
The Java™ Web
Services Tutorial

November 19, 2004

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Naming
and Directory Interface, EJB, JSP, J2EE, J2SE and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Enterprise JavaBeans, Java Naming and
Directory Interface, EJB, JSP, J2EE, J2SE et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
cles y compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres
pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines,
y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas partic-
iper, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
législation américaine en matière de contrôle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cially Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

iii

Contents

About This Tutorial. vii

Who Should Use This Tutorial vii
Prerequisites vii
How to Use This Tutorial viii
Building the Examples x
Further Information x
How to Print This Tutorial xi
Typographical Conventions xi
Feedback xi

Chapter 1: Binding XML Schema to Java Classes with JAXB . . 1

JAXB Architecture 2
Architectural Overview 2
The JAXB Binding Process 5
JAXB Binding Framework 6
More About javax.xml.bind 7
More About Unmarshalling 8
More About Marshalling 9
More About Validation 11

XML Schemas 13
Representing XML Content 17

Binding XML Names to Java Identifiers 17
Java Representation of XML Schema 17

Binding XML Schemas 18
Simple Type Definitions 18
Default Data Type Bindings 19
Default Binding Rules Summary 20

Customizing JAXB Bindings 21
Scope 22

iv CONTENTS
Scope Inheritance 22
What is Not Supported 23
JAXB APIs and Tools 23

Chapter 2: Using JAXB .25

General Usage Instructions 26
Description 26
Using the Examples 28
Configuring and Running the Samples 28
JAXB Compiler Options 30
About the Schema-to-Java Bindings 32
Schema-Derived JAXB Classes 35

Basic Examples 43
Unmarshal Read Example 43
Modify Marshal Example 45
Create Marshal Example 47
Unmarshal Validate Example 51
Validate-On-Demand Example 52

Customizing JAXB Bindings 54
Why Customize? 55
Customization Overview 56
Customize Inline Example 69
Datatype Converter Example 74
External Customize Example 75
Fix Collides Example 79
Bind Choice Example 83

Chapter 3: Securing JAX-RPC Applications with XML and Web
Services Security87

Does XWS-Security Implement Any Specifications? 89
On Which Technologies Is XWS-Security Based? 91

What is the XWS-Security Framework? 92
Configuring Security Configuration Files 93
Understanding Security Configuration Files 93
XWS-Security Configuration File Schema 97
Semantics of Security Configuration File Elements 100
How Do I Specify the Security Configuration for the Build Files? 111
Are There Any Sample Applications Demonstrating XWS-Security? 114

Setting Up To Use XWS-Security With the Sample Applications 115

CONTENTS v
Setting System Properties 116
Configuring a JCE Provider 117
Setting Up the Application Server For the Examples 118
Keystore and Truststore Files with XWS-Security 120
Setting Build Properties 120

Understanding and Running the Simple Sample Application 122
Plugging in Security Configurations 122
Sample Security Configuration File Options 123
Running the Simple Sample Application 135

Understanding and Running the JAAS-Sample Application 136
Understanding JAAS-Sample Security Configuration Files 137
Setting Up For the JAAS-Sample 138
Running the JAAS-Sample Application 139

Writing SecurityEnvironmentHandlers for XWS-Security Applica-
tions 141

Using the SubjectAccessor API 158
Useful XWS-Security Command-Line Tools 159
pkcs12import 159
keyexport 160
wscompile 161

Troubleshooting XWS-Security Applications 162
Further Information 163

Chapter 4: Java XML Digital Signature API 165

How XWS-Security and XML Digital Signature API Are Related 166
XML Security Stack 167
Package Hierarchy 167
Service Providers 168
Introduction to XML Signatures 169
Example of an XML Signature 169
XML Digital Signature API Examples 172

validate Example 173
genenveloped Example 178

Appendix A: The Java WSDP Registry Server 183

Starting the Registry Server 184
Changing the Port for the Registry Server 184

Adding and Deleting Users 185
Adding a New User to the Registry 185

vi CONTENTS
Deleting a User from the Registry 186
Further Information 186

Appendix B: Registry Browser .189

Starting the Browser 189
Querying a Registry 191

Querying by Name 191
Querying by Classification 192

Managing Registry Data 192
Adding an Organization 192
Adding Services to an Organization 193
Adding Service Bindings to a Service 194
Adding and Removing Classifications 194
Submitting the Data 195

Deleting an Organization 195
Stopping the Browser 196

Appendix C: XWS-Security Formal Schema Definition 197

Formal Schema Definition 197

Index .205

About This Tutorial

THE Java™ Web Services Tutorial is a guide to developing Web applications
with the Java Web Services Developer Pack (Java WSDP). The Java WSDP is an
all-in-one download containing key technologies to simplify building of Web
services using the Java 2 Platform. This tutorial requires a full installation (Typi-
cal, not Custom) of the Java WSDP with the Sun Java System Application Server
Platform Edition 8 Update 1 (version 8.0.0_01), which hereafter is simply called
the Application Server. Here we cover all the things you need to know to make
the best use of this tutorial.

Who Should Use This Tutorial
This tutorial is intended for programmers who are interested in developing and
deploying Web services and Web applications on the Sun Java System Applica-
tion Server Platform Edition 8 Update 1 (version 8.0.0_01).

Prerequisites
Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
all the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et al., (Addison-Wesley, 2000). In particular, you should be familiar
vii

viii ABOUT THIS TUTORIAL
with relational database and security features described in the trails listed in
Table 1.

How to Use This Tutorial
The Java Web Services Tutorial is an adjunct to the J2EE Tutorial. To use it, you
must first:

1. Download and install the Sun Java System Application Server Platform
Edition 8 Update 1 release (hereafter called the Application Server), which
you will use as your Web container. You get to the download link for this
software from the http://java.sun.com/webservices/containers/

page.

2. Download and install the Java WSDP software. The Java WSDP installer
will integrate the Java WSDP component technologies into the Applica-
tion Server that you are using as your Web container. You can download
this software from http://java.sun.com/webservices/down-

loads/webservicespack.html.

3. If you are reading this online, you can download and install a local copy of
this tutorial, which you can get from http://java.sun.com/webser-

vices/downloads/webservicestutorial.html. All of the examples for
this tutorial are installed with the Java WSDP bundle and can be found in
the subdirectories of the <JWSDP_HOME>/<technology>/samples directo-
ries, where JWSDP_HOME is the directory where you installed Java WSDP.

4. Download and install the Update 2 version of the J2EE 1.4 Tutorial, which
works with Sun Java System Application Server 8 Update 1 that you down-
loaded in step 1. Get this version of the tutorial from
http://java.sun.com/j2ee/1.4/download.html#tutorial, where it
is listed as the second of the two tutorial downloads.

Table 1 Prerequisite Trails in The Java™ Tutorial

Trail URL

JDBC http://java.sun.com/docs/books/tutorial/jdbc

Security http://java.sun.com/docs/books/tutorial/security1.2

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/security1.2
http://java.sun.com/webservices/containers/
http://java.sun.com/webservices/downloads/webservicespack.html
http://java.sun.com/webservices/downloads/webservicespack.html
http://java.sun.com/webservices/downloads/webservicestutorial.html
http://java.sun.com/webservices/downloads/webservicestutorial.html
http://java.sun.com/j2ee/1.4/download.html#tutorial

ABOUT THIS TUTORIAL ix
The Java Web Services Tutorial addresses the following technology areas, which
are not covered in the J2EE Tutorial:

• The Java Architecture for XML Binding (JAXB)

• XML and Web Services Security (XWS Security)

• XML Digital Signature

• The Java WSDP Registry Server

• The Registry Browser

Java WSDP technology areas that are not covered in the Java Web Services Tuto-
rial are addressed in the J2EE Tutorial, which opens with three introductory
chapters that you should read before proceeding to any specific technology area.
Java WSDP users should first look at Chapters 2 and 3, which cover XML basics
and getting started with Web applications.

When you have digested the basics, you can delve into one or more of the fol-
lowing main XML technology areas:

• The Java XML chapters cover the technologies for developing applications
that process XML documents and implement Web services components:

• The Java API for XML Processing (JAXP)

• The Java API for XML-based RPC (JAX-RPC)

• SOAP with Attachments API for Java (SAAJ)

• The Java API for XML Registries (JAXR)

• The Web-tier technology chapters cover the components used in develop-
ing the presentation layer of a J2EE or stand-alone Web application:

• Java Servlet

• JavaServer Pages (JSP)

• JavaServer Pages Standard Tag Library (JSTL)

• JavaServer Faces

• Web application internationalization and localization

• The platform services chapters cover system services used by all J2EE
component technologies. Java WSDP users should look at the Web-tier
section of the Security chapter.

After you have become familiar with some of the technology areas, you are
ready to tackle a case study, which ties together several of the technologies dis-
cussed in the tutorial. The Coffee Break Application (Chapter 35) describes an
application that uses the Web application and Web services APIs.

x ABOUT THIS TUTORIAL
Finally, the following appendixes contain auxiliary information helpful to the
Web Services application developer:

• Java encoding schemes (Appendix A)

• XML Standards (Appendix B)

• HTTP overview (Appendix C)

Building the Examples
Most of the examples in the Java WSDP are distributed with a build file for Ant,
a portable build tool contained in the Java WSDP. For information about Ant,
visit http://ant.apache.org/. Directions for building the examples are pro-
vided in each chapter. In order to run the Ant scripts, you must configure your
environment and properties files as follows:

• Add the bin directory of your J2SE SDK installation to the front of your
path.

• Add <JWSDP_HOME>/jwsdp-shared/bin to the front of your path so the
Java WSDPscripts that are shared by multiple components override other
installations.

• Add <JWSDP_HOME>/apache-ant/bin to the front of your path so that the
Java WSDP Ant script overrides other installations.

Further Information
This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

For reference information on the tools distributed with the Application Server,
see the man pages at http://docs.sun.com/db/doc/817-6092.

See the Sun Java™ System Application Server Platform Edition 8 Developer’s
Guide at http://docs.sun.com/db/doc/817-6087 for information about
developer features of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8 Administra-
tion Guide at http://docs.sun.com/db/doc/817-6088 for information about
administering the Application Server.

http://ant.apache.org/
http://docs.sun.com/db/doc/817-6088
http://docs.sun.com/db/doc/817-6092
http://docs.sun.com/db/doc/817-6087

ABOUT THIS TUTORIAL xi
For information about the PointBase database included with the Application
Server, see the PointBase Web site at www.pointbase.com.

How to Print This Tutorial
To print this tutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader is installed on your system.

2. Open the PDF version of this book.

3. Click the printer icon in Adobe Acrobat Reader.

Typographical Conventions
Table 2 lists the typographical conventions used in this tutorial.

Feedback
Please send comments, broken link reports, errors, suggestions, and questions
about this tutorial to the tutorial team at users@jwsdp.dev.java.net.

Table 2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

monospace
URLs, code examples, file names, path names, tool names,
application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variables in code, file paths, and URLs

<italic monospace> User-selected file path components

mailto:users@jwsdp.dev.java.net
http://www.pointbase.com
JavaWSTutorial.pdf

xii ABOUT THIS TUTORIAL

1

1

Binding XML Schema
to Java Classes with

JAXB

THE Java™ Architecture for XML Binding (JAXB) provides a fast and conve-
nient way to bind XML schemas to Java representations, making it easy for Java
developers to incorporate XML data and processing functions in Java applica-
tions. As part of this process, JAXB provides methods for unmarshalling XML
instance documents into Java content trees, and then marshalling Java content
trees back into XML instance documents.

What this all means is that you can leverage the flexibility of platform-neutral
XML data in Java applications without having to deal with or even know XML
programming techniques. Moreover, you can take advantage of XML strengths
without having to rely on heavyweight, complex XML processing models like
SAX or DOM. JAXB hides the details and gets rid of the extraneous relation-
ships in SAX and DOM—generated JAXB classes describe only the relation-
ships actually defined in the source schemas. The result is highly portable XML
data joined with highly portable Java code that can be used to create flexible,
lightweight applications and Web services.

This chapter describes the JAXB architecture, functions, and core concepts. You
should read this chapter before proceeding to Chapter 2, which provides sample
code and step-by-step procedures for using JAXB.

2 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
JAXB Architecture
This section describes the components and interactions in the JAXB processing
model. After providing a general overview, this section goes into more detail
about core JAXB features. The topics in this section include:

• Architectural Overview

• The JAXB Binding Process

• JAXB Binding Framework

• More About javax.xml.bind

• More About Unmarshalling

• More About Marshalling

• More About Validation

Architectural Overview
Figure 1–1 shows the components that make up a JAXB implementation.

Figure 1–1 JAXB Architectural Overview

ARCHITECTURAL OVERVIEW 3
As shown in Figure 1–1, a JAXB implementation comprises the following eight
core components.

Table 1–1 Core Components in a JAXB Implementation

Component Description

XML Schema An XML schema uses XML syntax to describe the relationships among
elements, attributes and entities in an XML document. The purpose of an
XML schema is to define a class of XML documents that must adhere to
a particular set of structural rules and data constraints. For example, you
may want to define separate schemas for chapter-oriented books, for an
online purchase order system, or for a personnel database. In the context
of JAXB, an XML document containing data that is constrained by an
XML schema is referred to as a document instance, and the structure and
data within a document instance is referred to as a content tree.

Binding
Customizations

By default, the JAXB binding compiler binds Java classes and packages
to a source XML schema based on rules defined in Section 5, “Binding
XML Schema to Java Representations,” in the JAXB Specification. In
most cases, the default binding rules are sufficient to generate a robust
set of schema-derived classes from a wide range of schemas. There may
be times, however, when the default binding rules are not sufficient for
your needs. JAXB supports customizations and overrides to the default
binding rules by means of binding customizations made either inline as
annotations in a source schema, or as statements in an external binding
customization file that is passed to the JAXB binding compiler. Note that
custom JAXB binding customizations also allow you to customize your
generated JAXB classes beyond the XML-specific constraints in an
XML schema to include Java-specific refinements such as class and
package name mappings.

Binding
Compiler

The JAXB binding compiler is the core of the JAXB processing model.
Its function is to transform, or bind, a source XML schema to a set of
JAXB content classes in the Java programming language. Basically, you
run the JAXB binding compiler using an XML schema (optionally with
custom binding declarations) as input, and the binding compiler gener-
ates Java classes that map to constraints in the source XML schema.

Implementation
of
javax.xml.bind

The JAXB binding framework implementation is a runtime API that pro-
vides interfaces for unmarshalling, marshalling, and validating XML
content in a Java application. The binding framework comprises inter-
faces in the javax.xml.bind package.

Schema-Derived
Classes

These are the schema-derived classes generated by the binding JAXB
compiler. The specific classes will vary depending on the input schema.

4 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Java
Application

In the context of JAXB, a Java application is a client application that uses
the JAXB binding framework to unmarshal XML data, validate and mod-
ify Java content objects, and marshal Java content back to XML data.
Typically, the JAXB binding framework is wrapped in a larger Java
application that may provide UI features, XML transformation functions,
data processing, or whatever else is desired.

XML Input
Documents

XML content that is unmarshalled as input to the JAXB binding frame-
work -- that is, an XML instance document, from which a Java represen-
tation in the form of a content tree is generated. In practice, the term
“document” may not have the conventional meaning, as an XML
instance document does not have to be a completely formed, selfstanding
document file; it can instead take the form of streams of data passed
between applications, or of sets of database fields, or of XML infosets, in
which blocks of information contain just enough information to describe
where they fit in the schema structure.

In JAXB, the unmarshalling process supports validation of the XML
input document against the constraints defined in the source schema.
This validation process is optional, however, and there may be cases in
which you know by other means that an input document is valid and so
you may choose for performance reasons to skip validation during
unmarshalling. In any case, validation before (by means of a third-party
application) or during unmarshalling is important, because it assures that
an XML document generated during marshalling will also be valid with
respect to the source schema. Validation is discussed more later in this
chapter.

XML Output
Documents

XML content that is marshalled out to an XML document. In JAXB,
marshalling involves parsing an XML content object tree and writing out
an XML document that is an accurate representation of the original XML
document, and is valid with respect the source schema. JAXB can mar-
shal XML data to XML documents, SAX content handlers, and DOM
nodes.

Table 1–1 Core Components in a JAXB Implementation (Continued)

Component Description

THE JAXB BINDING PROCESS 5
The JAXB Binding Process
Figure 1–2 shows what occurs during the JAXB binding process.

Figure 1–2 Steps in the JAXB Binding Process

The general steps in the JAXB data binding process are:

1. Generate classes. An XML schema is used as input to the JAXB binding
compiler to generate JAXB classes based on that schema.

2. Compile classes. All of the generated classes, source files, and application
code must be compiled.

3. Unmarshal. XML documents written according to the constraints in the
source schema are unmarshalled by the JAXB binding framework. Note
that JAXB also supports unmarshalling XML data from sources other than
files/documents, such as DOM nodes, string buffers, SAX Sources, and so
forth.

4. Generate content tree. The unmarshalling process generates a content tree
of data objects instantiated from the generated JAXB classes; this content
tree represents the structure and content of the source XML documents.

6 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
5. Validate (optional). The unmarshalling process optionally involves valida-
tion of the source XML documents before generating the content tree.
Note that if you modify the content tree in Step 6, below, you can also use
the JAXB Validate operation to validate the changes before marshalling the
content back to an XML document.

6. Process content. The client application can modify the XML data repre-
sented by the Java content tree by means of interfaces generated by the
binding compiler.

7. Marshal. The processed content tree is marshalled out to one or more XML
output documents. The content may be validated before marshalling.

To summarize, using JAXB involves two discrete sets of activities:

• Generate and compile JAXB classes from a source schema, and build an
application that implements these classes

• Run the application to unmarshal, process, validate, and marshal XML
content through the JAXB binding framework

These two steps are usually performed at separate times in two distinct phases.
Typically, for example, there is an application development phase in which
JAXB classes are generated and compiled, and a binding implementation is built,
followed by a deployment phase in which the generated JAXB classes are used
to process XML content in an ongoing “live” production setting.

Note: Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of con-
tent trees by direct invocation of the appropriate factory methods. Once created, a
content tree may be revalidated, either in whole or in part, at any time. See Create
Marshal Example (page 47) for an example of using the ObjectFactory class to
directly add content to a content tree.

JAXB Binding Framework
The JAXB binding framework is implemented in three Java packages:

• The javax.xml.bind package defines abstract classes and interfaces that
are used directly with content classes.

The javax.xml.bind package defines the Unmarshaller, Validator,
and Marshaller classes, which are auxiliary objects for providing their
respective operations.

MORE ABOUT JAVAX.XML.BIND 7
The JAXBContext class is the entry point for a Java application into the
JAXB framework. A JAXBContext instance manages the binding relation-
ship between XML element names to Java content interfaces for a JAXB
implementation to be used by the unmarshal, marshal and validation oper-
ations.

The javax.xml.bind package also defines a rich hierarchy of validation
event and exception classes for use when marshalling or unmarshalling
errors occur, when constraints are violated, and when other types of errors
are detected.

• The javax.xml.bind.util package contains utility classes that may be
used by client applications to manage marshalling, unmarshalling, and val-
idation events.

• The javax.xml.bind.helper package provides partial default implemen-
tations for some of the javax.xml.bind interfaces. Implementations of
JAXB can extend these classes and implement the abstract methods. These
APIs are not intended to be directly used by applications using JAXB
architecture.

The main package in the JAXB binding framework, javax.bind.xml, is
described in more detail below.

More About javax.xml.bind
The three core functions provided by the primary binding framework package,
javax.xml.bind, are marshalling, unmarshalling, and validation. The main cli-
ent entry point into the binding framework is the JAXBContext class.

JAXBContext provides an abstraction for managing the XML/Java binding infor-
mation necessary to implement the unmarshal, marshal and validate operations.
A client application obtains new instances of this class by means of the
newInstance(contextPath) method; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

The contextPath parameter contains a list of Java package names that contain
schema-derived interfaces—specifically the interfaces generated by the JAXB
binding compiler. The value of this parameter initializes the JAXBContext object
to enable management of the schema-derived interfaces. To this end, the JAXB

8 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
provider implementation must supply an implementation class containing a
method with the following signature:

public static JAXBContext createContext(String contextPath,
ClassLoader classLoader)

 throws JAXBException;

Note: The JAXB provider implementation must generate a jaxb.properties file
in each package containing schema-derived classes. This property file must contain
a property named javax.xml.bind.context.factory whose value is the name of
the class that implements the createContext API.

The class supplied by the provider does not have to be assignable to
javax.xml.bind.JAXBContext, it simply has to provide a class that implements the
createContext API. By allowing for multiple Java packages to be specified, the
JAXBContext instance allows for the management of multiple schemas at one time.

More About Unmarshalling
The Unmarshaller class in the javax.xml.bind package provides the client
application the ability to convert XML data into a tree of Java content objects.
The unmarshal method for a schema (within a namespace) allows for any global
XML element declared in the schema to be unmarshalled as the root of an
instance document. The JAXBContext object allows the merging of global ele-
ments across a set of schemas (listed in the contextPath). Since each schema in
the schema set can belong to distinct namespaces, the unification of schemas to
an unmarshalling context should be namespace-independent. This means that a
client application is able to unmarshal XML documents that are instances of any
of the schemas listed in the contextPath; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

Unmarshaller u = jc.createUnmarshaller();

FooObject fooObj =
(FooObject)u.unmarshal(new File("foo.xml")); // ok

BarObject barObj =
(BarObject)u.unmarshal(new File("bar.xml")); // ok

MORE ABOUT MARSHALLING 9
BazObject bazObj =
(BazObject)u.unmarshal(new File("baz.xml"));
// error, "com.acme.baz" not in contextPath

A client application may also generate Java content trees explicitly rather than
unmarshalling existing XML data. To do so, the application needs to have access
and knowledge about each of the schema-derived ObjectFactory classes that
exist in each of Java packages contained in the contextPath. For each schema-
derived Java class, there will be a static factory method that produces objects of
that type. For example, assume that after compiling a schema, you have a pack-
age com.acme.foo that contains a schema-derived interface named Purchase-

Order. To create objects of that type, the client application would use the
following factory method:

ObjectFactory objFactory = new ObjectFactory();

com.acme.foo.PurchaseOrder po =
objFactory.createPurchaseOrder();

Note: Because multiple ObjectFactory classes are generated when there are mul-
tiple packages on the contextPath, if you have multiple packages on the contex-

tPath, you should use the complete package name when referencing an
ObjectFactory class in one of those packages.

Once the client application has an instance of the schema-derived object, it can
use the mutator methods to set content on it.

Note: The JAXB provider implementation must generate a class in each package
that contains all of the necessary object factory methods for that package named
ObjectFactory as well as the newInstance(javaContentInterface) method.

More About Marshalling
The Marshaller class in the javax.xml.bind package provides the client appli-
cation the ability to convert a Java content tree back into XML data. There is no
difference between marshalling a content tree that is created manually using the
factory methods and marshalling a content tree that is the result an unmarshal
operation. Clients can marshal a Java content tree back to XML data to a

10 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
java.io.OutputStream or a java.io.Writer. The marshalling process can
alternatively produce SAX2 event streams to a registered ContentHandler or
produce a DOM Node object.

A simple example that unmarshals an XML document and then marshals it back
out is a follows:

JAXBContext jc = JAXBContext.newInstance("com.acme.foo");

// unmarshal from foo.xml
Unmarshaller u = jc.createUnmarshaller();
FooObject fooObj =

(FooObject)u.unmarshal(new File("foo.xml"));

// marshal to System.out
Marshaller m = jc.createMarshaller();
m.marshal(fooObj, System.out);

By default, the Marshaller uses UTF-8 encoding when generating XML data to
a java.io.OutputStream or a java.io.Writer. Use the setProperty API to
change the output encoding used during these marshal operations. Client appli-
cations are expected to supply a valid character encoding name as defined in the
W3C XML 1.0 Recommendation (http://www.w3.org/TR/2000/REC-xml-
20001006#charencoding) and supported by your Java Platform.

Client applications are not required to validate the Java content tree prior to call-
ing one of the marshal APIs. There is also no requirement that the Java content
tree be valid with respect to its original schema in order to marshal it back into
XML data. Different JAXB Providers can support marshalling invalid Java con-
tent trees at varying levels, however all JAXB providers must be able to marshal
a valid content tree back to XML data. A JAXB provider must throw a Marshal-

Exception when it is unable to complete the marshal operation due to invalid
content. Some JAXB providers will fully allow marshalling invalid content, oth-
ers will fail on the first validation error.

http://www.w3.org/TR/2000/REC-xml-20001006#charencoding
http://www.w3.org/TR/2000/REC-xml-20001006#charencoding

MORE ABOUT VALIDATION 11
Table 1–2 shows the properties that the Marshaller class supports.

More About Validation
The Validator class in the javax.xml.bind package is responsible for control-
ling the validation of content trees during runtime. When the unmarshalling pro-
cess incorporates validation and it successfully completes without any validation
errors, both the input document and the resulting content tree are guaranteed to
be valid. By contrast, the marshalling process does not actually perform valida-
tion. If only validated content trees are marshalled, this guarantees that generated
XML documents are always valid with respect to the source schema.

Table 1–2 Marshaller Properties

Property Description

jaxb.encoding Value must be a java.lang.String; the output
encoding to use when marshalling the XML data.
The Marshaller will use “UTF-8” by default if
this property is not specified.

jaxb.formatted.output Value must be a java.lang.Boolean; controls
whether or not the Marshaller will format the
resulting XML data with line breaks and indenta-
tion. A true value for this property indicates
human readable indented XML data, while a
false value indicates unformatted XML data. The
Marshaller defaults to false (unformatted) if
this property is not specified.

jaxb.schemaLocation Value must be a java.lang.String; allows the
client application to specify an xsi:schemaLoca-
tion attribute in the generated XML data. The for-
mat of the schemaLocation attribute value is
discussed in an easy to understand, non-normative
form in Section 5.6 of the W3C XML Schema Part
0: Primer and specified in Section 2.6 of the W3C
XML Schema Part 1: Structures.

jaxb.noNamespaceSchemaLocation Value must be a java.lang.String; allows the
client application to specify an xsi:noNamespac-
eSchemaLocation attribute in the generated
XML data.

12 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Some XML parsers, like SAX and DOM, allow schema validation to be dis-
abled, and there are cases in which you may want to disable schema validation to
improve processing speed and/or to process documents containing invalid or
incomplete content. JAXB supports these processing scenarios by means of the
exception handling you choose implement in your JAXB-enabled application. In
general, if a JAXB implementation cannot unambiguously complete unmarshal-
ling or marshalling, it will terminate processing with an exception.

Note: The Validator class is responsible for managing On-Demand Validation
(see below). The Unmarshaller class is responsible for managing Unmarshal-Time
Validation during the unmarshal operations. Although there is no formal method of
enabling validation during the marshal operations, the Marshaller may detect
errors, which will be reported to the ValidationEventHandler registered on it.

A JAXB client can perform two types of validation:

• Unmarshal-Time validation enables a client application to receive informa-
tion about validation errors and warnings detected while unmarshalling
XML data into a Java content tree, and is completely orthogonal to the
other types of validation. To enable or disable it, use the Unmar-

shaller.setValidating method. All JAXB Providers are required to
support this operation.

• On-Demand validation enables a client application to receive information
about validation errors and warnings detected in the Java content tree. At
any point, client applications can call the Validator.validate method on
the Java content tree (or any sub-tree of it). All JAXB Providers are
required to support this operation.

If the client application does not set an event handler on its Validator, Unmar-
shaller, or Marshaller prior to calling the validate, unmarshal, or marshal
methods, then a default event handler will receive notification of any errors or
warnings encountered. The default event handler will cause the current operation
to halt after encountering the first error or fatal error (but will attempt to continue
after receiving warnings).

There are three ways to handle events encountered during the unmarshal, vali-
date, and marshal operations:

• Use the default event handler.

XML SCHEMAS 13
The default event handler will be used if you do not specify one via the
setEventHandler APIs on Validator, Unmarshaller, or Marshaller.

• Implement and register a custom event handler.

Client applications that require sophisticated event processing can imple-
ment the ValidationEventHandler interface and register it with the
Unmarshaller and/or Validator.

• Use the ValidationEventCollector utility.

For convenience, a specialized event handler is provided that simply col-
lects any ValidationEvent objects created during the unmarshal, vali-
date, and marshal operations and returns them to the client application as
a java.util.Collection.

Validation events are handled differently, depending on how the client applica-
tion is configured to process them. However, there are certain cases where a
JAXB Provider indicates that it is no longer able to reliably detect and report
errors. In these cases, the JAXB Provider will set the severity of the Valida-

tionEvent to FATAL_ERROR to indicate that the unmarshal, validate, or marshal
operations should be terminated. The default event handler and Validation-

EventCollector utility class must terminate processing after being notified of a
fatal error. Client applications that supply their own ValidationEventHandler

should also terminate processing after being notified of a fatal error. If not, unex-
pected behavior may occur.

XML Schemas
Because XML schemas are such an important component of the JAXB process-
ing model—and because other data binding facilities like JAXP work with DTDs
instead of schemas—it is useful to review here some basics about what XML
schemas are and how they work.

XML Schemas are a powerful way to describe allowable elements, attributes,
entities, and relationships in an XML document. A more robust alternative to
DTDs, the purpose of an XML schema is to define classes of XML documents
that must adhere to a particular set of structural and data constraints—that is, you
may want to define separate schemas for chapter-oriented books, for an online
purchase order system, or for a personnel database. In the context of JAXB, an
XML document containing data that is constrained by an XML schema is
referred to as a document instance, and the structure and data within a document
instance is referred to as a content tree.

14 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Note: In practice, the term “document” is not always accurate, as an XML instance
document does not have to be a completely formed, selfstanding document file; it
can instead take the form of streams of data passed between applications, or of sets
of database fields, or of XML infosets in which blocks of information contain just
enough information to describe where they fit in the schema structure.

The following sample code is taken from the W3C's Schema Part 0: Primer
(http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/), and illustrates
an XML document, po.xml, for a simple purchase order.

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">

<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country="US">

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment>

<items>
<item partNum="872-AA">

<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum="926-AA">

<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>

</purchaseOrder>

The root element, purchaseOrder, contains the child elements shipTo, billTo,
comment, and items. All of these child elements except comment contain other

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

XML SCHEMAS 15
child elements. The leaves of the tree are the child elements like name, street,
city, and state, which do not contain any further child elements. Elements that
contain other child elements or can accept attributes are referred to as complex
types. Elements that contain only PCDATA and no child elements are referred to as
simple types.

The complex types and some of the simple types in po.xml are defined in the
purchase order schema below. Again, this example schema, po.xsd, is derived
from the W3C's Schema Part 0: Primer (http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/).

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN"

fixed="US"/>
</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="productName"
type="xsd:string"/>

<xsd:element name="quantity">
<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

16 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
<xsd:maxExclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU"

use="required"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

In this example, the schema comprises, similar to a DTD, a main or root schema
element and several child elements, element, complexType, and simpleType.
Unlike a DTD, this schema also specifies as attributes data types like decimal,
date, fixed, and string. The schema also specifies constraints like pattern

value, minOccurs, and positiveInteger, among others. In DTDs, you can
only specify data types for textual data (PCDATA and CDATA); XML schema sup-
ports more complex textual and numeric data types and constraints, all of which
have direct analogs in the Java language.

Note that every element in this schema has the prefix xsd:, which is associated
with the W3C XML Schema namespace. To this end, the namespace declaration,
xmlns:xsd="http://www.w3.org/2001/XMLSchema", is declared as an
attribute to the schema element.

Namespace support is another important feature of XML schemas because it
provides a means to differentiate between elements written against different
schemas or used for varying purposes, but which may happen to have the same
name as other elements in a document. For example, suppose you declared two
namespaces in your schema, one for foo and another for bar. Two XML docu-
ments are combined, one from a billing database and another from an shipping
database, each of which was written against a different schema. By specifying

REPRESENTING XML CONTENT 17
namespaces in your schema, you can differentiate between, say, foo:address
and bar:address.

Representing XML Content
This section describes how JAXB represents XML content as Java objects. Spe-
cifically, the topics in this section are as follows:

• Binding XML Names to Java Identifiers

• Java Representation of XML Schema

Binding XML Names to Java Identifiers
XML schema languages use XML names—strings that match the Name produc-
tion defined in XML 1.0 (Second Edition) (http://www.w3.org/XML/) to label
schema components. This set of strings is much larger than the set of valid Java
class, method, and constant identifiers. To resolve this discrepancy, JAXB uses
several name-mapping algorithms.

The JAXB name-mapping algorithm maps XML names to Java identifiers in a
way that adheres to standard Java API design guidelines, generates identifiers
that retain obvious connections to the corresponding schema, and is unlikely to
result in many collisions.

Refer to Chapter 2 for information about changing default XML name map-
pings. See Appendix C in the JAXB Specification for complete details about the
JAXB naming algorithm.

Java Representation of XML Schema
JAXB supports the grouping of generated classes and interfaces in Java pack-
ages. A package comprises:

• A name, which is either derived directly from the XML namespace URI,
or specified by a binding customization of the XML namespace URI

• A set of Java content interfaces representing the content models declared
within the schema

• A Set of Java element interfaces representing element declarations occur-
ring within the schema

http://java.sun.com/xml/downloads/jaxb.html
http://www.w3.org/XML/

18 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
• An ObjectFactory class containing:

• An instance factory method for each Java content interface and Java ele-
ment interface within the package; for example, given a Java content
interface named Foo, the derived factory method would be:

public Foo createFoo() throws JAXBException;

• Dynamic instance factory allocator; creates an instance of the specified
Java content interface; for example:

public Object newInstance(Class javaContentInterface)
 throws JAXBException;

• getProperty and setProperty APIs that allow the manipulation of
provider-specified properties

• Set of typesafe enum classes

• Package javadoc

Binding XML Schemas
This section describes the default XML-to-Java bindings used by JAXB. All of
these bindings can be overridden on global or case-by-case levels by means of a
custom binding declaration. The topics in this section are as follows:

• Simple Type Definitions

• Default Data Type Bindings

• Default Binding Rules Summary

See the JAXB Specification for complete information about the default JAXB
bindings.

Simple Type Definitions
A schema component using a simple type definition typically binds to a Java
property. Since there are different kinds of such schema components, the follow-
ing Java property attributes (common to the schema components) include:

• Base type

• Collection type, if any

http://java.sun.com/xml/downloads/jaxb.html

DEFAULT DATA TYPE BINDINGS 19
• Predicate

The rest of the Java property attributes are specified in the schema component
using the simple type definition.

Default Data Type Bindings
The Java language provides a richer set of data type than XML schema. Table 1–
3 lists the mapping of XML data types to Java data types in JAXB.

Table 1–3 JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime java.util.Calendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

20 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Default Binding Rules Summary
The JAXB binding model follows the default binding rules summarized below:

• Bind the following to Java package:

• XML Namespace URI

• Bind the following XML Schema components to Java content interface:

• Named complex type

• Anonymous inlined type definition of an element declaration

• Bind to typesafe enum class:

• A named simple type definition with a basetype that derives from
“xsd:NCName” and has enumeration facets.

• Bind the following XML Schema components to a Java Element interface:

• A global element declaration to a Element interface.

• Local element declaration that can be inserted into a general content list.

• Bind to Java property:

• Attribute use

• Particle with a term that is an element reference or local element decla-
ration.

• Bind model group with a repeating occurrence and complex type defini-
tions with mixed {content type} to:

• A general content property; a List content-property that holds Java
instances representing element information items and character data
items.

xsd:time java.util.Calendar

xsd:date java.util.Calendar

xsd:anySimpleType java.lang.String

Table 1–3 JAXB Mapping of XML Schema Built-in Data Types (Continued)

XML Schema Type Java Data Type

CUSTOMIZING JAXB BINDINGS 21
Customizing JAXB Bindings
The default JAXB bindings can be overridden at a global scope or on a case-by-
case basis as needed by using custom binding declarations. As described previ-
ously, JAXB uses default binding rules that can be customized by means of bind-
ing declarations made in either of two ways:

• As inline annotations in a source XML schema

• As declarations in an external binding customizations file that is passed to
the JAXB binding compiler

Custom JAXB binding declarations also allow you to customize your generated
JAXB classes beyond the XML-specific constraints in an XML schema to
include Java-specific refinements such as class and package name mappings.

You do not need to provide a binding instruction for every declaration in your
schema to generate Java classes. For example, the binding compiler uses a gen-
eral name-mapping algorithm to bind XML names to names that are acceptable
in the Java programming language. However, if you want to use a different nam-
ing scheme for your classes, you can specify custom binding declarations to
make the binding compiler generate different names. There are many other cus-
tomizations you can make with the binding declaration, including:

• Name the package, derived classes, and methods

• Assign types to the methods within the derived classes

• Choose which elements to bind to classes

• Decide how to bind each attribute and element declaration to a property in
the appropriate content class

• Choose the type of each attribute-value or content specification

Note: Relying on the default JAXB binding behavior rather than requiring a binding
declaration for each XML Schema component bound to a Java representation makes
it easier to keep pace with changes in the source schema. In most cases, the default
rules are robust enough that a usable binding can be produced with no custom bind-
ing declaration at all.

Code examples showing how to customize JAXB bindings are provided in Chap-
ter 2.

22 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Scope
When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.

Table 1–4 lists the four scopes for custom bindings.

Scope Inheritance
The different scopes form a taxonomy. The taxonomy defines both the inherit-
ance and overriding semantics of customization values. A customization value
defined in one scope is inherited for use in a binding declaration covered by
another scope as shown by the following inheritance hierarchy:

• A schema element in schema scope inherits a customization value defined
in global scope.

• A schema element in definition scope inherits a customization value
defined in schema or global scope.

• A schema element in component scope inherits a customization value
defined in definition, schema or global scope.

Table 1–4 Custom Binding Scopes

Scope Description

Global A customization value defined in <globalBindings> has global scope. A
global scope covers all the schema elements in the source schema and (recur-
sively) any schemas that are included or imported by the source schema.

Schema A customization value defined in <schemaBindings> has schema scope. A
schema scope covers all the schema elements in the target name space of a
schema.

Definition A customization value in binding declarations of a type definition and global
declaration has definition scope. A definition scope covers all schema elements
that reference the type definition or the global declaration.

Component A customization value in a binding declaration has component scope if the
customization value applies only to the schema element that was annotated
with the binding declaration.

WHAT IS NOT SUPPORTED 23
Similarly, a customization value defined in one scope can override a customiza-
tion value inherited from another scope as shown below:

• Value in schema scope overrides a value inherited from global scope.

• Value in definition scope overrides a value inherited from schema scope or
global scope.

• Value in component scope overrides a value inherited from definition,
schema or global scope.

What is Not Supported
See Section E.2, “Not Required XML Schema Concepts,” in the JAXB Specifica-
tion for the latest information about unsupported or non-required schema con-
cepts.

JAXB APIs and Tools
The JAXB APIs and tools are shipped in the jaxb subdirectory of the Java
WSDP. This directory contains sample applications, a JAXB binding compiler
(xjc), and implementations of the runtime binding framework APIs contained in
the javax.xml.bind package. For instructions on using the JAXB, see Chapter
2.

http://java.sun.com/xml/downloads/jaxb.html

24 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

2

25
Using JAXB

THIS chapter provides instructions for using several of the sample Java appli-
cations that were included in the Java WSDP. These examples demonstrate and
build upon key JAXB features and concepts. It is recommended that you follow
these procedures in the order presented.

After reading this chapter, you should feel comfortable enough with JAXB that
you can:

• Generate JAXB Java classes from an XML schema

• Use schema-derived JAXB classes to unmarshal and marshal XML con-
tent in a Java application

• Create a Java content tree from scratch using schema-derived JAXB
classes

• Validate XML content during unmarshalling and at runtime

• Customize JAXB schema-to-Java bindings

The primary goals of the basic examples are to highlight the core set of JAXB
functions using default settings and bindings. After familiarizing yourself with
these core features and functions, you may wish to continue with Customizing
JAXB Bindings (page 54) for instructions on using five additional examples that
demonstrate how to modify the default JAXB bindings.

Note: The Purchase Order schema, po.xsd, and the Purchase Order XML file,
po.xml, used in these samples are derived from the W3C XML Schema Part 0:
Primer (http://www.w3.org/TR/xmlschema-0/), edited by David C. Fallside.

http://www.w3.org/TR/xmlschema-0/

26 USING JAXB
General Usage Instructions
This section provides general usage instructions for the examples used in this
chapter, including how to build and run the applications using the Ant build tool,
and provides details about the default schema-to-JAXB bindings used in these
examples.

Description
This chapter describes ten examples; the basic examples (Unmarshal Read,
Modify Marshal, Create Marshal, Unmarshal Validate, Validate-On-Demand)
demonstrate basic JAXB concepts like ummarshalling, marshalling, and validat-
ing XML content, while the customize examples (Customize Inline, Datatype
Converter, External Customize, Fix Collides, Bind Choice) demonstrate various
ways of customizing the binding of XML schemas to Java objects. Each of the
examples in this chapter is based on a Purchase Order scenario. With the excep-
tion of the Bind Choice and the Fix Collides examples, each uses an XML docu-
ment, po.xml, written against an XML schema, po.xsd.

Table 2–1 Sample JAXB Application Descriptions

Example Name Description

Unmarshal Read Exam-
ple

Demonstrates how to unmarshal an XML document into a Java
content tree and access the data contained within it.

Modify Marshal Exam-
ple

Demonstrates how to modify a Java content tree.

Create Marshal Example
Demonstrates how to use the ObjectFactory class to create a
Java content tree from scratch and then marshal it to XML data.

Unmarshal Validate
Example

Demonstrates how to enable validation during unmarshalling.

Validate-On-Demand
Example

Demonstrates how to validate a Java content tree at runtime.

Customize Inline Exam-
ple

Demonstrates how to customize the default JAXB bindings by
means of inline annotations in an XML schema.

DESCRIPTION 27
Note: These examples are all located in the $JWSDP_HOME/jaxb/samples direc-
tory.

Each example directory contains several base files:

• po.xsd is the XML schema you will use as input to the JAXB binding
compiler, and from which schema-derived JAXB Java classes will be gen-
erated. For the Customize Inline and Datatype Converter examples, this
file contains inline binding customizations. Note that the Bind Choice and
Fix Collides examples use example.xsd rather than po.xsd.

• po.xml is the Purchase Order XML file containing sample XML content,
and is the file you will unmarshal into a Java content tree in each example.
This file is almost exactly the same in each example, with minor content

Datatype Converter
Example

Similar to the Customize Inline example, this example illustrates
alternate, more terse bindings of XML simpleType definitions to
Java datatypes.

External Customize
Example

Illustrates how to use an external binding declarations file to pass
binding customizations for a read-only schema to the JAXB bind-
ing compiler.

Fix Collides Example

Illustrates how to use customizations to resolve name conflicts
reported by the JAXB binding compiler. It is recommended that
you first run ant fail in the application directory to see the
errors reported by the JAXB binding compiler, and then look at
binding.xjb to see how the errors were resolved. Running ant
alone uses the binding customizations to resolve the name con-
flicts while compiling the schema.

Bind Choice Example Illustrates how to bind a choice model group to a Java interface.

Table 2–1 Sample JAXB Application Descriptions

Example Name Description

28 USING JAXB
differences to highlight different JAXB concepts. Note that the Bind
Choice and Fix Collides examples use example.xml rather than po.xml.

• Main.java is the main Java class for each example.

• build.xml is an Ant project file provided for your convenience. Use Ant
to generate, compile, and run the schema-derived JAXB classes automati-
cally. The build.xml file varies across the examples.

• MyDatatypeConverter.java in the inline-customize example is a Java
class used to provide custom datatype conversions.

• binding.xjb in the External Customize, Bind Choice, and Fix Collides
examples is an external binding declarations file that is passed to the JAXB
binding compiler to customize the default JAXB bindings.

• example.xsd in the Fix Collides example is a short schema file that con-
tains deliberate naming conflicts, to show how to resolve such conflicts
with custom JAXB bindings.

Using the Examples
As with all applications that implement schema-derived JAXB classes, as
described above, there are two distinct phases in using JAXB:

1. Generating and compiling JAXB Java classes from an XML source
schema

2. Unmarshalling, validating, processing, and marshalling XML content

In the case of these examples, you perform these steps by using Ant with the
build.xml project file included in each example directory.

Configuring and Running the Samples
The build.xml file included in each example directory is an Ant project file that,
when run, automatically performs the following steps:

1. Updates your CLASSPATH to include the necessary schema-derived JAXB
classes.

2. Runs the JAXB binding compiler to generate JAXB Java classes from the
XML source schema, po.xsd, and puts the classes in a package named
primer.po.

3. Generates API documentation from the schema-derived JAXB classes
using the Javadoc tool.

CONFIGURING AND RUNNING THE SAMPLES 29
4. Compiles the schema-derived JAXB classes.

5. Runs the Main class for the example.

Solaris/Linux
1. Set the following environment variables:

export JAVA_HOME=<your J2SE installation directory>

export JWSDP_HOME=<your JWSDP installation directory>

2. Change to the desired example directory.

For example, to run the Unmarshal Read example:

cd <JWSDP_HOME>/jaxb/samples/unmarshal-read

(<JWSDP_HOME> is the directory where you installed the Java WSDP bun-
dle.)

3. Run ant:

$JWSDP_HOME/apache-ant/bin/ant -emacs

4. Repeat these steps for each example.

Windows NT/2000/XP
1. Set the following environment variables:

set JAVA_HOME=<your J2SE installation directory>

set JWSDP_HOME=<your JWSDP installation directory>

2. Change to the desired example directory.

For example, to run the Unmarshal Read example:

cd <JWSDP_HOME>\jaxb\samples\unmarshal-read

(<JWSDP_HOME> is the directory where you installed the Java WSDP bun-
dle.)

3. Run ant:

%JWSDP_HOME%\apache-ant\bin\ant -emacs

4. Repeat these steps for each example.

The schema-derived JAXB classes and how they are bound to the source schema
is described in About the Schema-to-Java Bindings (page 32). The methods used
for building and processing the Java content tree are described in Basic
Examples (page 43).

30 USING JAXB
JAXB Compiler Options
The JAXB schema binding compiler is located in the <JWSDP_HOME>/jaxb/bin

directory. There are two scripts in this directory: xjc.sh (Solaris/Linux) and
xjc.bat (Windows).

Both xjc.sh and xjc.bat take the same command-line options. You can display
quick usage instructions by invoking the scripts without any options, or with the
-help switch. The syntax is as follows:

xjc [-options ...] <schema>

The xjc command-line options are listed in Table 2–2.

Table 2–2 xjc Command-Line Options

Option or
Argument Description

<schema> One or more schema files to compile.

-nv

Do not perform strict validation of the input schema(s). By default,
xjc performs strict validation of the source schema before process-
ing. Note that this does not mean the binding compiler will not per-
form any validation; it simply means that it will perform less-strict
validation.

-extension

By default, xjc strictly enforces the rules outlined in the Compati-
bility chapter of the JAXB Specification. Specifically, Appendix E.2
defines a set of W3C XML Schema features that are not completely
supported by JAXB v1.0. In some cases, you may be able to use
these extensions with the -extension switch. In the default (strict)
mode, you are also limited to using only the binding customizations
defined in the specification. By using the -extension switch, you
can enable the JAXB Vendor Extensions.

http://java.sun.com/xml/downloads/jaxb.html

JAXB COMPILER OPTIONS 31
-b <file>

Specify one or more external binding files to process (each binding
file must have it's own -b switch). The syntax of the external bind-
ing files is extremely flexible. You may have a single binding file
that contains customizations for multiple schemas, or you can break
the customizations into multiple bindings files; for example:

xjc schema1.xsd schema2.xsd schema3.xsd -b
bindings123.xjb
xjc schema1.xsd schema2.xsd schema3.xsd -b
bindings1.xjb -b bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the com-
mand line does not matter.

-d <dir>
By default, xjc will generate Java content classes in the current
directory. Use this option to specify an alternate output directory.
The directory must already exist; xjc will not create it for you.

-p <pkg>

Specifies the target package for schema-derived classes. This option
overrides any binding customization for package name as well as
the default package name algorithm defined in the JAXB Specifica-
tion.

-host <proxyHost> Set http.proxyHost to <proxyHost>.

-port <proxyPort> Set http.proxyPort to <proxyPort>.

-classpath <arg>
Specify where to find client application class files used by the
<jxb:javaType> and <xjc:superClass> customizations.

-catalog <file>
Specify catalog files to resolve external entity references.Supports
TR9401, XCatalog, and OASIS XML Catalog format.

-readOnly
Generated source files will be marked read-only. By default, xjc
does not write-protect the schema-derived source files it generates.

-use-runtime <pkg>

Suppress the generation of the impl.runtime package and refer to
another existing runtime in the specified package. This option is
useful when you are compiling multiple independent schemas.
Because the generated impl.runtime packages are identical, except
for their package declarations, you can reduce the size of your gen-
erated codebase by telling the compiler to reuse an existing
impl.runtime package.

Table 2–2 xjc Command-Line Options (Continued)

Option or
Argument Description

32 USING JAXB
The command invoked by the xjc.sh and xjc.bat scripts is equivalent to the
Java command:

$JAVA_HOME/bin/java -jar $JAXB_HOME/lib/jaxb-xjc.jar

About the Schema-to-Java Bindings
When you run the JAXB binding compiler against the po.xsd XML schema
used in the basic examples (Unmarshal Read, Modify Marshal, Create Marshal,
Unmarshal Validate, Validate-On-Demand), the JAXB binding compiler gener-
ates a Java package named primer.po containing eleven classes, making a total
of twelve classes in each of the basic examples:

-xmlschema
Treat input schemas as W3C XML Schema (default). If you do not
specify this switch, your input schemas will be treated as W3C
XML Schema.

-relaxng
Treat input schemas as RELAX NG (experimental, unsupported).
Support for RELAX NG schemas is provided as a JAXB Vendor
Extension.

-dtd
Treat input schemas as XML DTD (experimental, unsupported).
Support for RELAX NG schemas is provided as a JAXB Vendor
Extension.

-help Display this help message.

Table 2–3 Schema-Derived JAXB Classes in the Basic Examples

Class Description

primer/po/
Comment.java

Public interface extending javax.xml.bind.Element;
binds to the global schema element named comment. Note
that JAXB generates element interfaces for all global element
declarations.

primer/po/
Items.java

Public interface that binds to the schema complexType
named Items.

Table 2–2 xjc Command-Line Options (Continued)

Option or
Argument Description

ABOUT THE SCHEMA-TO-JAVA BINDINGS 33
Note: You should never directly use the generated implementation classes—that is,
*Impl.java in the <packagename>/impl directory. These classes are not directly
referenceable because the class names in this directory are not standardized by the
JAXB specification. The ObjectFactory method is the only portable means to cre-
ate an instance of a schema-derived interface. There is also an ObjectFac-

tory.newInstance(Class JAXBinterface) method that enables you to create
instances of interfaces.

primer/po/
ObjectFactory.java

Public class extending com.sun.xml.bind.DefaultJAXB-
ContextImpl; used to create instances of specified inter-
faces. For example, the ObjectFactory createComment()
method instantiates a Comment object.

primer/po/
PurchaseOrder.java

Public interface extending javax.xml.bind.Element, and
PurchaseOrderType; binds to the global schema element
named PurchaseOrder.

primer/po/
PurchaseOrderType.java

Public interface that binds to the schema complexType
named PurchaseOrderType.

primer/po/
USAddress.java

Public interface that binds to the schema complexType
named USAddress.

primer/po/impl/
CommentImpl.java

Implementation of Comment.java.

primer/po/impl/
ItemsImpl.java

Implementation of Items.java

primer/po/impl/
PurchaseOrderImpl.java

Implementation of PurchaseOrder.java

primer/po/impl/
PurchaseOrderType-
Impl.java

Implementation of PurchaseOrderType.java

primer/po/impl/
USAddressImpl.java

Implementation of USAddress.java

Table 2–3 Schema-Derived JAXB Classes in the Basic Examples (Continued)

Class Description

34 USING JAXB

ava
These classes and their specific bindings to the source XML schema for the basic
examples are described below.

Table 2–4 Schema-to-Java Bindings for the Basic Examples

XML Schema JAXB Binding

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/> PurchaseOrder.j

<xsd:element name="comment" type="xsd:string"/> Comment.java

<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

PurchaseOrder-
Type.java

<xsd:complexType name="USAddress">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAddress.java

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="item" minOccurs="1" maxOc-

curs="unbounded">

Items.java

SCHEMA-DERIVED JAXB CLASSES 35
Schema-Derived JAXB Classes
The code for the individual classes generated by the JAXB binding compiler for
the basic examples is listed below, followed by brief explanations of its func-
tions. The classes listed here are:

• Comment.java

• Items.java

• ObjectFactory.java

• PurchaseOrder.java

• PurchaseOrderType.java

• USAddress.java

<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxExclusive value="100"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>

<xsd:attribute name="partNum" type="SKU" use="required"/>
</xsd:complexType>

Items.ItemType

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Table 2–4 Schema-to-Java Bindings for the Basic Examples (Continued)

XML Schema JAXB Binding

36 USING JAXB
Comment.java
In Comment.java:

• The Comment.java class is part of the primer.po package.

• Comment is a public interface that extends javax.xml.bind.Element.

• Content in instantiations of this class bind to the XML schema element named
comment.

• The getValue() and setValue() methods are used to get and set strings repre-
senting XML comment elements in the Java content tree.

The Comment.java code looks like this:

package primer.po;

public interface Comment
 extends javax.xml.bind.Element
{

 String getValue();
 void setValue(String value);
}

Items.java
In Items.java, below:

• The Items.java class is part of the primer.po package.

• The class provides public interfaces for Items and ItemType.

• Content in instantiations of this class bind to the XML ComplexTypes Items and
its child element ItemType.

• Item provides the getItem() method.

• ItemType provides methods for:
• getPartNum();

• setPartNum(String value);

• getComment();

• setComment(java.lang.String value);

• getUSPrice();

• setUSPrice(java.math.BigDecimal value);

• getProductName();

• setProductName(String value);

• getShipDate();

SCHEMA-DERIVED JAXB CLASSES 37
• setShipDate(java.util.Calendar value);

• getQuantity();

• setQuantity(java.math.BigInteger value);

The Items.java code looks like this:

package primer.po;

public interface Items {
 java.util.List getItem();

 public interface ItemType {
 String getPartNum();
 void setPartNum(String value);
 java.lang.String getComment();
 void setComment(java.lang.String value);
 java.math.BigDecimal getUSPrice();
 void setUSPrice(java.math.BigDecimal value);
 String getProductName();
 void setProductName(String value);
 java.util.Calendar getShipDate();
 void setShipDate(java.util.Calendar value);
 java.math.BigInteger getQuantity();
 void setQuantity(java.math.BigInteger value);
 }
}

ObjectFactory.java
In ObjectFactory.java, below:

• The ObjectFactory class is part of the primer.po package.

• ObjectFactory provides factory methods for instantiating Java interfaces
representing XML content in the Java content tree.

• Method names are generated by concatenating:

• The string constant create

• If the Java content interface is nested within another interface, then the
concatenation of all outer Java class names

• The name of the Java content interface

• JAXB implementation-specific code was removed in this example to
make it easier to read.

For example, in this case, for the Java interface primer.po.Items.ItemType,
ObjectFactory creates the method createItemsItemType().

38 USING JAXB
The ObjectFactory.java code looks like this:

package primer.po;

public class ObjectFactory
 extends com.sun.xml.bind.DefaultJAXBContextImpl {

 /**
 * Create a new ObjectFactory that can be used to create
 * new instances of schema derived classes for package:
 * primer.po
 */
 public ObjectFactory() {
 super(new primer.po.ObjectFactory.GrammarInfoImpl());
 }

 /**
 * Create an instance of the specified Java content
 * interface.
 */
 public Object newInstance(Class javaContentInterface)
 throws javax.xml.bind.JAXBException
 {
 return super.newInstance(javaContentInterface);
 }

 /**
 * Get the specified property. This method can only be
 * used to get provider specific properties.
 * Attempting to get an undefined property will result
 * in a PropertyException being thrown.
 */
 public Object getProperty(String name)
 throws javax.xml.bind.PropertyException
 {
 return super.getProperty(name);
 }

 /**
 * Set the specified property. This method can only be
 * used to set provider specific properties.
 * Attempting to set an undefined property will result
 * in a PropertyException being thrown.
 */
 public void setProperty(String name, Object value)
 throws javax.xml.bind.PropertyException
 {
 super.setProperty(name, value);

SCHEMA-DERIVED JAXB CLASSES 39
 }

 /**
 * Create an instance of PurchaseOrder
 */
 public primer.po.PurchaseOrder createPurchaseOrder()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.PurchaseOrder)
 newInstance((primer.po.PurchaseOrder.class)));
 }

 /**
 * Create an instance of ItemsItemType
 */
 public primer.po.Items.ItemType createItemsItemType()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Items.ItemType)
 newInstance((primer.po.Items.ItemType.class)));
 }

 /**
 * Create an instance of USAddress
 */
 public primer.po.USAddress createUSAddress()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.USAddress)
 newInstance((primer.po.USAddress.class)));
 }

 /**
 * Create an instance of Comment
 */
 public primer.po.Comment createComment()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Comment)
 newInstance((primer.po.Comment.class)));
 }

 /**
 * Create an instance of Comment
 */
 public primer.po.Comment createComment(String value)
 throws javax.xml.bind.JAXBException
 {

40 USING JAXB
 return new primer.po.impl.CommentImpl(value);
 }

 /**
 * Create an instance of Items
 */
 public primer.po.Items createItems()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Items)
 newInstance((primer.po.Items.class)));
 }

 /**
 * Create an instance of PurchaseOrderType
 */
 public primer.po.PurchaseOrderType
createPurchaseOrderType()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.PurchaseOrderType)
 newInstance((primer.po.PurchaseOrderType.class)));
 }
}

PurchaseOrder.java
In PurchaseOrder.java, below:

• The PurchaseOrder class is part of the primer.po package.

• PurchaseOrder is a public interface that extends javax.xml.bind.Ele-

ment and primer.po.PurchaseOrderType.

• Content in instantiations of this class bind to the XML schema element
named purchaseOrder.

The PurchaseOrder.java code looks like this:

package primer.po;

public interface PurchaseOrder
extends javax.xml.bind.Element, primer.po.PurchaseOrderType{
}

SCHEMA-DERIVED JAXB CLASSES 41
PurchaseOrderType.java
In PurchaseOrderType.java, below:

• The PurchaseOrderType class is part of the primer.po package.

• Content in instantiations of this class bind to the XML schema child ele-
ment named PurchaseOrderType.

• PurchaseOrderType is a public interface that provides the following
methods:

• getItems();

• setItems(primer.po.Items value);

• getOrderDate();

• setOrderDate(java.util.Calendar value);

• getComment();

• setComment(java.lang.String value);

• getBillTo();

• setBillTo(primer.po.USAddress value);

• getShipTo();

• setShipTo(primer.po.USAddress value);

The PurchaseOrderType.java code looks like this:

package primer.po;

public interface PurchaseOrderType {
 primer.po.Items getItems();
 void setItems(primer.po.Items value);
 java.util.Calendar getOrderDate();
 void setOrderDate(java.util.Calendar value);
 java.lang.String getComment();
 void setComment(java.lang.String value);
 primer.po.USAddress getBillTo();
 void setBillTo(primer.po.USAddress value);
 primer.po.USAddress getShipTo();
 void setShipTo(primer.po.USAddress value);
}

42 USING JAXB
USAddress.java
In USAddress.java, below:

• The USAddress class is part of the primer.po package.

• Content in instantiations of this class bind to the XML schema element
named USAddress.

• USAddress is a public interface that provides the following methods:

• getState();

• setState(String value);

• getZip();

• setZip(java.math.BigDecimal value);

• getCountry();

• setCountry(String value);

• getCity();

• setCity(String value);

• getStreet();

• setStreet(String value);

• getName();

• setName(String value);

The USAddress.java code looks like this:

package primer.po;

public interface USAddress {
 String getState();
 void setState(String value);
 java.math.BigDecimal getZip();
 void setZip(java.math.BigDecimal value);
 String getCountry();
 void setCountry(String value);
 String getCity();
 void setCity(String value);
 String getStreet();
 void setStreet(String value);
 String getName();
 void setName(String value);
}

BASIC EXAMPLES 43
Basic Examples
This section describes five basic examples (Unmarshal Read, Modify Marshal,
Create Marshal, Unmarshal Validate, Validate-On-Demand) that demonstrate
how to:

• Unmarshal an XML document into a Java content tree and access the data
contained within it

• Modify a Java content tree

• Use the ObjectFactory class to create a Java content tree from scratch and
then marshal it to XML data

• Perform validation during unmarshalling

• Validate a Java content tree at runtime

Unmarshal Read Example
The purpose of the Unmarshal Read example is to demonstrate how to unmar-
shal an XML document into a Java content tree and access the data contained
within it.

1. The <JWSDP_HOME>/jaxb/samples/unmarshal-read/

Main.java class declares imports for four standard Java classes plus three
JAXB binding framework classes and the primer.po package:

import java.io.FileInputStream

import java.io.IOException

import java.util.Iterator

import java.util.List

import javax.xml.bind.JAXBContext

import javax.xml.bind.JAXBException

import javax.xml.bind.Unmarshaller

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created.

Unmarshaller u = jc.createUnmarshaller();

4. po.xml is unmarshalled into a Java content tree comprising objects gener-
ated by the JAXB binding compiler into the primer.po package.

44 USING JAXB
PurchaseOrder po =

(PurchaseOrder)u.unmarshal(

new FileInputStream("po.xml"));

5. A simple string is printed to system.out to provide a heading for the pur-
chase order invoice.

System.out.println("Ship the following items to: ");

6. get and display methods are used to parse XML content in preparation
for output.

USAddress address = po.getShipTo();

displayAddress(address);

Items items = po.getItems();

displayItems(items);

7. Basic error handling is implemented.

} catch(JAXBException je) {

je.printStackTrace();

} catch(IOException ioe) {

ioe.printStackTrace();

8. The USAddress branch of the Java tree is walked, and address information
is printed to system.out.

public static void displayAddress(USAddress address) {

// display the address

System.out.println("\t" + address.getName());

System.out.println("\t" + address.getStreet());

System.out.println("\t" + address.getCity() +

", " + address.getState() +

" " + address.getZip());

System.out.println("\t" + address.getCountry() + "\n");

}

9. The Items list branch is walked, and item information is printed to sys-

tem.out.

public static void displayItems(Items items) {

// the items object contains a List of

//primer.po.ItemType objects

List itemTypeList = items.getItem();

10.Walking of the Items branch is iterated until all items have been printed.

for(Iterator iter = itemTypeList.iterator();

iter.hasNext();) {

MODIFY MARSHAL EXAMPLE 45
Items.ItemType item = (Items.ItemType)iter.next();

System.out.println("\t" + item.getQuantity() +

" copies of \"" + item.getProductName() +

"\"");

}

Sample Output
Running java Main for this example produces the following output:

Ship the following items to:
 Alice Smith
 123 Maple Street
 Cambridge, MA 12345
 US

 5 copies of "Nosferatu - Special Edition (1929)"
 3 copies of "The Mummy (1959)"
 3 copies of "Godzilla and Mothra: Battle for Earth/Godzilla
 vs. King Ghidora"

Modify Marshal Example
The purpose of the Modify Marshal example is to demonstrate how to modify a
Java content tree.

1. The <JWSDP_HOME>/jaxb/samples/modify-marshal/

Main.java class declares imports for three standard Java classes plus four
JAXB binding framework classes and primer.po package:

import java.io.FileInputStream;

import java.io.IOException;

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created, and po.xml is unmarshalled.

46 USING JAXB
Unmarshaller u = jc.createUnmarshaller();

PurchaseOrder po =

(PurchaseOrder)u.unmarshal(

new FileInputStream("po.xml"));

4. set methods are used to modify information in the address branch of the
content tree.

USAddress address = po.getBillTo();

address.setName("John Bob");

address.setStreet("242 Main Street");

address.setCity("Beverly Hills");

address.setState("CA");

address.setZip(new BigDecimal("90210"));

5. A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty API is used to specify output
encoding; in this case formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();

m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

Boolean.TRUE);

m.marshal(po, System.out);

Sample Output
Running java Main for this example produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="1999-10-20-05:00">
<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</shipTo>
<billTo country="US">
<name>John Bob</name>
<street>242 Main Street</street>
<city>Beverly Hills</city>
<state>CA</state>
<zip>90210</zip>
</billTo>
<items>
<item partNum="242-NO">

CREATE MARSHAL EXAMPLE 47
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity>
<USPrice>19.99</USPrice>
</item>
<item partNum="242-MU">
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>
</item>
<item partNum="242-GZ">
<productName>
Godzilla and Mothra: Battle for Earth/Godzilla vs. King Ghidora
</productName>
<quantity>3</quantity>
<USPrice>27.95</USPrice>
</item>
</items>
</purchaseOrder>

Create Marshal Example
The Create Marshal example demonstrates how to use the ObjectFactory class
to create a Java content tree from scratch and then marshal it to XML data.

1. The <JWSDP_HOME>/jaxb/samples/create-marshal/

Main.java class declares imports for four standard Java classes plus three
JAXB binding framework classes and the primer.po package:

import java.math.BigDecimal;

import java.math.BigInteger;

import java.util.Calendar;

import java.util.List;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. The ObjectFactory class is used to instantiate a new empty PurchaseOr-

der object.

// creating the ObjectFactory

ObjectFactory objFactory = new ObjectFactory();

48 USING JAXB
// create an empty PurchaseOrder

PurchaseOrder po = objFactory.createPurchaseOrder();

4. Per the constraints in the po.xsd schema, the PurchaseOrder object
requires a value for the orderDate attribute. To satisfy this constraint, the
orderDate is set using the standard Calendar.getInstance() method
from java.util.Calendar.

po.setOrderDate(Calendar.getInstance());

5. The ObjectFactory is used to instantiate new empty USAddress objects,
and the required attributes are set.

USAddress shipTo = createUSAddress("Alice Smith",

"123 Maple Street",

"Cambridge",

"MA",

"12345");

po.setShipTo(shipTo);

USAddress billTo = createUSAddress("Robert Smith",

"8 Oak Avenue",

"Cambridge",

"MA",

"12345");

po.setBillTo(billTo);

6. The ObjectFactory class is used to instantiate a new empty Items object.

Items items = objFactory.createItems();

7. A get method is used to get a reference to the ItemType list.

List itemList = items.getItem();

8. ItemType objects are created and added to the Items list.

itemList.add(createItemType(

"Nosferatu - Special Edition (1929)",

new BigInteger("5"),

new BigDecimal("19.99"),

null,

null,

"242-NO"));

itemList.add(createItemType("The Mummy (1959)",

new BigInteger("3"),

new BigDecimal("19.98"),

CREATE MARSHAL EXAMPLE 49
null,

null,

"242-MU"));

itemList.add(createItemType(

"Godzilla and Mothra: Battle for Earth/Godzilla

vs. King Ghidora",

new BigInteger("3"),

new BigDecimal("27.95"),

null,

null,

"242-GZ"));

9. The items object now contains a list of ItemType objects and can be added
to the po object.
po.setItems(items);

10.A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty API is used to specify output
encoding; in this case formatted (human readable) XML format.
Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

Boolean.TRUE);
m.marshal(po, System.out);

11.An empty USAddress object is created and its properties set to comply
with the schema constraints.
public static USAddress createUSAddress(

ObjectFactory objFactory,
String name, String street,
String city,
String state,
String zip)

throws JAXBException {

// create an empty USAddress objects
USAddress address = objFactory.createUSAddress();

// set properties on it
address.setName(name);
address.setStreet(street);
address.setCity(city);
address.setState(state);
address.setZip(new BigDecimal(zip));

// return it

50 USING JAXB
return address;
}

12.Similar to the previous step, an empty ItemType object is created and its
properties set to comply with the schema constraints.

public static Items.ItemType createItemType(ObjectFactory
objFactory,

String productName,
BigInteger quantity,
BigDecimal price,
String comment,
Calendar shipDate,
String partNum)

throws JAXBException {

// create an empty ItemType object
Items.ItemType itemType =
objFactory.createItemsItemType();

// set properties on it
itemType.setProductName(productName);
itemType.setQuantity(quantity);
itemType.setUSPrice(price);
itemType.setComment(comment);
itemType.setShipDate(shipDate);
itemType.setPartNum(partNum);

// return it
return itemType;

}

Sample Output
Running java Main for this example produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="2002-09-24-05:00">
<shipTo>
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</shipTo>
<billTo>
<name>Robert Smith</name>
<street>8 Oak Avenue</street>

UNMARSHAL VALIDATE EXAMPLE 51
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</billTo>
<items>
<item partNum="242-NO">
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity
<USPrice>19.99</USPrice>
</item>
<item partNum="242-MU">
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>
</item>
<item partNum="242-GZ">
<productName>Godzilla and Mothra: Battle for Earth/Godzilla vs.
King Ghidora</productName>
<quantity>3</quantity>
<USPrice>27.95</USPrice>
</item>
</items>
</purchaseOrder>

Unmarshal Validate Example
The Unmarshal Validate example demonstrates how to enable validation during
unmarshalling (Unmarshal-Time Validation). Note that JAXB provides functions
for validation during unmarshalling but not during marshalling. Validation is
explained in more detail in More About Validation (page 11).

1. The <JWSDP_HOME>/jaxb/samples/unmarshal-validate/Main.java

class declares imports for three standard Java classes plus seven JAXB
binding framework classes and the primer.po package:
import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.*;

52 USING JAXB
2. A JAXBContext instance is created for handling classes generated in
primer.po.
JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created.
Unmarshaller u = jc.createUnmarshaller();

4. The default JAXB Unmarshaller ValidationEventHandler is enabled to
send to validation warnings and errors to system.out. The default config-
uration causes the unmarshal operation to fail upon encountering the first
validation error.

u.setValidating(true);

5. An attempt is made to unmarshal po.xml into a Java content tree. For the
purposes of this example, the po.xml contains a deliberate error.

PurchaseOrder po =

(PurchaseOrder)u.unmarshal(

new FileInputStream("po.xml"));

6. The default validation event handler processes a validation error, generates
output to system.out, and then an exception is thrown.

} catch(UnmarshalException ue) {

System.out.println("Caught UnmarshalException");

} catch(JAXBException je) {

je.printStackTrace();

} catch(IOException ioe) {

ioe.printStackTrace();

Sample Output
Running java Main for this example produces the following output:

DefaultValidationEventHandler: [ERROR]: "-1" does not satisfy
the "positiveInteger" type
Caught UnmarshalException

Validate-On-Demand Example
The Validate-On-Demand example demonstrates how to validate a Java content
tree at runtime (On-Demand Validation). At any point, client applications can
call the Validator.validate method on the Java content tree (or any subtree of

VALIDATE-ON-DEMAND EXAMPLE 53
it). All JAXB Providers are required to support this operation. Validation is
explained in more detail in More About Validation (page 11).

1. The <JWSDP_HOME>/jaxb/samples/ondemand-validate/Main.java

class declares imports for five standard Java classes plus nine JAXB Java
classes and the primer.po package:
import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.ValidationException;
import javax.xml.bind.Validator;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.
JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created, and a valid po.xml document is
unmarshalled into a Java content tree. Note that po.xml is valid at this
point; invalid data will be added later in this example.
Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =

(PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"
));

4. A reference is obtained for the first item in the purchase order.
Items items = po.getItems();
List itemTypeList = items.getItem();
Items.ItemType item = (Items.ItemType)itemTypeList.get(0);

5. Next, the item quantity is set to an invalid number. When validation is
enabled later in this example, this invalid quantity will throw an exception.
item.setQuantity(new BigInteger("-5"));

Note: If @enableFailFastCheck was "true" and the optional FailFast validation
method was supported by an implementation, a TypeConstraintException would
be thrown here. Note that the JAXB implementation does not support the FailFast

54 USING JAXB
feature. Refer to the JAXB Specification for more information about FailFast val-
idation.

6. A Validator instance is created, and the content tree is validated. Note
that the Validator class is responsible for managing On-Demand valida-
tion, whereas the Unmarshaller class is responsible for managing Unmar-
shal-Time validation during unmarshal operations.
Validator v = jc.createValidator();
boolean valid = v.validateRoot(po);
System.out.println(valid);

7. The default validation event handler processes a validation error, generates
output to system.out, and then an exception is thrown.

} catch(ValidationException ue) {
System.out.println("Caught ValidationException");

} catch(JAXBException je) {
je.printStackTrace();

} catch(IOException ioe) {
ioe.printStackTrace();

}

Sample Output
Running java Main for this example produces the following output:

DefaultValidationEventHandler: [ERROR]: "-5" does not satisfy
the "positiveInteger" type
Caught ValidationException

Customizing JAXB Bindings
The remainder of this chapter describes several examples that build on the con-
cepts demonstrated in the basic examples.

The goal of this section is to illustrate how to customize JAXB bindings by
means of custom binding declarations made in either of two ways:

• As annotations made inline in an XML schema

• As statements in an external file passed to the JAXB binding compiler

Unlike the examples in Basic Examples (page 43), which focus on the Java code
in the respective Main.java class files, the examples here focus on customiza-

http://java.sun.com/xml/downloads/jaxb.html

WHY CUSTOMIZE? 55
tions made to the XML schema before generating the schema-derived Java bind-
ing classes.

Note: Although JAXB binding customizations must currently be made by hand, it
is envisioned that a tool/wizard may eventually be written by Sun or a third party to
make this process more automatic and easier in general. One of the goals of the
JAXB technology is to standardize the format of binding declarations, thereby mak-
ing it possible to create customization tools and to provide a standard interchange
format between JAXB implementations.

This section just begins to scratch the surface of customizations you can make to
JAXB bindings and validation methods. For more information, please refer to
the JAXB Specification (http://java.sun.com/xml/downloads/jaxb.html).

Why Customize?
In most cases, the default bindings generated by the JAXB binding compiler will
be sufficient to meet your needs. There are cases, however, in which you may
want to modify the default bindings. Some of these include:

• Creating API documentation for the schema-derived JAXB packages,
classes, methods and constants; by adding custom Javadoc tool annota-
tions to your schemas, you can explain concepts, guidelines, and rules spe-
cific to your implementation.

• Providing semantically meaningful customized names for cases that the
default XML name-to-Java identifier mapping cannot handle automati-
cally; for example:

• To resolve name collisions (as described in Appendix C.2.1 of the JAXB
Specification). Note that the JAXB binding compiler detects and reports
all name conflicts.

• To provide names for typesafe enumeration constants that are not legal
Java identifiers; for example, enumeration over integer values.

• To provide better names for the Java representation of unnamed model
groups when they are bound to a Java property or class.

• To provide more meaningful package names than can be derived by
default from the target namespace URI.

• Overriding default bindings; for example:

• Specify that a model group should be bound to a class rather than a list.

http://java.sun.com/xml/downloads/jaxb.html

56 USING JAXB
• Specify that a fixed attribute can be bound to a Java constant.

• Override the specified default binding of XML Schema built-in
datatypes to Java datatypes. In some cases, you might want to introduce
an alternative Java class that can represent additional characteristics of
the built-in XML Schema datatype.

Customization Overview
This section explains some core JAXB customization concepts:

• Inline and External Customizations

• Scope, Inheritance, and Precedence

• Customization Syntax

• Customization Namespace Prefix

Inline and External Customizations
Customizations to the default JAXB bindings are made in the form of binding
declarations passed to the JAXB binding compiler. These binding declarations
can be made in either of two ways:

• As inline annotations in a source XML schema

• As declarations in an external binding customizations file

For some people, using inline customizations is easier because you can see your
customizations in the context of the schema to which they apply. Conversely,
using an external binding customization file enables you to customize JAXB
bindings without having to modify the source schema, and enables you to easily
apply customizations to several schema files at once.

Note: You can combine the two types of customizations—for example, you could
include a reference to an external binding customizations file in an inline annota-
tion—but you cannot declare both an inline and external customization on the same
schema element.

Each of these types of customization is described in more detail below.

CUSTOMIZATION OVERVIEW 57
Inline Customizations
Customizations to JAXB bindings made by means of inline binding declarations
in an XML schema file take the form of <xsd:appinfo> elements embedded in
schema <xsd:annotation> elements (xsd: is the XML schema namespace pre-
fix, as defined in W3C XML Schema Part 1: Structures). The general form for
inline customizations is shown below.

<xs:annotation>
 <xs:appinfo>
 .
 .

binding declarations
 .
 .
 </xs:appinfo>
</xs:annotation>

Customizations are applied at the location at which they are declared in the
schema. For example, a declaration at the level of a particular element would
apply to that element only. Note that the XMLSchema namespace prefix must be
used with the <annotation> and <appinfo> declaration tags. In the example
above, xs: is used as the namespace prefix, so the declarations are tagged
<xs:annotation> and <xs:appinfo>.

External Binding Customization Files
Customizations to JAXB bindings made by means of an external file containing
binding declarations take the general form shown below.

<jxb:bindings schemaLocation = "xs:anyURI">
 <jxb:bindings node = "xs:string">*
 <binding declaration>
 <jxb:bindings>
</jxb:bindings>

• schemaLocation is a URI reference to the remote schema

• node is an XPath 1.0 expression that identifies the schema node within
schemaLocation to which the given binding declaration is associated.

For example, the first schemaLocation/node declaration in a JAXB binding dec-
larations file specifies the schema name and the root schema node:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

58 USING JAXB
A subsequent schemaLocation/node declaration, say for a simpleType element
named ZipCodeType in the above schema, would take the form:

<jxb:bindings node=”//xs:simpleType[@name=’ZipCodeType’]”>

Binding Customization File Format
Binding customization files should be straight ASCII text. The name or exten-
sion does not matter, although a typical extension, used in this chapter, is.xjb.

Passing Customization Files to the JAXB Binding
Compiler
Customization files containing binding declarations are passed to the JAXB
Binding compiler, xjc, using the following syntax:

xjc -b <file> <schema>

where <file> is the name of binding customization file, and <schema> is the
name of the schema(s) you want to pass to the binding compiler.

You can have a single binding file that contains customizations for multiple sche-
mas, or you can break the customizations into multiple bindings files; for exam-
ple:

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings123.xjb

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings1.xjb -b
bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the command line
does not matter, although each binding customization file must be preceded by
its own -b switch on the command line.

For more information about xjc compiler options in general, see JAXB Com-
piler Options (page 30).

CUSTOMIZATION OVERVIEW 59
Restrictions for External Binding Customizations
There are several rules that apply to binding declarations made in an external
binding customization file that do not apply to similar declarations made inline
in a source schema:

• The binding customization file must begin with the jxb:bindings

version attribute, plus attributes for the JAXB and XMLSchema
namespaces:

<jxb:bindings version="1.0"

xmlns:jxb="http://java.sun.com/xml/ns/jaxb"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

• The remote schema to which the binding declaration applies must be iden-
tified explicitly in XPath notation by means of a jxb:bindings declaration
specifying schemaLocation and node attributes:

• schemaLocation – URI reference to the remote schema

• node – XPath 1.0 expression that identifies the schema node within
schemaLocation to which the given binding declaration is associated;
in the case of the initial jxb:bindings declaration in the binding cus-
tomization file, this node is typically "/xs:schema"

For information about XPath syntax, see XML Path Language, James
Clark and Steve DeRose, eds., W3C, 16 November 1999. Available at
http://www.w3.org/TR/1999/REC-xpath-19991116.

• Similarly, individual nodes within the schema to which customizations are
to be applied must be specified using XPath notation; for example:

<jxb:bindings node="//xs:complexType[@name='USAddress']">

In such cases, the customization is applied to the node by the binding
compiler as if the declaration was embedded inline in the node’s
<xs:appinfo> element.

To summarize these rules, the external binding element <jxb:bindings> is only
recognized for processing by a JAXB binding compiler in three cases:

• When its parent is an <xs:appinfo> element

• When it is an ancestor of another <jxb:bindings> element

• When it is root element of a document—an XML document that has a
<jxb:bindings> element as its root is referred to as an external binding
declaration file

http://www.w3.org/TR/1999/REC-xpath-19991116

60 USING JAXB
Scope, Inheritance, and Precedence
Default JAXB bindings can be customized or overridden at four different levels,
or scopes, as described in Table 2–4.

Figure 2–1 illustrates the inheritance and precedence of customization declara-
tions. Specifically, declarations towards the top of the pyramid inherit and super-
sede declarations below them. For example, Component declarations inherit
from and supersede Definition declarations; Definition declarations inherit and
supersede Schema declarations; and Schema declarations inherit and supersede
Global declarations.

Figure 2–1 Customization Scope Inheritance and Precedence

CUSTOMIZATION OVERVIEW 61
Customization Syntax
The syntax for the four types of JAXB binding declarations, as well as the syntax
for the XML-to-Java datatype binding declarations and the customization name-
space prefix are described below.

• Global Binding Declarations
• Schema Binding Declarations
• Class Binding Declarations
• Property Binding Declarations
• <javaType> Binding Declarations
• Typesafe Enumeration Binding Declarations
• <javadoc> Binding Declarations
• Customization Namespace Prefix

Global Binding Declarations
Global scope customizations are declared with <globalBindings>. The syntax
for global scope customizations is as follows:

<globalBindings>
[collectionType = "collectionType"]
[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"]
[generateIsSetMethod= "true" | "false" | "1" | "0"]
[enableFailFastCheck = "true" | "false" | "1" | "0"]
[choiceContentProperty = "true" | "false" | "1" | "0"]
[underscoreBinding = "asWordSeparator" | "asCharInWord"]
[typesafeEnumBase = "typesafeEnumBase"]
[typesafeEnumMemberName = "generateName" | "generateError"]
[enableJavaNamingConventions = "true" | "false" | "1" | "0"]
[bindingStyle = "elementBinding" | "modelGroupBinding"]
[<javaType> ... </javaType>]*

</globalBindings>

• collectionType can be either indexed or any fully qualified class name
that implements java.util.List.

• fixedAttributeAsConstantProperty can be either true, false, 1, or 0.
The default value is false.

• generateIsSetMethod can be either true, false, 1, or 0. The default
value is false.

• enableFailFastCheck can be either true, false, 1, or 0. If enableFail-
FastCheck is true or 1 and the JAXB implementation supports this
optional checking, type constraint checking is performed when setting a

62 USING JAXB
property. The default value is false. Please note that the JAXB implemen-
tation does not support failfast validation.

• choiceContentProperty can be either true, false, 1, or 0. The default
value is false. choiceContentProperty is not relevant when the
bindingStyle is elementBinding. Therefore, if bindingStyle is speci-
fied as elementBinding, then the choiceContentProperty must result in
an invalid customization.

• underscoreBinding can be either asWordSeparator or asCharInWord.
The default value is asWordSeparator.

• enableJavaNamingConventions can be either true, false, 1, or 0. The
default value is true.

• typesafeEnumBase can be a list of QNames, each of which must resolve
to a simple type definition. The default value is xs:NCName. See Typesafe
Enumeration Binding Declarations (page 66) for information about local-
ized mapping of simpleType definitions to Java typesafe enum classes.

• typesafeEnumMemberName can be either generateError or generate-

Name. The default value is generateError.

• bindingStyle can be either elementBinding, or modelGroupBinding.
The default value is elementBinding.

• <javaType> can be zero or more javaType binding declarations. See
<javaType> Binding Declarations (page 64) for more information.

<globalBindings> declarations are only valid in the annotation element of the
top-level schema element. There can only be a single instance of a
<globalBindings> declaration in any given schema or binding declarations file.
If one source schema includes or imports a second source schema, the
<globalBindings> declaration must be declared in the first source schema.

Schema Binding Declarations
Schema scope customizations are declared with <schemaBindings>. The syntax
for schema scope customizations is:

<schemaBindings>
[<package> package </package>]
[<nameXmlTransform> ... </nameXmlTransform>]*

</schemaBindings>

<package [name = "packageName"]
[<javadoc> ... </javadoc>]

</package>

CUSTOMIZATION OVERVIEW 63
<nameXmlTransform>
[<typeName [suffix="suffix"]
 [prefix="prefix"] />]
[<elementName [suffix="suffix"]
 [prefix="prefix"] />]
[<modelGroupName [suffix="suffix"]
 [prefix="prefix"] />]
[<anonymousTypeName [suffix="suffix"]
 [prefix="prefix"] />]

</nameXmlTransform>

As shown above, <schemaBinding> declarations include two subcomponents:

• <package>...</package> specifies the name of the package and, if
desired, the location of the API documentation for the schema-derived
classes.

• <nameXmlTransform>...</nameXmlTransform> specifies customiza-
tions to be applied.

Class Binding Declarations
The <class> binding declaration enables you to customize the binding of a
schema element to a Java content interface or a Java Element interface. <class>
declarations can be used to customize:

• A name for a schema-derived Java interface

• An implementation class for a schema-derived Java content interface.

The syntax for <class> customizations is:

<class [name = "className"]
 [implClass= "implClass"] >
 [<javadoc> ... </javadoc>]
</class>

• name is the name of the derived Java interface. It must be a legal Java inter-
face name and must not contain a package prefix. The package prefix is
inherited from the current value of package.

• implClass is the name of the implementation class for className and
must include the complete package name.

• The <javadoc> element specifies the Javadoc tool annotations for the
schema-derived Java interface. The string entered here must use CDATA or
< to escape embedded HTML tags.

64 USING JAXB
Property Binding Declarations
The <property> binding declaration enables you to customize the binding of an
XML schema element to its Java representation as a property. The scope of cus-
tomization can either be at the definition level or component level depending
upon where the <property> binding declaration is specified.

The syntax for <property> customizations is:

<property[name = "propertyName"]
[collectionType = "propertyCollectionType"]
[fixedAttributeAsConstantProperty = "true" | "false" | "1" | "0"]
[generateIsSetMethod = "true" | "false" | "1" | "0"]
[enableFailFastCheck ="true" | "false" | "1" | "0"]
[<baseType> ... </baseType>]
[<javadoc> ... </javadoc>]

</property>

<baseType>
<javaType> ... </javaType>

</baseType>

• name defines the customization value propertyName; it must be a legal
Java identifier.

• collectionType defines the customization value propertyCollection-

Type, which is the collection type for the property. propertyCollection-
Type if specified, can be either indexed or any fully-qualified class name
that implements java.util.List.

• fixedAttributeAsConstantProperty defines the customization value
fixedAttributeAsConstantProperty. The value can be either true,
false, 1, or 0.

• generateIsSetMethod defines the customization value of generateIs-
SetMethod. The value can be either true, false, 1, or 0.

• enableFailFastCheck defines the customization value enableFail-

FastCheck. The value can be either true, false, 1, or 0. Please note that
the JAXB implementation does not support failfast validation.

• <javadoc> customizes the Javadoc tool annotations for the property’s get-
ter method.

<javaType> Binding Declarations
The <javaType> declaration provides a way to customize the translation of
XML datatypes to and from Java datatypes. XML provides more datatypes than

CUSTOMIZATION OVERVIEW 65
Java, and so the <javaType> declaration lets you specify custom datatype bind-
ings when the default JAXB binding cannot sufficiently represent your schema.

The target Java datatype can be a Java built-in datatype or an application-specific
Java datatype. If an application-specific datatype is used as the target, your
implementation must also provide parse and print methods for unmarshalling
and marshalling data. To this end, the JAXB specification supports a
parseMethod and printMethod:

• The parseMethod is called during unmarshalling to convert a string from
the input document into a value of the target Java datatype.

• The printMethod is called during marshalling to convert a value of the tar-
get type into a lexical representation.

If you prefer to define your own datatype conversions, JAXB defines a static
class, DatatypeConverter, to assist in the parsing and printing of valid lexical
representations of the XML Schema built-in datatypes.

The syntax for the <javaType> customization is:

<javaType name= "javaType"
 [xmlType= "xmlType"]
 [hasNsContext = “true” | “false”]
 [parseMethod= "parseMethod"]
 [printMethod= "printMethod"]>

• name is the Java datatype to which xmlType is to be bound.

• xmlType is the name of the XML Schema datatype to which javaType is
to bound; this attribute is required when the parent of the <javaType> dec-
laration is <globalBindings>.

• parseMethod is the name of the parse method to be called during unmar-
shalling.

• printMethod is the name of the print method to be called during marshal-
ling.

• hasNsContext allows a namespace context to be specified as a second
parameter to a print or a parse method; can be either true, false, 1, or 0.
By default, this attribute is false, and in most cases you will not need to
change it.

66 USING JAXB
The <javaType> declaration can be used in:

• A <globalBindings> declaration

• An annotation element for simple type definitions, GlobalBindings, and
<basetype> declarations.

• A <property> declaration.

See MyDatatypeConverter Class (page 73) for an example of how <javaType>

declarations and the DatatypeConverterInterface interface are implemented
in a custom datatype converter class.

Typesafe Enumeration Binding Declarations
The typesafe enumeration declarations provide a localized way to map XML
simpleType elements to Java typesafe enum classes. There are two types of
typesafe enumeration declarations you can make:

• <typesafeEnumClass> lets you map an entire simpleType class to type-

safe enum classes.

• <typesafeEnumMember> lets you map just selected members of a simple-
Type class to typesafe enum classes.

In both cases, there are two primary limitations on this type of customization:

• Only simpleType definitions with enumeration facets can be customized
using this binding declaration.

• This customization only applies to a single simpleType definition at a
time. To map sets of similar simpleType definitions on a global level, use
the typesafeEnumBase attribute in a <globalBindings> declaration, as
described Global Binding Declarations (page 61).

The syntax for the <typesafeEnumClass> customization is:

<typesafeEnumClass[name = "enumClassName"]
[<typesafeEnumMember> ... </typesafeEnumMember>]*
[<javadoc> enumClassJavadoc </javadoc>]

</typesafeEnumClass>

• name must be a legal Java Identifier, and must not have a package prefix.

• <javadoc> customizes the Javadoc tool annotations for the enumeration
class.

• You can have zero or more <typesafeEnumMember> declarations embed-
ded in a <typesafeEnumClass> declaration.

CUSTOMIZATION OVERVIEW 67
The syntax for the <typesafeEnumMember> customization is:

<typesafeEnumMember name = "enumMemberName">
[value = "enumMemberValue"]

[<javadoc> enumMemberJavadoc </javadoc>]
</typesafeEnumMember>

• name must always be specified and must be a legal Java identifier.

• value must be the enumeration value specified in the source schema.

• <javadoc> customizes the Javadoc tool annotations for the enumeration
constant.

For inline annotations, the <typesafeEnumClass> declaration must be specified
in the annotation element of the <simpleType> element. The <typesafeEnum-

Member> must be specified in the annotation element of the enumeration mem-
ber. This allows the enumeration member to be customized independently from
the enumeration class.

For information about typesafe enum design patterns, see the sample chapter of
Joshua Bloch’s Effective Java Programming on the Java Developer Connection.

<javadoc> Binding Declarations
The <javadoc> declaration lets you add custom Javadoc tool annotations to
schema-derived JAXB packages, classes, interfaces, methods, and fields. Note
that <javadoc> declarations cannot be applied globally—that is, they are only
valid as a sub-elements of other binding customizations.

The syntax for the <javadoc> customization is:

<javadoc>
Contents in Javadoc<\b> format.

</javadoc>

or

<javadoc>
<<![CDATA[
Contents in Javadoc<\b> format
]]>

</javadoc>

68 USING JAXB
Note that documentation strings in <javadoc> declarations applied at the pack-
age level must contain <body> open and close tags; for example:

<jxb:package name="primer.myPo">
<jxb:javadoc><![CDATA[<body>Package level documentation

for generated package primer.myPo.</body>]]>
</jxb:javadoc>
 </jxb:package>

Customization Namespace Prefix
All standard JAXB binding declarations must be preceded by a namespace prefix
that maps to the JAXB namespace URI (http://java.sun.com/xml/ns/jaxb).
For example, in this sample, jxb: is used. To this end, any schema you want to
customize with standard JAXB binding declarations must include the JAXB
namespace declaration and JAXB version number at the top of the schema file.
For example, in po.xsd for the Customize Inline example, the namespace decla-
ration is as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="1.0">

A binding declaration with the jxb namespace prefix would then take the form:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:globalBindings binding declarations />
 <jxb:schemaBindings>
 .
 .

binding declarations
 .
 .
 </jxb:schemaBindings>
 </xsd:appinfo>
</xsd:annotation>

Note that in this example, the globalBindings and schemaBindings declara-
tions are used to specify, respectively, global scope and schema scope customi-
zations. These customization scopes are described in more detail in Scope,
Inheritance, and Precedence (page 60).

CUSTOMIZE INLINE EXAMPLE 69
Customize Inline Example
The Customize Inline example illustrates some basic customizations made by
means of inline annotations to an XML schema named po.xsd. In addition, this
example implements a custom datatype converter class, MyDatatypeCon-

verter.java, which illustrates print and parse methods in the <javaType> cus-
tomization for handling custom datatype conversions.

To summarize this example:

1. po.xsd is an XML schema containing inline binding customizations.

2. MyDatatypeConverter.java is a Java class file that implements print and
parse methods specified by <javaType> customizations in po.xsd.

3. Main.java is the primary class file in the Customize Inline example, which
uses the schema-derived classes generated by the JAXB compiler.

Key customizations in this sample, and the custom MyDatatypeConverter.java

class, are described in more detail below.

Customized Schema
The customized schema used in the Customize Inline example is in the file
<JAVA_HOME>/jaxb/samples/inline-customize/po.xsd. The customizations
are in the <xsd:annotation> tags.

Global Binding Declarations
The code below shows the globalBindings declarations in po.xsd:

<jxb:globalBindings
 fixedAttributeAsConstantProperty="true"
 collectionType="java.util.Vector"
 typesafeEnumBase="xsd:NCName"
 choiceContentProperty="false"
 typesafeEnumMemberName="generateError"
 bindingStyle="elementBinding"
 enableFailFastCheck="false"
 generateIsSetMethod="false"
 underscoreBinding="asCharInWord"/>

In this example, all values are set to the defaults except for collectionType.

70 USING JAXB
• Setting collectionType to java.util.Vector specifies that all lists in
the generated implementation classes should be represented internally as
vectors. Note that the class name you specify for collectionType must
implement java.util.List and be callable by newInstance.

• Setting fixedAttributeAsConstantProperty to true indicates that all
fixed attributes should be bound to Java constants. By default, fixed
attributes are just mapped to either simple or collection property, which
ever is more appropriate.

• Please note that the JAXB implementation does not support the enable-

FailFastCheck attribute.

• If typesafeEnumBase to xsd:string it would be a global way to specify
that all simple type definitions deriving directly or indirectly from
xsd:string and having enumeration facets should be bound by default to
a typesafe enum. If typesafeEnumBase is set to an empty string, "", no
simple type definitions would ever be bound to a typesafe enum class by
default. The value of typesafeEnumBase can be any atomic simple type
definition except xsd:boolean and both binary types.

Note: Using typesafe enums enables you to map schema enumeration values to Java
constants, which in turn makes it possible to do compares on Java constants rather
than string values.

Schema Binding Declarations
The following code shows the schema binding declarations in po.xsd:

<jxb:schemaBindings>
 <jxb:package name="primer.myPo">
 <jxb:javadoc>
 <![CDATA[<body> Package level documentation for
generated package primer.myPo.</body>]]>
 </jxb:javadoc>
 </jxb:package>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
 </jxb:schemaBindings>

• <jxb:package name="primer.myPo"/> specifies the primer.myPo as the
package in which the schema-derived classes should be generated.

CUSTOMIZE INLINE EXAMPLE 71
• <jxb:nameXmlTransform> specifies that all generated Java element inter-
faces should have Element appended to the generated names by default.
For example, when the JAXB compiler is run against this schema, the ele-
ment interfaces CommentElement and PurchaseOrderElement will be
generated. By contrast, without this customization, the default binding
would instead generate Comment and PurchaseOrder.

This customization is useful if a schema uses the same name in different
symbol spaces; for example, in global element and type definitions. In
such cases, this customization enables you to resolve the collision with
one declaration rather than having to individually resolve each collision
with a separate binding declaration.

• <jxb:javadoc> specifies customized Javadoc tool annotations for the
primer.myPo package. Note that, unlike the <javadoc> declarations at the
class level, below, the opening and closing <body> tags must be included
when the <javadoc> declaration is made at the package level.

Class Binding Declarations
The following code shows the class binding declarations in po.xsd:

<xsd:complexType name="PurchaseOrderType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:class name="POType">
 <jxb:javadoc>
 A Purchase Order consists of
addresses and items.
 </jxb:javadoc>
 </jxb:class>
 </xsd:appinfo>
 </xsd:annotation>
 .
 .
 .
</xsd:complexType>

The Javadoc tool annotations for the schema-derived POType class will contain
the description "A Purchase Order consists of addresses

and items." The < is used to escape the opening bracket on the HTML
tags.

72 USING JAXB
Note: When a <class> customization is specified in the appinfo element of a com-

plexType definition, as it is here, the complexType definition is bound to a Java con-
tent interface.

Later in po.xsd, another <javadoc> customization is declared at this class level,
but this time the HTML string is escaped with CDATA:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:class>
 <jxb:javadoc>
 <![CDATA[First line of documentation for a
USAddress.]]>
 </jxb:javadoc>
 </jxb:class>
 </xsd:appinfo>
 </xsd:annotation>

Note: If you want to include HTML markup tags in a <jaxb:javadoc> customiza-
tion, you must enclose the data within a CDATA section or escape all left angle brack-
ets using <. See XML 1.0 2nd Edition for more information (http://
www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect).

Property Binding Declarations
Of particular interest here is the generateIsSetMethod customization, which
causes two additional property methods, isSetQuantity and unsetQuantity, to
be generated. These methods enable a client application to distinguish between
schema default values and values occurring explicitly within an instance docu-
ment.

For example, in po.xsd:

<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity" default="10">
 <xsd:annotation>

http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect
http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect

CUSTOMIZE INLINE EXAMPLE 73
 <xsd:appinfo>
 <jxb:property generateIsSetMethod="true"/>
 </xsd:appinfo>
 </xsd:annotation>
 .
 .
 .
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The @generateIsSetMethod applies to the quantity element, which is bound
to a property within the Items.ItemType interface. unsetQuantity and
isSetQuantity methods are generated in the Items.ItemType interface.

MyDatatypeConverter Class
The <JWSDP_HOME>/jaxb/samples/inline-customize

/MyDatatypeConverter class, shown below, provides a way to customize the
translation of XML datatypes to and from Java datatypes by means of a
<javaType> customization.

package primer;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;

public class MyDatatypeConverter {

public static short parseIntegerToShort(String value) {
BigInteger result =

DatatypeConverter.parseInteger(value);
return (short)(result.intValue());

}

public static String printShortToInteger(short value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);

}

public static int parseIntegerToInt(String value) {
BigInteger result =
DatatypeConverter.parseInteger(value);

return result.intValue();
}

74 USING JAXB
public static String printIntToInteger(int value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);

}
};

The following code shows how the MyDatatypeConverter class is referenced in
a <javaType> declaration in po.xsd:

<xsd:simpleType name="ZipCodeType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:javaType name="int"
parseMethod="primer.MyDatatypeConverter.parseIntegerToInt"
printMethod="primer.MyDatatypeConverter.printIntTo Integer" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

In this example, the jxb:javaType binding declaration overrides the default
JAXB binding of this type to java.math.BigInteger. For the purposes of the
Customize Inline example, the restrictions on ZipCodeType—specifically that
legal US ZIP codes are limited to five digits—make it so all valid values can eas-
ily fit within the Java primitive datatype int. Note also that, because <jxb:jav-

aType name="int"/> is declared within ZipCodeType, the customization
applies to all JAXB properties that reference this simpleType definition, includ-
ing the getZip and setZip methods.

Datatype Converter Example
The Datatype Converter example is very similar to the Customize Inline exam-
ple. As with the Customize Inline example, the customizations in the Datatype
Converter example are made by using inline binding declarations in the XML
schema for the application, po.xsd.

The global, schema, and package, and most of the class customizations for the
Customize Inline and Datatype Converter examples are identical. Where the
Datatype Converter example differs from the Customize Inline example is in the

EXTERNAL CUSTOMIZE EXAMPLE 75
parseMethod and printMethod used for converting XML data to the Java int

datatype.

Specifically, rather than using methods in the custom MyDataTypeConverter

class to perform these datatype conversions, the Datatype Converter example
uses the built-in methods provided by javax.xml.bind.DatatypeConverter:

<xsd:simpleType name="ZipCodeType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:javaType name="int"
 parseMethod="javax.xml.bind.DatatypeConverter.parseInt"
 printMethod="javax.xml.bind.DatatypeConverter.printInt"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

External Customize Example
The External Customize example is identical to the Datatype Converter example,
except that the binding declarations in the External Customize example are made
by means of an external binding declarations file rather than inline in the source
XML schema.

The binding customization file used in the External Customize example is
<JWSDP_HOME>/jaxb/samples/external-customize/binding.xjb.

This section compares the customization declarations in bindings.xjb with the
analogous declarations used in the XML schema, po.xsd, in the Datatype Con-
verter example. The two sets of declarations achieve precisely the same results.

• JAXB Version, Namespace, and Schema Attributes

• Global and Schema Binding Declarations

• Class Declarations

76 USING JAXB
JAXB Version, Namespace, and Schema
Attributes
All JAXB binding declarations files must begin with:

• JAXB version number

• Namespace declarations

• Schema name and node

The version, namespace, and schema declarations in bindings.xjb are as fol-
lows:

<jxb:bindings version="1.0"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <jxb:bindings schemaLocation="po.xsd" node="/xs:schema">
 .

<binding_declarations>
 .
 </jxb:bindings>
<!-- schemaLocation="po.xsd" node="/xs:schema" -->
</jxb:bindings>

JAXB Version Number
An XML file with a root element of <jaxb:bindings> is considered an external
binding file. The root element must specify the JAXB version attribute with
which its binding declarations must comply; specifically the root <jxb:bind-
ings> element must contain either a <jxb:version> declaration or a version

attribute. By contrast, when making binding declarations inline, the JAXB ver-
sion number is made as attribute of the <xsd:schema> declaration:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="1.0">

Namespace Declarations
As shown in JAXB Version, Namespace, and Schema Attributes (page 76), the
namespace declarations in the external binding declarations file include both the
JAXB namespace and the XMLSchema namespace. Note that the prefixes used
in this example could in fact be anything you want; the important thing is to con-
sistently use whatever prefixes you define here in subsequent declarations in the
file.

EXTERNAL CUSTOMIZE EXAMPLE 77
Schema Name and Schema Node
The fourth line of the code in JAXB Version, Namespace, and Schema
Attributes (page 76) specifies the name of the schema to which this binding dec-
larations file will apply, and the schema node at which the customizations will
first take effect. Subsequent binding declarations in this file will reference spe-
cific nodes within the schema, but this first declaration should encompass the
schema as a whole; for example, in bindings.xjb:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

Global and Schema Binding Declarations
The global schema binding declarations in bindings.xjb are the same as those
in po.xsd for the Datatype Converter example. The only difference is that
because the declarations in po.xsd are made inline, you need to embed them in
<xs:appinfo> elements, which are in turn embedded in <xs:annotation> ele-
ments. Embedding declarations in this way is unnecessary in the external bind-
ings file.

<jxb:globalBindings
 fixedAttributeAsConstantProperty="true"
 collectionType="java.util.Vector"
 typesafeEnumBase="xs:NCName"
 choiceContentProperty="false"
 typesafeEnumMemberName="generateError"
 bindingStyle="elementBinding"
 enableFailFastCheck="false"
 generateIsSetMethod="false"
 underscoreBinding="asCharInWord"/>
<jxb:schemaBindings>
 <jxb:package name="primer.myPo">
 <jxb:javadoc><![CDATA[<body>Package level
documentation for generated package primer.myPo.</body>]]>
 </jxb:javadoc>
 </jxb:package>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
</jxb:schemaBindings>

78 USING JAXB
By comparison, the syntax used in po.xsd for the Datatype Converter example
is:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:globalBindings
 .

<binding_declarations>
 .
 <jxb:schemaBindings>
 .

<binding_declarations>
 .
 </jxb:schemaBindings>
 </xsd:appinfo>
</xsd:annotation>

Class Declarations
The class-level binding declarations in bindings.xjb differ from the analogous
declarations in po.xsd for the Datatype Converter example in two ways:

• As with all other binding declarations in bindings.xjb, you do not need to
embed your customizations in schema <xsd:appinfo> elements.

• You must specify the schema node to which the customization will be
applied. The general syntax for this type of declaration is:

<jxb:bindings node="//<node_type>[@name='<node_name>']">

For example, the following code shows binding declarations for the complex-

Type named USAddress.

<jxb:bindings node="//xs:complexType[@name='USAddress']">
 <jxb:class>
 <jxb:javadoc>
<![CDATA[First line of documentation for a USAddress.]]>
 </jxb:javadoc>
 </jxb:class>

 <jxb:bindings node=".//xs:element[@name='name']">
 <jxb:property name="toName"/>
 </jxb:bindings>

 <jxb:bindings node=".//xs:element[@name='zip']">

FIX COLLIDES EXAMPLE 79
 <jxb:property name="zipCode"/>
 </jxb:bindings>
</jxb:bindings>
<!-- node="//xs:complexType[@name='USAddress']" -->

Note in this example that USAddress is the parent of the child elements name and
zip, and therefore a </jxb:bindings> tag encloses the bindings declarations
for the child elements as well as the class-level javadoc declaration.

Fix Collides Example
The Fix Collides example illustrates how to resolve name conflicts—that is,
places in which a declaration in a source schema uses the same name as another
declaration in that schema (namespace collisions), or places in which a declara-
tion uses a name that does translate by default to a legal Java name.

Note: Many name collisions can occur because XSD Part 1 introduces six unique
symbol spaces based on type, while Java only has only one. There is a symbols
space for type definitions, elements, attributes, and group definitions. As a result, a
valid XML schema can use the exact same name for both a type definition and a glo-
bal element declaration.

For the purposes of this example, it is recommended that you run the ant fail

command in the <JWSDP_HOME>/jaxb/samples/fix-collides directory to dis-
play the error output generated by the xjc compiler. The XML schema for the
Fix Collides, example.xsd, contains deliberate name conflicts.

Like the External Customize example, the Fix Collides example uses an external
binding declarations file, binding.xjb, to define the JAXB binding customiza-
tions.

• The example.xsd Schema

• Looking at the Conflicts

• Output From ant fail

• The binding.xjb Declarations File

• Resolving the Conflicts in example.xsd

80 USING JAXB
The example.xsd Schema
The XML schema, <JWSDP_HOME>/jaxb/samples/fix-collides
/example.xsd, used in the Fix Collides example illustrates common name con-
flicts encountered when attempting to bind XML names to unique Java identifi-
ers in a Java package. The schema declarations that result in name conflicts are
highlighted in bold below.

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:jxb=”http://java.sun.com/xml/ns/jaxb”
 jxb:version=”1.0”>

 <xs:element name=”Class” type=”xs:int”/>
 <xs:element name=”FooBar” type=”FooBar”/>
 <xs:complexType name=”FooBar”>
 <xs:sequence>
 <xs:element name=”foo” type=”xs:int”/>
 <xs:element ref=”Class”/>

 <xs:element name=”zip” type=”xs:integer”/>
 </xs:sequence>

<xs:attribute name=”zip” type=”xs:string”/>
 </xs:complexType>
</xs:schema>

Looking at the Conflicts
The first conflict in example.xsd is the declaration of the element name Class:

<xs:element name=”Class” type=”xs:int”/>

Class is a reserved word in Java, and while it is legal in the XML schema lan-
guage, it cannot be used as a name for a schema-derived class generated by
JAXB.

When this schema is run against the JAXB binding compiler with the ant fail

command, the following error message is returned:

[xjc] [ERROR] Attempt to create a property having the same
name as the reserved word "Class".
[xjc] line 6 of example.xsd

FIX COLLIDES EXAMPLE 81
The second conflict is that there are an element and a complexType that both use
the name Foobar:

<xs:element name=”FooBar” type=”FooBar”/>
<xs:complexType name=”FooBar”>

In this case, the error messages returned are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.
[xjc] line 22 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.
[xjc] line 20 of example.xsd

The third conflict is that there are an element and an attribute both named
zip:

<xs:element name=”zip” type=”xs:integer”/>
<xs:attribute name=”zip” type=”xs:string”/>

The error messages returned here are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.
[xjc] line 22 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.
[xjc] line 20 of example.xsd

Output From ant fail
Here is the complete output returned by running ant fail in the
<JWSDP_HOME>/jaxb/samples/fix-collides directory:

[echo] Compiling the schema w/o external binding file
(name collision errors expected)...
[xjc] Compiling file:/C:/Sun/jwsdp-1.5/jaxb/samples/
fix-collides/example.xsd
[xjc] [ERROR] Attempt to create a property having the same
name as the reserved word "Class".
[xjc] line 14 of example.xsd
[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.
[xjc] line 17 of example.xsd

82 USING JAXB
[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.
[xjc] line 15 of example.xsd
[xjc] [ERROR] A class/interface with the same name
"generated.FooBar" is already in use.
[xjc] line 9 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is
generated from here.
[xjc] line 18 of example.xsd

The binding.xjb Declarations File
The <JWSDP_HOME>/jaxb/samples/fix-collides/binding.xjb binding dec-
larations file resolves the conflicts in examples.xsd by means of several custom-
izations.

Resolving the Conflicts in example.xsd
The first conflict in example.xsd, using the Java reserved name Class for an
element name, is resolved in binding.xjb with the <class> and <property>

declarations on the schema element node Class:

<jxb:bindings node="//xs:element[@name='Class']">
 <jxb:class name="Clazz"/>
 <jxb:property name="Clazz"/>
</jxb:bindings>

The second conflict in example.xsd, the namespace collision between the ele-

ment FooBar and the complexType FooBar, is resolved in binding.xjb by
using a <nameXmlTransform> declaration at the <schemaBindings> level to
append the suffix Element to all element definitions.

This customization handles the case where there are many name conflicts due to
systemic collisions between two symbol spaces, usually named type definitions
and global element declarations. By appending a suffix or prefix to every Java
identifier representing a specific XML symbol space, this single customization
resolves all name collisions:

<jxb:schemaBindings>
 <jxb:package name="example"/>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
</jxb:schemaBindings>

BIND CHOICE EXAMPLE 83
The third conflict in example.xsd, the namespace collision between the ele-

ment zip and the attribute zip, is resolved in binding.xjb by mapping the
attribute zip to property named zipAttribute:

<jxb:bindings node=".//xs:attribute[@name='zip']">
 <jxb:property name="zipAttribute"/>
</jxb:bindings>

Running ant in the <JWSDP_HOME>/jaxb/samples/fix-collides directory will
pass the customizations in binding.xjb to the xjc binding compiler, which will
then resolve the conflicts in example.xsd in the schema-derived Java classes.

Bind Choice Example
The Bind Choice example shows how to bind a choice model group to a Java
interface. Like the External Customize and Fix Collides examples, the Bind
Choice example uses an external binding declarations file, binding.xjb, to
define the JAXB binding customization.

The schema declarations in <JWSDP_HOME>/jaxb/samples/bind-choice

/example.xsd that will be globally changed are highlighted in bold below.

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:jxb=”http://java.sun.com/xml/ns/jaxb”
 jxb:version=”1.0”>

 <xs:element name=”FooBar”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”foo” type=”xs:int”/>
 <xs:element ref=”Class”/>
 <xs:choice>
 <xs:element name=”phoneNumber” type=”xs:string”/>
 <xs:element name=”speedDial” type=”xs:int”/>
 </xs:choice>
 <xs:group ref=”ModelGroupChoice”/>
 </xs:sequence>
 <xs:attribute name=”zip” type=”xs:string”/>
 </xs:complexType>
</xs:element>

 <xs:group name=”ModelGroupChoice”>
 <xs:choice>
 <xs:element name=”bool” type=”xs:boolean”/>
 <xs:element name=”comment” type=”xs:string”/>

84 USING JAXB
 <xs:element name=”value” type=”xs:int”/>
 </xs:choice>
 </xs:group>
</xs:schema>

Customizing a choice Model Group
The <JWSDP_HOME>/jaxb/samples/bind-choice/binding.xjb binding decla-
rations file demonstrates one way to override the default derived names for
choice model groups in example.xsd by means of a <jxb:globalBindings>

declaration:

<jxb:bindings schemaLocation="example.xsd” node=”/xs:schema">
 <jxb:globalBindings bindingStyle="modelGroupBinding"/>
 <jxb:schemaBindings/>
 <jxb:package name=”example”/>
 </jxb:schemaBindings>
 </jxb:bindings
</jxb:bindings>

This customization results in the choice model group being bound to its own
content interface. For example, given the following choice model group:

 <xs:group name=”ModelGroupChoice”>
 <xs:choice>
 <xs:element name=”bool” type=”xs:boolean”/>
 <xs:element name=”comment” type=”xs:string”/>
 <xs:element name=”value” type=”xs:int”/>
 </xs:choice>
 </xs:group>

the globalBindings customization shown above causes JAXB to generate the
following Java class:

/**
 * Java content class for model group.
 */
 public interface ModelGroupChoice {
 int getValue();
 void setValue(int value);
 boolean isSetValue();

 java.lang.String getComment();
 void setComment(java.lang.String value);
 boolean isSetComment();

BIND CHOICE EXAMPLE 85
 boolean isBool();
 void setBool(boolean value);
 boolean isSetBool();

 Object getContent();
 boolean isSetContent();
 void unSetContent();
 }

Calling getContent returns the current value of the Choice content. The setters
of this choice are just like radio buttons; setting one unsets the previously set
one. This class represents the data representing the choice.

Additionally, the generated Java interface FooBarType, representing the anony-
mous type definition for element FooBar, contains a nested interface for the
choice model group containing phoneNumber and speedDial.

86 USING JAXB

3

87
Securing JAX-RPC
Applications with XML

and Web Services
Security

THIS addendum discusses using XML and Web Services Security (XWS-
Security) for message-level security. In message-level security, security informa-
tion is contained within the SOAP message, which allows security information
to travel along with the message. For example, a portion of the message may be
signed by a sender and encrypted for a particular receiver. When the message is
sent from the initial sender, it may pass through intermediate nodes before reach-
ing its intended receiver. In this scenario, the encrypted portions continue to be
opaque to any intermediate nodes and can only be decrypted by the intended
receiver. For this reason, message-level security is also sometimes referred to as
end-to-end security.

88 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
This release includes the following XWS-Security features:

• Support for securing JAX-RPC applications at the service, port, and oper-
ation levels.

• A sample security framework within which a JAX-RPC application devel-
oper will be able to secure applications by signing/verifying parts of SOAP
messages and/or encrypting/decrypting parts of a SOAP message.

The message sender can also make claims about the security properties by
associating security tokens with the message. An example of a security
claim is the identity of the sender, identified by a user name and pass-
word.

• Sample programs that demonstrate using the framework.

• Command-line tools that provide specialized utilities for keystore manage-
ment, including pkcs12import and keyexport.

The XWS-Security release contents are arranged in the structure shown in Table

3–1 within the Java WSDP release:

Table 3–1 XWS-Security directory structure

Directory Name Contents

<JWSDP_HOME>/
xws-security/etc/

Keystore files used for the examples.

<JWSDP_HOME>/
xws-security/docs/

Release documentation for the XWS-Security framework.

<JWSDP_HOME>/
xws-security/lib/

JAR files containing the XWS-Security framework implementa-
tion and dependent libraries.

<JWSDP_HOME>/
xws-security/sam-
ples/

Example code. This release includes sample applications. For
more information on the samples, read Understanding and Run-
ning the Simple Sample Application.

<JWSDP_HOME>/
xws-security/bin/

Command-line tools that provide specialized utilities for keystore
management. For more information on these, read Useful XWS-
Security Command-Line Tools.

DOES XWS-SECURITY IMPLEMENT ANY SPECIFICATIONS? 89
This implementation of XWS-Security is based on the Oasis Web Services Secu-
rity (WSS) specification, which can be viewed at the following URL:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Some of the material in this chapter assumes that you understand basic security
concepts. To learn more about these concepts, we recommend that you explore
the following resources before you begin this chapter.

• The Java 2 Standard Edition discussion of security, which can be viewed
from
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

• The J2EE 1.4 Tutorial chapter titled Security, which can be viewed from

http://java.sun.com/j2ee/1.4/docs/tutorial-update2/doc/index.html

Does XWS-Security Implement Any
Specifications?

XWS-Security is an implementation of the Web Services Security (WSS) speci-
fication developed at OASIS. WSS defines a SOAP extension providing quality
of protection through message integrity, message confidentiality, and message
authentication. WSS mechanisms can be used to accommodate a wide variety of
security models and encryption technologies.

The WSS specification defines an end to end security framework that provides
support for intermediary security processing. Message integrity is provided by
using XML Signature in conjunction with security tokens to ensure that mes-
sages are transmitted without modifications. Message confidentiality is granted
by using XML Encryption in conjunction with security tokens to keep portions
of SOAP messages confidential.

In this release, the XWS-Security framework provides the following options for
securing JAX-RPC applications:

• XML Digital Signature (DSig)

This implementation of XML and Web Services Security uses Apache's
XML-DSig implementation, which is based on the XML Signature speci-
fication, which can be viewed at http://www.w3.org/TR/xmldsig-

core/.

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update2/doc/index.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

90 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Samples containing code for signing and/or verifying parts of the SOAP
message are included with this release in the directory <JWSDP_HOME>/

xws-security/samples/simple/. Read Understanding and Running the Simple

Sample Application for more information on these sample applications.

• XML Encryption (XML-Enc)

This implementation of XML and Web Services Security uses Apache's
XML-Enc implementation, which is based on the XML Encryption W3C
standard. This standard can be viewed at http://www.w3.org/TR/

xmlenc-core/.

Samples containing code for encrypting and/or decrypting parts of the
SOAP message are included with this release in the directory
<JWSDP_HOME>/xws-security/samples/simple/. Read Understanding and

Running the Simple Sample Application for more information on these sample
applications.

• UsernameToken Verification

Username token verification specifies a process for sending UserNameTo-

kens along with the message. The receiver can validate the identity of the
sender by validating the digital signature sent by the sender. A digital sig-
nature internally refers to a security token (for example, an X.509 Certifi-
cate Token) to indicate the key used for signing. Sending these tokens
with a message binds the identity of the tokens (and any other claims
occurring in the security token) to the message.

This implementation of XML and Web Services Security provides sup-
port for Username Token Profile, which is based on OASIS WSS User-
name Token Profile 1.0 (which can be read at http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-username-token-pro-

file-1.0.pdf) and X.509 Certificate Token Profile, which is based on
OASIS WSS X.509 Certificate Token Profile 1.0 (which can be read at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

x509-token-profile-1.0.pdf).

Samples containing code for sending user name and X.509 certificate
tokens along with the SOAP message are included with this release in the
directory <JWSDP_HOME>/xws-security/samples/simple/. Read Under-

standing and Running the Simple Sample Application for more information on
these sample applications.

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

ON WHICH TECHNOLOGIES IS XWS-SECURITY BASED? 91
On Which Technologies Is XWS-Security
Based?
XWS-Security APIs are used for securing Web services based on JAX-RPC.
This release of XWS-Security is based on non-standard XML Digital Signature
and XML Encryption APIs, which are subject to change with new revisions of
the technology. As standards are defined in the Web Services Security space,
these nonstandard APIs will be replaced with standards-based APIs.

JSR-105 (XML Digital Signature) APIs are included in this release of the Java
WSDP as well. JSR 105 is a standard API (in progress, at Proposed Final Draft)
for generating and validating XML Signatures as specified by the W3C recom-
mendation. It is an API that should be used by Java applications and middleware
that need to create and/or process XML Signatures. It can be used by Web Ser-
vices Security (which is the goal for a future release) and by non-Web Services
technologies, for example, documents stored or transferred in XML. Both JSR-
105 and JSR-106 (XML Digital Encryption) APIs are core-XML security com-
ponents.

XWS-Security does not use the JSR-105 or JSR-106 APIs because, currently,
the Java standards for XML Digital Signatures and XML Encryption are under-
going definition under the Java Community Process. These Java standards are
JSR-105-XML Digital Signature APIs, which you can read at http://

www.jcp.org/en/jsr/detail?id=105 and JSR-106-XML Digital Encryption
APIs, which you can read at http://www.jcp.org/en/jsr/detail?id=106.

XWS-Security uses the Apache libraries for DSig and XML-Enc. In future
releases, the goal of XWS-Security is to move toward using JSR-105 and JSR-
106 APIs.

Table 3–2 shows how the various technologies are stacked upon one another:

Table 3–2 API/Implementation Stack Diagram

XWS-Security

JSR-105 & JSR-106 (possible in future release)

Apache XML Security implementation (current implementation, however this can eas-
ily be replaced or swapped, because the JSRs are provider-based)

J2SE Security (JCE/JCA APIs)

http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=106

92 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
The Apache XML Security project is aimed at providing implementation of secu-
rity standards for XML. Currently the focus is on the W3C standards. More
information on Apache XML Security can be viewed at:

http://xml.apache.org/security/

Java security includes the Java Cryptography Extension (JCE) and the Java
Cryptography Architecture (JCA). JCE and JCA form the foundation for public
key technologies in the Java platform. The JCA API specification can be viewed
at http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html. The JCE documenta-
tion can be viewed at http://java.sun.com/products/jce/reference/docs/index.html.

What is the XWS-Security Framework?
The XWS-Security framework is used to secure JAX-RPC applications. Use
XWS-Security to secure SOAP messages (requests and responses) through sign-
ing some parts, or encrypting some parts, or sending username-password authen-
tication info, or some combination of these. Some example applications that use
the technology are discussed in Are There Any Sample Applications Demonstrating XWS-

Security?.

Use the XWS-Security framework to secure JAX-RPC applications by using the
-security option of the wscompile tool. When you create an asant (or ant)
target for JAX-RPC clients and services, the wscompile utility generates stubs,
ties, serializers, and WSDL files. XWS-Security has been integrated into JAX-
RPC through the use of security configuration files. The code for performing the
security operations on the client and server is generated by supplying the secu-
rity configuration files to the JAX-RPC wscompile tool. The wscompile tool is
instructed to generate security code via the -security option which specifies the
security configuration file. See Configuring Security Configuration Files for more infor-
mation on creating and using security configuration files.

To use the XWS-Security framework, set up the client and server-side infrastruc-
ture. A critical component of setting up your system for XWS-Security is to set
up the appropriate database for the type of security (DSig, XML-Enc, UserName
Token) to be used. Depending on the structure of your application, these data-
bases could be any combination of keystore files, truststore files, and username-
password files. More information on setting up the infrastructure is described in
Setting Up the Application Server For the Examples.

http://xml.apache.org/security/
http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html
http://java.sun.com/products/jce/reference/docs/index.html

CONFIGURING SECURITY CONFIGURATION FILES 93
Configuring Security Configuration Files
XWS-Security makes it simple to specify client and server-side configurations
describing security settings using security configuration files. In this tutorial,
build, package, and deploy targets are defined and run using the asant tool. The
asant tool is version of the Apache Ant Java-based build tool used specifically
with the Sun Java System Application Server (Application Server). If you are
deploying to a different container, you may want to use the Apache Ant tool
instead.

To configure a security configuration file, follow these steps:

1. Create a security configuration file. Creating security configuration files is
discussed in more detail in Understanding Security Configuration Files. Sample
security configuration files are located in the directory <JWSDP_HOME>/

xws-security/samples/simple/config/.

2. Create an asant (or ant) target in the build.xml file for your application
that passes in and uses the security configuration file(s). This step is dis-
cussed in more detail in How Do I Specify the Security Configuration for the Build

Files?.

3. Create a property in the build.properties file to specify a security con-
figuration file to be used on the client side and a security configuration file
to be used on the server side. This step is discussed in more detail in How

Do I Specify the Security Configuration for the Build Files?.

Understanding Security Configuration
Files
Security configuration files are written in XML. The elements within the XML
file that specify the security mechanism(s) to use for an application are enclosed
within <xwss:SecurityConfiguration></xwss:SecurityConfiguration>

tags. The complete set of child elements along with the attributes that can be
placed within these elements are described informally in XWS-Security Configuration

File Schema. The formal schema definition (XSD) for XWS-Security Configura-
tion can be viewed in XWS-Security Formal Schema Definition. This section describes
a few of these options.

94 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
The first set of elements of the security configuration file contain the declaration
that this file is a security configuration file. The elements that provide this decla-
ration look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration>

Within these declaration elements are elements that specify which type of secu-
rity mechanism is to be applied to the SOAP message. For example, to apply
XML Digital Signature, the security configuration file would include an
xwss:Sign element, along with a keystore alias that identifies the private key/
certificate associated with the sender's signature. A simple client security config-
uration file that requires digital signatures would look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Note that in the <Sign> operation, a Timestamp is
exported
 in the security header and signed by default.
 -->
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-
client"/>
 </xwss:Sign>
 <!--
 Signature requirement. No target is specified,
hence the
 soap body is expected to be signed. Also, by
default, a
 Timestamp is expected to be signed.
 -->
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

UNDERSTANDING SECURITY CONFIGURATION FILES 95
The xwss elements can be listed sequentially so that more than one security
mechanism can be applied to the SOAP message. For example, for a client to
first sign a message and then encrypt it, create an xwss element with the value
Sign (to do the signing first), and then create an xwss element with the value of
Encrypt (to encrypt after the signing). Building on the previous example, to add
encryption to the message after the message has been signed, the security config-
uration file would be written like this example:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Sign/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Identifier"/>
 </xwss:Encrypt>
 <!--
 Requirements on messages received:
 -->
 <xwss:RequireEncryption/>
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The xwss:RequireSignature element present in the two examples shown is
used by the client to indicate that it expects the Response to be a signed
response. Similarly the xwss:RequireEncryption element in a client configura-
tion file indicates that the client expects an encrypted response. In the second
example, a RequireEncryption and a RequireSignature element specified in
that order implies that the client expects the response to be signed and then
encrypted.

The xwss:RequireSignature and xwss:RequireEncryption elements appear-
ing in a server configuration file similarly indicate that the server expects the
request to be signed and encrypted respectively. The normal behavior of a client
or server when it specifies a requirement of the form xwss:RequireSignature

96 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
or xwss:RequireEncryption is to throw an exception if the requirement is not
met by the received response or request.

The xwss:SecurityEnvironmentHandler element appearing under
xwss:SecurityConfiguration is a compulsory child element that needs to be
specified. The value of this element is the class name of a Java class that imple-
ments the javax.security.auth.callback.CallbackHandler interface and
handles a set of Callbacks defined by XWS-Security. There are a set of call-
backs that are mandatory and that every CallbackHandler needs to implement.
A few callbacks are optional and can be used to supply some finer-grained infor-
mation to the XWS-Security run-time. The SecurityEnvironmentHandler and
the Callbacks are described in Writing SecurityEnvironmentHandlers for XWS-Security

Applications. The SecurityEnvironmentHandler is essentially a CallbackHan-

dler which is used by the XWS-Security run-time to obtain the private-keys,
certificates, symmetric keys, etc. to be used in the signing and encryption opera-
tions from the application. For more information, refer to the API documentation
for the com.sun.xml.wss.impl.callback package, which is located in the
<JWSDP_HOME>/xws-security/docs/api directory, to find the list of mandatory
and optional callbacks and the details of the Callback classes.

Another type of security mechanism that can be specified in the security config-
uration file is user name authentication. In the case of user name authentication,
the user name and password of a client need to be authenticated against the user/
password database of the server. The xwss element specifies that the security
mechanism to use is UsernameToken. On the server-side, refer to the documenta-
tion for your server regarding how to set up a user/password database for the
server, or read Setting Up To Use XWS-Security With the Sample Applications for a sum-
mary. A client-side security configuration file that specifies UsernameToken

authentication would look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Default: Digested password will be sent.
 -->
 <xwss:UsernameToken name="Ron" password="noR"/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>

XWS-SECURITY CONFIGURATION FILE SCHEMA 97
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The simple sample application includes a number of example security configu-
ration files. The sample configuration files are located in the directory
<JWSDP_HOME>/xws-security/samples/simple/config/. Further discussion
of the example security configurations can be found in Sample Security Configuration

File Options.

XWS-Security Configuration File Schema
When creating a security configuration file, there is a hierarchy within which the
XML elements must be listed. This section contains a sketch of the schema for
the data for security configuration files. The formal schema definition can be
viewed at XWS-Security Formal Schema Definition.

Note: The schema for the configuration files for XWS-Security in Java WSDP 1.5
is significantly different from the schema shipped with Java WSDP 1.4. Security
configuration files written under Java WSDP 1.4 will need to be updated to the new
schema.

Figure 3–1 shows the XML schema. The tables in XWS-Security Configuration File

Schema provide more information on the elements contained within the schema.
The following notations are used to describe the schema:

• | means OR

• * means zero or more of these elements allowed

• ? means zero or one element allowed

• (value) means that this value is the default value for the element, so spec-
ifying this attribute is optional.

Note: Due to a bug in the current release, there is no way to disable security for a
particular Port if there is a <SecurityConfiguration> specified for the enclosing
Service. Even if an empty <SecurityConfiguration/> is specified for a Port, the

98 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
<SecurityConfiguration> specified for the Service will be applied, thereby vio-
lating the precedence rules.

Figure 3–1 XWS-Security Configuration File Schema

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 ?<xwss:SecurityConfiguration>

 </xwss:SecurityConfiguration>
 *<xwss:Port name="port_name">
 ?<xwss:SecurityConfiguration>

 </xwss:SecurityConfiguration>
 *<xwss:Operation name="operation_name">
 ?<xwss:SecurityConfiguration>

 </xwss:SecurityConfiguration>
 </xwss:Operation>
 </xwss:Port>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 {handler_implementation_class_name}
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

<xwss:SecurityConfiguration dumpMessages=("false")|"true">

 ?<xwss:Timestamp timeout=("300")/>

 *<xwss:Encrypt>
 ?<xwss:X509Token ?id="token_id"
 ?certificateAlias="cert_alias"

keyReferenceType=("Direct")|"Identifier"|"IssuerSerialNumber"/
>
 ?<xwss:SymmetricKey keyAlias="key_alias"/>
 *<xwss:Target type=("qname")|"uri"|"xpath"
 contentOnly=("true")|"false">
 {target_value}
 </xwss:Target>
 </xwss:Encrypt>

XWS-SECURITY CONFIGURATION FILE SCHEMA 99
 *<xwss:Sign includeTimestamp=("true")|"false">
 ?<xwss:X509Token ?id="token_id"
 ?certificateAlias="cert_alias"

keyReferenceType=("Direct")|"Identifier"|"IssuerSerialNumber"/
>
 *<xwss:Target type=("qname")|"uri"|"xpath">
 {target_value}
 </xwss:Target>
 </xwss:Sign>

 ?<xwss:UsernameToken ?name="user_name"
 ?password="password"
 useNonce=("true")|"false"
 digestPassword=("true")|"false"
 ?id="username_token_id"/>

 ?<xwss:RequireTimestamp/>

 *<xwss:RequireEncryption>
 *<xwss:Target type=("qname")|"uri"|"xpath"
 contentOnly=("true")|"false"
 enforce=("true")|"false">
 {target_value}
 </xwss:Target>
 <xwss:RequireEncryption>

 *<xwss:RequireSignature requireTimestamp=("true")|"false">
 *<xwss:Target type=("qname")|"uri"|"xpath"
 enforce=("true")|"false">
 {target_value}
 </xwss:Target>
 </xwss:RequireSignature>

 ?<xwss:RequireUsernameToken nonceRequired=("true")|"false"

passwordDigestRequired=("true")|"false"/>

 *<xwss:OptionalTargets>
 *<xwss:Target type=("qname")|"uri"|"xpath">
 {target_value}
 </xwss:Target>
 </xwss:OptionalTargets>
</xwss:SecurityConfiguration>

100 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Semantics of Security Configuration File
Elements
This section contains a discussion regarding the semantics of security configura-
tion file elements.

JAXRPCSecurity
The <JAXRPC> element is the top-level XML element for any XWS-Security
configuration file. Table 3–3 provides a description of its sub-elements.

Service
The <Service> element indicates a JAX-RPC service within the XWS-Security
environment for which XWS-Security can be configured. Table 3–4 provides a
description of its sub-elements.

Table 3–3 Sub-elements of JAXRPCSecurity element

Sub-elements of

JAXRPCSecurity Description

Service

Indicates a JAX-RPC service within the XWS-Security
environment for which XWS-Security can be configured.
In this release, one service per configuration file is sup-
ported. Future releases may upgrade support to understand
multiple services.

SecurityEnvironmentHandler
Specifies the implementation class name of the security
environment handler (Required).

Table 3–4 Sub-elements of Service element

Sub-elements of Service Description

SecurityConfiguration
Indicates that what follows is the security configuration for the
service.

Port
A port within a JAX-RPC service. Any (including zero) num-
ber of these elements may be specified.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 101
Port
The <Port> element represents a port within a JAX-RPC service. Table 3–5 pro-
vides a description of its attributes, Table 3–6 provides a description of its sub-ele-
ments.

Operation
The <Operation> element creates a security configuration at the operation level,
which takes precedence over port and service-level security configurations. Table

3–7 provides a description of its attributes, Table 3–8 provides a description of its
sub-elements.

Table 3–5 Attributes of Port element

Attributes of Port Description

name Name of the port as specified in the wsdl (Required).

Table 3–6 Sub-elements of Port element

Sub-elements of Port Description

SecurityConfiguration
Indicates that what follows is security configuration for the
port. This over-rides any security configured for the service.

Operation
Indicates a port within a JAX-RPC service. Any (including
zero) number of these elements may be specified.

Table 3–7 Attributes of Operation

Attributes of

Operation Description

name
Name of the operation as specified in the WSDL file, for
example, name="{http://xmlsoap.org/Ping}Ping0".
(Required)

102 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
SecurityConfiguration
The <SecurityConfiguration> element specifies a security configuration. Table

3–9 provides a description of its attributes, Table 3–10 provides a description of its
sub-elements. The sub-elements of SecurityConfiguration can appear in any
order. The order in which they appear determines the order in which they are
executed, with the exception of the OptionalTargets element.

Table 3–8 Sub-elements of Operation

Sub-elements of

Operation
Description

SecurityConfiguration
This element indicates that what follows is security configura-
tion for the operation. This over-rides any security configured
for the port and the service.

Table 3–9 Attributes of SecurityConfiguration

Attributes of
SecurityConfiguration Description

dumpMessages
If dumpMessages is set to true, all incoming and outgoing
messages are printed at the standard output. The default value
is false.

Table 3–10 Sub-elements of SecurityConfiguration

Sub-elements of

SecurityConfiguration Description

Timestamp
Indicates that a timestamp must be sent in the outgoing mes-
sages.

UsernameToken
Indicates that a username token must be sent in the outgoing
messages.

Sign
Indicates that a sign operation needs to be performed on the
outgoing messages.

Encrypt
Indicates that an encrypt operation needs to be performed on
the outgoing messages.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 103
Timestamp
The <Timestamp> element specifies that a timestamp must be sent in outgoing
messages. For a discussion of using the Timestamp element with the inclu-

deTimestamp attribute of Sign, see Using Timestamp and includeTimestamp. Table 3–11

provides a description of its attributes.

RequireTimestamp
Indicates that a timestamp must be present in the incoming
messages.

RequireUsernameToken
Indicates that a username token must be present in the incom-
ing messages.

RequireSignature
Indicates that the incoming messages must contain a signa-
ture.

RequireEncryption Indicates that the incoming messages must be encrypted.

OptionalTargets
Specifies a list of elements on which security operations are
not required in the incoming messages, but are allowed.

Table 3–11 Attributes of Timestamp

Attributes of

Timestamp Description

timeout
Value in seconds after which the timestamp should be consid-
ered expired. Default value is “300”.

Table 3–10 Sub-elements of SecurityConfiguration

Sub-elements of

SecurityConfiguration Description

104 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
UsernameToken
The <UsernameToken> element is used when a UsernameToken should be sent
with outgoing messages. This UsernameToken contains the sender’s user and
password information. Table 3–12 provides a description of its attributes.

Table 3–12 Attributes of UsernameToken

Attributes of

UsernameToken Description

name
The name of the user. If not specified, security environment
handler must provide it at runtime.

password
The password of the user. If not specified, attempt would be
made to obtain it from the security environment handler at
runtime. Default value is true.

digestPassword
Indicates whether to send password in digest form or not.
Default value is true.

useNonce
Indicates whether to send a nonce inside the username token
or not. Sending a nonce helps in preventing replay attacks.
Default value is true.

id
The id to be set on the username token in the message to be
sent. This is also useful in referring to the token from other
places in the security configuration file.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 105
Sign
The <Sign> element is used to indicate that a sign operation needs to be per-
formed on the outgoing messages. Table 3–13 provides a description of its
attributes, Table 3–15 provides a description of its sub-elements.

Using Timestamp and includeTimestamp
The following configurations of Timestamp and the includeTimestamp attribute
of the Sign element have the following effect:

1. If a <Timestamp> element is configured, a timestamp will be sent in the
message.

2. If the includeTimestamp attribute on <Sign> has value true and <Times-

tamp> is not configured, a timestamp (with default timeout value) will be
sent in the message and included in the signature.

Table 3–13 Attributes of Sign

Attributes of Sign Description

includeTimestamp

Indicates whether to also sign a timestamp as part of this sig-
nature or not. This is a mechanism useful in preventing replay
attacks. The default value is true. Note that a true value for
this attribute makes sure that a timestamp will be sent in the
outgoing messages even if the <Timestamp> element has not
been specified. Also note that at most one timestamp is sent in
a message.

Table 3–14 Sub-elements of Sign

Sub-elements of Sign Description

X509Token

Indicates the certificate corresponding to the private key used
for signing. If this element is not present, attempt is made to
get the default certificate from the security environment han-
dler.

Target
Indicates the target to be signed. Zero or more of these ele-
ments may be specified. If none is specified, the soap body is
assumed to be the target.

106 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
3. If the includeTimestamp attribute on <Sign> has value true and <Times-

tamp> is configured, a timestamp with the properties (e.g, timeout) spec-
ified on the <Timestamp> will be sent in the message and also be included
in the signature.

4. If the includeTimestamp attribute on <Sign> has value false, a times-
tamp is not included in the signature.

Encrypt
The <Encrypt> element is used to indicate that an encrypt operation needs to be
performed on the outgoing messages. Table 3–15 provides a description of its sub-
elements.

RequireTimestamp
If the <RequireTimestamp> element is present, a timestamp, in the form of a
wsu:Timestamp element, must be present in the incoming messages. If the
RequireTimestamp element is not specified, a Timestamp is not required. A
timestamp specifies the particular point in time it marks. You may also want to
consider using a nonce, which is a value that you should never receive more than
once.

This element does not have any attributes or sub-elements.

Table 3–15 Sub-elements of Encrypt

Sub-elements of
Encrypt Description

X509Token

Indicates the certificate to be used for encryption. If this ele-
ment is not present, attempt is made to get the default certifi-
cate from the security environment handler. This element must
not be specified if the <SymmetricKey> sub-element of
<Encrypt> is specified.

SymmetricKey
Indicates the symmetric key to be used for encryption. This
element must not be specified if the <X509Token> sub-ele-
ment of <Encrypt> is present.

Target
Indicates the target to be signed. Zero or more targets for
encryption can be specified. If none is specified, the contents
of the soap body are encrypted.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 107
RequireUsernameToken
The <RequireUsernameToken> element is used to specify that a username token
must be present in the incoming messages. Table 3–16 provides a description of its
attributes.

RequireSignature
The <RequireSignature> element is specified when a digital signature is
required for all specified targets. If no signature is present, an exception is
thrown. Table 3–17 provides a description of its attributes, Table 3–18 provides a
description of its sub-elements.

Table 3–16 Attributes of RequireUsernameToken

Attributes of

RequireUsernameToken Description

passwordDigestRe-
quired

Indicates whether the username tokens in the incoming mes-
sages are required to contain the passwords in digest form or
not. Default value is true. (See also: digestPassword
attribute on <UsernameToken>)

nonceRequired
Indicates whether a nonce is required to be present in the user-
name tokens in the incoming messages. Default value is true.
(See also: useNonce attribute on <UsernameToken>)

Table 3–17 Attributes of RequireSignature

Attributes of

RequireSignature Description

requireTimestamp
Indicates whether a timestamp must be included in the signa-
tures in the incoming messages. Default value is true. (See
also: includeTimestamp attribute on <Sign>)

108 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
RequireEncryption
The <RequireEncryption> element is used when encryption is required for all
incoming messages. If encryption is not present, an exception is thrown. Table 3–

19 provides a description of its sub-elements.

OptionalTargets
The <OptionalTargets> element is used when an operation is optional for a
specific target. Table 3–20 provides a description of its sub-elements.

Table 3–18 Sub-elements of RequireSignature

Sub-elements of
RequireSignature Description

Target
Specifies the target that should have been signed. Zero or more
of these elements can be specified. If this element is not speci-
fied, it indicates that the soap body is required to be signed.

Table 3–19 Sub-elements of RequireEncryption

Sub-elements of
RequireEncryption Description

Target

Specifies the target that should have been encrypted. Zero or
more of these elements can be specified. If this element is not
specified, it indicates that the contents of the soap body are
required to be encrypted.

Table 3–20 Sub-elements of OptionalTargets

Sub-elements of
OptionalTargets Description

Target
Indicates that a security operation is allowed to be performed
on this target though it was not required. One or more of these
elements can be specified.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 109
X509Token
The <X509Token> element is used to specify that a username token must be
present in the incoming messages. Table 3–21 provides a description of its
attributes.

Target
The <Target> sub-element contains a string that can be used along with the
keyReferenceType to identify the resource that needs to be signed or encrypted.
If the Target sub-element is not specified, the default value is a target that points
to the contents of the SOAP body of the message. The value of this element is

Table 3–21 Attributes of X509Token

Attributes of

X509Token Description

id
The id to be assigned to this token in the message. This
attribute is useful in referring the token from other places in
the security configuration file.

certificateAlias The alias associated with the token (certificate).

keyReferenceType

The reference mechanism to be used for referring to the X509
token (certificate) which was involved in the security opera-
tion, in the outgoing messages. The default value is Direct.
The list of allowed values for this attribute and their descrip-
tion is as follows:
 1. Direct - certificate is sent along with the message.
 2. Identifier - subject key identifier extension value of
the certificate is sent in the message.
3. IssuerSerialNumber - issuer name and serial number
of the certificate are sent in the message.

110 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
specified as a text node inside this element. Its attributes are described in Table 3–

22.

SymmetricKey
The <SymmetricKey> element indicates the symmetric key to be used for
encryption. This element must not be specified if the <X509Token> sub-element
of <Encrypt> is present. Its attributes are discussed in Table 3–23.

Table 3–22 Attributes of Target

Attributes of Target Description

type

Indicates the type of the target value. Default value is qname.
The list of allowed values for this attribute and their descrip-
tion is as follows:
1. qname - If the target element has a local name Name and a
namespace URI some-uri, the target value is {some-
uri}Name.
 2. xpath - Indicates that the target value is the xpath of the
target element.
 3. uri - If the target element has an id some-id, then the tar-
get value is #some-id.

contentOnly

Indicates whether the complete element or only the contents
needs to be encrypted (or is required to be encrypted). The
default value is true. (Relevant only for <Encrypt> and
<RequireEncryption> targets)

enforce

If true, indicates that the security operation on the target ele-
ment is definitely required. Default value is true. (Relevant
only for <RequireSignature> and <RequireEncryption> tar-
gets)

Table 3–23 Attributes of SymmetricKey

Attributes of

SymmetricKey Description

keyAlias
The alias of the symmetric key to be used for encryption. This
attribute is required.

HOW DO I SPECIFY THE SECURITY CONFIGURATION FOR THE BUILD FILES? 111
SecurityEnvironmentHandler
The <SecurityEnvironmentHandler> element specifies the implementation class
name of the security environment handler. Read Writing SecurityEnvironmentHandlers for

XWS-Security Applications for more information on SecurityEnvironmen-

tHandlers.

How Do I Specify the Security
Configuration for the Build Files?
After the security configuration files are created, you can easily specify which of
the security configuration files to use for your application. In the build.proper-
ties file for your application, create a property to specify which security config-
uration file to use for the client, and which security configuration file to use for
the server. An example from the simple sample application does this by listing
all of the alternative security configuration files, and uncommenting only the
configuration to be used. The simple sample uses the following properties:

look in /config directory for alternate security
configurations
Client Security Config. file
#client.security.config=config/dump-client.xml
client.security.config=config/sign-client.xml
#client.security.config=config/encrypt-client.xml
#client.security.config=config/user-pass-authenticate-
client.xml
#client.security.config=config/encrypt-usernameToken-
client.xml
#client.security.config=config/encrypted-user-pass-client.xml
#client.security.config=config/sign-encrypt-client.xml
#client.security.config=config/encrypt-sign-client.xml
#client.security.config=config/sign-ticket-also-client.xml
#client.security.config=config/timestamp-sign-client.xml
Use this client with encrypt-server.xml configured for
server.security.config
#client.security.config=config/encrypt-using-symmkey-
client.xml

Server Security Config. file
#server.security.config=config/dump-server.xml
server.security.config=config/sign-server.xml
#server.security.config=config/encrypt-server.xml
#server.security.config=config/user-pass-authenticate-
server.xml

112 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
#server.security.config=config/encrypt-usernameToken-
server.xml
#server.security.config=config/encrypted-user-pass-server.xml
#server.security.config=config/sign-encrypt-server.xml
#server.security.config=config/encrypt-sign-server.xml
#server.security.config=config/sign-ticket-also-server.xml
#server.security.config=config/timestamp-sign-server.xml

As you can see from this example, several security scenarios are listed in the
build.properties file. To run a particular security configuration option, simply
uncomment one of the entries for a client configuration file, uncomment the cor-
responding entry for the server configuration file, and comment all of the other
options.

In general, the client and server configuration files should match. However, in
some cases, more than one client configuration can be used with a server config-
uration. For example, either encrypt-using-symmkey-client.xml or
encrypt-client.xml can be used with encrypt-server.xml. This combina-
tion works because the server requirement is the same (the body contents must
be encrypted) when the client-side security configuration is either encrypt-

using-symmkey-client.xml or encrypt-client.xml. The difference in the
two client configurations is the key material used for encryption.

After the property has been defined in the build.properties file, you can refer
to it from the file that contains the asant (or ant) targets, which is build.xml.

When you create an asant (or ant) target for JAX-RPC clients and services,
you use the wscompile utility to generate stubs, ties, serializers, and WSDL
files. XWS-Security has been integrated into JAX-RPC through the use of secu-
rity configuration files. The code for performing the security operations on the
client and server is generated by supplying the configuration files to the JAX-
RPC wscompile tool. The wscompile tool can be instructed to generate security
code by making use of the -security option and supplying the security configu-
ration file. An example of the target that runs the wscompile utility with the -

security option pointing to the security configuration file specified in the
build.properties file to generate server artifacts, from the simple sample
application, looks like this:

<target name="gen-server" depends="prepare"
 description="Runs wscompile to generate server
artifacts">
 <echo message="Running wscompile...."/>
 <wscompile verbose="${jaxrpc.tool.verbose}"
 xPrintStackTrace="true"
 keep="true" fork="true"

HOW DO I SPECIFY THE SECURITY CONFIGURATION FOR THE BUILD FILES? 113
 security="${server.security.config}"
 import="true"
 model="${build.home}/server/WEB-INF/
${model.rpcenc.file}"
 base="${build.home}/server/WEB-INF/classes"
 classpath="${app.classpath}"
 config="${config.rpcenc.file}">
 <classpath>
 <pathelement location="${build.home}/server/WEB-INF/
classes"/>
 <path refid="app.classpath"/>
 </classpath>
 </wscompile>
 </target>

An example of the target that runs the wscompile utility with the security

option pointing to the security configuration file specified in the build.proper-

ties file to generate the client-side artifacts, from the simple sample applica-
tion, looks like this:

<target name="gen-client" depends="prepare"
 description="Runs wscompile to generate client side
artifacts">
 <echo message="Running wscompile...."/>
 <wscompile fork="true" verbose="${jaxrpc.tool.verbose}"
keep="true"
 client="true"

 security="${client.security.config}"
 base="${build.home}/client"
 features=""
 config="${client.config.rpcenc.file}">
 <classpath>
 <fileset dir="${build.home}/client">
 <include name="secenv-handler.jar"/>
 </fileset>
 <path refid="app.classpath"/>
 </classpath>
 </wscompile>
 </target>

Refer to the documentation for the wscompile utility in Useful XWS-Security Com-

mand-Line Tools for more information on wscompile options.

114 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Are There Any Sample Applications
Demonstrating XWS-Security?
This release of the Java WSDP includes two example applications that illustrate
how a JAX-RPC developer can use the XML and Web Services Security frame-
work. The example applications can be found in the <JWSDP_HOME>/xws-secu-

rity/samples/<sample_name>/ directory. Before you can run the sample
applications, you must follow the setup instructions in Setting Up To Use XWS-Secu-

rity With the Sample Applications.

The sample applications print out both the client and server request and response
SOAP messages. The output from the server may be viewed in the appropriate
container’s log file. The output from the client may be viewed using stdout.

In these examples, the server-side code is found in the <JWSDP_HOME>/xws-

security/samples/<sample_name>/server/src/<sample_name>/ directory.
Client-side code is found in the <JWSDP_HOME>/xws-security/samples/

<sample_name>/client/src/<sample_name>/ directory. The asant (or ant)

targets build objects under the /build/server/ and /build/client/ directo-
ries.

This example can be deployed onto any of the following containers. For the pur-
poses of this tutorial, only deployment to the Sun Java System Application
Server Platform Edition 8 will be discussed. The README.txt file for each exam-
ple provides more information on deploying to the other containers. The contain-
ers can be downloaded from http://java.sun.com/webservices/containers/index.html.

• Sun Java System Application Server PE 8.0.0_01 (Application Server)

• Sun Java System Web Server 6.1 (Web Server)

If you are using the Java SDK version 5.0 or higher, download service
pack 4 for the Web Server. If you are using version 1.4.2 of the Java SDK,
download service pack 2 or 3.

• Tomcat 5 Container for Java WSDP (Tomcat)

This example uses keystore and truststore files that are included in
the <JWSDP_HOME>/xws-security/etc/ directory. The container on which you
choose to deploy your applications must be configured to recognize the keystore
and truststore files. For more information on using keystore and truststore files,
read the keytool documentation at http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/

keytool.html. For more information on how to configure the Application Server to
recognize these files, refer to Setting Up the Application Server For the Examples, or to
the application’s README.txt file if deploying on the Web Server or Tomcat.

http://java.sun.com/webservices/containers/index.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

SETTING UP TO USE XWS-SECURITY WITH THE SAMPLE APPLICATIONS 115
The following sample applications are included:

• simple

This sample application lets you plug in different client and server-side
configurations describing security settings. This example has support for
digital signatures, XML encryption/decryption, and username token
authentication. This example allows and demonstrates combinations of
these basic security mechanisms through configuration files. See Under-

standing and Running the Simple Sample Application for more information on this
example.

• jaas-sample

The jaas-sample application uses the Java Authentication and Authori-
zation Service (JAAS) to demonstrate the following functionality:

• How to obtain a user name and password at run-time and send it in a
WSS UsernameToken to the server.

• Using JAAS authentication to authenticate the user name and password
in the server application.

• Accessing the authenticated sender’s subject from within the endpoint
implementation methods.

Read more about JAAS at http://java.sun.com/products/jaas/.

In this release, the interop sample application that was shipped with Java
WSDP 1.4 is not included. However, the simple and jaas-sample appli-
cations include many sample configuration files, some of which model the
interop scenarios. The sample configuration files can be configured to
model all the interop scenarios using the security configuration schema.

Setting Up To Use XWS-Security With
the Sample Applications

This addendum discusses creating and running applications that use the XWS-
Security framework, and deploying these applications onto the Sun Java System
Application Server Platform Edition 8. For deployment onto other containers,
read the README.txt file for the example applications for more information.

http://java.sun.com/products/jaas/

116 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Follow these steps to set up your system to create, run, and deploy the sample
applications included in this release that use the XWS-Security framework.

1. Make sure that you are running the Java WSDP 1.5 on the Java 2 Platform,
Standard Edition version 1.4.2 or higher. If not, you can download the JDK
from:
http://java.sun.com/j2se/.

2. Set system properties as described in Setting System Properties.

3. If you are using version 1.4.x of the Java SDK, configure a JCE provider
as discussed in Configuring a JCE Provider.

4. Follow the steps in Setting Up the Application Server For the Examples.

Setting System Properties
The asant (or ant) build files for the XWS-Security samples shipped with this
release rely on certain environment variables being set correctly. Make sure that
the following environment variables are set to the locations specified in this list.
If you are not sure how to set these environment variables, refer to the file
<JWSDP_HOME>/xws-security/docs/samples.html for more specific informa-
tion.

1. Set JAVA_HOME to the location of your J2SE installation directory, for
example, /home/<your_name>/j2sdk1.4.2_04/.

2. Set JWSDP_HOME to the location of your Java WSDP 1.5 installation direc-
tory, for example, /home/<your_name>/jwsdp-1.5/.

3. Set SJSAS_HOME to the location of your Application Server installation
directory, for example, /home/<your_name>/SUNWappserver/. If you are
deploying onto a different container, set SJSWS_HOME or TOMCAT_HOME

instead.

4. Set ANT_HOME to the location where the asant (or ant) executable can be
found. If you are running on the Application Server, this will be
<SJSAS_HOME>/bin/. If you are running on a different container, this
location will probably be <JWSDP_HOME>/apache-ant/bin/.

5. Set the PATH variable so that it contains these directories: <JWSDP_HOME>/
jwsdp-shared/bin/, <SJSAS_HOME>/bin/, <ANT_HOME>/, and

<JAVA_HOME>/bin/.

http://java.sun.com/j2se/

CONFIGURING A JCE PROVIDER 117
Configuring a JCE Provider
The Java Cryptography Extension (JCE) provider included with J2SE 1.4.x does
not support RSA encryption. Because the XWS-Security sample applications
use RSA encryption, you must download and install a JCE provider that does
support RSA encryption in order for these sample applications to run, if you are
using encryption, and if you are using a version of the Java SDK prior to version
1.5.0.

Note: RSA is public-key encryption technology developed by RSA Data Security,
Inc. The acronym stands for Rivest, Shamir, and Adelman, the inventors of the tech-
nology.

If you are running the Application Server on version 1.5 of the Java SDK, the
JCE provider is already configured properly. If you are running the Application
Server on version 1.4.x of the Java SDK, follow these steps to add a JCE pro-
vider statically as part of your JDK environment:

1. Download and install a JCE provider JAR (Java ARchive) file. The follow-
ing URL provides a list of JCE providers that support RSA encryption:
http://java.sun.com/products/jce/jce14_providers.html

2. Copy the JCE provider JAR file to <JAVA_HOME>/jre/lib/ext/.

3. Stop the Application Server (or other container). If the Application Server
is not stopped, and restarted later in this process, the JCE provider will not
be recognized by the Application Server.

4. Edit the <JAVA_HOME>/jre/lib/security/java.security properties
file in any text editor. Add the JCE provider you’ve just downloaded to this
file. The java.security file contains detailed instructions for adding this
provider. Basically, you need to add a line of the following format in a
location with similar properties:
security.provider.<n>=<provider class name>

In this example, <n> is the order of preference to be used by the Applica-
tion Server when evaluating security providers. Set <n> to 2 for the JCE
provider you’ve just added.

For example, if you’ve downloaded ABC JCE provider, and the Java class
name of the ABC provider’s main class is org.abc.ABCProvider, add
this line.

security.provider.2=org.abc.ABCProvider

http://java.sun.com/products/jce/jce14_providers.html

118 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Make sure that the Sun security provider remains at the highest prefer-
ence, with a value of 1.

security.provider.1=sun.security.provider.Sun

Adjust the levels of the other security providers downward so that there is
only one security provider at each level.

The following is an example of a java.security file that provides the nec-
essary JCE provider and keeps the existing providers in the correct loca-
tions.

security.provider.1=sun.security.provider.Sun
security.provider.2=org.abc.ABCProvider
security.provider.3=com.sun.net.ssl.internal.ssl.Prov

ider
security.provider.4=com.sun.rsajca.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider

5. Save and close the file.

6. Set the provider permissions for this JCE provider in the server policy file
of the Application Server as described in Setting Up the Application Server For

the Examples.

7. Restart the Application Server (or other container). To save time with stop-
ping and restarting the server, you can complete the steps in Setting Up the

Application Server For the Examples before restarting the Application Server.

Setting Up the Application Server For the
Examples
To set up the container for running the XWS-Security sample applications
included with this release, you need to specify on which container you are run-
ning the asant (or ant) build targets, and you must point the container to the
keystore and truststore files to be used to run the XWS-Security sample applica-
tions. For the sample applications, these are the keystore and truststore files
included in the /xws-security/etc/ directory. For further discussion of using
keystores and truststores with XWS-Security applications, read Keystore and Trust-

store Files with XWS-Security.

SETTING UP THE APPLICATION SERVER FOR THE EXAMPLES 119
This tutorial describes deployment to the Application Server. For information on
setting up other containers, refer to the README.txt file located in the top-level
directory for each sample application.

1. Stop the Application Server.

2. Add the following permissions to the server policy file of the Application
Server. This file can be found at <SJSAS_HOME>/domains/domain1/con-
fig/server.policy.

a. Add the following code near the end of the file for the jaas-sample

sample application.
grant codeBase "file:${com.sun.aas.instanceRoot}/applica-
tions/j2ee-modules/jaassample/WEB-INF/-" {

permission javax.security.auth.AuthPermission "modi-
fyPrincipals";

permission javax.security.auth.AuthPermission "modi-
fyPrivateCredentials";

permission javax.security.auth.PrivateCredentialPer-
mission "* * \"*\"","read";

permission javax.security.auth.AuthPermission "getSub-
ject";

permission javax.security.auth.AuthPermission
"createLoginContext.XWS_SECURITY_SERVER";

};

b. Add the following code near the end of the file for the simple sample
application.

If you are using a 3rd party JCE provider, include the putProvider secu-
rity permission for that application here as well so that signature and
encryption work. The word <Provider> in the last permission should be
replaced by the standard name of the third-party JCE provider. For exam-
ple, if the third party JCE provider specified in java.security file has a
standard name ABC, replace <Provider> with ABC. If you are using ver-
sion 1.5 or higher of the Java SDK, do not include the putProvider for
the JCE provider.

grant codeBase "file:${com.sun.aas.instanceRoot}/applica-
tions/j2ee-modules/securesimple/WEB-INF/-" {

permission javax.security.auth.AuthPermission "modi-
fyPrincipals";

permission javax.security.auth.AuthPermission "modi-
fyPrivateCredentials";

permission javax.security.auth.AuthPermission "modify-
PublicCredentials";

permission javax.security.auth.PrivateCredentialPer-

120 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
mission "* * \"*\"","read";
permission javax.security.auth.AuthPermission "getSub-

ject";
permission java.security.SecurityPermission "putPro-

viderProperty.<Provider>";
};

3. Save and exit the policy file.

4. Restart the Application Server.

Keystore and Truststore Files with XWS-
Security
For the simple sample, the keystore, truststore, and symmetric-key databases
used by that example are located in the <JWSDP_HOME>/xws-security/etc/

directory. The locations of these files have been configured in the
<JWSDP_HOME>/xws-security/etc/client-security-env.properties and
<JWSDP_HOME>/xws-security/etc/server-security-env.properties files
for the client and server respectively. These property files are used by the Secu-

rityEnvironmentHandler to handle the Callbacks.

To plug in your own keystores and truststores for an application, make sure that
the certificates are of version 3, and that the client truststore contains the certifi-
cate of the certificate authority that issued the server's certificate, and vice versa.

XWS-Security requires version 3 (v3) certificates when the keyReferenceType

attribute (specified on a xwss:X509Token element) has a value of Identifier,
which indicates the use of an X.509 SubjectKeyIdentifier extension. For all
other values of the keyReferenceType attribute, a v1 certificate can also be
used. Version 3 includes requirements specified by the WSS X509 Token Profile.

Setting Build Properties
To run the sample applications, you must edit the sample build.properties file
for that sample application and specify information that is unique to your system
and to your installation of Java WSDP 1.5 and the Application Server (or other
container).

SETTING BUILD PROPERTIES 121
To edit the build.properties file for the example you want to run, follow these
steps:

1. Change to directory for the sample application you want to run:
<JWSDP_HOME>/xws-security/samples/<example>/.

2. Copy the build.properties.sample file to build.properties.

3. Edit the build.properties file, checking that the following properties are
set correctly for your system:

• javahome: Set this to the directory where J2SE version 1.4.2 or higher
is installed.

• sjsas.home: If you are running under the Application Server, set this to
the directory where the Application Server is installed and make sure
there is not a comment symbol (#) to the left of this entry. If you are run-
ning under a different container, set the location for its install directory
under the appropriate property name (tomcat.home or sjsws.home)
and uncomment that entry instead. Only one of the container home
properties should be uncommented at any one time.

• username, password: Enter the appropriate username and password
values for a user assigned to the role of admin for the container instance
being used for this sample. A user with this role is authorized to deploy
applications onto the Application Server.

• endpoint.host, endpoint.port: If you changed the default host and/
or port during installation of the Application Server (or other container),
change these properties to the correct values for your host and port. If
you installed the Application Server using the default values, these
properties will already be set to the correct values.

• VS.DIR=If you are running under the Sun Java System Web Server,
enter the directory for the virtual server. If you are running under any
other container, you do not need to modify this property.

• jwsdp.home: Set this property to the directory where Java WSDP is
installed. The keystore and truststore URL’s for the client are configured
relative to this property.

• http.proxyHost, http.proxyPort: If you are using remote endpoints,
set these properties to the correct proxy server address and port. If you
are not using remote endpoints, put a comment character (#) before
these properties. A proxy server will follow the format of myser-

ver.mycompany.com. The proxy port is the port on which the proxy host
is running, for example, 8080.

4. Save and exit the build.properties file.

122 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Understanding and Running the Simple
Sample Application

This example is a fully-developed sample application that demonstrates various
configurations that can be used to exercise XWS-Security framework code. By
modifying two properties in the build.properties file for the example, you
can change the type of security that is being used for the client and/or the server.
The types of security configurations possible in this example include XML Digi-
tal Signature, XML Encryption, and UserNameToken verification. This example
allows and demonstrates combinations of these basic security mechanisms
through the specification of the appropriate security configuration files.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’s log file. The output from the client may be viewed using stdout.

In this example, server-side code is found in the /simple/server/src/simple/

directory. Client-side code is found in the /simple/client/src/simple/ direc-
tory. The asant (or ant) targets build objects under the /build/server/ and /

build/client/ directories.

This example uses keystores and truststores which are included in the /xws-

security/etc/ directory. For more information on using keystore and truststore
files, read the keytool documentation at the following URL:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

Plugging in Security Configurations
This example makes it simple to plug in different client and server-side configu-
rations describing security settings. This example has support for digital signa-
tures, XML encryption/decryption, and username/token verification. This
example allows and demonstrates combinations of these basic security mecha-
nisms through configuration files. See Sample Security Configuration File Options, for
further description of the security configuration options defined for the simple

sample application.

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

SAMPLE SECURITY CONFIGURATION FILE OPTIONS 123
To specify which security configuration option to use when the sample applica-
tion is run (see Running the Simple Sample Application), follow these steps:

1. Open the build.properties file for the example. This file is located at
<JWSDP_HOME>/xws-security/samples/simple/build.properties.

2. To set the security configuration that you want to run for the client, locate
the client.security.config property, and uncomment one of the client
security configuration options. The client configuration options are listed
in Sample Security Configuration File Options, and also list which client and
server configurations work together. For example, if you want to use XML
Encryption for the client, you would uncomment this option:
Client Security Config. file
client.security.config=config/encrypt-client.xml

Be sure to uncomment only one client security configuration at a time.

3. To set the security configuration that you want to run for the server, locate
the server.security.config property, and uncomment one of the server
security configuration options. The server configuration options, and
which server options are valid for a given client configuration, are listed in
Sample Security Configuration File Options. For example, if you want to use XML
Encryption for the server, you would uncomment this option:
Server Security Config. file
server.security.config=config/encrypt-server.xml

Be sure to uncomment only one client security configuration at a time.

4. Save and exit the build.properties file.

5. Run the sample application as described in Running the Simple Sample Applica-

tion.

Sample Security Configuration File
Options
The configuration files available for this example are located in the /xws-secu-

rity/samples/simple/config/ directory. The configuration pairs available
under this sample include configurations for both the client and server side.
Some possible combinations are discussed in more detail in the referenced sec-
tions.

124 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Dumping the Request and/or the Response
The security configuration pair dump-client.xml and dump-server.xml have
no security operations. These options enable the following tasks:

• Dump the request before it leaves the client.

• Dump the response upon receipt from the server.

The container’s server logs also contain the dumps of the server request and
response. See Running the Simple Sample Application for more information on viewing
the server logs.

Encrypting the Request and/or the Response
The security configuration pair encrypt-client.xml and encrypt-server.xml

enable the following tasks:

• Client encrypts the request body and sends it.

• Server decrypts the request and sends back a response.

The encrypt-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Since no targets have been specified below, the
contents of
 the soap body would be encrypted by default.
 -->
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

SAMPLE SECURITY CONFIGURATION FILE OPTIONS 125
Signing and Verifying the Signature
The security configuration pair sign-client.xml and sign-server.xml enable
the following tasks:

• Client signs the request body.

• Server verifies the signature and sends its response.

The sign-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Note that in the <Sign> operation, a Timestamp is
exported
 in the security header and signed by default.
 -->
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-
client"/>
 </xwss:Sign>
 <!--
 Signature requirement. No target is specified,
hence the
 soap body is expected to be signed. Also, by
default, a
 Timestamp is expected to be signed.
 -->
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

126 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Signing then Encrypting the Request,
Decrypting then Verifying the Signature
The security configuration pair sign-encrypt-client.xml and sign-encrypt-

server.xml enable the following tasks:

• Client signs and then encrypts and sends the request body.

• Server decrypts and verifies the signature.

• Server signs and then encrypts and sends the response.

The sign-encrypt-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Sign/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Identifier"/>
 </xwss:Encrypt>
 <!--
 Requirements on messages received:
 -->
 <xwss:RequireEncryption/>
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Encrypting then Signing the Request, Verifying
then Decrypting the Signature
The security configuration pair encrypt-sign-client.xml and encrypt-sign-

server.xml enable the following tasks:

• Client encrypts the request body, then signs and sends it.

• Server verifies the signature and then decrypts the request body.

SAMPLE SECURITY CONFIGURATION FILE OPTIONS 127
• Server sends its response.

The encrypt-sign-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 First encrypt the contents of the soap body
 -->
 <xwss:Encrypt>
 <xwss:X509Token keyReferenceType="Identifier"
certificateAlias="s1as"/>
 </xwss:Encrypt>
 <!--
 Secondly, sign the soap body using some default
private key.

The sample CallbackHandler implementation has code
to handle
 the default signature private key request.
 -->
 <xwss:Sign/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Signing a Ticket
The security configuration pair sign-ticket-also-client.xml and sign-

ticket-also-server.xml enable the following tasks:

• Client signs the ticket element, which is inside the message body.

• Client signs the message body.

• Server verifies signatures.

128 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
The sign-ticket-also-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Signing multiple targets as part of the same
ds:Signature
 element in the security header
 -->
 <xwss:Sign>
 <xwss:Target type="qname">{http://xmlsoap.org/
Ping}ticket</xwss:Target>

<xwss:Target type="xpath">//env:Body</xwss:Target>
 </xwss:Sign>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Adding a Timestamp to a Signature
The security configuration pair timestamp-sign-client.xml and timestamp-

sign-server.xml enable the following tasks:

• Client signs the request, including a timestamp in the request.

The timestamp-sign-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Export a Timestamp with the specified timeout
interval (in sec).
 -->
 <xwss:Timestamp timeout="120"/>
 <!--

The above Timestamp would be signed by the following

SAMPLE SECURITY CONFIGURATION FILE OPTIONS 129
Sign
 operation by default.
 -->
 <xwss:Sign>
 <xwss:Target type="qname">{http://xmlsoap.org/
Ping}ticket</xwss:Target>
 </xwss:Sign>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Symmetric Key Encryption
The security configuration pair encrypt-using-symmkey-client.xml and
encrypt-server.xml enable the following tasks:

• Client encrypts the request using the specified symmetric key.

This is a case where the client and server security configuration files do not
match. This combination works because the server requirement is the same (the
body contents must be encrypted) when the client-side security configuration is
either encrypt-using-symmkey-client.xml or encrypt-client.xml. The dif-
ference in the two client configurations is the key material used for encryption.

The encrypt-using-symmkey-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Encrypt using a symmetric key associated with the
given alias
 -->
 <xwss:Encrypt>
 <xwss:SymmetricKey keyAlias="sessionkey"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>

130 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Adding a UserName Password Token
The security configuration pair user-pass-authenticate-client.xml and
user-pass-authenticate-server.xml enable the following tasks:

• Client adds a username-password token and sends a request.

• Server authenticates the username and password against a username-pass-
word database.

• Server sends response.

The user-pass-authenticate-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Default: Digested password will be sent.
 -->
 <xwss:UsernameToken name="Ron" password="noR"/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Encrypt Request Body and a UserNameToken
The security configuration pair encrypt-usernameToken-client.xml and
encrypt-usernameToken-server.xml enable the following tasks:

• Client encrypts request body.

• Client encrypts the UsernameToken as well before sending the request.

• Server decrypts the encrypted message body and encrypted UsernameTo-

ken.

SAMPLE SECURITY CONFIGURATION FILE OPTIONS 131
• Server authenticates the user name and password against a username-pass-
word database.

The encrypt-usernameToken-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Export a username token into the security header.
Assign it
 the mentioned wsu:Id
 -->
 <xwss:UsernameToken name="Ron" password="noR"
id="username-token"/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 <xwss:Target type="xpath">//SOAP-ENV:Body</
xwss:Target>
 <!--
 The username token has been refered as an
encryption
 target using a URI fragment
 -->
 <xwss:Target type="uri">#username-token</
xwss:Target>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

In this sample, the UsernameToken is assigned an id username-token. This id is
used to refer to the token as an encryption target within the <xwss:Encrypt> ele-
ment. The id becomes the actual wsu:id of the UsernameToken in the generated
SOAPMessage.

132 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Adding a UserName Password Token, then
Encrypting the UserName Token
The security configuration pair encrypted-user-pass-client.xml and
encrypted-user-pass-server.xml enable the following tasks:

• Client adds a UsernameToken.

• Client encrypts the UsernameToken before sending the request.

• Server decrypts the UsernameToken.

• Server authenticates the user name and password against a username-pass-
word database.

The encrypted-user-pass-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:UsernameToken name="Ron" password="noR"/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Identifier"/>
 <xwss:Target type="qname">
 {http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-

secext-1.0.xsd}UsernameToken
 </xwss:Target>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Adding Security at the Method Level
The security configuration pair method-level-client.xml and method-level-

server.xml enable the following tasks:

• Adds security to a particular method.

SAMPLE SECURITY CONFIGURATION FILE OPTIONS 133
The simple sample’s WSDL file contains two operations, Ping and Ping0, and
two port instances of type PingPort. The port names are Ping and Ping0. The
method level security configuration file demonstrates how different sets of secu-
rity operations can be configured for the operations Ping and Ping0 under each
of the two Port instances Ping and Ping0.

The method-level-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <!--
 Service-level security configuration
 -->
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>

 <xwss:Port name="{http://xmlsoap.org/Ping}Ping">

 <!--
Port-level security configuration. Takes precedence

over the
 service-level security configuration
 -->
 <xwss:SecurityConfiguration dumpMessages="true"/>

<xwss:Operation name="{http://xmlsoap.org/Ping}Ping">

 <!--
Operation-level security configuration. Takes

precedence
 over port-level and service-level security
configurations.
 -->

<xwss:SecurityConfiguration dumpMessages="true">
 <xwss:UsernameToken name="Ron"
 password="noR"
 digestPassword="false"
 useNonce="false"/>
 <xwss:Sign>
 <xwss:Target type="qname">{http://
xmlsoap.org/Ping}ticket</xwss:Target>
 <xwss:Target type="qname">{http://

134 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
xmlsoap.org/Ping}text</xwss:Target>
 </xwss:Sign>
 <xwss:Encrypt>

<xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>

 </xwss:Operation>

 <xwss:Operation name="{http://xmlsoap.org/
Ping}Ping0">

<xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Encrypt>

<xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>

 </xwss:Operation>

 </xwss:Port>

 <xwss:Port name="{http://xmlsoap.org/Ping}Ping0">

 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>

<xwss:Operation name="{http://xmlsoap.org/Ping}Ping"/
>

 <xwss:Operation name="{http://xmlsoap.org/
Ping}Ping0"/>

 </xwss:Port>

 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

RUNNING THE SIMPLE SAMPLE APPLICATION 135
In this example, the following has been configured for the Ping operation under
port instance Ping:

• Inserts a UsernameToken into the request.

• Signs the ticket and text child elements of the request body.

• Encrypts the contents of the request body.

The following has been configured for the Ping0 operation under port instance
Ping:

• Encrypt the content of the body of the message.

When the xwss:Encrypt element is specified with no child elements of type
xwss:Target, it implies that the default Target (which is SOAP-ENV:Body) has
to be encrypted. The same rule applies to xwss:Sign elements with no child ele-
ments of type xwss:Target.

The configuration file in this example also configures the following security for
all the WSDL operations under port instance Ping0:

• Encrypts the request body.

• Expects a signed response from the server.Username

Running the Simple Sample Application
Before the sample application will run correctly, you must have completed the
tasks defined in the following sections of this addendum:

• Setting System Properties

• Configuring a JCE Provider

• Setting Up the Application Server For the Examples

• Setting Build Properties

To run the simple sample application, follow these steps:

1. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

b. From a Windows machine, choose Start→Programs→Sun
Microsystems→J2EE 1.4→Start Default Server.

2. Modify the build.properties file to set up the security configuration that
you want to run for the client and/or server. See Sample Security Configuration

136 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
File Options for more information on the security configurations options that
are already defined for the sample application.

3. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing:

[echo] Running the client program....
[java] ==== Sending Message Start ====
...
[java] ==== Sending Message End ====
[java] ==== Received Message Start ====
...
[java] ==== Received Message End ====

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

Understanding and Running the JAAS-
Sample Application

The Java Authentication and Authorization Service (JAAS) is a set of APIs that
enable services to authenticate and enforce access controls upon users. It imple-
ments a Java technology version of the standard Pluggable Authentication Mod-
ule (PAM) framework, and supports user-based authorization.

UNDERSTANDING JAAS-SAMPLE SECURITY CONFIGURATION FILES 137
The jaas-sample application demonstrates the following functionality:

• Obtaining a user name and password at run-time and sending it in a Web
Services Security (WSS) UsernameToken to the server.

• Using JAAS authentication to authenticate the user name and password in
the server application.

• Accessing the authenticated sender’s subject from within the endpoint
implementation methods.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’s log file. The output from the client may be viewed using stdout.

In this example, server-side code is found in the /jaas-sample/server/src/

jaas-sample/ directory. Client-side code is found in the /jaas-sample/cli-

ent/src/jaas-sample/ directory. The asant (or ant) targets build objects
under the /build/server/ and /build/client/ directories.

Understanding JAAS-Sample Security
Configuration Files
The security configuration pair user-pass-authenticate-client.xml and
user-pass-authenticate-server.xml enable the following tasks:

• Client adds a username-password token and sends a request.

• Server authenticates the username and password against a username-pass-
word database.

• Server sends response.

The username-password database must be set up before this security configura-
tion pair will run properly. Refer to Setting Up the Application Server For the Examples

for instructions on setting up this database.

The user-pass-authenticate-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:UsernameToken digestPassword="false"/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

138 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
 <xwss:SecurityEnvironmentHandler>
com.sun.xml.wss.sample.ClientSecurityEnvironmentHandler

 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

If you compare this security configuration file to the similar one in the simple

sample, as discussed in Adding a UserName Password Token, you’ll see that this secu-
rity configuration file does not hard-code the user name and password. The user-
name and password are obtained by reading a system property
username.password. The default value for this property has been configured
inside the build.xml file of the jaas-sample under the run-sample target as a
sysproperty. The client-side SecurityEnvironmentHandler of this sample is
the entity that actually reads the system property at run-time and populates the
username and password Callback objects passed to it by the XWS-Security run-
time. A different SecurityEnvironmentHandler can be plugged into this sam-
ple to obtain the username and password at run-time from a different source
(possibly by popping up a dialog box where the user can enter the username and
password).

This samples server-side SecurityEnvironmentHandler makes use of a JAAS
login module that takes care of authenticating the user name and password. The
sample demonstrates how JAAS authentication can be plugged into applications
that use the XWS-Security framework. The source of the JAAS login module,
UserPassLoginModule.java, is located at <JWSDP_HOME>/xws-security/

samples/jaas-sample/src/com/sun/xml/wss/sample directory. The JAAS-

Validator.java class in the same directory does the actual JAAS authentica-
tion by creating a LoginContext and calling the LoggingContext.login()

method. The UserPassLoginModule makes use of a username-password XML
database located at <JWSDP_HOME>/xws-security/etc/userpasslist.xml

when performing the actual authentication in its login() method.

Setting Up For the JAAS-Sample
Before the sample application will run correctly, you must have completed the
tasks defined in the following sections of this addendum:

• Setting System Properties

• Setting Build Properties

RUNNING THE JAAS-SAMPLE APPLICATION 139
In addition, follow the steps in this section that are specific to the jaas-sample

application.

1. Stop the Application Server.

2. Set the user name and password for the example.

Because the samples are run using Asant tasks, the user name and pass-
word for this example are set as a system property. The build.xml file for
the jaas-sample example includes the following line under the run-sam-
ple target that uses a user name and password supplied in the
<JWSDP_HOME>/xws-security/etc/userpasslist.xml file.

<sysproperty key=”username.password” value=”Ron noR”/>

The JAAS login module also makes use of the userpasslist.xml file, so
make sure that this file exists and contains the user name and password
specified in the build.xml file.

3. Add the following JAAS policy to the JAAS policy file of the Application
Server. This file can be found at <SJSAS_HOME>/domains/domain1/con-
fig/login.conf. Add the following code near the end of the file:

/** Login Configuration for the Sample Application **/
XWS_SECURITY_SERVER{com.sun.xml.wss.sample.UserPassLogin-
Module REQUIRED debug=true;
};

Running the JAAS-Sample Application
To run the simple sample application, follow these steps:

1. Follow the steps in Setting Up For the JAAS-Sample.

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

b. From a Windows machine, choose Start→Programs→Sun Microsys-
tems→Application Server→Start Default Server.

3. Modify the build.properties file to set up the security configuration that
you want to run for the client and/or server. See Sample Security Configuration

File Options for more information on the security configurations options that
are already defined for the sample application.

140 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
4. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing:

[echo] Running the sample.TestClient program....
 [java] Service URL=http://localhost:8080/jaassample/Ping
 [java] Username read=Ron
 [java] Password read=noR
 [java] INFO: ==== Sending Message Start ====
 [java] <?xml version="1.0" encoding="UTF-8"?>
 [java] <env:Envelope xmlns:env="http://
schemas.xmlsoap.org/soap/envelope/" xmlns:enc="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:ns0="http://
xmlsoap.org/Ping" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 [java] <env:Header>
 [java] <wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd" env:mustUnderstand="1">
 [java] <wsse:UsernameToken>
 [java] <wsse:Username>Ron</wsse:Username>
 [java] <wsse:Password>****</wsse:Password>
 [java] <wsse:Nonce EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">qdKj8WL0U3r21rcgOiM4H76H</wsse:Nonce>

[java] <wsu:Created xmlns:wsu="http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">2004-
11-05T02:07:46Z</wsu:Created>
 [java] </wsse:UsernameToken>
 [java] </wsse:Security>
 [java] </env:Header>
 [java] <env:Body>

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 141
 [java] <ns0:Ping>
 [java] <ns0:ticket>SUNW</ns0:ticket>
 [java] <ns0:text>Hello !</ns0:text>
 [java] </ns0:Ping>
 [java] </env:Body>
 [java] </env:Envelope>
 [java] ==== Sending Message End ====

 [java] INFO: ==== Received Message Start ====
 [java] <?xml version="1.0" encoding="UTF-8"?>
 [java] <env:Envelope xmlns:env="http://
schemas.xmlsoap.org/soap/envelope/" xmlns:enc="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:ns0="http://
xmlsoap.org/Ping" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 [java] <env:Body>
 [java] <ns0:PingResponse>
 [java] <ns0:text>Hello !</ns0:text>
 [java] </ns0:PingResponse>
 [java] </env:Body>
 [java] </env:Envelope>
 [java] ==== Received Message End ====

The server code in server/src/sample/PingImpl.java makes use of a Sub-

jectAccessor to access and print the authenticated Subjects principal from
within the business method Ping().

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

Writing SecurityEnvironmentHandlers
for XWS-Security Applications

The signing and encryption operations require private-keys and certificates. An
application can obtain such information in various ways, such as looking up a
keystore with an alias, using the default key-pairs available with the container,
looking up a truststore with an alias, etc. Similarly if an application wants to
send a username-password in a UsernameToken, it can choose to obtain the user-
name-password pair in various ways, such as reading from a file, prompting the
user on the console, using a popup window, etc. The authentication of the user-

142 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
name-password on the receiving application can similarly be done by plugging
into existing authentication infrastructure, using a proprietary username-pass-
word database, etc.

To support these possibilities, XWS-Security defines a set of CallBack classes
and requires the application to define a CallBackHandler to handle these call-
backs. The xwss:SecurityEnvironmentHandler element is a compulsory child
element that needs to be specified. The value of this element is the class name of
a Java class that implements the javax.security.auth.callback.Callback-

Handler interface and handles the set of callbacks defined by XWS-Security.
There are a set of callbacks that are mandatory and every CallbackHandler

needs to implement them. A few callbacks are optional and can be used to sup-
ply some fine-grained property information to the XWS-Security run-time.

Because information such as private keys and certificates for signing and encryp-
tion can be obtained in various ways (looking up a keystore with an alias, using
the default key-pairs available with the container, looking up a truststore with an
alias, etc.), every callback defines a set of Request inner classes and a callback
can be initialized with any of its request inner classes. A tagging Request inter-
face is also defined within the callback to tag all Request classes. For example,
the XWS-Security configuration schema defines an xwss:X509Token element
containing an optional attribute certificateAlias. When the xwss:X509Token

element embedded inside a xwss:Sign element has a certificateAlias attribute
specified as shown in the following code snippet, the XWS-Security run-time
would invoke the SecurityEnvironmentHandler of the application with a Sig-

natureKeyCallback object to obtain the private-key required for the signing
operation.

<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-client"/>

</xwss:Sign>

The SignatureKeyCallback will be initialized by XWS-Security run-time with
an AliasPrivKeyCertRequest in the following manner:

SignatureKeyCallback sigKeyCallback = new
SignatureKeyCallback(new

SignatureKeyCallback.AliasPrivKeyCertRequest(alias));

The application’s SecurityEnvironmentHandler implementation then needs to
handle the SignatureKeyCallback and use the alias to locate and set the pri-
vate-key and X.509 certificate pair on the AliasPrivKeyCertRequest. The fol-

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 143
lowing code shows how this callback is handled in the handle() method of
SecurityEnvironmentHandler shipped with the simple sample.

} else if (callbacks[i] instanceof SignatureKeyCallback) {
 SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];

 if (cb.getRequest() instanceof
SignatureKeyCallback.AliasPrivKeyCertRequest) {

SignatureKeyCallback.AliasPrivKeyCertRequest
request =

(SignatureKeyCallback.AliasPrivKeyCertRequest)
cb.getRequest();
 String alias = request.getAlias();
 if (keyStore == null)
 initKeyStore();
 try {
 X509Certificate cert =
 (X509Certificate)
keyStore.getCertificate(alias);
 request.setX509Certificate(cert);
 // Assuming key passwords same as the
keystore password
 PrivateKey privKey =

(PrivateKey) keyStore.getKey(alias,
keyStorePassword.toCharArray());
 request.setPrivateKey(privKey);
 } catch (Exception e) {
 throw new IOException(e.getMessage());
 }
 } else {

throw new UnsupportedCallbackException(null,
"Unsupported Callback

Type Encountered");
 }
 }

This handler uses a keystore to locate the private key and certificate pair, and sets
it using AliasPrivKeyCertRequest.

As shown in the sample code, the SecurityEnvironmentHandler should throw
an UnsupportedCallbackException whenever it cannot handle a Callback or a
particular Request type of a Callback.

The type of Request with which the Callback is initialized often depends on the
information specified in the security configuration file of the application. For

144 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY

t

s are
sses

ey(

y)

i-

ifi-
example if the xwss:X509Token specified under an xwss:Sign element did not
contain the certificateAlias attribute, XWS-Security would invoke the appli-
cation’s SecurityEnvironmentHandler with SignatureKeyCall-

back.DefaultPrivKeyCertRequest to try and obtain the default private-key
and certificate pair. If the SecurityEnvironmentHandler does not handle this
request and throws an UnsupportedCallbackException, the signature opera-
tion would fail.

For more information, read the API documentation for callbacks from the
<JWSDP_HOME>/xws-security/docs/api/com/sun/xml/wss/impl/callback/
package-summary.html. This documentation includes the list of mandatory and
optional callbacks and the details of the Callback classes and supported meth-
ods. Table 3–24 provides a brief summary of all the mandatory Callback classes
and their associated Request types.

Table 3–24 Summary of Callback classes and their Request types

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes

Signature
Key
Callback

Used by XWS-Security run-
time to obtain the private key
to be used for signing the
corresponding X.509 certifi-
cate. There are two ways in
which an application can sup-
ply the private-key and certif-
icate information.
1. Lookup a keystore using
an alias.
2. Obtain the default private-
key and certificate from the
container/environment in
which the application is run-
ning.
Accordingly, there are two
Request inner classes with
which the Signa-
tureKeyCallback can be
initialized.

1. AliasPrivKeyC-
ertRequest: A
Callback initialized
with this request
should be handled if
the private key to be
used for signing is
mapped to an alias.
2. Default-
PrivKeyCertRe-
quest: A Callback
initialized with this
request should be han-
dled if there's some
default private key to
be used for signing.

The following four method
present in all Request Cla
of this Callback:
public void setPrivateK

PrivateKey privateKe

public PrivateKey getPr

vateKey()

public void
setX509Certificate(

X509Certificate cert
cate)
public X509Certificate

getX509Certificate()

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 145

s are

er-

te
e()

t

Signa-
ture
Verifi-
cation
Key
Callback

Obtains the certificate
required for signature verifi-
cation. There are currently
two situations in which
XWS-Security would require
this Callback to resolve the
certificate:
1. When the signature to be
verified references the key
using an X.509 Subject-
KeyIdentifier. For exam-
ple, when the sender specifies
the attribute xwss:keyRef-
erenceType="Identi-
fier" on the
xwss:X509Token child of
the xwss:Sign element.
2. When the signature to be
verified references the key
using an X.509 IssuerSe-
rialNumber. For example,
when the sender specifies the
attribute xwss:keyRefer-
enceType="IssuerSeri-
alNumber" on the
xwss:X509Token child of
the xwss:Sign element.
Accordingly, there are two
Request inner classes with
which a SignatureVeri-
ficationKeyCallback can
be initialized.
Note: Additional Requests
may be defined in a future
release.

1.
X509SubjectKeyId
entifierBase-
dRequest: Request
for an X.509 certifi-
cate whose X.509
SubjectKeyIden-
tifier value is
given.
2.
X509IssuerSerial
BasedRequest:
Request for an X.509
certificate whose
issuer name and serial
number values are
given.

The following two method
present in all the Request
classes of this Callback:

public void
setX509Certificate(

X509Certificate c
tificate)
public X509Certifica

getX509Certificat

Table 3–24 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes

146 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY

s are

Requ

teRe
f this

er-

te
e()

t-
his

t-

etKe

ey

t

Encryp-
tion
Key
Callback

Obtains the certificate for
key-encryption or a symmet-
ric-key for data encryption.
There are currently three situ-
ations in which XWS-Secu-
rity would require this
Callback for performing
encryption:
1. When the xwss:Encrypt
element contains an
xwss:X509Token child with
certificateAlias
attribute set to an alias. The
certificateAlias indi-
cates that a random symmet-
ric key is used for encryption
of the specified message part
and the certificate is then
used to encrypt the random
symmetric-key to be sent
along with the message.
2. When the xwss:Encrypt
element contains an
xwss:X509Token child with
no certificateAlias
attribute set on it. XWS-
Security tries to obtain a
default certificate from the
Callback to be used for
encrypting the random sym-
metric key.
3. When the xwss:Encrypt
element contains an
xwss:SymmetricKey child
specifying the keyAlias
attribute. This alias indicates
that a symmetric key corre-
sponding to this alias needs
to be located and used for
encryption of the specified
message part.
Accordingly, there are three
Request inner classes with
which an EncryptionKey-

1.
AliasX509Certifi
cateRequest: A
Callback initialized
with this request
should be handled if
the X.509 certificate
to be used for encryp-
tion is mapped to an
alias.
2.
DefaultX509Certi
ficateRequest: A
Callback initialized
with this request
should be handled if
there's a default X.509
certificate to be used
for encryption.
3. AliasSymmet-
ricKeyRequest: A
Callback initialized
with this request
should be handled if
the symmetric key to
be used for encryp-
tion is mapped to an
alias.

The following two method
present in the
AliasX509Certificate
est and
DefaultX509Certifica
quest Request classes o
Callback:

public void
setX509Certificate(

X509Certificate c
tificate)
public X509Certifica

getX509Certificat

The following methods are
present in the AliasSymme
ricKeyRequest class of t
Callback:

public void setSymme
ricKey(

javax.crypto.Secr
y

symmetricKey)
public
javax.crypto.SecretK

getSymmetricKey()

Table 3–24 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes
Callback can be initialized.

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 147

s are

fier

dReq

Requ
is

t

Decryp-
tion
Key
Callback

Obtains the symmetric key to
be used for decrypting the
encrypted data or obtaining
the private-key for decrypting
the encrypted random sym-
metric key that was sent with
the message (along with the
encrypted data).
There are currently four situ-
ations in which XWS-Secu-
rity will require this
Callback to perform
decryption.
1. When the EncryptedKey
references the key (used for
encrypting the symmetric
key) using an X.509 Sub-
jectKeyIdentifier. For
example, when the sender
specifies the attribute key-
ReferenceType="Identi-
fier" on the
xwss:X509Token child of
the xwss:Encrypt element.
2. When the Encrypted-
Key references the key (used
for encrypting the symmetric
key) using an X.509 Issu-
erSerialNumber. For
example, when the sender
specifies the attribute key-
ReferenceType="Issu-
erSerialNumber" on the
xwss:x509Token child of
xwss:Encrypt element.

1.
X509SubjectKeyId
entifierBase-
dRequest: Request
for a private-key when
the X.509 Subject-
KeyIdentifier
value for a corre-
sponding X.509 certif-
icate is given.
2.
X509IssuerSerial
BasedRequest:
Request for a private
key when the issuer
name and serial num-
ber values for a corre-
sponding X.509
certificate are given.
3.
X509CertificateB
asedRequest:
Request for a private
key when a corre-
sponding X.509 certif-
icate is given.

The following two method
present in the
X509SubjectKeyIdenti
BasedRequest,
X509IssuerSerialBase
uest, and
X509CertificateBased
est Request classes of th
Callback:

public void setPri-
vateKey(

PrivateKey pri-
vateKey)
public PrivateKey

getPrivateKey()

Table 3–24 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes

148 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY

t-
his

t-

etKe

ey

t

Decryp-
tion
Key
Call-
back
(contin-
ued)

3. When the EncryptedKey
contains a wsse:Direct ref-
erence to the key used for
encrypting the symmetric
key. This means the X.509
certificate is present as a
wsse:BinarySecurityTo-
ken in the message. For
example, when the sender
specifies the attribute key-
Reference-
Type="Direct" on the
xwss:x509Token child of
xwss:Encrypt element.
4. When the Encrypted-
Data contains a ds:key-
Name reference to the
symmetric key that was used
for encryption. For example,
when the sender specifies the
xwss:SymmetricKey child
of xwss:Encrypt and speci-
fies the keyAlias attribute
on it.
Accordingly, there are four
Request classes with which
a DecryptionKeyCall-
back can be initialized.

4. AliasSymmet-
ricKeyRequest: A
Callback initialized
with this request
should be handled if
the symmetric key to
be used for decryp-
tion is mapped to
some alias.

The following methods are
present in the AliasSymme
ricKeyRequest class of t
Callback:

public void setSymme
ricKey(

javax.crypto.Secr
y

symmetricKey)
public
javax.crypto.SecretK

getSymmetricKey()

Table 3–24 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 149

r-

s-

-

)

ed by
ile
lized

text
.

ing

ing

ing

ing

ing

t

Password
Valida-
tion
Callback

Username-Password valida-
tion. A validator that imple-
ments the
PasswordValidator inter-
face should be set on the call-
back by the callback handler.
There are currently two situa-
tions in which XWS-Security
will require this Callback to
perform username-password
validation:
1. When the receiver gets a
UsernameToken with plain-
text user name and password.
2. When the receiver gets a
UsernameToken with a
digested password (as speci-
fied in the WSS Username-
Token Profile).
Accordingly there are two
Request classes with which
the PasswordValidation-
Callback can be initialized.
Note: A validator for WSS
Digested Username-Pass-
word is provided as part of
this callback, with classname
PasswordValidation-
Callback.DigestPass-
wordValidator.
This class implements WSS
digest password validation.
The method for computing
password digest is described
in http://docs.oasis-
open.org/wss/2004/01/
oasis-200401-wss-user-
name-token-profile-
1.0.pdf.
For more information, see the
ServerSecurityEnviron-
mentHandler in
<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-

1. PlainTextPass-
wordRequest: Rep-
resents a validation
request when the pass-
word in the username
token is in plain text.
2. DigestPasswor-
dRequest: Repre-
sents a validation
request when the pass-
word in the username
token is in digested
form.

The following methods are
present in the PlainText-
PasswordRequest:
public String getUse
name()
public String getPas
word()

The following methods are
present in the DigestPass
wordRequest:
public void setPass-
word(String password

This method must be invok
the CallbackHandler wh
handling a Callback initia
with DigestPasswor-
dRequest to set the plain-
password on the Callback

public java.lang.Str
getPassword()

public java.lang.Str
getUsername()

public java.lang.Str
getDigest()
public java.lang.Str
getNonce()
public java.lang.Str
getCreated()

Table 3–24 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes
ple/src/com/sun/xml/
wss/sample.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

150 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY

t

Username
Callback

To supply the user name for
the UsernameToken at run-
time. It contains the follow-
ing two methods:
public void setUser-
name(
 String username)
public String getUser-
name()

Refer to the ClientSecu-
rityEnvironmen-
tHandler of the
jaas-sample sample

located in
<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-
ple/src/com/sun/xml/
wss/sample for more
details on using the Usern-
ameCallback.

Pass-
word-
Callback

To supply the password for
the username token at run-
time. It contains the follow-
ing two methods:

public void setPass-
word(String

password)
public String getPass-
word()
Refer to the ClientSecu-
rityEnvironmen-
tHandler of the jaas-
sample sample located in
<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-
ple/src/com/sun/xml/
wss/sample for more
details on using the Pass-
wordCallback.

Table 3–24 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 151

t

The following code snippet shows the handle() method skeleton for an applica-
tion's SecurityEnvironmentHandler that handles all the mandatory Callbacks

(except UsernameCallback and PasswordCallback) and associated Requests

defined by XWS-Security. A particular application may choose to throw an
UnsupportedCallbackException for any of the Callbacks or its Requests that
it cannot handle. The UsernameCallback and PasswordCallback are useful for
obtaining a username-password pair at run-time and are explained later in this
section.

Property
Callback

Optional callback to specify
the values of properties con-
figurable with XWS-Secu-
rity run-time.
Refer to the API documenta-
tion at <JWSDP_HOME>/
xws-security/docs/api/
com/sun/xml/wss/impl/
callback/PropertyCall-
back.html for a list of con-
figurable properties methods
supported by this callback.

Prefix
Namespac
e
Mapping
Callback

Optional callback to register
any prefix versus namespace-
uri mappings that the devel-
oper wants to make use of in
the security configuration
(while specifying Targets
as xpaths).
Refer to the API documenta-
tion at <JWSDP_HOME>/xws-
security/docs/api/com/
sun/xml/wss/impl/call-
back/Prefix-
NamespaceMappingCallba
ck.html for more details.

Table 3–24 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reques
Classes

152 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
Note: In this release of XWS-Security, users will have to ensure that the Securi-
tyEnvironmentHandler implementation they supply is thread safe.

public class SecurityEnvironmentHandler implements
CallbackHandler {

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

 for (int i=0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof
PasswordValidationCallback) {
 PasswordValidationCallback cb =
(PasswordValidationCallback) callbacks[i];
 if (cb.getRequest() instanceof

PasswordValidationCallback.PlainTextPasswor
dRequest) {
 // setValidator for plain-text password
validation on callback cb
 } else if (cb.getRequest() instanceof

PasswordValidationCallback.DigestPasswor
dRequest) {

PasswordValidationCallback.DigestPasswordRequest request =

(PasswordValidationCallback.DigestPasswordRequest)
cb.getRequest();
 // set plaintext password on request

// setValidator for digest password validation
on cb

 } else {
 // throw unsupported;
 }

 } else if (callbacks[i] instanceof
SignatureVerificationKeyCallback) {
 SignatureVerificationKeyCallback cb =

(SignatureVerificationKeyCallback)callbacks
[i];

 if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Subjec

tKeyIdentifierBasedRequest) {
 // subject keyid request

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 153
SignatureVerificationKeyCallback.X509SubjectKeyIdentifierBased
Request

request =

(SignatureVerificationKeyCallback.X509SubjectKeyIdentifierBase
dRequest)

cb.getRequest();
// locate and setX509Certificate on the request

 } else if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Iss

uerSerialBasedRequest) {
 // issuer serial request

SignatureVerificationKeyCallback.X509IssuerSerialBasedRequest
request =

(SignatureVerificationKeyCallback.X509IssuerSerialBasedRequest
)

cb.getRequest();
// locate and setX509Certificate on the request

 } else {
 // throw unsupported;
 }

 } else if (callbacks[i] instanceof
SignatureKeyCallback) {
 SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];
 if (cb.getRequest() instanceof
SignatureKeyCallback.DefaultPrivKeyCertRequest) {
 // default priv key cert req

SignatureKeyCallback.DefaultPrivKeyCertRequest
request =

(SignatureKeyCallback.DefaultPrivKeyCertRequest)
cb.getRequest();
 // locate and set default privateKey and
X509Certificate on request
 } else if (cb.getRequest() instanceof
SignatureKeyCallback.AliasPrivKeyCertRequest) {
 // Alias priv key cert req

SignatureKeyCallback.AliasPrivKeyCertRequest
request =

(SignatureKeyCallback.AliasPrivKeyCertRequest)
cb.getRequest();

154 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
 // locate and set default privateKey and
X509Certificate on request

 } else {
 // throw unsupported;
 }

 } else if (callbacks[i] instanceof
DecryptionKeyCallback) {
 DecryptionKeyCallback cb =
(DecryptionKeyCallback)callbacks[i];

 if (cb.getRequest() instanceof
DecryptionKeyCallback.X509SubjectKeyIdentif

ierBasedRequest) {
 //ski request

DecryptionKeyCallback.X509SubjectKeyIdentifierBasedRequest
request =

(DecryptionKeyCallback.X509SubjectKeyIdentifierBasedRequest)
cb.getRequest();

// locate and set the privateKey on the request

 } else if (cb.getRequest() instanceof
DecryptionKeyCallback.X509IssuerSerialBas

edRequest) {
 // issuer serial request

DecryptionKeyCallback.X509IssuerSerialBasedRequest request =

(DecryptionKeyCallback.X509IssuerSerialBasedRequest)
cb.getRequest();

// locate and set the privateKey on the request
 } else if (cb.getRequest() instanceof

DecryptionKeyCallback.X509CertificateBas
edRequest) {
 // X509 cert request

DecryptionKeyCallback.X509CertificateBasedRequest request =

(DecryptionKeyCallback.X509CertificateBasedRequest)
cb.getRequest();

// locate and set private key on the request
 } else if (cb.getRequest() instanceof

DecryptionKeyCallback.AliasSymmetricKeyR
equest) {

DecryptionKeyCallback.AliasSymmetricKeyRequest

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 155
request =

(DecryptionKeyCallback.AliasSymmetricKeyRequest)
cb.getRequest();
 // locate and set symmetric key on request

 } else {
 // throw unsupported;
 }

 } else if (callbacks[i] instanceof
EncryptionKeyCallback) {
 EncryptionKeyCallback cb =
(EncryptionKeyCallback)callbacks[i];

 if (cb.getRequest() instanceof
EncryptionKeyCallback.AliasX509CertificateRequest) {

EncryptionKeyCallback.AliasX509CertificateRequest request =

(EncryptionKeyCallback.AliasX509CertificateRequest)
cb.getRequest();

// locate and set certificate on request
 } else if (cb.getRequest() instanceof

EncryptionKeyCallback.AliasSymmetricKeyRe
quest) {

EncryptionKeyCallback.AliasSymmetricKeyRequest
request =

(EncryptionKeyCallback.AliasSymmetricKeyRequest)
cb.getRequest();
 // locate and set symmetric key on request

 } else {
 // throw unsupported;
 }

 } else if (callbacks[i] instanceof
CertificateValidationCallback) {
 CertificateValidationCallback cb =
(CertificateValidationCallback)callbacks[i];

// set an X509 Certificate Validator on the callback
 } else {
 // throw unsupported;
 }
 }
 }
}

156 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
An application can also choose not to handle certain callbacks if it knows that
the particular application will never require those callbacks. For example if the
security application only deals with signing the requests and does not deal with
encryption or username tokens, its handle() method only needs to worry about
SignatureKeyCallback (with its associated Requests) and SignatureVerifi-

cationKeyCallback (with its associated Requests). It can then throw an
UnsupportedCallbackException for any other callback. The following code
shows the handle() method skeleton for such an application:

public class SecurityEnvironmentHandler implements
CallbackHandler {

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

 for (int i=0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof
SignatureVerificationKeyCallback) {
 SignatureVerificationKeyCallback cb =

(SignatureVerificationKeyCallback)callbacks
[i];

 if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Subjec

tKeyIdentifierBasedRequest) {
 // subject keyid request

SignatureVerificationKeyCallback.X509SubjectKeyIdentifierBased
Request

request =

(SignatureVerificationKeyCallback.X509SubjectKeyIdentifierBase
dRequest)

cb.getRequest();
// locate and setX509Certificate on the request

 } else if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Issu

erSerialBasedRequest) {
 // issuer serial request

SignatureVerificationKeyCallback.X509IssuerSerialBasedRequest
request =

(SignatureVerificationKeyCallback.X509IssuerSerialBasedRequest
)

WRITING SECURITYENVIRONMENTHANDLERS FOR XWS-SECURITY APPLICATIONS 157
cb.getRequest();
// locate and setX509Certificate on the request

 } else {
 // throw unsupported;
 }

 } else if (callbacks[i] instanceof
SignatureKeyCallback) {
 SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];
 if (cb.getRequest() instanceof
SignatureKeyCallback.DefaultPrivKeyCertRequest) {
 // default priv key cert req

SignatureKeyCallback.DefaultPrivKeyCertRequest
request =

(SignatureKeyCallback.DefaultPrivKeyCertRequest)
cb.getRequest();
 // locate and set default privateKey and
X509Certificate on request
 } else if (cb.getRequest() instanceof
SignatureKeyCallback.AliasPrivKeyCertRequest) {
 // Alias priv key cert req

SignatureKeyCallback.AliasPrivKeyCertRequest
request =

(SignatureKeyCallback.AliasPrivKeyCertRequest)
cb.getRequest();
 // locate and set default privateKey and
X509Certificate on request

 } else {
 // throw unsupported;
 }

 } else {
 // throw unsupported;
 }
 }
 }
}

Similarly, an application dealing only with UsernameToken but not signature or
encryption requirements can simply throw UnsupportedCallbackException

for all non-username related callbacks.

158 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
The SecurityEnvironmentHandler implementation for the simple sample is
located in the directory <JWSDP_HOME>/xws-security/samples/simple/src/

com/sun/xml/wss/sample. The simple sample uses the same SecurityEnvi-

ronmentHandler for both the client and server side.

The jaas-sample sample requires a different set of callbacks to be handled on
the client and server side. The CallbackHandlers for the jaas-sample sample
are located in the directory <JWSDP_HOME>/xws-security/samples/jaas-sam-

ple/src/com/sun/xml/wss/sample. The two CallbackHandlers defined for
the jaas-sample are:

• A ClientSecurityEnvironmentHandler that handles only the Usern-

ameCallback and PasswordCallback for retrieving the username and
password to be sent in a WSS UsernameToken.

• A ServerSecurityEnvironmentHandler that handles only the Pass-

wordValidationCallback to validate the username-password pair that it
received in the WSS UsernameToken.

Using the SubjectAccessor API
XWS-Security applications might require access to the authenticated subject of
the sender from within the SEI implementation methods. The SubjectAccessor

API contains a single method:

public static Subject getRequesterSubject(Object context)
throws XWSSecurityException

This method returns the Subject if one is available or else it returns NULL. The
context argument to be passed into this method is the ServletEndpointContext

which is available with the SEI implementation class. For an example on how
the SubjectAccessor is used to obtain the authenticated sender subject, refer to
the PingImpl.java class in the jaas-sample sample located at <JWSDP_HOME>/
xws-security/samples/jaas-sample/server/src/sample. The API for Sub-
jectAccessor viewed from <JWSDP_HOME>/xws-security/docs/api/com/

sun/xml/wss/SubjectAccessor.html.

USEFUL XWS-SECURITY COMMAND-LINE TOOLS 159
Useful XWS-Security Command-Line
Tools

In this release, the following command-line tools are included. These tools pro-
vide specialized utilities for keystore management or for specifying security con-
figuration files:

• pkcs12import

pkcs12import

The pkcs12import command allows Public-Key Cryptography Standards ver-
sion 12 (PKCS-12) files (sometimes referred to as PFX files) to be imported into
a keystore, typically a keystore of type Java KeyStore (JKS).

When would you want to do this? One example would be a situation where you
want to obtain a new certificate from a certificate authority. In this scenario, one
option is to follow this sequence of steps:

1. Generate a key-pair.

2. Generate a certificate request

3. Send the request to the authority for its signature

4. Get the signed certificate and import it into this keystore.

Another option is to let the certificate authority generate a key-pair. The author-
ity would return a generated certificate signed by itself along with the corre-
sponding private key. One way the certificate authority can return this
information is to bundle the key and the certificate in a PKCS-12 formatted file
(generally .pfx extension files). The information in the PKCS-12 file would be
encrypted using a password that would be conveyed to the user by the authority.
After receiving the PKCS-12 formatted file, you would import this key-pair (cer-
tificate/private-key pair) into your private keystore using the pkcs12import tool.
The result of the import is that the private-key and the corresponding certificate
in the PKCS-12 file are stored as a key entry inside the keystore, associated with
some alias.

The pkcs12import tool can be found in the directory <JWSDP_HOME>/xws-secu-

rity/bin, and can be run from the command line by executing

160 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
pkcs12import.sh (on Unix systems) or pkcs12import.bat (on Windows sys-
tems). The options for this tool listed in Table 3–25.

keyexport

This tool is used to export a private key in a keystore (typically of type Java Key-
store (JKS)) into a file.

Note: The exported private key is not secured with a password, so it should be han-
dled carefully. For example, you can export a private key from a keystore and use it
to sign certificate requests obtained through any means using other key/certificate
management tools. These certificate requests are then sent to a certificate authority
for validation and certificate generation.

The keyexport tool can be found in the directory <JWSDP_HOME>/xws-secu-

rity/bin/, and can be run from the command line by executing keyexport.sh

Table 3–25 Options for pkcs12import tool

Option Description

-file pkcs12-file
Required. The location of the PKCS-12 file to be
imported.

[-pass pkcs12-pass-
word]

The password used to protect the PKCS-12 file. The
user is prompted for this password if this option is
omitted.

[-keystore keystore-
file]

Location of the keystore file into which to import the
contents of the PKCS-12 file. If no value is given,
defaults to ${user-home}/.keystore.

[-storepass store-
password]

The password of the keystore. User is prompted for
the password of the truststore if this option is omitted.

[-keypass key-pass-
word]

The password to be used to protect the private key
inside the keystore. The user is prompted for this
password if this option is omitted.

[-alias alias]
The alias to be used to store the key entry (private key
and the certificate) inside the keystore.

wscompile 161
(on Unix systems) or keyexport.bat (on Windows systems). The options for
this tool are listed in Table 3–26.

wscompile

The wscompile tool generates the client stubs and server-side ties for the service
definition interface that represents the Web service interface. Additionally, it
generates the WSDL description of the Web service interface which is then used
to generate the implementation artifacts.

XWS-Security has been integrated into JAX-RPC through the use of security
configuration files. The code for performing the security operations on the client
and server is generated by supplying the configuration files to the JAX-RPC
wscompile tool. The wscompile tool can be instructed to generate security code
by making us of the -security option to specify the location of the security
configuration file that contains information on how to secure the messages to be
sent. An example of using the -security option with wscompile is shown in
How Do I Specify the Security Configuration for the Build Files?.

Table 3–26 Options for keyexport tool

Option Description

-keyfile key-file
Required. The location of the file to which the private key will
be exported.

[-outform output-for-
mat]

This specifies the output format. The options are DER and
PEM. The DER format is the DER encoding (binary format)
of the certificate. The PEM format is the base64-encoding of
the DER encoding with header and footer lines added.

[-keystore keystore-
file]

Location of the keystore file containing the key. If no value is
given, this option defaults to ${user-home}/.keystore.

[-storepass store-
password]

Password of the keystore. User is prompted for the password if
this option is omitted.

[-keypass key-pass-
word]

The password used to protect the private key inside the key-
store. User is prompted for the password if this option is omit-
ted.

[-alias alias] The alias of the key entry inside the keystore.

162 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY
The syntax for this option is as follows:

wscompile [-security {location of security configuration

file}]

For more description of the wscompile tool, its syntax, and examples of using
this tool, read:
http://docs.sun.com/source/817-6092/hman1m/wscompile.1m.html

Troubleshooting XWS-Security
Applications

This section lists some possible errors and the possible causes for these errors.
For more troubleshooting information, read the online release notes at http://
java.sun.com/webservices/docs/1.5/xws-security/ReleaseNotes.html.

Error: at XMLCipher.getInstance (Unknown Source)

[java] Exception in thread "main"
java.lang.NullPointerException
[java] at
com.sun.org.apache.xml.security.encryption.XMLCipher.getInstan
ce(Unknown Source)

Solution: Configure a JCE provider as described in Configuring a JCE Provider.

Error: UnsupportedClassVersionError

java.lang.UnsupportedClassVersionError: com/sun/tools/javac/
Main (Unsupported major.minor version 49.0)

Solution: Install version 1.4.2_04 of Java 2 Standard Edition (J2SE). If you had
an older version of the JDK, you will also have to reinstall the Application
Server so that it recognizes this as the default version of the JDK. If you’ve
installed version 1.5 of the JDK, you must use version 1.4.2 as the target JDK for
XWS-Security.

http://docs.sun.com/source/817-6092/hman1m/wscompile.1m.html
http://java.sun.com/webservices/docs/1.5/xws-security/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.5/xws-security/ReleaseNotes.html

FURTHER INFORMATION 163
Error: DeployTask not found
Solution: Verify that the jwsdp.home property in the build.properties file for
the sample is set correctly to the location where you installed the Java WSDP
version 1.5, as described in Setting Build Properties.

Compiler Errors
If you use Application Server 2004Q4 Beta for the container, you will get com-
piler errors. This is because this version of the Application server has an earlier
(pre-FCS) version of XWS-Security bundled into it. The compilation errors that
you see are because these classes do not exist in the pre-FCS version of XWS-
Security shipped in this version of the Application Server.

Further Information
• Java 2 Standard Edition, v.1.5.0 security information

http://java.sun.com/j2se/1.5.0/docs/guide/security/

index.html

• Java Servlet specification
http://java.sun.com/products/servlet/

• Information on SSL specifications
http://wp.netscape.com/eng/security/

• XML Encryption Syntax and Processing
http://www.w3.org/TR/xmlenc-core/

• Digital Signatures Working Draft
http://www.w3.org/Signature/

• JSR 105-XML Digital Signature APIs
http://www.jcp.org/en/jsr/detail?id=105

• JSR 106-XML Digital Encryption APIs
http://www.jcp.org/en/jsr/detail?id=106

• Public-Key Cryptography Standards (PKCS)
http://www.rsasecurity.com/rsalabs/pkcs/index.html

• Java Authentication and Authorization Service (JAAS)
http://java.sun.com/products/jaas/.

http://wp.netscape.com/eng/security/
http://www.rsasecurity.com/rsalabs/pkcs/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/products/servlet/
http://java.sun.com/products/jaas/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/Signature/
http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=106
http://www.jcp.org/en/jsr/detail?id=106

164 SECURING JAX-RPC APPLICATIONS WITH XML AND WEB SERVICES SECURITY

4

165
Java XML Digital
Signature API

THE Java XML Digital Signature API is a standard Java API for generating
and validating XML Signatures. This API is being defined under the Java Com-
munity Process as JSR 105 (see http://jcp.org/en/jsr/detail?id=105).
This JSR is currently at Proposed Final Draft stage and this release of Java
WSDP contains an early access implementation of the Proposed Final Draft ver-
sion of the APIs.

XML Signatures can be applied to data of any type, XML or binary (see http:/

/www.w3.org/TR/xmldsig-core/). The resulting signature is represented in
XML. An XML Signature can be used to secure your data and provide data
integrity, message authentication, and signer authentication.

After providing a brief overview of XML Signatures and the XML Digital Sig-
nature API, this chapter presents two examples that demonstrate how to use the
API to validate and generate an XML Signature. This chapter assumes that you
have a basic knowledge of cryptography and digital signatures.

The API is designed to support all of the required or recommended features of
the W3C Recommendation for XML-Signature Syntax and Processing. The API
is extensible and pluggable and is based on the Java Cryptography Service Pro-
vider Architecture. The API is designed for two types of developers:

• Java programmers who want to use the XML Digital Signature API to gen-
erate and validate XML signatures

http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

166 JAVA XML DIGITAL SIGNATURE API
• Java programmers who want to create a concrete implementation of the
XML Digital Signature API and register it as a cryptographic service of a
JCA provider (see http://java.sun.com/j2se/1.4.2/docs/guide/

security/CryptoSpec.html#Provider)

How XWS-Security and XML Digital
Signature API Are Related

Before getting into specifics, it is important to see how XWS-Security and XML
Digital Signature API are related. In this release of the Java WSDP, XWS-Secu-
rity is based on non-standard XML Digital Signature APIs.

XML Digital Signature API is an API that should be used by Java applications
and middleware that need to create and/or process XML Signatures. It can be
used by Web Services Security (the goal for a future release) and by non-Web
Services technologies (for example, signing documents stored or transferred in
XML). Both JSR 105 and JSR 106 (XML Digital Encryption APIs) are core-
XML security components. (See http://www.jcp.org/en/jsr/

detail?id=106 for more information about JSR 106.)

XWS-Security does not currently use the XML Digital Signature API or XML
Digital Encryption APIs. XWS-Security uses the Apache libraries for XML-
DSig and XML-Enc. The goal of XWS-Security is to move toward using these
APIs in future releases.

http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://www.jcp.org/en/jsr/detail?id=106
http://www.jcp.org/en/jsr/detail?id=106

XML SECURITY STACK 167
XML Security Stack
Figure 4–1 shows how the XML Digital Signature API (JSR 105) interacts with
other security components today, including JSR 106 (XML Digital Encryption
APIs), and how it will interact in future releases.

Figure 4–1 Java WSDP Security Components

XWSS calls Apache XML-Security directly today; in future releases, it should
be able to call other pluggable security providers. The Apache XML-Security
provider and the Sun JCA Provider are both pluggable components. The JSR
105/JSR 106 layer will be standard after the two JSRs become final.

Package Hierarchy
The six packages in the XML Digital Signature API are:

• javax.xml.crypto

• javax.xml.crypto.dsig

• javax.xml.crypto.dsig.keyinfo

• javax.xml.crypto.dsig.spec

• javax.xml.crypto.dom

• javax.xml.crypto.dsig.dom

168 JAVA XML DIGITAL SIGNATURE API
The javax.xml.crypto package contains common classes that are used to per-
form XML cryptographic operations, such as generating an XML signature or
encrypting XML data. Two notable classes in this package are the KeySelector

class, which allows developers to supply implementations that locate and option-
ally validate keys using the information contained in a KeyInfo object, and the
URIDereferencer class, which allows developers to create and specify their own
URI dereferencing implementations.

The javax.xml.crypto.dsig package includes interfaces that represent the
core elements defined in the W3C XML digital signature specification. Of pri-
mary significance is the XMLSignature class, which allows you to sign and vali-
date an XML digital signature. Most of the XML signature structures or
elements are represented by a corresponding interface (except for the KeyInfo

structures, which are included in their own package and are discussed in the next
paragraph). These interfaces include: SignedInfo, CanonicalizationMethod,
SignatureMethod, Reference, Transform, DigestMethod, XMLObject, Mani-
fest, SignatureProperty, and SignatureProperties. The XMLSignature-

Factory class is an abstract factory that is used to create objects that implement
these interfaces.

The javax.xml.crypto.dsig.keyinfo package contains interfaces that repre-
sent most of the KeyInfo structures defined in the W3C XML digital signature
recommendation, including KeyInfo, KeyName, KeyValue, X509Data,
X509IssuerSerial, RetrievalMethod, and PGPData. The KeyInfoFactory

class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.spec package contains interfaces and classes
representing input parameters for the digest, signature, transform, or canonical-
ization algorithms used in the processing of XML signatures.

Finally, the javax.xml.crypto.dom and javax.xml.crypto.dsig.dom pack-
ages contains DOM-specific classes for the javax.xml.crypto and
javax.xml.crypto.dsig packages, respectively. Only developers and users
who are creating or using a DOM-based XMLSignatureFactory or KeyInfo-

Factory implementation should need to make direct use of these packages.

Service Providers
A JSR 105 cryptographic service is a concrete implementation of the abstract
XMLSignatureFactory and KeyInfoFactory classes and is responsible for cre-
ating objects and algorithms that parse, generate and validate XML Signatures

http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/KeySelector.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/URIDereferencer.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignature.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignedInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/CanonicalizationMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Reference.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Transform.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/DigestMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLObject.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperty.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperties.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyName.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyValue.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509Data.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509IssuerSerial.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/RetrievalMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/PGPData.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/spec/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html

INTRODUCTION TO XML SIGNATURES 169
and KeyInfo structures. A concrete implementation of XMLSignatureFactory

must provide support for each of the required algorithms as specified by the
W3C recommendation for XML Signatures. It may support other algorithms as
defined by the W3C recommendation or other specifications.

JSR 105 leverages the JCA provider model for registering and loading XMLSig-

natureFactory and KeyInfoFactory implementations.

Each concrete XMLSignatureFactory or KeyInfoFactory implementation sup-
ports a specific XML mechanism type that identifies the XML processing mech-
anism that an implementation uses internally to parse and generate XML
signature and KeyInfo structures. This JSR supports one standard type, DOM.
The XML Digital Signature API early access provider implementation that is
bundled with Java WSDP supports the DOM mechanism. Support for new stan-
dard types, such as JDOM, may be added in the future.

An XML Digital Signature API implementation should use underlying JCA
engine classes, such as java.security.Signature and java.security.Mes-

sageDigest, to perform cryptographic operations.

Introduction to XML Signatures
As mentioned, an XML Signature can be used to sign any arbitrary data, whether
it is XML or binary. The data is identified via URIs in one or more Reference
elements. XML Signatures are described in one or more of three forms:
detached, enveloping, or enveloped. A detached signature is over data that is
external, or outside of the signature element itself. Enveloping signatures are sig-
natures over data that is inside the signature element, and an enveloped signature
is a signature that is contained inside the data that it is signing.

Example of an XML Signature
The easiest way to describe the contents of an XML Signature is to show an
actual sample and describe each component in more detail. The following is an
example of an enveloped XML Signature generated over the contents of an XML
document. The contents of the document before it is signed are:

<Envelope xmlns="urn:envelope">
</Envelope>

http://java.sun.com/j2se/1.4/docs/api/java/security/Signature.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html

170 JAVA XML DIGITAL SIGNATURE API
The resulting enveloped XML Signature, indented and formatted for readability,
is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="urn:envelope">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#dsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/
xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>

<DigestValue>uooqbWYa5VCqcJCbuymBKqm17vY=</DigestValue>
 </Reference>
 </SignedInfo>
<SignatureValue>
KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQRl26S2tmXjqNND7MRGtoew==
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu0ImbzRMqzVDZkVG9xD7nN1kuFw==
 </P>
 <Q>li7dzDacuo67Jg7mtqEm2TRuOMU=</Q>
 <G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/
XPaF5Bpsy4pNWMOHCBiNU0NogpsQW5QvnlMpA==
 </G>
 <Y>qV38IqrWJG0V/
mZQvRVi1OHw9Zj84nDC4jO8P0axi1gb6d+475yhMjSc/
BrIVC58W3ydbkK+Ri4OKbaRZlYeRA==
 </Y>
 </DSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
</Envelope>

EXAMPLE OF AN XML SIGNATURE 171
The Signature element has been inserted inside the content that it is signing,
thereby making it an enveloped signature. The required SignedInfo element
contains the information that is actually signed:

<SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#dsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/
xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
 <DigestValue>uooqbWYa5VCqcJCbuymBKqm17vY=</DigestValue>
 </Reference>
</SignedInfo>

The required CanonicalizationMethod element defines the algorithm used to
canonicalize the SignedInfo element before it is signed or validated. Canonical-
ization is the process of converting XML content to a canonical form, to take
into account changes that can invalidate a signature over that data. Canonicaliza-
tion is necessary due to the nature of XML and the way it is parsed by different
processors and intermediaries, which can change the data such that the signature
is no longer valid but the signed data is still logically equivalent.

The required SignatureMethod element defines the digital signature algorithm
used to generate the signature, in this case DSA with SHA-1.

One or more Reference elements identify the data that is digested. Each Refer-

ence element identifies the data via a URI. In this example, the value of the URI
is the empty String (""), which indicates the root of the document. The optional
Transforms element contains a list of one or more Transform elements, each of
which describes a transformation algorithm used to transform the data before it
is digested. In this example, there is one Transform element for the enveloped
transform algorithm. The enveloped transform is required for enveloped signa-
tures so that the signature element itself is removed before calculating the signa-
ture value. The required DigestMethod element defines the algorithm used to
digest the data, in this case SHA1. Finally the required DigestValue element
contains the actual base64-encoded digested value.

172 JAVA XML DIGITAL SIGNATURE API
The required SignatureValue element contains the base64-encoded signature
value of the signature over the SignedInfo element.

The optional KeyInfo element contains information about the key that is needed
to validate the signature:

<KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu0ImbzRMqzVDZkVG9xD7nN1kuFw==
 </P>
 <Q>li7dzDacuo67Jg7mtqEm2TRuOMU=</Q>
 <G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/
XPaF5Bpsy4pNWMOHCBiNU0NogpsQW5QvnlMpA==
 </G>
 <Y>
qV38IqrWJG0V/mZQvRVi1OHw9Zj84nDC4jO8P0axi1gb6d+475yhMjSc/
BrIVC58W3ydbkK+Ri4OKbaRZlYeRA==
 </Y>
 </DSAKeyValue>
 </KeyValue>
</KeyInfo>

This KeyInfo element contains a KeyValue element, which in turn contains a
DSAKeyValue element consisting of the public key needed to validate the signa-
ture. KeyInfo can contain various content such as X.509 certificates and PGP
key identifiers. See the KeyInfo section of the XML Signature Recommenda-
tion for more information on the different KeyInfo types.

XML Digital Signature API Examples
The following sections describe two examples that show how to use the XML
Digital Signature API:

• Validate example

• Signing example

To run the sample applications using the supplied Ant build.xml files, issue the
following commands after you installed Java WSDP:

For Solaris/Linux:

1.% export JAVA_HOME=<your J2SE installation directory>

http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo

VALIDATE EXAMPLE 173
2.% export JWSDP_HOME=<your Java WSDP installation directory>

3.% export ANT_HOME=$JWSDP_HOME/apache-ant

4. % export PATH=$ANT_HOME/bin:$PATH

5. % cd $JWSDP_HOME/xmldsig/samples/<sample-name>

For Windows 2000/XP:

1.> set JAVA_HOME=<your J2SE installation directory>

2.> set JWSDP_HOME=<your Java WSDP installation directory>

3.> set ANT_HOME=%JWSDP_HOME%\apache-ant

4.> set PATH=%ANT_HOME%\bin;%PATH%

5.> cd %JWSDP_HOME%\xmldsig\samples\<sample-name>

validate Example
You can find the code shown in this section in the Validate.java file in the
<JWSDP_HOME>/xmldsig/samples/validate directory. The file on which it
operates, envelopedSignature.xml, is in the same directory.

If you are behind a firewall and use an HTTP proxy server, you will need to
modify the build.properties file before you can run this example.

To run the example, execute the following command from the <JWSDP_HOME>/

xmldsig/samples/validate directory:

$ ant

The sample program will validate the signature in the file envelopedSigna-

ture.xml in the current working directory. To validate a different signature, run
the following command:

$ ant -Dsample.args="signature.xml"

where "signature.xml" is the pathname of the file.

Validating an XML Signature
This example shows you how to validate an XML Signature using the JSR 105
API. The example uses DOM (the Document Object Model) to parse an XML
document containing a Signature element and a JSR 105 DOM implementation
to validate the signature.

174 JAVA XML DIGITAL SIGNATURE API
Instantiating the Document that Contains the
Signature
First we use a JAXP DocumentBuilderFactory to parse the XML document
containing the Signature. An application obtains the default implementation for
DocumentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Specifying the Signature Element to be
Validated
We need to specify the Signature element that we want to validate, since there
could be more than one in the document. We use the DOM method Docu-

ment.getElementsByTagNameNS, passing it the XML Signature namespace URI
and the tag name of the Signature element, as shown:

NodeList nl = doc.getElementsByTagNameNS
(XMLSignature.XMLNS, "Signature");

if (nl.getLength() == 0) {
throw new Exception("Cannot find Signature element");

}

This returns a list of all Signature elements in the document. In this example,
there is only one Signature element.

Creating a Validation Context
We create an XMLValidateContext instance containing input parameters for val-
idating the signature. Since we are using DOM, we instantiate a DOMValidate-

VALIDATE EXAMPLE 175
Context instance (a subclass of XMLValidateContext), and pass it two
parameters, a KeyValueKeySelector object and a reference to the Signature

element to be validated (which is the first entry of the NodeList we generated
earlier):

DOMValidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

The KeyValueKeySelector is explained in greater detail in Using
KeySelectors (page 176).

Unmarshaling the XML Signature
We extract the contents of the Signature element into an XMLSignature object.
This process is called unmarshalling. The Signature element is unmarshalled
using an XMLSignatureFactory object. An application can obtain a DOM
implementation of XMLSignatureFactory by calling the following line of code:

XMLSignatureFactory factory =
XMLSignatureFactory.getInstance("DOM");

We then invoke the unmarshalXMLSignature method of the factory to unmar-
shal an XMLSignature object, and pass it the validation context we created ear-
lier:

XMLSignature signature =
factory.unmarshalXMLSignature(valContext);

Validating the XML Signature
Now we are ready to validate the signature. We do this by invoking the validate
method on the XMLSignature object, and pass it the validation context as fol-
lows:

boolean coreValidity = signature.validate(valContext);

The validate method returns “true” if the signature validates successfully
according to the core validation rules in the W3C XML Signature Recom-

mendation, and false otherwise.

176 JAVA XML DIGITAL SIGNATURE API
What If the XML Signature Fails to Validate?
If the XMLSignature.validate method returns false, we can try to narrow down
the cause of the failure. There are two phases in core XML Signature validation:

• Signature validation (the cryptographic verification of the signature)

• Reference validation (the verification of the digest of each reference in
the signature)

Each phase must be successful for the signature to be valid. To check if the sig-
nature failed to cryptographically validate, we can check the status, as follows:

boolean sv =
signature.getSignatureValue().validate(valContext);

System.out.println("signature validation status: " + sv);

We can also iterate over the references and check the validation status of each
one, as follows:

Iterator i =
signature.getSignedInfo().getReferences().iterator();

for (int j=0; i.hasNext(); j++) {
boolean refValid = ((Reference)

i.next()).validate(valContext);
System.out.println("ref["+j+"] validity status: " +

refValid);
}

Using KeySelectors
KeySelectors are used to find and select keys that are needed to validate an
XMLSignature. Earlier, when we created a DOMValidateContext object, we
passed a KeySelector object as the first argument:

DOMValidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

Alternatively, we could have passed a PublicKey as the first argument if we
already knew what key is needed to validate the signature. However, we often
don’t know.

The KeyValueKeySelector is a concrete implementation of the abstract KeySe-
lector class. The KeyValueKeySelector implementation tries to find an
appropriate validation key using the data contained in KeyValue elements of the

VALIDATE EXAMPLE 177
KeyInfo element of an XMLSignature. It does not determine if the key is trusted.
This is a very simple KeySelector implementation, designed for illustration
rather than real-world usage. A more practical example of a KeySelector is one
that searches a KeyStore for trusted keys that match X509Data information (for
example, X509SubjectName, X509IssuerSerial, X509SKI, or
X509Certificate elements) contained in a KeyInfo.

The implementation of the KeyValueKeySelector is as follows:

private static class KeyValueKeySelector extends KeySelector {

public KeySelectorResult select(KeyInfo keyInfo,
KeySelector.Purpose purpose,
AlgorithmMethod method,
XMLCryptoContext context)

throws KeySelectorException {

if (keyInfo == null) {
throw new KeySelectorException("Null KeyInfo object!");

}
SignatureMethod sm = (SignatureMethod) method;
List list = keyInfo.getContent();

for (int i = 0; i < list.size(); i++) {
XMLStructure xmlStructure = (XMLStructure) list.get(i);
if (xmlStructure instanceof KeyValue) {

PublicKey pk = null;
try {

pk = ((KeyValue)xmlStructure).getPublicKey();
} catch (KeyException ke) {

throw new KeySelectorException(ke);
}
// make sure algorithm is compatible with method
if (algEquals(sm.getAlgorithm(),

pk.getAlgorithm())) {
return new SimpleKeySelectorResult(pk);

}
}

}
throw new KeySelectorException("No KeyValue element

found!");
}

static boolean algEquals(String algURI, String algName) {
if (algName.equalsIgnoreCase("DSA") &&

algURI.equalsIgnoreCase(SignatureMethod.DSA_SHA1)) {
return true;

178 JAVA XML DIGITAL SIGNATURE API
} else if (algName.equalsIgnoreCase("RSA") &&
algURI.equalsIgnoreCase(SignatureMethod.RSA_SHA1)) {

return true;
} else {

return false;
}

}
}

genenveloped Example
The code discussed in this section is in the GenEnveloped.java file in the
<JWSDP_HOME>/xmldsig/samples/genenveloped directory. The file on which it
operates, envelope.xml, is in the same directory. It generates the file envelo-

pedSignature.xml.

To compile and run this sample, execute the following command from the
<JWSDP_HOME>/xmldsig/samples/genenveloped directory:

$ ant

The sample program will generate an enveloped signature of the document in the
file envelope.xml and store it in the file envelopedSignature.xml in the cur-
rent working directory.

Generating an XML Signature
This example shows you how to generate an XML Signature using the XML
Digital Signature API. More specifically, the example generates an enveloped
XML Signature of an XML document. An enveloped signature is a signature that
is contained inside the content that it is signing. The example uses DOM (the
Document Object Model) to parse the XML document to be signed and a JSR
105 DOM implementation to generate the resulting signature.

A basic knowledge of XML Signatures and their different components is helpful
for understanding this section. See http://www.w3.org/TR/xmldsig-core/ for
more information.

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

GENENVELOPED EXAMPLE 179
Instantiating the Document to be Signed
First, we use a JAXP DocumentBuilderFactory to parse the XML document
that we want to sign. An application obtains the default implementation for Doc-
umentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Creating a Public Key Pair
We generate a public key pair. Later in the example, we will use the private key
to generate the signature. We create the key pair with a KeyPairGenerator. In
this example, we will create a DSA KeyPair with a length of 512 bytes :

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
kpg.initialize(512);
KeyPair kp = kpg.generateKeyPair();

In practice, the private key is usually previously generated and stored in a Key-

Store file with an associated public key certificate.

Creating a Signing Context
We create an XML Digital Signature XMLSignContext containing input parame-
ters for generating the signature. Since we are using DOM, we instantiate a DOM-
SignContext (a subclass of XMLSignContext), and pass it two parameters, the
private key that will be used to sign the document and the root of the document
to be signed:

DOMSignContext dsc = new DOMSignContext
(kp.getPrivate(), doc.getDocumentElement());

180 JAVA XML DIGITAL SIGNATURE API
Assembling the XML Signature
We assemble the different parts of the Signature element into an XMLSignature

object. These objects are all created and assembled using an XMLSignatureFac-

tory object. An application obtains a DOM implementation of XMLSignature-
Factory by calling the following line of code:

XMLSignatureFactory fac =
XMLSignatureFactory.getInstance("DOM");

We then invoke various factory methods to create the different parts of the XML-

Signature object as shown below. We create a Reference object, passing to it
the following:

• The URI of the object to be signed (We specify a URI of "", which implies
the root of the document.)

• The DigestMethod (we use SHA1)

• A single Transform, the enveloped Transform, which is required for
enveloped signatures so that the signature itself is removed before calcu-
lating the signature value

Reference ref = fac.newReference
("", fac.newDigestMethod(DigestMethod.SHA1, null),

Collections.singletonList
(fac.newTransform(Transform.ENVELOPED, null)),

null, null);

Next, we create the SignedInfo object, which is the object that is actually
signed, as shown below. When creating the SignedInfo, we pass as parameters:

• The CanonicalizationMethod (we use inclusive and preserve comments)

• The SignatureMethod (we use DSA)

• A list of References (in this case, only one)

SignedInfo si = fac.newSignedInfo
(fac.newCanonicalizationMethod

(CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS, null),
fac.newSignatureMethod(SignatureMethod.DSA_SHA1, null),
Collections.singletonList(ref));

Next, we create the optional KeyInfo object, which contains information that
enables the recipient to find the key needed to validate the signature. In this
example, we add a KeyValue object containing the public key. To create KeyInfo

GENENVELOPED EXAMPLE 181
and its various subtypes, we use a KeyInfoFactory object, which can be
obtained by invoking the getKeyInfoFactory method of the XMLSignature-

Factory, as follows:

KeyInfoFactory kif = fac.getKeyInfoFactory();

We then use the KeyInfoFactory to create the KeyValue object and add it to a
KeyInfo object:

KeyValue kv = kif.newKeyValue(kp.getPublic());
KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

Finally, we create the XMLSignature object, passing as parameters the Signed-

Info and KeyInfo objects that we created earlier:

XMLSignature signature = fac.newXMLSignature(si, ki);

Notice that we haven’t actually generated the signature yet; we’ll do that in the
next step.

Generating the XML Signature
Now we are ready to generate the signature, which we do by invoking the sign

method on the XMLSignature object, and pass it the signing context as follows:

signature.sign(dsc);

The resulting document now contains a signature, which has been inserted as the
last child element of the root element.

182 JAVA XML DIGITAL SIGNATURE API
Printing or Displaying the Resulting Document
You can use the following code to print the resulting signed document to a file or
standard output:

OutputStream os;
if (args.length > 1) {

os = new FileOutputStream(args[1]);
} else {

os = System.out;
}

TransformerFactory tf = TransformerFactory.newInstance();
Transformer trans = tf.newTransformer();
trans.transform(new DOMSource(doc), new StreamResult(os));

A

183
The Java WSDP
Registry Server

A registry offers a mechanism for humans or software applications to advertise
and discover Web services. The Java Web Services Developer Pack (Java
WSDP) Registry Server implements Version 2 of the Universal Description, Dis-
covery and Integration (UDDI) project to provide a UDDI registry for Web ser-
vices in a private environment. You can use it with the Java WSDP APIs as a test
registry for Web services application development.

You can use the Registry Server to test applications that you develop that use the
Java API for XML Registries (JAXR). (See the JAXR chapter of the J2EE Tuto-
rial for more information.) You can also use the JAXR Registry Browser sample
application provided with the Java WSDP to perform queries and updates on
Registry Server data; see Registry Browser (page 189) for details.

The release of the Registry Server that is part of the Java WSDP includes the fol-
lowing:

• A Web application, a servlet, that implements UDDI Version 2 functional-
ity

• A database based on the native XML database Xindice, which is part of the
Apache XML project. This database provides the persistent store for reg-
istry data.

The Registry Server does not support messages defined in the UDDI Version 2.0
Replication Specification.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

184 THE JAVA WSDP REGISTRY SERVER
This chapter describes how to start the Registry Server and how to use JAXR to
access it. It also describes how to add and delete Registry Server users by means
of a script.

Starting the Registry Server
In order to use the Java WSDP Registry Server, you must start the Application
Server. Starting the Application Server automatically starts both the Registry
Server and the Xindice database.

To start the Application Server on Windows, choose Sun Microsystems→J2EE
1.4 SDK→Start Default Server from the Start menu.

To start the Application Server on a UNIX system, use the following command:

<J2EE_HOME>/bin/asadmin start-domain domain1

To stop the Application Server on Windows, choose Sun Microsystems→J2EE
1.4 SDK→Stop Default Server from the Start menu.

To stop the Application Server on a UNIX system, use the following command:

<J2EE_HOME>/bin/asadmin stop-domain domain1

Changing the Port for the Registry Server
Normally you run the Application Server on port 8080. If another application
uses this port, you can change the port by editing the
<J2EE_HOME>/domains/domain1/config/domain.xml file. Open the file in a
text editor and find the http-listener element that uses port 8080 (its id

attribute has the value http-listener-1). Change this attribute to some other
port value, such as 8082 or 8083:

port=”8082”

ADDING AND DELETING USERS 185
In order to run the Registry Server on a changed Application Server port, you
must also edit the file <JWSDP_HOME>/jwsdp-shared/bin/launcher.xml. Find
the following lines (they are all on one line):

<sysproperty key="org.apache.xindice.host"
value="desired Xindice host"/>
<sysproperty key="org.apache.xindice.port"
value="desired Xindice port"/>

Make the host and port the same as those for the Application Server HTTP lis-
tener. Uncomment these properties before you save the file.

Adding and Deleting Users
To add a new user to the Registry Server database, you use the script registry-
server-test.bat (Windows) or registry-server-test.sh (UNIX), in the
directory <JWSDP_HOME>/registry-server/samples/. This script uses files in
the directory <JWSDP_HOME>/registry-server/samples/xml/. You use the
same script to delete a user.

Adding a New User to the Registry
To add a new user to the Registry Server database, you use the file User-

Info.xml in the xml subdirectory. Perform the following steps:

1. Go to the directory <JWSDP_HOME>/registry-server/samples/.

2. Open the file xml/UserInfo.xml in an editor.

3. Change the values in the <fname>, <lname>, and <uid> tags to the first
name, last name, and unique user ID (UID) of the new user. The <uid> tag
is commonly the user’s login name. It must be unique.

4. Change the value in the <passwd> tag to a password of your choice. This
is the password for the new user. Do not modify the <tokenExpiration>

or <authInfo> tag.

5. Save and close the UserInfo.xml file.

6. Type the following command (all on one line):

Windows:

registry-server-test run-cli-request
-Drequest=xml\UserInfo.xml

186 THE JAVA WSDP REGISTRY SERVER
UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/UserInfo.xml

Deleting a User from the Registry
To delete a user from the registry, you use the file UserDelete.xml in the xml

subdirectory.

Before you run the script this time, edit this file by modifying the values in the
<fname>, <lname>, <uid>, and <passwd> tags.

To delete the user, use the following command:

Windows:

registry-server-test run-cli-request
-Drequest=xml\UserDelete.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/UserDelete.xml

Further Information
For more information about UDDI registries, JAXR, and Web services, see the
following:

• Universal Description, Discovery, and Integration (UDDI) project:

http://www.uddi.org/

• JAXR home page:

http://java.sun.com/xml/jaxr/

• J2EE 1.4 Tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

• Java Web Services Developer Pack (Java WSDP):

http://java.sun.com/webservices/webservicespack.html

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www.uddi.org
http://java.sun.com/xml/jaxr/index.html
http://java.sun.com/webservices/webservicespack.html

FURTHER INFORMATION 187
• Java Technology and XML:

http://java.sun.com/xml/

• Java Technology & Web Services:

http://java.sun.com/webservices/index.html

http://java.sun.com/xml/
http://java.sun.com/webservices/index.html

188 THE JAVA WSDP REGISTRY SERVER

B

189
Registry Browser

THE Registry Browser is both a working example of a JAXR client and a sim-
ple GUI tool that enables you to search registries and submit data to them. See
the JAXR chapter of the J2EE Tutorial for more information.

The Registry Browser source code is in the directory
<JWSDP_HOME>/jaxr/samples/jaxr-browser/. Much of the source code
implements the GUI. The JAXR code is in the file JAXRClient.java.

The Registry Browser allows access to any registry, but includes as preset URLs
the IBM and Microsoft UDDI test registries and the Registry Server (see The
Java WSDP Registry Server, page 183).

Starting the Browser
To start the browser, go to the directory <JWSDP_HOME>/jaxr/bin/ or place this
directory in your path.

The following commands show how to start the browser on a UNIX system and
a Microsoft Windows system, respectively:

jaxr-browser.sh

jaxr-browser

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

190 REGISTRY BROWSER
In order to access the Registry Server through the browser, you must make sure
to start the Application Server before you perform any queries or submissions to
the browser; see Starting the Registry Server (page 184) for details.

In order to access external registries, the browser needs to know your Web proxy
settings. By default, the browser uses the settings you specified when you
installed the Java WSDP. These are defined in the file
<JWSDP_HOME>/conf/jwsdp.properties. If you want to override these settings,
you can edit this file or specify proxy information on the browser command line.

To use the same proxy server for both HTTP and HTTPS access, specify a non-
default proxy host and proxy port as follows. The port is usually 8080. The fol-
lowing command shows how to start the browser on a UNIX system:

jaxr-browser.sh httpHost httpPort

For example, if your proxy host is named websys and it is in the south subdo-
main, you would type

jaxr-browser.sh websys.south 8080

To use different proxy servers for HTTP and HTTPS access, specify the hosts
and ports as follows. (If you do not know whether you need two different serv-
ers, specify just one. It is relatively uncommon to need two.) On a Microsoft
Windows system, the syntax is as follows:

jaxr-browser httpHost httpPort httpsHost httpsPort

After the browser starts, type the URL of the registry you want to use in the Reg-
istry Location combo box, or select a URL from the drop-down menu in the
combo box. The menu allows you to choose among the IBM and Microsoft reg-
istries and the default Registry Server URL:

http://localhost:8080/RegistryServer/

If you are accessing the Registry Server on a remote system, replace localhost

with the fully qualified hostname of the system where the Registry Server is run-
ning. If Tomcat is running on a nondefault port, replace 8080 with the correct
port number. You specify the same URL for both queries and updates.

There may be a delay of a few seconds while a busy cursor is visible.

QUERYING A REGISTRY 191
When the busy cursor disappears, you have a connection to the URL. However,
you do not establish a connection to the registry itself until you perform a query
or update, so JAXR will not report an invalid URL until then.

The browser contains two main panes, Browse and Submissions.

Querying a Registry
You use the Browse pane to query a registry.

Note: In order to perform queries on the Microsoft registry, you must be connected
to the inquire URL. To perform queries on the IBM registry, you may be connected
to either the inquiryapi URL or the publishapi URL.

Querying by Name
To search for organizations by name, perform the following steps.

1. Click the Browse tab if it is not already selected.

2. In the Find By panel on the left side of the Registry Browser window, do
the following:

a. Select Name in the Find By combo box if it is not already selected.

b. Type a string in the text field.

c. Press Enter or click the Search button in the toolbar.

After a few seconds, the organizations whose names match the text string appear
in the right side of the Registry Browser window. An informational dialog box
appears if no matching organizations are found.

Queries are not case-sensitive. If you type a plain text string (string), organiza-
tion names match if they begin with the text string you entered. Enclose the
string in percent signs (%string%) for wildcard searches.

Double-click on an organization to show its details. An Organization dialog box
appears. In this dialog box, you can click Show Services to display the Services
dialog box for the organization. In the Services dialog box, you can click Show
ServiceBindings to display the ServiceBindings dialog box for that service.

192 REGISTRY BROWSER
Querying by Classification
To query a registry by classification, perform the following steps.

1. Select Classification in the Find By combo box.

2. In the Classifications pane that appears below the combo box, double-click
a classification scheme.

3. Continue to double-click until you reach the node you want to search on.

4. Click the Search button in the toolbar.

After a few seconds, one or more organizations in the chosen classification may
appear in the right side of the Registry Browser window. An informational dia-
log box appears if no matching organizations are found.

Managing Registry Data
You use the Submissions pane to add organizations to the registry.

To go to the Submissions pane, click the Submissions tab.

Adding an Organization
To add an organization, use the Organization panel on the left side of the Sub-
missions pane.

Use the Organization Information fields as follows:

• Name: Type the name of the organization.

• Id: You cannot type or modify data in this field; the ID value is returned by
the registry when you submit the data.

• Description: Type a description of the organization.

Use the Primary Contact Information fields as follows:

• Name: Type the name of the primary contact person for the organization.

• Phone: Type the primary contact's phone number.

• Email: Type the primary contact's email address.

ADDING SERVICES TO AN ORGANIZATION 193
Note: With the Registry Server, none of these fields is required; it is possible
(though not advisable) to add an organization that has no data. With the IBM and
Microsoft registries, an organization must have a name.

For information on adding or removing classifications, see Adding and Remov-
ing Classifications (page 194).

Adding Services to an Organization
To add information about an organization's services, Use the Services panel on
the right side of the Submissions pane.

To add a service, click the Add Services button in the toolbar. A subpanel for the
service appears in the Services panel. Click the Add Services button more than
once to add more services in the Services panel.

Each service subpanel has the following components:

• Name, Id, and Description fields

• Edit Bindings and Remove Service buttons

• A Classifications panel

Use these components as follows:

• Name field: Type a name for the service.

• Id field: You cannot type or modify data in this field for a level 0 JAXR pro-
vider.

• Description field: Type a description of the service.

• Click the Edit Bindings button to add service bindings for the service. An
Edit ServiceBindings dialog box appears. See the next section, Adding
Service Bindings to a Service, for details.

• Click the Remove Service button to remove this service from the organi-
zation. The service subpanel disappears from the Services panel.

• To add or remove classifications, use the Classifications panel. See Adding
and Removing Classifications (page 194) for details.

194 REGISTRY BROWSER
Adding Service Bindings to a Service
To add service bindings for a service, click the Edit Bindings button in a service
subpanel in the Submissions pane. The Edit ServiceBindings dialog box appears.

If there are no existing service bindings when the dialog box first appears, it con-
tains an empty Service Bindings panel and two buttons, Add Binding and Done.
If the service already has service bindings, the Service Bindings panel contains a
subpanel for each service binding.

Click Add Binding to add a service binding. Click Add Binding more than once
to add multiple service bindings.

After you click Add Binding, a new service binding subpanel appears. It con-
tains three text fields and a Remove Binding button.

Use the text fields as follows:

• Description: Type a description of the service binding.

• Access URI: Type the URI used to access the service. The URI must be
valid; if it is not, the submission will fail.

Use the Remove Binding button to remove the service binding from the service.

Click Done to close the dialog box when you have finished adding or removing
service bindings.

Adding and Removing Classifications
To add classifications to, or remove classifications from, an organization or ser-
vice, use a Classifications panel. A Classifications panel appears in an Organiza-
tion panel or service subpanel.

To add a classification:

1. Click Add.

2. In the Select Classifications dialog, double-click one of the classification
schemes.

• If you clicked ntis-gov:naics:1997 or unspsc-org:unspsc:3-1, you can
add the classification at any level of the taxonomy hierarchy. When you
reach the level you want, click Add.

• If you clicked uddi-org:iso-ch:3166:1999 (geography), locate the
appropriate leaf node (the country) and click Add.

SUBMITTING THE DATA 195
The classification appears in a table in the Classifications panel below the but-
tons.

To add multiple classifications to the organization or service, you can repeat
these steps more than once. Alternatively, you can click on the classification
schemes while pressing the control or shift key, then click Add.

Click Close to dismiss the window when you have finished.

To remove a classification, select the appropriate table row in the Classifications
panel and click Remove. The classification disappears from the table.

Submitting the Data
When you have finished entering the data you want to add, click the Submit but-
ton in the toolbar.

An authentication dialog box appears. To continue with the submission, type
your user name and password and click OK. To close the window without sub-
mitting the data, click Cancel.

If you are using the Registry Server, the default username and password are both
testuser.

If the submission is successful, an information dialog box appears with the orga-
nization key in it. Click OK to continue. The organization key also appears in the
ID field of the Submissions pane.

Note: If you submit an organization, return to the Browse pane, then return to the
Submissions pane, you will find that the organization is still there. If you click the
Submit button again, a new organization is created, whether or not you modify the
organization data.

Deleting an Organization
To delete an organization:

1. Use the Browse pane to locate an organization you wish to delete.

2. Connect to a URL that allows you to publish data. If you were previously
using a URL that only allows queries, change the URL to the publish URL.

196 REGISTRY BROWSER
3. Right-click on the organization and choose Delete RegistryObject from the
pop-up menu.

4. In the authentication dialog box that appears, type your user name and
password and click OK. To close the window without deleting the organi-
zation, click Cancel.

Stopping the Browser
To stop the Registry Browser, choose Exit from the File menu.

C

197
XWS-Security Formal
Schema Definition

Formal Schema Definition
This chapter shows the formal schema definition for security configuration files.
More information on using security configuration files is described in Securing

JAX-RPC Applications with XML and Web Services Security. More information on each of
the schema elements is described in XWS-Security Configuration File Schema.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://java.sun.com/xml/ns/xwss/config"
 xmlns="http://java.sun.com/xml/ns/xwss/config"
 elementFormDefault="qualified">

<xs:element name="JAXRPCSecurity">
 <xs:complexType>
 <xs:all>
 <xs:element name="Service" type="Service_T"/>
 <xs:element name="SecurityEnvironmentHandler"
type="xs:string"/>
 </xs:all>
 </xs:complexType>
</xs:element>

198 XWS-SECURITY FORMAL SCHEMA DEFINITION
<xs:complexType name="Service_T">
 <xs:sequence>
 <xs:element ref="SecurityConfiguration" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="Port"
 type="Port_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="Port_T" mixed="true">
 <xs:sequence>
 <xs:element ref="SecurityConfiguration" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="Operation"
 type="Operation_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

<xs:complexType name="Operation_T">
 <xs:all>
 <xs:element ref="SecurityConfiguration" minOccurs="0"/>
 </xs:all>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

<xs:element name="SecurityConfiguration"
type="SecurityConfiguration_T"/>

<xs:complexType name="SecurityConfiguration_T">
 <xs:sequence>
 <xs:group ref="ConfigurationElements"

FORMAL SCHEMA DEFINITION 199
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="dumpMessages" type="xs:boolean"
default="false"/>
</xs:complexType>

<xs:group name="ConfigurationElements">
 <xs:choice>
 <xs:element name="Timestamp"
 type="Timestamp_T"
 minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="RequireTimestamp"
 minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="UsernameToken"
 type="UsernameToken_T"
 minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="RequireUsernameToken"
 type="RequireUsernameToken_T"
 minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="Sign"
 type="Sign_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="Encrypt"
 type="Encrypt_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="RequireSignature"
 type="RequireSignature_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="RequireEncryption"
 type="RequireEncryption_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="OptionalTargets"
 type="OptionalTargets_T"
 minOccurs="0"
 maxOccurs="1"/>
 </xs:choice>
</xs:group>

<xs:complexType name="Timestamp_T">
<xs:attribute name="timeout" type="xs:string" default="300"/>

200 XWS-SECURITY FORMAL SCHEMA DEFINITION
</xs:complexType>

<xs:complexType name="UsernameToken_T">
 <xs:attribute name="id" type="id_T" use="optional"/>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="password" type="xs:string"
use="optional"/>
 <xs:attribute name="useNonce" type="xs:boolean"
default="true"/>
 <xs:attribute name="digestPassword" type="xs:boolean"
default="true"/>
</xs:complexType>

<xs:complexType name="RequireUsernameToken_T">
 <xs:attribute name="nonceRequired" type="xs:boolean"
default="true"/>
 <xs:attribute name="passwordDigestRequired"
 type="xs:boolean" default="true"/>
</xs:complexType>

<xs:complexType name="Sign_T">
 <xs:sequence>
 <xs:element name="X509Token"
 type="X509Token_T"
 minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="Target"
 type="Target_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="includeTimestamp"
 type="xs:boolean" default="true"/>
</xs:complexType>

<xs:complexType name="Encrypt_T">
 <xs:sequence>
 <xs:group ref="EncryptionKey_T" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="Target"
 type="Target_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="keyEncryptionAlgorithm"
 type="xs:string"
 use="optional"
 default="RSA_OAEP"/>

FORMAL SCHEMA DEFINITION 201
</xs:complexType>

<xs:group name="EncryptionKey_T">
 <xs:choice>
 <xs:element name="X509Token"
 type="X509Token_T"
 minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="SymmetricKey"
 type="SymmetricKey_T"
 minOccurs="0"
 maxOccurs="1"/>
 </xs:choice>
</xs:group>

<xs:complexType name="SymmetricKey_T">
 <xs:attribute name="keyAlias" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

<xs:complexType name="RequireSignature_T">
 <xs:sequence>
 <xs:element name="Target"
 type="Target_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="requireTimestamp"

type="xs:boolean" use="optional" default="true"/>
</xs:complexType>

<xs:complexType name="RequireEncryption_T">
 <xs:sequence>
 <xs:element name="Target"
 type="Target_T"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="OptionalTargets_T">
 <xs:sequence>
 <xs:element name="Target"

202 XWS-SECURITY FORMAL SCHEMA DEFINITION
 type="Target_T"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="X509Token_T">
 <xs:attribute name="id" type="id_T" use="optional"/>
 <xs:attribute name="certificateAlias"
 type="xs:string" use="optional"/>
 <xs:attribute name="keyReferenceType"
 use="optional"
 default="Direct">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Direct"/>
 <xs:enumeration value="Identifier"/>

<xs:enumeration value="IssuerSerialNumber"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

<xs:complexType name="Target_T">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" use="optional"
default="qname">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="qname"/>
 <xs:enumeration value="uri"/>
 <xs:enumeration value="xpath"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="contentOnly"
 type="xs:boolean"
 use="optional"
 default="true"/>
 <xs:attribute name="enforce"
 type="xs:boolean"
 use="optional"
 default="true"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

FORMAL SCHEMA DEFINITION 203
<xs:simpleType name="KeyReferenceType_T">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Direct"/>
 <xs:enumeration value="Identifier"/>
 <xs:enumeration value="IssuerSerialNumber"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="id_T">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
</xs:simpleType>

</xs:schema>

204 XWS-SECURITY FORMAL SCHEMA DEFINITION

205

Index
A
Apache 91

C
Callback 144
Callback classes

summary 144
CallbackHandler interface 142

D
DecryptionKeyCallback 147
DSig 89, 91, 122, 135, 139

security configuration file 94
dumping requests 124

E
Encrypt element 94
EncryptedKeyCallback 146
encrypting

SOAP messages 88
encrypting messages 95
encryption technologies 89
end-to-end security 87

F
framework

XWS-Security 88

J
jaas-sample application 136
Java Cryptography Architecture
(JCA) 92
Java Cryptography Extension
(JCE) 92
Java KeyStore (JKS) 159
JAVA WSDP Registry Server 183

adding new users 185
deleting users 186
setting up 184
Xindice database 183

JAXR Registry Browser 189
JAX-RPC

securing applications 88
JAX-RPC applications

securing 88
JAXRPCSecurity element 94
JCE

JCA 91
JCE provider

configuring 117
JSR-105 91
JSR-106 91

206 INDEX
K
keyexport command 88, 160
keystore files

for XWS-Security samples
118

M
method-level security 132

O
Oasis Web Services Security

See WSS

P
PasswordCallback 150
PasswordValidationCallback 149
PFX files 159
PKCS-12 files 159
pkcs12import command 88, 159
PrefixNamespaceMappingCall-
back 151
prerequisites vii
printing the tutorial xi
PropertyCallback 151

R
registries

Java WSDP Registry Server
183

private 183
See also Java WSDP Registry

Server, JAXR
Registry Server

See Java WSDP Registry Serv-

er
request

signing and encrypting 126
request inner classes

methods 144
requests

authenticating 130, 137
decrypting 124, 126
dumping 124
encrypting 124
encrypting and signing 126
signing 125
signing and encrypting 125
signing ticket element and

message body 132
username token 130, 137
username token and encrypt

130, 132
RequireEncryption element 94
RequireSignature element 94
responses

dumping 124
encrypting 124
signing 125
signing and encrypting 125

RSA encryption 117

S
sample applications

XWS-Security 114
interop 114
simple 90, 114–115

running 122, 135, 138
running against a re-

mote server
136, 140

sample programs

INDEX 207
XWS-Security 88
schema

XWS-Security 97, 197
security

end-to-end 87
message-level 87
XML and Web Services 87
XWS-Security 87

security configuration file
creating 93

security configuration files 93
security tokens 88
SecurityConfiguration element 94
SecurityEnvironmentHandler ele-
ment 94
SecurityEnvironmentHandlers

writing 141
Service element 94
Sign element 94
SignatureKeyCallback 142, 144
signatures

verifying 125–126
SignatureVerificationKeyCall-
back 145
signing

SOAP messages 88
SOAP messages

encrypting 88
signing 88
verifying 88

SubjectAccessor API
using 158

symmetric key encryption 129

T
timestamp 106
Timestamp element

discussion 105
tokens

security 88
UsernameTokens 90

truststore files
for XWS-Security samples

118
typographical conventions xi

U
UDDI

adding new users with Regis-
try Server command
line client script 185

deleting users with Registry
Server command line
client script 186

Java WSDP Registry Server
183

UserName Token verification 122
Username Token Verification 90
UserName tokens 90
UsernameCallback 150
UsernameTokens 90

V
verifying

SOAP messages 88

W
wscompile command 92, 112

with XWS-Security 161
WSS

implementation 89

208 INDEX
X
Xindice database 183–184

adding new users 185
deleting users 186

XML
digital signatures 89
encryption 90

XML and Web Services Security
security configuration files 93
See XWS-Security

XML Digital Signature 135, 139
See DSig

XML Encryption
See XML-Enc

XML-Enc 90–91, 95, 122
XWS-Security 87

framework 88
method level 132
sample applications 114

JAAS 136
sample programs 88
schema 94

fomal 197
security configuration files 93

schema 97
troubleshooting 162

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	Prerequisites
	How to Use This Tutorial
	Building the Examples
	Further Information
	How to Print This Tutorial
	Typographical Conventions
	Feedback

	Binding XML Schema to Java Classes with JAXB
	JAXB Architecture
	Architectural Overview
	The JAXB Binding Process
	JAXB Binding Framework
	More About javax.xml.bind
	More About Unmarshalling
	More About Marshalling
	More About Validation

	XML Schemas
	Representing XML Content
	Binding XML Names to Java Identifiers
	Java Representation of XML Schema

	Binding XML Schemas
	Simple Type Definitions
	Default Data Type Bindings
	Default Binding Rules Summary

	Customizing JAXB Bindings
	Scope
	Scope Inheritance

	What is Not Supported
	JAXB APIs and Tools

	Using JAXB
	General Usage Instructions
	Description
	Using the Examples
	Configuring and Running the Samples
	Solaris/Linux
	Windows NT/2000/XP

	JAXB Compiler Options
	About the Schema-to-Java Bindings
	Schema-Derived JAXB Classes
	Comment.java
	Items.java
	ObjectFactory.java
	PurchaseOrder.java
	PurchaseOrderType.java
	USAddress.java

	Basic Examples
	Unmarshal Read Example
	Sample Output

	Modify Marshal Example
	Sample Output

	Create Marshal Example
	Sample Output

	Unmarshal Validate Example
	Sample Output

	Validate-On-Demand Example
	Sample Output

	Customizing JAXB Bindings
	Why Customize?
	Customization Overview
	Inline and External Customizations
	Scope, Inheritance, and Precedence
	Customization Syntax
	Customization Namespace Prefix

	Customize Inline Example
	Customized Schema
	Global Binding Declarations
	Schema Binding Declarations
	Class Binding Declarations
	Property Binding Declarations
	MyDatatypeConverter Class

	Datatype Converter Example
	External Customize Example
	JAXB Version, Namespace, and Schema Attributes
	Global and Schema Binding Declarations
	Class Declarations

	Fix Collides Example
	The example.xsd Schema
	Looking at the Conflicts
	Output From ant fail
	The binding.xjb Declarations File
	Resolving the Conflicts in example.xsd

	Bind Choice Example
	Customizing a choice Model Group

	Securing JAX-RPC Applications with XML and Web Services Security
	Does XWS-Security Implement Any Specifications?
	On Which Technologies Is XWS-Security Based?

	What is the XWS-Security Framework?
	Configuring Security Configuration Files
	Understanding Security Configuration Files
	XWS-Security Configuration File Schema
	Semantics of Security Configuration File Elements
	How Do I Specify the Security Configuration for the Build Files?
	Are There Any Sample Applications Demonstrating XWS-Security?

	Setting Up To Use XWS-Security With the Sample Applications
	Setting System Properties
	Configuring a JCE Provider
	Setting Up the Application Server For the Examples
	Keystore and Truststore Files with XWS- Security
	Setting Build Properties

	Understanding and Running the Simple Sample Application
	Plugging in Security Configurations
	Sample Security Configuration File Options
	Dumping the Request and/or the Response
	Encrypting the Request and/or the Response
	Signing and Verifying the Signature
	Signing then Encrypting the Request, Decrypting then Verifying the Signature
	Encrypting then Signing the Request, Verifying then Decrypting the Signature
	Signing a Ticket
	Adding a Timestamp to a Signature
	Symmetric Key Encryption
	Adding a UserName Password Token
	Encrypt Request Body and a UserNameToken
	Adding a UserName Password Token, then Encrypting the UserName Token
	Adding Security at the Method Level

	Running the Simple Sample Application

	Understanding and Running the JAAS- Sample Application
	Understanding JAAS-Sample Security Configuration Files
	Setting Up For the JAAS-Sample
	Running the JAAS-Sample Application

	Writing SecurityEnvironmentHandlers for XWS-Security Applications
	Using the SubjectAccessor API

	Useful XWS-Security Command-Line Tools
	pkcs12import
	keyexport
	wscompile

	Troubleshooting XWS-Security Applications
	Further Information

	Java XML Digital Signature API
	How XWS-Security and XML Digital Signature API Are Related
	XML Security Stack
	Package Hierarchy
	Service Providers
	Introduction to XML Signatures
	Example of an XML Signature
	XML Digital Signature API Examples
	validate Example
	Validating an XML Signature
	Instantiating the Document that Contains the Signature
	Specifying the Signature Element to be Validated
	Creating a Validation Context
	Unmarshaling the XML Signature
	Validating the XML Signature
	What If the XML Signature Fails to Validate?
	Using KeySelectors

	genenveloped Example
	Generating an XML Signature
	Instantiating the Document to be Signed
	Creating a Public Key Pair
	Creating a Signing Context
	Assembling the XML Signature
	Generating the XML Signature
	Printing or Displaying the Resulting Document

	The Java WSDP Registry Server
	Starting the Registry Server
	Changing the Port for the Registry Server

	Adding and Deleting Users
	Adding a New User to the Registry
	Deleting a User from the Registry

	Further Information

	Registry Browser
	Starting the Browser
	Querying a Registry
	Querying by Name
	Querying by Classification

	Managing Registry Data
	Adding an Organization
	Adding Services to an Organization
	Adding Service Bindings to a Service
	Adding and Removing Classifications
	Submitting the Data

	Deleting an Organization
	Stopping the Browser

	XWS-Security Formal Schema Definition
	Formal Schema Definition

	Index
	A
	C
	D
	E
	F
	J
	K
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

