MySQL Connector/NET Developer Guide

Abstract

This manual describes how to install and configure MySQL Connector/NET, the connector that enables .NET
applications to communicate with MySQL servers, and how to use it to develop database applications.

For notes detailing the changes in each release of Connector/NET, see MySQL Connector/NET Release Notes.
For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2025-10-20 (revision: 83819)

https://docs.oracle.com/cd/E17952_01/connector-net-relnotes-en/
http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
1 Introduction to MySQL CONNECIOINETcoiiiiiiiiiie ettt e e ae s 1
2 CONNECIOINET VEISIONS ...uuiiiiiitii ettt ettt ettt e et e e et et e e et et e e e e ab e e e e nta s 3
3 ConNNECION/NET INSTAIALIONoeeiiei ettt e b 7
3.1 Installing Connector/NET 0N WINAOWScouuuiiiiiiiiiiiii et e e e e e e 7
3.1.1 Installing Connector/NET Using the Standalone Installercccoooeiiiiiiiiiii, 8

3.1.2 Installing ConNector/NET USING NUGELiiiiiiiiiiiiii e 8

3.2 Installing Connector/NET on Unix With MONOooiiiiiiiiii e 10

3.3 Installing Connector/NET frOm SOUICEcoouuuiiiiiii ettt 11

4 CoNNECLON/NET CONNECHIONSeeitiiiiiiii ettt ettt ettt ettt e et et e et e e e nb e e enaans 13
4.1 Creating a Connector/NET CONNECLION SEHNG ...coovuuiiiiiiieeiiiiee e 13

4.2 Managing a Connection Pool in CONNECIOI/NETc.uuiiiiiiiiieiiii e 16

4.3 Handling CONNECHION EITOIScouuuiiiiiitiiee ettt ettt e e et e eeee e eeeaba e eeens 17

4.4 ConNector/NET AUNENTICATIONcoouuiiiiii e 18

4.5 Connector/NET Connection Options Referenceo.uiiiiiiiiiiiiiii e 23

5 ConNNECIOI/NET ProgramIMiNgoeeeeuu et eeeeii e eett et eei et et et e e e et et e eaa e e eeaa e e e raa e e esnenas 43
5.1 Using GetSchema 0n @ CONNECLIONcoiuutiiiiiiii et e e e e e 44

5.2 USING MYSQICOMMEANT ...ttt ettt e et e et e e eaanns 46

5.3 Using Connector/NET with Table CacChingcccuuiiiiiiiiiiiii e 49

5.4 Preparing Statements in ConNNECON/NETcooouiiiiiiiii e 49

5.5 Creating and Calling Stored ProCEAUIESiiiiiiiiieeiiiie e 50

5.6 Handling BLOB Data With CONNECIOI/NETcouuiiiiiiiiiiiiiiii ettt 54
5.6.1 Preparing the MYSQL SEIVEToouuiiiiiiiieeee ettt e 55

5.6.2 Writing a File to the Databaseiiiiiiiiiiiiii e 55

5.6.3 Reading a BLOB from the Database to a File on DisKcooovviiiiiiiiiiiiieeen, 57

5.7 Working with Partial Trust / Medium TrUSEcoouiiiiiii e 58
5.7.1 Evolution of Partial Trust Support Across Connector/NET Versionscccceeevevennen. 59

5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GACccccooeeeee 59

5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in GAC 61

5.8 Writing a Custom Authentication PIUGINiiiiiiiii e 62

5.9 Using the Connector/NET INterceptor CIASSESuiiiiiiiiiiiiiiiiieiii e 65

5.10 Handling Date and Time Information in ConNector/NETccooviiiiiiiiiiiiiiiiiieceei e, 67
5.10.1 Fractional SECONUScoouuuiiiiiiie ettt et e e e 67

5.10.2 Problems when Using INvalid DAtESoooiiiiiiiiiiiieiii e 67

5.10.3 Restricting INValid DAEESccouuuiiiiiiiee et 68

5.10.4 Handling INValid DALESccuuuiiiiiiiieeiiii ettt e e et e e et e eeaa e ees 68

5.10.5 HandliNng NULL DAEESuiiiiiiiiiiiiiiee ettt e e e e 68

5.11 Using the MySQqIBUIKLOGUE!N ClASScccuuuiiiiiiiieieiii et 69

5.12 CoNNECLONNET TIACING ..ceitiieiiitii ettt ettt e et e et e e e e e eaa s 70
5.12.1 Enabling OpenTelemetry TraCiNg ceuueeuu e e e e e e e e eanaeees 70

5.12.2 Using the Connector/NET Trace Source ODJECTcveeiiiiiieiiiiiiieeiiii e 71

5.13 Using Connector/NET with Crystal REPOIScccuuuiiiiiiiiieiiiieece e 76
5.13.1 Creating @ Data SOUICEocieiiiieiiii ettt eaaes 76

5.13.2 Creating the REPOITccieii ettt 77

5.13.3 Displaying the REPOITuiiiii e 78

5.14 ASYNCHIroNOUS METNOUSciiiiiiiiii ettt e e e eeeas 81

5.15 Binary and NONDINAIY ISSUESoouuiiiiiiiiii et 87

5.16 Character Set Considerations for Connector/NETcoooiiiiiiiiiiiei e 88

6 CONNECIOINET TULOTIAIS .. .ceeitiieiiiii ettt et e ettt e ettt e e et et e e e e et e e e e eraaeeees 89
6.1 Tutorial: An Introduction to Connector/NET Programmingcc.ceveeeeeiiieierinieeiiiieeeeeiineeeens 89
6.1.1 The MySqICoNNECON ODJECTcciitiieiiii e 89

MySQL Connector/NET Developer Guide

6.1.2 The MySglCommand ODJECTcouuiiiiiiii e e e e 90
6.1.3 Working with Decoupled Dataocvuuiiiiiiiiii e e 93
6.1.4 Working With Parametersc.uiiiiiiiiii et e e e e e e 96
6.1.5 Working with Stored ProCeAUIESiiiiuiiiiiiei e e e e e aes 97

6.2 ASP.NET Provider Model and TULOIAISc.uuiiiiiiieiii e 99
6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Providercc..ccuu.... 101
6.2.2 Tutorial: Connector/NET ASP.NET Profile Providerccooviiiiiniiiiiiiceecein, 104
6.2.3 Tutorial: Web Parts Personalization ProVidercoeeuiiieiiiiiiieeeiiiineeeeie e 107
6.2.4 Tutorial: Simple Membership Web Providercccooiiiiiiiiiii e 111

6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source 116
6.4 Tutorial: Data Binding in ASP.NET Using LINQ on ENntitieScccoeeiiiiiiiiiiii e 124
6.5 Tutorial: Generating MySQL DDL from an Entity Framework Modelccooooiiiiiiieinn, 127
6.6 Tutorial: Basic CRUD Operations with Connector/NETccooviiieiiiieiiiiieieee e 128
6.7 Tutorial: Configuring SSL with ConNECtOr/NETcovvviiiiiiei e 131
6.7.1 Using PEM Certificates in ConNECtOr/NETiiiiiiiiiiiiiii e e e 132
6.7.2 Using PFX Certificates in CoNNECLOr/NETc.uiiiiiiieiiiieiie e e e e 133

6.8 Tutorial: USING MYSISCIIPL ...uiie e e e e e e e e e e s 135
7 Connector/NET for Entity FrameEWOIKioiii i e e e e e eaa s 139
7.1 Entity FrameWork 6 SUPPOI . ..uuiiiieii e e e e e e e e e e e e e e e et e e et e e et e eaneees 139
7.2 Entity Framework COre SUPPOI ...ouuuiiii e iie i e e e e e e e e e e e e e e et e e et e e e eeaaaees 145
7.2.1 Creating a Database with Code First in EF COrecccoovvivieiiiiiiiii e 147
7.2.2 Scaffolding an Existing Database in EF COrecccoveviiiieiiiieiii e 150
7.2.3 Configuring Character Sets and Collations in EF COreccccoceeveviiieviin e, 152

8 COoNNECLOI/NET API REFEIENCEuiiiiiii i e et et eeeanen 155
8.1 MyS@l.Data.CommOon.DNSCHENTiiiiieii e e e e e e e eanas 155
8.2 MySql.Data.MySqIClient NaMESPACEcc.uiiiiiiiiii i e e et e e e e e e e e e e e e e e eaaees 155
8.3 MySql.Data.MySqlClient.Authentication NameSPACEcceuviieiiiieiiiieiiii e e 158
8.4 MySql.Data.MySqlClient.Interceptors NameSPACEeeeuniriiieiie e e e e e e e eaen 159
8.5 MySql.Data.MySqlClient.Replication NameSPACEcccuuviiiieiiiieeiii e e 159
8.6 MyS(l.Data. TYPES NAMESPACEcuuueiiiniiiieeiiieete et e e e e e e e e e e e et e e et e e et e e st e eaaeeanaees 159
8.7 MySql.Data.EntityFramework NameESPACEoiiuuiiiiiiiiii e e e e e 159
8.8 Microsoft.EntityFrameworkCore NamMESPACEuvcvuueiiieeiiieeiiiiee e e e e e e e e e e e e eaaeees 161
8.9 MySql.EntityFrameworkCore NAMESPACEcvvuuieiiiiiiieiiiee e i e e e e e e e e e e e e eens 161
8.10 MySgl.WED NAMESPACEuciiiiieiii ittt e e e e e e e e e e e e e et e e e et eeateeeanaaees 163
1S I O] g aT=Tox (0] ¢4 | = IS 0T o] Lo o A 167
9.1 Connector/NET COMMUNILY SUPPOI ..oeuuiiiieiii e e e e e e e e et e e e e ean s 167
9.2 How to Report Connector/NET Problems or BUGSoivviiiiiiiiie e 167

O @do]] aT=Tod (o) N | I X O P 169

Preface and Legal Notices

This is the developer guide for MySQL Connector/NET.

Licensing information. This product may include third-party software, used under license. MySQL
Connector/NET 9.5 Community License Information User Manual has information about licenses relating
to Connector/NET community releases in the 9.5 release series. MySQL Connector/NET 9.5 Commercial
License Information User Manual has information about licenses relating to Connector/NET commercial
releases in the 9.5 release series.

Legal Notices

Copyright © 2004, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation,” or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

https://docs.oracle.com/cd/E17952_01/connector-net-9.5-license-gpl-en/
https://docs.oracle.com/cd/E17952_01/connector-net-9.5-license-gpl-en/
https://docs.oracle.com/cd/E17952_01/connector-net-9.5-license-com-en/
https://docs.oracle.com/cd/E17952_01/connector-net-9.5-license-com-en/

Documentation Accessibility

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=accé& d=t r s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction to MySQL Connector/NET

MySQL Connector/NET enables you to develop .NET applications that require secure, high-performance
data connectivity with MySQL. It implements the required ADO.NET interfaces and integrates into
ADO.NET-aware tools. You can build applications using your choice of .NET languages. Connector/NET
is a fully managed ADO.NET data provider written in 100% pure C#. It does not use the MySQL C client
library.

Connector/NET source code and tests are available from the NuGet Gallery and GitHub. For notes
detailing the changes in each release of Connector/NET, see MySQL Connector/NET Release Notes.

Connector/NET includes full support for:
» Features provided by MySQL Server, up to and including the MySQL 9.5 release series.

* MySQL as a document store (NoSQL), along with X Protocol connection support to access MySQL data
using X Plugin ports.

 Large-packet support for sending and receiving rows and BLOB values up to 2 gigabytes in size.
» Protocol compression, which enables compressing the data stream between the client and server.
» Connections using TCP/IP sockets, named pipes, or shared memory on Windows.
» Connections using TCP/IP sockets or Unix sockets on Unix.
» Encrypted connections using:
e TLSv1.2 protocol over TCP/IP with Connector/NET 8.0.11 and later.

e TLSv1.3 protocol over TCP/IP with Connector/NET 8.0.20 and later.

.NET Standard and runs on the Universal Windows Platform (UWP) .NET implementation.
» Entity Framework 6 and Entity Framework Core to migrate data to and from MySQL data tables.
e The Open Source Mono framework developed by Novell.

Connector/NET supports Microsoft Visual Studio 2013, 2015, 2017, and 2019, although the extent of
support may be limited depending on the versions of Connector/NET and Visual Studio you use. For
details, see Chapter 2, Connector/NET Versions.

Key Topics

» For connection string properties when using the MySqgl Connect i on class, see Section 4.5, “Connector/
NET Connection Options Reference”.

https://docs.oracle.com/cd/E17952_01/connector-net-relnotes-en/
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/blob.html

Chapter 2 Connector/NET Versions

MySQL Connector/NET 9.x series is a continuation of Connector/NET 8.x series, but now nhamed to
synchronize with the (latest) MySQL server version it supports. This version continues the functionality of
the previous Connector/NET release series, including support for X Protocol connections. Connector/NET
customizes Entity Framework Core to operate with MySQL data, enables compression in the .NET driver
implementation, and extends cross-platform support to Linux and macOS.

Secure connections using the TLSv1.2 protocol require Connector/NET 8.0.11 or later. In addition, your
Microsoft Windows host must have the TLSv1.2 protocol enabled. Connections made using Windows
named pipes or shared memory do not support the TLSv1.2 protocol. For general guidance about
configuring the server and clients for secure connections, see Configuring MySQL to Use Encrypted
Connections.

Note
.NET 8, 9, and .NET Framework 4.6 (as of 8.4.0) and 4.8 include support for
the TLSv1.3 protocol. Be sure to confirm that the operating system running your
application also supports TLSv1.3 before using it exclusively for connections.
The following table shows the versions of ADO.NET, .NET (Core and Framework), and MySQL Server

that are supported or required by MySQL Connector/NET. For the specific Entity Framework versions that
Connector/NET targets, see Chapter 7, Connector/NET for Entity Framework.

Table 2.1 Connector/NET Requirements for Related Products

Connector/NET |ADO.NET .NET Versions and Visual Studio MySQL

Version Version Server

9.4.0 2.x+ For apps that target .NET 10 preview, use VS 2022 MySQL 8.0 or
(v17.14 or later) later

For apps that target .NET 9, use VS 2022 (v17.9 or
later)

For apps that target .NET 8, use VS 2022 (v17.8 or
later)

For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)

For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

Archived Connector/NET versions and their requirements:

* C/NET 9.3.0: .NET 9 preview, use VS 2022 (v17.9 or later), .NET 8, use VS 2022 (v17.8 or later) | .NET
Framework 4.8, use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.0 or later

* C/NET 9.2.0: .NET 9 preview, use VS 2022 (v17.9 or later), .NET 8, use VS 2022 (v17.8 or later) | .NET
Framework 4.8, use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.0 or later

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/using-encrypted-connections.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/using-encrypted-connections.html

C/NET 9.1.0: .NET 9 preview, use VS 2022 (v17.9 or later), .NET 8, use VS 2022 (v17.8 or later) | .NET
6, use VS 2022 (v17.0 and later) or VS 2022 for Mac (v17.6 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.0 or later
Note

This is the final release that supports .NET 6.

C/NET 9.0.0: .NET 8, use VS 2022 (v17.8 or later) | .NET 6, use VS 2022 (v17.0 and later) or VS 2022
for Mac (v17.6 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use
VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.0 or later

C/NET 8.4.0: .NET 8, use VS 2022 (v17.8 or later) | .NET 7, use VS 2022 (v17.4 or later) | .NET 6,
use VS 2022 (v17.0 and later) or VS 2022 for Mac (v17.6 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.0 or later

C/NET 8.3.0: .NET 8, use VS 2022 (v17.8 or later) | .NET 7, use VS 2022 (v17.4 or later) | .NET 6,
use VS 2022 (v17.0 and later) or VS 2022 for Mac (v17.6 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.3, MySQL 8.0, or MySQL 5.7

C/NET 8.2.0: .NET 8 preview, use VS 2022 (v17.6 or later) | .NET 7, use VS 2022 (v17.4 or later) | .NET
6, use VS 2022 (v17.0 and later) or VS 2022 for Mac (v17.6 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.2, MySQL 8.0, or MySQL 5.7

C/NET 8.1.0: .NET 7, use VS 2022 (v17.4 or later) | .NET 6, use VS 2022 (v17.0 and later) or VS 2022
for Mac (v17.6 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use
VS 2017 (v15.9 or later)

Recommended server versions: MySQL 8.1, MySQL 8.0, or MySQL 5.7

C/NET 8.0.33: .NET 7, use VS 2022 (v17.4 or later) | .NET 6, use VS 2022 (v17.0) or VS 2022 for Mac
(v17.0 preview) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.33 or MySQL 5.7.42

C/NET 8.0.28+: .NET 6, use VS 2022 (v17.0 or later) or VS 2019 for Mac (v8.10) | .NET 5, use VS 2019
(v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8,
use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.28 or MySQL 5.7.37

C/NET 8.0.23+: .NET 5, use VS 2019 (v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS 2019
(v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.23 or MySQL 5.7.33

C/NET 8.0.22+: .NET 5, use VS 2019 (v16.7) or VS 2019 for Mac (v8.7) | .NET Core 3.1, use VS 2019
(v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.22 or MySQL 5.7.32

C/NET 8.0.20+: .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3
or later)

Recommended minimum server version: MySQL 8.0.20 or MySQL 5.7.30

C/NET 8.0.19+: .NET Core 3.0, use VS 2019 (v16.3 or later) | .NET Framework 4.8, use VS 2019 (v16.3
or later)

Recommended minimum server version: MySQL 8.0.19 or MySQL 5.7.29
C/NET 8.0.18+:; .NET Core 3.0, use VS 2019 (v16.3 or later)
Recommended minimum server version: MySQL 8.0.18 or MySQL 5.7.28

C/NET 8.0.17+: .NET Core 2.2, use VS 2017 (v15.0.9 or later) | .NET Core 2.1, use VS 2017 (v15.0.7 or
later)

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27
C/NET 8.0.10+: .NET Core 2.0, use VS 2017 (v15.0.3 or later)
Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27
C/NET 8.0.8+: .NET Framework 4.5.x, use VS 2013 / 2015 / 2017

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27

Chapter 3 Connector/NET Installation

Table of Contents

3.1 Installing Connector/NET 0N WINAOWSccouuiiiiiiiiiiee et e e e e e e e e et e e e e et e e e e e eanas
3.1.1 Installing Connector/NET Using the Standalone Installercoccoviviiiiiiiciii e
3.1.2 Installing ConNector/NET USING NUGELiiiiiieii e e e e e e e e e e anas

3.2 Installing Connector/NET on UnNiX With MONOiiiiiiiii e et e e e e e e 10

3.3 Installing ConNectOr/NET fTOM SOUICEiiieiiiii e et e et e e e e e e e e et e e et e e e e e e et e e et e eenaeees 11

MySQL Connector/NET runs on any platform that supports the .NET Standard (.NET Framework, .NET
Core, and Mono). The .NET Framework is primarily supported on recent versions of Microsoft Windows
and Microsoft Windows Server.

Cross-platform options:
» .NET Core provides support on Windows, macOS, and Linux.
» Open Source Mono platform provides support on Linux.

Connector/NET is available for download as a standalone MSI Installer or from the NuGet gallery. The
source code is available for download from MySQL Download MySQL Connector/NET or at GitHub from
the MySQL Connector/NET repository.

Also, application developers must ensure the availability of following libraries at runtime:
» For applications using OCI Authentication and SSL Certificates validation:

e BouncyCast | e. Crypt ogr aphy version 2.6.2 or later (see https://www.nuget.org/packages/
BouncyCastle.Cryptography).

» For applications using X DevAPI:

e Kdos. Conpressi on. LZ4. St r eans version 1.3.8 or later (see https://www.nuget.org/packages/
K4os.Compression.LZ4.Streams).

» Google Protobuf version 3.32.0 or later (see https://www.nuget.org/packages/Google.Protobuf).
ZstdSharp version 0.8.6 or later (see https://www.nuget.org/packages/ZstdSharp/).
» For applications using Kerberos authentication:
« Kerberos 5 version 1.21.3 or later (see https://web.mit.edu/kerberos/dist/).
» For applications using OpenTelemetry tracing:

e OpenTelemetry .NET version 1.12.0 or later (see https://web.mit.edu/kerberos/dist/).

3.1 Installing Connector/NET on Windows

On Microsoft Windows, you can install either through a binary installation process using a Connector/NET
MSI, using NuGet, or by downloading and using the source code.

Before installing, ensure that your system is up to date, including installing the latest version of the .NET
Framework or .NET Core. For additional information, see Chapter 2, Connector/NET Versions.

http://www.mono-project.com/
https://dev.mysql.com/downloads/connector/net/
https://www.nuget.org/profiles/MySQL/
https://dev.mysql.com/downloads/connector/net/
https://github.com/mysql/mysql-connector-net
https://www.nuget.org/packages/BouncyCastle.Cryptography
https://www.nuget.org/packages/BouncyCastle.Cryptography
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/Google.Protobuf
https://www.nuget.org/packages/ZstdSharp/
https://web.mit.edu/kerberos/dist/
https://web.mit.edu/kerberos/dist/

Installing Connector/NET Using the Standalone Installer

3.1.1 Installing Connector/NET Using the Standalone Installer

You can install MySQL Connector/NET through a Windows Installer (. nsi) installation package, which
can install Connector/NET on supported Windows operating systems. The MSI package is a file named
nysql - connect or - net - ver si on. nsi , where ver si on indicates the Connector/NET version.

To install Connector/NET:

1.
2.

Double-click the MSI installer file, and click Next to start the installation.
Choose the type of installation to perform (Typical, Custom, or Complete) and then click Next.
« The typical installation is suitable in most cases. Click Typical and proceed to Step 5.

« A Complete installation installs all the available files. To conduct a Complete installation, click the
Complete button and proceed to step 5.

« To customize your installation, including choosing the components to install and some installation
options, click the Custom button and proceed to Step 3.

The Connector/NET installer will register the connector within the Global Assembly Cache (GAC) - this
will make the Connector/NET component available to all applications, not just those where you explicitly
reference the Connector/NET component. The installer will also create the necessary links in the Start

menu to the documentation and release notes.

3. If you have chosen a custom installation, you can select the individual components to install, including
the core interface component, supporting documentation options, examples, and the source code. Click
Disk Usage to determine the disk-space requirements of your component choices.

Select the items and their installation level and then click Next to continue the installation.

4. You will be given a final opportunity to confirm the installation. Click Install to copy and install the files
onto your computer. Use Back to return to the modify your component options.

5. When prompted, click Finish to exit the MSI installer.

Unless you choose a different folder, Connector/NET is installed in C: \ Program Fi | es (x86)\ MySQL
\ MySQL Connector Net version (the version installed). New installations do not overwrite existing
versions of Connector/NET.

You may also use the / qui et or / g command-line option with the nsi exec tool to install the Connector/
NET package automatically (using the default options) with no natification to the user. Using this method
the user cannot select options. Additionally, no prompts, messages or dialog boxes will be displayed.

C.\> nsi exec / package connector-net.nsi /quiet

To provide a progress bar to the user during automatic installation, use the / passi ve option.

3.1.2 Installing Connector/NET Using NuGet

MySQL Connector/NET functionality is available as packages from NuGet, an open-source package
manager for the Microsoft development platform (including .NET Core). The NuGet Gallery is the central
software package repository populated with the most recent NuGet packages for Connector/NET.

You can install or upgrade one or more individual Connector/NET packages with NuGet, making it a
convenient way to introduce existing technology, such as Entity Framework, to your project. NuGet
manages dependencies across the related packages and all of the prerequisites are listed in the NuGet
Gallery. For a description of each Connector/NET package, see Connector/NET Packages (NuGet).

Installing Connector/NET Using NuGet

For projects that require Connector/NET assemblies to be stored in the GAC or
integration with Entity Framework Designer (Visual Studio), use the standalone MSI
to install Connector/NET, rather than installing the NuGet packages.

Consuming Connector/NET Packages with NuGet

The NuGet Gallery (https://www.nuget.org/) provides several client tools that can help you install or
upgrade Connector/NET packages. If you are not familiar with the tool options or processes, see Package
consumption workflow to get started. After locating a package description in NuGet, confirm the following
information:

* The identity and version number of the package are correct. Use the Version History list to select the

current version.

 All of the prerequisites are installed. See the Dependencies list for details.

* The license terms are met. See the License Info link to view this information.

Connector/NET Packages (NuGet)

Connector/NET provides the following five NuGet packages:

MySql . Dat a
MySql . Wb
MySql .

MySql .

M/ Sql .

This package contains the core functionality of Connector/NET,
including using MySQL as a document store (with Connector/NET 8.0
only). It implements the required ADO.NET interfaces and integrates
with ADO.NET-aware tools. In addition, the packages provides access
to multiple versions of MySQL server and encapsulates database-
specific protocols.

The MySql . Web package includes support for the ASP.NET 2.0
provider model (see Section 6.2, “ASP.NET Provider Model and
Tutorials”). This model enables you to focus on the business logic of
your application, rather than having to recreate boilerplate items such as
membership and roles support. The package supports the membership,
role, profile, and session-state providers.

Package dependency: MySql . Dat a.

Dat a. Ent i t yFr anmewor KThis package provides object-relational mapper (ORM) capabilities,

which enables you to work with MySQL databases using domain-
specific objects, thereby eliminating the need for most of the data
access code. Select this package for your Entity Framework 6
applications (see Section 7.1, “Entity Framework 6 Support”).

Package dependency: MySql . Dat a.

Dat a. Ent i t yFr amewor KThis package is similar to the MySql . Dat a. Enti t yFr anewor k

package; however, it provides multi-platform support for Entity
Framework tasks. Select this package for your Entity Framework Core
applications (see Section 7.2, “Entity Framework Core Support”).

Dat a. Ent i t yFr amewor K3ue &4/ Bgbi Dat a. Ent i t yFr amewor kCor e. Desi gn package

includes shared design-time components for Entity Framework Core
tools, which enable you to scaffold and migrate MySQL databases.

https://www.nuget.org/
https://docs.microsoft.com/en-us/nuget/consume-packages/overview-and-workflow
https://docs.microsoft.com/en-us/nuget/consume-packages/overview-and-workflow

Installing Connector/NET on Unix with Mono

Note

Beginning with Connector/NET 8.0.20,

the functionality provided in this

package has been relocated to the

MySql . Dat a. Enti t yFr amewor kCor e
package. The original

MySql . Dat a. Ent i t yFr amewor kCor e. Desi gn
package is deprecated.

3.2 Installing Connector/NET on Unix with Mono

There is no installer available for installing the MySQL Connector/NET component on your Unix
installation. Before installing, ensure that you have a working Mono project installation. To test whether
your system has Mono installed, enter:

$> nono --version

The version of the Mono JIT compiler is displayed.

To compile C# source code, make sure a Mono C# compiler is installed.
Note

There are three Mono C# compilers available: nts, which accesses the 1.0-profile
libraries, gnts, which accesses the 2.0-profile libraries, and dnts, which accesses
the 4.0-profile libraries.

To install Connector/NET on Unix/Mono:

1. Download the nysqgl - connect or - net - ver si on- noi nstal | . zi p and extract the contents to a
directory of your choice, for example: ~/ connect or-net /.

2. Inthe directory where you unzipped the connector to, change into the bi n subdirectory. Ensure the file
MySql . Dat a. dl | is present. This filename is case-sensitive.

3. You must register the Connector/NET component, MySql . Dat a, in the Global Assembly Cache (GAC).
In the current directory enter the gacut i | command:

#> gacutil /i MySql.Data.dl |

This will register My Sql . Dat a into the GAC. You can check this by listing the contents of / usr/ I 'i b/
nono/ gac, where you will find MySql . Dat a if the registration has been successful.

You are now ready to compile your application. You must ensure that when you compile your application
you include the Connector/NET component using the - r : command-line option. For example:

$> gnts -r:Systemdl| -r:SystemData.dl|l -r:MSqgl.Data.dl | HelloWrld.cs

The referenced assemblies depend on the requirements of the application, but applications using
Connector/NET must provide - r : MySql . Dat a at a minimum.

You can further check your installation by running the compiled program, for example:

$> nono Hel | oWor | d. exe

10

Installing Connector/NET from Source

3.3 Installing Connector/NET from Source

Building MySQL Connector/NET from the source code enables you to customize build parameters and
target platforms such as Linux and macOS. The procedures in this section describe how to build source
with Microsoft Visual Studio (Windows or macOS) and .NET Core CLI (Windows, macOS, or Linux).

MySQL Connector/NET source code is available for download from https://dev.mysqgl.com/downloads/
connector/net/. Select Sour ce Code from the Select Operating System list. Use the Archive tab to
download a previous version of Connector/NET source code.

Source code is packaged as a ZIP archive file with a name similar to nysql - connect or - net - ver si on-
src. zi p. Unzip the file to local directory.

The file includes the following directories with source files:

» EFCor e: Source and test files for Entity Framework Core features.

» EntityFranmewor k: Source and test files for Entity Framework 6 features.
* MySQ.. Dat a: Source and test files for features using the MySQL library.

* MySQL. V\eb: Source and test files for the web providers, including the membership, role, profile
providers that are used in ASP.NET or ASP.NET Core websites.

Building Source Code with Visual Studio

The following procedure can be used to build the connector on Microsoft Windows or macOS. Connector/
NET supports various versions of Microsoft Visual Studio and .NET libraries. For guidance about the
Connector/NET version you intend to build, see Chapter 2, Connector/NET Versions before you begin.

1. Navigate to the root of the source code directory and then to the directory with the source files to build,
such as MySql . Dat a. Each source directory contains a Microsoft Visual Studio solution file with the
. sl n (for example, MySgl Dat a. sl n).

2. Double-click the solutions file to start Visual Studio and open the solution.

Visual Studio opens the solution files in the Solution Explorer. All of the projects related to the solution
also appear in the navigation tree. These related projects can include test files and the projects that
your solutions requires.

3. Locate the project with the same name as the solution (MySql . Dat a in this example). Right-click the
node and select Build from the context menu to build the solution.

Building Source Code with .NET Core CLI

The following procedure can be used to build the connector on Microsoft Windows, Linux, or macOS.
A current version of the .NET Core SDK must be installed locally to execute dot net commands. For
additional usage information, visit https://docs.microsoft.com/en-us/dotnet/core/tools/.

1. Open aterminal such as Power Shel | , Conmand Pr onpt, or bash.

Navigate to the root of the source code directory and then to the directory with the source files to build,
such as MySQL. Dat a.

2. Clean the output of the previous build.

dot net cl ean

11

https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/
https://docs.microsoft.com/en-us/dotnet/core/tools/

Building Source Code with .NET Core CLI

3. Type the following command to build the solution file (MySql . Dat a. sl n in this example) using the

default command arguments:

dotnet build

Solution and project default. ~ When no directory and file name is provided on the command line,
the default value depends on the current directory. If the command is executed from the top directory,
such as MySQL. Dat a, the solution file is selected (new with the .NET Core 3.0 SDK). Otherwise, if
executed from the sr ¢ subdirectory, the project file is used.

Configuration default, - ¢ | -- confi gurati on. Defaults to the Debug build configuration.
Alternatively, - ¢ Rel ease is the other supported build configuration argument value.

Framework default, - f |- -franmewor k. When no framework is specified on the command line, the
solution or project is built for all possible frameworks that apply. To determine which frameworks are
supported, use a text editor to open the related project file (for example, MySql . Dat a. cspr oj in the
sr ¢ subdirectory) and search for the <Tar get Fr amewor ks> element.

To build source code on Linux and macOS, you must target .NET Standard (- f net st andar d2. 0 or
-f netstandard2. 1). To build source code on Microsoft Windows, you can target .NET Standard
and .NET Framework (-f net 452 or-f net 48).

12

Chapter 4 Connector/NET Connections

Table of Contents

4.1 Creating a Connector/NET CONNECLION SIHNG ..covuuiiiiiiieiiiiii e e e e eees 13
4.2 Managing a Connection Pool in CONNECIOI/NETuuiiiiiiiieiiii e 16
4.3 Handling CONNECHION EITOIS .. .o.uuuiiiiiii ettt e et e et et e e e et e e e eeba e e e eenaaeeenes 17
4.4 ConNeCtOr/NET AUNENTICALIONcoouuiiiiiii et eaans 18
4.5 Connector/NET Connection Options REfErenCecooouiiiiiiiiiiii e 23

All interaction between a .NET application and the MySQL server is routed through a My Sql Connect i on
object when using the classic MySQL protocol. Before your application can interact with the server, it must
instantiate, configure, and open a MySqgl Connect i on object.

Even when using the My Sql Hel per class, a MySql Connect i on object is created by the helper class.
Likewise, when using the MySgl Connecti onSt ri ngBui | der class to expose the connection options as
properties, your application must open a My Sql Connect i on object.

This sections in this chapter describe how to connect to MySQL using the My Sql Connect i on object.

4.1 Creating a Connector/NET Connection String

The MySqgl Connect i on object is configured using a connection string. A connection string contains
several key-value pairs, separated by semicolons. In each key-value pair, the option name and its
corresponding value are joined by an equal sign. For the list of option names to use in the connection
string, see Section 4.5, “Connector/NET Connection Options Reference”.

The following is a sample connection string:

"server=127. 0. 0. 1; ui d=r oot ; pwd=12345; dat abase=t est "

In this example, the My Sgql Connect i on object is configured to connect to a MySQL server at

127.0. 0. 1, with a user name of r oot and a password of 12345. The default database for all statements
will be the t est database.

Connector/NET supports several connection models:

» Opening a Connection to a Single Server

* Opening a Connection for Multiple Hosts with Failover

» Opening a Connection Using a Single DNS Domain

Opening a Connection to a Single Server

After you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySgl Connect i on object, assign the connection string, and open
the connection.

MySQL Connector/NET can also connect using the native Windows authentication plugin. See Section 4.4,
“Connector/NET Authentication” for details.

13

Opening a Connection to a Single Server

You can further extend the authentication mechanism by writing your own authentication plugin. See
Section 5.8, “Writing a Custom Authentication Plugin” for details.

C# Example

MySql . Dat a. MySgl i ent. MySgl Connecti on conn;
string nmyConnectionString;

myConnectionString = "server=127.0.0. 1; ui d=root;" +
"pwd=12345; dat abase=t est";

try

{
conn = new MySql . Dat a. MySqgl d i ent . MySgl Connecti on();
conn. ConnectionString = nyConnecti onString;
conn. Qpen();

}
catch (MySql . Data. MySql d i ent. MySqgl Excepti on ex)
{

MessageBox. Show(ex. Message) ;
}

Visual Basic Example

Di m conn As New MySql . Dat a. MySql C i ent . MySqgl Connect i on
Di m myConnectionString as String

nmyConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "dat abase=t est"

Try
conn. ConnectionString = myConnectionString
conn. Open()

Catch ex As MySql . Data. MySgl Cl i ent. MySqgl Excepti on
MessageBox. Show(ex. Message)
End Try

You can also pass the connection string to the constructor of the My Sql Connect i on class:

C# Example

M/Sql . Dat a. MySql C i ent . MySql Connect i on conn;
string nmyConnectionString;

nmyConnectionString = "server=127.0.0. 1; ui d=root ;" +
"pwd=12345; dat abase=t est";

try

{
conn = new MySqgl . Dat a. MySqgl Cl i ent. MySgl Connecti on(myConnecti onStri ng);
conn. Qpen() ;

}
catch (MySql . Data. MySql i ent. MySql Excepti on ex)
{

MessageBox. Show ex. Message) ;
}

Visual Basic Example
Di m myConnectionString as String

myConnectionString = "server=127.0.0.1;"
& "uid=root;" _

14

Opening a Connection for Multiple Hosts with Failover

& "pwd=12345; " _
& "dat abase=t est"

Try
Di m conn As New MySql . Data. MySql d i ent . MySgl Connect i on(myConnecti onStri ng)
conn. Open()
Catch ex As MySqgl . Data. MySgl Cl i ent. MySql Excepti on
MessageBox. Show(ex. Message)
End Try

After the connection is open, it can be used by the other Connector/NET classes to communicate with the
MySQL server.

Opening a Connection for Multiple Hosts with Failover

Data used by applications can be stored on multiple MySQL servers to provide high availability. Connector/
NET provides a simple way to specify multiple hosts in a connection string for cases in which multiple
MySQL servers are configured for replication and you are not concerned about the precise server your
application connects to in the set. For an example of how to configure multiple hosts with replication, see
Using Replication & Load balancing.

Starting in Connector/NET 8.0.19, both classic MySQL protocol and X Protocol connections permit the use
of multiple host names and multiple endpoints (a host : port pair) in a connection string or URI scheme.
For example:

/] classic protocol exanple
"server=10. 10. 10. 10: 3306, 192. 101. 10. 2: 3305, | ocal host : 3306; ui d=t est ; passwor d=xxxx"

/'l X Protocol exanple
mysql x: //test:test @192. 1. 10. 10: 3305, 127. 0. 0. 1: 3306]

An updated failover approach selects the target for connection first by priority order, if provided, or random
order when no priority is specified. If the attempted connection to a selected target is unsuccessful,
Connector/NET selects a new target from the list until no more hosts are available. If enabled, Connector/
NET uses connection pooling to manage unsuccessful connections (see Section 4.2, “Managing a
Connection Pool in Connector/NET").

Opening a Connection Using a Single DNS Domain

When multiple MySQL instances provide the same service in your installation, you can apply DNS Service
(SRV) records to provide failover, load balancing, and replication services. DNS SRV records remove the
need for clients to identify each possible host in the connection string, or for connections to be handled by
an additional software component. They can also be updated centrally by administrators when servers are
added or removed from the configuration or when their host names are changed. DNS SRV records can be
used in combination with connection pooling, in which case connections to hosts that are no longer in the
current list of SRV records are removed from the pool when they become idle. For information about DNS
SRV support in MySQL, see Connecting to the Server Using DNS SRV Records.

A service record is a specification of data managed by your domain name system that defines the
location (host name and port number) of servers for the specified services. The record format defines
the priority, weight, port, and target for the service as defined in the RFC 2782 specification (see
https://tools.ietf.org/html/rfc2782). In the following SRV record example with four server targets (for
_nmysgl . _tcp.foo.abc. com), Connector/NET uses the server selection order of f 002, f 001, f 003,

and f oo4.

Name TTL Cl ass Priority Weight Port Target

_nysql . _tcp. foo. abc.com 86400 IN SRV O 5 3306 fool.abc.com
_nysql . _tcp. foo.abc.com 86400 IN SRV 0 10 3306 fo002.abc.com
_nysql . _tcp. foo.abc.com 86400 IN SRV 10 5 3306 fo003.abc.com

15

https://blogs.oracle.com/mysql/how-to:-using-replication-load-balancing-with-connectornet
https://blogs.oracle.com/mysql/how-to:-using-replication-load-balancing-with-connectornet
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/connecting-using-dns-srv.html
https://tools.ietf.org/html/rfc2782

Managing a Connection Pool in Connector/NET

_nmysql . _tcp. foo.abc.com 86400 IN SRV 20 5 3306 foo4.abc.com

To open a connection using DNS SRV records, add the dns- sr v connection option to your connection
string. For example:

C# Example

var conn = new MySqgl Connecti on("server=_nysql._tcp.foo.abc.com ;dns-srv=true;" +
"user id=user;password=****: dat abase=test");

For additional usage examples and restrictions for both classic MySQL protocol and X Protocol, see
Options for Both Classic MySQL Protocol and X Protocol.

4.2 Managing a Connection Pool in Connector/NET

The MySQL Connector/NET supports connection pooling for better performance and scalability with
database-intensive applications. This is enabled by default. You can turn it off or adjust its performance
characteristics using the connection string options Pool i ng, Connecti on Reset, Connecti on

Li feti me, Cache Server Properties,Max Pool SizeandM n Pool Size.See Section 4.1,
“Creating a Connector/NET Connection String” for further information.

Connection pooling works by keeping the native connection to the server live when the client disposes of
a MySgl Connect i on. Subsequently, if a new MySqgl Connect i on object is opened, it is created from the
connection pool, rather than creating a new native connection. This improves performance.

Guidelines

To work as designed, it is best to let the connection pooling system manage all connections. Do not create
a globally accessible instance of MySgl Connect i on and then manually open and close it. This interferes
with the way the pooling works and can lead to unpredictable results or even exceptions.

One approach that simplifies things is to avoid creating a My Sql Connect i on object manually. Instead,
use the overloaded methods that take a connection string as an argument. With this approach, Connector/
NET automatically creates, opens, closes and destructs connections, using the connection pooling system
for best performance.

Typed Datasets and the Menber shi pProvi der and Rol ePr ovi der classes use this approach. Most
classes that have methods that take a My Sql Connect i on as an argument, also have methods that take a
connection string as an argument. This includes My Sql Dat aAdapt er .

Instead of creating My Sgl Conmrand objects manually, you can use the static methods of the
MySql Hel per class. These methods take a connection string as an argument and they fully support
connection pooling.

Resource Usage

Connector/NET runs a background job every three minutes and removes connections from pool that have
been idle (unused) for more than three minutes. The pool cleanup frees resources on both client and
server side. This is because on the client side every connection uses a socket, and on the server side
every connection uses a socket and a thread.

Multiple endpoints. Starting with Connector/NET 8.0.19, a connection string can include multiple
endpoints (ser ver : por t) with connection pooling enabled. At runtime, Connector/NET selects one of
the addresses from the pool randomly (or by priority when provided) and attempts to connect to it. If the
connection attempt is unsuccessful, Connector/NET selects another address until the set of addresses is
exhausted. Unsuccessful endpoints are retried every two minutes. Successful connections are managed
by the connection pooling mechanism.

16

Handling Connection Errors

4.3 Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to
your .NET application. When there is an error connecting, the MySql Connect i on class will return a
My Sql Except i on object. This object has two properties that are of interest when handling errors:

* Message: A message that describes the current exception.
* Nunber : The MySQL error number.

When handling errors, you can adapt the response of your application based on the error number. The two
most common error numbers when connecting are as follows:

* 0: Cannot connect to server.
» 1045: Invalid user name, user password, or both.

The following code example shows how to manage the response of an application based on the actual
error:

C# Example

MySql . Dat a. MySgl i ent. MySqgl Connecti on conn;
string myConnectionStri ng;

nmyConnectionString = "server=127.0.0. 1; ui d=root;" +
"pwd=12345; dat abase=t est";

try
{
conn = new MySqgl . Data. MySgl C i ent. MySgl Connecti on(myConnecti onStri ng);
conn. Open() ;
}
catch (MySql . Data. MySql d i ent . MySql Excepti on ex)
{
switch (ex. Nunmber)
{
case 0:
MessageBox. Show(" Cannot connect to server. Contact administrator");
br eak;
case 1045:
MessageBox. Show("I nval i d user nane/ password, please try again");
br eak;
}
}

Visual Basic Example

Di m myConnectionString as String

myConnectionString = "server=127.0.0.1;"
& "uid=root;" _
& "pwd=12345;" _
& "dat abase=t est "

Try
Di m conn As New MySql . Data. MySql d i ent . MySgl Connect i on(myConnecti onStri ng)
conn. Open()
Catch ex As MySqgl . Data. MySgl Cl i ent. MySql Excepti on
Sel ect Case ex. Nunber
Case 0
MessageBox. Show(" Cannot connect to server. Contact administrator")

17

Connector/NET Authentication

Case 1045
MessageBox. Show("I nval i d user nane/ password, please try again")
End Sel ect
End Try

Important

If you are using multilanguage databases then you must specify the character set
in the connection string. If you do not specify the character set, the connection
defaults to the | at i n1 character set. You can specify the character set as part of
the connection string, for example:

MySgl Connecti on myConnecti on = new MySql Connecti on("server=127.0.0. 1; uid=root;" +
"pwd=12345; dat abase=t est ; Charset =l ati n1");

4.4 Connector/NET Authentication

MySQL Connector/NET implements a variety of authentication plugins that MySQL Server can invoke to
authenticate a user. Pluggable authentication enables the server to determine which plugin applies, based
on the user name and host name that your application passes to the server when making a connection. For
a complete description of the authentication process, see Pluggable Authentication.

Connector/NET provides the following authentication plugins and methods:
 authentication_kerberos_client

« authentication_Idap_sasl_client

 authentication_oci_client

 authentication_openid_connect_client

« authentication_webauthn_client

» authentication_windows_client

» caching_sha2_ password

* mysql_clear_password

* mysql_native_password

» sha256_password

authentication_kerberos_client

For general information, see Kerberos Pluggable Authentication.

Applications and MySQL servers are able use the Kerberos authentication protocol to authenticate MySQL
Enterprise Edition user accounts and services. With the aut hent i cati on_ker beros_cl i ent plugin,
both the user and the server are able to verify each other's identity. No passwords are ever sent over the
network and Kerberos protocol messages are protected against eavesdropping and replay attacks. The
server-side plugin is supported only on Linux.

Note

The Def aul t aut henti cati onpl ugi n connection-string option is mandatory for
supporting userless and passwordless Kerberos authentications (see Options for
Classic MySQL Protocol Only).

18

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/kerberos-pluggable-authentication.html

authentication_Ildap_sasl_client

The availability of and the requirements for enabling Kerberos authentication differ by host type.
Connector/NET does not provide Kerberos authentication for .NET applications running on macOS.
On Windows, the Kerberos mode can be set using the Ker ber osAut hivbde connection option (see
Section 4.5, “Connector/NET Connection Options Reference”).

Applications running on Linux and Windows participate in Kerberos authentication based on the following
interfaces:

» Generic Security Service Application Program Interface (GSSAPI)

Minimum version:
» Connector/NET 8.0.26 for classic MySQL protocol connections. Supported on Linux only.

¢ Connector/NET 8.0.32 for classic MySQL protocol connections through the MIT Kerberos library.
Supported on Windows only.

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The | i bgssapi _kr b5. so. 2 library for Linux is required. On
Windows, use the KRB5 _CONFI Gand KRB5CCNANME environment variables to specify configuration and
cache locations when using GSSAPI through the MIT Kerberos library.

For an overview of the connection process, see Connection Commands for Linux Clients.

» Security Support Provider Interface (SSPI) for Windows

Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections. Supported on
Windows only.

Connector/NET uses SSPI/Kerberos for authentication. On Windows, SSPI implements GSSAPI. The
behavioral differences between SSPI and GSSAPI include:

e Configuration. Windows clients do not use any external libraries or Kerberos configuration. For
example, with GSSAPI you can set the ticket-granting ticket (TGT) expiry time, key distribution center
(KDC) port, and so on. With SSPI, you cannot set any of these options.

e TGT tickets caching. If you provide a user name and password for authentication in SSPI mode,
those credentials can be obtained from the Windows in-memory cache, but the obtained tickets are
not stored in the Kerberos cache. New tickets are obtained every time.

e Userless and passwordless authentication. In SSPI mode, Windows logged-in user name and
credentials are used. Windows client must be part of the Active Directory domain of the server for a
successful login.

For an overview of the connection process, see Connection Commands for Windows Clients in SPPI
Mode.

authentication_ldap_sasl_client
For general information, see LDAP Pluggable Authentication.
SASL-based LDAP authentication requires MySQL Enterprise Edition and can be used to establish classic
MySQL protocol connections only. This authentication protocol applies to applications running on Linux

and Windows, but not macOS.

Minimum version:

19

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/ldap-pluggable-authentication.html

authentication_oci_client

e SCRAM SHA- 1: Connector/NET 8.0.22
* SCRAM SHA- 256: Connector/NET 8.0.23
e GSSAPI : Connector/NET 8.0.24 for Linux, Connector/NET 9.4.0 for Windows

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The aut hent i cati on_| dap_sas! plugin must be configured to
use the GSSAPI mechanism and the application user must be identified as follows:

| DENTI FI ED W TH ' aut henti cati on_| dap_sasl '

The | i bgssapi _kr b5. so. 2 library for Linux is required.

authentication_oci_client

Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections only.

Connector/NET supports Oracle Cloud Infrastructure pluggable authentication, which enables .NET
applications to access MySQL HeatWave Service in a secure way without using passwords. This
pluggable authentication is not supported for .NET Framework 4.5.x implementations.

Prerequisites for this type of connection include access to a tenancy, a Compute instance, a DB System
attached to a private network, and properly configured groups, compartments, and policies. An Oracle
Cloud Infrastructure administrator can provide the basic setup for MySQL user accounts.

In addition, the DB System must have the server-side authentication plugin installed and loaded before a
connection can be attempted. Connector/NET implements the client-side authentication plugin.

During authentication, the client-side plugin locates the client user’'s Oracle Cloud Infrastructure
configuration file from which it obtains a signing key file. The location of the configuration file can

be specified with the oci Conf i gFi | e connection option; otherwise, the default location is used. In
Connector/NET 8.0.33, the Cci Confi gPr of i | e connection option permits selecting a profile in the
configuration file to use for authentication. Connector/NET then signs a token it receives from the server,
uses the token to create the SHA256 RSA signature that it returns to the server, and waits for the success
or failure of the authentication process.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/NET 8.0.33 (and
later) obtains the location of the token file from the security token fil e entry. For example:

[DEFAULT]

fingerprint=59:8a:0b[...]

key file=~/.oci/sessi ons/ DEFAULT/ oci _api _key. pem
t enancy=oci d1. tenancy.ocl.[...]

regi on=us- ashburn-1

security_token_fil e=~/.oci/sessi ons/ DEFAULT/t oken

Connector/NET sends to the server a JSON attribute (named "t oken™) with the value extracted from the
security_token_fil e field. If the target file referenced in the profile does not exist, or if the file exceeds
a specified maximum value, then Connector/NET terminates the action and returns an exception with the
cause.

Connector/NET sends an empty token value in the JSON payload if:
» The security-token file is empty.

» The configuration option security_token_fil e is found but the value in the configuration file is
empty.

20

authentication_openid_connect_client

In all other cases, Connector/NET adds the content of the security-token file intact to the JSON document.
Potential error conditions include:

« Private key could not be found at |ocation given by OCl configuration entry
"key file".

Connector/NET could not find the private key at the specified location.

e« OClI configuration entry '"key file' does not reference a valid key file.
Connector/NET was unable to load or use the specified private key.

e OClI configuration file does not contain a 'fingerprint' or 'key file' entry.
The configuration file is missing the f i nger pri nt entry, the key_fi | e entry, or both.

e OCI configuration file could not be read

Connector/NET could not find or load the configuration file. Be sure the oci Conf i gFi | e value matches
the location of the file.

« The OCI SDK cannot be found or is not installed
Connector/NET could not load the Oracle Cloud Infrastructure SDK library at run time.

Connector/NET references the OCl . Dot Net SDK. Conmon NuGet package in the Oracle Cloud
Infrastructure SDK library to read configuration-file entry values and this package must be available.

Tip

To manage the size of your .NET project, include only the required package for
authentication rather than the full set of packages in the library.

For specific details about usage and support, see SDK and CLI Configuration File.

authentication_openid_connect_client

MySQL Enterprise Edition supports authentication to MySQL Server 9.1.0 (and
higher) using OpenlID Connect Authentication. This authentication method uses
a pair of plugins, aut henti cati on_openi d_connect on the server side and
aut henti cation_openi d _connect client on the client side.

Connector/NET requires an Identity Token that is passed to the Openi dl dent i t yToken connection
option. By default, Connector/NET uses the operating system's login username if one is not specified in the
connection string or while creating the My Sql Connect i on object.

IdentityToken = "eyJhbCci G JSUzI INi | sl nR5cCl 61 kpXVCI9. eyJzdWi......... "

var connStringBuil der = new MySql Connecti onStri ngBuil der ()

{

User| D = "openi d-testuser",

Server = Settings. Server,

Port = Settings. Port,

Openl dl dentityToken = | dentityToken,

Def aul t Aut hent i cati onPl ugi n = "aut henti cati on_openi d_connect _client"
iE

usi ng (MySgl Connection conn = new MySgl Connecti on(connStringBuil der. ConnectionString))

21

https://www.nuget.org/packages/OCI.DotNetSDK.Common/
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm#SDK_and_CLI_Configuration_File

authentication_webauthn_client

11
}

authentication_webauthn_client

For general information, see WebAuthn Pluggable Authentication.

MySQL Enterprise Edition supports authentication to MySQL Server 8.2.0 (and higher) using devices such
as smart cards, security keys, and biometric readers. This authentication method is based on the FIDO
and FIDO?2 standards, and uses a pair of plugins, aut henti cati on_webaut hn on the server side and
aut henti cati on_webaut hn_cl i ent on the client side. Connector/NET 8.2.0 supports the client-side
WebAuthn authentication plugin.

The WebAuthn authentication method can be used directly for one-factor authentication (1FA) or combined
with existing MySQL authentication methods to support accounts that use 2FA or 3FA. Connector/NET
provides a callback mechanism to notify the application that the user is expected to interact with the FIDO/
FIDOZ2 device through its authenticator. For example:

public void OpenConnecti on()

{
usi ng(var connection = new MySQLConnecti on("host=foo; .. "))
connecti on. WebAut hnAct i onRequest ed += WebAut hnAct i onRequest ed;
connecti on. Open();
...
}
public voi d WebAut hnAct i onRequest ed()
{
Consol e. WitelLi ne("Please insert WebAut hn devi ce and perform gesture action for authentication to conplete
}

If the following requirements are satisfied, Connector/NET notifies the application that it is expecting user
interaction with the FIDO/FIDO2 device:

* The FIDO/FIDO2 device must be registered for the specific authentication factor associated with each
user account.

» The application, Connector/NET, and the FIDO/FIDO2 device must be available on the same host or
within a trusted network.

» On Windows, the application must run as administrator to access the required | i bf i do2 library, which
must be present on the client.

The authentication process terminates after a reasonable time interval has elapsed without user-device
interaction.

Note

The related aut henti cation_fido_client plugin and Fi doActi onCal | back
callback (both added in Connector/NET 8.0.29) were removed in Connector/NET
8.4.0 in favor of using WebAuthn authentication.

authentication_windows_client

Supported for all versions of Connector/NET. For general information, see Windows Pluggable
Authentication.

MySQL Connector/NET applications can authenticate to a MySQL server using the Windows Native
Authentication Plugin. Users who have logged in to Windows can connect from MySQL client programs to

22

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/webauthn-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/windows-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/windows-pluggable-authentication.html

caching_sha2_ password

the server based on the information in their environment without specifying an additional password. The
interface matches the MySql.Data.MySqlClient object. To enable, passin | nt egrat ed Security tothe
connection string with a value of yes or sspi .

Passing in a user ID is optional. When Windows authentication is set up, a MySQL user is created and
configured to be used by Windows authentication. By default, this user ID is named aut h_w ndows,

but can be defined using a different name. If the default name is used, then passing the user ID to the
connection string from Connector/NET is optional, because it will use the aut h_wi ndows user. Otherwise,
the name must be passed to the connection string using the standard user ID element.

caching_sha2 password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections only. For general
information, see Caching SHA-2 Pluggable Authentication.

mysql_clear_password

Minimum version: Connector/NET 8.0.22 for classic MySQL protocol connections only. For general
information, see Client-Side Cleartext Pluggable Authentication.

mysql _cl ear _passwor d requires a secure connection to the server, which is satisfied by either
condition at the client:

» The SslMode connection option has a value other than Di sabl ed or None (deprecated in Connector/
NET 8.0.29). The value is set to Pr ef er r ed by default.

» The ConnectionProtocol connection option is set to uni x for Unix domain sockets.

mysql_native_password

Supported for all versions of Connector/NET to establish classic MySQL protocol and X Protocol
connections. For general information, see Native Pluggable Authentication.

Note

The nysql _native_passwor d plugin is disabled by default as of MySQL Server
8.4.0 and removed as of MySQL Server 9.0.0.

sha256 password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections or X Protocol
connections with the MYSQL41 mechanism (see the Auth connection option). For general information, see
SHA-256 Pluggable Authentication.

Note

The sha256_passwor d plugin is deprecated as of MySQL Server 8.0.16 and
subject to removal in a future version.

4.5 Connector/NET Connection Options Reference

This chapter describes the full set of MySQL Connector/NET 8.0 connection options. The protocol you use
to make a connection to the server (classic MySQL protocol or X Protocol) determines which options you
should use. Connection options have a default value that you can override by defining the new value in the

23

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/caching-sha2-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/cleartext-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/native-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/sha256-pluggable-authentication.html

Options for Both Classic MySQL Protocol and X Protocol

connection string (classic MySQL protocol and X Protocol) or in the URI-like connection string (X Protocol).
Connector/NET option names and synonyms are not case sensitive.

For instructions about how to use connection strings, see Section 4.1, “Creating a Connector/NET
Connection String”. For alternative connection styles, see Connecting to the Server Using URI-Like Strings

or Key-Value Pairs.

The following sections list the connection options that apply to both protocols, classic MySQL protocol only,

and X Protocol only:

» Options for Both Classic MySQL Protocol and X Protocol

» Options for Classic MySQL Protocol Only

» Options for X Protocol Only

Options for Both Classic MySQL Protocol and X Protocol

The following Connector/NET connection options can be used with either protocol.
Connector/NET 8.0 exposes the options in this section as properties in both

the MySql . Dat a. MySql d i ent. MySqgl Connecti onStri ngBui |l der and

My Sqgl X. XDevAPI . MySql XConnecti onStri ngBui |l der classes.

CertificateFile,
Certificate File

CertificatePassword,
Certificate Password

CertificateStorelLocation
, Certificate Store
Locati on

CertificateThunbprint ,
Certificate Thunbprint

Char act er Set , Char act er
Set , Char Set

Connect i onPr ot ocol |,
Pr ot ocol , Connecti on
Pr ot ocol

Default: nul |

This option specifies the path to a certificate file in PKCS #12 format
(. pf x). For an example of usage, see Section 6.7.2, “Using PFX
Certificates in Connector/NET".

Default: nul |

Specifies a password that is used in conjunction with a certificate
specified using the option Certi fi cat eFi | e. For an example of
usage, see Section 6.7.2, “Using PFX Certificates in Connector/NET".

Default: nul |

Enables you to access a certificate held in a personal store, rather than
use a certificate file and password combination. For an example of
usage, see Section 6.7.2, “Using PFX Certificates in Connector/NET".

Default: nul |

Specifies a certificate thumbprint to ensure correct identification of a
certificate contained within a personal store. For an example of usage,
see Section 6.7.2, “Using PFX Certificates in Connector/NET”.

Specifies the character set that should be used to encode all queries
sent to the server. Results are still returned in the character set of the
result data.

Default: socket (ortcp)
Specifies the type of connection to make to the server. Values can be:
e socket ort cp for a socket connection using TCP/IP.

« pi pe for a named pipe connection (not supported with X Protocol).

24

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/connecting-using-uri-or-key-value-pairs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/connecting-using-uri-or-key-value-pairs.html

Options for Both Classic MySQL Protocol and X Protocol

* uni x for a UNIX socket connection.

e nmenory to use MySQL shared memory (not supported with X

Protocol).
Dat abase, I niti al Default: nysq|
Cat al og N o
The case-sensitive name of the database to use initially.
dns-srv, dnssrv Default: f al se

Enables the connection to resolve service (SRV) addresses in a DNS
SRV record, which defines the location (host name and port number)

of servers for the specified services when it is used with the default
transport protocol (t cp). A single DNS domain can map to multiple
targets (servers) using SRV address records. Each SRV record includes
the host name, port, priority, and weight. DNS SRV support was
introduced in Connector/NET 8.0.19 to remove the need for clients

to identify each possible host in the connection string, with or without
connection pooling.

Specifying multiple host names, a port number, or a Unix socket, named
pipe, or shared memory connection (see the Connect i onPr ot ocol
option) in the connection string is not permitted when DNS SRV is
enabled.

Using classic MySQL protocol. The dns- srv option applies
to connection strings; the DnsSr v property is declared in the
MySqgl Connecti onStri ngBui | der class.

/1 Connection string exanple

var conn = new MySql Connecti on("server=_nysql._tcp. exanpl e. abc. com ;
dns-srv=true;
user id=user;
passwor d=****;
dat abase=test");

/'l MySql Connecti onStringBuil der class exanpl e

var sb = new MySql Connecti onStri ngBuil der();
{

Server = "_nysqgl._tcp. exanpl e. abc. com ",
UserI D = "user",
Password = "****"

DnsSrv = true,
Dat abase = "test"

}s

var conn = new MySqgl Connecti on(sb. ConnectionString);

Using X Protocol. The dns- sr v option applies to connection
strings and anonymous objects. The DnsSr v property is declared in
the MySql XConnect i onSt ri ngBui | der class. An error is raised
if both dns- srv=f al se and the URI scheme of nysql x+srv://
are combined to create a conflicting connection configuration. For
details about using the nysql x+srv:// scheme element in URI-like
connection strings, see Connections Using DNS SRV Records.

25

https://docs.oracle.com/cd/E17952_01/x-devapi-userguide-en/connecting-dns-srv.html

Options for Both Classic MySQL Protocol and X Protocol

Keepal i ve, Keep Alive

Password, Passwordl, pwd
, pwdl

/] Connection string exanple

var session = MySQLX. Get Sessi on("server=_nysql x. _tcp. exanpl e. abc. com ;

dns-srv=true;
user id=user;
passwor d=****;
dat abase=test");

/' Anonynous object exanple

var connstri ng = new

server = " _nysql x. _tcp. exanpl e. abc. com ",
user = "user",
password = "****"

dnssrv = true

}i

var session = MySQLX. Get Sessi on(connString);

/'l MySql XConnecti onStringBuil der class exanpl e

var sb = new MySqgl XConnecti onStri ngBuil der () ;

{
Server = " _nysql x. _tcp. exanpl e. abc. com ",
UserI D = "user",
Password = "****"

DnsSrv = true,
Dat abase = "test"

}s

var session = MySQLX. Get Sessi on(sb. ConnectionString);

Default: 0

For TCP connections, idle connection time measured in seconds, before
the first keepalive packet is sent. A value of 0 indicates that keepal i ve
is not used. Before Connector/NET 6.6.7/6.7.5/6.8.4, this value was
measured in milliseconds.

Default: an empty string

The password for the MySQL account being used for one-factor/single-
factor authentication (LFA/SFA), which uses only one authentication
method such as a password.

Starting with Connector/NET 8.0.28, this option also provides the first
secret password for an account that has multiple authentication factors.
The server can require one (1FA), two (2FA), or three (3FA) passwords
to authenticate the MySQL account. For example, if an account with
2FA is created as follows:

CREATE USER ' abe' @1 ocal host'
| DENTI FI ED W TH cachi ng_sha2_passwor d
BY ' sha2_passwor d'
AND | DENTI FI ED W TH aut henti cati on_| dap_sasl

26

Options for Both Classic MySQL Protocol and X Protocol

Passwor d2 , pwd2

Passwor d3, pwd3

Por t

Server , Host , Data
Sour ce, Dat aSource

AS ' ui d=ul_| dap, ou=Peopl e, dc=exanpl e, dc=com ;

Then your application can specify a connection string with this option
(passwor d or its synonyms) and a value, sha2_passwor d in this
case, to satisfy the first authentication factor.

var connString = "server=local host;
user =abe;
passwor d=sha2_passwor d;
passwor d2=| dap_passwor d;
port =3306";

Alternatively, for a connection made using the
MySql Connecti onStringBui | der object:

MySql Connecti onStringBui |l der settings = new MySqgl Connecti onStringBuil der ()
{

Server = "l ocal host",
User| D = "abe",

Pwdl = "sha2_password",
Pwd2 = "| dap_password",
Port = 3306

}s

If the server does not require a secret password be used with an
authentication method, then the value specified for the passwor d,
passwor d2, or passwor d3 option is ignored.

Default: an empty string

The second secret password for an account that has multiple
authentication factors (see the Passwor d connection option).

Default: an empty string

The third secret password for an account that has multiple
authentication factors (see the Passwor d connection option).

Default: 3306

The port MySQL is using to listen for connections. This value is ignored
if Unix socket is used.

Default: | ocal host

The name or network address of one or more host computers. Multiple
hosts are separated by commas and a priority (0 to 100), if provided,
determines the host selection order. As of Connector/NET 8.0.19, host
selection is random when priorities are omitted or are the same for each
host.

/'l Selects the host with the highest priority (100) first
server =(addr ess=192. 10. 1. 52: 3305, pri ori ty=60), (addr ess=| ocal host: 3306, pri o

No attempt is made by the provider to synchronize writes to the
database, so take care when using this option. In UNIX environments
with Mono, this can be a fully qualified path to a MySQL socket file.
With this configuration, the UNIX socket is used instead of the TCP/IP
socket. Currently, only a single socket name can be given, so accessing

27

Options for Both Classic MySQL Protocol and X Protocol

Ssl Ca, Ssl-Ca

Ssl Cert , Ssl-Cert

Ssl Key , Ssl - Key

MySQL in a replicated environment using UNIX sockets is not currently
supported.

Default: nul |

Based on the type of certificates being used, this option either specifies
the path to a certificate file in PKCS #12 format (. pf x) or the path to a
file in PEM format (. pen) that contains a list of trusted SSL certificate
authorities (CA).

With PFX certificates in use, this option engages when the Ss| Mode
connection option is set to a value of Requi r ed, Veri f yCA, or
Ver i fyFul | ; otherwise, it is ignored.

With PEM certificates in use, this option engages when the Ss| Mode
connection option is set to a value of Veri f yCAor Veri fyFul | ;
otherwise, it is ignored.

For examples of usage, see Section 6.7.1, “Using PEM Certificates in
Connector/NET".

Default: nul |

The name of the SSL certificate file in PEM format to use for
establishing an encrypted connection. This option engages only when
Veri fyFul | is set for the Ss| Mode connection option and the Ssl Ca
connection option uses a PEM certificate; otherwise, it is ignored. For
an example of usage, see Section 6.7.1, “Using PEM Certificates in
Connector/NET".

Default: nul |

The name of the SSL key file in PEM format to use for establishing an
encrypted connection. This option engages only when Ver i f yFul |

is set for the Ss| Mode connection option and the Ss| Ca connection
option uses a PEM certificate; otherwise, it is ignored. For an example
of usage, see Section 6.7.1, “Using PEM Certificates in Connector/
NET".

28

Options for Both Classic MySQL Protocol and X Protocol

Ss| Mode, Ssl Mode, Ssl -
Mode

tlsversion, tls-version,
tls version

Default: Depends on the version of Connector/NET and the protocol in
use. Named-pipe and shared-memory connections are not supported
with X Protocol.

e Requi r ed for 8.0.8 to 8.0.12 (both protocols); 8.0.13 and later (X
Protocol only).

e Preferred for8.0.13 and later (classic MySQL protocol only).

This option has the following values:

e Di sabl ed — Do not use SSL. Non-SSL enabled servers require this
option be set to Di sabl ed explicitly for Connector/NET 8.0.29 or
later.

* None — Do not use SSL. Non-SSL enabled servers require this option
be set to None explicitly for Connector/NET 8.0.8 or later.

Note

This value is deprecated starting with
Connector/NET 8.0.29. Use Di sabl ed
instead.

e Preferred— Use SSL if the server supports it, but allow connection
in all cases. This option was removed in Connector/NET 8.0.8 and
reimplemented in 8.0.13 for classic MySQL protocol only.

Note

Do not use this option for X Protocol
operations.

e Requi r ed — Always use SSL. Deny connection if server does not
support SSL.

* VerifyCA— Always use SSL. Validate the certificate authorities
(CA), but tolerate a name mismatch.

e VerifyFull — Always use SSL. Fail if the host name is not correct.

Default: A fallback solution decides which version of TLS to use.

Restricts the set of TLS protocol versions to use during the TLS
handshake when both the client and server support the TLS versions
indicated and the value of the Ss| Mode connection-string option is

not set to Di sabl ed or None (deprecated in Connector/NET 8.0.29).
This option accepts a single version or a list of versions separated by a
comma, for example, t | s-versi on=TLSv1. 2, TLSv1.3;.

Connector/NET supports the following values:

e TLSv1. 3

29

Options for Classic MySQL Protocol Only

e TLSv1. 2

An error is reported when a value other than those listed is assigned.
Likewise, an error is reported when an empty list is provided as

the value, or if all of the versions in the list are unsupported and no
connection attempt is made.

Userl D, User Id, Default: nul |
Usernane, U d, User nane
, User The MySQL login account being used.

Options for Classic MySQL Protocol Only

Options related to systems using a connection pool appear together at the end of the list of general options
(see Connection-Pooling Options). Connector/NET 8.0 exposes the options in this section as properties in
the MySql . Dat a. MySgl C i ent. MySgl Connecti onStri ngBui | der class.

General Options. The Connector/NET options that follow are for general use with connection strings
and the options apply to all MySQL server configurations:

Al | owBat ch, Al |l ow Bat ch Default: t r ue

When t r ue, multiple SQL statements can be sent with one command
execution. Batch statements should be separated by the server-defined
separator character.

Al [owLoadLocal Infile, Default: f al se

Al ow Load Local Infile
Disables (by default) or enables the server functionality to load the
data local infile. If this option is set to t r ue, uploading files from
any location is enabled, regardless of the path specified with the
Al'l owLoadLocal | nfil el nPat h option.

Al | owLoadLocal | nfil el nPat hDefault: nul |

, Al'l ow Load Local

Infile In Path Specifies a safe path from where files can be read and uploaded
to the server. When the related Al | owlLoadLocal I nfile
option is setto f al se, which is the default value, only those
files from the safe path or any valid subfolder specified with the
Al l onLoadLocal I nfil el nPat h option can be loaded. For example,
if / t np is set as the restricted folder, then file requests for / t np/
nyfileand/tnp/ nyfol der/ myfil e can succeed. No relative paths
or symlinks that fall outside of this path are permitted.

The following table shows the behavior that results when the
Al l owLoadLocal I nfil e and Al | owLoadLocal I nfil el nPat h
connection string options are combined.

AllowLoadLocal|AfilewLoadLocal|BiéeaviRath
Value Value
true Empty string or |All uploads are
nul | value permitted.
true A valid path All uploads
are permitted

30

Options for Classic MySQL Protocol Only

Al l owPubl i cKeyRet ri eval

Al | owUser Vari abl es
Al | ow User Vari abl es

Al | owZer oDat eTi ne, Al | ow
Zero Datetine

Aut oEnl i st , Auto Enli st

AllowLoadLocal|AfilewlLoadLocal|Biéleavikath

Value Value
(the path is not
respected).

fal se Empty string or |No uploads are

nul | value permitted.

fal se A valid path Only uploads
from the
specified folder
and subfolder
are permitted.

Default: f al se

Setting this option to t r ue informs Connector/NET that RSA public
keys should be retrieved from the server and that connections using
the classic MySQL protocol, when SSL is disabled, will fail by default.
Exceptions to the default behavior can occur when previous successful
connection attempts were made or when pooling is enabled and a
pooled connection can be reused. This option was introduced with the
8.0.10 connector.

Caution

This option is prone to man-in-the-middle
attacks, so it should be used only in situations
where you can ensure by other means that your
connections are made to trusted servers.

Default: f al se

Setting this to t r ue indicates that the provider expects user variables in
the SQL.

Default: f al se

If setto Tr ue, MySqgl Dat aReader . Get Val ue() returns a

My Sql Dat eTi ne object for date or datetime columns that

have disallowed values, such as zero datetime values, and a

Syst em Dat eTi nme object for valid values. If set to Fal se (the default
setting) it causes a Syst em Dat eTi ne object to be returned for all
valid values and an exception to be thrown for disallowed values, such
as zero datetime values.

Default: t r ue

If Aut oEnl i st is setto tr ue, which is the default, a connection
opened using Tr ansact i onScope participates in this

scope, it commits when the scope commits and rolls back if

Transact i onScope does not commit. However, this feature is
considered security sensitive and therefore cannot be used in a medium
trust environment.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

31

Options for Classic MySQL Protocol Only

Bl obAsUTF8Exc| udePatt ern Default: nul |

A POSIX-style regular expression that matches the names of BLOB
columns that do not contain UTF-8 character data. See Section 5.16,
“Character Set Considerations for Connector/NET” for usage details.

Bl obAsUTF8I ncl udePattern Default: nul |

A POSIX-style regular expression that matches the names of BLOB
columns containing UTF-8 character data. See Section 5.16, “Character
Set Considerations for Connector/NET” for usage details.

CheckPar aneters, Check Default: t r ue

Par anet ers))))
Indicates if stored routine parameters should be checked against the

server.

Conmandl nt er cept or s, The list of interceptors that can intercept SQL command operations.

Conmand | nterceptors

Connecti onTi meout Default: 15

, Connect Ti nmeout ,)) _)

Connecti on Ti meout The length of time (in seconds) to wait for a connection to the server
before terminating the attempt and generating an error.

Convert Zer oDat eTi ne , Default: f al se

Convert Zero Datetine
Uset r ue to have MySql Dat aReader . Get Val ue() and

My Sql Dat aReader . Get Dat eTi me() return Dat eTi me. M nVal ue
for date or datetime columns that have disallowed values.

Def aul t Aut hent i cat i onPl ugi Takes precedence over the server-side default authentication
plugin when a valid authentication plugin is specified
(see Section 4.4, “Connector/NET Authentication”). The
Def aul t aut henti cati onpl ugi n option is mandatory for supporting
userless and passwordless Kerberos authentications in which the
credentials are retrieved from a cache or the Key Distribution Center
(KDC). For example:

MySgl Connecti onStri ngBui |l der settings = new MySgl Connecti onStri ngBuil der ()
{

Server = "local host",

UserID = "",

Password = "",

Dat abase = "nydb",

Port = 3306,

Def aul t Aut hent i cati onPl ugi n = "aut henti cati on_kerberos_client"

IE
If no value is set, the server-side default authentication plugin is used.

This option was introduced with the 8.0.26 connector.

Def aul t ConmandTi nmeout , Default: 30

Def aul t Command Ti neout
Sets the default value of the command timeout to be used. This does

not supersede the individual command timeout property on an individual
command object. If you set the command timeout property, that will be
used.

32

Options for Classic MySQL Protocol Only

Def aul t Tabl eCacheAge ,
Def ault Tabl e Cache Age

Exceptionl nterceptors,
Exception Interceptors

Functi onsReturnString,
Functions Return String

I ncl udesecurityasserts,
I nclude security asserts

I nteractiveSession,
Interactive, Interactive
Sessi on

I nt egrat edSecurity,
Integrated Security

Ker ber osAut hivbde ,
ker beros auth node

Default: 60

Specifies how long a Tabl eDi r ect result should be cached, in
seconds. For usage information about table caching, see Section 5.3,
“Using Connector/NET with Table Caching”.

The list of interceptors that can triage thrown MySqgl Except i on
exceptions.

Default: f al se

Causes the connector to return bi nary or var bi nary values as
strings, if they do not have a table name in the metadata.

Default: f al se

Must be set to t r ue when using the MySQLCl i ent Per ni ssi ons class
in a partial trust environment, with the library installed in the GAC of

the hosting environment. See Section 5.7, “Working with Partial Trust /
Medium Trust” for details.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

Default: f al se

If setto t r ue, the client is interactive. An interactive client is one

in which the server variable CLI ENT_| NTERACTI VE is set. If an
interactive client is set, the wai t _ti meout variable is set to the value
ofi nteractive_ti meout. The client session then times out after this
period of inactivity. For more information, see Server System Variables
in the MySQL Reference Manual.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

Default: no

Use Windows authentication when connecting to server. By default,

it is turned off. To enable, specify a value of yes. (You can also use
the value sspi as an alternative to yes.) For details, see Section 4.4,
“Connector/NET Authentication”.

Currently not supported for .NET Core implementations.

Default: AUTO

On Windows, provides authentication support using Security Support
Provider Interface (SSPI), which is capable of acquiring credentials
from the Windows in-memory cache, and Generic Security Service
Application Program Interface (GSSAPI) through the MIT Kerberos
library. GSSAPI is capable of acquiring cached credentials previously
generated using the ki ni t command. The default value for this option

33

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/server-system-variables.html

Options for Classic MySQL Protocol Only

(AUTO) attempts to authenticate with GSSAPI if the authentication using
SSPI fails.

Note

This option is permitted in Windows
environments only. Using it in non-Windows
environments produces an Option not supported
exception.

Possible values for this connection option are:
e AUTO- Use SSPI and fall back to GSSAPI in case of failure.
e SSPI — Use SSPI only and raise an exception in case of failure.

e GSSAPI — Use GSSAPI only and raise an exception in case of failure.
Always use the KRB5 CONFI G and KRB5CCNANE environment
variables to specify configuration and cache locations when using
GSSAPI through the MIT Kerberos library on Windows.

Loggi ng Default: f al se

When the value is set to t r ue, various pieces of information are sent
to all configured trace listeners. For a more detailed description, see
Section 5.12, “Connector/NET Tracing”.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

oci ConfigFile, OC Defaults to one of the following path names:
Config File
e ~/.oci/configon Linux and macOS host types

* 9%1OVEDRI VEYRA4HOVEPATH% . oci \ conf i g on Windows host types

If set, this option specifies an alternative location to the Oracle Cloud
Infrastructure configuration file. Connector/NET 8.0.27 (and later) uses
the Oracle Cloud Infrastructure SDK to obtain a fingerprint of the API
key to use for authentication (f i nger pri nt entry) and location of a
PEM file with the private part of the APl key (key fi |l e entry). The
entries should be specified in the [DEFAULT] profile. If the [DEFAULT]
profile is missing from the configuration file, Connector/NET locates the
next profile to use instead.

Not supported for .NET Framework 4.5.x implementations.

Cci ConfigProfile, OCl If set in Connector/NET 8.0.33 (or later), this option specifies which
Config Profile profile in an Oracle Cloud Infrastructure configuration file to use. The
profile value defaults to the DEFAULT profile when no value is provided.

Not supported for .NET Framework 4.5.x implementations.
addGuids, dd Quids Default: f al se

The back-end representation of a GUID type was changed from
Bl NARY(16) to CHAR(36) . This was done to allow developers to
use the server function UUI () to populate a GUID table - UUI X)

34

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/miscellaneous-functions.html#function_uuid

Options for Classic MySQL Protocol Only

A dGet St ri ngBehavi or

Openl dl denti t yToken

Per si st Securitylnfo,
Persist Security Info

Pi peNane , Pi pe Nane,
Pi pe

generates a 36-character string. Developers of older applications can
add' O d Gui ds=true' tothe connection string to use a GUID of
data type Bl NARY(16) .

Default: f al se

As of Connector/NET 8.3.0, calling the MySqlDataReader.GetString()
method throws an | nval i dCast Except i on exception if the column is
not a string type. All text types including char and varchar are allowed,;
and blob is not considered a text type.

Setting this OldGetStringBehavior connection option to t r ue restores
previous behavior by logging a deprecation warning instead of throwing
the exception.

This option was added in 8.3.0 and removed in 9.0.0.

Default: "

A Base64URL encoded string containing the
OpenlD Identity Token used to authenticate with the
aut henti cati on_openi d_connect _cl i ent authentication plugin.

This option was added in 9.1.0.

Default: f al se

When set to f al se or no (strongly recommended), security-sensitive
information, such as the password, is not returned as part of the
connection if the connection is open or has ever been in an open state.
Resetting the connection string resets all connection string values,
including the password. Recognized values are t r ue, f al se, yes, and
no.

Default: mysql

When set to the name of a named pipe, the MySqgl Connecti on
attempts to connect to MySQL on that named pipe. This setting only
applies to the Windows platform.

Important

For MySQL 8.0.14 and later, 5.7.25 and later,
and 5.6.43 and later, minimal permissions

on named pipes are granted to clients that
use them to connect to the server. However,
Connector/NET can use nhamed pipes only
when granted full access on them. As a
workaround, create a Windows local group
containing the user that executes the client
application. Restart the target server with the
naned_pi pe full _access_group system
variable and specify the local group name as its
value.

Currently not supported for .NET Core implementations.

35

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/binary-varbinary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/server-system-variables.html#sysvar_named_pipe_full_access_group

Options for Classic MySQL Protocol Only

Pr ocedur eCacheSi ze
Procedure Cache Size
, procedure cache,
procedur ecache

Repl i cation

rew itebatchedstatenents
, Rewite batched
statenents

Respect Bi nar yFl ags ,
Respect Binary Fl ags

Shar edMenor yNane , Shar ed
Menory Nanme

Sql Server Mode , Sql
Server Mode

Tabl eCachi ng, Tabl e
Cache, Tabl eCache

Tr eat Bl obsAsUTF8 , Tr eat
BLOBs as UTFS8

Default: 25

Sets the size of the stored procedure cache. By default, Connector/NET
stores the metadata (input/output data types) about the last 25 stored
procedures used. To disable the stored procedure cache, set the value
to zero (0).

Default: f al se
Indicates if this connection is to use replicated servers.
As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

Enable this option to make the connector rewrite batched statements
and execute them all at once in a single block rather than one at a time,
which is default behavior. Option added in Connector/NET 9.2.0.

Note

This connection option impacts functions like
LAST | NSERT I DY) .

Default: t r ue

Setting this option to f al se means that Connector/NET ignores a
column's binary flags as set by the server.

Default: mysql

The name of the shared memory object to use for communication if
the transport protocol is set to nenor y. This setting only applies to the
Windows platform.

Currently not supported for .NET Core implementations.
Default: f al se

Allow SQL Server syntax. When set to t r ue, enables Connector/NET
to support square brackets around symbols instead of backticks. This
enables Visual Studio wizards that bracket symbols between the [
and | characters to work with Connector/NET. This option incurs a
performance hit, so should only be used if necessary.

Default: f al se

Enables or disables caching of Tabl eDi r ect commands. A value of

t r ue enables the cache while f al se disables it. For usage information
about table caching, see Section 5.3, “Using Connector/NET with Table
Caching”.

Default: f al se

Setting this value to t r ue causes BLOB columns to have a
character set of ut f 8 with the default collation for that character
set. To convert only some of your BLOB columns, you can

make use of the ' Bl obAsUTF8I ncl udePattern' and

' Bl obAsUTF8Excl udePatt er n' keywords. Set these to a regular

36

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/blob.html

Options for Classic MySQL Protocol Only

Tr eat Ti nyAsBool ean,
Treat Tiny As Bool ean

UseAf f ect edRows , Use
Af f ect ed Rows

UseConpr essi on, Conpress
, Use Conpression

expression pattern that matches the column names to include or
exclude respectively.

Default: t r ue

Setting this value to f al se causes TI NYI NT(1) to be treated as an
| NT. See Numeric Data Type Syntax for a further explanation of the
TI NYI NT and BOOL data types.

Default: f al se

When t r ue, the connection reports changed rows instead of found
rows.

Default: f al se

Setting this option to t r ue enables compression of packets exchanged
between the client and the server. This exchange is defined by the
MySQL client/server protocol.

Compression is used if both client and server support ZLIB
compression, and the client has requested compression using this
option.

A compressed packet header is: packet length (3 bytes), packet
number (1 byte), and Uncompressed Packet Length (3 bytes). The
Uncompressed Packet Length is the number of bytes in the original,
uncompressed packet. If this is zero, the data in this packet has not
been compressed. When the compression protocol is in use, either the
client or the server may compress packets. However, compression will
not occur if the compressed length is greater than the original length.
Thus, some packets will contain compressed data while other packets
will not.

UseDef aul t CommandTi neout Fobéfault: f al se

, Use Default Command
Ti meout For EF

UsePer f or mancelbni t or
Use Performance Mbonitor ,
User Per f Mon, Perf Mon

UseUsageAdvi sor , Use
Usage Advi sor , Usage
Advi sor

Connection-Pooling Options.

Enforces the command timeout of EFMy Sql Conmand, which is set to
the value provided by the Def aul t ConmmrandTi nmeout property.

Default: f al se

Indicates that performance counters should be updated during
execution.

Currently not supported for .NET Core implementations.

Default: f al se

Logs inefficient database operations.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

The following options are related to connection pooling within

connection strings. For more information about connection pooling, see Opening a Connection to a Single

Server.

CacheServer Properties,
Cache Server Properties

Default: f al se

37

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/numeric-type-syntax.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/integer-types.html

Options for X Protocol Only

Options for X Protocol Only

Connecti onLi f eTi ne,
Connection Lifetinme

Connecti onReset
Connecti on Reset

Maxi munPool si ze , Max
Pool Size, Maxi num Pool
Si ze , MaxPool Si ze

M ni munPool Si ze, M n
Pool Size, M ni num Pool
Si ze, M nPool Si ze

Pool i ng

Specifies whether server variable settings are updated by a SHOW
VARI ABLES command each time a pooled connection is returned.
Enabling this setting speeds up connections in a connection pool
environment. Your application is not informed of any changes to
configuration variables made by other connections.

Default: 0

When a connection is returned to the pool, its creation time is compared
with the current time and the connection is destroyed if that time span
(in seconds) exceeds the value specified by Connecti on Lifeti ne.
This option is useful in clustered configurations to force load balancing
between a running server and a server just brought online. A value of
zero (0) sets pooled connections to the maximum connection timeout.

Default: f al se

If t r ue, the connection state is reset when it is retrieved from the pool.
The default value of false avoids making an additional server round trip
when obtaining a connection, but the connection state is not reset.

Default: 100

The maximum number of connections allowed in the pool.
Default: 0

The minimum number of connections allowed in the pool.
Default: t rue

When tr ue, the My Sql Connect i on object is drawn from the
appropriate pool, or if necessary, is created and added to the
appropriate pool. Recognized values are t r ue, f al se, yes, and no.

The connection options that follow are valid for connections made with X Protocol.
Connector/NET 8.0 exposes the options in this section as properties in the
My Sql X. XDevAPI . MySql XConnecti onStri ngBui |l der class.

Aut h, Aut hentication,
Aut henti cati on Mbde

Conpr essi on, use-
conpr essi on

Authentication mechanism to use with the X Protocol. This option was
introduced with the 8.0.9 connector and has the following values, which
are not case-sensitive: MYSQL41, PLAI N, and EXTERNAL. If the Aut h
option is not set, the mechanism is chosen depending on the connection
type. PLAI Nis used for secure connections (TLS or Unix sockets) and
MYSQL41 is used for unencrypted connections. EXTERNAL is used for
external authentication methods such as PAM, Windows login IDs,
LDAP, or Kerberos. (EXTERNAL is not currently supported.)

The Aut h option is not supported for classic MySQL protocol
connections and returns Not Suppor t edExcept i on if used.

Default: pref erred

38

Options for X Protocol Only

conpressi on-al gorithns,
Conpr essi onAl gori t hns

Compression is used to send and receive data when both the client
and server support it for X Protocol connections and the client requests
compression using this option. After a successful algorithm negotiation
is made, Connector/NET can start compressing data immediately.

To prevent the compression of small data packets, or of data already
compressed, Connector/NET defines a size threshold of 1000 bytes.

When multiple compression algorithms are supported by the server,
Connector/NET applies the following priority by default: zst d_stream
(first), | z4_nessage (second), and def | at e_st r eam(third). The
def | at e_st r eamalgorithm is supported for use with .NET Core, but
not for .NET Framework.

Tip

Use the conpr essi on- al gori t hns option to
specify one ore more supported algorithms in a
different order. The algorithms are negotiated in
the order provided by client. For usage details,
see the conpr essi on- al gori t hns option.

Data compression for X Protocol connections was added in the
Connector/NET 8.0.20 release. The Conpr essi on option accepts the
following values:

« preferredto apply data compression if the server supports the
algorithms chosen by the client. Otherwise, the data is sent and
received without compression.

e required to ensure that compression is used or to terminate the
connection and return an error message.

« di sabl ed to prevent data compression.

As of Connector/NET 8.0.22, a client application can specify the order
in which supported compression algorithms are negotiated with the
server. The value of the Conpr essi on connection option must be set
to preferred ortorequired for this option to apply. Unsupported
algorithms are ignored.

This option accepts the following algorithm names and synonyms:
| z4 nmessageorl z4
e zstd_streamorzstd

o defl ate_streamor def| at e (not valid with .NET Framework)

Algorithm names and synonyms can be combined in a comma-
separated list or provided as a standalone value (with or without
brackets). Examples:

/] Conpression option set to preferred (default)

MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi on-al gorithm
MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi onal gorithms
MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi on=pr ef erred

39

Options for X Protocol Only

connection-attri butes,
Connecti onAttri butes

/| Conpression option set to required

MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on=r equi r ed&conp
MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on=r equi r ed&conp
MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on=r equi r ed&conp

/| Connection string
MySQLX. Get Sessi on(" server =l ocal host ; port =3306; ui d=t est ; passwor d=t est ; conpr essi

/' Anonynous obj ect
MySQLX. Get Sessi on(new {

server = "l ocal host",

port = "3306",

uid = "test",

password = "test",

conpr essi on="r equi red",

conpr essi onal gorithms = "defl ate_strean' })

For additional information, see Connection Compression with X Plugin.

Default: t r ue

This option was introduced in Connector/NET 8.0.16 for submitting

a set of attributes to be passed together with default connection
attributes to the server. The aggregate size of connection

attribute data sent by a client is limited by the value of the

per formance_schena_sessi on_connect _attrs_si ze server
variable. The total size of the data package should be less than the
value of the server variable. For general information about connection
attributes, see Performance Schema Connection Attribute Tables.

The connection-attributes parameter value can be empty (the same as
specifying t r ue), a Boolean value (t r ue or f al se to enable or disable
the default attribute set), or a list or zero or more key=val ue specifiers
separated by commas (to be sent in addition to the default attribute
set). Within a list, a missing key value evaluates as the NULL value.
Examples:

/] Sessions

M/SQLX. Get Sessi on($" nysql x: // user @ost/schem")

M/SQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attri butes")

M/SQLX. Get Sessi on($" nysql x: // user @ost/ schema?connection-attributes=true")
M/SQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attributes=fal se")
M/SQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attributes=[attril=val
M/SQLX. CGet Sessi on($" nysql x: // user @ost/schema?connection-attributes=[]")

/1 Pooling

M/SQLX. Get O i ent ($" mysql x: // user @ost/schem")

M/SQLX. Get G i ent ($" mysql x: // user @ost/ schema?connecti on-attributes")

M/SQLX. Get O i ent ($" mysql x: // user @ost/schema?connecti on-attri butes=true")
M/SQLX. Get G i ent ($" mysql x: // user @ost/ schema?connection-attributes=fal se")
M/SQLX. Get Cl i ent ($" mysql x: // user @ost/schema?connection-attributes=[attril=vall
M/SQLX. Get O i ent ($" mysql x: // user @ost/schema?connection-attributes=[]")

Application-defined attribute names cannot begin with _ because such
names are reserved for internal attributes.

If connection attributes are not specified in a valid way, an error occurs
and the connection attempt fails.

40

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/x-plugin-connection-compression.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/performance-schema-system-variables.html#sysvar_performance_schema_session_connect_attrs_size
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/performance-schema-connection-attribute-tables.html

Options for X Protocol Only

Connect - Ti neout ,
Connect Ti neout

SsICrl , Ssl-Crl

Default: 10000

The length of time (in milliseconds) to wait for an X Protocol connection
to the server before terminating the attempt and generating an error.
You can disable the connection timeout by setting the value to zero.
This option can be specified as follows:

URI-like connection string example

M/SQLX. Get Sessi on("nysql x://test:test @ ocal host: 33060?connect -t i neout =20

Connection string example

MySQLX. Get Sessi on("server =l ocal host ; user =t est ; port =33060; connect -t i meout

Anonymous object example

MySQLX. Get Sessi on(new { server="|ocal host", user="test", port=33060, con

My Sqgl XConnecti onStri ngBui | der class example

var buil der = new MySgl XConnecti onStri ngBuil der ("server =l ocal host ; user =t
bui | der. Connect Ti neout = 2000;
MySQLX. Get Sessi on(bui | der. Connecti onString);

Default: nul |

Path to a local file containing certificate revocation lists.

Important

Although the Ssl Cr | connection-string
option is valid for use, applying it raises a
Not Support edExcept i on message.

41

42

Chapter 5 Connector/NET Programming

Table of Contents

5.1 Using GetSchema 0N @ CONNECHIONoouuuiiiiii e eeeaens 44
5.2 USING MYSGICOMMEANT ...ttt ettt e e et ettt e e et e e e et e e e et e e e enan s 46
5.3 Using Connector/NET with Table Cachingoiiiiiiiiiiii e 49
5.4 Preparing Statements in CONNECIOI/NETcoouuiiiiiiiieiii e eaanns 49
5.5 Creating and Calling Stored ProCEAUIESociiiiiiiiiiiiie e 50
5.6 Handling BLOB Data With CONNECIOINETcouuiiiiiiiiie it eenenns 54
5.6.1 Preparing the MYSQL SEIVELuiiiiiii et et a e s 55
5.6.2 Writing a File t0 the Databasec.uuiiiiiiiiiiiii e 55
5.6.3 Reading a BLOB from the Database to a File on DiSKc.couoiiiiiiiiiniiiiie e 57
5.7 Working with Partial Trust / Medium TrUSTcooiuiniiiii et e e e eees 58
5.7.1 Evolution of Partial Trust Support Across Connector/NET Versionscccccceveveeveviineeennennnn. 59
5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GACccoceoiviviiieennnnee. 59
5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in GACccceeevnneeee. 61
5.8 Writing a Custom AUthentiCation PIUGINi i 62
5.9 Using the ConNector/NET INtErCePIOr CIASSESccuuuuiiiiiiiieiiiii ettt 65
5.10 Handling Date and Time Information in CoNNECIOI/NETiiiiiiiiiiiiiiiiee e 67
5.10.1 Fractional SECONTUSccceuuuiiiiii ettt ettt e et e e et e e e e b 67
5.10.2 Problems when Using INvalid DAtesoooiiiiiiiiiiiieece e 67
5.10.3 ResStricting INVAlid DALESccouuuieiiiiii e et 68
5.10.4 Handling INValid DALESccoouuuiiiiiiiiie et e et e et e e eebi e eees 68
5.10.5 Handling NULL DAIESuuiiiiiiiieiiiiie ettt ettt e et e e et eeeaaa s 68
5.11 Using the MySqIBUIKLOGAET CIASSccouuuiiiiiiiieiiiii ettt e e e eaanns 69
N AN o] ol e L=Toi (o] ¢/ \\| = I I = Ve o PP UPPPTTR 70
5.12.1 Enabling OpenTelemetry TIraCiNgo i e e e e e eeaens 70
5.12.2 Using the Connector/NET Trace Source ODJECtcoiviiiiiiiiiiiiiii e 71
5.13 Using Connector/NET with Crystal REPOISuiiiiiiiiiiiiii e et 76
5.13.1 Creating @ Data SOUICEccieuuuieiiiii ettt e e e et e e eab e e eaaans 76
5.13.2 Creating the REPOIiiii et et e et e a e e e eaaans 77
5.13.3 Displaying the REPOITcouuiiii e 78
5.14 ASYNCHIoNOUS METNOUS ... it ettt e et e et e e eaans 81
5.15 Binary and NONDINAIY ISSUEScouuuiiiiiiiiii ittt ettt e e e et e eeaanns 87
5.16 Character Set Considerations for ConNeCtor/NETc.uiiiiiiiiiiiiiii e 88

MySQL Connector/NET comprises several classes that are used to connect to the database, execute
gueries and statements, and manage query results.

The following are the major classes of Connector/NET:

 MySgl Connect i on: Represents an open connection to a MySQL database (see Chapter 4, Connector/
NET Connections).

The MySql Connect i onStri ngBui | der class aids in the creation of a connection string by exposing
the connection options as properties.

* MySqgl Command: Represents an SQL statement to execute against a MySQL database.

* MySqgl CormandBui | der : Automatically generates single-table commands used to reconcile changes
made to a DataSet with the associated MySQL database.

43

Using GetSchema on a Connection

 MySql Dat aAdapt er : Represents a set of data commands and a database connection that are used to
fill a data set and update a MySQL database.

 MySql Dat aReader : Provides a means of reading a forward-only stream of rows from a MySQL
database.

 MySqgl Excepti on: The exception that is thrown when MySQL returns an error.
* MySql Hel per : Helper class that makes it easier to work with the provider.

 MySql Transact i on: Represents an SQL transaction to be made in a MySQL database.

5.1 Using GetSchema on a Connection

The Get Schera() method of the connection object can be used to retrieve schema information about the
database currently connected to. The schema information is returned in the form of a Dat aTabl e. The
schema information is organized into a number of collections. Different forms of the Get Schena() method
can be used depending on the information required. There are three forms of the Get Schena() method:

» Get Schema() - This call will return a list of available collections.

» Get Schema(String) - This call returns information about the collection named in the string parameter.
If the string “MetaDataCollections” is used then a list of all available collections is returned. This is the
same as calling Get Schena() without any parameters.

e Cet Schema(String, String[]) - Inthis call the first string parameter represents the collection
name, and the second parameter represents a string array of restriction values. Restriction values
limit the amount of data that will be returned. Restriction values are explained in more detail in the
Microsoft .NET documentation.

Collections

The collections can be broadly grouped into two types: collections that are common to all data providers,
and collections specific to a particular provider.

Common Collections. The following collections are common to all data providers:
» MetaDataCollections

» DataSourcelnformation

» DataTypes

» Restrictions

* ReservedWords

Provider-Specific Collections. The following are the collections currently provided by Connector/NET,
in addition to the common collections shown previously:

» Databases
» Tables

» Columns
» Users

» Foreign Keys

44

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/glossary.html#glos_transaction
http://msdn.microsoft.com/en-us/library/ms254934(VS.80).aspx

Collections

* IndexColumns

* Indexes

» Foreign Key Columns
« UDF

* Views

* ViewColumns

* Procedure Parameters
» Procedures

» Triggers

C# Code Example. A list of available collections can be obtained using the following code:

usi ng System

usi ng System Dat a;

usi ng System Text;

usi ng MySql . Dat a;

using MySql . Data. MySgl d i ent ;

namespace Consol eAppl i cation2

{
cl ass Program
{
private static void D splayData(System Dat a. Dat aTabl e t abl e)
{
foreach (System Data. Dat aRow row i n tabl e. Rows)
{
foreach (System Data. Dat aCol uim col in table. Col utms)
{
Consol e. WiteLine("{0} = {1}", col.ColumNane, rowfcol]);
}
Consol e. Wi teLine(" ")
}
}

static void Main(string[] args)
{

string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x"_

My Sgl Connecti on conn = new MySqgl Connecti on(connStr);

try
{
Consol e. WiteLine("Connecting to MySQL...");

conn. Qpen();

Dat aTabl e tabl e = conn. Get Schema(" Met aDat aCol | ecti ons") ;
/| Dat aTabl e tabl e = conn. Get Schema(" UDF") ;

Di spl ayDat a(t abl e) ;

conn. Cl ose();

catch (Exception ex)

{

}
Consol e. Wi teLi ne("Done.");

Consol e. WitelLine(ex. ToString());

Using MySglCommand

}

Further information on the Get Schena() method and schema collections can be found in the
Microsoft .NET documentation.

5.2 Using MySqglCommand

The MySglCommand class represents a SQL statement to execute against a MySQL database. Class
methods enable you to perform the following database operations:

* Query a database
* Insert, update, and delete data
» Return a single value

Command-based database operations can run within a transaction, if needed. For a short tutorial
demonstrating how and when to use the Execut eReader, Execut eNonQuer y, and Execut eScal ar
methods, see Section 6.1.2, “The MySglCommand Obiject”.

An instance of MySgl Conmaind can be organized to execute as a prepared statement for faster excecution
and reuse, or as a stored procedure. A flexible set of class properties permits you to package MySQL
commands in several forms. The remainder of this section describes following My Sgl Conmand properties:

e CommandText and CommandType Properties

» Parameters Property

Attributes Property

» CommandTimeout Property

CommandText and CommandType Properties

The My Sql Command class provides the CommandText and ConmandType properties that you may
combine to create the type of SQL statements needed for your project. The ConmandText property
is interpreted differently, depending on how you set the CormandType property. The following
ConmandType types are permitted:

» Text - An SQL text command (default).
» St oredPr ocedur e - Name of a stored procedure.
» Tabl eDi rect - Name of a table.

The default CormandType type, Text , is used for executing queries and other SQL commands. See
Section 6.1.2, “The MySglCommand Object” for usage examples.

If CommandType is set to St or edPr ocedur e, set ConmandText to the name of the stored procedure
to access. For use-case examples of the CommandType property with type St or edPr ocedur e, see
Section 5.5, “Creating and Calling Stored Procedures”.

If CormandType is setto Tabl eDi r ect, all rows and columns of the named table are returned when you
call one of the execute methods. In effect, this command performs a SELECT * on the table specified. The
ConmandText property is set to the name of the table to query. This usage is illustrated by the following
code snippet:

46

http://msdn.microsoft.com/en-us/library/kcax58fh(VS.80).aspx

Parameters Property

MySgl Conmand cnd = new MySql Commrand() ;

cmd. CommandText = "mytabl e";

crd. Connecti on = someConnecti on;

cmd. CommandType = CommandType. Tabl eDi rect ;
My/Sql Dat aReader reader = cnd. Execut eReader () ;
whi | e (reader. Read())

{
Consol e. WiteLn(reader[0], reader[1]...);

}

Parameters Property

The Par anet er s property gives you control over the data you use to build a SQL query. Defining a
parameter is the preferred practice to reduce the risk of acquiring unwanted or malicous input. For usage
information and examples, see:

* Working with Parameters
» Accessing a Stored Procedure

» Preparing Statements in Connector/NET

Attributes Property

As of Connector/NET 8.0.26, an instance of My Sql Command can be organized to execute simple Transact-
SQL statements or stored procedures, both can be used in a prepared statement for faster execution and
reuse. The query_at tri but es component must be installed on the server (see Prerequisites for Using
Query Attributes) before attributes can be searched for and used on the server side.

Query-attributes support varies by server version:

» Prior to MySQL Server 8.0.23: no support for query attributes.

» MySQL Server 8.0.23 to 8.0.24: support for query attributes in regular statements only.

» MySQL Server 8.0.25 and higher: support for query attributes in both regular and prepared statements.

If you send query attribute metadata to a server that does not support query attributes, the attempt is
logged by the connector but no error is emitted.

Like parameters, attributes must be named. Unlike a parameter, an attribute represents an object from the
underlying query, such as a field or table. Connector/NET does not check or enforce whether your attribute
names are unique. Parameters and attributes can be combined together in commands without restrictions.

You can declare an attritue name and value directly by using the Set At t ri but e method to create an
instance of MySqgl At t ri but e that is exposed in a collection through the MySql Att ri but eCol | ecti on
object within My Sql Cormand. For example, to declare a single attribute named gal, use the following C#
syntax:

myConmand. Attributes. Set Attri bute("qal", "qaVal ue");

Alternatively, you can declare a variable of type MySql At t ri but e to hold your attribute name and
value. Both forms persist the attribute after the query is executed, until the Cl ear method is called on the
MySql At tri but eCol | ecti on object. The next snippet declares two attributes named gal and ga2 as
variables mySql Attri but el and nmySql Attri but e2.

MySgl Conmand nyComrand = new MySql Commrand() ;
myConmand. Connecti on = nmyConnecti on;

47

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/query-attributes.html#query-attributes-prerequisites
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/query-attributes.html#query-attributes-prerequisites

CommandTimeout Property

MySql Attribute mySql Attri butel
MySql Attribute nmySql Attri bute2

= new MySql Attri bute("qal", "qaVal ue");
= new MySql Attri bute("qa2", 2);
myConmand. Attributes. SetAttribute(mySqgl Attributel);

myConmand. Attributes. SetAttribute(mySqgl Attri bute2);

With attribute names and values defined, a statement specifying attributes can be sent to the server. The
following SELECT statement includes the nysql _query_attribute string() loadable function that
is used to retrieve the two attributes decared previously and then prints the results. For more readable and
convenient syntax, the $ symbol is used in this example to identify string literals as interpolated strings.

nmyCommand. ConmandText = $"SELECT nysql _query_attribute_string('{nySgl Attributel. AttributeNane}') AS attrl," +
$"nysql _query_attribute_string('{mySql Attribute2. AttributeName}') AS attr2";

usi ng (var reader = nyConmand. Execut eReader ())

whi l e (reader. Read())
{
Consol e. WiteLine($"Attributel Value: {reader.GetString(0)}");
Consol e. WiteLine($"Attribute2 Value: {reader.GetString(1)}");
}
}

/* Cut put:
Attributel Val ue: qgaVval ue
Attribute2 Value: 2

*
/

The following code block shows the same process for setting attributes and retrieving the results using
Visual Basic syntax.

Publ i c Sub Creat eMySgl CommandW t hQuer yAttri but es(ByVal myConnection As MySgl Connecti on)
Di m myCommand As MySgl Cormand = New MySgl Conmand()
my Conmand. Connecti on = nyConnecti on
Dim nmySqgl Attributel As MySgl Attribute = New MySgl Attri bute("gal", "gaVal ue")
Dim nmySqgl Attribute2 As MySgl Attribute = New MySgl Attri bute("ga2", 2)
myCommand. Attributes. SetAttribute(mySql Attri butel)
myCommand. Attributes. SetAttribute(mSql Attri bute2)
nmyCommand. CommandText = $"SELECT nysql _query_attribute_string('{nySql Attributel. AttributeNane}') AS attrl,"
$"nysql _query_attribute_string(' {nySql Attribute2. Attri buteNane}') AS attr2"

Usi ng reader = myConmand. Execut eReader ()
Wi | e reader. Read()
Consol e. WitelLine($"Attributel Value: {reader.GetString(0)}")
Consol e. WitelLine($"Attribute2 Value: {reader.GetString(1)}")
End Wil e
End Usi ng
End Sub

CommandTimeout Property

Commands can have a timeout associated with them. This feature is useful as you may not want a
situation were a command takes up an excessive amount of time. A timeout can be set using the
CommandTi nmeout property. The following code snippet sets a timeout of one minute:

MySgl Conmand cnd = new MySql Command() ;
cnd. CommandTi meout = 60;

The default value is 30 seconds. Avoid a value of 0, which indicates an indefinite wait. To change the
default command timeout, use the connection string option Def aul t Command Ti neout .

Connector/NET supports timeouts that are aligned with how Microsoft handles
Sql Conmmand. ConmandTi neout . This property is the cumulative timeout for all network reads
and writes during command execution or processing of the results. A timeout can still occur in the

48

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html

Using Connector/NET with Table Caching

My Sqgl Reader . Read method after the first row is returned, and does not include user processing time,
only 10 operations.

Further details on this can be found in the relevant Microsoft documentation.

5.3 Using Connector/NET with Table Caching

Table caching is a feature that can be used to cache slow-changing datasets on the client side. This is
useful for applications that are designed to use readers, but still want to minimize trips to the server for
slow-changing tables.

This feature is transparent to the application, and is disabled by default.

Configuration
* To enable table caching, add ' t abl e cache = true' to the connection string.

« Optionally, specify the ' Def aul t Tabl e Cache Age' connection string option, which represents the
number of seconds a table is cached before the cached data is discarded. The default value is 60.

* You can turn caching on and off and set caching options at runtime, on a per-command basis.

5.4 Preparing Statements in Connector/NET

Prepared statements can provide significant performance improvements on queries that are executed
more than one time. Prepared execution is faster than direct execution for statements executed more
than once, primarily because the query is parsed only one time. In the case of direct execution, the query
is parsed every time it is executed. In addition, prepared execution can provide a reduction of network
traffic because for each execution of the prepared statement, it is necessary only to send the data for the
parameters.

Another advantage of prepared statements is that, with server-side prepared statements enabled, it uses a
binary protocol that makes data transfer between client and server more efficient.

To prepare a statement, use the following sequence of steps:
1. Create a MySql Command object and set the ConrandText property to your query.

2. After entering your statement, call the Pr epar e method of the command object. When the statement is
prepared, add parameters for each of the dynamic elements in the query.

3. Execute the statement using the Execut eNonQuer y(), Execut eScal ar (), or Execut eReader
methods.

For subsequent executions, you need only modify the values of the parameters and call the execute
method again, there is no need to set the CommandText property or redefine the parameters.

C# Code Example

MySql . Dat a. MySgl Cl i ent . MySgl Connecti on conn;
MySql . Dat a. MySgl Cl i ent . MySql Command cnd;

conn = new MySql . Data. MySqgl d i ent . MySgl Connecti on() ;
cmd = new MySqgl . Data. MySgl i ent. MySgl Conmand() ;

conn. ConnectionString = strConnecti on;

try
{

49

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.commandtimeout.aspx

Visual Basic Code Example

conn. Qpen();
cnd. Connecti on = conn;

cmd. CommandText = "1 NSERT | NTO nmyTabl e VALUES(NULL, @unber, @ext)";
cnd. Prepare();

cnd. Par anet er s. AddW t hVal ue(" @unber ", 1);
cnd. Par anet ers. AddW t hVal ue(" @ext", "One");

for (int i=1; i <= 1000; i++)

{
cnd. Par anet er s[" @unber"] . Val ue = i;
cnd. Paraneters["@ext"].Value = "A string val ue";
cnd. Execut eNonQuery();

}

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

MessageBox. Show("Error " + ex.Nunber + " has occurred: " + ex.Message,
"Error", MessageBoxButtons. K, MessageBoxl con. Error);

}

Visual Basic Code Example

Di m conn As New MySqgl Connecti on
Dimcnd As New MySgl Conmand

conn. ConnectionString = strConnecti on
Try
conn. Open()

cnd. Connecti on = conn

cnmd. CommandText = "I NSERT | NTO nyTabl e VALUES(NULL, @wunber, @ext)"
cnd. Prepare()

cnd. Par anet ers. AddW t hVal ue(" @unber", 1)

cnd. Par anet ers. AddW t hVal ue(" @ext", "One")
For i =1 To 1000
cnd. Par anet er s(" @unber") . Val ue = i
cnd. Paraneters("@ext").Value = "A string val ue"

cnd. Execut eNonQuery()
Next
Catch ex As M/Sgl Excepti on
MessageBox. Show("Error " & ex. Nunber & " has occurred: " &
ex. Message, "Error", MessageBoxButtons. OK, MessageBox| con. Error)
End Try

5.5 Creating and Calling Stored Procedures

A stored procedure is a set of SQL statements that is stored in the server. Clients make a single call to the
stored procedure, passing parameters that can influence the procedure logic and query conditions, rather
than issuing individual hardcoded SQL statements.

Stored procedures can be particularly useful in situations such as the following:

» Stored procedures can act as an API or abstraction layer, allowing multiple client applications to perform
the same database operations. The applications can be written in different languages and run on
different platforms. The applications do not need to hardcode table and column names, complicated
queries, and so on. When you extend and optimize the queries in a stored procedure, all the applications
that call the procedure automatically receive the benefits.

50

Creating a Stored Procedure

* When security is paramount, stored procedures keep applications from directly manipulating tables, or
even knowing details such as table and column names. Banks, for example, use stored procedures for
all common operations. This provides a consistent and secure environment, and procedures can ensure
that each operation is properly logged. In such a setup, applications and users would not get any access
to the database tables directly, but can only execute specific stored procedures.

This section does not provide in-depth information on creating stored procedures. For such information,
see Using Stored Routines.

Creating a Stored Procedure

Stored procedures in MySQL can be created using a variety of tools, such as:
* The nysql command-line client

» MySQL Workbench

» The MySgl Conmand object

Unlike the command-line and GUI clients, you are not required to specify a special delimiter when creating
stored procedures in Connector/NET using the My Sgl Comrmand class. For example, to create a stored
procedure named add_enp, use the CommandText property with the default command type (SQL text
commands) to execute each individual SQL statement in the context of your command that has an open
connection to a server.

cnd. CommandText = "DROP PROCEDURE | F EXI STS add_enp";

cnd. Execut eNonQuery();

cnd. CommandText = "DROP TABLE | F EXI STS enp”;

cnd. Execut eNonQuery() ;

cnd. CommandText = "CREATE TABLE enp (+
"enpno | NT UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY, first_name VARCHAR(20)," +
"l ast _name VARCHAR(20), birthdate DATE)";

cnd. Execut eNonQuery();

cnd. CommandText = " CREATE PROCEDURE add_enp(" +
"I'N f name VARCHAR(20), |IN | name VARCHAR(20), | N bday DATETIME, OUT enpno INT)" +
"BEG N | NSERT | NTO enp(first_name, |ast_nane, birthdate) " +
"VALUES(f nane, | name, DATE(bday)); SET enpno = LAST_INSERT_ID(); END';

cnd. Execut eNonQuery();

Accessing a Stored Procedure

After the stored procedure is named, you define one MySqgl Conmand parameter for every parameter in the
stored procedure. | N parameters are defined with the parameter name and the object containing the value,
QUT parameters are defined with the parameter name and the data type that is expected to be returned. All
parameters need the parameter direction defined.

To call a stored procedure using Connector/NET, you create a My Sgl Comrand object and pass the

stored procedure name as the ConmandText property. You then set the CommandType property to
CommandType. St or edPr ocedur e. After defining the parameters, you call the stored procedure by using
the My Sql Command. Execut eNonQuer y() method.

cmd. CommandText
cnd. CommandType

"add_enp";
CommandType. St or edPr ocedur e;

cnd. Par anet er s. AddW t hval ue(" @ name", "Jones");
cnd. Paraneters["@nanme"].Direction = ParaneterDirection. | nput;

cnd. Par anet er s. AddW t hval ue(" @ name", "Toni);
cnd. Paraneters["@nanme"].Direction = ParaneterDirection. | nput;

51

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/stored-routines.html

Stored Procedure Code Example

cnd. Par anet er s. AddW t hVal ue(" @day", "1940-06-07");
cnd. Paraneters[" @day"].Directi on = ParaneterDirection. | nput;

cnd. Par anet er s. Add(" @npno”, M/Sql DbType. I nt 32);
cnd. Par anet ers[" @npno"] . Directi on = Paranet erDirection. Qut put;

cnd. Execut eNonQuery() ;

Connector/NET supports the calling of stored procedures through the My Sql Conmrand object. Data can
be passed in and out of a MySQL stored procedure through use of the My Sql Cormand. Par anet er s
collection.

After the stored procedure is called, the values of the output parameters can be retrieved by using the
. Val ue property of the MySql Conmrand. Par anet er s collection.

Consol e. Wi teLi ne("Enpl oyee nunber: "+cnd. Paraneters[" @npno"]. Val ue);
Consol e. WiteLine("Birthday: " + cnd. Paraneters[" @day"]. Val ue);

Note

When a stored procedure is called using My Sql Command. Execut eReader , and
the stored procedure has output parameters, the output parameters are set only
after the MySql Dat aReader returned by Execut eReader is closed.

Stored Procedure Code Example

The following C# code example demonstrates the use of stored procedures. This example assumes the
‘employees' database was created in advance:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

namespace Usi ngSt or edPr ocedur es
{
cl ass Program
{
static void Main(string[] args)
{
MySgl Connecti on conn = new MySgl Connection();
conn. ConnectionString = "server =l ocal host ; user =r oot ; dat abase=enpl oyees; port =3306; passwor d=******" .
MySgl Command cnd = new MySql Commrand() ;

try
{
Consol e. WiteLi ne("Connecting to MySQL...");
conn. Qpen();
crd. Connecti on = conn;
cmd. CommandText = " DROP PROCEDURE | F EXI STS add_enp";
cnd. Execut eNonQuery();
cmd. CommandText = "DROP TABLE | F EXI STS enp";
cnd. Execut eNonQuery();
cmd. CommandText = " CREATE TABLE enmp (" +

"enpno | NT UNSI GNED NOT NULL AUTO | NCREMENT PRI MARY KEY, " +
"first_nanme VARCHAR(20), |ast_name VARCHAR(20), birthdate DATE)";
cnd. Execut eNonQuery();

cmd. CommandText = " CREATE PROCEDURE add_enp(" +

52

Stored Procedure Code Example

"IN fname VARCHAR(20), IN | nane VARCHAR(20),
"VALUES(f narme, | name, DATE(bday)); SET enpno
cnd. Execut eNonQuery();

}
catch (M/Sgl Exception ex)

Console. WiteLine ("Error " + ex.Nunmber + " has occurred: " + ex.Message);

}

conn. Cl ose();
Consol e. Wit eLi ne("Connection cl osed.");
try
{
Consol e. Wi telLine("Connecting to MySQ....");

conn. Qpen();
cnd. Connecti on = conn;

cnmd. CommandText
cnd. CommandType

"add_enp";
CommandType. St or edPr ocedur e;

cnd. Par anet er s. AddW t hval ue(" @ name", "Jones");
cnd. Paraneters["@nanme"].Direction = ParaneterDirection. | nput;

cnd. Par anet er s. AddW t hval ue(" @ name", "Toni');
cnd. Paraneters["@nanme"].Direction = ParaneterDirection. | nput;

cnd. Par anet er s. AddW t hVal ue(" @day", "1940-06-07");
cnd. Paraneters[" @day"].Directi on = ParaneterDirection. | nput;

cnd. Par anet er s. Add(" @npno”, M/Sql DbType. I nt 32);
cnd. Par anet ers[" @npno"] . Directi on = Paranet erDirection. Qut put;

cnd. Execut eNonQuery() ;

Consol e. Wi teLi ne("Enpl oyee nunber: "+cnd. Paraneters[" @npno"]. Val ue);
Consol e. WiteLine("Birthday: " + cnd. Paraneters[" @day"]. Val ue);

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

Consol e. WiteLine("Error " + ex.Nunber + " has occurred: " + ex. Message);

}

conn. Cl ose();
Consol e. Wi telLi ne("Done.");

The following code shows the same application in Visual Basic:

I nports System

I mports System Col | ecti ons. Generic
I mports System Linq

I nports System Text

I nports System Dat a
I mports MySql . Dat a
I mports MySql . Data. MySgl d i ent

Modul e Modul el

Sub Mai n()
Di m conn As New MySqgl Connecti on()

conn. ConnectionString = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******"

Dimcnd As New MySql Command()

Try

I N bday DATETI ME, OUT enpnho
"BEG N | NSERT | NTO enp(first_nanme, |ast_nane, birthdate)
LAST_| NSERT_| () ;

53

Handling BLOB Data With Connector/NET

Consol e. Wi telLine("Connecting to MySQL...")

conn. Open()

crd. Connecti on = conn

cnd. CommandText = "DROP PROCEDURE | F EXI STS add_enp"
cnd. Execut eNonQuery()

cnd. CommandText = "DROP TABLE | F EXI STS enp"

cnd. Execut eNonQuery()

cmd. CommandText = " CREATE TABLE enp (" &

"enpno | NT UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
"first_nanme VARCHAR(20), |ast_name VARCHAR(20), birthdate DATE)"
cnd. Execut eNonQuery()

cmd. CommandText = " CREATE PROCEDURE add_enp(" &
"IN fname VARCHAR(20), IN | nane VARCHAR(20), |IN bday DATETI ME, OUT enpno INT)" &
"BEG N | NSERT | NTO enp(first_nanme, |ast_nane, birthdate) " &
"VALUES(f name, | name, DATE(bday)); SET enmpno = LAST_INSERT_|ID(); END'

cnd. Execut eNonQuery()
Catch ex As MySqgl Excepti on
Consol e. WiteLine(("Error " & ex.Nunber & " has occurred: ") + ex.Message)
End Try
conn. Cl ose()
Consol e. Wit eLi ne("Connection cl osed.")
Try
Consol e. Wi telLine("Connecting to MySQL...")
conn. Open()

cnd. Connecti on = conn

cmd. CommandText
cnmd. CommandType

"add_enp"
CommandType. St or edPr ocedur e

cnd. Par anet er s. AddW t hVal ue(" @ nane", "Jones")
cnd. Paraneters("@nanme").Directi on = ParaneterDirection. | nput

cnd. Par anet er s. AddW t hVal ue(" @ nane", "Tont)
cnd. Paraneters("@nanme").Directi on = ParaneterDirection. | nput

cnd. Par anet er s. AddW t hVal ue(" @day", "1940-06-07")
cnd. Par anet ers(" @day").Directi on = ParaneterDirection. | nput

cnd. Par anet er s. Add(" @npno", M/Sqgl DbType. | nt 32)
cnd. Par anet er s(" @npno").Directi on = ParaneterDirection. Qut put

cnd. Execut eNonQuery()

Consol e. Wi teLi ne("Enpl oyee nunber: " & cnd. Paranet ers(" @npno") . Val ue)
Consol e. WitelLine("Birthday: " & cnd. Paraneters(" @day"). Val ue)
Catch ex As MySqgl . Data. MySgl Cl i ent. MySql Excepti on
Console. WiteLine(("Error " & ex.Nunber & " has occurred: ") + ex.Message)
End Try
conn. Cl ose()
Consol e. Wit eLi ne("Done. ")

End Sub

End Modul e

5.6 Handling BLOB Data With Connector/NET

One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four different
BLOB data types: TI NYBLOB, BLOB, MEDI UVBLOB, and LONGBL OB, all described in The BLOB and TEXT
Types and Data Type Storage Requirements.

Data stored in a BLOB column can be accessed using MySQL Connector/NET and manipulated using
client-side code. There are no special requirements for using Connector/NET with BLOB data.

54

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/storage-requirements.html

Preparing the MySQL Server

Simple code examples will be presented within this section, and a full sample application can be found in
the Sanpl es directory of the Connector/NET installation.

5.6.1 Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server. To start, create a table that can

be accessed. File tables often have four columns: an AUTO | NCREMENT column of appropriate size

(UNSI GNED SMALLI NT) to serve as a primary key to identify the file, a VARCHAR column that stores the file
name, an UNSI GNED MEDI UM NT column that stores the size of the file, and a MEDI UVBL OB column that
stores the file itself. For this example, use the following table definition:

CREATE TABLE fil e(

file_id SMALLI NT UNSI GNED AUTO | NCREMENT NOT NULL PRI MARY KEY,
file_name VARCHAR(64) NOT NULL,

file_size MEDI UM NT UNSI GNED NOT NULL,

file MED UMBLOB NOT NULL);

After creating a table, you might need to modify the max_al | owed_packet system variable. This variable
determines how large of a packet (that is, a single row) can be sent to the MySQL server. By default, the
server only accepts a maximum size of 1MB from the client application. If you intend to exceed 1MB in
your file transfers, increase this number.

The max_al | owed_packet option can be modified using the MySQL Workbench Server Administration
screen. Adjust the Maximum permitted option in the Data / Memory size section of the Networking

tab to an appropriate setting. After adjusting the value, click the Apply button and restart the server

using the St artup / Shut down screen of MySQL Workbench. You can also adjust this value

directly in the ny. cnf file (add a line that reads max_al | owed_packet =xxM), or use the SET

max_al | oned packet =xxM syntax from within MySQL.

Try to be conservative when setting nax_al | owed_packet , as transfers of BLOB data can take some
time to complete. Try to set a value that will be adequate for your intended use and increase the value if
necessary.

5.6.2 Writing a File to the Database

To write a file to a database, we need to convert the file to a byte array, then use the byte array as a
parameter to an | NSERT query.

The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into the
fil e table:

C# Code Example

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;
MySql . Dat a. MySgl Cl i ent . MySql Command cnd;

conn = new MySql . Data. MySqgl d i ent . MySgl Connecti on() ;
cmd = new MySqgl . Dat a. MySgl i ent . MySgl Conmand() ;

string SQ;

Ul nt32 Fil eSi ze;
byte[] rawbDat a;
FileStreamfs;

conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +
"pwd=12345; dat abase=t est";

try
{
fs = new FileStream(@c: \inage. png", FileMde. Open, Fil eAccess. Read);

55

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/insert.html

Writing a File to the Database

FileSize = fs. Length;

rawbDat a = new byte[Fil eSi ze] ;
fs. Read(rawbata, 0, FileSize);
fs.d ose();

conn. Qpen();
SQL = "INSERT INTO file VALUES(NULL, @ileNane, @ileSize, @ile)";

crd. Connecti on = conn;

cnd. CommandText = SQL;

cnd. Par anet ers. AddW t hVal ue(" @i | eNane", strFil eNane);
cnd. Par anet ers. AddW t hVal ue(" @i | eSi ze", Fil eSi ze);
cnd. Par anet ers. AddW t hVal ue(" @il e", rawbData);

cnd. Execut eNonQuery() ;

MessageBox. Show("Fil e I nserted into database successful ly!",
"Success! ", MessageBoxButtons. OK, MessageBoxl con. Ast eri sk) ;

conn. Cl ose();
}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

MessageBox. Show("Error " + ex.Nunber + " has occurred:
"Error", MessageBoxButtons. K, MessageBoxl con. Error);

+ ex. Message,

}

Visual Basic Code Example

Di m conn As New MySqgl Connecti on
Dimcmd As New MySql Command

Dim SQL As String
DimFileSize As U nt32

DimrawbData() As Byte
Dmfs As Fil eStream

conn. ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _

& "dat abase=t est"

Try
fs = New Fil eStream("c:\image. png", Fil eMbde. Open, Fil eAccess. Read)
FileSize = fs.Length

rawData = New Byte(Fil eSize) {}
fs. Read(rawbata, 0, FileSize)
fs.d ose()

conn. Open()

SQL = "INSERT INTO file VALUES(NULL, @ileNane, @ileSize, @ile)"
crd. Connecti on = conn

cnd. CommandText = SQL

cnd. Par anet ers. AddW t hVal ue(" @i | eNanme", strFil eNane)

cnd. Par anet ers. AddW t hVal ue(" @i | eSi ze", Fil eSi ze)

cnd. Par anet ers. AddW t hval ue(" @i | e", rawbDat a)

cnd. Execut eNonQuer y()

MessageBox. Show("Fil e I nserted into database successful ly!",
"Success! ", MessageBoxButtons. OK, MessageBoxl con. Ast eri sk)

56

Reading a BLOB from the Database to a File on Disk

conn. Cl ose()
Catch ex As Exception
MessageBox. Show(" There was an error: " & ex.Message, "Error", _
MessageBoxBut t ons. OK, MessageBoxI con. Error)
End Try

The Read method of the Fi | eSt r eamaobject is used to load the file into a byte array which is sized
according to the Lengt h property of the Fi | eSt r eamobiject.

After assigning the byte array as a parameter of the MySqgl Conmrand object, the Execut eNonQuery
method is called and the BLOB is inserted into the f i | e table.

5.6.3 Reading a BLOB from the Database to a File on Disk

After afile is loaded into the f i | e table, we can use the My Sqgl Dat aReader class to retrieve it.

The following code retrieves a row from the f i | e table, then loads the data into a Fi | eSt r eamobject to
be written to disk:

C# Code Example

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;
MySql . Dat a. MySgl Cl i ent . MySql Command cnd;
MySql . Dat a. MySgl Cl i ent . MySqgl Dat aReader nyDat a;

conn = new MySql . Data. MySqgl d i ent . MySgl Connecti on() ;
cmd = new MySqgl . Data. MySgl d i ent . MySgl Conmand() ;

string SQ;

Ul nt32 Fil eSi ze;
byte[] rawbDat a;
FileStreamfs;

conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +
" pwd=12345; dat abase=t est";

SQL = "SELECT file_name, file_size, file FROMfile";
try
{

conn. Qpen();

cnd. Connecti on = conn;
cnd. CommandText = SQL;

nmyDat a = cnd. Execut eReader () ;

if (! nmyData. HasRows)
t hrow new Exception("There are no BLOBs to save");

nmyDat a. Read() ;

Fil eSize = nyDat a. Get Ul nt 32(myDat a. Get Ordi nal ("file_size"));
rawDat a = new byte[Fil eSi ze] ;

myDat a. Get Byt es(nyData. Get Ordi nal ("file"), 0, rawbata, O, (int)FileSize);

fs = new FileStream(@C:\newfil e.png", FileMde. OpenOrCreate, FileAccess. Wite);
fs.Wite(rawbata, 0, (int)FileSize);

fs.d ose();

MessageBox. Show("Fi |l e successfully witten to disk!",
"Success! ", MessageBoxButtons. OK, MessageBoxl con. Ast eri sk) ;

57

Working with Partial Trust / Medium Trust

nmyDat a. Cl ose() ;
conn. Cl ose();

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)

MessageBox. Show("Error " + ex.Nunber + " has occurred: " + ex.Message,
"Error", MessageBoxButtons. K, MessageBoxl con. Error);

}

Visual Basic Code Example

Di m conn As New MySqgl Connecti on
Dimcnmd As New MySql Commrand

Di m nyDat a As MySql Dat aReader
Dim SQL As String

DimrawData() As Byte
Dim Fil eSize As Ul nt 32

Dimfs As FileStream

conn. ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "dat abase=t est"

SQL "SELECT file_nane, file_size, file FROMfile"

Try
conn. Open()

cnd. Connecti on = conn
cnd. CommandText = SQL

nmyDat a = cnd. Execut eReader
I f Not nyData.HasRows Then Throw New Exception("There are no BLOBs to save")
myDat a. Read()

Fil eSize = nyData. Get Ul nt 32(nyData. Get Ordi nal ("fil e_size"))
rawData = New Byte(Fil eSize) {}

nmyDat a. Get Byt es(nyData. Get Ordi nal ("file"), 0, rawbata, 0, FileSize)

fs = New FileStream("C:\newfile.png", FileMde.OpenOrCreate, FileAccess.Wite)
fs.Wite(rawbData, 0, FileSize)
fs.d ose()

MessageBox. Show("Fil e successfully witten to disk!", "Success!", MessageBoxButtons. 0K, MessageBoxl con. Ast

myDat a. Cl ose()

conn. Cl ose()
Catch ex As Exception

MessageBox. Show(" There was an error: " & ex.Message, "Error", MessageBoxButtons. OK, MessageBoxl con. Error)
End Try

After connecting, the contents of the f i | e table are loaded into a My Sql Dat aReader object. The
Get Byt es method of the MySqgl Dat aReader is used to load the BLOB into a byte array, which is then
written to disk using a Fi | eSt r eamobject.

The Get Or di nal method of the MySqglDataReader can be used to determine the integer index of a
named column. Use of the GetOrdinal method prevents errors if the column order of the SELECT query is
changed.

5.7 Working with Partial Trust / Medium Trust

58

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html

Evolution of Partial Trust Support Across Connector/NET Versions

.NET applications operate under a given trust level. Normal desktop applications operate under full
trust, while web applications that are hosted in shared environments are normally run under the partial
trust level (also known as “medium trust”). Some hosting providers host shared applications in their own
app pools and allow the application to run under full trust, but this configuration is relatively rare. The
MySQL Connector/NET support for partial trust has improved over time to simplify the configuration and
deployment process for hosting providers.

5.7.1 Evolution of Partial Trust Support Across Connector/NET Versions

The partial trust support for MySQL Connector/NET has improved rapidly throughout the 6.5.x and 6.6.x
versions. The latest enhancements do require some configuration changes in existing deployments. Here
is a summary of the changes for each version.

6.6.4 and Above: Library Can Be Inside or Outside GAC

Now you can install the MySql . Dat a. dl | library in the Global Assembly Cache (GAC) as explained in
Section 5.7.2, “Configuring Partial Trust with Connector/NET Library Installed in GAC”, orinabinorlib
folder inside the project or solution as explained in Section 5.7.3, “Configuring Partial Trust with Connector/
NET Library Not Installed in GAC". If the library is not in the GAC, the only protocol supported is TCP/IP.

6.5.1 and Above: Partial Trust Requires Library in the GAC

Connector/NET 6.5 fully enables our provider to run in a partial trust environment when the library is
installed in the Global Assembly Cache (GAC). The new MySgl C i ent Per ni ssi on class, derived from
the .NET DBDat aPer mi ssi on class, helps to simplify the permission setup.

5.0.8/5.1.3 and Above: Partial Trust Requires Socket Permissions

Starting with these versions, Connector/NET can be used under partial trust hosting that has been
modified to allow the use of sockets for communication. By default, partial trust does not include

Socket Per m ssi on. Connector/NET uses sockets to talk with the MySQL server, so the hosting provider
must create a new trust level that is an exact clone of partial trust but that has the following permissions
added:

» System Net. Socket Per mi ssi on

» System Security. Perm ssions. Refl ecti onPerm ssi on

e System Net. DnsPerm ssi on

e System Security. Perm ssions. SecurityPerm ssion
Prior to 5.0.8 /5.1.3: Partial Trust Not Supported

Connector/NET versions prior to 5.0.8 and 5.1.3 were not compatible with partial trust hosting.

5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GAC

If the library is installed in the GAC, you must include the connection option
i ncl udesecurityasserts=true in your connection string. This is a new requirement as of MySQL
Connector/NET 6.6.4.

The following list shows steps and code fragments needed to run a Connector/NET application in a partial
trust environment. For illustration purposes, we use the Pipe Connections protocol in this example.

1. Install Connector/NET: version 6.6.1 or later, or 6.5.4 or later.

2. Atfter installing the library, make the following configuration changes:

59

Configuring Partial Trust with Connector/NET Library Installed in GAC

10.

Inthe Securi t yCl asses section, add a definition for the MySgl Cl i ent Per mi ssi on class, including
the version to use.

<confi guration>
<mscorl i b>
<security>
<pol i cy>
<Pol i cyLevel version="1">
<Securityd asses>

<Securityd ass Nane="M/Sqgl C i ent Per mi ssi on" Description="M/Sql . Data. MySgl i ent. M/Sql A i ent Perr
MySql . Dat a, Version=6.6.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" />

Scroll down to the ASP. Net section:

<Per m ssi onSet cl ass="NanmedPer i ssi onSet" version="1 Nanme=" ASP. Net " >

Add a new entry for the detailed configuration of the MySql Cl i ent Per mi ssi on class:

Note
This configuration is the most generalized way that includes all keywords.

Configure the MySQL server to accept pipe connections, by adding the - - enabl e- naned- pi pe
option on the command line. If you need more information about this, see Installing MySQL on
Microsoft Windows.

Confirm that the hosting provider has installed the Connector/NET library (MySql . Dat a. dl |) in the
GAC.

Optionally, the hosting provider can avoid granting permissions globally by using

the new MySql C i ent Per m ssi on class in the trust policies. (The alternative

is to globally enable the permissions Syst em Net . Socket Per mi ssi on,

System Security. Perm ssions. Refl ecti onPerm ssi on, Syst em Net. DnsPer ni ssi on,
and Syst em Security. Perm ssions. SecurityPerm ssion.)

Create a simple web application using Visual Studio 2010.
Add the reference in your application for the MySql . Dat a. MySqgl Cl i ent library.

Edit your web. conf i g file so that your application runs using a Medium trust level:

<syst em web>
<trust |evel ="Medium'/>
</ syst em web>

Add the MySql . Dat a. MySqgl Cl i ent namespace to your server-code page.
Define the connection string, in slightly different ways depending on the Connector/NET version.

Only for 6.6.4 or later: To use the connections inside any web application that will run in
Medium trust, add the new i ncl udesecurit yassert s option to the connection string.

i ncl udesecurityassert s=true that makes the library request the following permissions
when required: Socket Per m ssi ons, Ref | ecti onPer i ssi ons, DnsPer m ssi ons,
Securi t yPer m ssi ons among others that are not granted in Medium trust levels.

For Connector/NET 6.6.3 or earlier: No special setting for security is needed within the connection
string.

60

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/windows-installation.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/windows-installation.html

Configuring Partial Trust with Connector/NET Library Not Installed in GAC

MySql Connecti onStri ngBui |l der myconnString = new MySgl Connecti onSt ri ngBui | der ("server =l ocal host ; User |d=
myconnSt ri ng. Pi peNane = " M/SQL55";

myconnSt ri ng. Connect i onProt ocol = MySql Connecti onProt ocol . Pi pe;

/] Following attribute is a new requirenent when the library is in the GAC

/] Could al so be done by addi ng incl udesecurityasserts=true; to the string literal

/1 in the constructor above.

/1 Not needed with Connector/NET 6.6.3 and earlier.

myconnSt ri ng. | ncl udeSecurityAsserts = true;

11. Define the MySql Connect i on to use:

MySql Connecti on nyconn = new MySgl Connecti on(nyconnString. ConnectionString);
nmyconn. Cpen() ;

12. Retrieve some data from your tables:

MySql Conmand cnd = new MySgl Conmand(" Sel ect * from products", myconn);
MySql Dat aAdapt er da = new MySql Dat aAdapt er (cnd) ;

DataSet1l tds = new DataSet 1();

da.Fill(tds, tds.Tabl es[0]. Tabl eNane);

GidVi ewl. Dat aSour ce = tds;

G idVi ewl. Dat aBi nd() ;

myconn. Cl ose()

13. Run the program. It should execute successfully, without requiring any special code or encountering
any security problems.

5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in
GAC

When deploying a web application to a Shared Hosted environment, where this environment is configured
to run all their .NET applications under a partial or medium trust level, you might not be able to install the
MySQL Connector/NET library in the GAC. Instead, you put a reference to the library inthe binorlib
folder inside the project or solution. In this case, you configure the security in a different way than when the
library is in the GAC.

Connector/NET is commonly used by applications that run in Windows environments where the default
communication for the protocol is used via sockets or by TCP/IP. For this protocol to operate is necessary
have the required socket permissions in the web configuration file as follows:

1. Open the medium trust policy web configuration file, which should be under this folder:

%M ndi r% M crosof t. NET\ Framewor k\ { ver si on}\ CONFI G web_nedi unt rust . confi g

Use Fr anewor k64 in the path instead of Fr anewor k if you are using a 64-bit installation of the
framework.

2. Locate the SecurityCl asses tag:
<Securityd ass Nanme="Socket Per ni ssi on"

Descri pti on="Syst em Net. Socket Per m ssi on, System Version=4.0.0.0,
Cul ture=neutral, PublicKeyToken=b77a5c561934e089"/>

3. Scroll down and look for the following Per mi ssi onSet :

<Per m ssi onSet version="1" Nane="ASP. Net ">

4. Add the following inside this Per ni ssi onSet :

<| Per m ssi on cl ass="Socket Per mi ssi on" version="1" Unrestricted="true" />

61

Writing a Custom Authentication Plugin

This configuration lets you use the driver with the default Windows protocol TCP/IP without having any
security issues. This approach only supports the TCP/IP protocol, so you cannot use any other type of
connection.

Also, since the MySQLCl i ent Per m ssi ons class is not added to the medium trust policy, you cannot

use it. This configuration is the minimum required in order to work with Connector/NET without the
GAC.

5.8 Writing a Custom Authentication Plugin

Advanced users with special security requirements can create their own authentication plugins for
MySQL Connector/NET applications. You can extend the handshake protocol, adding custom logic. For
background and usage information about MySQL authentication plugins, see Authentication Plugins and
Writing Authentication Plugins.

To write a custom authentication plugin, you will need a reference to the assembly MySql . Dat a. dlI | .
The classes relevant for writing authentication plugins are available at the namespace
MySql . Dat a. MySgl Cl i ent. Aut henti cati on.

How the Custom Authentication Plugin Works

At some point during handshake, the internal method
voi d Aut henti cat e(bool reset)

of MySqgl Aut henti cati onPl ugi n is called. This method in turns calls several overridable methods of
the current plugin.

Creating the Authentication Plugin Class

You put the authentication plugin logic inside a new class derived from
MySql . Dat a. MySgl Cl i ent. Aut henti cati on. MySgl Aut henti cati onPl ugi n. The following
methods are available to be overridden:

protected virtual void CheckConstraints()

protected virtual void AuthenticationFail ed(Exception ex)
protected virtual void AuthenticationSuccessful ()
protected virtual byte[] MreData(byte[] data)

protected virtual void Authenticati onChange()

public abstract string Plugi nNane { get; }

public virtual string GetUsernane()

public virtual object GetPassword()

protected byte[] AuthDat a;

The following is a brief explanation of each one:

[/l <summary>

/11 This method nmust check authentication nmethod specific constraints in the
envi ronment and throw an Exception

/1] if the conditions are not net. The default inplenentation does not hing.
/1] </ sunmary>

protected virtual void CheckConstraints()

[/l <summary>

/11 This method, called when the authentication failed, provides a chance to

pl ugi ns to nmanage the error

/1] the way they consider decide (either showing a nessage, logging it, etc.).
/1] The default inplenentation waps the original exception in a M/Sql Exception
with an standard nessage and rethrows it.

62

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/authentication-plugins.html
https://dev.mysql.com/doc/extending-mysql/8.4/en/writing-authentication-plugins.html

Authentication Plugin Example

/1] </ sunmmary>
/1l <param nane="ex">The exception with extra information on the error.</paranr
protected virtual void AuthenticationFail ed(Exception ex)

[l <summary>

/1l This method is invoked when the authenticati on phase was successful accepted
by the server

/1] Derived classes nust override this if they want to be notified of such

condi tion

/1l </ sunmmary>

/1l <remarks>The default inplementati on does not hi ng. </renmar ks>

protected virtual void Authenticati onSuccessful ()

[l <summary>

/1l This method provides a chance for the plugin to send nore data when the
server requests so during the

/1] authentication phase. This method will be called at |east once, and nore
than one dependi ng upon whet her the

/1l server response packets have the 0x01 prefix

/1l </ sunmmary>

/1l <param nane="dat a">The response data fromthe server, during the

aut henti cati on phase the first time is called is null, in

subsequent calls contains the server response.</paranr>

/1l <returns>The data generated by the plugin for server consunption.</returns>
/1l <remarks>The default inplenmentation always returns null.</renmar ks>
protected virtual byte[] MreData(byte[] data)

[l <summary>

/1] The plugin nanme

/1l </ sunmmary>

public abstract string Plugi nNanme { get; }

[l <summary>

[/l Gets the user nane to send to the server in the authentication phase
/1l </ sunmmary>

/1l <returns>An string with the user nane</returns>

/1l <remarks>Default inplenentation returns the Userld passed fromthe
connection string. </remarks>

public virtual string GetUsernane()

[l <summary>

/Il Gets the password to send to the server in the authentication phase. This
can be a string or a

/1] </ sunmmary>

/1l <returns>An object, can be byte[], string or null, with the password.
</returns>

/1l <remarks>Default inplenentation returns null.</remarks>

public virtual object GetPassword()

[l <summary>

/11 The authentication data passed when creating the plugin.

/1] For exanple in nysqgl_native_password this is the seed to encrypt the
passwor d

/1l </ sunmmary>
protected byte[] AuthData

Authentication Plugin Example

This example shows how to create the authentication plugin and then enable it by means of a configuration
file.

1. Create a console app, adding a reference to MySql . Dat a. dl | .

2. Design the main C# program as follows:

usi ng System

63

Authentication Plugin Example

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

using MySql . Data. MySgl i ent ;

nanmespace Aut hPl ugi nTest

{
cl ass Program
{
static void Main(string[] args)
{
/] Customize the connection string as necessary.
MySql Connecti on con = new MySql Connecti on("server =l ocal host ;
dat abase=t est; user id=nyuser; password=mypass");
con. Open();
con. Cl ose();
}
}
}

Create your plugin class. In this example, we add an “alternative” implementation of the Native
password plugin by just using the same code from the original plugin.

Note

The mysql_native_password plugin is disabled by default as of MySQL Server
8.4.0 and removed as of MySQL Server 9.0.0.

We name our class MySql Nat i vePasswor dPl ugi n2:

using System | O

usi ng System

usi ng System Text;

usi ng System Security. Cryptography;

using MySql . Dat a. MySgl A i ent . Aut henti cati on;
usi ng System Di agnosti cs;

nanmespace Aut hPl ugi nTest
{ public class MySql Nati vePasswor dPl ugi n2 : MySgl Aut henti cati onPl ugi n
{ public override string Plugi nNane
{ get { return "mysql _native_password"; }

}

public override object GetPassword()

{
Debug. WiteLine("Calling MySql Nati vePasswor dPl ugi n2. Get Passwor d") ;
return Get4llPassword(Settings. Password, AuthData);

}

/1] <summary>
/1] Returns a byte array containing the proper encryption of the
/1l given password/seed according to the new 4.1.1 authentication schene.
/1] </summary>
/1] <param nane="passwor d" ></ par an>
/1] <param nane="seed" ></ par an>
/1] <returns></returns>
private byte[] Get4llPassword(string password, byte[] seedBytes)
{

/[l if we have no password, then we just return 1 zero byte

if (password.Length == 0) return new byte[1];

SHA1 sha = new SHA1Crypt oServi ceProvi der();

64

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/native-pluggable-authentication.html

Using the Connector/NET Interceptor Classes

byte[] firstHash = sha. Conput eHash(Encodi ng. Def aul t . Get Byt es(password)) ;
byte[] secondHash = sha. Conput eHash(firstHash);

byte[] input = new byte[seedBytes. Length + secondHash. Lengt h] ;

Array. Copy(seedBytes, 0, input, O, seedBytes.Length);

Array. Copy(secondHash, 0, input, seedBytes.Length, secondHash.Length);
byte[] thirdHash = sha. Conput eHash(i nput);

byte[] final Hash = new byt e[thirdHash. Length + 1];
final Hash[0] = 0x14;
Array. Copy(thirdHash, 0, finalHash, 1, thirdHash. Length);

for (int i =1; i < finalHash.Length; i++)
final Hash[i] = (byte)(final Hash[i] ~ firstHash[i - 1]);
return final Hash;

}
}
}

Notice that the plugin implementation just overrides Get Passwor d, and provides an implementation
to encrypt the password using the 4.1 protocol. Add the following line in the Get Passwor d body to
provide confirmation that the plugin was effectively used.

Debug. WiteLine("Calling M/Sgl Nat i vePasswor dPl ugi n2. Get Passwor d") ;
Tip
You could also put a breakpoint on that method.

4. Enable the new plugin in the configuration file:

<?xm version="1.0"?>
<confi gurati on>
<confi gSecti ons>
<section name="M/SQ." type="M/Sql.Data. MySql G i ent.M/Sql Confi gurati on,
MySql . Dat a"/ >
</ confi gSecti ons>
<MWySsQL>
<Aut henti cati onPl ugi ns>
<add name="nysql _native_password"
t ype="Aut hPl ugi nTest . MySgl Nat i vePasswor dPl ugi n2, Aut hPl ugi nTest " ></ add>
</ Aut henti cati onPl ugi ns>
</ MySQ.>
<startup><supportedRunti me version="v4.0" sku=".NETFranework, Ver si on=v4. 0"/ >
</ st artup></configuration>

5. Run the application. In Visual Studio, you will see the message Cal | i ng
MySqgl Nat i vePasswor dPl ugi n2. Get Passwor d in the debug window.

Continue enhancing the authentication logic, overriding more methods if you required.

5.9 Using the Connector/NET Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With MySQL Connector/NET,
the interceptors are enabled and disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

Note

The classes and methods presented in this section do not apply to Connector/NET
applications developed with the .NET Core 1.1 framework.

Using the Connector/NET Interceptor Classes

Connector/NET includes the following interceptor classes:

» The BaseComandl| nt er cept or lets you perform additional operations when a program issues a
SQL command. For example, you can examine the SQL statement for logging or debugging purposes,
substitute your own result set to implement a caching mechanism, and so on. Depending on the use
case, your code can supplement the SQL command or replace it entirely.

The BaseCommandl nt er cept or class has these methods that you can override:

public virtual bool ExecuteScalar(string sql, ref object returnValue);
public virtual bool ExecuteNonQuery(string sql, ref int returnVal ue);

public virtual bool ExecuteReader(string sql, CommandBehavi or behavi or, ref M/Sqgl Dat aReader returnVal ue);

public virtual void Init(MSqgl Connection connection);

If your interceptor overrides one of the Execut e. . . methods, set the r et ur nVal ue output parameter
and return t r ue if you handled the event, or f al se if you did not handle the event. The SQL command
is processed normally only when all command interceptors return f al se.

The connection passed to the | ni t method is the connection that is attached to this interceptor.

e The BaseExcepti onl nt er cept or lets you perform additional operations when a program encounters
an SQL exception. The exception interception mechanism is modeled after the Connector/J model. You
can code an interceptor class and connect it to an existing program without recompiling, and intercept
exceptions when they are created. You can then change the exception type and optionally attach
information to it. This capability lets you turn on and off logging and debugging code without hardcoding
anything in the application. This technique applies to exceptions raised at the SQL level, not to lower-
level system or I/O errors.

You develop an exception interceptor first by creating a subclass of the BaseExcept i onl nt er cept or
class. You must override the | nt er cept Except i on() method. You can also override the | ni t ()
method to do some one-time initialization.

Each exception interceptor has 2 methods:

publ i c abstract Exception |nterceptExcepti on(Exception exception,
MySql Connecti on connecti on);
public virtual void |Init(MSgl Connection connection);

The connection passed to | ni t () is the connection that is attached to this interceptor.

Each interceptor is required to override | nt er cept Except i on and return an exception. It can return
the exception it is given, or it can wrap it in a new exception. We currently do not offer the ability to
suppress the exception.

Here are examples of using the FQN (fully qualified name) on the connection string:

M/Sql Connection cl = new MySql Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;
commandi nt er cept or s=CommandApp. MyCommandl| nt er cept or, CommandApp") ;

M/Sql Connection c2 = new MySql Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;
excepti oni nt er cept or s=Excepti onSt ackTr aceTest . M/Excepti onl nt er cept or, Excepti onSt ackTraceTest") ;

In this example, the command interceptor is called ConmmandApp. MyConmrandl nt er cept or
and exists in the ConmandApp assembly. The exception interceptor is called

Excepti onSt ackTraceTest. MyExcepti onl nt er cept or and exists in the

Excepti onSt ackTraceTest assembly.

To shorten the connection string, you can register your exception interceptors in your app. confi g or
web. confi g file like this:

66

Handling Date and Time Information in Connector/NET

<confi gSecti ons>
<section nane="M/SQ" type="M/Sql.Data. M/Sql O i ent.M/Sql Configuration, MySql . Data"/>
</ confi gSecti ons>

<M/SQL>
<Commandl nt er cept or s>

<add name="nyC' type="ConmandApp. MyConmandlI nt er cept or, ConmandApp" />
</ CommandI nt er cept or s>

</ MySQL>

<confi gSecti ons>
<section nane="M/SQ" type="MSql.Data. MySql Cient.M/Sql Configurati on,
M/Sql . Data"/ >

</ confi gSecti ons>
<MySQL>
<Excepti onl nt er cept or s>
<add nanme="nyE"
type="Excepti onSt ackTr aceTest . M/Excepti onl nt er cept or, Excepti onSt ackTraceTest" />
</ Excepti onl nt er cept or s>

</ MySQL>
After you have done that, your connection strings can look like these:

MySgl Connection c1 = new MySgl Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;
conmandi nt er cept or s=nyC") ;

MySgl Connection c2 = new MySgl Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;
excepti oni nt er cept or s=nyE") ;

5.10 Handling Date and Time Information in Connector/NET

MySQL and the .NET languages handle date and time information differently, with MySQL allowing dates
that cannot be represented by a .NET data type, such as '0000- 00- 00 00: 00: 00". These differences
can cause problems if not properly handled.

The following sections demonstrate how to properly handle date and time information when using MySQL
Connector/NET.

5.10.1 Fractional Seconds

MySQL Connector/NET supports the fractional seconds feature in MySQL, where the fractional seconds
part of temporal values is preserved in data stored and retrieved through SQL. For fractional second
handling in MySQL 5.6.4 and higher, see Fractional Seconds in Time Values.

To use the more precise date and time types, specify a value from 1 to 6 when creating the table

column, for example Tl VE(3) or DATETI ME(6) , representing the number of digits of precision after

the decimal point. Specifying a precision of O leaves the fractional part out entirely. In your C# or

Visual Basic code, refer to the M | | i second member to retrieve the fractional second value from the

My Sql Dat eTi ne object returned by the Get My Sql Dat eTi ne function. The Dat eTi e object returned by
the Get Dat eTi ne function also contains the fractional value, but only the first 3 digits.

For related code examples, see the following blog post: https://blogs.oracle.com/MySqglOnWindows/entry/
milliseconds_value_support_on_datetime

5.10.2 Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use invalid dates. Invalid MySQL
dates cannot be loaded into native .NET Dat eTi ne objects, including NULL dates.

Because of this issue, .NET Dat aSet objects cannot be populated by the Fi | | method of the
My Sql Dat aAdapt er class as invalid dates will cause a Syst em Ar gunent Qut Of RangeExcepti on
exception to occur.

67

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/fractional-seconds.html
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime

Restricting Invalid Dates

5.10.3 Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid dates. This can be done on
either the client or the server side.

Restricting invalid dates on the client side is as simple as always using the .NET Dat eTi ne class to
handle dates. The Dat eTi e class will only allow valid dates, ensuring that the values in your database
are also valid. The disadvantage of this is that it is not useful in a mixed environment where .NET and
non .NET code are used to manipulate the database, as each application must perform its own date
validation.

Users of MySQL 5.0.2 and higher can use the new t r adi t i onal SQL mode to restrict invalid date
values. For information on using the t r adi t i onal SQL mode, see Server SQL Modes.

5.10.4 Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates within your .NET application, it
is possible to use invalid dates by means of the MySql Dat eTi ne data type.

The My Sql Dat eTi ne data type supports the same date values that are supported by the MySQL
server. The default behavior of Connector/NET is to return a .NET DateTime object for valid date values,
and return an error for invalid dates. This default can be modified to cause Connector/NET to return

My Sql Dat eTi ne objects for invalid dates.

To instruct Connector/NET to return a My Sql Dat eTi ne object for invalid dates, add the following line to
your connection string:

Al | ow Zero Dateti ne=True
The My Sql Dat eTi ne class can still be problematic. The following are some known issues:

 Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to have this
problem).

* The ToSt ri ng method return a date formatted in the standard MySQL format (for example,
2005- 02- 23 08: 50: 25). This differs from the ToSt r i ng behavior of the .NET DateTime class.

e The MySql Dat eTi ne class supports NULL dates, while the .NET DateTime class does not. This can
cause errors when trying to convert a MySQLDateTime to a DateTime if you do not check for NULL first.

Because of the known issues, the best recommendation is still to use only valid dates in your application.

5.10.5 Handling NULL Dates

The .NET Dat eTi e data type cannot handle NULL values. As such, when assigning values from a query
to a Dat eTi ne variable, you must first check whether the value is in fact NULL.

When using a My Sql Dat aReader , use the . | sDBNul | method to check whether a value is NULL before
making the assignment:

C# Code Example

if (! nyReader.|sDBNul |l (nyReader. Get Ordinal ("nytinme")))

nyTi me = nyReader. Get Dat eTi ne(nyReader. Get Ordi nal ("nytime"));
el se

nyTi me = Dat eTi ne. M nVal ue;

68

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/sql-mode.html

Using the MySqlIBulkLoader Class

Visual Basic Code Example

I f Not nyReader.|sDBNul | (nyReader. Get Ordi nal ("nytine")) Then
nmyTi ne = nmyReader . Get Dat eTi me(nyReader . Get Ordi nal ("nyti ne"))
El se
nyTi me = DateTi me. M nVal ue
End | f

NULL values will work in a data set and can be bound to form controls without special handling.

5.11 Using the MySqlBulkLoader Class

MySQL Connector/NET features a bulk loader class that wraps the MySQL statement LOAD DATA
I NFI LE. This gives Connector/NET the ability to load a data file from a local or remote host to the server,
or a stream to a database (from Connector/NET 8.0.32).

The class concerned is MySql Bul kLoader . This class has various methods, the main overloaded method
being | oad, which permits a stream object to be loaded directly to a database (8.0.32) or the specified file
to the server. Various parameters can be set to control how the data file is processed. This is achieved
through setting various properties of the class. For example, the field separator used, such as comma or
tab, can be specified, along with the record terminator, such as newline.

The following code shows a simple example of using the MySql Bul kLoader class. First an empty table
needs to be created, in this case in the t est database.

CREATE TABLE Career (
Name VARCHAR(100) NOT NULL,
Age | NTEGER,
Pr of essi on VARCHAR(200)

)i
A simple tab-delimited data file is also created (it could use any other field delimiter such as comma).

Tabl e Career in Test Database
Name Age Profession

Tony 47 Technical Witer
Ana 43 Nurse

Fred 21 |IT Specialist
Simon 45 Hairy Biker

The first three lines need to be ignored with this test file, as they do not contain table data. This task is
accomplished in the following C# code example by setting the Nunber O Li nesToSki p property . The file
can then be loaded and used to populate the Car eer table in the t est database.

Note

As of Connector/NET 8.0.15, the Local property must be set to Tr ue explicitly to
enable the local-infile capability. Previous versions set this value to Tr ue by default.

usi ng System

usi ng System Text;

usi ng MySql . Dat a;

using MySql . Data. MySgl d i ent ;

namespace Consol eApplicationl

{

cl ass Program

{
static void Main(string[] args)

{

69

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/load-data.html

Connector/NET Tracing

string connStr = "server =l ocal host ; user =r oot ; dat abase=t est; port =3306; passwor d=******" .
M/Sgl Connecti on conn = new MySqgl Connecti on(connStr);

My Sql Bul kLoader bl = new MySgl Bul kLoader (conn) ;
bl . Local = true;

bl . Tabl eNane = "Career";

bl . Fiel dTerm nator = "\t";

bl . Li neTerm nator = "\n";

bl .FileName = "c:/career_data.txt";

bl . Nunber O Li nesToSki p = 3;

try
{
Consol e. Wi teLi ne("Connecting to MySQL...");

conn. Qpen();

/1 Upload data fromfile
int count = bl.Load();
Consol e. WitelLine(count + " |ines uploaded.");

string sql = "SELECT Nane, Age, Profession FROM Career";
MySgl Command cnd = new MySql Command(sqgl, conn);
MySqgl Dat aReader rdr = cnd. Execut eReader () ;

while (rdr.Read())

{

Consol e. WiteLine(rdr[O] + " -- " + rdr[1] + " -- " + rdr[2]);
}
rdr. d ose();

conn. Cl ose();

catch (Exception ex)

{

}
Consol e. Wi telLi ne("Done.");

Consol e. WitelLine(ex. ToString());

}

Further information on LOAD DATA | NFI LE can be found in LOAD DATA Statement. Further information
on MySql Bul kLoader can be found in the reference documentation that was included with your
connector.

5.12 Connector/NET Tracing
5.12.1 Enabling OpenTelemetry Tracing

OpenTelementry (OTel) standardizes instrumentation, generation, collecting and exporting telemetry data
to be consumed by an Observability backend. For more details on OpenTelemetry, visit its official site.

Starting in Connector/NET 8.1.0, support for OTel is encapsulated in the MySQL. Dat a. QpenTel enetry
NuGet package. This package implements the functionality to add the connector to the tracer provider
using OpenTel enent ry. Api . Connector/NET neither creates nor provides the means to create an OTel
exporter. Instead, it relies on the default exporter supplied by your application.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a commercial
product. To learn more about commercial products, see https://www.mysqgl.com/
products/.

70

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/load-data.html
https://opentelemetry.io/
https://www.mysql.com/products/
https://www.mysql.com/products/

Using the Connector/NET Trace Source Object

Requirements for Enabling Tracing

.NET 5 and later.

Connector/NET MySQL. Dat a. OpenTel enet ry and MySQL. Dat a NuGet packages.
Note

The Connector/NET MSiI file does not include support for this OTel
implementation.

* An OpenTelemetry SDK of your choosing and an appropriate exporter package.

» MySQL Enterprise Edition server with the query attributes enabled. If the server does not support query
attributes or has them disabled, then Connector/NET skips the entire context propagation flow.

Code that uses OTel instrumentation. If your code does not use instrumentation, then the connector
does not forward the current OTel context for each executed statement.

Enabling OpenTelemetry

To enable OTel tracing using the Connector/NET implementation, add the connector to the trace provider
builder as follows:

var tracerProvider = sdk. TraceProvi derBui |l der (). AddConnect or Net (). Bui | d();

When you build code that links to Connector/NET and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user code
are sent as configured by user code. It is not possible to send spans generated by the connector to any
other destination.

5.12.2 Using the Connector/NET Trace Source Object

The .NET tracing architecture consists of four main parts:

e Source - This is the originator of the trace information. The source is used to send trace messages. The
name of the source provided by Connector/NET is nysql .

» Switch - This defines the level of trace information to emit. Typically, this is specified in the app. confi g
file, so that it is not necessary to recompile an application to change the trace level.

« Listener - Trace listeners define where the trace information will be written to. Supported listeners
include, for example, the Visual Studio Output window, the Windows Event Log, and the console.

 Filter - Filters can be attached to listeners. Filters determine the level of trace information that will be
written. While a switch defines the level of information that will be written to all listeners, a filter can be
applied on a per-listener basis, giving finer grained control of trace information.

To use tracing MySql.Data.MySqlClient.MySqlTrace can be used as a TraceSource for Connector/NET
and the connection string must include "Logging=True".

To enable trace messages, configure a trace switch. Trace switches have associated with them a trace
level enumeration, these are Off, Error, Warning, Info, and Verbose.

M/Sql Trace. Swi t ch. Level = Sourcelevel s. Ver bose;

This sets the trace level to Verbose, meaning that all trace messages will be written.

71

Using the Connector/NET Trace Source Object

It is convenient to be able to change the trace level without having to recompile the code. This is achieved
by specifying the trace level in application configuration file, app. conf i g. You then simply need to specify
the desired trace level in the configuration file and restart the application. The trace source is configured
within the syst em di agnost i cs section of the file. The following XML snippet illustrates this:

<confi guration>

<syst em di agnosti cs>
<sour ces>
<source nanme="mysql" swi tchNanme="M/Switch"
swi t chType="Syst em Di agnosti cs. SourceSw tch" />

</ sour ces>
<swi t ches>
<add nanme="M/Swi tch" val ue="Ver bose"/ >

</ swi tches>
</ syst em di agnosti cs>

</ configuration>

By default, trace information is written to the Output window of Microsoft Visual Studio. There are a
wide range of listeners that can be attached to the trace source, so that trace messages can be written
out to various destinations. You can also create custom listeners to allow trace messages to be written
to other destinations as mobile devices and web services. A commonly used example of a listener is
Consol eTracelLi st ener, which writes trace messages to the console.

To add a listener at runtime, use code such as the following:

ts. Li steners. Add(new Consol eTraceLi stener());

Then, call methods on the trace source object to generate trace information. For example, the
Tracel nformation(), TraceEvent (), or TraceDat a() methods can be used.

5.12.2.1 Viewing MySQL Trace Information
This section describes how to set up your application to view MySQL trace information.

The first thing you need to do is create a suitable app. conf i g file for your application. For example:

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>
<syst em di agnosti cs>
<sour ces>
<source nane="mysql" swi tchNane="SourceSw t ch"
swi t chType="Syst em Di agnosti cs. SourceSw tch" >
<listeners>
<add nane="consol e" />
<renove nane ="Default" />
</listeners>
</ sour ce>
</ sour ces>
<swi t ches>

<I-- You can set the level at which tracing is to occur -->
<add nane="SourceSwi tch" val ue="Verbose" />

<l-- You can turn tracing off -->

<!--add nane="SourceSw tch" value="COf" -->

</ swi t ches>
<shar edLi st ener s>
<add nane="consol e"
t ype="Syst em Di agnosti cs. Consol eTr aceli st ener"
initializeData="fal se"/>
</ shar edLi st ener s>
</ syst em di agnosti cs>

72

Using the Connector/NET Trace Source Object

</ confi guration>

This configuration ensures that a suitable trace source is created, along with a switch. The switch level in

this case is set to Ver bose to display the maximum amount of information.

Next, add | oggi ng=t r ue to the connection string in your C# application. For example:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng System Di agnosti cs;

usi ng MySql . Dat a;

using MySql . Data. MySgl d i ent ;

usi ng MySql . Web;

namespace Consol eApplicationl

{
cl ass Program
{
static void Main(string[] args)
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******: | oggi ng=
MySgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
Consol e. Wi telLine("Connecting to MySQL...");
conn. Open();
string sql = "SELECT Nane, HeadOf State FROM Country WHERE Conti nent='Cceania'";
MySgl Conmand cnd = new MySql Command(sqgl, conn);
MySqgl Dat aReader rdr = cnd. Execut eReader () ;
while (rdr.Read())
{
Consol e. WiteLine(rdr[O] + " -- " + rdr[1]);
}
rdr. d ose();
conn. Cl ose();
catch (Exception ex)
{
Consol e. WiteLine(ex. ToString());
}
Consol e. Wi telLi ne("Done.");
}
}
}

This simple application then generates the following output:

Connecting to MySQL. . .

mysql Information: 1 : 1: Connection Opened: connection string = 'server=local host; User

; passwor d=******.] oggi ng=Tr ue'

mysql Information: 3 : 1: Query Opened: SHOW VARI ABLES

mysql | nformation: Resul tset Opened: field(s) = 2, affected rows =
nmysql | nformation:
mysql | nformation:
mysql | nformation:
mysql | nformation:
mysql | nformation:
nmysql | nformation:

Query C osed
Query Opened: SHOW COLLATI ON
Resul tset Opened: field(s) = 6, affected rows =

oUlA WO U A

Query C osed

Resul tset Cl osed. Total rows=272, skipped rows=0,

Resul tset Cl osed. Total rows=127, skipped rows=0,

| d=r oot ; dat abase=w

inserted id = -1
si ze (bytes)=7058

inserted id = -1
size (bytes)=4102

73

Using the Connector/NET Trace Source Object

mysql | nformation:
mysql | nformation:
mysql | nformation:
mysql | nformation:
mysql | nformation:

Query Opened: SET character_set_resul t s=NULL

Resul t set Opened: field(s) = 0, affected rows = 0, inserted id =0

Resul tset Cl osed. Total rows=0, skipped rows=0, size (bytes)=0

Query C osed

0 : 1: Set Database: world

mysql | nformation: 1: Query Opened: SELECT Nane, HeadOf State FROM Country WHERE Conti nent =' Cceani a'
mysql | nformation: 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
Anerican Sanpa -- CGeorge W Bush

Australia -- Elisabeth Il

AwRrOUA®
PR

Wal lis and Futuna -- Jacques Chirac

Vanuatu -- John Bani

United States M nor Qutlying Islands -- George W Bush

mysql Information: 5 : 1. Resultset C osed. Total rows=28, skipped rows=0, size (bytes)=788
mysql Information: 6 : 1: Query C osed

Done.

mysql Information: 2 : 1: Connection C osed

The first number displayed in the trace message corresponds to the MySQL event type. The second
number displayed in the trace message is the connection count. The following table describes each
MySQL event type.

Event Type Description

1 ConnectionOpened: connection string

2 ConnectionClosed:

3 QueryOpened: mysql server thread id, query text

4 ResultOpened: field count, affected rows (-1 if select), inserted id (-1 if
select)

5 ResultClosed: total rows read, rows skipped, size of result set in bytes

6 QueryClosed:

7 StatementPrepared: prepared sql, statement id

8 StatementExecuted: statement id, mysqgl server thread id

9 StatementClosed: statement id

10 NonQuery: [varies]

11 UsageAdvisorWarning: usage advisor flag. Nolndex = 1, Badindex = 2,
SkippedRows = 3, SkippedColumns = 4, FieldConversion = 5.

12 Warning: level, code, message

13 Error: error number, error message

Although this example uses the Consol eTr aceli st ener, any of the other standard listeners can

be used. Another possibility is to create a custom listener that uses the information passed in with the
TraceEvent method. For example, a custom trace listener can be created to perform active monitoring of
the MySQL event messages, rather than simply writing these to an output device.

It is also possible to add listeners to the MySQL Trace Source at runtime. This can be done with the
following code:

MySql Tr ace. Li st eners. Add(new Consol eTraceli stener());

Connector/NET provides the ability to switch tracing on and off at runtime. This can be achieved using
the calls MySql Tr ace. Enabl eQuer yAnal yzer (string host, int postlnterval) and

MySql Trace. Di sabl eQuer yAnal yzer (). The parameter host is the URL of the MySQL Enterprise
Monitor server to monitor. The parameter post | nt er val is how often to post the data to MySQL
Enterprise Monitor, in seconds.

Using the Connector/NET Trace Source Object

5.12.2.2 Building Custom Listeners

To build custom listeners that work with the MySQL Connector/NET Trace Source, it is hecessary to
understand the key methods used, and the event data formats used.

The main method involved in passing trace messages is the Tr aceSour ce. Tr aceEvent method. This
has the prototype:

public void TraceEvent (
TraceEvent Type event Type,
int id,
string format,
parans Qbject[] args

)

This trace source method will process the list of attached listeners and call the listener's
TracelLi st ener. TraceEvent method. The prototype for the Tr aceLi st ener. TraceEvent method is
as follows:

public virtual void TraceEvent (
TraceEvent Cache event Cache,
string source,
TraceEvent Type event Type,
int id,
string fornmat,
parans Object[] args

)

The first three parameters are used in the standard as defined by Microsoft. The last three parameters
contain MySQL-specific trace information. Each of these parameters is now discussed in more detail.

int id

This is a MySQL-specific identifier. It identifies the MySQL event type that has occurred, resulting in a trace
message being generated. This value is defined by the My Sql Tr aceEvent Type public enum contained in
the Connector/NET code:

publ i c enum MySqgl Tr aceEvent Type : int
{
Connecti onOpened = 1,
Connect i ond osed,
Quer yOpened,
Resul t Opened,
Resul t d osed,
Quer yd osed,
St at enent Pr epar ed,
St at enent Execut ed,
St at enent Cl osed,
NonQuery,
UsageAdvi sor War ni ng,
Vr ni ng,
Error

}

The MySQL event type also determines the contents passed using the parameter par ans Obj ect []
ar gs. The nature of the ar gs parameters are described in further detail in the following material.

string formt

This is the format string that contains zero or more format items, which correspond to objects in the args
array. This would be used by a listener such as Consol eTr acelLi st ener to write a message to the
output device.

paranms Object[] args

75

http://msdn.microsoft.com/en-us/library/d193webf.aspx

Using Connector/NET with Crystal Reports

This is a list of objects that depends on the MySQL event type, i d. However, the first parameter passed
using this list is always the driver id. The driver id is a uniqgue number that is incremented each time

the connector is opened. This enables groups of queries on the same connection to be identified. The
parameters that follow driver id depend on the MySQL event id, and are as follows:

MySQL-specific event type |Arguments (params Object[] args)

ConnectionOpened Connection string

ConnectionClosed No additional parameters

QueryOpened mysql server thread id, query text

ResultOpened field count, affected rows (-1 if select), inserted id (-1 if select)

ResultClosed total rows read, rows skipped, size of result set in bytes

QueryClosed No additional parameters

StatementPrepared prepared sql, statement id

StatementExecuted statement id, mysql server thread id

StatementClosed statement id

NonQuery Varies

UsageAdvisorWarning usage advisor flag. Nolndex = 1, BadIndex = 2, SkippedRows = 3,
SkippedColumns = 4, FieldConversion = 5.

Warning level, code, message

Error error number, error message

This information allows you to create custom trace listeners that can actively monitor the MySQL-specific
events.

5.13 Using Connector/NET with Crystal Reports

Crystal Reports is a common tool used by Windows application developers to perform reporting and
document generation. In this section we will show how to use Crystal Reports XI with MySQL and MySQL
Connector/NET.

5.13.1 Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing the MySQL data while
designing your report.

The first option is to use Connector/ODBC as an ADO data source when designing your report. You will be
able to browse your database and choose tables and fields using drag and drop to build your report. The
disadvantage of this approach is that additional work must be performed within your application to produce
a data set that matches the one expected by your report.

The second option is to create a data set in VB.NET and save it as XML. This XML file can then be used
to design a report. This works quite well when displaying the report in your application, but is less versatile
at design time because you must choose all relevant columns when creating the data set. If you forget a
column you must re-create the data set before the column can be added to the report.

The following code can be used to create a data set from a query and write it to disk:

C# Code Example

Dat aSet nmyData = new Dat aSet () ;
MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;
MySql . Dat a. MySgl Cl i ent . MySql Command cnd;

76

Creating the Report

M/Sql . Dat a. MySgl Cl i ent . MySql Dat aAdapt er mnyAdapt er ;

conn = new MySql . Dat a. MySqgl C i ent. MySgl Connecti on() ;
cmd = new MySqgl . Data. MySgl d i ent . MySgl Conmand() ;
myAdapt er = new MySql . Dat a. MySql Cl i ent . MySql Dat aAdapt er () ;

conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +

" pwd=12345; dat abase=t est";

try
{

cnd. CommandText = "SELECT city. nane AS cityNane,
country.continent " +
city ORDER BY country.continent,

"country. name,
"FROM country,
cnd. Connecti on = conn;

count ry. popul ati on,

myAdapt er . Sel ect Conmand = cnd;
myAdapt er. Fil |l (myDat a) ;

nmyData. WiteXm (@C: \dataset. xm ",

city. popul ation AS C tyPopul ation, " +

country. nane";

Xm WiteMde. WiteSchem) ;

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)

MessageBox. Show(ex. Message,

"Report could not be created",

MessageBoxBut t ons. OK, MessageBoxI con. Error);

}

Visual Basic Code Example

Di m nyData As New Dat aSet

Di m conn As New MySqgl Connecti on
Dimcnd As New MySql Conmand

Di m myAdapt er As New MySql Dat aAdapt er

conn. ConnectionString = "server=127.0.0.1;" _

& "uid=root;" _

& "pwd=12345; " _
& "dat abase=wor | d"

Try
conn. Open()
cnd. CommandText
& "country. nane,
& "FROM country,
cnd. Connecti on = conn

count ry. popul ati on,

nmyAdapt er . Sel ect Command = cnd
nmyAdapt er. Fi |l | (myDat a)

nmyData. WiteXm ("C:\dataset.xm ",
Catch ex As Exception

MessageBox. Show(ex. Message,
End Try

= "SELECT city. nane AS cityNaneg,

city ORDER BY country.continent,

"Report coul d not be created",

city. population AS CityPopul ati on, "

country. conti nent
country. nane"

Xm WiteMbde. WiteSchemn)

MessageBoxBut t ons. OK, MessageBox| con. Error)

The resulting XML file can be used as an ADO.NET XML datasource when designing your report.

If you choose to design your reports using Connector/ODBC, it can be downloaded from dev.mysqgl.com.

5.13.2 Creating the Report

For most purposes, the Standard Report wizard helps with the initial creation of a report. To start the
wizard, open Crystal Reports and choose the New > Standard Report option from the File menu.

The wizard first prompts you for a data source. If you use Connector/ODBC as your data source, use the
OLEDB provider for ODBC option from the OLE DB (ADO) tree instead of the ODBC (RDO) tree when

77

https://dev.mysql.com/downloads/connector/odbc/3.51.html

Displaying the Report

choosing a data source. If using a saved data set, choose the ADO.NET (XML) option and browse to your
saved data set.

The remainder of the report creation process is done automatically by the wizard.

After the report is created, choose the Report Options entry from the File menu. Un-check the Save
Data With Report option. This prevents saved data from interfering with the loading of data within our
application.

5.13.3 Displaying the Report

To display a report we first populate a data set with the data needed for the report, then load the report and
bind it to the data set. Finally we pass the report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:
» CrystalDecisions.CrystalReports.Engine

» CrystalDecisions.ReportSource

 CrystalDecisions.Shared

» CrystalDecisions.Windows.Forms

The following code assumes that you created your report using a data set saved using the code shown in
Section 5.13.1, “Creating a Data Source”, and have a crViewer control on your form named ny Vi ewer .

C# Code Example

usi ng Crystal Deci si ons. Cryst al Reports. Engi ne;
usi ng System Dat a;

using MySql . Data. MySgl d i ent ;

Repor t Document myReport = new Report Docunent () ;
Dat aSet myData = new Dat aSet () ;

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;

MySql . Dat a. MySgl Cl i ent . MySql Command cnd;

M/Sql . Dat a. MySgl Cl i ent. MySql Dat aAdapt er myAdapt er ;

conn = new MySql . Data. MySqgl d i ent . MySgl Connecti on() ;
cmd = new MySqgl . Dat a. MySgl O i ent . MySgl Conmand() ;
myAdapter = new MySql . Dat a. MySql Cl i ent . MySql Dat aAdapt er () ;

conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +
"pwd=12345; dat abase=t est";

try
{
cnd. CommandText = "SELECT city. name AS cityName, city.popul ation AS CityPopul ation, " +
"country. name, country.popul ation, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
crd. Connection = conn;

myAdapt er . Sel ect Conmand = cnd;
myAdapt er. Fil | (myDat a) ;

myReport. Load(@.\world_report.rpt");
myReport . Set Dat aSour ce(nyDat a) ;
myVi ewer . Report Source = nyReport;
}
catch (MySqgl . Data. MySgl Cl i ent. MySgl Excepti on ex)
{

MessageBox. Show(ex. Message, "Report could not be created",
MessageBoxBut t ons. OK, MessageBoxI con. Error);

78

Displaying the Report

}

Visual Basic Code Example

I nports Crystal Deci sions. Cryst al Reports. Engi ne
I nports System Dat a
I nports MySql . Dat a. MySql d i ent

Di m nyReport As New Report Docunent

Di m myData As New Dat aSet

Di m conn As New MySqgl Connecti on
Dimcnd As New MySql Conmand

Di m nyAdapter As New MySql Dat aAdapt er

conn. ConnectionString = _
"server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=t est"

Try
conn. Open()

cnd. CommandText = "SELECT city.name AS cityName, city. popul ation AS C tyPopul ati on,
& "country. nanme, country.popul ation, country.continent " _
& "FROM country, city ORDER BY country.continent, country.nang"

cnd. Connecti on = conn

nmyAdapt er . Sel ect Command = cnd
nyAdapt er. Fi | | (nyDat a)

nyReport. Load(".\world_report.rpt")

nyReport . Set Dat aSour ce(nyDat a)

nyVi ewer . Report Source = nyReport
Catch ex As Exception

MessageBox. Show(ex. Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxlcon. Error)
End Try

A new data set it generated using the same query used to generate the previously saved data set. Once
the data set is filled, a ReportDocument is used to load the report file and bind it to the data set. The
ReportDocument is the passed as the ReportSource of the crViewer.

This same approach is taken when a report is created from a single table using Connector/ODBC. The
data set replaces the table used in the report and the report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a data set with multiple tables must
be created in our application. This enables each table in the report data source to be replaced with a report
in the data set.

We populate a data set with multiple tables by providing multiple SELECT statements in our

MySglCommand object. These SELECT statements are based on the SQL query shown in Crystal Reports

in the Database menu's Show SQL Query option. Assume the following query:

SELECT "country . Nane', “country . Continent’, “country . Population, “city . Name', “city . Population
FROM “world* . country' “country LEFT QUTER JON “world . city" “city’ ON “country . Code ="city . Country
ORDER BY “country . Continent , “country . Name', “city . Nanme

This query is converted to two SELECT queries and displayed with the following code:

C# Code Example

usi ng Crystal Deci si ons. Cryst al Reports. Engi ne;
usi ng System Dat a;
using MySql . Data. MySgl d i ent ;

79

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html

Displaying the Report

Repor t Document mnmyReport = new Report Docunent () ;
Dat aSet nmyData = new Dat aSet () ;

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;

MySql . Dat a. MySgl Cl i ent . MySql Command cnd;

M/Sql . Dat a. MySgl Cl i ent. MySql Dat aAdapt er mnyAdapt er ;

conn = new MySql . Data. MySgl C i ent . MySgl Connecti on() ;
cnmd = new MySqgl . Dat a. MySgl d i ent. MySgl Conmand() ;
myAdapt er = new MySql . Dat a. MySql Cl i ent . MySql Dat aAdapt er () ;

conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +
" pwd=12345; dat abase=t est";

try
{
cnd. CommandText = " SELECT nane, popul ati on, countrycode FROM city ORDER " +
"BY countrycode, name; SELECT name, popul ation, code, continent FROM " +
"country ORDER BY continent, nane";
crd. Connecti on = conn;

myAdapt er . Sel ect Conmand = cnd;
myAdapter. Fil |l (myDat a) ;

myReport. Load(@.\world_report.rpt");

myReport . Dat abase. Tabl es(0) . Set Dat aSour ce(myDat a. Tabl es(0));
nmyReport . Dat abase. Tabl es(1) . Set Dat aSour ce(myDat a. Tabl es(1));
myVi ewer . Report Source = nyReport;

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

MessageBox. Show(ex. Message, "Report could not be created",
MessageBoxBut t ons. OK, MessageBoxI con. Error);

}

Visual Basic Code Example

I nports Crystal Deci sions. Cryst al Reports. Engi ne
I nports System Dat a

I nports MySql . Dat a. MySqgl d i ent

Di m nyReport As New Report Docunent

Di m nyDat a As New Dat aSet

Di m conn As New MySgl Connecti on
Dimcnd As New MySqgl Conmand

Di m nyAdapt er As New MySqgl Dat aAdapt er

conn. ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=wor | d"

Try
conn. Open()
cnmd. CommandText = "SELECT nane, popul ati on, countrycode FROM city ORDER BY countrycode, nane;
& "SELECT nane, popul ation, code, continent FROM country ORDER BY continent, nane"
cnd. Connecti on = conn

nyAdapt er . Sel ect Conmand = cnd
nyAdapt er. Fi | | (nyDat a)

nyReport. Load(".\world_report.rpt")

nyReport . Dat abase. Tabl es(0) . Set Dat aSour ce(nyDat a. Tabl es(0))

nyReport . Dat abase. Tabl es(1). Set Dat aSour ce(nyDat a. Tabl es(1))

nyVi ewer . Report Source = nyReport
Catch ex As Exception

MessageBox. Show(ex. Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxlcon. Error)
End Try

80

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html

Asynchronous Methods

It is important to order the SELECT queries in alphabetic order, as this is the order the report will expect its
source tables to be in. One SetDataSource statement is needed for each table in the report.

This approach can cause performance problems because Crystal Reports must bind the tables together on
the client-side, which will be slower than using a pre-saved data set.

5.14 Asynchronous Methods

The Task-based Asynchronous Pattern (TAP) is a pattern for asynchrony in the .NET Framework. It is
based on the Task and Task<TResul t > types in the Syst em Thr eadi ng. Tasks namespace, which
are used to represent arbitrary asynchronous operations.

Async-Await are new keywords introduced to work with the TAP. The Async modifier is used to specify
that a method, lambda expression, or anonymous method is asynchronous. The Await operator is applied
to a task in an asynchronous method to suspend the execution of the method until the awaited task
completes.

Requirements
e Async-Await support requires .NET Framework 4.5 or later
e TAP support requires .NET Framework 4.0 or later

* MySQL Connector/NET 6.9 or later

Methods

The following methods can be used with either TAP or Async-Await.
* Namespace MySql . Data. Entity
e Class EFMySql Conmrand
e Task Prepar eAsync()
e Task Prepar eAsync(Cancel | ati onToken)
* Namespace MySql . Dat a
e Class MySql Bul kLoader
e Task<i nt > LoadAsync()
e Task<i nt > LoadAsync(Cancel | ati onToken
e Class MySql Connecti on
e Task<MySqgl Transacti on> Begi nTransact i onAsync()
e« Task<MySqgl Transacti on> Begi nTransacti onAsync (Cancel | ati onToken)
e Task<MySqgl Transacti on> Begi nTransact i onAsync(| sol ati onLevel)

e Task<MySqgl Transacti on> Begi nTransacti onAsync (I sol ati onLevel
Cancel | ati onToken)

e Task ChangeDat abaseAsync(string)

81

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html

Methods

e Task ChangeDat abaseAsync(string, Cancell ationToken)

e Task C oseAsync()

e Task O oseAsync(Cancel | ati onToken)

e Task O ear Pool Async(MySgl Connecti on)

« Task C ear Pool Async(MySgl Connecti on, Cancel | ati onToken)

e Task C ear Al | Pool sAsync()

e Task d ear Al | Pool sAsync(Cancel | ati onToken)

» Task<MySql SchemaCol | ecti on> Get SchemaCol | ection(string, string[])

e Task<MySqgl SchemaCol | ecti on> Get SchemaCol | ection(string, string[],
Cancel | ati onToken)

Class My Sql Dat aAdapt er

e Task<int>Fill Async(Dat aSet)

e Task<int>Fill Async(Dat aSet, Cancell ati onToken)

e Task<int>Fill Async(Dat aTabl e)

e Task<int>Fill Async(Dat aTabl e, Cancel | ati onToken)

e Task<int>Fill Async(Dat aSet, string)

e Task<int>Fill Async(Dat aSet, string, Cancell ationToken)

e Task<int>Fill Async(Dat aTabl e, | Dat aReader)

e Task<int>Fill Async(Dat aTabl e, | Dat aReader, Cancel |l ati onToken)
e Task<int>Fill Async(Dat aTabl e, | DbConmand, ConmandBehavi or)

e Task<int>Fill Async(Dat aTabl e, | DbCommand, ConmandBehavi or,
Cancel | ati onToken)

e Task<int>Fill Async(int, int, parans DataTable[])

e Task<int>FillAsync(int, int, parans DataTable[], Cancell ati onToken)
e Task<int>Fill Async(DataSet, int, int, string)

e Task<int>Fill Async(DataSet, int, int, string, CancellationToken)

e Task<int>Fill Async(DataSet, string, |DataReader, int, int)

e Task<int>Fill Async(DataSet, string, |DataReader, int, int,
Cancel | ati onToken)

e Task<int>Fill Async(DataTable[], int, int, |DbConmmrand, CommandBehavi or)

82

Methods

Task<int>Fil | Async(DataTable[], int, int, |DbCommand, CommandBehavi or,
Cancel | ati onToken)

Task<int>Fill Async(DataSet, int, int, string, |DbConmand,
CommandBehavi or)

Task<int>Fill Async(DataSet, int, int, string, |DbConmand,
ConmandBehavi or, Cancel | ati onToken)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType)
Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType, Cancel |l ati onToken)
Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType, string)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType, string,
Cancel | ati onToken)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType, string,
| Dat aReader)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType, string,
| Dat aReader, Cancel | ati onToken)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType, | DbConmmand, string,
ConmandBehavi or)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet, SchemaType, | DbCommand, string,
CommandBehavi or, Cancel | ati onToken)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchemaType)
Task<Dat aTabl e> Fi | | SchenmaAsync(Dat aTabl e, SchemaType, Cancel | ati onToken)
Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchemaType, | Dat aReader)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchemaType, | Dat aReader,
Cancel | ati onToken)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchemaType, | DbConmand,
ConmandBehavi or)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchenmaType, | DbConmand,
CommandBehavi or, Cancel | ati onToken)

Task<i nt > Updat eAsync(Dat aRow])

Task<i nt > Updat eAsync(Dat aRow[], Cancel | ati onToken)
Task<i nt > Updat eAsync(Dat aSet)

Task<i nt > Updat eAsync(Dat aSet, Cancel | ati onToken)
Task<i nt > Updat eAsync(Dat aTabl e)

Task<i nt > Updat eAsync(Dat aTabl e, Cancel | ati onToken)

83

Methods

e Task<i nt > Updat eAsync(Dat aRow], Dat aTabl eMappi ng, Cancel |l ati onToken)

e Task<i nt > Updat eAsync(Dat aSet, string)

e Task<i nt > Updat eAsync(Dat aSet, string, Cancell ationToken)

Class My Sql Hel per

» Task<Dat aRow> Execut eDat aRowAsync(string, string, parans MySgl Paraneter([])

e Task<Dat aRow> Execut eDat aRowAsync(string, string, Cancell ationToken,
paranms MySql Paramneter[])

e Task<i nt > Execut eNonQuer yAsync(MySql Connecti on, string, parans
MySql Par aneter[])

e Task<i nt > Execut eNonQuer yAsync(MySql Connecti on, string, CancellationToken,
parans MySqgl Paraneter[])

e Task<i nt > Execut eNonQuer yAsync(string, string, paranms MySql Paraneter[])

e Task<i nt > Execut eNonQuer yAsync(string, string, CancellationToken, parans
MySql Par aneter[])

* Task<Dat aSet > Execut eDat aset Async(string, string)
e Task<Dat aSet > Execut eDat aset Async(string, string, CancellationToken)

e Task<Dat aSet > Execut eDat aset Async(string, string, Cancell ationToken,
paranms MySql Paraneter[])

» Task<Dat aSet > Execut eDat aset Async(MySql Connecti on, string)

e Task<Dat aSet > Execut eDat aset Async(MySql Connecti on, string,
Cancel | ati onToken)

e Task<Dat aSet > Execut eDat aset Async(M/Sql Connecti on, string, parans
MySql Par aneter[])

» Task<Dat aSet > Execut eDat aset Async(MySql Connecti on, string,
Cancel | ati onToken, parans MySgl Paraneter[])

e Task Updat eDat aSet Async(string, string, DataSet, string)

e Task Updat eDat aSet Async(string, string, DataSet, string,
Cancel | ati onToken)

« Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on,
MySqgl Transaction, string, MSgl Parameter[], bool)

e Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on,
MySqgl Transaction, string, MySql Paraneter[], bool, CancellationToken)

e Task<MySql Dat aReader > Execut eReader Async(string, string)

Methods

e Task<MySql Dat aReader > Execut eReader Async(stri ng,

Cancel | ati onToken)

string,

» Task<MWySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string)

e Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string,

Cancel | ati onToken)

e Task<MySql Dat aReader > Execut eReader Async(stri ng,

MySql Par aneter[])

* Task<MySql Dat aReader > Execut eReader Async(stri ng,

Cancel | ati onToken, parans MySqgl Paraneter[])

string, parans

string,

» Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string, parans

MySql Par anmeter[])

e Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string,
Cancel | ati onToken, parans MySql Paraneter[])

» Task<obj ect > Execut eScal ar Async(stri ng,
e Task<obj ect > Execut eScal ar Async(stri ng,
e Task<obj ect > Execut eScal ar Async(stri ng,

» Task<obj ect > Execut eScal ar Async(stri ng,
MySql Par aneter[])

e Task<obj ect > Execut eScal ar Async(MySql Connect i on,

e Task<obj ect > Execut eScal ar Async(MySqgl Connect i on,

Cancel | ati onToken)

» Task<obj ect > Execut eScal ar Async(MySql Connect i on,

MySql Par aneter[])

e Task<obj ect > Execut eScal ar Async(MySql Connect i on,

string)
string,
string,

string,

Cancel | ati onToken, parans MySqgl Paraneter[])

e Class MySql Scri pt

e Task<i nt > Execut eAsync()

e Task<i nt > Execut eAsync(Cancel | ati onToken)

Cancel | ati onToken)
parans MySql Paraneter([])

Cancel | ati onToken, parans

string)

string,

string, parans

string,

In addition to the methods listed above, the following are methods inherited from the .NET Framework:

e Namespace MySql . Dat a. Entity

¢ Class EFMySql Commrand

» Task<DbDat aReader > Execut eDbDat aReader Async(CommandBehavi our ,

Cancel | ati onToken)

e Task<i nt > Execut eNonQuer yAsync()

85

Methods

Task<i nt > Execut eNonQuer yAsync(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async()

Task<DbDat aReader > Execut eReader Async(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async(CormandBehavi our)
Task<DbDat aReader > Execut eReader Async(CormandBehavi our ,
Task<obj ect > Execut eScal ar Async()

Task<obj ect > Execut eScal ar Async(Cancel | ati onToken)

« Namespace MySql . Dat a

Class My Sql Command

Cancel | ati onToken)

Task<DbDat aReader > Execut eDbDat aReader Async(CommandBehavi our,

Cancel | ati onToken)

Task<i nt > Execut eNonQuer yAsync()

Task<i nt > Execut eNonQuer yAsync(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async()

Task<DbDat aReader > Execut eReader Async(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async(CormandBehavi our)
Task<DbDat aReader > Execut eReader Async(CormandBehavi our,
Task<obj ect > Execut eScal ar Async()

Task<obj ect > Execut eScal ar Async(Cancel | ati onToken)

Class MySqgl Connecti on

Task OpenAsync()
Task OpenAsync(Cancel | ati onToken)

Class My Sql Dat aReader

Task<T> Get Fi el dVal ueAsync<T>(i nt)

Task<T> Get Fi el dVal ueAsync<T>(int, Cancellati onToken)
Task<bool > 1 sDBNul | Async(int)

Task<bool > 1 sDBNul | Async(int, Cancell ati onToken)
Task<bool > Next Resul t Async()

Task<bool > Next Resul t Async(Cancel | ati onToken)
Task<bool > ReadAsync()

Cancel | ati onToken)

86

Examples

e Task<bool > ReadAsync(Cancel | ati onToken)
Examples

The following C# code examples demonstrate how to use the asynchronous methods:

In this example, a method has the async modifier because the method awai t call made applies to the
method LoadAsync. The method returns a Task object that contains information about the result of the
awaited method. Returning Task is like having a void method, but you should not use async voi d if your
method is not a top-level access method like an event.

publ i c async Task Bul kLoadAsync()
{
MySgl Connecti on myConn
My Sql Bul kLoader | oader

new MySgl Connecti on(" MyConnectionString");
new MySql Bul kLoader (myConn) ;

| oader . Tabl eNane
| oader . Fi | eNane
| oader . Ti meout

"Bul kLoadTest ";
@c:\MWPath\ WFile.txt";
0;

var result

}

awai t | oader. LoadAsync();

In this example, an "async void" method is used with "await" for the Execut eNonQuer yAsync method, to
correspond to the onclick event of a button. This is why the method does not return a Task.

private async void myButton_dick()
{
My/Sql Connect i on nyConn
My Sgl Conmand pr oc

new MySgl Connecti on("M/ConnectionString");
new MySgl Command(" MyAsyncSpTest ", myConn);

pr oc. CommandType CommandType. St or edPr ocedur e;

int result

}

awai t proc. Execut eNonQuer yAsync() ;

5.15 Binary and Nonbinary Issues

There are certain situations where MySQL will return incorrect metadata about one or more columns. More
specifically, the server can sometimes report that a column is binary when it is not (and the reverse). In
these situations, it becomes practically impossible for the connector to be able to correctly identify the
correct metadata.

Some examples of situations that may return incorrect metadata are:

» Execution of SHOW PROCESSLI ST. Some of the columns are returned as binary even though they only
hold string data.

* When a temporary table is used to process a result set, some columns may be returned with incorrect
binary flags.

» Some server functions such DATE_FORNMAT return the column incorrectly as binary.

With the availability of Bl NARY and VARBI NARY data types, it is important to respect the metadata returned
by the server. However, some existing applications may encounter issues with this change and can use

a connection string option to enable or disable it. By default, Connector/NET respects the binary flags
returned by the server. You might need to make small changes to your application to accommodate this
change.

87

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/show-processlist.html

Character Set Considerations for Connector/NET

In the event that the changes required to your application are too large, adding ' r espect bi nary

fl ags=f al se' to your connection string causes the connector to use the prior behavior: any column that
is marked as string, regardless of binary flags, will be returned as string. Only columns that are specifically
marked as a BLOB will be returned as BLOB.

5.16 Character Set Considerations for Connector/NET

Treating Binary Blobs As UTF8

Before the introduction of 4-byte UTF-8 character set, MySQL did not support 4-byte UTF8 sequences.
This makes it difficult to represent some multibyte languages such as Japanese. To try and alleviate this,
MySQL Connector/NET supports a mode where binary blobs can be treated as strings.

To do this, you setthe ' Treat Bl obs As UTF8' connection string keyword to t r ue. This is

all that needs to be done to enable conversion of all binary blobs to UTF8 strings. To convert only

some of your BLOB columns, you can make use of the ' Bl obAsUTF8I ncl udePattern' and

' Bl obAsUTF8Excl udePat t er n' keywords. Set these to a regular expression pattern that matches the
column names to include or exclude respectively.

When the regular expression patterns both match a single column, the include pattern is applied before the
exclude pattern. The result, in this case, is that the column is excluded. Also, be aware that this mode does
not apply to columns of type Bl NARY or VARBI NARY and also do not apply to nonbinary BLOB columns.

This mode only applies to reading strings out of MySQL. To insert 4-byte UTF8 strings into blob columns,
use the .NET Encodi ng. Get Byt es function to convert your string to a series of bytes. You can then set
this byte array as a parameter for a BLOB column.

88

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/charset-unicode-utf8mb4.html

Chapter 6 Connector/NET Tutorials

Table of Contents

6.1 Tutorial: An Introduction to ConNector/NET Programmingooceeeuueremiiereiiieeeeiineeeeiiaeeennens 89
6.1.1 The MySqICoNNECHON ODJECTccuuuiiiiie et e e 89
6.1.2 The MySqICommand ODBJECTcoiiiiiiiiii e 90
6.1.3 Working with DeCOUPIEd DALAcccuuuiiiiiiiieeiiiie et 93
6.1.4 WOorking With Parametersooooiiiiiiiiii e et e e e e et e 96
6.1.5 Working with Stored ProCeAUIESuuiiiiiiii et 97

6.2 ASP.NET Provider Model and TULOKIAISiiiiiiiiiiiii e 99
6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Providerc....ocoviiieiinnnnnnn. 101
6.2.2 Tutorial: Connector/NET ASP.NET Profile Providerccooeiiiiiiiiiiiiic e 104
6.2.3 Tutorial: Web Parts Personalization Provider ..o 107
6.2.4 Tutorial: Simple Membership Web ProViderooooiiiiiiiii e 111

6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Sourcec...ccceeevvunnnn. 116

6.4 Tutorial: Data Binding in ASP.NET Using LINQ 0N ENHItIeSc..oiiiiiiiiiiiiiiieeie e 124

6.5 Tutorial: Generating MySQL DDL from an Entity Framework Modelcooiiiiiiiiniiiiiiineeen, 127

6.6 Tutorial: Basic CRUD Operations with ConNector/NEToviiiiiiiiiiiiiiie e 128

6.7 Tutorial: Configuring SSL With CONNECIOI/NEToouuiiiiiiiie e 131
6.7.1 Using PEM Certificates in CONNECIOI/NETuuiiiiiiiiieiiie et 132
6.7.2 Using PFX Certificates in CONNECIOI/NETo.uuiiiiiiiiieiiiii et 133

6.8 Tutorial: USING MYSOISCHIPT ...ttt ettt et e et e e e e enanas 135

The following MySQL Connector/NET tutorials illustrate how to develop MySQL programs using
technologies such as Visual Studio, C#, ASP.NET, and the .NET, .NET Core, and Mono frameworks. Work
through the first tutorial to verify that you have the right software components installed and configured, then
choose other tutorials to try depending on the features you intend to use in your applications.

6.1 Tutorial: An Introduction to Connector/NET Programming

This section provides a gentle introduction to programming with MySQL Connector/NET. The code
example is written in C#, and is designed to work on both Microsoft .NET Framework and Mono.

This tutorial is designed to get you up and running with Connector/NET as quickly as possible, it does not
go into detail on any particular topic. However, the following sections of this manual describe each of the
topics introduced in this tutorial in more detail. In this tutorial you are encouraged to type in and run the
code, modifying it as required for your setup.

This tutorial assumes you have MySQL and Connector/NET already installed. It also assumes that you
have installed the wor | d database sample, which can be downloaded from the MySQL Documentation
page. You can also find details on how to install the database on the same page.

Note

Before compiling the code example, make sure that you have added References to
your project as required. The References required are Syst em Syst em Dat a and
MySql . Dat a.

6.1.1 The MySqglConnection Object

For your MySQL Connector/NET application to connect to a MySQL database, it must establish a
connection by using a MySgl Connect i on object.

89

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

The MySglCommand Object

The MySql Connect i on constructor takes a connection string as one of its parameters. The connection
string provides necessary information to make the connection to the MySQL database. The connection
string is discussed more fully in Chapter 4, Connector/NET Connections. For a list of supported connection
string options, see Section 4.5, “Connector/NET Connection Options Reference”.

The following code shows how to create a connection object/

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutoriall

{
public static void Min()
{
string connStr = "server=l ocal host; user=root; dat abase=wor | d; port =3306; passwor d=******x" .
MySgl Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. WitelLine("Connecting to MySQ....");
conn. Qpen();
/] Perform dat abase operations
}
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. WitelLine("Done.");
}
}

When the MySql Connect i on constructor is invoked, it returns a connection object, which is used for
subsequent database operations. Open the connection before any other operations take place. Before the
application exits, close the connection to the database by calling Cl ose on the connection object.

Sometimes an attempt to perform an Gpen on a connection object can fail, generating an exception that
can be handled using standard exception handling code.

In this section you have learned how to create a connection to a MySQL database, and open and close the
corresponding connection object.

6.1.2 The MySqlCommand Object

When a connection has been established with the MySQL database, the next step enables you to perform
database operations. This task can be achieved through the use of the My Sql Conmand object.

After it has been created, there are three main methods of interest that you can call:

» Execut eReader to query the database. Results are usually returned in a MySqgl Dat aReader object,
created by Execut eReader .

e Execut eNonQuery to insert, update, and delete data.

» Execut eScal ar to return a single value.

After the My Sql Command object is created, you can call one of the previous methods on it to carry out a
database operation, such as perform a query. The results are usually returned into a My Sql Dat aReader

90

The MySglCommand Object

object, and then processed. For example, the results might be displayed as the following code example
demonstrates.

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial2

{
public static void Min()
{
string connStr = "server =l ocal host; user=root ; dat abase=wor | d; port =3306; passwor d=******"
M/Sql Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. WitelLine("Connecting to MySQ....");
conn. Qpen() ;
string sgl = "SELECT Name, HeadOf State FROM Country WHERE Conti nent='Cceania'";
MySgl Command cnd = new MySqgl Command(sql, conn);
MySql Dat aReader rdr = cnd. Execut eReader () ;
while (rdr.Read())
{
Consol e. WiteLine(rdr[0]+" -- "+4rdr[1]);
}
rdr. d ose();
}
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. WitelLine("Done.");
}
}

When a connection has been created and opened, the code then creates a My Sgl Conmand object.

Then the SQL query to be executed is passed to the My Sql Conmand constructor. The Execut eReader
method is then used to generate a My Sql Reader object. The MySqgl Reader object contains the results
generated by the SQL executed on the My Sql Conmand object. When the results have been obtained in a
My Sql Reader object, the results can be processed. In this case, the information is printed out by a whi | e
loop. Finally, the MySql Reader object is disposed of by invoking the Cl ose method.

The next example shows how to use the Execut eNonQuer y method.

The procedure for performing an Execut eNonQuer y method call is simpler, as there is no need to create
an object to store results. This is because Execut eNonQuer y is only used for inserting, updating and
deleting data. The following example illustrates a simple update to the Count r y table:

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial3

{
public static void Main()

{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x"_
MySgl Connecti on conn = new MySqgl Connecti on(connStr);

91

The MySglCommand Object

try
{
Consol e. Wi teLine("Connecting to MySQL...");
conn. Qpen();
string sql = "INSERT I NTO Country (Name, HeadOf State, Continent) VALUES (' Disneyland' ,'M ckey Mus

MySgl Command cnd = new MySql Command(sqgl, conn);
cnd. Execut eNonQuery();

catch (Exception ex)

{
}

Consol e. WiteLine(ex. ToString());

conn. Cl ose();
Consol e. Wi telLi ne("Done.");

}

The query is constructed, the My Sql Conmand object created and the Execut eNonQuer y method called
on the My Sql Command object. You can access your MySQL database with mysql and verify that the
update was carried out correctly.

Finally, you can use the Execut eScal ar method to return a single value. Again, this is straightforward, as
a MySgl Dat aReader object is not required to store results, a variable is used instead. The following code
illustrates how to use the Execut eScal ar method:

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial4
{
public static void Min()
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x" .
M/Sql Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. WitelLine("Connecting to MySQ....");

conn. Qpen() ;

string sgql = "SELECT COUNT(*) FROM Country";
MySgl Command cnd = new MySql Command(sql, conn);
obj ect result = cnd. Execut eScal ar () ;
if (result !'= null)
{
int r = Convert. Tolnt32(result);
Consol e. Wi teLi ne("Nurmber of countries in the world database is: " + r);

catch (Exception ex)

{
}

Consol e. WitelLine(ex. ToString());
conn. Cl ose();
Consol e. WitelLine("Done.");
}

This example uses a simple query to count the rows in the Count r y table. The result is obtained by calling
Execut eScal ar on the MySqgl Conmrand object.

Working with Decoupled Data

6.1.3 Working with Decoupled Data

Previously, when using MySql Dat aReader , the connection to the database was continually maintained
unless explicitly closed. It is also possible to work in a manner where a connection is only established
when needed. For example, in this mode, a connection could be established to read a chunk of data, the
data could then be modified by the application as required. A connection could then be reestablished only
if and when the application writes data back to the database. This decouples the working data set from the
database.

This decoupled mode of working with data is supported by MySQL Connector/NET. There are several
parts involved in allowing this method to work:

Data Set. The Data Set is the area in which data is loaded to read or modify it. A Dat aSet object is
instantiated, which can store multiple tables of data.

Data Adapter. The Data Adapter is the interface between the Data Set and the database itself. The
Data Adapter is responsible for efficiently managing connections to the database, opening and closing
them as required. The Data Adapter is created by instantiating an object of the MySql Dat aAdapt er
class. The MySqgl Dat aAdapt er object has two main methods: Fi | | which reads data into the Data
Set, and Updat e, which writes data from the Data Set to the database.

Command Builder. The Command Builder is a support object. The Command Builder works in
conjunction with the Data Adapter. When a MySgl Dat aAdapt er object is created, it is typically given
an initial SELECT statement. From this SELECT statement the Command Builder can work out the
corresponding | NSERT, UPDATE and DELETE statements that would be required to update the database.
To create the Command Builder, an object of the class MySgl ConmandBui | der is created.

The remaining sections describe each of these classes in more detail.

Instantiating a DataSet Object

A Dat aSet object can be created simply, as shown in the following code-snippet:

Dat aSet dsCountry;

dsCountry = new DataSet();

Although this creates the Dat aSet object, it has not yet filled it with data. For that, a Data Adapter is
required.

Instantiating a MySqlDataAdapter Object

The MySql Dat aAdapt er can be created as illustrated by the following example:

My Sql Dat aAdapt er daCountry;

string sgql = "SELECT Code, Name, HeadOf State FROM Country WHERE Continent='North America'";
daCountry = new MySql Dat aAdapter (sql, conn);

Note
The My Sql Dat aAdapt er is given the SQL specifying the data to work with.

Instantiating a MySglCommandBuilder Object

Once the MySql Dat aAdapt er has been created, it is necessary to generate the additional statements
required for inserting, updating and deleting data. There are several ways to do this, but in this tutorial

93

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/delete.html

Working with Decoupled Data

you will see how this can most easily be done with MySgl ConmmandBui | der . The following code snippet
illustrates how this is done:

My Sgl ConmandBui | der cb = new MySql CommrandBui | der (daCountry) ;
Note

The My Sql Dat aAdapt er object is passed as a parameter to the command builder.

Filling the Data Set

To do anything useful with the data from your database, you need to load it into a Data Set. This is one of
the jobs of the MySql Dat aAdapt er object, and is carried out with its Fi | | method. The following code
example illustrates this point.

Dat aSet dsCountry;

;j.s.Oount ry = new DataSet ();

aé.Oount ry.Fill (dsCountry, "Country");

The Fi | | method is a MySgl Dat aAdapt er method, and the Data Adapter knows how to establish a

connection with the database and retrieve the required data, and then populate the Data Set when the
Fi I I method is called. The second parameter “Country” is the table in the Data Set to update.

Updating the Data Set

The data in the Data Set can now be manipulated by the application as required. At some point, changes
to data will need to be written back to the database. This is achieved through a MySgl Dat aAdapt er
method, the Updat e method.

daCount ry. Updat e(dsCountry, "Country");

Again, the Data Set and the table within the Data Set to update are specified.

Working Example

The interactions between the Dat aSet , MySqgl Dat aAdapt er and My Sql ConmandBui | der classes can
be a little confusing, so their operation can perhaps be best illustrated by working code.

In this example, data from the wor | d database is read into a Data Grid View control. Here, the data can
be viewed and changed before clicking an update button. The update button then activates code to write
changes back to the database. The code uses the principles explained previously. The application was
built using the Microsoft Visual Studio to place and create the user interface controls, but the main code
that uses the key classes described previously is shown in the next code example, and is portable.

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng Syst em Conponent Model ;

usi ng System Dat a;

usi ng System Dr aw ng;

usi ng System Li ng;

usi ng System Text;

usi ng System W ndows. For ns;

usi ng MySql . Dat a;
usi ng MySqgl . Data. MySgl Cl i ent ;

94

Working with Decoupled Data

namespace W ndowsFor nsAppl i cati on5

{
public partial class Fornl : Form
{
My Sql Dat aAdapt er daCountry;
Dat aSet dsCountry;
public Formil()
{
InitializeConponent();
}
private void Forml_Load(object sender, EventArgs e)
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x"_
MySgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
| abel 2. Text = "Connecting to MySQ....";
string sql = "SELECT Code, Nane, HeadOf State FROM Country WHERE Continent='North America'";
daCountry = new MySqgl Dat aAdapter (sql, conn);
MySgl ConmandBui | der cb = new MySql CommandBui | der (daCountry) ;
dsCountry = new Dat aSet () ;
daCountry. Fill (dsCountry, "Country");
dat aGi dVi ewl. Dat aSour ce = dsCountry;
dat aGi dVi ewl. Dat aMenber = "Country";
catch (Exception ex)
| abel 2. Text = ex. ToString();
}
}
private void buttonl_Cick(object sender, EventArgs e)
{
daCount ry. Updat e(dsCountry, "Country");
| abel 2. Text = "MySQ. Dat abase Updated!";
}
}
}

The following figure shows the application started. The World Database Application updated data in three
columns: Code, Name, and HeadOfState.

95

Working with Parameters

Figure 6.1 World Database Application

oy Formi — O *
‘World Database Application
MySQL Database Updated!
Code Name Head(Of State ~
ABW Anba Beatrix |
AIA Anguilla Elisabeth I
ANT Netherands Antill... | Beatrix Il
ATG Artigua and Barb... | Eksabeth ||
BHS Bahamas Blisabeth ||
BLZ Belize Eksabeth Il
BMU Bermuda Blisabeth ||
BRB Barbados Blisabeth I
CAN Canada Blisabeth I
CRI Costa Rica Miguel Angel Ro...
cuse Cuba Fidel Castro Ruz
» CYM Cayman Islands

DMA Dominica Vemon Shaw

6.1.4 Working with Parameters

This part of the tutorial shows you how to use parameters in your MySQL Connector/NET application.

Although it is possible to build SQL query strings directly from user input, this is not advisable as it does
not prevent erroneous or malicious information being entered. It is safer to use parameters as they will be
processed as field data only. For example, imagine the following query was constructed from user input:

string sql = "SELECT Nane, HeadOf State FROM Country WHERE Conti nent = "+user_conti nent;

If the string user _conti nent came from a Text Box control, there would potentially be no control over
the string entered by the user. The user could enter a string that generates a runtime error, or in the worst
case actually harms the system. When using parameters it is not possible to do this because a parameter
is only ever treated as a field parameter, rather than an arbitrary piece of SQL code.

The same query written using a parameter for user input is:
string sgql = "SELECT Name, HeadOf State FROM Country WHERE Continent = @ontinent";
Note

The parameter is preceded by an '@' symbol to indicate it is to be treated as a
parameter.

As well as marking the position of the parameter in the query string, it is necessary to add a parameter to
the MySqgl Conmraind object. This is illustrated by the following code snippet:

cnd. Par anet er s. AddW t hVal ue(" @onti nent", "North Anerica");

In this example the string "North America" is supplied as the parameter value statically, but in a more
practical example it would come from a user input control.

96

Working with Stored Procedures

A further example illustrates the complete process:

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial5

{
public static void Main()
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x" .
MySgl Connecti on conn = new MySqgl Connection(connStr);
try
{
Consol e. WitelLine("Connecting to MySQL...");
conn. Open();
string sql = "SELECT Nane, HeadOf State FROM Country WHERE Conti nent =@onti nent";
MySgl Command cnd = new MySql Command(sql, conn);
Consol e. WiteLine("Enter a continent e.g. 'North Anerica', 'Europe': ");
string user_input = Consol e. ReadLi ne();
cnd. Par anet ers. AddW t hVal ue(" @onti nent", user_input);
MySqgl Dat aReader rdr = cnd. Execut eReader () ;
while (rdr.Read())
{
Consol e. WiteLine(rdr["Nane"]+" --- "+rdr["HeadO State"]);
}
rdr. d ose();
}
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. Wi telLi ne("Done.");
}
}

In this part of the tutorial you have see how to use parameters to make your code more secure.

6.1.5 Working with Stored Procedures

This section illustrates how to work with stored procedures. Putting database-intensive operations into
stored procedures lets you define an API for your database application. You can reuse this API across
multiple applications and multiple programming languages. This technique avoids duplicating database
code, saving time and effort when you make updates due to schema changes, tune the performance of
gueries, or add new database operations for logging, security, and so on. Before working through this
tutorial, familiarize yourself with the CREATE PROCEDURE and CREATE FUNCTI ON statements that create
different kinds of stored routines.

For the purposes of this tutorial, you will create a simple stored procedure to see how it can be called from
MySQL Connector/NET. In the MySQL Client program, connect to the wor | d database and enter the
following stored procedure:

DELI M TER //
CREATE PROCEDURE country_hos
(I'N con CHAR(20))

97

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/create-procedure.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/create-function.html

Working with Stored Procedures

BEG N
SELECT Name, HeadOF State FROM Country
WHERE Conti nent = con;

END //

DELI M TER ;

Test that the stored procedure works as expected by typing the following into the mysql command
interpreter:

CALL country_hos("' Europe');
Note

The stored routine takes a single parameter, which is the continent to restrict your
search to.

Having confirmed that the stored procedure is present and correct, you can see how to access it from
Connector/NET.

Calling a stored procedure from your Connector/NET application is similar to techniques you have seen
earlier in this tutorial. A My Sql Conmand object is created, but rather than taking an SQL query as a
parameter, it takes the name of the stored procedure to call. Set the My Sql Cormand object to the type of
stored procedure, as shown by the following code snippet:

string rtn = "country_hos";

MySgl Command cnd = new MySgl Command(rtn, conn);
cnd. CommandType = CommandType. St or edPr ocedur e;

In this case, the stored procedure requires you to pass a parameter. This can be achieved using the
techniques seen in the previous section on parameters, Section 6.1.4, “Working with Parameters”, as
shown in the following code snippet:

cnd. Par anet ers. AddW t hVal ue(" @on", "Europe");

The value of the parameter @ on could more realistically have come from a user input control, but for
simplicity it is set as a static string in this example.

At this point, everything is set up and you can call the routine using techniques also learned in earlier
sections. In this case, the Execut eReader method of the My Sql Conmmand object is used.

The following code shows the complete stored procedure example.

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
usi ng MySqgl . Data. MySgl Cl i ent ;

public class Tutorial6

{
public static void Min()
{
string connStr = "server=| ocal host; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x":
My/Sql Connecti on conn = new MySgl Connecti on(connStr);
try
{
Consol e. WitelLine("Connecting to MySQ....");
conn. Open() ;
string rtn = "country_hos";

M/Sql Conmand cnd = new MySql Conmand(rtn, conn);
cnd. CommandType = CommandType. St or edPr ocedur g;

98

ASP.NET Provider Model and Tutorials

cnd. Par anet er s. AddW t hVal ue(" @on", "Europe");

My Sqgl Dat aReader rdr = cnd. Execut eReader () ;
while (rdr.Read())

{
Consol e. WiteLine(rdr[0O] + " --- " + rdr[1]);

}
rdr. d ose();
}

catch (Exception ex)

{
Consol e. WitelLine(ex. ToString());

}

conn. Cl ose();

Consol e. Wi telLi ne("Done.");

}

In this section, you have seen how to call a stored procedure from Connector/NET. For the moment, this

concludes our introductory tutorial on programming with Connector/NET.

6.2 ASP.NET Provider Model and Tutorials

MySQL Connector/NET includes a provider model for use with ASP.NET applications. This model enables
developers to focus on the business logic of their application instead of having to recreate such boilerplate
items as membership and roles support.

Connector/NET supports the following web providers:

* Membership provider
* Roles provider
 Profiles provider

» Session state provider

The following tables show the supported providers, their default provider and the corresponding MySQL

provider.

Membership Provider

Default Provider

Syst em Web. Security. Sgl Menber shi pProvi der

MySQL Provider

MySql . Web. Security. MySQ_LMenber shi pPr ovi der

Role Provider

Default Provider

Syst em Web. Security. Sgl Rol eProvi der

MySQL Provider

MySql . Web. Security. MySQLRol eProvi der

Profile Provider

‘ Default Provider

System Web. Profile. Sql Profil eProvider

99

Session State Provider

‘MySQL Provider MySql . Web. Profil e. MySQLProfi | eProvi der

Session State Provider

Default Provider Syst em Web. Sessi onSt at e. | nProcSessi onSt at eSt ore

MySQL Provider MySql . Web. Sessi onSt at e. MySqgl Sessi onSt at eSt or e

Note

The MySQL session state provider uses slightly different capitalization on the class
name compared to the other MySQL providers.

Installing the Providers

The installation of Connector/NET installs the providers and registers them in the .NET configuration file
(machi ne. confi g) on your computer. The additional entries modify the syst em web section of the file,
which appears similar to the following example after the installation.

<syst em web>
<processMbdel autoConfig="true" />
<httpHandl ers />
<menber shi p>
<provi der s>

<add nane="AspNet Sgl Menber shi pProvi der" type="System Web. Security. Sql Menber shi pProvi der, System Wb, Ver
<add nane="M/SQ.Menber shi pProvi der" type="M/Sqgl . Web. Security. MySQ_.Menber shi pProvi der, M/Sgl . Wb, Version

</ provi der s>
</ menber shi p>
<profile>

<provi der s>

<add nane="AspNet Sql Profi | eProvi der" connectionStri ngNane="Local Sql Server" applicati onNane="/" type="Sys
<add nanme="M/SQ.Profil eProvider" type="M/Sql.Web. Profile. My\SQLProfileProvider, M/Sqgl.Wb, Version=6.1.1.

</ provi der s>
</profile>
<r ol eManager >

<provi der s>

<add nane="AspNet Sgl Rol eProvi der" connectionStri ngNane="Local Sgl Server" applicati onNanme="/" type="Systen
<add nane="AspNet W ndowsTokenRol eProvi der" applicati onNane="/" type="System Web. Security. WndowsTokenRol
<add nane="M/SQ.Rol eProvi der" type="M/Sqgl.Wb. Security. MySQLRol eProvi der, M/Sgl.Wb, Version=6.1.1.0, Cu

</ provi der s>
</ r ol eManager >
</ syst em web>

Each provider type can have multiple provider implementations. The default provider can also be set here
using the def aul t Provi der attribute, but usually this is set in the web. conf i g file either manually or by
using the ASP.NET configuration tool.

At time of writing, the My Sql Sessi onSt at eSt or e is not added to machi ne. confi g at install time, and
so add the following:

<sessi onSt at e>
<provi der s>

<add nane="M/Sgl Sessi onSt at eSt ore" type="M/Sgl . Web. Sessi onSt at e. MySgl Sessi onSt at eSt ore, M/Sgl . Web, Versi on

</ provi der s>
</ sessi onSt at e>

The session state provider uses the cust onPr ovi der attribute, rather than def aul t Provi der , to set
the provider as the default. A typical web. confi g file might contain:

<syst em web>

100

Working with MySQL Providers

<menber shi p def aul t Provi der =" MySQ_LMenber shi pProvi der" />
<rol eManager defaul t Provi der =" MySQLRol eProvi der" />
<profile defaultProvider="M/SQLProfil eProvider" />

<sessi onState custonProvi der="M/Sqgl Sessi onSt ateStore" />
<conpi | ati on debug="fal se">

This sets the MySQL Providers as the defaults to be used in this web application.

The providers are implemented in the file mysql . web. dI | and this file can be found in your Connector/
NET installation folder. There is no need to run any type of SQL script to set up the database schema, as
the providers create and maintain the proper schema automatically.

Working with MySQL Providers

The easiest way to start using the providers is to use the ASP.NET configuration tool that is available on
the Solution Explorer toolbar when you have a website project loaded.

In the web pages that open, you can select the MySQL membership and roles providers by picking a
custom provider for each area.

When the provider is installed, it creates a dummy connection string named Local MySql Ser ver .
Although this has to be done so that the provider will work in the ASP.NET configuration tool, you override
this connection string in your web. conf i g file. You do this by first removing the dummy connection string
and then adding in the proper one, as shown in the following example:

<connectionStrings>

<renove nane="Local MySql Server"/>

<add nane="Local MySgl Server" connectionStri ng="server =xxx; ui d=xxx; pwd=xxx; dat abase=xxx"/>
</ connecti onStri ngs>

Note
You must specify the database in this connection.

A tutorial demonstrating how to use the membership and role providers can be found in the following
section Section 6.2.1, “Tutorial: Connector/NET ASP.NET Membership and Role Provider”.

Deployment

To use the providers on a production server, distribute the MySql . Dat a and the MySql . W\eb assemblies,
and either register them in the remote systems Global Assembly Cache or keep them in the bi n directory
of your application.

6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Provider

Many websites feature the facility for the user to create a user account. They can then log into the website
and enjoy a personalized experience. This requires that the developer creates database tables to store
user information, along with code to gather and process this data. This represents a burden on the
developer, and there is the possibility for security issues to creep into the developed code. However,
ASP.NET introduced the membership system. This system is designed around the concept of membership,
profile, and role providers, which together provide all of the functionality to implement a user system, that
previously would have to have been created by the developer from scratch.

Currently, MySQL Connector/NET includes web providers for membership (or simple membership), roles,
profiles, session state, site map, and web personalization.

101

Tutorial: Connector/NET ASP.NET Membership and Role Provider

This tutorial shows you how to set up your ASP.NET web application to use the Connector/NET
membership and role providers. It assumes that you have MySQL Server installed, along with Connector/
NET and Microsoft Visual Studio. This tutorial was tested with Connector/NET 6.0.4 and Microsoft Visual
Studio 2008 Professional Edition. It is recommended you use 6.0.4 or above for this tutorial.

1. Create a new MySQL database using the MySQL Command-Line Client program (mysql), or other
suitable tool. It does not matter what name is used for the database, but record it. You specify it in the
connection string constructed later in this tutorial. This database contains the tables, automatically
created for you later, used to store data about users and roles.

2. Create a new ASP.NET website in Visual Studio. If you are not sure how to do this, refer to Section 6.4,
“Tutorial: Data Binding in ASP.NET Using LINQ on Entities”, which demonstrates how to create a
simple ASP.NET website.

3. Add References to MySql . Dat a and MySql . \\eb to the website project.

4. Locate the machi ne. confi g file on your system, which is the configuration file for the .NET
Framework.

5. Search the machi ne. confi g file to find the membership provider My SQLMenber shi pPr ovi der .

6. Add the attribute aut ogener at eschena="1r ue". The appropriate section should now resemble the
following example.

Note
For the sake of brevity, some information is excluded.

<menber shi p>
<provi der s>
<add name=" AspNet Sqgl Menber shi pPr ovi der "
type="System Web. Security. Sql Menber shi pProvi der*"

connecti onSt ri ngName="Local Sql Server"
N
<add name="My/SQLMenber shi pPr ovi der"
aut ogener at eschema="t rue"
type="M/Sql . Wb. Security. MySQLMenber shi pProvi der
MySql . Web, Version=6.0.4.0, Culture=neutral
Publ i cKeyToken=c5687f c88969c44d"
connecti onSt ri ngName="Local MySql Ser ver"
. >
</ provi der s>
</ menber shi p>

Note

The connection string, Local MySql Ser ver , connects to the MySQL server
that contains the membership database.

The aut ogener at eschema="tr ue" attribute will cause Connector/NET to silently create, or
upgrade, the schema on the database server, to contain the required tables for storing membership
information.

7. ltis now necessary to create the connection string referenced in the previous step. Load the
web. confi g file for the website into Visual Studio.

8. Locate the section marked <connect i onSt ri ngs>. Add the following connection string information.

<connectionStri ngs>

102

Tutorial: Connector/NET ASP.NET Membership and Role Provider

10.

11.

12.

13.
14.

<renove nane="Local MySql Server"/>
<add name="Local MySqgl Server"
connecti onSt ri ng="Dat asour ce=l ocal host ; Dat abase=user s; ui d=r oot ; pwd=passwor d"
provi der Name="M/Sql . Data. MySql i ent "/ >
</ connectionStrings>

The database specified is the one created in the first step. You could alternatively have used an
existing database.

At this point build the solution to ensure no errors are present. This can be done by selecting Build,
Build Solution from the main menu, or pressing F6.

ASP.NET supports the concept of locally and remotely authenticated users. With local authentication
the user is validated using their Windows credentials when they attempt to access the website. This
can be useful in an Intranet environment. With remote authentication, a user is prompted for their
login details when accessing the website, and these credentials are checked against the membership
information stored in a database server such as MySQL Server. You will now see how to choose this
form of authentication.

Start the ASP.NET Website Administration Tool. This can be done quickly by clicking the small
hammer/Earth icon in the Solution Explorer. You can also launch this tool by selecting Website and
then ASP.NET Configuration from the main menu.

In the ASP.NET Website Administration Tool click the Security tab and do the following:
a. Click the User Authentication Type link.

b. Select the From the internet option. The website will now need to provide a form to allow the user
to enter their login details. The details will be checked against membership information stored in the
MySQL database.

You now need to specify the role and membership provider to be used. Click the Provider tab and do
the following:

a. Click the Select a different provider for each feature (advanced) link.

b. For membership provider, select the MySQLMembershipProvider option and for role provider,
select the MySQLRoleProvider option.

In Visual Studio, rebuild the solution by clicking Build and then Rebuild Solution from the main menu.

Check that the necessary schema has been created. This can be achieved using SHOW DATABASES;
and SHOW TABLES; the mysql command interpreter.

nysql > SHOW DATABASES;

eccococoocccocococcccoooooo +
| Dat abase |
eccococoocccocococcccoooooo +
| information_schema |
| nysal |
| test |
| users |
| world |
eccococoocccocococcccoooooo +

5 rows in set (0.01 sec)

nysql > SHOW TABLES;

| my_aspnet_applications |

103

Tutorial: Connector/NET ASP.NET Profile Provider

my_aspnet _nmenber shi p
my_aspnet _profiles
my_aspnet _rol es
nmy_aspnet _schemaver si on
ny_aspnet _users
my_aspnet _user si nrol es

7 rows in set (0.00 sec)

15. Assuming all is present and correct, you can now create users and roles for your web application.
The easiest way to do this is with the ASP.NET Website Administration Tool. However, many web
applications contain their own modules for creating roles and users. For simplicity, the ASP.NET
Website Administration Tool will be used in this tutorial.

16. In the ASP.NET Website Administration Tool, click the Security tab. Now that both the membership
and role provider are enabled, you will see links for creating roles and users. Click the Create or
Manage Roles link.

17. You can now enter the name of a new Role and click Add Role to create the new Role. Create new
Roles as required.

18. Click the Back button.

19. Click the Create User link. You can now fill in information about the user to be created, and also
allocate that user to one or more Roles.

20. Using the mysqgl command interpreter, you can check that your database has been correctly populated
with the membership and role data.

nmysql > SELECT * FROM ny_aspnet _users

nmysql > SELECT * FROM ny_aspnet _rol es

In this tutorial, you have seen how to set up the Connector/NET membership and role providers for use in
your ASP.NET web application.

6.2.2 Tutorial: Connector/NET ASP.NET Profile Provider

This tutorial shows you how to use the MySQL Profile Provider to store user profile information in a MySQL
database. The tutorial uses MySQL Connector/NET 6.9.9, MySQL Server 5.7.21 and Microsoft Visual
Studio 2017 Professional Edition.

Many modern websites allow the user to create a personal profile. This requires a significant amount of
code, but ASP.NET reduces this considerable by including the functionality in its Profile classes. The
Profile Provider provides an abstraction between these classes and a data source. The MySQL Profile
Provider enables profile data to be stored in a MySQL database. This enables the profile properties to be
written to a persistent store, and be retrieved when required. The Profile Provider also enables profile data
to be managed effectively, for example it enables profiles that have not been accessed since a specific
date to be deleted.

The following steps show you how you can select the MySQL Profile Provider:
1. Create a new ASP.NET web project.

2. Select the MySQL Application Configuration tool.

w

In the MySQL Application Configuration tool navigate through the tool to the Profiles page.

4. Select the Use MySQL to manage my profiles check box.

104

Tutorial: Connector/NET ASP.NET Profile Provider

5. Select the Autogenerate Schema check box.

6. Click Edit and then configure a connection string for the database that will be used to store user profile
information.

7. Navigate to the last page of the tool and click Finish to save your changes and exit the tool.

At this point you are now ready to start using the MySQL Profile Provider. With the following steps you can
carry out a preliminary test of your installation.

1. Openyour web. confi g file.
2. Add a simple profile such as the following example.

<syst em web>
<anonynousl| dentificati on enabl ed="true"/>
<profile defaul tProvi der="M/SQLProfil eProvi der">

<properties>
<add nane="Nane" al | owAnonynous="true"/>
<add nane="Age" all owAnonynous="true" type="System Ul nt16"/>
<group nanme="Ul">
<add nanme="Col or" al | owAnonynous="true" defaul t Val ue="Bl ue"/ >
<add nane="Styl e" all owAnonynmous="true" defaul tVal ue="Pl ai n"/>
</ gr oup>
</ properties>
</profile>

Setting anonynousl denti fi cati on to true enables unauthenticated users to use profiles. They are
identified by a GUID in a cookie rather than by a user name.

Now that the simple profile has been defined in web. conf i g, the next step is to write some code to test
the profile.

1. In Design View, design a simple page with the added controls. The following figure shows the
Default.aspx tab open with various text box, list, and button controls.

105

Tutorial: Connector/NET ASP.NET Profile Provider

Figure 6.2 Simple Profile Application

Chject Browser | web.config | Default,aspx.cs Default.aspr ~ Start Page
div |
Profile Details

Tame: I

Age: |

Current color selected © Label

Select your color

|Red =

Store Profile |
Clear Form |

Retrieve Profile |

3 Design | O Splt | [Source <html> || <body> || <form#forml > || <dv || <aspLabel¥Labell =

These will allow the user to enter some profile information. The user can also use the buttons to save
their profile, clear the page, and restore their profile data.

In the Code View add the following code snippet.

protected void Page_Load(obj ect sender, EventArgs e)

{
if (!1sPostBack)
Text Box1. Text = Profil e. Name;
Text Box2. Text = Profile.Age. ToString();
Label 1. Text = Profile. U . Col or;
}
}

[/l Store Profile
protected void Buttonl_Cick(object sender, EventArgs e)
{

Profile. Nane = Text Box1l. Text;

Profile. Age = U nt 16. Par se(Text Box2. Text) ;

}

[/l O ear Form
protected void Button2_Cick(object sender, EventArgs e)

{
Text Box1. Text = "";
Text Box2. Text = "";
Label 1. Text = "";

}

/'l Retrieve Profile
protected void Button3_Cick(object sender, EventArgs e)

106

Tutorial: Web Parts Personalization Provider

Text Box1l. Text = Profile. Name;
Text Box2. Text = Profile.Age. ToString();
Label 1. Text = Profile. U . Col or;

}

protected void DropDownlLi st1_Sel ect edl ndexChanged(obj ect sender, EventArgs e)
{

}

Profile. U . Col or = DropDownLi st 1. Sel ect edVal ue;

3. Save all files and build the solution to check that no errors have been introduced.
4. Run the application.

5. Enter your name, age, and select a color from the list. Now store this information in your profile by
clicking Store Profile.

Not selecting a color from the list uses the default color, Blue, that was specified in the web. confi g
file.

Click Clear Form to clear text from the text boxes and the label that displays your chosen color.
Now click Retrieve Profile to restore your profile data from the MySQL database.

Now exit the browser to terminate the application.

© © N o

Run the application again, which also restores your profile information from the MySQL database.

In this tutorial you have seen how to using the MySQL Profile Provider with Connector/NET.

6.2.3 Tutorial: Web Parts Personalization Provider

MySQL Connector/NET provides a web parts personalization provider that allows you to use a MySQL
server to store personalization data.

Note
I This feature was added in Connector/NET 6.9.0.

This tutorial demonstrates how to configure the web parts personalization provider using Connector/NET.
Minimum Requirements

* An ASP.NET website or web application with a membership provider

* .NET Framework 3.0

« MySQL 5.5
Configuring MySQL Web Parts Personalization Provider

To configure the provider, do the following:

1. Add References to MySql . Dat a and MySql . \\eb to the website or web application project.

2. Include a Connector/NET personalization provider into the syst em web section in the web. confi g
file.

<webPart s>
<personal i zati on def aul t Provi der =" MySQLPer sonal i zati onPr ovi der " >
<provi der s>

107

Tutorial: Web Parts Personalization Provider

<cl ear/ >
<add name="M/SQLPer sonal i zati onPr ovi der"
type="M/Sql . Wb. Per sonal i zat i on. MySgl Per sonal i zat i onPr ovi der,
MySql . Web, Version=6.9.3.0, Culture=neutral,
Publ i cKeyToken=c5687f c88969c44d"
connecti onSt ri ngName="Local MySqgl Ser ver"
appl i cati onName="/" />
</ provi der s>
<aut hori zati on>
<al | ow ver bs="nodi fyState" users="*" />
<al | ow ver bs="ent er Shar edScope" users="*"/>
</ aut hori zati on>
</ per sonal i zati on>
</ webPart s>

Creating Web Part Controls
To create the web part controls, follow these steps:

1. Create a web application using Connector/NET ASP.NET Membership. For information about doing
this, see Section 6.2.1, “Tutorial: Connector/NET ASP.NET Membership and Role Provider”.

Create a new ASP.NET page and then change to the Design view.
From the Toolbox, drag a WebPartManager control to the page.

Now define an HTML table with three columns and one row.

o &> DN

From the WebParts Toolbox, drag and drop a \\ebPar t Zone control into both the first and second
columns.

6. From the WebParts Toolbox, drag and drop a Cat al ogZone with PageCat al ogPart and
Edi t or Zone controls into the third column.

7. Add controls to the WebPar t Zone, which should look similar to the following example:

<t abl e>
<tr>
<td>
<asp: WebPart Zone | D="Left Zone" runat="server" Header Text="Left Zone">
<ZoneTenpl at e>
<asp: Label |D="Label 1" runat="server" title="Left Zone">
<asp: Bul | et edLi st | D="Bul | et edLi st 1" runat="server">
<asp: Listltem Text="Item 1"></asp: Li stltenm>
<asp: Listltem Text="Item 2"></asp: Li stltenm>
<asp: Listltem Text="Item 3"></asp: Listltenm>
</ asp: Bul | et edLi st >
</ asp: Label >
</ ZoneTenpl at e>
</ asp: WebPar t Zone>
</td>
<td>
<asp: WebPart Zone | D="Mai nZone" runat="server" Header Text="Mai n Zone">
<ZoneTenpl at e>
<asp: Label |D="Label 11" runat="server" title="Min Zone">
<h2>This is the Main Zone</h2>
</ asp: Label >
</ ZoneTenpl at e>
</ asp: WebPar t Zone>
</td>
<td>
<asp: Cat al ogZone | D="Cat al ogZonel" runat="server">
<ZoneTenpl at e>
<asp: PageCat al ogPart | D="PageCat al ogPart 1" runat="server" />
</ ZoneTenpl at e>

108

Tutorial: Web Parts Personalization Provider

</ asp: Cat al ogZone>
<asp: Edi t or Zone | D="Editor Zonel" runat="server">
<ZoneTenpl at e>
<asp: Layout Edi t or Part | D="Layout Edi t or Part 1" runat ="server" />
<asp: Appear anceEdi tor Part | D="Appear anceEdi t or Part 1" runat ="server" />
</ ZoneTenpl at e>
</ asp: Edi t or Zone>
</td>
</tr>
</t abl e>

Outside of the HTML table, add a drop-down list, two buttons, and a label as follows.

<asp: Dr opDownLi st | D="Di spl ayMddes" runat="server" AutoPostBack="True"
OnSel ect edl ndexChanged="Di spl ayMddes_Sel ect edl ndexChanged" >

</ asp: Dr opDownLi st >

<asp: Button | D="ResetButton" runat="server" Text="Reset"
Ondl i ck="ResetButton_d ick" />

<asp: Button | D="Toggl eButton" runat="server" OnClick="Toggl eButton_d i ck"
Text =" Toggl e Scope" />

<asp: Label |D="ScopelLabel" runat="server"></asp: Label >

The following code fills the list for the display modes, shows the current scope, resets the

personalization state, toggles the scope (between user and the shared scope), and changes the display

mode.

public partial class WbPart : System Web. Ul . Page
{

protected void Page_Load(obj ect sender, EventArgs e)
if (!1sPostBack)
foreach (WebPart Di spl ayMode npde i n WebPart Manager 1. Suppor t edDi spl ayMdes)
i f (node. | sEnabl ed(WebPart Manager 1))

Di spl ayModes. | t emrs. Add(mode. Nane) ;
}
}

}
ScopelLabel . Text = WebPart Manager 1. Per sonal i zati on. Scope. ToStri ng();

}
protected void ResetButton_Click(object sender, EventArgs e)

i f (WebPart Manager 1. Per sonal i zati on. | sEnabl ed &&
WebPar t Manager 1. Per sonal i zati on. | svbdi fi abl e)

{

}
}

WebPar t Manager 1. Per sonal i zat i on. Reset Per sonal i zati onState();

protected void Toggl eButton_Cl i ck(object sender, EventArgs e)

WebPar t Manager 1. Per sonal i zat i on. Toggl eScope() ;
}

protected void D spl ayMdes_Sel ect edl ndexChanged(obj ect sender, EventArgs e)

{
var nmode = WebPart Manager 1. Support edDi spl ayMdes[Di spl ayMddes. Sel ect edVal ue] ;
if (node !'= null && node. | sEnabl ed(WebPart Manager 1))

WebPar t Manager 1. Di spl ayMbde = node;
}
}
}

109

Tutorial: Web Parts Personalization Provider

Testing Web Part Changes

Use the following steps to validate your changes:

1. Run the application and open the web part page. The page should look like similar to the example
shown in the following figure in which the Toggle Scope button is set to Shar ed. The page also
includes the drop-down list, the Reset button, and the Left Zone and Main Zone controls.

Figure 6.3 Web Parts Page

Left Zone
Main Zone
= ltem 1
+ |ltem 2 - - -
. ltem 3 This is the Main Zone

Reset | | Toggle Scope | Shared

Initially when the user account is not authenticated, the scope is Shared by default. The user account
must be authenticated to change settings on the web-part controls. The following figure shows an
example in which an authenticated user is able to customize the controls by using the Browse drop-
down list. The options in the list are Desi gn, Cat al og, and Edi t .

Figure 6.4 Authenticated User Controls

Left Zone Minimize Close
Main Zone Minimize Close
= ltem 1
« [tem 2 - - -
. Item 3 This is the Main Zone

Reset | | Toggle Scope | User

Design
Catalog
Edit

2. Click Toggle Scope to switch the application back to the shared scope.

3. Now you can personalize the zones using the Edi t or Cat al og display modes at a specific user or
all-users level. The next figure shows Cat al og selected from the drop-down list, which include the
Catalog Zone control that was added previously.

110

Tutorial: Simple Membership Web Provider

Figure 6.5 Personalize Zones

Catalog Zone Close
Left Zone
Page Catalog
ain 7
Left Zone Minimize Close Main Zone
r ain Zone
2 [resie] Add a Web Part to this zone by dropping it here.
» Item 2
= Item 3 Add to:

Left Zone v||Add| |Close

[Catalog || Reset | | Toggle Scope | User

6.2.4 Tutorial: Simple Membership Web Provider
This section documents the ability to use a simple membership provider on MVC 4 templates. The
configuration OAuth compatible for the application to login using external credentials from third-party
providers like Google, Facebook, Twitter, or others.

This tutorial creates an application using a simple membership provider and then adds third-party (Google)
OAuth authentication support.

Note
This feature was added in MySQL Connector/NET 6.9.0.

Requirements

* Connector/NET 6.9.x or later

.NET Framework 4.0 or later

Visual Studio 2012 or later

MVC 4
Creating and Configuring a New Project

To get started with a new project, do the following:

1. Open Visual Studio, create a new project of ASP.NET MVC 4 Web Application type, and configure
the project to use .NET Framework 4.5. The following figure shows and example of the New Project
window with the items selected.

111

Tutorial: Simple Membership Web Provider

Figure 6.6 Simple Membership: New Project

New Project |
¥ Recent HET Framewoek 45 = [Seaby: Defwit == Sewch Inzalled Templates (e E] P-
4 ingalied x ¢
" Ej ASPHET Empty Web Apphication Virual C# Type: Vineal (3
o Templabes A project for creating an application using
. 5
b Veual Basic F:] AP HET Wes Forres Applcation Velual C2 S
o Vial C8
- -]
Windews Store gJ ASPIHET MVC 3 Web Application Wisual C7
Vindsws
Wb Ej ASPHET MNC & Web Applecation Veal C2
Extornibliey
.
b Office &b ASPINET Dyraemi Data Enbities Web Appheation Vel 2
Cleud -
Reperting ﬁ BEPIHET ALK Server Control Vial 8
& ShaeePomt
s
E ¥ gy AEPNET LA Server Control Extender Visual T2
st
.
i 4.% ASPHET Serves Contsol Visual C2
Windows Phone
Wiarkfiow
b Viiual Co e
Windows Instalier XML
+ Vinual ¥
SO Server
b lamnCoviet -
+ Onine
Hame MbySqfamplebembership
Lecation: ehupery\Forade’idocumentsimual shudio JIT Progects © | Browse. |
Selytion name: BSgThmplehlemberihg & Create givectory for solution
] Addio sogece control
ok || Conct

2. Choose the template and view engine that you like. This tutorial uses the Internet Application
Template with the Razor view engine (see the next figure). Optionally, you can add a unit test project
by selecting Create a unit test project.

Figure 6.7 Simple Membership: Choose Template and Engine

Mew ASP.NET MVC 4 Project Ex
Project Termplate
Select a termplate: Deseription:
= o - = | [A defaum ASP.NET MVC 4 praject with an
=l gl B | B Beroumt controller it uses fonre
Empty Basic Intermet Intramet ERESSREREEE
L] | Application
cn cs =
el &1 &1
Mohbile Web APl Single Page
Applicateen Applic ation
Wiew engine:
Razor w
[] Creste & unit test project
Test project name:
MySqlSimplefMembership. Tests
Test framewark:
Vigual Studic Unit Test Additional Infa
oK Cancel

3. Add references to the MySql . Dat a, MySql . Dat a. Enti ti es, and MySql . Web assemblies. The
assemblies chosen must match the .NET Framework and Entity Framework versions added to the
project by the template.

112

Tutorial: Simple Membership Web Provider

Add a valid MySQL connection string to the web. confi g file, similar to the following example.

<add

nane="M/Connect i on"

connecti onSt ri ng="ser ver =l ocal host;
User | d=r oot ;
passwor d=pass
dat abase=MySql Si npl eMenber shi p
| oggi ng=t r ue; port =3305"

provi der Nane="M/Sql . Data. M\ySql Cl i ent"/ >

Under the <syst em dat a> node, add configuration information similar to the following example.

<menber shi p def aul t Provi der =" MySqgl Si npl eMenber shi pProvi der ">
<pr ovi der s>
<cl ear/ >
<add
nane="M/Sql Si npl eMenber shi pProvi der "
type="M/Sql . Web. Security. M/Sql Si npl eMenber shi pProvi der, MySql . Wb,
Ver si on=6. 9. 2. 0, Cul ture=neut ral , Publ i cKeyToken=c5687f c88969c44d"
appl i cati onName="M/Sqgl Si npl eMenber shi pTest "
descri pti on="M/SQ.def aul t appl i cati on"
connectionSt ri ngName="M/Connecti on"
user Tabl eNane="M/User Tabl e"
user | dCol um="M/User | dCol umm"
user NameCol umm=" MyUser NaneCol umm"
aut oGener at eTabl es="True"/ >
</ provi der s>
</ menber shi p>

Update the configuration with valid values for the following properties: connecti onSt ri ngNane,

user Tabl eNane, user | dCol utm, user NaneCol umm, and aut oGener at eTabl es.

e user Tabl eNanme: Name of the table to store the user information. This table is independent from the

schema generated by the provider, and it can be changed in the future.

¢ user | d: Name of the column that stores the ID for the records in the user Tabl eNane.

* user Nanme: Name of the column that stores the name/user for the records in the user Tabl eNane.

e connectionStri ngNane: This property must match a connection string defined in web. confi g

file.

e aut oCener at eTabl es: This must be set to f al se if the table to handle the credentials already

exists.
Update your DBCont ext class with the connection string name configured.

OpenthelnitializeSi npl eMenbershi pAttribute. cs file fromthe Filters/

folder and locate the Si npl eMenber shi plnitializer class. Then find the
WebSecurity. InitializeDatabaseConnecti on method call and update the parameters
with the configuration for connect i onStri ngNane, user Tabl eNane, user | dCol urm, and
user NanmeCol umm.

If the database configured in the connection string does not exist, then create it.

113

Tutorial: Simple Membership Web Provider

10. After running the web application, the generated home page is displayed on success (see the figure
that follows).

Figure 6.8 Simple Membership: Generated Home Page
- ol

T Be RG]0 Home Page - by R572ET

Reger Log

To leaen mone about ASPNET MVC visit itteciamnet /e . The page features. vickeos, tatorials, and sampies. 1o I jou get th most from
ASPINET MV M you have vy e, Sout ASPNET MVC vl guf Fofums

We suggest the following:

e Add Nuliet packngs snd jussp-itart your coding
G 3l ared upclate e bbranes and o

-

[

iy find 3 we horsting company That ofers the right ma of features and price bor your spplicrtons. Liam more

T W

11. If the application executed with success, then the generated schema will be similar to the following
figure showing an object browser open to the tables.

Figure 6.9 Simple Membership: Generated Schema and Tables

Object Browser
SCHEMAS -
2
L3
-
-
-
-
-
[
-
v & IR
L4 Tables
> [0 vserprofile
» [1] webpages_membership
» [1] webpages_ocasuthmembenship
> B Views
» B0 Routines
2
L3
[
L 3
L2
[
[3
-
-
-

12. To create a user login, click Register on the generated web page. Type the user name and password,
and then execute the registration form. This action redirects you to the home page with the newly
created user logged in.

The data for the newly created user can be located in the User Pr of i | e and Webpages _Menber shi p
tables.

114

Tutorial: Simple Membership Web Provider

Adding OAuth Authentication to a Project

OAuth is another authentication option for websites that use the simple membership provider. A user can
be validated using an external account like Facebook, Twitter, Google, and others.

Use the following steps to enable authentication using a Google account in the application:
1. Locate the Aut hConfi g. cs file in the App_St art folder.

2. As this tutorial uses Google, find the Regi st er Aut h method and uncomment the last line where it
calls Caut hWebSecurity. Regi st er Googl ed i ent.

3. Run the application. When the application is running, click Log in to open the log in page. Then, click
Google under Use another service to log in (shown in the figure that follows).

Figure 6.10 Simple Membership with OAuth: Google Service

9 [ee— B 2] 1 togin: My AT MOV

- oEN

Log in.
Use a local account to log in. Use another service to log in.
Google

Password

Remamber ma?

Log in

4. This action redirects to the Google login page (at google.com), and requests you to sign in with your
Google account information.

5. After submitting the correct credentials, a message requests permission for your application to access
the user's information. Read the description and then click Accept to allow the quoted actions, and to
redirect back to the login page of the application.

6. The application now can register the account. The User name field will be filled in with the appropriate
information (in this case, the email address that is associated with the Google account). Click Register
to register the user with your application.

Now the new user is logged into the application from an external source using OAuth. Information about
the new user is stored in the User Pr of i | e and Webpages_Caut hMenber shi p tables.

To use another external option to authenticate users, you must enable the client in the same class where
we enabled the Google provider in this tutorial. Typically, providers require you to register your application
before allowing OAuth authentication, and once registered they typically provide a token/key and an ID that
must be used when registering the provider in the application.

115

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms
Data Source

This tutorial describes how to create a Windows Forms Data Source from an Entity in an Entity Data Model
using Microsoft Visual Studio. The steps are:

» Creating a New Windows Forms Application
» Adding an Entity Data Model

* Adding a New Data Source

 Using the Data Source in a Windows Form

» Adding Code to Populate the Data Grid View

* Adding Code to Save Changes to the Database

To perform the steps in this tutorial, first install the wor | d database sample, which you may download from
the MySQL Documentation page. You can also find details on how to install the database on the same

page.
Creating a New Windows Forms Application
The first step is to create a new Windows Forms application.

1. In Visual Studio, select File, New, and then Project from the main menu.

2. Choose the Windows Forms Application installed template. Click OK. The solution is created.

To acquire the latest Entity Framework assembly for MySQL, download the NuGet package.

Adding an Entity Data Model

To add an Entity Data Model to your solution, do the following:

1. Inthe Solution Explorer, right-click your application and select Add and then New Item. From Visual
Studio installed templates, select ADO.NET Entity Data Model (see the figure that follows). Click
Add.

116

https://dev.mysql.com/doc/index-other.html

Adding an Entity Data Model

Figure 6.11 Add Entity Data Model

Add New Item - WinFormzAppTest ? x
4 |nstalled Sort by: [Default -: H E’ Search (Ctri+E) B -
1] T
Fl Vlsu; CF tems @ ADO.NET Entity Data Model Visual C# lterns Type: Visual CZ ltemns
ode A project item for creating an ADONET
el i? DataSet Visual C# Iterms Entity Data Model.
General
’ ':"l::)dc'm Forms @ EF 5.x DbContext Generator Visual C& ftems
WPF
@ EF 6. DbContext Generator Visual C# Items
b ASP.MET Core
- Apple i
Service-based Database Visual C# ltemns
MySQL
SQL S
Ol Server XMAL File Visual C# Iterns
Xamarin.Forms o
Graphics S ML Schema Visual C# items
b Online
_z"‘- X5LT File Visual C# ltems
Mame: Modell
Add Cancel

2. You will now see the Entity Data Model Wizard. You will use the wizard to generate the Entity Data
Model from the wor | d database sample. Select the icon EF Designer from database (or Generate
from database in older versions of Visual Studio). Click Next.

117

Adding an Entity Data Model

3. You can now select the | ocal host (wor | d) connection you made earlier to the database. Select the
following items:

* Yes, include the sensitive data in the connection string.
« Save entity connection settings in App. confi g as:

wor |l dEntities

If you have not already done so, you can create the new connection at this time by clicking New
Connection (see the figure that follows).

Figure 6.12 Entity Data Model Wizard - Connection

Entity Data Model Wizard Ed

i_p Choose Your Data Connection

Which data connection should your application use to connect to the database?

localhostiworld) w Mew Connection...

Connection string:

metadata=res://*/Model3.csdl|res://*/Model3.ssdl|
res://*/Model3.msl;provider=My5ql.Data.MySqlClient; provider connection string="server=localhost;user
id=root; persistsecurityinfo=True;database=world"

Save connection settings in App.Config as:

|worIdEntities1

< Previous Next = Cancel

Make a note of the entity connection settings to be used in App. Conf i g, as these will be used later to
write the necessary control code. Click Next.

4. The Entity Data Model Wizard connects to the database.

As the next figure shows, you are then presented with a tree structure of the database. From here you
can select the object you would like to include in your model. If you also created Views and Stored

118

Adding an Entity Data Model

Routines, these items will be displayed along with any tables. In this example you just need to select

the tables. Click Finish to create the model and exit the wizard.

Figure 6.13 Entity Data Model Wizard - Objects and Settings

Entity Data Model Wizard
i) Choose Your Database Objects and Settings

Which database objects do you want to include in your model?

v [world
e <ity
B8 country
1B countrylanguage
[Views
[J=p Stored Procedures and Functions

[] Pluralize or singularize generated chject names

Include foreign key columns in the model

Model Mamespace:

|w0r|dM0de| |

< Previous Cancel

Visual Studio generates a model with three tables (city, country, and countrylanguage) and then display

it, as the following figure shows.

119

Adding a New Data Source

Figure 6.14 Entity Data Model Diagram

[I Formi.cs [Derige]

& Code
& Name

B Conseent 1
£ Region & Populaticn

Sufacedses = Mavigation Properties
& Indepear

& Population

& |ieExpectancy
* Ghp

& GNP

F Localame

K Govemmentform
HeasdOfStte

Capitsl

F Code?

= Nagation Properes | |

B PP

From the Visual Studio main menu, select Build and then Build Solution to ensure that everything
compiles correctly so far.

Adding a New Data Source

You will now add a new Data Source to your project and see how it can be used to read and write to the
database.

1.

From the Visual Studio main menu select Data and then Add New Data Source. You will be presented
with the Data Source Configuration Wizard.

Select the Object icon. Click Next.

Select the object to bind to. Expand the tree as the next figure shows.

In this tutorial, you will select the city table. After the city table has been selected click Next.

120

Using the Data Source in a Windows Form

Figure 6.15 Data Source Configuration Wizard

Data Source Configuration Wizard

i:—.l) Select the Data Objects

Expand the referenced assemblies and namespaces to select your objects. If an object is missing from a referenced
assembly, cancel the wizard and rebuild the project that contains the object.

What objects do you want to bind to?

4 [VI5] WinFormsAppTest (partially selected) ~ Add Reference...
4 [0} WinFormsAppTest (partially selected)
[J*2 country
[J*2 countrylanguage
[J*% Form1
[CJ*z Program
[J*z worldEntities
[} WinFormsAppTest.Properties
 []a EntityFramework
 []E EntityFramework.SqlServer
¢ [180 MySal.Data

Hide system assemblies

4. The wizard will confirm that the city object is to be added. Click Finish.

5. The city object will now appear in the Data Sources panel. If the Data Sources panel is not displayed,
select Data and then Show Data Sources from the Visual Studio main menu. The docked panel will

then be displayed.

Using the Data Source in a Windows Form

This step describes how to use the Data Source in a Windows Form.

1. Inthe Data Sources panel select the Data Source you just created and drag and drop it onto the Form
Designer. By default, the Data Source object will be added as a Data Grid View control as the following

figure shows.
Note

The Data Grid View control is bound to ci t yBi ndi ngSour ce, and the
Navigator control is bound to ci t yBi ndi ngNavi gat or.

121

Adding Code to Populate the Data Grid View

2.

Figure 6.16 Data Form Designer

A o "o - it Yo i Tr Ao ®
P ddn wes Geme Be Dy Tem e e Aam wedes by

[

Save and rebuild the solution before continuing.

Adding Code to Populate the Data Grid View

You are now ready to add code to ensure that the Data Grid View control will be populated with data from
the city database table.

1.
2.

Double-click the form to access its code.

Add the following code to instantiate the Entity Data Model Ent i t yCont ai ner object and retrieve
data from the database to populate the control.

usi ng System W ndows. For ns;

nanmespace W ndowsFor msAppl i cati on4

{
public partial class Fornl : Form
{
wor | dEntities we;
public Forml()
{
InitializeConponent();
}
private void Forml_Load(object sender, EventArgs e)
{
we = new worl dEntities();
ci t yBi ndi ngSour ce. Dat aSource = we.city. ToList();
}
}
}

Save and rebuild the solution.

Run the solution. Confirm that the grid is populated (see the next figure for an example) and that you
can navigate the database.

122

Adding Code to Save Changes to the Database

Figure 6.17 The Populated Grid Control

a5 Form1 - O s
1 of 4079 | b k| | 7 X
1D Mame CountryCode Distric
v Kabul AFG Kabol
2 Gandahar AFG Qanda
3 Herat AFG Herat
4 Mazar-e-Sharif AFG Balkh
4] Amsterdam NLD Noord-
6 Rotterdam NLD Zuid-H
7 Haag NLD Zuid-H
8 Utrecht NLD Lirech
] Eindhoven NLD Noard-
10 Tilburg NLD Moord-
i Groningen NLD Granin
12 Breda NLD Moord- ¥
< >

Adding Code to Save Changes to the Database

This step explains how to add code that enables you to save changes to the database.

The Binding source component ensures that changes made in the Data Grid View control are also made to
the Entity classes bound to it. However, that data needs to be saved back from the entities to the database
itself. This can be achieved by the enabling of the Save button in the Navigator control, and the addition of

some code.

1. Inthe Form Designer, click the save icon in the form toolbar and confirm that its Enabled property is

setto Tr ue.

2. Double-click the save icon in the form toolbar to display its code.

3. Add the following (or similar) code to ensure that data is saved to the database when a user clicks the

save button in the application.

public Forml()

{

InitializeConponent();
}
private void Fornl_Load(object sender, EventArgs e)
{

we = new wor | dEntities();

ci t yBi ndi ngSour ce. Dat aSource = we.city. ToList();
}
private void cityBi ndi ngNavi gat or Savel tem C i ck(obj ect sender,
{

we. SaveChanges() ;
}

}
}

Event Args e)

4. When the code has been added, save the solution and then rebuild it. Run the application and verify

that changes made in the grid are saved.

123

Tutorial: Data Binding in ASP.NET Using LINQ on Entities

6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities

In this tutorial you create an ASP.NET web page that binds LINQ queries to entities using the Entity
Framework mapping with MySQL Connector/NET.

If you have not already done so, install the wor | d database sample prior to attempting this tutorial. See
the tutorial Section 6.3, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source” for
instructions on downloading and installing this database.

Creating an ASP.NET Website

In this part of the tutorial, you create an ASP.NET website. The website uses the wor | d database. The
main web page features a drop-down list from which you can select a country. Data about the cities of that
country is then displayed in a GridView control.

1. From the Visual Studio main menu select File, New, and then Web Site.

2. From the Visual Studio installed templates select ASP.NET Web Site. Click OK. You will be presented
with the Source view of your web page by default.

3. Click the Design view tab situated underneath the Source view panel.
4. In the Design view panel, enter some text to decorate the blank web page.

5. Click Toolbox. From the list of controls, select DropDownList. Drag and drop the control to a location
beneath the text on your web page.

6. From the DropDownList control context menu, ensure that the Enable AutoPostBack check box
is enabled. This will ensure the control's event handler is called when an item is selected. The user's
choice will in turn be used to populate the GridView control.

7. From the Toolbox select the GridView control. Drag and drop the GridView control to a location just
below the drop-down list you already placed.

The following figure shows an example of the decorative text and two controls in the Design view tab.
The added GridView control produced a grid with three columns (Col uimO, Col unm1, and Col urm3)
and the string abc in each cell of the grid.

124

Creating an ADO.NET Entity Data Model

Figure 6.18 Placed GridView Control

e e
P s Ve P Beld Ovbe T fowe feon T e Wedow b
TR T e] - et i ot = 5= |

World Evample Dutabase

Cbumadd oluamn] el

8. At this point it is recommended that you save your solution, and build the solution to ensure that there
are no errors.

9. If you run the solution you will see that the text and drop down list are displayed, but the list is empty.
Also, the grid view does not appear at all. Adding this functionality is described in the following sections.

At this stage you have a website that will build, but further functionality is required. The next step will be to
use the Entity Framework to create a mapping from the wor | d database into entities that you can control
programmatically.

Creating an ADO.NET Entity Data Model

In this stage of the tutorial you will add an ADO.NET Entity Data Model to your project, using the wor | d
database at the storage level. The procedure for doing this is described in the tutorial Section 6.3, “Tutorial:
Using an Entity Framework Entity as a Windows Forms Data Source”, and so will not be repeated here.

Populating a List Box by Using the Results of a Entity LINQ Query

In this part of the tutorial you will write code to populate the DropDownList control. When the web page
loads the data to populate the list will be achieved by using the results of a LINQ query on the model
created previously.

1. In the Design view panel, double-click any blank area. This brings up the Page_Load method.

2. Modify the relevant section of code according to the following listing example.

public partial class _Default : System Wb. Ul . Page
{

wor | dvbdel . wor | dEntities we;

protected void Page_Load(object sender, EventArgs e)

{

125

Populating a Grid View Control by Using an Entity LINQ Query

we = new wor| divbdel . wor | dEntities();

if (!1sPostBack)
{

var countryQuery = fromc in we.country

order by c. Name

sel ect new { c.Code, c.Name };
Dr opDownlLi st 1. Dat aVal ueFi el d = " Code";
Dr opDownlLi st 1. Dat aText Fiel d = "Nane";
Dr opDownlLi st 1. Dat aSour ce = countryQuery. ToLi st ();
Dat aBi nd() ;

The list control only needs to be populated when the page first loads. The conditional code ensures
that if the page is subsequently reloaded, the list control is not repopulated, which would cause the user
selection to be lost.

3. Save the solution, build it and run it. You should see that the list control has been populated. You can
select an item, but as yet the GridView control does not appear.

At this point you have a working Drop Down List control, populated by a LINQ query on your entity data
model.

Populating a Grid View Control by Using an Entity LINQ Query

In the last part of this tutorial you will populate the Grid View Control using a LINQ query on your entity
data model.

1. In the Design view, double-click the DropDownList control. This action causes its
Sel ect edl ndexChanged code to be displayed. This method is called when a user selects an item in
the list control and thus generates an AutoPostBack event.

2. Modify the relevant section of code accordingly to the following listing example.

protected void DropDownlLi st1_Sel ect edl ndexChanged(obj ect sender, EventArgs e)
{

var cityQuery = fromc in we.city
where c. CountryCode == DropDownLi st 1. Sel ect edVal ue
order by c. Nanme
sel ect new { c.Nane, c.Popul ation, c.CountryCode };
GidVi ewl. Dat aSource = cityQuery;
Dat aBi nd() ;

The grid view control is populated from the result of the LINQ query on the entity data model.

3. Save, build, and run the solution. As you select a country you will see its cities are displayed in the
GridView control. The following figure shows Belgium selected from the list box and a table with three
columns: Nane, Popul at i on, and Count r yCode.

126

Tutorial: Generating MySQL DDL from an Entity Framework Model

Figure 6.19 The Working Website

(& hitp: [flocalhost: 1174 WebSite3/Def ault, aspx

World Database Website
Belgium A
Name Population CountryCode

Antwerpen 446525 BEL
Brugge 116246 BEL
Bruxelles [Brussel] 133859 BEL
Charleroi 200827 BEL
Gent 224180 BEL
Liege 185639 BEL
Mons 90935 BEL
Namur 105419 BEL
Schaerbeek 105692 BEL

In this tutorial you have seen how to create an ASP.NET website, you have also seen how you can access
a MySQL database using LINQ queries on an entity data model.

6.5 Tutorial: Generating MySQL DDL from an Entity Framework

Model

This tutorial demonstrates how to create MySQL DDL from an Entity Framework model. Minimally, you will
need Microsoft Visual Studio 2017 and MySQL Connector/NET 6.10 to perform this tutorial.

1.

2.

10.

Create a new console application in Visual Studio 2017.
Using the Solution Explorer, add a reference to MySql . Dat a. Entity.

From the Solution Explorer select Add, New Item. In the Add New Item dialog select Online
Templates. Select ADO.NET Entity Data Model and click Add to open the Entity Data Model dialog.

In the Entity Data Model dialog select Empty Model. Click Finish to create a blank model.
Create a simple model. A single Entity will do for the purposes of this tutorial.
In the Properties panel select ConceptualEntityModel from the drop-down list.

In the Properties panel, locate the DDL Generation Template in the category Database Script
Generation.

For the DDL Generation property select SSDLToMySQL.tt(VS) from the drop-down list.
Save the solution.

Right-click an empty space in the model design area to open the context-sensitive menu. From the
menu select Generate Database from Model to open the Generate Database Wizard dialog.

127

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/glossary.html#glos_ddl

Tutorial: Basic CRUD Operations with Connector/NET

11. In the Generate Database Wizard dialog select an existing connection, or create a new connection to

a server. Select an appropriate option to show or hide sensitive data. For the purposes of this tutorial,
you can select Yes, although you might skip this for commercial applications.

12. Click Next to generate MySQL compatible DDL code and then click Finish to exit the wizard.

You have seen how to create MySQL DDL code from an Entity Framework model.

6.6 Tutorial: Basic CRUD Operations with Connector/NET

This tutorial provides instructions to get you started using MySQL as a document store with MySQL
Connector/NET.

Minimum Requirements

Import the Document Store Sample

Add References to Required DLLs
Import Namespaces

Create a Session

Find a Row Within a Collection

Insert a New Document into a Collection
Update an Existing Document

Delete a Specific Document

Close the Session

Complete Code Example

For concepts and additional usage examples, see X DevAPI User Guide.

Minimum Requirements

MySQL Server 8.0.11 with X Protocol enabled
Connector/NET 8.0.11
Visual Studio 2013/2015/2017

wor | d_x database sample

Import the Document Store Sample

A MySQL script is provided with data and a JSON collection. The sample contains the following:

Collection
< countryinfo: Information about countries in the world.
Tables

< country: Minimal information about countries of the world.

128

https://docs.oracle.com/cd/E17952_01/x-devapi-userguide-en/

Add References to Required DLLs

« city: Information about some of the cities in those countries.
e countrylanguage: Languages spoken in each country.
To install the wor | d_x database sample, follow these steps:
1. Download wor | d_x. zi p from http://dev.mysqgl.com/doc/index-other.html.
2. Extract the installation archive to a temporary location such as / t np/ .
Unpacking the archive results in two files, one of them named wor | d_x. sqgl .
3. Connect to the MySQL server using the MySQL Client with the following command:
$> nysqgl -u root -p

Enter your password when prompted. A non-root account can be used as long as the account has
privileges to create new databases. For more information about using the MySQL Client, see mysql —
The MySQL Command-Line Client.

4. Execute the wor | d_x. sql script to create the database structure and insert the data as follows:
nysql > SOURCE /tenp/worl d_x.sql;

Replace / t enp/ with the path to the wor | d_x. sql file on your system.

Add References to Required DLLs

Create a new Visual Studio Console Project targeting .NET Framework 4.6.2 (or later), .NET Core 1.1,
or .NET Core 2.0. The code examples in this tutorial are shown in the C# language, but you can use
any .NET language.

Add a reference in your project to the following DLLs:
* WSql . Dat a. dl |

» Googl e. Prot obuf. dl |

Import Namespaces

Import the required namespaces by adding the following statements:

usi ng MySgl X. XDevAPI ;
usi ng MySgl X. XDevAPI . Conmon;
usi ng MySgl X. XDevAPI . CRUD;

Create a Session

A session in the X DevAPI is a high-level database session concept that is different from working with
traditional low-level MySQL connections. It is important to understand that this session is not the same as a
traditional MySQL session. Sessions encapsulate one or more actual MySQL connections.

The following example opens a session, which you can use later to retrieve a schema and perform basic
CRUD operations.

string schemaNarme = "worl d_x";
/] Define the connection string

129

http://dev.mysql.com/doc/index-other.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/mysql.html

Find a Row Within a Collection

string connectionURI = "mnysql x://test:test @ ocal host: 33060";
Sessi on session = MySQLX. Get Sessi on(connecti onURl) ;

/'l Get the schema obj ect

Schema schema = sessi on. Get Schema(schemaNane) ;

Find a Row Within a Collection

After the session is instantiated, you can execute a find operation. The next example uses the session
object that you created:

/1 Use the collection 'countryinfo'

var nyCol | ecti on = schena. Get Col | ecti on("countryinfo");

var docParans = new DbDoc(new { nanel = "Al bania", _idl = "ALB" });

// Find a document
DocResul t foundDocs = nyCol | ection. Find("Nane = :nanel || _id = :_idl").Bi nd(docParans). Execute();

whi | e (foundDocs. Next ())
Consol e. Wi telLine(foundDocs. Current["Nanme"]);

Consol e. Wi telLine(foundDocs. Current["_id"]);
}

Insert a New Document into a Collection

//lnsert a new docunent with an identifier
var obj = new { _id = "UKN', Nane = "Unknown" };
Result r = myCol | ecti on. Add(obj) . Execute();

Update an Existing Document

/'l using the same docParans object previously created

docParams = new DbDoc(new { namel = "Unknown", _idl = "UKN' });

r = nyCollection.Modify("_id = :1d").Bind("id", "UKN').Set("G\P', "3308").Execute();

if (r.AffectedltensCount == 1)
foundDocs = nyCol | ection. Find("Nane = :namel|| _id = :_idl").Bi nd(docParans).Execute();
whi | e (foundDocs. Next ())
{

Consol e. Wit eLi ne(foundDocs. Current["Nanme"]);
Consol e. Wi teLi ne(foundDocs. Current[" _id"]);
Consol e. Wi teLi ne(foundDocs. Current["G\NP']);

}
}

Delete a Specific Document

r = nyCol |l ection. Remove("_id = :id").Bind("id", "UKN').Execute();

Close the Session

sessi on. d ose();

Complete Code Example

The following example shows the basic operations that you can perform with a collection.

usi ng MySqgl X. XDevAPI ;

usi ng MySql X. XDevAPI . Conmon;
usi ng MySql X. XDevAPI . CRUD,
usi ng System

130

Tutorial: Configuring SSL with Connector/NET

namespace MySQLX_Tutori al
{
cl ass Program
{
static void Main(string[] args)
{

string schemaNane = "worl d_x";

string connectionURI = "mnysql x://test:test @ ocal host: 33060";
Sessi on session = MySQLX. Get Sessi on(connecti onURl);

Schema schema = sessi on. Get Schema(schemaNane) ;

/] Use the collection 'countryinfo'
var myCol | ection = schema. Get Col | ecti on("countryinfo");
var docParanms = new DbDoc(new { nanel = "Al bania", _idl = "ALB" });

/1 Find a document
DocResult foundDocs = nyCol |l ection. Find("Name = :nanel || _id = :_id1l").Bi nd(docParans). Execute();

whi | e (foundDocs. Next ())

{
Consol e. Wi teLi ne(foundDocs. Current["Nanme"]);

Consol e. Wi telLi ne(foundDocs. Current[" _id"]);
}

//lnsert a new docunent with an id
var obj = new { _id = "UKN', Nane = "Unknown" };
Result r = myCol | ecti on. Add(obj) . Execute();

//updat e an exi sting docunent

docParanms = new DbDoc(new { namel = "Unknown", _idl = "UKN' });

r = nyCollection.Modify("_id = :1d").Bind("id", "UKN').Set("G\P', "3308").Execute();
if (r.AffectedltensCount == 1)

foundDocs = nyCol | ection. Find("Nane = :nanmel|| _id = :_idl").Bi nd(docParans).Execute();
whi | e (foundDocs. Next ())

{
Consol e. Wit eLi ne(foundDocs. Current["Nanme"]);

Consol e. Wi telLi ne(foundDocs. Current[" _id"]);
Consol e. Wi teLi ne(foundDocs. Current["GNP']);

}
}

/Il delete a row in a docunent
r = nyCol |l ection. Remove("_id = :id").Bind("id", "UKN').Execute();

/'l cl ose the session
sessi on. d ose();

Consol e. ReadKey() ;

}
}
}

6.7 Tutorial: Configuring SSL with Connector/NET

In this tutorial you will learn how you can use MySQL Connector/NET to connect to a MySQL server
configured to use SSL. Support for SSL client PFX certificates was added to the Connector/NET 6.2
release series. PFX is the native format of certificates on Microsoft Windows. More recently, support for
SSL client PEM certificates was added in the Connector/NET 8.0.16 release.

MySQL Server uses the PEM format for certificates and private keys. Connector/NET enables the use of
either PEM or PFX certificates with both classic MySQL protocol and X Protocol. This tutorial uses the test

131

Using PEM Certificates in Connector/NET

certificates from the server test suite by way of example. You can obtain the MySQL Server source code
from MySQL Downloads. The certificates can be found in the . / nysql -t est/ st d_dat a directory.

To apply the server-side startup configuration for SSL connections:

1.

In the MySQL Server configuration file, set the SSL parameters as shown in the follow PEM format
example. Adjust the directory paths according to the location in which you installed the MySQL source
code.

ssl -ca=path/to/ repo/ nysql -t est/std_data/ cacert. pem
ssl -cert=path/to/ repo/ nysql -test/std_datal/server-cert.pem
ssl - key=pat h/ t o/ repo/ nmysql -t est/ st d_dat a/ server - key. pem

The Ss| Ca connection option accepts both PEM and PFX format certificates, using the file extension to
determine how to process certificates. Change cacert. pemto cacert . pf x if you intend to continue
with the PFX portion of this tutorial.

For a description of the connection string options used in this tutorial, see Section 4.5, “Connector/NET
Connection Options Reference”.

Create a test user account to use in this tutorial and set the account to require SSL. Using the MySQL
Command-Line Client, connect as r oot and create the user ssl cl i ent (witht est as the account
password). Then, grant all privileges to the new user account as follows:

CREATE USER sslclient@% |DENTIFIED BY 'test' REQU RE SSL;

GRANT ALL PRIVILEGES ON *.* TO sslclient@ % ;

For detailed information about account-management strategies, see Access Control and Account
Management.

Now that the server-side configuration is finished, you can begin the client-side configuration using either
PEM or PFX format certificates in Connector/NET.

6.7.1 Using PEM Certificates in Connector/NET

The direct use of PEM format certificates was introduced to simplify certificate management in

multiplatform environments that include similar MySQL products. In previous versions of Connector/NET,

your only choice was to use platform-dependent PFX format certificates.

For this example, use the test client certificates from the MySQL server repository (ser ver -
repository-root/mysql -test/std_dat a). Inyour application, add a connection string using the

1.

t est database and the ssl cl i ent user account (created previously). For example:

Set the Ss| Mbde connection option to the level of security needed. PEM certificates are only validated
for Veri f yCAand Veri f yFul | SSL mode values. All other mode values ignore certificates even if
they are provided.

usi ng (MySql Connecti on connection = new MySql Connecti on(
"dat abase=t est ; user=sslclient;" +
" Ss| Mode=Veri fyFul | "

Add the appropriate SSL certificates. Because this tutorial sets the Ss| Mbde option to Veri f yFul |,
you must also provide values for the Ss| Ca, Ssl Cert, and Ss| Key connection options. Each option
must point to a file with the . pemfile extension.

"Ssl Ca=ca. pem " +
"Ssl Cert=client-cert.pem" +

132

https://dev.mysql.com/downloads/mysql/5.1.html#source
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/access-control.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/access-control.html

Using PFX Certificates in Connector/NET

" Ssl Key=cl i ent - key. pem "))
Alternatively, if you set the SSL mode to Ver i f yCA, only the Ss| Ca connection option is required.

3. Open a connection. The following example opens a connection using the classic MySQL protocol, but
you can perform a similar test using X Protocol.

usi ng (MySql Connecti on connection = new MySql Connecti on(
"dat abase=t est ; user=sslclient;" +

"Ssl| Mode=Veri fyFul | " +

"Ssl Ca=ca. pem " +

"Ssl Cert=client-cert.pem" +

"Ssl Key=cl i ent - key. pem "))

{
}

connecti on. Open() ;

Errors found when processing the PEM certificates will result in an exception being thrown. For additional
information, see Command Options for Encrypted Connections.

6.7.2 Using PFX Certificates in Connector/NET

.NET does not provide native support the PEM format. Instead, Windows includes a certificate store that
provides platform-dependent certificates in PFX format. For the purposes of this example, use test client
certificates from the MySQL server repository (. / nysql -t est/ st d_dat a). Convert these to PFX format
first. This format is also known as PKCS#12.

To complete the steps in this tutorial for PFX certificates, you must have Open SSL installed. This can be
downloaded for Microsoft Windows at no charge from Shining Light Productions.

Creating a Certificate File to Use with the .NET Client

1. From the directory server -repository-root/nysql -test/std dat a, issue the following
command.

openss| pkcsl2 -export -in client-cert.pem-inkey client-key.pem-certfile cacert.pem -out client.pfx

2. When asked for an export password, enter the password “pass”. The file cl i ent . pf x will be
generated. This file is used in the remainder of the tutorial.

Connecting to the Server Using a File-Based Certificate

1. Usetheclient. pf x file that you created in the previous step to authenticate the client. The
following example demonstrates how to connect using the Ssl Mode, Certifi cat eFi |l e, and
Certificat ePassword connection string options.

usi ng (MySqgl Connecti on connection = new MySgl Connect i on(
"dat abase=t est; user=sslclient;" +
"CertificateFile=H\\git\\mysql-trunk\\nysql -test\\std_data\\client.pfx;" +
"CertificatePassword=pass;" +
" Ssl Mbde=Required "))

{
}

connecti on. Open();

The path to the certificate file needs to be changed to reflect your individual installation. When using
PFX format certificates, the Ss| Mode connection option validates certificates for all SSL mode values,
except Di sabl ed or None (deprecated in Connector/NET 8.0.29).

133

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/connection-options.html#encrypted-connection-options
http://www.slproweb.com/products/Win32OpenSSL.html

Using PFX Certificates in Connector/NET

Connecting to the Server Using a Store-Based Certificate

1. The first step is to import the PFX file, cl i ent . pf x, into the Personal Store. Double-click the file in
Windows explorer. This launches the Certificate Import Wizard.

2. Follow the steps dictated by the wizard, and when prompted for the password for the PFX file, enter
“pass”.

3. Click Finish to close the wizard and import the certificate into the personal store.

Examining Certificates in the Personal Store

1. Start the Microsoft Management Console by entering nmt. exe at a command prompt.

2. Select Add/Remove snap-in from the File menu. Click Add. Select Certificates from the list of
available snap-ins.

3. Inthe dialog, click Add and then select the My user account option. This option is used for personal
certificates.

4. Click Finish.
5. Click OK to close the Add/Remove Snap-in dialog.

6. You now have Certificates — Current User displayed in the left panel of the Microsoft Management
Console. Expand the Certificates - Current User tree item and select Personal, Certificates. The right
panel displays a certificate issued to MySQL that was previously imported. Double-click the certificate
to display its details.

7. After you have imported the certificate to the Personal Store, you can use a more succinct connection
string to connect to the database, as illustrated by the following code:
usi ng (MySqgl Connecti on connection = new MySqgl Connect i on(
"dat abase=t est; user=sslclient;" +

"Certificate Store Location=CurrentUser;" +
" Ss| Mode=Requi red"))

{
}

connecti on. Open() ;

Certificate Thumbprint Parameter

If you have a large number of certificates in your store, and many have the same Issuer, this can be a
source of confusion and result in the wrong certificate being used. To alleviate this situation, there is an
optional Certificate Thumbprint parameter that can additionally be specified as part of the connection
string. As mentioned before, you can double-click a certificate in the Microsoft Management Console to
display the certificate's details. When the Certificate dialog is displayed click the Details tab and scroll
down to see the thumbprint. The thumbprint will typically be a number such as #47 94 36 00 9a 40 f3
01 7a 14 5c 8 47 9e 76 94 d7 aa de fO0. This thumbprint can be used in the connection string,
as the following code illustrates:

usi ng (MySql Connecti on connection = new MySql Connecti on(
"dat abase=t est; user=sslclient;" +
"Certificate Store Location=CurrentUser;" +
"Certificate Thunbprint=479436009a40f 3017al145cf 8479e7694d7aadef 0; " +
"SSL Mode=Required"))

connecti on. Open();

134

Tutorial: Using MySqlScript

Spaces in the thumbprint parameter are optional and the value is not case-sensitive.

6.8 Tutorial: Using MySqlScript

This tutorial teaches you how to use the MySql Scri pt class. This class enables you to execute a
series of statements. Depending on the circumstances, this can be more convenient than using the
My Sgl Conmmand approach.

Further details of the MySql Scri pt class can be found in the reference documentation supplied with
MySQL Connector/NET.

To run the example programs in this tutorial, set up a simple test database and table using the nysql
Command-Line Client or MySQL Workbench. Commands for the mysgl Command-Line Client are given
here:

CREATE DATABASE Test DB;

USE Test DB;

CREATE TABLE TestTable (id | NT NOT NULL PRI MARY KEY
AUTO _| NCREMENT, nane VARCHAR(100));

The main method of the MySql Scri pt class is the Execut e method. This method causes the script
(sequence of statements) assigned to the Query property of the MySqlScript object to be executed.
The Query property can be set through the MySql Scri pt constructor or by using the Query property.
Execut e returns the number of statements executed.

The MySql Scri pt object will execute the specified script on the connection set using the Connection
property. Again, this property can be set directly or through the MySql Scri pt constructor. The following
code snippets illustrate this:

string sql = "SELECT * FROM Test Tabl e";
MySql Scri pt script = new MySgl Scri pt(conn, sql);
MySqgl Scri pt script = new MySgl Script();

script. Query = sql;
scri pt. Connecti on = conn;

SCI’I pt. Execute();

The MySqlScript class has several events associated with it. There are:

1. Error - generated if an error occurs.

2. ScriptCompleted - generated when the script successfully completes execution.
3. StatementExecuted - generated after each statement is executed.

It is possible to assign event handlers to each of these events. These user-provided routines are called
back when the connected event occurs. The following code shows how the event handlers are set up.

script. Error += new MySql Scri pt Error Event Handl er (scri pt _Error);
script. Scri pt Conpl et ed += new Event Handl er (scri pt _Scri pt Conpl et ed) ;
scri pt. St at ement Execut ed += new MySqgl St at enent Execut edEvent Handl er (scri pt _St at ement Execut ed) ;

In VisualStudio, you can save typing by using tab completion to fill out stub routines. Start by typing, for
example, “script.Error +=". Then press TAB, and then press TAB again. The assignment is completed, and
a stub event handler created. A complete working example is shown below:

usi ng System
usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

135

Tutorial: Using MySqlScript

usi ng System Text;

usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

namespace MySgl Scri pt Test

{
cl ass Program
{
static void Main(string[] args)
{
string connStr = "server =l ocal host; user =r oot ; dat abase=Test DB; port =3306; passwor d=******x"
My Sgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
Consol e. Wi telLine("Connecting to MySQL...");
conn. Qpen();
string sql = "INSERT | NTO Test Tabl e(nanme) VALUES (' Superman');" +
"I NSERT | NTO Test Tabl e(nanme) VALUES (' Batman');" +
"I NSERT | NTO Test Tabl e(nanme) VALUES (' Wl verine');" +
"I NSERT | NTO Test Tabl e(nanme) VALUES (' Storm);";
MySql Scri pt script = new MySgl Scri pt (conn, sql);
script. Error += new MySql Scri pt Error Event Handl er (scri pt _Error);
script. Scri pt Conpl et ed += new Event Handl er (scri pt _Scri pt Conpl et ed) ;
scri pt. St at ement Execut ed += new MySqgl St at enent Execut edEvent Handl er (scri pt _St at ement Execut ed) ;
int count = script.Execute();
Consol e. WitelLine("Executed " + count + " statement(s).");
Console. WiteLine("Delimter: " + script.Delimter);
catch (Exception ex)
{
Consol e. WiteLine(ex. ToString());
}
conn. Cl ose();
Consol e. Wi teLi ne("Done.");
}
static void script_Statenment Execut ed(obj ect sender, MySgl Scri pt Event Args ar gs)
{
Consol e. WitelLine("script_Statenent Executed");
}
static void script_ScriptConpl et ed(obj ect sender, EventArgs e)
/1l EventArgs e will be EventArgs. Enmpty for this nethod
Consol e. WiteLine("script_ScriptConpleted!");
}
static void script_Error(Qoject sender, M/Sgl Scri pt Error Event Args ar gs)
{
Consol e. WiteLine("script_Error: " + args. Exception.ToString());
}
}
}

Inthe scri pt_Scri pt Conpl et ed event handler, the Event Ar gs parameter e will be
Event Ar gs. Enpt y. In the case of the Scri pt Conpl et ed event there is no additional data to be
obtained, which is why the event object is Event Ar gs. Enpt y.

136

Using Delimiters with MySqlScript

Using Delimiters with MySqlScript

Depending on the nature of the script, you may need control of the delimiter used to separate the
statements that will make up a script. The most common example of this is where you have a multi-

statement stored routine as part of your script. In this case if the default delimiter of “;” is used you will get
an error when you attempt to execute the script. For example, consider the following stored routine:

CREATE PROCEDURE t est_routine()

BEG N
SELECT nane FROM Test Tabl e ORDER BY nane;
SELECT COUNT(nanme) FROM Test Tabl e;

END

This routine actually needs to be executed on the MySQL Server as a single statement. However, with
the default delimiter of “;”, the MySql Scri pt class would interpret the above as two statements, the first
being:

CREATE PROCEDURE test_routine()
BEG N
SELECT name FROM Test Tabl e ORDER BY nane;

Executing this as a statement would generate an error. To solve this problem MySql Scri pt supports
the ability to set a different delimiter. This is achieved through the Delimiter property. For example, you
could set the delimiter to “??”, in which case the above stored routine would no longer generate an error
when executed. Multiple statements can be delimited in the script, so for example, you could have a three
statement script such as:

string sql = "DROP PROCEDURE | F EXI STS test_routine??" +
" CREATE PROCEDURE test _routine() " +
"BEG N " +

"SELECT nane FROM Test Tabl e ORDER BY nane;" +
"SELECT COUNT(nanme) FROM Test Table;" +
"END??" +

"CALL test _routine()";

You can change the delimiter back at any point by setting the Delimiter property. The following code shows
a complete working example:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

namespace Consol eApplication8

{

cl ass Program
{
static void Main(string[] args)
{
string connStr = "server =l ocal host; user =r oot ; dat abase=Test DB; port =3306; passwor d=******x"
MySgl Connecti on conn = new MySqgl Connecti on(connStr);

try
{
Consol e. Wi teLine("Connecting to MySQL...");
conn. Qpen();
string sql = "DROP PROCEDURE | F EXI STS test_routine??" +
" CREATE PROCEDURE test_routine() " +
"BEG N " +

137

Using Delimiters with MySqlScript

"SELECT nane FROM Test Tabl e ORDER BY nane; "

" SELECT COUNT(nane) FROM Test Table;" +
"END??" +
"CALL test_routine()";

MySql Scri pt script = new MySgl Scri pt (conn);

script. Query = sql;

script.Delimter = "?2?";

int count = script.Execute();

Consol e. WitelLi ne("Executed " + count + " statement(s)");
script.Delimter = ";";

Console. WiteLine("Delimter: " + script.Delimter);
Consol e. WiteLine("Query: " + script.Qery);

catch (Exception ex)

Consol e. WiteLine(ex. ToString());

conn. Cl ose();
Consol e. Wi telLi ne("Done.");

4L

138

Chapter 7 Connector/NET for Entity Framework

Table of Contents

7.1 Entity FrameWork 6 SUPPOIToeuii ettt e et e et e e et e e e et eeeaae s 139
7.2 Entity FrameWork COre SUPPOITveeiei ettt ettt e ettt e et e et e e e et e e e e ra e e e eaanes 145
7.2.1 Creating a Database with Code First in EF COrecc.uoiiiiiiiiiiiiiiieeeei e 147
7.2.2 Scaffolding an Existing Database in EF COreoooiiiiiieiiiiiiieecii e 150
7.2.3 Configuring Character Sets and Collations in EF COreccooooeeviiiiiiiiiinieeceecee e 152

Entity Framework is the name given to a set of technologies that support the development of data-oriented
software applications. MySQL Connector/NET supports Entity Framework 6.0 (EF6 or EF 6.4) and Entity
Framework Core (EF Core), which is the most recent framework available to .NET developers who work
with MySQL data using .NET objects.

The following sections describe how Entity Framework and Entity Framework Core are supported by the
Connector/NET series supports the release. Notice that backward compatibility of each feature set is
determined by the framework rather than by Connector/NET.

7.1 Entity Framework 6 Support

MySQL Connector/NET integrates support for Entity Framework 6 (EF6), which now includes support for
cross-platform application deployment with the EF 6.4 version. This chapter describes how to configure
and use the EF6 features that are implemented in Connector/NET.

In this section:

e Minimum Requirements for EF6 on Windows Only

* Minimum Requirements for EF 6.4 with Cross-Platform Support
» Configuration

* EF6 Features

» Code First Features

» Example for Using EF6

Minimum Requirements for EF6 on Windows Only

» Connector/NET 6.10 or 8.0.11
« MySQL Server 5.6
* Entity Framework 6 assemblies

* .NET Framework 4.6.2

Minimum Requirements for EF 6.4 with Cross-Platform Support

» Connector/NET 8.0.22
* MySQL Server 5.6

 Entity Framework 6.4 assemblies

139

Configuration

e .NET Standard 2.1 (.NET Core SDK 3.1 and Visual Studio 2019 version 16.5)

Configuration
Note

The MySQL Connector/NET 8.0 release series has a naming scheme for EF6
assemblies and NuGet packages that differs from the scheme used with previous
release series, such as 6.9 and 6.10. To configure Connector/NET 6.9 or 6.10 for
use with EF6, substitute the assembly and package names in this section with the
following:

e Assembly: MySqgl . Dat a. Entity. EF6

¢ NuGet package: \ySql . Dat a. Entity

For more information about the MySql . Dat a. Ent i t y NuGet package and its
uses, see https://www.nuget.org/packages/MySql.Data.Entity/.

To configure Connector/NET support for EF6:

1. Edit the configuration sections in the app. confi g file to add the connection string and the Connector/
NET provider.

<connectionStri ngs>
<add nanme="MContext" provi der Name="M/Sql . Data. MySql Cl i ent"
connectionString="server =l ocal host; port =3306; dat abase=mycont ext ; ui d=r oot ; passwor d=******xx" />
</ connecti onStri ngs>
<enti t yFr amewor k>
<def aul t Connecti onFactory type="System Data. Entity.|nfrastructure. Sgl Connecti onFactory, EntityFramewor k
<provi der s>
<provi der invariant Name="M/Sql . Data. MySgl Cl i ent"
type="M/Sql . Data. MySql C i ent. MySql Provi der Servi ces, MySql . Dat a. Enti t yFr amewor k"/ >
<provi der invariant Nanme="System Data. Sql Cl i ent"
type="System Dat a. Entity. Sql Server. Sql Provi der Servi ces, EntityFramework. Sql Server"/>
</ provi der s>
</ entityFramewor k>

2. Apply the assembly reference using one of the following techniques:

¢ NuGet package. Install the NuGet package to add this reference automatically to the
app. confi g orweb. confi g file during the installation. For example, to install the package for
Connector/NET 8.0.22, use one of the following installation options:

e Command Line Interface (CLI)
dot net add package MySqgl . Data. EntityFramework -Version 8.0.22
« Package Manager Console (PMC)

I nstal |l -Package MySql . Dat a. EntityFramework -Version 8.0.22

« Visual Studio with NuGet Package Manager. For this option, select nuget . org
as the package source, search for mysql . dat a, and install a stable version of
MySql . Dat a. Ent i t yFr amewor K.

¢ MySQL Connector/NET MSI file. Install MySQL Connector/NET and then add a reference for the
MySql . Dat a. Ent i t yFr amewor k assembly to your project. Depending on the .NET Framework
version used, the assembly is taken from the v4. 0, v4. 5, or v4. 8 folder.

140

https://www.nuget.org/packages/MySql.Data.Entity/

EF6 Features

 MySQL Connector/NET source code. Build Connector/NET from source and then insert the
following data provider information into the app. confi g or web. confi g file:

<syst em dat a>
<DbPr ovi der Fact ori es>
<renove invariant="M/Sgl.Data. \ySgl Client" />

<add nanme="MySQ. Data Provider" invariant="M/Sgl.Data. MySgl Client" description=".Net Framework L
type="M/Sql . Data. MySgl Cl i ent. MySql C i ent Factory, MySqgl . Data, Version=8.0.22.0, Culture=neut

</ DbPr ovi der Fact ori es>
</ syst em dat a>

Important

Always update the version number to match the one in the MySql . Dat a. dl |
assembly.

3. Setthe new DbConfi gur at i on class for MySQL. This step is optional but highly recommended,

because it adds all the dependency resolvers for MySQL classes. This can be done in three ways:

¢ Adding the DbConf i gurati onTypeAtt ri but e on the context class:

[DbConf i gur ati onType(typeof (MySql EFConfi guration))]

» Calling DbConf i gurati on. Set Confi gurati on(new MySql EFConfi guration()) atthe
application start up.

e Setthe DbConf i gur at i on type in the configuration file:

<entityFramewor k codeConfigurati onType="M/Sqgl.Data. Entity. MySgl EFConfi gurati on, MySgl.Data. EntityFran

It is also possible to create a custom DbConf i gur at i on class and add the dependency resolvers
needed.

EF6 Features

Following are the new features in Entity Framework 6 implemented in Connector/NET:

Cross-platform support in Connector/NET 8.0.22 implements EF 6.4 as the initial provider version to
include Linux and macOS compatibility with .NET Standard 2.1 from Microsoft.

Async Query and Save adds support for the task-based asynchronous patterns that have been available
since .NET 4.5. The new asynchronous methods supported by Connector/NET are:

e Execut eNonQuer yAsync
¢ Execut eScal ar Async
e PrepareAsync

Connection Resiliency / Retry Logic enables automatic recovery from transient connection failures. To
use this feature, add to the OnCr eat eMbdel method:

Set Execut i onSt r at egy(MySql Provi der | nvari ant Nanme. Provi der Name, () => new MySgl ExecutionStrategy());

Code-Based Configuration gives you the option of performing configuration in code, instead of
performing it in a configuration file, as it has been done traditionally.

Dependency Resolution introduces support for the Service Locator. Some pieces of functionality that can
be replaced with custom implementations have been factored out. To add a dependency resolver, use:

141

EF6 Features

AddDependencyResol ver (new MySqgl DependencyResol ver ());

The following resolvers can be added:

e DbProviderFactory -> MySql i ent Factory

e | DbConnecti onFactory -> MySqgl Connecti onFact ory

e MgrationSql Generator -> MySql M grationSgl Gener at or
e DbProvi der Servi ces -> MySql Provi der Servi ces

e | Providerlnvariant Nane -> MySql Provi der | nvari ant Nane

| DbProvi der Fact or yResol ver -> MySql Provi der Fact or yResol ver
e | Mani f est TokenResol ver -> MySql Mani f est TokenResol ver

« | DbModel CacheKey -> MySql Mbdel CacheKeyFact ory

e | DbExecutionStrategy -> MySql Executi onStrat egy

* Interception/SQL logging provides low-level building blocks for interception of Entity Framework
operations with simple SQL logging built on top:

nmyCont ext . Dat abase. Log = del egate(string nessage) { Console. Wite(nessage); };

» DbContext can now be created with a DbConnection that is already opened, which enables scenarios
where it would be helpful if the connection could be open when creating the context (such as sharing a
connection between components when you cannot guarantee the state of the connection)

[DbConf i gurati onType(typeof (M/Sql EFConfi guration))]
cl ass JourneyCont ext : DbCont ext

publ i c DbSet <MyPl ace> MyPl aces { get; set; }

publ i ¢ Jour neyCont ext ()
base()

}

publ i ¢ Jour neyCont ext (DbConnecti on exi sti ngConnecti on, bool context OmsConnecti on)
base(exi sti ngConnecti on, context OmsConnecti on)
{

}
}

usi ng (MySgl Connecti on conn = new MySgl Connecti on("<connectionString>"))
conn. Open() ;
usi ng (var context = new Jour neyContext (conn, false))
{

..
}

» Improved Transaction Support provides support for a transaction external to the framework as
well as improved ways of creating a transaction within the Entity Framewaork. Starting with Entity

142

Code First Features

Framework 6, Dat abase. Execut eSqgl Conmand() will wrap by default the command in a transaction
if one was not already present. There are overloads of this method that allow users to override this
behavior if wished. Execution of stored procedures included in the model through APIs such as

(hj ect Cont ext . Execut eFuncti on() does the same. It is also possible to pass an existing
transaction to the context.

» DbSet.AddRange/RemoveRange provides an optimized way to add or remove multiple entities from a
set.

Code First Features

Following are new Code First features supported by Connector/NET:

» Code First Mapping to Insert/Update/Delete Stored Procedures supported:

nmodel Bui | der. Entity<EntityType>().MapToSt or edProcedures();

» Idempotent migrations scripts allow you to generate an SQL script that can upgrade a database
at any version up to the latest version. To do so, run the Updat e- Dat abase - Script -
SourceM gration: $lnitial Dat abase command in Package Manager Console.

» Configurable Migrations History Table allows you to customize the definition of the migrations history
table.

Example for Using EF6

The following C# code example represents the structure of an Entity Framework 6 model.

using MySql . Data. Entity;
usi ng System Dat a. Conmon;
using System Data. Entity;

nanespace EF6

{
/| Code-Based Configurati on and Dependency resol ution

[DbConfi gurati onType(typeof (MySql EFConfi gurati on))]
public class Parking : DbContext

{
public DbSet<Car> Cars { get; set; }

publ i c Parking()
base()

{
}

/'l Constructor to use on a DbConnection that is already opened
publ i ¢ Par ki ng(DbConnecti on exi stingConnection, bool contextOamsConnecti on)
base(exi sti ngConnecti on, context OmsConnecti on)

{
}

protected override voi d OnModel Creati ng(Dbibdel Bui | der nodel Bui | der)
{
base. OnModel Cr eat i ng(nodel Bui | der) ;
nodel Bui | der. Entity<Car>().MapToSt or edPr ocedures();
}
}

public class Car

{
public int Carld { get; set; }

143

Example for Using EF6

public string Mddel { get; set; }
public int Year { get; set; }
public string Manufacturer { get; set; }

}
}

The C# code example that follows shows how to use the entities from the previous model in an application
that stores the data within a MySQL table.

using MySql . Data. MySgl d i ent ;

usi ng System

usi ng System Col | ecti ons. Generi c;

nanespace EF6

{
cl ass Exanpl e
{
public static void Execut eExanpl e()
{
string connectionString = "server=l ocal host; port =3305; dat abase=par ki ng; ui d=r oot ";

usi ng (MySql Connecti on connection = new MySgl Connecti on(connectionString))

/] Create database if not exists
usi ng (Parking contextDB = new Par ki ng(connection, false))

{
}

cont ext DB. Dat abase. Cr eat el f Not Exi st s() ;

connecti on. Open();
MySgl Transacti on transacti on = connecti on. Begi nTransacti on();

try

/1 DbConnection that is already opened
usi ng (Parking context = new Parking(connection, false))

{

/'l Interception/SQL | ogging
cont ext . Dat abase. Log = (string nmessage) => { Consol e. WiteLi ne(nmessage); };

/] Passing an existing transaction to the context
cont ext . Dat abase. UseTr ansacti on(transacti on);

/| DbSet.AddRange
Li st<Car> cars = new List<Car>();

cars. Add(new Car { Manufacturer = "N ssan", Mdel = "370Z", Year = 2012 });
cars. Add(new Car { Manufacturer = "Ford", Mdydel = "Mistang", Year = 2013 });
cars. Add(new Car { Manufacturer = "Chevrolet", Mdel = "Camaro", Year = 2012 });
cars. Add(new Car { Manufacturer = "Dodge", Mdel = "Charger", Year = 2013 });

cont ext . Car s. AddRange(car s) ;

cont ext . SaveChanges() ;

}
transaction. Conmit();
}
cat ch
{
transacti on. Rol | back();
t hr ow,
}

144

Entity Framework Core Support

}

}
}
}

7.2 Entity Framework Core Support

MySQL Connector/NET integrates support for Entity Framework Core (EF Core). The requirements and
configuration of EF Core depend on the version of Connector/NET installed and the features that you
require. Use the table that follows to evaluate the minimum requirements.

Table 7.1 Connector/NET Versions and Entity Framework Core Support

Connector/NET EF Core 10.0 preview EF Core 9.0 EF Core 8.0
9.4.0 .NET 10 preview .NET 9, .NET 8 Not supported
9.3.0 Not supported .NET 9, .NET 8 Not supported
9.2.0 Not supported .NET 9, .NET 8 Not supported
9.1.0 Not supported .NET 9 preview, .NET Not supported
8, .NET 6
9.0.0 Not supported .NET 8, .NET 6 Not supported
8.3.0 and 8.4.0 Not supported Not supported .NET 8, .NET 7, .I
8.2.0 Not supported Not supported .NET 8 preview
8.1.0 Not supported Not supported Not supported
8.0.33 Not supported Not supported Not supported
8.0.28 Not supported Not supported Not supported
8.0.23t0 8.0.27 Not supported Not supported Not supported

n this section:

* Limitations

package):

Configuration with MySQL

Maximum String Length

General Requirements for EF Core Support

General Requirements for EF Core Support

Server version: MySQL 8.0 or later

e WSql . EntityFranmewor kCor e 8.0.n+MySQL8.n

« MySql . EntityFramewor kCor e 6.0.n+MySQL8.n

Table 7.1, “Connector/NET Versions and Entity Framework Core Support”)

* .NET 8.0 for all supported platforms:

.NET | .NET Core SDK

Entity Framework Core packages (replace n with a valid number to complete the full version of the

An implementation of .NET Standard or .NET Framework that is supported by Connector/NET (see

https://dotnet.microsoft.com/es-es/download/dotnet/8.0

145

https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://dotnet.microsoft.com/platform/dotnet-standard#versions
https://dotnet.microsoft.com/es-es/download/dotnet/8.0

Configuration with MySQL

* .NET 6.0 for all supported platforms: https://dotnet.microsoft.com/download/dotnet/6.0
¢ .NET Core for Microsoft Windows: https://www.microsoft.com/net/core#windowscmd
¢ .NET Core for Linux: https://www.microsoft.com/net/core#linuxredhat
¢ .NET Core for macOS: https://www.microsoft.com/net/core#macos
e Docker: https://www.microsoft.com/net/core#dockercmd
» Optional: Microsoft Visual Studio 2017, 2019, 2022, or Code
Note

For the minimum version of Visual Studio to use with Connector/NET, see
Table 2.1, “Connector/NET Requirements for Related Products”.

Configuration with MySQL

To use Entity Framework Core with a MySQL database, do the following:
1. Install the NuGet package.

When you install either the MySql . Ent i t yFr anewor kCor e or

MySql . Dat a. Ent i t yFr amewor kCor e package, all of the related packages required to run your
application are installed for you. For instructions on adding a NuGet package, see the relevant
Microsoft documentation.

2. In the class that derives from the DbCont ext class, override the OnConf i gur i ng method to set the
MySQL data provider with UseMy SQL. The following example shows how to set the provider using a
generic connection string in C#.

protected override void OnConfi guri ng(DbCont ext Opti onsBui | der opti onsBui |l der)
{

#warning To protect potentially sensitive information in your connection string,
you shoul d nove it out of source code. See http://go.mcrosoft.com fwink/?Linkld=723263
for guidance on storing connection strings.

opti onsBui | der. UseMySQL("ser ver =l ocal host ; dat abase=l i brary; user =user ; passwor d=passwor d") ;

}

Limitations

The Connector/NET implementation of EF Core has the following limitations:

e Memory-Optimized Tables is not supported.

Maximum String Length

The following table shows the maximum length of string types supported by the Connector/NET
implementation of EF Core. Length values are in bytes for nonbinary and binary string types, depending on
the character set used.

Table 7.2 Maximum Length of strings used with Entity Framework Core

Data Type Maximum Length .NET Type
CHAR 255 string
Bl NARY 255 byte[]

146

https://dotnet.microsoft.com/download/dotnet/6.0
https://www.microsoft.com/net/core#windowscmd
https://www.microsoft.com/net/core#linuxredhat
https://www.microsoft.com/net/core#macos
https://www.microsoft.com/net/core#dockercmd
https://docs.microsoft.com/en-us/nuget/quickstart/use-a-package#add-the-newtonsoftjson-nuget-package

Creating a Database with Code First in EF Core

Data Type Maximum Length .NET Type
VARCHAR, VARBI NARY 65,535 string, byte[]
TI NYBLOB, TI NYTEXT 255 byt e[]

BLOB, TEXT 65,535 byt e[]

MEDI UVBLOB, MEDI UMTEXT 16,777,215 byt e[]

LONGBL OB, LONGTEXT 4,294,967,295 byt e[]

ENUM 65,535 string

SET 65,535 string

For additional information about the storage requirements of the string types, see String Type Storage
Requirements.

7.2.1 Creating a Database with Code First in EF Core

The Code First approach enables you to define an entity model in code, create a database from the model,
and then add data to the database. MySQL Connector/NET is compatible with multiple versions of Entity
Framework Core. For specific compatibility information, see Table 7.1, “Connector/NET Versions and
Entity Framework Core Support”.

The following example shows the process of creating a database from existing code. Although this
example uses the C# language, you can use any .NET language and run the resulting application on
Windows, macOS, or Linux.

1. Create a console application for this example.

a. Initialize a valid .NET Core project and console application using the .NET Core command-line
interface (CLI) and then switch to the newly created folder (mysql ef cor e).

dot net new consol e —o nysgql ef core

cd nysql ef core

b. Addthe MySql . Enti t yFr amewor kCor e package to the application by using the dotnet CLI or the
Package Manager Console in Visual Studio.

dotnet CLI

Enter the following command to add the MySQL EF Core 7.0 package for use with Connector/NET
8.0.33 and later.

dot net add package MySqgl . EntityFrameworkCore --version 7.0.2
Package Manager Console

Enter the following command to add the MySQL EF Core 7.0 package for use with Connector/NET
8.0.33 and later.

Instal | - Package MySql . EntityFranewor kCore -Version 7.0.2

c. Restore dependencies and project-specific tools that are specified in the project file as follows:

dotnet restore

2. Create the model and run the application.

147

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/storage-requirements.html#data-types-storage-reqs-strings
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/storage-requirements.html#data-types-storage-reqs-strings

Creating a Database with Code First in EF Core

The model in this example is to be used by the console application. It consists of two entities related to
a book library that are configured in the Li br ar yCont ext class (or database context).

a. Create a new file named Li br ar yModel . cs and then add the following Book and Publ i sher
classes to the nmysql ef cor e namespace.

nanmespace nysql efcore

public class Book

{

public string | SBN { get; set; }

public string Title { get; set; }

public string Author { get; set; }

public string Language { get; set; }

public int Pages { get; set; }

public virtual Publisher Publisher { get; set; }
}
public class Publisher
{

public int ID{ get; set; }

public string Name { get; set; }

public virtual |Collection<Book> Books { get; set; }
}

}

b. Create a new file named Li br ar yCont ext . cs and add the code that follows. Replace the generic
connection string with one that is appropriate for your MySQL server configuration.

Note

The MySQL. Ent i t yFr anewor kCor e. Ext ensi ons namespace applies
to Connector/NET 8.0.23 and later. Earlier connector versions require the
MySQL. Dat a. Ent i t yFr anewor kCor e. Ext ensi ons namespace.

using M crosoft.EntityFranmewor kCor e;
using MySQ.. Enti t yFr amewor kCor e. Ext ensi ons;

nanespace nysql ef core
public class LibraryContext : DbContext
publ i c DbSet <Book> Book { get; set; }
publ i c DbSet <Publ i sher> Publisher { get; set; }

protected override void OnConfi guri ng(DbCont ext Opti onsBui | der opti onsBuil der)

{
opti onsBui | der. UseMySQ_("server =| ocal host ; dat abase=l i brary; user =user; passwor d=passwor d") ;
}
protected override voi d OnModel Creati ng(Model Bui | der nodel Bui | der)
{

base. OnModel Cr eat i ng(nodel Bui | der) ;
nodel Bui | der. Enti t y<Publ i sher>(entity =>

entity. HasKey(e => e.ID);
entity. Property(e => e.Nane).|sRequired();
P

nodel Bui | der. Enti t y<Book>(entity =>
{

148

Creating a Database with Code First in EF Core

}

}

}

entity. HasKey(e => e. | SBN);

entity.Property(e => e.Title).lsRequired();

entity. HasOne(d => d. Publ i sher)
.WthMvany(p => p. Books);

});

The Li br ar yCont ex class contains the entities to use and it enables the configuration of specific

attributes of the model, such as Key, required columns, references, and so on.

Insert the following code into the existing Pr ogr am cs file, replacing the default C# code.

using M crosoft. EntityFramewor kCor e;
usi ng System
usi ng System Text;

nanmespace nysql ef core

{

cl ass Program

{

static void Main(string[] args)

}

InsertData();
PrintData();

private static void |InsertData()

{

usi ng(var context = new LibraryContext())

{

/'l Creates the database if not exists

cont ext . Dat abase. Ensur eCr eat ed() ;

/! Adds a publisher
var publisher = new Publisher

{

Name = "Mari ner Books"
b
cont ext . Publ i sher. Add(publ i sher);

/1 Adds sone books
cont ext . Book. Add(new Book

I SBN = "978-0544003415",

Title = "The Lord of the R ngs",

Author = "J.R R Tol ki en",
Language = "English",
Pages = 1216,
Publ i sher = publ i sher

1)

cont ext . Book. Add(new Book

I SBN = "978-0547247762",
Title = "The Seal ed Letter",

Aut hor = "Emma Donoghue",
Language = "English",
Pages = 416,

Publ i sher = publ i sher
1)

/| Saves changes
cont ext . SaveChanges() ;

149

Scaffolding an Existing Database in EF Core

private static void PrintData()
{
/'l Gets and prints all books in database
using (var context = new LibraryContext())
{
var books = cont ext. Book
.Include(p => p. Publisher);
foreach(var book in books)
{
var data = new StringBuilder();
dat a. AppendLi ne($"| SBN: {book. | SBN}");
dat a. AppendLi ne($"Title: {book.Title}");
dat a. AppendLi ne($" Publ i sher: {book. Publisher. Nanme}");
Consol e. Wi telLi ne(data. ToString());

d. Use the following CLI commands to restore the dependencies and then run the application.
dotnet restore

dot net run

The output from running the application is represented by the following example:

I SBN: 978-0544003415
Title: The Lord of the R ngs
Publ i sher: Mariner Books

| SBN: 978- 0547247762
Title: The Seal ed Letter
Publ i sher: Mariner Books

7.2.2 Scaffolding an Existing Database in EF Core

Scaffolding a database produces an Entity Framework model from an existing database. The resulting
entities are created and mapped to the tables in the specified database. For an overview of the
requirements to use EF Core with MySQL, see Table 7.1, “Connector/NET Versions and Entity Framework
Core Support”).

NuGet packages have the ability to select the best target for a project, which means that NuGet installs the
libraries related to that specific framework version.

There are two different ways to scaffold an existing database:
» Scaffolding a Database Using .NET Core CLI

» Scaffolding a Database Using Package Manager Console in Visual Studio

This section shows how to scaffold the saki | a database using both approaches. Additional scaffolding
techniques are:

» Scaffolding a Database by Filtering Tables

» Scaffolding with Multiple Schemas

150

Scaffolding an Existing Database in EF Core

Requirements

For the components needed to reproduce each scaffolding approach, see General Requirements for EF
Core Support. With the Package Manager Console approach, determine which version of Visual Studio is
recommended for the version of .NET or .NET Core in use (see Table 2.1, “Connector/NET Requirements
for Related Products”).

To download saki | a database, see https://dev.mysql.com/doc/sakila/en/.

Note

When upgrading ASP.NET Core applications to a newer framework, be sure to use
the appropriate EF Core version (see https://docs.microsoft.com/en-us/aspnet/core/
migration/30-to-31?view=aspnetcore-3.1).

Scaffolding a Database Using .NET Core CLI

1.

Initialize a valid .NET Core project and console application using the .NET Core command-line interface
(CLI) and then change to the newly created folder (saki | aConsol e).

dot net new consol e —o saki | aConsol e

cd saki | aConsol e

Add the MySQL NuGet package for EF Core using the CLI. For example, use the following command to
add the MySQL EF Core 7.0 package for use with Connector/NET 8.0.33 and later.

dot net add package MySql . EntityFramewor kCore --version 7.0.2

Add the following M cr osof t. Enti t yFr amewor kCor e. Desi gn Nuget package:

dot net add package M crosoft. EntityFramewor kCore. Tool s

Restore dependencies and project-specific tools that are specified in the project file as follows:
dotnet restore

Create the Entity Framework Core model by executing the following command. The connection string
for this example must include dat abase=saki | a. For information about using connection strings, see
Section 4.1, “Creating a Connector/NET Connection String”.

Note

If you are using a connector version earlier than Connector/
NET 8.0.23, replace MySql . Ent i t yFr amewor kCor e with
MySql . Dat a. Ent i t yFr anewor kCor e.

dot net ef dbcontext scaffold "connection-string" MySql.EntityFrameworkCore -0 sakila -f

To validate that the model has been created, open the new saki | a folder. You should see files
corresponding to all tables mapped to entities. In addition, look for the saki | aCont ext . cs file, which
contains the DbCont ext for this database.

Scaffolding a Database Using Package Manager Console in Visual Studio

1.
2.

Open Visual Studio and create a new Console App (.NET Core) for C#.

Add the MySQL NuGet package for EF Core using the Package Manager Console. For example, use
the following command to add the MySQL EF Core 7.0 package for use the Connector/NET 8.0.33 and
later.

151

https://dev.mysql.com/doc/sakila/en/
https://docs.microsoft.com/en-us/aspnet/core/migration/30-to-31?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/30-to-31?view=aspnetcore-3.1

Configuring Character Sets and Collations in EF Core

I nstal | - Package MySql . Enti t yFramewor kCore -Version 7.0.2

3. Install the following NuGet package by selecting either Package Manager Console (or Manage
NuGet Packages for Solution and then NuGet Package Manager) from the Tools menu:
M crosoft. EntityFramewor kCor e. Tool s.

4. Open Package Manager Console and enter the following command at the prompt to create the
entities and DbCont ext for the saki | a database. The connection string for this example must include
dat abase=saki | a. For information about using connection strings, see Section 4.1, “Creating a
Connector/NET Connection String”.

Note

If you are using a connector version earlier than Connector/
NET 8.0.23, replace MySql . Ent i t yFr amewor kCor e with
MySql . Dat a. Ent i t yFr anewor kCor e.

Scaf f ol d- DbCont ext "connection-string" MySql.EntityFraneworkCore -QutputDir sakila -f

Visual Studio creates a new saki | a folder inside the project, which contains all the tables mapped to
entities and the saki | aCont ext . cs file.

Scaffolding a Database by Filtering Tables

It is possible to specify the exact tables in a schema to use when scaffolding database and to omit the rest.
The command-line examples that follow show the parameters needed for filtering tables. The connection
string for this example must include dat abase=saki | a.

If you are using a connector version earlier than Connector/NET 8.0.23, replace
MySql . Enti t yFr amewor kCor e with MySql . Dat a. Enti t yFr anewor kCor e.

.NET Core CLI:

dot net ef dbcontext scaffold "connection-string" MySql.EntityFrameworkCore -0 sakila -t actor -t film-t film

Package Manager Console in Visual Studio:

Scaf f ol d- DbCont ext "connection-string" M/Sql.EntityFrameworkCore -QutputDir Sakila -Tables actor,filmlanguage
Scaffolding with Multiple Schemas

When scaffolding a database, you can use more than one schema or database. Note that the account
used to connect to the MySQL server must have access to each schema to be included within the context.

The following command-line examples show how to incorporate the saki | a and wor | d schemas
within a single context. If you are using a connector version earlier than Connector/NET 8.0.23, replace
MySql . Enti t yFr amewor kCor e with MySql . Dat a. Ent i t yFr amewor kCor e.

.NET Core CLI:

dot net ef dbcontext scaffold "connection-string" M/Sqgl.EntityFrameworkCore -0 sakila --schema sakila --schema

Package Manager Console in Visual Studio:

Scaf f ol d- DbCont ext "connection-string” M/Sql.EntityFrameworkCore -CQutputDir Sakila -Schemas sakila,world -f

7.2.3 Configuring Character Sets and Collations in EF Core

152

Configuring Character Sets and Collations in EF Core

This section describes how to change the character set, collation, or both at the entity and entity-property
level in an Entity Framework (EF) Core model. Modifications made to the model affect the tables and
columns generated from your code.

There are two distinct approaches available for configuring character sets and collations in code-first
scenarios. Data annotation enables you to apply attributes directly to your EF Core model. Alternatively,
you can override the OnMbdel Cr eat i ng method on your derived DbCont ext class and use the code-first
fluent API to configure specific characteristics of the model. An example of each approach follows.

For more information about supported character sets and collations, see Character Sets and Collations in
MySQL.

Using Data Annotation

Before you can annotate an EF Core model with character set and collation attributes, add a reference to
the following namespace in the file that contains your entity model.

Note

The MySQL. Ent i t yFr amewor kCor e. Dat aAnnot at i ons namespace applies
to Connector/NET 8.0.23 and later. Earlier connector versions require the
MySQL. Dat a. Ent i t yFr anmewor kCor e. Dat aAnnot at i ons namespace.

usi ng MySql . Enti t yFr amewor kCor e. Dat aAnnot at i ons;

Add one or more [MySqgl Char set] attributes to store data using a variety of character sets and one
ormore [MySql Col | ati on] attributes to perform comparisons according to a variety of collations.
In the following example, the Conpl exKey class represents an entity (or table) and Key1, Key2, and
Col | at i onCol unm represent entity properties (or columns).

[MySgl Charset ("utf8")]
public class Conpl exKey

{
[MySgl Charset ("l atinl")
public string Keyl { get; set; }

[MySgl Charset ("l atinl")]
public string Key2 { get; set; }

[MySqgl Col I ation("latinl_spanish_ci")]

public string CollationColum { get; set; }
}

Using the Code-First Fluent API
Add the following directive to reference the methods related to character set and collation configuration.
Note

The MySQL. Ent i t yFr amewor kCor e. Ext ensi ons namespace applies
to Connector/NET 8.0.23 and later. Earlier connector versions require the
MySQL. Dat a. Ent i t yFr anewor kCor e. Ext ensi ons namespace.

using MySQ.. Enti t yFr amewor kCor e. Ext ensi ons;

When using the fluent APl approach, the EF Core model remains unchanged. Fluent API overrides any
rule set by an attribute.

public class Conpl exKey

153

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/charset-mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/charset-mysql.html

Configuring Character Sets and Collations in EF Core

{

public string Keyl { get; set; }

public string Key2 { get; set; }

public string CollationColum { get; set; }
}

In this example, the entity and various entity properties are reconfigured, including the conventional
mappings to character sets and collations. This approach uses the For MySQLHas Char set and
For M\ySQLHasCol | at i on methods.
public class M/Context : DbContext
{

publ i ¢ DbSet <Conpl exKey> Conpl exKeys { get; set; }

protected override voi d OnModel Creati ng(Model Bui | der nodel Bui | der)

{
nodel Bui | der. Enti t y<Conpl exKey>(e =>
{
e. HasKey(p => new { p.Keyl, p.Key2 });
e. For MySQLHasCol | ati on("ascii_bin"); // defining collation at Entity |evel
e. Property(p => p. Keyl). For ySQ.HasCharset ("l atinl"); // defining charset in a property
e. Property(p => p. Col | ati onCol utmFA) . For MySQ.HasCol | ati on("utf8_bin"); // defining collation in a proper
)i
}

154

Table of Contents

8.1 MySql.Data.Common.DnsClient
8.2 MySql.Data.MySqIClient Namespace

8.5 MySql.Data.MySqlClient.Replication Namespace
8.6 MySql.Data.Types Namespaceccceueeenn.
8.7 MySql.Data.EntityFramework Namespace
8.8 Microsoft.EntityFrameworkCore Namespace
8.9 MySql.EntityFrameworkCore Namespace
8.10 MySql.Web Namespace

8.3 MySql.Data.MySqlClient.Authentication Namespace
8.4 MySql.Data.MySq|lClient.Interceptors Namespace

Chapter 8 Connector/NET API Reference

This chapter provides a high-level reference to the ADO.NET and .NET Core components that are
implemented in the most recent version of Connector/NET. For a complete API listing, visit MySQL

Documentation to locate the Connector/NET 8.0 API
documentation.

8.1 MySqgl.Data.Common.DnsClient

Enumerations

reference guide that is generated from embedded

Enumeration

Description

OPCode

DNS Record OpCode. A four bit field that specifies
kind of query in this message. This value is set

by the originator of a query and copied into the
response.

Classes

8.2 My Sql.Data.MySqlClient Namespace

Class

Description

Aut hent i cati onPl ugi nConfi gurati onEl enen

[Retrieves the authentication plugin configuration
from the configuration file.

BaseCommrandl nt er cept or

Provides a means of enhancing or replacing SQL
commands through the connection string rather than
recompiling.

BaseTabl eCache

Provides a base class used for the table cache.

Char act er Set

Specifies a character set.

Generi cConfi gurati onEl enent Col | ecti on<T

PRetrieves an element collection from the
configuration file.

I nt er cept or Confi gur ati onEl enent

Class used in the configuration file to get
configuration details for interceptors.

MySql Attribute

Represents a query attribute to a MySqglCommand.

155

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/

Classes

Class

Description

MySql Attri but eCol | ection

Represents a collection of query attributes relevant
to a MySqglCommand.

My Sql BaseConnecti onStri ngBui | der

Abstract class that provides common functionality
for connection options that apply for all protocols.

MySql Bul kLoader

Load many rows into the database.

MySql C i ent Fact ory

Represents the DBPr ovi der Fact ory
implementation for MySqlClient.

MySqgl C i ent Perm ssi on

Derived from the .NET DBDataPermission class.
For usage information, see Section 5.7, “Working
with Partial Trust / Medium Trust”.

MySql C i ent Perm ssionAttribute

Associates a security action with a custom security
attribute.

My Sql Comand

Represents an SQL statement to execute against a
MySQL database. This class cannot be inherited.

My Sql CommandBui | der

Automatically generates single-table commands
used to reconcile changes made to a data set with
the associated MySQL database. This class cannot
be inherited.

MySqgl Confi guration

Defines a configuration section that contains the
information specific to MySQL.

MySql Connecti on

Represents an open connection to a MySQL Server
database. This class cannot be inherited.

MySql Connecti onSt ri ngBui | der

Defines all of the connection string options that can
be used.

My Sql Dat aAdapt er

Represents a set of data commands and a database
connection that are used to fill a data set and update
a MySQL database. This class cannot be inherited.

My Sql Dat aReader

Provides a means of reading a forward-only stream
of rows from a MySQL database. This class cannot
be inherited.

MySql Error

Collection of error codes that can be returned by the
server

MySql Excepti on

The exception that is thrown when MySQL returns
an error. This class cannot be inherited.

My Sql Hel per

Helper class that makes it easier to work with the
provider.

MySql | nf oMessageEvent Ar gs

Provides data for the | nf oMessage event. This
class cannot be inherited.

My Sql Par anet er

Represents a parameter to a

MySql . Dat a. MySgl Cl i ent. MySql Cormand, and
optionally, its mapping to columns in a dataset. This
class cannot be inherited.

MySql Par anet er Col | ecti on

Represents a collection of parameters relevant to a
MySql . Dat a. MySgl Cl i ent . MySql Cormand as

156

http://msdn.microsoft.com/en-us/library/system.data.common.dbdatapermission.aspx

Delegates

Class Description

well as their respective mappings to columns in a
dataset. This class cannot be inherited.

My Sql RowUpdat edEvent Ar gs Provides data for the RowUpdat ed event. This class
cannot be inherited.

My Sql RowUpdat i ngEvent Ar gs Provides data for the RowUpdat i ng event. This
class cannot be inherited.

MySql SchenaCol | ecti on Contains information about a schema.

My Sql SchenmaRow Represents a row within a schema.

MySql Scri pt Provides a class capable of executing an SQL

script containing multiple SQL statements including
CREATE PROCEDURE statements that require
changing the delimiter.

MySql Scri pt Error Event Ar gs Provides an error event argument used in
MySqlScript.

MySql Scri pt Event Ar gs Provides an event argument used in MySqlScript.

MySql SecurityPerni ssion Creates permission sets.

MySql Trace Logs events in a defined listener.

MySql Tr ansacti on Represents an SQL transaction to be made in a

MySQL database. This class cannot be inherited.

Repl i cati onConfi gurati onEl enent Defines a replication configuration element in the
configuration file.

Repl i cati onServer Confi gurati onEl enent Defines a replication server in the configuration file.

Repl i cati onServer G oupConfi gurati onEl endbefines a replication server group in the
configuration file

SchenmaCol umm Represents a column object within a schema.
Delegates
Delegate Description
Fi doActi onCal | back Represents the method to handle the
Fi doAct i onRequest ed event of a
MySql Connect i on.
MySql | nf oMessageEvent Handl er Represents the method to handle the
I nf oMessage event of a MySql Connect i on.
My Sql RowUpdat edEvent Handl er Represents the method to handle the
RowUpdat edevent of a MySql Dat aAdapt er .
My Sql RowUpdat i ngEvent Handl er Represents the method to handle the
RowUpdat i ngevent of a MySql Dat aAdapt er .
MySql Scri pt Error Event Handl er Represents the method to handle an error in
MySqlScript.
MySql St at enent Execut edEvent Handl er Represents the method to be called after the
execution of a statement in MySq|lScript.

157

Enumerations

Enumerations

Enumeration

Description

Cl oseNotification

The warnings that cause a connection to close.

Conpr essi onAl gorithns

Defines the compression algorithms that can be
used.

Conpr essi onType

Defines the type of compression used when data is
exchanged between client and server.

Ker ber osAut hivbde

Defines the different modes that can be used for
Kerberos authentication.

LockCont enti on

Defines waiting options that may be used with row
locking options.

MySql Aut hent i cati onMode

Specifies the authentication mechanism that should
be used.

MySql Bul kLoader Conflict Opti on

Defines the action to perform when a conflict is
found.

MySql Bul kLoader Priority

Defines the load priority.

MySql CertificateStorelLocation

Defines the certificate store location.

MySql Connect i onPr ot ocol

Specifies the type of connection to use.

MySql DbType

Specifies the MySQL data type
of a field or property for use in a
MySql . Dat a. MySgl Cl i ent . MySql Par anet er .

MySql Dri ver Type

Specifies the connection types that are supported.

MySql Er r or Code

Provides a reference to error codes returned by
MySQL.

My SQLGui dFor nat

Specifies the stored type for a MySQL GUID data
type.

MySql Ssl Mode

Provides the SSL options for a connection.

MySql Tr aceEvent Type

Defines the log event type in MySqlTrace.

UsageAdvi sor War ni ngFl ags

Defines the usage advisor warning type.

8.3 MySql.Data.MySqlClient.Authentication Namespace

Classes

Class

Description

MySql Aut hent i cati onPl ugi n

Abstract class used to define an authentication
plugin.

MySql C ear Passwor dPl ugi n

Allows connections to a user account set with the
nmysql _cl ear _passwor d authentication plugin.

MySql Nat i vePasswor dPl ugi n

Implements the nysql _native password
authentication plugin.

My Sql PenReader

Provides functionality to read, decode, and convert
PEM files into objects supported in .NET.

158

MySql.Data.MySqlClient.Interceptors Namespace

8.4 My Sql.Data.MySqlClient.Interceptors Namespace

Classes

Class

Description

BaseExcepti onl nt er cept or

Represents the base class for all user-defined
exception interceptors.

8.5 MySql.Data.MySqlClient.Replication Namespace

The MySql . Dat a. MySqgl Cl i ent. Repl i cati on namespace contains members for replication and load-

balancing components.

Classes

Class

Description

Repl i cati onRoundRobi nSer ver G oup

Class that implements round-robin load balancing.

Repl i cati onServer

Represents a server in the replication environment.

Repl i cati onServer G- oup

Base class used to implement load-balancing
features.

8.6 MySql.Data.Types Namespace

The MySql . Dat a. Types namespace contains members for converting MySQL types.

Classes

Class

Description

MySql Conver si onExcepti on

Represents exceptions returned during the
conversion of MySQL types.

Structures

Structure

Description

MySql Dat eTi ne

Defines operations that apply to MySql Dat eTi ne
objects.

My Sql Deci nal

Defines operations that apply to My Sql Deci nal
objects.

MySql Geonetry

Defines operations that apply to MySql Geonetry
objects.

8.7 My Sql.Data.EntityFramework Namespace

Classes

Class

Description

Backof f Al gorithm

Represents the base class for backoff algorithms.

159

Enumerations

Class

Description

Backof f Al gori t hnErr 1040

Backoff algorithm customized for the MySQL error
code 1040 - Too many connections.

Backof f Al gorit hmEr r 1205

Backoff algorithm customized for the MySQL
error code 1205 - Lock wait timeout exceeded; try
restarting transaction.

Backof f Al gorithmErr1213

Backoff algorithm customized for MySQL error code
1213 - Deadlock found when trying to get lock; try
restarting transaction.

Backof f Al gori t hnmErr 1614

Backoff algorithm for the MySQL error code 1614 -
Transaction branch was rolled back: deadlock was
detected.

Backof f Al gori t hnErr 2006

Backoff algorithm customized for MySQL error code
2006 - MySQL server has gone away.

Backof f Al gorit hmErr2013

Backoff algorithm customized for MySQL error code
2013 - Lost connection to MySQL server during

query.

Backof f Al gorit hmNdb

Backoff algorithm customized for MySQL Cluster
(NDB) errors.

MySqgl Connect i onFact ory

Used for creating connections in Code First 4.3.

My Sqgl DependencyResol ver

Class used to resolve implementation of services.

My Sql EFConfi gurati on

Class used to define the MySQL services used in
Entity Framework.

MySql Execut i onStr at egy

Provided an execution strategy tailored for handling
MySQL server transient errors.

MySql Hi st or yCont ext

Class used by code first migrations to read and write
migration history from the database.

MySql Logger

Provides the logger class for use with Entity
Framework.

MySql Mani f est TokenResol ver

Represents a service for getting a provider manifest
token given a connection.

MySql M gr ati onCodeGener at or

Class used to customized code generation to avoid
the dbo. prefix added on table names.

MySql M gr ati onSql Gener at or

Implements the MySQL SQL generator for EF 4.3
data migrations.

My Sqgl Model CacheKey

Represents a key value that uniquely identifies an
Entity Framework model that has been loaded into
memory.

MySql Provi der Fact or yResol ver

Represents a service for obtaining the correct
MySQL DbPr ovi der Fact or y from a connection.

MySql Provi der | nvari ant Name

Defines the MySQL provider name.

Enumerations

Enumeration

Description

OpType

Represents a set of database operations.

160

Microsoft.EntityFrameworkCore Namespace

8.8 Microsoft.EntityFrameworkCore Namespace

Enables access to .NET Core command-line interface (CLI) tools.

Classes

Class

Description

My SQLDbCont ext Opt i onsExt ensi ons

Represents the context-option extensions
implemented for MySQL.

8.9 My Sql.EntityFrameworkCore Namespace

Namespaces in this section:

* MySql.EntityFrameworkCore.DataAnnotations Namespace

* MySQL.EntityFrameworkCore.Diagnostics Namespace

» MySql.EntityFrameworkCore.Extensions Namespace

* MySql.EntityFrameworkCore.Infrastructure Namespace

* MySql.EntityFrameworkCore.Infrastructure.Internal Namespace

* MySql.EntityFrameworkCore.Metadata Namespace

* MySql.EntityFrameworkCore.Migrations.Operations Namespace

* MySql.EntityFrameworkCore.Query Namespace

MySql.EntityFrameworkCore.DataAnnotations Namespace

Classes

Class

Description

MySql Charset Attri bute

Establishes the character set of an entity property.

MySql Col | ati onAttri bute

Sets the collation in an entity property.

MySQL.EntityFrameworkCore.Diagnostics Namespace

Classes

Class

Description

MySQLEvent | d

Event IDs for MySQL events that correspond to
messages logged to an | Logger and events
sentto a Di agnost i cSour ce. The IDs are also
used with WAr ni ngsConf i gurati onBui | der to
configure the behavior of warnings.

MySql.EntityFrameworkCore.Extensions Namespace

161

MySql.EntityFrameworkCore.Infrastructure Namespace

Classes

Class

Description

My SQ.Dat abaseFacadeExt ensi ons

MySQL specific extension methods for
Dat abase() .

My SQLDbFunct i onsExt ensi ons

Provides CLR methods that get translated to
database functions when used in LINQ to Entities
queries. The methods on this class are accessed via
Functi ons().

MySQLENt i t yTypeExt ensi ons

MySQL specific extension methods for entity types.

MySql | ndexBui | der Ext ensi ons

Inheritance

MySQLI ndexExt ensi ons

Extension methods for | | ndex for SQL Server-
specific metadata.

My SQLKeyBui | der Ext ensi ons

Inheritance

My SQLKeyExt ensi ons

Extension methods for | Key for MySQL-specific
metadata.

MySQLM gr at i onBui | der Ext ensi ons

MySQL specific extension methods for
M grati onBui | der.

My SQ.Mbdel Bui | der Ext ensi ons

Inheritance

My SQLPr opert yBui | der Ext ensi ons

Represents the implementation of MySQL property-
builder extensions used in Fluent API.

My SQLPr oper t yExt ensi ons

Extension methods for | Property for MySQL
Server-specific metadata.

MySQLSer vi ceCol | ecti onExt ensi ons

MySQL extension class for | Ser vi ceCol | ecti on.

Enumerations

Enumeration

Description

My SQLMat chSear chivbde

Performs a search against a text collection.

MySql.EntityFrameworkCore.Infrastructure Namespace

Classes

Class

Description

My SQLDbCont ext Opt i onsBui | der

Represents the
Rel at i onal DbCont ext Opt i onsBui | der type
implemented for MySQL.

Delegates

Delegate

Description

My SQ.SchenmaNaneTr ansl at or

Translates the specified schema and object to an
output object name whenever a schema is being
used.

162

MySql.EntityFrameworkCore.Infrastructure.Internal Namespace

Enumerations

Enumeration

Description

My Sql SchenmaBehavi or

Represents the behavior of the schema.

MySql.EntityFrameworkCore.Infrastructure.lnternal Namespace

Classes
Class Description
My SQLOpt i onsExt ensi on Represents the Rel at i onal Opt i onsExt ensi on
type implemented for MySQL.
Interfaces
Interface Description
| MySQLOpt i ons Represents options to set on the provider.

MySql.EntityFrameworkCore.Metadata Namespace

Enumerations

Enumeration

Description

MySQ.Val ueGener at i onSt r at egy

An internal enumeration that supports the Entity

Framework Core infrastructure.

MySql.EntityFrameworkCore.Migrations.Operations Namespace

Classes

Class

Description

My SQLDr opPr i mar yKeyAndRecr eat eFor ei gnKe

VA& Gpgratiph@peration for dropping a primary key
and recreating foreign keys.

My SQLDr opUni queConst r ai nt AndRecr eat eFor

A onigiagisOopesatianfor dropping a unique
constraint and recreating foreign keys.

MySql.EntityFrameworkCore.Query Namespace

Classes

Class

Description

MySQLJsonStri ng

Represents a string that contains valid JSON data.
To mark a string as containing JSON data, just cast
the string to MySQLJsonSt ri ng.

8.10 MySql.Web Namespace

The MySql . W\eb namespace includes a set of subordinate namespaces that represent the features
managed by various MySQL providers and available for use within ASP.NET applications.

163

MySqgl.Web.Common Namespace

Namespaces in this section:

* MySqgl.Web.Common Namespace

* MySqgl.Web.Personalization Namespace
« MySqgl.Web.Profile Namespace

* MySql.Web.Security Namespace

» MySqgl.Web.SessionState Namespace

* MySqgl.Web.SiteMap Namespace
MySqgl.Web.Common Namespace

Classes

Class

Description

SchemaManager

Manages schema-related operations.

MySql.Web.Personalization Namespace

Classes

Class

Description

MySql Per sonal i zat i onPr ovi der

Implements a personalization provider enabling the
use of web parts at ASP.NET websites.

MySql.Web.Profile Namespace

Classes

Class

Description

MySQLPr of i | eProvi der

Implements a profile provider for the MySQL
database.

MySql.Web.Security Namespace

Classes

Class

Description

My SQ_Menber shi pPr ovi der

Manages storage of membership information for an
ASP.NET application in a MySQL database.

MySQLRol ePr ovi der

Manages storage of role membership information for
an ASP.NET application in a MySQL database.

MySql Si npl eMenber shi pPr ovi der

Provides support for website membership tasks,
such as creating accounts, deleting accounts, and
managing passwords.

MySql Si nmpl eRol eProvi der

Provides basic role-management functionality.

164

MySqgl.Web.SessionState Namespace

MySql.Web.SessionState Namespace

Classes

Class

Description

MySql WebSecurity

Provides security and authentication features for
ASP.NET Web Pages applications, including the
ability to create user accounts, log users in and out,
reset or change passwords, and perform related
tasks.

Class

Description

MySql Sessi onSt at eSt ore

Enables ASP.NET applications to store and manage
session state information in a MySQL database.
Expired session data is periodically deleted from the
database.

MySql.Web.SiteMap Namespace

Classes

Class

Description

MySql Si t eMapProvi der

Implements a site-map provider for the MySQL
database.

165

166

Chapter 9 Connector/NET Support

Table of Contents

9.1 Connector/NET COMMUNITY SUPPOITuuuiiiiii ettt ettt e et e et e e e e s 167
9.2 How to Report Connector/NET Problems OF BUGJScoouuuiiiiiiiiieiiii e 167

The developers of MySQL Connector/NET greatly value the input of our users in the software development
process. If you find Connector/NET lacking some feature important to you, or if you discover a bug and
need to file a bug report, please use the instructions in How to Report Bugs or Problems.

9.1 Connector/NET Community Support

e Community support for MySQL Connector/NET can be found through the forums at http://
forums.mysqgl.com.

» Paid support is available from Oracle. Additional information is available at http://dev.mysql.com/
support/.

9.2 How to Report Connector/NET Problems or Bugs

If you encounter difficulties or problems with MySQL Connector/NET, contact the Connector/NET
community, as explained in Section 9.1, “Connector/NET Community Support”.

First try to execute the same SQL statements and commands from the mysql client program. This helps
you determine whether the error is in Connector/NET or MySQL.

If you believe the problem to be a bug, report it through http://bugs.mysqgl.com/.
If reporting a bug, include the following information:

» Operating system and version.

» Connector/NET version.

» MySQL server version.

» Copies of error messages or other unexpected output.

» Simple reproducible sample.

Remember that the more information you can supply to us, the more likely it is that we can fix the problem.

167

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/bug-reports.html
http://forums.mysql.com
http://forums.mysql.com
http://dev.mysql.com/support/
http://dev.mysql.com/support/
http://bugs.mysql.com/

168

Chapter 10 Connector/NET FAQ

Questions

« 10.1: Are all commands executed after a transaction begins automatically enlisted in the transaction?
* 10.2: How do | obtain the value of an auto-incremented column?

Questions and Answers

10.1: Are all commands executed after a transaction begins automatically enlisted in the
transaction?

Yes. When a client begins a transaction in classic MySQL, all subsequent commands (on that connection)
are part of that transaction until the client commits or rolls back the transaction. To execute a command
outside of that transaction, you must open a separate connection.

10.2: How do | obtain the value of an auto-incremented column?

When using CommandBui | der , setting Ret ur nGener at edl denti fi er s property tot r ue no longer
works, as CormandBui | der does notadd | ast i nsert i d() by default.

CommandBuilder hooks up to the Dat aAdapt er . Rowpdat i ng event handler, which means it is called
for every row. It examines the command object and, if it is the same referenced object, it essentially
rebuilds the object, thereby destroying your command text changes.

One approach to solving this problem is to clone the command object so you have a different actual
reference:

dat aAdapt er. | nsert Command = cb. Get | nsert Conmand() . Cl one()

This works, but since the CommandBuilder is still connected to the DataAdapter, the RowUpdating event
still fires, adversely affecting performance. To stop that, once all your commands have been added you
need to disconnect the CommandBuilder from the DataAdapter:

cb. Dat aAdapter = nul | ;

The last requirement is to make sure the i d that is returned by | ast i nsert i d() has the correct
name. For example:

SELECT last _insert_id() ASid

A complete working example is shown here:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

namespace Cet Aut ol ncld

{

cl ass Program

{
static void Main(string[] args)

{

string connStr = "server =l ocal host ; user =r oot ; dat abase=Test DB; port =3306; passwor d=****** .«

169

MySgl Connecti on conn = new MySqgl Connecti on(connStr);

try
{
Consol e. Wi teLi ne("Connecting to MySQL...");
conn. Qpen();
string sql = "SELECT * FROM Test Tabl e";
My Sqgl Dat aAdapt er da = new MySqgl Dat aAdapt er (sql, conn);
MySgl ConmandBui | der cb = new MySql CommandBui | der (da) ;
MySgl Conmand cnd = new MySql Comrand() ;
crd. Connecti on = conn;
cmd. CommandText = sql ;
/'l use O oned object to avoid .NET rebuil ding the object, and
/1 thereby throwi ng away our command text additions.
MySgl Conmand i nsert Cnd = cb. Get | nsert Conmand() . Cl one();
i nsert Cnd. ConmandText = insertCnd. ConmandText + "; SELECT | ast_insert_id() AS id";
i nsert Cnd. Updat edRowSour ce = Updat eRowSour ce. Fi r st Ret ur nedRecor d;
da. | nsert Command = i nsert Crd;
cb. Dat aAdapter = null; // Unhook RowUpdating event handl er
Dat aTabl e dt = new Dat aTabl e() ;
da. Fill (dt);
Dat aRow row = dt. NewRow() ;
row "nanme"] = "Joe Smth";
dt . Rows. Add(r ow) ;
da. Updat e(dt) ;
System Consol e. WiteLine("ID after update: " + rowf"id"]);
}
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}

conn. Cl ose();
Consol e. Wi telLi ne("Done.");

170

	MySQL Connector/NET Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to MySQL Connector/NET
	Chapter 2 Connector/NET Versions
	Chapter 3 Connector/NET Installation
	3.1 Installing Connector/NET on Windows
	3.1.1 Installing Connector/NET Using the Standalone Installer
	3.1.2 Installing Connector/NET Using NuGet

	3.2 Installing Connector/NET on Unix with Mono
	3.3 Installing Connector/NET from Source

	Chapter 4 Connector/NET Connections
	4.1 Creating a Connector/NET Connection String
	4.2 Managing a Connection Pool in Connector/NET
	4.3 Handling Connection Errors
	4.4 Connector/NET Authentication
	4.5 Connector/NET Connection Options Reference

	Chapter 5 Connector/NET Programming
	5.1 Using GetSchema on a Connection
	5.2 Using MySqlCommand
	5.3 Using Connector/NET with Table Caching
	5.4 Preparing Statements in Connector/NET
	5.5 Creating and Calling Stored Procedures
	5.6 Handling BLOB Data With Connector/NET
	5.6.1 Preparing the MySQL Server
	5.6.2 Writing a File to the Database
	5.6.3 Reading a BLOB from the Database to a File on Disk

	5.7 Working with Partial Trust / Medium Trust
	5.7.1 Evolution of Partial Trust Support Across Connector/NET Versions
	5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GAC
	5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in GAC

	5.8 Writing a Custom Authentication Plugin
	5.9 Using the Connector/NET Interceptor Classes
	5.10 Handling Date and Time Information in Connector/NET
	5.10.1 Fractional Seconds
	5.10.2 Problems when Using Invalid Dates
	5.10.3 Restricting Invalid Dates
	5.10.4 Handling Invalid Dates
	5.10.5 Handling NULL Dates

	5.11 Using the MySqlBulkLoader Class
	5.12 Connector/NET Tracing
	5.12.1 Enabling OpenTelemetry Tracing
	5.12.2 Using the Connector/NET Trace Source Object
	5.12.2.1 Viewing MySQL Trace Information
	5.12.2.2 Building Custom Listeners

	5.13 Using Connector/NET with Crystal Reports
	5.13.1 Creating a Data Source
	5.13.2 Creating the Report
	5.13.3 Displaying the Report

	5.14 Asynchronous Methods
	5.15 Binary and Nonbinary Issues
	5.16 Character Set Considerations for Connector/NET

	Chapter 6 Connector/NET Tutorials
	6.1 Tutorial: An Introduction to Connector/NET Programming
	6.1.1 The MySqlConnection Object
	6.1.2 The MySqlCommand Object
	6.1.3 Working with Decoupled Data
	6.1.4 Working with Parameters
	6.1.5 Working with Stored Procedures

	6.2 ASP.NET Provider Model and Tutorials
	6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Provider
	6.2.2 Tutorial: Connector/NET ASP.NET Profile Provider
	6.2.3 Tutorial: Web Parts Personalization Provider
	6.2.4 Tutorial: Simple Membership Web Provider

	6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source
	6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities
	6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model
	6.6 Tutorial: Basic CRUD Operations with Connector/NET
	6.7 Tutorial: Configuring SSL with Connector/NET
	6.7.1 Using PEM Certificates in Connector/NET
	6.7.2 Using PFX Certificates in Connector/NET

	6.8 Tutorial: Using MySqlScript

	Chapter 7 Connector/NET for Entity Framework
	7.1 Entity Framework 6 Support
	7.2 Entity Framework Core Support
	7.2.1 Creating a Database with Code First in EF Core
	7.2.2 Scaffolding an Existing Database in EF Core
	7.2.3 Configuring Character Sets and Collations in EF Core

	Chapter 8 Connector/NET API Reference
	8.1 MySql.Data.Common.DnsClient
	8.2 MySql.Data.MySqlClient Namespace
	8.3 MySql.Data.MySqlClient.Authentication Namespace
	8.4 MySql.Data.MySqlClient.Interceptors Namespace
	8.5 MySql.Data.MySqlClient.Replication Namespace
	8.6 MySql.Data.Types Namespace
	8.7 MySql.Data.EntityFramework Namespace
	8.8 Microsoft.EntityFrameworkCore Namespace
	8.9 MySql.EntityFrameworkCore Namespace
	8.10 MySql.Web Namespace

	Chapter 9 Connector/NET Support
	9.1 Connector/NET Community Support
	9.2 How to Report Connector/NET Problems or Bugs

	Chapter 10 Connector/NET FAQ

