method, 5-3
automation objects

introduction, 8-1
Automation Server, 3-1
avoiding multiple object reference, 5-2

BackColor property, 14-7
batch inserts, 6-1
BeginTrans method, 3-14
bind variables, 3-9
bindings, 5-3
Borland Delphi, 1-5
bound class, 1-4
buffering

LOB, 4-6
bulk collect feature, 5-4

Cc

C++, 14
cache parameters, 5-2

Index

caching, 3-3
Caption property, 14-8
chunking methods

LONG RAW, 5-5
client applications, 3-1
code examples

location, 2-1
Code Wizard

using, 7-2
Code Wizard Components, 7-1
Code Wizard data types, 7-2
Code Wizard examples, 7-5
Code Wizard for stored procedures, 7-1
collection elements

accessing, 4-17

modifying, 4-18
collection types

retrieving from the database, 4-17

VARRAY, 4-18
collections, 4-16

OraFields, 5-2
COM Automation Objects, 1-2
commands

executing, 3-3
CommitTrans method, 3-14
Complex Object Retrieval Capability (COR) in

OCI, 4-13

Component Certifications

My Oracle Support, 1-6
configuration information, 1-7
Connect data control property, 14-9
connection information

incorrectly specified, 5-15
connection multiplexing, 3-3
connection pool, 5-6
connection pool management, 3-8
connection pooling, 2-4,5-6
connpool sample (IIS), 2-4
constant file, 2-2
CreateCustomDynaset method, 5-2
CreateSQL method, 3-6,3-9, 5-4
creating

dynaset from OraCollection, 4-18

VARRAY collection type, 4-18
customization, 5-2

Index-1

D

data control recordset, 13-5
data controls, 2-1
Data Definition Language (DDL) statements,

Data Manipulation Language (DML) Statements,

data streaming, 4-6
data types, 4-10
datetime, 4-28
interval, 4-28
data types supported by the OO40 Code
Wizard, 7-2
database connectivity APIs, 1-2
Database data control property, 14-10
database events, 4-22
detection, 4-22
database records
updating, 3-6
database schema objects, 4-29
DatabaseName data control property, 14-11
datetime data types, 4-28
DBGrid Control, 2-12
DDL statements, 3-14
deleting rows from table, 3-6
demodrp7.sql, 2-2
demonstration
Excel, 2-6
Oracle Data Control, 2-8
Oracle Data Control with VC++, 2-12
quick tour, 6-1
demonstration schema, 2-1
creation, 2-2
demonstration tables
dept, 2-2
emp, 2-2
dept table, 2-2
dequeuing, 4-21
detection of database events, 4-22
differences LOB types from LONG RAW, 5-5
DirtyWrite property, 14-12
disabling parameter binding, 5-3
DML statements, 3-5
Drag method, 12-2,13-2
DragDrop event, 12-2
Draglcon property, 14-13
DragMode property, 14-14
DragOver event, 12-3
Drop method, 12-2
Dyanset object
using, 4-14
dynaset
creating from an OraCollection, 4-18
Dynaset object
using, 4-11
dynasets
using, 5-4

E

early binding of OO40 Objects, 5-1
Edit method, 13-6

Index-2

EditMode property, 14-15

emp table, 2-2

empcur.sql, 2-2

Enabled property, 14-16

enabling failover, 4-25

enabling parameter bindinng, 5-3

error code
ODCERR_AUTOMATION, 5-13

Error data control event, 12-4

error handling, 5-6

errors
Access Viloations, 5-16
Advanced Queuing, 5-12
Collection, 5-12
Find method parser, 5-9
incorrectly installed software, 5-14
installation, 5-16
network errors, 5-15
nonblocking, 5-9
OLE Automation, 5-7

OLE Initialization or OLE Automation, 5-14

Oracle, 5-13
Oracle Data Control, 5-13
Oracle LOB, 5-11
Oracle Number, 5-13
Oracle object instance, 5-10
troubleshooting, 5-14
events
database, 4-22
ExampleDb, 2-2
examples, 2-1,2-2
Code Wizard, 7-5
Excel demo, 2-6
Excel with OO40 automation, 2-6
ExecuteSQL method, 3-6,3-9, 5-4
executing commands, 3-3
executing Data Definition Language (DDL)
statements, 3-14
executing methods
OraObject, 4-12
executing PL/SQL blocks, 3-9

F

failover, 4-24

enabling, 4-25

notification, 4-25
Failover Notification Registration, 4-24
features

advanced, 4-1

new, Xxxi
fetch parameters, 5-2
FetchLimit property, 5-2
file locations, 1-5
Find method, 5-9

parser errors, 5-9

run-time errors, 5-9
Font property, 14-17
ForeColor property, 14-18

G

global.asa file, 2-4
grid control, 1-4

H

Height property, 14-19

s, 2-1
IIS Active Server Pages, 1-1
IIS Microsot Internet Information Server, 2-4
incorrectly installed software
errors, b5-14
incorrectly specified connection information, 5-15
Index data control property, 14-20
InProcServer Type Library, 2-2
input variables, 4-1
inserting multiple rows, 3-7
inserting new rows in table, 3-7
installation, 1-5
installation errors, 5-16
instance errors, 5-10
interfaces
0040, 44
retrieving, 4-2
interval data types, 4-28

J

Java stored procedures, 7-1

L

large objects, 5-5
Large Objects (LOBs)
using, 4-3
LastServerErr property, 5-7,5-13
LastServerErrText property, 5-13
Left property, 14-21
LOB buffering, 4-6
LOB data
multiple-piece read operation, 4-8
reading, 4-8
writing, 4-6
LOB data single-piece read operation, 4-8
LOB datatatypes
support for, 4-1
LOBs, 5-5
data types, 4-4
retrieving from database, 4-5
using, 4-3
Long, 5-5
LONG RAW
chunking methods, 5-5
migration from, 5-5
types, 5-5
Long types, 5-5

messages
enqueuing, 4-20
monitoring, 4-21
methods
AutoBindDisable, 5-3
AutoBindEnable, 5-3
CreateCustomDynaset, 5-2
CreateSQL, 5-4
ExecuteSQL, 5-4
Find, 5-9
Server, 10-1
MFC AppWizard, 2-12
Microsoft Access, 1-5
Microsoft data control, 1-4
Microsoft Foundation Classes, 1-4
Microsoft Information Server, 2-1
Microsoft Internet Information Server (IIS), 1-5
Microsoft Internet Service Manager, 2-4
Microsoft Transaction Server support, 3-15
Microsoft VC++, 1-6,2-12
Microsoft Visual Basic
Microsoft Excel, 1-5
migration from LONG RAW to LOB or BFILE, 5-5
modfiying attributes
OraObject, 4-15
referenceable instance, 4-15
modifying
collection elements, 4-18
OraObject attributes, 4-12
MonitorForFailover method, 4-24
monitoring
messages, 4-21
MonitorStart method, 4-21
MonitorStop method, 4-21
MouseDown event, 12-5
MouseMove event, 12-6
MousePointer property, 14-22
MouseUp event, 12-7
Move data control method, 13-3
MTS support, 3-15
multicur.sql, 2-2
multiple Oracle homes, system requirements, 1-5
multiple rows, 3-7
multiple-piece operation, 4-6
multiple-piece read operation, 4-8
multiple-piece write operation, 4-6
multiplexing, 3-3
My Oracle Support, 1-6

N

Name data control property, 14-23
nested tables, 4-1,4-16
network alias
ExampleDb, 2-2
network service alias, 2-2
network trips, 5-4
reducing, 5-4
Nonblocking Errors, 5-9

Index-3

nonblocking mode, 4-21
NoRefetch property, 14-24
notifications

application failover, 4-24

(o)

object data types, 4-10
Object-relational features
support for, 4-1
Objects, 9-1
objects
OraBLOB, OraCLOB, 5-11
OraCollection, 5-4
OraCollection errors, 5-12
OraDynaset, 5-2,5-4
OraField, 5-2
OraObject, 5-10
OraParamArray, 5-4
OraParameter, 5-3
ODBC, 1-2
ODCERR_AUTOMATION error code, 5-13
oiplang.msb, 1-7
oipVER.Il, 1-7
OLE Automation Errors, 5-7
OLE Initialization or OLE Automation Errors, 5-14
0040 Automation Server, 3-1

0040 Code Wizard
requirements, 1-5
using, 7-2

0040 Code Wizard Components, 7-1
0040 Code Wizard examples, 7-5
0040 Code Wizard Visual Basic Wizard, 7-3
0040 File Locations, 1-6
0040 In-Process Automation Server, 1-2,5-7
0040 methods, 10-1
0040 Objects, 9-1
0040 Redistributable Files, 1-6
0040 server methods, 10-1
0040 server properties, 11-1
0040CodeWiz.exe, 7-2
oodoparm.reg file, 1-7
oorodemo.asp file, 2-4
option flags, 2-2
options
ORADYN_NOCACHE, 5-4
ORADYN_READONLY, 54
Options data control property, 14-25
OraAQ interface, 4-20
OraAQ object, 4-21
OraAQMsg object, 4-20
OraAttributes interface, 4-10
OraBLOB and OraCLOB
objects, 5-11
using, 4-5
Oracle Advanced Queuing Errors, 5-12
Oracle Call Interface (OCI), 4-13
Oracle Client, 1-5
Oracle Collection Errors, 5-12
Oracle Collections, 4-16

Index-4

Oracle Data Control, 1-4,1-7,2-2,2-12
requirements, 1-5
setting properties, 2-11
Oracle Data Control demonstration, 2-8
Oracle Data Control errors, 5-13
Oracle Data Control events, 12-1
DragDrop, 12-2
DragOver, 12-3
Error, 12-4
MouseDown, 12-5
MouseMove, 12-6
MouseUp, 12-7
Reposition, 12-8
Validate, 12-9
Oracle Data Control methods, 13-1
Drag, 13-2
Move, 13-3
Refresh, 13-4
UpdateControls, 13-5
UpdateRecord, 13-6
ZOrder, 13-7
Oracle Data Control properties, 14-1
AllowMovelLast, 14-3
AutoBind 1AutoBind property, 14-4
BackColor, 14-7
Caption, 14-8
Connect, 14-9
Database, 14-10
DatabaseName, 14-11
DirtyWrite, 14-12
Draglcon, 14-13
DragMode, 14-14
EditMode, 14-15
Enabled, 14-16
Font, 14-17
ForeColor, 14-18
Height, 14-19
Index, 14-20
Left, 14-21
MousePointer, 14-22
Name, 14-23
NoRefetch, 14-24
Options, 14-25
OracleMode, 14-27
ReadOnly, 14-28
Recordset, 14-29
RecordSource, 14-31
Session, 14-33
Tag, 14-34
Top, 14-35
TrailingBlanks, 14-36
Visible, 14-37
Width, 14-38
Oracle Data Control with Visual Basic, 2-8
Oracle Errors, 5-13
Oracle In-Process Server Type library, 1-5
Oracle LOB errors, 5-11
Oracle LOBs, Objects, and Collections, 4-2
instantiating, 4-2
Oracle network errors, 5-15

Oracle Number errors, 5-13
Oracle Object Instance Errors, 5-10
Oracle Objects for OLE (O040) overview, 1-1
Oracle Objects for OLE C++ Class Library, 1-4
Oracle Objects for OLE server methods, 10-1
Oracle Objects for OLE Server Objects, 9-1
Oracle Objects for OLE server properties, 11-1
Oracle Universal Installer, 1-5, 1-6
OracleMetalLink, 1-6
OracleMode property, 14-27
oraclm32.dll, 1-6
OraCollection, 4-16
OraCollection interface, 4-16
OraCollection object, 5-4,5-12

creating a dynaset from, 4-18
oraconst.txt, 2-2
OraDatabase object

pool of, 5-6

pool, performance, ASP applications, 3-8
OraDatabase objects, 13-4
ORADC Control, 2-12
oradc.ocx, 1-6,1-7
ORADYN_NOCACHE option, 3-3,5-4
ORADYN_READONLY option, 5-4
OraDynaset

objects, 13-4

XML from, 4-26
OraDynaset object, 5-2,5-4

using, 4-5
oraexamp.sql, 2-2
OraField objects, 5-2
OraFields collection, 5-2
OraMetaData object, 4-29
OraObject interface, 4-10

using, 4-11
OraObject object, 4-10

accessing, 4-15

accessing attributes of, 4-12

executing methods, 4-12

instance errors, 5-10

modfiying attributes, 4-15

modifying attributes of, 4-12

retrieving, 4-11
OraParamArray object, 5-4
OraParameter object, 5-3

using, 4-15
OraRef interface

about, 4-13

using, 4-14
OraRef object, 4-10
OraSQLStmt, 3-6
ORATYPE_CURSOR, 3-11
output variables, 4-1

P

parameter bindings, 5-3
Parameter object

using, 4-5,4-11
ParameterArrays, 3-7

performance, 3-3, 3-6,3-9, 5-2
considerations with LOB, 4-6
improvement, 5-4

PL/SQL bind variables, 3-9

PL/SQL blocks
executing, 3-9

PL/SQL bulk collect feature, 5-4

PL/SQL cursor variables, 3-11

PL/SQL procedures, 5-3,7-1

PL/SQL support, 3-9

PL/SQL tables
returning, 3-13

processing
arrays, 5-4

properties, 11-1
FetchLimit, 5-2
LastServerErr, 5-7,5-13
LastServerErrText, 5-13

property values, 2-2

Q

queries, 3-3
queueing, 4-20
quick tour, 6-1

R

ReadOnly property, 14-28
Recordset data control property,

14-29

RecordSource data control property, 13-4, 14-31

reducing round-trips, 5-4
REF

retrieving from database, 4-14
referenceable instance, 4-15

Refresh data control method, 13-4

Refresh method, 3-9
Reposition event, 12-8
required setups, 1-5
required support files (RSF), 1-5
requirements
0040 Code Wizard, 1-5
Oracle Data Control, 1-5
retreiving
interfaces, 4-2
retrieving
collection types, 4-17
LOBs from database, 4-5
OraObject, 4-11
REF, 4-14
returning PL/SQL tables, 3-13
round-trips, 4-6,5-4
reducing, 5-4
run-time errors, 5-9

S

sample application
quick tour, 6-1

schema objects, 4-29

scott schema, 2-2

Index-5

scott/tiger, 2-1 VARRAY collection type

SELECT statements, 3-3 creating, 4-18
server methods, 10-1 VARRAYs, 4-1,4-16
server properties, 11-1 Visible property, 14-37
Session data control property, 14-33 Visual Basic, 1-1,5-1,12-1,13-1, 14-1
Setting Oracle Data Control Properties Visual Basic for Applications, 1-1
Programmatically, 2-11 Visual Basic with OO40 automation, 2-2
setup Visual Basic Wizard Add-in to Code Wizard, 7-3
required, 1-5 Visual Basic, Excel, 2-1
single-piece operation, 4-6 Visual C++, 1-4,2-8,2-12
single-piece read operation, 4-8 Visual C++, JavaScript, 1-1
single-piece write operation, 4-6
sqldembld7.sql, 2-2 w
support for Microsoft Transaction Server, 3-15
support for PL/SQL, 3-9 Width property, 14-38
system requirements, 1-5 Windows 2000, 1-5
Windows registry parameters, 5-2
T Windows Server 2003, 1-5
Windows Vista, 1-5
Tag property, 14-34 Windows XP, 1-5
tnsnames.ora file, 2-2 writing
Top property, 14-35 LOB data, 4-6
TrailingBlanks property, 14-36
transaction control, 3-14 X
troubleshooting, 5-14
tuning, 5-2 XML
Type Library, 2-2 generation, 4-26
types, 5-5 XML from OraDynaset, 4-26
LONG RAW, 5-5 XML support for, 4-26
XSLT, 4-26
U
) Z
Universal Installer, 1-5,1-6
update database records, 3-6 z-order, 13-7
Update method, 13-6 ZOrder methods, 13-7

UpdateControls method, 13-5
UpdateRecord method, 13-6
Updating files and registrations, 1-7
using
Dynaset object, 4-14
OraParameter object, 4-15
OraRef interface, 4-14
using a Dynaset object, 4-11
using a Parameter object, 4-11
using Automation Clients, 2-1
using Microsoft C++, 2-8
using OO40 Automation with Active Server Pages
(ASP), 2-4
using OO40 Automation with Excel, 2-6
using OO40 Automation with Visual Basic, 2-2
using OraBLOB and OraCLOB, 4-5
using OraObject interface, 4-11
using read-only forward-only dynasets, 5-4
using the OO40 Code Wizard, 7-2
using the Oracle Data Control with MS VC++, 2-12
using the Oracle Data Control with Visual Basic, 2-8
using the PL/SQL bulk collect feature, 5-4

\")
Validate event, 12-8,12-9, 13-6

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle Objects for OLE?
	Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New Features
	Oracle Database 10g Release 2 (10.2) New Features
	Oracle Database 10g Release 1 (10.1) New Features

	1 Introducing Oracle Objects for OLE
	Overview of Oracle Objects for OLE
	Oracle Objects for OLE In-Process Automation Server
	Oracle Data Control
	Oracle Objects for OLE C++ Class Library
	Required Setups
	Installation
	System Requirements
	Other Requirements

	Oracle Objects for OLE File Locations
	Component Certifications
	Oracle Objects for OLE Redistributable Files
	Redistributable File Locations
	Updating Files and Registrations

	2 Using Oracle Objects for OLE with Automation Clients
	Using Automation Clients Overview
	Demonstration Schema and Code Examples
	Demonstration Schema Creation
	Demonstration Schema
	Other Schemas
	Related Files

	Using Oracle Objects for OLE Automation with Visual Basic
	Using OO4O Automation with Active Server Pages (ASP)
	Using Oracle Objects for OLE Automation with Excel
	Using Microsoft C++
	Using Oracle Data Control with Visual Basic
	Setting Oracle Data Control Properties with the Properties Window
	Setting Oracle Data Control Properties Programmatically

	Using the Oracle Data Control with MS Visual C++

	3 Basic Features
	Overview of Client Applications
	Accessing the Oracle Objects for OLE Automation Server
	Obtaining an OraSession Object
	Obtaining an OraServer Object

	Connecting to Oracle Database
	Using OraServer for Connection Multiplexing

	Executing Commands
	Queries
	Data Manipulation Language Statements
	Updating Database Records
	Deleting Rows from a Table
	Inserting New Rows into a Table

	Thread Safety
	Using the Connection Pool Management Facility
	Creating the Connection Pool
	Obtaining from and Returning Objects to the Pool
	Destroying the Pool
	Accessing the Pool attributes
	Processing Transactions Using the Database from the Connection Pool

	Detection of Lost Connections
	PL/SQL Support
	PL/SQL Integration with Oracle Objects for OLE
	Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL
	Returning PL/SQL Cursor Variables
	Returning PL/SQL Tables
	Executing Data Definition Language Statements

	Transaction Control
	Microsoft Transaction Server Support
	Asynchronous Processing
	Nonblocking Mode
	Checking the Status of a Nonblocking Operation
	Canceling a Nonblocking Operation
	Executing Multiple Queries in Asynchronous Mode
	Limitations on Nonblocking

	4 Advanced OO4O Features
	Support for Oracle Object-Relational and LOB Data Types
	Instantiating Oracle LOBs, Objects, and Collections
	Oracle LOBs, Objects, and Collections

	Using Large Objects (LOBs)
	LOB Data Types
	Using OraBLOB and OraCLOB
	Retrieving LOBs From the Database
	Using an OraDynaset Object
	Using a Parameter object

	Performance Considerations with LOB Read and Write
	Single-Piece Operation
	Multiple-Piece Operation
	LOB Buffering Option

	Writing LOB Data
	Single-Piece Write Operation
	Multiple-Piece Write Operation

	Reading LOB Data
	Single-Piece Read Operation
	Multiple-Piece Read Operation

	Oracle Object Data Types
	About the OraObject Interface
	Using the OraObject Interface
	Retrieving an Embedded/Value Instance from the Database
	Using a Dynaset Object
	Using a Parameter Object

	Accessing Attributes of an Embedded/Value Instance
	Modifying Attributes of an Embedded/Value Instance
	Executing a Member Method of an Oracle Object Instance

	About the OraRef Interface
	Using the OraRef Interface
	Retrieving a REF from the Database
	Using a Dynaset Object
	Using an OraParameter Object

	Accessing Attributes of a Referenceable Instance
	Modifying Attributes of a Referenceable Instance

	Oracle Collections
	About the OraCollection Interface
	Retrieving a Collection Type Instance from the Database
	Using a Dynaset Object
	Using a Parameter Object

	Accessing Collection Elements
	Modifying Collection Elements
	Creating a VARRAY Collection Type
	Creating a Dynaset from an OraCollection Object

	Advanced Queueing Interfaces
	Monitoring Messages

	Database Events
	Application Failover Notifications
	Failover Notification Registration
	Enabling Failover

	XML Generation
	Datetime and Interval Data Types
	Obtaining Datetime and Interval Data Types
	Descriptions of Datetime and Interval Data Types

	Database Schema Objects

	5 Tuning and Troubleshooting
	Tips and Techniques for Performance Tuning
	Early Binding of OO4O Objects
	Tuning and Customization
	Avoiding Multiple Object Reference
	Parameter Bindings
	Array Processing
	Using Read-Only, Forward-Only Dynaset
	Using the PL/SQL Bulk Collection Feature
	Migration from LONG RAW to LOB or BFILE
	Using Connection Pooling

	Oracle Objects for OLE Error Handling
	OLE Automation Errors
	Nonblocking Errors
	Find Method Parser Errors
	Find Method Run-Time Errors
	OraObject Instance Errors
	LOB Errors
	Oracle Streams Advanced Queuing Errors
	OraCollection Errors
	OraNumber Errors
	Oracle Errors
	Oracle Data Control Errors

	Troubleshooting
	OLE Initialization or OLE Automation Errors
	Oracle Network Errors
	Access Violations

	6 Quick Tour with Visual Basic
	Introduction
	About the Employee Database Application
	Employee Form
	Batch Insert Form

	Getting Started: Steps to Accessing Oracle Data
	Completed Sample Form_Load Procedure

	Programming a Data Entry Form
	About the Employee Form
	Navigating Through Data
	Moving to First or Last Rows
	Moving to the Previous Row
	Moving to the Next Row

	Adding Records
	Coding the Add Button
	Coding the Commit Button (Add)
	Commit_Click Event Procedure (Add)
	DoValidationChecks() Function
	UpdateDynasetFields() Function

	Updating Records
	Coding the Update Button
	Coding the Commit Button to Add and Update Records
	Commit_Click() Event Procedure Example
	SetAfterCommitFlags() Subroutine Example

	Deleting Records
	Querying the Database
	Using Batch Insert

	Programming a Batch Form
	About the Batch Insert Form
	Coding the Batch Insert Form_Load() Procedure
	Coding the CmdAddtoGrid() Procedure
	Coding the CommitGrid_Click() Procedure

	7 Code Wizard for Stored Procedures
	Oracle Objects for OLE Code Wizard Components
	Data Types Supported by the OO4O Code Wizard
	Using the OO4O Code Wizard
	OO4O Code Wizard Command-Line Utility
	OO4O Code Wizard Visual Basic Wizard Add-in

	Code Wizard Examples
	Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages
	Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic
	Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic
	Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual Basic

	8 Introduction to Automation Objects
	Overview of Automation Objects
	OraSession Object Overview
	OraServer Object Overview
	OraDatabase Object Overview
	OraDynaset Object Overview
	OraField Object Overview
	OraParameters Object Overview
	OraParameter Object Overview
	OraParamArray Object Overview
	OraSQLStmt Object Overview

	9 Server Objects
	OraAQ Object
	OraAQAgent Object
	OraAQMsg Object
	OraAttribute Object
	OraBFILE Object
	OraBLOB, OraCLOB Objects
	OraClient Object
	OraCollection Object
	OraConnection Object
	OraDatabase Object
	OraDynaset Object
	OraField Object
	OraIntervalDS Object
	OraIntervalYM Object
	OraMDAttribute Object
	OraMetaData Object
	OraNumber Object
	OraObject Object
	OraParamArray Object
	OraParameter Object
	OraRef Object
	OraServer Object
	OraSession Object
	OraSQLStmt Object
	OraSubscription Object
	OraTimeStamp Object
	OraTimeStampTZ Object
	OraConnections Collection
	OraFields Collection
	OraParameters Collection
	OraSessions Collection
	OraSubscriptions Collection

	10 Server Methods
	Abs Method
	Add Method
	Add (OraIntervalDS) Method
	Add (OraIntervalYM) Method
	Add (OraNumber) Method
	Add (OraSubscriptions Collection) Method
	AddIntervalDS Method
	AddIntervalYM Method
	AddNew Method
	AddTable Method
	Append (OraCollection) Method
	Append (OraLOB) Method
	AppendChunk Method
	AppendChunkByte Method
	AQAgent (OraAQMsg) Method
	AQMsg (OraAQ) Method
	ArcCos (OraNumber) Method
	ArcSin (OraNumber) Method
	ArcTan (OraNumber) Method
	ArcTan2 (OraNumber) Method
	Attribute (OraMetaData) Method
	AutoBindDisable Method
	AutoBindEnable Method
	BeginTrans Method
	Cancel Method
	CancelEdit (OraRef) Method
	Ceil (OraNumber) Method
	ChangePassword (OraServer) Method
	ChangePassword (OraSession) Method
	Clone Method
	Clone (OraLOB/BFILE) Method
	Clone (OraCollection) Method
	Clone (OraIntervalDS) Method
	Clone (OraIntervalYM) Method
	Clone (OraNumber) Method
	Clone (OraObject/Ref) Method
	Clone (OraTimeStamp) Method
	Clone (OraTimeStampTZ) Method
	Close Method
	Close (OraBFILE) Method
	CloseAll (OraBFILE) Method
	CommitTrans Method
	Compare (OraLOB) Method
	ConnectSession Method
	CopyToClipboard Method
	Copy (OraLOB) Method
	CopyFromFile (OraLOB) Method
	CopyFromBFILE (OraLOB) Method
	CopyToFile (OraLOB/BFILE) Method
	Cos (OraNumber) Method
	CreateAQ Method
	CreateCustomDynaset Method
	CreateDatabasePool Method
	CreateDynaset Method
	CreateIterator Method
	CreateNamedSession Method
	CreateOraIntervalDS Method
	CreateOraIntervalYM Method
	CreateOraNumber Method
	CreateOraObject (OraDatabase) Method
	CreateOraTimeStamp Method
	CreateOraTimeStampTZ Method
	CreatePLSQLCustomDynaset Method
	CreatePLSQLDynaset Method
	CreateSession Method
	CreateSQL Method
	CreateTempBLOB/CLOB Method
	Delete Method
	Delete (OraCollection) Method
	Delete (OraRef) Method
	DeleteIterator Method
	Dequeue (OraAQ) Method
	Describe Method
	DestroyDatabasePool Method
	DisableBuffering (OraLOB) Method
	Div (OraIntervalDS) Method
	Div (OraIntervalYM) Method
	Div (OraNumber) Method
	DynasetCacheParams Method
	Edit Method
	Edit (OraRef) Method
	ElementValue Method
	EnableBuffering (OraLOB) Method
	Enqueue (OraAQ) Method
	Erase (OraLOB) Method
	ExecuteSQL Method
	Exist (OraCollection) Method
	Exp (OraNumber) Method
	FetchOraRef Method
	FieldSize Method
	FindFirst, FindLast, FindNext, and FindPrevious Methods
	Floor (OraNumber) Method
	FlushBuffer (OraLOB) Method
	GetDatabaseFromPool Method
	GetChunk Method
	GetChunkByte Method
	GetChunkByteEx Method
	GetXML Method
	GetXMLToFile Method
	GetRows Method
	Get_Value Method
	HypCos (OraNumber) Method
	HypSin (OraNumber) Method
	HypTan (OraNumber) Method
	InitIterator Method
	IsEqual (OraIntervalDS) Method
	IsEqual (OraIntervalYM) Method
	IsEqual (OraNumber) Method
	IsEqual (OraTimeStamp) Method
	IsEqual (OraTimeStampTZ) Method
	IsGreater (OraIntervalDS) Method
	IsGreater (OraIntervalYM) Method
	IsGreater (OraNumber) Method
	IsGreater (OraTimeStamp) Method
	IsGreater (OraTimeStampTZ) Method
	IsLess (OraIntervalDS) Method
	IsLess (OraIntervalYM) Method
	IsLess (OraNumber) Method
	IsLess (OraTimeStamp) Method
	IsLess (OraTimeStampTZ) Method
	IterNext Method
	IterPrev Method
	LastServerErrReset Method
	Ln (OraNumber) Method
	Log (OraNumber) Method
	MatchPos (OraLOB/BFILE) Method
	Mod (OraNumber) Method
	MonitorForFailover Method
	MonitorStart (OraAQ) Method
	MonitorStop (OraAQ) Method
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
	MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods
	Mul (OraIntervalDS) Method
	Mul (OraIntervalYM) Method
	Mul (OraNumber) Method
	Neg (OraIntervalDS) Method
	Neg (OraIntervalYM) Method
	Neg (OraNumber) Method
	Open (OraServer) Method
	Open (OraBFILE) Method
	OpenDatabase Method
	OriginalItem Method
	OriginalName
	Power (OraNumber) Method
	Put_Value Method
	Read (OraLOB/BFILE) Method
	ReadChunk Method
	Refresh Method
	Refresh (OraRef) Method
	Register Method
	Remove Method
	Remove (OraSubscriptions Collection) Method
	RemoveFromPool Method
	ResetTrans Method
	Rollback Method
	Round (OraNumber) Method
	SetPi (OraNumber) Method
	Sin (OraNumber) Method
	Sqrt (OraNumber) Method
	Sub (OraIntervalDS) Method
	Sub (OraIntervalYM) Method
	Sub (OraNumber) Method
	Tan (OraNumber) Method
	ToDate Method
	ToOraNumber (OraIntervalDS) Method
	ToOraTimeStamp Method
	ToOraTimeStampLTZ Method
	ToOraTimeStampTZ Method
	ToUniversalTime Method
	Trim (OraCollection) Method
	Trim (OraLOB) Method
	Trunc (OraNumber) Method
	Unregister Method
	Update Method
	Update (OraRef) Method
	Write (OraLOB) Method

	11 Server Properties
	Address (OraAQAgent) Property
	ArraySize Property
	AutoCommit Property
	BOC Property
	BOF Property
	Bookmark Property
	BookMarkable Property
	CacheBlocks Property
	CacheChanged Property
	CacheMaximumSize Property
	CacheOptimalSize Property
	CacheSliceSize Property
	CacheSlicesPerBlock Property
	Client Property
	Connect Property
	Connection Property
	ConnectionOK Property
	Connections Property
	Consumer (OraAQ) Property
	Correlate (OraAQ) Property
	Correlation (OraAQMsg) Property
	Count Property
	Count (OraMetaData) Property
	Count (OraObject/Ref) Property
	Database Property
	DatabaseName Property
	Databases Property
	Day (OraTimeStamp) Property
	Day (OraTimeStampTZ) Property
	Days Property
	DbPoolCurrentSize Property
	DbPoolInitialSize Property
	DbPoolMaxSize Property
	Delay (OraAQMsg) Property
	DequeueMode (OraAQ) Property
	DequeueMsgId (OraAQ) Property
	DirectoryName Property
	DynasetOption Property
	EditMode Property
	EditOption (OraRef) Property
	ElementType Property
	EOC Property
	EOF Property
	ExceptionQueue Property
	Exists Property
	Expiration (OraAQMsg) Property
	FetchLimit Property
	FetchSize Property
	FieldIndex Property
	FieldName Property
	FieldOriginalName Property
	FieldOriginalNameIndex Property
	Fields Property
	FileName Property
	Filter Property
	Format (OraNumber) Property
	Format (OraTimeStamp) Property
	Format (OraTimeStampTZ) Property
	HexValue (OraRef) Property
	Hour (OraTimeStamp) Property
	Hour (OraTimeStampTZ) Property
	Hours Property
	IsLocator (OraCollection) Property
	IsMDObject Property
	IsNull (OraCollection) Property
	IsNull (OraLOB/BFILE) Property
	IsNull (OraObject) Property
	IsOpen (OraBFILE) Property
	IsRefNull (OraRef) Property
	LastErrorText Property
	LastModified Property
	LastServerErr Property
	LastServerErrPos Property
	LastServerErrText Property
	MaxSize (OraCollection) Property
	MinimumSize Property
	Minute (OraTimeStamp) Property
	Minute (OraTimeStampTZ) Property
	Minutes Property
	Month (OraTimeStamp) Property
	Month (OraTimeStampTZ) Property
	Months Property
	Name Property
	Name (AQAgent) Property
	Name (OraAttribute) Property
	Name (OraMDAttribute) Property
	Nanosecond(OraTimeStamp) Property
	Nanonsecond (OraTimeStampTZ) Property
	Nanonseconds Property
	Navigation (OraAQ) Property
	NoMatch Property
	NonBlockingState Property
	Offset (OraLOB/BFILE) Property
	OIPVersionNumber Property
	Options Property
	OraIDataType Property
	OraMaxDSize Property
	OraMaxSize Property
	OraNullOK Property
	OraPrecision Property
	OraScale Property
	Parameters Property
	PinOption (OraRef) Property
	PollingAmount Property
	Priority (OraAQMsg) Property
	RDMSVersion Property
	RecordCount Property
	RelMsgId (OraAQ) Property
	RowPosition Property
	SafeArray (OraCollection) Property
	Second (OraTimeStamp) Property
	Second (OraTimeStampTZ) Property
	Seconds Property
	Server Property
	ServerType Property
	Session Property
	Sessions Property
	Size Property
	Size (OraCollection) Property
	Size (OraLOB and OraBFILE) Property
	SnapShot Property
	Sort Property
	SQL Property
	Status Property
	Status (OraLOB/BFILE) Property
	Subscriptions Property
	TableName (OraRef) Property
	TableSize (OraCollection) Property
	TimeZone (OraTimeStampTZ) Property
	TotalDays Property
	TotalYears Property
	Transactions Property
	Truncated Property
	Type Property
	Type (OraAttribute) Property
	Type (OraCollection) Property
	Type (OraMetaData) Property
	TypeName (OraObject and OraRef) Property
	Updatable Property
	Value Property
	Value (OraAttribute) Property
	Value (OraAQMsg) Property
	Value (OraIntervalDS) Property
	Value (OraIntervalYM) Property
	Value (OraMDAttribute) Property
	Value (OraNumber) Property
	Value (OraTimeStamp) Property
	Value (OraTimeStampTZ) Property
	Version (OraObject and Ref) Property
	Visible (OraAQ) Property
	Wait (OraAQ) Property
	XMLAsAttribute Property
	XMLCollID Property
	XMLEncodingTag Property
	XMLNullIndicator Property
	XMLOmitEncodingTag Property
	XMLRowID Property
	XMLRowsetTag Property
	XMLRowTag Property
	XMLTagName Property
	XMLUpperCase Property
	Year (OraTimeStamp) Property
	Year (OraTimeStampTZ) Property
	Years Property

	12 Data Control Events
	DragDrop Event
	DragOver Event
	Error Event
	MouseDown Event
	MouseMove Event
	MouseUp Event
	Reposition Event
	Validate Event

	13 Data Control Methods
	Drag Method
	Move Method
	Refresh Method
	UpdateControls Method
	UpdateRecord Method
	ZOrder Method

	14 Data Control Properties
	AllowMoveLast Property
	AutoBinding Property
	BackColor Property
	Caption Property
	Connect Property
	Database Property
	DatabaseName Property
	DirtyWrite Property
	DragIcon Property
	DragMode Property
	EditMode Property
	Enabled Property
	Font Property
	ForeColor Property
	Height Property
	Index Property
	Left Property
	MousePointer Property
	Name Property
	NoRefetch Property
	Options Property
	OracleMode Property
	ReadOnly Property
	Recordset Property
	RecordSource Property
	Session Property
	Tag Property
	Top Property
	TrailingBlanks Property
	Visible Property
	Width Property

	A Appendix A
	Oracle Data Types
	Additional Schemas
	Schema Objects Used in OraMetaData Examples
	Schema Objects Used in LOB Data Type Examples
	Schema Objects Used in the OraObject and OraRef Examples
	Schema Objects Used in OraCollection Examples

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

