
 

Oracle® Objects for OLE
Developer's Guide  

11g Release 2 (11.2) for Microsoft Windows

E12245-01

February 2010



Oracle Objects for OLE Developer's Guide, 11g Release 2 (11.2) for Microsoft Windows 

E12245-01

Copyright © 1994, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Janis Greenberg, Christian Shay

Contributing Authors: Riaz Ahmed, Kiminari Akiyama, Steven Caminez, Naveen Doraiswamy, Neeraj 
Gupta, Sinclair Hsu, Alex Keh, Chithra Ramamurthy, Ashish Shah, Martha Woo

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on 
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and 
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of 
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software 
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications which may 
create a risk of personal injury. If you use this software in dangerous applications, then you shall be 
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use 
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of 
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks 
of their respective owners.

This software and documentation may provide access to or information on content, products, and services 
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all 
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and 
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services.



iii

Contents

Preface ..............................................................................................................................................................   xvii

What's New in Oracle Objects for OLE? .......................................................................................   xxi

1 Introducing Oracle Objects for OLE

Overview of Oracle Objects for OLE ...................................................................................................   1-1
Oracle Objects for OLE In-Process Automation Server....................................................................   1-2
Oracle Data Control ................................................................................................................................   1-4
Oracle Objects for OLE C++ Class Library ........................................................................................   1-4
Required Setups .......................................................................................................................................   1-5

Installation...........................................................................................................................................   1-5
System Requirements .......................................................................................................................   1-5
Other Requirements ..........................................................................................................................   1-5

Oracle Objects for OLE File Locations .................................................................................................   1-6
Component Certifications ......................................................................................................................   1-6
Oracle Objects for OLE Redistributable Files ....................................................................................   1-6

Redistributable File Locations ..........................................................................................................   1-6
Updating Files and Registrations ....................................................................................................   1-7

2 Using Oracle Objects for OLE with Automation Clients

Using Automation Clients Overview ...................................................................................................   2-1
Demonstration Schema and Code Examples ......................................................................................   2-1

Demonstration Schema Creation ....................................................................................................   2-2
Demonstration Schema ..............................................................................................................   2-2
Other Schemas.............................................................................................................................   2-2
Related Files ................................................................................................................................   2-2

Using Oracle Objects for OLE Automation with Visual Basic .......................................................   2-2
Using OO4O Automation with Active Server Pages (ASP) .............................................................   2-4
Using Oracle Objects for OLE Automation with Excel ...................................................................   2-6
Using Microsoft C++  .............................................................................................................................   2-8
Using Oracle Data Control with Visual Basic.....................................................................................   2-8

Setting Oracle Data Control Properties with the Properties Window ......................................   2-9
Setting Oracle Data Control Properties Programmatically ......................................................    2-11

Using the Oracle Data Control with MS Visual C++ ....................................................................    2-12



iv

3 Basic Features

Overview of Client Applications ..........................................................................................................   3-1
Accessing the Oracle Objects for OLE Automation Server..............................................................   3-1

Obtaining an OraSession Object ......................................................................................................   3-2
Obtaining an OraServer Object ........................................................................................................   3-2

Connecting to Oracle Database .............................................................................................................   3-2
Using OraServer for Connection Multiplexing .............................................................................   3-3

Executing Commands ..............................................................................................................................   3-3
Queries.................................................................................................................................................   3-3
Data Manipulation Language Statements ......................................................................................   3-5

Updating Database Records ......................................................................................................   3-6
Deleting Rows from a Table ......................................................................................................   3-6
Inserting New Rows into a Table .............................................................................................   3-7

Thread Safety ............................................................................................................................................   3-7
Using the Connection Pool Management Facility ............................................................................   3-8

Creating the Connection Pool ..........................................................................................................   3-8
Obtaining from and Returning Objects to the Pool.......................................................................   3-8
Destroying the Pool ...........................................................................................................................   3-8
Accessing the Pool attributes............................................................................................................   3-8
Processing Transactions Using the Database from the Connection Pool ..................................   3-8

Detection of Lost Connections...............................................................................................................   3-9
PL/SQL Support........................................................................................................................................   3-9

PL/SQL Integration with Oracle Objects for OLE .....................................................................    3-10
Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL ...............................................    3-10
Returning PL/SQL Cursor Variables...........................................................................................    3-11
Returning PL/SQL Tables .............................................................................................................    3-13
Executing Data Definition Language Statements.......................................................................    3-14

Transaction Control...............................................................................................................................    3-14
Microsoft Transaction Server Support ..............................................................................................    3-15
Asynchronous Processing ...................................................................................................................    3-16

Nonblocking Mode ........................................................................................................................    3-16
Checking the Status of a Nonblocking Operation ..............................................................    3-16
Canceling a Nonblocking Operation ....................................................................................    3-17
Executing Multiple Queries in Asynchronous Mode ........................................................    3-17
Limitations on Nonblocking ..................................................................................................    3-18

4 Advanced OO4O Features

Support for Oracle Object-Relational and LOB Data Types ...........................................................   4-1
Instantiating Oracle LOBs, Objects, and Collections........................................................................   4-2

Oracle LOBs, Objects, and Collections............................................................................................   4-2
Using Large Objects (LOBs) ...................................................................................................................   4-3

LOB Data Types..................................................................................................................................   4-4
Using OraBLOB and OraCLOB........................................................................................................   4-5
Retrieving LOBs From the Database ...............................................................................................   4-5

Using an OraDynaset Object .....................................................................................................   4-5
Using a Parameter object ...........................................................................................................   4-5

Performance Considerations with LOB Read and Write ............................................................   4-6



v

Single-Piece Operation ...............................................................................................................   4-6
Multiple-Piece Operation...........................................................................................................   4-6
LOB Buffering Option ................................................................................................................   4-6

Writing LOB Data ..............................................................................................................................   4-6
Single-Piece Write Operation ....................................................................................................   4-7
Multiple-Piece Write Operation................................................................................................   4-7

Reading LOB Data .............................................................................................................................   4-8
Single-Piece Read Operation .....................................................................................................   4-8
Multiple-Piece Read Operation.................................................................................................   4-9

Oracle Object Data Types ....................................................................................................................    4-10
About the OraObject Interface ......................................................................................................    4-10
Using the OraObject Interface .......................................................................................................    4-11

Retrieving an Embedded/Value Instance from the Database ..........................................    4-11
Accessing Attributes of an Embedded/Value Instance .....................................................    4-12
Modifying Attributes of an Embedded/Value Instance....................................................    4-12
Executing a Member Method of an Oracle Object Instance ..............................................    4-12

About the OraRef Interface............................................................................................................    4-13
Using the OraRef Interface ...........................................................................................................    4-14

Retrieving a REF from the Database .....................................................................................    4-14
Accessing Attributes of a Referenceable Instance...............................................................    4-15
Modifying Attributes of a Referenceable Instance..............................................................    4-15

Oracle Collections .................................................................................................................................    4-16
About the OraCollection Interface................................................................................................    4-16
Retrieving a Collection Type Instance from the Database ........................................................    4-17

Using a Dynaset Object ...........................................................................................................    4-17
Using a Parameter Object ......................................................................................................    4-17

Accessing Collection Elements......................................................................................................    4-17
Modifying Collection Elements.....................................................................................................    4-18
Creating a VARRAY Collection Type ..........................................................................................    4-18
Creating a Dynaset from an OraCollection Object.....................................................................    4-18

Advanced Queueing Interfaces ..........................................................................................................    4-20
Monitoring Messages .....................................................................................................................    4-21

Database Events.....................................................................................................................................    4-22
Application Failover Notifications ....................................................................................................    4-24

Failover Notification Registration ................................................................................................    4-24
Enabling Failover ............................................................................................................................    4-25

XML Generation ...................................................................................................................................    4-26
Datetime and Interval Data Types .....................................................................................................    4-28

Obtaining Datetime and Interval Data Types.............................................................................    4-28
Descriptions of Datetime and Interval Data Types....................................................................    4-29

Database Schema Objects ....................................................................................................................    4-29

5 Tuning and Troubleshooting

Tips and Techniques for Performance Tuning....................................................................................   5-1
Early Binding of OO4O Objects ......................................................................................................   5-1
Tuning and Customization...............................................................................................................   5-2
Avoiding Multiple Object Reference...............................................................................................   5-2



vi

Parameter Bindings............................................................................................................................   5-3
Array Processing ................................................................................................................................   5-4
Using Read-Only, Forward-Only Dynaset.....................................................................................   5-4
Using the PL/SQL Bulk Collection Feature ...................................................................................   5-4
Migration from LONG RAW to LOB or BFILE .............................................................................   5-5
Using Connection Pooling ................................................................................................................   5-6

Oracle Objects for OLE Error Handling ..............................................................................................   5-6
OLE Automation Errors ....................................................................................................................   5-7
Nonblocking Errors............................................................................................................................   5-9
Find Method Parser Errors ...............................................................................................................   5-9
Find Method Run-Time Errors......................................................................................................    5-10
OraObject Instance Errors ..............................................................................................................    5-10
LOB Errors........................................................................................................................................    5-11
Oracle Streams Advanced Queuing Errors .................................................................................    5-12
OraCollection Errors.......................................................................................................................    5-12
OraNumber Errors ..........................................................................................................................    5-13
Oracle Errors ....................................................................................................................................    5-13
Oracle Data Control Errors ............................................................................................................    5-13

Troubleshooting.....................................................................................................................................    5-14
OLE Initialization or OLE Automation Errors............................................................................    5-14
Oracle Network Errors ...................................................................................................................    5-15
Access Violations.............................................................................................................................    5-16

6 Quick Tour with Visual Basic

Introduction ...............................................................................................................................................   6-1
About the Employee Database Application...................................................................................   6-1

Employee Form ...........................................................................................................................   6-2
Batch Insert Form........................................................................................................................   6-2

Getting Started: Steps to Accessing Oracle Data ...............................................................................   6-3
Completed Sample Form_Load Procedure ....................................................................................   6-5

Programming a Data Entry Form...........................................................................................................   6-6
About the Employee Form................................................................................................................   6-6
Navigating Through Data.................................................................................................................   6-7

Moving to First or Last Rows....................................................................................................   6-7
Moving to the Previous Row.....................................................................................................   6-8
Moving to the Next Row............................................................................................................   6-8

Adding Records..................................................................................................................................   6-8
Coding the Add Button .............................................................................................................   6-8
Coding the Commit Button (Add)............................................................................................   6-9

Updating Records ...........................................................................................................................    6-12
Coding the Update Button .....................................................................................................    6-12
Coding the Commit Button to Add and Update Records..................................................    6-13

Deleting Records .............................................................................................................................    6-15
Querying the Database...................................................................................................................    6-15
Using Batch Insert ...........................................................................................................................    6-16

Programming a Batch Form .................................................................................................................    6-16
About the Batch Insert Form .........................................................................................................    6-16



vii

Coding the Batch Insert Form_Load( ) Procedure ....................................................................    6-17
Coding the CmdAddtoGrid( ) Procedure ...................................................................................    6-18
Coding the CommitGrid_Click( ) Procedure .............................................................................    6-18

7 Code Wizard for Stored Procedures

Oracle Objects for OLE Code Wizard Components ..........................................................................   7-1
Data Types Supported by the OO4O Code Wizard ...........................................................................   7-2
Using the OO4O Code Wizard ..............................................................................................................   7-2

OO4O Code Wizard Command-Line Utility ................................................................................   7-2
OO4O Code Wizard Visual Basic Wizard Add-in ........................................................................   7-3

Code Wizard Examples............................................................................................................................   7-5
Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages .................   7-5
Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic......................   7-6
Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic ............   7-6
Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual Basic ..   7-6

8 Introduction to Automation Objects

Overview of Automation Objects .........................................................................................................   8-1
OraSession Object Overview .................................................................................................................   8-2
OraServer Object Overview ...................................................................................................................   8-2
OraDatabase Object Overview ..............................................................................................................   8-3
OraDynaset Object Overview................................................................................................................   8-3
OraField Object Overview .....................................................................................................................   8-4
OraParameters Object Overview...........................................................................................................   8-4
OraParameter Object Overview ............................................................................................................   8-4
OraParamArray Object Overview.........................................................................................................   8-5
OraSQLStmt Object Overview ..............................................................................................................   8-5

9 Server Objects

OraAQ Object ...........................................................................................................................................   9-3
OraAQAgent Object ................................................................................................................................   9-5
OraAQMsg Object ...................................................................................................................................   9-6
OraAttribute Object .................................................................................................................................   9-7
OraBFILE Object ......................................................................................................................................   9-9
OraBLOB, OraCLOB Objects..............................................................................................................    9-11
OraClient Object ...................................................................................................................................    9-18
OraCollection Object ............................................................................................................................    9-19
OraConnection Object..........................................................................................................................    9-27
OraDatabase Object ..............................................................................................................................    9-28
OraDynaset Object................................................................................................................................    9-30
OraField Object .....................................................................................................................................    9-33
OraIntervalDS Object...........................................................................................................................    9-35
OraIntervalYM Object..........................................................................................................................    9-37
OraMDAttribute Object.......................................................................................................................    9-38
OraMetaData Object.............................................................................................................................    9-39
OraNumber Object ...............................................................................................................................    9-41



viii

OraObject Object...................................................................................................................................    9-43
OraParamArray Object.........................................................................................................................    9-47
OraParameter Object ............................................................................................................................    9-50
OraRef Object ........................................................................................................................................    9-52
OraServer Object ...................................................................................................................................    9-56
OraSession Object .................................................................................................................................    9-58
OraSQLStmt Object ..............................................................................................................................    9-60
OraSubscription Object .......................................................................................................................    9-61
OraTimeStamp Object..........................................................................................................................    9-62
OraTimeStampTZ Object ....................................................................................................................    9-64
OraConnections Collection .................................................................................................................    9-66
OraFields Collection .............................................................................................................................    9-67
OraParameters Collection ....................................................................................................................    9-68
OraSessions Collection .......................................................................................................................    9-69
OraSubscriptions Collection ..............................................................................................................    9-70

10 Server Methods

Abs Method ............................................................................................................................................    10-7
Add Method ...........................................................................................................................................    10-8
Add (OraIntervalDS) Method...........................................................................................................    10-11
Add (OraIntervalYM) Method..........................................................................................................    10-12
Add (OraNumber) Method................................................................................................................    10-13
Add (OraSubscriptions Collection) Method..................................................................................    10-14
AddIntervalDS Method .....................................................................................................................    10-17
AddIntervalYM Method ....................................................................................................................    10-19
AddNew Method.................................................................................................................................    10-21
AddTable Method ...............................................................................................................................    10-23
Append (OraCollection) Method .....................................................................................................    10-25
Append (OraLOB) Method................................................................................................................    10-27
AppendChunk Method ......................................................................................................................    10-28
AppendChunkByte Method..............................................................................................................    10-30
AQAgent (OraAQMsg) Method .......................................................................................................    10-32
AQMsg (OraAQ) Method ..................................................................................................................    10-33
ArcCos (OraNumber) Method ..........................................................................................................    10-34
ArcSin (OraNumber) Method ...........................................................................................................    10-35
ArcTan (OraNumber) Method ..........................................................................................................    10-36
ArcTan2 (OraNumber) Method ........................................................................................................    10-37
Attribute (OraMetaData) Method ....................................................................................................    10-38
AutoBindDisable Method .................................................................................................................    10-39
AutoBindEnable Method...................................................................................................................    10-41
BeginTrans Method.............................................................................................................................    10-43
Cancel Method .....................................................................................................................................    10-45
CancelEdit (OraRef) Method ............................................................................................................    10-46
Ceil (OraNumber) Method ................................................................................................................    10-47
ChangePassword (OraServer) Method............................................................................................    10-48
ChangePassword (OraSession) Method .........................................................................................    10-50
Clone Method.......................................................................................................................................    10-52



ix

Clone (OraLOB/BFILE) Method .......................................................................................................    10-53
Clone (OraCollection) Method .........................................................................................................    10-54
Clone (OraIntervalDS) Method........................................................................................................    10-55
Clone (OraIntervalYM) Method .......................................................................................................    10-56
Clone (OraNumber) Method.............................................................................................................    10-57
Clone (OraObject/Ref) Method ........................................................................................................    10-58
Clone (OraTimeStamp) Method .......................................................................................................    10-61
Clone (OraTimeStampTZ) Method..................................................................................................    10-62
Close Method .......................................................................................................................................    10-63
Close (OraBFILE) Method .................................................................................................................    10-64
CloseAll (OraBFILE) Method............................................................................................................    10-65
CommitTrans Method.........................................................................................................................    10-66
Compare (OraLOB) Method..............................................................................................................    10-68
ConnectSession Method ....................................................................................................................    10-69
CopyToClipboard Method.................................................................................................................    10-71
Copy (OraLOB) Method.....................................................................................................................    10-72
CopyFromFile (OraLOB) Method ....................................................................................................    10-73
CopyFromBFILE (OraLOB) Method................................................................................................    10-75
CopyToFile (OraLOB/BFILE) Method.............................................................................................    10-76
Cos (OraNumber) Method.................................................................................................................    10-78
CreateAQ Method ...............................................................................................................................    10-79
CreateCustomDynaset Method ........................................................................................................    10-80
CreateDatabasePool Method.............................................................................................................    10-83
CreateDynaset Method.......................................................................................................................    10-85
CreateIterator Method ........................................................................................................................    10-88
CreateNamedSession Method ..........................................................................................................    10-90
CreateOraIntervalDS Method...........................................................................................................    10-92
CreateOraIntervalYM Method..........................................................................................................    10-94
CreateOraNumber Method ...............................................................................................................    10-96
CreateOraObject (OraDatabase) Method .......................................................................................    10-97
CreateOraTimeStamp Method........................................................................................................    10-100
CreateOraTimeStampTZ Method ..................................................................................................    10-102
CreatePLSQLCustomDynaset Method .........................................................................................    10-104
CreatePLSQLDynaset Method .......................................................................................................    10-106
CreateSession Method......................................................................................................................    10-109
CreateSQL Method ...........................................................................................................................    10-111
CreateTempBLOB/CLOB Method ..................................................................................................    10-114
Delete Method ...................................................................................................................................    10-116
Delete (OraCollection) Method ......................................................................................................    10-118
Delete (OraRef) Method ..................................................................................................................    10-120
DeleteIterator Method ......................................................................................................................    10-121
Dequeue (OraAQ) Method..............................................................................................................    10-122
Describe Method ...............................................................................................................................    10-124
DestroyDatabasePool Method ........................................................................................................    10-128
DisableBuffering (OraLOB) Method.............................................................................................    10-129
Div (OraIntervalDS) Method..........................................................................................................    10-130
Div (OraIntervalYM) Method .........................................................................................................    10-131



x

Div (OraNumber) Method...............................................................................................................    10-132
DynasetCacheParams Method ........................................................................................................    10-133
Edit Method ........................................................................................................................................    10-134
Edit (OraRef) Method .......................................................................................................................    10-136
ElementValue Method ......................................................................................................................    10-138
EnableBuffering (OraLOB) Method ..............................................................................................    10-139
Enqueue (OraAQ) Method ..............................................................................................................    10-141
Erase (OraLOB) Method...................................................................................................................    10-143
ExecuteSQL Method .........................................................................................................................    10-144
Exist (OraCollection) Method .........................................................................................................    10-147
Exp (OraNumber) Method...............................................................................................................    10-148
FetchOraRef Method ........................................................................................................................    10-149
FieldSize Method ..............................................................................................................................    10-150
FindFirst, FindLast, FindNext, and FindPrevious Methods......................................................    10-151
Floor (OraNumber) Method ............................................................................................................    10-153
FlushBuffer (OraLOB) Method.......................................................................................................    10-154
GetDatabaseFromPool Method ......................................................................................................    10-155
GetChunk Method ............................................................................................................................    10-156
GetChunkByte Method ....................................................................................................................    10-158
GetChunkByteEx Method ...............................................................................................................    10-160
GetXML Method................................................................................................................................    10-163
GetXMLToFile Method.....................................................................................................................    10-164
GetRows Method...............................................................................................................................    10-165
Get_Value Method ............................................................................................................................    10-167
HypCos (OraNumber) Method.......................................................................................................    10-168
HypSin (OraNumber) Method .......................................................................................................    10-169
HypTan (OraNumber) Method .......................................................................................................    10-170
InitIterator Method ...........................................................................................................................    10-171
IsEqual (OraIntervalDS) Method...................................................................................................    10-172
IsEqual (OraIntervalYM) Method..................................................................................................    10-173
IsEqual (OraNumber) Method........................................................................................................    10-174
IsEqual (OraTimeStamp) Method..................................................................................................    10-175
IsEqual (OraTimeStampTZ) Method ............................................................................................    10-176
IsGreater (OraIntervalDS) Method................................................................................................    10-177
IsGreater (OraIntervalYM) Method...............................................................................................    10-178
IsGreater (OraNumber) Method ....................................................................................................    10-179
IsGreater (OraTimeStamp) Method...............................................................................................    10-180
IsGreater (OraTimeStampTZ) Method .........................................................................................    10-181
IsLess (OraIntervalDS) Method .....................................................................................................    10-182
IsLess (OraIntervalYM) Method ....................................................................................................    10-183
IsLess (OraNumber) Method ..........................................................................................................    10-184
IsLess (OraTimeStamp) Method ....................................................................................................    10-185
IsLess (OraTimeStampTZ) Method ...............................................................................................    10-186
IterNext Method ................................................................................................................................    10-187
IterPrev Method.................................................................................................................................    10-188
LastServerErrReset Method.............................................................................................................    10-189
Ln (OraNumber) Method.................................................................................................................    10-190



xi

Log (OraNumber) Method...............................................................................................................    10-191
MatchPos (OraLOB/BFILE) Method ..............................................................................................    10-192
Mod (OraNumber) Method .............................................................................................................    10-193
MonitorForFailover Method ...........................................................................................................    10-194
MonitorStart (OraAQ) Method.......................................................................................................    10-196
MonitorStop (OraAQ) Method .......................................................................................................    10-198
MoveFirst, MoveLast, MoveNext, and MovePrevious Methods..............................................    10-199
MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods..............................................    10-202
Mul (OraIntervalDS) Method .........................................................................................................    10-204
Mul (OraIntervalYM) Method ........................................................................................................    10-205
Mul (OraNumber) Method..............................................................................................................    10-206
Neg (OraIntervalDS) Method .........................................................................................................    10-207
Neg (OraIntervalYM) Method ........................................................................................................    10-208
Neg (OraNumber) Method ..............................................................................................................    10-209
Open (OraServer) Method ...............................................................................................................    10-210
Open (OraBFILE) Method ...............................................................................................................    10-211
OpenDatabase Method ....................................................................................................................    10-212
OriginalItem Method .......................................................................................................................    10-215
OriginalName ....................................................................................................................................    10-217
Power (OraNumber) Method ..........................................................................................................    10-219
Put_Value Method.............................................................................................................................    10-220
Read (OraLOB/BFILE) Method.......................................................................................................    10-221
ReadChunk Method .........................................................................................................................    10-224
Refresh Method .................................................................................................................................    10-225
Refresh (OraRef) Method ................................................................................................................    10-228
Register Method ................................................................................................................................    10-229
Remove Method.................................................................................................................................    10-230
Remove (OraSubscriptions Collection) Method.........................................................................    10-231
RemoveFromPool Method...............................................................................................................    10-232
ResetTrans Method ...........................................................................................................................    10-233
Rollback Method ...............................................................................................................................    10-235
Round (OraNumber) Method .........................................................................................................    10-237
SetPi (OraNumber) Method ............................................................................................................    10-238
Sin (OraNumber) Method ...............................................................................................................    10-239
Sqrt (OraNumber) Method..............................................................................................................    10-240
Sub (OraIntervalDS) Method .........................................................................................................    10-241
Sub (OraIntervalYM) Method ........................................................................................................    10-242
Sub (OraNumber) Method ..............................................................................................................    10-243
Tan (OraNumber) Method ...............................................................................................................    10-244
ToDate Method ..................................................................................................................................    10-245
ToOraNumber (OraIntervalDS) Method ......................................................................................    10-247
ToOraTimeStamp Method ...............................................................................................................    10-248
ToOraTimeStampLTZ Method .......................................................................................................    10-249
ToOraTimeStampTZ Method..........................................................................................................    10-250
ToUniversalTime Method ................................................................................................................    10-251
Trim (OraCollection) Method .........................................................................................................    10-252
Trim (OraLOB) Method....................................................................................................................    10-254



xii

Trunc (OraNumber) Method ...........................................................................................................    10-255
Unregister Method ............................................................................................................................    10-256
Update Method ..................................................................................................................................    10-257
Update (OraRef) Method .................................................................................................................    10-259
Write (OraLOB) Method...................................................................................................................    10-261

11 Server Properties 

Address (OraAQAgent) Property .......................................................................................................    11-7
ArraySize Property ................................................................................................................................    11-8
AutoCommit Property ..........................................................................................................................    11-9
BOC Property .......................................................................................................................................    11-10
BOF Property ........................................................................................................................................    11-11
Bookmark Property .............................................................................................................................    11-13
BookMarkable Property.....................................................................................................................    11-15
CacheBlocks Property.........................................................................................................................    11-16
CacheChanged Property.....................................................................................................................    11-17
CacheMaximumSize Property ..........................................................................................................    11-18
CacheOptimalSize Property ..............................................................................................................    11-19
CacheSliceSize Property ....................................................................................................................    11-20
CacheSlicesPerBlock Property ..........................................................................................................    11-21
Client Property.....................................................................................................................................    11-22
Connect Property .................................................................................................................................    11-23
Connection Property ...........................................................................................................................    11-25
ConnectionOK Property.....................................................................................................................    11-26
Connections Property .........................................................................................................................    11-27
Consumer (OraAQ) Property ............................................................................................................    11-28
Correlate (OraAQ) Property ..............................................................................................................    11-29
Correlation (OraAQMsg) Property ..................................................................................................    11-30
Count Property.....................................................................................................................................    11-31
Count (OraMetaData) Property ........................................................................................................    11-33
Count (OraObject/Ref) Property ......................................................................................................    11-34
Database Property ...............................................................................................................................    11-36
DatabaseName Property ....................................................................................................................    11-37
Databases Property .............................................................................................................................    11-39
Day (OraTimeStamp) Property .........................................................................................................    11-40
Day (OraTimeStampTZ) Property....................................................................................................    11-41
Days Property.......................................................................................................................................    11-42
DbPoolCurrentSize Property ............................................................................................................    11-43
DbPoolInitialSize Property ...............................................................................................................    11-44
DbPoolMaxSize Property ..................................................................................................................    11-45
Delay (OraAQMsg) Property ............................................................................................................    11-46
DequeueMode (OraAQ) Property....................................................................................................    11-47
DequeueMsgId (OraAQ) Property ..................................................................................................    11-48
DirectoryName Property ....................................................................................................................    11-49
DynasetOption Property ....................................................................................................................    11-50
EditMode Property ..............................................................................................................................    11-51
EditOption (OraRef) Property ..........................................................................................................    11-52



xiii

ElementType Property ........................................................................................................................    11-54
EOC Property .......................................................................................................................................    11-55
EOF Property ........................................................................................................................................    11-56
ExceptionQueue Property ..................................................................................................................    11-58
Exists Property .....................................................................................................................................    11-59
Expiration (OraAQMsg) Property ....................................................................................................    11-60
FetchLimit Property ............................................................................................................................    11-61
FetchSize Property...............................................................................................................................    11-62
FieldIndex Property ............................................................................................................................    11-63
FieldName Property ............................................................................................................................    11-64
FieldOriginalName Property ............................................................................................................    11-65
FieldOriginalNameIndex Property ..................................................................................................    11-66
Fields Property .....................................................................................................................................    11-67
FileName Property ..............................................................................................................................    11-68
Filter Property ......................................................................................................................................    11-69
Format (OraNumber) Property .........................................................................................................    11-70
Format (OraTimeStamp) Property....................................................................................................    11-71
Format (OraTimeStampTZ) Property ..............................................................................................    11-72
HexValue (OraRef) Property .............................................................................................................    11-73
Hour (OraTimeStamp) Property .......................................................................................................    11-74
Hour (OraTimeStampTZ) Property..................................................................................................    11-75
Hours Property.....................................................................................................................................    11-76
IsLocator (OraCollection) Property ..................................................................................................    11-77
IsMDObject Property .........................................................................................................................    11-78
IsNull (OraCollection) Property .......................................................................................................    11-79
IsNull (OraLOB/BFILE) Property.....................................................................................................    11-80
IsNull (OraObject) Property..............................................................................................................    11-81
IsOpen (OraBFILE) Property.............................................................................................................    11-83
IsRefNull (OraRef) Property .............................................................................................................    11-84
LastErrorText Property........................................................................................................................    11-85
LastModified Property .......................................................................................................................    11-86
LastServerErr Property .......................................................................................................................    11-87
LastServerErrPos Property.................................................................................................................    11-89
LastServerErrText Property................................................................................................................    11-90
MaxSize (OraCollection) Property ...................................................................................................    11-92
MinimumSize Property......................................................................................................................    11-93
Minute (OraTimeStamp) Property ...................................................................................................    11-95
Minute (OraTimeStampTZ) Property..............................................................................................    11-96
Minutes Property.................................................................................................................................    11-97
Month (OraTimeStamp) Property ....................................................................................................    11-98
Month (OraTimeStampTZ) Property...............................................................................................    11-99
Months Property ................................................................................................................................    11-100
Name Property ...................................................................................................................................    11-101
Name (AQAgent) Property ..............................................................................................................    11-103
Name (OraAttribute) Property........................................................................................................    11-104
Name (OraMDAttribute) Property ................................................................................................    11-105
Nanosecond(OraTimeStamp) Property.........................................................................................    11-106



xiv

Nanonsecond (OraTimeStampTZ) Property ................................................................................    11-107
Nanonseconds Property ...................................................................................................................    11-108
Navigation (OraAQ) Property.........................................................................................................    11-109
NoMatch Property .............................................................................................................................    11-110
NonBlockingState Property.............................................................................................................    11-111
Offset (OraLOB/BFILE) Property ...................................................................................................    11-112
OIPVersionNumber Property .........................................................................................................    11-113
Options Property ...............................................................................................................................    11-114
OraIDataType Property ....................................................................................................................    11-115
OraMaxDSize Property ....................................................................................................................    11-117
OraMaxSize Property .......................................................................................................................    11-118
OraNullOK Property ........................................................................................................................    11-119
OraPrecision Property ......................................................................................................................    11-120
OraScale Property..............................................................................................................................    11-121
Parameters Property ..........................................................................................................................    11-122
PinOption (OraRef) Property..........................................................................................................    11-123
PollingAmount Property..................................................................................................................    11-125
Priority (OraAQMsg) Property .......................................................................................................    11-126
RDMSVersion Property ...................................................................................................................    11-127
RecordCount Property ......................................................................................................................    11-128
RelMsgId (OraAQ) Property ...........................................................................................................    11-131
RowPosition Property.......................................................................................................................    11-132
SafeArray (OraCollection) Property ..............................................................................................    11-133
Second (OraTimeStamp) Property .................................................................................................    11-134
Second (OraTimeStampTZ) Property............................................................................................    11-135
Seconds Property ...............................................................................................................................    11-136
Server Property ..................................................................................................................................    11-137
ServerType Property .........................................................................................................................    11-138
Session Property ................................................................................................................................    11-141
Sessions Property ..............................................................................................................................    11-142
Size Property ......................................................................................................................................    11-143
Size (OraCollection) Property .........................................................................................................    11-144
Size (OraLOB and OraBFILE) Property ........................................................................................    11-145
SnapShot Property ............................................................................................................................    11-146
Sort Property.......................................................................................................................................    11-149
SQL Property ......................................................................................................................................    11-150
Status Property...................................................................................................................................    11-152
Status (OraLOB/BFILE) Property ...................................................................................................    11-154
Subscriptions Property.....................................................................................................................    11-155
TableName (OraRef) Property ........................................................................................................    11-156
TableSize (OraCollection) Property ...............................................................................................    11-157
TimeZone (OraTimeStampTZ) Property ......................................................................................    11-158
TotalDays Property............................................................................................................................    11-160
TotalYears Property ...........................................................................................................................    11-161
Transactions Property .......................................................................................................................    11-162
Truncated Property ............................................................................................................................    11-163
Type Property .....................................................................................................................................    11-164



xv

Type (OraAttribute) Property..........................................................................................................    11-166
Type (OraCollection) Property........................................................................................................    11-167
Type (OraMetaData) Property.........................................................................................................    11-168
TypeName (OraObject and OraRef) Property .............................................................................    11-170
Updatable Property ...........................................................................................................................    11-171
Value Property....................................................................................................................................    11-173
Value (OraAttribute) Property ........................................................................................................    11-175
Value (OraAQMsg) Property...........................................................................................................    11-176
Value (OraIntervalDS) Property .....................................................................................................    11-177
Value (OraIntervalYM) Property ....................................................................................................    11-179
Value (OraMDAttribute) Property .................................................................................................    11-181
Value (OraNumber) Property..........................................................................................................    11-182
Value (OraTimeStamp) Property ....................................................................................................    11-183
Value (OraTimeStampTZ) Property...............................................................................................    11-184
Version (OraObject and Ref) Property ..........................................................................................    11-185
Visible (OraAQ) Property ................................................................................................................    11-186
Wait (OraAQ) Property.....................................................................................................................    11-187
XMLAsAttribute Property ...............................................................................................................    11-188
XMLCollID Property ........................................................................................................................    11-189
XMLEncodingTag Property .............................................................................................................    11-190
XMLNullIndicator Property ............................................................................................................    11-191
XMLOmitEncodingTag Property....................................................................................................    11-192
XMLRowID Property........................................................................................................................    11-193
XMLRowsetTag Property .................................................................................................................    11-194
XMLRowTag Property ......................................................................................................................    11-195
XMLTagName Property ....................................................................................................................    11-196
XMLUpperCase Property.................................................................................................................    11-197
Year (OraTimeStamp) Property.......................................................................................................    11-198
Year (OraTimeStampTZ) Property .................................................................................................    11-199
Years Property ....................................................................................................................................    11-200

12 Data Control Events

DragDrop Event.....................................................................................................................................    12-2
DragOver Event .....................................................................................................................................    12-3
Error Event ..............................................................................................................................................    12-4
MouseDown Event................................................................................................................................    12-5
MouseMove Event.................................................................................................................................    12-6
MouseUp Event .....................................................................................................................................    12-7
Reposition Event ...................................................................................................................................    12-8
Validate Event ........................................................................................................................................    12-9

13 Data Control Methods

Drag Method ..........................................................................................................................................    13-2
Move Method .........................................................................................................................................    13-3
Refresh Method .....................................................................................................................................    13-4
UpdateControls Method ......................................................................................................................    13-5



xvi

UpdateRecord Method .........................................................................................................................    13-6
ZOrder Method ......................................................................................................................................    13-7

14 Data Control Properties

AllowMoveLast Property.....................................................................................................................    14-3
AutoBinding Property ..........................................................................................................................    14-4
BackColor Property ...............................................................................................................................    14-7
Caption Property ...................................................................................................................................    14-8
Connect Property ...................................................................................................................................    14-9
Database Property ...............................................................................................................................    14-10
DatabaseName Property ....................................................................................................................    14-11
DirtyWrite Property ............................................................................................................................    14-12
DragIcon Property ...............................................................................................................................    14-13
DragMode Property ............................................................................................................................    14-14
EditMode Property ..............................................................................................................................    14-15
Enabled Property .................................................................................................................................    14-16
Font Property ........................................................................................................................................    14-17
ForeColor Property ..............................................................................................................................    14-18
Height Property ...................................................................................................................................    14-19
Index Property......................................................................................................................................    14-20
Left Property.........................................................................................................................................    14-21
MousePointer Property ......................................................................................................................    14-22
Name Property .....................................................................................................................................    14-23
NoRefetch Property.............................................................................................................................    14-24
Options Property .................................................................................................................................    14-25
OracleMode Property .........................................................................................................................    14-27
ReadOnly Property .............................................................................................................................    14-28
Recordset Property ..............................................................................................................................    14-29
RecordSource Property.......................................................................................................................    14-31
Session Property ..................................................................................................................................    14-33
Tag Property..........................................................................................................................................    14-34
Top Property .........................................................................................................................................    14-35
TrailingBlanks Property .....................................................................................................................    14-36
Visible Property ...................................................................................................................................    14-37
Width Property.....................................................................................................................................    14-38

A Appendix A

Oracle Data Types ..................................................................................................................................    A-1
Additional Schemas ................................................................................................................................    A-2

Schema Objects Used in OraMetaData Examples ........................................................................    A-3
Schema Objects Used in LOB Data Type Examples.....................................................................    A-3
Schema Objects Used in the OraObject and OraRef Examples ..................................................    A-3
Schema Objects Used in OraCollection Examples .......................................................................    A-3

Glossary

Index



xvii

Preface

This document explains how to install, configure, and use Oracle Objects for OLE 
(OO4O). It covers features of Oracle Database that apply to Microsoft Windows 
operating systems.

Oracle Objects for OLE (OO4O) allows easy access to data stored in Oracle databases 
with any programming or scripting language that supports the Microsoft COM 
Automation. 

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Objects for OLE Developer's Guide is intended for programmers developing 
applications to access an Oracle database using Oracle Objects for OLE. This 
documentation is also valuable to systems analysts, project managers, and others 
interested in the development of database applications. 

To use this document, you must have a working knowledge of application 
programming using Visual Basic or Microsoft C/C++ and knowledge of Component 
Object Model (COM) concepts. 

Readers should also be familiar with the use of structured query language (SQL) to 
access information in relational database systems. 

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible to all users, including users that are disabled. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at http://www.oracle.com/accessibility/.



xviii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call 
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle 
technical issues and provide customer support according to the Oracle service request 
process. Information about TRS is available at 
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone 
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see these Oracle resources:

■ Oracle Objects for OLE C++ Class Library Developer's Guide, available as online help

■ Oracle Services for Microsoft Transaction Server Developer's Guide

■ Oracle Database Platform Guide for Windows

■ Oracle Database Concepts

■ Oracle Database Performance Tuning Guide

■ Oracle Database Reference

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database SecureFiles and Large Objects Developer's Guide

■ Oracle Database Object-Relational Developer's Guide

■ Oracle Streams Advanced Queuing User's Guide

■ Oracle XML DB Developer's Guide

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle Database PL/SQL User's Guide and Reference

■ Oracle Net Services Reference Guide

■ Oracle Database Globalization Support Guide

■ Oracle Database Oracle Real Application Clusters Administration and Deployment Guide

Many of the examples in this book use the sample schemas, which are installed by 
default when you select the Basic Installation option with an Oracle Database 
installation. Refer to Oracle Database Sample Schemas for information on how these 
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other 
collateral, please visit the Oracle Technology Network (OTN). You must register online 
before using OTN; registration is free and can be done at



xix

http://www.oracle.com/technology/contact/welcome.html

If you already have a user name and password for OTN, then you can go directly to 
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

For additional information, see:

http://www.microsoft.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



xx



xxi

What's New in Oracle Objects for OLE?

This section describes new features of Oracle Database 11g Release 2 (11.2) and 
provides pointers to additional information. New features information from previous 
releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Oracle Objects for OLE:

■ Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New Features

■ Oracle Database 10g Release 2 (10.2) New Features

■ Oracle Database 10g Release 1 (10.1) New Features

Oracle Database 11g Release 1 (11.1) and Release 2 (11.2)  New 
Features 

There are no new features for these releases.  

Oracle Database 10g Release 2 (10.2) New Features 
There are no new features for this release. 

Documentation for Oracle Objects for OLE was improved and reorganized, although 
there is no additional content. The documentation was reformatted to a printable, PDF 
format. PDF and HTML are provided in the Documentation Library. Online Help in 
WinHelp format is no longer provided. 

Oracle Database 10g Release 1 (10.1) New Features
■ Support for Oracle Grid Computing

Oracle Objects for OLE is grid-enabled, allowing developers to take advantage of 
Oracle database grid support without having to make changes to their application 
code. 

■ Support for New Data Types

Oracle Objects for OLE provides support for the BINARY_DOUBLE and BINARY_
FLOAT data types introduced in Oracle Database 10g. Instances of these types can 
be fetched from the database or passed as input or output variables to SQL 
statements and PL/SQL locks, including stored procedures and functions. 

The following constants were added in the oraconst.txt to bind the BINARY_
DOUBLE and BINARY_FLOAT data types. 

– ORATYPE_BDOUBLE, Oracle data type BINARY_DOUBLE, value 101



xxii

– ORATYPE_BFLOAT, Oracle data type BINARY_FLOAT, value 100

■ Support for Multiple Oracle Homes

Oracle Objects for OLE can be installed in multiple Oracle homes, starting with 
release 10.1. However, being a Component Object Model (COM) component, only 
one instance can be active on the computer. This means that the current (latest) 
installation renders the previous one inactive.

To make multiple Oracle homes available, the use of a KEY_HOMENAME is required. 
Also, some of the Oracle Objects for OLE files include a version number. 

See Also:

■ "Installation" on page 1-5

■ "Oracle Objects for OLE Redistributable Files" on page 1-6

■ "Tuning and Customization" on page 5-2 for information about the 
Windows registry subkey



1

Introducing Oracle Objects for OLE 1-1

1Introducing Oracle Objects for OLE

This chapter introduces Oracle Objects for OLE (OO4O).

This chapter contains these topics:

■ Overview of Oracle Objects for OLE

■ Oracle Objects for OLE In-Process Automation Server

■ Oracle Data Control

■ Oracle Objects for OLE C++ Class Library

■ Required Setups

■ Oracle Objects for OLE File Locations

■ Component Certifications

■ Oracle Objects for OLE Redistributable Files

Overview of Oracle Objects for OLE 
Oracle Objects for OLE (OO4O) allows you to access data stored in Oracle databases 
with any programming or scripting language that supports Microsoft COM 
Automation and ActiveX technology. This includes Visual Basic, Visual C++, Visual 
Basic for Applications (VBA), IIS Active Server Pages (VBScript and JavaScript), and 
others.

Figure 1–1 illustrates the software layers that comprise the OO4O product.



Oracle Objects for OLE In-Process Automation Server

1-2 Oracle Objects for OLE Developer's Guide

Figure 1–1 Software Layers of OO4O

OO4O provides the following: 

■ Oracle Objects for OLE In-Process Automation Server

■ Oracle Data Control

■ Oracle Objects for OLE C++ Class Library

Oracle Objects for OLE In-Process Automation Server
The OO4O In-Process Automation Server is a set of COM Automation Objects for 
connecting to Oracle databases, executing SQL statements and PL/SQL blocks, and 
accessing the results. 

Figure 1–2 illustrates the object model that comprise the OO4O product.

Figure 1–2 Automation Objects



Oracle Objects for OLE In-Process Automation Server

Introducing Oracle Objects for OLE 1-3

Unlike other COM-based database connectivity APIs, such as Microsoft ActiveX Data 
Objects (ADO), the OO4O Automation Server was created specifically for use with 
Oracle databases. It provides an optimized API for accessing features that are unique 
to the Oracle database and are otherwise cumbersome or unavailable from ODBC or 
OLE DB components. 

OO4O provides key features for accessing Oracle databases efficiently and easily in 
environments ranging from the typical two-tier client/server applications, such as 
those developed in Visual Basic or Excel, to application servers deployed in 
multitiered application server environments such as Web server applications in 
Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS). 

Features include: 

■ Oracle 11g is grid enabled, allowing developers to take full advantage of grid 
support without changes being required to existing code.

■ Tunable client-side, scrollable and updatable cursors for easy and efficient access 
to result sets of queries. 

■ PL/SQL support for execution of PL/SQL anonymous blocks and stored 
procedures. This includes support for the Oracle data types, such as PL/SQL 
cursors, that are needed for parameters of PL/SQL stored procedures. 

■ Support for array fetches, updates, and inserts resulting in reduced network 
round-trips.

■ Connection pooling to allow development of scalable middle tier application 
components, such as IIS Active Server Pages, that use and serve dynamic content 
stored in Oracle databases. 

■ Support for COM+ and Microsoft Transaction Server (MTS) co-ordinated 
transactions.

■ Seamless access to instances of advanced Oracle data types:

■ Object references (REFs)

■ Object instances (Objects)

■ Nested tables

■ VARRAYs

■ BLOBs, CLOBs, NCLOBs, and BFILEs

■ XML generation.

■ Full support for advanced queuing. 

■ Support for publishing, detecting, and subscribing to database events.

■ Support for asynchronous processing of SQL statements and PL/SQL blocks.

■ Easy to use interface for describing schema objects.

■ The Oracle code wizard for stored procedures, which automatically generates 
OO4O code to execute PL/SQL or Java stored procedures.

■ Thread safety, allowing safe access to automation objects in multithreaded 
environments.

See Also: "Introduction to Automation Objects" on page 8-1



Oracle Data Control

1-4 Oracle Objects for OLE Developer's Guide

Oracle Data Control 
Oracle Data Control is an ActiveX control that is designed to simplify the exchange of 
data among an Oracle database and visual controls such as edit, text, list, and grid 
controls in Visual Basic and other development tools that support custom controls.

A data control enables you to perform most data access operations without writing 
any code. To create a dynaset with a data control, set the Connect, DatabaseName, 
and RecordSource properties, and execute the Refresh command. 

A data control enables you to bind it to other controls that display a field, a record, or 
multiple records of the underlying dynaset. When record movement occurs, data in 
bound controls stay synchronized with the current record of the dynaset. If a user 
changes data in a control that is bound to a data control, the changes are automatically 
reflected in the underlying dynaset and database.

The Oracle Data Control is compatible with the Microsoft data control included with 
Visual Basic. If you are familiar with the Visual Basic data control, learning to use 
Oracle Data Control is quick and easy. Communication between data-aware controls 
and a Data Control is governed by a protocol specified by Microsoft. 

Oracle Objects for OLE C++ Class Library 
The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that 
provide programmatic access to the OO4O Automation server. Although the class 
library is implemented using OLE Automation, neither the OLE development kit nor 
any OLE development knowledge is necessary to use it. This library helps C++ 
developers avoid writing COM client code to access the OO4O interfaces.

In addition to the object classes, the class library provides a bound class, which allows 
controls such as text and list boxes to be linked directly to a field of a dynaset (columns 
of a table in the database). The bound class supports late, run-time binding, as is 
available in Visual Basic. The Oracle Objects for OLE C++ Class Library is supported 
for Microsoft Visual C++ and the Microsoft Foundation Classes for the bound class.

See Also:

■ Chapter 9, "Server Objects"

■ Chapter 11, "Server Properties"

■ Chapter 10, "Server Methods"

■ Chapter 4, "Advanced OO4O Features"

See Also:

■ "Setting Oracle Data Control Properties with the Properties 
Window" on page 2-9

■ "Setting Oracle Data Control Properties Programmatically" on 
page 2-11

■ "Data Control Events" on page 12-1

See Also: Oracle Objects for OLE C++ Class Library Developer's 
Guide available as online help



Required Setups

Introducing Oracle Objects for OLE 1-5

Required Setups
This section discusses the required setups for using Oracle Objects for OLE.

Installation
Oracle Objects for OLE can be installed in multiple Oracle homes, starting with Oracle 
Database 10g. However, being a COM component, only one instance can be active on 
the computer. This means that the current (latest) installation renders the previous one 
inactive. You can switch Oracle homes by using the Oracle installer.

System Requirements 
The following system requirements are necessary to install Oracle Objects for OLE:

■ Windows Operating System:

– 32-bit: Windows 7 (Professional, Enterprise, and Ultimate Editions), Windows 
Vista (Business, Enterprise, and Ultimate Editions), Windows Server 2008 
(Standard, Enterprise, Datacenter, Web, and Foundation Editions), Windows 
Server 2003 R2 (all editions), Windows Server 2003 (all editions), or Windows 
XP Professional Edition.

Oracle supports 32-bit Oracle Objects for OLE on x86, AMD64, and Intel 
EM64T processors on these operating systems.

■ A local or remote Oracle database (Oracle9i Release 2 or higher) 

■ Oracle Client. Oracle Universal Installer ensures that the RSFs are installed as part 
of the OO4O installation. 

■ The OO4O automation server requires an application that supports COM 
Automation such as: 

■ Microsoft Visual Basic 

■ Microsoft Excel 

■ Microsoft Access 

■ Microsoft Internet Information Server (IIS)

■ Borland Delphi 

Other Requirements 
The following other requirements may be necessary:

■ The Oracle Data Control requires Visual Basic. 

■ The Oracle Objects for OLE C++ Class Library requires Microsoft Visual C++ 
Version 6.0 or later. 

■ The OO4O Code Wizard requires Visual Basic 6. Visual Basic 6 must be installed 
before installing the Code Wizard. 

■ The Oracle In-Process Server Type library (oipVER.tlb) must be referenced 
when an OO4O Visual Basic project is developed.

To do this, select References from the Project menu (VB 5.0/6.0) and check the box 
next to the Oracle In-Process Server 5.0 Type Library, which should be pointing to 
the ORACLE_BASE\ORACLE_HOME\bin\oipVER.tlb file. See "Using Oracle 
Objects for OLE Automation with Visual Basic" on page 2-2 for detailed 
information.



Oracle Objects for OLE File Locations

1-6 Oracle Objects for OLE Developer's Guide

Oracle Objects for OLE File Locations
As part of the OO4O installation, the following directories are created and contain the 
corresponding files: 

■ ORACLE_BASE\ORACLE_HOME\OO4O - SQL scripts and constants file 

■ ORACLE_BASE\ORACLE_HOME\OO4O\CPP - Libraries, include files, DLLs, and 
source for the class library 

■ ORACLE_BASE\ORACLE_HOME\OO4O\CPP\MFC - Libraries, include files, and 
source for the MFC Bound Class Library

■ ORACLE_BASE\ORACLE_HOME\OO4O\EXCEL\SAMPLES - Excel samples 

■  ORACLE_BASE\ORACLE_HOMEOO4O\VB\SAMPLES - Visual Basic samples 

■ ORACLE_BASE\ORACLE_HOME\OO4O\VB\SAMPLES\QT - Visual Basic Quick Tour 
guide 

■ ORACLE_BASE\ORACLE_HOME\OO4O\IIS\SAMPLES - IIS samples

■ ORACLE_BASE\ORACLE_HOME\OO4O\codewiz - OO4O Code Wizard samples

Component Certifications
Find the latest certification information at My Oracle Support (formerly 
OracleMetaLink): 

http://metalink.oracle.com/

You must register online before using My Oracle Support. After logging into My 
Oracle Support, select Product Lifecycle from the left column. From the Products 
Lifecycle page, click Certifications. Other Product Lifecycle options include Product 
Availability, Desupport Notices, and Alerts.

Oracle Objects for OLE Redistributable Files
This section discusses files that can be redistributed or updated on a computer that 
belongs to an end user or a developer.

If you cannot guarantee that your end users have the current release of Oracle Objects 
for OLE installed on their computers, you need to redistribute specific files that are 
part of Oracle Objects for OLE along with your OO4O application. A typical scenario 
might be if OO4O is installed as a patch without use of Oracle Universal Installer. 

Redistributable File Locations
Table 1–1 lists the Redistributable file locations with comments and further actions that 
are needed.

See Also: "Oracle Objects for OLE Redistributable Files" on 
page 1-6 and "Troubleshooting" on page 5-14 for further 
information on Oracle Objects for OLE requirements



Oracle Objects for OLE Redistributable Files

Introducing Oracle Objects for OLE 1-7

Additionally, ensure that the system requirements described in "Overview of Oracle 
Objects for OLE" on page 1-1 are met. 

You must also distribute the files from the following list that correspond to the 
development software you used to build your application: 

■ oraclm32.dll (for Microsoft Visual C++) 

■ oradc.ocx

Updating Files and Registrations 
The oo4oparm.reg file is provided to register OO4O configuration information. 
Review this file and edit it as necessary to reflect the correct ORACLE_HOME location 
and HOMEID on your computer. To register oipVER.dll and enter the OO4O 
configuration information for oo4oparm.reg in the registry, execute the following 
from a command prompt: 

drive:\path> regsvr32.exe oipVER.dll 

drive:\path> oo4oparm.reg 

The message file oiplang.msb should also be provided and copied to the ORACLE_
BASE\ORACLE_HOME\oo4o\mesg directory. The message file is specific to a 
language. For example, oipus.msb is the English version and oipja.msb is the 
Japanese version. 

Table 1–1 Redistributable File Locations

Files Place in Directory Further Actions Comments

oipVER.dll ORACLE_BASE\           
ORACLE_HOME\bin

Execute the following from a 
command prompt:

drive:\path>

regsvr32.exe                               
oipVER.dll

None.

oipVER.tlb ORACLE_BASE\           
ORACLE_HOME\bin

None. None.

oraansiVER.dll ORACLE_BASE\           
ORACLE_HOME\bin 

None. Change VER to the current 
version.

oo4oparm.reg ORACLE_BASE\           
ORACLE_HOME\oo4o

Edit for the correct ORACLE_
HOME location and HOMEID on 
your computer. Execute the 
following from a  command                               
prompt: drive:\path>

oo4oparm.reg

File provided to register OO4O 
configuration information. 

oiplang.msb ORACLE_BASE\           
ORACLE_HOME 
\oo4o\mesg

None. This message file is  
language-specific. oipus.msb  
is the English version, and 
oipja.msb is the Japanese 
version.

oraclm32.dll

 (for Microsoft

 VC++) 

 or 

oradc.ocx

ORACLE_BASE\           
ORACLE_HOME\bin

For oradc.ocx, execute: 

                               
regsvr32.exe                               
oradc.ocx drive:\path>

Distribute the files that 
correspond to the development 
software used in your 
application.



Oracle Objects for OLE Redistributable Files

1-8 Oracle Objects for OLE Developer's Guide

Note: Oracle Data Control (oradc.ocx) must be registered to 
function. The OLE Control Extension (OCX) can be registered by 
executing the following at the command prompt:

drive:\path> regsvr32.exe oradc.ocx

See Also: "Oracle Data Control" on page 1-4



2

Using Oracle Objects for OLE with Automation Clients 2-1

2Using Oracle Objects for OLE with
Automation Clients

This chapter describes the use of automation clients to access Oracle data.

This chapter contains these topics: 

■ Using Automation Clients Overview

■ Demonstration Schema and Code Examples

■ Using Oracle Objects for OLE Automation with Visual Basic

■ Using OO4O Automation with Active Server Pages (ASP)

■ Using Oracle Objects for OLE Automation with Excel

■ Using Microsoft C++

■ Using Oracle Data Control with Visual Basic

■ Using the Oracle Data Control with MS Visual C++

Using Automation Clients Overview
Oracle Objects for OLE (OO4O) is designed to provide quick and efficient access to the 
data in an Oracle database using various programming or scripting languages. 

OO4O can be easily used with Visual Basic, Excel, Active Server Pages, Internet 
Information Server (IIS), and other development tools.

Oracle Data Control with Visual Basic allows another method of accessing Oracle data.

Examples are provided for specific methods and properties in this developer's guide. 
Additionally, example programs are installed with Oracle Objects for OLE and are 
located in the ORACLE_BASE\ORACLE_HOME\oo4o\ directory under VB, EXCEL, IIS, 
CPP, and so on. 

A Quick Tour of OO4O with Visual Basic is also provided. 

Demonstration Schema and Code Examples
The code examples included in this developer's guide and the example applications 
shipped with Oracle Objects for OLE are designed to work with a demonstration 
schema (database tables and other objects) and a demonstration user and password, 
scott/tiger. Code examples are located in the ORACLE_BASE\ORACLE_
HOME\oo4o directory.

See Also: Chapter 6, "Quick Tour with Visual Basic"



Using Oracle Objects for OLE Automation with Visual Basic

2-2 Oracle Objects for OLE Developer's Guide

Demonstration Schema Creation 
You can create the OO4O demonstration schema with the demobld7.sql script 
located in the ORACLE_BASE\ORACLE_HOME\oo4o directory. You can drop the 
demonstration schema with the demodrp7.sql script. 

Demonstration Schema
The demonstration schema includes the following references:

■ Demonstration tables EMP and DEPT.

■ The user scott with password tiger (scott/tiger).

■ The network alias, ExampleDb.

Refer to Oracle Net Services Administrator's Guide for assistance in setting up the 
network service (database) alias and the tnsnames.ora file. 

In many of the examples, you can access a local database using " " (a null string) 
for the network alias. 

Other Schemas
Occasionally other schemas are required to run examples. The introductions to the 
examples contain names and locations of the schemas (in the appendix).

Related Files 
The ORACLE_BASE\ORACLE_HOME\oo4o directory contains the following items: 

■ OO4O example programs.

Subdirectories contain both C++ and Visual Basic examples.

■ The oraexamp.sql script, used to create stored procedures. Additional scripts, 
such as multicur.sql and empcur.sql, are provided to set up other example 
programs.

■ Oracle Objects for OLE global constant file, oraconst.txt, which contains 
constant values used for option flags and property values. This file is usually not 
needed as these constants are also included with the Oracle In-Process Server type 
library.

Using Oracle Objects for OLE Automation with Visual Basic 
This example contains code fragments that demonstrate how to create all objects 
required by a dynaset and then create the dynaset itself.

1. Start Visual Basic and create a new project. From the Project menu, select 
References and check InProcServer 5.0 Type Library. 

See Also: "Additional Schemas" on page A-2



Using Oracle Objects for OLE Automation with Visual Basic

Using Oracle Objects for OLE with Automation Clients 2-3

2. Start Visual Basic and create a new project. Then, add the following code to the 
Declarations section of a form:

... 
' Declare variables 
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim OraFields As OraFields

3. Add the following code to the load procedure associated with the form to display 
the Oracle data:

' Create the OraSession Object. The argument to CreateObject is the 
' name by which the OraSession object is known to the OLE system. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
' Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
 
' Create the OraDynaset Object. 
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&) 
 
' You can now display or manipulate the data in the dynaset. For example: 
Set OraFields = OraDynaset.fields 
OraDynaset.movefirst 
Do While Not OraDynaset.EOF 
MsgBox OraFields("ename").Value 
OraDynaset.movenext 
Loop 
End Sub 

4. Run the form to view the results.



Using OO4O Automation with Active Server Pages (ASP)

2-4 Oracle Objects for OLE Developer's Guide

Using OO4O Automation with Active Server Pages (ASP)
This example uses Active Server Pages (ASP) in a Microsoft Internet Information 
Server (IIS) to demonstrate the connection pooling feature of Oracle Objects for OLE. 
The sample code executes a SQL SELECT query and returns the result as an HTML 
table. The database connection used in this script is obtained from a pool that is 
created when the global.asa file is executed. 

To use Oracle Objects for OLE with OLE Automation and IIS, you need to install IIS 
3.0 or later, including all ASP extensions. On the computer where IIS is running, an 
Oracle database must also be accessible. 

1. Start SQL*Plus and log in to the Oracle database as scott/tiger.

Create the following PL/SQL procedures:

-- creates PL/SQL package to be used in ASP demos
create or replace package ASP_demo as 
    --cursor c1 is select * from emp; 
    type empCur is ref cursor; 
PROCEDURE GetCursor(p_cursor1 in out empCur, indeptno IN NUMBER, 
                  p_errorcode OUT NUMBER); 
END ASP_demo;
/

Create or replace the ASP_demo package body as follows: 

PROCEDURE GetCursor(p_cursor1 in out empCur, indeptno IN NUMBER, 
                 p_errorcode OUT NUMBER) is 
BEGIN 
    p_errorcode:= 0; 
    open p_cursor1 for select * from emp where deptno = indeptno; 
EXCEPTION 
    When others then 
    p_errorcode:= SQLCODE; 
END GetCursor; 
...
END ASP_demo; 
/

See Also:

■ "Using Oracle Objects for OLE with Automation Clients" on 
page 6-1 for more information about using OO4O with Visual 
Basic

■ OraClient Object on page 9-18

■ OraDatabase Object on page 9-28

■ OraDynaset Object on page 9-30

■ OraField Object on page 9-33

■ OraParameter Object on page 9-50

■ OraSession Object on page 9-58

Note: The sample code for this example is available in the 
ORACLE_BASE\ORACLE_
HOME\oo4o\iis\samples\asp\connpool directory.



Using OO4O Automation with Active Server Pages (ASP)

Using Oracle Objects for OLE with Automation Clients 2-5

 
2. Create the Active Server Pages (ASP) sample code. The OO4O related code is in 

bold.

'GLOBAL.ASA 

<OBJECT RUNAT=Server SCOPE=Application ID=OraSession 
              PROGID="OracleInProcServer.XOraSession"></OBJECT> 
<SCRIPT LANGUAGE=VBScript RUNAT=Server> 
Sub Application_OnStart 
 
'Get an instance of the Connection Pooling object and 
'create a pool of OraDatabase 
OraSession.CreateDatabasePool 1,40,200,"exampledb", "scott/tiger",  0 
End Sub 
 
'OO4ODEMO.ASP 

<html> 
<head> 
<title>Oracle Objects For OLE (OO4O) </title> 
</head> 
<body BGCOLOR="#FFFFFF"> 
<font FACE="ARIAL,HELVETICA"> 
<h2 align="center">Oracle Objects For OLE (OO4O) </h2> 
<form ACTION="OO4ODEMO.asp" METHOD="POST"> 
<% 
SqlQuery = Request.Form("sqlquery") 
%> 
<p>This sample executes a SQL SELECT query and returns the result as an HTML 
table. The database connection used in this script is obtained from a pool that 
is created when the <strong>global.asa</strong> is executed. </p> 
<p>SQL Select Query: <input SIZE="48" NAME="sqlquery"> </p> 
<p><input TYPE="SUBMIT"> <input TYPE="RESET"> <input LANGUAGE="VBScript" 
TYPE="button" VALUE="Show ASP Source" ONCLICK="Window.location.href = 
&quot;oo4oasp.htm&quot;" 
 
NAME="ShowSrc"></p> 
</form> 
<% 
If SqlQuery = "" Then 
%> 
<% Else %> 
<table BORDER="1"> 
<% 
Set OraDatabase = OraSession.GetDatabaseFromPool(10) 
Set OraDynaset = OraDatabase.CreateDynaset(SqlQuery,0) 
Set Columns = OraDynaset.Fields 
%> 
<tr> 
<td><table BORDER="1"> 
<tr> 
<% For i = 0 to Columns.Count - 1 %> 
<td><b><% = Columns(i).Name %></b></td> 
<% Next %> 
</tr> 
<% while NOT OraDynaset.EOF %> 
<tr> 
<% For col = 0 to Columns.Count - 1 %> 
<td><% = Columns(col) %> 
</td> 



Using Oracle Objects for OLE Automation with Excel

2-6 Oracle Objects for OLE Developer's Guide

<% Next %> 
</tr> 
<% OraDynaset.MoveNext %> 
<% WEnd %> 
</table> 
 
<p></font><%End If%> </p> 
<hr> 
</td> 
</tr> 
</table> 
</body> 
</html>
 

3. Create a virtual directory from Microsoft Internet Service Manager with read and 
execute access, and place all .asp and .asa files in that directory.

4. Create an HTML page from which to launch the oo4odemo.asp file. Add a link 
in the page as follows:

<a href="/<your_path>/OO4ODEMO.ASP">This link launches the demo!</a>

5. Load the page in a web browser and click the link to the demonstration. 

6. Enter a query, such as 'SELECT * FROM EMP', in the SQL SELECT Query field, 
and select the Submit Query button. Do not include a semicolon (;) at the end of 
the query.

 

***********************************************************************************************

Using Oracle Objects for OLE Automation with Excel 
This sample shows how to insert Oracle data into an Excel worksheet.

Note: The sample code for this example is available in the 
ORACLE_BASE\ORACLE_HOME\oo4o\excel\samples\ 
directory.



Using Oracle Objects for OLE Automation with Excel

Using Oracle Objects for OLE with Automation Clients 2-7

To use OLE Automation with Microsoft Excel to insert Oracle data into a worksheet, 
perform the following steps:

1. Start Excel and create a new worksheet. 

2. Use the Macro options in the Tools menu to create and edit new macros for 
manipulating the Oracle data.

3. Enter Visual Basic code for macros to create and access an Oracle dynaset, such as 
the following EmpData() and ClearData() procedures (macros): 

Sub EmpData() 
 
'Declare variables 
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim EmpDynaset As OraDynaset 
Dim flds() As OraField 
Dim fldcount As Integer 
  Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
  Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger", 0&)  
  Set EmpDynaset = OraDatabase.CreateDynaset("select * from emp", 0&) 
  Range("A1:H15").Select 
  Selection.ClearContents 
 
   'Declare and create an object for each column. 
   'This will reduce objects references and speed up your application.  
fldcount = EmpDynaset.Fields.Count 
ReDim flds(0 To fldcount - 1) 
For Colnum = 0 To fldcount - 1 
  Set flds(Colnum) = EmpDynaset.Fields(Colnum) 
Next 
 
'Insert Column Headings 
For Colnum = 0 To EmpDynaset.Fields.Count - 1 
  ActiveSheet.Cells(1, Colnum + 1) = flds(Colnum).Name 
Next 
 
'Display Data 
For Rownum = 2 To EmpDynaset.RecordCount + 1 
  For Colnum = 0 To fldcount - 1 
    ActiveSheet.Cells(Rownum, Colnum + 1) = flds(Colnum).Value 



Using Microsoft C++

2-8 Oracle Objects for OLE Developer's Guide

  Next 
  EmpDynaset.MoveNext 
Next 

Range("A1:A1").Select
 
End Sub 

Sub ClearData() 
  Range("A1:H15").Select 
  Selection.ClearContents 
  Range("A1:A1").Select 
End Sub 

4. Assign the procedures (macros) that were created, such as EmpData() and 
ClearData(), to command buttons in the worksheet for easy access. When you 
select the buttons, you can clear and refresh the data in the worksheet. In the 
following screenshot, ClearData() is assigned to the Clear button and 
EmpData() is assigned to the Refresh button. 

Using Microsoft C++  
For details about Oracle Objects for OLE with Visual C++, see  Oracle Objects for OLE 
C++ Class Library Developer's Guide, available as online help.

Using Oracle Data Control with Visual Basic
Oracle Data Control, when refreshed, automatically creates a client (if needed), 
session, database, and dynaset. For a basic application, little or no code is required.

This section shows two ways to set the properties of Oracle Data Control: 

■ Using the Visual Basic Properties window 

■ Programming the properties



Using Oracle Data Control with Visual Basic

Using Oracle Objects for OLE with Automation Clients 2-9

Setting Oracle Data Control Properties with the Properties Window 
1. Start Visual Basic and create a new project. 

2. In the Components option of the Project menu, add Oracle Data Control to the 
project. 

The Oracle Data Control is added to your Visual Basic tool palette and looks like 
this:

3. To add Oracle Data Control to a project, drag and drop the control onto a form. 
Resize and position the control.

4. Change the name of the control to OraDataControl. Set up the Connect, 
DatabaseName, and RecordSource properties as follows to access the Oracle 
database:



Using Oracle Data Control with Visual Basic

2-10 Oracle Objects for OLE Developer's Guide

5. When Oracle Data Control is set up, you can drag and drop a Visual Basic control 
onto the same form and access the data in the control. Set the Data properties to 
access the data field and source that you want. The following figure shows a 
TextBox control that sets up display of the employee numbers.

6. When the project is run, the data identified by the RecordSource property is 
displayed using Oracle Data Control. 



Using Oracle Data Control with Visual Basic

Using Oracle Objects for OLE with Automation Clients 2-11

You can also use Microsoft Grid Control to display all the data in the table. You 
need to add the grid control with the Components option of the Project menu.

Setting Oracle Data Control Properties Programmatically 
The following code fragment demonstrates how to programmatically set the 
properties of Oracle Data Control required to create a dynaset. These are the same 
properties that you can set with the Properties window in Visual Basic. 

1. Create a new project, and then in the Components option of the Project menu, add 
Oracle Data Control to the project. 

2. Drag and drop Oracle Data Control onto a form. Change the name of the control 
to OraDataControl. 

3. After you have inserted Oracle Data Control onto a form, add the following code 
to the load procedure associated with the form: 

... 
 
'Set the username and password. 
OraDataControl.Connect = "scott/tiger" 
 
'Set the database name. 
OraDataControl.DatabaseName = "ExampleDb" 
 
'Set the record source. 
OraDataControl.RecordSource = "select * from emp" 
 
'Refresh the data control. 
OraDataControl.Refresh 
... 

You now have a valid session, database, and dynaset that can be referenced as 
follows:

Object Reference

orasession oradatacontrol.oradatabase.orasession

oradatabase oradatacontrol.oradatabase

oradynaset oradatacontrol.recordset



Using the Oracle Data Control with MS Visual C++

2-12 Oracle Objects for OLE Developer's Guide

4. You can access the data in the RecordSource property using Visual Basic 
controls, such as the TextBox, as shown in the previous example. 

Using the Oracle Data Control with MS Visual C++ 
This example shows how to create a basic Win32 Application with Oracle Data 
Control using MS Visual C++. This example assumes that both the Oracle data and DB 
Grid controls were registered on the system.

1. Start the Microsoft Visual C++ program. 

2. From the File Menu, select New. 

3. In the Projects tab of the New Window, select MFC AppWizard.exe. Enter a 
project name, such as OO4O, and determine the location of the project. Click OK. 

4. In Step 1 of the MFC AppWizard, select Dialog based application, then click 
Next.

5. In Step 2 of the wizard, make sure the ActiveX Controls box is checked; accept the 
defaults; and enter a title for the dialog box. Click Next.

6. In Step 3 of the wizard, accept the defaults. Click Next.

7. In Step 4, click Finish. At the New Project Information screen, click OK. 

8. In the Project Workspace dialog box, select the ResourceView tab. Expand the 
Resources folder, then expand the Dialog folder. 

9. Double-click the main project dialog box to edit the dialog box. 

Note: If you used OO4O as the project name, it is named IDD_OO4O_DIALOG.

10. Delete the default controls that are on the dialog box. Resize the dialog box to 
make it larger. 

11. With the dialog box selected, click the right mouse button to display the menu. 
Select Properties from the menu. In the General tab of the Properties window, 
change the caption to Oracle Data Control Example. Close the Properties 
window. 

12. With the dialog box selected, click the right mouse button to display the menu. 
Select Insert ActiveX Control... from the menu. Select ORADC Control in the 
window and then click OK. 



Using the Oracle Data Control with MS Visual C++

Using Oracle Objects for OLE with Automation Clients 2-13

13. Position the ORADC Control at the bottom of the dialog box. With the data 
control selected, click the right mouse button to display the menu. Select 
Properties from the menu. 

14. In the General tab of the Properties window, change the ID to IDC_ 
ORADATACONTROL. Deselect the check mark for Visible so that the control is 
hidden when the application is run. 

15. Display the All tab of the Properties window and set the following: 

Connect: scott/tiger 
DatabaseName: exampledb 
RecordSource: select * from emp 

16. With the dialog box selected, click the right mouse button to display the menu. 
Select the Insert ActiveX control from the menu. Locate the DBGrid Control and 
click OK. 

17. Position the DBGrid Control at the top of the dialog box and resize it. Display the 
properties for the control. In the All tab of the Properties window, set the 
DataSource property to Oracle Data Control (IDC_ORADATACONTROL). Accept 
the defaults for the other properties. These can be changed later. 

18. From the File Menu, select Save All. 

19. Build and Execute the project. 

20. The DBGrid Control displays the records from the emp table as in the following 
illustration:



Using the Oracle Data Control with MS Visual C++

2-14 Oracle Objects for OLE Developer's Guide



3

Basic Features 3-1

3Basic Features

This chapter describes basic features of Oracle Objects for OLE.

This chapter contains these topics: 

■ Overview of Client Applications

■ Accessing the Oracle Objects for OLE Automation Server

■ Connecting to Oracle Database

■ Executing Commands

■ Thread Safety

■ Using the Connection Pool Management Facility

■ Detection of Lost Connections

■ PL/SQL Support

■ Transaction Control

■ Microsoft Transaction Server Support

■ Asynchronous Processing

Overview of Client Applications
Oracle Objects for OLE enables client applications to connect to Oracle databases, 
execute commands, and access and manipulate the results returned. While some 
flexibility exists in the order in which specific tasks can be performed, every 
application using OO4O Automation objects performs the following basic steps: 

■ Accessing the Oracle Objects for OLE Automation Server

■ Connecting to Oracle Database

■ Executing Commands

■ Disconnect from the servers and free the OO4O objects used

Accessing the Oracle Objects for OLE Automation Server
To connect to an Oracle database with the OO4O Automation Server, you must first 
create an instance of the server. In Visual Basic (VB), this is usually done by calling the 
CreateObject method, although the NEW keyword can also be used. 



Connecting to Oracle Database

3-2 Oracle Objects for OLE Developer's Guide

You can use the Visual Basic CreateObject method with either of the following two 
OO4O server objects. The interfaces of these objects can provide access to OO4O and 
enable a connection to Oracle Database. 

■ OraSession

Highest level object for an application. It manages collections of OraDatabase, 
OraConnection, and OraDynaset objects.

■ OraServer

Represents a physical connection to a database instance and allows for connection 
multiplexing

The CreateObject method uses the ID of the component and object as arguments. 

Obtaining an OraSession Object
The following script demonstrates how to obtain an OraSession object in Visual 
Basic. OO4OSession is the object variable that holds an instance of the OraSession 
object. 

Dim OO4OSession as Object 
Set OO4OSession = CreateObject(“OracleInProcServer.XOraSession") 

or 

Dim OO4OSession as OraSession 
Set OO4OSession = New OraSessionClass 

or 

Dim OO4OSession as New OraSessionClass 

The following example demonstrates how to obtain an OraSession object in IIS 
Active Server Pages. 

<OBJECT RUNAT=Server SCOPE=APPLICATION ID=OO4OSession
                PROGID="OracleInProcServer.XOraSession"> 
</OBJECT> 

OracleInProcServer.XOraSession is the version independent program ID for 
OO4O that the Oracle client installation program registers in the Windows registry. It 
is the symbolic name for a globally unique identifier (CLSID) that identifies the OO4O 
component. 

Obtaining an OraServer Object
You can also use the OraServer object interface for accessing the OO4O Automation 
Server. 

Dim OO4OServer as Object 
Set OO4OServer = CreateObject("OracleInProcServer.XOraServer") 

Now you can connect to Oracle Database.

Connecting to Oracle Database
Once you have obtained an interface, you can use it to establish a user session in an 
Oracle database by invoking the OpenDatabase method. 

See Also: "Connecting to Oracle Database" on page 3-2



Executing Commands

Basic Features 3-3

Set EmpDb= OO4OSession.OpenDatabase("ExampleDb", "Scott/Tiger", 0) 

or 

Set EmpDb= OO4OServer.OpenDatabase("Scott/Tiger") 

The variable EmpDb represents a user session. It holds an OraDatabase interface and 
can be used to send commands to Oracle Database using ExampleDb for the network 
connection alias and scott/tiger for the user name and password. 

Using OraServer for Connection Multiplexing 
The OraServer interface allows multiple user sessions to share a physical network 
connection to the database. This reduces resource usage on the network and the 
database, and allows for better server scalability. However, execution of commands by 
multiple user sessions is serialized on the connection. Therefore, this feature is not 
recommended for use in multithreaded applications in which parallel command 
execution is needed for performance.

The following code example shows how to use the OraServer interface to establish 
two user sessions:

Set OO4OServer = CreateObject("OracleInProcServer.XOraServer") 
OO4OServer.Open("ExampleDb") 
Set EmpDb1 = OO4OServer.OpenDatabase("Scott/Tiger") 
Set EmpDb2 = OO4OServer.OpenDatabase("Scott/Tiger") 

You can also obtain user sessions from a previously created pool of objects.

Executing Commands
Commands that can be sent to Oracle databases using OO4O Automation objects are 
divided into the following categories:

■ "Queries" on page 3-3

■ "Data Manipulation Language Statements" on page 3-5

Queries
Queries are statements that retrieve data from a database. A query can return zero, 
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in the 
following example: 

SELECT ename, empno FROM emp 

In OO4O, SELECT statements such as this are used with the CreateDynaset method 
of the OraDatabase interface to execute queries. This method returns an 
OraDynaset object that is then used to access and manipulate the set of rows 
returned. An OraDynaset object encapsulates the functions of a client-side scrollable 
(forward and backward) cursor that allows browsing the set of rows returned by the 
query it executes. 

See Also: OpenDatabase Method on page 10-212

See Also: "Using the Connection Pool Management Facility" on 
page 3-8



Executing Commands

3-4 Oracle Objects for OLE Developer's Guide

The following code example shows how to connect to the ExampleDb database, 
execute a query, move through the result set of rows, and displays the column values 
of each row in a simple message box. 

Set OO4OSession = CreateObject(“OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "Scott/Tiger", 0 ) 
 
' SELECT query described above used in next line 
Set Employees = EmpDb.CreateDynaset("SELECT ename, empno FROM" & _ 
          "emp",ORADYN_NOCACHE) 
While NOT Employees.EOF 
  MsgBox "Name: " & Employees("ENAME").value & "Employee #: " & _
          Employees("EMPNO").value 
Employees.MoveNext 
Wend 

In the previous example, Employees("ENAME") and Employees("EMPNO") return 
values of the ENAME and the EMPNO columns from the current row in the result set, 
respectively. An alternative method of accessing the column values is to use the 
positions of the columns, Employees(0) for the ENAME column and Employee(1) 
for EMPNO. This method obtains the column value faster than referencing a column by 
its name. 

The Employees.MoveNext statement in the example sets the current row of the 
result set to the next row. The EOF property of the OraDynaset is set to True if an 
attempt is made to move past the last row in the result set. 

The MoveNext method is one navigational method in the OraDynaset interface. 
Other methods include MoveFirst, MoveLast, MoveNext, MovePrevious, 
MoveNextn, MovePreviousn, MoveRel, and MoveTo. 

An OraDynaset object also provides methods to update and delete rows retrieved 
from base tables or views that can be updated. In addition, it provides a way to insert 
new rows. See "OraDynaset Object" on page 9-30. 

Queries can also require the program to supply data to the database using input (bind) 
variables, as in the following example: 

SELECT name, empno 
        FROM employees 
        WHERE ename = :ENAME

In the SQL statement, :ENAME is a placeholder for a value that is supplied by the 
application. 

Note: Caching result sets on the client's local disk can be disabled if 
backward scrollability is not a requirement. This is strongly 
recommended and can provide significant performance 
improvements. Passing the ORADYN_NOCACHE option in the 
CreateDynaset method disables caching. This constant is defined in 
the oraconst.txt file and can be found in the root directory where 
OO4O is installed, ORACLE_BASE\ORACLE_HOME\OO4O. 

See Also:

■ OraDynaset Object on page 9-30

■ CreateDynaset Method on page 10-85



Executing Commands

Basic Features 3-5

In OO4O, the OraParameter object is used to supply data values for placeholders.

To define a parameter, use the OraParameters collection object. This object is 
obtained by referencing the Parameters property of an OraDatabase interface. The 
OraParameters collection provides methods for adding, removing, and obtaining 
references to OraParameter objects. 

The following statement adds an input parameter, ORAPARM_INPUT, to the 
OraParameters collection contained in the EmpDb object. 

EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT 

ENAME is the name of the parameter and must be the same as the name of the 
placeholder in the SQL statement, :ENAME in the sample code. JONES is provided as 
the initial value, and ORAPARM_INPUT notifies OO4O that it is used as an INPUT 
parameter.

The following example creates an OraDynaset object that contains only one row for 
an employee whose name is 'JONES'. 

Set OO4OSession = CreateObject(“OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "Scott/Tiger", 0 ) 
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT 
Set Employees = EmpDb.CreateDynaset("SELECT ename, empno FROM emp" & _
           "WHERE ename = :ENAME",ORADYN_NOCACHE) 

While NOT Employees.EOF 
   MsgBox "Name: " & Employees("ename").value & "Employee #: " & _
            Employees("empno").value 
   Employees.MoveNext 
Wend 

Data Manipulation Language Statements
Data manipulation language (DML) statements can change data in the database tables. 
For example, DML statements are used to: 

■ Updating Database Records

■ Deleting Rows from a Table

■ Inserting New Rows into a Table

The OraDatabase interface in OO4O provides two methods for executing DML 
statements: ExecuteSQL and CreateSQL. The following discussion describes how 
these methods can be used to execute various types of DML statements.

See Also:

■ OraParameter Object on page 9-50

■ OraParameters Collection on page 9-68

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199

■ MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods 
on page 10-202

■ OraDatabase Object on page 9-28



Executing Commands

3-6 Oracle Objects for OLE Developer's Guide

Updating Database Records
The following example uses the ExecuteSQL method to execute an UPDATE 
statement. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT 
EmpDb.ExecuteSQL ("UPDATE emp SET sal = sal + 1000 WHERE ename = :ENAME") 

Another way to execute the UPDATE statement is to use the CreateSQL method: 

Set sqlStatement = EmpDb.CreateSQL("UPDATE emp SET sal = sal + 1000" & _ 
             "WHERE ename = :ENAME", 0&) 

Both the ExecuteSQL and CreateSQL methods execute the UPDATE statement 
provided. The difference is that the CreateSQL method returns a reference to an 
OraSQLStmt interface, in addition to executing the statement. This interface can later 
be used to execute the same query using the Refresh method. Because the query has 
already been parsed by the database, subsequent execution of the same query results 
in faster execution, especially if bind parameters are used. 

For example, to increase the salary of an employee named KING by 1000, change the 
value of the placeholder, and refresh the sqlStatement object as follows: 

EmpDb.Parameters("ENAME").Value = "KING" 
sqlStatement.Refresh 

For DML statements that are frequently executed, using parameters with OraSqlStmt 
objects is more efficient than using the ExecuteSql statement repeatedly. When the 
Refresh method of the OraSQLStmt is executed, the statement no longer needs to be 
parsed by the database. In application servers, such as Web servers, where the same 
queries are frequently executed with different parameter values, this can lead to 
significant savings in Oracle Database processing.

Deleting Rows from a Table
The following example uses the CreateSQL method to delete rows from the emp 
table. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
EmpDb.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT 
Set sqlStatement = EmpDb.CreateSQL ("DELETE from emp WHERE ename = :ENAME")

To delete another row from the emp table, the value of the parameter is changed, and 
the sqlStatement object is refreshed. 

EmpDb.Parameters("ENAME").Value = "KING" 

See Also:

■ ExecuteSQL Method on page 10-144

■ CreateSQL Method on page 10-111

See Also:

■ ExecuteSQL Method on page 10-144

■ CreateSQL Method on page 10-111

■ OraSQLStmt Object on page 9-60



Thread Safety

Basic Features 3-7

sqlStatement.Refresh 

Inserting New Rows into a Table
The following example adds a new row into the table. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
EmpDb.ExecuteSQL ("INSERT INTO emp (empno, ename, job, mgr, deptno)" & _ 
           "VALUES (1233,'OERTEL', 'WRITER', 7839, 30) ") 

Inserting Multiple Rows Using Parameter Arrays 
You can use parameter arrays to fetch, update, insert, or delete multiple rows in a 
table. Using parameter arrays for manipulating multiple rows is more efficient than 
executing multiple statements that operate on individual rows. 

The following example demonstrates how the AddTable method of the 
OraDatabase interface is used to create parameter arrays. The arrays are then 
populated with values, and used as placeholders in the execution of an INSERT 
statement that inserts two rows into the emp table. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("Exampledb", "scott/tiger", 0) 
 
'Creates parameter arrays for the empno, ename, job, and salary columns 
EmpDb.Parameters.AddTable "EMPNO_ARRAY", ORAPARM_INPUT, ORATYPE_NUMBER, 2
EmpDb.Parameters.AddTable "ENAME_ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 10
EmpDb.Parameters.AddTable "JOB_ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 9
EmpDb.Parameters.AddTable "MGR_ARRAY", ORAPARM_INPUT, ORATYPE_NUMBER, 2
EmpDb.Parameters.AddTable "DEPT_ARRAY", ORAPARM_INPUT, ORATYPE_VARCHAR2, 2, 10
Set EmpnoArray = EmpDb.Parameters("EMPNO_ARRAY") 
Set EnameArray = EmpDb.Parameters("ENAME_ARRAY") 
Set JobArray = EmpDb.Parameters("JOB_ARRAY") 
Set MgrArray = EmpDb.Parameters("MGR_ARRAY") 
Set DeptArray = EmpDb.Parameters("DEPT_ARRAY") 
 
'Populate the arrays with values 
EmpnoArray(0) = 1234 
EnameArray(0) = "JORDAN" 
JobArray(0) = "SALESMAN" 
MgrArray(0) = 7839 
DeptArray(0) = 30 
EmpnoArray(1) = 1235 
EnameArray(1) = "YOUNG" 
JobArray(1) = "SALESMAN" 
MgrArray(1) = 7839 
DeptArray(1) = 30 
 
'Insert two rows 
EmpDb.ExecuteSQL ("INSERT INTO emp (empno, ename, job, mgr, deptno) VALUES" & _ 
          "(:EMPNO_ARRAY,:ENAME_ARRAY, :JOB_ARRAY,:MGR_ARRAY, :DEPT_ARRAY)") 

Thread Safety
OO4O is thread-safe and can be used effectively in multithreaded applications and 
environments such as the Microsoft Internet Information Server (IIS). OO4O supports 
both the free and apartment threading models in COM/DCOM.

See Also: AddTable Method on page 10-23



Using the Connection Pool Management Facility

3-8 Oracle Objects for OLE Developer's Guide

Access to OO4O object attributes is serialized when used with multiple threads of 
execution. To achieve maximum concurrency in query execution in a multithreaded 
application with OO4O, avoid sharing objects in multiple threads. 

Avoid using commit and rollback operations on a session object that is shared among 
multiple threads because all connections associated with that session are committed or 
rolled back. To perform commit and rollback operations on a session object, create a 
unique session object for each database object used.

Using the Connection Pool Management Facility 
The connection pool in OO4O is a pool of OraDatabase objects. An OO4O 
connection pool is a group of (possibly) already connected OraDatabase objects. For 
applications that require constant connections and disconnections to the database, 
such as ASP Web applications, using a connection pool results in enhanced 
performance.

Creating the Connection Pool
The connection pool is created by invoking the CreateDatabasePool method of the 
OraSession interface. An OraDatabase object represents a connection to an Oracle 
database and contains methods for executing SQL statements and PL/SQL blocks. 

Obtaining from and Returning Objects to the Pool
To retrieve an OraDatabase object from the pool, call the GetDatabaseFromPool 
method. This function returns a reference to an OraDatabase object. 

Destroying the Pool
The pool is implicitly destroyed if the parent session object that it belongs to is 
destroyed. It can also be destroyed at any time by invoking the 
DestroyDatabasePool method. 

Accessing the Pool attributes
The following are the database pool properties. These properties are read-only: 

■ DbPoolMaxSize - maximum pool size

■  DbPoolCurrentSize - current size of the pool 

■ DbPoolInitialSize - initial size of the pool 

Processing Transactions Using the Database from the Connection Pool
The following example shows the recommended way to process transactions:

set Odb = OraSession.GetDatabaseFromPool(0) 
Odb.Connection.BeginTrans 
… 
 
Odb.Connection.CommitTrans 

See Also: CreateDatabasePool Method on page 10-83

See Also: GetDatabaseFromPool Method on page 10-155

See Also: DestroyDatabasePool Method on page 10-128



PL/SQL Support

Basic Features 3-9

Detection of Lost Connections
OO4O, linked with clients from releases 8.1.6 or higher, supports detection of lost 
connections. 

Applications can verify the status of the database connection by invoking the 
ConnectionOK property of the OraDatabase object. The 
OraSession.GetDatabaseFromPool method now verifies the connection before 
returning the OraDatabase to the application. 

If the connection is lost, the GetDatabaseFromPool method drops the lost 
connection and fetches a new connection. 

Dim MyDatabase As OraDatabase 
Set MySession = CreateObject("OracleInProcServer.XOraSession") 
Set MyDatabase = MySession.OpenDatabase("ora90", "scott/tiger", 0&) 
 
' Other code 
...
' Check if the database connection has not timed out 
if MyDatabase.ConnectionOK 
  MsgBox " The database connection is valid" 
endif 

PL/SQL Support
PL/SQL is the Oracle procedural extension to the SQL language. PL/SQL processes 
complicated tasks that simple queries and SQL data manipulation language 
statements cannot perform. Without PL/SQL, Oracle Database would have to process 
SQL statements one at a time. Each SQL statement results in another call to the 
database and consequently higher performance overhead. In a networked 
environment, the overhead can be significant. Every time a SQL statement is issued, it 
must be sent over the network, creating more traffic. However, with PL/SQL, an entire 
block of statements can be sent to a database at one time. This can greatly reduce 
communication between an application and a database. 

PL/SQL allows a number of constructs to be grouped into a single block and executed 
as a unit. These include: 

■ One or more SQL statements 

■ Variable declarations 

■ Assignment statements 

■ Procedural control statements (IF...THEN...ELSE statements and loops) 

■ Exception handling statements

■ Calls to other Oracle stored procedures and stored functions 

■ Special PL/SQL features such as records, tables, and cursor FOR loops 

■ Cursor variables

See Also:

■ ConnectionOK Property on page 11-26

■ OraDatabase Object on page 9-28

■ GetDatabaseFromPool Method on page 10-155



PL/SQL Support

3-10 Oracle Objects for OLE Developer's Guide

PL/SQL Integration with Oracle Objects for OLE
Oracle Objects for OLE (OO4O) provides tight integration with PL/SQL stored 
procedures. OO4O supports PL/SQL stored procedures, PL/SQL tables, PL/SQL, 
cursors and so on. The PL/SQL bind variables are supported through the 
OraParameter Add method. 

The stored procedure block is executed either through the CreateSQL method or the 
ExecuteSQL method. 

Oracle Objects for OLE can return a cursor created in the stored procedure or 
anonymous PL/SQL block as a READONLY dynaset object.To do this, you must assign 
the cursor variable as an OraParameter object of type ORATYPE_CURSOR. 

After executing the stored procedure, the Value property of this OraParameter 
object returns a read-only dynaset object.

This dynaset object can be treated the same as other dynaset objects. 

Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL 
In OO4O, you can use the ExecuteSQL or CreateSQL methods of the OraDatabase 
object to execute PL/SQL blocks, as the following example shows: 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
 
'Add EMPNO as an Input parameter and set its initial value. 
EmpDb.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT 
EmpDb.Parameters("EMPNO").ServerType = ORATYPE_NUMBER 
 
'Add ENAME as an Output parameter and set its initial value. 
EmpDb.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT 
EmpDb.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2 
 
'Add SAL as an Output parameter 
EmpDb.Parameters.Add "SAL", 0, ORAPARM_OUTPUT 
EmpDb.Parameters("SAL").ServerType = ORATYPE_NUMBER 
 
'Add COMMISSION as an Output parameter and set its initial value. 
EmpDb.Parameters.Add "COMMISSION", 0, ORAPARM_OUTPUT 
EmpDb.Parameters("COMMISSION").ServerType = ORATYPE_NUMBER 
EmpDb.ExecuteSQL ("BEGIN SELECT ename, sal, comm INTO :ENAME, :SAL," & _ 
             ":COMMISSION FROM emp WHERE empno = :EMPNO; END;") 
 
'display the values of Ename, Sal, Commission parameters 
MsgBox "Name: " & EmpDb.Parameters("ENAME").Value 
MsgBox "Salary " & EmpDb.Parameters("SAL").Value 
MsgBox "Commission: " & EmpDb.Parameters("COMMISSION").Value 

See Also:

■ AddTable Method on page 10-23

■ Add Method on page 10-8

■ ExecuteSQL Method on page 10-144

■ CreateSQL Method on page 10-111

■ Value Property on page 11-173

■ OraParameter Object on page 9-50



PL/SQL Support

Basic Features 3-11

The following example executes a PL/SQL block that calls a stored procedure using 
the CreateSQL method in OO4O. The procedure takes a department number as input 
and returns the name and location of the department. 

This example is used for creating the stored procedure in the employee database. 

CREATE OR REPLACE PACKAGE Department as 
PROCEDURE GetDeptName (inDeptNo IN NUMBER, outDeptName OUT VARCHAR2, 
                   outDeptLoc OUT VARCHAR2); 
END Department;
/
 
CREATE OR REPLACE PACKAGE BODY Department as 
PROCEDURE GetDeptName(inDeptNo IN NUMBER, outDeptName OUT VARCHAR2, 
                 outDeptLoc OUT VARCHAR2) is 
BEGIN 
   SELECT dname, loc into outDeptName, outDeptLoc from DEPT 
      WHERE deptno = inDeptNo; 
   END; 
END Department;
/ 

The following example executes the previously created procedure to get the name and 
location of the department where deptno is 10. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
empDb.Parameters.Add "DEPTNO", 10, ORAPARM_INPUT 
empDb.Parameters("DEPTNO").ServerType = ORATYPE_NUMBER 
empDb.Parameters.Add "DNAME", 0, ORAPARM_OUTPUT 
empDb.Parameters("DNAME").ServerType = ORATYPE_VARCHAR2 
empDb.Parameters.Add "DLOC", 0, ORAPARM_OUTPUT 
empDb.Parameters("DLOC").ServerType = ORATYPE_VARCHAR2 
Set PlSqlStmt = empDb.CreateSQL("Begin Department.GetDeptname" & _ 
             "(:DEPTNO, :DNAME, :DLOC); end;", 0&) 
 
'Display Department name and location 
MsgBox empDb.Parameters("DNAME").Value & empDb.Parameters("DLOC").Value 

Returning PL/SQL Cursor Variables
PL/SQL cursor variables are mainly used for accessing one or more query result sets 
from PL/SQL blocks and stored procedures and functions. The OraParameter object 
in OO4O can be used to hold a PL/SQL cursor variable. 

The OraParameter object representing a cursor variable should be of type ORATYPE_
CURSOR, and can only be defined as an output variable. After the PL/SQL block is 
executed, the Value property of the OraParameter object contains a read-only 
OraDynaset object. This OraDynaset object can be used to scroll through the 
returned rows. 

In some cases, it is better to use the CreateSQL method for executing PL/SQL 
procedures than the ExecuteSQL method. The Refresh method on the OraSQLStmt 
object can result in modified PL/SQL cursors. If the CreateSQL method is used, these 

See Also:

■ ExecuteSQL Method on page 10-144

■ CreateSQL Method on page 10-111



PL/SQL Support

3-12 Oracle Objects for OLE Developer's Guide

modified cursors are automatically associated with the existing dynaset object, and no 
new dynaset object is created.

You cannot set the SQL property of the dynaset object; this raises an error. 

You should call the Remove method on the parameter object. This helps in cleaning the 
dynaset object and local temporary cache files.

The following example contains a stored procedure that gets the cursors for the emp 
and dept tables and a small application that executes the procedure.

Stored Procedure

CREATE PACKAGE EmpAndDept AS
   cursor emp is select * from emp;
   cursor dept is select * from dept;
   TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
   TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;
   PROCEDURE GetEmpAndDeptData (emp_cv OUT EmpCurTyp, 
                              dept_cv OUT DeptCurTyp);
END EmpAndDept;
/
 
 
CREATE PACKAGE BODY EmpAndDept AS
   PROCEDURE GetEmpAndDeptData (emp_cv OUT EmpCurTyp, 
                                dept_cv OUT DeptCurTyp) IS
       BEGIN 
         OPEN emp_cv FOR SELECT * FROM emp;
         OPEN dept_cv FOR SELECT * FROM dept; END GetEmpAndDeptData;
END EmpAndDept;
/

Application

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
empDb.Parameters.Add "EMPCUR", 0, ORAPARM_OUTPUT 
empDb.Parameters("EMPCUR").serverType = ORATYPE_CURSOR 
empDb.Parameters.Add "DEPTCUR", 0, ORAPARM_OUTPUT 
empDb.Parameters("DEPTCUR").serverType = ORATYPE_CURSOR 
Set PlSqlStmt = empDb.CreateSql("Begin EmpAndDept.GetEmpAndDeptData (:EMPCUR," & _
             ":DEPTCUR); end;", 0) 
Set EmpDynaset = empDb.Parameters("EmpCur").Value 
Set DeptDynaset = empDb.Parameters("DeptCur").Value 
MsgBox EmpDynaset.Fields("ENAME").Value 
MsgBox DeptDynaset.Fields("DNAME").Value 

See Also: "Executing PL/SQL Blocks Using ExecuteSQL and 
CreateSQL" on page 3-10

Note: PL/SQL stored procedures that contain cursors as table 
parameters are not supported.



PL/SQL Support

Basic Features 3-13

Returning PL/SQL Tables
PL/SQL tables are mainly used for accessing arrays of PL/SQL data. The 
OraParamArray object in OO4O can be used to hold a PL/SQL cursor variable. 

The OraParamArray object representing a table variable should be created first the 
using the AddTable method. Table values are accessed or set using the Get_Value 
and Put_Value methods of the OraParamArray object. 

The PL/SQL procedure GetEmpNamesInArray returns an array of ENAME values for 
array of EMPNOs. 

CREATE PACKAGE EmpNames AS 
    type NUMARRAY is table of NUMBER index by 
          BINARY_INTEGER; --Define EMPNOS array 
    type VCHAR2ARRAY is table of VARCHAR2(10) index by 
          BINARY_INTEGER; --Define ENAMES array 
    PROCEDURE GetEmpNamesInArray (ArraySize IN INTEGER, 
              inEmpnos IN NUMARRAY, outEmpNames OUT VCHAR2ARRAY); 
END EmpNames; 
/
 
 
CREATE PACKAGE BODY EmpNames AS 
    PROCEDURE GetEmpNamesInArray (ArraySize IN INTEGER, 
              inEmpnos IN NUMARRAY, outEmpNames OUT VCHAR2ARRAY) is 
    BEGIN 
    FOR I in 1..ArraySize loop 
        SELECT ENAME into outEmpNames(I) from EMP 
                       WHERE EMPNO = inEmpNos(I); 
    END LOOP; 
END; 
 
END EmpNames; 
/
 
The following example executes the previous procedure to get the ename table. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set Empdb = OO4OSession.OpenDatabase("Exampledb", "scott/tiger", 0) 
Empdb.Parameters.Add "ArraySize", 3, ORAPARM_INPUT 

See Also:

■ OraParameter Object on page 9-50

■ ServerType Property on page 11-138

■ Value Property on page 11-173

■ OraDynaset Object on page 9-30

■ OraSQLStmt Object on page 9-60

■ DynasetOption Property on page 11-50

■ CreateSQL Method on page 10-111

■ Refresh Method on page 10-225

■ Remove Method on page 10-230

■ DynasetCacheParams Method on page 10-133

■ Recordset Property on page 14-29



Transaction Control

3-14 Oracle Objects for OLE Developer's Guide

Empdb.Parameters.AddTable "EMPNOS", ORAPARM_INPUT, ORATYPE_NUMBER, 3, 22 
Empdb.Parameters.AddTable "ENAMES", ORAPARM_OUTPUT, ORATYPE_VARCHAR2, 3, 10
Set EmpnoArray = Empdb.Parameters("EMPNOS") 
Set EnameArray = Empdb.Parameters("ENAMES") 
 
'Initialize the newly created input parameter table EMPNOS 
EmpnoArray(0) = 7698 
EmpnoArray(1) = 7782 
EmpnoArray(2) = 7654 
Empdb.ExecuteSQL ("Begin EmpNames.GetEmpNamesInArray(:ArraySize," & _ 
              ":EMPNOS, :ENAMES); End;") 
MsgBox EnameArray(0) 
MsgBox EnameArray(1) 
MsgBox EnameArray(2) 

Executing Data Definition Language Statements
Data Definition Language (DDL) statements manage schema objects in the database. 
DDL statements create new tables, drop old tables, and establish other schema objects. 
They also control access to schema objects. For example: 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
EmpDb.ExecuteSQL("create table employees (name VARCHAR2(20)," & _
          "ssn VARCHAR2(12), empno NUMBER(6), mgr NUMBER(6), salary NUMBER(6)") 

EmpDb.ExecuteSQL("GRANT UPDATE, INSERT, DELETE ON employees TO donna") 
EmpDb.ExecuteSQL("REVOKE UPDATE ON employees FROM jamie") 

DDL statements also allow you to work with objects in Oracle Database, for example: 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set EmpDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)  
EmpDb.ExecuteSQL("create type person_t as object (name VARCHAR2(30)," & _
             "ssn VARCHAR2(12),address VARCHAR2(50))") 
EmpDb.ExecuteSQL("create table person_tab OF person_t") 

Transaction Control
A transaction is a logical unit of work that comprises one or more SQL statements 
executed by a single user. A typical example is transferring money from one bank 
account to another. Two operations take place:

1. Money is taken out of one account. 

2. Money is put into the other account. 

These operations need to be performed together. If one operation was completed but 
not the other (for example, if the network connection went down), the bank's books 
would not balance correctly.

Normally, when you execute an update method on a dynaset, the changes are 
committed to the database immediately. Each operation is treated as a distinct 
transaction. The BeginTrans, CommitTrans, and Rollback transactional control 

See Also:

■ Get_Value Method on page 10-167

■ Put_Value Method on page 10-220



Microsoft Transaction Server Support

Basic Features 3-15

methods of the OraSession object allow operations to be grouped into larger 
transactions. 

The BeginTrans method tells the session that you are starting a group of operations. 
The CommitTrans method makes the entire group of operations permanent. The 
Rollback method cancels the entire group. The CommitTrans and Rollback 
methods end the transaction, and the program returns to normal operation: one 
transaction for each operation. Experienced Oracle Database users should note the 
following differences between the operation of Oracle Objects for OLE and many 
Oracle Database tools: 

■ Oracle Database tools, such as SQL*Plus, execute as if the BeginTrans method 
was called when the tool was started. This means that updates are not committed 
immediately; they are held until a commit or rollback is executed. 

■ SQL*Plus starts a new transaction every time a commit or rollback is executed.

■ SQL*Plus does not take a row lock in the case of a failed UPDATE or DELETE 
statement. However, in the case of OO4O, if UPDATE or DELETE methods fail on a 
given row in a dynaset in a global transaction (such as cases in which you issued a 
BeginTrans method), be aware that locks remain on those rows. These locks 
persist until you call a CommitTrans or Rollback method.

If you are connected to more than one database and use the transaction methods, be 
aware that Oracle Objects for OLE commits each database separately. This is not the 
same as the two-phase commit that Oracle Database provides. If your application 
needs to guarantee data integrity across databases, connect to a single database and 
then access additional databases by way of the Oracle Database link feature. This 
method gives you the benefit of the Oracle Database two-phase commit. Consult your 
Oracle Database documentation for more information about two-phase commit, 
database links, and distributed transactions. 

Transactions apply only to the Data Manipulation Language (DML) portion of the SQL 
language (such as INSERT, UPDATE, and DELETE statements). Transactions do not 
apply to the Data Control Language (DCL) or Data Definition Language (DDL) 
portions (such as CREATE, DROP, and ALTER statements) of the SQL language. DCL 
and DDL commands always force a commit, which in turn commits everything done 
previously. 

Microsoft Transaction Server Support
Oracle database transactions initiated in Oracle Objects for OLE (OO4O) automatically 
participate in global transactions coordinated by the Microsoft Distributed Transaction 
Coordinator (DTC) in the Microsoft Transaction Server (MTS), if all the following 
conditions are true:

■ The OpenDatabase method of OraSession uses the ORADB_ENLIST_IN_MTS 
option.

See Also:

■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ OraConnection Object on page 9-27

■ OraSession Object on page 9-58

■ ResetTrans Method on page 10-233

■ Rollback Method on page 10-235



Asynchronous Processing

3-16 Oracle Objects for OLE Developer's Guide

■ OO4O determines that it is running in the context of a global transaction in MTS. 

■ Oracle Service for Microsoft Transaction Server is installed and running. 

Asynchronous Processing 
In OO4O Automation, you can execute commands using asynchronous processing. 
This enables you to execute SQL statements and PL/SQL blocks in nonblocking mode. 
Nonblocking mode is an option of the CreateSQL method. 

Nonblocking Mode 
In nonblocking mode, control is returned to the application immediately even if the 
execution is not complete. This allows the application to execute other tasks that are 
not dependent on the results of the last execution. 

To enable nonblocking mode, pass in the ORASQL_NONBLK option to the CreateSQL 
method while creating the OraSQLStmt object. If this mode is not specified, the 
OraSQLStmt object executes in blocking mode (default behavior). 

'Create the statement in NON-BLOCKING mode 
OraSQL = Oradb.CreateSQL("delete from emp",ORASQL_NONBLK) 

An OraSQLStmt object created in nonblocking mode executes in nonblocking mode 
for the lifetime of the object. 

This section contains the following topics:

■ Checking the Status of a Nonblocking Operation

■ Canceling a Nonblocking Operation

■ Executing Multiple Queries in Asynchronous Mode

■ Limitations on Nonblocking

Checking the Status of a Nonblocking Operation 
To determine the status of an OraSQLStmt object executing asynchronously, 
applications need to poll the NonBlockingState property. The 
NonBlockingState property returns ORASQL_STILL_EXECUTING if execution is 
still pending or ORASQL_SUCCESS if execution has completed successfully. 

Any failures are thrown as exceptions. 

On successful completion, the output parameters, if any, are placed in the bound 
parameter buffers. The application can then access the parameters as in the blocking 
case. 

The following example demonstrates the usage of the NonBlockingState property. 

Dim OraDatabase as OraDatabase 
Dim OraStmt as OraSQLStmt 

See Also:

■ Oracle Services for Microsoft Transaction Server Developer's Guide

■ OpenDatabase Method on page 10-212

See Also: CreateSQL Method on page 10-111

See Also: OraSQLStmt Object on page 9-60



Asynchronous Processing

Basic Features 3-17

Dim stat as long 
Dim OraSess as OraSession 
Set OraSess = CreateObject("OracleInProcServer.XOraSession") 
Set OraDatabase =OraSess.OpenDatabase("ExampleDb", "scott/tiger", 0) 
 
'execute the select statement with NONBLOCKING mode on 
set OraStmt = OraDatabase.CreateSQL ("update emp set sal = sal + 1000", _
            ORASQL_NONBLK)
 
'Check if the call has completed 
stat = OraStmt.NonBlockingState 
while stat = ORASQL_STILL_EXECUTING 
MsgBox "Asynchronous Operation under progress" 
stat = OraStmt.NonBlockingState 
wend 
MsgBox "Asynchronous Operation completed successfully" 

Canceling a Nonblocking Operation 
You can cancel a nonblocking operation that is underway by calling the Cancel 
method on the OraSQLStmt object that is executing the asynchronous call. 

Dim OraDatabase as OraDatabase 
Dim OraStmt as OraSQLStmt 
Dim stat as long 
Dim OraSess as OraSession 
Set OraSess = CreateObject("OracleInProcServer.XOraSession") 
Set OraDatabase =OraSess.OpenDatabase("ExampleDb", "scott/tiger", 0) 
 
'execute the select statement with NONBLOCKING mode on 
set OraStmt = OraDatabase.CreateSQL ("update emp set sal = sal + 1000", _ 
         ORASQL_NONBLK)
 
'Check if the call has completed 
stat = OraStmt.NonBlockingState 
if stat = ORASQL_STILL_EXECUTING 
MsgBox "Cancelling the asynchronous operation that is underway" 
OraStmt.Cancel 
End if 

Executing Multiple Queries in Asynchronous Mode 
Multiple queries can be executed in asynchronous mode. In this example, while the 
first connection is executing a non-blocking call, the second connection executes a SQL 
statement in blocking mode. 

Dim OraSess as OraSession 
Dim OraServ as OraServer 
Dim OraDb1 as OraDatabase 
Dim OraDb2 as OraDatabase 
Dim OraStmtnonblk as OraSQLStmt 
Dim OraStmtblk as OraSQLStmt 
Dim stat as long 
set OraSess = CreateObject("OracleInProcServer.XOraSession") 
set OraDb1 = OraSess.OpenDatabase("exampledb","scott/tiger",0&) 

See Also: NonBlockingState Property on page 11-111

See Also: Cancel Method on page 10-45



Asynchronous Processing

3-18 Oracle Objects for OLE Developer's Guide

Set OraServ = CreateObject("OracleInProcServer.XOraServer") 
set OraDb2 = OraServ.OpenDatabase("Exampledb","scott/tiger",0&) 
 
'execute the select statement with NONBLOCKING mode on 
set OraStmtnonblk = OraDb1.CreateSQL ("update emp set sal = sal + 1000", _
             ORASQL_NONBLK) 
 
'Check if the call has completed 
stat = OraStmt.NonBlockingState 
while stat = ORASQL_STILL_EXECUTING 
  MsgBox "Asynchronous Operation under progress" 
  stat = OraStmt.NonBlockingState 
wend 
  MsgBox "Asynchronous Operation completed successfully" 
 
'execute on the second connection in BLOCKING mode 
set OraStmtblk = OraDb2.CreateSQL ("update emp set sal = sal + 500",0&) 

Limitations on Nonblocking 
The following are limitations on nonblocking mode: 

■ When a nonblocking operation is running on an OraSQLStmt object, you cannot 
change the properties or attributes of this object, as it can affect the execution that 
is in progress. 

■ You cannot create an OraSQLStmt object in nonblocking mode if there are other 
objects that are already instantiated on the connection. In other words, creating an 
OraSQLStmt object to execute in nonblocking mode only succeeds if no other 
objects, such as OraDynaset and OraAQ, are currently active on the same 
database session. The only exceptions are OraParameter and OraObject 
objects. These are permitted, as they may be required for the nonblocking 
execution. 

See Also: "Executing Multiple Queries in Asynchronous Mode" 
on page 3-17



4

Advanced OO4O Features 4-1

4Advanced OO4O Features

This chapter describes advanced Oracle Objects for OLE features.

This chapter contains these topics: 

■ Support for Oracle Object-Relational and LOB Data Types

■ Instantiating Oracle LOBs, Objects, and Collections

■ Using Large Objects (LOBs)

■ Oracle Object Data Types

■ Oracle Collections

■ Advanced Queueing Interfaces

■ Database Events

■ Application Failover Notifications

■ XML Generation

■ Datetime and Interval Data Types

■ Database Schema Objects

Support for Oracle Object-Relational and LOB Data Types
Oracle Objects for OLE provides support for accessing and manipulating instances of 
REFs, value instances, variable-length arrays (VARRAYs), nested tables, and large 
objects (LOBs) in an Oracle database. 

Table 4–1 illustrates the containment hierarchy for instances of all types in Oracle 
Objects for OLE.



Instantiating Oracle LOBs, Objects, and Collections

4-2 Oracle Objects for OLE Developer's Guide

Figure 4–1 Object-Relational and LOB Data Types Diagram

 

***********************************************************************************************

Instances of these types can be fetched from the database or passed as input or output 
variables to SQL statements and PL/SQL blocks, including stored procedures and 
functions. All instances are mapped to COM Automation interfaces that provide 
methods for dynamic attribute access and manipulation. These interfaces can be 
obtained from: 

■ The Value property of an OraField object in a dynaset.

■ The Value property of an OraParameter object used as an input or an output 
parameter in SQL Statements or PL/SQL blocks. 

■ An attribute of another object/REF instance. 

■ An element in a collection (VARRAY or a nested table).

Instantiating Oracle LOBs, Objects, and Collections
Oracle Objects for OLE provides COM Automation interfaces for working with LOBs, 
Oracle objects, and collection types. These interfaces provide methods and properties 
to access data associated with LOBs, Oracle objects, and collection instances. 

Oracle LOBs, Objects, and Collections
Table 4–1 lists Oracle LOBs, Objects, and collection types with associated OO4O 
interfaces. 

Table 4–1 Oracle LOBs, Objects, and Collections

Type OO4O Interface

Object OraObject

REF OraRef

VARRAY and Nested Table OraCollection

BLOB OraBlob



Using Large Objects (LOBs)

Advanced OO4O Features 4-3

How the preceding interfaces are retrieved in OO4O depend on how they are stored in 
the database or accessed in a SQL statement. These are the possible scenarios: 

■ Column of a table 

If a table contains LOBs, object types, and collections as columns and the dynaset 
SELECT statement is based on this table, then the Value property of the 
OraField object representing that column returns corresponding OO4O 
interfaces for that type. 

■ Bind variable in a SQL statement or PL/SQL block 

If a SQL statement or PL/SQL block has LOBs, object types, and collections as 
bind variables, then an OraParameter object should be created with a 
corresponding server type using the Add method. The Value property of the 
OraParameter object representing that bind variable returns the corresponding 
OO4O interfaces for that type. 

■ Attribute of an Oracle object instance 

If an Oracle object instance has LOBs, object types, or collections as attributes, then 
the corresponding OO4O interface for any attribute is retrieved by using the 
subscript or name of the attribute from the OraObject or OraRef, or by using 
the Value property of an OraAttribute object. 

■ Element of VARRAY and nested table 

If an Oracle VARRAY and nested table has object types and REF as its elements, 
then the corresponding OO4O interface is retrieved using the element index as the 
subscript from the OraCollection object. 

When OO4O interfaces for these types are retrieved as part of a dynaset, then the 
OO4O interfaces represent instances of LOBs, objects, and collection types for the 
current row of the dynaset. If the current row changes due to a move operation, then 
the OO4O interfaces represent instances of LOBs, objects, and collection types for the 
new current row. When OO4O interfaces for these types are retrieved as part of an 
OraParameter object and the OraParameter value changes to due to a 
OraSQLStmt Refresh method, then the OO4O interface represents a new instance 
LOB, object, and collection type for that OraParameter. 

Internally, OO4O maintains one OO4O interface for each OraField, OraParameter, 
and OraAttribute object. To retain the instance of LOBs, objects, and collection 
types independent of a dynaset move operation or an OraSQLStmt refresh operation, 
use the Clone method on the corresponding OO4O interface. This method makes a 
copy of LOBs, objects, and collection types instance and returns a corresponding 
OO4O interface associated with that copy. 

Using Large Objects (LOBs)
The large object (LOB) data types (BLOB, CLOB, NCLOB, and BFILE) can provide 
storage for large blocks of unstructured data, such as text, images, video clips, and 
sound waveforms, up to 4 gigabytes in size. They provide efficient, random, 

CLOB OraClob

BFILE OraBFile

Table 4–1 (Cont.) Oracle LOBs, Objects, and Collections

Type OO4O Interface



Using Large Objects (LOBs)

4-4 Oracle Objects for OLE Developer's Guide

piece-wise access to the data. In Oracle Objects for OLE, instances of LOB data types 
are represented as interfaces.

This section includes the following topics:

■ LOB Data Types

■ Using OraBLOB and OraCLOB

■ Retrieving LOBs From the Database

■ Performance Considerations with LOB Read and Write

■ Writing LOB Data

■ Reading LOB Data

LOB Data Types
Table 4–2 lists the four LOB data types and their corresponding OO4O interfaces.

The following example creates a table that has BLOB and CLOB columns, and inserts 
rows into the table using the ExecuteSQL method on an OraDatabase object. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
 
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0) 
InvDb.ExecuteSQL("create table part(part_id NUMBER, part_name 
VARCHAR2(20),part_image BLOB, part_desc CLOB)") 
InvDb.ExecuteSQL ("insert into part values (1,'ORACLE NETWORK',EMPTY_BLOB()," & _
              "EMPTY_CLOB())") 
InvDb.ExecuteSQL ("insert into part values (2,'ORACLE SERVER', EMPTY_BLOB()," & _
           "EMPTY_CLOB())") 

See Also:

■ OraBLOB, OraCLOB Objects on page 9-11

■ OraBFILE Object on page 9-9

■ "Schema Objects Used in LOB Data Type Examples" on 
page A-3 for schema objects used in the OraLOB and BFILE 
examples

Table 4–2 LOB Data Types

LOB Data 
Types a LOB whose value is composed of 

Corresponding OO4O 
Interface

BLOB Unstructured binary (raw) data. OraBLOB

CLOB Fixed-width, single-byte character data that 
corresponds to the database character set defined 
for Oracle Database. 

OraCLOB

NCLOB Fixed-width, multiple-byte character data that 
corresponds to the national character set defined 
for Oracle Database. 

OraCLOB

BFILE A LOB whose large binary data is stored in 
operating system files outside of database 
tablespaces. BFILEs can also be located on tertiary 
storage devices such as hard disks, CD-ROMs, 
Photo CDs, and DVDs. 

OraBFILE



Using Large Objects (LOBs)

Advanced OO4O Features 4-5

The EMPTY_BLOB() and EMPTY_CLOB() PL/SQL functions provide an empty LOB to 
insert into the LOB column.

Using OraBLOB and OraCLOB
OraBLOB and OraCLOB interfaces in OO4O provide methods for performing 
operations on large objects in the database including BLOB, CLOB, and NCLOB, and 
BFILE data types. 

The following Visual Basic example illustrates how to read the PartImage from the 
part table:

Dim Buffer as Variant
Set Part = OraDatabase.CreateDynaset("select * from part", 0&)
set PartImage = OraDynaset.Fields("part_image").Value
 
'read the data into the buffer
amount_read = PartImage.Read(buffer)
 
'copy the image content into the file
PartImage.CopyToFile "d:\image\partimage.jpg"

Retrieving LOBs From the Database
OraBlob, OraClob, and OraBFile objects can be retrieved using an OraDynaset 
object or a parameter object:

Using an OraDynaset Object
If a table contains a LOB column and a dynaset query selects against that LOB column, 
then the Value property of the OraField object returns a OraBlob, OraClob, or a 
OraBFile object. 

The following example selects LOB columns from the part table. PartDesc and 
PartImage are OraBlob and OraClob objects that are retrieved from the OraField 
object. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0) 
Set Part = InvDb.CreateDynaset("select * from part", 0&) 
Set PartDesc = Part.Fields("part_desc").Value 
Set PartImage = Part.Fields("part_image").Value 

Using a Parameter object
If a SQL statement or PL/SQL block has a bind variable of type LOB, you create a 
OraParameter object using the OraParameters Add method. The Value property 
of the OraParameter object for that bind variable returns an OraBlob, OraClob, or 
OraBFile object. 

The following example illustrates how to use a LOB data type as a bind variable in a 
PL/SQL anonymous block. This block selects a LOB column from the database. 

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0) 
InvDb.Parameters.Add "PartDesc", Null, ORAPARM_OUTPUT,ORATYPE_CLOB 

See Also: ExecuteSQL Method on page 10-144

See Also: OraBLOB, OraCLOB Objects on page 9-11



Using Large Objects (LOBs)

4-6 Oracle Objects for OLE Developer's Guide

InvDb.Parameters.Add "PartImage", Null, ORAPARM_OUTPUT,ORATYPE_BLOB 
InvDb.ExecuteSQL ("BEGIN select part_desc, part_image into :PARTDESC," & _
             ":PARTIMAGE from part where part_id = 1 for update NOWAIT; END;") & _
             "for update NOWAIT; END;") 
Set PartDesc = InvDb.Parameters("PartDesc").Value 
Set PartImage = InvDb.Parameters("PartImage").Value 

Performance Considerations with LOB Read and Write 
When reading and writing LOBs, there are several options that can optimize an 
application's memory usage and reduce the number of network round-trips.

Single-Piece Operation
The contents of a buffer are read or written to the database in one round-trip. 

Multiple-Piece Operation
A small buffer is used for multiple calls to read or write methods. In this mode, the 
data is streamed, rather than requiring a complete round-trip for each read or write 
call. This method is quicker than doing several small single-piece operations. It has the 
restriction that the data must be read and written sequentially, meaning that the offset 
increases automatically with each read or write. The total amount must be known 
before it is written, and the operation cannot be aborted before completion.

LOB Buffering Option
The LOB buffering option automatically buffers any read or write operations. A 
network round-trip occurs only when the FlushBuffer method is called. This is 
most useful when there are many small writes that occur all across the LOB. This 
method has significant restrictions. 

Writing LOB Data
The Write method of the OraBlob and OraClob objects writes data from a local 
buffer to a LOB in the database. The CopyFromFile (OraLOB) method writes content 
of a local file to a LOB in the database. 

Any operation that changes the value of a LOB, including the Write method, can only 
occur when the row the LOB is associated with has been locked. If a LOB field is null, 
it must first be updated with an empty LOB before a method can write to the LOB 
field. 

LOB data can be written in one piece or in a series of multiple pieces., as described in 
the following topics: 

■ Single-Piece Write Operation

■ Multiple-Piece Write Operation

See Also:

■ OraBLOB, OraCLOB Objects on page 9-11

■ Read (OraLOB/BFILE) Method on page 10-221

■ Write (OraLOB) Method on page 10-261

See Also: EnableBuffering (OraLOB) Method on page 10-139



Using Large Objects (LOBs)

Advanced OO4O Features 4-7

Single-Piece Write Operation
The entire contents of a buffer can be written in a single piece in one network 
round-trip. The following example writes 10 KB of data from the local file 
partimage.dat to part_image column at the offset of 1000. 

Dim buffer() as byte 
ReDim buffer(10000) 
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0) 
Set Part = InvDb.CreateDynaset("select * from part", 0&) 
Set PartImage = Part.Fields("part_image").Value 
PartImage.Offset = 1000 
FNum = FreeFile 
Open "PartImage.Dat" For Binary As #FNum 
Get #FNum, , buffer 
Part.Edit 
 
amount_written = PartImage.Write(buffer) 
Part.Update 
Close FNum 

The CopyFromFile (OraLOB) method writes data directly to a LOB from a local file. 
The following code is functionally the same as the previous code: 

Part.Edit 
PartImage.CopyFromFile "PartImage.dat" , 10000, 1000 
Part.Update 

Multiple-Piece Write Operation
This mechanism is used when the size of the buffer available is smaller than the total 
amount of data to be written. The total amount of data to be written is set by using the 
PollingAmount (OraLOB/BFILE) property. 

The Offset (OraLOB/BFILE) property is used only once to set the offset for the first 
piece Write operation. After the first time, it is automatically increased by the size of 
the previous piece. The Status (OraLOB/BFILE) property must be checked for 
success of each piece Write operation. If the Status property returns ORALOB_
NEED_DATA, the Write method must be called again. This must continue until the 
amount specified by the PollingAmount property has been sent.

The piecetype argument of the Write method must be set to ORALOB_FIRST_
PIECE for the first piece that is sent, and last piece Write operation ends with setting 
the piecetype argument to ORALOB_LAST_PIECE. At the end of multiple piece 
operation, the Status property returns ORALOB_NO_DATA. 

The following example writes 102 KB of data in 10 KB chunks to the part_image 
column from the local file partimage.dat at offset of 1000. 

Dim buffer() as byte 
chunksize = 10000 
ReDim buffer(chunksize) 

See Also:

■ Write (OraLOB) Method on page 10-261

■ CopyFromFile (OraLOB) Method on page 10-73

See Also: CopyFromFile (OraLOB) Method on page 10-73



Using Large Objects (LOBs)

4-8 Oracle Objects for OLE Developer's Guide

Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0) 
Set Part = InvDb.CreateDynaset("select * from part", 0&) 
Set PartImage = Part.Fields("part_image").Value 
 
FNum = FreeFile 
Open "PartImage.Dat" For Binary As #FNum 
PartImage.Offset = 1000 
PartImage.PollingAmount =102000 
remainder = 102000 
Part.Edit 
Get #FNum, , buffer 
amount_written = PartImage.Write(buffer, chunksize, ORALOB_FIRST_PIECE) 
 
While PartImage.Status = ORALOB_NEED_DATA 
remainder = remainder - chunksize 
If remainder < chunksize Then 
piecetype = ORALOB_LAST_PIECE 
chunksize = remainder 
 
Else 
piecetype = ORALOB_NEXT_PIECE 
End If 
Get #FNum, , buffer 
amount_written = PartImage.Write(buffer, chunksize, piecetype) 
Wend 
Close FNum 
Part.Update 

Reading LOB Data
The OraBlob and OraClob Read method reads data to a local buffer from a LOB in 
the database. The CopyFromFile method reads the contents of a LOB into a local file. 

LOB data can be read in one piece or in a series of multiple pieces, as described in the 
following topics:

■ Single-Piece Read Operation

■ Multiple-Piece Read Operation

Single-Piece Read Operation
The entire contents of a buffer can be read in a single piece in one network round-trip. 
The following example reads 10 KB of data from the part_image column at an offset 
of 1000 to the local file image.dat. 

Dim buffer as Variant 
Dim buf() As Byte 
chunksize = 10000 
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0) 

See Also:

■ PollingAmount Property on page 11-125

■ Offset (OraLOB/BFILE) Property on page 11-112

■ Status (OraLOB/BFILE) Property on page 11-154

See Also: Read (OraLOB/BFILE) Method on page 10-221



Using Large Objects (LOBs)

Advanced OO4O Features 4-9

Set Part = InvDb.CreateDynaset("select * from part", 0&) 
Set PartImage = Part.Fields("part_image").Value 
FNum = FreeFile 
Open "image.dat" For Binary As #FNum 
PartImage.Offset = 1000 
amount_read = PartImage.Read(buffer,10000) 
buf = buffer 
Put #FNum, , buf 
Close FNum 

The CopyToFile (OraLOB/BFILE) method writes data directly to a local file from a 
LOB. The following code is functionally the same as the previous code: 

PartImage.CopyToFile "image.dat" , 10000, 1000 

Multiple-Piece Read Operation
This mechanism is used when the size of the buffer available is smaller than the total 
amount of data to be read. The total amount of data to be read is set by using the 
PollingAmount (OraLOB/BFILE) property. The Offset (OraLOB/BFILE) property 
is used only once to set the offset for the first piece Read operation. After the first time, 
it is automatically increased by the size of the previous piece. 

The Status (OraLOB/BFILE) property must be checked for success for each piece 
Read operation. If the Status property returns ORALOB_NEED_DATA, the Read 
method must be called again. This must continue until the amount specified by the 
PollingAmount property has been read. At the end of multiple piece operations, the 
Status property returns ORALOB_NO_DATA. 

The following example reads 102 KB of data in 10 KB chunks from the part_image 
column at offset of 1000 to the local file image.dat. 

Dim buffer as Variant 
Dim buf() As Byte 
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
Set InvDb = OO4OSession.OpenDatabase("INVDB", "scott/tiger", 0) 
Set Part = InvDb.CreateDynaset("select * from part", 0&) 
Set PartImage = Part.Fields("part_image").Value 
FNum = FreeFile 
Open "image.dat" For Binary As #FNum 
PartImage.offset = 1000 
PartImage.PollingAmount = 102000 
amount_read = PartImage.Read(buffer, chunksize) 
buf = buffer 
Put #FNum, , buf 
While PartImage.Status = ORALOB_NEED_DATA 
amount_read = PartImage.Read(buffer, chunksize) 
buf = buffer 
Put #FNum, , buf 
Wend 
Close FNum 

See Also: CopyToFile (OraLOB/BFILE) Method on page 10-76



Oracle Object Data Types

4-10 Oracle Objects for OLE Developer's Guide

Oracle Object Data Types
An object type is a user-defined composite data type created in the database. A column 
can represent an object type or a row can represent an object type. An instance of the 
Object type can be stored in the database. This object instance can be fetched to the 
client side and modified using Oracle Objects for OLE. 

There are two types of object instances. 

■ OraObject object

If a column represents an object type, then an instance of this object type is 
referred to as an embedded instance or a value instance. In OO4O, this type is 
represented by an OraObject object. For example, an ADDRESS object type is 
stored as a column in the PERSON table. OraObject objects can be embedded 
within other structures. An embedded instance or a value instance can also be the 
attributes of another object instance. 

■ OraRef object

If a row in an object table represents an object type, then the instance of this type is 
referred to as a referenceable object. In OO4O, this type is represented by an 
OraRef object. An internally referenceable object has a unique object identifier 
that is represented by the REF data type. A REF column can be thought of as a 
pointer to a referenceable object. OO4O applications can retrieve a REF data type 
from a referenceable object, fetch (pin) the associated referenceable object to the 
client side, and update (flush) the modified referenceable object to the database. 

About the OraObject Interface
The OraObject interface is a representation of an Oracle embedded object or a value 
instance. It contains a collection interface (OraAttributes) for accessing and 
manipulating (updating and inserting) individual attributes of a value instance.

Individual attributes of an OraAttributes collection interface can be accessed by 
using a subscript or the name of the attribute. 

The following Visual Basic example illustrates how to access attributes of the Address 
object in the person_tab table: 

Set Person = OraDatabase.CreateDynaset("select * from person_tab",0&) 
set Address = Person.Fields("Addr").Value 
msgbox Address.Zip 
msgbox.Address.City 

See Also:

■ PollingAmount Property on page 11-125

■ Offset (OraLOB/BFILE) Property on page 11-112

■ Status (OraLOB/BFILE) Property on page 11-154

See Also: Oracle Database Object-Relational Developer's Guide

See Also: "About the OraObject Interface" on page 4-11

See Also: "About the OraRef Interface" on page 4-13



Oracle Object Data Types

Advanced OO4O Features 4-11

Using the OraObject Interface
The following example creates an ADDRESS object type having street, city, state and 
zip as its attributes and a PERSON table having an ADDRESS object type column. It also 
inserts data using the ExecuteSQL method of the OraDatabase object. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
HRDb.ExecuteSQL("create type ADDRESS as object ( street 
VARCHAR2(200), city varchar2(20), state CHAR(2), zip varchar2(10) )")  
HRDb.ExecuteSQL("create table person (name varchar2(20), age number," & _ 
                 "addr ADDRESS) ") 
HRDb.ExecuteSQL("insert into person values('nasser',40, " & _
                 "address('Wine Blvd', 'Pleasanton', 'CA', '94065'))") 
HRDb.ExecuteSQL("insert into person values('Maha', 25," & _ 
                 "address('Continental Way', 'Belmont', 'CA', '94002'))")
HRDb.ExecuteSQL("insert into person values('chris',30, address('First " & _
                 "Street', 'San Francisco', 'CA' ,'94123'))") 

The following topics discuss manipulating the OraObject interface:

■ Retrieving an Embedded/Value Instance from the Database

■ Accessing Attributes of an Embedded/Value Instance

■ Modifying Attributes of an Embedded/Value Instance

Retrieving an Embedded/Value Instance from the Database
An OraObject object can be retrieved using OO4O using a dynaset or parameter 
object: 

Using a Dynaset Object  If a table contains an object type column and a dynaset query 
selects against that column, then the Value property of the OraField object returns 
an OraObject. 

The following code selects an ADDRESS column from the person table, and then an 
Address object is retrieved from the OraField object. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
set Person = hrDb.CreateDynaset("select * from person", 0&) 
set Address = Person.Fields("Addr").Value 

Using a Parameter Object  If a SQL statement or a PL/SQL block has a bind variable of 
object type, you create an OraParameter object using the OraParameters Add 
method. The Value property of the OraParameter object for that bind variable 
returns an OraObject object. 

The following example uses an object data type as a bind variable in a PL/SQL 
anonymous block. This block selects an object column from the database. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
hrDb.Parameters.Add "ADDRESS", Null, ORAPARM_OUTPUT, ORATYPE_OBJECT, "ADDRESS"
'execute the sql statement which selects Address from the person_tab 
hrDb.ExecuteSQL ("BEGIN select Addr into :ADDRESS from person where " & _

See Also: OraObject Object on page 9-43

See Also: ExecuteSQL Method on page 10-144



Oracle Object Data Types

4-12 Oracle Objects for OLE Developer's Guide

            "age = 40; end;") 
'retrieve Address object from the OraParameter 
set address = hrDb.Parameters("ADDRESS").Value 

Accessing Attributes of an Embedded/Value Instance
Individual attributes can be accessed by using a subscript or the name of the attribute. 
The following example illustrates how to access attribute values of an ADDRESS object 
instance. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
set Person = hrDb.CreateDynaset("select * from person", 0&) 
set Address = Person.Fields("Addr").Value 
msgbox Address.City 
msgbox Address.Street 
msgbox Address.State 
msgbox Address.Zip 

The following code accesses all of the attribute values: 

For I=1 to Address.Count 
   msgbox Address(I) 
Next I 

Modifying Attributes of an Embedded/Value Instance
If the object instance is retrieved using a dynaset object, its attribute values can be 
modified between a dynaset Edit/Update pair. The following example modifies the 
street and city attribute values of the ADDRESS object instance.

set OO4OSession = CreateObject("OracleInProcServer.XOraSession")
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0)
set Person = hrDb.CreateDynaset("select * from person", 0&)
set Address = Person.Fields("Addr").Value
Person.Edit
      Address.Street  =  "Oracle Parkway"
      Address.City = "Redwood shores"
Person.Update

Executing a Member Method of an Oracle Object Instance 
Oracle object type member methods are created during type creation. Oracle object 
instance member methods are executed in OO4O as PL/SQL procedures or functions. 
Arguments and return values to the member methods should be bound using the 
OraParameter object. The first argument to the member method should always be 
the object instance. This object instance can be bound with the ORAPARM_INPUT or 
ORAPARM_BOTH mode. If the member method modifies the attributes of an object 
instance and a new object instance needs to be retrieved to the OO4O application, then 
this object instance must be bound with the ORAPARM_BOTH mode. 

See Also:

■ OraObject Object on page 9-43

■ OraField Object on page 9-33

■ OraParameter Object on page 9-50



Oracle Object Data Types

Advanced OO4O Features 4-13

For example, if a bank_account object type has open, close, and deposit as 
member methods, then the schema for the bank_account object type is the 
following: 

CREATE OR REPLACE TYPE bank_account AS OBJECT ( 
    acct_number INTEGER(5), 
    balance REAL, 
    MEMBER PROCEDURE open (amount IN REAL), 
    MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL), 
    MEMBER PROCEDURE deposit (SELF IN OUT bank_bccount,num IN 
                        INTEGER, amount IN REAL), 
); 

In OO4O, BankObj is an OraObject object representing a valid bank object instance 
from the database. To execute the deposit method, the SELF, num, and amount 
arguments need to be bound using the OraParameter object.

Dim BankObj as OraObject 
assumes that we have valid BankObj 
set BankObj = ..... 
 
'create a OraParameter object for bank_account object and set it to BankObj 
OraDatabase.Parameters.Add "BANK", BankObj, ORAPARM_BOTH, ORATYPE_OBJECT, _
                     "BANK_ACCOUNT" 
 
'create a OraParameter object for num argument and set the value to 100 
OraDatabase.Parameters.Add "ACCOUNT_NO", 100, ORAPARM_INPUT, ORATYPE_NUMBER 
 
'create a OraParameter object for amount argument and set the value to 1200 
OraDatabase.Parameters.Add "AMOUNT", 1200, ORAPARM_OUTPUT, ORATYPE_NUMBER
 
'display the balance from the bank object 
Bankobj.balance 
 
'now execute the PL/SQL block for member method execution 
OraDatabase.ExecuteSQL ("BEGIN BANK_ACCOUNT.DEPOSIT :BANK," & _ 
                    (":ACCOUNT_NO,:AMOUNT); END;") 
 
'get the modified bank object from the parameter 
set Bankobj  = OraDatabase.Parameters("BANK").Value 
 
'display the new balance 
Bankobj.balance 

About the OraRef Interface
The OraRef interface represents an instance of a referenceable object (REF) in client 
applications. The object attributes are accessed in the same manner as attributes of an 
object represented by the OraObject interface. The OraRef interface is derived from 
an OraObject interface through the containment mechanism in COM. REF objects are 
updated and deleted independently of the context from which they originated, such as 
dynasets. The OraRef interface also encapsulates the functionality for navigating 
through graphs of objects utilizing the Complex Object Retrieval Capability (COR) in 
Oracle Call Interface (OCI). 

See Also: "OraRef Object" on page 9-52



Oracle Object Data Types

4-14 Oracle Objects for OLE Developer's Guide

Using the OraRef Interface 
This section demonstrates the creation of an object table named PERSON_TAB. The 
object table is based on the object type PERSONOBJ. Each reference to the rows of this 
object table is stored in an aperson REF type column of the CUSTOMERS table. The 
following code creates database schemas:

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
HRDb.ExecuteSQL("create type PERSONOBJ  as object ( name varchar2(20), " & _
                 "age number, addr ADDRESS)")
HRDb.ExecuteSQL("create table person_tab of personobj") 
HRDb.ExecuteSQL("insert into person_tab values('nasser',40," & _ 
                  "address('Wine Blvd', 'Pleasanton', 'CA', '94065'))") 
HRDb.ExecuteSQL("insert into person_tab values('Maha', 25, " & _
                  "address('Continental Way', 'Belmont', 'CA', '94002'))") 
HRDb.ExecuteSQL("insert into person_tab values('chris',30, " & _
               "address('First Street', 'San Francisco', 'CA' , '94123'))") 

The following code creates a CUSTOMERS table having an aperson REF column 
referencing rows of the object table:

HRDb.ExecuteSQL("create table CUSTOMERS (account number, 
aperson REF personobj)") 
 
HRDb.ExecuteSQL("insert into customers values(10, null)") 
HRDb.ExecuteSQL("insert into customers values(20, null)") 
HRDb.ExecuteSQL("insert into customers values(30, null)") 
HRDb.ExecuteSQL("update customers set aperson = (select ref(p) from " & _
                 "person_tab p where p.name = 'nasser') where account = 10") 
HRDb.ExecuteSQL("update customers set aperson = (select ref(p) from " & _
                 "person_tab p where p.name = 'Maha') where account = 20") 
HRDb.ExecuteSQL("update customers set aperson = (select ref(p) from " & _
                 "person_tab p where p.name = 'chris') where account = 30") 

The following topics discuss manipulating the OraRef Interface:

■ Retrieving a REF from the Database

■ Accessing Attributes of a Referenceable Instance

■ Modifying Attributes of a Referenceable Instance

Retrieving a REF from the Database
An OraRef object can be retrieved using OO4O in the following ways: 

Using a Dynaset Object  If a table contains a REF type column and a dynaset query selects 
against that column, then the Value property of the OraField object returns an 
OraREF. 

The following example selects an aperson column from the person table, and the 
aperson object is retrieved from the OraField object. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
set Customer = hrDb.CreateDynaset("select * from customers", 0&) 
set Person = Customer.Fields("aperson").Value 

See Also: OraRef Object on page 9-52



Oracle Object Data Types

Advanced OO4O Features 4-15

Using an OraParameter Object  If a SQL statement or PL/SQL block has a bind variable of 
REF type, you create an OraParameter object using the OraParameters Add 
method. The Value property of the OraParameter object for that bind variable 
returns an OraREF. 

The example illustrates using a REF object data type as a bind variable in a PL/SQL 
anonymous block. The block selects an object column from the database. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
hrDb.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF,"PERSONOBJ"
 
'execute the sql statement which selects Address from the person_tab 
hrDb.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _ 
                "where account = 10; end;") 
 
'retrieve Person object from the OraParameter 
set Person = hrDb.Parameters("PERSON").Value 

Accessing Attributes of a Referenceable Instance
Before accessing attributes of a referenceable instance, it should be fetched (pinned) on 
the client side. OO4O implicitly pins the REF value when attribute values are accessed 
from the OraRef object. After the pin operation, attributes of the referenceable 
instance are accessed in the same manner as attributes of a value instance represented 
by the OraObject object. 

The following example pins the APERSON REF value (implicitly) and accesses its name 
and address attributes. Note that accessing the address attribute returns an Address 
OraObject object. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
set Customer = hrDb.CreateDynaset("select * from customers", 0&) 
set Person = Customer.Fields("APERSON").Value 
msgbox Person.Name 
set Address = Person.Addr 
msgbox Address.City 

Modifying Attributes of a Referenceable Instance
Because a referenceable instance is stored in a row of an object table, modifying 
attributes of referenceable instance requires an object lock. Therefore, rows 
corresponding to the object instance in an object table should be locked, which can be 
done by calling the Edit method of the OraRef object. The OraRef Update method 
releases the object lock. 

The following example modifies the age attribute of Person object. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
set Customer = hrDb.CreateDynaset("select * from customers", 0&) 
set Person = Customer.Fields("APERSON").Value 
Person.Edit 
Person.Age = 45 
Person.Update 

See Also: OraRef Object on page 9-52

See Also: OraRef Object on page 9-52



Oracle Collections

4-16 Oracle Objects for OLE Developer's Guide

Oracle Collections
A collection is an ordered group of elements, all of the same type. Each element has a 
unique subscript, called an index, that determines its position in the collection. 

A collection can be subdivided into the following types:

■ Nested table type 

Viewed as a table stored in the column of a database table. When retrieved, the 
rows of a nested table are given consecutive subscripts starting at 1, and 
individual rows are accessed using array-like access.

■ VARRAY type

Viewed as an array stored in the column of a database table. To reference an 
element in a VARRAY type, standard subscripting syntax can be used. For example, 
Grade(3) references the third element in VARRAY Grades.

In Oracle Objects for OLE, an Oracle collection type is represented by the 
OraCollection interface. The following topics provide more information:

■ About the OraCollection Interface

■ Retrieving a Collection Type Instance from the Database

■ Accessing Collection Elements

■ Modifying Collection Elements

■ Creating a VARRAY Collection Type

■ Creating a Dynaset from an OraCollection Object

About the OraCollection Interface
The OraCollection interface provides methods for accessing and manipulating 
Oracle collection types, namely variable-length arrays (VARRAYs) and nested tables in 
OO4O. Elements contained in a collection are accessed by subscripts. 

The following Visual Basic example illustrates how to access attributes of the 
EnameList object from the department table:

Set Person = OraDatabase.CreateDynaset("select * from department",0&)
set EnameList = Department.Fields("Enames").Value
 
'access all elements of the EnameList VArray

See Also:

■ OraRef Object on page 9-52

■ Update (OraRef) Method on page 10-259

■ Edit (OraRef) Method on page 10-136

Note: An OraCollection element index starts at 1. 

See Also:

■ "OraCollection Object" on page 9-19

■ "Schema Objects Used in OraCollection Examples" on page A-3 



Oracle Collections

Advanced OO4O Features 4-17

for I=1 to I=EnameList.Size
   msgbox EnameList(I)
Next I

Retrieving a Collection Type Instance from the Database
A collection type can be retrieved using OO4O in the following ways: 

Using a Dynaset Object
If a table contains a collection type column and a dynaset query selects against that 
column, then the Value property of the OraField object returns an OraCollection 
object. 

The following example selects the ENAMES column from the department table, and 
an EnameList object is retrieved from the OraField object: 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
Set Dept = hrDb.CreateDynaset("select * from department", 0&) 
Set EnameList = Dept.Fields("ENAMES").Value 

Using a Parameter Object 
If a SQL statement or PL/SQL block has a bind variable of collection type, then you 
create a OraParameter object using the OraParameters Add method. The Value 
property of the OraParameter object for that bind variable returns an 
OraCollection object. 

The following example uses a collection data type as a bind variable in a PL/SQL 
anonymous block and selects a collection type from the database:

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
hrDb.Parameters.Add "ENAMES", Null, ORAPARM_OUTPUT, ORATYPE_VARRAY, "ENAMELIST" 
hrDb.ExecuteSQL ("BEGIN select enames into :ENAMES from department" & _ 
              "where dept_id = 10; END;") 
set EnameList = hrDb.Parameters("ENAMES").Value 

Accessing Collection Elements
Individual element values are accessed by using a subscript. For example, the Value 
returned by the OraCollection object for subscript 1 is the element value at index 1. 
The maximum value of the subscript is equal to the total number of elements in the 
collection including any deleted elements. The OraCollection subscript starts from 
1. 

The following example code retrieves the Enamelist collection instance and accesses 
its elements at the first and second index. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 

See Also: OraCollection Object on page 9-19

See Also:

■ OraCollection Object on page 9-19

■ OraField Object on page 9-33



Oracle Collections

4-18 Oracle Objects for OLE Developer's Guide

Set Dept = hrDb.CreateDynaset("select * from department", 0&) 
Set EnameList = Dept.Fields("ENAMES").Value 
msgbox EnameList(1) 
msgbox EnameList(2) 

This code displays all the element values of the EnameList collection. 

For I = 1 to EnameList.Size 
   msgbox EnameList(I) 
Next I 

Modifying Collection Elements
If the collection instance is retrieved using a dynaset object, element values can be 
modified between a dynaset Edit and Update pair. The following example code 
modifies the second element value of an Enamelist collection instance. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
 
Set OraDynaset = hrDb.CreateDynaset("select * from department", 0&) 
Set EnameList = OraDynaset.Fields("ENAMES").Value 
 
OraDynaset.Edit 
    EnameList(2) = "Chris" 
OraDynaset.Update 

Creating a VARRAY Collection Type
The example code that follows creates a VARRAY collection type ENAMELIST and a 
department table having ENAMELIST collection type column. 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set hrDb = OO4OSession.OpenDatabase("Exampledb", "scott/tiger", 0)
hrDb.ExecuteSQL("CREATE TYPE ENAMELIST AS VARRAY(20) OF VARCHAR2(30)") 
hrDb.ExecuteSQL("CREATE TABLE department (dept_id NUMBER(2),name" & _ 
               "VARCHAR2(15),ENAMES ENAMELIST)") 

The following script inserts some collection data into department table: 

hrDb.ExecuteSQL("INSERT INTO department VALUES(10, 'ACCOUNTING'," & _ 
               "ENAMELIST('KING','CLARK','MILLER') )") 
hrDb.ExecuteSQL("INSERT INTO department VALUES(20, 'RESEARCH'," & _ 
               "ENAMELIST('JONES','SCOTT','ADAMS','SMITH','FORD') )") 
hrDb.ExecuteSQL("INSERT INTO department VALUES(30, 'SALES'," & _ 
               "ENAMELIST('BLAKE','MARTIN','ALLEN','TURNER','JAMES') )")

Creating a Dynaset from an OraCollection Object
A SELECT query can be issued against instances of the VARRAY and nested table 
collection types using SQL THE or TABLE operators and individual elements can be 
accessed as rows. If these collection types have object types for element types, then 
individual attributes of the object type represents fields of a row.

See Also: OraCollection Object on page 9-19

See Also: OraCollection Object on page 9-19



Oracle Collections

Advanced OO4O Features 4-19

For example, if an object type X has attributes a, b, and c, and the element type of the 
collection is object type X, then the SELECT query on this collection returns a, b, and c 
fields. 

In OO4O, read-only dynaset objects can be created from SELECT queries on the 
collection. Individual elements are accessed using row navigation. If the collection 
type has an object type as its element type, then attributes of that object type (element) 
are accessed using the OraField object. 

This discussion assumes you have a Course object type and a CourseList nested 
table collection type with Course as its element type, as described here: 

CREATE TYPE Course AS OBJECT ( 
    course_no NUMBER(4), 
    title VARCHAR2(35), 
    credits NUMBER(1) 
); 
CREATE TYPE CourseList AS TABLE OF Course;

In OO4O, CourseList OraCollection represents an instance of the CourseList 
collection type. 

Dim CourseList as OraCollection 

Assume that you have valid a CourseList collection instance: 

set CourseList = ...... 

The SQL THE or TABLE operator needs collection type as a bind variable. Create a 
OraParameter object for the CourseList OraCollection as follows:

OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
            ORATYPE_TABLE, "COURSELIST" 

Create a read-only dynaset based on the CourseList using the SQL THE operator: 

Set CourseListDyn = OraDatabase.CreateDynaset("select * from THE (select" & _
           "CAST(:COURSELIST AS COURSELIST) from dual)", ORADYN_READONLY)

You can also create a read-only dynaset based on the CourseList using the SQL 
TABLE operator, which is available only in OO4O with libraries from release Oracle9i 
and on:

Set CourseListDyn = OraDatabase.CreateDynaset("select * from" & _
          "TABLE(CAST(:COURSELIST AS COURSELIST))", ORADYN_READONLY) 

'display the course_no field 
msgbox CourseListDyn.Fields("course_no").Value 

'display the title field 
msgbox CourseListDyn.Fields("title").Value 

'move to next row 
OraDynaset.MoveNext 

Example: Creating a Dynaset from an OraCollection Object
The following example illustrates how to create a dynaset from an OraCollection 
object. Before running the sample code, make sure that you have the necessary data 

See Also: OraCollection Object on page 9-19



Advanced Queueing Interfaces

4-20 Oracle Objects for OLE Developer's Guide

types and tables in the database. See "Schema Objects Used in OraCollection 
Examples" on page A-3.

Dim OraSession as OraSession 
Dim OraDatabase as OraDatabase 
Dim OraDynaset as OraDynaset 
Dim CourseList as OraCollection 
Dim Course as OraObject 
Dim CourseListDyn as OraDynaset 
 
'create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger",  0&) 
 
'create a dynaset object from division 
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&) 
 
'retrieve a Courses column from Division. Here Value property 
'of OraField object 'returns CourseList OraCollection 
set CourseList = OraDynaset.Fields("Courses").Value 
 
'create a input parameter for CourseList for nested table dynaset 
OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
                 ORATYPE_TABLE, "COURSELIST" 
 
'create a read only dynaset based on the CourseList. 
Set CourseListDyn = OraDatabase.CreateDynaset("select * from" & _ 
                 "THE(select CAST(:COURSELIST AS COURSELIST) from dual)", _
                 ORADYN_READONLY) 
 
'dynaset can also be created from Oracle8 collection using the
'following statement 
'Set CourseListDyn = OraDatabase.CreateDynaset("select * from    
'TABLE(CAST(:COURSELIST AS COURSELIST))", ORADYN_READONLY) 

'get the field values of the collection dynaset 
msgbox CourseListDyn.Fields("title").Value 
msgbox CourseListDyn.Fields("course_no").Value 
 
'move the original dynaset to second row 
Oradynaset.MoveNext 
 
'set the new value of CourseList  collection from the second row 
'of main dynaset to the "COURSELIST" parameter 
OraDatabase.Parameters("COURSELIST").Value = CourseList 
 
'refresh the collection dynaset. Now the collection dynaset values are refreshed 
'with new collection value. CourseListDyn.Refresh 
'get the field values of the collection dynaset 
msgbox CourseListDyn.Fields("title").Value 
msgbox CourseListDyn.Fields("course_no").Value 

Advanced Queueing Interfaces
Oracle Objects for OLE provides the OraAQ Automation interface with methods for 
enqueuing and dequeuing messages. The OraAQMsg object contains the message to be 
enqueued or dequeued. The message can be a RAW message or any user-defined type. 



Advanced Queueing Interfaces

Advanced OO4O Features 4-21

The following examples illustrate how to enqueue RAW messages from the DBQ queue. 
Note that the DBQ queue must already be created in the database. 

Dim Q as OraAQ 
Dim Msg as OraAQMsg 
set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set empDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
Set Q = empDb.CreateAQ("DBQ") 
Retrieve the message object from the Q object. 
set Msg = Q.AQMsg 
Specify the message value. 
Msg.Value = "This is the first Test message" 
Enqueue the message. 
Q.Enqueue 

The following lines enqueue a high priority message. 

Msg.Priority = ORAQMSG_HIGH_PRIORITY 
Msg.Delay = 5 
Msg.Value = "Urgent message" 
Q.Enqueue 

The following example dequeues the RAW messages from Oracle Database and 
displays the message content. 

Q.Dequeue 
MsgBox Msg.value 
Dequeue and display the first high priority message 
Msg.Priority = ORAQMSG_HIGH_PRIORITY 
Q.Dequeue 
MsgBox Msg.value 

Monitoring Messages
The OraAQ monitor methods (MonitorStart and MonitorStop) provide 
asynchronous dequeuing through notifications. This is suitable for applications that 
prefer to process messages in nonblocking mode. Applications can request to be 
notified on arrival of messages, by supplying an Automation object to the Monitor 
method. This object implements a method called NotifyMe to receive notifications. 
Messages can be monitored based on consumer name, message ID, or correlation. 

The following sample code demonstrates a simple use of this facility. It illustrates a 
computerized trading system that executes buy/sell limit orders. 

The sample instantiates a queue object for the STOCKS_TO_TRADE queue and 
monitors messages intended for consumer BROKER_AGENT. STOCKS_TO_TRADE 
queues messages of the user-defined type TRADEORDER_TYPE. This encapsulates all 
the information required to initiate a trade order. When messages addressed to the 
BROKER_AGENT are dequeued, the NotifyMe method of the CallbackClient object 
is invoked, and a stock trade is performed. 

'First instantiate the CallbackClient. The queue monitor 
' will invoke the NotifyMe on this class module.
Public CB_Client As New CallbackClient 
 
  Dim DB As OraDatabase
  Dim Q as OraAQ
  set Q = DB.CreateAQ("STOCKS_TO_TRADE") 

See Also: OraAQ Object on page 9-3



Database Events

4-22 Oracle Objects for OLE Developer's Guide

'Notify by calling cbclient::NotifyMe when there are messages
' for consumer '"BROKER_AGENT"
  Q.consumer = "BROKER_AGENT"

'Note that cbclient is a dispatch interface that supports the NotifyMe method.
  Dim s as string
  s = "BROKER_AGENT"
 'Notify the client only when there are messages for "BROKER_AGENT"
  Q.MonitorStart CB_Client, Q, s, 1
'other processing is performed here... 
 
  Q.MonitorStop 
Return 
'Now implement the NotifyMe method of the CallbackClient class module
'and the necessary arguments that will contain the dequeued message
'NotifyMe is the callback interface defined by user. Ctx here is the
'Q object passed in at the time of MontiorStart.
Public sub NotifyMe (ByVal Ctx As Variant, ByVal Msgid As Variant )
  On Error GoTo NotifyMeErr
  Dim tradingSignal as OraAQMsg
  'Tradeorder contains details of the customer order
  Dim tradeorder as OraObject
  If IsNull(Msgid) Then
          MsgBox "No Message"
          'Get Error
          MsgBox OraDatabase.LastServerErrText
  Else
          mvarMsgid = Msgid
          Set tradingSignal = Ctx.AQMsg(1,"STOCK_TYPE","TRADER")
          set tradeorder = tradingSignal.Value

          'Tradeorder is the object of UDT "STOCK_TYPE"Access signal attribute 
          'of tradeorder as tradeorder("signal).Value or tradeorder!signal
          if (tradeorder!signal = "SELL")
            'Sell the stock
             SellStock(tradeorder!NoOfShares, tradeorder!Ticker, _
                    tradeorder!Price,  tradeorder!ValidUntil)
          else if (tradeorder!signal = "BUY")
             'Buy the stock
              BuyStock(tradeorder!NoOfShares,tradeorder!Ticker, _
                   tradeorder!Price,tradeorder!ValidUntil)
          end if
  End If
NotifyMeErr:
  Call RaiseError(MyUnhandledError, "newcallback:NotifyMe Method")
End Sub

Database Events
Oracle Database supports detection and run-time publication of database events. 

The database event publication feature allows applications to subscribe to database 
events just as they subscribe to messages from other applications. 

Users can enable the publication of the following events:

■ DML events (DELETE, INSERT, UPDATE) 

■ DDL events (CREATE, ALTER, DROP) 



Database Events

Advanced OO4O Features 4-23

■ Database events (SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN)

The event publication subsystem is integrated with the AQ publish and subscribe 
engine.

Oracle Objects for OLE provides functionality to enable COM users to subscribe to 
Oracle Database events. 

This feature supports asynchronous notification of database events to interested 
subscribers. Under this model, the client can subscribe to be notified of a database or 
system event, with each request stored as a subscription.

When the database event of interest fires, the subscriber is notified by the database 
event handler. The event handler was registered at the time of the event’s subscription. 

OO4O provides the OraSubscription object that represents the subscription to a 
database event and the OraSubscriptions collection that maintains a list of 
OraSubscription objects. 

To subscribe to a database event, you must: 

■ Create a subscription, based on the database event of interest.

■ Provide a database event handler. The database event handler should be an 
automation object that implements the NotifyDBEvents method. The 
NotifyDBEvents method is invoked by OO4O when the subscribed database 
events are fired. 

■ Register the subscription, using the Register method.

Example: Registering an Application for Notification of Database Events
In the following example, an application subscribes for notification of database logon 
events (such as all logons to the database). When a user logs on to the database, the 
NotifyDBEvents method of the DBEventsHdlr that was passed in at the time of 
subscription is invoked. The context-sensitive information and the event-specific 
information are passed into the NotifyDBEvents method.

The DBEventsHdlr in this example is DBEventCls, which is defined later. 

The main application is as follows:

' First instantiate the dbevent handler. The dbevent notification
' will fire the NotifyDBEvents on the callback handler.
 
Public DBEventsHdlr As New DBEventCls
Private Sub Form_Load()
    Dim gOraSession As Object
    Dim gOraSubscriptions As OraSubscriptions 
    Dim gOraDatabase As OraDatabase
 
    'Create the OraSession Object
    Set gOraSession = CreateObject("OracleInProcServer.XOraSession")
 
   'Create the OraDatabase Object by opening a connection to Oracle.
    Set gOraDatabase = gOraSession.DbOpenDatabase                      
             ("ora90.us.oracle.com", "pubsub/pubsub", 
              ORADB_ENLIST_FOR_CALLBACK)

See Also:

Oracle Database SQL Language Reference for a complete description of 
triggers for data and system events



Application Failover Notifications

4-24 Oracle Objects for OLE Developer's Guide

    Set gOraSubscriptions = gOraDatabase.Subscriptions
    gOraSubscriptions.Add "PUBSUB.LOGON:ADMIN", DBEventsHdlr,
             gOraDatabase
    gOraSubscriptions(0).Register
    MsgBox "OK"
End Sub

The database event handler class that defines the NotifyDBEvents method is as 
follows:

Public countofMsgs as integer
Public Function NotifyDBEvents(Ctx As Variant, Payload As Variant )
    On error goto NotifyMeErr
 
    MsgBox "Retrieved payload " + Payload
   ' do something - here the subscription is unregistered after
   ' receiving 3 notifications
    countofMsgs = countofMsgs + 1
    If countofMsgs > 3 Then
        Ctx.Subscriptions(0).UnRegister
    End If
    Exit Sub
NotifyMeErr:
    Call RaiseError(MyUnhandledError, "newcallback:NotifyMe Method")
 
End Sub

Application Failover Notifications
Application failover notifications can be used in the event of the failure of one 
database instance and failover to another instance. Because delay can occur during a 
failover, the application developer may want to inform the user that a failover is in 
progress, and request that the user stand by. Additionally, the session on the initial 
instance may have received some ALTER SESSION commands. These are not 
automatically replayed on the second instance. Therefore, the developer may want to 
replay these ALTER SESSION commands on the second instance. 

Failover Notification Registration
To address the problems described, OO4O supports application failover notifications. 
To receive failover notifications, a notification handler must be registered with the 
MonitorForFailover method of the OraDatabase object. The notification handler 
must be an automation object (class module in Visual Basic) that implements the 
OnFailover method. An IDispatch pointer to this automation object must be 
passed in, along with any client-specific context, at the time of registering for failover 
notifications. 

See Also:

■ OraSubscription Object on page 9-61

■ OraSubscriptions Collection on page 9-70

■ Register Method on page 10-229

■ "Triggers on System Events and User Events" in Oracle Database 
Concepts 



Application Failover Notifications

Advanced OO4O Features 4-25

In the event of failover, the OnFailover method is invoked several times during the 
course of reestablishing the user's session. The first call to the OnFailover method of 
the notification handler occurs when the database first detects an instance connection 
loss. This is intended to allow the application to inform the user of an upcoming delay. 
If a failover is successful, a second call to the OnFailover method occurs when the 
connection is reestablished and usable. At this time, the client may want to replay the 
ALTER SESSION commands and inform the user that a failover has happened. 

If a failover is unsuccessful, then the OnFailover method is called to inform the 
application that the failover will not take place.

An example of failover registration is included as part of the example in the next 
section.

Enabling Failover
To enable failover notifications, the option ORADB_ENLIST_FOR_CALLBACK must be 
passed into the call to the OpenDatabase method. 

Example: Failover Notification
The following sample shows a typical developer-defined OnFailover 
implementation and demonstrates how to register an application. 

'Implement the OnFailover method of the FailoverClient class module and the 
' necessary arguments that will contain the dequeued message. Ctx  here is
' the application-defined context sensitive object that was passed
' in while registering with MonitorForFailover.
' An error of OO4O_FO_ERROR indicates that failover was unsuccessful, but the 
' application can handle the and retry failover by returning  
' a value of OO4O_FO_RETRY 
 
Public Function OnFailover(Ctx As Variant, fo_type As Variant,fo_event _
                     as variant, fo_OraDB as Variant) 
Dim str As String 

OnFailover=0 
str = Switch(fo_type = 1&, "NONE", fo_type = 2&, "SESSION", fo_type = _ 
                  4&, "SELECT") 
If IsNull(str) Then 
   str = "UNKNOWN!" 
End If 
If fo_event= OO4O_FO_ERROR Then 
   MsgBox "Failover error gotten. Retrying " 
   OnFailover = OO4O_FO_RETRY 
   End If 
If fo_event = OO4O_FO_BEGIN Then 
   MsgBox " Failing Over .... with failover type : " & str 
Else 
   MsgBox "Failover Called with event : " & fo_event 
End If 

See Also:

■ MonitorForFailover Method on page 10-194

■ OraDatabase Object on page 9-28

■ Oracle Net Services Administrator's Guidefor detailed information 
about application failover

See Also: OpenDatabase Method on page 10-212



XML Generation

4-26 Oracle Objects for OLE Developer's Guide

End Function 

Registering the Application to Receive Failover Notifications 
' First instantiate the Failover_Client. The Failover notification 
' will invoke the OnFailover on this class module 
 
Public Failover_Client As New FailoverClient 
Dim OraDatabase As OraDatabase 
Dim OraSession As OraSession 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
' Pass in the entire database name (ie., the entire Tnsnames entry 
' with the domain name)in the opendatabase call 
Set OraDatabase = OraSession.DbOpenDatabase("Exampledb.us.oracle.com", _ 
          "scott/tiger", ORADB_ENLIST_FOR_CALLBACK) 
OraDatabase.MonitorForFailover Failover_Client, OraDatabase

XML Generation 
Oracle Objects for OLE support for XML enables you to extract data in XML format 
from an Oracle database.

Data in XML markup language can be integrated with other software components that 
support XML. Web servers can provide XML documents along with a style sheet, thus 
separating the data content from its presentation, and preserving the data in its native 
form for easy searching. 

Using Extensible Stylesheet Language Transformations (XSLT), developers can 
reformat XML documents received from other businesses into their desired style. 

For more information about XML, go to 

http://www.w3.org/XML/ 

XML Generation Example 
OO4O renders XML from the contents of any OraDynaset method based on a 
starting row number and continuing for up to a specified amount of rows. For 
example: 

OO4O Code
Dim XMLString As String 
Dim startrow as Integer 
Dim maxrows as Integer 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
Set OraDynaset = OraDatabase.CreateDynaset("select EMPNO, ENAME, COMM, JOB " & _
           "from  EMP", 0&) 
startrow = 4 
maxrows = 2 
 
'Output at most 2 rows beginning at row 4 
XMLString = OraDynaset.GetXML(startrow, maxrows) 

XML Output
<?xml version = "1.0"?> 
<ROWSET> 



XML Generation

Advanced OO4O Features 4-27

<ROW id="4"> 
<EMPNO>7566</EMPNO> 
<ENAME>JONES</ENAME> 
<JOB>MANAGER</JOB> 
</ROW> 
<ROW id="5"> 
<EMPNO>7654</EMPNO> 
<ENAME>MARTIN</ENAME> 
<COMM>1400</COMM> 
<JOB>SALESMAN</JOB> 
</ROW> 
</ROWSET> 

The format of the XML can be customized through the OraDynaset and OraField 
methods: 

Dim XMLString As String 
Dim startrow as Integer 
Dim maxrows as Integer 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
Set OraDynaset = OraDatabase.CreateDynaset("select EMPNO, ENAME, COMM," & _ 
            "JOB from EMP", 0&)  
 
'Change the root tag of the XML document 
OraDynaset.XMLRowsetTag = "ALL_EMPLOYEES" 
 
'Change the row tag of the XML document 
OraDynaset.XMLRowTag = "EMPLOYEE" 
 
'Remove the rowid attribute 
OraDynaset.XMLRowID = "" 
 
'Turn on the null indicator 
OraDynaset.XMLNullIndicator = True 
 
'Change the EMPNO tag name 
Set EmpnoField = OraDynaset.Fields("EMPNO") 
EmpnoField.XMLTagName = "EMP_ID" 
 
'and make it an attribute rather than an element 
EmpnoField.XMLAsAttribute = True 
 
'Change the ENAME tag name 
Set EnameField = OraDynaset.Fields("ENAME") 
EnameField.XMLTagName = "NAME" 
 
'Change the COMM tag name 
Set CommField = OraDynaset.Fields("COMM") 
CommField.XMLTagName = "COMMISSION" 
 
'Change the JOB tag name 
Set JobField = OraDynaset.Fields("JOB") 
JobField.XMLTagName = "JOB_TITLE" 
startrow = 4 
maxrows = 2 
 
'Output at most 2 rows beginning at row 4 
XMLString = OraDynaset.GetXML(startrow, maxrows) 



Datetime and Interval Data Types

4-28 Oracle Objects for OLE Developer's Guide

Output 
<?xml version = "1.0"?> 
<ALL_EMPLOYEES> 
<EMPLOYEE EMP_ID="7566"> 
<NAME>JONES</NAME> 
<COMMISSION NULL="TRUE"></COMMISSION> 
<JOB_TITLE>MANAGER</JOB_TITLE> 
</EMPLOYEE> 
<EMPLOYEE EMP_ID="7654"> 
<NAME NULL>MARTIN</NAME> 
<COMMISSION>1400</COMMISSION> 
<JOB_TITLE>SALESMAN</JOB_TITLE> 
</EMPLOYEE> 
</ALL_EMPLOYEES> 

Datetime and Interval Data Types
From Release 9.2.0.4 and later, OO4O provides four new objects that enable developers 
to access and manipulate the new datetime and interval data types introduced in 
Oracle9i. Table 4–3 describes the OO4O objects and matching data types. 

Instances of these types can be fetched from the database or passed as input or output 
variables to SQL statements and PL/SQL blocks, including stored procedures and 
functions. 

These new data types are not supported as elements in collections such as PL/SQL 
indexed tables, VARRAYs, or nested tables. 

Obtaining Datetime and Interval Data Types
OO4O datetime and interval data types can be obtained using: 

■ The Value property of an OraField object in a dynaset. 

■ The Value property of an OraParameter object as an input or an output 
parameter in SQL statements or PL/SQL blocks.

■ An attribute of another object or REF.

■ The following OraSession methods: 

– CreateOraIntervalDS

– CreateOraIntervalYM

– CreateOraTimeStamp

See Also: OraDynaset Object on page 9-30

Table 4–3 Datetime and Interval Data Types

OO4O Objects Oracle Data Types 

OraIntervalDS INTERVAL DAY TO SECOND 

OraIntervalYM INTERVAL YEAR TO MONTH

OraTimeStamp

OraTimeStamp

TIMESTAMP

TIMESTAMP WITH LOCAL TIME ZONE 

OraTimeStampTZ TIMESTAMP WITH TIME ZONE



Database Schema Objects

Advanced OO4O Features 4-29

– CreateOraTimeStampTZ

Descriptions of Datetime and Interval Data Types
■ OraTimeStamp object 

Provides methods for operations on Oracle TIMESTAMP or TIMESTAMP WITH 
LOCAL TIME ZONE data types. Operations include accessing the datetime values 
and performing datetime operations. 

■ OraTimeStampTZ object 

Provides methods for operations on Oracle TIMESTAMP WITH TIME ZONE data 
types. Operations include accessing the datetime and time zone values and 
performing datetime operations. 

■ OraIntervalDS object 

Provides methods for operations on the Oracle INTERVAL DAY TO SECOND. This 
data type represents a period of time in terms of days, hours, minutes, seconds, 
and nanoseconds. 

■ OraIntervalYM object 

Provides methods for operations on the Oracle INTERVAL YEAR TO MONTH. This 
data type represents a period of time in terms of years and months. 

Database Schema Objects
The OraMetaData interface provides access to the schema information of database 
objects. It is returned by invoking the Describe method of the OraDatabase 
interface. The Describe method takes the name of a schema object, such as the emp 
table and returns an OraMetaData object. The OraMetaData object provides 
methods for dynamically navigating and accessing all the attributes 
(OraMDAttribute collection) of a schema object described. 

The following Visual Basic script shows a simple example of the OraMetaData 
interface. The sample retrieves and displays several attributes of the emp table. 

Dim empMD as OraMetaData 

set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
set empDb = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 

'Add EMPNO as an Input parameter and set its initial value. 
Set empMd = empDb.Describe("emp")
 
'Get the column attribute collections. 
Set empColumnsMd = empMd("ColumnList").Value 

'Display name, data type, and size of each column in the emp table. 
For I = 0 To empColumnsMd.Count - 1 
   Set ColumnMd = empColumnsMd(I).Value 
   MsgBox ColumnMd("data type").Value 
   MsgBox ColumnMd("Name").Value 
Next I 



Database Schema Objects

4-30 Oracle Objects for OLE Developer's Guide

See Also:

■ OraMetaData Object on page 9-39

■ OraMDAttribute Object on page 9-38



5

Tuning and Troubleshooting 5-1

5Tuning and Troubleshooting

This chapter provides information about tuning, troubleshooting, and error handing in 
Oracle Objects for OLE (OO4O).

This chapter contains these topics: 

■ Tips and Techniques for Performance Tuning

■ Oracle Objects for OLE Error Handling

■ Troubleshooting

Tips and Techniques for Performance Tuning
The following topics are intended to help tune the performance of applications that 
use Oracle Objects for OLE. 

This section contains these topics: 

■ Early Binding of OO4O Objects

■ Tuning and Customization

■ Avoiding Multiple Object Reference

■ Parameter Bindings

■ Array Processing

■ Using Read-Only, Forward-Only Dynaset

■ Using the PL/SQL Bulk Collection Feature

■ Migration from LONG RAW to LOB or BFILE

■ Using Connection Pooling

Early Binding of OO4O Objects 
The early binding technique tightly typecasts OO4O objects to their native object types 
rather than the generic object type provided by Visual Basic. These objects are declared 
directly as OO4O objects, rather than as generic objects which are later reclassified as 
OO4O objects. Early binding improves performance by reducing frequent access to the 
OO4O type library. For example: 

'Early binding of OO4O objects 
Dim OraSession as OraSession 
Dim OraDatabase as OraDatabase 
Dim OraDynaset as OraDynaset 
 



Tips and Techniques for Performance Tuning

5-2 Oracle Objects for OLE Developer's Guide

'Generic binding of OO4O objects 
 
Dim OraSession as Object 
Dim OraDatabase as Object 
Dim OraDynaset as Object 

To use early binding of OO4O objects, the Oracle In-Process Server type library must 
be referenced in the Visual Basic projects. 

Tuning and Customization
Data access can be tuned and customized by altering the cache and fetch parameters of 
a dynaset. Setting the FetchLimit parameter to a higher value increases the number 
of rows that are fetched with each request, thus reducing the number of network trips 
to Oracle Database, and improving performance. 

The cost of increasing the size of the FetchLimit parameter is that it increases 
memory requirements on the client side, and causes more data to be swapped to and 
from the temporary cache file on disk. The proper FetchLimit value should be set 
according to the client computer configuration and the anticipated size of the query 
result. 

The FetchLimit value can be set in the following ways: 

■ By using the CreateCustomDynaset method

■ By modifying parameters of the OO4O entry in the Windows registry

For Windows, the registry key is HKEY_LOCAL_MACHINE and the subkey is 
software\oracle\KEY_HOMENAME\oo4o, where HOMENAME is the appropriate 
Oracle home. The OO4O installation creates the following section in the registry: 

"FetchLimit" = 100

Avoiding Multiple Object Reference
Improper coding techniques with unnecessary object references can also affect 
performance. During dynaset object navigation, you should reduce the number of 
object references to the OraFields collections and OraField objects. The following 
is an inefficient code block: 

'Create the OraDynaset Object 
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&) 
 
'Traverse until EOF is reached 
Do Until OraDynaset.EOF 
    msgbox OraDynaset.Fields("sal").value 
OraDynaset.MoveNext 
Loop 

See Also: "Using Oracle Objects for OLE Automation with Visual 
Basic" on page 2-2

See Also:

■ FetchLimit Property on page 11-61

■ CreateDynaset Method on page 10-85

■ OraDynaset Object on page 9-30



Tips and Techniques for Performance Tuning

Tuning and Troubleshooting 5-3

The OraDynaset, OraFields collections, and OraField objects are referenced for 
each iteration. Although OO4O provides improvement in handling the field 
collections object, multiple references to the automation object goes though the 
underlying OLE/COM automation layer, which slows down the execution. 

The following example shows how to reference fields through a field object and not 
through the fields collection of the dynaset. Testing has determined that this small 
amount of extra code greatly improves performance. 

Dim flds() As OraField 
Dim i, fldcount As Integer 
 
' Create the OraDynaset Object 
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&) 
' Get the field count, and output the names 
fldcount = OraDynaset.Fields.Count 
ReDim flds(0 To fldcount - 1) 
 
For i = 0 To fldcount - 1 
Set flds(i) = OraDynaset.Fields(i) 
Next I 
'Traverse until EOF is reached 
 
Do Until OraDynaset.EOF 
   msgbox Flds(5).Value 
   msgbox Flds(6).Value 
OraDynaset.MoveNext 
Loop 

Any method or object that is referenced through more than one object is potentially 
inefficient, but the extra coding to avoid this is not always worth the time saved. The 
best place to start is with field references, because they are most likely to occur 
multiple times. 

Parameter Bindings
OO4O provides a way of enabling and disabling parameter object binding at the time 
it processes the SQL statement. This can be done through the AutoBindDisable and 
AutoBindEnable methods of the OraParameter object. If the SQL statement does 
not contain the parameter name, it is better to disable the OraParameter object 
because it avoids an unnecessary reference to the parameter object. This is most 
effective when the application is written primarily using PL/SQL procedures. For 
example: 

Set OraDatabase = OraSession. OpenDatabase("Exampledb", "scott/tiger", 0&) 
 
'Add the job input parameter with initial value MANAGER. 
OraDatabase.Parameters.Add "job", "MANAGER", 1 
 
'Add the deptno input parameter with initial value 10. 
OraDatabase.Parameters.Add "deptno", 10, 1 
 
'Add the job input parameter with initial value MANAGER. 
OraDatabase.Parameters.Add "EmpCur", 0, 1 
OraDatabase.Parameters("Empcur").ServerType = ORATYPE_CURSOR 
 
'Disable the job parameter for now. 
OraDatabase.Parameters("job").AutoBindDisable 
 
set OraSqlStmt = CreateSQL("Begin GetEmpData(:Empcur, :deptno) End;",0&) 



Tips and Techniques for Performance Tuning

5-4 Oracle Objects for OLE Developer's Guide

Note how the job parameter object is not referenced while processing the PL/SQL 
statement. 

Array Processing
OO4O supports an array interface to an Oracle database through the OraParamArray 
object. The array interface enables the transfer of bulk of data in single network trip. 
This is especially helpful while processing a PL/SQL or SQL statement through the 
ExecuteSQL or CreateSQL method. For example, in order to insert 100 rows into 
remote database without array processing, ExecuteSQL or CreateSQL must be 
called 100 times, which in turn makes 100 network trips. For example: 

For I = 1 to 100 
   OraParameter("EMPNO").Value = xxxx 
   OraParameter("ENAME").Value = 'yyyy' 
   OraParameter("DEPTNO").Value = zz 
   OraDatabase.ExecuteSql("insert into emp values (:EMPNO,:ENAME,:DEPTNO)"); 
Next I 

The following example makes use of arrays and makes only one network trip. 

'ENAMEARR,:EMPNOARR,:DEPTNOARR are parameter arrays 
 
For I = 1 to 100 
   OraParameter("EMPNOARR").Put_Value xxxx, I 
   OraParameter("ENAMEARR").Put_Value 'yyyy' ,I 
   OraParameter("DEPTNOARR").Put_Value zz, I 
Next I 
 
'Now call the ExecuteSQL only once 
OraDatabase.ExecuteSql("insert into emp values(:EMPNOARR," & _
              ":ENAMEARR, :DEPTNOARR)"); 

Using Read-Only, Forward-Only Dynaset
If your application does not make any updates to the dynaset, then you can create a 
read-only dynaset with the ORADYN_READONLY (H4) option. With this option, 
performance improvement can be gained by eliminating the overhead of parsing SQL 
statements locally and reducing network trips for SQL statement execution. 

If your application does not need a scrollable dynaset, then you can create a 
forward-only dynaset with the ORADYN_NOCACHE (H8) option. With this option, 
performance improvement can be gained by eliminating the overhead of creating a 
local cache file and the overhead of reading/writing data from that file. 

Using the PL/SQL Bulk Collection Feature
The PL/SQL bulk collection feature enables the selecting of bulk data in a single 
network trip using PL/SQL anonymous blocks. The OO4O OraDynaset object selects 

See Also:

■ AutoBindDisable Method on page 10-39

■ AutoBindEnable Method on page 10-41

See Also: OraParamArray Object on page 9-47 for more 
information on using arrays



Tips and Techniques for Performance Tuning

Tuning and Troubleshooting 5-5

arrays of data during SQL statement execution. This involves overhead such as 
performing more network round-trips, creating more cache files and internal objects. If 
you do not want to use a dynaset due to its overhead, then this feature is useful for 
selecting arrays of data. The data to be selected can be bound either as an 
OraParamArray object or as an OraCollection object. 

The following example illustrates PL/SQL bulk collection features using the 
OraCollection interface. It shows how arrays of enames are selected with one 
network round-trip and less overload. 

Set OraDatabase = OraSession.OpenDatabase("Exampledb", "scott/tiger", 0&) 
 
'create a VARRAY type ENAMELIST in the database 
OraDatabase.ExecuteSQL ("create type ENAMELIST as VARRAY(50) OF VARCHAR2(20)")
 
'create a parameter for ENAMELIST VARRAY 
OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_OUTPUT, 247,"ENAMELIST"  

'execute the statement to select all the enames from ename column of emp table
OraDatabase.ExecuteSQL ("BEGIN select ENAME bulk collect into" & _ 
                ":ENAMES from emp; END;") 
 
'here OraParameter object returns EnameList OraCollection 
Set EnameList = OraDatabase.Parameters("ENAMES").Value 
 
'display all the selected enames 
FOR I = 1 to EnameList.Size 
   msgbox Enamelist(I) 
NEXT I 

Migration from LONG RAW to LOB or BFILE
Oracle8i introduced the following new types described in "Using Large Objects 
(LOBs)" on page 4-3: 

■ BLOB 

■ CLOB 

■ BFILE 

The design of these types allows OO4O to access them much faster than using LONG or 
LONG RAW types. For this reason, convert existing LONG RAW code to BLOB, CLOB, and 
BFILE, and only use LOBs and BFILEs for new applications. The OraLOB object 
should be used to access LOB and BFILE types, rather than these LONG RAW chunking 
methods, which are provided for backward compatibility only. Note that OraLOB 
offers maximum control. 

LOB data types differ from LONG and LONG RAW data types in several ways: 

■ A table can contain multiple LOB columns, but can contain only one LONG 
column. 

■ A table containing one or more LOB columns can be partitioned, but a table 
containing a LONG column cannot be partitioned. 

■ The maximum size of a LOB is 4 gigabytes, but the maximum size of a LONG is 2 
gigabytes. 

See Also: OraDynaset Object on page 9-30



Oracle Objects for OLE Error Handling

5-6 Oracle Objects for OLE Developer's Guide

■ LOBs support random access to data, but LONGs data types support only 
sequential access. 

■ LOB data types (except NCLOB) can be attributes of a user-defined object type, but 
LONG data types cannot. 

■ LOB client-side buffering is used to optimize multiple small writes. 

■ LOB data can be stored in operating system files outside of database tablespaces 
(BFILE types). 

To make migration easier, the following methods can be used with BLOB, CLOB, and 
BFILE types: 

■ AppendChunk Method on page 10-28

■ AppendChunkByte Method on page 10-30

■  GetChunk Method on page 10-156

■ GetChunkByte Method on page 10-158

■ GetChunkByteEx Method on page 10-160

■ ReadChunk Method on page 10-224

For older applications using the LONG RAW chunking methods, migration should not 
require a lot of changes to the code. The primary code changes involve the 
requirement that null BLOB and CLOB types be updated with empty before being used. 

Using Connection Pooling
The connection pool in OO4O is a pool of OraDatabase objects. An OO4O 
connection pool is a group of (possibly) already connected OraDatabase objects. For 
applications that require constant connections and disconnections to the database, 
such as ASP Web applications, using a connection pool results in enhanced 
performance.

Oracle Objects for OLE Error Handling
OO4O errors are grouped in the following categories:

■ OLE Automation Errors

■ Nonblocking Errors

■ Find Method Parser Errors

■ Find Method Run-Time Errors

■ OraObject Instance Errors

■ LOB Errors

■ Oracle Streams Advanced Queuing Errors

■ OraCollection Errors

■ OraNumber Errors

■ Oracle Errors

■ Oracle Data Control Errors

See Also: "Using the Connection Pool Management Facility" on 
page 3-8



Oracle Objects for OLE Error Handling

Tuning and Troubleshooting 5-7

OLE Automation Errors
The programmatic interface of the OO4O automation server is the OO4O In-Process 
Automation server. Errors that occur during execution of methods are frequently 
reported as an OLE Automation Error (ERR = 440, ERROR$="OLE Automation 
Error"). 

When an error occurs, check the LastServerErr property of the OraSession and 
OraDatabase objects to determine whether an Oracle database error has occurred. If 
the LastServerErr is not zero, then an error has been raised by the OO4O 
automation server. 

To find OO4O automation server errors, scan the string returned by the ERROR$  
function for the string "OIP-NNNN" where NNNN is an error number included in the 
Table 5–1. 

Table 5–1 lists the Oracle OLE automation errors.

Note: These values are included in the oraconst.txt file in the 
ORACLE_BASE\ORACLE_HOME\oo4o directory.

See Also:

■ "Oracle Objects for OLE In-Process Automation Server" on 
page 1-2

■ LastServerErr Property on page 11-87

■ OraSession Object on page 9-58

■ OraDatabase Object on page 9-28

Table 5–1 Oracle OLE Automation Errors

Constant Value Description

OERROR_ADVISEULINK 4096 Internal error: Invalid advisory connection. 

OERROR_POSITION 4098 An attempt was made to retrieve a field value from 
an empty dynaset.

OERROR_NOFIELDNAME 4099 An invalid field name was specified.

OERROR_NOFIELDINDEX 4100 An invalid field index was specified. The range of 
indexes is 0 to FieldCount-1.

OERROR_TRANSIP 4101 A BeginTrans operation was specified while a 
transaction was already in progress.

OERROR_TRANSNIPC 4104 A CommitTrans operation was specified without 
first executing a BeginTrans.

OERROR_TRANSNIPR 4105 A Rollback operation was specified without first 
executing a BeginTrans.

OERROR_NODSET 4106 Internal error: System attempted to remove a 
nonexistent dynaset.

OERROR_INVROWNUM 4108 An attempt was made to reference an invalid row. 
This happens when EOF or BOF is True, or when 
the current row was deleted and no record 
movement occurred.

OERROR_TEMPFILE 4109 An error occurred while trying to create a 
temporary file for data caching.



Oracle Objects for OLE Error Handling

5-8 Oracle Objects for OLE Developer's Guide

OERROR_DUPSESSION 4110 An attempt was made to create a named session 
that already exists, using the CreateSession or 
CreateNamedSession method.

OERROR_NOSESSION 4111 Internal error: System attempted to remove a 
nonexistent session.

OERROR_NOOBJECTN 4112 An attempt was made to reference a named object 
of a collection (other than the fields collection) that 
does not exist.

OERROR_DUPCONN 4113 Internal error: Duplicate connection name.

OERROR_NOCONN 4114 Internal error: System attempted to remove a 
nonexistent connection.

OERROR_BFINDEX 4115 An invalid field index was specified. The range of 
indexes is 0 to Count -1.

OERROR_CURNREADY 4116 Internal error: System attempted to move to a row 
but the dynaset does not support this operation.

OERROR_NOUPDATES 4117 An attempt was made to change the data of a 
nonupdatable dynaset.

OERROR_NOTEDITING 4118 An attempt was made to change the value of a 
field without first executing the Edit method.

OERROR_DATACHANGE 4119 An attempt was made to edit data in the local 
cache, but the data on Oracle Database was 
changed.

OERROR_NOBUFMEM 4120 Out of memory for data binding buffers.

OERROR_INVBKMRK 4121 An invalid bookmark was specified.

OERROR_BNDVNOEN 4122 Internal error: Bind variable was not enabled.

OERROR_DUPPARAM 4123 An attempt was made to create a named parameter 
using the Add method, but that name already 
exists.

OERROR_INVARGVAL 4124 An invalid offset or length parameter was passed 
to the GetChunk method, or an internal error 
occurred using the AppendChunk method.

OERROR_INVFLDTYPE 4125 An attempt was made to use the GetChunk or 
AppendChunk method on a field that was not 
either Long or Long Raw type.

OERROR_INVARG 4126 An invalid argument value was entered.

OERROR_TRANSFORUP 4127 A SELECT ... FOR UPDATE operation was 
specified without first executing the BeginTrans 
operation.

OERROR_NOTUPFORUP 4128 A SELECT ... FOR UPDATE operation was 
specified, but the query is nonupdatable.

OERROR_TRANSLOCK 4129 A Commit or Rollback was executed while a 
SELECT ... FOR UPDATE operation was in 
progress.

OERROR_CACHEPARM 4130 An invalid cache parameter was specified. Note 
that the maximum value for the CacheBlocks 
parameter is 127.

Table 5–1 (Cont.) Oracle OLE Automation Errors

Constant Value Description



Oracle Objects for OLE Error Handling

Tuning and Troubleshooting 5-9

Nonblocking Errors
Table 5–2 lists the nonblocking errors.

Find Method Parser Errors
Find method parser errors occur when the parser cannot evaluate the expression in 
the Find method. These errors specify the part of the expression that caused the error.

OERROR_FLDRQROWID 4131 An attempt was made to reference a field that 
requires a ROWID (Long or Long Raw), but the 
ROWID value was not available.

OERROR_OUTOFMEMORY 4132 Internal Error: Out of memory.

OERROR_MAXSIZE 4135 Element size specified in the AddTable method 
exceeds the maximum size allowed for that 
variable type. See "AddTable Method" on 
page 10-23 for more details.

OERROR_INVDIMENSION 4136 Dimension specified in the AddTable method is 
invalid (that is, negative). See "AddTable Method" 
on page 10-23 for more details.

OERROR_ARRAYSIZ 4138 Dimensions of array parameters used in the 
INSERT, UPDATE, and DELETE statements are not 
equal. 

OERROR_ARRAYFAILP 4139 Error processing arrays. For details see the 
oo4oerr.log in the Windows directory.

OE_CLIPFAIL 4141 Internal error: Clipboard could not be opened or 
closed.

OE_NOSOURCE 4143 No source string was provided for the 
UpdateResource method.

OE_INVSOURCE 4144 Invalid source type was provided for 
UpdateSource method.

OE_PLSQLDYN 4145 An attempt was made to set SQL property for 
dynaset created from PL/SQL cursor.

OERROR_CREATEPOOL 4147 Database pool already exists for this session.

OERROR_GETDB 4148 Unable to obtain a free database object from the 
pool.

OE_INVINPUTTYP 4149 Input type is not compatible with the field or 
parameter type.

OE_NOEDITONCLONE 4150 An attempt was made to edit a cloned object.

OE_BNDCHGTYPERR 4152 An attempt was made to change the type of a 
parameter array or an array of extended type.

Table 5–2 Nonblocking Errors

Constant Value Description

OERROR_NONBLKINPROGRESS 4153 Nonblocking operation in 
progress.

OERROR_NONONBLKINPROGRESS 4154 Operation is valid only when 
nonblocking operation is in 
progress.

Table 5–1 (Cont.) Oracle OLE Automation Errors

Constant Value Description



Oracle Objects for OLE Error Handling

5-10 Oracle Objects for OLE Developer's Guide

Table 5–3 lists the Find method parser errors.

Find Method Run-Time Errors
Find method run-time errors occur when the system cannot evaluate a find 
expression. Such errors are rare. When one occurs, the parser could have generated 
incorrect code.

Table 5–4 lists the Find method run-time errors.

OraObject Instance Errors
Table 5–5 lists the OraObject instance errors.

Table 5–3 Find Method Parser Errors

Constant Value Description

OERROR_STACK_OVER 4496 Stack overflow.

OERROR_SYNTAX 4497 Syntax error.

OERROR_MISPLACED_
PAREN

4498 Misplaced parenthesis. 

OERROR_MISPLACED_
QUOTE

4499 Misplaced quotation marks. 

OERROR_MISSING PAREN 4500 Warning: Missing closing parenthesis.

OERROR_EXPECTED_PAREN 4501 Open parenthesis expected.

OERROR_PARSER_UNKNOWN 4502 Unknown parser error condition.

OERROR_INVALID_
FUNCTION

4503 Syntax not supported.

OERROR_INVALID_COLUMN 4504 Invalid column name.

OERROR_MAX_TOKEN 4505 Maximum size exceeded in token.

OERROR_PARSER_DATA_
TYPE

4506 Unsupported data type.

OERROR_UNEXPECTED_
TOKEN

4507 Unexpected token found.

OERROR_END_OF_CLAUSE 4508 Unexpected end of clause.

Table 5–4 Find Method Run-Time Errors

Constant Value Description

OERROR_INVALID_INSTR 4516 Internal error: Invalid instruction.

OERROR_STACK_ERROR 4517 Internal error: Stack overflow or underflow.

OERROR_CONVERT_TYPES 4518 Invalid type conversion.

OERROR_RUNTIME_DATA_TYPE 4519 Invalid data type.

OERROR_INVALID_SQL_ARG 4520 SQL function missing an argument.

OERROR_INVALID_COMPARE 4521 Invalid comparison.

OERROR_SELECT_DUAL 4522 SELECT from dual failed.

OERROR_DUAL_DATATYPE 4523 Invalid data type in SELECT from dual.

OER_OPER 4524 Invalid use of operator.



Oracle Objects for OLE Error Handling

Tuning and Troubleshooting 5-11

LOB Errors
Table 5–6 lists the LOB errors.

Table 5–5 OraObject Instance Errors

Constant Value Description

OERROR_NOOBJECT 4796 Creating an OraObject object instance in the 
client-side object cache failed.

OERROR_BINDERR 4797 Binding an OraObject object instance to a SQL 
statement failed.

OERROR_NOATTRNAME 4798 Getting the attribute name of an OraObject 
object instance failed.

OERROR_NOATTRINDEX 4799 Getting the attribute index of an OraObject 
object instance failed.

OERROR_INVINPOBJECT 4801 Invalid input object type for the binding 
operation.

OERROR_BAD_INDICATOR 4802 Fetched OraObject instance has an invalid 
indicator structure.

OERROR_OBJINSTNULL 4803 Operation on the NULL OraObject instance 
failed. See the "IsNull (OraObject) Property" on 
page 11-81.

OERROR_REFNULL 4804 Pin operation on the NULL Ref value failed. See 
the "IsRefNull (OraRef) Property" on page 11-84.

See Also:

■ IsNull (OraObject) Property on page 11-81

■ IsRefNull (OraRef) Property on page 11-84

■ OraObject Object on page 9-43

■ OraRef Object on page 9-52

Table 5–6 LOB Errors

Constant Value Description

OERROR_INVSEEKPARAMS 4897 Invalid seek value is specified for the LOB read/write 
operation.

OERROR_LOBREAD 4898 Read operation failed.

OERROR_LOBWRITE 4899 Write operation failed.

OEL_INVCLOBBUF 4900 Input buffer type for CLOB write operation is not 
string.

OEL_INVBLOBBUF 4901 Input buffer type for BLOB write operation is not 
byte.

OERROR_INVLOBLEN 4902 Invalid buffer length for the LOB write operation.

OERROR_NOEDIT 4903 Write, Trim, Append, Copy operations are not 
allowed in this mode.

OERROR_INVINPUTLOB 4904 Invalid input LOB for the bind operation.

OERROR_NOEDITONCLONE 4905 Write, Trim, Append, Copy operations are not 
allowed for a cloned LOB object.



Oracle Objects for OLE Error Handling

5-12 Oracle Objects for OLE Developer's Guide

Oracle Streams Advanced Queuing Errors
Table 5–7 lists the Oracle Streams Advanced Queuing errors.

OraCollection Errors
Table 5–8 lists the OraCollection errors.

OERROR_LOBFILEOPEN 4906 Specified file could not be opened during a LOB 
operation. 

OERROR_LOBFILEIOERR 4907 File Read or Write operation failed during a LOB 
operation.

OERROR_LOBNULL 4908 Operation on NULL LOB failed. See "IsNull 
(OraLOB/BFILE) Property" on page 11-80.

See Also:

■ OraBLOB, OraCLOB Objects on page 9-11

■ IsNull (OraLOB/BFILE) Property on page 11-80

Table 5–7 Oracle Streams Advanced Queuing Errors

Constant Value Description

OERROR_AQCREATEERR 4996 Error creating the OraAQ Object.

OERROR_MSGCREATEERR 4997 Error creating the AQMsg object. 

OERROR_PAYLOADCREATEERR 4998 Error creating the payload object. 

OERROR_MAXAGENTS 4999 Maximum number of subscribers exceeded. 

OERROR_AGENTCREATEERR 5000 Error creating the AQAgent object.

See Also: OraAQ Object on page 9-3

Table 5–8 OraCollection Errors

Constant Value Description

OERROR_COLLINSTNULL 5196 Operation on NULL OraCollection failed. 
See "IsNull (OraCollection) Property" on 
page 11-79.

OERROR_NOELEMENT 5197 Element does not exist for the given index.

OERROR_INVINDEX 5198 Invalid collection index is specified.

OERROR_NODELETE 5199 Delete operation is not supported for the 
VARRAY collection type.

OERROR_SAFEARRINVELEM 5200 Variant SafeArray cannot be created from 
the collection having nonscalar element 
types.

Table 5–6 (Cont.) LOB Errors

Constant Value Description



Oracle Objects for OLE Error Handling

Tuning and Troubleshooting 5-13

OraNumber Errors
Table 5–9 lists the OraNumber errors.

Oracle Errors
The most recent Oracle error text is available from the LastServerErr and 
LastServerErrText properties of the OraSession or OraDatabase objects. 

■ OraSession object

The LastServerErr and LastServerErrText properties of the OraSession 
object return all errors related to connections, such as errors on the 
OpenDatabase method.

■ OraDatabase object

The LastServerErr and LastServerErrText properties of the OraDatabase 
object return all errors related to an Oracle cursor, such as errors on the 
CreateDynaset, CreateSQL, and ExecuteSQL methods.

Oracle Data Control Errors
Oracle Data Control errors are specific to the Oracle data control. During the visual 
access of the data control, the OO4O automation server-specific errors are reported as 
OLE automation server errors with the error code of ODCERR_AUTOMATION. Specific 
Oracle Data Control error codes are retrieved from the DataErr parameter of the 
Error() event. 

Table 5–10 lists the Oracle Data Control errors.

See Also:

■ OraCollection Object on page 9-19

■ IsNull (OraCollection) Property on page 11-79

Table 5–9 OraNumber Errors

Constant Value Description

OERROR_NULLNUMBER 5296 Operation on NULL OraNumber object failed.

See Also: OraNumber Object on page 9-41

See Also:

■ LastServerErr Property on page 11-87

■ LastServerErrText Property on page 11-90

■ OraSession Object on page 9-58

■ OraDatabase Object on page 9-28

Table 5–10 Oracle Data Control Errors

Constant Value Description

ODCERR_INITOIP 28000 Initialization of Oracle In-Process Server failed. Check 
the registry for the correct location of Oracle 
In-Process Server.



Troubleshooting

5-14 Oracle Objects for OLE Developer's Guide

Troubleshooting
This topic describes common errors related to the following:

■ OLE Initialization or OLE Automation Errors

■ Oracle Network Errors

■ Access Violations

OLE Initialization or OLE Automation Errors
The most frequent cause of OLE initialization and automation errors is missing or 
incorrectly installed software. Ensure correct installation of the software specified. 
Then make sure that you have specified method and property names correctly and 
that you have declared all Oracle objects as type object.

Table 5–11 lists the causes and solutions for OLE errors.

ODCERR_OLEQE 28001 Internal error. Querying In-Process Server interface 
failed.

ODCERR_AUTOMATION 28003 Oracle In-Process Server error occurred.

ODCERR_NODYNASET 28007 Attempted to access Oracle Data Control before 
initialization.

ODCERR_FIELDINDEX 28009 Bound controls trying to access with invalid field 
index.

ODCERR_FIELDNAME 28013 Bound controls tried to access with an invalid field 
name.

ODCERR_MEMORY 28014 Internal error. Failed to allocate memory for the 
requested bindings from the bound control.

ODCERR_BMKTYPE 28015 Oracle Data Control does not support the requested 
bookmark type.

ODCERR_CONVERSION 28016 Oracle Data Control cannot convert the field value to 
the requested type.

ODCERR_SETSESSION 28017 Setting the session property is not allowed.

ODCERR_SETDATABASE 28018 Setting the database property is not allowed.

ODCERR_BLOBUPDATE 28019 Oracle Data Control does not update picture or raw 
data directly from the bound control. Use 
AppendChunk() method.

ODCERR_DYN_NOCACHE 28020 Recordset property cannot be set to a dynaset 
created with the ORADYN_NOCACHE option (bound 
control connected to data control often requires 
bidirectional navigation).

ODCERR_DYN_
NOMOVEFIRST

28021 Recordset property cannot be set to a dynaset 
created with the ORADYN_NOMOVEFIRST option.

See Also: AppendChunk Method on page 10-28

See Also: Oracle Database Error Messages for additional 
information about errors 

Table 5–10 (Cont.) Oracle Data Control Errors

Constant Value Description



Troubleshooting

Tuning and Troubleshooting 5-15

Oracle Network Errors
The most frequent cause of Oracle network errors is incorrectly specified connection 
information. The connection information for Oracle Objects for OLE is specified 
differently than when using Open Database Connectivity (ODBC). Please verify that 
you specified connection information correctly, and then make sure your network 
connection is working properly before using Oracle Objects for OLE. The appropriate 
Oracle network documentation contains information about testing your connection 
and about any Oracle networking error that you may receive.

Table 5–12 lists the Oracle network errors.

Table 5–11 Causes and Solutions for OLE Errors

Possible Cause Solution

Your system does not 
contain the Microsoft OLE 
Automation or run-time, 
files or these files are out of 
date. 

Make sure you have the latest versions of files such as the 
following installed.

■ mfc42.dll

■ oleaut32.dll

■ ole32.dll

The Oracle Objects for OLE 
object information was not 
registered in the Windows 
registration database.

Either reinstall Oracle Objects for OLE or run the 
regedt32.exe file to register information. See "Oracle Objects 
for OLE Redistributable Files" on page 1-6.

Your system does not 
contain the Oracle Required 
Support Files:

■ oraclient*.dll

■ orageneric*.dll

■ oracommon*.dll

■ oracore*.dll

■ oranls*.dll

Check the OO4O readme.htm file to see what version of the 
Oracle Database client is required and install it. 

Your system does not 
contain the Oracle 
networking product or its 
files are not on the PATH.

Install an Oracle networking product, or add to your PATH an 
environment variable that indicates the directory containing 
these files.

You misspelled a method or 
property name.

Check Oracle Objects for OLE Developer's Guide (this guide) to 
determine the correct spelling.

You referenced a method or 
property from the wrong 
object.

Check Oracle Objects for OLE Developer's Guide (this guide) to 
determine the correct object.

Your system does not 
contain the 
oraansiVER.dll file.

Reinstall Oracle Objects for OLE or add to your PATH 
environment variable the directory in which these files are 
located.

Note: VER refers to the version. 

See Also: "Oracle Objects for OLE Redistributable Files" on page 1-6



Troubleshooting

5-16 Oracle Objects for OLE Developer's Guide

Access Violations
The most frequent cause of access violations is installing Oracle Objects for OLE while 
other applications are running that require the OO4O automation server, Oracle 
Required Support Files, or OLE. To avoid this, install Oracle Objects for OLE 
immediately after starting Windows and before running any other application.

Table 5–13 lists the access violations.

Table 5–12 Oracle Networking Errors

Possible Cause Solution

Incorrect Connect property or 
argument to the OpenDatabase 
method.

See the topics on the Connect property or the 
OpenDatabase method for examples.

Incorrect DatabaseName 
property or argument to the 
OpenDatabase method.

See the topics on the DatabaseName property or the 
OpenDatabase method for examples.

Your system does not contain the 
Oracle networking product.

Install Oracle networking software.

See Also:

■ Connect Property on page 11-23

■ DatabaseName Property on page 11-37

■ OpenDatabase Method on page 10-212

Table 5–13 Access Violations

Possible Cause Solution

Duplicate Oracle Objects for 
OLE files exist in SYSTEM 
directories or along the 
PATH.

Remove any duplicate files. The files oipVER.dll and 
oipVER.tlb should only be located in the ORACLE_
BASE\ORACLE_HOME\bin directory.

Duplicate Oracle Required 
Support Files DLLs exist in 
the SYSTEM directories or 
along the PATH.

Remove any duplicate files. Typically, the Oracle Required 
Support Files DLLs are located in the ORACLE_BASE\ORACLE_
HOME \bin directory:

■ oraclient*.dll

■ orageneric*.dll

■ oracommon*.dll

■ oracore*.dll

■ oranls*.dll

Duplicate OLE DLLs exist in 
the SYSTEM directories or 
along the PATH.

Remove any duplicate files. The OLE DLLs (listed in the OO4O 
File Locations section) should only be located in \system 
directories.

See Also: "Oracle Objects for OLE File Locations" on page 1-6



6

Quick Tour with Visual Basic 6-1

6Quick Tour with Visual Basic

This quick tour is designed to get you started with Oracle Objects for OLE for Visual 
Basic. An example application, the employee database application, demonstrates how 
to program basic database operations, such as navigating through data and, adding, 
modifying, and querying records. A more advanced section demonstrates how to 
perform batch inserts using parameter arrays and SQL statement objects. This quick 
tour and example application assume that the Scott/Tiger schema is installed.

The entire code for this example application is provided in the ORACLE_
BASE\ORACLE_HOME\OO4O\VB\SAMPLES\QT\ directory.

This quick tour covers the following topics:

■ Introduction

■ Getting Started: Steps to Accessing Oracle Data

■ Programming a Data Entry Form

■ Programming a Batch Form

Introduction
This section introduces the employee database application and the two Visual Basic 
forms that users interact with to use the application.

About the Employee Database Application
The employee database application lets the user do the following:

■ Browse through data

■ Add records

■ Update records

■ Query the database

■ Add records in a batch operation

To provide these functions, this example uses the following forms:

■ Employee Form

■ Batch Insert Form

See Also: "Demonstration Schema and Code Examples" on page 2-1



Introduction

6-2 Oracle Objects for OLE Developer's Guide

Employee Form
The Employee Form displays the fields of the database EMP table and has functional 
buttons that allow the user to browse, add, update, and query records. 

Figure 6–1 shows the Employee Form.

Figure 6–1 Employee Form

Batch Insert Form
The Batch Insert Form allows users to enter records in a batch operation. 

Figure 6–2 shows the Batch Insert Form.

See Also:

■ "Completed Sample Form_Load Procedure" on page 6-5 for the 
code for the Form_Load procedure that initializes the Employee 
Form 

■ "Programming a Data Entry Form" on page 6-6 for a detailed 
description of the Employee Form and code for the navigational 
buttons

See Also: "Programming a Batch Form" on page 6-16 for a detailed 
description of the Batch Insert Form and code for its commands



Getting Started: Steps to Accessing Oracle Data

Quick Tour with Visual Basic 6-3

Figure 6–2 Batch insert Form

Getting Started: Steps to Accessing Oracle Data
Before server data can be manipulated, the application must accomplish the four steps 
that are described in this section. Sample code for this example is provided in 
"Completed Sample Form_Load Procedure" on page 6-5.

1. Start the Oracle In-Process Automation Server.

The Oracle In-Process Server (OIP) provides the interface between the Visual Basic 
application and Oracle Database. To start the Oracle In-Process Server, you must 
create an OraSession object using the Visual Basic CreateObject() function, 
as follows:

Set OraSession = CreateObject("OracleInProcServer.XOraSession")

When creating the OraSession object, the argument supplied to the 
CreateObject() function must always be 
OracleInProcServer.XOraSession. The left side of the argument defines the 
application name as registered in your system, in this case, 
OracleInProcServer. The right side identifies the type of object to create, in 
this case, the XOraSession object.   Executing this command starts the Oracle 
In-Process Server.

2. Connect to Oracle Database.

After the OIP server is running, you can connect to a local or remote Oracle 
database. To do so, you must create the OraDatabase object as follows:

Set OraDatabase = OraSession.OpenDatabase("Exampledb", "scott/tiger", _
       ORADB_DEFAULT)

The OraSession.OpenDatabase() method creates the OraDatabase object. 
The method call must specify the database name, the connection string, and a bit 
flag that represents the database mode. The constant ORADB_DEFAULT represents 



Getting Started: Steps to Accessing Oracle Data

6-4 Oracle Objects for OLE Developer's Guide

the default database mode. When Visual Basic executes this line, a connection is 
created to the specified database.

3. Create a global OraDynaset object to manipulate the data.

Oracle Objects for OLE lets users browse and update data using an object called a 
dynaset. 

The Employee application needs a global dynaset that the rest of the program can 
access. The OraDatabase.CreateDynaset() method creates the dynaset 
specifying a valid SQL SELECT statement. In the example, the statement selects all 
the rows from the emp table and assigns the resulting dynaset to the global 
EmpDynaset variable as follows:

Set EmpDynaset = OraDatabase.CreateDynaset("select * from emp", _ 
     ORADYN_DEFAULT)

The CreateDynaset() method returns a pointer to the result of the SQL 
SELECT statement. 

The ORADYN_DEFAULT parameter value specifies the default dynaset state. In the 
default state, Oracle Objects for OLE sets unset fields to NULL while adding 
records using the AddNew method. This behavior is preferable because the emp 
table has no column defaults defined. You can also specify other options to allow 
server column defaults when adding records. 

4. Refresh the Employee Form with dynaset data.

The Employee Form displays database records one row at a time. Changes to the 
current row, such as those caused by navigating to a different row, must be 
reflected on the screen. The EmpRefresh() subroutine updates fields with the 
current dynaset row. For NULL field values, empty strings are displayed.

The following is an example of an EmpRefresh() subroutine:

  Private Sub EmpRefresh()
 'check if the current dynaset row is valid
 If EmpDynaset.BOF <> True And EmpDynaset.EOF <> True Then
 
  txtEmpno = EmpDynaset.Fields("empno").Value
  
  ' we can't display nulls, so display ""  for NULL fields
  If Not IsNull(EmpDynaset.Fields("ename").Value) Then
    txtEname = EmpDynaset.Fields("ename").Value
    Else
      txtEname = ""
    End If
    
  If Not IsNull(EmpDynaset.Fields("job").Value) Then
    txtJob = EmpDynaset.Fields("job").Value
    Else
      txtJob = ""
    End If
    
  'check if mgr=nul
  If Not IsNull(EmpDynaset.Fields("mgr").Value) Then
   txtMgr = EmpDynaset.Fields("mgr").Value
   Else
     txtMgr = ""
   End If

See Also: "CreateDynaset Method" on page 10-85 



Getting Started: Steps to Accessing Oracle Data

Quick Tour with Visual Basic 6-5

  
  If Not IsNull(EmpDynaset.Fields("hiredate").Value) Then
    txtHireDate = EmpDynaset.Fields("hiredate").Value
  Else
    txtHireDate = ""
  End If
  
  If Not IsNull(EmpDynaset.Fields("hiredate").Value) Then
    txtSal = EmpDynaset.Fields("sal").Value
  Else
    txtSal = ""
   End If
    
  'check if comm=nul
  If Not IsNull(EmpDynaset.Fields("comm").Value) Then
   txtComm = EmpDynaset.Fields("comm").Value
  Else
   txtComm = ""
  End If
 
  txtDeptno = EmpDynaset.Fields("deptno").Value
 
'if the current dynaset row is invalid, display nothing
 Else
 
  txtEmpno = ""
  txtEname = ""
  txtJob = ""
  txtMgr = ""
  txtHireDate = ""
  txtSal = ""
  txtComm = ""
  txtDeptno = ""
 
 End If
 
End Sub

Completed Sample Form_Load Procedure
In the employee application described in the previous section, the Form_Load() 
procedure creates the OIP server, connects to the database, creates a global dynaset, 
and calls the EmpRefresh function to display the field values on the Employee Form. 
The following is an example of a Form_Load() procedure:

Private Sub Form_Load()
'OraSession and OraDatabase are global
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 Set OraDatabase = OraSession.OpenDatabase("Exampledb", "scott/tiger", 0&)
 Set EmpDynaset = OraDatabase.CreateDynaset("select * from emp", 0&) 
 
 Call EmpRefresh
 
End Sub

The following variables must be defined globally in EMP_QT.BAS:

Global OraSession As Object
Global OraDatabase As Object



Programming a Data Entry Form

6-6 Oracle Objects for OLE Developer's Guide

Global EmpDynaset As Object

Programming a Data Entry Form
This section describes the Employee Form in detail and then describes the functions 
that it uses.

About the Employee Form
The Employee form displays the fields of the database EMP table and has functional 
buttons that allow the user to browse, add, update, and query records. 

Each field corresponds to a column in the database EMP table. The Employee field 
(ENAME) is the indexed column and is mandatory for each record. The field data types 
and sizes are defined as follows in the EMP table:

Name                     Null?       Type
-----------------------   ----------  --------------------------
EMPNO                     NOT NULL    NUMBER(4)
ENAME                                 VARCHAR2(10)
JOB                                   VARCHAR2(9)
MGR                                   NUMBER(4)
HIREDATE                              DATE
SAL                                   NUMBER(7,2)
COMM                                  NUMBER(7,2)
DEPTNO                    NOT NULL    NUMBER(2)

The Employee Number (EMPNO) and Department (DEPTNO) columns are NOT NULL, 
and, therefore, always require a value when a record is added. The length of each field 
is enforced by setting the MaxLength property of each TextBox to the appropriate 
number.

Figure 6–3 shows the Employee Form.

Figure 6–3 Employee Form

The initial code for the actual Form_Load procedure is provided in "Completed 
Sample Form_Load Procedure" on page 6-5. 



Programming a Data Entry Form

Quick Tour with Visual Basic 6-7

The Employee form is initialized by the Form_Load() procedure and includes the 
following features:

■ Navigating Through Data

■ Adding Records

■ Updating Records

■ Deleting Records

■ Querying the Database

Navigating Through Data
Database applications typically require that the user be able to view data in the 
database. The Employee form has four buttons that let the user scroll through data. 
Table 6–1 lists the buttons, what they do, which dynaset move method enables the 
action of the button, and where to look for further information.

To enable navigation through the records of the Employee database, you must first 
create a global dynaset that selects all the records (rows). Then use the dynaset move 
methods to program the navigation buttons.

Moving to First or Last Rows
To enable a move to the first row of a dynaset, use the MoveFirst method. Then call 
the EmpRefresh() routine to refresh the data in the Employee form. 

The following example code shows the first-click event procedure for the employee 
example:

Private Sub cmdFirst_Click()
 
 EmpDynaset.MoveFirst
 Call EmpRefresh
 
End Sub

For a move to the last row, use the MoveLast method. Then, call the EmpRefresh() 
routine to refresh the data in the Employee form. 

The following example code shows the last-click event procedure for the employee 
example:

Private Sub cmdLast_Click()
 
 EmpDynaset.MoveLast
 Call EmpRefresh
 
End Sub

Table 6–1 Navigational Buttons and Dynaset Move Methods

Button Action Method See...

|< Moves to the first record MoveFirst Moving to First or Last Rows

< Moves to the previous 
record

MovePrevious Moving to the Previous Row

> Moves to the next record MoveNext Moving to the Next Row

>| Moves to the last record MoveLast Moving to First or Last Rows



Programming a Data Entry Form

6-8 Oracle Objects for OLE Developer's Guide

Moving to the Previous Row
Navigation is possible to any row of a dynaset. If a user is positioned in the middle of 
a dynaset (that is, the current row is not the first row), the MovePrevious method 
enables navigation to the previous row.

However, when a user is positioned on the first row (current row is the first row) and 
executes the MovePrevious method, the beginning-of-file (BOF) condition becomes 
TRUE and the current row becomes invalid. In this case, the current row must be reset 
to the first row using the MoveFirst method.

The following example code shows the click-event procedure for the Previous button:

Private Sub cmdPrevious_Click()
 
 If EmpDynaset.BOF <> True Then
  EmpDynaset.DbMovePrevious
  If EmpDynaset.BOF = True Then
   MsgBox WarnFirstEmp$
   EmpDynaset.DbMoveFirst
  End If
 End If

Moving to the Next Row
If a user is positioned in the middle of a dynaset (that is, the current row is not the last 
row), the MoveNext method enables navigation to the next row.

However, when a user is positioned on the last row (current row is the last row) and 
then executes MoveNext, the end-of-file condition (EOF) becomes TRUE and the 
current row becomes invalid. In this case, the current row must be reset to the last row 
using the MoveLast method.

The following example code shows the click-event procedure for the Next button:

Private Sub cmdNext_Click()
 
 If EmpDynaset.EOF <> True Then
  EmpDynaset.DbMoveNext
  If EmpDynaset.EOF = True Then
   MsgBox WarnLastEmp$
   EmpDynaset.DbMoveLast
  End If
 End If

Adding Records
In the example application, the following buttons allow users to add employee records 
to the database:

■ Add

■ Commit

To add a record, the user clicks on the Add button, enters the new fields in the text 
boxes, and then clicks the Commit button to save the data to the database.

Coding the Add Button 
The Add event procedure must perform the following steps:



Programming a Data Entry Form

Quick Tour with Visual Basic 6-9

1. Clear the fields on the form.

2. Disable the Add button.

3. Enable the Commit button.

4. Let the user enter new field values.

The following example code shows the Add event procedure for the Add button:

Private Sub AddNew_Click()
'Blank out the fields
  txtEmpno = ""
  txtEname = ""
  txtJob = ""
  txtMgr = ""
  txtHireDate = ""
  txtSal = ""
  txtComm = ""
  txtDeptno = ""
    
'Disable the Add button and enable the commit button
  AddNew.Enabled = False
  Commit.Enabled = True
'Disable the navigation buttons
  DisableNavButtons
'Set doadd to true for commit procedure
  DoAdd = True
End Sub

When the AddNew_Click() method exits, control returns to the Employee Form 
where the user enters values in the fields.

Coding the Commit Button (Add)
To commit an addition, you must place the dynaset in add mode using the AddNew 
method. Then, you assign the new data to the dynaset fields and update the database 
using the Update method. To make the program robust, the software validates some 
fields before adding them to the database.

The Commit_Click() event procedure for adding records must do the following:

1. Check that the Employee Number and Department fields are not null.

2. Check that the new Employee Number is not a duplicate entry.

Steps 1 and 2 are performed by the DoValidationChecks() function which is 
described following the Commit_Click() .

3. Place the dynaset in add mode using the AddNew method.

4. Assign entered data to dynaset fields using the Fields().Value property. This 
step is performed by the UpdateDynasetFields function.

5. Update the database with new records, using the Update method.

6. Disable the Commit button.

7. Enable the Add button.

The code for the Commit function is broken into the following routines:

■ "Commit_Click Event Procedure (Add)" on page 6-10

■ "DoValidationChecks( ) Function" on page 6-10



Programming a Data Entry Form

6-10 Oracle Objects for OLE Developer's Guide

■ "UpdateDynasetFields( ) Function" on page 6-11

Commit_Click Event Procedure (Add)  The following is a typical Commit_Click() event 
procedure for adding records:

Private Sub Commit_Click()
 
On Error GoTo err_commit
 
ErrMsg = ""
'Do validation checks on entered data
If DoValidationChecks Then 'If validation checks have passed
    
'Add the new record to dynaset
EmpDynaset.AddNew
 
'Update the dynaset fields and then update database if there is no error.
If UpdateDynasetFields Then

'Update the database
  EmpDynaset.Update
 
Commit.Enabled = False
AddNew.Enabled = True
 
Exit Sub
 
err_commit:
    If ErrMsg <> "" Then
        MsgBox ErrMsg
    Else
        MsgBox Error$
    End If
 
End Sub

DoValidationChecks( ) Function   To check for duplicate entries as suggested in Step 2, you 
must create a local dynaset with the NOCACHE option, using a SQL statement that 
counts the rows matching the entered Employee Number field. If a match is found 
(row count greater than 0), the entered employee number is a duplicate entry and an 
error is displayed. In this case, because the SQL SELECT statement returns only a 
number, creating the dynaset without a cache is a more efficient error check than the 
server finding a duplicate entery.

DoValidationChecks() returns True if the entered data is valid; otherwise, it 
returns False.

Function DoValidationChecks() As Boolean
 
Dim DupDyn As Object
Dim DupDynQry As String
 
On Error GoTo err_ValidationCheck
 
ErrMsg = ""
'Empno cannot be changed while in Update mode, so we can skip over validation
If DoAdd Then
    If txtEmpno = "" Then
        ErrMsg = "You must enter a value for Employee Number"



Programming a Data Entry Form

Quick Tour with Visual Basic 6-11

        Error 1
    End If
End If
 
If txtHireDate <> "" And Not IsDate(txtHireDate) Then
    ErrMsg = "Enter date as dd-mmm-yy."
    Error 2
End If
 
If txtDeptno = "" Then
    ErrMsg = "You must enter a value for Department Number"
    Error 3
End If
 
'If adding a record, check for Duplicate empno value by
'attempting to count rows with same value
'Build Query:
If DoAdd Then
    DupDynQry = "select count(*) from emp where empno = " & txtEmpno
    Set DupDyn = OraDatabase.CreateDynaset(DupDynQry, ORADYN_NOCACHE)
 
    If DupDyn.Fields(0).Value <> 0 Then
        ErrNum = DUPLICATE_KEY
        ErrMsg = "Employee Number already exists."
        Error ErrNum
    End If
End If
'Succesful validation with no errors returns True
DoValidationChecks = True
Exit Function
 
err_ValidationCheck:
    If ErrMsg <> "" Then
        MsgBox ErrMsg
    Else
        MsgBox Error$
    End If
    'Validation returns false on failure
    DoValidationChecks = False
    
End Function

UpdateDynasetFields( ) Function   The commit event procedure calls this function after 
putting the dynaset in either Edit or AddNew mode. The UpdateDynasetFields() 
function sets the dynaset fields to the values entered in the text boxes. The function 
returns TRUE if successful, or returns FALSE if there is an error.

 Function UpdateDynasetFields() As Integer
'This function sets the dynaset field value to those entered in the text boxes. 
'The function returns true on success, false on error.
 
ErrMsg = ""
 
On Error GoTo err_updatedynasetfields
 
EmpDynaset.Fields("empno").Value = txtEmpno
EmpDynaset.Fields("ename").Value = txtEname
EmpDynaset.Fields("job").Value = txtJob
EmpDynaset.Fields("mgr").Value = txtManager



Programming a Data Entry Form

6-12 Oracle Objects for OLE Developer's Guide

EmpDynaset.Fields("hiredate").Value = txtHireDate
EmpDynaset.Fields("sal").Value = txtSal
EmpDynaset.Fields("comm").Value = txtComm
EmpDynaset.Fields("deptno").Value = txtDeptno
 
UpdateDynasetFields = True
 
Exit Function
 
err_updatedynasetfields:
    If ErrMsg <> "" Then
        MsgBox ErrMsg
    Else
        MsgBox Error$
    End If
    UpdateDynasetFields = False

Updating Records
To allow users to update existing records in the database, you need to include an 
Update button in the Employee Form. Users navigate to a particular record, click the 
Update button, make changes, and then click the Commit button. 

While in update mode, the application makes the following restrictions:

■ Users cannot navigate to another record or perform another function.

■ Users cannot change the employee number because this is the primary key.

To program the Update function, write an event procedure for the Update button and 
modify the Commit procedure so that it handles both updating and adding records.

Coding the Update Button 
To code the Update button, disable the Employee Number text box to prevent changes 
to this field while updating records, because this is a primary key. You must also 
disable the other buttons to disable other functions, such as navigation, while 
updating records. 

Set the DoUpdate Boolean expression to TRUE, so the commit procedure recognizes 
the current process as an update operation, not an addition.

The update event procedure must do the following:

1. Disable the Update button.

2. Enable the Commit button.

3. Disable other buttons to disable functions, such as navigation, during the update 
operation.

4. Disable the Employee Number text box.

5. Set the DoUpdate flag to True. 

6. Let the user enter changes.

The following example code shows the update event procedure:

Private Sub cmdUpdate_Click()
'Disable the Update button and enable the commit button
  cmdUpdate.Enabled = False
  Commit.Enabled = True
'Disable all other buttons



Programming a Data Entry Form

Quick Tour with Visual Basic 6-13

  DisableNavButtons
  
  txtEmpno.Enabled = False
  DoUpdate = True
End Sub

The update and add event procedures call the DisableNavButtons() subroutine to 
disable navigation and other functions during an add or update operation. 

Private Sub DisableNavButtons()
'disable all buttons while adding and updating
cmdFirst.Enabled = False
cmdPrevious.Enabled = False
cmdNext.Enabled = False
cmdLast.Enabled = False
cmdFind.Enabled = False
cmdUpdate.Enabled = False
AddNew.Enabled = False
 
End Sub

Coding the Commit Button to Add and Update Records
The procedure for committing an update operation is similar to committing an add, 
except that the dynaset is set in edit mode using the Edit method and then the new 
dynaset values are assigned. 

Because the same commit button and the same commit event procedure are used to 
add and update, two global flags DoAdd and DoUpdate are added to distinguish 
between adding and updating. The Add and Update click event procedures set these 
flags. 

The Commit event procedure for adding and updating must do the following:

1. Validate entered data using the DoValidationChecks() function as before.

2. Use AddNew to add records or else use Edit for updates.

3. Assign entered data to dynaset fields, using the Fields().Value property using  
UpdateDynasetFields() as before.

4. Update database with new records, using Update. 

5. Disable the Commit button.

6. Reenable all other functional buttons including the Add and Update buttons.

7. Set the DoUpdate and DoAdd flags to False.

The code that changes button and flag states in Steps 5 through 7 is provided in a new 
subroutine called SetAfterCommitFlags(). This replaces the lines of code that 
originally enabled Commit and AddNew. 

The code for this Commit function is broken into the following routines:

■ "Commit_Click( ) Event Procedure Example" on page 6-14

■ "DoValidationChecks( ) Function" on page 6-10, also used in the original Commit 
function

■ "UpdateDynasetFields( ) Function" on page 6-11, also used in the original Commit 
function



Programming a Data Entry Form

6-14 Oracle Objects for OLE Developer's Guide

■ "SetAfterCommitFlags() Subroutine Example" on page 6-14, which is a new 
subroutine

Commit_Click( ) Event Procedure Example  

The following example shows the Commit_Click Event Procedure.

Private Sub Commit_Click()
 
On Error GoTo err_commit 
 
ErrMsg = ""
'Do validation checks on entered data
If DoValidationChecks Then 'If validation checks have passed
   
    'If we are adding a record use AddNew
    If DoAdd = True Then
        EmpDynaset.AddNew
    End If
    'If we are updating a record use Edit
    If DoUpdate = True Then
       EmpDynaset.Edit
    End If
    'Update the dynaset fields and then update database if there is no error.
    If UpdateDynasetFields Then
        EmpDynaset.Update
    End If
 
    SetAfterCommitFlags
 
End If 'Endif for DoValidationChecks
 
Exit Sub
 
err_commit:
    If ErrMsg <> "" Then
        MsgBox ErrMsg
    Else
        MsgBox Error$
    End If
 
End Sub

SetAfterCommitFlags() Subroutine Example  

The following example shows the SetAfterCommitFlag() Subroutine.

The SetAfterCommitFlags() subroutine is called at the end of the commit event 
procedure. The SetAfterCommitFlags() subroutine reenables disabled buttons 
and text boxes and sets the DoUpdate and DoAdd flags to False.

Sub SetAfterCommitFlags()
'disable commit and re-enable add and update buttons
Commit.Enabled = False
AddNew.Enabled = True
cmdUpdate.Enabled = True
 
'enable the other buttons
cmdFirst.Enabled = True
cmdPrevious.Enabled = True
cmdNext.Enabled = True



Programming a Data Entry Form

Quick Tour with Visual Basic 6-15

cmdLast.Enabled = True
cmdFind.Enabled = True
cmdUpdate.Enabled = True
AddNew.Enabled = True
 
DoUpdate = False
DoAdd = False
 
txtEmpno.Enabled = True
 
End Sub

Deleting Records
Users can delete records by navigating to a particular record and clicking the Delete 
button. The application prompts the user to verify the deletion, then the application 
deletes the record using the Delete method. The program then refreshes the screen 
with the next record or with the previous record if the user deleted the last record in 
the dynaset.

The following example shows the delete-click event procedure:

Private Sub cmdDelete_Click()
'prompt user
Response = MsgBox("Do you really want to Delete?", vbYesNo + vbExclamation)
    
If Response = vbYes Then
    EmpDynaset.Delete
    'attempt to move to next record
    EmpDynaset.MoveNext
    If EmpDynaset.EOF Then 'If deleted last record
        EmpDynaset.MovePrevious
    End If
    Call EmpRefresh
End If
End Sub

Querying the Database
The employee application can be configured to allow users to search for particular 
records in the database. For demonstration purposes, a Find button is included to 
allow users to query only employee names. At any time, the user can enter the query 
in the Employee Name field, and click the Find button. The application then displays 
the result or displays a message if the name cannot be found.

To search for records, the FindFirst method is used. When the find operation 
succeeds, the record is displayed. If the find fails, a message is displayed. The current 
row is reset to the first row, because failures cause the dynaset to be BOF 
(beginning-of-file), effectively making the current row invalid.

The Find_Click() event procedure must do the following:

1. Build a find clause to find the record where the ENAME column matches the 
entered string.

2. Execute the find using the FindFirst method.

3. Display the record if it is found; if the record was not found, display a message 
and reset the current row to the first row.



Programming a Batch Form

6-16 Oracle Objects for OLE Developer's Guide

The following example shows a typical find click event procedure:

Private Sub cmdFind_Click()
Dim FindClause As String
Dim SingleQuote As String
 
ErrMsg = ""
SingleQuote = "'"
 
On Error GoTo err_find
'build the find clause:
'Can make our query case insensitive by converting the names to upper case
'FindClause = "UPPER(ename) = " & SingleQuote & UCase(txtEname) & SingleQuote
FindClause = "ename = " & SingleQuote & txtEname & SingleQuote
   
EmpDynaset.DbFindFirst FindClause
 
If EmpDynaset.NoMatch Then
    MsgBox "Could not find record matching Employee Name " & txtEname
    EmpDynaset.DbMoveFirst
End If
 
Call EmpRefresh
 
Exit Sub

Using Batch Insert
A typical command to load the Batch Insert form looks like this:

Private Sub BInsert_Click()
  Load BatchInsert
  BatchInsert.Show
End Sub

Programming a Batch Form
This section describes the Batch Insert Form and then describes the functions that it 
uses.

About the Batch Insert Form
The Batch Insert Form allows users to insert rows in a batch operation, that is, to insert 
more than one record into the database by using only one command. This feature is 
implemented using parameter arrays and SQL statements.

Table 6–4 shows a typical Batch Insert Form:

See Also: "Programming a Batch Form" on page 6-16



Programming a Batch Form

Quick Tour with Visual Basic 6-17

Figure 6–4 Batch Insert Form

Users navigate to the Batch Insert Form by clicking the Batch Insert button on the 
Employee Form. The Batch Insert Form has a grid that displays the entered data and a 
row of fields where the user enters each record. To keep the example simple, users are 
only allowed to enter information into the Employee Number, Employee Name, and 
Department Number fields.

Users enter records in the fields and click the Add to Grid button. The program 
displays the entered records in the grid. To insert the entire batch to the database, users 
click the CommitGrid button.

The Batch Insert Form uses three procedures. The Form_Load() procedure initializes 
the grid with the column headers. The CmdAddtoGrid_click() procedure copies 
the entered data from the fields to the grid. The CommitGrid_Click() procedure 
contains the parameter array and SQL statements used to make the batch insert. 

These procedures are described as follows:

■ Coding the Batch Insert Form_Load( ) Procedure

■ Coding the CmdAddtoGrid( ) Procedure

■ Coding the CommitGrid_Click( ) Procedure

Coding the Batch Insert Form_Load( ) Procedure 
The following examples show how the Batch Insert Form_Load() procedure sets the 
column headings for the grid:

Private Sub Form_Load()
Grid1.Enabled = True
CurrRow = 0  'Top row
ReadRow = 0
ReadCol = 0
    
'Set column headings



Programming a Batch Form

6-18 Oracle Objects for OLE Developer's Guide

 
Grid1.Row = CurrRow
Grid1.Col = 0
Grid1.Text = "Employee Number"
 
Grid1.Col = 1
Grid1.Text = "Employee Name"
 
Grid1.Col = 2
Grid1.Text = "Department Number"
 
NoOfCols = 3
 
CurrRow = CurrRow + 1
    
End Sub

Coding the CmdAddtoGrid( ) Procedure 
The CmdAddtoGrid_Click() procedure copies the data entered in the fields to the 
next empty grid row. The global variable CurrRow always points to the first empty 
row in the grid.

The following example shows the CmdAddtoGrid_Click():

Private Sub CmdAddtoGrid_Click()
 
'Update the grid
'Update Empno column
Grid1.Row = CurrRow
Grid1.Col = 0
Grid1.Text = txtEmpno
'Update Ename column
Grid1.Row = CurrRow
Grid1.Col = 1
Grid1.Text = txtEname
'Update Deptno column
Grid1.Row = CurrRow
Grid1.Col = 2
Grid1.Text = txtDeptno
 
'Increment CurrCol
CurrRow = CurrRow + 1
 
NoOfRows = CurrRow - 1
 
End Sub

Coding the CommitGrid_Click( ) Procedure 
The CommitGrid_Click() procedure inserts the grid data into the database. To do 
so, this procedure creates a parameter array object for each column in the EMP table 
that corresponds to a column in the grid. The OraParameters.AddTable() method 
defines each parameter array. For example, a parameter array called EMPNO_ARR holds 
all Employee Number column elements.

After the parameter arrays are defined, the Put_Value method populates them with 
grid column elements.



Programming a Batch Form

Quick Tour with Visual Basic 6-19

To commit the parameter array elements to the database, this procedure uses the 
CreateSQL() method with a SQL INSERT statement containing the parameter 
arrays. Because the CreateSQL() method executes the SQL INSERT statement in 
addition to creating a SQL statement object, all column elements (parameter array 
elements) are inserted into the EMP table with this one statement.

If an error occurs during a SQL INSERT statement that contains parameter arrays, the 
SQL statement object is still created with no explicitly raised error. To identify such 
errors, always check the OraDatabase.LastServerErr and 
OraDatabase.LastServerErrText properties immediately after executing the 
CreateSQL method.

The CreateSQL method updates the database directly and has no effect on the 
dynaset. The EmpDynaset. Refresh method must used to refresh this dynaset so that 
it reflects the newly inserted records.

The CommitGrid_Click() event procedure must do the following:

1. Define a parameter array for each grid (database) column, using the AddTable 
method.

2. Copy grid column elements into parameter arrays, using the Put_Value method 
within a nested loop.

3. Create a SQL statement object using the CreateSQL method to insert parameter 
array elements into the EMP table.

4. Check the LastServerErrText and LastServerErr properties to catch SQL 
statement execution errors. 

5. Refresh the global dyanset to reflect newly inserted records, using the Refresh 
method.

The following example shows a typical cmdCommitGrid_Click() procedure:

Private Sub cmdCommitGrid_Click()
Dim OraSqlStmt As Object
Dim OraPArray(2) As Object
 
On Error GoTo err_CommitGrid
ErrMsg = ""
 
'Define parameter arrays, one for each column
OraDatabase.Parameters.AddTable "EMPNO_ARR", ORAPARM_INPUT, ORATYPE_NUMBER, _
            NoOfRows
OraDatabase.Parameters.AddTable "ENAME_ARR", ORAPARM_INPUT, ORATYPE_VARCHAR2, _ 
            NoOfRows, 10
OraDatabase.Parameters.AddTable "DEPTNO_ARR", ORAPARM_INPUT, ORATYPE_NUMBER, _
            NoOfRows
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
Error 1
End If
 
'Initialize local array to hold parameter arrays
Set OraPArray(0) = OraDatabase.Parameters("EMPNO_ARR")
Set OraPArray(1) = OraDatabase.Parameters("ENAME_ARR")
Set OraPArray(2) = OraDatabase.Parameters("DEPTNO_ARR")
 
'Init the param array variables. Add loop to read thru grid ROWS
For ReadRow = 0 To (NoOfRows - 1)
Grid1.Row = ReadRow + 1
'Loop to read thru grid CELLS
    For ReadCol = 0 To NoOfCols - 1



Programming a Batch Form

6-20 Oracle Objects for OLE Developer's Guide

        Grid1.Col = ReadCol
        OraPArray(ReadCol).Put_Value Grid1.Text, ReadRow
    Next ReadCol
Next ReadRow
 
'create a sqlstmt to insert array values into table
Set OraSqlStmt = OraDatabase.CreateSql("insert into emp(empno,ename,deptno)" & _
        "values(:EMPNO_ARR,:ENAME_ARR,:DEPTNO_ARR)", 0&)
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
  ErrMsg = OraDatabase.LastServerErrText
  Error 1
End If
 
'Refresh the Dynaset
EmpDynaset.Refresh

OraDatabase.Parameters.Remove "EMPNO_ARR"
OraDatabase.Parameters.Remove "ENAME_ARR"
OraDatabase.Parameters.Remove "DEPTNO_ARR" 

Exit Sub
 
err_CommitGrid:
    If ErrMsg <> "" Then
        MsgBox ErrMsg
    Else
        MsgBox Error$
    End If
 
End Sub



7

Code Wizard for Stored Procedures 7-1

7Code Wizard for Stored Procedures

The Oracle Objects for OLE (OO4O) Code Wizard generates OO4O code that executes 
Oracle PL/SQL and Java stored procedures. 

The wizard generates code into individual Microsoft Visual Basic or Active Server 
Page and VBScript subroutines from existing Oracle stored procedures and packages. 
Additionally, the wizard can generate complete implementations of COM Automation 
objects in the form of VB class files. The generated COM Automation object methods 
act as client stubs for the execution of stored procedures contained in a given package. 
All the OO4O code necessary for input/output parameter binding and stored 
procedure execution is automatically generated. 

The wizard can be used as a command-line utility or as a Visual Basic add-in. The 
wizard automates the entire process of accessing stored procedures using COM 
interfaces, thereby significantly reducing development time and the likelihood of 
programming errors. 

This chapter contains these topics:

■ Oracle Objects for OLE Code Wizard Components

■ Data Types Supported by the OO4O Code Wizard

■ Using the OO4O Code Wizard

■ Code Wizard Examples

Oracle Objects for OLE Code Wizard Components
The OO4O Code Wizard includes the following components: 

■ A command line utility, OO4OCodeWiz.exe, that converts PL/SQL and Java 
stored procedures to OO4O code. 

■ A Visual Basic Add-in wizard that guides you through a series of steps to generate 
OO4O code for PL/SQL and Java stored procedures. The wizard displays Oracle 
packages and stored procedures from a tree control so that the user can choose 
which items to generate code. 

Both of these components allow users to convert entire stored procedure packages to 
OO4O code. 

Note: The Code Wizard requires Visual Basic 6. 



Data Types Supported by the OO4O Code Wizard

7-2 Oracle Objects for OLE Developer's Guide

Data Types Supported by the OO4O Code Wizard
The code wizard supports all data types, except for PL/SQL tables. When a PL/SQL 
table is used, an unsupportedType key word is used instead, and the generated code 
does not compile. 

The output code may have to be modified for handling Null values. For example, 
when a VB variable is initialized to a parameter value, an isNull() check may have 
to be added if Null values are expected. Null values are correctly handled for VB 
variables of type Variant and Object. 

Using the OO4O Code Wizard
The OO4O Code Wizard can be used as a command line utility or as a Visual Basic 
Add-in. 

OO4O Code Wizard Command-Line Utility 
The OO4OCodeWiz.exe is a command-line utility that generates a Visual Basic class, a 
Visual Basic file, or an Active Server Page/VB Script file from existing PL/SQL or Java 
stored procedures, as well as packages, within an Oracle database. Call the utility in 
the following manner: 

OO4OCodeWiz [-o output_file] username/password@connect_string package

Example 
OO4OCodeWiz -o empfile.asp scott/tiger@Exampledb employee.example 

Option

Files Generated 
The code wizard uses the information specified on the command line to determine 
which type of output file to generate. 

If a file name and one of the permitted file extensions are specified, then they are used. 
In the preceding example, an ASP file is generated in the empfile.asp output. The 
user can specify the following extensions: 

Where Specifies the following

username User name to log in to the database

password Password for the user name 

connect_string Database connection string 

package Package name 

stored_procedure Stored procedure name (optional) 

Option Description

-o    Specifies the output file name (optional) 



Using the OO4O Code Wizard

Code Wizard for Stored Procedures 7-3

If no file extension is specified, the following rules indicate what type of file is 
generated, depending on other command-line specifications. 

■ Package names without a stored procedure name generate a .cls file. 

■ Package names with procedure names generate a .bas file. 

Table 7–1 and Table 7–2 provide examples.

OO4O Code Wizard Visual Basic Wizard Add-in
1. Launch the OO4O Code Wizard by selecting Oracle Code Wizard for Stored 

Procedures in the Add-Ins menu of Microsoft Visual Basic. 

The Connect To Oracle Database dialog box appears:

Extension File Type Generated 

.cls VB class file 

.bas VB file 

.asp ASP or VB script file 

.vbs ASP or VB script file 

Table 7–1 Package Name Without Stored Procedure Name

File Specified Command File Type Generated

File name with no file 
extension generates 
filename.cls.

OO4OCodeWiz -o  empfile                             
scott/tiger@Exampledb employee

empfile.cls 

No file name or 
extension: generates 
packagename.cls.

OO4OCodeWiz    
scott/tiger@Exampledb                              
employee

employee.cls

File name with file 
extension generates  
filename.fileexten.

OO4OCodeWiz -o empfile.asp                              
scott/tiger@Exampledb employee

empfile.asp

Table 7–2 Package Name With Stored Procedure Name

File Specified Command File Type Generated

File name with no file 
extension generates  
filename.bas.

OO4OCodeWiz -o empfile                             
scott/tiger@Exampledb 
employee.example

empfile.bas 

No file name or 
extension: generates 
packagename.bas.

OO4OCodeWiz  
scott/tiger@Exampledb                              
employee.example

employee.bas

File name with file 
extension generates 
filename.fileexten. 

OO4OCodeWiz -o empfile.asp                              
scott/tiger@Exampledb 
employee.example

empfile.asp



Using the OO4O Code Wizard

7-4 Oracle Objects for OLE Developer's Guide

2. Enter the user name and password to connect to the database. A connection string 
is required if the database is not installed on the user's local computer. 

3. Click OK. 

The wizard displays the Oracle packages and stored procedures available to the 
user in a tree. 

4. Select one of the stored procedures or packages displayed. 

5. Enter an output file name or click the Browse... button to navigate to a different 
directory in which to place the file. 

6. Choose the file type from the Component type list. There are three choices: a VB 
class module (*.cls), a VB file (*.bas), or other. The other option generates a VB 
file (*.bas), but enables you to specify your own file extension. 

7. Click OK. 



Code Wizard Examples

Code Wizard for Stored Procedures 7-5

A dialog box appears indicating that a new OO4O file was created. 

8.  Click Yes to create another file, or click No to return to Visual Basic. 

Code Wizard Examples
The ORACLE_BASE\ORACLE_HOME\oo4o\codewiz\samples directory contains 
sample applications incorporating code generated by the wizard. The following 
examples show the generated VB code output from Oracle stored procedures using the 
OO4O code wizard: 

■ Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages

■ Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic

■ Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic

■ Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual 
Basic

Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages
This example shows a PL/SQL stored function, GetEmpSal, and then the Visual Basic 
(*.cls) file that the code wizard generates for it. 

FUNCTION GetEmpSal (inEmpno IN NUMBER)
RETURN NUMBER is 
  outEmpsal NUMBER(7,2);
BEGIN 
  SELECT SAL into outEmpsal from EMP WHERE EMPNO = inEmpno;
  RETURN (outEmpsal);
END;

The generated code for the GetEmpSal stored function is: 

Public Function GETEMPSAL(INEMPNO As Variant) As Variant 
OraDatabase.Parameters.Add "INEMPNO", INEMPNO, ORAPARM_INPUT, 2 
OraDatabase.Parameters.Add "result", 0, ORAPARM_OUTPUT 
OraDatabase.Parameters("result").serverType = 2 
OraDatabase.ExecuteSQL ("declare result Number; Begin :result := " & _
              "Employee.GETEMPSAL(:INEMPNO); end;")  
 
OraDatabase.Parameters.Remove "INEMPNO" 
GETEMPSAL = OraDatabase.Parameters("result").Value 
OraDatabase.Parameters.Remove "result" 
End Function 

In a VB class, OraDatabase appears as an attribute of the class. This attribute has to 
be set before any methods of the class can be invoked. For a VB file (*.bas), the 
generated code for the GetEmpSal stored function is the same as the VB class file, 
except for the function declaration: 

Public Function GETEMPSAL(INEMPNO As Variant, ByRef OraDatabase As OraDatabase)
... 
 
End Function 

For an ASP file (*.asp), the function declaration also differs for the GetEmpSal 
stored function as follows, but the body of the code remains the same: 

Public Function GETEMPSAL(INEMPNO, ByRef OraDatabase) 
... 



Code Wizard Examples

7-6 Oracle Objects for OLE Developer's Guide

End Function 

Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic
The following example shows how a Visual Basic file accesses a PL/SQL stored 
procedure with LOBs:

PROCEDURE getchapter(chapno in NUMBER, chap out CLOB) is
BEGIN 
SELECT chapters into chap from mybook where chapterno = chapno
   for update;
END;

The following shows the generated Visual Basic code for the GETCHAPTER stored 
procedure: 

Public Sub GETCHAPTER(CHAPNO As Variant, ByRef CHAP As OraCLOB) 
OraDatabase.Parameters.Add "CHAPNO", CHAPNO, ORAPARM_INPUT, 2 
OraDatabase.Parameters.Add "CHAP", Null, ORAPARM_OUTPUT, 112 
OraDatabase.ExecuteSQL ("Begin MYBOOKPKG.GETCHAPTER(:CHAPNO,:CHAP); end;") 
Set CHAP = OraDatabase.Parameters("CHAP").Value 
OraDatabase.Parameters.Remove "CHAPNO" 
OraDatabase.Parameters.Remove "CHAP" 
End Sub 

Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic 
The following example shows how a PL/SQL stored procedure uses the Oracle 
collection type VARRAY: 

PROCEDURE getnames(deptid in NUMBER, name out ENAMELIST) is 
BEGIN 
    SELECT ENAMES into name from department where dept_id = deptid for update; 
END;
 
The wizard generates the following Visual Basic code for this stored procedure: 

Public Sub GETNAMES(DEPTID As Variant, ByRef NAME As OraCollection) 
OraDatabase.Parameters.Add "DEPTID", DEPTID, ORAPARM_INPUT, 2 
OraDatabase.Parameters.Add "NAME", Null, ORAPARM_OUTPUT, 247, "ENAMELIST" 
OraDatabase.ExecuteSQL ("Begin DEPTPKG.GETNAMES(:DEPTID, :NAME); end;") 
Set NAME = OraDatabase.Parameters("NAME").Value 
OraDatabase.Parameters.Remove "DEPTID" 
OraDatabase.Parameters.Remove "NAME" 
End Sub 

Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual 
Basic

The following example shows how a PL/SQL stored procedure uses the Oracle object 
type: 

PROCEDURE getaddress(person_name in varchar2, person_address out address) is 
BEGIN 
     SELECT addr into person_address from person_table where name = 
           person_name for update; 
END; 



Code Wizard Examples

Code Wizard for Stored Procedures 7-7

The wizard generates the following Visual Basic code for this stored procedure: 

Public Sub GETADDRESS(PERSON_NAME As String, ByRef PERSON_ADDRESS As OraObject)
OraDatabase.Parameters.Add "PERSON_NAME", PERSON_NAME, ORAPARM_INPUT, 1 
OraDatabase.Parameters.Add "PERSON_ADDRESS", Null, ORAPARM_OUTPUT, _ 
            108, "ADDRESS" 
OraDatabase.ExecuteSQL ("Begin PERSONPKG.GETADDRESS(:PERSON_NAME," & _  
            ":PERSON_ADDRESS); end;") 
Set PERSON_ADDRESS = OraDatabase.Parameters("PERSON_ADDRESS").Value 
OraDatabase.Parameters.Remove "PERSON_NAME" 
OraDatabase.Parameters.Remove "PERSON_ADDRESS" 
End Sub 



Code Wizard Examples

7-8 Oracle Objects for OLE Developer's Guide



8

Introduction to Automation Objects 8-1

8Introduction to Automation Objects

This chapter introduces commonly used OO4O Automation Objects.

This chapter contains these topics: 

■ Overview of Automation Objects

■ OraSession Object Overview

■ OraServer Object Overview

■ OraDatabase Object Overview

■ OraDynaset Object Overview

■ OraField Object Overview

■ OraParameters Object Overview

■ OraParameter Object Overview

■ OraParamArray Object Overview

■ OraSQLStmt Object Overview

Overview of Automation Objects
The OO4O operational hierarchy of the objects expresses has-a and belongs-to 
relationships. 

Figure 8–1 shows the operational hierarchy.



OraSession Object Overview

8-2 Oracle Objects for OLE Developer's Guide

Figure 8–1 OO4O Automation Objects

The Automation objects diagram illustrates this hierarchy.

OraSession Object Overview
The OraSession object is returned when an instance of the OO4O Automation Server 
is created. It mainly serves as an interface for establishing connections to Oracle 
databases. It also contains methods for starting, committing, and canceling 
transactions on the connections contained in the OraDatabase objects created. The 
following Visual Basic example creates an instance of the OO4O Automation Server. 

'OracleInProcServer.XOraSession is the symbolic name for a 
'globally unique component identifier. 
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession") 
 

OraServer Object Overview
The OraServer object represents a physical connection to an Oracle database 
instance. It provides a method, OpenDatabase, for creating user sessions, which 
represents OraDatabase objects. It makes it possible to do "connection multiplexing."

See Also:

■ OraSession Object on page 9-58

■ "Accessing the Oracle Objects for OLE Automation Server" on 
page 3-1

■ "Connecting to Oracle Database" on page 3-2

See Also:

■ OraServer Object on page 9-56

■ "Accessing the Oracle Objects for OLE Automation Server" on 
page 3-1

■ "Using OraServer for Connection Multiplexing" on page 3-3



OraDynaset Object Overview

Introduction to Automation Objects 8-3

OraDatabase Object Overview
The OraDatabase object represents a user connection to an Oracle database instance, 
and provides methods to execute SQL statements and PL/SQL code. The 
OraDatabase object is returned by the OpenDatabase method of the OraSession 
or the OraServer object. 

The following example illustrates the use of the OpenDatabase method of the 
OraSession. OraDatabase objects created by this method contain a distinct 
physical connection to an Oracle database. 

'Establish a connection to the ExampleDb database 
Set hrDBSession = OO4OSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 

The following example demonstrates how a physical network connection to an Oracle 
database can be shared by multiple user sessions. Using a single connection that is 
shared by multiple user sessions results in reduced resource usage in an Oracle 
Database and can increase scalability. 

'Create a server connection 
 
Set hrDBServer = CreateObject("OracleInProcServer.XOraServer") 
Set hrDBServer = oo4o.Open("ExampleDb") 
Set userSession1 = hrDBServer.OpenDatabase("scott/tiger", 0) 
 
'execute queries ... 
Set userSession2= hrDBServer.OpenDatabase("scott/tiger", 0) 
 
'execute queries ... 

OraDynaset Object Overview
An OraDynaset object represents the result set of a SQL SELECT query or a PL/SQL 
cursor variable returned from a stored procedure or function. It is essentially a 
client-side scrollable and updatable cursor that allows for browsing the set of rows 
generated by the query it executes. It is created by the CreateDynaset or 
CreateCustomDynaset method of an OraDatabase interface. 

The following Visual Basic example executes a query, loops through the result set, and 
displays values of columns returned. 

Set employees = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)
 
'While there are more rows 
while not employees.EOF 
 
'Display the values of empno and ename column of the current row 
msgbox employees("empno") & employees("ename") 
 
'Move to the next row 
employees.MoveNext 
wend

See Also: OraDatabase Object on page 9-27



OraField Object Overview

8-4 Oracle Objects for OLE Developer's Guide

OraField Object Overview
The OraField object is an abstraction of a column in an OraDynaset object. It 
contains the value as well as the metadata that describes a column of the current row 
in the dynaset. In the previous example for the OraDynaset object, the Field 
interface for empno can be obtained using this additional code: 

set empno = employees.Fields("empno") 
msgbox "Employee Number: " & empno.Value 

OraFields is a collection object representing all columns in the current row. 

OraField objects can represent instances of any data type supported by Oracle 
Database. This includes all primitive types, such as VARCHAR2, NUMBER, INT, and 
FLOAT, as well all the object-relational types introduced in Oracle8i.

OraParameters Object Overview
The OraParameters object is a collection container for OraParameter objects. An 
OraParameter object is used to supply data values for placeholders used in the SQL 
statements or PL/SQL blocks at run time. It can be used to provide input values as 
well as contain values that are returned from the database. The following sample 
creates two parameter objects and uses them in an update query. 

OraDatabase.Parameters.Add "SALARY", 4000, ORAPARM_INPUT 
OraDatabase.Parameters.Add "ENAME", "JONES", ORAPARM_INPUT 
Set updateStmt = OraDatabase.CreateSQL("update emp set sal = :SALARY" & _ 
             "where ename = :ENAME ") 

OraParameter Object Overview
OraParameter objects can contain values for all the data types supported by Oracle9i 
including object-relational data types. They can be passed as input or output 
arguments to PL/SQL stored procedures and functions. The values of the 
OraParameter objects can also represent PL/SQL cursors in the form of 
OraDynaset objects.

See Also:

■ OraDynaset Object on page 9-30

■ CreateCustomDynaset Method on page 10-80

■ CreateDynaset Method on page 10-85

See Also:

■ OraField Object on page 9-33

■ "Support for Oracle Object-Relational and LOB Data Types" on 
page 4-1

See Also: OraParameters Collection on page 9-68

See Also:

■ OraParameter Object on page 9-50

■ "PL/SQL Support" on page 3-9



OraSQLStmt Object Overview

Introduction to Automation Objects 8-5

OraParamArray Object Overview
An OraParamArray object provides the mechanism for binding and fetching an array 
of values. It is typically used for performing bulk inserts and updates. 

'Create a table 
OraDatabase.ExecuteSQL ("create table part_nos(partno number," & _
             "description char(50), primary key(partno))") 
 
'Create two parameter arrays of size 10 to hold values for 
'part numbers (size 22 bytes), and their description (50 bytes long). 
OraDatabase.Parameters.AddTable "PARTNO", ORAPARM_INPUT, ORATYPE_NUMBER, 10, 22 
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, _ 
            ORATYPE_CHAR, 10, 50 
 
'Initialize the arrays 
For I = 0 To 10 
   OraDatabase.Parameters("PARTNO").put_Value = I, I 
   OraDatabase.Parameters("DESCRIPTION ") = "some description", I 
Next I 
 
'Execute the query 
Set OraSqlStmt = OraDatabase.CreateSql("insert into " & _
            "part_nos(partno, description) values(:PARTNO,:DESCRIPTION)", 0&)

OraSQLStmt Object Overview
The OraSQLStmt object is typically used for executing non-select SQL queries and 
PL/SQL blocks. The following line of code executes an update query and displays the 
number of rows affected. 

Set updateStmt = OraDatabase.CreateSQL("update emp set sal = 3000" & _ 
                "where ename = 'JONES' ") 
MsgBox updateStmt.RecordCount 

The OraSQLStmt object (updateStmt) can be used later to execute the same query 
with a different value for the :SALARY placeholder. For example: 

OraDatabase.Parameters("SALARY").value = 200000 
updateStmt.Parameters("ENAME").value = "KING" 
updateStmt.Refresh

See Also: OraParamArray Object on page 9-47

See Also: OraSQLStmt Object on page 9-60



OraSQLStmt Object Overview

8-6 Oracle Objects for OLE Developer's Guide



9

Server Objects 9-1

9Server Objects

This chapter describes the Oracle Objects for OLE Server Objects.

This chapter contains these topics:

■ OraAQ Object 

■ OraAQAgent Object 

■ OraAQMsg Object 

■ OraAttribute Object 

■ OraBFILE Object 

■ OraBLOB, OraCLOB Objects 

■ OraClient Object 

■ OraCollection Object 

■ OraConnection Object 

■ OraDatabase Object 

■ OraDynaset Object

■ OraField Object

■ OraIntervalDS Object

■ OraIntervalYM Object

■ OraMDAttribute Object

■ OraMetaData Object

■ OraNumber Object

■ OraObject Object

■ OraParamArray Object

■ OraParameter Object

See Also:

■ "Overview of Oracle Objects for OLE" on page 1-1

■ "Oracle Objects for OLE In-Process Automation Server" on 
page 1-2

■ "Using Automation Clients Overview" on page 2-1

■ "Required Setups" on page 1-5



9-2 Oracle Objects for OLE Developer's Guide

■ OraRef Object

■ OraServer Object

■ OraSession Object

■ OraSQLStmt Object

■ OraSubscription Object

■ OraTimeStamp Object

■ OraTimeStampTZ Object

■ OraConnections Collection 

■ OraFields Collection

■ OraParameters Collection

■ OraSessions Collection 

■ OraSubscriptions Collection 



OraAQ Object

Server Objects 9-3

OraAQ Object

Description
An OraAQ object is instantiated by invoking the CreateAQ method of the 
OraDatabase interface. It represents a queue that is present in the database. 

Remarks 
Oracle Objects for OLE provides interfaces for accessing Oracle Database Advanced 
Queuing (AQ) feature. It makes AQ accessible from popular COM-based development 
environments such as Visual Basic. 

The OraAQ Automation interface provides methods for enqueuing and dequeuing 
messages (encapsulated in the OraAQMsg object). It also provides a method for 
monitoring queues for message arrivals. 

Client applications provide a Dispatch interface to the monitor. The monitor checks 
the queue for messages that meet the application criteria. It then invokes the 
NotifyMe method of the Dispatch interface when these messages are dequeued. 

The following diagram illustrates the OO4O AQ Automation objects and their 
properties.

Properties
■ Consumer (OraAQ) Property on page 11-28 

■ Correlate (OraAQ) Property on page 11-29

■ DequeueMode (OraAQ) Property on page 11-47

■ DequeueMsgId (OraAQ) Property  on page 11-48

■ Navigation (OraAQ) Property on page 11-109 

■ RelMsgId (OraAQ) Property on page 11-131

■ Visible (OraAQ) Property on page 11-186

■ Wait (OraAQ) Property on page 11-187

Methods
■ AQMsg (OraAQ) Method on page 10-33 



OraAQ Object

9-4 Oracle Objects for OLE Developer's Guide

■ Enqueue (OraAQ) Method on page 10-141 

■ Dequeue (OraAQ) Method on page 10-122

■ MonitorStart (OraAQ) Method on page 10-196

■ MonitorStop (OraAQ) Method on page 10-198

Examples

Example: Enqueuing Messages 
Enqueuing messages of type RAW

"Enqueuing Messages of Type RAW" on page 10-141

Enqueuing messages of Oracle object types

"Enqueuing Messages of Oracle Object Types" on page 10-142

Example: Dequeuing messages 
NOTE: The following code samples serve as models for dequeuing messages. 

A complete AQ sample can be found in \OO4O\VB\SAMPLES\AQ 

Dequeuing messages of the RAW type

"Example: Dequeuing Messages of RAW Type" on page 10-122

Dequeuing messages of Oracle object types

"Example: Dequeuing Messages of Oracle Object Types" on page 10-123

Example: Monitoring messages 
See "Monitoring Messages" on page 4-21 for examples illustrating the use of the 
MonitorStart and MonitorStop methods. 

See Also:

■ OraAQAgent Object on page 9-5

■ OraAQMsg Object on page 9-6

■ Oracle Streams Advanced Queuing User's Guide for a detailed 
description of Oracle Advanced Queuing



OraAQAgent Object

Server Objects 9-5

OraAQAgent Object

Description
The OraAQAgent object represents a message recipient and is only valid for queues 
that allow multiple consumers. 

Remarks 
An OraAQAgent object can be instantiated by invoking the AQAgent method. For 
example: 

Set agent = qMsg.AQAgent(name)

Methods
None.

Properties
■ Address (OraAQAgent) Property on page 11-7 

■ Name (AQAgent) Property on page 11-103

Example
The following Visual Basic example illustrates a simple use of the advanced queuing 
feature. A message of a user-defined type, MESSAGE_TYPE, is enqueued into a queue, 
msg_queue, that supports multiple consumers. 

Dim q as OraAQ 
Dim qMsg as OraAQMsg 
Dim agent as OraAQAgent 
Set q = OraDatabase.CreateAQ("msg_queue") 
Set qMsg = q.AQMsg(1,"MESSAGE_TYPE") 
 
'To add SCOTT as a recipient for the message, 
Set agent = qMsg.AQAgent("SCOTT") 
 
'To enqueue, 
q.Enqueue 

See Also:

■ Oracle Streams Advanced Queuing User's Guide for a detailed 
description of Oracle Advanced Queuing

■ OraAQ Object on page 9-3

■ OraAQMsg Object on page 9-6



OraAQMsg Object

9-6 Oracle Objects for OLE Developer's Guide

OraAQMsg Object

Description
The OraAQMsg object encapsulates the message to be enqueued or dequeued. The 
message can be of any user-defined or raw type. 

Properties
■ Correlation (OraAQMsg) Property on page 11-30

■ Delay (OraAQMsg) Property on page 11-46

■ ExceptionQueue Property on page 11-58 

■ Expiration (OraAQMsg) Property on page 11-60 

■ Priority (OraAQMsg) Property on page 11-126

■ Value (OraAQMsg) Property on page 11-176

Methods
■ AQAgent (OraAQMsg) Method on page 10-32 

See Also:

■ Oracle Streams Advanced Queuing User's Guide for a detailed 
description of Oracle Advanced Queuing

■ OraAQ Object on page 9-3

■ OraAQAgent Object on page 9-5



OraAttribute Object

Server Objects 9-7

OraAttribute Object

Description
The OraAttribute object represents an attribute of a Value or REF instance of an 
OraObject or an OraRef. 

Remarks
The OraAttribute object can be accessed from the OraObject or OraRef object by 
creating a subscript that uses ordinal integers or by using the name attribute. 

See the Value (OraAttribute) property for a table that identifies the attribute type 
and the return value of the Value property of the OraAttribute object: 

Properties
■ Value (OraAttribute) Property on page 11-175 

■ Name (OraAttribute) Property on page 11-104

■ Type (OraAttribute) Property on page 11-166

Methods
None.

Examples
The following example accesses the attributes of the ADDRESS value instance in the 
server. Before running the sample code, make sure that you have the necessary data 
types and tables in the database. See "Schema Objects Used in the OraObject and 
OraRef Examples" on page A-3.

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim Address As OraObject 
Dim City As OraAttribute 
Dim State As OraAttribute 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
 
'create a dynaset object from person_tab 
Set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)
 
'retrieve an address column from person_tab
'the Value property of OraField object returns Address OraObject 
Set Address = OraDynaset.Fields("Addr").Value 
 
'access the City attribute object 
Set City = Address("City") 
 
' display the value of City attribute Object 
MsgBox City.Value 
 



OraAttribute Object

9-8 Oracle Objects for OLE Developer's Guide

'access the State attribute object 
Set State = Address("State") 
 
'display the value of State attribute Object 
MsgBox State.Value 

See Also:

■ OraCollection Object on page 9-19

■ OraParameter Object on page 9-50

■ OraObject Object on page 9-43

■ OraRef Object on page 9-52



OraBFILE Object

Server Objects 9-9

OraBFILE Object

Description
The OraBFile interface in OO4O provides methods for performing operations on the 
BFILE LOB data type in the database.

Remarks
The BFILE types are large binary data objects stored in operating system files 
(external) outside of the database tablespaces.

Properties
■ DirectoryName Property on page 11-49

■ FileName Property on page 11-68 

■ Exists Property on page 11-59

■ IsNull (OraLOB/BFILE) Property on page 11-80

■ IsOpen (OraBFILE) Property on page 11-83

■ Offset (OraLOB/BFILE) Property on page 11-112

■ PollingAmount Property on page 11-125

■ Size (OraLOB and OraBFILE) Property on page 11-145  

■ Status (OraLOB/BFILE) Property on page 11-154

Methods
■ Clone (OraLOB/BFILE) Method on page 10-53

■ Close (OraBFILE) Method on page 10-64

■ CloseAll (OraBFILE) Method on page 10-65

■ Compare (OraLOB) Method on page 10-68

■ CopyToFile (OraLOB/BFILE) Method on page 10-76

■ MatchPos (OraLOB/BFILE) Method on page 10-192

■ Open (OraBFILE) Method on page 10-211

■ Read (OraLOB/BFILE) Method on page 10-221

Examples
See "Schema Objects Used in LOB Data Type Examples" on page A-3 for schema 
objects that are used in the OraLOB/BFILE examples.

NOTE: To add the required tables for the following examples, run the lob.sql file in 
the \OO4O\VB\SAMPLES\LOB directory. 

Example: Accessing the BFILE Value 
BFILE data can be read using the Read method. The OraBFILE object allows 
piecewise read operations. Before reading the BFILE content, the BFILE file should be 
opened using the Open method. 

Dim PartColl as OraBFile 



OraBFILE Object

9-10 Oracle Objects for OLE Developer's Guide

Dim buffer As Variant 
 
'Create a Dynaset containing a BLOB and a CLOB column 
set part = OraDatabase.CreateDynaset ("select * from part",0) 
Set PartColl = part.Fields("part_collateral").Value 
 
'open the bfile for read operation 
PartColl.Open 
 
'read the entire bfile 
amount_read = PartColl.Read(buffer)
 
'close the bfile 
PartColl.Close 

Example: Reading and Inserting BFILEs Using Dynasets 
To modify the directory and file names of the BFILE value of an OraBFILE object, 
first obtain a lock and then use the DirectoryName and FileName properties.

To insert a new row containing a BFILE column, initialize the BFILE column with 
new directory and file name values using the DirectoryName and FileName 
properties.

Dim PartColl as OraBFile 
Dim buffer As Variant 
 
'Create a Dynaset containing a BLOB and a CLOB column 
set part = OraDatabase.CreateDynaset ("select * from part",0) 
Set PartColl = part.Fields("part_collateral").Value 
 
'insert a new BFILE in the part_collateral column 
part.AddNew 
 
'Directory objects will be upper-case by default 
    PartColl.DirectoryName = "NEWDIRECTORYNAME"  
    PartColl.FileName = "NewPartCollatoral" 
part.Update 
 
'move to the newly added row 
part.MoveLast 
 
'open the Bfile for read operation 
PartColl.Open 
 
'read the entire bfile 
amount_read = PartColl.Read(buffer)
 
'close the Bfile 
PartColl.Close 

See Also:

■ OraBLOB, OraCLOB Objects on page 9-11 

■ Oracle Database SecureFiles and Large Objects Developer's Guide 
for a detailed description of Oracle BFILE types



OraBLOB, OraCLOB Objects

Server Objects 9-11

OraBLOB, OraCLOB Objects

Description
The OraBLOB and OraCLOB interfaces in OO4O provide methods for performing 
operations in a database on the large object data types BLOB, CLOB, and NCLOB. In this 
developer's guide, BLOB, CLOB, and NCLOB data types are also referred to as LOB data 
types. 

OO4O supports the creation of temporary BLOB or CLOB types that can be 
manipulated and then bound to SQL statements or PL/SQL blocks, or copied into 
permanent LOBs. 

Remarks
LOB data is accessed using the Read and CopyToFile methods. 

LOB data is modified using the Write, Append, Erase, Trim, Copy, CopyFromFile, 
and CopyFromBFile methods. A row lock must be obtained before modifying the 
contents of a LOB column in a row. If the LOB column is a field of an OraDynaset 
object, then the lock is obtained by invoking the Edit method. 

None of the LOB operations are allowed on NULL LOBs. To avoid errors, use the  
IsNull property to detect NULL LOBs. To perform write operations on a LOB that is 
null, first the LOB column must be initialized with an Empty value.

To insert a new row having a LOB column, first initialize the LOB column with an 
Empty value by setting the Value property of the OraField or OraParameter 
object to the keyword Empty and commit the change to the database. The newly 
updated Empty LOB must be selected again from the database before it can be used. 
This is done automatically in the case of the OraDynaset object: If a LOB field in an 
OraDynaset object is set to Empty and the Update method is called, OO4O 
automatically reselects the Empty LOB into the dynaset making it available for use in 
subsequent write operations. 

There are two modes of operation for read and write operations for LOBs. 

1. Multiple-piece read/write operations 

In this mode, the total amount of data to be read or written is more than the size of 
the buffer for an individual read/write operation. Rather than make a complete 
round-trip for each operation, the pieces are streamed. To begin the multiple piece 
operation, the PollingAmount property is first set to the total amount of data to 
be read or written. The Offset property is set at this time to specify the initial 
offset for the first piece read/write operation. The offset is automatically 
incremented after the first read/write operation, and cannot be changed again 
until the multiple piece operation has completed. The Status property must be 
checked for the success of each piecewise operation and the operation must 
continue until all the pieces are read or written (it cannot be aborted). To start 
another multiple-piece read/write operation on the same LOB, the 
PollingAmount property has to be reset to the desired amount. See "Example: 
Multiple-Piece Read of a LOB" on page 10-221.

2. Single-piece read/write operation 

In this mode, the reading and writing of data occurs in one operation. This mode 
is enabled when the PollingAmount property is set to 0. See "Example: 
Single-Piece Read of a LOB" on page 10-222. 



OraBLOB, OraCLOB Objects

9-12 Oracle Objects for OLE Developer's Guide

The Offset property in both modes of operation is 1-based.

By design, LOBs cannot span transactions started by SELECT .. FOR UPDATE, 
INSERT, and UPDATE statements. Selecting or modifying LOB values using these SQL 
statements makes LOBs invalid outside the current transaction. In Oracle Objects for 
OLE, transactions can be started and ended in the following ways.

1. Dynaset Edit/Update method 

The Edit method executes the SELECT FOR UPDATE statement to lock the row 
and start the transaction. The Update method ends the transaction. If the LOB 
column value is modifed between the Edit and Update pair, OO4O reselects the 
value of LOB column after the Update call. This is transparent to the user. Note 
that OO4O does not reselect the LOB value if the LOB is an attribute of an Oracle 
objects instance or element of an Oracle collection. If the transaction is started by 
the OraSession/OraDatabase or OraServer object and the LOB data is 
modified between the Edit and Update methods, OO4O does not reselect the 
LOB value from the database. LOBs are invalid after committing transactions 
initiated by OraSession/OraDatabase or OraServer objects. 

See "Example: Dynasets Containing LOBs and Transactions" on page 9-16. 

2. Executing an INSERT or UPDATE statement through the ExecuteSQL or 
CreateSQL method. 

An INSERT or UPDATE statement starts the transaction, and the transaction is 
implicitly ended by Oracle Objects for OLE (auto-commit). If a statement has a 
LOB output bind parameter, as in the case of the RETURNING .. INTO clause, then 
it will become invalid after the ExecuteSQL or CreateSQL method is executed 
To avoid this, the user must execute these statement between the 
BeginTrans/CommitTrans pair of OraSession, OraServer or OraDatabase 
objects. 

See "Example: INSERT or UPDATE Statements with LOBs and Transactions" on 
page 9-16.

Properties
■ IsNull (OraLOB/BFILE) Property on page 11-80

■ PollingAmount Property on page 11-125

■ Offset (OraLOB/BFILE) Property on page 11-112

■ Size (OraLOB and OraBFILE) Property on page 11-145 

■ Status (OraLOB/BFILE) Property on page 11-154 

Methods
■ Append (OraLOB) Method on page 10-27 

■ Clone (OraLOB/BFILE) Method on page 10-53

■ Compare (OraLOB) Method on page 10-68

See Also:

■ "Using Large Objects (LOBs)" on page 4-3 for more information 
about LOB operations and LOB performance issues

■ Oracle Database SecureFiles and Large Objects Developer's Guide for a 
detailed description of Oracle LOBs



OraBLOB, OraCLOB Objects

Server Objects 9-13

■ Copy (OraLOB) Method on page 10-72

■ CopyFromFile (OraLOB) Method on page 10-73

■ CopyFromBFILE (OraLOB) Method on page 10-75

■ CopyToFile (OraLOB/BFILE) Method on page 10-76

■ DisableBuffering (OraLOB) Method on page 10-129

■ EnableBuffering (OraLOB) Method on page 10-139 

■ Erase (OraLOB) Method on page 10-143

■ FlushBuffer (OraLOB) Method on page 10-154

■ MatchPos (OraLOB/BFILE) Method on page 10-192

■ Read (OraLOB/BFILE) Method on page 10-221

■ Trim (OraLOB) Method on page 10-254 

■ Write (OraLOB) Method on page 10-261 

Examples
See "Schema Objects Used in LOB Data Type Examples" on page A-3 for schema 
objects that are used in the OraLOB and BFILE examples.

Example: Accessing a LOB Value

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim PartImage as OraBlob 
Dim buffer As Variant 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", _
                           "scott/tiger", 0&) 
 
'execute the select statement 
set OraDynaset = OraDatabase.CreateDynaset ("select * from part",0&) 
 
'retrieve photo field from the dynaset 
set PartImage = OraDynaset.Fields("part_image").Value 
 
'read the entire LOB column in one piece into the buffer 
amount_read = PartImage.Read(buffer, 10) 
'use the buffer for internal processing 

Example: Modifying a LOB Value 

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim  PartDesc as OraClob 
Dim buffer As String 



OraBLOB, OraCLOB Objects

9-14 Oracle Objects for OLE Developer's Guide

 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&) 
 
'execute the select statement 
set OraDynaset = OraDatabase.CreateDynaset ("select * from part",0&) 
set PartDesc = OraDynaset.Fields("part_desc").Value 
 
'To get a free file number 
FNum = FreeFile 
'Open the file for reading 
Open "partdesc.dat" For Binary As #FNum 
 
'Allocate buffer to the size of file FNum and read the entire file 
buffer = String$(LOF(FNum), 32) 
Get #FNum, , buffer 
 
'lock the row for write operation 
OraDynaset.Edit 
amount_written = PartDesc.Write(buffer) 
 
'commit the operation and release the lock 
OraDynaset.Update 
Close FNum 

Example: Inserting LOBs Using Dynasets 

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim Part As OraDynaset 
Dim PartImage as OraBLOB 
Dim ImageChunk() As Byte 
Dim amount_written As Long 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'Create a Dynaset containing a BLOB and a CLOB column 
 
set part = OraDatabase.CreateDynaset ("select * from part",0) 
set PartImage = part.Fields("part_image").Value 
 
'First insert Empty LOB in the part_image column 
part.AddNew 
    part.Fields("part_id").Value = 1234 
    part.Fields("part_image").Value = Empty 
part.Update 
 
'move to the newly added row 
Part.MoveLast 
 
'To get a free file number 



OraBLOB, OraCLOB Objects

Server Objects 9-15

FNum = FreeFile 
 
'Open the file for reading PartImages 
Open "part_picture.gif" For Binary As #FNum 
 
'Re adjust the buffer size to hold entire file data 
 
Redim ImageChunk(LOF(FNum)) 
 
'read the entire file and put it into buffer 
Get #FNum, , ImageChunk 
 
'call dynaset's Edit method to lock the row 
part.Edit 
amount_written = OraBlob.Write(ImageChunk) 
part.Update 
 
'close the file
Close FNum 

Example: Inserting LOBs Using an OraParameter Object 

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraBlob As OraBlob 
Dim ImageChunk() As Byte 
Dim amount_written As Long 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
Set OraParameters = OraDatabase.Parameters 
OraParameters.Add "PartImage", Empty,ORAPARM_OUTPUT 
OraParameters("PartImage").ServerType = ORATYPE_BLOB 
 
'BeginTrans needs to be called since LOB locators become 
'invalid after the ExecuteSQL call 
OraSession.BeginTrans 
OraDatabase.ExecuteSQL ("insert into part values (1234,'Oracle  Application'," & _
                "EMPTY_BLOB(),NULL,NULL) RETURNING part_image INTO :PartImage") 
set PartImage = OraDatabase.Parameters("PARTIMAGE").Value 
 
FNum = FreeFile 
'Open the file for reading PartImages 
Open "part_picture.gif" For Binary As #FNum 
 
'read the file and put it into buffer 
Redim ImageChunk(LOF(FNum)) 
Get #FNum, , ImageChunk 
 
Set OraBlob = OraDatabase.Parameters("PartImage").Value 
amount_written = OraBlob.Write(ImageChunk, 10, ORALOB_ONE_PIECE) 
 
' commit the transaction and close the file
OraSession.CommitTrans 
Close FNum 



OraBLOB, OraCLOB Objects

9-16 Oracle Objects for OLE Developer's Guide

Example: Dynasets Containing LOBs and Transactions 

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraBlob As OraBlob 
Dim PartImage as OraBLOB 
Dim ImageChunk() As Byte 
Dim amount_written As Long 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb",  "scott/tiger", 0&) 
                                     
'Create a Dynaset containing a BLOB and a CLOB column 
set part = OraDatabase.CreateDynaset ("select * from part " & _
                              "where part_id = 1234",0) 
set PartImage = part.Fields("part_image").Value 
 
'To get a free file number 
FNum = FreeFile 
 
'Open the file for reading PartImages 
Open "c:\part_picture.gif" For Binary As #FNum 
Redim ImageChunk(LOF(FNum)) 
 
'read the file and put it into buffer 
Get #FNum, , ImageChunk 
 
'starts the transaction on OraSession 
OraSession.BeginTrans 
 
'call dynaset's Edit method to lock the row 
part.Edit 
Set OraBlob = PartImage 
amount_written = OraBlob.Write(ImageChunk, 10, ORALOB_ONE_PIECE) 
part.Update 
 
'ends the transaction 
OraSession.CommitTrans 
 
'the following lines of code will raise error  
'LOB locator cannot span transaction' 
msgbox Partimage.Size 
Close FNum 

Example: INSERT or UPDATE Statements with LOBs and Transactions 

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim ImageChunk() As Byte 
Dim amount_written As Long 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 



OraBLOB, OraCLOB Objects

Server Objects 9-17

 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
Set OraParameters = OraDatabase.Parameters 
OraParameters.Add "PartImage", Empty,ORAPARM_OUTPUT 
OraParameters("PartImage").ServerType = ORATYPE_BLOB 
 
'Create a Dynaset containing a LOB,column 
OraDatabase.ExecuteSQL ("insert into part values (1234,'Oracle Application'," & _ 
                  "EMPTY_BLOB(),NULL,NULL) RETURNING part_image INTO :PartImage") 
set PartImage = OraDatabase.Parameters("PARTIMAGE").Value 
 
'the following lines of code will raise error 
'LOB locator cannot span transaction' 
msgbox Partimage.Size 

Example: Using the CopyToFile Method
See "Example:Using the CopyToFile Method" on page 10-76.

Example: Using the CopyFromFile Method
See "Example: Using the CopyFromFile Method" on page 10-73.

Example: Multiple-Piece Read of a LOB
See "Example: Multiple-Piece Read of a LOB" on page 10-221.

Example: Single-Piece Read of a LOB
See "Example: Single-Piece Read of a LOB" on page 10-222.

Example: Multiple-Piece Write of a LOB
See "Multiple-Piece Write of a LOB Example" on page 10-262.

Example: Single-Piece Write of a LOB
See "Single-Piece Write of a LOB Example" on page 10-263.

Example: Passing a Temporary CLOB to a Stored Procedure
See "Example: Passing a Temporary CLOB to a Stored Procedure" on page 10-114.

See Also:

■ OraBFILE Object on page 9-9

■ CreateTempBLOB/CLOB Method on page 10-114



OraClient Object

9-18 Oracle Objects for OLE Developer's Guide

OraClient Object

Description
An OraClient object defines a workstation domain, and all of the OraSession 
objects of that workstation are listed in the OraSessions collection of the 
OraClient object. 

Remarks
Only one OraClient object can exist for each workstation, and it is created 
automatically by the system when it is needed. 

Properties
■ Name Property on page 11-101 

■ Sessions Property on page 11-142 

Methods
■ CreateSession Method on page 10-109 

See Also:

■ OraSession Object on page 9-58

■ OraSessions Collection on page 9-69 



OraCollection Object

Server Objects 9-19

OraCollection Object

Description
The OraCollection interface represents Oracle collection types, such as 
variable-length arrays (VARRAYs) and nested tables. 

Remarks
A collection is an ordered group of elements, all of the same type. For example, the 
students in a class or the grades for each student in a class. Each element has a unique 
subscript, called an index, that determines its position in the collection.

The collection type nested table is viewed as a table stored in the column of database 
tables. When retrieved, rows of a nested table are given consecutive subscripts that 
start at 1. Individual rows are accessed using an array-like access. 

The collection type VARRAY is viewed as an array stored in the column of database 
tables. To reference an element in a VARRAY data type, standard subscripting syntax 
can be used. For example, Grade(3) references the third element in the VARRAY data 
type named Grades.

The OraCollection provides methods for accessing and manipulating an Oracle 
collection. Implicitly an OraCollection object contains an OLE Automation 
collection interface for accessing and manipulating (updating and inserting) 
individual elements of an Oracle collection. Individual elements can be accessed by 
using a subscript. An OraCollection element index starts at 1.

Element values are retrieved as Variant types. The Variant type of the element 
depends on the element type of the collection. Element values can be Null and can be 
set to Null. For elements of type objects and REFs, element values are returned as 
corresponding OO4O objects for that type. VARRAYs and nested tables do not support 
the elements of LOBs, VARRAYs, and Nested tables. 

Table 9–1 lists the element type and return value of the elements.

Element values are converted into a Variant SAFEARRAY format using the 
SafeArray property. Only elements of primitive types are supported. A Variant 
SAFEARRAY index starts at 0.

The CreateOraObject method on the OraDatabase object returns the 
OraCollection object. The Oracle collection associated with this OraCollection 
object is created in the client-side object cache.

Table 9–1 Element Type and Return Value of Elements

Element Type Element Value

Object OraObject

REF OraRef 

Date String 

Number String 

CHAR, VARCHAR2 String 

Real Real

Integer Integer 



OraCollection Object

9-20 Oracle Objects for OLE Developer's Guide

For information about creating a dynaset from a collection, see to "Creating a Dynaset 
from an OraCollection Object" on page 4-18.

Properties
■ BOC Property on page 11-10

■ ElementType Property on page 11-54 

■ EOC Property on page 11-55 

■ IsLocator (OraCollection) Property on page 11-77 

■ IsNull (OraCollection) Property on page 11-79 

■ MaxSize (OraCollection) Property 

■ SafeArray (OraCollection) Property on page 11-133 

■ Size (OraCollection) Property on page 11-144 

■ TableSize (OraCollection) Property on page 11-157 

■ Type (OraCollection) Property on page 11-167 

Methods
■ Append (OraCollection) Method on page 10-25

■ Clone (OraCollection) Method on page 10-54

■ CreateIterator Method on page 10-88

■ Delete (OraCollection) Method on page 10-118

■ DeleteIterator Method on page 10-121

■ ElementValue Method on page 10-138

■ Exist (OraCollection) Method on page 10-147

■ InitIterator Method on page 10-171

■ IterNext Method on page 10-187

■ IterPrev Method on page 10-188

■ Trim (OraCollection) Method on page 10-252

Examples
Before running the sample code, make sure that you have the necessary data types and 
tables in the database. See "Schema Objects Used in OraCollection Examples" on 
page A-3 for schema objects that are used in the OraCollection examples.

Example: Accessing Collection Elements 
The following example illustrates how to access collection elements.

OraDynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")



OraCollection Object

Server Objects 9-21

 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&) 
 
'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)
 
'retrieve a Enames column from Department. 
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value
 
'access the first element of EnameList
msgbox  EnameList(1)
 
'move to next to row
OraDynaset.MoveNext
 
'access all the elements of EnameList for the second row
For index = 1 To EnameList.Size
        msgbox EnameList(index)
Next Index    

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameList as OraCollection
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an  OraParameter object representing EnameList collection bind Variable
OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_OUTPUT, _
                 ORATYPE_VARRAY,"ENAMELIST"
 
'execute the sql statement which selects ENAMES VARRAY  from the department  table
 
OraDatabase.ExecuteSQL ("BEGIN select enames  into :ENAMES  from department " & _
                   "where  dept_id = 10;  END;")
 
'get the EnameList collection  from OraParameter
set EnameList = OraDatabase.Parameters("ENAMES").Value
 
'access all the elements of EnameList 
For index = 1 To EnameList.Size
        msgbox EnameList(index)
Next Index    

Example: Modifying Collection Elements 
The following example illustrates how to modify collection elements. 

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection
 
'create the OraSession Object.



OraCollection Object

9-22 Oracle Objects for OLE Developer's Guide

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)
 
'retrieve a Enames column from Department. Here Value property of OraField object
'returns EnameList OraCollection
 
set EnameList = OraDynaset.Fields("Enames").Value
 
'lock the row for editing and set the 2nd element of the EnameList to new value
OraDynaset.Edit
EnameList(2) = "Eric"
OraDynaset.Update

Example: Inserting in a Collection 
The following example illustrates how to insert elements into an Oracle collection. 

OraDynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameListNew as OraCollection
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a new OraCollection object from the database
set EnameListNew = OraDatabase.CreateOraObject("ENAMELIST")
 
'set EnameListNew's element values
EnameListNew(1)  = "Nasser"
EnameListNew(2) =  "Chris"
EnameListNew(3) =  "Gopal"
 
'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)
 
'start the AddNew operation and insert the EnameListNew collection 
OraDynaset.AddNew
OraDynaset.Fields("dept_id") = 40
OraDynaset.Fields("name") = "DEVELOPMENT"
 
'set the EnameListNew to enames column
OraDynaset.Fields("enames") = EnameListNew
OraDynaset.Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameListNew as OraCollection
 



OraCollection Object

Server Objects 9-23

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a new OraCollection object from the database
set EnameListNew = OraDatabase.CreateOraObject("ENAMELIST")
 
'set EnameListNew's element values
EnameListNew(1)  = "Nasser"
EnameListNew(2) =  "Chris"
EnameListNew(3) =  "Gopal"
 
'create an input OraParameter object representing EnameList collection bind 
'Variable
 
OraDatabase.Parameters.Add "ENAMES", Null, ORAPARM_INPUT, ORATYPE_VARRAY, _ 
                "ENAMELIST"
 
'set the ENAMES parameter value to EnameListNew
OraDatabase.Parameters("ENAMES").Value  = EnameListNew
 
'execute the insert sql statement 
OraDatabase.ExecuteSQL ("insert into department values (40,'DEVELOPMENT', " & _ 
              ":ENAMES)")

Example: Collection with Object Type Elements 
The following example illustrates the use of an Oracle collection having elements of 
object type. 

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)
 
'retrieve a Courses column from Division. 
'Here Value property of OraField object returns CourseList OraCollection
 
set CourseList = OraDynaset.Fields("Courses").Value
'retrieve the element value of the CourseList at index 1. 
'Here element value is returned as Course OraObject
set Course = CourseList(1)
 
'retrieve course_no and title attribute of the Course
msgbox Course.course_no
msgbox Course.title
 
'move to next row



OraCollection Object

9-24 Oracle Objects for OLE Developer's Guide

OraDynaset.MoveNext
 
'now CourseList object represents collection value for the second row 
'and course OraObject 'represents the element value at index 1. 
'retrieve course_no and title attribute of the Course.
msgbox Course.course_no
msgbox Course.title

Example: Creating a SAFEARRAY Variant from a Collection 
The following example illustrates how to get and set a SAFEARRAY Variant with an 
Oracle collection. 

Creating SAFEARRAY Variant from a Collection

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection
Dim EnameArray as Variant
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)
 
'retrieve a Enames column from Department. 
'Here Value property of OraField objectreturns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value
 
'get the Variant SAFEARRAY from the collection. 
EnameArray = EnameList.SafeArray
 
'display the individual elements of EnameArray
msgbox EnameArray(0)
msgbox EnameArray(1)
msgbox EnameArray(2)

Setting SAFEARRAY Variant to the Collection

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim EnameList as OraCollection
Dim EnameArray() As String
ReDim EnameArray(3)
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an Empty uninitialized input OraParameter object 
'represent EnameList collection bind Variable
OraDatabase.Parameters.Add "ENAMES", Empty, ORAPARM_INPUT, _
                            ORATYPE_VARRAY,"ENAMELIST"
 



OraCollection Object

Server Objects 9-25

'get the Empty uninitialized ENAMES parameter value
set EnameList = OraDatabase.Parameters("ENAMES").Value 
 
'initialize the EnameArray
EnameArray(0) = "Nasser"
EnameArray(1) = "Chris"
EnameArray(2) = "Gopal"
 
'set the EnameArray to EnameList's SafeArray
EnameList.SafeArray = EnameArray
 
'execute the insert sql statement 
OraDatabase.ExecuteSQL ("insert into department " & _
                "values (40,'DEVELOPMENT', :ENAMES)")

Example: Creating a Dynaset from a Collection 
The following example illustrates how to create a dynaset from an Oracle collection. 

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
Dim Course as OraObject
Dim CourseListDyn as OraDynaset
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger",  0&)
 
'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)
 
'retrieve a Courses column from Division. Here Value 
'property of OraField object returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value
 
'create a input parameter for CourseList for nested table dynaset
OraDatabase.Parameters.Add "COURSELIST", CourseList, ORAPARM_INPUT, _
                            ORATYPE_TABLE, "COURSELIST"
 
'create a read only dynaset based on the CourseList. 
Set CourseListDyn = OraDatabase.CreateDynaset("select * from THE" & _
          "(select CAST(:COURSELIST AS COURSELIST) from dual)", ORADYN_READONLY)
 
'dynaset can also be created from Oracle8 collection 
'using the following statement, which requires OO4O v8.1.x later
 
Set CourseListDyn = OraDatabase.CreateDynaset("select * from " & _ 
           "TABLE(CAST(:COURSELIST AS COURSELIST))", ORADYN_READONLY)
 
'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields("course_no").Value
 
'move the original dynaset to second row
Oradynaset.MoveNext
 



OraCollection Object

9-26 Oracle Objects for OLE Developer's Guide

'set the new value of CourseList  collection from the second row of main dynaset
'to the "COURSELIST" parameter
OraDatabase.Parameters("COURSELIST").Value = CourseList
 
'refresh the collection dynaset. Now the collection dynaset values are refreshed
' with new collection value.
CourseListDyn.Refresh
 
'get the field values of the collection dynaset
msgbox CourseListDyn.Fields("title").Value
msgbox CourseListDyn.Fields("course_no").Value

Example: Collection Iterator 
See "Example: OraCollection Iterator"  on page 10-88.

See Also:

■ OraParameter Object on page 9-50

■ CreateOraObject (OraDatabase) Method on page 10-97

■ "Instantiating Oracle LOBs, Objects, and Collections" on 
page 4-2

■ "Oracle Collections" on page 4-16



OraConnection Object

Server Objects 9-27

OraConnection Object

Description 
An OraConnection object represents a single connection to an Oracle database. 

Remarks
An OraConnection object is created automatically whenever an OraDatabase 
object is instantiated within the session, and it is destroyed automatically whenever all 
databases using the connection are discarded.

Currently, there is no way to create an OraConnection object explicitly, only by 
creating an OraDatabase object that requires a connection.

Properties
■ Connect Property on page 11-23 

■ ConnectionOK Property on page 11-26 

■ DatabaseName Property on page 11-37 

■ Session Property on page 11-141 

Methods
■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ ResetTrans Method on page 10-233

■ Rollback Method on page 10-235

See Also:

■ OraConnections Collection on page 9-66 

■ OraDatabase Object on page 9-28



OraDatabase Object

9-28 Oracle Objects for OLE Developer's Guide

OraDatabase Object

Description 
An OraDatabase interface represents a user session to an Oracle database and 
provides methods for SQL and PL/SQL execution. 

Remarks
An OraDatabase interface in Oracle8i and higher releases adds additional methods 
for controlling transactions and creating interfaces representing instances of Oracle 
object types. Attributes of schema objects can be retrieved using the Describe 
method of the OraDatabase interface. 

In previous releases, an OraDatabase object is created by invoking the 
OpenDatabase method of an OraSession interface. The network alias, user name, 
and password are passed as arguments to this method. In Oracle8i and higher releases, 
invocation of this method results in implicit creation of an OraServer object. 

As described in the OraServer interface description, an OraDatabase object can 
also be created using the OpenDatabase method of the OraServer interface. 

Transaction control methods are available at the OraDatabase (user session) level. 
These methods include: 

■ BeginTrans 

■ CommitTrans 

■ Rollback 

For example: 

MyDatabase.BeginTrans 
MyDatabase.ExecuteSQL("delete from emp where empno = 1234") 
MyDatabase.CommitTrans 

Properties
■ AutoCommit Property on page 11-9 

■ CacheMaximumSize Property on page 11-18 

■ CacheOptimalSize Property on page 11-19 

■ Connect Property on page 11-23 

■ Connection Property on page 11-25 

■ ConnectionOK Property on page 11-26 

■ DatabaseName Property on page 11-37 

■ LastServerErr Property on page 11-87 

■ LastServerErrPos Property on page 11-89 

■ LastServerErrText Property on page 11-90 

Note: If the AutoCommit property is set to True, transactions are 
committed automatically, and you do not need to use the 
transaction control methods.



OraDatabase Object

Server Objects 9-29

■ Options Property on page 11-114 

■ Server Property on page 11-137 

■ Parameters Property on page 11-122 

■ RDMSVersion Property on page 11-127 

■ Subscriptions Property on page 11-155 

Methods
■ BeginTrans Method on page 10-43

■ Close Method on page 10-63

■ CommitTrans Method on page 10-66

■ CreateAQ Method on page 10-79

■ CreateCustomDynaset Method on page 10-80

■ CreateTempBLOB/CLOB Method on page 10-114

■ CreateDynaset Method on page 10-85

■ CreateOraObject (OraDatabase) Method on page 10-97

■ CreateSQL Method on page 10-111

■ Describe Method on page 10-124

■ ExecuteSQL Method on page 10-144

■ FetchOraRef Method on page 10-149

■ LastServerErrReset Method on page 10-189

■ MonitorForFailover Method on page 10-194

■ Open (OraServer) Method on page 10-210

■ RemoveFromPool Method on page 10-232

■ Rollback Method on page 10-235

See Also:

■ OpenDatabase Method on page 10-212

■ OraServer Object on page 9-56 

■ OraServer Object on page 9-56



OraDynaset Object

9-30 Oracle Objects for OLE Developer's Guide

OraDynaset Object

Description 
An OraDynaset object permits browsing and updating of data created from a SQL 
SELECT statement. 

Remarks
An OraDynaset object represents the result set of a SQL SELECT query or a PL/SQL 
cursor variable returned from a stored procedure or function. It is essentially a 
client-side scrollable and updatable cursor that allows browsing the set of rows 
generated by the query it executes. It is created by the CreateDynaset or 
CreateCustomDynaset method of an OraDatabase interface. An OraDynaset 
object can be used to scroll result sets that contain instances of relational and 
object-relational columns such as VARRAYs, nested tables, Objects, REFs, and LOBs 
and BFILE types. 

This object provides transparent mirroring of database operations, such as updates. 
When data is updated through the Update method, the local mirror image of the 
query is updated so that the data appears to have been changed without reevaluating 
the query. The same procedure is used automatically when records are added to the 
dynaset. Integrity checking is performed to ensure that the mirrored image of the data 
always matches the actual data present on Oracle Database. This integrity checking is 
performed only when necessary (such as just before updates occur). 

During create and refresh operations, the OraDynaset objects automatically bind all 
relevant enabled input parameters to the specified SQL statement, using the parameter 
names as placeholders in the SQL statement. This can simplify dynamic query 
building and increase the efficiency of multiple queries using the same SQL statement 
with varying WHERE clauses. 

When you use Oracle Objects for OLE, locks are not placed on data until an Edit 
method is executed. The Edit method attempts to obtain a lock using the "SELECT 
... FOR UPDATE" statement on the current record of the dynaset. This is done as late 
as possible to minimize the time that locks are placed on the records. The Edit 
method can fail for several reasons: 

■ The SQL query violates the Oracle SQL update rules; for example, using calculated 
columns or table joins. 

■ The user does not have the privileges needed to obtain a lock. 

■ The record has been locked already by another user. Note that the OpenDatabase 
method has an option so that you can decide whether to wait on locks.

Properties

BOF Property on page 11-11 LastModified Property on page 11-86

Bookmark Property on page 11-13 NoMatch Property on page 11-110

BookMarkable Property on 
page 11-15

Options Property on page 11-114

CacheBlocks Property on page 11-16 RecordCount Property on page 11-128

CacheChanged Property on 
page 11-17

RowPosition Property on page 11-132



OraDynaset Object

Server Objects 9-31

Methods
■ AddNew Method on page 10-21

■ Clone Method on page 10-52

■ Close Method on page 10-63

■ CopyToClipboard Method on page 10-71

■ Delete Method on page 10-116

■ Edit Method on page 10-134

■ FindFirst, FindLast, FindNext, and FindPrevious Methods on page 10-151

■ GetRows Method on page 10-165

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on page 10-199

■ MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods on page 10-202

■ Refresh Method on page 10-225

■ Update Method on page 10-257

CacheSliceSize Property on 
page 11-20

Session Property on page 11-141

CacheSlicesPerBlock Property on 
page 11-21

SnapShot Property on page 11-146

Connection Property on page 11-25 SQL Property on page 11-150

Database Property on page 11-36 Transactions Property on page 11-162

EditMode Property on page 11-51 Updatable Property on page 11-171

EOF Property on page 11-56 XMLCollID Property on page 11-189

FetchLimit Property on page 11-61 XMLEncodingTag Property on page 11-190

FetchSize Property on page 11-62 XMLNullIndicator Property on page 11-191

FieldIndex Property on page 11-63 XMLOmitEncodingTag Property on 
page 11-192

FieldName Property on page 11-64 XMLRowsetTag Property on page 11-194

FieldOriginalName Property on 
page 11-65

XMLRowID Property on page 11-193

FieldOriginalNameIndex Property on 
page 11-66

XMLRowTag Property on page 11-195

Fields Property on page 11-67 XMLUpperCase Property on page 11-197



OraDynaset Object

9-32 Oracle Objects for OLE Developer's Guide

See Also:

■ CreateDynaset Method on page 10-85 

■ CreateCustomDynaset Method on page 10-80 

■ OraParameter Object on page 9-50

■ RowPosition Property on page 11-132

■ Update Method on page 10-257



OraField Object

Server Objects 9-33

OraField Object

Description 
An OraField object represents a single column or data item within a row of a 
dynaset. 

Remarks
An OraField object is accessed indirectly by retrieving a field from the OraFields 
collection of an OraDynaset object. 

If the current row is being updated, then the OraField object represents the currently 
updated value, although the value may not yet have been committed to the database. 

Assignment to the Value property of a field is permitted only if a record is being 
edited (using the Edit method) or a new record is being added (using the AddNew 
method). Other attempts to assign data to the Value property of a field results in an 
error. 

Properties
■ OraIDataType Property on page 11-115

■ OraMaxDSize Property on page 11-117 

■ OraMaxSize Property on page 11-118 

■ OraNullOK Property on page 11-119 

■ OraPrecision Property on page 11-120 

■ OraScale Property on page 11-121 

■ Name Property on page 11-101

■ Size Property on page 11-143 

■ Truncated Property on page 11-163 

■ Type Property on page 11-164 

■ Value Property on page 11-173 

■ XMLAsAttribute Property on page 11-188 

■ XMLTagName Property on page 11-196 

Methods
■ AppendChunk Method on page 10-28

■ AppendChunkByte Method on page 10-30

■ FieldSize Method on page 10-150

■ GetChunk Method on page 10-156

■ GetChunkByteEx Method on page 10-160

■ OriginalName on page 10-217

■ ReadChunk Method on page 10-224



OraField Object

9-34 Oracle Objects for OLE Developer's Guide

See Also:

■ AddNew Method on page 10-21 

■ Edit Method on page 10-134 

■ OraDynaset Object on page 9-30

■ OraFields Collection on page 9-67

■ Value Property on page 11-173



OraIntervalDS Object

Server Objects 9-35

OraIntervalDS Object

Description 
The OraIntervalDS object provides methods for operations on the Oracle 
INTERVAL DAY TO SECOND.This data type represents a period of time in terms of days, 
hours, minutes, seconds, and nanoseconds. 

Remarks
The OraIntervalDS object is created by the OraSession.CreateOraIntervalDS 
method or by calling the Clone method on an existing OraIntervalDS object. 

An OraIntervalDS object can be bound using the ServerType ORATYPE_
INTERVALDS. This allows the binding of a value to a parameter associated with an 
Oracle INTERVAL DAY TO SECOND data type in a SQL or PL/SQL statement. 

When binding a string associated with an INTERVAL DAY TO SECOND data type, the 
ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2, 
ORATYPE_STRING) and the string must be in the format specified by Day 
HH:MI:SSxFF. 

Properties
■ Days Property on page 11-42

■ Hours Property on page 11-76

■ Minutes Property on page 11-97

■ Nanonseconds Property on page 11-108

■ Seconds Property on page 11-136

■ TotalDays Property on page 11-160

■ Value (OraIntervalDS) Property on page 11-177

Methods
■ Add (OraIntervalDS) Method on page 10-11

■ Clone (OraIntervalDS) Method on page 10-55

■ Div (OraIntervalDS) Method on page 10-130

■ IsEqual (OraIntervalDS) Method on page 10-172

■ IsGreater (OraIntervalDS) Method on page 10-177

■ IsLess (OraIntervalDS) Method on page 10-182

■ Mul (OraIntervalDS) Method on page 10-204

■ Neg (OraIntervalDS) Method on page 10-207

■ Sub (OraIntervalDS) Method on page 10-241

■ ToOraNumber (OraIntervalDS) Method on page 10-247



OraIntervalDS Object

9-36 Oracle Objects for OLE Developer's Guide

See Also:

■ CreateOraIntervalDS Method on page 10-92 

■ OraNumber Object on page 9-41

■ ServerType Property on page 11-138



OraIntervalYM Object

Server Objects 9-37

OraIntervalYM Object

Description 
The OraIntervalYM object provides methods for operations on the Oracle 
INTERVAL YEAR TO MONTH.This data type represents a period of time in terms of years 
and months. 

Remarks
The OraIntervalYM object is created by the OraSession.CreateOraIntervalYM 
method or by calling the Clone method on an existing OraIntervalYM object. 

An OraIntervalYM object can be bound using ServerType ORATYPE_
INTERVALYM. This allows the binding of a value to a parameter associated with an 
Oracle INTERVAL YEAR TO MONTH data type in a SQL or PL/SQL statement. 

When binding a string associated with an INTERVAL YEAR TO MONTH data type, the 
ServerType must be specified to be a string type (for example, ORATYPE_
VARCHAR2, ORATYPE_STRING), and the string must be in the format specified by 
YEARS-MONTHS. 

Properties
■ Months Property on page 11-100

■ Years Property on page 11-200

■ TotalYears Property on page 11-161

■ Value Property on page 11-173 

Methods
■ Add (OraIntervalYM) Method on page 10-12

■ Clone (OraIntervalYM) Method on page 10-56

■ Div (OraIntervalYM) Method on page 10-131

■ IsEqual (OraIntervalYM) Method on page 10-173

■ IsGreater (OraIntervalYM) Method on page 10-178

■ IsLess (OraIntervalYM) Method on page 10-183

■ Mul (OraIntervalYM) Method on page 10-205

■ Neg (OraIntervalYM) Method on page 10-208

■ Sub (OraIntervalYM) Method on page 10-242

See Also:

■ CreateOraIntervalYM Method on page 10-94 

■ OraNumber Object on page 9-41

■ ServerType Property on page 11-138



OraMDAttribute Object

9-38 Oracle Objects for OLE Developer's Guide

OraMDAttribute Object

Description 
Each OraMDAttribute object describes an individual attribute. It represents an entry 
to the attribute table of the OraMetaData object. It can be accessed by creating a 
subscript that uses ordinal integers or by using the name of the attribute. 

Remarks
None. 

Properties
■ Name (OraMDAttribute) Property on page 11-105

■ Value (OraMDAttribute) Property on page 11-181

■ IsMDObject Property on page 11-78 

Methods
None.

Examples
See "Schema Objects Used in OraMetaData Examples" on page A-3 for OraMetaData 
Schema Definitions used in these examples.

Example: Describing a Table 
See "Describing a Table Example" on page 10-125.

Example: Describing a User-Defined Type 
See "Example: Describing a User-Defined Type" on page 10-126.

Example: Describing Unknown Schema Objects 
See "Example: Describing Unknown Schema Objects" on page 10-126.

See Also:

■ OraMetaData Object on page 9-39

■ Describe Method on page 10-124



OraMetaData Object

Server Objects 9-39

OraMetaData Object

Description 
The OraMetaData object is returned by invoking the Describe method of the 
OraDatabase interface. The Describe method takes the name of a schema object, 
such as the emp table, and returns an OraMetaData object. The OraMetaData object 
provides methods for dynamically navigating and accessing all the attributes 
(OraMDAttribute collection) of a schema object described. 

An OraMetaData object is a collection of OraMDAttribute objects that represent the 
description information about a particular schema object in the database. The 
following table is an example of attributes for a OraMetaData object of type table 
(ORAMD_TABLE).

Table 9–2 list the ORAMD_TABLE attributes.

Remarks
The OraMetaData object can be visualized as a table with three columns: 

■ Metadata attribute name 

■ Metadata attribute value 

■ Flag specifying whether the Value is another OraMetaData object 

The OraMDAttribute objects contained in the OraMetaData object can be accessed 
by creating a subscript that uses ordinal integers or by using the name of the property. 
Referencing a subscript that is not in the collection (0 to Count-1) results in the return 
of a NULL OraMDAttribute object. 

Properties
■ Count (OraMetaData) Property on page 11-33

■ Type (OraMetaData) Property on page 11-168 

Table 9–2 ORAMD_TABLE Attributes

Attribute Name Value Type Description

ObjectID Integer Object ID.

NumCols Integer Number of columns.

ColumnList OraMetaData Column list.

IsTyped Boolean Is the table typed?

IsTemporary Boolean Is the table temporary?

Duration String Duration - can be session, transaction, or null.

DBA Integer Data block address of the segment header.

TableSpace Integer Tablespace in which the table resides.

IsClustered Boolean Is the table clustered?

IsPartitioned Boolean Is the table partitioned?

IsIndexOnly Boolean Is the table index-only?

See Also: "Type (OraMetaData) Property" on page 11-168 



OraMetaData Object

9-40 Oracle Objects for OLE Developer's Guide

Methods
■ Attribute (OraMetaData) Method on page 10-38

Examples
See "Schema Objects Used in OraMetaData Examples" on page A-3 for OraMetaData 
schema definitions used in these examples.

The following Visual Basic example illustrates a simple use of this facility. It retrieves 
and displays several attributes of the emp table. 

Set empMD = OraDatabase.Describe("emp") 
 
'Display the name of the Tablespace 
msgbox empMD("tablespace") 
 
'Display name, data type, and size of each column in the emp table. 
Set empColumnsMD = empMD("Columns") 
for I = 1 to empColumns.Count 
   Set ColumnMD = empColumnsMD(I) 
   MsgBox ColumnMD("Name") & ColumnMD("Data Type") & ColumnMD("Length")
Next I

Example: Describing a User-Defined Type 
See "Example: Describing a User-Defined Type" on page 10-126

Example: Describing Unknown Schema Objects 
See "Example: Describing Unknown Schema Objects" on page 10-126

See Also:

■ OraMDAttribute Object on page 9-38

■ Describe Method on page 10-124 



OraNumber Object

Server Objects 9-41

OraNumber Object

Description 
The OraNumber interface provides methods for operations on the Oracle Number data 
types. This interface exposes a set of math operations that provide greater precision 
than is available in some programming environments, such as Visual Basic. 

Remarks
The OraNumber object can be obtained through the CreateOraNumber method of 
the OraSession object or by calling the Clone method on an existing OraNumber. 

All of the methods of the OraNumber object that take a numeric argument accept a 
string, another numeric type, such as a long in Visual Basic, or another OraNumber 
object. 

The OraNumber on which the math operation is called holds the result of the 
operation (overwriting any previous value). If a Format was specified (through the 
Format property), the value of an OraNumber must match this format or an error is 
raised when the Value property is accessed. 

Properties
■ Format (OraNumber) Property on page 11-70 

■ Value (OraNumber) Property on page 11-182

Methods
■ Abs Method on page 10-7

■ Add (OraNumber) Method on page 10-13

■ ArcCos (OraNumber) Method on page 10-34

■ ArcSin (OraNumber) Method on page 10-35

■ ArcTan (OraNumber) Method on page 10-36

■ ArcTan2 (OraNumber) Method on page 10-37

■ Ceil (OraNumber) Method on page 10-47

■ Clone (OraNumber) Method on page 10-57

■ Cos (OraNumber) Method on page 10-78

■ Div (OraNumber) Method on page 10-132

■ Exp (OraNumber) Method on page 10-148

■ Floor (OraNumber) Method on page 10-153

■ HypCos (OraNumber) Method on page 10-168

■ HypSin (OraNumber) Method on page 10-169

Note: If a Visual Basic numeric value (or constant) is used as an 
argument, it is limited to the maximum precision provided by the 
language. 



OraNumber Object

9-42 Oracle Objects for OLE Developer's Guide

■ HypTan (OraNumber) Method on page 10-170

■ IsEqual (OraNumber) Method on page 10-174

■ IsGreater (OraNumber) Method on page 10-179

■ IsLess (OraNumber) Method on page 10-184

■ Ln (OraNumber) Method on page 10-190

■ Log (OraNumber) Method on page 10-191

■ Mod (OraNumber) Method on page 10-193

■ Mul (OraNumber) Method on page 10-206

■ Neg (OraNumber) Method on page 10-209

■ Power (OraNumber) Method on page 10-219

■ Round (OraNumber) Method on page 10-237

■ SetPi (OraNumber) Method on page 10-238

■ Sin (OraNumber) Method on page 10-239

■ Sqrt (OraNumber) Method on page 10-240

■ Sub (OraNumber) Method on page 10-243

■ Tan (OraNumber) Method on page 10-244

■ Trunc (OraNumber) Method on page 10-255

Example
A scientific calculator example program is included as part on the samples installed 
with Oracle Objects for OLE. See "Demonstration Schema and Code Examples" on 
page 2-1. 

See Also: OraSession Object on page 9-58



OraObject Object

Server Objects 9-43

OraObject Object

Description
The OraObject interface is a representation of an Oracle value instance 
(non-referenceable object instance or embedded objects). Value instances are instances 
of an Oracle object type stored in the column of a table or attribute of an another 
Oracle object instance or element of an Oracle collection.

Remarks
Implicitly an OraObject object contains a collection interface for accessing and 
manipulating (updating and inserting) individual attributes of an value instance. 
Individual attributes can be accessed by using a subscript or the name of the attribute. 

The OraObject attribute index starts at 1. The Count property returns the total 
number of attributes. Each attribute of the underlying value instance is represented as 
an OraAttribute object.

Attribute values are retrieved as variants. The Variant type of the attribute depends 
on the attribute type of the object. Attribute values can be null and can be set to Null. 
For object types REF, LOB, and collection, attribute values are returned as 
corresponding OO4O objects for that type.

The CreateOraObject method on the OraDatabase object returns the OraObject 
object. The value instance associated with this OraObject object is created in the 
client-side object cache.

For information about executing a member method of a value instance, see "Executing 
a Member Method of an Oracle Object Instance" on page 4-12. 

For information about initializing an OraObject object representing a value instance 
in OO4O or executing a member method of a value instance, see "Instantiating Oracle 
LOBs, Objects, and Collections" on page 4-2. 

Properties
■ Count (OraObject/Ref) Property on page 11-34

■ IsNull (OraObject) Property on page 11-81

■ TypeName (OraObject and OraRef) Property

■ Version (OraObject and Ref) Property on page 11-185

Methods
■ Clone (OraObject/Ref) Method on page 10-58

Examples
See "Schema Objects Used in the OraObject and OraRef Examples" on page A-3 for 
schema descriptions used in examples of OraObject/OraRef objects.

Example: Accessing Attributes of an OraObject Object
The following example accesses the attributes of the ADDRESS value instance in the 
database. 

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase



OraObject Object

9-44 Oracle Objects for OLE Developer's Guide

Dim OraDynaset as OraDynaset
Dim Address as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb",  "scott/tiger", 0&)
 
'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab",0&)
 
'retrieve a address column from person_tab. Here Value property of OraField  
'object returns Address OraObject 
set Address = OraDynaset.Fields("Addr").Value
 
'access the attribute by dot notation
msgbox Address.Street
 
'access the attribute using '!' notation ( early binding application) 
msgbox Address!Street
 
'access the attribute by index
msgbox Address(1)
 
'access the attribute by name
msgbox Address("Street")
 
'access all the attributes of Address OraObject in the dynaset
Do Until OraDynaset.EOF
    For index = 1 To Address.Count   
        msgbox Address(index)
    Next Index    
OraDynaset.MoveNext
Loop

Example: Updating Attributes of an OraObject Object
The following examples modify the attributes of the ADDRESS value instance in the 
database.

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)
 
'retrieve a address column from person_tab. 
'Here Value property of OraField object returns Address OraObject 
 



OraObject Object

Server Objects 9-45

set Address = OraDynaset.Fields("Addr").Value
 
'start the Edit operation and modify the Street attribute
OraDynaset.Edit
Address.Street  =  "Oracle Parkway"
OraDynaset.Update

Parameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Address as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an  OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Empty, ORAPARM_INPUT, ORATYPE_OBJECT, _
                    "ADDRESS"
 
'get the uninitialized 'Empty' Address object from OraParameter
set Address = OraDatabase.Parameters("ADDRESS").Value
 
'modify the 'Street' attribute of the Address
Address.Street = "Oracle Parkway"
 
'execute the sql statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("update person_tab set addr = :ADDRESS where age = 40")

Example: Inserting an OraObject Object
The following examples insert a new field (value instance) called ADDRESS in the 
database. 

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)
 
' create a new Address object in OO4O 
set AddressNew = OraDatabase.CreateOraObject("ADDRESS")
 
'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"
 
'start the dynaset AddNew operation and set the Address field to new address 



OraObject Object

9-46 Oracle Objects for OLE Developer's Guide

' value
OraDynaset.Addnew
OraDynaset.Fields("ADDR").Value = AddressNew
OraDynaset.Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an  OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Null, ORAPARM_INPUT, ORATYPE_OBJECT, _ 
                     "ADDRESS"
 
' create a new Address object in OO4O 
set AddressNew = OraDatabase.CreateObject("ADDRESS")
 
'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"
 
'set the Address to ADDRESS parameter
Oradatabase.Parameters("ADDRESS").Value = AddressNew
 
'execute the sql statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("insert into person_tab values (30,'Eric',:ADDRESS))

See Also:

■ "Oracle Object Data Types" on page 4-10 for information on 
support of Oracle object-relational features

■ OraParameter Object on page 9-50

■ OraParamArray Object on page 9-47

■ OraRef Object on page 9-52

■ OraAttribute Object on page 9-7

■ CreateOraObject (OraDatabase) Method on page 10-97

■ "Executing a Member Method of an Oracle Object Instance" on 
page 4-12



OraParamArray Object

Server Objects 9-47

OraParamArray Object

Description
An OraParamArray object represents an array type bind variable in a SQL statement 
or PL/SQL block, as opposed to a scalar type bind variable represented by the 
OraParameter object. 

Remarks
OraParamArray objects are created, accessed, and removed indirectly through the 
OraParameters collection of an OraDatabase object. Each parameter has an 
identifying name and an associated value. 

Implicitly an OraParamArray object contains an OLE automation collection interface 
for accessing and manipulating individual elements of an array. Individual elements 
can be accessed using a subscript or the Get_Value method. Individual elements can 
be modified by using a subscript or the Put_Value method.

Element values are retrieved as Variant types. The Variant type of the element 
depends on the ServerType of the OraParamArray object. Element values can be 
null and can be set to Null. For elements of type objects and REFs, element values are 
returned as corresponding OO4O objects for that type. 

You can automatically bind a parameter to SQL and PL/SQL statements of other 
objects (as noted in the objects descriptions) by using the name of the parameter as a 
placeholder in the SQL or PL/SQL statement. Using parameters can simplify dynamic 
queries and increase program performance. Parameters are bound to SQL statements 
and PL/SQL blocks before execution. 

The OraParameters collection is part of the OraDatabase object so that all 
parameters are available to any SQL statement or PL/SQL block executed within the 
database (through CreateDynaset, ExecuteSQL, or CreateSQL methods). Before a 
SQL statement or PL/SQL block is executed, an attempt is made to bind all parameters 
of the associated OraDatabase object. The bindings that fail (because the parameter 
does not apply to that particular SQL statement or PL/SQL block) are noted and no 
attempt is made to bind them again if the SQL statement or PL/SQL block is 
reexecuted but does not change. 

Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is 
done by Oracle Database), any unnecessary binding results in performance 
degradation. To prevent unnecessary parameter binding, use the AutoBindDisable 
and AutoBindEnable methods.

Properties
■ ArraySize Property on page 11-8 

■ LastErrorText Property on page 11-85 

■ MinimumSize Property on page 11-93 

■ Name Property on page 11-101 

■ ServerType Property on page 11-138

■ Status Property on page 11-152 

■ Type Property on page 11-164  



OraParamArray Object

9-48 Oracle Objects for OLE Developer's Guide

Methods
■ AutoBindDisable Method on page 10-39

■ AutoBindEnable Method on page 10-41

■ Get_Value Method on page 10-167

■ Put_Value Method on page 10-220

Example

Example: Using OraParamArrays with SQL Statements
The following example shows how to use the OraParamArray object with SQL 
statements:

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraSqlStmt As OraSQLStmt 
Dim PartNoArray As OraParamArray 
Dim DescArray As OraParamArray 
Dim I As Integer 
 
'Test case for inserting/updating/deleting multiple rows using parameter 
 
' arrays with SQL statements 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger",  0&)  
 
'Create table 
OraDatabase.ExecuteSQL ("create table part_nos(partno number," & _ 
                         "description char(50), primary key(partno))") 
OraDatabase.Parameters.AddTable "PARTNO", ORAPARM_INPUT, ORATYPE_NUMBER, 10, 22
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, _ 
                           ORATYPE_CHAR, 10, 50 
Set PartNoArray = OraDatabase.Parameters("PARTNO") 
Set DescArray = OraDatabase.Parameters("DESCRIPTION") 
 
 'Initialize arrays 
For I = 0 To 9 
  achar = "Description" + Str(I) 
  PartNoArray(I) = 1000 + I 
  DescArray(I) = achar 
Next I 
Set OraSqlStmt = OraDatabase.CreateSql("insert into 
part_nos(partno, description) values(:PARTNO,:DESCRIPTION)", 0&) 
 
'Update the newly created part_nos table 
For I = 0 To 9 
  achar = "Description" + Str(1000 + I) 
  DescArray(I) = achar 
Next I 
 
'Update table 
Set OraSqlStmt = OraDatabase.CreateSql("update part_nos set DESCRIPTION" & _ 
                           "=:DESCRIPTION where PARTNO = :PARTNO", 0&) 
 
'Deleting rows 
Set OraSqlStmt = OraDatabase.CreateSql("delete  from  part_nos where" & _  
                           "DESCRIPTION=: Description ", 0&) 
 



OraParamArray Object

Server Objects 9-49

'Drop the table 
OraDatabase.ExecuteSQL ("drop table part_nos") 

Example: Using OraParamArrays with PL/SQL
The following is an example using OraParamArray objects with PL/SQL. The 
Employee PL/SQL package can be set up with the ORAEXAMP.SQL script. See 
"Demonstration Schema and Code Examples" on page 2-1.

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim EmpnoArray As OraParamArray 
Dim EnameArray As OraParamArray 
 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger", 0&) 
OraDatabase.Parameters.Add "ArraySize", 3, ORAPARM_INPUT 
OraDatabase.Parameters.AddTable "EMPNOS", ORAPARM_INPUT, ORATYPE_NUMBER,3, 22
OraDatabase.Parameters.AddTable "ENAMES", ORAPARM_OUTPUT, _ 
                                 ORATYPE_VARCHAR2, 3, 10 
Set EmpnoArray = OraDatabase.Parameters("EMPNOS") 
Set EnameArray = OraDatabase.Parameters("ENAMES") 
 
'Initialize the newly created input parameter table EMPNOS 
EmpnoArray(0) = 7698 
EmpnoArray(1) = 7782 
EmpnoArray(2) = 7654 
 
'Execute the PLSQL package 
OraDatabase.ExecuteSQL ("Begin Employee.GetEmpNamesInArray(:ArraySize," & _
                         ":EMPNOS, :ENAMES); End;") 
'Print out Enames 
MsgBox EnameArray(0) 
MsgBox EnameArray(1) 
MsgBox EnameArray(2) 

See Also:

■ OraParameters Collection on page 9-68 

■ OraParameter Object on page 9-50



OraParameter Object

9-50 Oracle Objects for OLE Developer's Guide

OraParameter Object

Description 
An OraParameter object represents a bind variable in a SQL statement or PL/SQL 
block. 

Remarks
OraParameter objects are created, accessed, and removed indirectly through the 
OraParameters collection of an OraDatabase object. Each parameter has an 
identifying name and an associated value. You can automatically bind a parameter to 
SQL and PL/SQL statements of other objects (as noted in the object descriptions), by 
using the parameter name as a placeholder in the SQL or PL/SQL statement. Using 
parameters can simplify dynamic queries and increase program performance. 

Parameters are bound to SQL statements and PL/SQL blocks before execution. In the 
case of a SQL SELECT statement, binding occurs before dynaset creation. 

The OraParameters collection is part of the OraDatabase object. Therefore, all 
parameters are available to any SQL statement or PL/SQL block executed within the 
database (through the CreateDynaset or ExecuteSQL methods).

Before a SQL statement or PL/SQL block is executed, an attempt is made to bind all 
parameters of the associated OraDatabase object. The bindings that fail (because the 
parameter does not apply to that particular SQL statement or PL/SQL block), are 
noted and no attempt is made to bind them again if the SQL statement or PL/SQL 
block is reexecuted but does not change. 

Because neither SQL statements nor PL/SQL blocks are parsed locally (all parsing is 
done by Oracle Database), any unnecessary binding results in performance 
degradation. To prevent unnecessary parameter binding, use the AutoBindDisable 
and AutoBindEnable methods. 

By default, the maximum size of the ORAPARM_OUTPUT variable for ServerType 
CHAR and VARCHAR2 is set to 127 bytes. Use the MinimumSize property to change 
this value. The minimum size of an ORAPARM_OUTPUT variable for CHAR, VARCHAR2, 
and ORATYPE_RAW_BIN must always be greater than the size of the expected data 
from the database column. 

ServerType ORATYPE_RAW_BIN  is used when binding to Oracle Raw columns. A 
byte array is used to put or get values. The maximum allowable size of ORATYPE_
RAW_BIN bind buffers is 2000 bytes when bound to a column of a table, 32 KB when 
bound to a stored procedure. For example code, see the samples in the ORACLE_
BASE\ORACLE_HOME\OO4O\VB\Raw directory.

Properties
■ DynasetOption Property on page 11-50

■ MinimumSize Property on page 11-93 

■ Name Property on page 11-101

■ ServerType Property on page 11-138

■ Status Property on page 11-152

■ Type Property on page 11-164 

■ Value Property on page 11-173 



OraParameter Object

Server Objects 9-51

Methods
■ AutoBindDisable Method on page 10-39

■ AutoBindEnable Method on page 10-41

■ DynasetCacheParams Method on page 10-133

See Also:

■ CreateDynaset Method on page 10-85 

■ DynasetOption Property on page 11-50 

■ ExecuteSQL Method on page 10-144 

■ OraDatabase Object on page 9-28

■ OraParameters Collection on page 9-68 



OraRef Object

9-52 Oracle Objects for OLE Developer's Guide

OraRef Object

Description 
The OraRef interface represents an Oracle REF (reference) as well as a referenceable 
object (standalone instance). 

Remarks
An Oracle REF is an identifier to a referenceable object. Referenceable objects are 
stored in rows of an object table. By pinning a REF object, referenceable objects are 
fetched to the client side. An OraRef object implicitly pins the underlying REF when 
the attributes of a referenceable object are accessed for the first time. The OraRef also 
encapsulates the functionality for an object navigational operation utilizing the 
Complex Object Retrieval Capability (COR).

Attributes of a referenceable object represented by the OraRef object are accessed in 
the same manner as attributes of an value instance represented by the OraObject 
interface. When pinned, OraRef contains an OraObject interface through the 
containment mechanism in COM. At run time, the OraRef interface can be typecast to 
the OraObject interface.

OraRef provides methods for update and delete operations on a referenceable object, 
independent of the context from which they originated, such as dynasets, parameters, 
and so on. 

An object-level lock should be obtained before modifying the attributes of a 
referenceable object. This is done though the Edit method of the OraRefobject. 

The CreateOraObject method on the OraDatabase object creates a new 
referenceable object in the database and returns information associated with the 
OraRef Object. The CreateOraObject and Update methods pair inserts a new 
referenceable object in the database. 

For information about initializing an OraRef object representing a referenceable object 
in OO4O or executing a member method of a referenceable object, see "Instantiating 
Oracle LOBs, Objects, and Collections" on page 4-2. 

Properties
■ Count (OraObject/Ref) Property on page 11-34

■ EditOption (OraRef) Property on page 11-52

■ HexValue (OraRef) Property on page 11-73 

■ IsRefNull (OraRef) Property on page 11-84 

■ PinOption (OraRef) Property on page 11-123 

■ TableName (OraRef) Property on page 11-156

■ TypeName (OraObject and OraRef) Property

■ Version (OraObject and Ref) Property on page 11-185

Methods
■ CancelEdit (OraRef) Method on page 10-46

■ Clone (OraObject/Ref) Method on page 10-58



OraRef Object

Server Objects 9-53

■ Delete (OraRef) Method on page 10-120

■ Edit (OraRef) Method on page 10-136

■ Refresh (OraRef) Method on page 10-228

■ Update (OraRef) Method on page 10-259

Examples
Before running the sample code, make sure that you have the necessary data types and 
tables in the database. See "Schema Objects Used in the OraObject and OraRef 
Examples" on page A-3 for schema descriptions used in examples of 
OraObject/OraRef.

Example: Pinning Ref Values 
The following example pins the attributes of the PERSON referenceable object in the 
database. 

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)
 
'retrieve a aperson column from customers. Here Value property of 
' OraField object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value
 
'access the attribute of person. This operation pins the Person ref 
'value and fetches the Person referenceable object to the client. 
msgbox Person.Name

Example: Accessing Attribute Values 
The following example accesses the attributes of the PERSON referenceable object in 
the database. 

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
Dim Address as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)
 



OraRef Object

9-54 Oracle Objects for OLE Developer's Guide

'retrieve a aperson column from customers. Here Value property of OraField 
'object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value
 
'access the attribute by dot notation. 
msgbox Person.Name
 
'access the attribute using '!' notation ( early binding application)
msgbox Person!Name
 
'access the attribute by index
msgbox Person(1)
 
'access the attribute by name
msgbox Person("Name")
 
'access Addr attribute . This returns Address OraObject.
set Address = Person.Addr

Example: Updating Attribute Values 
The following example updates the attributes of the PERSON referenceable object in the 
database. 

Dynaset Example

See "Updating Attribute Values: Dynaset Example" on page 10-259.

Parameter Example

See "Updating Attribute Values: Parameter Example" on page 10-259.

Example: Inserting Referenceable Objects 
The following example inserts the new PERSON referenceable object in the database.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person  as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'CreateOraObject   creates a new referenceable object in the PERSON_TAB object 
'table and returns associated OraRef
set Person = OraDatabase.CreateOraObject("PERSON","PERSON_TAB")
 
'modify the attributes of Person
Person.Name = "Eric"
Person.Age = 35
 
'Update method inserts modified referenceable object in the PERSON_TAB.
Person.Update



OraRef Object

Server Objects 9-55

See Also:

■ OraObject Object on page 9-43

■ OraParameter Object on page 9-50

■ OraParamArray Object on page 9-47



OraServer Object

9-56 Oracle Objects for OLE Developer's Guide

OraServer Object

Description
The OraServer interface represents a physical network connection to an Oracle 
database. 

Remarks
The OraServer interface exposes the connection multiplexing feature provided in the 
Oracle Call Interface. After an OraServer object is created, multiple user sessions 
(OraDatabase) can be attached to it by invoking the OpenDatabase method. This 
feature is particularly useful for application components, such as Internet Information 
Server (IIS), that use Oracle Objects for OLE in n-tier distributed environments. The 
use of connection multiplexing when accessing Oracle databases with a large number 
of user sessions active can help reduce server processing and resource requirements 
while improving the database scalability.

As illustrated in Figure 9–1, the OraServer interface contains a connection to an 
Oracle database and provides a method (OpenDatabase) for creating user sessions 
(OraDatabase objects) on the database connection it contains. 

Figure 9–1 OraServer to Oracle Database Relationship

Properties
■ Name Property on page 11-101

■ Session Property on page 11-141

■ Databases Property on page 11-39

Methods
■ ChangePassword (OraServer) Method on page 10-48

■ OpenDatabase Method on page 10-212

■ Open (OraServer) Method on page 10-210



OraServer Object

Server Objects 9-57

See Also:

■ OraConnection Object on page 9-27

■ OraDatabase Object on page 9-28

■ OraClient Object on page 9-18

■ OraDynaset Object on page 9-30



OraSession Object

9-58 Oracle Objects for OLE Developer's Guide

OraSession Object

Description
An OraSession object manages collections of OraDatabase, OraConnection, and 
OraDynaset objects used within an application. 

Remarks
Typically, a single OraSession object is created for each application, but you can 
create named OraSession objects for shared use within and between applications. 

The OraSession object is the highest level object for an application. OraSession 
and OraServer objects are the only objects created by the CreateObject Visual 
Basic or Visual Basic for Applications APIs and not by an Oracle Objects for OLE 
method. 

Properties
■ Client Property on page 11-22 

■ Connections Property on page 11-27 

■ LastServerErr Property on page 11-87 

■ LastServerErrText Property on page 11-90 

■ Name Property on page 11-101 

■ OIPVersionNumber Property on page 11-113

■ DbPoolCurrentSize Property on page 11-43 

■ DbPoolInitialSize Property on page 11-44

■ DbPoolMaxSize Property on page 11-45

Methods
■ BeginTrans Method on page 10-43

■ ChangePassword (OraSession) Method on page 10-50

■ CommitTrans Method on page 10-66

■ ConnectSession Method on page 10-69

■ CreateDatabasePool Method on page 10-83

■ CreateNamedSession Method on page 10-90

■ CreateOraIntervalDS Method on page 10-92

■ CreateOraIntervalYM Method on page 10-94

■ CreateOraNumber Method on page 10-96

■ CreateOraTimeStamp Method on page 10-100

■ CreateOraTimeStampTZ Method on page 10-102

■ DestroyDatabasePool Method on page 10-128

■ GetDatabaseFromPool Method on page 10-155

■ OpenDatabase Method on page 10-212



OraSession Object

Server Objects 9-59

■ LastServerErrReset Method on page 10-189

■ ResetTrans Method on page 10-233

■ Rollback Method on page 10-235

Examples
The following code fragments show how to create an OraSession object:

Dim oo4oSession as Object
Set oo4oSession = CreateObject("OracleInProcServer.XOraSession")
 
or 

Dim oo4oSession as New OraSessionClass 

or 

Dim oo4oSession as OraSession 
Set oo4oSession = New OraSessionClass

See Also:

■ OraClient Object on page 9-18

■ OraConnection Object on page 9-27

■ OraDatabase Object on page 9-28

■ OraDynaset Object on page 9-30

■ OraServer Object on page 9-56 



OraSQLStmt Object

9-60 Oracle Objects for OLE Developer's Guide

OraSQLStmt Object

Description
An OraSQLStmt object represents a single SQL statement. Use the CreateSQL 
method to create the OraSQLStmt object from an OraDatabase object. 

During create and refresh operations, OraSQLStmt objects automatically bind all 
relevant, enabled input parameters to the specified SQL statement, using the 
parameter names as placeholders in the SQL statement. This can improve the 
performance of SQL statement execution without parsing the SQL statement again. 

Properties
■ Connection Property on page 11-25  

■ Database Property on page 11-36

■ Options Property on page 11-114 

■ RecordCount Property on page 11-128 

■ Session Property on page 11-141

■ SQL Property on page 11-150

■ NonBlockingState Property on page 11-111

Methods
■ Refresh Method on page 10-225

■ Cancel Method on page 10-45

■ Close Method on page 10-63

See Also:

■ CreateSQL Method on page 10-111 

■ OraParameter Object on page 9-50

■ "Asynchronous Processing" on page 3-16 



OraSubscription Object

Server Objects 9-61

OraSubscription Object

Description
An OraSubscription object that represents the subscription to a database event. 

Remarks
OraSubscription objects are created, accessed, and removed indirectly through the 
OraSubscriptions collection of an OraDatabase object. Each subscription has a 
name that associates with an Oracle database event. 

The OraSubscriptions collection is part of the OraDatabase object.

Properties
■ Name Property on page 11-101

Methods
■ Register Method on page 10-229

■ Unregister Method on page 10-256

See Also:

■ OraDatabase Object on page 9-28

■ OraSubscriptions Collection on page 9-70 

■ "Database Events" on page 4-22 



OraTimeStamp Object

9-62 Oracle Objects for OLE Developer's Guide

OraTimeStamp Object

Description
The OraTimeStamp object represents the Oracle TIMESTAMP and Oracle TIMESTAMP 
WITH LOCAL TIME ZONE data types and provides methods for operations on these two 
Oracle data types. The OraTimeStamp represents a date-time value that stores the 
following information: year, day, hour, minute, second, and nanosecond. 

Remarks
The OraTimeStamp object is created by the OraSession.OraCreateTimeStamp 
method or by calling the Clone method on an existing OraTimeStamp object. 

An OraTimeStamp object can be bound using ServerType ORATYPE_TIMESTAMP 
or ORATYPE_TIMESTAMPLTZ. This allows the binding of a value to a parameter 
associated with an Oracle TIMESTAMP or an Oracle TIMESTAMP WITH LOCAL TIME 
ZONE data type in a SQL or PL/SQL statement respectively. 

When binding a string associated with a TIMESTAMP or a TIMESTAMP WITH LOCAL 
TIME ZONE data types, the ServerType must be specified to be a string type (for 
example, ORATYPE_VARCHAR2, ORATYPE_STRING) and the string must be in the 
format specified by the NLS_TIMESTAMP_FORMAT. 

Properties
■ Day (OraTimeStamp) Property on page 11-40

■ Format (OraTimeStamp) Property on page 11-71 

■ Hour (OraTimeStamp) Property on page 11-74

■ Minute (OraTimeStamp) Property on page 11-95 

■ Month (OraTimeStamp) Property on page 11-98

■ Nanosecond(OraTimeStamp) Property on page 11-106

■ Second (OraTimeStamp) Property on page 11-134

■ Value (OraTimeStamp) Property on page 11-183

■ Year (OraTimeStamp) Property on page 11-198

Methods
■ AddIntervalDS Method on page 10-17

■ AddIntervalYM Method on page 10-19

■ Clone (OraTimeStamp) Method on page 10-61

■ IsEqual (OraTimeStamp) Method on page 10-175

■ IsGreater (OraTimeStamp) Method on page 10-180

■ IsLess (OraTimeStamp) Method on page 10-185

■ ToDate Method on page 10-245

■ ToOraTimeStampTZ Method on page 10-250



OraTimeStamp Object

Server Objects 9-63

See Also:

■ CreateOraTimeStamp Method on page 10-100 

■ OraNumber Object on page 9-41 

■ ServerType Property on page 11-138



OraTimeStampTZ Object

9-64 Oracle Objects for OLE Developer's Guide

OraTimeStampTZ Object

Description
The OraTimeStampTZ object represents an Oracle TIMESTAMP WITH TIME ZONE  
data type and provides methods for operations on this Oracle data type. The 
OraTimeStampTZ represents a date-time value in a specific time zone that stores the 
following information: year, day, hour, minute, second, nanosecond, and the time 
zone. 

Remarks
The OraTimeStampTZ object is created by the 
OraSession.OraCreateTimeStampTZ method or by calling the Clone method on 
an existing OraTimeStampTZ object. 

An OraTimeStampTZ object can be bound using ServerType ORATYPE_
TIMESTAMPTZ. This allows the binding of a value to a parameter associated with an 
Oracle TIMESTAMP WITH TIME ZONE data type in a SQL or PL/SQL statement. 

When binding a string associated with an TIMESTAMP WITH TIME ZONE data type, the 
ServerType must be specified to be a string type (for example, ORATYPE_VARCHAR2, 
ORATYPE_STRING) and the string must be in the format specified by NLS_
TIMESTAMP_TZ_FORMAT. 

Properties
■ Day (OraTimeStampTZ) Property on page 11-41

■ Format (OraTimeStampTZ) Property on page 11-72 

■ Hour (OraTimeStampTZ) Property on page 11-75

■ Minute (OraTimeStampTZ) Property on page 11-96 

■ Month (OraTimeStampTZ) Property on page 11-99

■ Nanonsecond (OraTimeStampTZ) Property on page 11-107

■ Second (OraTimeStampTZ) Property on page 11-135

■ TimeZone (OraTimeStampTZ) Property on page 11-158 

■ Value (OraTimeStampTZ) Property on page 11-184

■ Year (OraTimeStampTZ) Property on page 11-199

Methods
■ AddIntervalDS Method on page 10-17

■ AddIntervalYM Method on page 10-19

■ Clone (OraTimeStampTZ) Method on page 10-62

■ IsEqual (OraTimeStampTZ) Method on page 10-176

■ IsGreater (OraTimeStampTZ) Method on page 10-181

■ IsLess (OraTimeStampTZ) Method on page 10-186

■ ToDate Method on page 10-245

■ ToOraTimeStamp Method on page 10-248



OraTimeStampTZ Object

Server Objects 9-65

■ ToOraTimeStampLTZ Method on page 10-249

■ ToUniversalTime Method on page 10-251

See Also:

■ CreateOraTimeStampTZ Method on page 10-102 

■ OraNumber Object on page 9-41 

■ ServerType Property on page 11-138



OraConnections Collection

9-66 Oracle Objects for OLE Developer's Guide

OraConnections Collection

Description
The OraConnections collection maintains a list of OraConnection objects. The list 
is not modifiable; you cannot add to or remove from this collection. 

Remarks
You can access the OraConnection objects in this collection by creating a subscript 
(using ordinal integers) or by using the name the object was given at its creation. You 
can obtain the number of OraConnection objects in the collection by using the 
Count property. Referencing a subscript that is not within the collection (0 to 
Count-1) results in the return of a NULL OraConnection object.

Properties
■ Count Property on page 11-31

Methods
None.

See Also: OraConnection Object on page 9-27



OraFields Collection

Server Objects 9-67

OraFields Collection

Description
The OraFields collection maintains a list of the OraField objects. The list is not 
modifiable; you cannot add to or remove from this collection. 

Remarks
You can access the OraField objects in this collection by creating a subscript (using 
ordinal integers) or by using the name the object was given at its creation. You can 
obtain the number of OraField objects in the collection by using the Count property. 
Referencing a subscript that is not within the collection (0 to Count-1) results in the 
return of a null OraField object.

Properties
■ Count Property on page 11-31

Methods
■ OriginalItem Method on page 10-215

See Also: OraField Object on page 9-33 



OraParameters Collection

9-68 Oracle Objects for OLE Developer's Guide

OraParameters Collection

Description
The OraParameters collection maintains a list of OraParameter objects. Unlike the 
other collection objects, this list is modifiable; you can add to and remove from the 
collection. 

Remarks
You can access the OraParameter objects in this collection by creating a subscript 
(using ordinal integers) or by using the name the object was given at its creation. You 
can obtain the number of OraParameter objects in the collection by using the Count 
property. Referencing a subscript that is not within the collection (0 to Count-1) 
results in the return of a null OraParameter object. 

In addition to accessing the OraParameter objects of the collection, you can use the 
collection to create and destroy parameters by using the Add and Remove methods, 
respectively.

Properties
■ Count Property on page 11-31

Methods
■ Add Method on page 10-8

■ AddTable Method on page 10-23

■ Remove Method on page 10-230

See Also:

■ OraParameter Object on page 9-50

■ OraParamArray Object on page 9-47 



OraSessions Collection

Server Objects 9-69

OraSessions Collection 

Description
The OraSessions collection maintains a list of OraSession objects. The list is not 
modifiable; you cannot add to or remove from this collection. 

Remarks
You can access the OraSession objects in this collection by creating a subscript (using 
ordinal integers) or by using the name the object was given at its creation. You can 
obtain the number of OraSession objects in the collection by using the Count 
property. Referencing a subscript that is not within the collection (0 to Count-1) 
results in the return of a null OraSession object. 

Properties
■ Count Property on page 11-31

Methods
None.

See Also: OraSession Object on page 9-58



OraSubscriptions Collection

9-70 Oracle Objects for OLE Developer's Guide

OraSubscriptions Collection 

Description
The OraSubscriptions collection maintains a list of OraSubscription objects, 
which represent the subscription to a database event. Unlike the other collection 
objects, this list is modifiable; you can add to and remove from the collection. 

Remarks
You can access the OraSubscription objects in this collection by creating a subscript 
(using ordinal integers) or by using the name the object was given at its creation. You 
can obtain the number of OraSubscription objects in the collection by using the 
Count property. Referencing a subscript that is not within the collection (0 to 
Count-1) results in the return of a null OraSubscription object. 

In addition to accessing the OraSubscription objects of the collection, you can use 
the collection to create and destroy subscriptions by using the Add and Remove 
methods, respectively.

Properties
■ Count Property on page 11-31

Methods
■ Add (OraSubscriptions Collection) Method on page 10-14

■ Remove (OraSubscriptions Collection) Method on page 10-231

See Also:

■ OraSubscription Object on page 9-61

■ OraDatabase Object on page 9-28

■ "Database Events" on page 4-22 



10

Server Methods 10-1

10Server Methods

This chapter describes the Oracle Objects for OLE Server methods. 

For an introduction to OO4O server objects, see "Oracle Objects for OLE In-Process 
Automation Server"  on page 1-2.

This chapter contains these topics:

■ Server Methods: A to B

■ Server Methods: C

■ Server Methods: D to H

■ Server Methods: I to L

■ Server Methods: M to S

■ Server Methods: T to Z

Server Methods: A to B
■ Abs Method

■ Add Method

■ Add (OraIntervalDS) Method

■ Add (OraIntervalYM) Method

■ Add (OraNumber) Method

■ Add (OraSubscriptions Collection) Method

■ AddIntervalDS Method

■ AddIntervalYM Method

■ AddNew Method

■ AddTable Method

■ Append (OraCollection) Method

■ Append (OraLOB) Method

■ AppendChunk Method

■ AppendChunkByte Method

■ AQAgent (OraAQMsg) Method

■ AQMsg (OraAQ) Method

■ ArcCos (OraNumber) Method



10-2 Oracle Objects for OLE Developer's Guide

■ ArcSin (OraNumber) Method

■ ArcTan (OraNumber) Method

■ ArcTan2 (OraNumber) Method

■ Attribute (OraMetaData) Method

■ AutoBindDisable Method

■ AutoBindEnable Method

■ BeginTrans Method

Server Methods: C
■ Cancel Method

■ CancelEdit (OraRef) Method

■ Ceil (OraNumber) Method

■ ChangePassword (OraServer) Method

■ ChangePassword (OraSession) Method

■ Clone Method

■ Clone (OraLOB/BFILE) Method

■ Clone (OraCollection) Method

■ Clone (OraIntervalDS) Method

■ Clone (OraIntervalYM) Method

■ Clone (OraNumber) Method

■ Clone (OraObject/Ref) Method

■ Clone (OraTimeStamp) Method

■ Clone (OraTimeStampTZ) Method

■ Close Method

■ Close (OraBFILE) Method

■ CloseAll (OraBFILE) Method

■ CommitTrans Method

■ Compare (OraLOB) Method

■ ConnectSession Method

■ CopyToClipboard Method

■ Copy (OraLOB) Method

■ CopyFromFile (OraLOB) Method

■ CopyFromBFILE (OraLOB) Method

■ CopyToFile (OraLOB/BFILE) Method

■ Cos (OraNumber) Method

■ CreateAQ Method

■ CreateCustomDynaset Method

■ CreateDatabasePool Method



Server Methods 10-3

■ CreateDynaset Method

■ CreateIterator Method

■ CreateNamedSession Method

■ CreateOraIntervalDS Method

■ CreateOraIntervalYM Method

■ CreateOraNumber Method

■ CreateOraObject (OraDatabase) Method

■ CreateOraTimeStamp Method

■ CreateOraTimeStampTZ Method

■ CreatePLSQLCustomDynaset Method

■ CreatePLSQLDynaset Method

■ CreateSession Method

■ CreateSQL Method

■ CreateTempBLOB/CLOB Method

Server Methods: D to H
■ Delete Method

■ Delete (OraCollection) Method

■ Delete (OraRef) Method

■ DeleteIterator Method

■ Dequeue (OraAQ) Method

■ Describe Method

■ DestroyDatabasePool Method

■ DisableBuffering (OraLOB) Method

■ Div (OraIntervalDS) Method

■ Div (OraIntervalYM) Method

■ Div (OraNumber) Method

■ DynasetCacheParams Method

■ Edit Method

■ Edit (OraRef) Method

■ ElementValue Method

■ EnableBuffering (OraLOB) Method

■ Enqueue (OraAQ) Method

■ Erase (OraLOB) Method

■ ExecuteSQL Method

■ Exist (OraCollection) Method

■ Exp (OraNumber) Method

■ FetchOraRef Method



10-4 Oracle Objects for OLE Developer's Guide

■ FieldSize Method

■ FindFirst, FindLast, FindNext, and FindPrevious Methods

■ Floor (OraNumber) Method

■ FlushBuffer (OraLOB) Method

■ GetDatabaseFromPool Method

■ GetChunk Method

■ GetChunkByte Method

■ GetChunkByteEx Method

■ GetXML Method

■ GetXMLToFile Method

■ GetRows Method

■ Get_Value Method

■ HypCos (OraNumber) Method

■ HypSin (OraNumber) Method

■ HypTan (OraNumber) Method

Server Methods: I to L
■ InitIterator Method

■ IsEqual (OraIntervalDS) Method

■ IsEqual (OraIntervalYM) Method

■ IsEqual (OraNumber) Method

■ IsEqual (OraTimeStamp) Method

■ IsEqual (OraTimeStampTZ) Method

■ IsGreater (OraIntervalDS) Method

■ IsGreater (OraIntervalYM) Method

■ IsGreater (OraNumber) Method

■ IsGreater (OraTimeStamp) Method

■ IsGreater (OraTimeStampTZ) Method

■ IsLess (OraIntervalDS) Method

■ IsLess (OraIntervalYM) Method

■ IsLess (OraTimeStamp) Method

■ IsLess (OraTimeStampTZ) Method

■ IterNext Method

■ IterPrev Method

■ LastServerErrReset Method

■ Ln (OraNumber) Method

■ Log (OraNumber) Method



Server Methods 10-5

Server Methods: M to S
■ MatchPos (OraLOB/BFILE) Method

■ Mod (OraNumber) Method

■ MonitorForFailover Method

■ MonitorStart (OraAQ) Method

■ MonitorStop (OraAQ) Method

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

■ MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

■ Mul (OraIntervalDS) Method

■ Mul (OraIntervalYM) Method

■ Mul (OraNumber) Method

■ Neg (OraIntervalDS) Method

■ Neg (OraIntervalYM) Method

■ Neg (OraNumber) Method

■ Open (OraServer) Method

■ Open (OraBFILE) Method

■ OpenDatabase Method

■ OriginalItem Method

■ OriginalName

■ Power (OraNumber) Method

■ Put_Value Method

■ Read (OraLOB/BFILE) Method

■ ReadChunk Method

■ Refresh Method

■ Refresh (OraRef) Method

■ Register Method

■ Remove Method

■ Remove (OraSubscriptions Collection) Method

■ RemoveFromPool Method

■ ResetTrans Method

■ Rollback Method

■ Round (OraNumber) Method

■ SetPi (OraNumber) Method

■ Sin (OraNumber) Method

■ Sqrt (OraNumber) Method

■ Sub (OraIntervalDS) Method

■ Sub (OraIntervalYM) Method



10-6 Oracle Objects for OLE Developer's Guide

■ Sub (OraNumber) Method

Server Methods: T to Z
■ Tan (OraNumber) Method

■ ToDate Method

■ ToOraNumber (OraIntervalDS) Method

■ ToOraTimeStamp Method

■ ToOraTimeStampLTZ Method

■ ToOraTimeStampTZ Method

■ ToUniversalTime Method

■ Trim (OraCollection) Method

■ Trim (OraLOB) Method

■ Trunc (OraNumber) Method

■ Unregister Method

■ Update Method

■ Update (OraRef) Method

■ Write (OraLOB) Method



Abs Method

Server Methods 10-7

Abs Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the absolute value of an OraNumber object. 

Usage
OraNumber.Abs

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.



Add Method

10-8 Oracle Objects for OLE Developer's Guide

Add Method

Applies To
OraParameters Collection on page 9-68

Description
Adds a parameter to the OraParameters collection. 

Usage
oraparameters.Add Name, Value, IOType, ServerType, ObjectName 

Arguments
The arguments for the method are:

IOType Settings
The IOType settings are: 

These values can be found in the oraconst.txt file. 

By default, the maximum size of the ORAPARM_OUTPUT variable for ServerType 
VAR, VARCHAR2, and ORATYPE_RAW_BIN is set to 128 bytes. Use the MinimumSize 
property to change this value. The minimum size of an ORAPARM_OUTPUT variable for 
VAR and VARCHAR2 must always be greater than the size of the expected data from the 
database column. 

Arguments Description

Name The name of the parameter to be added to the parameters collection. This 
name is issued both for parameter identification and as the placeholder in 
associated SQL and PL/SQL statements. 

Value A Variant specifying the initial value of the parameter. The initial value of 
the parameter is significant; it defines the data type of the parameter. 

IOType An integer code specifying how the parameter is to be used in SQL 
statements and PL/SQL blocks.

ServerType Specifies Oracle Database type to which this parameter is to be bound. This 
is required when binding to BLOB, CLOB, BFILE, OBJECT, REF, NESTED 
TABLE, or VARRAY. For a list of possible values, see the OraParameter 
"ServerType Property" on page 11-138. 

ObjectName A case-sensitive string containing the name of the Object. This is only 
required if ServerType is ORATYPE_OBJECT, ORATYPE_VARRAY, or 
ORATYPE_TABLE. ServerType is required for ORATYPE_REF when the 
REF is used in PL/SQL. 

Settings Values Description

ORAPARM_INPUT 1 Used for input variables only

ORAPARM_OUTPUT 2 Used for output variables only 

ORAPARM_BOTH 3 Used for variables that are both input and output



Add Method

Server Methods 10-9

Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH 
for the IN stored procedure parameter type, this can result in errors. ORAPARM_BOTH 
is for IN and OUT parameters only. It is not used against one stored procedure that has 
an IN parameter and another that has an OUT parameter. For this case, use two 
parameters. Errors caused this way are rare, if there is a parameter-related error, verify 
that the IOType is correct. 

The Value argument can be an Oracle Database 10g object, such as an OraBLOB. Note 
that a copy of the object is made at that point in time and the Value property must be 
accessed to obtain a new object that refers to the value of the parameter. For example, 
if IOType is ORATYPE_BOTH and an OraBLOB obtained from a dynaset is passed in as 
the input value, the Parameter Value property needs to be accessed one time after 
the SQL has been executed to obtain the newly updated output value of the parameter. 
The object is obtained from the parameter in the same manner as from a dynaset.

The Value property always refers to the latest value of the parameter. The Visual Basic 
value Null can also be passed as a value. The Visual Basic EMPTY value can be used 
for BLOB and CLOB data types to mean an empty LOB, and the EMPTY value can be 
used for OBJECT, VARRAY, and NESTED TABLE data types to mean an object whose 
attributes are all Null. 

Remarks
Use parameters to represent SQL bind variables (as opposed to rebuilding the SQL 
statement). SQL bind variables are useful because you can change a parameter value 
without having to parse the query again. Use SQL bind variables only as input 
variables. 

You can also use parameters to represent PL/SQL bind variables. You can use PL/SQL 
bind variables as both input and output variables. 

The ORATYPE_RAW_BIN ServerType value is used when binding to Oracle Raw 
columns. A byte array is used to Put or Get values. The maximum allowable size of 
an ORATYPE_RAW_BIN bind buffers is 2000 bytes when bound to a column of a table 
and 32 KB when bound to a stored procedure. For example code, see the samples in 
the ORACLE_BASE\ORACLE_HOME\OO4O\VB\Raw directory. 

Examples
This example demonstrates using the Add and Remove parameter methods, the 
ServerType parameter property, and the ExecuteSQL database method to call a 
stored procedure and function (located in ORAEXAMP.SQL). Copy and paste this code 
into the definition section of a form. Then, press F5. 

Sub Form_Load () 
 
'Declare variables 
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
 
'Add EMPNO as an Input/Output parameter and set its initial value. 
OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT 
OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER 
 



Add Method

10-10 Oracle Objects for OLE Developer's Guide

'Add ENAME as an Output parameter and set its initial value. 
OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT 
OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2 
 
'Add SAL as an Output parameter and set its initial value. 
OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT 
OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER 
 
'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME. 
' This Stored Procedure can be found in the file ORAEXAMP.SQL. 
OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
'Display the employee number and name. 
 
'Execute the Stored Function Employee.GetSal to retrieve SAL. 
' This Stored Function can be found in the file ORAEXAMP.SQL. 
OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _
           ":SAL:=Employee.GetEmpSal (:EMPNO); end;") 
 
'Display the employee name, number and salary. 
MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" & _
          OraDatabase.Parameters("EMPNO").value & ",Salary=" & _
          OraDatabase.Parameters("SAL").value 
 
'Remove the Parameters. 
OraDatabase.Parameters.Remove "EMPNO" 
OraDatabase.Parameters.Remove "ENAME" 
OraDatabase.Parameters.Remove "SAL" 
 
End Sub 

See Also:

■ OraParameter Object on page 9-50 

■ Remove Method on page 10-230 

■ ServerType Property on page 11-138



Add (OraIntervalDS) Method

Server Methods 10-11

Add (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Adds an argument to the OraIntervalDS object. 

Usage
OraIntervalDS.Add operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in an OraIntervalDS object, overwriting any 
previous value. There is no return value. 

If operand is a Variant of type String, it must be in the following format: [+/-]Day 
HH:MI:SSxFF. 

If operand is a numeric value, the value provided should represent the total number 
of days that the constructed OraIntervalDS object represents. 

Examples
Dim oraIDS as OraIntervalDS 
 
'Create an OraIntervalDS using a string which represents 
'1 day and 12 hours 
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 12:0:0.0") 
 
'Add an interval using a string, which represents 2 days 
'and 12 hours, to oraIDS. 
'The resulting oraIDS is an interval which represents 4 days  
oraIDS.Add "2 12:0:0.0" 

Arguments Description

[in] operand A Variant of type String, a numeric value, or an OraIntervalDS 
object to be added. 

See Also: "CreateOraIntervalDS Method"  on page 10-92



Add (OraIntervalYM) Method

10-12 Oracle Objects for OLE Developer's Guide

Add (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Adds an argument to the OraIntervalYM object. 

Usage
OraIntervalYMObj.Add operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraIntervalYM object, overwriting any 
previous value. There is no return value. 

If operand is a Variant of type String, it must be in the following format: 
[+/-]YEARS-MONTHS. 

If operand is a numeric value, the value provided should represent the total number 
of years that the constructed OraIntervalYM object represents.

Examples
Dim oraIYM as OraIntervalYM 
 
'Create an OraIntervalYM using a string which represents 1 year and 6 months 
Set oraIYM = oo4oSession.CreateOraIntervalYM("1-6") 
 
'Add an interval using a string, which represents 2 years 
'and 6 months, to oraIYM. 
'The resulting oraIYM is an interval which represents 4 years 
oraIYM.Add "2-6" 

Arguments Description

[in] operand A Variant of type String, a numeric value, or an OraIntervalYM 
object to be added. 

See Also: CreateOraIntervalYM Method on page 10-94



Add (OraNumber) Method

Server Methods 10-13

Add (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Adds a numeric argument to the OraNumber object. 

Usage
OraNumber.Add operand 

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in an OraNumber object. There is no return value.

Arguments Description

[in] operand A Variant of type String, OraNumber object, or a numeric value. 



Add (OraSubscriptions Collection) Method

10-14 Oracle Objects for OLE Developer's Guide

Add (OraSubscriptions Collection) Method

Applies To 
OraSubscriptions Collection on page 9-70

Description
Adds a subscription to the OraSubscriptions collection. 

Usage
orasubscriptions.Add Name, DbeventsHdl, Ctx 

Arguments
The arguments for the method are:

Remarks
To register for subscription of a database event, the name identifying the subscription 
of interest and the name of the dbevent handler that handles the event must be 
passed in when the Add method is called. The queues and event triggers necessary to 
support the database event must be set up before the subscriptions can be fired. 

The dbevent handler should be an automation object that implements the 
NotifyDBEvents method.

NotifyDBEvents Handler
The NotifyDBEvents method is invoked by Oracle Objects for OLE when database 
events of interest are fired. 

For more detailed information about setting up the queues and triggers for Oracle 
Database events, see to Triggers on System Events and User Events in Oracle Database 
Concepts.

The syntax of the method is: 

Public Function NotifyDBEvents(ByVal Ctx As Variant, ByVal Payload As Variant

Variants Description

[in] Name The database event of interest. The appropriate event trigger and AQ 
queue must be set up prior to this. 

Name refers to the subscription name in the form of the string 
'SCHEMA.QUEUE' if the registration is for a single consumer queue 
and 'SCHEMA.QUEUE:CONSUMER_NAME' if the registration is for a 
multiple consumer queue. 

The Name string should be in uppercase. 

[in] DbeventsHdl The database event handler. An IDispatch interface implementing 
the NotifyDBEvents method, which is invoked when the database 
event of interest is fired.

[in] Ctx Context-specific information that the application wants passed to the 
NotifyDbEvents method when it is invoked.



Add (OraSubscriptions Collection) Method

Server Methods 10-15

Variants
The variants for the method are:

Examples

Example: Registering an Application for Notification of Database Events
In the following example, an application subscribes for notification of database logon 
events (such as all logons to the database). When a user logs on to the database, the 
NotifyDBEvents method of the DBEventsHdlr that was passed in at the time of 
subscription is invoked. The context-sensitive information and the event-specific 
information are passed into the NotifyDBEvents method.

The DBEventsHdlr in this example is DBEventCls, which is defined later. 

The main application:

' First instantiate the dbevent handler. The dbevent notification
' will fire the NotifyDBEvents on the callback handler.
 
Public DBEventsHdlr As New DBEventCls
Private Sub Form_Load()
    Dim gOraSession As Object
    Dim gOraSubscriptions As OraSubscriptions 
    Dim gOraDatabase As OraDatabase
 
    'Create the OraSession Object
    Set gOraSession = CreateObject("OracleInProcServer.XOraSession")
 
   'Create the OraDatabase Object by opening a connection to Oracle.
    Set gOraDatabase = gOraSession.DbOpenDatabase                      
             ("ora90.us.oracle.com", "pubsub/pubsub", 
              ORADB_ENLIST_FOR_CALLBACK)
    Set gOraSubscriptions = gOraDatabase.Subscriptions
    gOraSubscriptions.Add "PUBSUB.LOGON:ADMIN", DBEventsHdlr,
             gOraDatabase
    gOraSubscriptions(0).Register
    MsgBox "OK"
End Sub

The database event handler class that defines the NotifyDBEvents method.

Public countofMsgs as integer
Public Function NotifyDBEvents(Ctx As Variant, Payload As Variant )
    On error goto NotifyMeErr
 
    MsgBox "Retrieved payload " + Payload
   ' do something - here the subscription is unregistered after
   ' receiving 3 notifications
    countofMsgs = countofMsgs + 1

Variants Description

[in] Ctx Passed into the OraSubscriptions.Add method by the application. 
Context-sensitive information that the application wants passed on to 
the dbevent handler.

[in] Payload The payload for this notification. 

Database events are fired by setting up event trigger and queues. 
Payload here refers to the payload, if any, that was enqueued in the 
queue when the event triggered. 



Add (OraSubscriptions Collection) Method

10-16 Oracle Objects for OLE Developer's Guide

    If countofMsgs > 3 Then
        Ctx.Subscriptions(0).UnRegister
    End If
    Exit Sub
NotifyMeErr:
    Call RaiseError(MyUnhandledError, "newcallback:NotifyMe Method")
 
End Sub

See Also:

■ "Database Events" on page 4-22 for a complete discussion of the 
concepts involved in this example

■ Triggers on System Events and User Events in Oracle Database 
Concepts for detailed information about setting up the queues 
and triggers for Oracle Database Events

■ OraSubscription Object on page 9-61

■ Remove (OraSubscriptions Collection) Method on page 10-231



AddIntervalDS Method

Server Methods 10-17

AddIntervalDS Method

Applies To
OraTimeStamp Object on page 9-62

OraTimeStampTZ Object on page 9-64

Description
Adds an interval that represents an interval from days to seconds, to the 
OraTimeStamp or OraTimeStampTZ object.

Usage
OraTimeStampObj.AddIntervalDS operand
OraTimeStampTZObj.AddIntervalDS operand

Arguments
The arguments for the method are:

Remarks
The result of adding an interval to the current OraTimeStamp or OraTimeStampTZ 
object is stored in the current object, overwriting any previous value. There is no 
return value.

If operand is a Variant of type String, it must be in the following format: [+/-] 
Day HH:MI:SSxFF.

If operand is a numeric value, the value provided should represent the total number 
of days that the constructed OraIntervalDS object represents.

Examples
Using OraTimeStamp

Dim OraTimeStamp As OraTimeStamp 
 
... 
 
'Create OraTimeStamp using a string 
Set OraTimeStamp = OraSession.CreateOraTimeStamp("2000-12-28 00:00:00", _
         "YYYY-MM-DD HH:MI:SS") 
 
'Add an interval using numeric value that represents 5 days and 12 hours 
OraTimeStamp.AddIntervalDS 5.5 
 
'Value should now be "2001-1-2 12:00:00" 
tsStr = OraTimeStamp.Value 

Using OraTimeStampTZ

Arguments Description

[in] operand A Variant of type String, a numeric value, or an OraIntervalDS 
object that represents an interval from days to seconds to be added to 
the current OraTimeStamp or OraTimeStampTZ object.



AddIntervalDS Method

10-18 Oracle Objects for OLE Developer's Guide

Dim OraTimeStampTZ As OraTimeStampTZ 
 
... 
 
'Create OraTimeStampTZ using a string 
Set OraTimeStamp = OraSession.CreateOraTimeStampTZ("2000-12-28 00:00:00 -07:00", _
       "YYYY-MM-DD HH:MI:SS TZH:TZM") 
 
'Add an interval using numeric value that represents 5 days and 12 hours 
OraTimeStampTZ.AddIntervalDS 5.5 
 
'Value should now be "2001-1-2 12:00:00" 
tstzStr = OraTimeStampTZ.Value 
 
... 



AddIntervalYM Method

Server Methods 10-19

AddIntervalYM Method

Applies To
OraTimeStamp Object on page 9-62

OraTimeStampTZ Object on page 9-64

Description
Adds an interval that represents an interval from years to months, to the 
OraTimeStamp or OraTimeStampTZ object.

Usage
OraTimeStampObj.AddIntervalYM operand
OraTimeStampTZObj.AddIntervalYM operand

Arguments
The arguments for the method are:

Remarks
The result of adding an interval to the current OraTimeStamp or OraTimeStampTZ 
object is stored in the current object, overwriting any previous value. There is no 
return value.

If operand is a Variant of type String, it must be in following format: [+/-] 
YEARS-MONTHS.

If operand is a numeric value, the value provided should represent the total number 
of years that the constructed OraIntervalYM object represents.

Examples

Example: Using the OraTimeStamp Object

Dim OraTimeStamp As OraTimeStamp 
 
... 
'Create OraTimeStamp using a string 
Set OraTimeStamp = OraSession.CreateOraTimeStamp("2000-12-28 00:00:00", _
         "YYYY-MM-DD HH:MI:SS") 
 
'Add an interval using numeric value that represents 2 years 
OraTimeStamp.AddIntervalYM 2 
 
'Value should now be "2002-12-28 00:00:00" 
tsStr = OraTimeStamp.Value 
 

Arguments Description

[in] operand A Variant of type String, a numeric value, or an OraIntervalYM 
object that represents an interval from years to months, to be added to 
the current OraTimeStamp or OraTimeStampTZ object.



AddIntervalYM Method

10-20 Oracle Objects for OLE Developer's Guide

... 

Example: Using the OraTimeStampTZ Object
Dim OraTimeStampTZ As OraTimeStampTZ 
 
... 
'Create OraTimeStampTZ using a string 
Set OraTimeStampTZ =OraSession.CreateOraTimeStampTZ("2000-12-28 00:00:00" & _ 
            "-07:00"  "YYYY-MM-DD HH:MI:SS TZH:TZM") 
 
'Add an interval using numeric value that represents 2 years 
OraTimeStampTZ.AddIntervalYM 2 
 
'Value should now be "2002-12-28 00:00:00" 
tstzStr = OraTimeStampTZ.Value 
 
... 



AddNew Method

Server Methods 10-21

AddNew Method

Applies To
OraDynaset Object on page 9-30

Description
Clears the copy buffer and begins a record insertion operation into the specified 
dynaset and associated database.

Usage
oradynaset.AddNew
oradynaset.DbAddNew 

Remarks
When an AddNew operation is initiated, values of fields present within the dynaset are 
maintained in a copy buffer and do not reflect the actual contents of the database.

The values of the fields are modified through the OraField object, and committed 
with an Update operation or when database movement occurs, which discards the 
new row. Field values that have not been explicitly assigned are either set to Null or 
allowed to default by way of the Oracle default mechanism, depending on the Column 
Defaulting mode of the options flag used when the OpenDatabase method was 
called. In either case, fields that appear in the database table but not in the dynaset are 
always defaulted by the Oracle default mechanism.

Internally, records are inserted by the AddNew method using the "INSERT into 
TABLE (...) VALUES (...)" SQL statement, and are added to the end of the table.

When adding a row that has object, collection, and REF columns, these column values 
should be set to a valid OraObject, OraCollection, or OraRef interface or to the 
Null value. The column values can also be set with the automation object returned by 
the CreateOraObject method. When adding a row having a BLOB, CLOB, or BFILE 
column, the column value should be set to a valid OraBLOB, OraCLOB, or OraBFILE 
interface, Null, or Empty. Setting a BLOB, CLOB, and BFILE column to an Empty 
value inserts an empty LOB value into the database. 

Examples
This example demonstrates the use of the AddNew and Update methods to add a new 
record to a dynaset. Copy this code into the definition section of a form. Then, press 
F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase 

Note: A call to Edit, AddNew, or Delete methods cancels any 
outstanding Edit or AddNew method calls before proceeding. Any 
outstanding changes not saved using an Update method are lost 
during the cancellation.



AddNew Method

10-22 Oracle Objects for OLE Developer's Guide

 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", _ 
               "scott/tiger", 0&)
 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 'Begin an AddNew.
 OraDynaset.AddNew
 
 'Set the field(column) values.
 OraDynaset.Fields("EMPNO").Value = "1000"
 OraDynaset.Fields("ENAME").Value = "WILSON"
 OraDynaset.Fields("JOB").Value = "SALESMAN"
 
 OraDynaset.Fields("MGR").Value = "7698"
 OraDynaset.Fields("HIREDATE").Value = "19-SEP-92"
 OraDynaset.Fields("SAL").Value = 2000
 OraDynaset.Fields("COMM").Value = 500
 OraDynaset.Fields("DEPTNO").Value = 30
 
 'End the AddNew and Update the dynaset.
 OraDynaset.Update
 
 MsgBox "Added one new employee."
 
End Sub

See Also:

■ Delete Method on page 10-116

■ Edit Method on page 10-134

■ EditMode Property on page 11-52

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199

■ Update Method on page 10-257

■ Validate Event on page 12-9



AddTable Method

Server Methods 10-23

AddTable Method

Applies To
OraParameters Collection on page 9-68

Description
Adds an array parameter to the OraParameters collection.

Usage
oraparamarray.AddTable  Name, IOType, ServerType, ArraySize , ElementSize, 
ObjectName

Arguments
The arguments for the method are:

IO Type Settings
The IOType settings are:

Verify that this value is correct. If you set an incorrect option, such as ORAPARM_BOTH 
for the stored procedure parameter type IN, this can result in errors. ORAPARM_BOTH 
is for IN and OUT parameters only. It is not used against one stored procedure that has 

Arguments Description

Name The name of the parameter to be added to the parameters collection. 
This name is used both for parameter identification and as the 
placeholder in associated SQL and PL/SQL statements.

IOType An integer code specifying how the parameter is to be used in SQL 
statements and PL/SQL blocks.

ServerType Specifies Oracle Database type to which this array parameter is to be 
bound. For a list of possible values, see the OraParameter ServerType 
Property on page 11-138. 

ArraySize Defines the number of elements in the parameter array. This parameter 
is used to calculate the maximum buffer length. 

ElementSize 
[optional]

Defines the size of the element. Valid for only character and string type 
table (array) parameters. The valid size for ElementSize depends on 
the VarType. 

ElementSize is optional in all cases except when bound to char and 
string types. 

ObjectName A case-sensitive string containing the name of the Object. This is only 
required if ServerType is ORATYPE_OBJECT, ORATYPE_VARRAY, or 
ORATYPE_TABLE. It is required for ORATYPE_REF when the REF is 
used in PL/SQL.

Constant Value Description

ORAPARM_INPUT 1 Used for input variables only.

ORAPARM_OUTPUT 2 Used for output variables only.

ORAPARM_BOTH 3 Used for variables that are both input and output.



AddTable Method

10-24 Oracle Objects for OLE Developer's Guide

an IN parameter and another that has an OUT parameter. In this case, use two 
parameters. Errors caused in this way are rare, but if there are parameter-related 
errors, verify that the IOType is correct. 

Server Type
See ServerType Property on page 11-138 for valid types and note the following: 

Note:
■ External data type ORATYPE_NUMBER allows decimal precision of 1 to 38.

■ The maximum positive number is 0.99999999999999999999 E + 38. 

■ The minimum positive number is 0.1 E-38. 

■ The minimum negative number is -0.99999999999999999999 E + 38. 

■ The maximum negative number is 0.1 E -38.

ElementSize (Optional)
Valid for character, string, and raw types. The valid size for ElementSize depends on 
the VarType. This represents the length of each individual string or raw array 
element. These ranges are listed.

Remarks
Use parameters to represent SQL bind variables for array insert, update, and delete 
operations, rather than rebuilding the SQL statement. SQL bind variables are useful 
because you can change a parameter value without having to parse the query again. 
Use SQL bind variables only as input variables.

You can also use parameters to represent PL/SQL bind (IN/OUT) variables. You can 
use PL/SQL bind variables as both input and output variables.

The ServerType value ORATYPE_RAW_BIN is used when binding to Oracle Raw 
columns. A byte array is used to Put or Get values. The maximum allowable size of 
ORATYPE_RAW_BIN bind buffers is 2000 bytes when bound to a column of a table: the 
maximum allowable size is 32 KB when bound to a stored procedure. No element (see 
ElementSize argument) can be greater than 4000 bytes when binding to stored 
procedures, 2000 bytes against columns of tables. For example code, see the samples in 
the ORACLE_BASE\ORACLE_HOME\OO4O\VB\Raw directory.

Examples
See "Example: Using OraParamArrays with PL/SQL" on page 9-49.

VarType Size

ORATYPE_VARCHAR2 Valid range from 1 to 1999

ORATYPE_VARCHAR Valid range from 1 to 1999

ORATYPE_STRING Valid range from 1 to 1999

ORATYPE_CHAR Valid range from 1 to 255

ORATYPE_CHARZ Valid range from 1 to 255

ORATYPE_RAW_BIN Valid range from 1 to 4000 (see remarks)

See Also: ServerType Property on page 11-138



Append (OraCollection) Method

Server Methods 10-25

Append (OraCollection) Method

Applies To
OraCollection Object on page 9-19

Description
Extends the size of the collection by one and appends the Variant value at the end of 
the collection.

Usage
OraCollection.Append element

Arguments
The arguments for the method are:

Remarks
If an OraCollection represents a collection of Object types or Refs, the element 
argument should represent a valid OraObject or OraRef. 

Examples
The following example illustrates the Append method. Before running the sample 
code, make sure that you have the necessary data types and tables in the database. See 
"Schema Objects Used in OraCollection Examples" on page A-3.

Example: Append Method for the OraCollection Object Example
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)
 
'retrieve a Enames column from Department. 
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value
 
'Append an "Eric" to the collection. 
'Before that row level lock should be obtained
OraDynaset.Edit
EnameList.Append "Eric"

Arguments Description

[in] element A Variant representing the value to be appended.



Append (OraCollection) Method

10-26 Oracle Objects for OLE Developer's Guide

OraDynaset.Update



Append (OraLOB) Method

Server Methods 10-27

Append (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Appends the LOB content of the input OraLOB object to the internal LOB value of this 
instance.

Usage
OraBlob.Append srcBlob
OraClob.Append srcClob

Arguments
The arguments for the method are:

Remarks
Appends the LOB content of input LOB to the end of current LOB value. Obtain either 
a row-level lock or an object-level lock before calling this method.

Arguments Description

[in] srcLOB A valid object of type OraBLOB or OraCLOB.



AppendChunk Method

10-28 Oracle Objects for OLE Developer's Guide

AppendChunk Method

Applies To
OraField Object on page 9-33

Description
Appends data from a string to a LONG or LONG RAW field in the copy buffer.

Usage
orafield.AppendChunk(string)
orafield.DbAppendChunk(string)  

Arguments
The arguments for the method are:

Remarks
The AppendChunk method allows the manipulation of data fields that are larger than 
64 KB.

Examples

This example demonstrates the use of the AppendChunk method to read a file into a 
LONG RAW column of a database. This example expects a valid dynaset named 
OraDynaset representing a table with a column named longraw. Copy this code 
into the definition section of a form named frmChunk. Call this procedure with a valid 
filename.

Sub AppendChunkExample (FName As String)
 
 'Declare various variables.
 Dim NumChunks As Integer, RemChunkSize As Integer
 Dim TotalSize As Long, CurChunk As String
 Dim I As Integer, FNum As Integer, ChunkSize As Integer
 
 'Set the size of each chunk.
 ChunkSize = 10240
 
 frmChunk.MousePointer = HOURGLASS
 
 'Begin an add operation.
 OraDynaset.AddNew
 
 'Clear the LONGRAW field.

Arguments Description

string Data to append to the specified field.

Note: This example cannot be run as is. It requires a defined form 
named frmChunk.



AppendChunk Method

Server Methods 10-29

 OraDynaset.Fields("LONGRAW").Value = ""
 
 'Get a free file number.
 FNum = FreeFile
 
 'Open the file.
 Open FName For Binary As #FNum
 
 'Get the total size of the file.
 
 TotalSize = LOF(FNum)
 
 'Set number of chunks.
 NumChunks = TotalSize \ ChunkSize
 
 'Set number of remaining bytes.
 RemChunkSize = TotalSize Mod ChunkSize
 
 'Loop through the file.
 For I = 0 To NumChunks
 
  'Calculate the new chunk size.
  If I = NumChunks Then
   ChunkSize = RemChunkSize
  End If
 
  CurChunk = String$(ChunkSize, 32)
 
  'Read a chunk from the file.
  Get #FNum, , CurChunk
 
  'Append chunk to LONGRAW field.
  OraDynaset.Fields("LONGRAW").AppendChunk (CurChunk)
 
 Next I
 
'Complete the add operation and update the database.
OraDynaset.Update
 
 'Close the file.
 Close FNum
 
 frmChunk.MousePointer = DEFAULT
 
End Sub

See Also:

■ "Migration from LONG RAW to LOB or BFILE" on page 5-5 

■ FieldSize Method on page 10-150 

■ GetChunk Method on page 10-156

■ Type Property on page 11-164



AppendChunkByte Method

10-30 Oracle Objects for OLE Developer's Guide

AppendChunkByte Method

Applies To
OraField Object on page 9-33

Description
Appends data from a byte array to a LONG or LONG RAW field in the copy buffer.

Usage
orafield.AppendChunkByte(ByteArray, numbytes)

Arguments
The arguments for the method are:

Remarks
The AppendChunkByte method allows the manipulation of data fields that are larger 
than 64 KB.

Examples

This sample code demonstrates the use of the AppendChunkByte method to read a 
file into a LONG RAW column of a database. This code expects a valid dynaset named 
OraDynaset representing a table with a column named longraw. 

Sub AppendChunkByteExample (FName As String) 
 
 'Declare various variables. 
 Dim NumChunks As Integer, RemChunkSize As Integer 
 Dim TotalSize As Long, CurChunkByte() As Byte 
 Dim I As Integer, FNum As Integer, ChunkSize As Integer 
 
 'Set the size of each chunk. 
 ChunkSize = 10240  
 frmChunk.MousePointer = HOURGLASS 
 
 'Begin an add operation. 
 OraDynaset.AddNew 
 'Clear the LONGRAW field. 
 OraDynaset.Fields("LONGRAW").Value = "" 
 
 'Get a free file number. 

Arguments Description

Byte Array Data to append to the specified field.

numbytes Number of bytes to copy.

Note: This is an incomplete code sample, provided for your 
reference. A complete Visual Basic sample called LONGRAW that is 
based on this code sample, is provided in the OO4O samples 
directory.



AppendChunkByte Method

Server Methods 10-31

 FNum = FreeFile 
 
 'Open the file. 
 Open FName For Binary As #FNum  
 
 'Get the total size of the file. 
 TotalSize = LOF(FNum) 
 
 'Set number of chunks. 
 NumChunks = TotalSize \ ChunkSize 
 
 'Set number of remaining bytes. 
 RemChunkSize = TotalSize Mod ChunkSize 
 
 'Loop through the file. 
 For I = 0 To NumChunks 
 
  'Calculate the new chunk size. 
  If I = NumChunks Then 
   ChunkSize = RemChunkSize 
 
  End If 
 
  ReDim CurChunkByte(ChunkSize) 
 
  'Read a chunk from the file. 
  Get #FNum, , CurChunkByte 
 
  'Append chunk to LONGRAW field. 
  OraDynaset.Fields("LONGRAW").AppendChunkByte (CurChunkByte) 
 Next I 
 
'Complete the add operation and update the database. 
OraDynaset.Update 
 
 'Close the file. 
 Close FNum 
 
 frmChunk.MousePointer = DEFAULT 
 
End Sub

See Also: "Migration from LONG RAW to LOB or BFILE" on 
page 5-5



AQAgent (OraAQMsg) Method

10-32 Oracle Objects for OLE Developer's Guide

AQAgent (OraAQMsg) Method

Applies To
OraAQMsg Object on page 9-6

Description
Creates an instance of the OraAQAgent for the specified consumer and adds it to the 
OraAQAgents list of the message.

Usage
Set agent = qMsg.AQAgent(name)

Arguments
The arguments for the method are:

Remarks
The OraAQAgent object represents a message recipient and is only valid for queues 
that allow multiple consumers. Queue subscribers are recipients by default. Use this 
object to override the default consumers. 

An OraAQAgent object can be instantiated by invoking the AQAgent method. For 
example: 

Set agent = qMsg.AQAgent(consumer) 

The maximum number of agents that a message can support is 10. 

The AQAgent method returns an instance of an OraAQAgent object. 

Arguments Description

[in] name A String up to 30 bytes representing the name of the consumer of the 
message.

[in] [optional]  
Address

A 128-byte String representing the protocol specific address of a 
recipient, such as [schema.]queue[@dblink].

Note: Address is not supported in this release, but is provided for 
future enhancements. 



AQMsg (OraAQ) Method

Server Methods 10-33

AQMsg (OraAQ) Method

Applies To
OraAQ Object on page 9-3

Description
Creates an OraAQMsg for the specified options. 

Usage
Set qMsg = Q.AQMsg(msgtype, typename, schema)

Arguments
The arguments for the method are:

Remarks
The method could be used as follows:

set QMsg = Q.AQMsg(ORATYPE_OBJECT,"MESSAGE_TYPE","SCOTT") 
set QMsg = Q.AQMsg

Arguments Description

[in] msgtype An Integer representing a RAW or user-defined type. Optional for RAW 
type. Possible values are: 

■ ORATYPE_RAW (23) - Message type is RAW.

■ ORATYPE_OBJECT (108) - Message type is user-defined.

[in] typename A String representing the name of the type. Optional for RAW type. 
Default is 'RAW'.

[in] [optional] 
schema

A String representing the schema where the type is defined. Default 
is 'SYS'.



ArcCos (OraNumber) Method

10-34 Oracle Objects for OLE Developer's Guide

ArcCos (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the arc cosine of an OraNumber object. The result is in radians. 

Usage
OraNumber.ArcCos 

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber value is less than -1 or greater than 1.



ArcSin (OraNumber) Method

Server Methods 10-35

ArcSin (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the arc sine of an OraNumber object. Result is in radians. 

Usage
OraNumber.ArcSin

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber object is less than -1 or greater than 1.



ArcTan (OraNumber) Method

10-36 Oracle Objects for OLE Developer's Guide

ArcTan (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the arc tangent of an OraNumber object. Result is in radians.

Usage
OraNumber.ArcTan

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.



ArcTan2 (OraNumber) Method

Server Methods 10-37

ArcTan2 (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the arc tangent of two numbers using the operand provided. The result is 
in radians.

Usage
OraNumber.ArcTan2 operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if operand is zero.

Arguments Description

[in] operand A Variant of type String, OraNumber, or a numeric value.



Attribute (OraMetaData) Method

10-38 Oracle Objects for OLE Developer's Guide

Attribute (OraMetaData) Method

Applies To
OraMetaData Object on page 9-39

Description
Returns the OraMDAttribute object at the specified index.

Usage
Set OraMDAttribute = OraMetaData.Attribute(2) 
Set OraMDAttribute = OraMetaData.Attribute("AttributeName") 

Arguments
The arguments for the method are:

Remarks
None.

Arguments Description

[in] index An Integer index between 0 and count-1, or a String representing 
the name of an attribute.

See Also: OraMetaData Object on page 9-39 for a list of possible 
attribute names



AutoBindDisable Method

Server Methods 10-39

AutoBindDisable Method

Applies To
OraParameter Object on page 9-50

OraParamArray Object on page 9-47

Description
Resets the AutoBind status of a parameter.

Usage
oraparameter.AutoBindDisable

Remarks
If a parameter has AutoBindDisabled status, it is not automatically bound to a SQL 
or PL/SQL statement.

Examples
This example demonstrates the use of the AutoBindDisable and AutoBindEnable 
methods to prevent unnecessary parameter binding while creating various dynasets 
that use different parameters. Copy this code into the definition section of a form. 
Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _
              "scott/tiger", 0&)
 
 'Add the job input parameter with initial value MANAGER.
 OraDatabase.Parameters.Add "job", "MANAGER", 1
 
 'Add the deptno input parameter with initial value 10.
 OraDatabase.Parameters.Add "deptno", 10, 1
 
 'Disable the deptno parameter for now.
 OraDatabase.Parameters("deptno").AutoBindDisable
 
 'Create the OraDynaset Object using the job parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _ 
               "where job = :job", 0&)
 
 'Only employees with job=MANAGER will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
               "Job=" & OraDynaset.Fields("job").value



AutoBindDisable Method

10-40 Oracle Objects for OLE Developer's Guide

 
 'Enable the deptno parameter and disable the job parameter.
 OraDatabase.Parameters("deptno").AutoBindEnable
 OraDatabase.Parameters("job").AutoBindDisable
 
 'Create the OraDynaset Object using the deptno parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _ 
               "where deptno = :deptno", 0&)
 
 'Only employees with deptno=10 will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," & _ 
                "DeptNo=" & OraDynaset.Fields("deptno").value
 
End Sub

See Also: AutoBindEnable Method on page 10-41



AutoBindEnable Method

Server Methods 10-41

AutoBindEnable Method

Applies To
OraParameter Object on page 9-50

OraParamArray Object on page 9-47

Description
Sets the AutoBind status of a parameter.

Usage
oraparameter.AutoBindEnable

Remarks
If a parameter has AutoBindEnabled status, it is automatically bound to a SQL or 
PL/SQL statement. 

Examples
This example demonstrates the use of the AutoBindDisable and AutoBindEnable 
methods to prevent unnecessary parameter binding while creating various dynasets 
that use different parameters. Copy this code into the definition section of a form. 
Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _
                  "scott/tiger", 0&)
 
 'Add the job input parameter with initial value MANAGER.
 OraDatabase.Parameters.Add "job", "MANAGER", 1
 
 'Add the deptno input parameter with initial value 10.
 OraDatabase.Parameters.Add "deptno", 10, 1
 
 'Disable the deptno parameter for now.
 OraDatabase.Parameters("deptno").AutoBindDisable
 
 'Create the OraDynaset Object using the job parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _ 
                 "where job = :job", 0&)
 
 'Only employees with job=MANAGER will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," &  _
                 "Job=" & OraDynaset.Fields("job").value



AutoBindEnable Method

10-42 Oracle Objects for OLE Developer's Guide

 
 'Enable the deptno parameter and disable the job parameter.
 OraDatabase.Parameters("deptno").AutoBindEnable
 OraDatabase.Parameters("job").AutoBindDisable
 
 'Create the OraDynaset Object using the deptno parameter.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp" & _ 
                  "where deptno = :deptno", 0&)
 
 'Only employees with deptno=10 will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & "," & _
                  "DeptNo=" & OraDynaset.Fields("deptno").value
 
End Sub

See Also: AutoBindDisable Method on page 10-39



BeginTrans Method

Server Methods 10-43

BeginTrans Method

Applies To
OraConnection Object on page 9-27

OraDatabase Object on page 9-28

OraSession Object on page 9-58

Description
Begins a database transaction within the specified session.

Usage
oraconnection.BeginTrans
oradatabase.BeginTrans
orasession.BeginTrans

Remarks
After this method has been called, no database transactions are committed until a 
CommitTrans is issued. Alternatively, the session can be rolled back using the 
Rollback method. If a transaction has already been started, repeated use of the 
BeginTrans method causes an error. 

If Update or Delete methods fail on a given row in a dynaset in a global transaction 
after you issue a BeginTrans, be aware that locks remain on those rows on which 
you called the Update or Delete method. These locks persist until you call a 
CommitTrans or Rollback method.

Examples
This example demonstrates the use of the BeginTrans method to group a set of 
dynaset edits into a single transaction and uses the Rollback method to cancel those 
changes. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 Dim fld As OraField
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", _ 
                     "scott/tiger", 0&)
 

Note: If an OraDatabase object has been enlisted with Microsoft 
Transaction Server (MTS) and is part of a global MTS transaction, this 
method has no effect.



BeginTrans Method

10-44 Oracle Objects for OLE Developer's Guide

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Start Transaction processing.
 OraSession.BeginTrans
 
 'Setup a field object to save object references.
 Set fld = OraDynaset.Fields("sal")
 
 'Traverse until EOF is reached, setting each employees salary to zero
 Do Until OraDynaset.EOF = True
   OraDynaset.Edit
   fld.value = 0
   OraDynaset.Update
   OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."
 
 'Currently, the changes have NOT been committed to the database.
 'End Transaction processing. Using RollbackTrans 
 'means the rollback can be canceled in the Validate event.
 OraSession.Rollback
 'MsgBox "Salary changes rolled back."
 
End Sub

See Also:

■ AutoCommit Property on page 11-9

■ CommitTrans Method on page 10-66

■ ResetTrans Method on page 10-233

■ Rollback Method on page 10-235

■ "Microsoft Transaction Server Support" on page 3-15



Cancel Method

Server Methods 10-45

Cancel Method

Applies To
OraSQLStmt Object on page 9-60 created with the ORASQL_NONBLK option

Description
Cancels the currently executing SQL operation. 

Usage
status = OraSQL.NonBlockingState
   if status = ORASQL_STILL_EXECUTING
OraSQL.Cancel
Endif

Return Values
ORASQL_SUCCESS(0) - Any errors are thrown as exceptions. 

See Also: "Asynchronous Processing" on page 3-16



CancelEdit (OraRef) Method

10-46 Oracle Objects for OLE Developer's Guide

CancelEdit (OraRef) Method

Applies To
OraRef Object on page 9-52

Description
Unlocks the referenceable object in the database and cancels the object update 
operation.

Usage
OraRef.CancelEdit

Remarks
Care should be taken before using this method; it cancels any pending transaction on 
the connection.



Ceil (OraNumber) Method

Server Methods 10-47

Ceil (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the ceiling value of an OraNumber object.

Usage
OraNumber.Ceil

Remarks
The result of the operation is stored in an OraNumber object. There is no return value.



ChangePassword (OraServer) Method

10-48 Oracle Objects for OLE Developer's Guide

ChangePassword (OraServer) Method

Applies To
OraServer Object on page 9-56

Description
Changes the password for a given user.

Usage
OraServer.ChangePassword user_name, current_password, new_password 

Arguments
The arguments for the method are:

Remarks
The OraServer object should be attached to an Oracle database using the Open 
method before to using this method. 

This method is useful when a password has expired. In that case, the OpenDatabase 
method could return the following error: 

ORA-28001 "the password has expired". 

Arguments Description

[in] user_name A String representing the user for whom the password is 
changed.

[in] current_password A String representing the current password for the user.

[in] new_password A String representing the new password for whom the user 
account is set.



ChangePassword (OraServer) Method

Server Methods 10-49

See Also:

■ BeginTrans Method on page 10-43

■ Close Method on page 10-63

■ CommitTrans Method on page 10-66

■ CreateAQ Method on page 10-79

■ CreateCustomDynaset Method on page 10-80

■ CreateTempBLOB/CLOB Method on page 10-114

■ CreateDynaset Method on page 10-85

■ CreateOraObject (OraDatabase) Method on page 10-97

■ CreateSQL Method on page 10-111

■ Describe Method on page 10-124

■ ExecuteSQL Method on page 10-144

■ FetchOraRef Method on page 10-149

■ LastServerErrReset Method on page 10-189

■ MonitorForFailover Method on page 10-194

■ Open (OraServer) Method on page 10-210

■ OpenDatabase Method on page 10-212

■ RemoveFromPool Method on page 10-232

■ Rollback Method on page 10-235



ChangePassword (OraSession) Method

10-50 Oracle Objects for OLE Developer's Guide

ChangePassword (OraSession) Method

Applies To
OraSession Object on page 9-58

Description
Changes the password for a given user.

Usage
OraSession.ChangePassword database_name, user_name, current_password, new_password

Arguments
The arguments for the method are:

Remarks
This method is especially useful when a password has expired. In that case, the  
OpenDatabase or CreateDatabasePool method could return the following error: 

ORA-28001 "the password has expired". 

Examples
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim password as String 
 
'Note: The DBA could expire scott's password by issuing 
'ALTER USER SCOTT PASSWORD EXPIRE  
 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
password = "tiger" 
 
On Error GoTo err: 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/" & password, 0&)
End 
 
err: 
'Check for password expiration error 
 
If OraSession.LastServerErr = 28001 Then 
    OraSession.ChangePassword "ExampleDb", "scott", password, "newpass" 
    'reset our password variable, then try OpenDatabase again 

Arguments Description

[in] database_name A String representing the Oracle network specifier used 
when connecting to a database.

[in] user_name A String representing the user for whom the password is 
changed.

[in] current_password A String representing the current password for the user.

[in] new_password A String representing the new password for whom the 
user account is set.



ChangePassword (OraSession) Method

Server Methods 10-51

    password = "newpass" 
    Resume 
End If 
 
End 

See Also:

■ OpenDatabase Method on page 10-212 

■ CreateDatabasePool Method on page 10-83



Clone Method

10-52 Oracle Objects for OLE Developer's Guide

Clone Method

Applies To
OraDynaset Object on page 9-30

Description
Returns a duplicate dynaset of the specified dynaset.

Usage
Set oradynaset2 = oradynaset1.Clone
Set oradynaset2 = oradynaset1.DbClone  

Remarks
This method creates a duplicate dynaset of the one specified. The original and 
duplicate dynasets have their own current record. However, the new dynaset is not 
positioned on any row and has its EOF and BOF conditions set to True. To change this, 
you must explicitly set a current row on the new duplicate with a Move or Find 
method.

Using the Clone method has no effect on the original dynaset. You cannot add, 
update, or remove records from a dynaset clone.

Use the Clone method to perform an operation on a dynaset that requires multiple 
current records.

A cloned dynaset does not have all the property settings of the original. The 
CacheBlock, CacheSliceSize, CacheSlicePerBlock, and FetchLimit 
properties are all set to Null.

Bookmarks of a dynaset and its clone are interchangeable; bookmarks of dynasets 
created with separate CreateDynaset methods are not interchangeable.

See Also:

■ Bookmark Property on page 11-13

■ CreateDynaset Method on page 10-85



Clone (OraLOB/BFILE) Method

Server Methods 10-53

Clone (OraLOB/BFILE) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Returns the clone of an OraLOB or OraBFILE object.

Usage
OraBlob1 = OraBlob.Clone
OraClob1 = OraClob.Clone
OraBfile = OraBfile.Clone

Arguments
The arguments for the method are:

Remarks
This method makes a copy of an OraBLOB or OraCLOB object. This copy does not 
change due to a dynaset move operation or OraSQLStmt Refresh operation. No 
operation that modifies the LOB content of an OraBLOB or OraCLOB object can be 
performed on a clone.

This method makes a copy of Oracle BFILE locator and returns an OraBFILE 
associated with that copy. The copy of an OraBFILE does not change due to a dynaset 
move operation or a OraSQLStmt refresh operation. 

Arguments Description

[in] OraLOB A valid object of type OraBLOB, OraCLOB, or OraBFILE.



Clone (OraCollection) Method

10-54 Oracle Objects for OLE Developer's Guide

Clone (OraCollection) Method

Applies To
OraCollection Object on page 9-19

Description
Returns the clone of an OraCollection object. 

Usage
set OraCollection1 = OraCollection.Clone

Arguments
The arguments for the method are:

Remarks
This method makes a copy of an Oracle collection and returns an OraCollection 
object associated with that copy. This copy of an Oracle collection does not change due 
to a dynaset move operation or OraSQLStmt Refresh operation. An 
OraCollection object returned by this method allows operations to access its 
element values of the underlying Oracle collection and prohibits any operation that 
modifies its element values.

Arguments Description

[in] oraCollection1 A valid OraCollection object



Clone (OraIntervalDS) Method

Server Methods 10-55

Clone (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Returns a copy of the OraIntervalDS object.

Usage
Set OraIntervalDSObjClone = OraIntervalDSObj.Clone

Remarks
Returns a new OraIntervalDS object with the same value as the original.



Clone (OraIntervalYM) Method

10-56 Oracle Objects for OLE Developer's Guide

Clone (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Returns a copy of the OraIntervalYM object.

Usage
Set OraIntervalYMObjClone = OraIntervalYMObj.Clone

Remarks
Returns a new OraIntervalYM object with the same value as the original.



Clone (OraNumber) Method

Server Methods 10-57

Clone (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Returns a copy of the OraNumber object .

Usage
Set OraNumber2 = OraNumber.Clone

Remarks
Returns a new OraNumber object with the same value as the original.



Clone (OraObject/Ref) Method

10-58 Oracle Objects for OLE Developer's Guide

Clone (OraObject/Ref) Method

Applies To
OraObject Object on page 9-43

OraRef Object on page 9-52

Description
Returns the clone of an OraObject or OraRef object. 

Usage
Set OraObjectClone = OraObject.Clone
Set OraRefClone = OraRef.Clone

Remarks
This method makes a copy of a Value instance or REF value and returns an 
OraObject or OraRef object associated with that copy. This copy does not change 
due to a dynaset move operation or OraSQLStmt refresh operation. An OraObject 
object returned by this method allows an operation to access its attribute values of an 
underlying value instance and disallows any operation to modify its attribute values.

Examples
Before running the sample code, make sure that you have the necessary data types and 
tables in the database. For the following examples, see "Schema Objects Used in the 
OraObject and OraRef Examples" on page A-3

Example: Clone Method for the OraObject Object
The following example shows the use of the Clone method.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject
Dim AddressClone as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab",0&)
 
'retrieve a address column from person_tab. Here Value property of OraField object
'returns Address OraObject  
set Address = OraDynaset.Fields("Addr").Value
 
'here Address OraObject points to Address value instance in the server
'for the first row 
msgbox Address.Street
 



Clone (OraObject/Ref) Method

Server Methods 10-59

'move to second row
OraDynaset.MoveNext
 
'here Address OraObject points to Address value instance in the server
'for the second row   
msgbox Address.Street
 
'get the clone of Address object. This clone points to the copy of
'the value instance for second row 
set AddressClone = Address.Clone
 
'move to third row
OraDynaset.MoveNext
 
'here Address OraObject points to Address value instance in the server 
'for third row  
msgbox Address.Street
 
'here AddressClone OraObject points to copy of Address value instance
' in the server for second row
msgbox AddressClone.Street

Example: Clone Method for the OraRef Object
The following example shows the usage of the Clone method. Before running the 
sample code, make sure that you have the necessary data types and tables in the 
database.

 
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
Dim PersonClone as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)
 
'retrieve a aperson column from customers. 
'Here Value property of OraField object 'returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value
 
'here Person OraRef points to Person Ref value in the server for the first row 
msgbox Person.Name
 
'move to second row
OraDynaset.MoveNext
 
'here Person OraRef points to Person Ref value in the server for the second row 
msgbox Person.Name
 
'get the clone of Person object. 
'This clone points to the copy of the Ref for second row
set PersonClone = Person.Clone
 



Clone (OraObject/Ref) Method

10-60 Oracle Objects for OLE Developer's Guide

'move to third row
OraDynaset.MoveNext
 
'here Person OraRef points to Person Ref value 
'in the server for the third row 
msgbox Person.Name
 
'here PersonClone OraRef points to Person Ref value 
'in the server for the second row 
msgbox PersonClone.Name



Clone (OraTimeStamp) Method

Server Methods 10-61

Clone (OraTimeStamp) Method

Applies To
OraTimeStamp Object on page 9-62

Description
Returns a copy of the OraTimeStamp object.

Usage
Set OraTimeStampObj1 = OraTimeStampObj.Clone

Remarks
Returns a new OraTimeStamp object with the same value as the current object.



Clone (OraTimeStampTZ) Method

10-62 Oracle Objects for OLE Developer's Guide

Clone (OraTimeStampTZ) Method

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns a copy of the OraTimeStampTZ object.

Usage
Set OraTimeStampTZObj1 = OraTimeStampTZObj.Clone

Remarks
Returns a new OraTimeStampTZ object with the same value as the current object.



Close Method

Server Methods 10-63

Close Method

Applies To
OraDatabase Object on page 9-28

OraDynaset Object on page 9-30

OraSQLStmt Object on page 9-60

OraServer Object on page 9-56

Description
Does nothing. Added for compatibility with Visual Basic. 

Remarks
Neither the OraDatabase nor the OraDynaset object supports this method. Once an 
OraDatabase or OraDynaset object has gone out of scope and there are no 
references to it, the object closes automatically.

See Also:

■ CreateDynaset Method on page 10-85

■ OpenDatabase Method on page 10-212



Close (OraBFILE) Method

10-64 Oracle Objects for OLE Developer's Guide

Close (OraBFILE) Method

Applies To
OraBFILE Object on page 9-9

Description
Closes an opened BFILE data type.

Usage
OraBfile = OraBfile.Close

Arguments
The arguments for the method are:

Remarks
This method only applies to BFILEs, not LOBs.

Arguments Description

[in] OraBfile A valid object of type OraBFILE.



CloseAll (OraBFILE) Method

Server Methods 10-65

CloseAll (OraBFILE) Method

Applies To
OraBFILE Object on page 9-9

Description
This method closes all open OraBFILE objects on this connection. 

Usage
OraBfile.CloseAll



CommitTrans Method

10-66 Oracle Objects for OLE Developer's Guide

CommitTrans Method

Applies To
OraConnection Object on page 9-27

OraDatabase Object on page 9-28

OraSession Object on page 9-58

Description
Ends the current transaction and commits all pending changes to the database.

Usage
oraconnection.CommitTrans
oradatabase.CommitTrans
orasession.CommitTrans

Remarks
The CommitTrans method acts differently for these objects:

■ OraConnection and OraDatabase 

The CommitTrans method commits all pending transactions for the specified 
connection. This method has no effect if a transaction has not started. When a 
sessionwide transaction is in progress, you can use this method to commit the 
transactions for the specified connection prematurely.

■ OraSession

The CommitTrans method commits all transactions present within the session. 
The CommitTrans method is valid only when a transaction has been started. If a 
transaction has not been started, using the CommitTrans method causes an error. 

Note: If an OraDatabase object has been enlisted with Microsoft Transaction Server 
(MTS) and is part of a global MTS transaction, this method has no effect.

Examples
This example demonstrates the use of the BeginTrans method to group a set of 
dynaset edits into a single transaction. The CommitTrans method then accepts the 
changes. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 Dim fld As OraField
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. OpenDatabase("ExampleDb", "scott/tiger", 0&)



CommitTrans Method

Server Methods 10-67

 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Start Transaction processing.
 OraSession.BeginTrans
 
 'Setup a field object to save object references.
 Set fld = OraDynaset.Fields("sal")
 
 'Traverse until EOF is reached, setting each employees salary to zero.
 Do Until OraDynaset.EOF = True
   OraDynaset.Edit
   fld.value = 0
   OraDynaset.Update
   OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."
 
 'Currently, the changes have NOT been committed 
 'to the database.
 
 'End Transaction processing. Commit the changes to the database
 OraSession.CommitTrans
 MsgBox "Salary changes committed."
 
End Sub

See Also:

■ AutoCommit Property on page 11-9

■ BeginTrans Method on page 10-43

■ ResetTrans Method on page 10-233

■ Rollback Method on page 10-235

■ "Microsoft Transaction Server Support" on page 3-15



Compare (OraLOB) Method

10-68 Oracle Objects for OLE Developer's Guide

Compare (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Compares the specified portion of the LOB value of an OraBLOB or OraCLOB object 
(or OraBFILE object) to the LOB value of the input OraBLOB or OraCLOB object (or 
OraBFILE object).

Usage
IsEqual = OraBlob.Compare srcBlob, amount, Offset, srcOffset
IsEqual = OraClob.Compare srcClob, amount, Offset, srcOffset
IsEqual = OraBfile.Compare srcBfile, amount, Offset, srcOffset

Arguments
The arguments for the method are:

Remarks
The Compare method returns True if comparison succeeds; otherwise, it returns 
False.

If the amount to be compared causes the comparison to take place beyond the end of 
one LOB but not beyond the end of the other, the comparison fails. Such a comparison 
could succeed only if the amount of data from the Offset to the end is the exactly the 
same for both LOBs.

This call is currently implemented by executing a PL/SQL block that utilizes DBMS_
LOB.INSTR().

Arguments Description

[in] srcLOB Input OraBLOB, OraCLOB, or OraBFILE object whose value is to be 
compared. 

[in] [optional] amount An Integer specifying the number of bytes or characters to 
compare. The default value of amount is from the Offset to the 
end of each LOB.

[in] [optional] Offset An Integer specifying the 1-based Offset in bytes (OraBLOB or 
OraBFILE) or characters (OraCLOB) in the value of this object. 
Default value is 1. 

[in] [optional] 
srcOffset

An Integer specifying the 1-based Offset in bytes (OraBLOB or 
OraBFILE) or characters (OraCLOB) in the value of the srcLob 
object. Default value is 1. 

[out] IsEqual A Boolean representing the result of a compare operation. 



ConnectSession Method

Server Methods 10-69

ConnectSession Method

Applies To
OraSession Object on page 9-58

Description
Returns the OraSession object with the specified name that is associated with the 
OraClient object of the specified session.

Usage
Set orasession2 = orasession1.ConnectSession(session_name)

Arguments
The arguments for the method are:

Remarks
This method is provided for simplicity and is equivalent to iterating through the 
OraSessions collection of the OraClient object of the current session and searching 
for a session named session_name. The OraSessions collection contains only 
sessions created through the current application. This means that it is not possible to 
share sessions across applications, only within applications.

Examples
This example demonstrates the use of the ConnectSession and 
CreateNamedSession methods to allow an application to use a session it previously 
created, but did not save. Copy this code into the definition section of a form. Then, 
press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim dfltsess As OraSession
 Dim OraSession As OraSession 
 
 'Create the default OraSession Object.
 Set dfltsess = CreateObject("OracleInProcServer.XOraSession")
 
 'Try to connect to "ExampleSession". If it does not exist 
 'an error is generated.
 On Error GoTo SetName
 Set OraSession = dfltsess.ConnectSession("ExampleSession")
 On Error GoTo 0
 
 'You can specify other processing here, such as creating a
 ' database and/or dynaset.
 
Exit Sub

Arguments Description

session_name A String specifying the name of the session.



ConnectSession Method

10-70 Oracle Objects for OLE Developer's Guide

 
SetName:
'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.Client.CreateSession("ExampleSession")
Resume Next
 
End Sub

See Also:

■ CreateSession Method on page 10-109

■ OraClient Object on page 9-18

■ OraSessions Collection on page 9-69



CopyToClipboard Method

Server Methods 10-71

CopyToClipboard Method

Applies To
OraDynaset Object on page 9-30

Description
Copy the rows from the dynaset to the clipboard in text format.

Usage
OraDynaset.CopyToClipboard(NumOfRows, colsep, rowsep)

Arguments
The arguments for the method are:

Remarks
This method is used to help transfer data between the Oracle Object for OLE cache 
(dynaset) and Windows applications, such as Excel or Word. The CopyToClipboard 
method copies data starting from the current position of the dynaset up to the last row.

The default column separator is TAB (ASCII 9).

The default row separator is ENTER (ASCII 13).

Examples
The following example copies data from the dynaset to the clipboard. Paste this code 
into the definition section of a form, then press F5.

Sub Form_Load ()
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&) 
 
'Now call CopyToClipboard to copy the entire dynaset
 OraDynaset.CopyToClipboard -1, chr(9), chr(13)
End Sub

Arguments Description

NumOfRows Number of rows to be copied to the dynaset 

colsep [optional] Column separator in the CHAR data type to be inserted between 
columns

rowsep [optional] Row separator in the CHAR data type to be inserted between rows



Copy (OraLOB) Method

10-72 Oracle Objects for OLE Developer's Guide

Copy (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Copies a portion of the internal LOB value of an input OraBLOB or OraCLOB object to 
internal LOB value of this instance. 

Usage
OraBlob.Copy srcBlob, amount, destOffset, srcOffset 
OraClob.Copy srcClob, amount, destOffset, srcOffset 

Arguments
The arguments for the method are:

Remarks
Obtain either a row-level lock or object-level lock before calling this method.

Arguments Description

[in] srcLOB An OraCLob or OraBLOB object whose value is to be copied.

[in] [optional] amount An Integer specifying number of bytes or characters to copy. 
Default value is the size of the BLOB or CLOB value of the srcLOB 
object. 

[in] [optional] 
destOffset

An Integer specifying the offset in bytes or characters for the value 
of this object. Default value is 1.

[in] [optional] 
srcOffset

An Integer specifying the offset in bytes or characters, for the 
value of the srcLOB object. Default value is 1. 



CopyFromFile (OraLOB) Method

Server Methods 10-73

CopyFromFile (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Loads or copies a portion or all of a local file to the internal LOB value of this object. 

Usage
OraBlob.CopyFromFile "blob.bmp" amount, offset, chunksize 
OraClob.CopyFromFile "clob.txt" amount, offset, chunksize 

Arguments
The arguments for the method are:

Remarks
Obtain either a row-level lock or object-level lock before calling this method.

The file should be in the same format as the NLS_LANG setting.

Examples

Example: Using the CopyFromFile Method
This example demonstrates the use of the CopyFromFile method. 

Be sure that you have the PART table in the database with valid LOB data in it. Also, 
be sure that you have installed the OraLOB Schema Objects as described in "Schema 
Objects Used in LOB Data Type Examples"  on page A-3.

Dim OraSession As OraSession 

Arguments Description

[in] filename A string specifying the absolute name and path for the file to 
be read. 

[in] [optional] amount An Integer specifying the maximum number in bytes to be 
copied. Default value is total file size. 

[in] [optional] offset An Integer specifying the absolute offset of the BLOB or 
CLOB value of this object, in bytes for OraBLOB or OraBFILE 
and characters for OraCLOB. Default value is 1. 

[in] [optional] chunksize An Integer specifying the size for each read operation, in 
bytes. If chunksize parameter is not set or 0, the value of the 
amount argument is used, which means the entire amount is 
transferred in one chunk. 

Note: When manipulating LOBs using LOB methods, such as  
Write and CopyFromFile, the LOB object is not automatically 
trimmed if the length of the new data is smaller than the old data. 
Use the Trim (OraLOB) method to shrink the LOB object to the size 
of the new data.



CopyFromFile (OraLOB) Method

10-74 Oracle Objects for OLE Developer's Guide

Dim OraDatabase As OraDatabase 
Dim PartImage as OraBLOB 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'Create a Dynaset containing a BLOB and a CLOB column 
set part = OraDatabase.CreateDynaset ("select * from part where" & _
                "part_id = 1234",0) 
set PartImage = part.Fields("part_image").Value 
 
'copy the entire content of partimage.jpg file to LOBS 
part.Edit 
PartImage.CopyFromFile "partimage.jpg" 
part.Update 

See Also: Trim (OraLOB) Method on page 10-254 



CopyFromBFILE (OraLOB) Method

Server Methods 10-75

CopyFromBFILE (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Copies a portion or all of the LOB value of an OraBFILE object to the LOB value of 
this object. 

Usage
OraBlob.CopyFromBFile srcBFile, amount, destOffset, srcOffset
 
OraClob.CopyFromBFile srcBFile, amount, destOffset, srcOffset

Arguments
The arguments for the method are:

Remarks
Obtain either a row-level lock or object-level lock before calling this method.

For a single-byte character set, the OraBFile object should be of the same character 
set as the database. 

If the database has a variable width character set, the OraBFile object passed to the 
OraClob.CopyFromBFile method must point to a file that uses the UCS2 character 
set.

Arguments Description

[in] srcBFile An OraBFILE object from which the data is to be copied.

[in] [optional] amount An Integer specifying the maximum number to be copied, in 
characters for OraCLOB or bytes for OraBLOB or OraBFILE. 
Default value is the size of BFILE value of the srcBFile 
object.

[in] [optional] destOffset An Integer specifying the absolute offset for this instance. 
Default is 1.

[in] [optional] srcOffset An Integer specifying the absolute offset for the BFILE value 
of the source OraBFILE object. Default is 1.



CopyToFile (OraLOB/BFILE) Method

10-76 Oracle Objects for OLE Developer's Guide

CopyToFile (OraLOB/BFILE) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Copies a portion or all of the internal LOB value of this object to the local file. 

Usage
OraBlob.CopyToFile "blob.bmp" amount,offset,chunksize
OraClob.CopyToFile "clob.txt" amount,offset,chunksize
OraBfile.CopyToFile "bfile.bmp" amount,offset,chunksize

Arguments
The arguments for the method are:

Remarks
The file is in the same format as the NLS_LANG setting.

If the file exists, its contents is overwritten.

Examples

Example:Using the CopyToFile Method
This example demonstrates the use of the CopyToFile method. 

Be sure that you have the PART table in the database with valid LOB data in it. Also, 
be sure that you have installed the OraLOB Schema Objects as described in "Schema 
Objects Used in LOB Data Type Examples"  on page A-3.

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim PartDesc as OraCLOB 
 
'Create the OraSession Object. 

Arguments Description

[in] filename A String specifying the absolute name and path for which the 
file is to be written.

[in] [optional] amount An Integer specifying the maximum amount to be copied, in 
bytes for OraBLOB/OraBFILE and characters for OraCLOB. 
Default value is the size of the LOB or BFILE. 

[in] [optional] offset An Integer specifying absolute offset of the LOB or BFILE 
value of this instance, in bytes for OraBLOB/OraBFILE and 
characters for OraCLOB. Default value is 1.

[in] [optional] chunksize An Integer specifying the size, in bytes, for each write 
operation. If the chunksize parameter is not set or is 0, the 
value of the amount argument is used which means the entire 
amount is transferred in one chunk. 



CopyToFile (OraLOB/BFILE) Method

Server Methods 10-77

Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&
 
'Create a Dynaset containing a BLOB and a CLOB column 
set part = OraDatabase.CreateDynaset ("select * from part where" & _
                "part_id = 1234",0) 
set PartDesc = part.Fields("part_desc").Value 
 
'Copy the entire LOB content to partdesc.txt file 
PartDesc.CopyToFile "partdesc.txt" 



Cos (OraNumber) Method

10-78 Oracle Objects for OLE Developer's Guide

Cos (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the cosine of an OraNumber object given in radians.

Usage
OraNumber.Cos 

Remarks
The result of the operation is stored in an OraNumber object. There is no return value.



CreateAQ Method

Server Methods 10-79

CreateAQ Method

Applies To
OraDatabase Object on page 9-28

Description
Creates an instance of the OraAQ object.

Usage
Set OraAq = OraDatabase.CreateAQ(Qname)

Arguments
The arguments for the method are:

Remarks
None.

Arguments Description

[in] Qname A String representing the name of the queue in the database.



CreateCustomDynaset Method

10-80 Oracle Objects for OLE Developer's Guide

CreateCustomDynaset Method

Applies To
OraDatabase Object on page 9-28

Description
Creates a dynaset using custom cache and fetch parameters

Usage
Set oradynaset = oradatabase.CreateCustomDynaset(sql_statement, options, 
slicesize, perblock, blocks, FetchLimit, FetchSize, SnapShotID)

Arguments
The arguments for the method are:

Constants
The following table lists constants and values for the options flag.

Arguments Description

sql_statement Any valid Oracle SQL SELECT statement.

slicesize Cache slice size.

perblock Cache slices for each block.

blocks Cache maximum number of blocks.

FetchLimit Fetch array size.

FetchSize Fetch array buffer size.

options A bit flag indicating the status of any optional states of the dynaset. You 
can combine one or more options by adding their respective values. 
Specifying the constant ORADYN_DEFAULT or the value &H0& gives the 
following defaults for the dynaset:

■ Behave like Visual Basic Mode for a database: Field values not 
explicitly set are set to Null, overriding database column defaults.

■ Perform automatic binding of database parameters.

■ Remove trailing blanks from character string data retrieved from 
the database.

■ Create an updatable dynaset.

■ Cache data on the client.

■ Force a MoveFirst operation when the dynaset is created.

■ Maintain read-consistency.

SnapShotID 
[optional]

The ID of a Snapshot obtained from the SnapShot property of an 
OraDynaset.

Constant Value Description

ORADYN_DEFAULT &H0& Accept the default behavior.



CreateCustomDynaset Method

Server Methods 10-81

These values can be found in the oraconst.txt file located in: 

ORACLE_BASE\ORACLE_HOME\rdbms\oo4o

Remarks
The SQL statement must be a SELECT statement or an error is returned. Features such 
as simple views and synonyms can be used freely. You can also use schema references, 
column aliases, table joins, nested select statements, and remote database references, 
but in each case you end up with a read-only dynaset. 

If you use a complex expression or SQL function on a column, such as "sal + 100" 
or "abs(sal)" , you get an updatable dynaset, but the column associated with the 
complex expression is not updatable.

Object names generally are not modifed, but in certain cases, they can be changed. For 
example, if you use a column alias, you must use the alias to refer to the field by name. 
If you use spaces in a complex expression, you must refer to the column without the 
spaces, because the database removes spaces. Note that you can always refer to a field 
by number, that is, by its ordinal position in the SELECT statement. 

Executing the SQL SELECT statement generates a commit operation to the database by 
default. To avoid this, use the BeginTrans method on the session object before using 
the CreateDynaset method.

The updatability of the resultant dynaset depends on the Oracle SQL rules of 
updatability, on the access you have been granted, and on the options flag.

ORADYN_NO_AUTOBIND &H1& Do not perform automatic binding of database 
parameters.

ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character string 
data retrieved from the database.

ORADYN_READONLY &H4& Force dynaset to be read-only.

ORADYN_NOCACHE &H8& Do not create a local dynaset data cache. Without the 
local cache, previous rows within a dynaset are 
unavailable; however, increased performance results 
during retrieval of data from the database (move 
operations) and from the rows (field operations). Use 
this option in applications that make single passes 
through the rows of a dynaset for increased 
performance and decreased resource usage.

ORADYN_ORAMODE &H10& Same as Oracle Mode for a database except it affects 
only the dynaset being created. If database was 
created in Oracle Mode, the dynaset inherits the 
property from it (for compatibility).

ORADYN_NO_REFETCH &H20& Behaves same as ORADB_NO_REFETCH mode for a 
database except this mode affects only the dynaset 
being created. If the database was created in ORADB_
NO_REFETCH mode, the dynaset inherits the 
property for compatibility.

ORADYN_N_MOVEFIRST &H40& Does not force a MoveFirst when the dynaset is 
created. BOF and EOF are both true.

ORADYN_DIRTY_WRITE &H80& Update and Delete methods do not check for read 
consistency.

Constant Value Description



CreateCustomDynaset Method

10-82 Oracle Objects for OLE Developer's Guide

Updatability Conditions
For the dynaset to be updatable, three conditions must be met: 

■ A SQL statement must refer to a simple column list or to the entire column list (*).

■ The statement must not set the read-only flag of the options argument.

■ Oracle must permit ROWID references to the selected rows of the query. 

Any SQL statement that does not meet these criteria is processed, but the results are 
not updatable and the Updatable property of the dynaset returns False.

This method automatically moves to the first row of the created dynaset.

You can use SQL bind variables in conjunction with the OraParameters collection.

Examples
This example demonstrates the CreateCustomDynaset method. Copy and paste this 
code into the definition section of a form, then press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
 
 'Create the OraDynaset Object using sliceSize as 256,perblock size as 16, no. of 
 'blocks as 20, fetchLimit as 20,FetchSize as 4096
  
 Set OraDynaset = OraDatabase.CreateCustomDynaset("select empno, " & _ 
               "ename from emp", 0&,256,16,20,20,4096)
 
 'Display the first record.
 MsgBox "Employee " & OraDynaset.Fields("empno").value & ", #" & _ 
                OraDynaset.Fields("ename").value
 
End Sub

See Also: SnapShot Property on page 11-146



CreateDatabasePool Method

Server Methods 10-83

CreateDatabasePool Method

Applies To
OraSession Object on page 9-58

Description
Creates a pool of OraDatabase objects. Only one pool can be created for each 
OraSession object.

Usage
CreateDatabasePool (long initialSize, long maxSize, long timeoutValue, BSTR 
database_name, BSTR connect_string, long options)

Arguments
The arguments for the method are:

Remarks
The OpenDatabase method of the OraSession object is used to establish a 
connection to an Oracle database. This method returns a reference to the 
OraDatabase object which is then used for executing SQL statements and PL/SQL 
blocks. The connection pool in OO4O is a pool of OraDatabase objects. The pool is 
created by invoking the CreateDatabasePool method of the OraSession 
interface.

Exceptions are raised by this call if:

■ A pool already exists. 

■ An error occurs in creating a connection to Oracle Database.

■ Invalid values for arguments are passed (that is, initialSize > maxSize).

The LastServerErr property of the OraSession object contains the code for the 
specific cause of the exception resulting from an Oracle Database error.

One possible connection error that could be returned is:

Arguments Description

initialSize The initial size of the pool.

maxSize The maximum size to which the pool can grow.

timeoutValue If an OraDatabase object in the pool is idle for the timeoutValue 
value specified, the database connection that it contains is disconnected. 
The connection is reopened if the pool item is used again. This value is 
in seconds.

database_name The Oracle network specifier used when connecting the data control to 
a database.

connectString The user name and password to be used when connecting to an Oracle 
database.

options A bit flag word used to set the optional modes of the database. If 
options = 0, the default mode settings apply. "Constants" on 
page 10-212 shows the available modes. 



CreateDatabasePool Method

10-84 Oracle Objects for OLE Developer's Guide

ORA-28001 "the password has expired"

The user can change the password using the ChangePassword method. 

See Also:

■ DestroyDatabasePool Method on page 10-128

■ GetDatabaseFromPool Method on page 10-155

■ RemoveFromPool Method on page 10-232

■ ChangePassword (OraSession) Method on page 10-50

■ LastServerErr Property on page 11-87



CreateDynaset Method

Server Methods 10-85

CreateDynaset Method

Applies To
OraDatabase Object on page 9-28

Description
Creates an OraDynaset object from the specified SQL SELECT statement and options.

Usage
Set oradynaset = oradatabase.CreateDynaset(sql_statement, options, SnapShotID)
Set oradynaset = oradatabase.DbCreateDynaset(sql_statement, options, SnapShotID)

Arguments
The arguments for the method are:

Constants
The following table lists constants and values for the options flag.

Arguments Description

sql_statement A String containing any valid Oracle SQL SELECT statement.

options A bit flag indicating the status of any optional states of the dynaset. 
You can combine one or more options by adding their respective 
values. Specifying the constant ORADYN_DEFAULT or the value &H0& 
gives the following defaults for the dynaset:

■ Behave like Visual Basic Mode for a database: Field values not 
explicitly set are set to Null, overriding database column defaults.

■ Perform automatic binding of database parameters.

■ Remove trailing blanks from character string data retrieved from 
the database.

■ Create an updatable dynaset.

■ Cache data on client.

■ Force a MoveFirst when the dynaset is created.

■ Maintain read-consistency.

SnapShotID 
[optional]

A ID of the snapshot obtained from the SnapShot property of an 
OraDynaset object.

Constant Value Description

ORADYN_DEFAULT &H0& Accept the default behavior.

ORADYN_NO_AUTOBIND &H1& Do not perform automatic binding of database 
parameters.

ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character string 
data retrieved from the database.

ORADYN_READONLY &H4& Force dynaset to be read-only.



CreateDynaset Method

10-86 Oracle Objects for OLE Developer's Guide

These values can be found in the oraconst.txt file.

Remarks
Features such as simple views and synonyms can be used freely. You can also use 
schema references, column aliases, table joins, nested select statements and remote 
database references, but in each case, the dynaset is read-only. 

If you use a complex expression or SQL function on a column, such as "sal + 100" 
or "abs(sal)" , you get an updatable dynaset, but the column associated with the 
complex expression is not updatable.

Object names generally are not modifed, but in certain cases they can be changed. For 
example, if you use a column alias, you must use the alias to refer to the field by name. 
Also, if you use spaces in a complex expression, you must refer to the column without 
the spaces, since the database strips spaces. Note that you can always refer to a field by 
number, that is, by its ordinal position in the SELECT statement. 

Executing the Update method generates a commit operation to the database by 
default. To avoid this, use the BeginTrans method on the session object before using 
the CreateDynaset method.

The updatability of the resultant dynaset depends on the Oracle SQL rules of 
updatability, on the access you have been granted, and on the options flag. For the 
dynaset to be updatable, these conditions must be met: 

■ A SQL statement must refer to a simple column list or to the entire column list (*).

■ The statement must not set the read-only flag of the options argument.

■ Oracle Database must permit ROWID references to the selected rows of the query. 

Any SQL statement that does not meet these criteria is processed, but the results are 
not updatable and the Updatable property of the dynaset returns False. This 
method automatically moves to the first row of the created dynaset. You can use SQL 
bind variables in conjunction with the OraParameters collection.

ORADYN_NOCACHE &H8& Do not create a local dynaset data cache. Without the 
local cache, previous rows within a dynaset are 
unavailable; however, increased performance results 
during retrieval of data from the database (move 
operations) and from the rows (field operations). Use 
this option in applications that make single passes 
through the rows of a dynaset for increased 
performance and decreased resource usage.

ORADYN_ORAMODE &H10& Behave the same as Oracle Mode for a database except 
affect only the dynaset being created. If database was 
created in Oracle Mode, the dynaset inherits the 
property from it (for compatibility).

ORADYN_NO_REFETCH &H20& Behave the same as ORADB_NO_REFETCH mode for a 
database except affect only the dynaset being created. 
If the database was created in ORADB_NO_REFETCH 
mode, the dynaset inherits the property for 
compatibility.

ORADYN_NO_MOVEFIRST &H40& Does not force a MoveFirst when the dynaset is 
created. BOF and EOF are both true.

ORADYN_DIRTY_WRITE &H80& Update and Delete methods do not check for read 
consistency.

Constant Value Description



CreateDynaset Method

Server Methods 10-87

The SnapShotID option causes a snapshot descriptor to be created for the SQLStmt 
object created. This property can later be obtained and used in creation of other 
SQLStmt or OraDynaset objects. Execution snapshots provide the ability to ensure 
that multiple commands executed in the context of multiple OraDatabase objects 
operate on the same consistent snapshot of the committed data in the database.

Examples
This example demonstrates CreateObject, OpenDatabase and CreateDynaset 
methods. Copy and paste this code into the definition section of a form. Then, press 
F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)
 
 'Display the first record.
 MsgBox "Employee " & OraDynaset.Fields("empno").value & ", #" & _
                OraDynaset.Fields("ename").value
 
End Sub

See Also:

■ Clone Method on page 10-52

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199

■ MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods 
on page 10-202

■ OpenDatabase Method on page 10-212

■ Updatable Property on page 11-171

■ OraDynaset Object on page 9-30

■ OraParameter Object on page 9-50

■ OraParameters Collection on page 9-68

■ Update Method on page 10-257

■ BeginTrans Method on page 10-43

■ SnapShot Property on page 11-146



CreateIterator Method

10-88 Oracle Objects for OLE Developer's Guide

CreateIterator Method

Applies To
OraCollection Object on page 9-19

Description
Creates an iterator to scan the elements of a collection. 

Usage
OraCollection.CreateIterator

Remarks
This method creates an iterator for scanning the elements of an Oracle collection. 
Accessing collection elements using the iterator is faster than using an index on the 
instance of a collection. 

Examples

Example: OraCollection Iterator
The following example illustrates the use of an Oracle collection iterator.

Before running the sample code, make sure that you have the necessary data types and 
tables in the database. See "Schema Objects Used in OraCollection Examples"  on 
page A-3.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim CourseList As OraCollection
Dim Course As OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", scott/tiger", 0&)
 
'Create a dynaset object from division
Set OraDynaset = OraDatabase.CreateDynaset("select courses from" & _ 
                 "division where name='History'", 0&)
 
'Retrieve a Courses column from Division.
Set CourseList = OraDynaset.Fields("Courses").Value
 
'Create the iterator
CourseList.CreateIterator
 
'Initialize the iterator to point to the beginning of a collection
CourseList.InitIterator
 
'Call IterNext to read CourseList until the end
While CourseList.EOC = False
    Set Course = CourseList.ElementValue



CreateIterator Method

Server Methods 10-89

    course_no = Course.course_no
    Title = Course.Title
    Credits = Course.Credits
    CourseList.IterNext
Wend
 
'Call IterPrev to read CourseList until the beginning
CourseList.IterPrev
 
While CourseList.BOC = False
    Set Course = CourseList.ElementValue
    course_no = Course.course_no
    Title = Course.Title
    Credits = Course.Credits
    CourseList.IterPrev
Wend

See Also:

■ DeleteIterator Method on page 10-121

■ InitIterator Method on page 10-171



CreateNamedSession Method

10-90 Oracle Objects for OLE Developer's Guide

CreateNamedSession Method

Applies To
OraSession Object on page 9-58

Description
Creates and returns a new named OraSession object.

Usage
orasession = orasession.CreateNamedSession(session_name)

Arguments
The arguments for the method are:

Remarks
Using this method, you can create named sessions that can be referenced later in the 
same application as long as the session object referred to is in scope. Once a session 
has been created, the application can reference it by way of the ConnectSession 
method or the OraSessions collection of their respective OraClient object. The 
OraSessions collection only contains sessions created within the current application. 
Therefore, it is not possible to share sessions across applications, only within 
applications.

This method is provided for simplicity and is equivalent to the CreateSession 
method of the OraClient object.

Examples
This example demonstrates the use of ConnectSession and CreateNamedSession 
methods to allow an application to use a session it previously created, but did not 
save. Copy this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim dfltsess As OraSession
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the default OraSession Object.
 Set dfltsess = CreateObject("OracleInProcServer.XOraSession")
 
 'Try to connect to "ExampleSession". If it does not exist 
 'an error is generated.
 On Error GoTo SetName
 Set OraSession = dfltsess.ConnectSession("ExampleSession")
 On Error GoTo 0
 

Arguments Description

session_name A String specifying the name of the session.



CreateNamedSession Method

Server Methods 10-91

'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Display or manipulate data here
 
Exit Sub
 
SetName:
'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.CreateNamedSession("ExampleSession")
Resume Next
 
End Sub

See Also:

■ CreateSession Method on page 10-109

■ ConnectSession Method on page 10-69

■ OraClient Object on page 9-18

■ OraSessions Collection on page 9-69



CreateOraIntervalDS Method

10-92 Oracle Objects for OLE Developer's Guide

CreateOraIntervalDS Method

Applies To
OraSession Object on page 9-58

Description
Creates the OraIntervalDS object. This OraIntervalDS represents an Oracle 
INTERVAL DAY TO SECOND data type.

Usage
Set OraIntervalDSObj = OraSession.CreateOraIntervalDS value

Arguments
The arguments for the method are:

Return Values
OraIntervalDS Object

Remarks
An OraSession object must be created before an OraIntervalDS object can be 
created. 

If value is a Variant of type String, it must be in the following format: [+/-] Day 
HH:MI:SSxFF.

If value is a numeric value, the value provided should represent the total number of 
days that the constructed OraIntervalDS represents.

A Variant of type OraIntervalDS can also be passed. A cloned OraIntervalDS 
is returned. 

Examples
Dim oraIDS as OraIntervalDS 
Dim oraIDS2 as OraIntervalDS 
Dim oraNum  as OraNumber 
 
'Create an OraIntervalDS using a string which represents 1 days, 2 hours, 
'3 minutes, 4 seconds and 500000 nanoseconds 
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 2:3:4.005") 
 
'Create an OraIntervalDS using a numeric value which represents
'1 days and 12 hours 
Set oraIDS = oo4oSession.CreateOraIntervalDS(1.5) 
 
'Create an OraIntervalDS using an OraIntervalDS 
Set oraIDS2 = oo4oSession.CreateOraIntervalDS(oraIDS) 

Arguments Description

[in] value A Variant of type String, a numeric value, an OraIntervalDS, 
or an OraNumber object.



CreateOraIntervalDS Method

Server Methods 10-93

See Also:

■ OraNumber Object on page 9-41

■ OraIntervalDS Object on page 9-35



CreateOraIntervalYM Method

10-94 Oracle Objects for OLE Developer's Guide

CreateOraIntervalYM Method

Applies To 
OraSession Object on page 9-58

Description
Creates the OraIntervalYM object. This OraIntervalYM represents an Oracle 
INTERVAL YEAR TO MONTH data type.

Usage
Set OraIntervalYMObj = OraSession.CreateOraIntervalYM value

Arguments
The arguments for the method are:

Return Values
OraIntervalYM Object

Remarks
An OraSession object must be created before an OraIntervalYM object can be 
created. 

If value is a Variant of type String, it must be in the following format: [+/-] 
YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of 
years that the constructed OraIntervalYM object represents.

A Variant of type OraIntervalYM can also be passed. A cloned OraIntervalYM 
object is returned. 

Examples
Dim oraIYM as OraIntervalYM 
Dim oraIYM2 as OraIntervalYM 
 
'Create an OraIntervalYM using a string which represents 1 year and 2 months 
Set oraIYM = oo4oSession.CreateOraIntervalYM("1- 2") 
 
'Create an OraIntervalYM using a numeric value which represents
'1 year and 6 months 
Set oraIYM = oo4oSession.CreateOraIntervalYM(1.5) 
 
'Create an OraIntervalYM using an OraIntervalYM 
Set oraIYM2 = oo4oSession.CreateOraIntervalYM(oraIYM) 

Arguments Description

[in] value A Variant of type String, a numeric value, or an 
OraIntervalYM object.



CreateOraIntervalYM Method

Server Methods 10-95

See Also:

■ OraIntervalYM Object on page 9-37 

■ OraNumber Object on page 9-41



CreateOraNumber Method

10-96 Oracle Objects for OLE Developer's Guide

CreateOraNumber Method

Applies To
OraSession Object on page 9-58

Description
Creates an OraNumber object. This OraNumber represents an Oracle NUMBER data 
type.

Usage
OraNumber = OraSession.CreateOraNumber(inital_value, format)

Arguments
The arguments for the method are:

Return Value
OraNumber Object

Remarks
For more information about format strings, see the format property on the OraNumber 
object. 

Arguments Description

initial_value Initial value of OraNumber. A Variant of type OraNumber, string 
or a numeric value. 

format [optional] Format string to be used when displaying OraNumber value. 

See Also:

■ ConnectSession Method on page 10-69

■ CreateSession Method on page 10-109

■ OraClient Object on page 9-18

■ OraNumber Object on page 9-41

■ OraSessions Collection on page 9-69



CreateOraObject (OraDatabase) Method

Server Methods 10-97

CreateOraObject (OraDatabase) Method

Applies To
OraDatabase Object on page 9-28

Description
Creates a value instance or referenceable object in the cache and returns the associated 
OO4O object.

Usage
OraObject1 = OraDatabase.CreateOraObject(schema_name)
OraRef1 = OraDatabase.CreateOraObject(schema_name,table_name)
OraCollection1 = OraDatabase.CreateOraObject(schema_name)

Arguments
The arguments for the method are:

Remarks
If the table_name argument is not specified, it creates a value instance in the client 
and returns an OraObject or OraCollection object. If the table_name argument 
is specified, it creates a referenceable object in the database and returns an associated 
OraRef object.

Examples
OraObject and OraRef object examples are provided. Before running the sample 
code, make sure that you have the necessary data types and tables in the database. See 
"Schema Objects Used in the OraObject and OraRef Examples" on page A-3.

Example: Creating an OraObject Object
The following example illustrates the use of the CreateOraObject method to insert 
a value instance. The row containing ADDRESS is inserted as a value instance in the 
database. 

Dynaset Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase

Arguments Description

OraObject1 A valid OraObject object representing a newly created value instance.

OraRef1 A valid OraRef object representing a newly created referenceable 
object.

OraCollection A valid OraCollection object representing a newly created collection 
instance. 

schema_name A String specifying the schema name of the value instance to be 
created.

table_name A String specifying the table name of the referenceable object to be 
created.



CreateOraObject (OraDatabase) Method

10-98 Oracle Objects for OLE Developer's Guide

Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", scott/tiger", 0&)
 
'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)
 
' create a new Address object in OO4O 
set AddressNew = OraDatabase.CreateOraObject("ADDRESS")
 
'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"
 
'start the dynaset AddNew operation and 
'set the Address field to new address value
OraDynaset.Addnew
OraDynaset.Fields("ADDR").Value = AddressNew
OraDynaset.Update

OraParameter Example

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim AddressNew as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an  OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "ADDRESS", Null, ORAPARM_INPUT, _
             ORATYPE_OBJECT, "ADDRESS"
 
' create a new Address object in OO4O 
set AddressNew = OraDatabase.CreateOraObject("ADDRESS")
 
'initialize the Address object attribute to new value
AddressNew.Street = "Oracle Parkway"
AddressNew.State = "CA"
 
'set the Address to ADDRESS parameter
Oradatabase.Parameters("ADDRESS").Value = AddressNew
 
'execute the sql statement which updates Address in the person_tab
OraDatabase.ExecuteSQL ("insert into person_tab values ('Eric',30,:ADDRESS)")

Example: Creating an OraRef Object
The following example illustrates the use of the CreateOraObject method to insert 
referenceable objects. 



CreateOraObject (OraDatabase) Method

Server Methods 10-99

In this example, a new PERSON is inserted as a referenceable object in the database. 

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person  as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'CreteOraObject   creates a new referenceable 
'object in the PERSON_TAB object table and returns associated OraRef
set Person = OraDatabase.CreateOraObject("PERSON","PERSON_TAB")
 
'modify the attributes of Person
Person.Name = "Eric"
 
Person.Age = 35
'Update method inserts modified referenceable object in the PERSON_TAB.
Person.Update



CreateOraTimeStamp Method

10-100 Oracle Objects for OLE Developer's Guide

CreateOraTimeStamp Method

Applies To
OraSession Object on page 9-58

Description
Creates a new OraTimeStamp object. This OraTimeStamp method represents an 
Oracle TIMESTAMP or an Oracle TIMESTAMP WITH LOCAL TIME ZONE data type.

Usage
Set OraTimeStampObj = OraSession.CreateOraTimeStamp value format

Arguments
The arguments for the method are:

Return Values
OraTimeStamp Object

Remarks
An OraSession object must created before an OraTimeStamp object can be created. 

If value is a Variant of type String, the string format must match the datetime 
format specified in the format argument. If format is not specified, the string format 
must match the session TIMESTAMP format (NLS_TIMESTAMP_FORMAT).

If format is specified, it is stored in the Format property of the OraTimeStamp ; 
otherwise, the session TIMESTAMP format is stored in the OraTimeStamp Format 
property.

Examples
Dim oraTS as OraTimeStamp 
Dim oraTS1 as OraTimeStamp 
Dim date as Date 
 
'Create an OraTimeStamp using a string assuming the session  
'TIMESTAMP format is "DD-MON-RR HH.MI.SSXFF AM" 
Set oraTS = oo4oSession.CreateOraTimeStamp("12-JAN-2003 12.0.0.0 PM") 
 
'Create an OraTimeStamp using a string and a format 
Set oraTS = oo4oSession.CreateOraTimeStamp("2003-01-12 12:00:00 PM", _ 
         "YYYY-MM-DD HH:MI:SS AM") 
 
'Create an OraTimeStamp using a Date 
date = #1/12/2003# 

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStamp.

[in] [optional] 
format

TimeStamp format string to be used when displaying or 
interpreting an OraTimeStamp object as a string. If format is not 
specified, the TimeStamp string is interpreted using the session 
TIMESTAMP format (NLS_TIMESTAMP_FORMAT format). 



CreateOraTimeStamp Method

Server Methods 10-101

 
Set oraTS = oo4oSession.CreateOraTimeStamp(date) 
 
'Create an OraTimeStamp  using an OraTimeStamp 
Set oraTS1 = oo4oSession.CreateOraTimeStamp(oraTS) 

See Also:

■ OraTimeStamp Object on page 9-62

■ OraNumber Object on page 9-41



CreateOraTimeStampTZ Method

10-102 Oracle Objects for OLE Developer's Guide

CreateOraTimeStampTZ Method

Applies To
OraSession Object on page 9-58

Description
Creates a new OraTimeStampTZ object. This OraTimeStampTZ object represents an 
Oracle TIMESTAMP WITH TIME ZONE data type.

Usage
Set OraTimeStampTZObj = OraSession.CreateOraTimeStampTZ value format

Arguments
The arguments for the method are:

Return Values
OraTimeStampTZ Object

Remarks
An OraSession object must be created before an OraTimeStampTZ object can be 
created. 

If value is a Variant of type String, the string format must match the datetime 
format specified in the format argument if format is specified; otherwise, the string 
format must match the session TIMESTAMP WITH TIME ZONE format (NLS_
TIMESTAMP_TZ_FORMAT).

If value  is a Variant of type Date, the date-time value in the Date is interpreted as 
the date-time value in the time zone of the session. The TimeZone property in the 
OraTimeStampTZ object contains the time zone of the session.

If format is specified, it is stored in the Format property of the OraTimeStampTZ 
object, otherwise the session TIMESTAMP WITH TIME ZONE format is stored in the 
Format property of OraTimeStampTZ object.

Examples
Dim oraTSZ as OraTimeStampTZ 
Dim oraTSZ1 as OraTimeStampTZ 
Dim date as Date 
 
'Create an OraTimeStampTZ using a string assuming the session 
'TIMESTAMP WITH TIME ZONE format is "DD-MON-RR HH.MI.SSXFF AM TZH:TZM"

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStampTZ.

[[in] [optional] 
format

TIMESTAMP WITH TIME ZONE format string to be used when 
displaying or interpreting an OraTimeStampTZ object as a string. If 
format is not specified, the TIMESTAMP WITH TIME ZONE string is 
interpreted using the session TIMESTAMP WITH TIME ZONE format 
(NLS_TIMESTAMP_TZ_FORMAT format).    



CreateOraTimeStampTZ Method

Server Methods 10-103

Set oraTSZ = oo4oSession.CreateOraTimeStampTZ( "12-JAN-2003" & _
             "12.0.0.0 PM -03:00") 
 
'Create an OraTimeStampTZ using a string and a format 
Set oraTSZ = oo4oSession.CreateOraTimeStampTZ( "2003-01-12" & _
             "12:00:00 PM -03:00", "YYYY-MM-DD HH:MI:SS AM TZH:TZM") 
 
'Create an OraTimeStampTZ using a Date 
date = #1/12/2003# 
Set oraTSZ = oo4oSession.CreateOraTimeStampTZ(date) 
 
'Create an OraTimeStampTZ  using an OraTimeStampTZ 
Set oraTSZ1 = oo4oSession.CreateOraTimeStampTZ(oraTSZ) 

See Also:

■ OraTimeStampTZ Object on page 9-64

■ OraNumber Object on page 9-41



CreatePLSQLCustomDynaset Method

10-104 Oracle Objects for OLE Developer's Guide

CreatePLSQLCustomDynaset Method

Applies To
OraDatabase Object on page 9-28

Deprecated. 

For information on how to perform these tasks, see "Returning PL/SQL Cursor 
Variables" on page 3-11.

Description
Creates a dynaset from a PL/SQL cursor using custom cache and fetch parameters. 
The SQL statement should be a stored procedure or anonymous block. The resulting 
dynaset is read-only. Attempting to set the SQL property results in an error. The 
dynaset can be refreshed with new parameters.

Usage
set OraDynaset = CreatePlsqlCustomDynaset(SQLStatement, CursorName, options, 
slicesize, perblock, blocks, FetchLimit, FetchSize)

Arguments
The arguments for the method are:

Constants
The options flag values are:

Arguments Description

SQLStatement Any valid Oracle PL/SQL stored procedure or anonymous block.

CursorName Name of the cursor created in the PL/SQL stored procedure.

options A bit flag indicating the status of any optional states of the dynaset. You 
can combine one or more options by adding their respective values.

slicesize Cache slice size.

perblock Cache slices for each block.

blocks Cache maximum number of blocks.

FetchLimit Fetch array size.

FetchSize Fetch array buffer size.

Constant Value Description

ORADYN_DEFAULT &H0& Accept the default behavior.

ORADYN_NO_AUTOBIND &H1& Do not perform automatic binding of database 
parameters.

ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character 
string data retrieved from the database.



CreatePLSQLCustomDynaset Method

Server Methods 10-105

These values can be found in the oraconst.txt file.

Remarks
The SQL statement must be a PL/SQL stored procedure with BEGIN and END around 
the call, as if it were executed as an anonymous PL/SQL block; otherwise, an error is 
returned. The CursorName argument should exactly match the cursor created inside 
the stored procedure or anonymous PL/SQL block; otherwise an error is returned. The 
cursor created inside the stored procedure should represent a valid SQL SELECT 
statement.

You do not need to bind the PL/SQL cursor variable using the OraParameters Add 
method if the stored procedure returns a cursor as an output parameter. You can still 
use PL/SQL bind variables in conjunction with the OraParameters collection.

This method automatically moves to the first row of the created dynaset.

Specifying ORADYN_READONLY, ORADYN_ORAMODE, ORADYN_NO_REFETCH, ORADYN_
DIRTY_WRITE options have no effect on the dynaset creation.

ORADYN_NOCACHE &H8& Do not create a local dynaset data cache. Without 
the local cache, previous rows within a dynaset 
are unavailable; however, increased performance 
results during retrieval of data from the database 
(move operations) and from the rows (field 
operations). Use this option in applications that 
make single passes through the rows of a dynaset 
for increased performance and decreased resource 
use.

ORADYN_NO_MOVEFIRST &H40& Do not force a MoveFirst when the dynaset is 
created. BOF and EOF are both true.

See Also:

■ OraParameters Collection on page 9-68 

■ Add Method on page 10-8

Constant Value Description



CreatePLSQLDynaset Method

10-106 Oracle Objects for OLE Developer's Guide

CreatePLSQLDynaset Method

Applies To
OraDatabase Object on page 9-28

Deprecated. 

For information on how to perform these tasks, see "Returning PL/SQL Cursor 
Variables" on page 3-11.

Description
Creates a dynaset from a PL/SQL cursor. The SQL statement should be a stored 
procedure or an anonymous block. The resulting dynaset is read-only and attempting 
to set SQL property results in an error. Dynasets can be refreshed with new parameters 
similar to dynasets without cursors.

Usage
set OraDynaset = CreatePLSQLDynaset(SQLStatement, CursorName, options)

Arguments

Constants
The options flag values are:

These values can be found in the oraconst.txt file.

Arguments Description

SQLStatement Any valid Oracle PL/SQL stored procedure or anonymous block.

CursorName Name of the cursor created in the PL/SQL stored procedure.

options A bit flag indicating the status of any optional states of the dynaset. 
You can combine one or more options by adding their respective 
values.

Constant Value Description

ORADYN_DEFAULT &H0& Accept the default behavior.

ORADYN_NO_BLANKSTRIP &H2& Do not remove trailing blanks from character string 
data retrieved from the database.

ORADYN_NOCACHE &H8& Do not create a local dynaset data cache. Without 
the local cache, previous rows within a dynaset are 
unavailable; however, increased performance results 
during retrieval of data from the database (move 
operations) and from the rows (field operations). 
Use this option in applications that make single 
passes through the rows of a dynaset for increased 
performance and decreased resource usage.

ORADYN_NO_MOVEFIRST &H40& Do not force a MoveFirst operation when the 
dynaset is created. BOF and EOF are both true.



CreatePLSQLDynaset Method

Server Methods 10-107

Remarks
The SQL statement must be a PL/SQL stored procedure with BEGIN and END 
statements around the call, as if it were executed as an anonymous PL/SQL block; 
otherwise an error is returned. The CursorName argument should exactly match the 
cursor created inside the stored procedure or anonymous PL/SQL block; otherwise, an 
error is returned. Cursors created inside the stored procedure should represent a valid 
SQL SELECT statement.

You do not need to bind the PL/SQL cursor variable using the OraParameters.Add 
method if the stored procedure returns a cursor as a output parameter. You can still 
use PL/SQL bind variables in conjunction with the OraParameters collection.

This method automatically moves to the first row of the created dynaset.

Specifying the ORADYN_READONLY, ORADYN_ORAMODE, ORADYN_NO_REFETCH, or 
ORADYN_DIRTY_WRITE options have no effect on the dynaset creation.

Examples
This example demonstrates the use of PL/SQL cursor in the CreatePlsqlDynaset 
method and Refresh method. This example returns a PL/SQL cursor as a dynaset for 
the different values of the DEPTNO parameter. Make sure that corresponding stored 
procedure (found in EMPCUR.SQL) is available in the Oracle database. and paste this 
code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
' Create the Deptno parameter 
 OraDatabase.Parameters.Add "DEPTNO", 10, ORAPARM_INPUT
 OraDatabase.Parameters("DEPTNO").ServerType = ORATYPE_NUMBER 
 
' Create OraDynaset based on "EmpCursor" created in stored procedure. 
 Set OraDynaset = OraDatabase.CreatePLSQLDynaset("Begin Employee.GetEmpData" & _
               "(:DEPTNO,:EmpCursor); end;", "EmpCursor", 0&)
 
 'Should display KING
 MsgBox OraDynaset.Fields("ENAME").Value  
 
 'Should display 7839
 MsgBox OraDynaset.Fields("EMPNO").Value  
 
 ' Now set the deptno value to 20
 OraDatabase.Parameters("DEPTNO").Value = 20
 
 'Refresh the dynaset
 OraDynaset.Refresh
 
 'Should display JONES



CreatePLSQLDynaset Method

10-108 Oracle Objects for OLE Developer's Guide

 MsgBox OraDynaset.Fields("ENAME").Value  
 
 'Should display 7566
 MsgBox OraDynaset.Fields("EMPNO").Value   
 
  'Remove the parameter.
 OraDatabase.Parameters.Remove ("DEPTNO")
 
 End Sub



CreateSession Method

Server Methods 10-109

CreateSession Method

Applies To
OraClient Object on page 9-18

Description
Creates a new named OraSession object.

Usage
orasession = oraclient.CreateSession(session_name)

Arguments
The arguments for the method are:

Remarks
Use this method to create named sessions that can be referenced later in the same 
application without having to explicitly save the OraSession object when it is 
created. Once a session has been created, the application can reference it by way of the 
ConnectSession method or the OraSessions collection of their respective 
OraClient object. The OraSessions collection only contains sessions created within 
the current application. This means that it is not possible to share sessions across 
applications, only within applications.

Examples
This example demonstrates how to create a session object using the CreateSession 
method of the client object. Copy and paste this code into the definition section of a 
form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim OraClient As OraClient 
 Dim OraSession As OraSession 
 Dim NamedOraSession As OraSession
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Get the OraClient object.
 Set OraClient = OraSession.Client
 
 'Create a named OraSession Object
 'Alternatively, you could use the CreateNamedSession 
 'method of the OraSession Object.
 

Arguments Description

session_name A String specifying the name of the session. 



CreateSession Method

10-110 Oracle Objects for OLE Developer's Guide

 Set NamedOraSession = OraClient.CreateSession("ExampleSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = NamedOraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
End Sub

See Also: OraSession Object on page 9-58



CreateSQL Method

Server Methods 10-111

CreateSQL Method

Applies To
OraDatabase Object on page 9-28

Description
Executes the SQL statement and creates an OraSQLStmt object from the specified SQL 
statement and options. 

Usage
Set orasqlstmt = oradatabase.CreateSQL(sql_statement, options)

Arguments
The arguments for the method are:

Constants
The options flag values are:

These values can be found in the oraconst.txt file.

Remarks
The SQL statement can be one continuous line with no breaks. If it is necessary to 
break the line, be sure to use line feeds (ASCII 10). Do not use carriage returns (ASCII 
13), because the underlying Oracle Database functions treat carriage returns as null 
terminators.

You can use PL/SQL bind variables in conjunction with the OraParameters 
collection.

Executing the SQL statement generates a commit to the database by default. To avoid 
this, use the BeginTrans method on the session object before using the CreateSQL 
method.

When executing PL/SQL blocks or calling stored procedures, you must include a 
BEGIN and END statement around your call as if you were executing an anonymous 

Arguments Description

sql_statement Any valid Oracle SQL statement.

options A bit flag indicating the status of any optional states of the 
OraSQLStmt object. You can combine one or more options by 
adding their respective values.

Constant Value Description

ORASQL_NO_AUTOBIND &H1& Do not perform automatic binding of database 
parameters.

ORASQL_FAILEXEC &H2& Raise error and do not create SQL statement 
object.

ORASQL_NONBLK &H4& Execute SQL in a nonblocking state.



CreateSQL Method

10-112 Oracle Objects for OLE Developer's Guide

PL/SQL block. This is equivalent to the EXECUTE command of SQL*Plus and 
SQL*DBA.

If the ORASQL_FAILEXEC option is used, an error is raised during SQLstmt object 
creation failure (on SQLstmt object refresh). The SQLstmt object is not created and 
cannot be refreshed.

Data Type
String

Examples
This example demonstrates the use of parameters, the CreateSQL method, the 
Refresh method, and the SQL property for OraSQLStmt object.  Copy and paste this 
code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraSqlStmt As OraSQLStmt 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 OraDatabase.Parameters.Add "EMPNO", 7369, 1
 OraDatabase.Parameters("EMPNO").ServerType = 2  'ORATYPE_NUMBER 
 
 OraDatabase.Parameters.Add "ENAME", 0, 2
 OraDatabase.Parameters("ENAME").ServerType = 1  'ORATYPE_VARCHAR2  
 
 Set OraSqlStmt = OraDatabase.CreateSQL("Begin Employee.GetEmpName" & _ 
          "(:EMPNO, :ENAME); end;", 0&) 
 
 'Notice that the SQL statement is NOT modified.
 MsgBox OraSqlStmt.SQL
 
 'Should display SMITH
 MsgBox OraDatabase.Parameters("ENAME").Value  
 
 'Change the value of the empno parameter.
 OraDatabase.Parameters("EMPNO").Value = 7499
 
 'Refresh the sqlstmt
 OraSqlStmt.Refresh
 
 'Should display ALLEN
 MsgBox OraDatabase.Parameters("ENAME").Value   
 
 'Notice that the SQL statement is NOT modified.

Note: Use the CreateSQL method with care, because any SQL 
statement or PL/SQL block that is executed might cause errors 
afterward when you use the Edit method on open dynasets.



CreateSQL Method

Server Methods 10-113

 MsgBox OraSqlStmt.SQL  
 
 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")
 
 End Sub

See Also:

■ "Asynchronous Processing" on page 3-16 for more information 
about the ORASQL_NONBLK option

■ BeginTrans Method on page 10-43

■ OraSQLStmt Object on page 9-60

■ CreateSQL Method on page 10-111

■ ExecuteSQL Method on page 10-144

■ Refresh Method on page 10-225



CreateTempBLOB/CLOB Method

10-114 Oracle Objects for OLE Developer's Guide

CreateTempBLOB/CLOB Method

Applies To
OraDatabase Object on page 9-28

Description
Creates a temporary LOB in the database.

Usage
Set OraBLOB = OraDatabase.CreateTempBLOB(use_caching) 
Set OraCLOB = OraDatabase.CreateTempCLOB(use_caching)

Arguments
The arguments for the method are:

Remarks
Temporary LOBs are LOBs that do not exist permanently in the database. OO4O 
programmers commonly use temporary LOBs to pass into stored procedures and 
functions that have LOB arguments. 

Temporary LOBs do not require or take part in transactions. (It is not necessary to 
acquire a lock before write operations, and rollbacks have no effect on temporary 
LOBs.) 

The use_caching argument directs Oracle to use caching when accessing the 
temporary LOB. This is suggested when multiple accesses are expected on a single 
LOB. Caching is not required for the typical case, where a LOB is created, filled with 
data, passed to a stored procedure, and then discarded. 

Temporary LOBs exist on the database until no more references to the corresponding 
OraBLOB or OraCLOB exist on the client. Note that these references include any 
OraParameter or OraParamArray that contain a temporary OraBLOB or OraCLOB 
object.

Examples

Example: Passing a Temporary CLOB to a Stored Procedure
The following example illustrates the use of the CreateTempClob method to create a 
OraCLOB. The OraCLOB is then populated with data and passed to a stored procedure 
which has an argument of type CLOB. 

Dim OraSession as OraSession 
Dim OraDatabase as OraDatabase
Dim OraClob as OraClob 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 

Arguments Description

use_caching A boolean value that specifies whether Oracle Database uses 
caching when accessing this LOB. The default value is False.



CreateTempBLOB/CLOB Method

Server Methods 10-115

 
'Create the OraDatabase Object by opening a connection to Oracle. 
 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&) 
 
'Create the stored procedure used in this example 
OraDatabase.ExecuteSQL ("create or replace procedure GetClobSize" & _
           "(in_clob IN CLOB, clobsize OUT NUMBER) as Begin clobsize" & _ 
           " := DBMS_LOB.GETLENGTH(in_clob); End;") 
 
'create an OraParameter object to represent Clob bind Variable 
OraDatabase.Parameters.Add "CLOB", Null, ORAPARM_INPUT,  ORATYPE_CLOB 
 
'the size will go into this bind variable 
OraDatabase.Parameters.Add "CLOBSIZE", Null, ORAPARM_OUTPUT,  ORATYPE_NUMBER 
 
' create a temporary CLOB 
set OraClob = OraDatabase.CreateTempClob 
 
'Populate the OraClob with some data. Note that no row locks are needed. 
OraClob.Write "This is some test data" 
 
'set the Parameter Value to the temporary Lob 
OraDatabase.Parameters("CLOB").Value = OraClob 
 
'execute the sql statement which updates Address in the person_tab 
OraDatabase.ExecuteSQL ("Begin GetClobSize(:CLOB, :CLOBSIZE); end;") 
 
'Display the size 
MsgBox OraDatabase.Parameters("CLOBSize").Value 
 
'these two lines force the temporary clob to be freed immediately 
OraDatabase.Parameters.Remove "CLOB" 
Set OraClob = nothing 



Delete Method

10-116 Oracle Objects for OLE Developer's Guide

Delete Method

Applies To
OraDynaset Object on page 9-30

Description
Deletes the current row of the specified dynaset.

Usage
oradynaset.Delete
oradynaset.DbDelete

Remarks
A row must be current before you can use the Delete method; otherwise, an error 
occurs.

Note that after you call the Delete method on a given row in a dynaset in a global 
transaction (that is, once you issue a BeginTrans method), locks remain on the 
selected rows until you call a CommitTrans or Rollback method.

Any references to the deleted row produce an error. The deleted row, as well as the 
next and previous rows, remain current until database movement occurs (using the 
MoveFirst, MovePrevious, MoveNext, or MoveLast methods). Once movement 
occurs, you cannot make the deleted row current again.

You cannot restore deleted records except by using transactions.

Examples
This example demonstrates the use of the Delete method to remove records from a 
database. Copy and paste this code into the definition section of a form. Then, press 
F5.

Sub Form_Load ()
 
'Declare variables
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger", 0&)
 
'Create the OraDynaset Object. Only select the employees in Department 10.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where" & _

Note: A call to an Edit, AddNew, or Delete method, cancels any 
outstanding Edit or AddNew calls before proceeding. Any 
outstanding changes not saved using an Update method are lost 
during the cancellation.



Delete Method

Server Methods 10-117

          "deptno=10", 0&)
 
 Do Until OraDynaset.EOF
   OraDynaset.Delete
   OraDynaset.MoveNext
 Loop
 MsgBox "All employees from department 10 removed."
 
End Sub

See Also:

■ AddNew Method on page 10-21

■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ Edit Method on page 10-134

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199

■ ResetTrans Method on page 10-233

■ Rollback Method on page 10-235



Delete (OraCollection) Method

10-118 Oracle Objects for OLE Developer's Guide

Delete (OraCollection) Method

Applies To
OraCollection Object on page 9-19

Description
Deletes an element at given index. This method is available only in an 
OraCollection of type ORATYPE_TABLE (nested table).

Usage
OraCollection.Delete index

Arguments
The arguments for the method are:

Remarks
The Delete method creates holes in the client-side nested table. This method returns 
an error if the element at the given index has already been deleted or if the given index 
is not valid for the given table.

Examples
The following example illustrates the Delete method. Before running the sample 
code, make sure that you have the necessary data types and tables in the database. See 
"Schema Objects Used in OraCollection Examples"  on page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim CourseList as OraCollection
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from division
set OraDynaset = OraDatabase.CreateDynaset("select * from division", 0&)
 
'retrieve a Courses column from Division. 
'Here Value property of OraField object returns CourseList OraCollection
set CourseList = OraDynaset.Fields("Courses").Value
 
'Delete the CourseList  NestedTable at index 2. 
'Before that lock should be obtained
OraDynaset.Edit
CourseList.Delete 2
 

Arguments Description

[in] index An Integer specifying the index of the element to be deleted.



Delete (OraCollection) Method

Server Methods 10-119

OraDynaset.Update

See Also: Type (OraCollection) Property on page 11-167 



Delete (OraRef) Method

10-120 Oracle Objects for OLE Developer's Guide

Delete (OraRef) Method

Applies To
OraRef Object on page 9-52

Description
Deletes a referenceable object in the database.

Usage
OraRef.Delete

Remarks
Accessing attributes on the deleted instance results in an error.

Examples
The following example illustrates the Delete method. Before running the sample 
code, make sure that you have the necessary data types and tables in the database. See 
"Schema Objects Used in the OraObject and OraRef Examples" on page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person  as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an  OraParameter object represent Person object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF,"PERSON"
 
'execute the sql statement which selects person 
'from the customers table for account = 10
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
                   "where account = 10;  END;")
 
'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value
 
'delete the Person object in the server for modifying its attributes
Person.Delete



DeleteIterator Method

Server Methods 10-121

DeleteIterator Method

Applies To
OraCollection Object on page 9-19

Description
Deletes a collection iterator.

Usage
OraCollection.DeleteIterator

Remarks
None.

Examples
See "Example: OraCollection Iterator"  on page 10-88

See Also:  "CreateIterator Method"  on page 10-88



Dequeue (OraAQ) Method

10-122 Oracle Objects for OLE Developer's Guide

Dequeue (OraAQ) Method

Applies To
OraAQ Object on page 9-3

Description
Dequeues a message.

Usage
Q.Dequeue()

Remarks
The message attributes can be accessed with the OraAQMsg interface contained in this 
object. On success, this method returns the message identifier as an array of bytes. 
Otherwise, it returns an empty array (null).

Examples

Example: Dequeuing Messages of RAW Type

 'Dequeue the first message available  
Q.Dequeue 
Set Msg = Q.QMsg 
 
'Display the message content 
MsgBox Msg.Value 
 
'Dequeue the first message available without removing it 
' from the queue 
Q.DequeueMode = ORAAQ_DQ_BROWSE 
 
'Dequeue the first message with the correlation identifier 
' equal to "RELATIVE_MSG_ID" 
Q.Navigation = ORAAQ_DQ_FIRST_MSG 
Q.correlate = "RELATIVE_MESSAGE_ID" 
Q.Dequeue 
 
'Dequeue the next message with the correlation identifier 
 
' of "RELATIVE_MSG_ID" 
Q.Navigation = ORAAQ_DQ_NEXT_MSG 
Q.Dequeue 
 
'Dequeue the first high priority message 
Msg.Priority = ORAQMSG_HIGH_PRIORITY 

Note: The following code sample are models for dequeuing 
messages. 

A complete AQ sample can be found in the \OO4O\VB\SAMPLES 
\AQ directory.



Dequeue (OraAQ) Method

Server Methods 10-123

Q.Dequeue 
 
'Dequeue the message enqueued with message id of Msgid_1 
Q.DequeueMsgid = Msgid_1 
Q.Dequeue 
 
'Dequeue the message meant for the consumer "ANDY" 
Q.consumer = "ANDY" 
Q.Dequeue 
 
'Return immediately if there is no message on the queue  
Q.wait = ORAAQ_DQ_NOWAIT 
Q.Dequeue

Example: Dequeuing Messages of Oracle Object Types

Set OraObj = DB.CreateOraObject("MESSAGE_TYPE") 
Set QMsg = Q.AQMsg(23, "MESSAGE_TYPE","SCOTT")
 
'Dequeue the first message available without removing it 
Q.Dequeue 
OraObj = QMsg.Value 
 
'Display the subject and data 
MsgBox OraObj("subject").Value & OraObj("Data").Value



Describe Method

10-124 Oracle Objects for OLE Developer's Guide

Describe Method

Applies To
OraDatabase Object on page 9-28

Description
Describes a schema object. This method returns an instance of the OraMetaData 
interface.

Usage
OraMetaDataObj = OraDatabase.Describe(SchemaObjectName)

Arguments
The arguments for the method are:

Remarks
The following schema object types can be described:

■ Tables

■ Views

■ Procedures

■ Functions

■ Packages

■ Sequences

■ Collections (VARRAYs or nested tables)

■ Types

Describing any other schema object (for example, a column) or an invalid schema 
object name raises an error. You should navigate to schema objects not listed here, 
rather than describing them directly.

This method takes the name of a schema object, such as emp, and returns a COM 
Automation object (OraMetaData). The OraMetaData object provides methods for 
dynamically navigating and accessing all the attributes (OraMDAttribute collection) 
of a schema object described. 

Examples

Simple Describe Example
The following Visual Basic code illustrates a how to use the Describe method to 
retrieve and display several attributes of the emp table. 

Set emp = OraDatabase.Describe("emp") 

Arguments Description

[in]  SchemaObjectName A String representing the name of the schema object to be 
described.



Describe Method

Server Methods 10-125

 
'Display the name of the Tablespace 
MsgBox emp!tablespace 
'Display name and data type of each column in the emp table. 
Set empColumns = emp!ColumnList 
Set ColumnList = empColumns.Value 
 
for i = 0 to ColumnList.Count - 1 
  Set Column = ColumnList(i).Value 
  MsgBox "Column: " & Column!Name & " Data Type: " & Column!Data Type 
Next i 

Describing a Table Example
Before running the following example, make sure that you have the necessary 
datatypes and tables in the database. See "Schema Objects Used in OraMetaData 
Examples" on page A-3.

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim OraMetaData As OraMetaData 
Dim OraMDAttribute As OraMDAttribute 
Dim ColumnList As OraMetaData 
Dim Column As OraMetaData 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger", 0&) 
 
'Use Describe to retrieve the metadata object 
Set OraMetaData = OraDatabase.Describe("EMP") 
 
'Display the type of the metadata 
MsgBox TypeofMetaData & OraMetaData.Type 
 
'Display the count of attributes belonging to the table 
MsgBox NumberOfAttributes & OraMetaData.Count 
 
'Attribute can be accessed using the explicit OraMetaData property: Attribute  
'The index can be an integer or the attribute name 
Set OraMDAttribute = OraMetaData.Attribute(0) 
MsgBox "ObjectID: " & OraMDAttribute.Value 
 
'Since Attribute is the default property of OraMetaData, an attribute can
' be accessed as follows. Here, we use attribute name as an index 
Set OraMDAttribute = OraMetaData("ObjectID") 
MsgBox "Name: " & OraMDAttribute.Name 
MsgBox "Value: " & OraMDAttribute.Value 
 
'Value is the default property of OraMDAttribute, the following shows 
'the Value of property "IsClustered" for the table 
MsgBox "Is Clustered: " & OraMetaData!IsClustered 
MsgBox "Is Partitioned: " & OraMetaData!IsPartitioned 
 
'Retrieve the Column List 
Set OraMDAttribute = OraMetaData!ColumnList 
 



Describe Method

10-126 Oracle Objects for OLE Developer's Guide

' Use IsMDObject property to check whether an attribute's value is an OraMetaData
If (OraMDAttribute.IsMDObject()) Then 
       Set ColumnList = OraMDAttribute.Value 
      'Display the name and data type of each column 
       For I = 0 To ColumnList.Count - 1 
        Set Column = ColumnList(I).Value 
 
' Each column is again an OraMetaData 
    MsgBox "Column: " & Column!Name & " data type: " & Column!Data Type 
  Next I 
End If 

Example: Describing a User-Defined Type
Before running the following example, make sure that you have the necessary 
datatypes and tables in the database. See "Schema Objects Used in OraMetaData 
Examples" on page A-3.

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim OraMetaData As OraMetaData 
Dim OraMDAttribute As OraMDAttribute 
Dim attrList As OraMetaData 
Dim attr As OraMetaData 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger",0&) 
Set OraMetaData = OraDatabase.Describe("ORAMD_ADDRESS") 
NumAttributes = OraMetaData!NumAttributes 
NumMethods = OraMetaData!NumMethods 
MsgBox "The Address type has " & NumAttributes & " attributes" 
MsgBox "Address Object has " & NumMethods & " methods" 
 
'Retrieve the attribute list of this type object 
Set attrList = OraMetaData!Attributes.Value 
 
'Display the name and data type of each attribute 
For I = 0 To attrList.Count - 1 
  Set attr = attrList(I).Value 
  ' each attr is actually an OraMetaData 
  MsgBox "Attribute Name: " & attr!Name 
  MsgBox "Attribute Type: " & attr!TypeName 
 
Next I 

Example: Describing Unknown Schema Objects
Before running the following example, make sure that you have the necessary 
datatypes and tables in the database. See "Schema Objects Used in OraMetaData 
Examples" on page A-3.

Sub RecursiveDescribe(name$, xMD As OraMetaData) 
 
Dim xMDAttr As OraMDAttribute 
For I = 0 To xMD.Count - 1 
    Set xMDAttr = xMD.Attribute(I) 
 
    ' If an attribute can be described further, describe it, 



Describe Method

Server Methods 10-127

    ' otherwise display its attribute name & value 
    If (xMDAttr.IsMDObject) Then 
        RecursiveDescribe xMDAttr.name, xMDAttr.Value 
    Else 
        MsgBox name & "->" & xMDAttr.name & " = " & xMDAttr.Value 
  End If 
Next I 

End Sub 
Sub Main() 
 
'This example displays all the attributes of any schema object given 
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim xMD As OraMetaData 
Dim x As String 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDB", "scott/tiger", 0&) 
 
' x is any database object, here the EMP table is used as an example 
x = "EMP" 
Set xMD = OraDatabase.Describe(x) 
MsgBox x & " is of the type " & xMD.Type 
RecursiveDescribe x, xMD 

End Sub 

See Also:

■ OraMetaData Object on page 9-39

■ OraMDAttribute Object on page 9-38



DestroyDatabasePool Method

10-128 Oracle Objects for OLE Developer's Guide

DestroyDatabasePool Method

Applies To
OraSession Object on page 9-58

Description
The pool is implicitly destroyed if its parent session object is destroyed. It can also be 
destroyed at any time by invoking the DestroyDatabasePool method.

Usage
DestroyDatabasePool()

Remarks
An exception is raised by this call if the pool does not exist.

See Also: CreateDatabasePool Method on page 10-83



DisableBuffering (OraLOB) Method

Server Methods 10-129

DisableBuffering (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Disables buffering of LOB operations.

Usage
OraBlob.DisableBuffering 
OraClob.DisableBuffering

Remarks
This method does not automatically flush the buffers. The FlushBuffer method 
should be used to flush any changes before buffering is disabled.

See Also:

■ EnableBuffering (OraLOB) Method on page 10-139

■ FlushBuffer (OraLOB) Method on page 10-154



Div (OraIntervalDS) Method

10-130 Oracle Objects for OLE Developer's Guide

Div (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Divides the OraIntervalDS object by a divisor.

Usage
OraIntervalDSObj.Div divisor

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraIntervalDS object, overwriting any 
previous value. There is no return value.

Arguments Description

[in] divisor A Variant for type numeric value or an OraNumber object to be 
used as the divisor.



Div (OraIntervalYM) Method

Server Methods 10-131

Div (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Divides the OraIntervalYM object by a divisor.

Usage
OraIntervalYMObj.Div divisor

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraIntervalYM object, overwriting any 
previous value. There is no return value.

Arguments Description

[in] divisor A Variant for type numeric value or an OraNumber object to be 
used as the divisor.



Div (OraNumber) Method

10-132 Oracle Objects for OLE Developer's Guide

Div (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Divides an OraNumber object by a numeric argument. 

Usage
OraNumber.Div operand 

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in an OraNumber object . There is no return value.

The operand must not be equal to zero, or a divide by zero error is raised.

Arguments Description

[in] operand A Variant of type String, OraNumber object, or a numeric value. 



DynasetCacheParams Method

Server Methods 10-133

DynasetCacheParams Method

Applies To
OraParameter Object on page 9-50

Description
Specifies the dynaset cache and fetch parameters for the dynaset created from the 
PL/SQL cursor. 

Usage
oraparameter.DynasetCacheParams SliceSize,perblock, Blocks, FetchLimit,FetchSize

Arguments
The arguments for the method are:

Remarks
This method should be called before executing the PL/SQL procedure containing a 
cursor variable. By default, the dynaset is created with default cache and fetch 
parameters specified in the registry. 

Arguments Description

SliceSize Cache slice size.

perblock Cache slices for each block.

Blocks Cache maximum number of blocks.

FetchLimit Fetch array size.

FetchSize Fetch array buffer size.



Edit Method

10-134 Oracle Objects for OLE Developer's Guide

Edit Method

Applies To
OraDynaset Object on page 9-30

Description
Begins an edit operation on the current row by copying the data to the copy buffer.

Usage
oradynaset.Edit
oradynaset.DbEdit  

Remarks
The Edit method causes the locally cached data to be compared to the corresponding 
row of an Oracle Database. An error is generated if Oracle Database data is not the 
same as the data currently being browsed. If this operation succeeds, the row is locked 
using a "SELECT ... FOR UPDATE" statement until the edit is completed with an 
Update method or until database movement occurs, which discards any edits in 
progress. The behavior of the "SELECT ... FOR UPDATE" statement is affected by the 
Lock Wait mode of the options flag used when the OpenDatabase method was 
called.

During editing, changes made to fields are kept in a shadowed copy buffer and do not 
yet reflect the actual contents of the database. However, all references to the row return 
the newly modified data as long as the edit operation is still in progress.

When data is modified within a data control attached to this dynaset, the Edit 
method is invoked automatically upon the next record movement. Thus, this method 
is required only when modifications are made to field data within code.

Examples
This example demonstrates the use of the Edit and Update methods to update 
values in a database. Copy and paste this code into the definition section of a form. 
Then, press F5.

Sub Form_Load ()
 
'Declare variables
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 

Note: The cached data is not compared to the database with BLOB 
and CLOB, Object, REF, and collection types, and the data is 
updated regardless (dirty writes).

Note: A call to an Edit, AddNew, or Delete method cancels any 
outstanding Edit or AddNew calls before proceeding. Any 
outstanding changes not saved using an Update operation are lost 
during the cancellation.



Edit Method

Server Methods 10-135

Dim OraDynaset As OraDynaset 
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Traverse until EOF is reached, settingeach employee's salary to zero
 Do Until OraDynaset.EOF
   OraDynaset.Edit
   OraDynaset.Fields("sal").value = 0
   OraDynaset.Update
   OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."
 
End Sub

See Also:

■ AddNew Method on page 10-21

■ CreateDynaset Method on page 10-85

■ Delete Method on page 10-116

■ OpenDatabase Method on page 10-212

■ Update Method on page 10-257



Edit (OraRef) Method

10-136 Oracle Objects for OLE Developer's Guide

Edit (OraRef) Method

Applies To
OraRef Object on page 9-52

Description
Locks a referenceable object in the database.

Usage
OraRef.Edit

Remarks
Call this method before modifying any attributes of an underlying referenceable object 
of OraRef or an error is raised. This call makes a network round-trip to lock the object 
in the database. An error is raised if the object is changed by another user in the 
database. The object can also be locked during the pin operation using the 
EditOption property.

Examples
The following examples update the attributes of the "PERSON" referenceable object in 
the database. 

Before running the sample code, make sure that you have the necessary data types and 
tables in the database. See "Schema Objects Used in the OraObject and OraRef 
Examples" on page A-3.

Dynaset Example
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)
 
'retrieve a aperson column from customers. 
'Here Value property of OraField object 'returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value
 
'locks the Person object in the server for modifying its attributes
Person.Edit
  Person.Name = "Eric"
  Person.Age = 35
'Update method flushes the modified referenceable object in the server
Person.Update



Edit (OraRef) Method

Server Methods 10-137

Parameter Example
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim Person as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an  OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, _
                 ORATYPE_REF,"PERSON"
 
'execute the sql statement which selects person from the customers table
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON" & _
                 "from customers where account = 10;  END;")
 
'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value
 
'locks the Person object in the server for modifying its attributes
Person.Edit
  Person.Name = "Eric"
  Person.Age = 35
 
'Update method flushes the modified referenceable object in the server
Person.Update

See Also: EditOption (OraRef) Property on page 11-52



ElementValue Method

10-138 Oracle Objects for OLE Developer's Guide

ElementValue Method

Applies To
OraCollection Object on page 9-19

Description
Returns the current value of the collection element to which the iterator points.

Usage
elem_val = OraCollection.ElementValue

Arguments
The arguments for the method are:

ElementType
For elements of type Object and REF, element values are returned as corresponding 
OO4O objects for that type. The following table shows the element type and return 
value of the elements:

Remarks
Calling this method when the EOC or BOC property returns True raises an error. The 
Variant type of the element depends on the element type of the collection. 

Examples
See "Example: OraCollection Iterator" on page 10-88

Arguments Description

elem_val A Variant representing element value of the collection.

ElementType Element Value 

Object OraObject

REF OraRef

Date String

Number String

CHAR,VARCHAR2 String

Real Real

Integer Integer

See Also:

■ CreateIterator Method on page 10-88

■ IterNext Method on page 10-187

■ IterPrev Method on page 10-188



EnableBuffering (OraLOB) Method

Server Methods 10-139

EnableBuffering (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Enables buffering of LOB operations.

Usage
OraBlob.EnableBuffering 
OraClob.EnableBuffering 

Remarks
When enabled, buffering uses the LOB Buffering subsystem to minimize network 
round-trips by buffering changes until the FlushBuffer method is called. This can 
be beneficial to applications that perform a series of repeated small reads and writes to 
specific areas of a LOB. 

There are many caveats and restrictions for using LOB buffering. These are 
summarized here, but for complete information, see the Oracle Database SecureFiles and 
Large Objects Developer's Guide. 

Restrictions
■ The following LOB methods cannot be used while buffering is enabled: 

– Append

– Copy

– Erase

– Size

– Trim

– CopyFromBFILE

– CopyFromFile

– CopyToFile

■ There is currently a 512 KB limit to the amount of a single read/write operation. 

■ Error reporting for buffered operations is delayed until the next database access. 

■ Transactional support is not guaranteed. Users must roll back changes manually if 
an error occurs. 

■ Do not perform updates to a LOB column that bypasses the buffering system 
while in the same transaction as a buffer-enabled LOB. Performing an INSERT 
statement can cause this. 

■ Only one LOB object is allowed to perform buffered writes to a given LOB. Other 
LOB objects that point to the same LOB raise an error if they attempt a buffered 
write. 

■ A LOB object taken from an OraParameter object raises an error if it is 
buffer-enabled and bound to an OUT parameter. 



EnableBuffering (OraLOB) Method

10-140 Oracle Objects for OLE Developer's Guide

■ The Clone method can raise an error for buffer enabled LOBs. 

■ Appending directly to the end of the LOB is allowed, but any write operation 
whose offset extends beyond the end of the LOB and results in blank padding (for 
CLOB) or zero padding (for BLOB) raises an error.

See Also: Oracle Database SecureFiles and Large Objects Developer's 
Guide



Enqueue (OraAQ) Method

Server Methods 10-141

Enqueue (OraAQ) Method

Applies To
OraAQ Object on page 9-3

Description
Enqueues the message (OraAQMsg) contained in this object.

Usage
Msgid = Q.Enqueue

Remarks
On success, this method returns the message identifier as an array of bytes. Otherwise, 
it returns an empty array (null).

Examples

Enqueuing Messages of Type RAW
'Create an OraAQ object for the queue "DBQ" 
Dim Q as OraAQ 
Dim Msg as OraAQMsg 
Dim OraSession as OraSession 
Dim DB as OraDatabase 
 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
Set DB = OraSession.OpenDatabase("mydb", “scott/tiger" 0&) 
Set Q = DB.CreateAQ("DBQ") 
 
'Get a reference to the AQMsg object 
Set Msg = Q.AQMsg 
Msg.Value = "Enqueue the first message to a RAW queue." 
 
'Enqueue the message 
Q.Enqueue 
 
'Enqueue another message.  
Msg.Value = "Another message" 
Q.Enqueue 
 
'Enqueue a message with non-default properties. 
Msg.Priority = ORAQMSG_HIGH_PRIORITY 
Msg.Delay = 5 
Msg.Value = "Urgent message" 
Q.Enqueue 
Msg.Value = "The visibility option used in the enqueue call" & _

Note: The following code samples are models for enqueuing 
messages, but cannot be run as is. 

A complete AQ sample can be found in the \OO4O\VB\SAMPLES\AQ 
directory. 



Enqueue (OraAQ) Method

10-142 Oracle Objects for OLE Developer's Guide

           "is ORAAQ_ENQ_IMMEDIATE" 
Q.Visible = ORAAQ_ENQ_IMMEDIATE 
Msgid = Q.Enqueue 
 
'Enqueue Ahead of message Msgid_1 
Msg.Value = "First Message to test Relative Message id" 
Msg.Correlation = "RELATIVE_MESSAGE_ID" 
 
Msg.delay = ORAAQ_MSG_NO_DELAY 
Msgid_1 = Q.Enqueue 
Msg.Value = "Second message to test RELATIVE_MESSAGE_ID is queued" & _
            " ahead of the First Message " 
Q.RelMsgId = Msgid_1 
Msgid = Q.Enqueue

Enqueuing Messages of Oracle Object Types
'Prepare the message. MESSAGE_TYPE is a user defined type in the "AQ" schema 
Set OraMsg = Q.AQMsg(23, "MESSAGE_TYPE","SCOTT") 
Set OraObj = DB.CreateOraObject("MESSAGE_TYPE") 
 
OraObj("subject").Value = "Greetings from OO4O" 
OraObj("text").Value = "Text of a message originated from OO4O" 
 
Msgid = Q.Enqueue



Erase (OraLOB) Method

Server Methods 10-143

Erase (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Erases the specified portion of the LOB value of this object starting at the specified 
offset. 

Usage
OraBlob.Erase amount, offset
OraClob.Erase amount, offset

Arguments
The arguments for the method are:

Remarks
Obtain either a row-level lock or object-level lock before calling this method. The 
actual number of characters or bytes and the requested number differ if the end of the 
LOB value is reached before erasing the requested number of characters or bytes. For 
BLOB types, erasing means that zero-byte fillers overwrite the existing LOB value. For 
CLOB types, erasing means that spaces overwrite the existing LOB value. 

Arguments Description

[in] amount An Integer specifying the maximum number of characters or 
bytes to be erased.

[in] offset 
[optional]

An Integer specifying absolute offset of the LOB value from which 
to start erasing. Default value is 1.



ExecuteSQL Method

10-144 Oracle Objects for OLE Developer's Guide

ExecuteSQL Method

Applies To
OraDatabase Object on page 9-28

Description
Executes a single non-SELECT SQL statement or a PL/SQL block.

Usage
rowcount = oradatabase.ExecuteSQL(sql_statement)
rowcount = oradatabase.DbExecuteSQL(sql_statement)  

Arguments
The arguments for the method are:

Remarks
Executes a SQL statement and returns the number of rows processed by that 
statement.

The sql_statement argument can be one continuous line with no breaks. If it is 
necessary to break the line, be sure to use line feeds (ASCII 10). Do not use carriage 
returns (ASCII 13), because the underlying Oracle Database functions treat carriage 
returns as null terminators.

Executing the SQL statement generates a commit to the database by default. To avoid 
this, use the BeginTrans method on the session object before using the ExecuteSQL 
method.

You can use PL/SQL bind variables in conjunction with the OraParameters 
collection.

When executing PL/SQL blocks or calling stored procedures, you must include a 
BEGIN and END statement around your call as if you were executing an anonymous 
PL/SQL block. This is equivalent to the EXECUTE command of SQL*Plus and 
SQL*DBA.

Normal dynaset operations can be adversely affected, if in transactional mode, a 
database commit is issued. This can happen if a SQL commit statement, a Data Control 
Language (DCL), or Data Definition Language (DDL) command is issued. DCL and 
DDL SQL commands, such as CREATE, DROP, ALTER, GRANT, and REVOKE always 

Arguments Description

sql_statement  Any valid Oracle non-SELECT SQL statement.

Note: The ExecuteSQL method should be used with care because 
any SQL statement or PL/SQL block that is executed can adversely 
affect open dynasets. This is true if the OraDatabase object used 
for the ExecuteSQL method is the same as the one that was used 
to create the dynaset. Use a different OraDatabase object if you 
are unsure.



ExecuteSQL Method

Server Methods 10-145

force a commit, which in turn commits everything done before them. See the Oracle 
Database SQL Language Reference for more details about DCL, DDL, and transactions.

Data Type
Long Integer

Examples

Example: ExecuteSQL
This example uses the Add and Remove parameter methods, the ServerType 
parameter property, and the ExecuteSQL database method to call the stored 
procedure GetEmpName and the stored function GetSal. Before running the example, 
run the ORAEXAMP.SQL file to create GetEmpName and GetSal as well as other 
necessary object types and LOBs in Oracle Database. Then, copy and paste this OO4O 
code example into the definition section of a form and run the program.

Sub Form_Load ()
 
'Declare variables 
 Dim OraSession As OraSession
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDatabase 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER
 
 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2
 
 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER
 
 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.
 
 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _  
                   ":SAL:=Employee.GetEmpSal (:EMPNO); end;")
 
 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" & _
           OraDatabase.Parameters("EMPNO").value & ",Salary=" & _
           OraDatabase.Parameters("SAL").value
 
 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"



ExecuteSQL Method

10-146 Oracle Objects for OLE Developer's Guide

 OraDatabase.Parameters.Remove "ENAME"
 
 OraDatabase.Parameters.Remove "SAL"
End Sub

See Also:

■ Oracle Database SQL Language Reference 

■ CreateDynaset Method on page 10-85

■ OraParameters Collection on page 9-68

■ Transactions Property on page 11-162



Exist (OraCollection) Method

Server Methods 10-147

Exist (OraCollection) Method

Applies To
OraCollection Object on page 9-19

Description
Returns True if an element exists at a given index; otherwise, returns. Valid only for 
OraCollection of Type ORATYPE_TABLE.

Usage
exists = OraCollection.Exist index

Arguments
The arguments for the method are:

Remarks
None.

Arguments Description

[out] exists A Boolean value specifying the existence status of the element.

[in] index An Integer specifying the index of the element.



Exp (OraNumber) Method

10-148 Oracle Objects for OLE Developer's Guide

Exp (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates e to the power of an OraNumber object. 

Usage
OraNumber.Exp

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.



FetchOraRef Method

Server Methods 10-149

FetchOraRef Method

Applies To 
OraDatabase Object on page 9-28

Description
Fetches a referenceable object into the cache and returns the associated OraRef object. 

Usage 
Set OraRef = OraDatabase.FetchOraRef(hex_value) 

Arguments
The arguments for the method are:

Remarks
The hex_value argument can be obtained through the OraRef.HexValue property 
or from an XML document generated by the OraDynaset.GetXML method. 

Arguments Description

hex_value A String containing the hexadecimal value of the REF.

See Also:

■ HexValue (OraRef) Property on page 11-73

■ GetXML Method on page 10-163



FieldSize Method

10-150 Oracle Objects for OLE Developer's Guide

FieldSize Method

Applies To
OraField Object on page 9-33

Description
Returns the number of bytes stored in a LONG or LONG RAW field. Not available at 
design time and read-only at run time.

Usage
data_size = orafield.FieldSize( )
data_size = orafield.DbFieldSize( )  

Remarks
Returns the number of bytes stored in a LONG or LONG RAW field, up to a value of 
around 64 KB. If the field contains more than 64 KB, then the FieldSize method 
returns -1.

Oracle Database does not return the length of columns that are greater than 64 KB; The 
only way to determine the length is to retrieve the column. To conserve resources, 
columns of lengths greater than 64 KB are not retrieved automatically.

Data Type
Long Integer

See Also:

■ AppendChunk Method on page 10-28

■ GetChunk Method on page 10-156

■ OraField Object on page 9-33

■ Type Property on page 11-164



FindFirst, FindLast, FindNext, and FindPrevious Methods

Server Methods 10-151

FindFirst, FindLast, FindNext, and FindPrevious Methods

Applies To
OraDynaset Object on page 9-30

Description
Find the indicated rows in the dynaset that matches the FindClause. The 
FindClause can be any valid WHERE clause without the WHERE. If the current 
FindClause matches the last clause from the previous find operation, then the 
current FindClause is not parsed again. 

These methods move the current row directly to a matched row without calling any 
advisories except when the matched row is reached. If a matching row cannot be 
found, the NoMatch property is set to True, and the current row remains the same.

Usage
oradynaset.FindFirst FindClause  
oradynaset.FindLast FindClause  
oradynaset.FindNext FindClause 
oradynaset.FindPrevious FindClause  

Remarks
The following types of expressions can be used in the FindClause:

■ Simple queries, such as "deptno = 20"

■ Queries involving complex expressions, such as  "sal + 100 > 1000".

■ SQL function calls, such as  "UPPER(ename) = 'SCOTT' " or  "NVL(comm, 0) =  
0".

■ Subqueries, such as "deptno in (select deptno from dept)".

The SQL LIKE operator does not work in multiple byte languages. Table or synonym 
DUAL is required in the user's schema. Date values are retrieved and compared in 
Visual Basic format, which is the format specified in the Control Panel. Therefore, date 
comparisons fail if any other format such as the default Oracle format, 
DD-MON-YYYY is used.

The SQL function TO_CHAR (date, fmt) cannot be used because the first argument 
must be a date value in native Oracle format, and OO4O only handles 'string 
dates'.

The SQL function TO_DATE converts a string to a date, but OO4O converts it back to a 
string in Visual Basic format, as previously described, and the comparison may still 
fail.

The FindPrevious and FindLast methods in a NO_CACHE dynaset do not work; 
NoMatch is set to True.

Note: To avoid raising an error, check for EOF or BOF before calling a Find method.



FindFirst, FindLast, FindNext, and FindPrevious Methods

10-152 Oracle Objects for OLE Developer's Guide

Examples
This example demonstrates the use of the FindFirst, FindNext, FindPrevious 
methods. Copy and paste this code into the definition section of a form. Then, press 
F5.

Sub Form_Load ()     
 
  Dim OraSession As OraSession 
  Dim OraDatabase As OraDatabase 
  Dim OraDynaset As OraDynaset 
  Dim OraFields As OraFields
  Dim FindClause As String 
 
  Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
  Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "SCOTT/TIGER", 0&) 
  Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where empno" & _
                 ">= 7654 and empno <= 7844 ", ORADYN_NO_BLANKSTRIP) 
  
  Set OraFields = OraDynaset.Fields 
 
  OraDynaset.MoveFirst 
  
  'FindClause for job as MANAGER
  FindClause = "job LIKE '%GER'" 
 
  OraDynaset.FindFirst FindClause 
 
  'NoMatch property set to true , if no rows found
  If OraDynaset.NoMatch Then 
    MsgBox "Couldn't find rows " 
  else
    MsgBox OraFields("ename").Value  ' Should display BLAKE 
 
    OraDynaset.FindNext FindClause 
    MsgBox OraFields("ename").Value  ' Should display CLARK 
 
    OraDynaset.FindPrevious FindClause 
    MsgBox OraFields("ename").Value  ' Should display BLAKE
 
   endif
 
End Sub

See Also:

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199

■ NoMatch Property on page 11-110

■ OraDatabase Object on page 9-28 



Floor (OraNumber) Method

Server Methods 10-153

Floor (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the floor, that is, lowest value, of an OraNumber object.

Usage
OraNumber.Floor

Remarks
The result of the operation is stored in an OraNumber object. There is no return value.



FlushBuffer (OraLOB) Method

10-154 Oracle Objects for OLE Developer's Guide

FlushBuffer (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Flushes, that is, empties, the content of the LOB to the database if LOB buffering has 
been enabled.

Usage
OraBlob.FlushBuffer 
OraClob.FlushBuffer 

See Also: EnableBuffering (OraLOB) Method on page 10-139



GetDatabaseFromPool Method

Server Methods 10-155

GetDatabaseFromPool Method

Applies To
OraSession Object on page 9-58

Description
Returns the next available OraDatabase object from the pool.

Usage
GetDatabaseFromPool(long waitTime)

Arguments
The arguments for the method are:

Remarks
To retrieve an OraDatabase object from the pool, the GetDatabaseFromPool 
method is called. This function returns a reference to an OraDatabase object. If the 
pool does not contain the maximum number of objects allowed, and all objects in the 
pool are used, then an additional OraDatabase object is created implicitly. In 
addition, if a pool item contains an OraDatabase object that has been timed out, then 
a new object is created and returned. The OraDatabase object obtained from the pool 
is then marked as in use and is returned to the pool when the object is no longer 
referenced by the application.

Exceptions are raised by this call if:

■ The connection pool does not exist. 

■ The pool contains no objects. 

■ A time-out has occurred. 

The LastServerErr property of the OraSession object contains the code for the 
specific cause of the exception.

Arguments Description

waitTime The number of milliseconds this call waits for an object to be 
available, if the pool contains the maximum number of objects and 
all are used. 

See Also: CreateDatabasePool Method on page 10-83



GetChunk Method

10-156 Oracle Objects for OLE Developer's Guide

GetChunk Method

Applies To
OraField Object on page 9-33

Description
Returns a string containing the bytes of all or a portion of a LONG or LONG RAW field.

Usage
data_string = orafield.GetChunk(offset, numbytes)
data_string = orafield.DbGetChunk(offset, numbytes)  

Arguments
The arguments for the method are:

Remarks
The GetChunk method typically retrieves the specified bytes from the local cache. If 
data is not found in the cache, then the GetChunk method requests it from the 
database. Data from all fields (except the LONG or LONG RAW field) in the dynaset are 
retrieved and compared to the cached values for consistency. If any changes have 
occurred since the last fetch, then the GetChunk method stops the operation which 
causes an error and returns a Null string. 

If a LONG or LONG RAW field is less than 65280 bytes, it is quicker to retrieve the data 
using the Value property than using the GetChunk method. You cannot use the 
GetChunk method on a LONG or LONG RAW field for which you have created an alias.

See "Migration from LONG RAW to LOB or BFILE" on page 5-5.

Examples
This example demonstrates the use of the GetChunk method to retrieve a LONG RAW 
column of a database and save it as a file. This example expects a valid dynaset named 
OraDynaset representing a table with a column named longraw. Copy and paste 
this code into the definition section of a form. Call this procedure with a valid file 
name.

Sub GetChunkExample (FName As String)
 
'Declare various variables
Dim CurSize As Integer, ChunkSize  As Long
Dim I As Integer, FNum As Integer, CurChunk As String
 
'Set the size of each chunk
ChunkSize = 10240
 
frmChunk.MousePointer = HOURGLASS

Arguments Description

offset The number of bytes of the field to skip before copying data.

numbytes The number of bytes to copy.



GetChunk Method

Server Methods 10-157

 
'Get a free file number
FNum = FreeFile
 
'Open the file
Open FName For Binary As #FNum
 
 I = 0
'Loop through all of the chunks. Oracle does not return the size of columns >
' 64KB. We should loop until the length of our block is less than we asked for.
Do
 CurChunk = OraDynaset.Fields("LONGRAW").GetChunk(I * ChunkSize, ChunkSize)
 CurSize = Len(CurChunk) 'Get the length of the current chunk.
 
 Put #FNum, , CurChunk   'Write chunk to file.
 I = I + 1
Loop Until CurSize < ChunkSize
 
'Close the file.
Close FNum
 
frmChunk.MousePointer = DEFAULT
 
End Sub

See Also:

■ "Migration from LONG RAW to LOB or BFILE" on page 5-5 

■ AppendChunk Method on page 10-28

■ FieldSize Method on page 10-150 

■ GetChunk Method on page 10-156

■ Type Property on page 11-164

■ Value Property on page 11-173

■ OraField Object on page 9-33



GetChunkByte Method

10-158 Oracle Objects for OLE Developer's Guide

GetChunkByte Method

Applies To
OraField Object on page 9-33

Description
Reads the data from the LONG or LONG RAW field into byte array and returns the size of 
data read.

Usage
Size_read = orafield.GetChunkByte(ByteArray, offset, numbytes) 

Arguments
The arguments for the method are:

Remarks
When possible, the GetChunkByte method retrieves the specified bytes from the local 
cache. However, to conserve resources, some of the data might not be stored locally. In 
these cases, the GetChunkByte method requests the necessary data from the database 
as required. As part of this process, data from all fields (except the Long or LONG RAW 
field) in the dynaset are retrieved and compared with the cached values for 
consistency. If any changes have occurred since the fetch of the original partial data, 
then the GetChunkByte method stops the operation and an error occurs. In the case 
of an abort, the returned string is Null. 

If a LONG or LONG RAW field is less than 65280 bytes in size, it is quicker to retrieve the 
data using the Value property than using the GetChunkByte method. You cannot 
use the GetChunkByte method on a LONG or LONG RAW field for which you have 
created an alias.

Examples
This example demonstrates the use of the GetChunkByte method to retrieve a LONG 
RAW column of a database and save it as a file. This example expects a valid dynaset 
named OraDynaset representing a table with a column named longraw. Copy and 
paste this code into the definition section of a form. Call this procedure with a valid 
file name. 

Sub GetChunkByteExample (FName As String)  
 
'Declare various variables 
Dim CurSize As Integer, ChunkSize  As Long 
Dim I As Integer, FNum As Integer, CurChunk() As Byte 
 
'Set the size of each chunk 

Arguments Description

ByteArray The first element of the ByteArray to hold the data. 

offset The number of bytes in the field to skip before copying data. 

numbytes The number of bytes to copy.



GetChunkByte Method

Server Methods 10-159

ChunkSize = 10240 
'Redim CurChunk Array 
ReDim CurChunk(ChunkSize)  
 
frmChunk.MousePointer = HOURGLASS  
 
'Get a free file number 
FNum = FreeFile  
 
'Open the file 
Open FName For Binary As #FNum  
 
 I = 0 
'Loop through all of the chunks 
'Oracle does not return the size of columns > 64KB. We should loop until the 
'length of our block is less than we asked for.
 
Do 
 CurSize = OraDynaset.Fields("type_longraw").GetChunkByte(CurChunk(0), I * 
ChunkSize, ChunkSize) 
 
If CurSize > 0 AND CurSize < ChunkSize Then 
    ReDim CurChunk(CurSize) 
    CurSize = OraDynaset.Fields("type_longraw").GetChunkByte(CurChunk(0), I * 
ChunkSize, CurSize) 
 End If 
 Put #FNum, , CurChunk   'Write chunk to file. 
 I = I + 1 
Loop Until CurSize <= 0  
 
'Close the file.  
Close FNum  
 
frmChunk.MousePointer = DEFAULT  
 
End Sub

See Also: "Migration from LONG RAW to LOB or BFILE" on 
page 5-5 for additional information



GetChunkByteEx Method

10-160 Oracle Objects for OLE Developer's Guide

GetChunkByteEx Method

Applies To
OraField Object on page 9-33

Description
Reads the data from a LONG or LONG RAW field into a Variant and returns the amount 
of data read.

Usage
amount_read = orafield.GetChunkByteEx(ByteArray, offset, numbytes) 

Arguments
The arguments for the method are:

Remarks
When possible, the GetChunkByteEx method retrieves the specified bytes from the 
local cache. However, to conserve resources, some of the data might not be stored 
locally. In these cases, the GetChunkByteEx method requests the necessary data from 
the database as required. As part of this process, data from all fields (except the LONG 
or LONG RAW field) in the dynaset are retrieved and compared to the cached values for 
consistency. If any changes have occurred since the fetch of the original partial data, 
then the GetChunkByteEx method aborts the operation with an error. 

Because the GetChunkByteEx method takes in a Variant as the first parameter, 
instead of the first element of the ByteArray as in the GetChunkByte method, only 
the GetChunkByteEx method can be used within an ASP/IIS environment.

If a LONG or LONG RAW field is less than 65280 bytes in size, it is quicker to retrieve the 
data using the Value property than using the GetChunkByteEx method.

See "Migration from LONG RAW to LOB or BFILE" on page 5-5.

Examples

Using the GetChunkByteEx Method to Retrieve a LONG RAW Example
This example demonstrates the use of the GetChunkByteEx method to retrieve a 
LONG RAW column of a database and save it as a file. This example expects a valid 
dynaset named OraDynaset representing a table with a column named type_
longraw. Copy and paste this code into the definition section of a form. Call this 
procedure with a valid file name. 

Sub GetChunkByteExExample (FName As String) 
'Declare various variables 
Dim bytesread As Integer, ChunkSize As Long ,

Arguments Description

ByteArray The name of the Variant ByteArray to hold the data.

offset The number of bytes in the field to skip before copying data.

numbytes The number of bytes to copy.



GetChunkByteEx Method

Server Methods 10-161

 
bytearr() as byte 
Dim I As Integer, FNum As Integer, CurChunk 
'Set the size of each chunk 
ChunkSize = 10240 
  
frmChunk.MousePointer = HOURGLASS 
'Get a free file number 
FNum = FreeFile 
'Open the file 
Open FName For Binary As #FNum 
I = 0 
'Loop through all of the chunks 
'Oracle does not return the size of columns > 64KB. 
'We should loop until the length of our block is 
'less than we asked for. 
Do 
  bytesread = OraDynaset.Fields("type_longraw").GetChunkByteEx(CurChunk,_
              I * ChunkSize, ChunkSize) 
'redim byte array 
redim bytearr(bytesread - 1) 
bytearr = CurChunk 
Put #FNum, , bytearr 'Write chunk to file. 
I = I + 1 
Loop Until bytesread < ChunkSize 
'Close the file. 
Close FNum 
frmChunk.MousePointer = DEFAULT 
End Sub

Using the GetChunkByteEx Method with Active Server Pages (ASP) Example
'This example is for use with ASP (Active Server Pages) 
<%@ LANGUAGE = VBScript %> 
<%Response.ContentType = "image/JPEG"%> 
<% 
Dim OraDatabase, Oradynaset 
Dim Chunksize, BytesRead, CurChunkEx 
'This assumes a pool of database connections have been created in the global.asa 
Set OraDatabase = OraSession.getDatabaseFromPool(10) 
'This assumes a table called "art_gallery" and 
'displays JPEG images stored in the table 
Set OraDynaset = OraDatabase.CreateDynaset("select art from art_gallery " & _
              "where artist = 'Picasso'", 0) 
 
BytesRead = 0 
'Reading in 32K chunks 
ChunkSize= 32768 
Do 
  BytesRead = OraDynaset.Fields("picture").GetChunkByteEx(CurChunkEx, _
                                 i * ChunkSize, ChunkSize) 
  if BytesRead > 0 then 
     Response.BinaryWrite CurChunkEx 
   end if 
Loop Until BytesRead < ChunkSize 
'Cleanup, remove all local references 
Set OraDynaset = Nothing 
Set Oradatabase = Nothing 
%> 



GetChunkByteEx Method

10-162 Oracle Objects for OLE Developer's Guide

See Also: "Migration from LONG RAW to LOB or BFILE" on 
page 5-5



GetXML Method

Server Methods 10-163

GetXML Method

Applies to
OraDynaset Object on page 9-30

Description
Generates an XML document based on the contents of the dynaset.

Usage
 XMLstring = oradynaset.GetXML(startrow, maxrows) 

Arguments
The arguments for the method are:

Remarks
This method returns a string containing the XML document.

The formatting of the output XML can be customized through the XML properties of 
the OraDynaset and OraField objects.

Arguments Description

startrow The row identifier indicating from which row to start (see 
OraDynaset.RowPosition). The default value of this argument is 
zero (the first row).

maxrows The maximum number of rows to retrieve (if the end of the record 
set is reached; fewer rows may be returned). If this argument is 
omitted, then all rows are returned.

See Also:

■ OraDynaset Object on page 9-30

■ OraField Object on page 9-33

■ RowPosition Property on page 11-132



GetXMLToFile Method

10-164 Oracle Objects for OLE Developer's Guide

GetXMLToFile Method

Applies To
OraDynaset Object on page 9-30

Description
Generates an XML document and writes it to a file.

Usage
oradynaset.GetXMLToFile (filename, startrow, maxrows) 

Arguments
The arguments for the method are:

Remarks
There is no return value.

The formatting of the XML output can be customized through the XML properties of 
the OraDynaset and OraField objects.

Arguments Description

filename The file name that the XML is written to. Existing files by the same 
name are overwritten.

startrow The row identifier indicating from which row to start (see 
OraDynaset.RowPosition). The default value of this argument is 
0 (the first row).

maxrows The maximum number of rows to retrieve (if the end of the record 
set is reached; fewer rows may be returned). If this argument is 
omitted, then all rows are returned.

See Also:

■ OraDynaset Object on page 9-30

■ OraField Object on page 9-33

■ RowPosition Property on page 11-132



GetRows Method

Server Methods 10-165

GetRows Method

Applies To
OraDynaset Object on page 9-30

Description
Retrieves multiple records of a dynaset object into Variant safe array.

Usage
Array =OraDynaset.GetRows(num_rows, start, fields )

Arguments
The arguments for the method are:

Remarks
Use the GetRows method to copy records from a dynaset into a two-dimensional 
array. The first subscript identifies the field and the second identifies the row number. 
The Array variable is automatically dimensioned to the correct size when the 
GetRows method returns the data.

Calling the GetRows method does not change the current row position of the dynaset 
object. 

Examples
The following example retrieves data using the GetRows method.

Dim OraSession As OraSession
Dim OraDatabase As OraDatabase
Dim OraDynaset As OraDynaset
Dim row, col As Integer
Dim fields() As String
 
'Create the OraSession Object
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", _
               "scott/tiger", 0&)
 
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)

Arguments Description

num_rows [optional] An Integer representing the number of records to retrieve. Default 
value is the total number of rows in the dynaset.

start [optional] An Integer representing the starting position of the dynaset from 
which the GetRows operation begins. Default value is the current 
position of the dynaset.

fields [optional] A Variant representing a single field name or field position, or an 
array of field names or array of field position numbers. The 
GetRows method returns only the data in these fields.



GetRows Method

10-166 Oracle Objects for OLE Developer's Guide

 
'The following line executes GetRows to get all records
data_array = OraDynaset.GetRows()
 
'Now display all the data in data_array
For row = 0 To UBound(data_array, 2)
    For col = 0 To UBound(data_array, 1)
        Debug.Print data_array(col, row)
    Next col
Next row
 
'The following lines execute GetRows to get the data from
'the ename and empno fields starting at 5
 
ReDim fields(2)
 
fields(0) = "EMPNO"
fields(1) = "ENAME"
 
'Execute GetRows
data_array = OraDynaset.GetRows(, 5, fields)
 
'Now display all the data in data_array
For row = 0 To UBound(data_array, 2)
    For col = 0 To UBound(data_array, 1)
        Debug.Print data_array(col, row)
    Next col
Next row



Get_Value Method

Server Methods 10-167

Get_Value Method

Applies To
OraParamArray Object on page 9-47

Description
Returns the value of a particular element of the array at the specified index.

Usage
OraParamArray.Get_Value(array, index)

Arguments
The arguments for the method are:

Remarks
The OraParamArray.Get_Value method returns the value of the field as a 
Variant. The value of data_value = oraparameter.Value sets the contents of 
the parameter. 

Note that fields of type DATE are returned in the default Visual Basic format as 
specified in the Control Panel, even though the default Oracle date format is 
"DD-MMM-YY".

The Value argument can be an Oracle Database 10g object, such as an OraBLOB 
object. For Put_Value, a copy of the object is made at that point in time, and Get_
Value must be accessed to obtain a new object that refers to that index value. For 
example, if iotype is ORATYPE_BOTH and an OraBLOB object obtained from a 
dynaset is passed in as the input value, Get_Value needs to be called after the SQL 
code has been executed to obtain the newly updated output value of the 
ParamaterArray object. 

Similar to a dynaset, the object obtained from the ParamaterArray Get_Value 
property refers to the latest value for that ParamaterArray index. The Visual Basic 
value Null can also be passed as a value. The Visual Basic value EMPTY can be used 
for BLOB and CLOB to indicate an empty LOB, and for Object, VARRAY, and nested 
table data types to indicate an object whose attributes are all Null.

This method is not available at design time and is read-only at run time.

When binding to RAW columns (ServerType ORATYPE_RAW_BIN), the value should 
be a byte array.

Arguments Description

[in] array A String representing the name of the array. 

[in] index An Integer representing the index value of the object.



HypCos (OraNumber) Method

10-168 Oracle Objects for OLE Developer's Guide

HypCos (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the hyperbolic cosine of an OraNumber object.

Usage
OraNumber.HypCos

Remarks
The result of the operation is stored in an OraNumber object. There is no return value.



HypSin (OraNumber) Method

Server Methods 10-169

HypSin (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the hyperbolic sine of an OraNumber object.

Usage
OraNumber.HypSin

Remarks
The result of the operation is stored in an OraNumber object. There is no return value.



HypTan (OraNumber) Method

10-170 Oracle Objects for OLE Developer's Guide

HypTan (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the hyperbolic tangent of an OraNumber object.

Usage
OraNumber.HypTan 

Remarks
The result of the operation is stored in an OraNumber object. There is no return value.



InitIterator Method

Server Methods 10-171

InitIterator Method

Applies To
OraCollection Object on page 9-19

Description
Initializes an iterator to scan a collection.

Usage
OraCollection.InitIterator

Remarks
This method initializes an iterator to point to the beginning of a collection. If this 
method is called for same Oracle Database 10g collection instance, then this method 
resets the iterator to point back to the beginning of the collection. The 
OraCollection object automatically reinitializes the iterator when the underlying 
collection changes due to a dynaset row navigation or a parameter Refresh method.

After you call the InitIterator method, you need to call the IterNext method or  
the first element in the collection repeats an extra time.

Examples
See "Example: OraCollection Iterator" on page 10-88.

See Also:

■ IterNext Method on page 10-187

■ IterPrev Method on page 10-188



IsEqual (OraIntervalDS) Method

10-172 Oracle Objects for OLE Developer's Guide

IsEqual (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Checks if the OraIntervalDS object is equal to an argument.

Usage
isEqual = OraIntervalDSObj.IsEqual value

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraIntervalDS object is equal to 
the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] Day 
HH:MI:SSxFF. 

If value is a numeric value, the value provided should represent the total number of 
days that the constructed OraIntervalDS object represents.

Arguments Description

[in] value A Variant of type String, a numeric value, or an 
OraIntervalDS object to be compared.



IsEqual (OraIntervalYM) Method

Server Methods 10-173

IsEqual (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Checks if the OraIntervalYM object is equal to an argument.

Usage
isEqual = OraIntervalYMObj.IsEqual value

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraIntervalYM object is equal to 
the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] 
YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of 
years that the constructed OraIntervalYM object represents.

Arguments Description

[in] value A Variant of type String, a numeric value, or an 
OraIntervalYM object to be compared. 



IsEqual (OraNumber) Method

10-174 Oracle Objects for OLE Developer's Guide

IsEqual (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Checks if an OraNumber object is equal to an argument value.

Usage
bool  = OraNumber.IsEqual value 

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if all values are equal; otherwise, it is 
False.

Arguments Description

[in] value A Variant of type String, OraNumber, or a numeric value.



IsEqual (OraTimeStamp) Method

Server Methods 10-175

IsEqual (OraTimeStamp) Method

Applies To
OraTimeStamp Object on page 9-62

Description
Checks if the OraTimeStamp object is equal to an argument.

Usage
isEqual = OraTimeStampObj.IsEqual value format

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraTimeStamp object is equal to the 
argument; otherwise, it is False. The IsEqual method compares all the date-time 
values stored in the OraTimeStamp object.

If value is of type String, the string format must match the format specified in the 
format argument. If format is not specified, the string format must match the 
Format property of the current OraTimeStamp object.

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStamp to be 
compared.

[in] [optional] 
format

Specifies the TIMESTAMP format string to be used to interpret 
value when value is of type String. If format is not specified, the 
value is interpreted using the Format property of the current 
OraTimeStamp object. 



IsEqual (OraTimeStampTZ) Method

10-176 Oracle Objects for OLE Developer's Guide

IsEqual (OraTimeStampTZ) Method

Applies To
OraTimeStampTZ Object on page 9-64

Description
Checks if the OraTimeStampTZ object is equal to an argument.

Usage
isEqual = OraTimeStampTZOb.IsEqual value, format

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraTimeStampTZ object is equal to 
the argument; otherwise, it is False. The IsEqual method only compares the 
Coordinated Universal Time (UTC) date-time values stored in the OraTimeStampTZ 
object; the time zone information is ignored.

If value is of type String, the string format must match the format specified in the 
format argument. If format is not specified, the string format must match the 
Format property of the current session OraTimeStampTZ object.

If value is of Date type, the date-time value in Date is interpreted as the date-time 
value in the time zone of the session. 

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStampTZ to be 
compared.

[in] [optional] 
format

Specifies the TIMESTAMP WITH TIME ZONE format string to be used 
to interpret value when value is type String. If format is not 
specified, value is interpreted using the Format property of the 
current OraTimeStampTZ object.

Note: UTC was formerly known as Greenwich Mean Time.)



IsGreater (OraIntervalDS) Method

Server Methods 10-177

IsGreater (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Checks if the OraIntervalDS object is greater than an argument.

Usage
isGreater = OraIntervalDSObj.IsGreater value

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraIntervalDS object is greater 
than the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: Day [+/-] 
HH:MI:SSxFF. 

If value is a numeric value, the value provided should represent the total number of 
days that the constructed OraIntervalDS object represents.

Arguments Description

[in] value A Variant of type String, a numeric value, or an 
OraIntervalDS object to be compared.



IsGreater (OraIntervalYM) Method

10-178 Oracle Objects for OLE Developer's Guide

IsGreater (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Checks if the OraIntervalYM object is greater than an argument.

Usage
isGreater = OraIntervalYMObj.IsGreater value

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraIntervalYM object is greater 
than the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] 
YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of 
years that the constructed OraIntervalYM object represents.

Arguments Description

[in] value A Variant of type String, a numeric value, or an 
OraIntervalYM object to be compared.



IsGreater (OraNumber) Method

Server Methods 10-179

IsGreater (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Checks if an OraNumber object is greater than an argument value.

Usage
bool  = OraNumber.IsGreater value 

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraNumber object is greater than the 
argument; otherwise, it is False.

Arguments Description

[in] value A Variant of type String, OraNumber object, or a numeric value.



IsGreater (OraTimeStamp) Method

10-180 Oracle Objects for OLE Developer's Guide

IsGreater (OraTimeStamp) Method

Applies To
OraTimeStamp Object on page 9-62

Description
Checks if the OraTimeStamp object is greater than an argument.

Usage
isGreater = OraTimeStampObj.IsGreater value format

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraTimeStamp object is greater 
than the argument; otherwise, it is False. The IsGreater method compares all the 
date-time values stored in the OraTimeStamp object.

If value is of type String, the string format must match the format specified in the 
format argument. If format is not specified, the string format must match the 
Format property of the current OraTimeStamp object.

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStamp to be 
compared.

[in] [optional] 
format

Specifies the TIMESTAMP format string to be used to interpret value 
when value is of type String. If format is not specified, the value 
is interpreted using the Format property of the current 
OraTimeStamp object. 



IsGreater (OraTimeStampTZ) Method

Server Methods 10-181

IsGreater (OraTimeStampTZ) Method

Applies To
OraTimeStampTZ Object on page 9-64

Description
Checks if the OraTimeStampTZ object is greater than an argument.

Usage
isGreater = OraTimeStampTZObj.IsGreater value, format

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraTimeStampTZ object is greater 
than the argument; otherwise, it is False. The IsGreater method only compares the 
UTC date-time values stored in the OraTimeStampTZ object; the time zone 
information is ignored.

If value is of type String, the string format must match the format specified in the 
format argument. If format is not specified, the string format must match the 
Format property of the current OraTimeStampTZ object.

If value is of type Date, the date-time value in Date is interpreted as the date-time 
value in the time zone of the session. 

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStampTZ object to 
be compared.

[in] [optional] 
format

Specifies the TIMESTAMP WITH TIME ZONE format string to be used 
to interpret a value when value is type String. If format is not 
specified, value is interpreted using the Format property of the 
current OraTimeStampTZ object.



IsLess (OraIntervalDS) Method

10-182 Oracle Objects for OLE Developer's Guide

IsLess (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Checks if the OraIntervalDS object is less than an argument.

Usage
isLess = OraIntervalDSObj.IsLess value

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraIntervalDS object is less than 
the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] Day 
HH:MI:SSxFF. 

If value is a numeric value, the value provided should represent the total number of 
days that the constructed OraIntervalDS object represents.

Arguments Description

[in] value A Variant of type String, a numeric value, or an 
OraIntervalDS object to be compared.



IsLess (OraIntervalYM) Method

Server Methods 10-183

IsLess (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Checks if the OraIntervalYM object is less than an argument.

Usage
isLess  = OraIntervalYMObj.IsLess value

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraIntervalYM object is less than 
the argument; otherwise, it is False.

If value is a Variant of type String, it must be in the following format: [+/-] 
YEARS-MONTHS.

If value is a numeric value, the value provided should represent the total number of 
years that the constructed OraIntervalYM object represents.

Arguments Description

[in] value  A Variant of type String, a numeric value, or an 
OraIntervalYM object to be compared.



IsLess (OraNumber) Method

10-184 Oracle Objects for OLE Developer's Guide

IsLess (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Checks if an OraNumber object is less than an argument value.

Usage
bool  = OraNumber.IsLess value

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraNumber object is less than the 
argument; otherwise, it is False.

Arguments Description

[in] value A Variant of type String, OraNumber object, or a numeric value. 



IsLess (OraTimeStamp) Method

Server Methods 10-185

IsLess (OraTimeStamp) Method

Applies To
OraTimeStamp Object on page 9-62

Description
Checks if the OraTimeStamp object is less than an argument.

Usage
isLessr = OraTimeStampObj.IsLess value format

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraTimeStamp is less than the 
argument; otherwise, it is False. The IsLess method compares all the date-time 
values stored in the OraTimeStamp object.

If value is of type String, the string format must match the format specified in the 
format argument. If format is not specified, the string format must match the 
Format property of the current OraTimeStamp object.

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStamp.

[in] [optional] 
format

Specifies the TIMESTAMP format string to be used to interpret value 
when value is of type String. If format is not specified, the value is 
interpreted using the Format property of the current 
OraTimeStamp object.



IsLess (OraTimeStampTZ) Method

10-186 Oracle Objects for OLE Developer's Guide

IsLess (OraTimeStampTZ) Method

Applies To
OraTimeStampTZ Object on page 9-64

Description
Checks if the OraTimeSTampTZ object is less than an argument.

Usage
isLess = OraTimeStampTZObj.IsLess value, format

Arguments
The arguments for the method are:

Remarks
Returns a Boolean value: The value is True if the OraTimeStampTZ object is less than 
the argument; otherwise, it is False. IsLess only compares the UTC date-time 
values stored in the OraTimeStampTZ object; the time zone information is ignored.

If value is of type String, the string format must match the format specified in the 
format argument. If format is not specified, the string format must match the 
Format property of the current OraTimeStampTZ object.

If value is of type Date, the date-time value in Date is interpreted as the date-time 
value in the time zone of the session.

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStampTZ.

[[in] [optional] 
format

Specifies the TIMESTAMP WITH TIME ZONE format string to be used 
to interpret value when value is type String. If format is not 
specified, value is interpreted using the Format property of the 
current OraTimeStampTZ object. 



IterNext Method

Server Methods 10-187

IterNext Method

Applies To
OraCollection Object on page 9-19

Description
Moves the iterator to point to the next element in the collection.

Usage
OraCollection.IterNext

Remarks
Using an iterator is faster than using an index when accessing collection elements.

If the iterator is pointing to the last element of the collection before to executing this 
function, then calling this method makes the EOC property return True. Also, the 
iterator is not changed. Check the EOC property when calling this method repetitively. 

Call the IterNext method after the InitIterator method, or the first element in 
the collection is repeated an extra time.

Examples
See "Example: OraCollection Iterator"  on page 10-88.

See Also:

■ IterPrev Method on page 10-188

■ InitIterator Method on page 10-171



IterPrev Method

10-188 Oracle Objects for OLE Developer's Guide

IterPrev Method

Applies To
OraCollection Object on page 9-19

Description
Moves the iterator to point to the previous element in the collection. 

Usage
OraCollection.IterPrev

Remarks
Using an iterator is faster than using an index when accessing collection elements. 

If the iterator is pointing to the first element of the collection prior to executing this 
function, then calling this method makes the BOC property return True. Also, the 
iterator is not changed. Check the BOC property when calling this method repetitively.

Examples
See "Example: OraCollection Iterator"  on page 10-88.

See Also:

■ IterNext Method on page 10-187

■ InitIterator Method on page 10-171



LastServerErrReset Method

Server Methods 10-189

LastServerErrReset Method

Applies To
OraDatabase Object on page 9-28

OraSession Object on page 9-58

Description
Clears the LastServerErr property to a zero value and sets the 
LastServerErrText property to Null for the specified object.

Usage
oradatabase.LastServerErrReset
orasession.LastServerErrReset

Remarks
This method allows user programs to better determine which program request 
generated the Oracle error.

See Also:

■ OraDatabase Object on page 9-28

■ OraSession Object on page 9-58

■ LastServerErr Property on page 11-87

■ LastServerErrText Property on page 11-90



Ln (OraNumber) Method

10-190 Oracle Objects for OLE Developer's Guide

Ln (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the natural logarithm (base e) of an OraNumber object.

Usage
OraNumber.Ln

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

This method raises an error if the OraNumber object is less than or equal to zero.



Log (OraNumber) Method

Server Methods 10-191

Log (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the logarithm of operand using the OraNumber object as the base.

Usage
OraNumber.Log operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

This method raises an error if the OraNumber object or operand is less than or equal 
to zero.

Arguments Description

[in] operand A Variant of type String, OraNumber, or a numeric value.



MatchPos (OraLOB/BFILE) Method

10-192 Oracle Objects for OLE Developer's Guide

MatchPos (OraLOB/BFILE) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Returns the position of the nth occurrence of the pattern starting at the offset.

Usage
position = OraBlob.MatchPos pattern, offset, nth
position = OraClob.MatchPos pattern, offset, nth
position = OraBFile.MatchPos pattern, offset, nth

Arguments
The arguments for the method are:

Remarks
This call is currently implemented by executing a PL/SQL block that uses DBMS_
LOB.INSTR(). 

Arguments Description

[in] pattern A string for CLOB, or byte array for BLOB or BFILE that is searched 
for in the LOB. 

[in] Offset The starting position in the LOB or BFILE for the search. 

[in] nth The occurrence number. 



Mod (OraNumber) Method

Server Methods 10-193

Mod (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Gets the modulus from the division of the OraNumber object by operand.

Usage
OraNumber.Mod operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

If operand is equal to zero, an error is raised.

Arguments Description

[in] operand A Variant of type String, OraNumber, or a numeric value.



MonitorForFailover Method

10-194 Oracle Objects for OLE Developer's Guide

MonitorForFailover Method

Applies To
OraDatabase Object on page 9-28

Description
Registers the failover notification handler of the application.

Usage
OraDatabase.MonitorForFailover FOSink, FOCtx

Arguments
The arguments for the method are:

Remarks
To receive failover notifications, a notification handler must be registered with the 
MonitorForFailover method. The notification handler must be an automation 
object (a class module in Visual Basic) that implements the OnFailover method.

The syntax of the method is: 

Public Function OnFailover(Ctx As Variant, fo_type As Variant,fo_event as Variant, 
fo_OraDB as Variant) 

Arguments Description

[in] FOSink An IDispatch interface implementing the OnFailover method 
which is notified in event of a failover.

[in] FOCtx Context-specific information that the application wants passed into 
the OnFailover method in the event of a failover.

Variants Description

[in] Ctx Passed into the MonitorForFailover method by the 
application. Context-sensitive information that the application 
wants passed in event of a failover.

[in] fo_type Failover type. This is the type of failover that the client has 
requested. The values are:

■ OO4O_FO_SESSION indicates only session failover 
requested.

■ OO4O_FO_SELECT indicates select failover and session 
failover requested. 



MonitorForFailover Method

Server Methods 10-195

Examples

Failover Notification Example
See Example: Failover Notification on page 4-25.

[in]

fo_event

Failover event. This indicates the state of the failover. It has 
several possible values: 

■ OO4O_FO_BEGIN indicates that failover has detected a lost 
connection and failover is starting. 

■ OO4O_FO_END indicates successful completion of a failover. 

■ OO4O_FO_ABORT indicates that a failover was 
unsuccessful, and there is no option of retrying.

■ OO4O_FO_ERROR indicates that a failover was 
unsuccessful, and gives the application the opportunity to 
handle the error and retry the failover. The application can 
retry the failover, by programming the OnFailover 
method to return OO4O_FO_RETRY.

■ OO4O_FO_REAUTH indicates that a user handle has been 
reauthenticated. This applies to the situation where a client 
has multiple user sessions on a single database connection. 
During the initial failover, only the active user session is 
failed over. Other sessions are failed over when the 
application tries to use them. This is the value passed to the 
callback during these subsequent failovers.

[in] fo_OraDB The OraDatabase object of the user session that is being failed 
over. Valid only when the fo_event variant is OO4O_FO_
REAUTH.

See Also: "Application Failover Notifications" on page 4-24

Variants Description



MonitorStart (OraAQ) Method

10-196 Oracle Objects for OLE Developer's Guide

MonitorStart (OraAQ) Method

Applies To
OraAQ Object on page 9-3

Description
Starts a monitor thread for dequeuing the messages specified.

Usage
Q.MonitorStart NotificationHandler, CallbackCtx, MsgFilterVal,MsgFilter

Arguments
The arguments for the method are:

Remarks
NotifyMe is the callback method of the notification object. The syntax of the method 
is:

Public Sub NotifyMe (ByVal Ctx As Variant, ByVal Msgid As Variant)

Arguments Description

[in] NotificationHandler An IDispatch interface containing the callback method 
(NotifyMe) which should be notified of new messages.

[in] CallbackCtx Context-specific information that the application wants to 
pass to the NotifyMe method. This is passed into the 
NotifyMe method whenever a new message satisfying the 
user criteria is dequeued.

[in] [optional] MsgFilterVal A byte array containing a value for the message filter. 
Ignored if MsgFilter is ORAAQ_ANY.

[in] [optional]  MsgFilter An Integer constant specifying the selection criteria for 
messages. Possible values for MsgFilter are:

■ ORAAQ_ANY = 0 - Invokes the callback for any message 
that arrives on the queue. This is the default value.

■ ORAAQ_CONSUMER = 1 - Invokes the callback when the 
message intended for the consumer given in the 
MsgFilterValue is dequeued.

■ ORAAQ_MSGID = 2 - Invokes the callback when message 
with the identifier specified in MsgFilterVal is 
dequeued.

Variants Description

[in] Ctx Value passed into the MonitorStart method by the application. 
Context-sensitive information that the application wants to pass in 
when messages are dequeued.

[in] Msgid The message ID of the newly dequeued message. The Msgid variant 
is null when there is an error while monitoring.



MonitorStart (OraAQ) Method

Server Methods 10-197

By default, the message is passed into NotifyMe in Remove mode. The default 
dequeue options can be overridden by setting the properties of this instance (OraAQ).

The MonitorStart method returns ORAAQ_SUCCESS or ORAAQ_FAIL.

See Also: "Monitoring Messages" on page 4-21



MonitorStop (OraAQ) Method

10-198 Oracle Objects for OLE Developer's Guide

MonitorStop (OraAQ) Method

Applies To
OraAQ Object on page 9-3

Description
Stops the monitor thread that was started earlier.

Usage
Q.MonitorStop

Remarks
Does nothing if a monitor is not running. 

See Also: "Monitoring Messages" on page 4-21



MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

Server Methods 10-199

MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

Applies To
OraDynaset Object on page 9-30

Description
Change the cursor position to the first, last, next, or previous row within the specified 
dynaset. These move methods move the cursor to the next (previous, and so on) valid 
row, skipping rows that have been deleted. 

Usage
oradynaset.MoveFirst
oradynaset.DbMoveFirst

oradynaset.MoveLast
oradynaset.DbMoveLast  

oradynaset.MovePrevious
oradynaset.DbMovePrevious  

oradynaset.MoveNext
oradynaset.DbMoveNext  

Remarks
The data control buttons map (from left to right or from top to bottom) to the 
MoveFirst, MovePrevious, MoveNext, and MoveLast methods. The BOF and EOF 
properties are never true when using the data control buttons.

When the first or last record is current, record movement does not occur if you use the 
MoveFirst or MoveLast methods, respectively. You force the query to completion if 
you use the MoveLast method on a dynaset.

If you use the MovePrevious method and the first record is current, there is no 
current record and BOF is true. Using the MovePrevious method again causes an 
error, although BOF remains True. If you use the MoveNext method and the last 
record is current, there is no current record and EOF is true. Using the MoveNext 
method again causes an error, although EOF remains true. Note that when the dynaset 
is created with the ORADYN_NO_MOVEFIRST option, BOF and EOF are true whether the 
dynaset is empty or not.

When you open a dynaset, BOF is False and the first record is current. If a dynaset is 
empty, BOF and EOF are both true, and there is no current record.

If an Edit or AddNew operation is pending and you use one of the Move methods 
indirectly by way of the data control, then the Update method is invoked 
automatically, although, it can be stopped during the Validate event.

If an Edit or AddNew operation is pending and you use one of the Move methods 
directly without the data control, pending Edit or AddNew operations cause existing 
changes to be lost, although no error occurs.

Data is fetched from the database, as necessary, so performing a MoveFirst operation 
followed by a MoveNext operation incrementally builds the mirrored (cached) local 



MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

10-200 Oracle Objects for OLE Developer's Guide

set without requiring read-ahead of additional data. However, executing a MoveLast 
operation requires that the entire query be evaluated and stored locally.

When a dynaset is attached to a data control, these methods first notify the Validate 
event of the data control that record motion is about to occur. The Validate handler 
can deny the request for motion, in which case the request is ignored. If the record 
pointer is successfully moved, then all custom controls attached to the data control are 
notified automatically of the new record position.

Examples
This example demonstrates record movement within a dynaset using the MoveFirst, 
MoveNext, MoveLast, MovePrevious methods. Copy and paste this code into the 
definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)
 
MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
             OraDynaset.Fields("ename").value
 
 'Move to the next record and display it.
 OraDynaset.MoveNext
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
              OraDynaset.Fields("ename").value
 
 'Move to the last record and display it.
 OraDynaset.MoveLast
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
              OraDynaset.Fields("ename").value
 
 'Move to the previous record and display it.
 OraDynaset.MovePrevious
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " & _
             OraDynaset.Fields("ename").value
 
 
End Sub



MoveFirst, MoveLast, MoveNext, and MovePrevious Methods

Server Methods 10-201

See Also:

■ AddNew Method on page 10-21

■ BOF Property on page 11-11

■ EOF Property on page 11-56

■ Edit Method on page 10-134

■ EditMode Property on page 11-51

■ RecordCount Property on page 11-128

■ Update Method on page 10-257

■ Validate Event on page 12-9



MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

10-202 Oracle Objects for OLE Developer's Guide

MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

Applies To
OraDynaset Object on page 9-30

Description
Change the cursor position to the specified row within the specified dynaset.

Usage
oradynaset.MovePreviousn offset
oradynaset.MoveNextn offset
oradynaset.MoveRel offset 
oradynaset.MoveTo offset

MoveNextn Method
Moves offset records forward. 

MovePreviousn Method
Moves offset records backward. 

MoveRel Method
Moves offset records relative to the current row. A positive value, represented by a 
plus (+) sign, moves the cursor down the table, and a negative value moves the cursor 
up the table.

MoveTo Method
Moves directly to row number offset. 

Remarks
EOF is set when the cursor moves beyond the end of a dynaset using MoveNextn, 
MoveRel, or MoveTo methods. BOF is set when the cursor moves beyond the start of a 
dynaset using MovePreviousn, MoveRel, or MoveTo methods. The MoveNextn, 
MovePreviousn, and MoveTo methods accept offset as a positive integer only. The 
MoveRel methods accepts offset as either a positive or a negative integer.

The MoveTo rownum always gets the same row unless the row has been deleted. If the 
requested row has been deleted, the MoveTo method moves to the next valid row. The 
MoveNextn, MovePreviousn, MoveRel, and MoveTo methods do not take into 
account deleted rows, so be cautious when using these methods based on relative 
positions of row numbers.

Data Type
Long Integer

Examples
This example demonstrates the use of the MovePreviousn, MoveNextn, MoveRel, 
and MoveTo methods. Copy and paste this code into the definition section of a form. 
Then, press F5.



MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods

Server Methods 10-203

 Private Sub Form_Load()
  Dim OraSession As OraSession 
  Dim OraDatabase As OraDatabase 
  Dim OraDynaset As OraDynaset 
  Dim OraFields As OraFields 
 
  Set OraSession = CreateObject("OracleInProcServer.XOraSession")
  Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "SCOTT/TIGER", 0&)
  Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where empno" & _
             ">=7654 and empno <= 7844 ", ORADYN_NO LANKSTRIP)
  Set OraFields = OraDynaset.Fields 
 
  'Move to 3rd record from the first record
  OraDynaset.MoveNextn 3  'Should set EOF to true
  MsgBox OraFields("ename").Value  ' Should be display SCOTT
  
  If OraDynaset.EOF = True Then
    MsgBox "End of the record reached"
  End If
  
  'Move back from the current record by the offset 2
  OraDynaset.MovePreviousn 2    
  MsgBox OraFields("ename").Value  ' Should be display BLAKE
 
  If OraDynaset.BOF = True Then
    MsgBox "Start of the record reached"
  End If
   
  'Move relative in the forward direction 
  OraDynaset.MoveRel 2
  MsgBox OraFields("ename").Value  ' Should be display SCOTT
 
  If OraDynaset.EOF = True Then
    MsgBox "End of the record reached"
  End If
 
  'Move relative in the backward direction 
  OraDynaset.MoveRel -2
  MsgBox OraFields("ename").Value  ' Should be display BLAKE
 
  If OraDynaset.BOF = True Then
    MsgBox "Start of the record reached"
  End If 
 
  'Move to the record position 4 in the current dynaset
   OraDynaset.MoveTo 4
   MsgBox OraFields("ename").Value  ' Should be display SCOTT
  
End Sub



Mul (OraIntervalDS) Method

10-204 Oracle Objects for OLE Developer's Guide

Mul (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Multiplies the OraIntervalDS object by a multiplier.

Usage
OraIntervalDSObj.Mul multiplier

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraIntervalDS object, overwriting any 
previous value. There is no return value.

Arguments Description

[in] multiplier A Variant for type numeric value or an OraNumber object to be 
used as the multiplier.



Mul (OraIntervalYM) Method

Server Methods 10-205

Mul (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Multiplies the OraIntervalYM object by a multiplier.

Usage
OraIntervalYMObj.Mul multiplier

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraIntervalYM object, overwriting any 
previous value. There is no return value.

Arguments Description

[in] multiplier A Variant for type numeric value or an OraNumber object to be 
used as the multiplier.



Mul (OraNumber) Method

10-206 Oracle Objects for OLE Developer's Guide

Mul (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Multiplies the OraNumber object by operand. 

Usage
OraNumber.Mul operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

Arguments Description

[in] operand A Variant of type String, OraNumber, or a numeric value.



Neg (OraIntervalDS) Method

Server Methods 10-207

Neg (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Negates the OraIntervalDS object.

Usage
OraIntervalDSObj.Neg

Remarks
The result of the operation is stored in the OraIntervalDS object, overwriting any 
previous value. There is no return value.



Neg (OraIntervalYM) Method

10-208 Oracle Objects for OLE Developer's Guide

Neg (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Negates the OraIntervalYM object.

Usage
OraIntervalYMObj.Neg

Remarks
The result of the operation is stored in the OraIntervalYM object, overwriting any 
previous value. There is no return value.



Neg (OraNumber) Method

Server Methods 10-209

Neg (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Negates an OraNumber object. 

Usage
OraNumber.Neg

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.



Open (OraServer) Method

10-210 Oracle Objects for OLE Developer's Guide

Open (OraServer) Method

Applies To
OraDatabase Object on page 9-28

OraServer Object on page 9-56

Description
Establishes a connection to an Oracle database.

Usage
OraServer.Open serverAlias

Arguments
The arguments for the method are:

Remarks
If no arguments is supplied, this method attaches to a database that was detached 
previously.

Arguments Description

[in] serverAlias A String containing the Network alias used for connecting to the 
database.

See Also:

■ BeginTrans Method on page 10-43

■ Close Method on page 10-63

■ CommitTrans Method on page 10-66

■ CreateAQ Method on page 10-79

■ CreateCustomDynaset Method on page 10-80

■ CreateTempBLOB/CLOB Method on page 10-114

■ CreateDynaset Method on page 10-85

■ CreateOraObject (OraDatabase) Method on page 10-97

■ Describe Method on page 10-124

■ ExecuteSQL Method on page 10-144

■ FetchOraRef Method on page 10-149

■ LastServerErrReset Method on page 10-189

■ MonitorForFailover Method on page 10-194

■ RemoveFromPool Method on page 10-232



Open (OraBFILE) Method

Server Methods 10-211

Open (OraBFILE) Method

Applies To
OraBFILE Object on page 9-9

Description
Opens a BFILE.

Usage
OraBfile.Open 

Remarks
This method should be called before accessing the BFILE value.



OpenDatabase Method

10-212 Oracle Objects for OLE Developer's Guide

OpenDatabase Method

Applies To
OraSession Object on page 9-58

OraServer Object on page 9-56

Description
Establishes a user session to the database. It creates a new OraDatabase object using 
the given database name, connection string, and specified options.

Usage
Set oradatabase = orasession.OpenDatabase(database_name,connect_string, options) 
Set oradatabase = oraserver.OpenDatabase(connect_string, options)

Arguments
The arguments for the method are:

Constants
The following table lists constants and values for the options flag.

Arguments Description

database_name The Oracle Network specifier used when connecting the data 
control to a database.

connect_string The user name and password to be used when connecting to an 
Oracle database.

options A bit flag word used to set the optional modes of the database. If 
options = 0, the default mode settings apply. The following table 
shows the possible modes, which can be combined by adding their 
respective values.

Constant Value Description

ORADB_DEFAULT &H0& Visual Basic Mode (Default):

Field (column) values not explicitly set are set to 
Null when using the AddNew or Edit method. 
The Null values override any database column 
defaults. Wait on row locks when using Edit 
("SELECT...FOR UPDATE").

Nonblocking SQL functionality is not enabled.

ORADB_ORAMODE &H1& Oracle Mode:

Lets Oracle Database set the default field 
(column) values when using the AddNew method. 
The Oracle default column values are fetched 
again from database immediately after an insert 
or add operation.

Note: If you use triggers, fetch the data again 
using the full Oracle Mode. 



OpenDatabase Method

Server Methods 10-213

These values can be found in the oraconst.txt file. For creating a valid database 
alias, see the Oracle Net Services Administrator's Guide.

Examples of valid connect_string arguments include:

■ "scott/tiger"

■ "system/manager"

■ "/"

Remarks
An OraConnection object is created automatically and appears within the 
OraConnections collection of the session. Opening a database has the effect of 
opening a connection but does not perform any SQL actions.

One possible connection error that could be returned is:

ORA-28001 "the password has expired"

The user can change the password using the ChangePassword method.

ORADB_NOWAIT &H2& Lock No-Wait Mode:

Does not wait on row locks. When you use the 
Edit method to update a row that is locked by 
another user or process, Lock No-Wait mode 
results in an immediate return of an error code. 

Note: This option only applies to the 
OraDynaset object. It has no effect on 
OraSQLStmt objects or ExecuteSQL calls. It 
only raises an error in the case of a locked row.

ORADB_NO_REFETCH &H4& Oracle Mode (No Refetch):

Performs like the Oracle Mode, but does not 
refetch data to the local cache. This boosts 
performance. 

Note: Use the No Refetch mode only when you 
intend to insert rows without editing them, 
because database column defaults cause 
inconsistencies between database data and the 
local cache. Attempting to edit after inserting in 
this mode causes a Data has been modified 
(4119) error. 

ORADB_NONBLK &H8& Nonblocking Mode:

Turns on Nonblocking mode on SQL statement 
execution. Nonblocking mode affects the SQL 
statements processed using the ExecuteSQL, 
CreateDynaset, or CreateSQL methods.

Note: This feature has been deprecated.

ORADB_ENLIST_IN_MTS &H10& Enlist in MTS Mode:

Determine whether the OraDatabase object 
enlists in the Microsoft Transaction Server (MTS) 
mode.

ORADB_ENLIST_FOR_ 
CALLLBACK 

&H20& Enlist For Callbacks Mode:

Turn on the event notification. This mode has to 
be enabled to receive Failover Notifications.

Constant Value Description



OpenDatabase Method

10-214 Oracle Objects for OLE Developer's Guide

Examples
This example demonstrates how to programmatically create a dynaset and all of the 
underlying objects. Copy and paste this code into the definition section of a form with 
text boxes named txtEmpNo and txtEName. Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)
 
 'Display the first record.
 txtEmpNo = OraDynaset.Fields("empno").value
 txtEName = OraDynaset.Fields("ename").value
 
End Sub

See Also:

■ "Microsoft Transaction Server Support" on page 3-15

■ ChangePassword (OraServer) Method on page 10-48

■ "Application Failover Notifications" on page 4-24

■ AddNew Method on page 10-21

■ Edit Method on page 10-134

■ ExecuteSQL Method on page 10-144

■ ChangePassword (OraSession) Method on page 10-50

■ OraConnection Object on page 9-27

■ OraConnections Collection on page 9-66 



OriginalItem Method

Server Methods 10-215

OriginalItem Method

Applies To
OraFields Collection on page 9-67

Description
Returns the OraField object based on the original column name used in the SELECT 
statement in the dynaset. Not available at design time and read-only at run time.

Usage
set OraField = OraFields.OriginalItem(field_index)
set OraField = OraFields.OriginalItem(original_name)

Arguments
The arguments for the method are:

Remarks
This is property is useful when a SQL statement contains 'schema.table.col' as 
the Name of the field, and retrieves the field object specific to that original name.

Examples
The following example shows the use of the OriginalItem method. Copy and paste 
this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 Dim OraFields As OraFields
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 Set OraDynaset = OraDatabase.CreateDynaset("select scott.emp.deptno," & _
     "dept.deptno from scott.emp, scott.dept where dept.deptno = emp.deptno", 0&)
 
 'Get the Field collection object
 Set OraFields = OraDynaset.Fields
 
 'get the original field object. Returns "scott.emp.deptno" 
 

Arguments Description

field_index Field index of the original column name.

original_name Original field name specified in the SQL statement.



OriginalItem Method

10-216 Oracle Objects for OLE Developer's Guide

 MsgBox OraField.OriginalName
 
 Set OraField = OraFields.OriginalItem(1)
 
 'Returns "dept.deptno" 
 MsgBox OraField.OriginalName
 
End Sub



OriginalName

Server Methods 10-217

OriginalName

Applies To
OraField Object on page 9-33

Description
Returns the original column name used in the SELECT statement in the dynaset (as 
opposed to the name of the field as it appears on the server returned by the Name 
property). Not available at design time and read-only at run time.

Usage
field_name = Orafield.OriginalName

Remarks
The orafield.OriginalName method returns the name of the specified OraField 
object. This returns the Original column name specified in the SQL statement during 
dynaset creation. This property is useful when a SQL statement contains  
'schema.table.col' as the Name of the field. It enables duplicate column names to 
be referenced. (Duplicate column names can be avoided by using aliases in the SQL 
statement.)

Examples
The following example shows the use of the OriginalName property. Copy and paste 
this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 Dim OraFields As OraFields
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 Set OraDynaset = OraDatabase.CreateDynaset("select scott.emp.deptno," & _ 
    "dept.deptno from scott.emp, scott.dept where dept.deptno = emp.deptno", 0&)
 
 Set OraFields = OraDynaset.Fields
 
 'Returns "DEPTNO"  
 MsgBox OraFields(0).Name   
 
 'Returns "scott.emp.deptno" 
 MsgBox OraFields(0).OriginalName   
   
 'Returns "dept.deptno" 
 MsgBox OraFields(1).OriginalName  
 



OriginalName

10-218 Oracle Objects for OLE Developer's Guide

End Sub



Power (OraNumber) Method

Server Methods 10-219

Power (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Raises the OraNumber object to the power of the operand. 

Usage
OraNumber.Power operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

Arguments Description

[in] operand A Variant of type String, OraNumber, or a numeric value.



Put_Value Method

10-220 Oracle Objects for OLE Developer's Guide

Put_Value Method

Applies To
OraParamArray Object on page 9-47

Description
Inserts values into the table parameter.

Usage
OraParamArray.Put_Value(value, index)

Arguments
The arguments for the method are:

Remarks
This method should be used to insert a value before accessing a row in a table. A row 
does not contain a valid value until a row is assigned a value. Any reference to an 
unassigned row in the table raises an OLE Automation error.

The value argument can be an Oracle Database 10g object, such as an OraBLOB. For 
Put_Value, a copy of the object is made at that point in time, and Get_Value must 
be accessed to obtain a new object that refers to that index value. For example, if 
iotype is ORATYPE_BOTH and an OraBLOB obtained from a dynaset is passed in as 
the input value, Get_Value needs to be called after the SQL has been executed to 
obtain the newly updated output value of the ParamaterArray. 

Similar to a dynaset, the object obtained from ParamaterArray Get_Value method 
always refers to the latest value for that ParamaterArray index. The Visual Basic 
value Null can also be passed as a value. The Visual Basic value EMPTY can be used 
for BLOB and CLOB to indicate an empty LOB, and for OBJECT, VARRAY and NESTED 
TABLE to indicate an object whose attributes are all Null.

When binding to RAW columns (ServerType ORATYPE_RAW_BIN) value should be a 
byte array.

Arguments Description

[in] value A Variant representing the value to insert.

[in] index An Integer representing the index value of the object.



Read (OraLOB/BFILE) Method

Server Methods 10-221

Read (OraLOB/BFILE) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Reads into a buffer a specified portion of a BLOB, CLOB, or BFILE value. Returns the 
total amount of data read. 

Usage
amount_read = OraBlob.Read buffer, chunksize
amount_read = OraClob.Read buffer, chunksize
amount_read = OraBfile.Read buffer, chunksize

Arguments
The arguments for the method are:

Remarks
Reads the LOB or BFILE data from the offset specified by the Offset property. For 
multiple piece read operation, the PollingAmount property must be set to the value 
of the total amount of data to be read, and the Status property must be checked for 
the success of each piece operation.

Examples
Be sure that you have installed the OraLOB Schema Objects as described in "Schema 
Objects Used in LOB Data Type Examples"  on page A-3.

Example: Multiple-Piece Read of a LOB

Dim OraSession As OraSession 

Arguments Description

[out] buffer Variant of type character array for OraCLOB, Variant of type 
byte array for OraBLOB, or OraBFILE from which the piece is read.

[in] [optional] 
chunksize

An Integer specifying the amount to be read. Default value is the 
size of the LOB. In bytes for OraBLOB or OraBFILE; characters for 
OraCLOB.

[out] amount_read An Integer representing the total amount of data read. In bytes for 
OraBLOB or OraBFILE; characters for OraCLOB.

Note: When reading a portion of a LOB, it is recommended that 
you set the PollingAmount property, rather than using the 
chunksize parameter. This avoids the possibility of raising an 
error if the entire LOB is not read before to executing another LOB 
method.



Read (OraLOB/BFILE) Method

10-222 Oracle Objects for OLE Developer's Guide

Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim PartImage As OraBlob 
Dim chunksize As Long 
Dim AmountRead As Long 
Dim buffer As Variant 
Dim buf As String 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb","scott/tiger", 0&)  
 
'Create the OraDynaset Object. 
Set OraDynaset = OraDatabase.CreateDynaset("select * from part", 0&) 
 
'Get OraBlob from OraDynaset 
Set PartImage = OraDynaset.Fields("part_image").Value 
 
'Set Offset and PollingAmount property for piecewise Read operation 
PartImage.offset = 1 
PartImage.PollingAmount = PartImage.Size 
chunksize = 50000 
 
'Get a free file number 
FNum = FreeFile 
 
'Open the file 
Open "image.dat" For Binary As #FNum 
 
'Do the first read on PartImage, buffer must be a variant 
AmountRead = PartImage.Read(buffer, chunksize) 
 
'put will not allow Variant type 
buf = buffer 
Put #FNum, , buf 
 
' Check for the Status property for polling read operation 
While PartImage.Status = ORALOB_NEED_DATA 
    AmountRead = PartImage.Read(buffer, chunksize) 
    buf = buffer 
    Put #FNum, , buf 
Wend 
 
Close FNum 

Example: Single-Piece Read of a LOB

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim PartDesc As OraClob 
Dim AmountRead As Long 
Dim buffer As Variant 
Dim buf As String 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 



Read (OraLOB/BFILE) Method

Server Methods 10-223

 
'Create the OraDatabase Object. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'Add PartDesc as an Output parameter and set its initial value. 
OraDatabase.Parameters.Add "PartDesc", Null, ORAPARM_OUTPUT 
OraDatabase.Parameters("PartDesc").ServerType = ORATYPE_CLOB 
 
'Execute the statement returning 'PartDesc' 
OraDatabase.ExecuteSQL ("BEGIN select part_desc into :PARTDESC from" & _ 
             "part where part_id = 1 for update NOWAIT; END;") 
 
'Get 'PartDesc' from Parameters collection 
Set PartDesc = OraDatabase.Parameters("PartDesc").Value 
 
'Get a free file number 
FNum = FreeFile 
 
'Open the file. 
 
Open "Desc.Dat" For Binary As #FNum 
 
'Read entire CLOB value, buffer must be a Variant 
AmountRead = PartDesc.Read(buffer) 
 
'put will not allow Variant type 
buf = buffer 
Put #FNum, , buf 
 
Close FNum 

See Also:

■ Offset (OraLOB/BFILE) Property on page 11-112

■ PollingAmount Property on page 11-125

■ Status (OraLOB/BFILE) Property on page 11-154



ReadChunk Method

10-224 Oracle Objects for OLE Developer's Guide

ReadChunk Method

Applies To
OraField Object on page 9-33

Description
Returns a String containing the bytes of all or a portion of a LONG or LONG RAW field.

Usage
data_string = orafield.ReadChunk(offset, numbytes, bytesread) 

Arguments
The arguments for the method are:

Remarks
The ReadChunk method behaves like the GetChunk method, but it returns the actual 
number of bytes read in the bytesread argument.

Arguments Description

offset The number of bytes in the field to skip before copying data.

numbytes The number of bytes to copy.

bytesread The number of bytes read.

See Also:

■ "Migration from LONG RAW to LOB or BFILE" on page 5-5

■ GetChunk Method on page 10-156



Refresh Method

Server Methods 10-225

Refresh Method

Applies To
OraDynaset Object on page 9-30

OraSQLStmt Object on page 9-60

Description
Forces an immediate update of the dynaset given the current Connect, 
DatabaseName, and SQL properties. 

Forces an immediate update of the dynaset by reexecuting the SQL statement in the 
SQL statement object.

Usage
oradynaset.Refresh
oradynaset.DbRefresh  
orasqlstmt.Refresh
orasqlstmt.DbRefresh

Remarks
This method cancels all edit operations (Edit and AddNew methods), executes the 
current contents of the SQL statement buffer, and moves to the first row of the 
resulting dynaset. Any dynaset objects created before issuing the Refresh method, 
including bookmarks, record counts, and field collections, are considered invalid. The 
OraConnection and OraSession objects associated with the previous dynaset 
remain unchanged.

Performing a refresh operation with this method can be more efficient than refreshing 
with a data control. This method also lets you execute a modified SQL statement 
without creating a new dynaset or OraSQLStmt object.

The preferred refresh methods when changing parameter values are 
oradynaset.Refresh or orasqlstmt.Refresh, because required database 
operations are minimized (SQL parsing, binding, and so on). This can improve 
performance when only parameter values have changed.

If you call the Refresh method after assigning an invalid SQL statement to the SQL 
property of a dynaset or SQL statement object, these objects remain valid. However, a 
dynaset in this state does not permit any row or field operations. Bound controls also 
exhibit unusual behaviors similar to those that occur when the standard Visual Basic 
data control RecordSource is set to an invalid SQL statement at run time and then 
refreshed. 

You can regain the normal dynaset and SQL statement operations by refreshing the 
object with a valid SQL statement. The Refresh method treats Null or empty SQL 
statements as invalid.



Refresh Method

10-226 Oracle Objects for OLE Developer's Guide

Examples

Refresh Method Example (OraDynaset) 
This example demonstrates the use of parameters, the Refresh method, and the SQL 
property to restrict selected records. Copy and paste this code into the definition 
section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create a parameter with an initial value.
 OraDatabase.Parameters.Add "job", "MANAGER", 1
 
 'Create the OraDynaset Object.
 Set OraDynaset =OraDatabase.CreateDynaset("select * from emp where job=:job",0&)
 
 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL
 
 'Currently, OraDynaset only contains employees whose job is MANAGER.
 'Change the value of the job parameter.
 
 OraDatabase.Parameters("job").Value = "SALESMAN"
 
 'Refresh the dynaset.
 OraDynaset.Refresh
 
 'Currently, OraDynaset only contains employees whose job is SALESMAN.
 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL
 
 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")
 
 End Sub

Refresh Method Example (OraSQLStmt) 
This example demonstrates the use of parameters, the Refresh method, and the SQL 
property for the . object. Copy and paste this code into the definition section of a form. 
Then, press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraSqlStmt As OraSQLStmt 
 



Refresh Method

Server Methods 10-227

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 OraDatabase.Parameters.Add "EMPNO", 7369, 1
 OraDatabase.Parameters("EMPNO").ServerType = 2  'ORATYPE_NUMBER  
 OraDatabase.Parameters.Add "ENAME", 0, 2
 OraDatabase.Parameters("ENAME").ServerType = 1  'ORATYPE_VARCHAR2  
 
 Set OraSqlStmt = OraDatabase.CreateSQL("Begin Employee.GetEmpName (:EMPNO," & _
              ":ENAME); end;", 0&) 
 
 'Notice that the SQL statement is NOT modified.
 MsgBox OraSqlStmt.SQL
 
 'Should display SMITH
 MsgBox OraDatabase.Parameters("ENAME").Value  
 
 'Change the value of the empno parameter.
 OraDatabase.Parameters("EMPNO").Value = 7499
 
 'Refresh the dynaset.
 OraSqlStmt.Refresh
 
 'Should display ALLEN
 MsgBox OraDatabase.Parameters("ENAME").Value   
 
 'Notice that the SQL statement is NOT modified.
 MsgBox OraSqlStmt.SQL 
 
 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")
 
 End Sub
 

See Also:

■ AddNew Method on page 10-21

■ Connect Property on page 11-23

■ CreateDynaset Method on page 10-85

■ DatabaseName Property on page 11-37

■ Edit Method on page 10-134

■ OraConnection Object on page 9-27

■ OraDynaset Object on page 9-30

■ OraSession Object on page 9-58

■ SQL Property on page 11-150

■ RecordSource Property on page 14-31



Refresh (OraRef) Method

10-228 Oracle Objects for OLE Developer's Guide

Refresh (OraRef) Method

Applies To
OraRef Object on page 9-52

Description
Refreshes the referenceable object from the most current database snapshot.

Usage
OraRef.Refresh



Register Method

Server Methods 10-229

Register Method

Applies To
OraSubscription Object on page 9-61

Description
Activates the subscription.

Usage
orasubscription.Register

Remarks
When the specified database event is fired, the NotifyDBevents method of the 
dbevent handler that was passed in while creating this subscription is invoked.

Examples
See "Example: Registering an Application for Notification of Database Events" on 
page 10-15 for a complete example.

See Also:

■ "Database Events" on page 4-22

■  OraSubscription Object on page 9-61

■ OraSubscriptions Collection on page 9-70



Remove Method

10-230 Oracle Objects for OLE Developer's Guide

Remove Method

Applies To
OraParameters Collection on page 9-68

Description
Removes a parameter from the OraParameters collection.

Usage
oraparameters.Remove(member_name)

Arguments
The arguments for the method are:

Remarks
Instead of repeatedly removing and adding unwanted parameters, use the 
AutoBindDisable and AutoBindEnable methods.

For an OraParameter of type ORATYPE_CURSOR, this method destroys the dynaset 
object associated with the cursor, and clears the local cache temporary files.

Examples
See "Example: ExecuteSQL" on page 10-145.

Arguments Description

member_name A Variant specifying an integer subscript from 0 to Count 1, or 
the parameter name.

See Also:

■ Add Method on page 10-8 

■ AutoBindDisable Method on page 10-39

■ AutoBindEnable Method on page 10-41

■ OraDatabase Object on page 9-28

■ OraParameter Object on page 9-50

■ OraParameters Collection on page 9-68



Remove (OraSubscriptions Collection) Method

Server Methods 10-231

Remove (OraSubscriptions Collection) Method

Applies To
OraSubscriptions Collection on page 9-70

Description
Removes a subscription from the OraSubscriptions collection.

Usage
orasubscriptions.Remove(member)

Arguments
The arguments for the method are:

Remarks
This method unregisters (removes) the subscription if it is active, and destroys the 
subscription associated with it.

Arguments Description

member A Variant specifying an integer subscript from 0 to Count, or the 
subscription name.

See Also:

■ Add (OraSubscriptions Collection) Method on page 10-14

■ OraSubscription Object on page 9-61

■ OraSubscriptions Collection on page 9-70



RemoveFromPool Method

10-232 Oracle Objects for OLE Developer's Guide

RemoveFromPool Method

Applies To
OraDatabase Object on page 9-28

Description
Removes the OraDatabase object from the pool. 

Usage
OraDatabase.RemoveFromPool 

Remarks
This method applies only to those OraDatabase objects that are retrieved from the 
pool using the GetDatabaseFromPool method. 

No exceptions or errors are raised if the OraDatabase object is not a member the 
pool. 

This method is useful for removing OraDatabase objects from the pool whose 
connections are no longer valid. 

See Also:

■ CreateDatabasePool Method on page 10-83

■ DestroyDatabasePool Method on page 10-128

■ GetDatabaseFromPool Method on page 10-155



ResetTrans Method

Server Methods 10-233

ResetTrans Method

Applies To
OraConnection Object on page 9-27

OraSession Object on page 9-58

Description
Unconditionally rolls back all transactions and clears the transaction mode initiated by 
BeginTrans method.

Usage
oraconnection.ResetTrans
orasession.ResetTrans

Remarks
This method does not generate events or produce errors. Because the ResetTrans 
method does not generate events, you cannot cancel the ResetTrans method in a 
Validate event, as you can with a rollback or commit operation.

Note: If an OraDatabase object has been enlisted with Microsoft Transaction Server 
(MTS) and is part of a global MTS transaction, this method has no effect.

Examples
This example demonstrates the use of the BeginTrans and ResetTrans methods to 
group a set of dynaset edits into a single transaction. Copy and paste this code into the 
definition section of a form. Then, press F5.

Sub Form_Load ()
 
'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Start Transaction processing.
 OraDynaset.Session.BeginTrans
 
 'Traverse until EOF is reached, setting each employee's salary to zero.
 Do Until OraDynaset.EOF
   OraDynaset.Edit
   OraDynaset.Fields("sal").value = 0
   OraDynaset.Update
   OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."



ResetTrans Method

10-234 Oracle Objects for OLE Developer's Guide

 
 'Currently, the changes have NOT been committed to the database.
 'End Transaction processing.
 'Using ResetTrans means the rollback cannot be canceled in the Validate event.
 OraDynaset.Session.ResetTrans
 MsgBox "Salary changes rolled back."
 
End Sub

See Also:

■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ OraSession Object on page 9-58

■ Rollback Method on page 10-235

■ Microsoft Transaction Server Support on page 3-15

■ Validate Event on page 12-9



Rollback Method

Server Methods 10-235

Rollback Method

Applies To
OraConnection Object on page 9-27

OraDatabase Object on page 9-28

OraSession Object on page 9-58

Description
Ends the current transaction and rolls back all pending changes to the database.

Usage
oraconnection.Rollback
orasession.Rollback
oradatabase.Rollback

Remarks
When this method is invoked, all OraDynaset objects that share the specified session 
or connection are given the opportunity to cancel the rollback request. If they do not 
cancel the request, they are advised when the rollback succeeds.

This feature is useful primarily for dynasets that are created as part of an Oracle Data 
Control operation. For these dynasets, the Validate event is sent to allow them to 
cancel the rollback request.

■ OraConnection and OraDatabase: 

The Rollback method rolls back all pending transactions within the specified 
connection. This method has no effect if a transaction has not begun. When a 
session-wide transaction is in progress, you can use this call to prematurely roll 
back the transactions for the specified connection.

■ OraSession:

The Rollback method rolls back all pending transactions within the specified 
session. The Rollback method is valid only when a transaction has been started. 
If a transaction has not been started, the use of the Rollback method results in an 
error.

Examples
This example demonstrates the use of the BeginTrans and Rollback methods to 
group a set of dynaset edits into a single transaction. Copy and paste this code into the 
definition section of a form. Then, press F5.

Sub Form_Load ()
 
'Declare variables 
 Dim OraSession As OraSession 

Note: If an OraDatabase object has been enlisted with Microsoft 
Transaction Server (MTS) and is part of a global MTS transaction, 
this method has no effect.



Rollback Method

10-236 Oracle Objects for OLE Developer's Guide

 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Start Transaction processing.
 OraDynaset.Session.BeginTrans
 
 'Traverse until EOF is reached, setting each employee's salary to zero.
 Do Until OraDynaset.EOF
   OraDynaset.Edit
   OraDynaset.Fields("sal").value = 0
   OraDynaset.Update
   OraDynaset.MoveNext
 Loop
 MsgBox "All salaries set to ZERO."
 
 'Currently, the changes have NOT been committed to the database.
 'End Transaction processing.
 OraDynaset.Session.Rollback
 MsgBox "Salary changes rolled back."
 
End Sub

See Also:

■ AutoCommit Property on page 11-9

■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ OraSession Object on page 9-58

■ OraConnection Object on page 9-27

■ ResetTrans Method on page 10-233

■ "Microsoft Transaction Server Support" on page 3-15

■ Validate Event on page 12-9



Round (OraNumber) Method

Server Methods 10-237

Round (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Rounds the OraNumber object to the specified decimal place. 

Usage
OraNumber.Power decplaces

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

Arguments Description

[in]  decplaces An Integer specifying the number of digits to the right of the decimal 
point from which to round. Negative values are allowed and signify 
digits to the left of the decimal point.



SetPi (OraNumber) Method

10-238 Oracle Objects for OLE Developer's Guide

SetPi (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Sets an OraNumber object to Pi.

Usage
OraNumber.SetPi

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.



Sin (OraNumber) Method

Server Methods 10-239

Sin (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the sine of an OraNumber object given in radians. 

Usage
OraNumber.Sin

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.



Sqrt (OraNumber) Method

10-240 Oracle Objects for OLE Developer's Guide

Sqrt (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the square root of an OraNumber object. 

Usage
OraNumber.Sqrt

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

This method returns an error if the OraNumber object is less than zero.



Sub (OraIntervalDS) Method

Server Methods 10-241

Sub (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Subtracts an argument from the OraIntervalDS object.

Usage
OraIntervalDSObj.Sub operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraIntervalDS object, overwriting any 
previous value. There is no return value.

If operand is a Variant of type String, it must be in the following format: [+/-] 
Day HH:MI:SSxFF. 

If operand is a numeric value, the value provided should represent the total number 
of days that the constructed OraIntervalDS object represents.

Arguments Description

[in] operand A Variant of type String, a numeric value, or an OraIntervalDS, 
object to be subtracted.



Sub (OraIntervalYM) Method

10-242 Oracle Objects for OLE Developer's Guide

Sub (OraIntervalYM) Method

Applies To
OraIntervalYM Object on page 9-37

Description
Subtracts an argument from the OraIntervalYM object.

Usage
OraIntervalYMObj.Sub operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraIntervalYM object, overwriting any 
previous value. There is no return value.

If operand is a Variant of type String, it must be in the following format: [+/-] 
YEARS-MONTHS.

If operand is a numeric value, the value provided should represent the total number 
of years that the constructed OraIntervalYM object represents.

Arguments Description

[in] operand A Variant of type String, a numeric value, or an OraIntervalYM 
object to be subtracted.



Sub (OraNumber) Method

Server Methods 10-243

Sub (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Subtracts a numeric argument from the OraNumber object.

Usage
OraNumber.Sub operand

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

Arguments Description

[in] operand A Variant of type String, type OraNumber, or a numeric value.



Tan (OraNumber) Method

10-244 Oracle Objects for OLE Developer's Guide

Tan (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Calculates the tangent of an OraNumber object given in radians. 

Usage
OraNumber.Tan

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.



ToDate Method

Server Methods 10-245

ToDate Method

Applies To
OraTimeStamp Object on page 9-62

OraTimeStampTZ Object on page 9-64

Description
Returns a copy of the Date type from an OraTimeStamp or OraTimeStampTZ object.

Usage
Set date = OraTimeStampObj.ToDate
Set date = OraTimeStampTZObj.ToDate

Remarks
This method returns the datetime values in the Date data type. As a result, the 
date-time values can be adjusted if they fall outside the range allowed by a VB date.

■ For an OraTimeStamp object:

Returns a new Date object with the same date-time values as the current 
OraTimeStamp object, but the nanosecond portion is truncated.

■ For an OraTimeStampTZ object:

Returns a new Date object with the same date-time values as the current 
OraTimeStampTZ object, but the nanosecond portion and time zone portion are 
truncated.

Examples

Using the OraTimeStamp Object
Dim OraTimeStamp As OraTimeStamp 
 
... 
'Create OraTimeStamp using a string 
Set OraTimeStamp = OraSession.CreateOraTimeStamp("1999-APR-29 12:10:23.444 AM", _
       "YYYY-MON-DD HH:MI:SS.FF AM") 
 
' returns a Date type with date value set to "1999-APR-29 12:10:23 AM" 
' note that the fractional part is dropped 
Set date = OraTimeStamp.ToDate 
 

Using the OraTimeStampTZ Object
 
Dim OraTimeStampTZ As OraTimeStampTZ 
 
... 
'Create OraTimeStampTZ using a string 
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2000-12-28" & _ 
        "12:10:23.444 -07:00", "YYYY-MM-DD HH:MI:SS.FF TZH:TZM") 
 
'returns a Date type with date value set to "2000-12-28 12:10:23" 



ToDate Method

10-246 Oracle Objects for OLE Developer's Guide

'note that Time Zone and nanosecond portions are dropped 
Set date = OraTimeStampTZ.ToDate



ToOraNumber (OraIntervalDS) Method

Server Methods 10-247

ToOraNumber (OraIntervalDS) Method

Applies To
OraIntervalDS Object on page 9-35

Description
Returns an OraNumber object containing a value that represents the total number of 
days that the OraIntervalDS object specifies.

Usage
Set OraNumberObj = OraIntervalDSObj.ToOraNumber



ToOraTimeStamp Method

10-248 Oracle Objects for OLE Developer's Guide

ToOraTimeStamp Method

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns a copy of the OraTimeStamp object that has the date-time value in the 
specified time zone of the current OraTimeStampTZ object.

Returns a copy of the OraTimeStamp object from an OraTimeStampTZ object. 

Usage
Set OraTimeStampObj = OraTimeStampTZObj.ToOraTimeStamp

Remarks
Returns a new OraTimeStamp object that has the date-time values in the specified 
time zone of the current OraTimeStampTZ object. 

Examples
Dim OraTimeStampTZ As OraTimeStampTZ 
 
... 
'Create OraTimeStampTZ using a string 
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2000-12-28" & _
       "12:10:23.444 -07:00", "YYYY-MM-DD HH:MI:SS.FF TZH:TZM") 
 
'returns a new OraTimeStamp object with date value equal to 
' "2000-12-28 12:10:23.444" 
'note that Time Zone portion is dropped 
Set OraTimeStamp = OraTimeStampTZ.ToOraTimeStamp



ToOraTimeStampLTZ Method

Server Methods 10-249

ToOraTimeStampLTZ Method

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns a copy of the OraTimeStamp object that has the date-time value normalized 
to the session time zone of the current OraTimeStampTZ object.

Usage
Set OraTimeStampObj = OraTimeStampTZObj.ToOraTimeStampLTZ

Remarks
Returns a new OraTimeStamp object that has the date-time values normalized to the 
session time zone of the current OraTimeStampTZ object. 

Examples
Dim OraTimeStampTZ As OraTimeStampTZ 
 
... 
'Create OraTimeStampTZ using a string 
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29" & _ 
        "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM") 
 
'Assuming that the Session Time Zone is "-08:00" 
'returns a new OraTimeStamp object with date value normalized to 
'session Time Zone, "2003-APR-29 11:00:00" 
 
Set OraTimeStamp = OraTimeStampTZ.ToOraTimeStampLTZ 
...



ToOraTimeStampTZ Method

10-250 Oracle Objects for OLE Developer's Guide

ToOraTimeStampTZ Method

Applies To
OraTimeStamp Object on page 9-62

Description
Returns a copy of the OraTimeStampTZ object from an OraTimeStamp object.

Usage
Set OraTimeStampTZObj = OraTimeStampObj.ToOraTimeStampTZ

Remarks
Returns a new OraTimeStampTZ object with the same date-time values as the current 
OraTimeStamp object. The time zone information in the returned OraTimeStampTZ 
object is set to the session time zone.

Examples
Dim OraTimeStamp As OraTimeStamp 
 
... 
'Create OraTimeStamp using a string 
Set OraTimeStamp = OraSession.CreateOraTimeStamp("1999-APR-29" & _ 
         "12:10:23.444 AM", "YYYY-MON-DD HH:MI:SS.FF AM") 
 
' assuming that the session Time Zone is "-07:00" returns a new 
' OraTimeStampTZ object with date value equal to "1999-APR-29 12:10:23 -07:00" 
Set OraTimeStampTZ = OraTimeStamp.ToOraTimeStampTZ 



ToUniversalTime Method

Server Methods 10-251

ToUniversalTime Method

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns a copy of the OraTimeStampTZ object that has the date-time value 
normalized to Coordinated Universal Time (UTC) of the current OraTimeStampTZ 
object.

Usage
Set OraTimeStampTZObj1 = OraTimeStampTZObj.ToUniversalTime

Remarks
Returns a new OraTimeStampTZ object that has the date-time values normalized to 
the UTC of the current OraTimeStampTZ object. 

Examples

Dim OraTimeStampTZ As OraTimeStampTZ 
Dim OraTimeStampTZ_UTC As OraTimeStampTZ 
... 
'Create OraTimeStampTZ using a string 
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29 " & _ 
        "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM") 
 
'returns a new OraTimeStampTZ object with date value normalized to 
'UTC time, "2003-APR-29 19:00:00 00:00" 
Set OraTimeStampTZ_UTC = OraTimeStampTZ.ToUniversalTime 
...

Note: UTC was formerly known as Greenwich Mean Time.



Trim (OraCollection) Method

10-252 Oracle Objects for OLE Developer's Guide

Trim (OraCollection) Method

Applies To
OraCollection Object on page 9-19

Description
Trims a given number of elements from the end of the collection. 

Usage
OraCollection.Trim size

Arguments
The arguments for the method are:

Remarks
The elements are removed from the end of the collection. An error is returned if the 
size is greater than the current size of the collection. 

Examples
The following example illustrates the Trim method. Before running the sample code, 
make sure that you have the necessary data types and tables in the database. See 
"Schema Objects Used in OraCollection Examples"  on page A-3.

Example: Trim Method for the OraCollection Object

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim EnameList as OraCollection
 
'create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from department
set OraDynaset = OraDatabase.CreateDynaset("select * from department", 0&)
 
'retrieve a Enames column from Department. 
'Here Value property of OraField object returns EnameList OraCollection
set EnameList = OraDynaset.Fields("Enames").Value
 
'display the size of the collection
msgbox  EnameList.Size
 

Arguments Description

[in] size An Integer specifying the number of elements to trim.



Trim (OraCollection) Method

Server Methods 10-253

'Trim the EnameList collection by one. Before that row level
 'lock should be obtained
 
OraDynaset.Edit
EnameList.Trim 1
OraDynaset.Update
 
'display the new size of the collection
msgbox EnameList.Size



Trim (OraLOB) Method

10-254 Oracle Objects for OLE Developer's Guide

Trim (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Trims or truncates the LOB value to shorter length.

Usage
OraBlob.Trim NewLen
OraClob.Trim NewLen

Arguments
The arguments for the method are:

Remarks
Either a row-level lock or object-level lock should be obtained before calling this 
method.

Arguments Description

[in] NewLen An Integer specifying the new length of the LOB value; must be less 
than or equal to the current length.

Note: When manipulating LOBs using LOB methods, such as the 
Write and CopyFromFile, the LOB object is not automatically 
trimmed if the length of the new data is shorter than the old data. 
Use the Trim (OraLOB) method to shrink the LOB object to the size 
of the new data.



Trunc (OraNumber) Method

Server Methods 10-255

Trunc (OraNumber) Method

Applies To
OraNumber Object on page 9-41

Description
Truncates an Oracle number at a specified decimal place.

Usage
OraNumber.Trunc decplaces

Arguments
The arguments for the method are:

Remarks
The result of the operation is stored in the OraNumber object. There is no return value.

Arguments Description

[in]  decplaces An Integer specifying the number of digits to the right of the decimal 
point from which to truncate. Negative values are allowed and signify 
digits to the left of the decimal point.



Unregister Method

10-256 Oracle Objects for OLE Developer's Guide

Unregister Method

Applies To
OraSubscription Object on page 9-61

Description
Unregisters this subscription, which turns off notifications on the specific database 
event.

Usage
orasubscription.UnRegister

Remarks
Unregistering a subscription ensures that the user does not receive notifications related 
to that subscription or database event in the future. If the user wants to resume 
notification, then the only option is to re-register the subscription.

Examples

Registering an Application for Notification of Database Events Example
See "Example: Registering an Application for Notification of Database Events" on 
page 10-15.

See Also:

■ "Database Events" on page 4-22

■ OraSubscription Object on page 9-61

■  OraSubscriptions Collection on page 9-70



Update Method

Server Methods 10-257

Update Method

Applies To
OraDynaset Object on page 9-30

Description
Saves the copy buffer to the specified dynaset.

Usage
oradynaset.Update
oradynaset.DbUpdate 

Remarks
The Update method completes an AddNew or Edit operation and immediately 
commits changes to the database unless a BeginTrans operation is pending for the 
session.

Once the Update method is called on a given row in a dynaset in a global transaction 
(that is, a BeginTrans operation is issued), locks remain on the selected rows until a 
CommitTrans or Rollback method is called.

The mirrored data image is also updated so that the query does not have to be 
reevaluated to continue browsing and updating data. The method used for updating 
the mirror image is subject to the options flag that was passed to the OpenDatabase 
method that created the OraDatabase object of this dynaset.

If this dynaset is attached to a data control, then the Validate event of the data 
control code may optionally cancel the update request. If the update completes, then 
all bound controls associated with the dynaset are notified of the update so they can 
reflect the data changes automatically.

Examples
This example demonstrates the use of AddNew and Update methods to add a new 
record to a dynaset. Copy and paste this code into the definition section of a form. 
Then, press F5.

Sub Form_Load ()
 
'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
'Begin an AddNew.
OraDynaset.AddNew



Update Method

10-258 Oracle Objects for OLE Developer's Guide

 
'Set the field(column) values.
OraDynaset.Fields("EMPNO").Value = "1000"
OraDynaset.Fields("ENAME").Value = "WILSON"
OraDynaset.Fields("JOB").Value = "SALESMAN"
OraDynaset.Fields("MGR").Value = "7698"
OraDynaset.Fields("HIREDATE").Value = "19-SEP-92"
OraDynaset.Fields("SAL").Value = 2000
OraDynaset.Fields("COMM").Value = 500
 
OraDynaset.Fields("DEPTNO").Value = 30
 
'End the AddNew and Update the dynaset.
OraDynaset.Update
 
End Sub

See Also:

■ AddNew Method on page 10-21

■ Edit Method on page 10-134

■ OpenDatabase Method on page 10-212

■ OraDatabase Object on page 9-28

■ Validate Event on page 12-9



Update (OraRef) Method

Server Methods 10-259

Update (OraRef) Method

Applies To
OraRef Object on page 9-52

Description
Flushes the modified referenceable object to the database.

Usage
OraRef.Update

Remarks
The Update method completes the Edit operation and commits the changes to the 
database unless a BeginTrans operation is pending for the session.

Examples
The following example updates the attributes of the PERSON referenceable object in the 
database. Before running the sample code, make sure that you have the necessary data 
types and tables in the database. See "Schema Objects Used in the OraObject and 
OraRef Examples" on page A-3.

Updating Attribute Values: Dynaset Example
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)
 
'retrieve a aperson column from customers. Here Value property of OraField
'object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value
 
'locks the Person object in the server for modifying its attributes
Person.Edit
  Person.Name = "Eric"
  Person.Age = 35
 
'Update method flushes the modified referenceable object in the server
Person.Update

Updating Attribute Values: Parameter Example
Dim OraSession as OraSession



Update (OraRef) Method

10-260 Oracle Objects for OLE Developer's Guide

Dim OraDatabase as OraDatabase
Dim Person  as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create an  OraParameter object represent Address object bind Variable
OraDatabase.Parameters.Add "PERSON", Null, ORAPARM_OUTPUT, ORATYPE_REF,"PERSON"
 
'execute the sql statement which selects person from the customers table
OraDatabase.ExecuteSQL ("BEGIN select aperson into :PERSON from customers" & _
                  "where account = 10; END;")
 
'get the Person object from OraParameter
set Person = OraDatabase.Parameters("PERSON").Value
 
'locks the Person object in the server for modifying its attributes
Person.Edit
  Person.Name = "Eric"
  Person.Age = 35
 
'Update method flushes the modified referenceable object in the server
Person.Update



Write (OraLOB) Method

Server Methods 10-261

Write (OraLOB) Method

Applies To
OraBLOB, OraCLOB Objects on page 9-11

Description
Writes a buffer into the BLOB or CLOB value of this object and returns the total amount 
of the data written. 

Usage
amount_written = OraBlob.Write buffer, chunksize, piece
amount_written = OraClob.Write buffer, chunksize, piece
 

Arguments
The arguments for the method are:

Remarks
Obtain either a row-level lock or object-level lock before calling the Write method. 
This method writes the BLOB or CLOB data from the offset specified by the Offset 
property. For a multiple-piece write operation, the PollingAmount property can be 
set to the value of the total amount of data to be written, and the Status property 
must be checked for the success of each piece operation. If the total amount is not 
known, then the PollingAmount property can be set to 0 and polling still occurs as 
long as the piece type is not OraLob_piece.

For the last piece, set the piece argument to ORALOB_LAST_PIECE. You must write 
the polling amount in bytes or characters. It is not possible to terminate the Write 
operation early if the PollingAmount property is not zero. 

Arguments Description

in] buffer The character array for an OraCLOB object or byte array for the 
OraBLOB object from which the piece is written.

[in] [optional] 
chunksize

An Integer specifying the length of the buffer, in characters for 
an OraCLOB object and bytes for an OraBLOB or OraBFILE object. 
Default value is the size of the buffer argument.

[in] [optional] piece An Integer specifying which piece of the buffer is being written. 
Possible values include:

■ ORALOB_ONE_PIECE - Buffer is written in a single piece. This 
is the default.

■ ORALOB_FIRST_PIECE - Buffer represents the piece of LOB 
data to be written. 

■ ORALOB_NEXT_PIECE - Buffer represents the next piece of 
LOB data to be written. 

■ ORALOB_LAST_PIECE - Buffer represents the last piece of 
LOB data to be written. 

[out] amount_written An Integer representing the amount written, in characters for an 
OraCLOB object and bytes for an OraBLOB or OraBFILE object.



Write (OraLOB) Method

10-262 Oracle Objects for OLE Developer's Guide

When the OraLOB Pollingamount = 0 but the piece type on OraLOB Write is not 
ORALOB_ONE_PIECE, polling still occurs. Polling completes when ORALOB_LAST_
PIECE is sent as an argument to a call to the Write method. This is useful when 
calling the OraCLOB.Write method in a variable-width character set, when counting 
the total amount of characters ahead of time may be costly. 

Examples
Be sure that you have installed the OraLOB Schema Objects as described in "Schema 
Objects Used in LOB Data Type Examples"  on page A-3.

Multiple-Piece Write of a LOB Example
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim PartDesc As OraClob 
Dim buffer As String 
Dim chunksize As Long 
Dim amount_written As Long 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'Create the OraDynaset Object 
Set OraDynaset = OraDatabase.CreateDynaset("select * from part", 0&) 
Set PartDesc = OraDynaset.Fields("part_desc").Value 
chunksize = 32000 
 
'Re adjust the buffer size 
buffer = String$(chunksize, 32) 
FNum = FreeFile 
 
'Open the file. 
Open "partdesc.dat" For Binary As #FNum 
 
'set the offset and PollingAmount properties for piece wise
'Write operation 
PartDesc.offset = 1 
PartDesc.PollingAmount = LOF(FNum) 
remainder = LOF(FNum) 
 
'Lock the row for write operation 
OraDynaset.Edit 
Get #FNum, , buffer 
 
'Do first write operation 
amount_written = PartDesc.Write(buffer, chunksize, ORALOB_FIRST_PIECE)  
 
While PartDesc.Status = ORALOB_NEED_DATA 

Note: When manipulating LOBs using LOB methods, such as the 
Write and CopyFromFile, the LOB object is not automatically 
trimmed if the length of the new data is shorter than the old data. 
Use the Trim (OraLOB) method to shrink the LOB object to the size 
of the new data.



Write (OraLOB) Method

Server Methods 10-263

  remainder = remainder - chunksize 
  If remainder < chunksize Then 
    piecetype = ORALOB_LAST_PIECE 
    chunksize = remainder 
   Else 
    piecetype = ORALOB_NEXT_PIECE 
  End If 
  Get #FNum, , buffer 
 
  amount_written = PartDesc.Write(buffer, chunksize, piecetype) 
Wend 
 
Close FNum 
 
'call Update method to commit the transaction 
OraDynaset.Update 

Single-Piece Write of a LOB Example
Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim PartImage As OraBlob 
Dim buffer() As Byte 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'Add PartDesc as an Output parameter and set its initial value. 
OraDatabase.Parameters.Add "PartImage", Null, ORAPARM_OUTPUT 
OraDatabase.Parameters("PartImage").ServerType = ORATYPE_BLOB 
 
'Begin the transaction 
OraSession.BeginTrans 
 
'Execute the statement returning 'PartDesc' 
OraDatabase.ExecuteSQL ("BEGIN select part_image into :PARTIMAGE" & _ 
            "from part where part_id = 1 for update NOWAIT; END;") 
 
'Get 'PartDesc' from Parameters collection 
Set PartImage = OraDatabase.Parameters("PartImage").Value 
 
'Get a free file number 
FNum = FreeFile 
 
'Open the file. 
Open "PartImage.Dat" For Binary As #FNum 
 
'Re adjust the buffer size to hold entire file data 
ReDim buffer(LOF(FNum)) 
Get #FNum, , buffer 
 
'Do one write operation 
amount_written = PartImage.Write(buffer) 
 
Close FNum 
MsgBox "Amount written to the LOB data is " & amount_written 
 



Write (OraLOB) Method

10-264 Oracle Objects for OLE Developer's Guide

'Ends the transaction 
OraSession.CommitTrans 

See Also:

■ Offset (OraLOB/BFILE) Property on page 11-112

■ PollingAmount Property on page 11-125

■ Status (OraLOB/BFILE) Property on page 11-154

■ Trim (OraLOB) Method on page 10-254

■ Writing LOB Data on page 4-6



11

Server Properties 11-1

11Server Properties

This chapter describes the Oracle Objects for OLE Server properties. 

For an introduction to Server Objects, see "Oracle Objects for OLE In-Process 
Automation Server"  on page 1-2.

This chapter contains these topics:

■ Server Properties: A to F

■ Server Properties: E to L

■ Server Properties: M to O

■ Server Properties: P to T

■ Server Properties: U to Z

Server Properties: A to F
■ Address (OraAQAgent) Property

■ ArraySize Property

■ AutoCommit Property

■ BOC Property

■ BOF Property

■ Bookmark Property

■ BookMarkable Property

■ CacheBlocks Property

■ CacheChanged Property

■ CacheMaximumSize Property

■ CacheOptimalSize Property

■ CacheSliceSize Property

■ CacheSlicesPerBlock Property

■ Client Property

■ Connect Property

■ Connection Property

■ ConnectionOK Property

■ Connections Property



11-2 Oracle Objects for OLE Developer's Guide

■ Consumer (OraAQ) Property

■ Correlate (OraAQ) Property

■ Correlation (OraAQMsg) Property

■ Count Property

■ Count (OraMetaData) Property

■ Count (OraObject/Ref) Property

■ Database Property

■ DatabaseName Property

■ Databases Property

■ Day (OraTimeStamp) Property

■ Day (OraTimeStampTZ) Property

■ Days Property

■ DbPoolCurrentSize Property

■ DbPoolInitialSize Property

■ DbPoolMaxSize Property

■ Delay (OraAQMsg) Property

■ DequeueMode (OraAQ) Property

■ DequeueMsgId (OraAQ) Property

■ DirectoryName Property

■ DynasetOption Property

Server Properties: E to L
■ EditMode Property

■ EditOption (OraRef) Property

■ ElementType Property

■ EOC Property

■ EOF Property

■ ExceptionQueue Property

■ Exists Property

■ Expiration (OraAQMsg) Property

■ FetchLimit Property

■ FetchSize Property

■ FieldIndex Property

■ FieldName Property

■ FieldOriginalName Property

■ FieldOriginalNameIndex Property

■ Fields Property

■ FileName Property



Server Properties 11-3

■ Filter Property

■ Format (OraNumber) Property

■ Format (OraTimeStamp) Property

■ Format (OraTimeStampTZ) Property

■ HexValue (OraRef) Property

■ Hour (OraTimeStamp) Property

■ Hour (OraTimeStampTZ) Property

■ Hours Property

■ IsLocator (OraCollection) Property

■ IsMDObject Property

■ IsNull (OraCollection) Property

■ IsNull (OraLOB/BFILE) Property

■ IsNull (OraObject) Property

■ IsOpen (OraBFILE) Property

■ IsRefNull (OraRef) Property

■ LastErrorText Property

■ LastModified Property

■ LastServerErr Property

■ LastServerErrPos Property

■ LastServerErrText Property

Server Properties: M to O
■ MaxSize (OraCollection) Property

■ MinimumSize Property

■ Minute (OraTimeStamp) Property

■ Minute (OraTimeStampTZ) Property

■ Minutes Property

■ Month (OraTimeStamp) Property

■ Month (OraTimeStampTZ) Property

■ Months Property

■ Name Property

■ Name (AQAgent) Property

■ Name (OraAttribute) Property

■ Name (OraMDAttribute) Property

■ Nanosecond(OraTimeStamp) Property

■ Nanonsecond (OraTimeStampTZ) Property

■ Nanonseconds Property

■ Navigation (OraAQ) Property



11-4 Oracle Objects for OLE Developer's Guide

■ NoMatch Property

■ NonBlockingState Property

■ Offset (OraLOB/BFILE) Property

■ OIPVersionNumber Property

■ Options Property

■ OraIDataType Property

■ OraMaxDSize Property

■ OraMaxSize Property

■ OraNullOK Property

■ OraPrecision Property

■ OraScale Property

Server Properties: P to T
■ Parameters Property

■ PinOption (OraRef) Property

■ PollingAmount Property

■ Priority (OraAQMsg) Property

■ RDMSVersion Property

■ RecordCount Property

■ RelMsgId (OraAQ) Property

■ RowPosition Property

■ SafeArray (OraCollection) Property

■ Second (OraTimeStamp) Property

■ Second (OraTimeStampTZ) Property

■ Seconds Property

■ Server Property

■ ServerType Property

■ Session Property

■ Sessions Property

■ Size Property

■ Size (OraCollection) Property

■ Size (OraLOB and OraBFILE) Property

■ SnapShot Property

■ Sort Property

■ SQL Property

■ Status Property

■ Status (OraLOB/BFILE) Property

■ Subscriptions Property



Server Properties 11-5

■ TableName (OraRef) Property

■ TableSize (OraCollection) Property

■ TimeZone (OraTimeStampTZ) Property

■ TotalDays Property

■ TotalYears Property

■ Transactions Property

■ Truncated Property

■ Type Property

■ Type (OraAttribute) Property

■ Type (OraCollection) Property

■ Type (OraMetaData) Property

■ TypeName (OraObject and OraRef) Property

Server Properties: U to Z 
■ Updatable Property

■ Value Property

■ Value (OraAttribute) Property

■ Value (OraAQMsg) Property

■ Value (OraIntervalDS) Property

■ Value (OraIntervalYM) Property

■ Value (OraMDAttribute) Property

■ Value (OraNumber) Property

■ Value (OraTimeStamp) Property

■ Value (OraTimeStampTZ) Property

■ Version (OraObject and Ref) Property

■ Visible (OraAQ) Property

■ Wait (OraAQ) Property

■ XMLAsAttribute Property

■ XMLCollID Property

■ XMLEncodingTag Property

■ XMLNullIndicator Property

■ XMLOmitEncodingTag Property

■ XMLRowID Property

■ XMLRowsetTag Property

■ XMLRowTag Property

■ XMLTagName Property

■ XMLUpperCase Property

■ Year (OraTimeStamp) Property



11-6 Oracle Objects for OLE Developer's Guide

■ Year (OraTimeStampTZ) Property

■ Years Property



Address (OraAQAgent) Property

Server Properties 11-7

Address (OraAQAgent) Property

Applies To
OraAQAgent Object on page 9-5

Description
Returns a 128-byte string representing the protocol-specific address of the recipient. 
The format is: [schema.]queue[@dblink]

Usage
agent_address = qMsg.AQAgent.Address

Data Type
String



ArraySize Property

11-8 Oracle Objects for OLE Developer's Guide

ArraySize Property

Applies To
OraParamArray Object on page 9-47

Description
Specifies the array size (that is, number of elements in an array) of an OraParameter 
string buffer. Not available at design time and read-only at run time.

Usage
OraParamArray.ArraySize

Data Type
Integer

Remarks
You specify the ArraySize during AddTable. See the AddTable method for the 
OraParamArray object.

See Also: AddTable Method on page 10-23



AutoCommit Property

Server Properties 11-9

AutoCommit Property

Applies To
OraDatabase Object on page 9-28

Description
Returns or sets the AutoCommit property of the OraDatabase object.

Usage
autocommit = OraDatabase.AutoCommit
OraDatabase.AutoCommit = [ True | False 

Data Type
Boolean

Remarks
If the AutoCommit property is set to True, all the data operations that modify data in 
the database are automatically committed after the statement is executed.

If the AutoCommit property is set to False, you need to use the OraDatabase 
transaction methods (BeginTrans, CommitTrans, and Rollback) or SQL 
statements to control transactions. 

Examples
The following example shows how to control transactions with SQL statements after 
setting the AutoCommit property to False. 

Dim session As OraSession 
Dim MyDb As OraDatabase 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
Set MyDb = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0) 
MyDb.AutoCommit = False 
MyDb.ExecuteSQL ("update emp set sal = 100000" & _ 
                  "where ename = 'JOHN SMITH' ") 
MyDb.ExecuteSQL ("commit") 

See Also:

■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ Rollback Method on page 10-235



BOC Property

11-10 Oracle Objects for OLE Developer's Guide

BOC Property

Applies To
OraCollection Object on page 9-19

Description
Indicates True if the collection iterator moves before the first element of a collection.

Usage
boc_flag = OraCollection.BOC

Data Type
boolean

Examples
See "Example: OraCollection Iterator"  on page 10-88



BOF Property

Server Properties 11-11

BOF Property

Applies To
OraDynaset Object on page 9-30

Description
Returns whether the current record position in a dynaset is before the first record. Not 
available at design time and read-only at run time.

Usage
bof_status = oradynaset.BOF

Data Type
Integer (Boolean)

Remarks
Returns True if an attempt has been made to move before the first record in the 
dynaset using the MovePrevious method. Returns False otherwise.

If a recordset is empty, both BOF and EOF return True.

Examples
This example demonstrates the use of the BOF and EOF properties to detect the limits 
of a record set. Copy and paste this code into the definition section of a form. Then, 
press F5.

Sub Form_Load ()
 
 'Declare variables
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)
 
 'Traverse until EOF is reached
 Do Until OraDynaset.EOF
  OraDynaset.MoveNext
  Loop
 MsgBox "Reached EOF"
 
 'When EOF is True there is no current record.
 'The current recordset position is now AFTER the last record.
 OraDynaset.MoveLast
 



BOF Property

11-12 Oracle Objects for OLE Developer's Guide

 Do Until OraDynaset.BOF
  OraDynaset.MovePrevious
 Loop
 MsgBox "Reached BOF"
 
 'When BOF is True there is no current record.
 'The current recordset position is now BEFORE
 'AFTER the last record.
 
 OraDynaset.MoveFirst
 'The recordset is now positioned at the first record.
 
End Sub

See Also:

■ EOF Property on page 11-56

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199



Bookmark Property

Server Properties 11-13

Bookmark Property

Applies To
OraDynaset Object on page 9-30

Description
Determines the current record of a record set. Not available at design time and 
read/write at run time.

Usage
row_bookmark = oradynaset.Bookmark
oradynaset.Bookmark = row_bookmark

Data Type
The value is a string of binary data, but can be stored in a variable of String or 
Variant data type. The length of the string cannot be predicted, so do not use a 
fixed-length string.

Remarks
The first form returns a Bookmark property for the current row. The second form 
repositions the Bookmark property to refer to a specific record within the dynaset.

Bookmark objects exist only for the life of the dynaset and are specific to a particular 
dynaset. They cannot be shared among dynasets. However, Bookmark objects of a 
dynaset and their clones are interchangeable.

Before attempting to use Bookmark objects, check the BookMarkable property of 
that dynaset to see if it supports bookmarks.

Examples
This example demonstrates the use of the Bookmark property to return to a 
previously known record quickly. Copy and paste this code into the definition section 
of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraClient As OraClient 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 Dim Bookmark2 As String
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Get the client object.
 Set OraClient = OraSession.Client
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 



Bookmark Property

11-14 Oracle Objects for OLE Developer's Guide

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Move to the second record and display empno.
 OraDynaset.MoveNext
 MsgBox "Second Record, Employee #" & OraDynaset.Fields("EMPNO").value
 Bookmark2 = OraDynaset.Bookmark
 
 'Move to the last record and display empno.
 OraDynaset.MoveLast
 MsgBox "Last Record, Employee #" & OraDynaset.Fields("EMPNO").value
 
 'Move back to the second record using the bookmark.
 
 OraDynaset.Bookmark = Bookmark2
 MsgBox "Second Record, Employee #" & OraDynaset.Fields("EMPNO").value
 
End Sub

See Also:

■ BookMarkable Property on page 11-15

■ Clone Method on page 10-52

■ LastModified Property on page 11-86



BookMarkable Property

Server Properties 11-15

BookMarkable Property

Applies To
OraDynaset Object on page 9-30

Description
Indicates whether the specified dynaset can supports Bookmark objects. Not available 
at design time and read-only at run time.

Usage
if_bookmarkable = oradynaset.Bookmarkable

Data Type
Integer (Boolean)

Remarks
This property returns True unless the No Cache mode was set when the specified 
dynaset was created; otherwise, it returns False.

See Also:

■ Bookmark Property on page 11-13

■ CreateDynaset Method on page 10-85



CacheBlocks Property

11-16 Oracle Objects for OLE Developer's Guide

CacheBlocks Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or set cache maximum number of blocks.

Usage
set blocks = oradynaset.CacheBlocks 
oradynaset.CacheBlocks = blocks

Data Type
Integer



CacheChanged Property

Server Properties 11-17

CacheChanged Property

Applies To
OraDynaset Object on page 9-30

Description
True if cache or fetch parameters have been changed.

Usage
set Changed = oradynaset.CacheChanged

Data Type
Boolean



CacheMaximumSize Property

11-18 Oracle Objects for OLE Developer's Guide

CacheMaximumSize Property

Applies To
OraDatabase Object on page 9-28

Description
Sets the maximum size (high watermark) for the client-side object cache as a 
percentage of the optimal size. The default value is 10%.

Usage
Oradatabase.CacheMaximumSize maxsize

Data Type
Long

Remarks
If the memory occupied by the objects currently in the cache exceeds the high 
watermark (maximum object cache size), then the cache automatically begins to free 
unmarked objects that have a pin count of zero. The cache continues freeing those 
objects until memory use in the cache reaches the optimal size, or until it runs out of 
objects eligible for freeing.



CacheOptimalSize Property

Server Properties 11-19

CacheOptimalSize Property

Applies To
OraDatabase Object on page 9-28

Description
Sets the optimal size for the client-side object cache in bytes. The default value is 200 
KB.

Usage
Oradatabase.CacheOptimalSize optimalsize

Data Type
Long

Remarks
This parameter increases the client-side object cache size. If the memory occupied by 
the objects currently in the cache exceeds the high watermark (maximum object cache 
size), then the cache automatically begins to free unmarked objects that have a pin 
count of zero. The cache continues freeing those objects until memory use in the cache 
reaches the optimal size, or until it runs out of objects eligible for freeing. This 
parameter should be set to an appropriate value so that object cache can accommodate 
all the fetched object instance from Oracle Database 10g. This is property is useful in 
performance tuning for accessing an Oracle Database 10g object instance.



CacheSliceSize Property

11-20 Oracle Objects for OLE Developer's Guide

CacheSliceSize Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or sets cache slice size.

Usage
 set Slicesize = oradynaset.CacheSliceSize 
 oradynaset.CacheSliceSize = Slicesize   

Data Type
Integer



CacheSlicesPerBlock Property

Server Properties 11-21

CacheSlicesPerBlock Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or sets cache slices for each block.

Usage
set Perblock = oradynaset.CacheSlicePerBlock 
oradynaset.CacheSlicePerBlock  = Perblock

Data Type
Integer



Client Property

11-22 Oracle Objects for OLE Developer's Guide

Client Property

Applies To
OraSession Object on page 9-58

Description
Returns the OraClient object associated with the specified session. Not available at 
design time and read-only at run time.

Usage
Set oraclient = orasession.Client

Data Type
OLE Object (OraClient)

Remarks
Each computer has only one client object, so this property returns the same object for 
all sessions on the same computer.

See Also: OraClient Object on page 9-18



Connect Property

Server Properties 11-23

Connect Property

Applies To
OraConnection Object on page 9-27

OraDatabase Object on page 9-28

Description
Returns the user name of the connection string associated with the connection. Not 
available at design time and read-only at run time.

Usage
connect_string = oraconnection.Connect
connect_string = oradatabase.Connect

Data Type
String

Remarks
■ OraConnection.Connect

Returns the user name of the connection string associated with the connection.

■ OraDatabase.Connect

Returns the user name of the connection string associated with the specified 
database. It is equivalent to referencing OraDatabase.Connection.Connect.

The password associated with the user name is never returned.

Examples
This example demonstrates the use of the Connect and DatabaseName properties to 
display the user name and database name to which the user is connected. Copy and 
paste this code into the definition section of a form. Then, press F5.

 
Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Display the username and database to which we are connected.
 MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName
 
End Sub



Connect Property

11-24 Oracle Objects for OLE Developer's Guide

See Also:

■ OpenDatabase Method on page 10-212

■ DatabaseName Property on page 11-37



Connection Property

Server Properties 11-25

Connection Property

Applies To
OraDatabase Object on page 9-28

OraDynaset Object on page 9-30

OraSQLStmt Object on page 9-60

Description
Returns the OraConnection object associated with the specified database, dynaset, 
or OraSQLStmt object. Not available at design time and read-only at run time.

Usage
Set oraconnection = oradatabase.Connection
Set oraconnection = oradynaset.Connection
Set oraconnection = orasqlstmt.Connection

Data Type
OLE Object (OraConnection)

Remarks
■ OraDatabase.Connection 

Returns the connection object associated with the specified database. Each 
database is associated with one connection object, but many databases can share 
the same connection object.

■ OraDynaset.Connection 

Returns the connection object associated with this dynaset. This is equivalent to 
referencing oradynaset.Database.Connection.

■ OraSQLStmt.Connection

Returns the connection object associated with this OraSQLStmt object. This is 
equivalent to referencing orasqlstmt.Database.Connection.

See Also: OraConnection Object on page 9-27



ConnectionOK Property

11-26 Oracle Objects for OLE Developer's Guide

ConnectionOK Property

Applies To
OraDatabase Object on page 9-28

OraConnection Object on page 9-27

Description
Returns a Boolean value indicating the status of the database connection associated 
with the OraConnection object. A return value of True implies that the connection 
is alive in the connection object associated with the specified database. If the 
connection has been dropped, this property returns False. 

Not available at design time and read-only at run time.

Usage
ConnectionStat = OraDatabase.ConnectionOK
ConnectionStat = OraDatabase.Connection.ConnectionOK 

Data Type
Boolean

Remarks
■ OraDatabase.ConnectionOK

Returns the connection status of the connection object associated with the 
specified database. Each database is associated with one connection object, but 
many databases can share the same connection object.

■ OraConnection.ConnectionOK 

Returns the status of the underlying connection to the database. This is equivalent 
to OraDatabase.OraConnection.ConnectionOK. 

See Also:

■ Connection Property on page 11-25

■ "Detection of Lost Connections" on page 3-9



Connections Property

Server Properties 11-27

Connections Property

Applies To
OraSession Object on page 9-58

Description
Returns the OraConnections collection of the specified session. Not available at 
design time and read-only at run time.

Usage
Set oraconnections_collection = orasession.Connections

Data Type
OLE Object (OraParameters)

Remarks
You can access the connections in this collection by subscripting (using ordinal integer 
numbers). You can obtain the number of connections in the collection using the Count 
property of the returned collection. Integer subscripts begin with 0 and end with 
Count - 1. Out-of-range indexes and invalid names return a Null OraConnection 
object.

See Also:

■ Count Property on page 11-31

■ OraConnection Object on page 9-27

■ OraConnections Collection on page 9-66



Consumer (OraAQ) Property

11-28 Oracle Objects for OLE Developer's Guide

Consumer (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Applicable only for a dequeue operation.

Usage
Q.Consumer = consumer_name 

Data Type
String

Remarks
The value is a string representing the name of the consumer. Only those messages 
matching the consumer name are accessed. 

Examples
Dim DB As OraDatabase 
    Dim Q as OraAQ 
      set Q = DB.CreateAQ("Q_MSG_MULTIPLE") 
      'Dequeue only message meant for ANDY 
       Q.consumer = "ANDY" 
      'other processing...  
       Q.Dequeue



Correlate (OraAQ) Property

Server Properties 11-29

Correlate (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Specifies the identification to look for while dequeuing messages.

Usage
Q.Correlate = "RELATIVE_MESSAGE_ID" 

Data Type
String

Remarks
Applicable only for a dequeue operation.



Correlation (OraAQMsg) Property

11-30 Oracle Objects for OLE Developer's Guide

Correlation (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6

Description
Specifies the identification for the message. This can then be used as a means of 
dequeuing specific messages.

Usage
Msg.Correlation = my_message
 

Data Type
String

Remarks
Applicable only for a message that is being enqueued. Returns any string up to 128 
bytes. 

See Correlate for dequeuing using this identifier.

See Also: Correlate (OraAQ) Property on page 11-29



Count Property

Server Properties 11-31

Count Property

Applies To
OraConnections Collection on page 9-66 

OraFields Collection on page 9-67

OraParameters Collection on page 9-68

OraSessions Collection on page 9-69

OraSubscriptions Collection on page 9-70

Description
Returns the number of objects in the specified collection. Not available at design time 
and read-only at run time.

Usage
connection_count = oraconnections.Count
field_count = orafields.Count
parameter_count = oraparameters.Count
session_count = orasessions.Count
subscriptions_count = OraSubscriptions.Count

Data Type
Integer

Remarks
Use this property to determine the number of objects in the specified collection.

Examples
This example demonstrates the use of the Count property to display the number of 
objects in the OraSessions, OraConnections, and OraFields collections. Copy 
and paste this code into the definition section of a form. Then, press F5.

 
Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraClient As OraClient 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Get the client object.
 Set OraClient = OraSession.Client
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object.



Count Property

11-32 Oracle Objects for OLE Developer's Guide

 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 MsgBox "You have " & OraClient.Sessions.Count & " OraSession Object(s)."
 MsgBox "You have " & OraSession.Connections.Count & " OraConnection Object(s)."
 MsgBox "You have " & OraDynaset.Fields.Count & " OraField Object(s)."
 
End Sub

See Also:

■ OraConnection Object on page 9-27 

■ OraField Object on page 9-33



Count (OraMetaData) Property

Server Properties 11-33

Count (OraMetaData) Property

Applies To
OraMetaData Object on page 9-39

Description
An integer representing the number of OraMDAttribute objects contained in this 
collection.

Usage
count = OraMetaData.Count

Data Type
Integer

See Also: OraMDAttribute Object on page 9-38



Count (OraObject/Ref) Property

11-34 Oracle Objects for OLE Developer's Guide

Count (OraObject/Ref) Property

Applies To
OraObject Object on page 9-43

OraRef Object on page 9-52

Description
Returns the number of OraAttribute objects in the collection. This is same as the 
total number of attributes of the underlying referenceable object of OraRef or 
underlying value instance of OraObject. Read-only at run time. 

Usage
attrcount = OraRef.Count  
attrcount = OraObject.Count 

Data Type
Integer

Remarks
Individual attributes can be accessed by using a subscript or the name of the attribute. 
The OraObject or OraRef attribute index starts at 1. 

Examples
The following example shows the use of the Count property. Before running the 
sample code, make sure that you have the necessary data types and tables in the 
database. See "Schema Objects Used in the OraObject and OraRef Examples" on 
page A-3.

 
Dim OraSession as OraSession 
Dim OraDatabase as OraDatabase 
Dim OraDynaset as OraDynaset 
Dim Address as OraObject 
 
'Create the OraSession Object. 
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
'Create the OraDatabase Object by opening a connection to Oracle. 
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
 
'create a dynaset object from person_tab 
set OraDynaset = OraDatabase.CreateDynaset("select * from  person_tab",0&) 
 
'retrieve a address column from person_tab. 
'Here Value property of OraField object returns Address OraObject
set Address = OraDynaset.Fields("Addr").Value 
 
'access the attribute by dot notation 
msgbox Address.Street 
 
'access the attribute using '!' notation ( early binding application) 



Count (OraObject/Ref) Property

Server Properties 11-35

msgbox Address!Street 
 
'access the attribute by index 
msgbox Address(1) 
 
'access the attribute by name 
msgbox Address("Street") 
 
'access all the attributes of Address OraObject in the dynaset 
Do Until OraDynaset.EOF 
    For index = 1 To Address.Count 
        msgbox Address(index) 
    Next Index 
  OraDynaset.MoveNext 
 
Loop 

See Also: OraAttribute Object on page 9-7



Database Property

11-36 Oracle Objects for OLE Developer's Guide

Database Property

Applies To
OraDynaset Object on page 9-30

OraSQLStmt Object on page 9-60

Description
Returns the OraDatabase object associated with the specified dynaset or SQL 
statement object. Not available at design time and read-only at run time.

Usage
Set oradatabase = oradynaset.Database
Set oradatabase = orasqlstmt.Database

Data Type
OLE Object (OraDatabase)

Remarks
The OraDynaset.Database property returns the OraDatabase object from which 
the specified dynaset was created.

The OraSQLStmt.Database property returns the OraDatabase object from which 
the specified SQLStmt object was created.

See Also:

■ CreateDynaset Method on page 10-85

■ OraDatabase Object on page 9-28



DatabaseName Property

Server Properties 11-37

DatabaseName Property

Applies To
OraConnection Object on page 9-27

OraDatabase Object on page 9-28

Description
Returns the name of the database associated with the specified object. Not available at 
design time and read-only at run time.

Usage
database_name = oraconnection.DatabaseName
database_name = oradatabase.DatabaseName

Data Type
String

Remarks
■ oraconnection.DatabaseName 

Returns the name of the database, as specified in the OpenDatabase method.

■ oradatabase.DatabaseName 

Returns the database name associated with the connection. It is the same as the 
referencing oradatabase.Connection.DatabaseName.

Examples
This example demonstrates the use of the Connect and DatabaseName properties to 
display the user name and database to which you have connected. Copy and paste this 
code into the definition section of a form. Then, press F5.

 
Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Display the username and database to which you have connected.
 MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName
 
End Sub



DatabaseName Property

11-38 Oracle Objects for OLE Developer's Guide

See Also:

■ Connect Property on page 11-23

■ Connection Property on page 11-25

■ OpenDatabase Method on page 10-212



Databases Property

Server Properties 11-39

Databases Property

Applies To
OraServer Object on page 9-56

Description
Returns a collection interface containing all user sessions that have been established 
using this object.

Usage
Set myCollection = oraserver.Databases 

Data Type
OLE Object (OraCollection)

See Also: OraCollection Object on page 9-19



Day (OraTimeStamp) Property

11-40 Oracle Objects for OLE Developer's Guide

Day (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Gets and sets the Day attribute of an OraTimeStamp object.

Usage
day= OraTimeStampObj.Day
OraTimeStampObj.Day= day

Arguments

Data Type
Integer

Arguments Description

[in] day The Day attribute of an OraTimeStamp object.



Day (OraTimeStampTZ) Property

Server Properties 11-41

Day (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the Day attribute of an OraTimeStampTZ object.

Usage
day= OraTimeStampTZObj.Day
OraTimeStampTZObj.Day= day

Arguments

Data Type
Integer

Arguments Description

[in] day The Day attribute of an OraTimeStampTZ object.



Days Property

11-42 Oracle Objects for OLE Developer's Guide

Days Property

Applies To
OraIntervalDS Object on page 9-35

Description
Gets and sets the Days attribute of an OraIntervalDS object

Usage
days = OraIntervalDSObj.Days
OraIntervalDSObj.Days = days

Arguments

Data Type
Integer

Arguments Description

[in] days An Integer specifying the value of the Days attribute of the 
OraIntervalDS object.



DbPoolCurrentSize Property

Server Properties 11-43

DbPoolCurrentSize Property

Applies To
OraSession Object on page 9-58

Description
Contains the number of currently active database objects in the pool. It is a read-only 
property.

Usage
curr_size = OraSession.DbPoolCurrentSize

Data Type
Integer

Remarks
An active database object in the pool that contains a live connection to the database.



DbPoolInitialSize Property

11-44 Oracle Objects for OLE Developer's Guide

DbPoolInitialSize Property

Applies To
OraSession Object on page 9-58

Description
Contains the initial size of the pool. It is a read-only property.

Usage
init_size = OraSession.DbPoolInitialSize

Data Type
Integer



DbPoolMaxSize Property

Server Properties 11-45

DbPoolMaxSize Property

Applies To
OraSession Object on page 9-58

Description
Contains the maximum pool size. It is a read-only property.

Usage
max_size = OraSession.DbPoolMaxSize

Data Type
Integer



Delay (OraAQMsg) Property

11-46 Oracle Objects for OLE Developer's Guide

Delay (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6

Description
Specifies the number of seconds to delay this enqueued message. Set this property to 
delay the immediate consumption of the message.

Usage
Msg.Delay = seconds

Data Type
Integer

Remarks
Applicable only for a message that is enqueued. 

This delay represents the number of seconds after which the message is available for 
dequeuing.

Possible values are: 

■ Any valid positive integer. 

■ ORAAQ_MSG_NO_DELAY 

Default is 0 seconds. The message is available immediately. 



DequeueMode (OraAQ) Property

Server Properties 11-47

DequeueMode (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Specifies the locking behavior associated with the dequeue operation.

Usage
Q.DequeueMode = locking_mode 

Data Type
Integer

Remarks
Possible values are:

■ ORAAQ_DQ_BROWSE ( 1)

Does not lock the message when dequeuing. 

■ ORAAQ_DQ_LOCKED ( 2)

Reads and obtains a write lock on the message. 

■ ORAAQ_DQ_REMOVE (3 )(Default)

Reads the message, and updates or deletes it. 



DequeueMsgId (OraAQ) Property

11-48 Oracle Objects for OLE Developer's Guide

DequeueMsgId (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Returns an array of raw bytes, specifying the message identifier of the message to be 
dequeued.

Usage
Q.DequeueMsgid = msg_id

Data Type
String

Remarks
Applicable only for a dequeue operation.



DirectoryName Property

Server Properties 11-49

DirectoryName Property

Applies To
OraBFILE Object on page 9-9

Description
Gets or sets the directory alias name.

Usage
diralias = OraBFile.DirectoryName 
OraBFile.DirectoryName = diralias 

Arguments

Data Type
String

Remarks
This String is case-sensitive. 

Arguments Description

[in] [out]  
diralias

A String specifying the directory name to be retrieved or set.



DynasetOption Property

11-50 Oracle Objects for OLE Developer's Guide

DynasetOption Property

Applies To
OraParameter Object on page 9-50

Description
Specifies the dynaset option for a dynaset created from the PL/SQL cursor. 

Usage
oraparameter.DynasetOption = dyn_opts

Remarks
This property should be called before executing a PL/SQL procedure containing a 
cursor variable. By default, the dynaset is created with the ORADYN_READONLY option. 

The possible values are:

Possible Values Value Description

ORADYN_DEFAULT &H0& Accepts the default behavior.

ORADYN_NO_BLANKSTRIP &H2& Does not remove trailing blanks from character 
string data retrieved from the database.

ORADYN_NOCACHE &H8& Does not create a local dynaset data cache. Without 
the local cache, previous rows within a dynaset are 
unavailable; however, increased performance 
results during retrieval of data from the database 
(move operations) and from the rows (field 
operations). Use this option in applications that 
make single passes through the rows of a dynaset 
for increased performance and decreased resource 
usage.

ORADYN_NO_MOVEFIRST &H40& Does not force a MoveFirst operation when a 
dynaset is created. BOF and EOF are both True.

See Also:

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199

■ BOF Property on page 11-11

■ EOF Property on page 11-56



EditMode Property

Server Properties 11-51

EditMode Property

Applies To
OraDynaset Object on page 9-30

Description
Returns the editing state for the current row. Not available at design time and 
read-only at run time.

Usage
edit_mode = oradynaset.EditMode

Data Type
Integer

Remarks
The EditMode property values are:

These values are located in the ORACLE_BASE\ORACLE_HOME\oo4o\oraconst.txt 
file and are intended to match similar constants in the Visual Basic constant.txt 
file.

This property is affected only by the Edit, AddNew, and Update methods.

Constant Value Description

ORADATA_EDITNONE 0 No editing in progress.

ORADATA_EDITMODE 1 Editing is in progress on an existing row.

ORADATA_EDITADD 2 A new record is being added and the copy buffer does 
not currently represent an actual row in the database.

See Also:

■ AddNew Method on page 10-21

■ Edit Method on page 10-134

■ Update Method on page 10-257



EditOption (OraRef) Property

11-52 Oracle Objects for OLE Developer's Guide

EditOption (OraRef) Property

Applies To
OraRef Object on page 9-52

Description
Specifies whether the object is to be locked during the pin operation.

Usage
edit_option = OraRef.EditOption
OraRef.EditOption = edit_option

Arguments

Data Type
Integer 

Remarks
This property should be called before a pin operation on a Ref value, before accessing 
an attribute for the first time on the OraRef object. This option is useful if the object 
attributes are modified immediately after the pin operation. Locking the object 
instance during the pin operation saves the round-trip to the database during the 
Edit (OraRef) operation. 

Possible values of edit_option are: 

Examples
The following example shows the usage of the EditOption property. Before running 
the sample code, make sure that you have the necessary data types and tables in the 
database. See "Schema Objects Used in the OraObject and OraRef Examples" on 
page A-3.

 
Dim OraSession as OraSession
Dim OraDatabase as OraDatabase

Arguments Description

[in] [out] edit_
option

An Integer representing the edit option. 

Constant Value Description

ORAREF_NO_LOCK 1 Does not lock the object in the database 
(default). 

ORAREF_EXCLUSIVE_LOCK 2 Maintains an exclusive lock on the object in the 
database. 

ORAREF_NOWAIT_LOCK 3 Maintains an exclusive lock on the object in the 
database with the nowait option. 



EditOption (OraRef) Property

Server Properties 11-53

Dim OraDynaset as OraDynaset
Dim Person as OraRef

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers", 0&)
 
'retrieve a aperson column from customers. Here Value property of OraField object 
 
'returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value
 
'set the ORAREF_EXCLUSIVE_LOCK EditOption on the Person object. 
Person.EditOption = ORAREF_EXCLUSIVE_LOCK 
 
'pin the Person Ref. This operation also locks the underlying 
'referenceable 'object in the server
MsgBox Person.Name

'call Edit method on Person OraRef. 
'This method does not make any network round-trip

Person.Edit
Person.Name = "Eric"
Person.Age = 35
Person.Update

See Also: Edit (OraRef) Method on page 10-136



ElementType Property

11-54 Oracle Objects for OLE Developer's Guide

ElementType Property

Applies To
OraCollection Object on page 9-19

Description
An integer code representing the server type of an element. This property is read-only 
at run time.

Usage
elem_type = OraCollection.ElementType

Data Type
Integer

Remarks
The codes correspond to the Oracle external data types. The following Oracle element 
data types are supported:

Constant Value External Data Type

ORATYPE_VARCHAR2 1 VARCHAR2

ORATYPE_NUMBER 2 NUMBER

ORATYPE_SINT 3 SIGNED INTEGER

ORATYPE_FLOAT 4 FLOAT

ORATYPE_VARCHAR 9 VARCHAR

ORATYPE_DATE 12 DATE

ORATYPE_UINT 68 UNSIGNED INTEGER

ORATYPE_CHAR 96 CHAR

ORATYPE_CHARZ 97 Null Terminated CHAR

ORATYPE_BFLOAT 100 BINARY_FLOAT

ORATYPE_BDOUBLE 101 BINARY_DOUBLE

ORATYPE_OBJECT 108 Object 

ORATYPE_REF 110 Ref



EOC Property

Server Properties 11-55

EOC Property

Applies To
OraCollection Object on page 9-19

Description
Returns True if the collection iterator moves past the last element of a collection.

Usage
eoc_flag = OraCollection.EOC

Data Type
Boolean

Examples
See "Example: OraCollection Iterator"  on page 10-88.



EOF Property

11-56 Oracle Objects for OLE Developer's Guide

EOF Property

Applies To
OraDynaset Object on page 9-30

Description
Indicates whether the current record position in a dynaset is after the last record. Not 
available at design time and read-only at run time.

Usage
eof_status = oradynaset.EOF

Data Type
Integer (Boolean)

Remarks
Returns True if an attempt has been made to move after the last record in the dynaset 
using the MoveNext method. Otherwise, returns False.

If a recordset is empty, both BOF and EOF return True.

Examples
This example demonstrates the use of the BOF and EOF properties to detect the limits 
of a recordset. Copy and paste this code into the definition section of a form. Then, 
press F5.

Sub Form_Load ()
 
 'Declare variables 
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.CreateDynaset("select empno, ename from emp", 0&)
 
 'Traverse until EOF is reached
 Do Until OraDynaset.EOF
  OraDynaset.MoveNext
  Loop
 MsgBox "Reached EOF"
 
 'When EOF is True there is no current record. The current recordset
 ' position is now AFTER the last record
 OraDynaset.MoveLast



EOF Property

Server Properties 11-57

 
 Do Until OraDynaset.BOF
  OraDynaset.MovePrevious
 Loop
 MsgBox "Reached BOF"
 
 'When BOF is True there is no current record. The current recordset 
 'position is now BEFORE AFTER the last record.
 
 OraDynaset.MoveFirst
 
 'The recordset is now positioned at the first record.
 
End Sub

See Also:

■ BOF Property on page 11-11

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199



ExceptionQueue Property

11-58 Oracle Objects for OLE Developer's Guide

ExceptionQueue Property

Applies To
OraAQMsg Object on page 9-6

Description
Specifies the name of the queue to which message should be moved if it cannot be 
processed successfully. 

Usage
Msg.ExceptionQueue queue_name

Data Type
String

Remarks
Applicable only for a message that is being enqueued. 

Possible values are: 

■ A String containing a valid queue name 

■ Null (Default)

A message is moved to the exception queue if the number of dequeue attempts has 
expired or has exceeded max_retries specified in the DBMS_AQADM.CREATE_QUEUE 
command.



Exists Property

Server Properties 11-59

Exists Property

Applies To
OraBFILE Object on page 9-9

Description
Returns True if the OraBFILE points to a BFILE that exists on the database.

Usage
exists = OraBFile.Exists

Data Type
Boolean

Remarks
Read privileges on the directory where the BFILE is located are required to use this 
property. The operating system-specific permissions must have been set for the 
directory to make sure that the user can read the directory.

Appropriate privileges must be set up in the database previously. For example, to 
ensure that a user (scott) can read a directory (BfileDirectory) through the 
Exists property, the following SQL statement must be executed:

GRANT READ ON DIRECTORY BfileDirectory TO scott;



Expiration (OraAQMsg) Property

11-60 Oracle Objects for OLE Developer's Guide

Expiration (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6

Description
Specifies, in seconds, the time for which the message is available for dequeuing.

Usage
Msg.Expiration = seconds

Data Type
Integer

Remarks
This property is an offset from the delay. It is applicable only for a message that is 
being enqueued. 

Possible Values are:

■ Any integer. 

■ ORAAQ_MSG_NO_XPIRE (0) 

Default 0 - The message will never expire. 



FetchLimit Property

Server Properties 11-61

FetchLimit Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or sets the array size of the fetch.

Usage
set Limit = oradynaset.FetchLimit
oradynaset.FetchLimit = Limit

Data Type
Integer



FetchSize Property

11-62 Oracle Objects for OLE Developer's Guide

FetchSize Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or sets the array buffer size of the fetch.

Usage
set Size = oradynaset.FetchSize
oradynaset.FetchSize = Size

Data Type
Integer



FieldIndex Property

Server Properties 11-63

FieldIndex Property

Applies To
OraDynaset Object on page 9-30

Description
Returns the index of the field indicated by the field_name argument.

Usage
set index = oradynaset.FieldIndex(field_name)

Arguments

Data Type
Integer

Remarks
Accessing fields of a dynaset using an index is more efficient than accessing them by 
name. If you need to access a particular field many times, use this method to translate 
its name into its index.

Arguments Description

[in] field_name The name of the field as it appears in the SQL statement that the 
dynaset used most recently. 

See Also:

■ FieldName Property on page 11-64

■ FieldOriginalName Property on page 11-65

■ FieldOriginalNameIndex Property on page 11-66



FieldName Property

11-64 Oracle Objects for OLE Developer's Guide

FieldName Property

Applies To
OraDynaset Object on page 9-30

Description
Returns the field name in the SELECT statement in the dynaset.

Usage
set field_name = oradynaset.FieldName(index)

Arguments

Data Type
String

Arguments Description

[in] index Index of the name of the field as it appears in the SQL statement. 

See Also:

■ FieldIndex Property on page 11-63

■ FieldOriginalName Property on page 11-65

■ FieldOriginalNameIndex Property on page 11-66



FieldOriginalName Property

Server Properties 11-65

FieldOriginalName Property

Applies To
OraDynaset Object on page 9-30

Description
Gets the original field name used in the SELECT statement in the dynaset.

Usage
set field_name = oradynaset.FieldOriginalName(index)

Arguments

Data Type
String

Remarks
The FieldOriginalName property returns a string containing the original column 
name specified in the SQL statement during dynaset creation. This property is useful 
when a SQL statement contains SCHEMA.TABLE.COL as the name of the field. This 
enables duplicate column names to be referenced. Another way to avoid duplicate 
columns is to specify an alias in the SQL statement.

Arguments Description

[in] index An Integer specifying the field index of the original field name as it 
appears in the SQL statement.

See Also:

■ FieldIndex Property on page 11-63

■ FieldName Property on page 11-65

■ FieldOriginalNameIndex Property on page 11-66



FieldOriginalNameIndex Property

11-66 Oracle Objects for OLE Developer's Guide

FieldOriginalNameIndex Property

Applies To
OraDynaset Object on page 9-30

Description
Returns the index of the field indicated by the original field name used in the SQL 
SELECT statement.

Usage
set index = oradynaset.FieldOriginalNameIndex(name)

Arguments

Data Type
Integer

Remarks
Accessing fields of a dynaset by index is more efficient than accessing them by name. 
If you need to access a particular field many times, use this method to translate its 
original name into its index.

Arguments Description

[in] name The original name of the field as it appears in the SQL statement. 

See Also:

■ FieldIndex Property on page 11-63

■ FieldName Property on page 11-65

■ FieldOriginalName Property on page 11-65



Fields Property

Server Properties 11-67

Fields Property

Applies To
OraDynaset Object on page 9-30

Description
Returns the collection of fields for the current row. Not available at design time and 
read-only at run time.

Usage
Set orafields_collection = oradynaset.Fields

Data Type
OLE Object (OraFields)

Remarks
You can access the fields in this collection by subscripting (using ordinal integer 
numbers) or by using a string denoting the field (column) name. You can obtain the 
count of the number of fields using the Count property on the returned collection. A 
subscript that is not within the collection (0 to Count - 1) results in the return of a 
Null OraField object.

See Also:

■ Count Property on page 11-31

■ OraFields Collection on page 9-67



FileName Property

11-68 Oracle Objects for OLE Developer's Guide

FileName Property

Applies To
OraBFILE Object on page 9-9

Description
Gets or sets a filename. Read and write at run time.

Usage
filename  = OraBFile.FileName 
OraBFile.FileName = filename 

Arguments

Data Type
String

Remarks
This string can be case-sensitive depending on the database operating system. 

Arguments Description

[in] [out]   
filename

A String specifying the directory name to be retrieved or set.

See Also: OraField Object on page 9-33



Filter Property

Server Properties 11-69

Filter Property

Remarks
The OraDynaset object does not support this property. Refine your record selection 
by using a SQL WHERE clause or by using SQL parameters.

See Also:

■ CreateDynaset Method on page 10-85

■ OraDynaset Object on page 9-30

■ OraFields Collection on page 9-67

■ OraParameter Object on page 9-50



Format (OraNumber) Property

11-70 Oracle Objects for OLE Developer's Guide

Format (OraNumber) Property

Applies To
OraNumber Object on page 9-41

Description
The format string used in OraNumber operations. For details about format strings, see  
Oracle Database SQL Quick Reference. Read and write at run time. 

Usage
OraNumber.Format = formatstring  
formatstring = OraNumber.Format  

Arguments

Data Type
String

Remarks
An error is returned if the format string is set to an invalid value. To reset the format to 
the default, set it to an empty string.

Arguments Description

[in] formatstring A format string used in OraNumber operations.

See Also: Oracle Database SQL Quick Reference



Format (OraTimeStamp) Property

Server Properties 11-71

Format (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Returns or sets the TIMESTAMP format used to display the OraTimeStamp object as a 
string.

Usage
format = OraTimeStampObj.Format
OraTimeStampObj.Format = format

Arguments

Data Type
String

Remarks
If Format is Null, the session TIMESTAMP format is used to display the 
OraTimeStamp object as a string.

Arguments Description

[in] format The format used to display an OraTimeStamp object as a string.



Format (OraTimeStampTZ) Property

11-72 Oracle Objects for OLE Developer's Guide

Format (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the TIMESTAMP WITH TIME ZONE format used to display the 
OraTimeStampTZ object as a string.

Usage
format = OraTimeStampTZObj.Format
OraTimeStampTZObj.Format = format

Arguments

Data Type
String

Remarks
If Format is Null, the session TIMESTAMP WITH TIME ZONE format is used to display 
the OraTimeStampTZ object as a string.

Arguments Description

[in] format The format used to display an OraTimeStampTZ object as a string. 



HexValue (OraRef) Property

Server Properties 11-73

HexValue (OraRef) Property

Applies To
OraRef Object on page 9-52

Description
Returns the hexidecimal value of the REF. 

Usage
hexstring = OraRef.HexValue 

Remarks
The hexidecimal value of the REF can be used by the OraDatabase.FetchOraRef 
method. 

See Also: FetchOraRef Method on page 10-149



Hour (OraTimeStamp) Property

11-74 Oracle Objects for OLE Developer's Guide

Hour (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Returns or sets the Hour attribute of an OraTimeStamp object.

Usage
hour = OraTimeStampObj.Hour
OraTimeStampObj.Hour = hour

Arguments

Data Type
Integer

Arguments Description

[in] hour The Hour attribute of an OraTimeStamp object.



Hour (OraTimeStampTZ) Property

Server Properties 11-75

Hour (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the Hour attribute of an OraTimeStampTZ object.

Usage
hour = OraTimeStampTZObj.Hour
OraTimeStampTZObj.Hour = hour

Arguments

Data Type
Integer

Arguments Description

[in] hour The Hour attribute of an OraTimeStampTZ object.



Hours Property

11-76 Oracle Objects for OLE Developer's Guide

Hours Property

Applies To
OraIntervalDS Object on page 9-35

Description
Gets and sets the Hours attribute of an OraIntervalDS object.

Usage
hours = OraIntervalDSObj.Hours
OraIntervalDSObj.Hours = hours

Arguments

Data Type
Integer

Arguments Description

[in] hours An Integer specifying the value of the Hours attribute of the 
OraIntervalDS object.



IsLocator (OraCollection) Property

Server Properties 11-77

IsLocator (OraCollection) Property

Applies To
OraCollection Object on page 9-19

Description
Returns True if the collection instance of the OraCollection object is locator-based; 
otherwise, returns False. 

Usage
islocator = OraCollection.IsLocator

Data Type
Integer (Boolean)



IsMDObject Property

11-78 Oracle Objects for OLE Developer's Guide

IsMDObject Property

Applies To
OraMDAttribute Object

Description
Returns True if the Value property is another OraMetaData object; otherwise, the 
property is False.

Usage
isobject = OraMDAttribute.IsMDObject

Data Type
Boolean



IsNull (OraCollection) Property

Server Properties 11-79

IsNull (OraCollection) Property

Applies To
OraCollection Object on page 9-19

Description
Returns True if the collection value of the OraCollection object is Null.

Usage
isnull = OraObject.IsNull

Data Type
Integer (Boolean)

Remarks
Accessing elements of a Null collection results in an error. The IsNull property 
should be checked before accessing elements of an underlying collection.



IsNull (OraLOB/BFILE) Property

11-80 Oracle Objects for OLE Developer's Guide

IsNull (OraLOB/BFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Returns True if the LOB or BFILE refers to a Null value in the database; otherwise, 
returns False. This property is read-only.

Usage
IsNull = OraBfile.IsNull
IsNull = OraBlob.IsNull 
IsNull = OraClob.IsNull

Data Type
Boolean

Remarks
Some LOB or BFILE properties and methods are not valid when a LOB or BFILE is 
Null. 

This property makes it possible to check for Null values and avoid these errors. 



IsNull (OraObject) Property

Server Properties 11-81

IsNull (OraObject) Property

Applies To
OraObject Object on page 9-43

Description
Returns True if underlying value instance of the OraObject object is Null. 
Read-only at run time.

Usage
isnull = OraObject.IsNull

Data Type
Integer (Boolean)

Remarks
Accessing attributes of a Null value instance results in an error. The IsNull property 
can be checked before accessing attributes of an underlying value instance.

Examples
The following example shows the use of the IsNull property. Before running the 
sample code, make sure that you have the necessary data types and tables in the 
database. See "Schema Objects Used in the OraObject and OraRef Examples" on 
page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Address as OraObject
Dim AddressClone as OraObject
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
'create a dynaset object from person_tab
set OraDynaset = OraDatabase.CreateDynaset("select * from person_tab", 0&)
 
' insert a Null Address value instance in the table
OraDynaset.AddNew
OraDynaset.Fields("Name").value = "Eric"
OraDynaset.Fields("Addr").Value  = Null
OraDynaset.update
 
'move to the newly added value instance
OraDynaset.MoveLast
 
'retrieve a address column from person_tab. This Address object points to Null
' value instance



IsNull (OraObject) Property

11-82 Oracle Objects for OLE Developer's Guide

set Address = OraDynaset.Fields("Addr").Value
 
'try to access attributes of Address. the following line will result an error 
msgbox Address.Street    '---------ERROR------------'
 
'use the IsNull property to check the nullstatus
If Address.IsNull = False Then
    MsgBox Address!Street
End if



IsOpen (OraBFILE) Property

Server Properties 11-83

IsOpen (OraBFILE) Property

Applies To
OraBFILE Object on page 9-9

Description
Returns True if the OraBFILE object is open. 

Usage
IsOpen = OraBFile.IsOpen

Data Type
Boolean

Remarks
The openness of an object OraBFILE is local to this OraBFILE object. If two  
OraBFILE objects point to the same BFILE in the database, and one OraBFILE object 
calls the Open method and the other does not, one OraBFILE object will return True 
for the IsOpen property. The other will return False. 

See Also: Open (OraBFILE) Method on page 10-211



IsRefNull (OraRef) Property

11-84 Oracle Objects for OLE Developer's Guide

IsRefNull (OraRef) Property

Applies To
OraRef Object on page 9-52

Description
Returns True if the underlying Ref value of the OraRef object is Null.

Usage
isnull = OraRef.IsRefNull

Data Type
Integer (Boolean)

Remarks
Accessing the attributes of a Null Ref value results in an error. The IsRefNull 
property should be checked before accessing attributes of an underlying referenceable 
object. This property is read-only at run time.



LastErrorText Property

Server Properties 11-85

LastErrorText Property

Applies To
OraParamArray Object on page 9-47

Description
Gets the last error message. Not available at design time and read-only at run time.

Usage
OraParamArray.LastErrorText

Data Type
String



LastModified Property

11-86 Oracle Objects for OLE Developer's Guide

LastModified Property

Applies To
OraDynaset Object on page 9-30

Description
Returns the Bookmark object of the row that was last modified by an Edit or an 
AddNew operation. Not available at design time and read-only at run time.

Usage
last_modified_bookmark = oradynaset.LastModified

Data Type
The value is a string of binary data, but can be stored in a variable of String or 
Variant data type. The length of the string cannot be predicted, so do not use a 
fixed-length string.

Remarks
Use this property to make the last modified record the current record.

See Also:

■ AddNew Method on page 10-21

■ Bookmark Property on page 11-13

■ Edit Method on page 10-134



LastServerErr Property

Server Properties 11-87

LastServerErr Property

Applies To
OraDatabase Object on page 9-28

OraSession Object on page 9-58

Description
Returns the last nonzero error code generated by an Oracle database function for the 
specified object. Not available at design time and read-only at run time.

Usage
error_number = oradatabase.LastServerErr
error_number = orasession.LastServerErr

Data Type
Long Integer

Remarks
This property represents the last nonzero return value from an Oracle Call Interface 
(OCI) database function, or zero if no error has occurred since the last 
LastServerErrReset request. For efficiency, only nonzero return values are 
returned; therefore, a nonzero value does not necessarily indicate that the most 
recently called OCI database function generated the error (because zero return values 
are not returned by way of the LastServerErr method).

■ Orasession.LastServerErr 

Returns all errors related to connections, such as errors on OpenDatabase, 
BeginTrans, CommitTrans, Rollback, and ResetTrans method.

■ Oradatabase.LastServerErr 

Returns all errors related to an Oracle cursor, such as errors on dynasets and from 
ExecuteSQL method.

Examples
This example demonstrates the use of the CreateDynaset method and the 
LastServerErr and LastServerErrText properties to determine whether an 
Oracle error has occurred, and to display the error message, respectively. Copy and 
paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Set up an error handler.



LastServerErr Property

11-88 Oracle Objects for OLE Developer's Guide

 On Error GoTo errhandler
 
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Attempt to Create the OraDynaset Object.
 'Notice that the FROM keyword is missing from the SQL statement.
 Set OraDynaset = OraDatabase.CreateDynaset("select * emp", 0&)
 
Exit Sub
 
errhandler: 
 
 'Check to see if an Oracle error has occurred.
 If OraDatabase.LastServerErr <> 0 Then
  MsgBox OraDatabase.LastServerErrText
 Else 'Must be some non-Oracle error
  MsgBox "VB:" & Err & " " & Error(Err)
 End If
 
 Exit Sub
 
End Sub

See Also:

■ ExecuteSQL Method on page 10-144

■ LastServerErrReset Method on page 10-189

■ LastServerErrText Property on page 11-90

■ OpenDatabase Method on page 10-212

■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ Rollback Method on page 10-235

■ ResetTrans Method on page 10-233



LastServerErrPos Property

Server Properties 11-89

LastServerErrPos Property

Applies To
OraDatabase Object on page 9-28

Description
Returns the position at which a parsing error occurred in a SQL statement. Not 
available at design time and read-only at run time.

Usage
error_pos = oradatabase.LastServerErrPos

Data Type
Integer

Remarks
The LastServerErrPos property returns 0 if no SQL statements have been parsed; 
-1 if the last parse was successful; and >= 0 if the last parse failed. Parsing is done on 
SQL statements before execution (using the CreateDynaset or ExecuteSQL 
method).

See Also:

■ CreateDynaset Method on page 10-85

■ ExecuteSQL Method on page 10-144

■ LastServerErr Property on page 11-87

■ LastServerErrText Property on page 11-90



LastServerErrText Property

11-90 Oracle Objects for OLE Developer's Guide

LastServerErrText Property

Applies To
OraDatabase Object on page 9-28

OraSession Object on page 9-58

Description
Returns the textual message associated with the current LastServerErr property of 
the specified object. Not available at design time and read-only at run time.

Usage
error_text = orasession.LastServerErrText
error_text = oradatabase.LastServerErrText

Data Type
String

Remarks
The returned value indicates one of three possible states:

1. If Null is returned, an Oracle Call Interface (OCI) database function has not 
returned an error since the most recent LastServerErrReset property.

2. If a non-Null value is returned, an OCI function has returned an error code; the 
returned string is the associated message.

3. If the message is empty, then no additional information was available.

Examples
This example demonstrates the use of the CreateDynaset method and the 
LastServerErr and LastServerErrText properties to determine whether an 
Oracle error has occurred and to display the error message. Copy and paste this code 
into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Set up an error handler.
 On Error GoTo errhandler 
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Attempt to Create the OraDynaset Object.
 'Notice that the FROM keyword is missing from the SQL statement.



LastServerErrText Property

Server Properties 11-91

 Set OraDynaset = OraDatabase.CreateDynaset("select * emp", 0&)
 
Exit Sub
 
errhandler:
 
 'Check to see if an Oracle error has occurred.
 If OraDatabase.LastServerErr <> 0 Then
  MsgBox OraDatabase.LastServerErrText
 Else 'Must be some non-Oracle error.
  MsgBox "VB:" & Err & " " & Error(Err)
 End If
 
 Exit Sub
 
End Sub

See Also:

■ LastServerErr Property on page 11-87

■ LastServerErrReset Method on page 10-189

■ CreateDynaset Method on page 10-85



MaxSize (OraCollection) Property

11-92 Oracle Objects for OLE Developer's Guide

MaxSize (OraCollection) Property

Applies To
OraCollection Object on page 9-19

Description
Returns the maximum size of the collection.

Usage
max_size  = OraCollection.MaxSize

Data Type
Integer

Remarks
For an OraCollection object of type ORATYPE_TABLE, this property returns the 
current size of the collection including deleted elements. For an OraCollection 
object of type ORATYPE_VARRAY, the property returns the maximum size of the 
collection.



MinimumSize Property

Server Properties 11-93

MinimumSize Property

Applies To
OraParameter Object on page 9-50

OraParamArray Object on page 9-47

Description
Returns the minimum size of an OraParameter or OraParamArray string buffer or 
ByteArray (for ORATYPE_RAW_BIN). For OraParamArray objects, the minimum 
size property is read-only at run time. For OraParameter objects, the minimum size 
is read/write at run time.

Usage
oraparameter.MinimumSize 
oraparamarray.MinimumSize

Data Type
Integer

Remarks
This property gets the minimum number of characters or bytes to be allocated for each 
element of the array. For OraParamArray objects, the size is specified using the 
AddTable method. 

Examples
Note: This example needs the following to be run: a PL/SQL procedure called 
EmployeeLong with a GetEmpName procedure that uses a table with the column 
name ENAME_LONG that returns a long ename of approximately 200 characters.

Sub Form_Load ()
 
' Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
' Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
' Create the OraDatabase Object.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
' Add EMPNO as an Input/Output parameter and set its initial value.
OraDatabase.Parameters.Add "EMPNO", 9999, ORAPARM_INPUT
 
' Add ENAME as an Output parameter and set its initial value.
OraDatabase.Parameters.Add "ENAME_LONG", "foo", ORAPARM_OUTPUT
OraDatabase.Parameters("ENAME_LONG").MinimumSize = 201 
 'Since we require to hold a value of more than 128 bytes
 
' Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME_LONG.



MinimumSize Property

11-94 Oracle Objects for OLE Developer's Guide

OraDatabase.ExecuteSQL ("Begin EmployeeLong.GetEmpName (:EMPNO," & _
            "NAME_LONG); end;")

See Also:

■ Add Method on page 10-8

■ AddTable Method on page 10-23

■ ExecuteSQL Method on page 10-144



Minute (OraTimeStamp) Property

Server Properties 11-95

Minute (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Returns or sets the Minute attribute of an OraTimeStamp object.

Usage
minute = OraTimeStampObj.Minute
OraTimeStampObj.Minute = minute

Arguments

Data Type
Integer

Arguments Description

[in] minute The Minute attribute of an OraTimeStamp object.



Minute (OraTimeStampTZ) Property

11-96 Oracle Objects for OLE Developer's Guide

Minute (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the Minute attribute of an OraTimeStampTZ object.

Usage
minute = OraTimeStampTZObj.Minute
OraTimeStampTZObj.Minute = minute

Arguments

Data Type
Integer

Arguments Description

[in] minute The Minute attribute of an OraTimeStampTZ object. 



Minutes Property

Server Properties 11-97

Minutes Property

Applies To
OraIntervalDS Object on page 9-35

Description
Gets and sets the Minutes attribute of an OraIntervalDS object.

Usage
minutes = OraIntervalDSObj.Minutes
OraIntervalDSObj.Minutes = minutes

Arguments

Data Type
Integer

Arguments Description

[in] minutes An Integer specifying the value of the Minutes attribute of the 
OraIntervalDS object.



Month (OraTimeStamp) Property

11-98 Oracle Objects for OLE Developer's Guide

Month (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Returns or sets the Month attribute of an OraTimeStamp object.

Usage
month = OraTimeStampObj.Month
OraTimeStampObj.Month = month

Arguments

Data Type
Integer

Arguments Description

[in] month The Month attribute of an OraTimeStamp object. 



Month (OraTimeStampTZ) Property

Server Properties 11-99

Month (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the Month attribute of an OraTimeStampTZ object.

Usage
month = OraTimeStampTZObj.Month
OraTimeStampTZObj.Month = month

Arguments

Data Type
Integer

Arguments Description

[in] month The Month attribute of an OraTimeStampTZ object. 



Months Property

11-100 Oracle Objects for OLE Developer's Guide

Months Property

Applies To
OraIntervalYM Object on page 9-37

Description
Gets and sets the Months attribute of an OraIntervalYM object.

Usage
months = OraIntervalYMObj.Months
OraIntervalYMObj.Months = months

Arguments

Data Type
Integer

Arguments Description

[in] month An Integer specifying the value of the Months attribute of the 
OraIntervalYM object. 



Name Property

Server Properties 11-101

Name Property

Applies To
OraClient Object on page 9-18

OraField Object on page 9-33

OraParameter Object on page 9-50

OraSession Object on page 9-58

OraParamArray Object on page 9-47

OraServer Object on page 9-56

OraSubscription Object on page 9-61

Description
Returns the name used to identify the given object. Not available at design time and 
read-only at run time.

Usage
client_name = oraclient.Name
field_name = orafield.Name
parameter_name = oraparameter.Name 
paramarray_name = oraparamarray.Name
session_name = orasession.Name 
server_name = oraserver.Name
subscription_name = orasubscription.Name

Data Type
String

Remarks
■ oraclient.Name

Returns the name of the specified OraClient object. This value is always local.

■ orafield.Name

Returns the name of the specified OraField object. If this is a true database field 
(not an alias), this use returns the name of the field as it appears in the database. If 
a SQL statement was executed that contains, for example, calculated select list 
items or column aliases, then the name is the actual text provided in the SQL 
SELECT statement.

■ oraparameter.Name

Returns the name of the specified OraParameter object. In addition to 
identifying the parameter within a parameters collection, the parameter name is 
also used to match placeholders within SQL and PL/SQL statements for the 
purposes of parameter binding.

■ oraparamarray.Name

Returns the name of the specified OraParamArray object. In addition to 
identifying the parameter within a parameters collection, the parameter name is 



Name Property

11-102 Oracle Objects for OLE Developer's Guide

also used to match placeholders within SQL and PL/SQL statements for the 
purposes of parameter binding.

■ orasession.Name

Returns the name of the specified OraSession object. For automatically created 
sessions, this is the name assigned by the system (usually a hexadecimal number). 
For user-created sessions, this is the name originally provided in the 
CreateSession method. Once created, a session name cannot be changed.

■ oraserver.Name

Returns the name of the physical connection of the specified OraServer object.

■ orasubscription.Name

Returns the name used to represent the subscription. Name here refers to the 
subscription name in the form of the string 'SCHEMA.QUEUE' if the registration is 
for a single consumer queue and 'SCHEMA.QUEUE:CONSUMER_NAME' if the 
registration is for a multiple consumer queue.

See Also:

■ CreateSession Method on page 10-109

■  Oracle Database Concepts for more information about Oracle 
Database events



Name (AQAgent) Property

Server Properties 11-103

Name (AQAgent) Property

Applies To
OraAQAgent Object on page 9-5

Description
Returns a 30-byte string representing the name of agent.

Usage
agent_name = qMsg.AQAgent.Name

Data Type
String



Name (OraAttribute) Property

11-104 Oracle Objects for OLE Developer's Guide

Name (OraAttribute) Property

Applies To
OraAttribute Object on page 9-7

Description
A String containing the name of the attribute.

Usage
name  = OraAttribute.Name

Data Type
String

Remarks
Read-only at run time.

See Also: OraAttribute Object on page 9-7



Name (OraMDAttribute) Property

Server Properties 11-105

Name (OraMDAttribute) Property

Applies To
OraMDAttribute Object on page 9-38

Description
A String containing the name of the attribute. 

Usage
name = OraMDAttribute.Name

Data Type
String



Nanosecond(OraTimeStamp) Property

11-106 Oracle Objects for OLE Developer's Guide

Nanosecond(OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Returns or sets the Nanosecond attribute of an OraTimeStamp object. 

Usage
nanosecond = OraTimeStampObj.Nanosecond
OraTimeStampObj.Nanosecond= nanosecond

Arguments

Data Type
Integer

Arguments Description

[in] nanosecond The Nanosecond attribute of an OraTimeStamp object.



Nanonsecond (OraTimeStampTZ) Property

Server Properties 11-107

Nanonsecond (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the Nanosecond attribute of an OraTimeStampTZ object.

Usage
nanosecond = OraTimeStampTZObj.Nanosecond
OraTimeStampTZObj.Nanosecond= nanosecond

Arguments

Data Type
Integer

Arguments Description

[in] nanosecond The Nanosecond attribute of an OraTimeStampTZ object.



Nanonseconds Property

11-108 Oracle Objects for OLE Developer's Guide

Nanonseconds Property

Applies To
OraIntervalYM Object on page 9-37

Description
Gets and sets the Nanoseconds attribute of an OraIntervalDS object.

Usage
nanoseconds = OraIntervalDSObj.Nanoseconds
OraIntervalDSObj.Nanoseconds = nanoseconds

Arguments

Data Type
Integer

Arguments Description

[in] nanoseconds An Integer specifying the value of the Nanoseconds attribute of the 
OraIntervalDS object.



Navigation (OraAQ) Property

Server Properties 11-109

Navigation (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Specifies the position of the message that will be retrieved.

Usage
Q.Navigation = position

Data Type
Integer

Remarks
Possible values are:

■ ORAAQ_DQ_FIRST_MSG (1) 

Retrieves the first message that is available and matches the search criteria. 

■ ORAAQ_DQ_NEXT_TRANS (2) 

Skips the remainder of the current transaction group, if any, and retrieves the first 
message of the next transaction group. Used only if message grouping is enabled 
for the queue. 

■ ORAAQ_DQ_NEXT_MSG (3) (Default) 

Retrieves the next message that is available and matches the search criteria. 



NoMatch Property

11-110 Oracle Objects for OLE Developer's Guide

NoMatch Property

Applies To
OraDynaset Object on page 9-30 using the Address (OraAQAgent) Property Property 

Description
Returns True if the last call to the FindFirst, FindLast, FindNext, or 
FindPrevious method failed.

Usage
Set nomatch_status = oradynaset.NoMatch

Data Type
Boolean

See Also: FindFirst, FindLast, FindNext, and FindPrevious 
Methods on page 10-151



NonBlockingState Property

Server Properties 11-111

NonBlockingState Property

Applies To
"OraSQLStmt Object"  on page 9-60 created with ORASQL_NONBLK option.

Description
Returns the status of the currently executing SQL as follows:

■ ORASQL_STILL_EXECUTING

If operation is still underway.

■ ORASQL_SUCCESS

If operation has completed successfully. 

Any failures are thrown as exceptions.

The application can access the output parameters, if any, as in the blocking case, after 
successful execution of the SQL statement.

Usage
status = OraSQL.NonBlockingState 
if status = ORASQL_STILL_EXECUTING 
    MsgBox "Still in execution" 
else 
    MsgBox "Execution completed successfully" 

Return Values
ORASQL_STILL_EXECUTING(-3123) or ORASQL_SUCCESS(0)

Errors are thrown as exceptions.

See Also:

■ CreateSQL Method on page 10-111

■ "Asynchronous Processing" on page 3-16



Offset (OraLOB/BFILE) Property

11-112 Oracle Objects for OLE Developer's Guide

Offset (OraLOB/BFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Gets or sets the 1-based offset into the LOB or BFILE for the next Read or Write 
operation. This property is read/write at run time. 

Usage
offsetbytes = OraBFile.Offset 
OraBFile.Offset = offsetbytes 
 
offsetbytes = OraBlob.Offset 
OraBlob.Offset = offsetbytes 
 
offsetchars = OraClob.Offset 
OraClob.Offset = offsetchars 

Data Type
Integer

Remarks
This value is expressed in bytes for OraBLOB and OraBFILE or characters for the 
OraCLOB object. The default value is 1. Setting this value to 0 raises an error. When 
the PollingAmount property is not 0 (polling is enabled), the Offset property can 
only be set before the first Read or Write operation, or after the current polling 
operation has completed. 

See Also: PollingAmount Property on page 11-125



OIPVersionNumber Property

Server Properties 11-113

OIPVersionNumber Property

Applies To
OraSession Object on page 9-58

Description
Returns the version number of Oracle Object for OLE. Not available at design time and 
read-only at run time.

Usage
version_number = orasession.OIPVersionNumber

Data Type
String

Remarks
This property returns a unique identifier for each release of Oracle Object for OLE.



Options Property

11-114 Oracle Objects for OLE Developer's Guide

Options Property

Applies To
OraDatabase Object on page 9-28

OraDynaset Object on page 9-30 

OraSQLStmt Object on page 9-60

Description
Returns the options flag originally passed to the specified object. Not available at 
design time and read-only at run time.

Usage
options = oradatabase.Options
options = oradynaset.Options 
options = orasqlstmt.Options

Data Type
Long Integer

Remarks
See the OpenDatabase method for a description of the possible values of 
oradatabase.Options.

See the CreateDynaset method for a description of the possible values of 
oradynaset.Options.

See the CreateSQL method for a description of the possible values of 
orasqlstmt.Options

See Also:

■ CreateDynaset Method on page 10-85

■ CreateSQL Method on page 10-111

■ OpenDatabase Method on page 10-212



OraIDataType Property

Server Properties 11-115

OraIDataType Property

Applies To
OraField Object on page 9-33

Description
Returns the Oracle internal data type code for the field specified. Not available at 
design time and read-only at run time.

Usage
field_idatatype = orafield.OraIDataType

Data Type
Long Integer

Remarks
The following Oracle Internal data types are returned.

Constant Value Internal Data Type

ORATYPE_VARCHAR2 1 VARCHAR2

ORATYPE_NUMBER 2 NUMBER

ORATYPE_LONG  8 LONG

ORATYPE_DATE 12 DATE

ORATYPE_RAW 23 RAW

ORATYPE_LONGRAW 24 LONG RAW

ORATYPE_CHAR 96 CHAR

ORATYPE_BFLOAT 100 BINARY_FLOAT

ORATYPE_BDOUBLE 101 BINARY_DOUBLE

ORATYPE_MLSLABEL 105 MLSLABEL

ORATYPE_OBJECT 108 OBJECT 

ORATYPE_REF 110 REF 

ORATYPE_CLOB 112 CLOB 

ORATYPE_BLOB 113 BLOB 

ORATYPE_BFILE 114 BFILE 

ORATYPE_TIMESTAMP 187 TIMESTAMP

ORATYPE_TIMESTAMPTZ 188 TIMESTAMP WITH TIME ZONE

ORATYPE_INTERVALYM 189 INTERVAL YEAR TO MONTH

ORATYPE_INTERVALDS 190 INTERVAL DAY TO SECOND

ORATYPE_TIMESTAMPLTZ 232 TIMESTAMPWITHLOCALTIMEZONE

ORATYPE_VARRAY 247 VARRAY



OraIDataType Property

11-116 Oracle Objects for OLE Developer's Guide

These values can be found in the ORACLE_BASE\ORACLE_
HOME\oo4o\oraconst.txt file.

ORATYPE_TABLE 248 NESTED TABLE

See Also:

■ OraMaxDSize Property on page 11-117

■ OraMaxSize Property on page 11-118

■ OraNullOK Property on page 11-119

■ OraPrecision Property on page 11-120

■ OraScale Property on page 11-121

Constant Value Internal Data Type



OraMaxDSize Property

Server Properties 11-117

OraMaxDSize Property

Applies To
OraField Object on page 9-33

Description
Returns the Oracle maximum display size for the field specified. Not available at 
design time and read-only at run time.

Usage
field_maxdisplaysize = orafield.OraMaxDSize

Data Type
Long Integer

Remarks
This value is meaningful only when the value is returned as a character string, 
especially when using functions such as SUBSTR or TO_CHAR to modify the 
representation of the column.

See Also:

■ OraIDataType Property on page 11-115

■ OraMaxSize Property on page 11-118

■ OraNullOK Property on page 11-119

■ OraPrecision Property on page 11-120

■ OraScale Property on page 11-121



OraMaxSize Property

11-118 Oracle Objects for OLE Developer's Guide

OraMaxSize Property

Applies To
OraField Object on page 9-33

Description
Returns the Oracle maximum column size as stored in the Oracle data dictionary. Not 
available at design time and read-only at run time.

Usage
field_maxsize = orafield.OraMaxSize

Data Type
Long Integer

Remarks
The return value is dependent on the Oracle internal data type. The following values 
will be returned:

Oracle Column Type Value

CHAR, VARCHAR2, RAW Length of the column in the table

NUMBER 22 (the internal length)

DATE 7 (the internal length)

LONG, LONG RAW 0

ROWID System dependent

Functions returning internal data type 1, such 
as TO_CHAR()

Same as orafield.MaxDSize

See Also:

■ OraIDataType Property on page 11-115

■ OraMaxDSize Property on page 11-117

■ OraNullOK Property on page 11-119

■ OraPrecision Property on page 11-120

■ OraScale Property on page 11-121



OraNullOK Property

Server Properties 11-119

OraNullOK Property

Applies To
OraField Object on page 9-33

Description
Indicates whether or not Null values are permitted for this column. Not available at 
design time and read-only at run time.

Usage
field_nullok = orafield.OraNullOK

Data Type
Integer (Boolean)

Remarks
This property returns True if Null values are permitted, otherwise, it returns False.

See Also:

■ OraIDataType Property on page 11-115

■ OraMaxDSize Property on page 11-117

■ OraMaxSize Property on page 11-118

■ OraPrecision Property on page 11-120

■ OraScale Property on page 11-121



OraPrecision Property

11-120 Oracle Objects for OLE Developer's Guide

OraPrecision Property

Applies To
OraField Object on page 9-33

Description
Returns the precision of a numeric column. Not available at design time and read-only 
at run time.

Usage
field_precision = orafield.OraPrecision

Data Type
Long Integer

Remarks
This value is meaningful only when the value returned is numeric. Precision is the 
total number of digits of a number.

See Also:

■ OraIDataType Property on page 11-115

■ OraMaxDSize Property on page 11-117

■ OraMaxSize Property on page 11-118

■ OraNullOK Property on page 11-119

■ OraScale Property on page 11-121



OraScale Property

Server Properties 11-121

OraScale Property

Applies To
OraField Object on page 9-33

Description
Returns the scale of a numeric column. Not available at design time and read-only at 
run time.

Usage
field_scale = orafield.OraScale

Data Type
Long Integer

Remarks
This value is meaningful only when the value returned is numeric. The SQL types 
REAL, DOUBLE PRECISION, FLOAT, and FLOAT(N) return a scale of -127.

See Also:

■ OraIDataType Property on page 11-115

■ OraMaxDSize Property on page 11-117

■ OraMaxSize Property on page 11-118

■ OraNullOK Property on page 11-119

■ OraPrecision Property on page 11-120



Parameters Property

11-122 Oracle Objects for OLE Developer's Guide

Parameters Property

Applies To
OraDatabase Object on page 9-28

Description
Returns the OraParameters collection of the specified database. Not available at 
design time and read-only at run time.

Usage
Set oraparameters_collection = oradatabase.Parameters

Data Type
OLE Object (OraParameters)

Remarks
You can access the parameters in this collection by subscripting (using ordinal integer 
numbers) or by using the name the parameter that was given at its creation. You can 
obtain the number of parameters in the collection using the Count property of the 
returned collection. Integer subscripts begin with 0 and end with Count-1. 
Out-of-range indexes and invalid names return a Null OraParameter object.

In addition to accessing the parameters of the collection, you can also use the 
collection to create and destroy parameters using the Add and Remove methods, 
respectively.

See Also:

■ Add Method on page 10-8

■ Count Property on page 11-31

■ OraParameter Object on page 9-50

■ OraParameters Collection on page 9-68

■ Remove Method on page 10-230



PinOption (OraRef) Property

Server Properties 11-123

PinOption (OraRef) Property

Applies To
OraRef Object on page 9-52

Description
Gets and sets the Pin option for the referenceable object during the pin operation.

Usage
pin_option = OraRef.PinOption
OraRef.PinOption = pin_option

Arguments

Data Type
Integer (Boolean) 

Remarks
Possible values returned by the pin_option property are:

Examples
The following example shows the usage of the PinOption property. Before running 
the sample code, make sure that you have the necessary data types and tables in the 
database. See "Schema Objects Used in the OraObject and OraRef Examples" on 
page A-3.

Dim OraSession as OraSession
Dim OraDatabase as OraDatabase
Dim OraDynaset as OraDynaset
Dim Person as OraRef
 
'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

Arguments Description

[in] PinOption An Integer representing the Pin option.

Constant Value Description

ORAREF_READ_ANY 3 If the object is already in the object cache, returns it, 
otherwise, retrieves it from the database(default).

ORAREF_READ_RECENT 4 If the object is retrieved into the cache during a 
transaction, returns it from the cache, otherwise 
retrieves the object from the database. 

ORAREF_READ_LATEST 5 Always retrieves the latest values from the database.



PinOption (OraRef) Property

11-124 Oracle Objects for OLE Developer's Guide

 
'create a dynaset object from customers
set OraDynaset = OraDatabase.CreateDynaset("select * from customers",  0&)
 
'retrieve a aperson column from customers. Here Value 
'property of OraField object returns Person OraRef
set Person = OraDynaset.Fields("aperson").Value
 
'set the ORAREF_READ_LATEST read option on the Person object. 
Person.PinOption = ORAREF_READ_LATEST 
 
'pin the Person Ref and get the latest copy of referenceable 
'object for Ref from the database
MsgBox Person.Name
MsgBox Person.Age



PollingAmount Property

Server Properties 11-125

PollingAmount Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Gets or sets the total amount to be read or written for multiple chunk Read and Write 
operations (polling). A value of zero means that polling is not used. This property is 
read/write at run time. 

Usage
pollamountbytes = OraBFile.PollingAmount 
OraBfile.PollingAmount = pollamountbytes 
 
pollamountbytes = OraBlob.PollingAmount 
OraBlob.PollingAmount = pollamountbytes 
 
pollamountchars= OraClob.PollingAmount 
OraClob.PollingAmount = pollamountchars 

Data Type
Integer

Remarks
This value is expressed in bytes for the OraBLOB and OraBFILE objects, or characters 
for the OraCLOB object. It is set before beginning a multiple-chunk read or write 
operation. After it is set, a series of Read or Write operations must be issued until the 
LOB Status property no longer returns ORALOB_NEED_DATA .This occurs when the 
PollingAmount bytes or characters have been read. Attempting to do other LOB 
operations before the end of the polling operation results in an error. 



Priority (OraAQMsg) Property

11-126 Oracle Objects for OLE Developer's Guide

Priority (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6

Description
Specifies the priority of the message. 

Usage
Msg.Priority = msg_priority 

Data Type
Integer

Remarks
A smaller number indicates higher priority. 

Possible Values are: 

■ Any integer including negative numbers.

■ ORAAQ_NORMAL (Default): 0 

■ ORAAQ_HIGH : -10 

■ ORAAQ_LOW : 10 

This property can be set while enqueuing and can then be used for priority-based 
dequeuing.



RDMSVersion Property

Server Properties 11-127

RDMSVersion Property

Applies To
OraDatabase Object on page 9-28

Description
Returns the database version.

Usage
Set Version = oradatabase.RDBMSVersion

Data Type
String



RecordCount Property

11-128 Oracle Objects for OLE Developer's Guide

RecordCount Property

Applies To
OraDynaset Object on page 9-30 

OraSQLStmt Object on page 9-60

Description
■ OraDynaset 

Returns the total number of records in the dynaset. 

■ OraSQLStmt

Returns the number of records processed in an insert, update, or delete statement, 
even when there is a failure executing the SQL statement. 

Not available at design time and read-only at run time.

Usage
record_count = oradynaset.RecordCount
record_count = orasqlstmt.RecordCount

Data Type
Long Integer

Remarks
Referencing this property requires that the entire result table be fetched immediately 
from an Oracle database to determine the count of records. Due to the potentially 
severe performance impact of this, the user should avoid using this property and 
instead execute an additional query using the COUNT(*) clause, and use the 
SnapshotID property to guarantee time consistency. For an example, see the 
SnapShot property.

Referencing this property while using the ORADYN_NOCACHE option of the 
CreateDynaset method causes an implicit MoveLast operation and makes the 
current record the last record in the dynaset.

Examples

RecordCount Example (OraDynaset) 
This example demonstrates the use of the RecordCount property to determine the 
number of records retrieved with a SELECT statement and OraDynaset. Copy and 
paste this code into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.



RecordCount Property

Server Properties 11-129

 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create the dynaset.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 'Display the number of records. Note that this causes
 'all records to be fetched to ensure an accurate count.
 
 MsgBox OraDynaset.RecordCount & " records retrieved."
 
 
End Sub
 
 

Record Count Example (OraSQLStmt) 
The following example shows the number of records inserted into the database after 
using an INSERT statement with OraSQLStmt.

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim OraSqlStmt As OraSQLStmt 
Dim OraPArray1 As OraParamArray 
Dim OraPArray2 As OraParamArray
Dim I As Integer  
  
On Error GoTo ERR_array_sql 
  
'Test case for inserting/updating/deleting multiple rows using parameter arrays 
'with SQL statements  
Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
Set OraDatabase = OraSession.OpenDatabase("exampledb", "scott/tiger", 0&) 
 
'Create table  
OraDatabase.ExecuteSQL ("create table part_nos(partno number, description" & _ 
                  "char(50), primary key(partno))")  
 
OraDatabase.Parameters.AddTable "PARTNO", ORAPARM_INPUT, ORATYPE_NUMBER, 10, 22 
OraDatabase.Parameters.AddTable "DESCRIPTION", ORAPARM_INPUT, ORATYPE_CHAR, _ 
              10, 50 
If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then
  MsgBox "Error" 
End If  
 
Set OraPArray1 = OraDatabase.Parameters("PARTNO") 
Set OraPArray2 = OraDatabase.Parameters("DESCRIPTION") 
 
'Initialize arrays 
For I = 0 To 9 
  achar = "Description" + Str(I) 
  OraPArray1.put_Value 1000 + I, I 
  OraPArray2.put_Value achar, I 
Next I  
 
Set OraSqlStmt = OraDatabase.CreateSql("insert into" & _  
          "part_nos(partno, description) values(:PARTNO,:DESCRIPTION)", 0&) 



RecordCount Property

11-130 Oracle Objects for OLE Developer's Guide

If OraDatabase.LastServerErr <> 0 Or OraDatabase.LastServerErrText <> "" Then  
    MsgBox "Error" 
End If 
MsgBox "# of records inserted : " & OraSqlStmt.RecordCount 
  
Exit Sub 
ERR_array_sql: 
 
    MsgBox Err.Description 
 
 

See Also:

■ SnapShot Property on page 11-146

■ CreateDynaset Method on page 10-85

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods 
on page 10-199



RelMsgId (OraAQ) Property

Server Properties 11-131

RelMsgId (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Specifies that the message of this queue object is enqueued ahead of the message 
specified by the message ID.

Usage
OraAq.RelMsgid = msg_id 

Data Type
String

Remarks
This method is applicable only for an enqueue operation. 

Possible values include: 

■ Any valid message identifier, specified by an array of bytes.

■ ORAAQ_NULL_MSGID (Default): No message identifier specified.

Setting this property invokes enqueue with the ORAAQ_ENQ_BEFORE option. Set this 
property to ORAAQ_NULL_MSGID to place the message on top of the queue.



RowPosition Property

11-132 Oracle Objects for OLE Developer's Guide

RowPosition Property

Applies To
OraDynaset Object on page 9-30 

Description
Returns the row number of the current row in the dynaset. Not available in design 
time and read-only in run time.

Usage
rownum = OraDynaset.RowPosition

Data Type
Integer

See Also: OraField Object on page 9-33



SafeArray (OraCollection) Property

Server Properties 11-133

SafeArray (OraCollection) Property

Applies To
OraCollection Object on page 9-19

Description
Gets or sets the element values from the Variant SAFEARRAY. 

Usage
SafeArray = OraCollection.SafeArray
OraCollection.SafeArray = SafeArray

Arguments

Data Type
A Variant representing a SafeArray format.

Remarks
This property is only valid for simple scalar elements types, such as VARCHAR2 and 
NUMBER. This property raises an error for element type LOBS, Objects, Refs, and so on.

The Variant SAFEARRAY index starts at 0. When converting to SAFEARRAY format, 
the OraCollection object converts its element value to its corresponding 
SAFEARRAY Variant type. The following table explains collection element types and 
their corresponding SAFEARRAY Variant types:

For setting a SAFEARRAY to a collection, OraCollection converts the SAFEARRAY 
elements to its nearest collection element type. 

Arguments Description

 SafeArray A Variant representing SafeArray format.

Collection Element Type SAFEARRAY of

Date String

Number String

CHAR, VARCHAR2 String

Real Real

Integer Integer



Second (OraTimeStamp) Property

11-134 Oracle Objects for OLE Developer's Guide

Second (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Returns or sets the Second attribute of an OraTimeStamp object. 

Usage
second = OraTimeStampObj.Second
OraTimeStampObj.Second= second

Arguments

Data Type
Integer

Arguments Description

[in] second The Second attribute of an OraTimeStamp object.



Second (OraTimeStampTZ) Property

Server Properties 11-135

Second (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the Second attribute of an OraTimeStampTZ object.

Usage
second = OraTimeStampTZObj.Second
OraTimeStampTZObj.Second= second

Arguments

Data Type
Integer

Arguments Description

[in] second The Second attribute of an OraTimeStampTZ object.



Seconds Property

11-136 Oracle Objects for OLE Developer's Guide

Seconds Property

Applies To
OraIntervalDS Object on page 9-35

Description
Gets and sets the Seconds attribute of an OraIntervalDS object.

Usage
seconds = OraIntervalDSObj.Seconds
OraIntervalDSObj.Seconds = seconds

Arguments

Data Type
Integer

Arguments Description

[in] seconds An Integer specifying the value of the Seconds attribute of the 
OraIntervalDS object.



Server Property

Server Properties 11-137

Server Property

Applies To
OraDatabase Object on page 9-28

Description
Returns the OraServer object to which this object is attached.

Usage
Set oraserver = oradatabase.Server

Data Type
OLE Object (OraServer)

See Also: OraServer Object on page 9-56



ServerType Property

11-138 Oracle Objects for OLE Developer's Guide

ServerType Property

Applies To
OraParameter Object on page 9-50

OraParamArray Object on page 9-47

Description
Specifies the Oracle external type of a SQL or PL/SQL bind variable. Not available at 
design time and read/write at run time. 

Read-only for the OraParamArray object. Specify the ServerType property during 
the AddTable method.

Usage
oraparameter.ServerType = oracle_type

Data Type
Integer

Remarks
Used to specify the external data type of SQL or PL/SQL (in/out) bind variables. This 
is necessary because no local parsing of the SQL statement or PL/SQL block is done to 
match the data types of placeholders in the SQL statement or PL/SQL block.

After an OraParameter object has been set to ServerType BLOB, CLOB, BFILE, 
OBJECT, REF, VARRAY, or NESTED TABLE, it cannot be changed to any other 
ServerType property. 

The following Oracle external data types are supported.

Constant Value Internal Data Type

ORATYPE_VARCHAR2 1 VARCHAR2

ORATYPE_NUMBER 2 NUMBER

ORATYPE_SINT 3 SIGNED INTEGER

ORATYPE_FLOAT 4 FLOAT

ORATYPE_STRING 5 Null Terminated STRING

ORATYPE_LONG 8 LONG

ORATYPE_VARCHAR 9 VARCHAR

ORATYPE_DATE 12 DATE

ORATYPE_RAW 23 RAW

ORATYPE_LONGRAW 24 LONG RAW

ORATYPE_UINT 68 UNSIGNED INTEGER

ORATYPE_CHAR 96 CHAR

ORATYPE_CHARZ 97 Null Terminated CHAR



ServerType Property

Server Properties 11-139

These values can be found in the ORACLE_BASE\ORACLE_
HOME\oo4o\oraconst.txt file.

Examples
This example demonstrates the Add and Remove parameter methods, the 
ServerType parameter property, and the ExecuteSQL database method to call a 
stored procedure and function (located in ORAEXAMP.SQL). Copy and paste this code 
into the definition section of a form. Then, press F5.

Sub Form_Load ()
 
'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER
 
 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2
 

ORATYPE_BFLOAT 100 BINARY_FLOAT

ORATYPE_BDOUBLE 101 BINARY_DOUBLE

ORATYPE_CURSOR 102 PLSQL CURSOR

ORATYPE_MLSLABEL 105 MLSLABEL

ORATYPE_OBJECT 108 OBJECT 

ORATYPE_REF 110 REF 

ORATYPE_CLOB 112 CLOB 

ORATYPE_BLOB 113 BLOB 

ORATYPE_BFILE 114 BFILE 

ORATYPE_TIMESTAMP 187 TIMESTAMP

ORATYPE_TIMESTAMPTZ 188 TIMESTAMP WITH TIMEZONE

ORATYPE_INTERVALYM 189 INTERVAL YEAR TO MONTH

ORATYPE_INTERVALDS 190 INTERVAL DAY TO SECOND

ORATYPE_TIMESTAMPLTZ 232 TIMESTAMP WITH LOCAL TIME ZONE

ORATYPE_VARRAY 247 VARRAY 

ORATYPE_TABLE 248 NESTED TABLE 

ORATYPE_RAW_BIN 2000 RAW

Constant Value Internal Data Type



ServerType Property

11-140 Oracle Objects for OLE Developer's Guide

 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER
 
 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.
 
 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("declare SAL number(7,2); Begin" & _ 
                ":SAL:=Employee.GetEmpSal (:EMPNO); end;")
 
 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" & 
OraDatabase.Parameters("EMPNO").value & ",Salary=" & 
OraDatabase.Parameters("SAL").value
 
 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"
 OraDatabase.Parameters.Remove "SAL"
 
End Sub

See Also:

■ Add Method on page 10-8

■ Remove Method on page 10-230

■ AddTable Method on page 10-23

■ ExecuteSQL Method on page 10-144



Session Property

Server Properties 11-141

Session Property

Applies To
OraCollection Object on page 9-27

OraDatabase Object on page 9-28

OraDynaset Object on page 9-30 

OraSQLStmt Object on page 9-60

OraServer Object on page 9-56

Description
Returns the OraSession object associated with the specified object. Not available at 
design time and read-only at run time.

Usage
Set orasession = oraconnection.Session
Set orasession = oradatabase.Session
Set orasession = oradynaset.Session 
Set orasession = orasqlstmt.Session
Set orasession = oraserver.Session

Data Type
OLE Object (OraSession)

Remarks
■ oraconnection.Session

Returns the OraSession object in which this OraConnection object resides.

■ oradatabase.Session 

Returns the OraSession object associated with this OraDatabase object. Each 
database is a part of one session, which is, by default, the session associated with 
the application.

■ oradynaset.Session 

Returns the OraSession object associated with this OraDynaset object. 

■ orasqlstmt.Session

Returns the OraSession object associated with this OraSQLStmt object.

See Also:

■ OraSession Object on page 9-58

■ OraSessions Collection on page 9-69



Sessions Property

11-142 Oracle Objects for OLE Developer's Guide

Sessions Property

Applies To
OraClient Object on page 9-18

Description
Returns the collection of all sessions for the specified OraClient object. Not available 
at design time and read-only at run time.

Usage
Set orasessions_collection = oraclient.Sessions

Data Type
OLE Object (OraSessions)

Remarks
You can access a session in this collection by subscripting (using ordinal numbers) or 
by using the name the session was given at its creation. You can obtain the total 
number of sessions in the collection by using the Count property of the returned 
collection. Integer subscripts begin with 0 and end with Count-1. Out-of-range 
indexes and invalid names return a Null OraSession object.

See Also:

■ Count Property on page 11-31

■ OraSession Object on page 9-58

■ OraSessions Collection on page 9-69



Size Property

Server Properties 11-143

Size Property

Applies To
OraField Object on page 9-33

Description
Returns the number of characters or bytes of the Variant associated with the 
returned value of this field. Not available at design time and read-only at run time.

Usage
field_size = orafield.Size

Data Type
Long Integer

Remarks
This property returns 0 for LONG or LONG RAW fields. Use the FieldSize method to 
determine the length of LONG or LONG RAW fields.

See Also:

■ OraFields Collection on page 9-67

■ FieldSize Method on page 10-150

■ Type Property on page 11-164



Size (OraCollection) Property

11-144 Oracle Objects for OLE Developer's Guide

Size (OraCollection) Property

Applies To
OraCollection Object on page 9-19

Description
Returns the current size of the given collection. Read-only at run time.

Usage
coll_size = OraCollection.Size

Data Type
Integer

Remarks
For an OraCollection object of type ORATYPE_TABLE, this property returns the 
current size of the collection including deleted elements.

See Also: OraField Object on page 9-33



Size (OraLOB and OraBFILE) Property

Server Properties 11-145

Size (OraLOB and OraBFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Returns the number of bytes in OraBLOB and OraBFILE objects or the number of 
characters in an OraCLOB object. Read-only.

Usage
bytes = OraBFile.Size
 
bytes = OraBlob.Size 
 
chars = OraClob.Size



SnapShot Property

11-146 Oracle Objects for OLE Developer's Guide

SnapShot Property

Applies To
OraDynaset Object on page 9-30 

Description
Returns the SnapshotID.

Read and write at run time. 

Usage
SnapshotID = OraDynaset.Snapshot

Remarks
The SnapshotID represents the snapshot from which this dynaset was created. It can 
be thought of as a timestamp. It can be passed into other CreateDynaset method 
calls to cause them to be created using data from the same point in time as the original 
dynaset. 

The Snapshot property can be set with the value of another Snapshot. That new 
snapshot is used during the next Refresh operation when the query is reexecuted. 
The Snapshot property always returns the SnapshotID on which this OraDynaset 
object was based, not any other SnapshotID set through the snapshot property. 

The SnapshotID becomes invalid after a certain amount of time; that amount of time 
is dependent on the amount of activity and the configuration of the database. When 
this happens, you get a Snapshot too old error message. For more information 
about snapshots, see the Oracle Database Concepts. 

This SnapshotID represents the point in time when this dynaset was created. 
Changes to this dynaset (Edit, Delete, and AddNew operations) is not reflected in 
additional dynasets created using this SnapshotID because they occurred after that 
point in time. 

SnapshotID objects are only meaningful for SELECT statements where the tables 
referenced are real database tables, as opposed to pseudo tables such as DUAL. 

One valuable use of the SnapshotID is to calculate the number of rows in a table 
without using the RecordCount property which causes every row to be fetched. See 
"Example: Counting Rows in a Dynaset" on page 11-147.

Data Type
Object

Examples

Example: Using the SnapShot Property 
This example shows the use of the SnapShot property.

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset1 As OraDynaset 
Dim OraDynaset2 As OraDynaset 



SnapShot Property

Server Properties 11-147

Dim SnapshotID as SnapshotID 
 
 'Create the OraSession Object. 
 Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
 'Create the OraDatabase Object by opening a connection to Oracle. 
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
 
'ALLEN's JOB is initially SALESMAN 
OraDatabase.ExecuteSql("Update EMP set JOB = 'SALESMAN' where ENAME = 'ALLEN'") 
  
 'Create initial OraDynaset Object. 
 Set OraDynaset1 = OraDatabase.CreateDynaset("select empno, ename," & _ 
            "job from emp", 0&) 
MsgBox "OraDynaset1 -- Value of JOB is " & OraDynaset1.Fields("JOB").Value 
 
'Change Allen's JOB 
OraDatabase.ExecuteSql("Update EMP set JOB = 'CLERK' where ENAME = 'ALLEN'") 
 
'This SnapshotID represents the point in time in which OraDynaset1 was created
Set SnapshotID = OraDynaset1.Snapshot 
 
'Create OraDynaset2 from the same point in time as OraDynaset1 
Set OraDynaset2 = OraDatabase.CreateDynaset("select JOB from EMP" & _ 
               "where ENAME = 'ALLEN'", 0&, SnapshotID) 

MsgBox "OraDynaset2 -- Value of JOB from point of time of OraDynaset1 is " & _
                OraDynaset2.Fields("JOB").Value 
 
'We set the snapshot to NULL which will get us current point in time. 
OraDynaset2.Snapshot = Null 
 
'We refresh it and it will get us the data from the current point in time  
OraDynaset2.Refresh 
MsgBox "OraDynaset2 -- Value of JOB from current point of time is " & _
                OraDynaset2.Fields("JOB").Value 
 
'And back again to the old point in time -- 
OraDynaset2.Snapshot = SnapshotID 
OraDynaset2.Refresh 
MsgBox "OraDynaset2 -- Value of JOB from point of time of OraDynaset1 is " & _
              OraDynaset2.Fields("JOB").Value 
 

Example: Counting Rows in a Dynaset
This example counts the number of rows in a dynaset without using the 
RecordCount property, which fetches every row. Note that the record count this 
returns cannot take into account any AddNew or Delete operations, making the 
information meaningful only immediately after the dynaset is created 

Dim OraSession As OraSession 
Dim OraDatabase As OraDatabase 
Dim OraDynaset As OraDynaset 
Dim OraDynCount As OraDynaset 
Dim SnapshotID as SnapshotID 
 
 'Create the OraSession Object. 
 Set OraSession = CreateObject("OracleInProcServer.XOraSession") 
 
 'Create the OraDatabase Object by opening a connection to Oracle. 



SnapShot Property

11-148 Oracle Objects for OLE Developer's Guide

 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&) 
 
'Create the Dynaset 
Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&) 
Set SnapshotID = OraDynaset.Snapshot 
 
'Use the snapshot for count query to guarantee the same point in time 
Set OraDynCount = OraDatabase.CreateDynaset("select count(*) NUMROWS" & _
         "from emp", 0&, SnapshotID)
MsgBox "Number of rows in the table is " & OraDynCount.Fields("NUMROWS").Value 

See Also:

■ CreateDynaset Method on page 10-85

■ CreateCustomDynaset Method on page 10-80

■ Oracle Database Concepts



Sort Property

Server Properties 11-149

Sort Property

Remarks
The OraDynaset object does not support this property. Sort your record set by using 
a SQL ORDER BY clause.

See Also:

■ CreateDynaset Method on page 10-85

■ OraDynaset Object on page 9-30



SQL Property

11-150 Oracle Objects for OLE Developer's Guide

SQL Property

Applies To
OraDynaset Object on page 9-30 

OraSQLStmt Object on page 9-60

Description
Returns or sets the SQL statement used to create the specified dynaset or OraSQLStmt 
object. Not available at design time and read/write at run time.

Usage
SQL_statement  = oradynaset.SQL
SQL_statement  = orasqlstmt.SQL
 
oradynaset.SQL = SQL_statement 
orasqlstmt.SQL = SQL_statement

Data Type
String

Remarks
The first use returns the contents of the SQL statement buffer, and the second use sets 
the contents of the SQL statement buffer. 

The SQL statement buffer initially contains the SQL statement used to create the 
dynaset or OraSQLStmt object. The contents of the SQL statement buffer are executed 
whenever the Refresh method is issued.

Examples
This example demonstrates the use of parameters, the Refresh method, and the SQL 
property to restrict selected records. Copy and paste this code into the definition 
section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create a parameter with an initial value.
 OraDatabase.Parameters.Add "job", "MANAGER", 1
 
 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp where " & _



SQL Property

Server Properties 11-151

               "job=:job", 0&)
 
 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL
 
 'Currently, OraDynaset only contains employees whose job is MANAGER.
 
 'Change the value of the job parameter.
 OraDatabase.Parameters("job").Value = "SALESMAN"
 
 'Refresh the dynaset.
 OraDynaset.Refresh
 
 'Currently, OraDynaset only contains employees whose 'job is SALESMAN.
 
 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL
 
 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")
 
 End Sub

See Also: Refresh Method on page 10-225



Status Property

11-152 Oracle Objects for OLE Developer's Guide

Status Property

Applies To
OraParameter Object on page 9-50

OraParamArray Object on page 9-47

Description
Returns an integer indicating the status of the specified parameter. Not available at 
design time and read-only at run time.

Usage
parameter_status = oraparameter.Status
parameter_status = oraparamarray.Status

Data Type
Integer

Remarks
The Status property is interpreted as a series of bits, each providing information 
about the parameter. Parameters can be bound only if they are enabled, and can be 
enabled only if they are auto-enabled.

The parameter Status property bit values are:

These values are located in the ORACLE_BASE\ORACLE_HOME\oo4o\oraconst.txt 
file.

Examples
This example demonstrates the use of parameters and the ExecuteSQL method to call 
a stored procedure (located in ORAEXAMP.SQL). After calling the stored procedure, the 
Status property of each parameter is checked. Copy and paste this code into the 
definition section of a form. Then, press F5.

Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

Constant Value Description

ORAPSTAT_INPUT &H1& Parameter can be used for input.

ORAPSTAT_OUTPUT &H2& Parameter can be used for output.

ORAPSTAT_AUTOENABLE &H4& Parameter is AutoBindEnabled.

ORAPSTAT_ENABLE &H8& Parameter is Enabled. This bit is always set.



Status Property

Server Properties 11-153

 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Add EMPNO as an Input parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 
 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 
 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure is located in the file ORAEXAMP.SQL.
 OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 
 If OraDatabase.Parameters("EMPNO").Status & ORAPSTAT_INPUT Then
  MsgBox "Parameter EMPNO used for input."
 End If
 
 If OraDatabase.Parameters("ENAME").Status & ORAPSTAT_OUTPUT Then
  MsgBox "Parameter ENAME used for output."
 End If
 
'Display the employee number and name.
 MsgBox OraDatabase.Parameters("EMPNO").value
 MsgBox OraDatabase.Parameters("ENAME").value
 
 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"
 
End Sub

See Also:

■ Add Method on page 10-8

■ AutoBindDisable Method on page 10-39

■ AutoBindEnable Method on page 10-41

■ ExecuteSQL Method on page 10-144

■ Remove Method on page 10-230



Status (OraLOB/BFILE) Property

11-154 Oracle Objects for OLE Developer's Guide

Status (OraLOB/BFILE) Property

Applies To
OraBLOB, OraCLOB Objects on page 9-11

OraBFILE Object on page 9-9

Description
Returns the status of the current polling operation.

 Read-only.

Usage
status = OraBFile.Status 
status  = OraBlob.Status 
status = OraClob.Status 

Data Type
Integer

Remarks
This value only has meaning when the PollingAmount property is not zero, and a 
Read operation has occurred. Possible return values are:

■ ORALOB_NEED_DATA 

There is more data to be read or written.

■ ORALOB_NODATA 

There is no data to be read or written, usually due to an error condition.

■ ORALOB_SUCCESS LOB 

The data was read or written successfully.

See Also: PollingAmount Property on page 11-125



Subscriptions Property

Server Properties 11-155

Subscriptions Property

Applies To
OraDatabase Object on page 9-28

Description
Returns the OraSubscriptions collection of the specified database. Not available at 
design time and read-only at run time.

Usage
Set orasubscriptions_collection = oradatabase.Subscriptions

Data Type
OLE Object (OraSubscriptions)

Remarks
You can access the subscriptions in this collection by subscripting (using ordinal 
integer numbers). You can obtain the number of subscriptions in the collection using 
the Count property of the returned collection. Integer subscripts begin with 0 and end 
with Count-1. Out-of-range indexes return a Null OraSubscription object.

In addition to accessing the subscriptions of the collection, you can also use the 
collection to create and destroy subscriptions using the Add and Remove methods, 
respectively.

Examples
See "Example: Registering an Application for Notification of Database Events" on 
page 10-15 for a complete example.

See Also:

■ "Database Events" on page 4-22

■ OraSubscription Object on page 9-61

■ OraSubscriptions Collection on page 9-70

■ Remove (OraSubscriptions Collection) Method on page 10-231



TableName (OraRef) Property

11-156 Oracle Objects for OLE Developer's Guide

TableName (OraRef) Property

Applies To
OraRef Object on page 9-52

Description
A String containing the name of the object table in which the underlying 
referenceable object resides.

Usage
table_name = OraRef.TableName

Data Type
String

Remarks
This property is read-only.



TableSize (OraCollection) Property

Server Properties 11-157

TableSize (OraCollection) Property

Applies To
OraCollection Object on page 9-19

Description
Returns the current size of the given collection. Read-only at run time.

Usage
table_size = OraCollection.TableSize

Data Type
Integer

Remarks
For an OraCollection object of type ORATYPE_TABLE, it returns the current size of 
the collection, excluding deleted elements.



TimeZone (OraTimeStampTZ) Property

11-158 Oracle Objects for OLE Developer's Guide

TimeZone (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the time zone information of an OraTimeStampTZ object. 

Usage
timezone = OraTimeStampTZObj.TimeZone
OraTimeStampTZObj.TimeZone= timezone

Arguments

Data Type
String

Remarks
Setting the TimeZone property does not change the Coordinated Universal Time 
(UTC) datetime values stored in the OraTimeStampTZ object. However, the local 
datetime values in the specified time zone can change.

The following table shows the UTC datetime values that correspond to the datetime 
and time zone values of the OraTimeStampTZ object in the example.

Setting the TimeZone property to -08:00 changes the datetime values in the 
specified time zone of the OraTimeStampTZ object, but does not change the UTC 
datetime values.

Arguments Description

[in] timezone The time zone attribute of an OraTimeStampTZ object.

Properties
OraTSTZ Object 
Values

UTC Date Time Values of the 
OraTSTZ Object

Year 2003 2003

Month 4 4

Day 29 29

Hour 12 19

Minute, Second, Nanosecond 0 0

TimeZone -07:00 00:00

Properties
New OraTSTZ 
Object Values

UTC Date Time Values of the 
New OraTSTZ Object

Year 2003 2003

Month 4 4



TimeZone (OraTimeStampTZ) Property

Server Properties 11-159

Examples
Dim OraTSTZ as OraTimeStampTZ 
Dim OraTSTZ_new as OraTimeStampTZ 
Dim OraTSTZStr as String 
Dim OraTSTZStr_new as String 
Set OraTSTZ = oo4oSession.CreateOraTimeStampTZ( "2003-APR-29" & _
       "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM")
 
'Change Time Zone to "-08:00" 
Set OraTSTZ_new = OraTSTZ.Clone 
oraTSTZ_new.TimeZone = "-08:00" 
 
'OraTSTZStr has value as (29-APR-03 12.00.00.000000000 PM -07:00) 
OraTSTZStr = OraTSTZ.value 
'OraTSTZStr_new has value as (29-APR-03 11.00.00.000000000 PM -08:00) 
OraTSTZStr_new = OraTSTZ_new.value 

Day 29 29

Hour 11 19

Minute, Second, Nanosecond 0 0

TimeZone -08:00 00:00

Properties
New OraTSTZ 
Object Values

UTC Date Time Values of the 
New OraTSTZ Object



TotalDays Property

11-160 Oracle Objects for OLE Developer's Guide

TotalDays Property

Applies To
OraIntervalDS Object on page 9-35

Description
Gets and sets the total number of days that this OraIntervalDS object represents.

Usage
totalDays = OraIntervalDSObj.TotalDays
OraIntervalDSObj.TotalDays = totalDays

Arguments

Data Type
Double

Examples
Dim oraIDS   as OraIntervalDS 
'Create an OraIntervalDS using a string which represents 1 day and 12 hours 
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 12:0:0.0") 
 
'totalDays is set to 1.5 which represents an interval of 1.5 days
totalDays = oraIDS.TotalDays 

Arguments Description

[in] totalDays A Variant type of any numeric value or an OraNumber object 
specifying the OraIntervalDS object as the total number of days.

See Also: OraNumber Object on page 9-41



TotalYears Property

Server Properties 11-161

TotalYears Property

Applies To
OraIntervalYM Object on page 9-37

Description
Gets and sets the total number of years that this OraIntervalYM object represents.

Usage
totalYears = OraIntervalYMObj.TotalYears
OraIntervalYMObj.TotalYears= totalYears

Arguments

Data Type
Double

Examples
Dim oraIYM   as OraIntervalYM 
 
'Create an OraIntervalYM using a string which represents 1 year and 6 months
Set oraIYM = oo4oSession.CreateOraIntervalYM("1-6") 
'totalYears is set to 1.5 which represents an interval of 1.5 years 
totalYears = oraIYM.TotalYears

Arguments Description

[in] totalYears A Variant type of any numeric value specifying the OraIntervalYM 
object as the total number of years. 



Transactions Property

11-162 Oracle Objects for OLE Developer's Guide

Transactions Property

Applies To
OraDynaset Object on page 9-30 

Description
Indicates whether or not the given dynaset can support transaction processing. Not 
available at design time and read-only at run time.

Usage
if_transactions = oradynaset.Transactions

Data Type
Integer (Boolean)

Remarks
This property always returns True.

See Also:

■ BeginTrans Method on page 10-43

■ CommitTrans Method on page 10-66

■ OraDynaset Object on page 9-30

■ ResetTrans Method on page 10-233

■ Rollback Method on page 10-235



Truncated Property

Server Properties 11-163

Truncated Property

Applies To
OraField Object on page 9-33

Description
Indicates whether or not a field value was truncated when fetched. Not available at 
design time and read-only at run time.

Usage
field_status = orafield.Truncated

Data Type
Integer (Boolean)

Remarks
This property returns True if truncated data is returned; otherwise, it returns False. 
Truncation can only occur for LONG or LONG RAW fields. Use this property to decide 
whether more data needs to be retrieved from an Oracle database using the GetChunk 
method.

See Also:

■ GetChunk Method on page 10-156

■ Type Property on page 11-164



Type Property

11-164 Oracle Objects for OLE Developer's Guide

Type Property

Applies To
OraField Object on page 9-33

OraParameter Object on page 9-50

OraParamArray Object on page 9-47

Description
Returns the Variant type of the specified object. Not available at design time and 
read-only at run time.

Usage
data_type = orafield.Type
data_type = oraparameter.Type 
data_type = oraparamarray.Type

Data Type
Integer

Remarks
■ orafield.Type 

Returns the Variant data type (see Visual Basic documentation) associated with 
the returned value of this field.

■ oraparameter.Type 

Returns an integer indicating the Variant data type that is actually bound to the 
SQL statement. This may differ from the Variant data type of 
oraparameter.Value, because internal conversions may be necessary to obtain 
a data type common to both Visual Basic and Oracle Database.

Users can expect the following mapping from Oracle internal data types:

Oracle Data Type Constant Value Data Type

BINARY_DOUBLE ORADB_DOUBLE 7 Double

BINARY_FLOAT ORADB_SINGLE 6 Single

BLOB ORADB_OBJECT 9 OraBLOB

CHAR ORADB_TEXT 10 String

CLOB ORADB_OBJECT 9 OraCLOB

DATE ORADB_DATE 8 Variant

DATE ORADB_DATE 8 Date

INTERVAL DAY TO SECOND ORADB_OBJECT 9 OraIntervalDS

INTERVAL YEAR TO MONTH ORADB_OBJECT 9 OraIntervalYM

LONG ORADB_MEMO 12 String

LONG RAW ORADB_LONGBINARY 11 String



Type Property

Server Properties 11-165

These values are located in the ORACLE_BASE\ORACLE_HOME\oo4o\oraconst.txt 
file and are intended to match similar constants in the Visual Basic file datacons.txt 
file.

Note that fields of type DATE are returned in the default Visual Basic format as 
specified in the Control Panel, even though the default Oracle date format is 
"DD-MMM-YY".

Note that columns defined as NUMBER instead of NUMBER(precision, scale) are, 
by definition, floating point numbers with a precision of 38. This means that the Type 
property returns a type of ORADB_TEXT for these columns.

NESTED TABLE ORADB_OBJECT 9 OraBFILE

NUMBER (1-4, 0) ORADB_INTEGER 3 Integer

NUMBER (5-9, 0) ORADB_LONG 4 Long Integer

NUMBER (10-15, 0) ORADB_DOUBLE 7 Double

NUMBER (16-38, 0) ORADB_TEXT 10 String

NUMBER (1-15, n) ORADB_DOUBLE 7 Double

NUMBER (16-38, n) ORADB_TEXT 10 String

RAW ORADB_LONGBINARY 11 String

REF ORADB_OBJECT 9 OraCollection

TIMESTAMP ORADB_OBJECT 9 OraTimeStamp

TIMESTAMP WITH LOCAL TIME ZONE ORADB_OBJECT 9 OraTimeStamp

TIMESTAMP WITH TIME ZONE ORADB_OBJECT 9 OraTimeStampTZ

VARRAY ORADB_OBJECT 9 OraCollection

VARCHAR2 ORADB_TEXT 10 String

See Also: Value Property on page 11-173

Oracle Data Type Constant Value Data Type



Type (OraAttribute) Property

11-166 Oracle Objects for OLE Developer's Guide

Type (OraAttribute) Property

Applies To
OraAttribute Object on page 9-7

Description
A integer code representing the type of this attribute. 

Usage
typecode = OraAttribute.Type

Data Type
Integer

Remarks
These integer codes correspond to external data types in Oracle Call Interface (OCI). 
See Oracle data types.

See Also: "Oracle Data Types" on page A-1



Type (OraCollection) Property

Server Properties 11-167

Type (OraCollection) Property

Applies To
OraCollection Object on page 9-19

Description
Returns the type code of the collection.

Usage
coll_type = OraCollection.Type

Data Type
Integer

Remarks
This property returns one of the following values:

Constant Value Description

ORATYPE_VARRAY 247 Collection is VARRAY type.

ORATYPE_TABLE 248 Collection is nested table type.



Type (OraMetaData) Property

11-168 Oracle Objects for OLE Developer's Guide

Type (OraMetaData) Property

Applies To
OraMetaData Object on page 9-39

Description
Returns type of the schema object described by the OraMetaData object. 

Usage
type = OraMetaData.Type

Remarks
The possible values include the following constants: 

Constants Value

ORAMD_TABLE 1

ORAMD_VIEW 2

ORAMD_COLUMN 3

ORAMD_COLUMN_LIST 4

ORAMD_TYPE 5

ORAMD_TYPE_ATTR 6

ORAMD_TYPE_ATTR_LIST 7

ORAMD_TYPE_METHOD 8

ORAMD_TYPE_METHOD_LIST 9

ORAMD_TYPE_ARG 10

ORAMD_TYPE_RESULT 11

ORAMD_PROC 12

ORAMD_FUNC 13

ORAMD_ARG 14

ORAMD_ARG_LIST 15

ORAMD_PACKAGE 16

ORAMD_SUBPROG_LIST 17

ORAMD_COLLECTION 18

ORAMD_SYNONYM 19

ORAMD_SEQENCE 20

ORAMD_SCHEMA 21

ORAMD_OBJECT_LIST 22

ORAMD_OBJECT_LIST 23

ORAMD_DATABASE 24



Type (OraMetaData) Property

Server Properties 11-169

Note:  If this version of the OraMetaData object is used on Oracle 
Database release 8.1 or later, values higher than 24 are possible if the 
database is enhanced to introduce new schema types.

See Also: ORAMD_TABLE Attributes on page 9-39 



TypeName (OraObject and OraRef) Property

11-170 Oracle Objects for OLE Developer's Guide

TypeName (OraObject and OraRef) Property

Applies To
OraObject Object on page 9-43

OraRef Object on page 9-52

Description
Specifies a String containing the name of the user-defined type of the object.

Usage
typename = OraRef.TypeName
typename = OraObject.TypeName

Data Type
String

Remarks
This property is read-only at run time.



Updatable Property

Server Properties 11-171

Updatable Property

Applies To
OraDynaset Object on page 9-30

Description
Returns whether or not the specified dynaset is updatable. Not available at design 
time and read-only at run time.

Usage
if_updatable = oradynaset.Updatable

Data Type
Integer (Boolean)

Remarks
Returns True if the rows in the specified dynaset can be updated; otherwise, it returns  
False.

The updatability of the resultant dynaset depends on the Oracle SQL rules of 
updatability, on the access you have been granted, and on the read-only flag of the 
CreateDynaset method.

To be updatable, three conditions must be met:

1. The SQL statement must refer to a simple column list or to the entire column list 
(*). 

2. The SQL statement must not set the read-only flag of the options argument. 

3. Oracle Database must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are 
not updatable and this property returns False.

Examples
This example demonstrates the use of the Updatable method. Copy and paste this 
code into the definition section of a form. Then, press F5.

 
Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase 
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
 'Create an updatable dynaset using a simple query.



Updatable Property

11-172 Oracle Objects for OLE Developer's Guide

 Set OraDynaset = OraDatabase.CreateDynaset("select * from emp", 0&)
 
 Call IsDynUpdatable(OraDynaset)
 
 'Create a non-updatable dynaset using column aliases.
 Set OraDynaset = OraDatabase.CreateDynaset("select ename EmployeeName," & _
                  "empno EmployeeNumber, sal Salary from emp", 0&)
 Call IsDynUpdatable(OraDynaset)
 
 'Create a non-updatable dynaset using a join.
 Set OraDynaset = OraDatabase.CreateDynaset("select ename, emp.deptno," & _ 
           "loc from emp, dept where emp.deptno = dept.deptno", 0&)
 Call IsDynUpdatable(OraDynaset)
 
End Sub
 
Sub IsDynUpdatable (odyn As OraDynaset)
 
 'Check to see if the dynaset is updatable.
 If odyn.Updatable = True Then
  MsgBox "Created an UPDATABLE dynaset from: '" & odyn.SQL & "'"
 Else
  MsgBox "Created a READ-ONLY dynaset from: '" & odyn.SQL & "'"
 End If
 
End Sub

See Also:

■ CreateDynaset Method on page 10-85

■ SQL Property on page 11-150

■ RecordSource Property of Data Control on page 14-31



Value Property

Server Properties 11-173

Value Property

Applies To
OraField Object on page 9-33

OraParameter Object on page 9-50

Description
Returns or sets the value of the given object. Not available at design time and 
read/write at run time.

Usage
orafield.Value = data_value
data_value = orafield.Value
 
oraparameter.Value = data_value
data_value = oraparameter.Value

Data Type
Variant

Remarks
■ Orafield.Value 

Returns the value of the field as a Variant.

data_value = orafield.Value sets the contents of the field. Fields can contain 
Null values. You can test the Value property with the Visual Basic function 
IsNull() to determine whether the value is null upon return. You can also assign 
Null to the Value property whenever the current record is editable. Field values 
are cached locally as the data is retrieved from the database. However, in the case 
of a LONG or LONG RAW fields, some data may not be retrieved and stored locally. 
In these cases, data is retrieved as required using the methods described in the 
GetChunk field method. The maximum size of a LONG or LONG RAW field that can 
be retrieved directly through the Value property is approximately 64 KB. You 
must retrieve data fields larger than 64 KB indirectly, using the GetChunk 
method.

■ OraParameter.Value 

Returns the value of the parameter as a Variant.

data_value = oraparameter.Value sets the contents of the parameter. Note 
that changing the Variant data type of the value can have significant impact on 
the processing of associated SQL and PL/SQL statements.

Note that fields of type DATE are returned in the default Visual Basic format of 
"MM/DD/YY" even though the default Oracle date format is "DD-MMM-YY".

The Value argument can be an Oracle Database 10g object, such as an OraBLOB.

Similar to a dynaset, the object obtained from parameter Value property always refers 
to the latest value of the Parameter. The Visual Basic value Null can also be passed 
as a value. The Visual Basic value EMPTY can be used for BLOB and CLOB to mean an 



Value Property

11-174 Oracle Objects for OLE Developer's Guide

empty LOB, and for OBJECT, VARRAY, and NESTED TABLE to mean an object whose 
attributes are all Null.

See Also:

■ GetChunk Method on page 10-156

■ OraParamArray Object on page 9-47

■ Type Property on page 11-164



Value (OraAttribute) Property

Server Properties 11-175

Value (OraAttribute) Property

Applies To
OraAttribute Object on page 9-7

Description
Gets or sets the value of the attribute. This value could be an instance of an 
OraObject, OraRef, or OraCollection object, or any of the supported scalar 
types, such as Integer or Float.

Usage
attr_value = OraAttribute.Value  
OraAttribute.Value = attr_value

Data Type
Variant

Remarks
This is the default property for this object.

The Value property of the OraAttribute object returns the value of the attribute as 
a Variant. The Variant type of the attribute depends on the attribute type of the 
attribute. Attribute values can be Null and can be set to Null. For attribute of type 
objects, REF, LOB and Collection, attribute values are returned as corresponding 
OO4O objects for that type. 

The following table identifies the attribute type and the return value of the Value 
property of the OraAttribute object:

Element Type Element Value 

Object OraObject

REF OraRef

VARRAY, Nested Table OraCollection

BLOB OraBLOB

CLOB OraCLOB

BFILE OraBFILE

Date String

Number String

CHAR,VARCHAR2 String

Real Real

Integer Integer



Value (OraAQMsg) Property

11-176 Oracle Objects for OLE Developer's Guide

Value (OraAQMsg) Property

Applies To
OraAQMsg Object on page 9-6

Description
Returns or sets the value of the given object. 

Usage
Msg.Value = my_string 
set Msg.Value = OraObj 
 
my_string = Msg.Value 
Set OraObj = Msg.Value 

Data Type
String

Remarks
The Value property represents the actual message for RAW as well as user-defined 
types. 

This property is not available at design time and read/write at run time.

Examples
'To set the value for a message of Raw type 
OraAQMsg.Value = "This is a test message" 
myString = "Another way of setting the message" 
OraAQMsg.Value = myString 
 
'To set the value for a message of user-defined type  
Dim OraObj as OraObject 
OraObj("subject").Value = txtdesc 
OraObj("text").Value = txtmsg 
set OraAQMsg.Value = OraObj 
 
'To get the value from a message of raw type 
myString = OraAQMsg.Value 
 
'To get the value from a message of object type(user-defined type) 
Set OraObj = OraMsg.Value 
txtdesc = OraObj("subject").Value 
txtmsg = OraObj("text").Value



Value (OraIntervalDS) Property

Server Properties 11-177

Value (OraIntervalDS) Property

Applies To
OraIntervalDS Object on page 9-35

Description
When read, the Value property provides a string representation of the value of the 
OraIntervalDS object using the format [+/-]Day HH:MI:SSxFF. When set, the 
Value property accepts a Variant of type String, a numeric value, or an 
OraIntervalDS object.

Usage
string = OraIntervalDSObj.Value 
OraIntervalDSObj.Value = value

Arguments

Data Type
Variant

Remarks
If the value set is a Variant of type String, it must be in the following format: [+/-] 
Day HH:MI:SSxFF.

If the value set is a numeric value, the value provided should represent the total 
number of days that the OraIntervalDS object represents.

Examples
Dim oraIDS as OraIntervalDS 
 
'Create an OraIntervalDS using a string which represents 1 day and 12 hours 
Set oraIDS = oo4oSession.CreateOraIntervalDS("1 12:0:0.0") 
 
'get the OraIntervalDS.Value return a string for the Value
' property, idsStr is set to "01 12:00:00.000000" 
idsStr = oraIDS.Value 
 
'can also return a string for the Value property as follows 
idsStr = oraIDS 
 
'set the OraIntervalDS.Value using a string which represents 1 days and 12 hours
oraIDS.Value = "1 12:0:0.0" 
 
'set the OraIntervalDS.Value using a numeric value which represents 
'1 days and 12 hours 
oraIDS.Value = 1.5 

Arguments Description

[in] value A Variant of type String, a numeric value, or an OraIntervalDS 
object.



Value (OraIntervalDS) Property

11-178 Oracle Objects for OLE Developer's Guide

See Also: CreateOraIntervalDS Method on page 10-92



Value (OraIntervalYM) Property

Server Properties 11-179

Value (OraIntervalYM) Property

Applies To
OraIntervalYM Object on page 9-37

Description
When read, the Value property provides a string representation of the value of the 
OraIntervalYM object using the format YEARS-MONTHS.

When set, the Value property accepts a Variant of type String, a numeric value, or 
an OraIntervalYM object.

Usage
string = OraIntervalYMObj.Value
OraIntervalYMObj.Value= value

Arguments

Data Type
String

Remarks
If the value set is a Variant of type String, it must be in following format: [+/-] 
YEARS-MONTHS.

If the value set is a numeric value, the value provided should represent the total 
number of years that the OraIntervalYM object represents.

Examples
Dim oraIYM as OraIntervalYM 
 
'Create an OraIntervalYM using a string which represents 1 year and 6 months 
Set oraIYM = oo4oSession.CreateOraIntervalYM("1-6") 
 
'get the OraIntervalYM.Value return a string for the Value property,
' iymStr is set to "01-06" 
iymStr = oraIYM.Value 
 
'can also return a string for the Value property as follows 
iymStr = oraIYM 

'set the OraIntervalDS.Value using a string which represents 1 year and 6 months
oraIYM.Value = "1-6" 
 
'set the OraIntervalYM.Value using a numeric value which represents 
'1 years and 6 months 
oraIYM.Value = 1.5 

Arguments Description

[in] value A Variant of type String, a numeric value, or an OraIntervalYM 
object.



Value (OraIntervalYM) Property

11-180 Oracle Objects for OLE Developer's Guide

See Also: CreateOraIntervalYM Method on page 10-94



Value (OraMDAttribute) Property

Server Properties 11-181

Value (OraMDAttribute) Property

Applies To
OraMDAttribute Object on page 9-38

Description
A String containing the value of the attribute.

Usage
value = OraMDAttribute.Value

Data Type
String

Remarks
This is the default property.



Value (OraNumber) Property

11-182 Oracle Objects for OLE Developer's Guide

Value (OraNumber) Property

Applies To
OraNumber Object on page 9-41

Description
When read, the Value property provides a string representation of the value of the 
OraNumber object using the current format string. When set, the Value property 
accepts a Variant of type String, OraNumber, or a numeric value. Read and write 
at run time.

Usage
string = OraNumber.Value  
OraNumber.Value = variantval 

Arguments

Data Type
Variant

Remarks
If the Value property is set to a numeric type, such as a LONG, it is limited to the 
maximum precision Visual Basic provides for numerical values. 

If the current format cannot be applied successfully to the value, an error is raised. An 
error is also raised if this property is set to a Variant value that cannot be converted 
to a number, such as a string of nonnumeric characters. 

Arguments Description

[in] variantval A Variant of type String, OraNumber, or a numeric value.



Value (OraTimeStamp) Property

Server Properties 11-183

Value (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
When read, the Value property provides a string representation of the value of the 
OraTimeStamp object. If the Format property is not null, the output string format is 
in the format specified by the Format property; otherwise, the output string format is 
in the session TIMESTAMP format (NLS_TIMESTAMP_FORMAT). When set, the Value 
property accepts a Variant of type String, Date, or OraTimeStamp. 

Usage
string = OraTimeStampObj.Value
OraTimeStampObj.Value= value

Arguments

Data Type
String

Remarks
If the value is of type String and Format is not null, the string format must match 
the Format property. If the Format property is null, the string format must match the 
session TIMESTAMP format.

Examples
... 
 
Set OraTimeStamp = OraSession.CreateOraTimeStamp("1999-APR-29 " & _ 
         "12:10:23.444 AM", "YYYY-MON-DD HH:MI:SS.FF AM") 
 
'returns a string for the Value property 
tsStr = OraTimeStamp.Value 
 
'set OraTimeStamp.Value using a string 
OraTimeStamp.Value = "1999-APR-29 12:10:23.444 AM" 

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStamp.

See Also: CreateOraTimeStamp Method on page 10-100



Value (OraTimeStampTZ) Property

11-184 Oracle Objects for OLE Developer's Guide

Value (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
When read, the Value property provides a string representation of the value of the 
OraTimeStampTZ object. If the Format property is not null, the output string format 
is in the format specified by the Format property; otherwise, the output string format 
is in the session TIMESTAMP WITH TIME ZONE format (NLS_TIMESTAMP_TZ_
FORMAT). When set, the Value property accepts a Variant of type String, Date, or 
OraTimeStampTZ. 

Usage
string = OraTimeStampTZObj.Value
OraTimeStampObjTZ.Value= value

Arguments

Data Type
String

Remarks
If the Variant is of type String and the Format property is not null, the string 
format must match the Format property. If the Format property is null, the string 
format must match the session TIMESTAMP WITH TIME ZONE format.

If the Variant is of type Date, the date-time value in Date is interpreted as the 
date-time value in the session time zone. The time zone information in the 
OraTimeStampTZ object contains the session time zone.

Examples
Dim OraTimeStampTZ As OraTimeStampTZ 
... 
 
Set OraTimeStampTZ = OraSession.CreateOraTimeStampTZ("2003-APR-29" & _ 
            "12:00:00 -07:00", "YYYY-MON-DD HH:MI:SS TZH:TZM") 
 
'returns a string for the Value property 
tstzStr = OraTimeStampTZ.Value 
... 
 
'set OraTimeStampTZ.Value using a string 
OraTimeStampTZ.Value = "2003-APR-29 12:00:00 -07:00" 

Arguments Description

[in] value A Variant of type String, Date, or OraTimeStampTZ.

See Also: CreateOraTimeStampTZ Method on page 10-102



Version (OraObject and Ref) Property

Server Properties 11-185

Version (OraObject and Ref) Property

Applies To
OraObject Object on page 9-43

OraRef Object on page 9-52

Description
Returns a String containing user-assigned version of the type of underlying value 
instance. 

Usage
version  = OraRef.Version
version  = OraObject.Version 

Data Type
String

Remarks
This property is read-only at run time.



Visible (OraAQ) Property

11-186 Oracle Objects for OLE Developer's Guide

Visible (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Specifies the transactional behavior of the enqueue request. 

Usage
Q.Visible = transaction_mode

Data Type
Integer

Remarks
This property is applicable only for an enqueue operation. 

Possible values are: 

■ ORAAQ_ENQ_IMMEDIATE (1) 

The enqueue operation constitutes a transaction of its own. Set this property to 
make the message visible immediately after the enqueue operation. 

■ ORAAQ_ENQ_ON_COMMIT (2) (Default) 

The enqueue is part of the current transaction, and the message is visible only after 
the transaction commits. 

Examples
Msg.Value = "The visibility option used in the enqueue call is " & _
                    "ORAAQ_ENQ_IMMEDIATE" 
Q.Visible = ORAAQ_ENQ_IMMEDIATE 
Q.Enqueue



Wait (OraAQ) Property

Server Properties 11-187

Wait (OraAQ) Property

Applies To
OraAQ Object on page 9-3

Description
Specifies the wait time (in seconds), if there is currently no message available.

Usage
Q.Wait = seconds 

Data Type
Integer

Remarks
Applicable only for a dequeue operation. 

Possible values are:

■ ORAAQ_DQ_WAIT_FOREVER (-1) (Default) 

Waits forever. 

■ ORAAQ_DQ_NOWAIT (0)

Does not wait. 



XMLAsAttribute Property

11-188 Oracle Objects for OLE Developer's Guide

XMLAsAttribute Property

Applies To
OraField Object on page 9-33

Description
Gets and sets a Boolean value that indicates whether this field name is given as an 
attribute. If the value is False, the field name is given as an element. Readable and 
writable at run time. 

Usage
OraField.XMLAsAttribute = True 

Remarks
The default value for this property is False. 

Fields of type BLOB, CLOB, BFILE, Object, VARRAY, Nested Table, Long or 
LongRaw cannot be XML attributes.



XMLCollID Property

Server Properties 11-189

XMLCollID Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets the attribute name that replaces id (as in <TYPENAME_ITEM id = "1">) 
in the rendering of collection items that occurs when GetXML or GetXMLToFile 
methods are called. Readable and writable at run time. 

Usage
oradynaset.XMLCollID = "NEWID" 

Remarks
The default value for this property is id. If this property is set to Null or an empty 
String (""), the collectionid attribute is omitted. The attribute name must be 
valid or an error is raised. The case is preserved. 

See Also:

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164



XMLEncodingTag Property

11-190 Oracle Objects for OLE Developer's Guide

XMLEncodingTag Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or sets a string value in the encoding tag of the generated XML document. 

Usage
OraDynaset.XMLEncodingTag = "SHIFT_JIS" 

Remarks
This property is useful when the XML document generated by OO4O is converted to a 
different character set encoding before it is stored or parsed. This might occur if the 
property is to be loaded into a database or stored in a file system. 

This property only sets the encoding tag value; it does not change the actual encoding 
of the document. The document generated by the GetXML method in Visual Basic is 
encoded in UCS2. The documents generated by the GetXMLToFile method use the 
same character set as the current NLS_LANG setting. 

If this property is set to an empty String, the default encoding tags are used. To omit 
the tag entirely, use OraDynaset.XMLOmitEncodingTag. 

No validity checking of the chosen encoding is done.

See Also:

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164

■ XMLOmitEncodingTag Property on page 11-192



XMLNullIndicator Property

Server Properties 11-191

XMLNullIndicator Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets a Boolean value that indicates whether a null indicator attribute is used 
in the case of Null field values. If the property is False, tags with Null values are 
omitted. Readable and writable at run time. 

Usage
oradynaset.XMLNullIndicator = True 

Remarks
 The default value for this property is False. 



XMLOmitEncodingTag Property

11-192 Oracle Objects for OLE Developer's Guide

XMLOmitEncodingTag Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or sets a Boolean value that determines if the encoding tag should be omitted. 

Usage
OraDynaset.XMLOmitEncodingTag = True 

Remarks
The default value is False. 

If this property is set to False, the value of the XMLEncodingTag property is used in 
the encoding tag.

See Also: XMLEncodingTag Property on page 11-190



XMLRowID Property

Server Properties 11-193

XMLRowID Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets the attribute name that replaces id (as in <ROW id= "1"> ) in the 
rendering of XML that occurs when GetXML or GetXMLToFile methods are called. 
Readable and writable at run time. 

Usage
 oradynaset.XMLRowID = "NEWID" 

Remarks
The default value for this property is id. If this property is set to Null or an empty 
string (""), the rowid attribute is omitted. The attribute name must be valid or an 
error is raised. The case is preserved. 

See Also:

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164



XMLRowsetTag Property

11-194 Oracle Objects for OLE Developer's Guide

XMLRowsetTag Property

Applies To
OraDynaset Object on page 9-30

Description
Gets or sets the tag name that replaces the rowset tag <ROWSET> in the rendering of 
XML that occurs when GetXML or GetXMLToFile methods are called. Readable and 
writable at run time.

Usage
 oradynaset.XMLRowSetTag = "NEWROWSET" 

Remarks
The default value for this property is ROWSET. The tag name must be valid or an error 
is raised. The case is preserved. This tag is the root, unless schema metadata is 
requested with the document.

See Also:

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164



XMLRowTag Property

Server Properties 11-195

XMLRowTag Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets the tag name that replaces <ROW> in the rendering of XML that occurs 
when GetXML or GetXMLToFile methods are called. Readable and writable at run 
time. 

Usage
oradynaset.XMLRowTag = "NEWROW"

Remarks
The default value for this property is ROW. If this property is set to Null or an empty 
string (""), the <ROW> tag is omitted. The tag name must be valid or an error is raised. 
The case is preserved. 

See Also:

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164



XMLTagName Property

11-196 Oracle Objects for OLE Developer's Guide

XMLTagName Property

Applies To
OraField Object on page 9-33

Description
Gets and sets the tag name that is used for this field in the rendering of XML that 
occurs when GetXML or GetXMLToFile methods are called. Readable and writable at 
run time. 

Usage
orafield.XMLTagName = "EmployeeName" 

Remarks
The default value for this property is the value of the Name property. If this property is 
set to Null or an empty string (""), this field is omitted. The name must be valid or an 
error is raised. The case is preserved. 

See Also:

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164



XMLUpperCase Property

Server Properties 11-197

XMLUpperCase Property

Applies To
OraDynaset Object on page 9-30

Description
Gets and sets a Boolean value that indicates whether tag and attribute names are 
uppercase when GetXML or GetXMLToFile methods are called. Readable and 
writable at run time. 

Usage
oradynaset.XMLUpperCase = True

Remarks
The default value for this property is False. If this property is set to True, all of the 
tag and attribute names are in upper case. This method should be called only after all 
custom tag or attribute names have been set by the user. 

See Also:

■ GetXML Method on page 10-163

■ GetXMLToFile Method on page 10-164



Year (OraTimeStamp) Property

11-198 Oracle Objects for OLE Developer's Guide

Year (OraTimeStamp) Property

Applies To
OraTimeStamp Object on page 9-62

Description
Returns or sets the Year attribute of an OraTimeStamp object. 

Usage
year = OraTimeStampObj.Year
OraTimeStampObj.Year = year

Arguments

Data Type
Integer

Arguments Description

[in] year The Year attribute of an OraTimeStamp object.



Year (OraTimeStampTZ) Property

Server Properties 11-199

Year (OraTimeStampTZ) Property

Applies To
OraTimeStampTZ Object on page 9-64

Description
Returns or sets the Year attribute of an OraTimeStampTZ object.

Usage
year = OraTimeStampObjTZ.Year
OraTimeStampObjTZ.Year = year

Arguments

Data Type
Integer

Arguments Description

[in] year The Year attribute of an OraTimeStampTZ object.



Years Property

11-200 Oracle Objects for OLE Developer's Guide

Years Property

Applies To
OraIntervalYM Object on page 9-37

Description
Gets and sets the Years attribute of an OraIntervalYM object.

Usage
years = OraIntervalYMObj.Years
OraIntervalYMObj.Years = years

Arguments

Data Type
Integer

Arguments Description

[in] years An Integer specifying the value of the Years attribute of the 
OraIntervalYM object.



12

Data Control Events 12-1

12Data Control Events

This chapter describes Oracle Data Control Events. For an introduction to Data 
Control, see "Oracle Data Control" on page 1-4. 

This chapter contains these topics:

■ DragDrop Event

■ DragOver Event

■ Error Event

■ MouseDown Event

■ MouseMove Event

■ MouseUp Event

■ Reposition Event

■ Validate Event

See Also: For more information, see the Microsoft Visual Basic help 
and documentation.



DragDrop Event

12-2 Oracle Objects for OLE Developer's Guide

DragDrop Event

Applies To
Oracle Data Control on page 1-4 

Description
Occurs when a drag-and-drop operation is completed as a result of either dragging a 
control over a form or control and releasing the mouse button, or using the Drag 
method with its action argument = 2 (Drop).

See Also:

■ Drag Method on page 13-2

■ DragIcon Property on page 14-13

■ DragMode Property on page 14-14 

■ DragOver Event on page 12-3

■ MouseDown Event on page 12-5

■ MouseMove Event on page 12-6

■ MouseUp Event on page 12-7



DragOver Event

Data Control Events 12-3

DragOver Event

Applies To
Oracle Data Control on page 1-4 

Description
Occurs when a drag-and-drop operation is in progress. You can use this event to 
monitor when the mouse pointer enters, leaves, or is directly over a valid target. The 
mouse pointer position determines which target object receives this event.

See Also:

■ Drag Method on page 13-2

■ DragDrop Event on page 12-2

■ DragIcon Property on page 14-13

■ DragMode Property on page 14-14 

■ MouseDown Event on page 12-5

■ MouseMove Event on page 12-6

■ MouseUp Event on page 12-7



Error Event

12-4 Oracle Objects for OLE Developer's Guide

Error Event

Applies To
Oracle Data Control on page 1-4 

Description
This event is fired whenever an interactive operation causes an error. You can perform 
some operations directly with the data control, such as using the data control buttons 
or when the data control refreshes automatically when the form loads. In these cases, 
the Error event is fired instead of causing a normal run-time error.

See Also:

■ AddNew Method on page 10-19

■ Delete Method on page 10-116

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods  on 
page 10-199



MouseDown Event

Data Control Events 12-5

MouseDown Event

Applies To
Oracle Data Control on page 1-4 

Description
This event is fired whenever a mouse button is pressed (MouseDown) and the mouse 
pointer is over the data control, or has been captured by the data control. The mouse is 
captured if a mouse button has been pressed previously over the data control until all 
corresponding MouseUp events have been received.

See Also:

■ MouseMove Event on page 12-6

■ MousePointer Property on page 14-22

■ MouseUp Event on page 12-7



MouseMove Event

12-6 Oracle Objects for OLE Developer's Guide

MouseMove Event

Applies To
Oracle Data Control on page 1-4 

Description
This event is fired continuously whenever the mouse pointer moves across the data 
control. Unless another object has not captured the mouse, the data control recognizes 
a MouseMove event whenever the mouse position is within its borders.

See Also:

■ MouseDown Event on page 12-5

■ MousePointer Property on page 14-22

■ MouseUp Event on page 12-7



MouseUp Event

Data Control Events 12-7

MouseUp Event

Applies To
Oracle Data Control on page 1-4 

Description
This event is fired whenever a mouse button is released (MouseUp) and the mouse 
pointer is over the data control, or has been captured by the data control. The mouse is 
captured if a mouse button has been pressed previously over the data control until all 
corresponding MouseUp events have been received.

See Also:

■ MouseDown Event on page 12-5

■ MousePointer Property on page 14-22

■ MouseMove Event on page 12-6



Reposition Event

12-8 Oracle Objects for OLE Developer's Guide

Reposition Event

Applies To
Oracle Data Control on page 1-4 

Description
This event is fired whenever the database record pointer is successfully repositioned to 
a new location. The Validate event is always fired before Reposition.

See Also:

■ Error Event on page 12-4

■ FindFirst, FindLast, FindNext, and FindPrevious Methods  on 
page 10-151

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on 
page 10-199 

■ Validate Event on page 12-9



Validate Event

Data Control Events 12-9

Validate Event

Applies To
Oracle Data Control on page 1-4 

Description
This method is called whenever a variety of circumstances occur. It is sent when an 
attempt is made to move to a new record position, to delete a record, add a record, 
move to a bookmark, or to roll back the dynasets in the session. Validate is always 
called before the operation proceeds and any action is taken. 

See Also:

■ AddNew Method on page 10-21

■ Bookmark Property on page 11-13

■ Close Method on page 10-63 

■ Delete Method on page 10-116 

■ Edit Method on page 10-134

■ EditMode Property on page 11-51 

■ FindFirst, FindLast, FindNext, and FindPrevious Methods  on 
page 10-151

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on 
page 10-199 

■ UpdateRecord Method on page 13-6 



Validate Event

12-10 Oracle Objects for OLE Developer's Guide



13

Data Control Methods 13-1

13Data Control Methods

This chapter describes Oracle Data Control methods. For an introduction to Data 
Control, see "Oracle Data Control" on page 1-4. 

This chapter contains these topics:

■ Drag Method

■ Move Method

■ Refresh Method

■ UpdateControls Method

■ UpdateRecord Method

■ ZOrder Method

See Also: For more information, see the Microsoft Visual Basic help 
and documentation.



Drag Method

13-2 Oracle Objects for OLE Developer's Guide

Drag Method

Applies To
Oracle Data Control on page 1-4 

Description
Begins, ends, or cancels dragging controls.

See Also:

■ DragDrop Event on page 12-2

■ DragIcon Property on page 14-13

■ DragMode Property on page 14-14

■ DragOver Event on page 12-3

■ MousePointer Property on page 14-22



Move Method

Data Control Methods 13-3

Move Method

Applies To
Oracle Data Control on page 1-4 

Description
Moves a form or control.

See Also:

■ Height Property on page 14-19

■ Left Property on page 14-21

■ Top Property on page 14-35

■ Width Property on page 14-38



Refresh Method

13-4 Oracle Objects for OLE Developer's Guide

Refresh Method

Applies To
Oracle Data Control on page 1-4 

Description
This method recreates the OraDatabase and OraDynaset objects referenced within 
the data control and reestablishes a dynaset using the SQL statement from the 
RecordSource property and the connection information from the Connect and 
DatabaseName properties.

Usage
oradata1.Refresh

Remarks
If an existing dynaset has been assigned to an object variable in Visual Basic, then 
Refresh creates a new dynaset for the data control, but the old dynaset continues to 
be available for use until all references to it are removed.

See Also:

■ Connect Property on page 14-9

■ Database Property on page 14-10

■ OraDatabase Object on page 9-28

■ OraDynaset Object on page 9-30

■ RecordSource Property on page 14-31

■ SQL Property on page 11-150



UpdateControls Method

Data Control Methods 13-5

UpdateControls Method

Applies To
Recordset Property on page 14-29 of the Oracle Data Control.

Description
Gets the current record from a data control's recordset and displays the appropriate 
data in controls bound to that data control.

Usage
oradata1.Recordset.UpdateControls

Example
NOTE: This code snippet is intended to be placed in a complete application. The code 
snippet cancels changes made to bound controls and restores the data to the original 
values. To use this code snippet, copy it into the definition section of a form that has a 
data control named oradata1 (which has been successfully refreshed) and has the 
KeyPreview property set to True. 

Sub Form_KeyDown (KeyCode As Integer, Shift As Integer)
 
Const KEY_ESCAPE = &H1B
If KeyCode = KEY_ESCAPE Then
oradata1.recordset.UpdateControls
End If
End Sub

Remarks
Use this method to allow the user to cancel changes made to bound controls and 
restore the contents of those controls to their original values.

This method has the effect of making the current record current again, except that no 
events occur.

Note: For backward compatibility with earlier .VBX control, this 
method is also available as the method of data control's Recordset.

See Also:

■ Recordset Property on page 14-29

■ UpdateRecord Method on page 13-6



UpdateRecord Method

13-6 Oracle Objects for OLE Developer's Guide

UpdateRecord Method

Applies To
Recordset Property on page 14-29 of the Oracle Data Control.

Description
Saves the current values of bound controls.

oradata1.UpdateRecord

Remarks
This method enables you to save the current value of bound controls during a Validate 
event without generating another Validate event.

This method has the effect of executing the Edit method, changing a field, and 
executing the Update method, except that no events occur.

Note: For backward compatibility with earlier .VBX control, this 
method is also available as the method of data control's 
Recordset.

See Also:

■ Edit Method on page 10-134

■ Recordset Property on page 14-29

■ Update Method on page 10-257

■ Validate Event on page 12-9



ZOrder Method

Data Control Methods 13-7

ZOrder Method

Applies To
Oracle Data Control on page 1-4 

Description
Places a specified form or control at the front or back of the z-order within its graphical 
level.



ZOrder Method

13-8 Oracle Objects for OLE Developer's Guide



14

Data Control Properties 14-1

14Data Control Properties

This chapter describes the Oracle Data Control Properties. For an introduction to Data 
Control, see "Oracle Data Control" on page 1-4. 

This chapter contains these topics:

■ AllowMoveLast Property

■ AutoBinding Property

■ BackColor Property

■ Caption Property

■ Connect Property

■ Database Property

■ DatabaseName Property

■ DirtyWrite Property

■ DragIcon Property

■ DragMode Property

■ EditMode Property

■ Enabled Property

■ Font Property

■ ForeColor Property

■ Height Property

■ Index Property

■ Left Property

■ MousePointer Property

■ Name Property

■ NoRefetch Property

■ Options Property

■ OracleMode Property

■ ReadOnly Property

See Also: For more information, see the Microsoft Visual Basic help 
and documentation.



14-2 Oracle Objects for OLE Developer's Guide

■ Recordset Property

■ RecordSource Property

■ Session Property

■ Tag Property

■ Top Property

■ TrailingBlanks Property

■ Visible Property

■ Width Property

The following properties apply to the OraDynaset object and to the Oracle Data 
Control.

■ CacheBlocks Property on page 11-16

■ CacheSliceSize Property on page 11-20

■ CacheSlicesPerBlock Property on page 11-21

■ FetchLimit Property on page 11-61

■ FetchSize Property on page 11-62



AllowMoveLast Property

Data Control Properties 14-3

AllowMoveLast Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines whether the user can move to the last record using the Data Control's 
MoveLast button. Read/write at design time and run time.

Usage
oradata1.AllowMoveLast = [True | False]

Remarks
By default, AllowMoveLast is True, in which case the user has no restriction upon 
record motion, even when moving to the last record may be very time consuming.

When AllowMoveLast is False, the Data Control's MoveLast button is grayed out 
and disabled. However, once the last record has been encountered (either because the 
user has navigated to the end of the set, or because code has positioned the record 
pointer to the last record), the button is enabled. This gives the user visual feedback 
about whether or not the entire query has been fetched. Setting this property to False 
does not prevent you from using the MoveLast method.

Changing this property has no effect until a Refresh method is sent to the data 
control.

Datatype
Integer (Boolean)

See Also:

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods  on 
page 10-199

■ Refresh Method on page 10-225



AutoBinding Property

14-4 Oracle Objects for OLE Developer's Guide

AutoBinding Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines whether the automatic binding of database object parameters will occur. 
Read/write at design time and run time.

Usage
oradata1.AutoBinding = [ True | False

Remarks
By default, AutoBinding is True, in which case the parameters in the 
OraParameters collection are bound to the SQL statement of the RecordSource 
property before data control refresh (before the SQL statement is executed). 
Technically speaking, the parameters are rebound when the recordset is re-created.

Setting Autobinding to False takes effect only if the SQL statement of the 
RecordSource property needs to be rebound and reexecuted. This is not the case 
when you simply change a parameter value and refresh the data control or simply 
refresh the recordset (the SQL statement only needs to be reexecuted). This is the case 
if you alter the RecordSource property and change the SQL statement.

Use this property to disable all parameter binding when executing a SQL statement 
that does not contain any parameters (using CreateDynaset, Refresh, or 
ExecuteSQL).

Changing this property does not take effect until a Refresh method is sent to the data 
control (and the appropriate conditions apply). Changing this property has no effect 
when a recordset.Refresh is executed.

Data Type
Integer (Boolean)

Example
This example demonstrates the use of AutoBinding to show how it affects data 
control and recordset refresh. Copy this code into the definition section of a new form 
containing the Oracle Data Control named oradata1, Then, press F5 to run.

Sub Form_Load ()
 
 'Set the username and password.
 oradata1.Connect = "scott/tiger"
 
 'Set the databasename.
 oradata1.DatabaseName = "ExampleDb"
 
 'Refresh the data control without setting the RecordSource. This has the  
 'effect of creatingthe underlying database object so that parameters 
 'can be added.
 oradata1.Refresh



AutoBinding Property

Data Control Properties 14-5

 
 'Set the RecordSource and use a SQL parameter for job.
 oradata1.RecordSource = "select * from emp where job = :job"
 
 'Add the job input parameter with initial value MANAGER.
 oradata1.Database.Parameters.Add "job", "MANAGER", 1
 
 'Add the deptno input parameter with initial value 10.
 oradata1.Database.Parameters.Add "deptno", 10, 1
 
 'Refresh the data control.
 oradata1.Refresh
 
 MsgBox "Employee #" & oradata1.Recordset.fields("empno") & ", Job=" & _
                   oradata1.Recordset.fields("job")
 
 'Only employees with job=MANAGER will be contained in the dynaset.
'Turn off Automatic parameter binding.
 oradata1.AutoBinding = False
 
 'Change the value of the job parameter to SALESMAN.
 oradata1.Database.Parameters("job").Value = "SALESMAN"
 
 'Refresh ONLY the recordset.
 oradata1.Recordset.Refresh
 
 MsgBox "Employee #" & oradata1.Recordset.fields("empno") & ", Job=" & _
               oradata1.Recordset.fields("job")
 
 'The query will still execute even with AutoBinding=False
 'because the dynaset has not been re-created.
 'Set the RecordSource and use a SQL parameter for deptno.
 oradata1.RecordSource = "select * from emp where deptno = :deptno"
 
 On Error GoTo paramerr
 'Attempt to refresh the data control. An error should occur, because 
 ' AutoBind=False, the SQL statement contains a parameter, and the 
 'SQL statement needs to be bound before execution.
 oradata1.Refresh
 
Exit Sub
 
paramerr:
 MsgBox oradata1.Database.Session.LastServerErrText
Exit Sub
 
End Sub



AutoBinding Property

14-6 Oracle Objects for OLE Developer's Guide

See Also: ■Add Method on page 10-8

■ AutoBindDisable Method on page 10-39

■ AutoBindEnable Method on page 10-41

■ CreateDynaset Method on page 10-85

■ ExecuteSQL Method on page 10-144

■ OraParameter Object on page 9-50

■ OraParameters Collection on page 9-68

■ RecordSource Property on page 14-31

■ Refresh Method on page 13-4



BackColor Property

Data Control Properties 14-7

BackColor Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the background color of an object.

See Also: ForeColor Property on page 14-18



Caption Property

14-8 Oracle Objects for OLE Developer's Guide

Caption Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the text displayed in or next to a control.



Connect Property

Data Control Properties 14-9

Connect Property

Applies To
Oracle Data Control on page 1-4 

Description
The username and password to be used when connecting the data control to an Oracle 
database. Read/write at design time and run time.

Usage
oradata1.Connect = [ username/password 

Remarks
This string is passed to the OpenDatabase method of the OraSession object when 
the control is refreshed. Changing this property does not take effect until a Refresh 
method is sent to the data control.

If the data control is refreshed and the Connect property has not been specified, the 
refresh will fail.

Examples of valid Connect properties include:

"scott/tiger"
"system/manager"

Data Type
String

See Also:

■ OpenDatabase Method on page 10-212

■ OraSession Object on page 9-58 

■ Refresh Method on page 13-4



Database Property

14-10 Oracle Objects for OLE Developer's Guide

Database Property

Applies To
Oracle Data Control on page 1-4 

Description
Returns the OraDatabase object associated with the data control. Not available at 
design time and read-only at run time.

Usage
oradatabase = oradata1.Database

Remarks
If the data control has not been refreshed, any references to this property results in an 
Object variable not set runtime error.

Changing this property has no effect until a Refresh method is sent to the data 
control.

Data Type
OLE Object (OraDatabase)

See Also:

■ OraDatabase Object on page 9-28 

■ Refresh Method on page 13-4



DatabaseName Property

Data Control Properties 14-11

DatabaseName Property

Applies To
Oracle Data Control on page 1-4 

Description
The Oracle SQL*Net specifier used when connecting the data control to an Oracle 
database. Read/write at design time and run time.

Usage
oradata1.DatabaseName = [ DatabaseName ]

Remarks
The Oracle SQL*Net specifier should include the Oracle SQL*Net protocol identifier, 
Oracle database name, and optional database instance. (SQL*Net aliases can also be 
used.) This string is passed to the OpenDatabase method of the OraSession object 
when the control is refreshed. Changing this property does not take effect until a 
Refresh method is sent to the data control.

If the data control is refreshed and DatabaseName has not been specified, the refresh 
fails.

Examples of valid DatabaseName properties include:

"t:oracle:PROD"
"p:Oracle10:demo"
"x:orasrv"
"mydbalias"(Where mydbalias represents "t:mfg:prod")

Data Type
String

See Also:

■ OpenDatabase Method on page 10-212 

■ OraSession Object on page 9-58

■ Refresh Method on page 13-4



DirtyWrite Property

14-12 Oracle Objects for OLE Developer's Guide

DirtyWrite Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines whether or not Update and Delete will or will not check for read 
inconsistencies.

Usage
oradata1.DirtyWrite = [ True | False ]

Data Type
Integer (Boolean)

Remarks
By default, DirtyWrite is False, meaning that read consistency will be maintained 
for Update and Delete operation on underlying recordset/dynaset object. Changing 
this property has no effect until a Refresh method is sent to the data control.



DragIcon Property

Data Control Properties 14-13

DragIcon Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the icon to be displayed as the pointer in a drag-and-drop operation.

See Also:

■ Drag Method on page 13-2

■ DragDrop Event on page 12-2

■ DragMode Property on page 14-14

■ DragOver Event on page 12-3



DragMode Property

14-14 Oracle Objects for OLE Developer's Guide

DragMode Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines manual or automatic dragging mode for a drag-and-drop operation.

See Also:

■ Drag Method on page 13-2

■ DragDrop Event on page 12-2

■ DragIcon Property on page 14-13

■ DragOver Event on page 12-3



EditMode Property

Data Control Properties 14-15

EditMode Property

Applies To
Oracle Data Control on page 1-4 

Description
Returns the current editing state for the current row. Not available at design time and 
read-only at run time.

Usage
edit_mode = oradata1.EditMode

Remarks
The possible EditMode property values are:

These values are located in the oraconst.txt file and are intended to match similar 
constants in the Visual Basic oraconst.txt file.

This property is affected only by the Edit, AddNew, and Update methods.

Data Type
Integer

Constant Value Description

ORADATA_EDITNONE 0 No editing in progress

ORADATA_EDITMODE 1 Editing is in progress on an existing row

ORADATA_EDITADD 2 A new record is being added and the copy buffer does 
not currently represent an actual row in the database.

See Also:

■ AddNew Method on page 10-21

■ Edit Method on page 10-134

■ Update Method on page 10-257



Enabled Property

14-16 Oracle Objects for OLE Developer's Guide

Enabled Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines whether the control can respond to user-generated events.

See Also: Visible Property on page 14-37



Font Property

Data Control Properties 14-17

Font Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the font object to be used for text displayed in a data control.

Usage
Oradata1.Font.Bold = True



ForeColor Property

14-18 Oracle Objects for OLE Developer's Guide

ForeColor Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the foreground color used to display text and graphics in an object.

See Also: BackColor Property on page 14-7



Height Property

Data Control Properties 14-19

Height Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the height dimension of an object.

See Also:

■ Left Property on page 14-21

■ Move Method on page 13-3

■ Top Property on page 14-35

■ Width Property on page 14-38



Index Property

14-20 Oracle Objects for OLE Developer's Guide

Index Property

Applies To
Oracle Data Control on page 1-4 

Description
Specifies the number that uniquely identifies a control in a control array. Available at 
design time only if the control is part of a control array; read-only at run time.

See Also:

Tag Property on page 14-34



Left Property

Data Control Properties 14-21

Left Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the distance between the internal left edge of an object and the left edge of 
its container.

See Also:

■ Move Method on page 13-3

■ Top Property on page 14-35



MousePointer Property

14-22 Oracle Objects for OLE Developer's Guide

MousePointer Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the type of mouse pointer displayed when the mouse is over a particular 
part of a form or control at run time.

See Also:

■ DragIcon Property on page 14-13

■ MouseMove Event on page 12-6



Name Property

Data Control Properties 14-23

Name Property

Applies To
Oracle Data Control on page 1-4 

Description
Specifies the name used in code to identify a form, control, or data access object. Not 
available at run time.



NoRefetch Property

14-24 Oracle Objects for OLE Developer's Guide

NoRefetch Property

Applies To
Oracle Data Control on page 1-4 

Description
By default, NoRefetch is False, this means that default data set by Oracle Database 
will not be refetched to the local cache. If the ORADB_NO_REFETCH option is True, by 
default, the underlying recordset or dynaset will inherit this property.

Changing this property has no effect until a Refresh method is sent to the data 
control.

Usage
oradata1.NoRefetch = [ True | False ]

Data Type
Integer (Boolean)



Options Property

Data Control Properties 14-25

Options Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines one or more characteristics of the database and all dynasets associated 
with the data control. Read/write at design time and run time.

Usage
oradata1.Options = database_options
database_options = oradata1.Options

Data Type
Long Integer

Remarks
This property is a bit flag word used to set the optional modes of the database. If 
options = 0, the default settings will apply. The following modes are available:

■ Column Defaulting mode

The default mode is called VB mode. In VB mode, field (column) values not 
explicitly set are set to NULL when using AddNew or Edit.

Optionally, you can use Oracle mode. Oracle mode indicates that changes made to 
fields (columns) are immediately reflected in the local mirror by retrieving the 
changed row from the database, thus allowing Oracle Database to set defaults for 
the columns and perform required calculations. Column Defaulting mode affects 
the behavior of the AddNew and Edit methods.

■ Lock Wait mode

The default mode is called Wait mode. In Wait mode, when dynaset rows are 
about to be modified (using Edit), the existing row in the database is retrieved 
using the SQL "SELECT ... FOR UPDATE" statement to lock the row in the 
database. If the row about to be changed has been locked by another process (or 
user), the "SELECT ... FOR UPDATE" statement, waits until the row is unlocked 
before proceeding.

Optionally, you can use NoWait mode. NoWait mode results in an immediate 
return of an error code, indicating that the row about to be updated is locked.

Lock Wait mode also affects any SQL statements processed using ExecuteSQL.

■ No Refetch mode

In this mode NULLs are not explicitly inserted as in the ORADB_ORAMODE. In 
ORADB_NO_REFETCH mode, performance is boosted, because data is not refetched 
to the local cache.

Options Property Flag Values
The Options property flag values are:



Options Property

14-26 Oracle Objects for OLE Developer's Guide

These values can be found in the oraconst.txt file. Options may be combined by 
adding their respective values.

This property is the same as the options passed to the OpenDatabase method. Just as 
with OpenDatabase, these options affect the OraDatabase object and all associated 
dynasets created from that database.

Changing this property does not take effect until a Refresh method is sent to the data 
control.

Constant Value Description

ORADB_DEFAULT &H0& Accepts the default behavior.

ORADB_ORAMODE &H1& Lets Oracle Database set default field (column) 
values.

ORADB_NOWAIT &H2& Does not wait on row locks when executing a 
SQL "SELECT ... FOR UPDATE" statement.

See Also:

■ AddNew Method on page 10-21

■ Edit Method on page 10-134

■ CreateDynaset Method on page 10-85

■ OpenDatabase Method on page 10-212

■ OraDatabase Object on page 9-28

■ OraDynaset Object on page 9-30

■ Refresh Method on page 13-4



OracleMode Property

Data Control Properties 14-27

OracleMode Property

Applies To
Oracle Data Control on page 1-4 

Description
Determine whether the changes made to fields (columns) are immediately reflected in 
the local mirror by retrieving the changed row from the database, thus allowing Oracle 
to set defaults for the columns and perform required calculations.

Usage
oradata1.OracleMode = [ True | False ]

Data Type
Integer (Boolean)

Remarks
This property value is set to True by default, which means that fields (columns) 
changes are reflected in the local cache immediately. Changing this property value has 
no effect until the Refresh method is invoked. If the ORADB_ORAMODE mode is used 
for the database option, the underlying recordset/dynaset inherits this mode. 



ReadOnly Property

14-28 Oracle Objects for OLE Developer's Guide

ReadOnly Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines whether the dynaset will be used for read-only operations. Read/write at 
design time and run time.

Usage
oradata1.ReadOnly = [ True | False ]

Data Type
Integer (Boolean)

Remarks
By default, ReadOnly is False which means that an attempt will be made to create 
an updatable dynaset by selecting ROWIDs from the database. If ReadOnly is set to 
True, a non-updatable dynaset is created (ROWIDs are not selected from the database 
and cached) and operations will be somewhat faster. 

If the SELECT statement contains a LONG or LONG RAW column, ROWIDs are needed 
whether the dynaset will be updatable or not.

Changing this property does not take effect until a Refresh method is sent to the data 
control.

See Also:

■ CreateDynaset Method on page 10-85

■ Refresh Method on page 13-4



Recordset Property

Data Control Properties 14-29

Recordset Property

Applies To
Oracle Data Control on page 1-4 

Description
Returns a dynaset defined by the data control's Connect, DatabaseName, and 
RecordSource properties. Not available at design time and read and write at run 
time.

Usage
Set oradynaset = oradata1.Recordset
Set oradata1.Recordset = Oradynaset

Data Type
OLE Object (OraDynaset)

Remarks
The properties and methods of this dynaset are the same as those of any other dynaset 
object. The Recordset property of the Oracle Data Control (.OCX) can be set to 
external dynaset, or the Recordset property of the other data control. After the setting, 
Oracle Data control Database, session, and options properties now set to the 
corresponding properties of the external dynaset. Oracle data control shares the 
advisories of the external dynaset. This is very useful when attaching dynaset returned 
from the PL/SQL cursor by CreatePlsqlDynaset Method.

Example
This example demonstrates setting Recordset property to external dynaset created 
by CreatePlsqlDynaset method. This example returns a PL/SQL cursor as a 
external dynaset for the different values of DEPTNO parameter. Make sure that 
corresponding stored procedure (found in EMPCUR.SQL) is available in the Oracle 
Database. Copy this code into the definition section of a form containing the Oracle 
Data Control named oradata1. Then, press F5.

 
Sub Form_Load ()
 
 'Declare variables as OLE Objects.
 Dim OraSession As OraSession 
 Dim OraDatabase As OraDatabase
 Dim OraDynaset As OraDynaset 
 
 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")
 
 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)
 
' Create the Deptno parameter 
 OraDatabase.Parameters.Add "DEPTNO", 10, ORAPARM_INPUT
 



Recordset Property

14-30 Oracle Objects for OLE Developer's Guide

 OraDatabase.Parameters("DEPTNO").ServerType = ORATYPE_NUMBER  
 
' Create OraDynaset based on "EmpCursor" created in stored procedure. 
 Set OraDynaset = OraDatabase.CreatePLSQLDynaset("Begin Employee.GetEmpData 
(:DEPTNO,:EmpCursor); end;", "EmpCursor", 0&)
 
' Now attach the Oradynaset to Data control's recordset.
  set oradata1.recordset = OraDynaset
 
...
'  Do some operation
...
 
 ' Now set the deptno value to 20
 OraDatabase.Parameters("DEPTNO").Value = 20
 
 'Refresh the sqlstmt
 Oradata1.recordset.Refresh
 
  'Remove the parameter.
 OraDatabase.Parameters.Remove ("DEPTNO")
 
 End Sub

See Also:

■ Connect Property on page 14-9

■ DatabaseName Property on page 14-11

■ MoveFirst, MoveLast, MoveNext, and MovePrevious Methods on 
page 10-199

■ OraDynaset Object on page 9-30

■ OraFields Collection on page 9-67

■ OraParameters Collection on page 9-68

■ RecordSource Property on page 14-31



RecordSource Property

Data Control Properties 14-31

RecordSource Property

Applies To
Oracle Data Control on page 1-4 

Description
The SQL SELECT statement to be used to create the data control's RecordSet. 
Read/write at design time and run time.

Usage
oradata1.RecordSource = [ SQL SELECT Statement ]

Data Type
String

Remarks
The SQL statement must be a SELECT statement; otherwise an error is returned. 
Features such as views, synonyms, column aliases, schema references, table joins, 
nested selects, and remote database references can be used freely; object names are not 
modified in any way.

Whether or not the resultant dynaset can be updated depends on the Oracle SQL rules 
of updatability, the access you have been granted, and the ReadOnly property. In 
order to be updatable, three conditions must be met:

1. The SQL statement must refer to a simple column list or to the entire column list 
(*).

2. The SQL statement must not set the read-only flag of the options argument.

3. Oracle must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the results are 
not updatable and the dynaset's Updatable property returns False.

Changing this property does not take effect until a Refresh method is sent to the data 
control.

You can use SQL bind variables in conjunction with the OraParameters collection.

If this property is NULL or empty, then an OraDynaset object is not created, but 
OraSession, OraConnection, and OraDatabase objects are created for the data 
control. This behavior enables access to these objects prior to creation of a dynaset. For 
example, a NULL RecordSource might be used to instantiate the database object to 
add parameters. The RecordSource property can then be set at run time, making use 
of the automatic binding of database parameters.

Changing this property and calling the Refresh method of the RecordSet property 
will create a new dynaset object, but the old dynaset continues to be available for use 
until all references to it are removed.

Example 
This example demonstrates the use of SQL bind variables (parameters) in the 
RecordSource property of the data control. To run this demonstration, copy this 



RecordSource Property

14-32 Oracle Objects for OLE Developer's Guide

code into the definition section of a form containing a data control named oradata1, 
then, press F5.

Sub Form_Load ()
 
 'Set the username and password.
 oradata1.Connect = "scott/tiger"
 
 'Set the databasename.
 oradata1.DatabaseName = "ExampleDb"
 
 'Refresh the data control without setting the
 ' RecordSource. This has the effect of creating
 
 ' the underlying database object so that parameters  may be added.
 oradata1.Refresh
 
 'Set the RecordSource and use a SQL parameter.
 oradata1.RecordSource = "select * from emp where job = :job"
 
 'Add the job input parameter with initial value MANAGER.
 oradata1.Database.Parameters.Add "job", "MANAGER", 1
 
 'Refresh the data control.
 'Only employees with the job MANAGER will be contained in the dynaset.
 oradata1.Refresh
 
 'Change the value of the job parameter to SALESMAN.
 oradata1.Database.Parameters("job").Value = "SALESMAN"
 
 'Refresh ONLY the recordset.
 'Only employees with the job SALESMAN will be contained in the dynaset.
 oradata1.Recordset.Refresh
 
End Sub

See Also:

■ Connect Property on page 14-9

■ DatabaseName Property on page 14-11

■ OraConnection Object on page 9-27

■ OraDatabase Object on page 9-28

■ OraDynaset Object on page 9-30

■ OraParameters Collection on page 9-68

■ OraSession Object on page 9-58

■ Recordset Property on page 14-29

■ Refresh Method on page 13-4

■ Updatable Property on page 11-171



Session Property

Data Control Properties 14-33

Session Property

Applies To
Oracle Data Control on page 1-4 

Description
The session object associated with the data control. Not available at design time and 
read-only at run time.

Usage
orasession = oradata1.Session

Data Type
OLE Object (OraSession)

Remarks
This property is equivalent to referencing oradata1.Database.Session. If the 
data control has not been refreshed, any references to this property result in an 
Object variable not set runtime error.

See Also:

■ OraDatabase Object on page 9-28

■ OraSession Object on page 9-58

■ OraSessions Collection on page 9-69



Tag Property

14-34 Oracle Objects for OLE Developer's Guide

Tag Property

Applies To
Oracle Data Control on page 1-4 

Description
Stores any extra data needed by your application.



Top Property

Data Control Properties 14-35

Top Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the distance between the internal top edge of an object and the top edge of 
its container.

See Also:

■ Move Method on page 13-3

■ Left Property on page 14-21



TrailingBlanks Property

14-36 Oracle Objects for OLE Developer's Guide

TrailingBlanks Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines whether trailing blanks should be removed from character string data 
retrieved from the database. Read/write at design time and run time.

Usage
oradata1.TrailingBlanks = [ True | False ]

Data Type
Integer (Boolean)

Remarks
By default, TrailingBlanks is False. This means that trailing blanks will be 
removed from character string data retrieved from the database.

Changing this property has no effect until a Refresh method is sent to the data 
control.

See Also:

■ CreateDynaset Method on page 10-85

■ Refresh Method on page 13-4



Visible Property

Data Control Properties 14-37

Visible Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines whether an object is visible or hidden.

See Also: Enabled Property on page 14-16



Width Property

14-38 Oracle Objects for OLE Developer's Guide

Width Property

Applies To
Oracle Data Control on page 1-4 

Description
Determines the width dimension of an object.

See Also:

■ Height Property on page 14-19

■ Left Property on page 14-21

■ Move Method on page 13-3

■ Top Property on page 14-35



A

Appendix A A-1

AAppendix A

This appendix includes the following:

■ Oracle Data Types

■ Additional Schemas

Oracle Data Types 
The following are code for Oracle data types.

Table A–1 Oracle Data Type Codes

Oracle Data Type Codes

ORATYPE_VARCHAR2 1

ORATYPE_NUMBER 2

ORATYPE_SINT 3

ORATYPE_FLOAT 4

ORATYPE_STRING 5

ORATYPE_DECIMAL 7

ORATYPE_LONG 8

ORATYPE_VARCHAR 9

ORATYPE_DATE 12

ORATYPE_REAL 21

ORATYPE_DOUBLE 22

ORATYPE_UNSIGNED8 23

ORATYPE_RAW 23

ORATYPE_LONGRAW 24

ORATYPE_UNSIGNED16 25

ORATYPE_UNSIGNED32 26

ORATYPE_SIGNED8 27

ORATYPE_SIGNED16 28

ORATYPE_SIGNED32 29

ORATYPE_PTR 32

ORATYPE_OPAQUE 58



Additional Schemas

A-2 Oracle Objects for OLE Developer's Guide

These codes are also listed in the oraconst.txt file located in the ORACLE_
BASE\ORACLE_HOME\oo4o directory. 

Additional Schemas
Occasionally other schemas are required to run examples. These schemas are listed in 
the following sections. 

ORATYPE_UINT 68

ORATYPE_CHAR 96

ORATYPE_CHARZ 97

ORATYPE_BFLOAT 100

ORATYPE_BDOUBLE 101

ORATYPE_CURSOR 102

ORATYPE_ROWID 104

ORATYPE_MLSLABEL 105

ORATYPE_OBJECT 108

ORATYPE_REF 110

ORATYPE_CLOB 112

ORATYPE_BLOB 113

ORATYPE_BFILE 114

ORATYPE_CFILE 115

ORATYPE_RSLT 116

ORATYPE_NAMEDCOLLECTION 122

ORATYPE_COLL 122

ORATYPE_TIMESTAMP 187

ORATYPE_TIMESTAMPTZ 188

ORATYPE_INTERVALYM 189

ORATYPE_INTERVALDS 190

ORATYPE_SYSFIRST 228

ORATYPE_TIMESTAMPLTZ 232

ORATYPE_SYSLAST 235

ORATYPE_OCTET 245

ORATYPE_SMALLINT 246

ORATYPE_VARRAY 247

ORATYPE_TABLE 248

ORATYPE_OTMLAST 320

ORATYPE_RAW_BIN 2000

Table A–1 (Cont.) Oracle Data Type Codes

Oracle Data Type Codes



Additional Schemas

Appendix A A-3

Schema Objects Used in OraMetaData Examples
This section presents OraMetaData schema definitions. 

CREATE TYPE ORAMD_ADDRESS AS OBJECT ( no NUMBER, 
                   street VARCHAR(60), 
                   state CHAR(2), 
                   zip CHAR(10), 
MEMBER PROCEDURE ChangeStreetName(newstreet IN VARCHAR2) 
); 

Schema Objects Used in LOB Data Type Examples
The following schema objects are used in the OraLOB and BFILE examples. Run the 
SQL script ORAEXAMP.SQL on your database to set up the schema.

CREATE TABLE part ( 
                   part_id NUMBER, 
                   part_name VARCHAR2(20), 
                   part_image BLOB, 
                   part_desc CLOB, 
                   part_collateral BFILE 
); 
 
Create Directory NewDirectoryName as 'C:\valid\path' 

Schema Objects Used in the OraObject and OraRef Examples
The following schema objects are used in the OraObject and OraRef examples. Data 
for the following tables can be inserted with the ORAEXAMP.SQL script that is 
provided with the OO4O installation.

CREATE TYPE address AS OBJECT (
                        street VARCHAR2(200),
                        city VARCHAR2(200),
                        state CHAR(2),
                        zip VARCHAR2(20)
);
 
CREATE TYPE person as OBJECT( 
                        name VARCHAR2(20), 
                        age NUMBER,
                        addr ADDRESS);
 
CREATE TABLE person_tab of PERSON;
CREATE TABLE customers(
                        account NUMBER,
                        aperson REF PERSON);

Schema Objects Used in OraCollection Examples
The following schema is used in examples of OraCollection methods

CREATE TYPE ENAMELIST AS VARRAY(20) OF VARCHAR2(30);
  CREATE TABLE department (
    dept_id NUMBER(2),
    name VARCHAR2(15),
    ENAMES ENAMELIST);



Additional Schemas

A-4 Oracle Objects for OLE Developer's Guide

    DROP TYPE COURSE;

  CREATE TYPE Course AS OBJECT (
    course_no NUMBER(4), 
    title VARCHAR2(35),
    credits NUMBER(1));

  CREATE TYPE CourseList AS TABLE OF Course;

  CREATE TABLE division (
    name VARCHAR2(20),
    director VARCHAR2(20),
    office VARCHAR2(20),
    courses CourseList) 
  NESTED TABLE courses STORE AS courses_tab;



Glossary

BFILEs

External binary files that exist outside the database tablespaces residing in the 
operating system. BFILEs are referenced from the database semantics, and are also 
known as external LOBs.

Binary Large Object (BLOB)

A large object data type whose content consists of binary data. Additionally, this data 
is considered raw as its structure is not recognized by the database.

Character Large Object (CLOB)

The LOB data type whose value is composed of character data corresponding to the 
database character set. A CLOB may be indexed and searched by the Oracle Text search 
engine.

coordinated universal time (UTC)

UTC was formerly known as Greenwich Mean Time.

Large Object (LOB)

The class of SQL data type that is further divided into internal LOBs and external 
LOBs. Internal LOBs include BLOBs, CLOBs, and NCLOBs while external LOBs include 
BFILEs. 

National Character Large Object (NCLOB)

The LOB data type whose value is composed of character data corresponding to the 
database national character set.

PL/SQL

Oracle procedural language extension to SQL.

primary key

The column or set of columns included in the definition of a table's PRIMARY KEY 
constraint. 

UTC

UTC (Coordinated Universal Time) was formerly known as Greenwich Mean Time.
Glossary-1



UTC
Glossary-2



Index-1

Index

A
Abs method, 10-7
Access Violations, 5-16
accessing

collection elements, 4-17
OraObject, 4-15
OraObject attributes, 4-12
referenceable instance, 4-15

accessing the OO4O Automation Server, 3-1
Active Server Pages, 1-1, 2-1, 2-4
Active Server Pages with OO4O Automation, 2-4
ActiveX Control, 1-4, 2-12
AddTable method, 3-13
advanced features of Oracle Objects for OLE, 4-1
advanced queuing interfaces, 4-20
AllowMoveLast property, 14-3
application failover notifications, 4-24
application notifications, 4-24
array processing, 5-4
ASP, 1-1, 2-4
asynchronous dequeuing, 4-21
AutoBindDisable method, 5-3
AutoBindEnable method, 5-3
automation objects

introduction, 8-1
Automation Server, 3-1
avoiding multiple object reference, 5-2

B
BackColor property, 14-7
batch inserts, 6-1
BeginTrans method, 3-14
bind variables, 3-9
bindings, 5-3
Borland Delphi, 1-5
bound class, 1-4
buffering

LOB, 4-6
bulk collect feature, 5-4

C
C++, 1-4
cache parameters, 5-2

caching, 3-3
Caption property, 14-8
chunking methods

LONG RAW, 5-5
client applications, 3-1
code examples

location, 2-1
Code Wizard

using, 7-2
Code Wizard Components, 7-1
Code Wizard data types, 7-2
Code Wizard examples, 7-5
Code Wizard for stored procedures, 7-1
collection elements

accessing, 4-17
modifying, 4-18

collection types
retrieving from the database, 4-17
VARRAY, 4-18

collections, 4-16
OraFields, 5-2

COM Automation Objects, 1-2
commands

executing, 3-3
CommitTrans method, 3-14
Complex Object Retrieval Capability (COR) in 

OCI, 4-13
Component Certifications

My Oracle Support, 1-6
configuration information, 1-7
Connect data control property, 14-9
connection information

incorrectly specified, 5-15
connection multiplexing, 3-3
connection pool, 5-6
connection pool management, 3-8
connection pooling, 2-4, 5-6
connpool sample (IIS), 2-4
constant file, 2-2
CreateCustomDynaset method, 5-2
CreateSQL method, 3-6, 3-9, 5-4
creating

dynaset from OraCollection, 4-18
VARRAY collection type, 4-18

customization, 5-2



Index-2

D
data control recordset, 13-5
data controls, 2-1
Data Definition Language (DDL) statements, 3-14
Data Manipulation Language (DML) Statements, 3-5
data streaming, 4-6
data types, 4-10

datetime, 4-28
interval, 4-28

data types supported by the OO4O Code 
Wizard, 7-2

database connectivity APIs, 1-2
Database data control property, 14-10
database events, 4-22

detection, 4-22
database records

updating, 3-6
database schema objects, 4-29
DatabaseName data control property, 14-11
datetime data types, 4-28
DBGrid Control, 2-12
DDL statements, 3-14
deleting rows from table, 3-6
demodrp7.sql, 2-2
demonstration

Excel, 2-6
Oracle Data Control, 2-8
Oracle Data Control with VC++, 2-12
quick tour, 6-1

demonstration schema, 2-1
creation, 2-2

demonstration tables
dept, 2-2
emp, 2-2

dept table, 2-2
dequeuing, 4-21
detection of database events, 4-22
differences LOB types from LONG RAW, 5-5
DirtyWrite property, 14-12
disabling parameter binding, 5-3
DML statements, 3-5
Drag method, 12-2, 13-2
DragDrop event, 12-2
DragIcon property, 14-13
DragMode property, 14-14
DragOver event, 12-3
Drop method, 12-2
Dyanset object

using, 4-14
dynaset

creating from an OraCollection, 4-18
Dynaset object

using, 4-11
dynasets

using, 5-4

E
early binding of OO4O Objects, 5-1
Edit method, 13-6

EditMode property, 14-15
emp table, 2-2
empcur.sql, 2-2
Enabled property, 14-16
enabling failover, 4-25
enabling parameter bindinng, 5-3
error code

ODCERR_AUTOMATION, 5-13
Error data control event, 12-4
error handling, 5-6
errors

Access Viloations, 5-16
Advanced Queuing, 5-12
Collection, 5-12
Find method parser, 5-9
incorrectly installed software, 5-14
installation, 5-16
network errors, 5-15
nonblocking, 5-9
OLE Automation, 5-7
OLE Initialization or OLE Automation, 5-14
Oracle, 5-13
Oracle Data Control, 5-13
Oracle LOB, 5-11
Oracle Number, 5-13
Oracle object instance, 5-10
troubleshooting, 5-14

events
database, 4-22

ExampleDb, 2-2
examples, 2-1, 2-2

Code Wizard, 7-5
Excel demo, 2-6
Excel with OO4O automation, 2-6
ExecuteSQL method, 3-6, 3-9, 5-4
executing commands, 3-3
executing Data Definition Language (DDL) 

statements, 3-14
executing methods

OraObject, 4-12
executing PL/SQL blocks, 3-9

F
failover, 4-24

enabling, 4-25
notification, 4-25

Failover Notification Registration, 4-24
features

advanced, 4-1
new, xxi

fetch parameters, 5-2
FetchLimit property, 5-2
file locations, 1-5
Find method, 5-9

parser errors, 5-9
run-time errors, 5-9

Font property, 14-17
ForeColor property, 14-18



Index-3

G
global.asa file, 2-4
grid control, 1-4

H
Height property, 14-19

I
IIS, 2-1
IIS Active Server Pages, 1-1
IIS Microsot Internet Information Server, 2-4
incorrectly installed software

errors, 5-14
incorrectly specified connection information, 5-15
Index data control property, 14-20
InProcServer Type Library, 2-2
input variables, 4-1
inserting multiple rows, 3-7
inserting new rows in table, 3-7
installation, 1-5
installation errors, 5-16
instance errors, 5-10
interfaces

OO4O, 4-4
retrieving, 4-2

interval data types, 4-28

J
Java stored procedures, 7-1

L
large objects, 5-5
Large Objects (LOBs)

using, 4-3
LastServerErr property, 5-7, 5-13
LastServerErrText property, 5-13
Left property, 14-21
LOB buffering, 4-6
LOB data

multiple-piece read operation, 4-8
reading, 4-8
writing, 4-6

LOB data single-piece read operation, 4-8
LOB datatatypes

support for, 4-1
LOBs, 5-5

data types, 4-4
retrieving from database, 4-5
using, 4-3

Long, 5-5
LONG RAW

chunking methods, 5-5
migration from, 5-5
types, 5-5

Long types, 5-5

M
messages

enqueuing, 4-20
monitoring, 4-21

methods
AutoBindDisable, 5-3
AutoBindEnable, 5-3
CreateCustomDynaset, 5-2
CreateSQL, 5-4
ExecuteSQL, 5-4
Find, 5-9
Server, 10-1

MFC AppWizard, 2-12
Microsoft Access, 1-5
Microsoft data control, 1-4
Microsoft Foundation Classes, 1-4
Microsoft Information Server, 2-1
Microsoft Internet Information Server (IIS), 1-5
Microsoft Internet Service Manager, 2-4
Microsoft Transaction Server support, 3-15
Microsoft VC++, 1-6, 2-12
Microsoft Visual Basic

Microsoft Excel, 1-5
migration from LONG RAW to LOB or BFILE, 5-5
modfiying attributes

OraObject, 4-15
referenceable instance, 4-15

modifying
collection elements, 4-18
OraObject attributes, 4-12

MonitorForFailover method, 4-24
monitoring

messages, 4-21
MonitorStart method, 4-21
MonitorStop method, 4-21
MouseDown event, 12-5
MouseMove event, 12-6
MousePointer property, 14-22
MouseUp event, 12-7
Move data control method, 13-3
MTS support, 3-15
multicur.sql, 2-2
multiple Oracle homes, system requirements, 1-5
multiple rows, 3-7
multiple-piece operation, 4-6
multiple-piece read operation, 4-8
multiple-piece write operation, 4-6
multiplexing, 3-3
My Oracle Support, 1-6

N
Name data control property, 14-23
nested tables, 4-1, 4-16
network alias

ExampleDb, 2-2
network service alias, 2-2
network trips, 5-4

reducing, 5-4
Nonblocking Errors, 5-9



Index-4

nonblocking mode, 4-21
NoRefetch property, 14-24
notifications

application failover, 4-24

O
object data types, 4-10
Object-relational features

support for, 4-1
Objects, 9-1
objects

OraBLOB, OraCLOB, 5-11
OraCollection, 5-4
OraCollection errors, 5-12
OraDynaset, 5-2, 5-4
OraField, 5-2
OraObject, 5-10
OraParamArray, 5-4
OraParameter, 5-3

ODBC, 1-2
ODCERR_AUTOMATION error code, 5-13
oiplang.msb, 1-7
oipVER.dll, 1-7
OLE Automation Errors, 5-7
OLE Initialization or OLE Automation Errors, 5-14
OO4O Automation Server, 3-1
OO4O Code Wizard

requirements, 1-5
using, 7-2

OO4O Code Wizard Components, 7-1
OO4O Code Wizard examples, 7-5
OO4O Code Wizard Visual Basic Wizard, 7-3
OO4O File Locations, 1-6
OO4O In-Process Automation Server, 1-2, 5-7
OO4O methods, 10-1
OO4O Objects, 9-1
OO4O Redistributable Files, 1-6
OO4O server methods, 10-1
OO4O server properties, 11-1
OO4OCodeWiz.exe, 7-2
oo4oparm.reg file, 1-7
oorodemo.asp file, 2-4
option flags, 2-2
options

ORADYN_NOCACHE, 5-4
ORADYN_READONLY, 5-4

Options data control property, 14-25
OraAQ interface, 4-20
OraAQ object, 4-21
OraAQMsg object, 4-20
OraAttributes interface, 4-10
OraBLOB and OraCLOB

objects, 5-11
using, 4-5

Oracle Advanced Queuing Errors, 5-12
Oracle Call Interface (OCI), 4-13
Oracle Client, 1-5
Oracle Collection Errors, 5-12
Oracle Collections, 4-16

Oracle Data Control, 1-4, 1-7, 2-2, 2-12
requirements, 1-5
setting properties, 2-11

Oracle Data Control demonstration, 2-8
Oracle Data Control errors, 5-13
Oracle Data Control events, 12-1

DragDrop, 12-2
DragOver, 12-3
Error, 12-4
MouseDown, 12-5
MouseMove, 12-6
MouseUp, 12-7
Reposition, 12-8
Validate, 12-9

Oracle Data Control methods, 13-1
Drag, 13-2
Move, 13-3
Refresh, 13-4
UpdateControls, 13-5
UpdateRecord, 13-6
ZOrder, 13-7

Oracle Data Control properties, 14-1
AllowMoveLast, 14-3
AutoBind lAutoBind property, 14-4
BackColor, 14-7
Caption, 14-8
Connect, 14-9
Database, 14-10
DatabaseName, 14-11
DirtyWrite, 14-12
DragIcon, 14-13
DragMode, 14-14
EditMode, 14-15
Enabled, 14-16
Font, 14-17
ForeColor, 14-18
Height, 14-19
Index, 14-20
Left, 14-21
MousePointer, 14-22
Name, 14-23
NoRefetch, 14-24
Options, 14-25
OracleMode, 14-27
ReadOnly, 14-28
Recordset, 14-29
RecordSource, 14-31
Session, 14-33
Tag, 14-34
Top, 14-35
TrailingBlanks, 14-36
Visible, 14-37
Width, 14-38

Oracle Data Control with Visual Basic, 2-8
Oracle Errors, 5-13
Oracle In-Process Server Type library, 1-5
Oracle LOB errors, 5-11
Oracle LOBs, Objects, and Collections, 4-2

instantiating, 4-2
Oracle network errors, 5-15



Index-5

Oracle Number errors, 5-13
Oracle Object Instance Errors, 5-10
Oracle Objects for OLE (OO4O) overview, 1-1
Oracle Objects for OLE C++ Class Library, 1-4
Oracle Objects for OLE server methods, 10-1
Oracle Objects for OLE Server Objects, 9-1
Oracle Objects for OLE server properties, 11-1
Oracle Universal Installer, 1-5, 1-6
OracleMetaLink, 1-6
OracleMode property, 14-27
oraclm32.dll, 1-6
OraCollection, 4-16
OraCollection interface, 4-16
OraCollection object, 5-4, 5-12

creating a dynaset from, 4-18
oraconst.txt, 2-2
OraDatabase object

pool of, 5-6
pool, performance, ASP applications, 3-8

OraDatabase objects, 13-4
ORADC Control, 2-12
oradc.ocx, 1-6, 1-7
ORADYN_NOCACHE option, 3-3, 5-4
ORADYN_READONLY option, 5-4
OraDynaset

objects, 13-4
XML from, 4-26

OraDynaset object, 5-2, 5-4
using, 4-5

oraexamp.sql, 2-2
OraField objects, 5-2
OraFields collection, 5-2
OraMetaData object, 4-29
OraObject interface, 4-10

using, 4-11
OraObject object, 4-10

accessing, 4-15
accessing attributes of, 4-12
executing methods, 4-12
instance errors, 5-10
modfiying attributes, 4-15
modifying attributes of, 4-12
retrieving, 4-11

OraParamArray object, 5-4
OraParameter object, 5-3

using, 4-15
OraRef interface

about, 4-13
using, 4-14

OraRef object, 4-10
OraSQLStmt, 3-6
ORATYPE_CURSOR, 3-11
output variables, 4-1

P
parameter bindings, 5-3
Parameter object

using, 4-5, 4-11
ParameterArrays, 3-7

performance, 3-3, 3-6, 3-9, 5-2
considerations with LOB, 4-6
improvement, 5-4

PL/SQL bind variables, 3-9
PL/SQL blocks

executing, 3-9
PL/SQL bulk collect feature, 5-4
PL/SQL cursor variables, 3-11
PL/SQL procedures, 5-3, 7-1
PL/SQL support, 3-9
PL/SQL tables

returning, 3-13
processing

arrays, 5-4
properties, 11-1

FetchLimit, 5-2
LastServerErr, 5-7, 5-13
LastServerErrText, 5-13

property values, 2-2

Q
queries, 3-3
queueing, 4-20
quick tour, 6-1

R
ReadOnly property, 14-28
Recordset data control property, 14-29
RecordSource data control property, 13-4, 14-31
reducing round-trips, 5-4
REF

retrieving from database, 4-14
referenceable instance, 4-15
Refresh data control method, 13-4
Refresh method, 3-9
Reposition event, 12-8
required setups, 1-5
required support files (RSF), 1-5
requirements

OO4O Code Wizard, 1-5
Oracle Data Control, 1-5

retreiving
interfaces, 4-2

retrieving
collection types, 4-17
LOBs from database, 4-5
OraObject, 4-11
REF, 4-14

returning PL/SQL tables, 3-13
round-trips, 4-6, 5-4

reducing, 5-4
run-time errors, 5-9

S
sample application

quick tour, 6-1
schema objects, 4-29
scott schema, 2-2



Index-6

scott/tiger, 2-1
SELECT statements, 3-3
server methods, 10-1
server properties, 11-1
Session data control property, 14-33
Setting Oracle Data Control Properties 

Programmatically, 2-11
setup

required, 1-5
single-piece operation, 4-6
single-piece read operation, 4-8
single-piece write operation, 4-6
sqldembld7.sql, 2-2
support for Microsoft Transaction Server, 3-15
support for PL/SQL, 3-9
system requirements, 1-5

T
Tag property, 14-34
tnsnames.ora file, 2-2
Top property, 14-35
TrailingBlanks property, 14-36
transaction control, 3-14
troubleshooting, 5-14
tuning, 5-2
Type Library, 2-2
types, 5-5

LONG RAW, 5-5

U
Universal Installer, 1-5, 1-6
update database records, 3-6
Update method, 13-6
UpdateControls method, 13-5
UpdateRecord method, 13-6
Updating files and registrations, 1-7
using

Dynaset object, 4-14
OraParameter object, 4-15
OraRef interface, 4-14

using a Dynaset object, 4-11
using a Parameter object, 4-11
using Automation Clients, 2-1
using Microsoft C++, 2-8
using OO4O Automation with Active Server Pages 

(ASP), 2-4
using OO4O Automation with Excel, 2-6
using OO4O Automation with Visual Basic, 2-2
using OraBLOB and OraCLOB, 4-5
using OraObject interface, 4-11
using read-only forward-only dynasets, 5-4
using the OO4O Code Wizard, 7-2
using the Oracle Data Control with MS VC++, 2-12
using the Oracle Data Control with Visual Basic, 2-8
using the PL/SQL bulk collect feature, 5-4

V
Validate event, 12-8, 12-9, 13-6

VARRAY collection type
creating, 4-18

VARRAYs, 4-1, 4-16
Visible property, 14-37
Visual Basic, 1-1, 5-1, 12-1, 13-1, 14-1
Visual Basic for Applications, 1-1
Visual Basic with OO4O automation, 2-2
Visual Basic Wizard Add-in to Code Wizard, 7-3
Visual Basic, Excel, 2-1
Visual C++, 1-4, 2-8, 2-12
Visual C++, JavaScript, 1-1

W
Width property, 14-38
Windows 2000, 1-5
Windows registry parameters, 5-2
Windows Server 2003, 1-5
Windows Vista, 1-5
Windows XP, 1-5
writing

LOB data, 4-6

X
XML

generation, 4-26
XML from OraDynaset, 4-26
XML support for, 4-26
XSLT, 4-26

Z
z-order, 13-7
ZOrder methods, 13-7


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle Objects for OLE?
	Oracle Database 11g Release 1 (11.1) and Release 2 (11.2) New Features
	Oracle Database 10g Release 2 (10.2) New Features
	Oracle Database 10g Release 1 (10.1) New Features

	1 Introducing Oracle Objects for OLE
	Overview of Oracle Objects for OLE
	Oracle Objects for OLE In-Process Automation Server
	Oracle Data Control
	Oracle Objects for OLE C++ Class Library
	Required Setups
	Installation
	System Requirements
	Other Requirements

	Oracle Objects for OLE File Locations
	Component Certifications
	Oracle Objects for OLE Redistributable Files
	Redistributable File Locations
	Updating Files and Registrations


	2 Using Oracle Objects for OLE with Automation Clients
	Using Automation Clients Overview
	Demonstration Schema and Code Examples
	Demonstration Schema Creation
	Demonstration Schema
	Other Schemas
	Related Files


	Using Oracle Objects for OLE Automation with Visual Basic
	Using OO4O Automation with Active Server Pages (ASP)
	Using Oracle Objects for OLE Automation with Excel
	Using Microsoft C++
	Using Oracle Data Control with Visual Basic
	Setting Oracle Data Control Properties with the Properties Window
	Setting Oracle Data Control Properties Programmatically

	Using the Oracle Data Control with MS Visual C++

	3 Basic Features
	Overview of Client Applications
	Accessing the Oracle Objects for OLE Automation Server
	Obtaining an OraSession Object
	Obtaining an OraServer Object

	Connecting to Oracle Database
	Using OraServer for Connection Multiplexing

	Executing Commands
	Queries
	Data Manipulation Language Statements
	Updating Database Records
	Deleting Rows from a Table
	Inserting New Rows into a Table


	Thread Safety
	Using the Connection Pool Management Facility
	Creating the Connection Pool
	Obtaining from and Returning Objects to the Pool
	Destroying the Pool
	Accessing the Pool attributes
	Processing Transactions Using the Database from the Connection Pool

	Detection of Lost Connections
	PL/SQL Support
	PL/SQL Integration with Oracle Objects for OLE
	Executing PL/SQL Blocks Using ExecuteSQL and CreateSQL
	Returning PL/SQL Cursor Variables
	Returning PL/SQL Tables
	Executing Data Definition Language Statements

	Transaction Control
	Microsoft Transaction Server Support
	Asynchronous Processing
	Nonblocking Mode
	Checking the Status of a Nonblocking Operation
	Canceling a Nonblocking Operation
	Executing Multiple Queries in Asynchronous Mode
	Limitations on Nonblocking



	4 Advanced OO4O Features
	Support for Oracle Object-Relational and LOB Data Types
	Instantiating Oracle LOBs, Objects, and Collections
	Oracle LOBs, Objects, and Collections

	Using Large Objects (LOBs)
	LOB Data Types
	Using OraBLOB and OraCLOB
	Retrieving LOBs From the Database
	Using an OraDynaset Object
	Using a Parameter object

	Performance Considerations with LOB Read and Write
	Single-Piece Operation
	Multiple-Piece Operation
	LOB Buffering Option

	Writing LOB Data
	Single-Piece Write Operation
	Multiple-Piece Write Operation

	Reading LOB Data
	Single-Piece Read Operation
	Multiple-Piece Read Operation


	Oracle Object Data Types
	About the OraObject Interface
	Using the OraObject Interface
	Retrieving an Embedded/Value Instance from the Database
	Using a Dynaset Object
	Using a Parameter Object

	Accessing Attributes of an Embedded/Value Instance
	Modifying Attributes of an Embedded/Value Instance
	Executing a Member Method of an Oracle Object Instance

	About the OraRef Interface
	Using the OraRef Interface
	Retrieving a REF from the Database
	Using a Dynaset Object
	Using an OraParameter Object

	Accessing Attributes of a Referenceable Instance
	Modifying Attributes of a Referenceable Instance


	Oracle Collections
	About the OraCollection Interface
	Retrieving a Collection Type Instance from the Database
	Using a Dynaset Object
	Using a Parameter Object

	Accessing Collection Elements
	Modifying Collection Elements
	Creating a VARRAY Collection Type
	Creating a Dynaset from an OraCollection Object

	Advanced Queueing Interfaces
	Monitoring Messages

	Database Events
	Application Failover Notifications
	Failover Notification Registration
	Enabling Failover

	XML Generation
	Datetime and Interval Data Types
	Obtaining Datetime and Interval Data Types
	Descriptions of Datetime and Interval Data Types

	Database Schema Objects

	5 Tuning and Troubleshooting
	Tips and Techniques for Performance Tuning
	Early Binding of OO4O Objects
	Tuning and Customization
	Avoiding Multiple Object Reference
	Parameter Bindings
	Array Processing
	Using Read-Only, Forward-Only Dynaset
	Using the PL/SQL Bulk Collection Feature
	Migration from LONG RAW to LOB or BFILE
	Using Connection Pooling

	Oracle Objects for OLE Error Handling
	OLE Automation Errors
	Nonblocking Errors
	Find Method Parser Errors
	Find Method Run-Time Errors
	OraObject Instance Errors
	LOB Errors
	Oracle Streams Advanced Queuing Errors
	OraCollection Errors
	OraNumber Errors
	Oracle Errors
	Oracle Data Control Errors

	Troubleshooting
	OLE Initialization or OLE Automation Errors
	Oracle Network Errors
	Access Violations


	6 Quick Tour with Visual Basic
	Introduction
	About the Employee Database Application
	Employee Form
	Batch Insert Form


	Getting Started: Steps to Accessing Oracle Data
	Completed Sample Form_Load Procedure

	Programming a Data Entry Form
	About the Employee Form
	Navigating Through Data
	Moving to First or Last Rows
	Moving to the Previous Row
	Moving to the Next Row

	Adding Records
	Coding the Add Button
	Coding the Commit Button (Add)
	Commit_Click Event Procedure (Add)
	DoValidationChecks( ) Function
	UpdateDynasetFields( ) Function


	Updating Records
	Coding the Update Button
	Coding the Commit Button to Add and Update Records
	Commit_Click( ) Event Procedure Example
	SetAfterCommitFlags() Subroutine Example


	Deleting Records
	Querying the Database
	Using Batch Insert

	Programming a Batch Form
	About the Batch Insert Form
	Coding the Batch Insert Form_Load( ) Procedure
	Coding the CmdAddtoGrid( ) Procedure
	Coding the CommitGrid_Click( ) Procedure


	7 Code Wizard for Stored Procedures
	Oracle Objects for OLE Code Wizard Components
	Data Types Supported by the OO4O Code Wizard
	Using the OO4O Code Wizard
	OO4O Code Wizard Command-Line Utility
	OO4O Code Wizard Visual Basic Wizard Add-in

	Code Wizard Examples
	Accessing a PL/SQL Stored Function with Visual Basic and Active Server Pages
	Accessing a PL/SQL Stored Procedure Using the LOB Type with Visual Basic
	Accessing a PL/SQL Stored Procedure Using the VARRAY Type with Visual Basic
	Accessing a PL/SQL Stored Procedure Using the Oracle OBJECT Type with Visual Basic


	8 Introduction to Automation Objects
	Overview of Automation Objects
	OraSession Object Overview
	OraServer Object Overview
	OraDatabase Object Overview
	OraDynaset Object Overview
	OraField Object Overview
	OraParameters Object Overview
	OraParameter Object Overview
	OraParamArray Object Overview
	OraSQLStmt Object Overview

	9 Server Objects
	OraAQ Object
	OraAQAgent Object
	OraAQMsg Object
	OraAttribute Object
	OraBFILE Object
	OraBLOB, OraCLOB Objects
	OraClient Object
	OraCollection Object
	OraConnection Object
	OraDatabase Object
	OraDynaset Object
	OraField Object
	OraIntervalDS Object
	OraIntervalYM Object
	OraMDAttribute Object
	OraMetaData Object
	OraNumber Object
	OraObject Object
	OraParamArray Object
	OraParameter Object
	OraRef Object
	OraServer Object
	OraSession Object
	OraSQLStmt Object
	OraSubscription Object
	OraTimeStamp Object
	OraTimeStampTZ Object
	OraConnections Collection
	OraFields Collection
	OraParameters Collection
	OraSessions Collection
	OraSubscriptions Collection

	10 Server Methods
	Abs Method
	Add Method
	Add (OraIntervalDS) Method
	Add (OraIntervalYM) Method
	Add (OraNumber) Method
	Add (OraSubscriptions Collection) Method
	AddIntervalDS Method
	AddIntervalYM Method
	AddNew Method
	AddTable Method
	Append (OraCollection) Method
	Append (OraLOB) Method
	AppendChunk Method
	AppendChunkByte Method
	AQAgent (OraAQMsg) Method
	AQMsg (OraAQ) Method
	ArcCos (OraNumber) Method
	ArcSin (OraNumber) Method
	ArcTan (OraNumber) Method
	ArcTan2 (OraNumber) Method
	Attribute (OraMetaData) Method
	AutoBindDisable Method
	AutoBindEnable Method
	BeginTrans Method
	Cancel Method
	CancelEdit (OraRef) Method
	Ceil (OraNumber) Method
	ChangePassword (OraServer) Method
	ChangePassword (OraSession) Method
	Clone Method
	Clone (OraLOB/BFILE) Method
	Clone (OraCollection) Method
	Clone (OraIntervalDS) Method
	Clone (OraIntervalYM) Method
	Clone (OraNumber) Method
	Clone (OraObject/Ref) Method
	Clone (OraTimeStamp) Method
	Clone (OraTimeStampTZ) Method
	Close Method
	Close (OraBFILE) Method
	CloseAll (OraBFILE) Method
	CommitTrans Method
	Compare (OraLOB) Method
	ConnectSession Method
	CopyToClipboard Method
	Copy (OraLOB) Method
	CopyFromFile (OraLOB) Method
	CopyFromBFILE (OraLOB) Method
	CopyToFile (OraLOB/BFILE) Method
	Cos (OraNumber) Method
	CreateAQ Method
	CreateCustomDynaset Method
	CreateDatabasePool Method
	CreateDynaset Method
	CreateIterator Method
	CreateNamedSession Method
	CreateOraIntervalDS Method
	CreateOraIntervalYM Method
	CreateOraNumber Method
	CreateOraObject (OraDatabase) Method
	CreateOraTimeStamp Method
	CreateOraTimeStampTZ Method
	CreatePLSQLCustomDynaset Method
	CreatePLSQLDynaset Method
	CreateSession Method
	CreateSQL Method
	CreateTempBLOB/CLOB Method
	Delete Method
	Delete (OraCollection) Method
	Delete (OraRef) Method
	DeleteIterator Method
	Dequeue (OraAQ) Method
	Describe Method
	DestroyDatabasePool Method
	DisableBuffering (OraLOB) Method
	Div (OraIntervalDS) Method
	Div (OraIntervalYM) Method
	Div (OraNumber) Method
	DynasetCacheParams Method
	Edit Method
	Edit (OraRef) Method
	ElementValue Method
	EnableBuffering (OraLOB) Method
	Enqueue (OraAQ) Method
	Erase (OraLOB) Method
	ExecuteSQL Method
	Exist (OraCollection) Method
	Exp (OraNumber) Method
	FetchOraRef Method
	FieldSize Method
	FindFirst, FindLast, FindNext, and FindPrevious Methods
	Floor (OraNumber) Method
	FlushBuffer (OraLOB) Method
	GetDatabaseFromPool Method
	GetChunk Method
	GetChunkByte Method
	GetChunkByteEx Method
	GetXML Method
	GetXMLToFile Method
	GetRows Method
	Get_Value Method
	HypCos (OraNumber) Method
	HypSin (OraNumber) Method
	HypTan (OraNumber) Method
	InitIterator Method
	IsEqual (OraIntervalDS) Method
	IsEqual (OraIntervalYM) Method
	IsEqual (OraNumber) Method
	IsEqual (OraTimeStamp) Method
	IsEqual (OraTimeStampTZ) Method
	IsGreater (OraIntervalDS) Method
	IsGreater (OraIntervalYM) Method
	IsGreater (OraNumber) Method
	IsGreater (OraTimeStamp) Method
	IsGreater (OraTimeStampTZ) Method
	IsLess (OraIntervalDS) Method
	IsLess (OraIntervalYM) Method
	IsLess (OraNumber) Method
	IsLess (OraTimeStamp) Method
	IsLess (OraTimeStampTZ) Method
	IterNext Method
	IterPrev Method
	LastServerErrReset Method
	Ln (OraNumber) Method
	Log (OraNumber) Method
	MatchPos (OraLOB/BFILE) Method
	Mod (OraNumber) Method
	MonitorForFailover Method
	MonitorStart (OraAQ) Method
	MonitorStop (OraAQ) Method
	MoveFirst, MoveLast, MoveNext, and MovePrevious Methods
	MovePreviousn, MoveNextn, MoveRel, and MoveTo Methods
	Mul (OraIntervalDS) Method
	Mul (OraIntervalYM) Method
	Mul (OraNumber) Method
	Neg (OraIntervalDS) Method
	Neg (OraIntervalYM) Method
	Neg (OraNumber) Method
	Open (OraServer) Method
	Open (OraBFILE) Method
	OpenDatabase Method
	OriginalItem Method
	OriginalName
	Power (OraNumber) Method
	Put_Value Method
	Read (OraLOB/BFILE) Method
	ReadChunk Method
	Refresh Method
	Refresh (OraRef) Method
	Register Method
	Remove Method
	Remove (OraSubscriptions Collection) Method
	RemoveFromPool Method
	ResetTrans Method
	Rollback Method
	Round (OraNumber) Method
	SetPi (OraNumber) Method
	Sin (OraNumber) Method
	Sqrt (OraNumber) Method
	Sub (OraIntervalDS) Method
	Sub (OraIntervalYM) Method
	Sub (OraNumber) Method
	Tan (OraNumber) Method
	ToDate Method
	ToOraNumber (OraIntervalDS) Method
	ToOraTimeStamp Method
	ToOraTimeStampLTZ Method
	ToOraTimeStampTZ Method
	ToUniversalTime Method
	Trim (OraCollection) Method
	Trim (OraLOB) Method
	Trunc (OraNumber) Method
	Unregister Method
	Update Method
	Update (OraRef) Method
	Write (OraLOB) Method

	11 Server Properties
	Address (OraAQAgent) Property
	ArraySize Property
	AutoCommit Property
	BOC Property
	BOF Property
	Bookmark Property
	BookMarkable Property
	CacheBlocks Property
	CacheChanged Property
	CacheMaximumSize Property
	CacheOptimalSize Property
	CacheSliceSize Property
	CacheSlicesPerBlock Property
	Client Property
	Connect Property
	Connection Property
	ConnectionOK Property
	Connections Property
	Consumer (OraAQ) Property
	Correlate (OraAQ) Property
	Correlation (OraAQMsg) Property
	Count Property
	Count (OraMetaData) Property
	Count (OraObject/Ref) Property
	Database Property
	DatabaseName Property
	Databases Property
	Day (OraTimeStamp) Property
	Day (OraTimeStampTZ) Property
	Days Property
	DbPoolCurrentSize Property
	DbPoolInitialSize Property
	DbPoolMaxSize Property
	Delay (OraAQMsg) Property
	DequeueMode (OraAQ) Property
	DequeueMsgId (OraAQ) Property
	DirectoryName Property
	DynasetOption Property
	EditMode Property
	EditOption (OraRef) Property
	ElementType Property
	EOC Property
	EOF Property
	ExceptionQueue Property
	Exists Property
	Expiration (OraAQMsg) Property
	FetchLimit Property
	FetchSize Property
	FieldIndex Property
	FieldName Property
	FieldOriginalName Property
	FieldOriginalNameIndex Property
	Fields Property
	FileName Property
	Filter Property
	Format (OraNumber) Property
	Format (OraTimeStamp) Property
	Format (OraTimeStampTZ) Property
	HexValue (OraRef) Property
	Hour (OraTimeStamp) Property
	Hour (OraTimeStampTZ) Property
	Hours Property
	IsLocator (OraCollection) Property
	IsMDObject Property
	IsNull (OraCollection) Property
	IsNull (OraLOB/BFILE) Property
	IsNull (OraObject) Property
	IsOpen (OraBFILE) Property
	IsRefNull (OraRef) Property
	LastErrorText Property
	LastModified Property
	LastServerErr Property
	LastServerErrPos Property
	LastServerErrText Property
	MaxSize (OraCollection) Property
	MinimumSize Property
	Minute (OraTimeStamp) Property
	Minute (OraTimeStampTZ) Property
	Minutes Property
	Month (OraTimeStamp) Property
	Month (OraTimeStampTZ) Property
	Months Property
	Name Property
	Name (AQAgent) Property
	Name (OraAttribute) Property
	Name (OraMDAttribute) Property
	Nanosecond(OraTimeStamp) Property
	Nanonsecond (OraTimeStampTZ) Property
	Nanonseconds Property
	Navigation (OraAQ) Property
	NoMatch Property
	NonBlockingState Property
	Offset (OraLOB/BFILE) Property
	OIPVersionNumber Property
	Options Property
	OraIDataType Property
	OraMaxDSize Property
	OraMaxSize Property
	OraNullOK Property
	OraPrecision Property
	OraScale Property
	Parameters Property
	PinOption (OraRef) Property
	PollingAmount Property
	Priority (OraAQMsg) Property
	RDMSVersion Property
	RecordCount Property
	RelMsgId (OraAQ) Property
	RowPosition Property
	SafeArray (OraCollection) Property
	Second (OraTimeStamp) Property
	Second (OraTimeStampTZ) Property
	Seconds Property
	Server Property
	ServerType Property
	Session Property
	Sessions Property
	Size Property
	Size (OraCollection) Property
	Size (OraLOB and OraBFILE) Property
	SnapShot Property
	Sort Property
	SQL Property
	Status Property
	Status (OraLOB/BFILE) Property
	Subscriptions Property
	TableName (OraRef) Property
	TableSize (OraCollection) Property
	TimeZone (OraTimeStampTZ) Property
	TotalDays Property
	TotalYears Property
	Transactions Property
	Truncated Property
	Type Property
	Type (OraAttribute) Property
	Type (OraCollection) Property
	Type (OraMetaData) Property
	TypeName (OraObject and OraRef) Property
	Updatable Property
	Value Property
	Value (OraAttribute) Property
	Value (OraAQMsg) Property
	Value (OraIntervalDS) Property
	Value (OraIntervalYM) Property
	Value (OraMDAttribute) Property
	Value (OraNumber) Property
	Value (OraTimeStamp) Property
	Value (OraTimeStampTZ) Property
	Version (OraObject and Ref) Property
	Visible (OraAQ) Property
	Wait (OraAQ) Property
	XMLAsAttribute Property
	XMLCollID Property
	XMLEncodingTag Property
	XMLNullIndicator Property
	XMLOmitEncodingTag Property
	XMLRowID Property
	XMLRowsetTag Property
	XMLRowTag Property
	XMLTagName Property
	XMLUpperCase Property
	Year (OraTimeStamp) Property
	Year (OraTimeStampTZ) Property
	Years Property

	12 Data Control Events
	DragDrop Event
	DragOver Event
	Error Event
	MouseDown Event
	MouseMove Event
	MouseUp Event
	Reposition Event
	Validate Event

	13 Data Control Methods
	Drag Method
	Move Method
	Refresh Method
	UpdateControls Method
	UpdateRecord Method
	ZOrder Method

	14 Data Control Properties
	AllowMoveLast Property
	AutoBinding Property
	BackColor Property
	Caption Property
	Connect Property
	Database Property
	DatabaseName Property
	DirtyWrite Property
	DragIcon Property
	DragMode Property
	EditMode Property
	Enabled Property
	Font Property
	ForeColor Property
	Height Property
	Index Property
	Left Property
	MousePointer Property
	Name Property
	NoRefetch Property
	Options Property
	OracleMode Property
	ReadOnly Property
	Recordset Property
	RecordSource Property
	Session Property
	Tag Property
	Top Property
	TrailingBlanks Property
	Visible Property
	Width Property

	A Appendix A
	Oracle Data Types
	Additional Schemas
	Schema Objects Used in OraMetaData Examples
	Schema Objects Used in LOB Data Type Examples
	Schema Objects Used in the OraObject and OraRef Examples
	Schema Objects Used in OraCollection Examples


	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


