TopBlend: Here is the first difference. There are 55 differences. is old. is new.

java.util
Class Hashtable<K,V>


java.lang.Object
  extended by java.util.Dictionary<K,V>
      extended by java.util.Hashtable<K,V>
All Implemented Interfaces:
Serializable , Cloneable , Map <K,V>
Direct Known Subclasses:
Properties , UIDefaults

public class Hashtable<K,V>
extends Dictionary<K,V>
implements Map<K,V>, Cloneable, Serializable

This class implements a hashtable, which maps keys to values. Any non-null object can be used as a key or as a value.

To successfully store and retrieve objects from a hashtable, the objects used as keys must implement the hashCode method and the equals method.

An instance of Hashtable has two parameters that affect its performance: initial capacity and load factor . The capacity is the number of buckets in the hash table, and the initial capacity is simply the capacity at the time the hash table is created. Note that the hash table is open : in the case of a "hash collision", a single bucket stores multiple entries, which must be searched sequentially. The load factor is a measure of how full the hash table is allowed to get before its capacity is automatically increased. The initial capacity and load factor parameters are merely hints to the implementation. The exact details as to when and whether the rehash method is invoked are implementation-dependent.

Generally, the default load factor (.75) offers a good tradeoff between time and space costs. Higher values decrease the space overhead but increase the time cost to look up an entry (which is reflected in most Hashtable operations, including get and put ).

The initial capacity controls a tradeoff between wasted space and the need for rehash operations, which are time-consuming. No rehash operations will ever occur if the initial capacity is greater than the maximum number of entries the Hashtable will contain divided by its load factor. However, setting the initial capacity too high can waste space.

If many entries are to be made into a Hashtable, creating it with a sufficiently large capacity may allow the entries to be inserted more efficiently than letting it perform automatic rehashing as needed to grow the table.

This example creates a hashtable of numbers. It uses the names of the numbers as keys:


 Hashtable<String, Integer> numbers
 = new Hashtable<String, Integer>();
 numbers.put("one", 1);
 numbers.put("two", 2);
 numbers.put("three", 3); 


 Hashtable numbers = new Hashtable();
 numbers.put("one", new Integer(1));
 numbers.put("two", new Integer(2));
 numbers.put("three", new Integer(3));
 

To retrieve a number, use the following code:


 Integer n = numbers.get("two");
 if (n != null) {
 System.out.println("two = " + n);
 } 


 Integer n = (Integer)numbers.get("two");
 if (n != null) {
 System.out.println("two = " + n);
 }
 

As of the Java 2 platform v1.2, this class has been retrofitted to implement Map, so that it becomes a part of Java's collection framework. Unlike the new collection implementations, Hashtable is synchronized.

The iterators Iterators returned by the iterator method and listIterator methods of the collections Collections returned by all of this class's Hashtable's "collection view methods" are fail-fast: if the Hashtable is structurally modified at any time after the iterator Iterator is created, in any way except through the iterator's Iterator's own remove method, or add methods, the iterator Iterator will throw a ConcurrentModificationException . ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. The Enumerations returned by Hashtable's keys and elements values methods are not fail-fast.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

This class is a member of the Java Collections Framework .

Since:
JDK1.0
See Also:
Object.equals(java.lang.Object) , Object.hashCode() , rehash() , Collection , Map , HashMap , TreeMap , Serialized Form

Constructor Summary
Hashtable ()
          Constructs a new, empty hashtable with a default initial capacity (11) and load factor (0.75). factor, which is 0.75 .
Hashtable (int initialCapacity)
          Constructs a new, empty hashtable with the specified initial capacity and default load factor (0.75). factor, which is 0.75 .
Hashtable (int initialCapacity, float loadFactor)
          Constructs a new, empty hashtable with the specified initial capacity and the specified load factor.
Hashtable ( Map <? extends K ,? extends V
          Constructs a new hashtable with the same mappings as the given Map.
 
Method Summary
 void clear ()
          Clears this hashtable so that it contains no keys.
  Object clone ()
          Creates a shallow copy of this hashtable.
 boolean contains ( Object  value)
          Tests if some key maps into the specified value in this hashtable.
 boolean containsKey ( Object  key)
          Tests if the specified object is a key in this hashtable.
 boolean containsValue ( Object
          Returns true if this hashtable Hashtable maps one or more keys to this value.
  Enumeration < V > elements ()
          Returns an enumeration of the values in this hashtable.
  Set < Map.Entry < K , V entrySet ()
          Returns a Set Set view of the entries contained in this Hashtable.
 boolean equals ( Object  o)
          Compares the specified Object with this Map for equality, as per the definition in the Map interface.
  V get ( Object
          Returns the value to which the specified key is mapped, or null if mapped in this map contains no mapping for the key. hashtable.
 int hashCode ()
          Returns the hash code value for this Map as per the definition in the Map interface.
 boolean isEmpty ()
          Tests if this hashtable maps no keys to values.
  Enumeration < K > keys ()
          Returns an enumeration of the keys in this hashtable.
  Set < K keySet ()
          Returns a Set Set view of the keys contained in this Hashtable.
  V put ( K  key, V
          Maps the specified key to the specified value in this hashtable.
 void putAll ( Map <? extends K ,? extends V
          Copies all of the mappings from the specified map Map to this hashtable. Hashtable These mappings will replace any mappings that this Hashtable had for any of the keys currently in the specified Map.
protected  void rehash ()
          Increases the capacity of and internally reorganizes this hashtable, in order to accommodate and access its entries more efficiently.
  V remove ( Object
          Removes the key (and its corresponding value) from this hashtable.
 int size ()
          Returns the number of keys in this hashtable.
  String toString ()
          Returns a string representation of this Hashtable object in the form of a set of entries, enclosed in braces and separated by the ASCII characters " " (comma and space).
  Collection < V values ()
          Returns a Collection Collection view of the values contained in this Hashtable.
 
Methods inherited from class java.lang. Object
finalize , getClass , notify , notifyAll , wait , wait , wait
 

Constructor Detail

Hashtable


public Hashtable(int initialCapacity,
                 float loadFactor)
Constructs a new, empty hashtable with the specified initial capacity and the specified load factor.

Parameters:
initialCapacity - the initial capacity of the hashtable.
loadFactor - the load factor of the hashtable.
Throws:
IllegalArgumentException - if the initial capacity is less than zero, or if the load factor is nonpositive.

Hashtable


public Hashtable(int initialCapacity)
Constructs a new, empty hashtable with the specified initial capacity and default load factor (0.75). factor, which is 0.75 .

Parameters:
initialCapacity - the initial capacity of the hashtable.
Throws:
IllegalArgumentException - if the initial capacity is less than zero.

Hashtable


public Hashtable()
Constructs a new, empty hashtable with a default initial capacity (11) and load factor (0.75). factor, which is 0.75 .


Hashtable


public Hashtable(Map<? extends K,? extends V> t)
Constructs a new hashtable with the same mappings as the given Map. The hashtable is created with an initial capacity sufficient to hold the mappings in the given Map and a default load factor (0.75). factor, which is 0.75 .

Parameters:
t - the map whose mappings are to be placed in this map.
Throws:
NullPointerException - if the specified map is null.
Since:
1.2
Method Detail

size


public int size()
Returns the number of keys in this hashtable.

Specified by:
size in interface Map < K , V >
Specified by:
size in class Dictionary < K , V >
Returns:
the number of keys in this hashtable.

isEmpty


public boolean isEmpty()
Tests if this hashtable maps no keys to values.

Specified by:
isEmpty in interface Map < K , V >
Specified by:
isEmpty in class Dictionary < K , V >
Returns:
true if this hashtable maps no keys to values; false otherwise.

keys


public Enumeration<K> keys()
Returns an enumeration of the keys in this hashtable.

Specified by:
keys in class Dictionary < K , V >
Returns:
an enumeration of the keys in this hashtable.
See Also:
Enumeration , elements() , keySet() , Map

elements


public Enumeration<V> elements()
Returns an enumeration of the values in this hashtable. Use the Enumeration methods on the returned object to fetch the elements sequentially.

Specified by:
elements in class Dictionary < K , V >
Returns:
an enumeration of the values in this hashtable.
See Also:
Enumeration , keys() , values() , Map

contains


public boolean contains(Object value)
Tests if some key maps into the specified value in this hashtable. This operation is more expensive than the containsKey containsKey method.

Note that this method is identical in functionality to containsValue , containsValue, (which is part of the Map Map interface in the collections framework).

Parameters:
value - a value to search for for.
Returns:
true if and only if some key maps to the value argument in this hashtable as determined by the equals method; false otherwise.
Throws:
NullPointerException - if the value is null - if the value is null.
See Also:
containsKey(Object) , containsValue(Object) , Map

containsValue


public boolean containsValue(Object value)
Returns true if this hashtable Hashtable maps one or more keys to this value.

Note that this method is identical in functionality to contains contains (which predates the Map Map interface).

Specified by:
containsValue in interface Map < K , V >
Parameters:
value - value whose presence in this hashtable Hashtable is to be tested tested.
Returns:
true if this map maps one or more keys to the specified value value.
Throws:
NullPointerException - if the value is null null.
Since:
1.2
See Also:
Map

containsKey


public boolean containsKey(Object key)
Tests if the specified object is a key in this hashtable.

Specified by:
containsKey in interface Map < K , V >
Parameters:
key - possible key key.
Returns:
true if and only if the specified object is a key in this hashtable, as determined by the equals method; false otherwise.
Throws:
NullPointerException - if the key is null null.
See Also:
contains(Object)

get


public V get(Object key)
Returns the value to which the specified key is mapped, or null if mapped in this map contains no mapping for the key. hashtable.

More formally, if this map contains a mapping from a key k to a value v such that (key.equals(k)), then this method returns v; otherwise it returns null. (There can be at most one such mapping.)

Specified by:
get in interface Map < K , V >
Specified by:
get in class Dictionary < K , V >
Parameters:
key - the key whose associated value is to be returned key - a key in the hashtable.
Returns:
the value to which the specified key is mapped, or mapped in this hashtable; null if this map contains no mapping for the key is not mapped to any value in this hashtable.
Throws:
NullPointerException - if the specified key is null null.
See Also:
put(Object, Object)

rehash


protected void rehash()
Increases the capacity of and internally reorganizes this hashtable, in order to accommodate and access its entries more efficiently. This method is called automatically when the number of keys in the hashtable exceeds this hashtable's capacity and load factor.


put


public V put(K key,
             V value)
Maps the specified key to the specified value in this hashtable. Neither the key nor the value can be null.

The value can be retrieved by calling the get method with a key that is equal to the original key.

Specified by:
put in interface Map < K , V >
Specified by:
put in class Dictionary < K , V >
Parameters:
key - the hashtable key key.
value - the value value.
Returns:
the previous value of the specified key in this hashtable, or null if it did not have one one.
Throws:
NullPointerException - if the key or value is null null.
See Also:
Object.equals(Object) , get(Object)

remove


public V remove(Object key)
Removes the key (and its corresponding value) from this hashtable. This method does nothing if the key is not in the hashtable.

Specified by:
remove in interface Map < K , V >
Specified by:
remove in class Dictionary < K , V >
Parameters:
key - the key that needs to be removed removed.
Returns:
the value to which the key had been mapped in this hashtable, or null if the key did not have a mapping mapping.
Throws:
NullPointerException - if the key is null null.

putAll


public void putAll(Map<? extends K,? extends V> t)
Copies all of the mappings from the specified map Map to this hashtable. Hashtable These mappings will replace any mappings that this hashtable Hashtable had for any of the keys currently in the specified map. Map.

Specified by:
putAll in interface Map < K , V >
Parameters:
t - mappings Mappings to be stored in this map map.
Throws:
NullPointerException - if the specified map is null null.
Since:
1.2

clear


public void clear()
Clears this hashtable so that it contains no keys.

Specified by:
clear in interface Map < K , V >

clone


public Object clone()
Creates a shallow copy of this hashtable. All the structure of the hashtable itself is copied, but the keys and values are not cloned. This is a relatively expensive operation.

Overrides:
clone in class Object
Returns:
a clone of the hashtable hashtable.
See Also:
Cloneable

toString


public String toString()
Returns a string representation of this Hashtable object in the form of a set of entries, enclosed in braces and separated by the ASCII characters " " (comma and space). Each entry is rendered as the key, an equals sign = , and the associated element, where the toString method is used to convert the key and element to strings.

Overrides to toString method of Object .

Overrides:
toString in class Object
Returns:
a string representation of this hashtable hashtable.

keySet


public Set<K> keySet()
Returns a Set view of the keys contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress (except through the iterator's own remove operation), the results of the iteration are undefined. The set supports element removal, which removes the corresponding mapping from the map, via the Iterator.remove , Set.remove , removeAll , retainAll , and clear operations. It does not support the add or addAll operations. Returns a Set view of the keys contained in this Hashtable. The Set is backed by the Hashtable, so changes to the Hashtable are reflected in the Set, and vice-versa. The Set supports element removal (which removes the corresponding entry from the Hashtable), but not element addition.

Specified by:
keySet in interface Map < K , V >
Returns:
a set view of the keys contained in this map map.
Since:
1.2

entrySet


public Set<Map.Entry<K,V>> entrySet()
Returns a Set view of the mappings contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress (except through the iterator's own remove operation, or through the setValue operation on a map entry returned by the iterator) the results of the iteration are undefined. The set supports element removal, which removes the corresponding mapping from the map, via the Iterator.remove , Set.remove , removeAll , retainAll and clear operations. It does not support the add or addAll operations. Returns a Set view of the entries contained in this Hashtable. Each element in this collection is a Map.Entry. The Set is backed by the Hashtable, so changes to the Hashtable are reflected in the Set, and vice-versa. The Set supports element removal (which removes the corresponding entry from the Hashtable), but not element addition.

Specified by:
entrySet in interface Map < K , V >
Returns:
a set view of the mappings contained in this map map.
Since:
1.2
See Also:
Map.Entry

values


public Collection<V> values()
Returns a Collection view of the values contained in this map. The collection is backed by the map, so changes to the map are reflected in the collection, and vice-versa. If the map is modified while an iteration over the collection is in progress (except through the iterator's own remove operation), the results of the iteration are undefined. The collection supports element removal, which removes the corresponding mapping from the map, via the Iterator.remove , Collection.remove , removeAll , retainAll and clear operations. It does not support the add or addAll operations. Returns a Collection view of the values contained in this Hashtable. The Collection is backed by the Hashtable, so changes to the Hashtable are reflected in the Collection, and vice-versa. The Collection supports element removal (which removes the corresponding entry from the Hashtable), but not element addition.

Specified by:
values in interface Map < K , V >
Returns:
a collection view of the values contained in this map map.
Since:
1.2

equals


public boolean equals(Object o)
Compares the specified Object with this Map for equality, as per the definition in the Map interface.

Specified by:
equals in interface Map < K , V >
Overrides:
equals in class Object
Parameters:
o - object to be compared for equality with this hashtable Hashtable
Returns:
true if the specified Object is equal to this Map Map.
Since:
1.2
See Also:
Map.equals(Object)

hashCode


public int hashCode()
Returns the hash code value for this Map as per the definition in the Map interface.

Specified by:
hashCode in interface Map < K , V >
Overrides:
hashCode in class Object
Returns:
a hash code value for this object.
Since:
1.2
See Also:
Map.hashCode()