MySQL Connector/Python Developer Guide

Abstract

This manual describes how to install and configure MySQL Connector/Python, a self-contained Python driver for
communicating with MySQL servers, and how to use it to develop database applications.

The latest MySQL Connector/Python version is recommended for use with MySQL Server version 8.0 and higher.
For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python Release Notes.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Connector/Python, see the MySQL Connector/Python 9.5 Commercial License
Information User Manual for licensing information, including licensing information relating to third-party software that
may be included in this Commercial release. If you are using a Community release of MySQL Connector/Python, see
the MySQL Connector/Python 9.5 Community License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this Community release.

Document generated on: 2025-10-13 (revision: 83739)

https://docs.oracle.com/cd/E17952_01/connector-python-relnotes-en/
http://forums.mysql.com
https://docs.oracle.com/cd/E17952_01/connector-python-9.5-license-com-en/
https://docs.oracle.com/cd/E17952_01/connector-python-9.5-license-com-en/
https://docs.oracle.com/cd/E17952_01/connector-python-9.5-license-gpl-en/

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieee ittt e e e e et e e e et e e e eaea s Vi
1 Introduction to MySQL CoNNECION/PYINONiiiiiiiii e 1
2 Guidelines for PYthon DEVEIOPEISiiiiiiieiiiii ettt ettt e e 3
3 CoNNECIOIPYINON VEISIONS ...ttt ettt e et et e et eeeeb s 5
4 Connector/Python INSTAIALIONuuiiiii e et e et e e e e e e ena e eees 7
4.1 Quick INStAllAtioN GUIAEc.uniiiiieii ettt e e e e et e e e eaneees 7

4.2 Differences Between Binary And Source Distributionscccooiiiiiiiii e, 8

4.3 Obtaining CoNNECLONPYINONuuiiiiiiie ettt eeeaes 8

4.4 Installing Connector/Python from a Binary DiStribDUtioNncooviiiiiiiiiiiiii e 8
4.4.1 Installing Connector/Python With PIP ..o 8

4.4.2 InStalling DY RPIMS ..ot 9

4.5 Installing Connector/Python from a Source Distributionc.oooeiiiiiiiiin e, 10

4.6 Verifying Your Connector/Python INStallationcoouiiiiiiiiiii e 12

5 Connector/Python Coding EXamPIES ... 15
5.1 Connecting to MySQL Using ConNector/PYtNONccouuuiiiiiiiiiiiiii e 15

5.2 Creating Tables Using ConNeCtOr/PYINONccouuiiiiiiiiiciie e 17

5.3 Inserting Data Using CONNECION/PYNONiiiiiiiiiiiiii e 20

5.4 Querying Data Using CoNNECLONPYINONoiiiiiiiiiiiii e 21

6 CoNNECTON/PYINON TULOMIAIS ettt e e e e et eeeb e eees 23
6.1 Tutorial: Raise Employee's Salary Using a Buffered CUrsorccooooveviiieiiiiinieciiineecci, 23

7 Connector/Python Connection EStabliShment ..o e 25
7.1 Connector/Python ConNection AFQUMEINTScoeuuuiiiiiiieeeiii et e e ettt e e et e et e e eeneaaeeees 25

7.2 Connector/Python Option-File SUPPOITuuiiiiii e 34

8 The Connector/PYthon C EXIENSIONuiiiiitieieiii ettt sttt et ettt e e et e e ena e eeneas 37
8.1 Application Development with the Connector/Python C EXtENSIONcccuvuvvvviiiieeiiiineeennnnn. 37

8.2 The _mysql_connector C EXtension MOAUIEuiiiiiiiiiiiiii e 38

9 ConNECLOr/PYINON OthEr TOPICS ...cieetieiiiii ettt e ettt e et e e ene s 39
9.1 CoNNECLOI/PYINON LOGUING -.rtttniiiiiieeeet ettt ettt et e et e e et e e e ena s 39

9.2 TelEMELIY SUPPOIT .. eeett ettt ettt ettt e et et e et e e et e e e eba s 39

9.3 Executing MUltiple STAtEMENTScouuiiiiiii et e e eaaans 43

9.4 ASYNCRIroNOUS CONNECHIVILYiiieitieiiiii ettt et e e e e 46

9.5 Connector/Python ConNection POONINGioiiiiiiiiiii e 56

9.6 Connector/Python Django Back ENGc.c.uuiiiiiiiiiiiiiii e 58

10 Connector/PYthon API REFEIENCE ...t 59
10.1 Mysqgl.cONNECIOr MOTUIEiieii ettt e 61
10.1.1 mysql.connector.connect() Methodoiiiiiiiiiiiii e 61

10.1.2 mysql.connector.apileVel PrOPEITYi it 62

10.1.3 mysql.connector.paramstyle PrOPEItYoi it e 62

10.1.4 mysql.connector.threadsafety PrOPertYcooieeuuiiiiiiiiieii e 62

10.1.5 mysql.coNNector._ VerSioN__ PTOPEITYooeiiiiiiieiiiiieeeiei et 62

10.1.6 mysql.connector.__ version_info__ ProPertycooceeuuriiiiiiinneiiiineeeeieeeeii e 62

10.2 connection.MySQLCONNECHON ClASScccuuuiiiiiiiieiiii et 62
10.2.1 connection.MySQLCoNNection() CONSIIUCLONvvieruiieiiiiieeeiii e 62

10.2.2 MySQLConnection.close() Methodcoouuiiiiiiiiiiiii e 63

10.2.3 MySQLConnection.commit() Methodccouuiiiiiiiiiiiii e 63

10.2.4 MySQLConnection.config() Methodoiiiiiiiiiii e 63

10.2.5 MySQLConnection.connect() Methodcc.oiiiiiiiiiiiiiii e 64

10.2.6 MySQLConnection.cursor() Methodoooiiiiiiiiiii e 64

10.2.7 MySQLConnection.cmd_change_user() Methodcccooiiieiiiiniiiii e 65

10.2.8 MySQLConnection.cmd_debug() Method ..o 65

10.2.9 MySQLConnection.cmd_init_db() Methodcooiiiiiiiiii e 65

MySQL Connector/Python Developer Guide

10.2.10 MySQLConnection.cmd_ping() Methodcooiiiiiiiiii e, 65
10.2.11 MySQLConnection.cmd_process_info() Methodcccoooiiiiiiiin i 65
10.2.12 MySQLConnection.cmd_process_Kill() Methodcoooeiiiiiiiiiiiiiie e 65
10.2.13 MySQLConnection.cmd_query() Methodcc.oiiiiiiiiiii i 66
10.2.14 MySQLConnection.cmd_query_iter() Methodccooiiiiiiiiiii 66
10.2.15 MySQLConnection.cmd_quit() Methodcc.coiiiiiiiiiii e 66
10.2.16 MySQLConnection.cmd_refresh() Methodcccooeiiiiiii e 67
10.2.17 MySQLConnection.cmd_reset_connection() Methodccccccoiiiiiiiiiiiiin e, 67
10.2.18 MySQLConnection.cmd_shutdown() Methodccocoiiiiiiiiiiici e, 67
10.2.19 MySQLConnection.cmd_statisticsS() Methodcccoveviiiiiiii i, 67
10.2.20 MySQLConnection.disconnect() Methodooiiiiiiiiiiiie e 67
10.2.21 MySQLConnection.get row() Methodooviiiiiiiii e 68
10.2.22 MySQLConnection.get rows() Methodc.cooiviiiiiiiiiii e 68
10.2.23 MySQLConnection.get_server_info() Methodccooooiiiiiiiiin 68
10.2.24 MySQLConnection.get_server_version() Methodc.ccoiiiiiiiiii 68
10.2.25 MySQLConnection.is_connected() Methodcc.coeviiiiiiiiiiii e 69
10.2.26 MySQLConnection.isset_client_flag() Methodccoooviiiiii i 69
10.2.27 MySQLConnection.ping() Methodccoiiiiiiiiii e 69
10.2.28 MySQLConnection.reconnect() Methodooeviiiiiiiiiii e 69
10.2.29 MySQLConnection.reset_session() Methodccooeviiiiiiiiiii e 69
10.2.30 MySQLConnection.rollback() Methodc.oiiiiiiiiiiie e 70
10.2.31 MySQLConnection.set_charset_collation() Methodcocoiiiiiiiiiiiii e 70
10.2.32 MySQLConnection.set_client_flags() Methodcccooeiiiiiiii 70
10.2.33 MySQLConnection.shutdown() Methodcc.coeeviiiiiiiiiiie e 71
10.2.34 MySQLConnection.start_transaction() Methodcocoiiiiiiiiiiiii e 71
10.2.35 MySQLConnection.autoComMmIit PrOPEITYiiiiiieeii e e e e e e 72
10.2.36 MySQLConnection.unread_reSultsS Propertyc.oveveuiieiiiieiiiieiiii e eeeiee e e 72
10.2.37 MySQLConnection.can_consume_results Propertycccooeviiiiiiiiciiiiciineeiieeeis 72
10.2.38 MySQLConnection.charsSet PrOPEITYccvuuieiiiiiii e e eaa e 72
10.2.39 MySQLConnection.client_flags Propertycccoeeeiiiiiiiiiiiii e e e 72
10.2.40 MySQLConnection.collation PropertYc.uiieeuieiiieeii e e e e e e eaae e 73
10.2.41 MySQLConnection.connected PrOPEIYcieiuuieiiiieiiie e e e e e e e e e 73
10.2.42 MySQLConnection.connection_id Propertyccoeeuuiiviiiieiiiieiii e ee e e e 73
10.2.43 MySQLConnection.converter-class Propertycccc.oeeviiiiiiiiiiii e 73
10.2.44 MySQLConnection.database Propertycoooiiiiiiiiii i 73
10.2.45 MySQLConnection.get_ warnings ProPertYcc.eeiiiieiiieiiie e e ee e e e e 73
10.2.46 MySQLConnection.in_transaction PrOPErtYccoieiiiiiiiiiieiii e e e e 74
10.2.47 MySQLConnection.raise_on_warnings Propertycccoveviieeiiiniiiiiieiieee e e, 74
10.2.48 MySQLConnection.server_host ProPertycieeueeiiiiiiiii e eeeie e e e e 75
10.2.49 MySQLConnection.server_info PrOPertyovevvuieeiiiiiiii e e e 75
10.2.50 MySQLConnection.server_port Propertycveveieeiiiiii e 75
10.2.51 MySQLConnection.server_Version Propertyccociviiiiiieiiiecii e 75
10.2.52 MySQLConnection.sql_mode ProOPErtYccuuieiiieiiiieiii e ee e e e aeens 75
10.2.53 MySQLConnection.time_zoNe PrOPEIYcieiuuieeiiieiiiie et ee e e e e e 75
10.2.54 MySQLConnection.use_unicode PrOPEItYc..oievuuieiiiieeiiieeiiieeeieeeeeeaeeeeieeaanans 76
10.2.55 MySQLConnection.unix_SOCKEt PrOPEITYocvvuiiiiiiiiii e 76
10.2.56 MySQLCONNECLION.USEr PrOPEIY ...uciiiiiiii e 76
10.3 pooling.MySQLCoNNECHONPOOI CIASSccuuuiiiiiei e 76
10.3.1 pooling.MySQLConnectioNPOOl CONSLIUCIONueviieiiiieiiie e e 76
10.3.2 MySQLConnectionPool.add_connection() Methodccccocoiiiiiiiiiii e 77
10.3.3 MySQLConnectionPool.get_connection() Methodccccoiviiiiiiiii i, 77
10.3.4 MySQLConnectionPool.set_config() Methodc.cooeiiiiiiiiiiii e, 77
10.3.5 MySQLConnectionPool.po0l_Name PropertYcoceeueiiiiieiie e ee e e e 78

10.4 pooling.PooledMySQLCONNECHON CIASSc.uuiiiiiieii et ee e e e e e e 78

MySQL Connector/Python Developer Guide

10.4.1 pooling.PooledMySQLConnection CONSLIUCIONcccuuviiiiieiiieiiieei e e e e e 78
10.4.2 PooledMySQLConnection.close() Methodcccouiiiiiiiiiii i 78
10.4.3 PooledMySQLConnection.config() Methodc.oeeiiiiiiiiiii e 79
10.4.4 PooledMySQLConnection.pool_name Propertyccoeceiieiiieiiiiecie e 79

10.5 cUrsOr.MySQLECUISON CIASS ...uucvuuiiiiieiiii ettt e e e e e e e e e e et e et e e et e e eeaaans 79
10.5.1 cursor.MySQLCUIrSOr CONSIIUCTONuuuiieiie e e e e e e e e e e e e et e e e e e e e eaaeees 80
10.5.2 MySQLCursor.add_attribute() Methodoooviiiiiiiie e, 80
10.5.3 MySQLCursor.clear_attributes() Methodccoviiiiiiiiii e, 81
10.5.4 MySQLCursor.get_attributes() Methodc.oiiiiiiiii e 81
10.5.5 MySQLCursor.callproc() Methodcooiiiiiii e 81
10.5.6 MySQLCuUrsor.close() Methodccouuiiiiiiiiii e e 82
10.5.7 MySQLCursor.execute() Methodccouuiiiiiiiiii e 82
10.5.8 MySQLCursor.executemany() Methodc.oviiiiiiiiiiiii e 83
10.5.9 MySQLCursor.fetchall() Methodcoiiiiiiii e 83
10.5.10 MySQLCursor.fetchmany() Methodooiiiiiiiiii e 84
10.5.11 MySQLCursor.fetchone() Method ..o 84
10.5.12 MySQLCursor.nextset() Methodcccuiiiiiiiii e 84
10.5.13 MySQLCursor.fetchsets() Methodcoooiiiiii e 85
10.5.14 MySQLCursor.fetchwarnings() Methodccooiiiiiiiii e, 85
10.5.15 MySQLCursor.stored_results() Methodccoiiiiiiiiiiii e, 86
10.5.16 MySQLCursor.column_Names PrOPEIYccuueeiueiiiieiieeeiieeaeeeeeeeeieeeaneeeanaeeaen 86
10.5.17 MySQLCuUrsor.descCription PrOPEItYccuuiiiiiiiii e e e e e e e e 86
10.5.18 MySQLCUrsor.warnings PrOPEIYciiiiiiiiiciie e e s 87
10.5.19 MySQLCUrSOr.Iastrowid PrOPEILYcciuuiiiiieieii e e e e e e e e e e eanae e 88
10.5.20 MySQLCUISOr.rFOWCOUNT PrOPEITY ...vvnieeieiiiei e e e e e e e eanes 88
10.5.21 MySQLCUrsOr.statement PrOPEITYovuueeeieeiiei et e e e e e e e e e e e aans 88
10.5.22 MySQLCUrsor.With_rOWS PrOPEIYcceuuiiiiieiiiieee e e e e e e e e e e e et e e e eaneees 88

10.6 Subclasses CUrSOr.MYSQLCUISON ...uuuuiiiieii e et e e e e e e e et e e e et e e et e e e ean s 89
10.6.1 cursor.MySQLCursorBuffered Classccuuiiiiiiiiiiiieiii e 89
10.6.2 cursor.MySQLCUISOrRAW CIASSuiiiiiieiiiiiiii e e e e 89
10.6.3 cursor.MySQLCUISOIDICt CIASScvuuuiiiiiieiiieeii et e e e e e e e e aans 90
10.6.4 cursor.MySQLCursorBufferedDict Classccceuiiiiiiiiiiiieiie e 90
10.6.5 cursor.MySQLCUrsOrPrepared CIasSccvuuiiiiuiieiiiieiiie et e e e e e e e eaaeens 91

10.7 constantS.CHENtFIag Classcccuiiiiiiii e e e e e e e eaes 92
10.8 coNStaNtS. FIEldTYPE CIaSS ..u.ivviiiiiiiiiie e e e e e e e e e e eeen 92
10.9 constantS.SQLMOAE ClIASSuciviiiiiiiieiii e e e e et e e e e eeaes 93
10.10 constants.CharaCterSet CIASSoiiiiiiiiieiiii e e et e e e e eeees 93
10.11 constants.RefreShOPON CIASSc..uiiiiiiiiiiiiii e e e 93
10.12 Errors and EXCEPLIONSccuuiiieieiiiiee e e e e et e e e e e e e e e e e e e e e et e e e et e e et e e et e et 94
10.12.1 errorCode MOUUIEiiiiii e e et e e et e e e 95
10.12.2 €rIrOrS.ErrOr EXCEPLION ...civiiiii e e e e e e e e e ees 95
10.12.3 errors.DataError EXCEPLIONccuuuiiiii et e e e e e e e e e 96
10.12.4 errors.DatabaseError EXCEPLIONccuuiiiiiiiiieie e e s 96
10.12.5 errors.IntegrityError EXCEPLIONcovuiiii e e e e e e e e aans 97
10.12.6 errors.InterfaceError EXCEPLIONciiuiiii e e e 97
10.12.7 errors.InternalError EXCEPLIONciviiiii e e e e e e e 97
10.12.8 errors.NotSuUpportedError EXCEPLIONcvvuiiiiiiei e e e e e 97
10.12.9 errors.OperationalError EXCEPLIONccuuiiiei e e e e e e e e e eens 97
10.12.10 errors.POOIEITOr EXCEPLON .. ccvuiiiiciii et e e e e e 97
10.12.11 errors.ProgrammingError EXCEPLIONiiiiiiiiiii e e e e e 97
10.12.12 errors.Warning EXCEPLION ... cc.uiiiii e e e e e e e 98
10.12.13 errors.custom_error_exception() FUNCLONc..oiiiiiiiiiiiieiii e e 98

11 Connector/Python C Extension APl REfEIENCEoivieiiiiii e 99
5 R o)<Yo | oo T [=Tox 1o A 1Y/ [To [= PP 100

MySQL Connector/Python Developer Guide

11.2 _mysqgl_connector.MySQL() ClassSccuiiiiiiiiiii e e e e 100
11.3 _mysql_connector.MySQL.affected_rows() Methodccooviiiiiiiiiiiii e 100
11.4 _mysql_connector.MySQL.autocommit() Methodcoeeiiiiiiiiiiiii e, 101
11.5 mysql_connector.MySQL.buffered() Methodooiiiiiiiiii e 101
11.6 _mysql_connector.MySQL.change_user() Methodcccoooiiiiiii i, 101
11.7 _mysql_connector.MySQL.character_set name() Methodccc.cooiiiiiiiiiiine e, 101
11.8 _mysql_connector.MySQL.close() MethOdccoouiiiiiiiiiii e 101
11.9 _mysql_connector.MySQL.commit() Methodccoooiiiiiiiiii e 102
11.10 _mysql_connector.MySQL.connect() Methodccoooiiiiiiiiii e 102
11.11 _mysql_connector.MySQL.connected() Methodc.oeiiiiiiiiiiiiiie e 102
11.12 mysql_connector.MySQL.consume_result() Methodcccooeeiiiiiiiiiiin e, 102
11.13 _mysql_connector.MySQL.convert_to_mysql() Methodcccoeoviieiiiiiiiici e, 102
11.14 mysql_connector.MySQL.escape_string() Methodccooovviiiiiiiiin e 103
11.15 mysql_connector.MySQL.fetch_fields() Methodccoocoiiiiiiiiiii e, 103
11.16 _mysql_connector.MySQL.fetch_row() Methodcc.coeiiiiiiiiiiii e, 103
11.17 _mysql_connector.MySQL.field_count() Methodcocoiiiiiiiiii e, 103
11.18 _mysql_connector.MySQL.free_result() Methodcooviiiiiiiiiii e, 104
11.19 mysql_connector.MySQL.get character_set_info() Methodc..ccoeeiiiiiiiiiininecnnnn. 104
11.20 _mysql_connector.MySQL.get _client_info() Methodcoooiiiiiiiiii e, 104
11.21 _mysql_connector.MySQL.get client_version() Methodcccoieiiiiiiiniii e, 104
11.22 mysql_connector.MySQL.get_host_info() Methodcccocoiiiiii i, 104
11.23 _mysql_connector.MySQL.get_proto_info() Methodccoooiiiiiiiiiiii e, 104
11.24 mysql_connector.MySQL.get_server_info() Methodccooviiiiiiiiiiii e 104
11.25 mysql_connector.MySQL.get server_version() Methodcoooiiiiiiiiiiin i 105
11.26 _mysql_connector.MySQL.get_ssl_cipher() Methodcocoiiiiiiiiii e, 105
11.27 _mysql_connector.MySQL.hex_string() Methodc.oooiiiiiiiiiii e 105
11.28 mysql_connector.MySQL.insert_id() Methodcoiiiiiiiiiiii e 105
11.29 mysql_connector.MySQL.more_results() Methodccooviiiiiiiiii e 105
11.30 _mysql_connector.MySQL.next_result() Methodccccoevviiiiiiiiiii e, 105
11.31 _mysql_connector.MySQL.num_fields() Methodcccooeiiiiiiiii e, 105
11.32 _mysql_connector.MySQL.num_rows() Methodooeiiiiiiiiiiiiii e 106
11.33 _mysql_connector.MySQL.piNg() Methodccoeviiiii e 106
11.34 _mysql_connector.MySQL.query() Methodccoviiiiiiiiiiii e 106
11.35 _mysql_connector.MySQL.raw() Methodccoiiiiiiiiiiei e 106
11.36 _mysql_connector.MySQL.refresh() Methodc.cooiiiiiiiiii e, 107
11.37 _mysql_connector.MySQL.reset_connection() Methodc.cccoieiiiiiiiiii e, 107
11.38 _mysql_connector.MySQL.rollback() Methodccccooiiiiiiiii e 107
11.39 _mysql_connector.MySQL.select_db() Methodcccoiiiiiiiii e 107
11.40 _mysql_connector.MySQL.set_character_set() Methodcccovviii i, 107
11.41 mysql_connector.MySQL.shutdown() Methodccooiiiiiiiii e, 107
11.42 mysql_connector.MySQL.stat() Methodcouiiiiiiii e 108
11.43 _mysql_connector.MySQL.thread_id() Methodcoooiiiiiiiiii e 108
11.44 mysql_connector.MySQL.use_unicode() Methodccoveiiiiiiiiiiiii e 108
11.45 mysql_connector.MySQL.warning_count() Methodccooeviiiiiiiiiiiiei e 108
11.46 _mysql_connector.MySQL.have_result_set Propertyccococeeeviiiiiiiiieiieeii e, 108
.. 109

Vi

Preface and Legal Notices

This manual describes how to install, configure, and develop database applications using MySQL
Connector/Python, the Python driver for communicating with MySQL servers.

Legal Notices

Copyright © 2012, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software,” "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Vii

Documentation Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=acc&i d=t r s if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction to MySQL Connector/Python

MySQL Connector/Python enables Python programs to access MySQL databases, using an API that is
compliant with the Python Database API Specification v2.0 (PEP 249).

For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python
Release Notes.

MySQL Connector/Python includes support for:

Almost all features provided by MySQL Server version 8.0 and higher.
Connector/Python supports X DevAPI. For X DevAPI specific documentation, see X DevAPI User Guide.
Note

X DeVvAPI support was separated into its own package (nysql x- connect or -
pyt hon) in Connector/Python 8.3.0. For related information, see Chapter 4,
Connector/Python Installation.

Converting parameter values back and forth between Python and MySQL data types, for example
Python dat et i me and MySQL DATETI ME. You can turn automatic conversion on for convenience, or off
for optimal performance.

All MySQL extensions to standard SQL syntax.

Protocol compression, which enables compressing the data stream between the client and server.
Connections using TCP/IP sockets and on Unix using Unix sockets.

Secure TCP/IP connections using SSL.

Self-contained driver. Connector/Python does not require the MySQL client library or any Python
modules outside the standard library.

For information about which versions of Python can be used with different versions of MySQL Connector/
Python, see Chapter 3, Connector/Python Versions.

Note

Connector/Python does not support the old MySQL Server authentication methods,
which means that MySQL versions prior to 4.1 will not work.

http://www.python.org/dev/peps/pep-0249/
https://docs.oracle.com/cd/E17952_01/connector-python-relnotes-en/
https://docs.oracle.com/cd/E17952_01/connector-python-relnotes-en/
https://docs.oracle.com/cd/E17952_01/x-devapi-userguide-en/

Chapter 2 Guidelines for Python Developers

The following guidelines cover aspects of developing MySQL applications that might not be immediately
obvious to developers coming from a Python background:

 For security, do not hardcode the values needed to connect and log into the database in your main
script. Python has the convention of a conf i g. py module, where you can keep such values separate
from the rest of your code.

» Python scripts often build up and tear down large data structures in memory, up to the limits of available
RAM. Because MySQL often deals with data sets that are many times larger than available memory,
techniques that optimize storage space and disk I/O are especially important. For example, in MySQL
tables, you typically use numeric IDs rather than string-based dictionary keys, so that the key values
are compact and have a predictable length. This is especially important for columns that make up the
primary key for an | nnoDB table, because those column values are duplicated within each secondary
index.

» Any application that accepts input must expect to handle bad data.

The bad data might be accidental, such as out-of-range values or misformatted strings. The application
can use server-side checks such as unique constraints and NOT NULL constraints, to keep the bad data
from ever reaching the database. On the client side, use techniques such as exception handlers to report
any problems and take corrective action.

The bad data might also be deliberate, representing an “SQL injection” attack. For example, input values
might contain quotation marks, semicolons, %and _ wildcard characters and other characters significant
in SQL statements. Validate input values to make sure they have only the expected characters. Escape
any special characters that could change the intended behavior when substituted into an SQL statement.
Never concatenate a user input value into an SQL statement without doing validation and escaping first.
Even when accepting input generated by some other program, expect that the other program could also
have been compromised and be sending you incorrect or malicious data.

» Because the result sets from SQL queries can be very large, use the appropriate method to retrieve
items from the result set as you loop through them. fetchone() retrieves a single item, when you know
the result set contains a single row. fetchall() retrieves all the items, when you know the result set
contains a limited number of rows that can fit comfortably into memory. fetchmany() is the general-
purpose method when you cannot predict the size of the result set: you keep calling it and looping
through the returned items, until there are no more results to process.

» Since Python already has convenient modules such as pi ckl e and cPi ckl e to read and write
data structures on disk, data that you choose to store in MySQL instead is likely to have special
characteristics:

e Too large to all fitin memory at one time. You use SELECT statements to query only the precise
items you need, and aggregate functions to perform calculations across multiple items. You configure
the i nnodb_buf fer pool _si ze option within the MySQL server to dedicate a certain amount of
RAM for caching table and index data.

e Too complex to be represented by a single data structure. You divide the data between different
SQL tables. You can recombine data from multiple tables by using a join query. You make sure that
related data is kept in sync between different tables by setting up foreign key relationships.

« Updated frequently, perhaps by multiple users simultaneously. The updates might only affect
a small portion of the data, making it wasteful to write the whole structure each time. You use the
SQL | NSERT, UPDATE, and DELETE statements to update different items concurrently, writing only

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_primary_key
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_secondary_index
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_secondary_index
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_unique_constraint
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_not_null_constraint
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/aggregate-functions.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-parameters.html#sysvar_innodb_buffer_pool_size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_join
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_foreign_key
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/delete.html

the changed values to disk. You use | nnoDB tables and transactions to keep write operations from
conflicting with each other, and to return consistent query results even as the underlying data is being
updated.

» Using MySQL best practices for performance can help your application to scale without requiring major
rewrites and architectural changes. See Optimization for best practices for MySQL performance. It offers
guidelines and tips for SQL tuning, database design, and server configuration.

* You can avoid reinventing the wheel by learning the MySQL SQL statements for common operations:
operators to use in queries, techniques for bulk loading data, and so on. Some statements and clauses
are extensions to the basic ones defined by the SQL standard. See Data Manipulation Statements, Data
Definition Statements, and SELECT Statement for the main classes of statements.

* Issuing SQL statements from Python typically involves declaring very long, possibly multi-line string
literals. Because string literals within the SQL statements could be enclosed by single quotation, double
quotation marks, or contain either of those characters, for simplicity you can use Python's triple-quoting
mechanism to enclose the entire statement. For example:

'"''1t doesn't matter if this string contains 'single'
or "doubl e" quotes, as long as there aren't 3 in a
LLL

You can use either of the ' or " characters for triple-quoting multi-line string literals.

» Many of the secrets to a fast, scalable MySQL application involve using the right syntax at the very
start of your setup procedure, in the CREATE TABLE statements. For example, Oracle recommends
the ENG NE=I NNODB clause for most tables, and makes | nnoDB the default storage engine in MySQL
5.5 and up. Using | nnoDB tables enables transactional behavior that helps scalability of read-write
workloads and offers automatic crash recovery. Another recommendation is to declare a numeric
primary key for each table, which offers the fastest way to look up values and can act as a pointer to
associated values in other tables (a foreign key). Also within the CREATE TABLE statement, using
the most compact column data types that meet your application requirements helps performance and
scalability because that enables the database server to move less data back and forth between memory
and disk.

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_transaction
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/optimization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/sql-data-manipulation-statements.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/sql-data-definition-statements.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/sql-data-definition-statements.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_crash_recovery
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_primary_key
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_foreign_key
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html

Chapter 3 Connector/Python Versions

This section describes both version releases, such as 8.0.34, along with notes specific to the two
implementations (C Extension and Pure Python).

Connector/Python Releases

The following table summarizes the available Connector/Python versions. For series that have reached
General Availability (GA) status, development releases in the series prior to the GA version are no longer

supported.

Note

MySQL Connectors and other MySQL client tools and applications now synchronize
the first digit of their version number with the (highest) MySQL server version they
support. For example, MySQL Connector/Python 8.0.12 would be designed to
support all features of MySQL server version 8 (or lower). This change makes it
easy and intuitive to decide which client version to use for which server version.

Connector/Python 8.0.4 is the first release to use the new numbering. It is the
successor to Connector/Python 2.2.3.

Table 3.1 Connector/Python Version Reference

Connector/Python |MySQL Server Python Versions |Connector Status

Version Versions

9.5.0 and later 8.0 and later 3.14, 3.13*, 3.12, General Availability
3.11, 3.10

9.10-9.4.0 8.0 and later 3.13*% 3.12, 3.11, General Availability
3.10, 3.9

8.4.0 and 9.0.0 8.0 and later 3.12, 3.11, 3.10, General Availability
3.9,38

8.1.0-8.3.0 5.7 and later 3.12 (8.2.0+), 3.11, |General Availability
3.10,3.9,3.8

8.0 8.0,5.7,5.6,5.5 3.11, 3.10, 3.9, 3.8, |General Availability
3.7, (3.6 before
8.0.29), (2.7 and 3.5
before 8.0.24)

2.2 (continues as 5.7,5.6,5.5 3.5,34,27 Developer

8.0) Milestone, No

releases
21 5.7,5.6,5.5 35,34,27,2.6 General Availability
2.0 5.7,5.6,5.5 3.5,34,27,2.6 GA, final release on
2016-10-26
1.2 5.7,5.6,5.5 (5.1, 3.4,3.3,3.2, 3.1, GA, final release on
5.0,4.1) 2.7,2.6 2014-08-22

Note

MySQL server and Python versions within parentheses are known to work with
Connector/Python, but are not officially supported. Bugs might not get fixed for
those versions.

Connector/Python Implementations

Note

Python 3.13 enables ssl . VERI FY_X509 STRI CT SSL validation by default, which
means SSL certificates must now be RFC-5280 compliant when using Python 3.13
and higher.

Note

On macOS x86_64 ARM: Python 3.7 is not supported with the c-ext
implementation; note this is a non-default version of Python on macOS.

Connector/Python Implementations

Connector/Python implements the MySQL client/server protocol two ways:
 As pure Python; an implementation written in Python. It depends on the Python Standard Library.
The X DevAPI variant of the connector requires Python Protobuf. The required version is 5.29.4.

» As a C Extension that interfaces with the MySQL C client library. This implementation of the protocol
is dependent on the client library, but can use the library provided by MySQL Server packages (see
MySQL C API Implementations).

Neither implementation of the client/server protocol has any third-party dependencies. However, if you
need SSL support, verify that your Python installation has been compiled using the OpenSSL libraries.

Note
I Support for distutils was removed in Connector/Python 8.0.32.
Python terminology regarding distributions:
» Built Distribution: A package created in the native packaging format intended for a given platform. It
contains both sources and platform-independent bytecode. Connector/Python binary distributions are

built distributions.

» Source Distribution: A distribution that contains only source files and is generally platform independent.

https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/c-api-implementations.html
http://www.openssl.org/

Chapter 4 Connector/Python Installation

Table of Contents

4.1 QUICK INSTAllAtION GUIAEceeeieiieei et e e et e e et e e e e et e e ea e eean e 7
4.2 Differences Between Binary And Source DiStrDULIONScoouuiiiiiiiiieiii e 8
4.3 Obtaining CONNECIONPYINONuiiiiiii ettt ettt et e e et e et e e e e e enaens 8
4.4 Installing Connector/Python from a Binary DiStribDULioNc.uiiiiiiiiiiii e 8

4.4.1 Installing Connector/Python With PIDiiiiiiiiii e 8

4.4.2 InStalling DY RPIMS ...oiiiii ettt e et e e e e e eae 9
4.5 Installing Connector/Python from a Source DiStribution ..., 10
4.6 Verifying Your Connector/Python INStallationcoouiiiiiiiiii e 12

Connector/Python runs on any platform where Python is installed. Make sure Python is installed on your
platform:

» Python comes preinstalled on most Unix and Unix-like systems, such as Linux, macOS, and FreeBSD. If
your system does not have Python preinstalled for some reasons, use its software management system
to install it.

» For Microsoft Windows, a Python installer is available at the Python Download website or via the
Microsoft Store.

Also make sure Python in your system path.

Connector/Python includes the classic and X DevAPI APIs, which are installed separately. Each can be
installed by a binary or source distribution.

Binaries of Connector/Python are distributed in the RPM and the wheel package formats. The source code,
on the other hand, is distributed as a compressed archive of source files, from which a wheel package can
be built.

4.1 Quick Installation Guide

The recommended way to install Connector/Python is by pip and wheel packages. If your system does not
have pi p, you can install it with your system's software manager, or with a standalone pip installer.

Note

You are strongly recommended to use the latest version of pi p to install Connector/
Python. Upgrade your pi p version if needed.

Install the Connector/Python interfaces for the classic MySQL protocol and the X Protocol, respectively,
with the following commands.

classic API
$ pip install nysql-connector-python

X DevAP|
$ pip install mysqgl x-connect or - pyt hon

Refer to the installation tutorial for alternate means to install X DevAPI.

http://python.org/download/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/packaging_and_distributing_software/introduction-to-rpm_packaging-and-distributing-software
https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/latest/installation/
https://dev.mysql.com/doc/dev/connector-python/installation.html

Differences Between Binary And Source Distributions

4.2 Differences Between Binary And Source Distributions

Installing from a wheel (bdi st package) is the recommended, except for Enterprise Linux systems, on
which the RPM-based installation method may be preferred.

Wheels can be directly and easily installed without an extra build step. However, a wheel package is often
specific to a particular platform and Python version, so there may be cases in which pi p cannot find a
suitable wheel package based on your platform or your Python version. When that happens, you can get
the source distribution (sdi st) and produce a wheel package from it for installing Connector/Python.

Note

Creating a wheel package from an sdi st may fail for some older Python version,
as the Connector/Python source code is only compatible with a specific subset of
Python versions.

In summary, the recommendation is to use a bdi st unless pi p cannot find a suitable wheel package for
your setup, or if you need to custom build a wheel package for some special reasons.

4.3 Obtaining Connector/Python

Using pi p is the preferred method to obtain, install, and upgrade Connector/Python. For alternatives, see
the Connector/Python download site.

Note

The nysql - connect or - pyt hon package installs an interface to the classic
MySQL protocol. The X DevAPI is available by its own nmysql x- connect or -
pyt hon package. Prior to Connector/Python 8.3.0, nysql - connect or - pyt hon
installed interfaces to both the X and classic protocols.

Most Linux installation packages (except RPMs for Enterprise Linux) are no longer available from Oracle
since Connector/Python 9.0.0. Using pi p to manage Connector/Python on those Linux distributions is
recommended.

4.4 Installing Connector/Python from a Binary Distribution

Connector/Python includes the classic and X DevAPI connector APIs, which are installed separately. Each
can be installed by a binary distribution.

Binaries are distributed in the RPM and the wheel package formats.

4.4.1 Installing Connector/Python with pip
Installation via pi p is supported on Windows, macOS, and Linux platforms.

Note

For macOS platforms, DMG installer packages were available for Connector/Python
8.0 and earlier.

Use pi p to install and upgrade Connector/Python:

Installation
$> pip install nysql-connector-python

https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel
https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-source-distribution
https://dev.mysql.com/downloads/connector/python/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/packaging_and_distributing_software/introduction-to-rpm_packaging-and-distributing-software
https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel

Installing by RPMs

Upgr ade
$> pip install mysqgl -connector-python --upgrade

Optionally, install X DevAPl
$> pip install mysqgl x- connect or - pyt hon

Upgrade X DevAPl
$> pip install nysqgl x-connect or - pyt hon --upgrade

In case the wheel package you want to install is found in your local file system (for example, you produced
a wheel package from a source distribution or downloaded it from somewhere), you can install it as follows:

Installation
$ pip install /path/to/wheel/<wheel package nane>.wh

Installation of Optional Features

Installation from wheels allow you to install optional dependencies to enable certain features with
Connector/Python. For example:

3rd party packages to enable the telenetry functionality are installed
$ pip install nysqgl-connector-python[tel enetry]

Similarly, for X DevAPI:

3rd party packages to enabl e the conpression functionality are installed
$ pip install nysql x-connect or- pyt hon[conpr essi on]

These installation options are shortcuts to install all the dependencies needed by some particular features
(they are only for your convenience, and you can always install the required dependencies for a feature by
yourself):

» For the classic protocol:
e dns-srv
* gssapi

* fido2

telemetry

» For X Protocol:
e dns-srv
e compression

You can specify a multiple of these options in your installation command, for example:
$ pip install nysql-connector-python[tel enetry, dns-srv,...]
Or, if are installing a wheel package from your local file system:

$ pip install /path/to/wheel/<wheel package nane>. whl[tel enetry, dns-srv,...]

4.4.2 Installing by RPMs

Installation by RPMs is only supported on RedHat Enterprise Linux and Oracle Linux, and is performed
using the MySQL Yum Repository or by using RPM packages downloaded directly from Oracle.

Installing Connector/Python from a Source Distribution

4.4.2.1 Using the MySQL Yum Repository

RedHat Enterprise Linux and Oracle Linux platforms can install Connector/Python using the MySQL
Yum repository (see Adding the MySQL Yum Repository and Installing Additional MySQL Products and
Components with Yum).

Prerequisites

» Forinstalling X DevAPI only:Because the required pyt hon3- pr ot obuf RPM package is not available
for Python 3.8 on the RedHat Enterprise Linux and Oracle Linux platforms, it has to be manually installed
with, for example, pi p i nstal | protobuf. This is required for Connector/Python 8.0.29 or later.

* The nysqgl - communi ty-cl i ent - pl ugi ns package is required for using robust authentication
methods like cachi ng_sha2_ passwor d, which is the default authentication method for MySQL 8.0 and
later. Install it using the Yum repository

$ sudo yuminstall nysql-community-client-plugins
Installation
Use the following commands to install Connector/Python:

$ sudo yuminstall nysqgl-connector-python

Optionally, install also X DevAP
$ sudo yuminstall nysgl x-connector - pyt hon

4.4.2.2 Using an RPM Package
Connector/Python RPM packages (. r pmfiles) are available from the Connector/Python download site.

You can verify the integrity and authenticity of the RPM packages before installing them. To learn more,
see Verifying Package Integrity Using MD5 Checksums or GnuPG.

Prerequisites

» For installing X DevAPI only:Because the required pyt hon3- pr ot obuf RPM package is not available
for Python 3.8 on the RedHat Enterprise Linux and Oracle Linux platforms, it has to be manually installed
with, for example, pi p i nstal |l protobuf. This is required for Connector/Python 8.0.29 or later.

e The nysql - communi ty-cl i ent - pl ugi ns package is required for using robust authentication
methods like cachi ng_sha2_passwor d, which is the default authentication method for MySQL 8.0 and
later.

$ rpm-i nysql -communi ty-client-plugins-ver.distro.architecture.rpm
Installation

To install Connector/Python using the downloaded RPM packages:
$ rpm-i nysql - connect or - pyt hon-ver. di stro. architecture.rpm

Optionally, install X DevAP
$ rpm-i nysql x- connect or - pyt hon-ver. di stro. architecture.rpm

4.5 Installing Connector/Python from a Source Distribution

The Connector/Python source distribution is platform independent, and is packaged in the compressed
t ar archive format (. t ar . gz file). See Obtaining Connector/Python) on how to download them.

10

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/linux-installation-yum-repo.html#yum-repo-setup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/linux-installation-yum-repo.html#yum-install-components
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/linux-installation-yum-repo.html#yum-install-components
https://dev.mysql.com/downloads/connector/python/
https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/verifying-package-integrity.html

Prerequisites for Compiling Connector/Python with the C Extension

Prerequisites for Compiling Connector/Python with the C Extension

Source distributions include the C Extension that interfaces with the MySQL C client library. You can build
the distribution with or without support for this extension. To build Connector/Python with support for the C
Extension, the following prerequisites must be satisfied:

» Compiling tools:

 For Linux platforms: A C/C++ compiler, such as gcc.

« For Windows platforms: Current version of Visual Studio.
» Python development files.

» Forinstalling the classic interface only: MySQL Server binaries (server may be installed or not installed
on the system), including development files (to obtain the MySQL Server binaries, visit the MySQL
download site).

» For installing the X DevAPI interface only: Protobuf C++ (version 5. 29. 4).

Installing Connector/Python from Source Code Using pi p
Note

We recommend leveraging python virtual environments to encapsulate the
package installation instead of installing packages directly into the Python system
environment.

For installing the classic interface:

1. Download the latest version of the sdi st of Connector/Python for the classic MySQL protocol, whose
name is in the format of nysql _connect or _python-x.y. z.tar. gz.

2. Optional: To include the C Extension, use these steps to provide the path to the installation directory
of MySQL Server (or to the folder where the server binaries are located) with the MYSQL_CAPI system
variable before running the installation step. On Linux platforms:

$ export MYSQL_CAPI =<path to server binaries>

On Windows platforms:

> $env: MYSQL_CAPI =<path to server binaries>
Note

It is not required that the server is actually installed on the system; for compiling
the C-extension, the presence of libraries are sufficient

3. Perform the installation using this command:
pip install ./nysql_connector_python-x.y.z.tar.gz
Warning

DO NOT use nysql - connect or - pyt hon instead of . /

mysqgl connector _pyt hon-x.y. z.tar. gz, as the former will install the
WHEEL package from the PyPI repository, and the latter will install the local
WHEEL that is compiled from the source code.

11

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://docs.python.org/3/tutorial/venv.html

Verifying Your Connector/Python Installation

For installing X DevAPI:

1. Download the latest version of the sdi st of Connector/Python for the MySQL X Protocol, whose name
is in the format of nysql x_connect or _pyt hon-x.y.z.tar. gz.

2. Optional: To include the Protobuf C-Extension, use these commands on Linux platforms to provide the
paths to the Protobuf folders by the MYSQLXPB_* system variables before the installation step:

$ export MYSQLXPB_PROTOBUF=<path to protobuf binaries>

$ export MYSQLXPB_PROTOBUF_| NCLUDE_DI R="${ MYSQLXPB_PROTOBUF}/ i ncl ude"
$ export MYSQLXPB_PROTOBUF_LI B_DI R="${ MYSQLXPB_PROTOBUF}/ | i b"

$ export MYSQLXPB_PROTOC=" ${ MYSQLXPB_PROTOBUF}/ bi n/ pr ot oc"

Or these commands on Windows platforms:

$env: PROTOBUF=<pat h to protobuf binaries>

$env: PROTOBUF_I NCLUDE_DI R=$env: PROTOBUF+"\ i ncl ude"
$env: PROTOBUF_LI B_DI R=$env: PROTOBUF+"\ | i b"

$env: PROTOC=$env: PROTOBUF+"\ bi n\ pr ot oc. exe"

V V V V

3. Perform the installation using this command:

pip install ./nysqlx_connector_python-x.y.z.tar.gz
Warning

DO NOT use nysql x- connect or - pyt hon instead of . /

mysql x_connect or _pyt hon-x.y. z. tar. gz, as the former will install the
WHEEL package from the PyPI repository, and the latter will install the local
WHEEL that is compiled from the source code.

4.6 Verifying Your Connector/Python Installation

Verifying Installations by pi p

To verify that a Connector/Python package has been installed successfully using pi p, use the following
command:

$ pip install |ist
If you have installed the classic interface, you should see an output similar to the following:

Package Ver si on

nysql - connect or - pyt hon X.y.Z

If you have installed X DevAPI, you should see an output similar to the following:

Package Ver si on

nmysql x- connect or - pyt hon X.y.2Z

Installed from an RPM

The default Connector/Python installation location is / pr ef i x/ pyt honX. Y/ si t e- packages/, where
pr ef i x is the location where Python is installed and X. Y is the Python version.

12

Verify the C-extension

The C Extension is installed as _nysql connector.soand _nysql xpb. so inthe si t e- packages

directory, not in the nysql / connect or and mysql x directories for the classic interface and X DevAPI,
respectively.

Verify the C-extension
To verify the C-extension of the classic package is available, run this command:
$ python -c "inport nysql.connector; assert nysql.connector.HAVE CEXT; print(f'Cext is {mysql.connector.H
If no error is returned, the C-extension has been correctly built and installed.

Similarly, to verify the C-extension of the X DevAPI package is available, run this command and see if it
returns any errors:

$ python -c "inport nysqlx; assert mysqgl x. protobuf. HAVE_MYSQLXPB_CEXT; print(f'Cext is {mysql x. protobuf.H

13

14

Chapter 5 Connector/Python Coding Examples

Table of Contents

5.1 Connecting to MySQL Using Connector/PYthONccoouiiiiiiiii e 15
5.2 Creating Tables Using Connector/PYINONcooiiiiiiiiiii e e e e e 17
5.3 Inserting Data Using ConnNECtON/PYLNONoiiiiiiiiieii e e e 20
5.4 Querying Data Using ConNECIONPYINONiiiii e e e e 21

These coding examples illustrate how to develop Python applications and scripts which connect to MySQL
Server using MySQL Connector/Python.

5.1 Connecting to MySQL Using Connector/Python

The connect () constructor creates a connection to the MySQL server and returns a MySQLConnect i on
object.

The following example shows how to connect to the MySQL server:
i mport mnysql . connect or

cnx = mysql . connector. connect (user="'scott', password='password'
host='127. 0. 0. 1"
dat abase=' enpl oyees')

cnx. cl ose()

Section 7.1, “Connector/Python Connection Arguments” describes the permitted connection arguments.

It is also possible to create connection objects using the connection.MySQLConnection() class:
from nysqgl . connector inport (connection)

cnx = connecti on. MySQLConnect i on(user="scott', password="password'
host='127.0.0. 1"
dat abase=' enpl oyees')

cnx. cl ose()

Both forms (either using the connect () constructor or the class directly) are valid and functionally equal,
but using connect () is preferred and used by most examples in this manual.

To handle connection errors, use the t r y statement and catch all errors using the errors.Error exception:

i mport mnysql . connect or
from nysqgl . connector inport errorcode

try:
cnx = mysqgl . connect or. connect (user ="' scott"',
dat abase=' enpl oy"')
except nysql.connector.Error as err
if err.errno == errorcode. ER_ ACCESS_DEN ED_ERROR:
print("Something is wong with your user nane or password")
elif err.errno == errorcode. ER BAD DB _ERROR:
print (" Dat abase does not exist")
el se
print(err)
el se
cnx. cl ose()

Defining connection arguments in a dictionary and using the ** operator is another option:

15

Connecting to MySQL Using Connector/Python

i mport mnysql . connect or

config = {
‘user': 'scott',
' password': 'password',
"host': '127.0.0.1",
' dat abase': ' enpl oyees',
'rai se_on_warni ngs': True

}

chx = mysql . connect or. connect (**confi g)

cnx. cl ose()

Defining Logger options, a reconnection routine, and defined as a connection method named
connect_to_mysql:

i mport | ogging
import tinme
i mport mnysql . connect or

Set up | ogger

| ogger = | oggi ng. get Logger (__nhane__)

| ogger . set Level (| oggi ng. | NFO

formatter = | oggi ng. Formatter ("% asctinme)s - % nane)s - %I evel nane)s - % nessage)s")

Log to consol e

handl er = | oggi ng. St reanHandl er ()
handl er. set Formatter (formatter)

| ogger . addHandl er (handl er)

Also log to a file

file_handl er = | ogging. Fil eHandl er("cpy-errors.|og")
file_handl er.setFormatter(formatter)

| ogger . addHandl er (fi | e_handl er)

def connect_to_nysql (config, attenpts=3, del ay=2):
attenpt = 1
| nmpl enent a reconnection routine
while attenpt < attenpts + 1:
try:
return nysql . connect or. connect (**confi g)
except (nysql.connector.Error, |CError) as err:
if (attenpts is attenpt):
Attenpts to reconnect failed; returning None
| ogger.info("Failed to connect, exiting w thout a connection: %", err)
return None
| ogger . i nf o(
"Connection failed: %. Retrying (%/%)...",
err,
att enpt ,
attenpts-1,
)
progressive reconnect del ay
tinme.sleep(delay ** attenpt)
attenpt += 1
return None

Connecting and using the Sakila database using the above routine, assuming it's defined in a file named

myconnect i on. py:

from myconnection inport connect_to_nmnysql

16

Using the Connector/Python Python or C Extension

config = {
"host": "127.0.0.1",
"user": "user",
"password": "pass",
"dat abase": "sakila",
}

cnx = connect _to_nysql (config, attenpts=3)
if cnx and cnx.is_connected()
with cnx.cursor() as cursor
result = cursor.execute("SELECT * FROM actor LIMT 5")
rows = cursor.fetchall ()
for rows in rows:
print (rows)
cnx. cl ose()
el se

print("Could not connect")

Using the Connector/Python Python or C Extension

Connector/Python offers two implementations: a pure Python interface and a C extension that uses the
MySQL C client library (see Chapter 8, The Connector/Python C Extension). This can be configured at
runtime using the use_pur e connection argument. It defaults to Fal se as of MySQL 8, meaning the C
extension is used. If the C extension is not available on the system then use_pur e defaults to Tr ue.
Setting use_pur e=Fal se causes the connection to use the C Extension if your Connector/Python
installation includes it, while use_pur e=Tr ue to Fal se means the Python implementation is used if
available.

Note
The use_pur e option and C extension were added in Connector/Python 2.1.1.

The following example shows how to set use_pur e to False.
i mport mysql . connect or

chx = mysql . connect or. connect (user='scott', password='password'
host =' 127. 0. 0. 1"
dat abase=' enpl oyees'
use_pur e=Fal se)

cnx. cl ose()

Itis also possible to use the C Extension directly by importing the _mysql _connect or module rather
than the nysql . connect or module. For more information, see Section 8.2, “The _mysql_connector C
Extension Module”.

5.2 Creating Tables Using Connector/Python

All DDL (Data Definition Language) statements are executed using a handle structure known as a cursor.
The following examples show how to create the tables of the Employee Sample Database. You need them
for the other examples.

17

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_ddl
http://dev.mysql.com/doc/employee/en/index.html

Creating Tables Using Connector/Python

In a MySQL server, tables are very long-lived objects, and are often accessed by multiple applications
written in different languages. You might typically work with tables that are already set up, rather than
creating them within your own application. Avoid setting up and dropping tables over and over again, as
that is an expensive operation. The exception is temporary tables, which can be created and dropped
quickly within an application.

from__future__ inmport print_function

i mport mnysql . connect or
from nmysqgl . connector inport errorcode

DB_NAME = ' enpl oyees'

TABLES = {}
TABLES[' enpl oyees'] = (

" CREATE TABLE " enpl oyees™ ("

" “enp_no int(11) NOT NULL AUTO_ | NCREMENT, "
“birth_date’ date NOT NULL,"
“first_name’ varchar(14) NOT NULL,"
“last_nane’ varchar (16) NOT NULL,"
‘gender” enun('M,"'F) NOT NULL,"
“hire_date’ date NOT NULL,"

PRI MARY KEY (" enp_no’)"

") ENG NE=I nnoDB")

TABLES[' departnents'] = (
" CREATE TABLE " departnents” ("
“dept _no" char(4) NOT NULL,"
“dept _nane’ varchar (40) NOT NULL, "
PRI MARY KEY (" dept_no'), UNI QUE KEY "dept_nane" (dept_nane’)"
") ENG NE=I nnoDB")

TABLES[' sal aries'] = (

" CREATE TABLE “sal aries™ ("
“enp_no’ int(11) NOT NULL,"
“salary’ int(11) NOT NULL,"
“fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (" enp_no , fromdate'), KEY “enp_no (enp_no’),"
CONSTRAI NT “sal aries_ibfk_1° FOREIGN KEY (“enp_no’) "

REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")

TABLES[' dept _enp'] = (
" CREATE TABLE “dept_enmp’ ("
" “enp_no int(11) NOT NULL,"
“dept _no" char(4) NOT NULL,"
“fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (" enp_no , "dept_no'), KEY “enp_no (enp_no),"
KEY “dept_no" (dept_no’),"
CONSTRAI NT “dept_enp_i bf k_1° FOREI GN KEY (enp_no’)
REFERENCES " enpl oyees™ (" enp_no’) ON DELETE CASCADE, "
CONSTRAI NT “dept_enp_i bf k_2° FOREI GN KEY (dept_no")
REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")

TABLES[' dept _manager'] = (
CREATE TABLE " dept _manager ™ ("
“enp_no’ int(11) NOT NULL,"
“dept _no" char(4) NOT NULL,"
“fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (enp_no , dept _no’),"
KEY “enp_no" (enp_no’),"
KEY “dept_no" (dept_no’),"

18

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_temporary_table

Creating Tables Using Connector/Python

CONSTRAI NT " dept _manager _i bf k_1" FORElI GN KEY (" enp_no")
REFERENCES " enpl oyees™ (enp_no’) ON DELETE CASCADE, "
CONSTRAI NT " dept _manager _i bf k_2° FORElI GN KEY (dept_no")
REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")

TABLES['titles'] = (

"CREATE TABLE “titles ("
“enp_no’ int(11) NOT NULL,"
“title wvarchar(50) NOT NULL,"
“fromdate’ date NOT NULL,"
‘to_date’ date DEFAULT NULL, "
PRI MARY KEY (“enp_no , ‘title , fromdate'), KEY “enp_no (enp_no’),"
CONSTRAINT “titles ibfk 1° FOREI GN KEY (' enp_no’)"

REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")

The preceding code shows how we are storing the CREATE statements in a Python dictionary called
TABLES. We also define the database in a global variable called DB_NANE, which enables you to easily
use a different schema.

cnx = mnysql . connector. connect (user="'scott")
cursor = cnx.cursor()

A single MySQL server can manage multiple databases. Typically, you specify the database to switch to
when connecting to the MySQL server. This example does not connect to the database upon connection,
so that it can make sure the database exists, and create it if not:

def create_database(cursor):
try:
cur sor. execut e(
" CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format (DB_NAME))
except nysql.connector.Error as err:
print("Failed creating database: {}".format(err))
exit(1)

try:
cursor. execute("USE {}".fornat (DB_NAME))
except nysql.connector.Error as err:
print (" Database {} does not exists.".format(DB_NAME))
if err.errno == errorcode. ER BAD DB ERROR:
creat e_dat abase(cursor)
print (" Database {} created successfully.".format(DB_NAME))
cnx. dat abase = DB_NAME
el se:
print(err)
exit(1)

We first try to change to a particular database using the dat abase property of the connection object cnx.
If there is an error, we examine the error number to check if the database does not exist. If so, we call the
creat e_dat abase function to create it for us.

On any other error, the application exits and displays the error message.

After we successfully create or change to the target database, we create the tables by iterating over the
items of the TABLES dictionary:

for table_nane in TABLES:
tabl e_description = TABLES[t abl e_nane]
try:
print("Creating table {}: ".format(tabl e_nane), end="")
cursor. execut e(tabl e_descri pti on)
except nysql.connector.Error as err:
if err.errno == errorcode. ER TABLE _EXI STS_ERROR:

19

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_database

Inserting Data Using Connector/Python

print("already exists.")
el se
print(err.nsg)
el se
print("OK")

cursor. cl ose()
cnx. cl ose()

To handle the error when the table already exists, we notify the user that it was already there. Other errors
are printed, but we continue creating tables. (The example shows how to handle the “table already exists”
condition for illustration purposes. In a real application, we would typically avoid the error condition entirely
by using the | F NOT EXI STS clause of the CREATE TABLE statement.)

The output would be something like this:

Dat abase enpl oyees does not exists

Dat abase enpl oyees created successfully.
Creating table enpl oyees: K

Creating table departnments: already exists
Creating table salaries: already exists
Creating table dept_enp: K

Creating tabl e dept_manager: OK

Creating table titles: K

To populate the employees tables, use the dump files of the Employee Sample Database. Note that
you only need the data dump files that you will find in an archive named like enpl oyees_db- dunp-
files-1.0.5.tar.bz2. After downloading the dump files, execute the following commands, adding
connection options to the nysql commands if necessary:

$> tar xzf enpl oyees_db-dunp-files-1.0.5.tar.bz2
$> cd enpl oyees_db

$> nysql enpl oyees < | oad_enpl oyees. dunp

$> nysql enployees < load_titles.dunp

$> nysql enpl oyees < | oad_depart nents. dunp

$> nysql enpl oyees < | oad_sal ari es. dunp

$> nysql enpl oyees < | oad_dept _enp. dunp

$> nysql enpl oyees < | oad_dept _nanager . dunp

5.3 Inserting Data Using Connector/Python

Inserting or updating data is also done using the handler structure known as a cursor. When you use a
transactional storage engine such as | nnoDB (the default in MySQL 5.5 and higher), you must commit the
data after a sequence of | NSERT, DELETE, and UPDATE statements.

This example shows how to insert new data. The second | NSERT depends on the value of the newly
created primary key of the first. The example also demonstrates how to use extended formats. The task is
to add a new employee starting to work tomorrow with a salary set to 50000.

Note

The following example uses tables created in the example Section 5.2, “Creating
Tables Using Connector/Python”. The AUTO_| NCREMENT column option for

the primary key of the enpl oyees table is important to ensure reliable, easily
searchable data.

from__future__ inmport print_function
fromdatetinme inport date, datetine, tinedelta
i mport nysql . connect or

cnx = mysql . connector. connect (user="'scott', database='enpl oyees')

20

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
http://dev.mysql.com/doc/employee/en/index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_commit
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/delete.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_primary_key

Querying Data Using Connector/Python

cursor = cnx.cursor()
tonmorrow = datetime.now).date() + timedelta(days=1)

add_enpl oyee = ("I NSERT | NTO enpl oyees "
"(first_name, |ast_nane, hire_date, gender, birth_date)
"VALUES (%, %, %, %, %)")
add_salary = ("INSERT I NTO sal aries "
"(enp_no, salary, fromdate, to_date)
"VALUES (% enp_no)s, %salary)s, %fromdate)s, %to_date)s)")

dat a_enpl oyee = (' Ceert', 'Vanderkelen', tonorrow, 'M, date(1977, 6, 14))

I nsert new enpl oyee
cur sor. execut e(add_enpl oyee, data_enpl oyee)
enp_no = cursor.lastrowd

Insert salary information
data_salary = {
'enp_no' : enp_no
"salary': 50000
‘fromdate': tonorrow,
'to_date': date(9999, 1, 1)
}

cursor. execute(add_sal ary, data_sal ary)

Make sure data is conmtted to the database
chnx. commt ()

cursor. cl ose()
cnx. cl ose()

We first open a connection to the MySQL server and store the connection object in the variable cnx. We
then create a new cursor, by default a MySQLCursor object, using the connection's cur sor () method.

We could calculate tomorrow by calling a database function, but for clarity we do it in Python using the
dat et i me module.

Both | NSERT statements are stored in the variables called add _enpl oyee and add_sal ar y. Note that
the second | NSERT statement uses extended Python format codes.

The information of the new employee is stored in the tuple dat a_enpl oyee. The query to insert
the new employee is executed and we retrieve the newly inserted value for the enp_no column (an
AUTO_| NCREMENT column) using the | ast r owi d property of the cursor object.

Next, we insert the new salary for the new employee, using the enp_no variable in the dictionary holding
the data. This dictionary is passed to the execut e() method of the cursor object if an error occurred.

Since by default Connector/Python turns autocommit off, and MySQL 5.5 and higher uses transactional
| nnoDB tables by default, it is necessary to commit your changes using the connection's conmi t ()
method. You could also roll back using the r ol | back() method.

5.4 Querying Data Using Connector/Python

The following example shows how to query data using a cursor created using the connection's cur sor ()
method. The data returned is formatted and printed on the console.

The task is to select all employees hired in the year 1999 and print their names and hire dates to the
console.

import datetine
i mport mysql . connect or

21

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_autocommit
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_rollback
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_query

Querying Data Using Connector/Python

cnx = mnysql.connector. connect (user='scott', database='enpl oyees')
cursor = cnx.cursor()

query = ("SELECT first_name, |ast_name, hire_date FROM enpl oyees "
"WHERE hire_date BETWEEN % AND %")

hire_start = datetine.date(1999, 1, 1)
hire_end = datetine.date(1999, 12, 31)

cursor. execute(query, (hire_start, hire_end))

for (first_nane, |ast_name, hire_date) in cursor
print("{}, {} was hired on {: % % %v}".format(
| ast _nane, first_name, hire_date))

cursor. cl ose()
cnx. cl ose()

We first open a connection to the MySQL server and store the connection object in the variable cnx. We
then create a new cursor, by default a MySQLCursor object, using the connection's cur sor () method.

In the preceding example, we store the SELECT statement in the variable quer y. Note that we are using
unquoted %s-markers where dates should have been. Connector/Python converts hi re_start and

hi r e_end from Python types to a data type that MySQL understands and adds the required quotes. In this
case, it replaces the first % with ' 1999- 01- 01' , and the second with ' 1999- 12- 31" .

We then execute the operation stored in the quer y variable using the execut e() method. The data used
to replace the %s-markers in the query is passed as a tuple: (hire_start, hire_end).

After executing the query, the MySQL server is ready to send the data. The result set could be zero rows,
one row, or 100 million rows. Depending on the expected volume, you can use different techniques to
process this result set. In this example, we use the cur sor object as an iterator. The first column in the
row is stored in the variable f i r st _nane, the second in | ast _nane, and the third in hi re_dat e.

We print the result, formatting the output using Python's built-in f or mat () function. Note that hi r e_dat e
was converted automatically by Connector/Python to a Python dat et i ne. dat e object. This means that
we can easily format the date in a more human-readable form.

The output should be something like this:

Wlharm LiMn was hired on 16 Dec 1999

W el onsky, Lalit was hired on 16 Dec 1999
Kambl e, Dannz was hired on 18 Dec 1999
DuBour di eux, Zhongwei was hired on 19 Dec 1999
Fuji sawa, Rosita was hired on 20 Dec 1999

22

Chapter 6 Connector/Python Tutorials

Table of Contents

6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

These tutorials illustrate how to develop Python applications and scripts that connect to a MySQL database

server using MySQL Connector/Python.

6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

The following example script gives a long-overdue 15% raise effective tomorrow to all employees who

joined in the year 2000 and are still with the company.

To iterate through the selected employees, we use buffered cursors. (A buffered cursor fetches and buffers
the rows of a result set after executing a query; see Section 10.6.1, “cursor.MySQLCursorBuffered Class”.)

This way, it is unnecessary to fetch the rows in a new variables. Instead, the cursor can be used as an

iterator.

Note

This script is an example; there are other ways of doing this simple task.
from__future__ inport print_function

from deci mal inport Deci mal
fromdatetinme inport datetine, date, tinedelta

i mport nysql . connect or

Connect with the MySQ. Server

cnx = mysql . connector. connect (user="'scott', database='enpl oyees')

Get two buffered cursors
cur A = cnx. cursor (buf f er ed=Tr ue)
cur B = cnx. cursor (buf f er ed=Tr ue)

Query to get enployees who joined in a period defined by two dates

query = (

"SELECT s.enp_no, salary, fromdate, to_date FROM enpl oyees AS e "

"LEFT JO N salaries AS s USING (enp_no) "
"WHERE t o_date = DATE(' 9999-01-01')"
"AND e. hire_date BETWEEN DATE(%) AND DATE(%)")

UPDATE and | NSERT statenents for the old and new sal ary
update_ol d_salary = (

"UPDATE sal ari es SET to_date = % "

"WHERE enp_no = % AND fromdate = %")
insert_new salary = (

"I NSERT | NTO sal aries (enp_no, fromdate, to_date, salary)

"VALUES (%, %, %, %)")

Sel ect the enpl oyees getting a raise
cur A. execut e(query, (date(2000, 1, 1), date(2000, 12, 31)))

lterate through the result of curA
for (enp_no, salary, fromdate, to_date) in curA

Update the old and insert the new salary

23

Tutorial: Raise Employee's Salary Using a Buffered Cursor

new_sal ary = int(round(salary * Decinal ('1.15")))
cur B. execut e(update_ol d_sal ary, (tonorrow, enp_no, fromdate))

cur B. execut e(i nsert_new_sal ary,
(emp_no, tonorrow, date(9999, 1, 1,), new salary))

Commit the changes
cnx. commt ()

cnx. cl ose()

24

Chapter 7 Connector/Python Connection Establishment

Table of Contents

7.1 Connector/Python Connection Arguments
7.2 Connector/Python Option-File SUPPOIToeuie e e e e ees 34

Connector/Python provides a connect () call used to establish connections to the MySQL server. The
following sections describe the permitted arguments for connect () and describe how to use option files
that supply additional arguments.

7.1 Connector/Python Connection Arguments

A connection with the MySQL server can be established using either the mysqgl . connect or. connect ()
function or the nysql . connect or. MySQ.Connecti on() class:

cnx
cnx

nysql . connect or. connect (user='joe', database="test')
M/SQLConnect i on(user='joe', database="test')

The following table describes the arguments that can be used to initiate a connection. An asterisk (*)
following an argument indicates a synonymous argument name, available only for compatibility with other
Python MySQL drivers. Oracle recommends not to use these alternative names.

Table 7.1 Connection Arguments for Connector/Python

Argument Name Default Description

user (user nane¥) The user name used to authenticate with the MySQL
server.

passwor d (passwd*) The password to authenticate the user with the MySQL
server.

passwor d1, passwor d2, and For Multi-Factor Authentication (MFA); passwor d1 is an

passwor d3 alias for passwor d. Added in 8.0.28.

dat abase (db¥*) The database name to use when connecting with the
MySQL server.

host 127.0.0.1 The host name or IP address of the MySQL server.

uni x_socket The location of the Unix socket file.

port 3306 The TCP/IP port of the MySQL server. Must be an
integer.

conn_attrs Standard

performance_schema. sessi on_connect _attrs
values are sent; use conn_at t r s to optionally set
additional custom connection attributes as defined by a
dictionary such as config['conn_attrs'] = {"foo": "bar"}.

The c-ext and pure python implementations differ.
The c-ext implementation depends on the mysqiclient
library so its standard conn_attrs values originate from
it. For example, ' client_name' is 'libmysql' with c-ext
but 'mysqgl-connector-python' with pure python. C-ext
adds these additional attributes: ' _connector_version’,

25

Connector/Python Connection Arguments

Argument Name

Default

Description

_connector_license',
_source_host'.

_connector_name', and

This option was added in 8.0.17, as was the default
session_connect_attrs behavior.

i nit_conmand

Command (SQL query) executed immediately after the
connection is established as part of the initialization
process. Added in 8.0.32.

aut h_plugin

Authentication plugin to use. Added in 1.2.1.

fido_cal | back

Deprecated as of 8.2.0 and removed in 8.4.0; instead use
webaut hn_cal | back.

A callable defined by the optional f i do_cal | back
option is executed when it's ready for user interaction
with the hardware FIDO device. This option can be a
callable object or a string path that the connector can
import in runtime and execute. It does not block and is
only used to notify the user of the need for interaction
with the hardware FIDO device.

This functionality was only available in the C extension.
A NotSupportedError was raised when using the pure
Python implementation.

webaut hn_cal | back

A callable defined by the optional webaut hn_cal | back
option is executed when it's ready for user interaction
with the hardware WebAuthn device. This option can

be a callable object or a string path that the connector
can import in runtime and execute. It does not block

and is only used to notify the user of the need for
interaction with the hardware FIDO device. Enable the
aut henti cati on_webaut hn_cl i ent auth_plugin in
the connection configuration to use.

This option was added in 8.2.0, and it deprecated the
fido_cal | back option that was removed in version
8.4.0.

openi d_t oken_file

Path to the file containing the OpenlID JWT formatted
identity token. Added in 9.1.0.

use_uni code

True

Whether to use Unicode.

char set

ut f 8nb4

Which MySQL character set to use.

col l ation

ut f 8mb4_geng
(is

ut f 8_gener al
in 2.x

*WAlicraMySQL collation to use. The 8.x default values are
generated from the latest MySQL Server 8.0 defaults.
_Ci

aut ocomm t

Fal se

Whether to autocommit transactions.

tinme_zone

Set the t i ne_zone session variable at connection time.

sql _node

Set the sgl _node session variable at connection time.

get _war ni ngs

Fal se

Whether to fetch warnings.

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_autocommit

Connector/Python Connection Arguments

Argument Name

Default

Description

rai se_on_war ni ngs

Fal se

Whether to raise an exception on warnings.

connection_ti nmeout
(connect _ti neout *)

Timeout for the TCP and Unix socket connections.

read_ti neout

None

Time limit to receive a response from the server before
raising a ReadTi neout Er r or level error. The default
value (None) sets the wait time to indefinitely. Option
added in 9.2.0.

write tineout

None

Time limit to send data to the server before raising a
Wit eTi meout Error level error. The default value
(None) sets the wait time to indefinitely. Option added in
9.2.0.

client _flags

MySQL client flags.

buf fered

Fal se

Whether cursor objects fetch the results immediately after
executing queries.

raw

Fal se

Whether MySQL results are returned as is, rather than
converted to Python types.

consune_results

False

Whether to automatically read result sets.

tls_versions

["TLSv1.2",
"TLSv1.3"]

TLS versions to support; allowed versions are TLSv1.2
and TLSv1.3. Versions TLSv1 and TLSv1.1 were
removed in Connector/Python 8.0.28.

ssl _ca

File containing the SSL certificate authority.

ssl _cert

File containing the SSL certificate file.

ssl _di sabl ed

Fal se

Tr ue disables SSL/TLS usage. The TLSv1 and TLSv1.1
connection protocols are deprecated as of Connector/
Python 8.0.26 and removed as of Connector/Python
8.0.28.

ssl _key

File containing the SSL key.

ssl _verify_cert

Fal se

When set to Tr ue, checks the server certificate against
the certificate file specified by the ss| _ca option. Any
mismatch causes a Val ueEr r or exception.

ssl _verify_identity

Fal se

When set to Tr ue, additionally perform host name
identity verification by checking the host name that
the client uses for connecting to the server against the
identity in the certificate that the server sends to the
client. Option added in Connector/Python 8.0.14.

force_i pv6

Fal se

When set to Tr ue, uses IPv6 when an address resolves
to both IPv4 and IPv6. By default, IPv4 is used in such
cases.

ker ber os_aut h_node

SSPI

Windows-only, for choosing between

SSPI and GSSAPI at runtime for the

aut henti cati on_kerberos_cl i ent authentication
plugin on Windows. Option added in Connector/Python
8.0.32.

oci _config_ file

Optionally define a specific path to the
aut henti cati on_oci server-side authentication

27

Connector/Python Connection Arguments

Argument Name

Default

Description

configuration file. The profile name can be configured
with oci _confi g_profile.

The default file path on Linux and macOS is ~/ . oci /
confi g, and %HOVEDRI VEY®AHOVEPATH% . oci
\ conf i g on Windows.

oci _config_profile

" DEFAULT"

Used to specify a profile to use from the OCI
configuration file that contains the generated ephemeral
key pair and security token. The OCI configuration file
location can be defined by oci _confi g _fil e. Option
oci _config_profil e wasadded in Connector/Python
8.0.33.

dsn

Not supported (raises Not Support edErr or when
used).

pool nane

Connection pool name. The pool hame is restricted to
alphanumeric characters and the special characters . ,
_,*, %, and #. The pool name must be no more than
pool i ng. CNX_POCL_NMAXNAMESI ZE characters long
(default 64).

pool _size

Connection pool size. The pool size must
be greater than 0 and less than or equal to
pool i ng. CNX_POCL_NMAXSI ZE (default 32).

pool reset _session

True

Whether to reset session variables when connection is
returned to pool.

conpress

Fal se

Whether to use compressed client/server protocol.

converter_cl ass

Converter class to use.

converter _str_fallback

Fal se

Enable the conversion to str of value types not supported
by the Connector/Python converter class or by a custom
converter class.

failover

Server failover sequence.

option_files

Which option files to read. Added in 2.0.0.

option_groups

['client',

Which groups to read from option files. Added in 2.0.0.

' connect or _pyt hon']

implementation
(C or Python)
is available,
then then

the default
value is set

to enable

allow | ocal _infile True Whether to enable LOAD DATA LOCAL | NFI LE. Added
in 2.0.0.
use_pure Fal se as of |Whether to use pure Python or C Extension. If
8.0.11, and use_pur e=Fal se and the C Extension is not
Tr ue in earlier |available, then Connector/Python will automatically
versions. fall back to the pure Python implementation. Can
If only one be set with mysql.connector.connect() but not

MySQLConnection.connect(). Added in 2.1.1.

28

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html

MySQL Authentication Options

Argument Name Default Description

the available
implementation

krb_service_princi pal The "@realm" |Must be a string in the form "primary/instance@realm"
defaults to the |such as "ldap/ldapauth@MYSQL.COM" where "@realm"
default realm, |is optional. Added in 8.0.23.

as configured
in the

kr b5. conf
file.

MySQL Authentication Options

Authentication with MySQL typically uses a user nane and passwor d.

When the dat abase argument is given, the current database is set to the given value. To change
the current database later, execute a USE SQL statement or set the dat abase property of the
MySQLConnect i on instance.

By default, Connector/Python tries to connect to a MySQL server running on the local host using TCP/IP.
The host argument defaults to IP address 127.0.0.1 and port to 3306. Unix sockets are supported by
setting uni x_socket . Named pipes on the Windows platform are not supported.

Connector/Python supports authentication plugins available as of MySQL 8.0, including the preferred
caching_sha2_password authentication plugin.

The deprecated mysql_native_password plugin is supported, but it is disabled by default as of MySQL
Server 8.4.0 and removed as of MySQL Server 9.0.0.

The connect () method supports an aut h_pl ugi n argument that can be used to force use of a
particular authentication plugin.

Note

MySQL Connector/Python does not support the old, less-secure password
protocols of MySQL versions prior to 4.1.

Connector/Python supports the Kerberos authentication protocol for passwordless authentication. Linux
clients are supported as of Connector/Python 8.0.26, and Windows support was added in Connector/
Python 8.0.27 with the C extension implementation, and in Connector/Python 8.0.29 with the pure Python
implementation. For Windows, the related ker ber os_aut h_node connection option was added in 8.0.32
to configure the mode as either SSPI (default) or GSSAPI (via the pure Python implementation, or the C
extension implementation as of 8.4.0). While Windows supports both modes, Linux only supports GSSAPI.

Optionally use the [gssapi | shortcut when installing the nmysql - connect or - pyt hon pip package to
pull in specific GSSAPI versions as defined by the connector, which is v1.8.3 as of Connector/Python
9.1.0:

$ pip install nysql-connector-python[gssapi]

The following example assumes LDAP Pluggable Authentication is set up to utilize GSSAPI/Kerberos
SASL authentication:

i nport nysql . connector as cpy
i mport | ogging

| 0oggi ng. basi cConfi g(| evel =l oggi ng. DEBUG)

29

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/caching-sha2-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/native-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/kerberos-pluggable-authentication.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/ldap-pluggable-authentication.html

MySQL Authentication Options

SERVI CE_NAME = "| dap"
LDAP_SERVER | P = "server_ip or hostname" # e.g., w nexanpleOl
config = {

"host": "127.0.0.1",

"port": 3306,

"user": "nyuser @xanpl e. cont',

"password": "s3cret",

"use_pure": True,
"krb_service_principal": f"{SERVI CE_NAVE}/{LDAP_SERVER | P}"
}

wi th cpy.connect (**config) as cnx:
with cnx.cursor() as cur:
cur . execut e(" SELECT @@er si on")
res = cur.fetchone()
print(res[0])

Connector/Python supports Multi-Factor Authentication (MFA) as of v8.0.28 by utilizing the passwor d1
(alias of passwor d), passwor d2, and passwor d3 connection options.

Connector/Python supports WebAuthn Pluggable Authentication as of Connector/Python 8.2.0, which

is supported in MySQL Enterprise Edition. Optionally use the Connector/Python webauthn_callback
connection option to notify users that they need to touch the hardware device. This functionality is present
in the C implementation (which uses libmysqglclient) but the pure Python implementation requires the
FIDO2 dependency that is not provided with the MySQL connector and is assumed to already be present
in your environment. It can be independently installed using:

$> pip install fido2

Previously, the now removed (as of version 8.4.0) aut hent i cati on_fi do MySQL Server plugin was
supported using the fido_callback option that was available in the C extension implementation.

Connector/Python supports OpenlD Connect as of Connector/Python 9.1.0. Functionality is enabled
with the aut henti cati on_openi d_connect _cli ent client-side authentication plugin connecting to
MySQL Enterprise Edition with the aut hent i cati on_openi d_connect authentication plugin. These
examples enable the plugin with aut h_pl ugi n and defines the JWT Identity Token file location with
openi d_t oken_file:

Standard connecti on
i mport mnysql . connector as cpy

config = {
"host": "l ocal host",
"port": 3306,
"user": "root",
"openi d_token_file": "{path-to-id-token-file}",
"aut h_pl ugi n": "authenticati on_openi d_connect_client",

"use_pure": True, # Use Fal se for C Extension
}
wi th cpy.connect (**config) as cnx:
with cnx.cursor() as cur:
cur . execut e(" SELECT @@er si on")
print(cur.fetchall())

Or, using an async connection
i mport mysql.connector.aio as cpy_async
i mport asynci o

config = {
"host": "l ocal host",
"port": 3306,
"user": "root",
"aut h_pl ugi n": "authenticati on_openi d_connect_client",

"openi d_token_file": "{path-to-id-token-file}",

https://docs.oracle.com/cd/E17952_01/mysql-8.4-en/webauthn-pluggable-authentication.html

Character Encoding

}

async def test():
async wWith await cpy_async.connect(**config) as cnx:
async wWith await cnx.cursor() as cur:
await cur. execut e(" SELECT @@er si on")
print(await cur.fetchall())
asynci o.run(test())

Character Encoding

By default, strings coming from MySQL are returned as Python Unicode literals. To change this behavior,
setuse_uni code to Fal se. You can change the character setting for the client connection through the
char set argument. To change the character set after connecting to MySQL, set the char set property of
the MySQLConnect i on instance. This technique is preferred over using the SET NAMES SQL statement
directly. Similar to the char set property, you can set the col | at i on for the current MySQL session.

Transactions

The aut oconmi t value defaults to Fal se, so transactions are not automatically committed. Call the
conmmi t () method of the MySQLConnect i on instance within your application after doing a set of related
insert, update, and delete operations. For data consistency and high throughput for write operations, it is
best to leave the aut oconmi t configuration option turned off when using | nnoDB or other transactional
tables.

Time Zones

The time zone can be set per connection using the t i me_zone argument. This is useful, for example, if
the MySQL server is set to UTC and TI MESTAMP values should be returned by MySQL converted to the
PST time zone.

SQL Modes

MySQL supports so-called SQL Modes. which change the behavior of the server globally or per
connection. For example, to have warnings raised as errors, set sql _node to TRADI TI ONAL. For more
information, see Server SQL Modes.

Troubleshooting and Error Handling

Warnings generated by queries are fetched automatically when get _war ni ngs is set to Tr ue. You can
also immediately raise an exception by setting r ai se_on_war ni ngs to Tr ue. Consider using the MySQL
sqgl_mode setting for turning warnings into errors.

To set a timeout value for connections, use connecti on_ti nmeout .

Enabling and Disabling Features Using Client Flags

MySQL uses client flags to enable or disable features. Using the cl i ent _f | ags argument, you have
control of what is set. To find out what flags are available, use the following:

from nysql . connector. constants inport dientFlag
print "\n'.join(CientFlag.get_full_info())

If client fl ags is not specified (that is, it is zero), defaults are used for MySQL 4.1 and higher. If you
specify an integer greater than 0, make sure all flags are set properly. A better way to set and unset flags
individually is to use a list. For example, to set FOUND ROWS, but disable the default LONG FLAG

flags = [Client Fl ag. FOUND_ROA5, -dientFl ag. LONG FLAG

31

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/sql-mode.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/sql-mode.html
https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/mysql-real-connect.html

Result Set Handling

nmysql . connect or. connect (cl i ent _fl ags=fl ags)

Result Set Handling

By default, MySQL Connector/Python does not buffer or prefetch results. This means that after a query
is executed, your program is responsible for fetching the data. This avoids excessive memory use when
queries return large result sets. If you know that the result set is small enough to handle all at once, you
can fetch the results immediately by setting buf f er ed to Tr ue. It is also possible to set this per cursor
(see Section 10.2.6, “MySQLConnection.cursor() Method”).

Results generated by queries normally are not read until the client program fetches them. To automatically
consume and discard result sets, set the consune_r esul t s option to Tr ue. The result is that all results
are read, which for large result sets can be slow. (In this case, it might be preferable to close and reopen
the connection.)

Type Conversions

By default, MySQL types in result sets are converted automatically to Python types. For example, a
DATETI ME column value becomes a datetime.datetime object. To disable conversion, set the r aw option to
Tr ue. You might do this to get better performance or perform different types of conversion yourself.

Connecting through SSL

Using SSL connections is possible when your Python installation supports SSL, that is, when it is compiled
against the OpenSSL libraries. When you provide the ssl _ca, ssl _key and ssl _cert options, the
connection switches to SSL, and the cl i ent _f | ags option includes the Cl i ent Fl ag. SSL value
automatically. You can use this in combination with the conpr essed option set to Tr ue.

As of Connector/Python 2.2.2, if the MySQL server supports SSL connections, Connector/Python attempts
to establish a secure (encrypted) connection by default, falling back to an unencrypted connection
otherwise.

From Connector/Python 1.2.1 through Connector/Python 2.2.1, it is possible to establish an SSL
connection using only the ssl _ca opion. The ssl _key and ssl _cert arguments are optional. However,
when either is given, both must be given or an At t ri but eEr r or is raised.

Note (Exanple is valid for Python v2 and v3)
from__future__ inport print_function

i mport sys
#sys. path.insert (0, 'python{0}/'.format(sys.version_info[0]))

i mport mnysql . connect or
from mysqgl . connect or. constants inport CientFlag

config = {
‘user': 'ssluser',
' password': 'password',
"host': '127.0.0.1",

"client_flags': [dientFlag.SSL],
"ssl _ca': '/opt/nysql/ssl/ca.pen,
"ssl _cert': '/opt/nysqgl/ssl/client-cert. pem,
"ssl _key': '/opt/nysqgl/ssl/client-key.pemn,
}

cnx = mysql . connect or. connect (**confi g)

cur = cnx. cursor (buf fered=True)

cur . execut e(" SHOW STATUS LI KE ' Ssl _ci pher' ")
print(cur.fetchone())

32

http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/ssl.html

Connection Pooling

cur.cl ose()
cnx. cl ose()

Connection Pooling

With either the pool _nane or pool _si ze argument present, Connector/Python creates the new pool. If
the pool _nane argument is not given, the connect () call automatically generates the name, composed
from whichever of the host , port, user, and dat abase connection arguments are given, in that order. If
the pool _si ze argument is not given, the default size is 5 connections.

The pool _reset _sessi on permits control over whether session variables are reset when the connection
is returned to the pool. The default is to reset them.

For additional information about connection pooling, see Section 9.5, “Connector/Python Connection
Pooling”.

Protocol Compression

The boolean conpr ess argument indicates whether to use the compressed client/server protocol (default
Fal se). This provides an easier alternative to setting the Cl i ent Fl ag. COVPRESS flag. This argument is
available as of Connector/Python 1.1.2.

Converter Class

Server

The converter cl ass argument takes a class and sets it when configuring the
connection. An At t ri but eEr r or is raised if the custom converter class is not a subclass of
conver si on. MySQLConvert er Base.

Failover

The connect () method accepts a f ai | over argument that provides information to use for server failover
in the event of connection failures. The argument value is a tuple or list of dictionaries (tuple is preferred
because it is nonmutable). Each dictionary contains connection arguments for a given server in the failover
sequence. Permitted dictionary values are: user, passwor d, host, port, uni x_socket , dat abase,
pool nane, pool _si ze. This failover option was added in Connector/Python 1.2.1.

Option File Support

As of Connector/Python 2.0.0, option files are supported using two options for connect () :

e option_files:Which option files to read. The value can be a file path name (a string) or a sequence
of path name strings. By default, Connector/Python reads no option files, so this argument must be given
explicitly to cause option files to be read. Files are read in the order specified.

e option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not
given, the default valueis[' cl ient', 'connector_python'] toreadthe[client] and
[connect or _pyt hon] groups.

For more information, see Section 7.2, “Connector/Python Option-File Support”.

LOAD DATA LOCAL INFILE

Prior to Connector/Python 2.0.0, to enable use of LOAD DATA LOCAL | NFI LE, clients had to explicitly
setthe Cl i ent Fl ag. LOCAL_FI LES flag. As of 2.0.0, this flag is enabled by default. To disable it, the
al ow_| ocal _i nfil e connection option can be set to Fal se at connect time (the default is Tr ue).

33

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html

Compatibility with Other Connection Interfaces

Compatibility with Other Connection Interfaces

passwd, db and connect ti meout are valid for compatibility with other MySQL interfaces and are
respectively the same as passwor d, dat abase and connecti on_ti neout . The latter take precedence.
Data source name syntax or dsn is not used,; if specified, it raises a Not Suppor t edEr r or exception.

Client/Server Protocol Implementation

Connector/Python can use a pure Python interface to MySQL, or a C Extension that uses the MySQL

C client library. The use_pur e mysgl.connector.connect() connection argument determines which. The
default changed in Connector/Python 8 from Tr ue (use the pure Python implementation) to Fal se. Setting
use_pur e changes the implementation used.

The use_pur e argument is available as of Connector/Python 2.1.1. For more information about the C
extension, see Chapter 8, The Connector/Python C Extension.

7.2 Connector/Python Option-File Support

Connector/Python can read options from option files. (For general information about option files in MySQL,
see Using Option Files.) Two arguments for the connect () call control use of option files in Connector/
Python programs:

« option_fil es:Which option files to read. The value can be a file path name (a string) or a sequence
of path name strings. By default, Connector/Python reads no option files, so this argument must be given
explicitly to cause option files to be read. Files are read in the order specified.

* option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not
given, the default valueis[' client', 'connector_python'],toreadthe[client] and
[connect or _pyt hon] groups.

Connector/Python also supports the ! i ncl ude and ! i ncl udedi r inclusion directives within option files.
These directives work the same way as for other MySQL programs (see Using Option Files).

This example specifies a single option file as a string:

cnx = mysqgl . connect or. connect (option_fil es='/etc/nysql/connectors.cnf')

This example specifies multiple option files as a sequence of strings:

nysqgl _option_files = [
'/ etc/ nysql / connectors. cnf’
' ./ devel opnent . cnf"’

]

cnx = nysql . connector. connect (option_fil es=nysql _option_files)

Connector/Python reads no option files by default, for backward compatibility with versions older than
2.0.0. This differs from standard MySQL clients such as nysql or nysql dunp, which do read option files
by default. To find out which option files the standard clients read on your system, invoke one of them with
its - - hel p option and examine the output. For example:

$> nysql --help

Default options are read fromthe following files in the given order
letc/ny.cnf /etc/nysql/ny.cnf /usr/local/nysql/etc/nmy.cnf ~/.ny.cnf

If you specify the opti on_fi | es connection argument to read option files, Connector/Python reads
the[client] and [connector pyt hon] option groups by default. To specify explicitly which

34

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/option-files.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/option-files.html

Option Parsing

groups to read, use the opti on_gr oups connection argument. The following example causes only the
[connect or _pyt hon] group to be read:

cnx = mysqgl . connector. connect (option_files='/etc/nysql/connectors.cnf'
opti on_groups=' connect or _pyt hon')

Other connection arguments specified in the connect () call take precedence over options read from
option files. Suppose that / et ¢/ nysql / connect or s. conf contains these lines:

[client]
dat abase=cpyapp

The following connect () call includes no dat abase connection argument. The resulting connection uses
cpyapp, the database specified in the option file:

cnx = mysql . connect or. connect (option_fil es='/etc/nysqgl/connectors.cnf')

By contrast, the following connect () call specifies a default database different from the one found in the
option file. The resulting connection uses cpyapp_dev as the default database, not cpyapp:

cnx2 = nmysqgl . connector. connect (option_files="/etc/nysql/connectors.cnf'
dat abase=' cpyapp_dev')

Connector/Python raises a Val ueEr r or if an option file cannot be read, or has already been read. This
includes files read by inclusion directives.

For the [connect or _pyt hon] group, only options supported by Connector/Python are accepted.
Unrecognized options cause a Val ueEr r or to be raised.

For other option groups, Connector/Python ignores unrecognized options.

It is not an error for a named option group not to exist.

Option Parsing

Connector/Python reads the option values in option files as strings, and attempts to parse them using
Python's ast . | i t eral _eval function. This allows specifying values like numbers, tuples, lists, and
booleans in the option files. If a value can't be parsed by ast . | it eral eval thenit's passed as a literal
string.

For example, this option file has options with values using a number, a string, and a tuple of dictionaries
that are correctly parsed for the [connect or _pyt hon] group:

[connect or _pyt hon]

dat abase=cpyapp

por t =3656

failover=({'host': '203.0.113.1', 'port': 3640}, {'host': '203.0.113.101', 'port': 3650})

For additional information, review Python's ast.literal_eval documentation including how to handle
unsanitized data that could crash the Python interpreter. Confirm that the option file values are trustworthy
and valid before parsing.

35

https://docs.python.org/3/library/ast.html#ast.literal_eval

36

Chapter 8 The Connector/Python C Extension

Table of Contents

8.1 Application Development with the Connector/Python C EXIENSIONvvviiviiiiiiiiii e eeeen, 37
8.2 The _mysql_connector C EXtENSION MOUUIEcvuuiiiiiieii e e e e e e e 38

Connector/Python supports a C extension that interfaces with the MySQL C client library. For queries
that return large result sets, using the C Extension can improve performance compared to a “pure
Python” implementation of the MySQL client/server protocol. Section 8.1, “Application Development

with the Connector/Python C Extension”, describes how applications that use the nysqgl . connect or
module can use the C Extension. It is also possible to use the C Extension directly, by importing the
_nysgl _connect or module rather than the nysql . connect or module. See Section 8.2, “The
_mysql_connector C Extension Module”. For information about installing the C Extension, see Chapter 4,
Connector/Python Installation.

Note

The C extension was added in version 2.1.1 and is enabled by default as of
8.0.11. The use_pur e option determines whether the Python or C version of this
connector is enabled and used.

8.1 Application Development with the Connector/Python C
Extension

Installations of Connector/Python from version 2.1.1 on support a use_pur e argument to
nmysgl . connect or. connect () that indicates whether to use the pure Python interface to MySQL or the
C Extension that uses the MySQL C client library:

» By default, use_pur e (use the pure Python implementation) is Fal se as of MySQL 8 and defaults to
Tr ue in earlier versions. If the C extension is not available on the system then use_pur e is Tr ue.

» On Linux, the C and Python implementations are available as different packages. You can install one
or both implementations on the same system. On Windows and macOS, the packages include both
implementations.

For Connector/Python installations that include both implementations, it can optionally be toggled
it by passing use_pur e=Fal se (to use C implementation) or use_pur e=Tr ue (to use the Python
implementation) as an argument to nysql . connect or. connect ().

» For Connector/Python installations that do not include the C Extension, passing use_pur e=Fal se to
nysql . connect or. connect () raises an exception.

 For older Connector/Python installations that know nothing of the C Extension (before version 2.1.1),
passing use_pur e tonysql . connect or. connect () raises an exception regardless of its value.

Note

On macOS, if your Connector/Python installation includes the C Extension,
but Python scripts are unable to use it, try setting your DYLD LI BRARY PATH
environment variable the directory containing the C client library. For example:

export DYLD LI BRARY_PATH=/usr/| ocal /mysql/lib (for sh)

37

The _mysql_connector C Extension Module

setenv DYLD LI BRARY_PATH /usr/l ocal /nysqgl/lib (for tcsh)

If you built the C Extension from source, this directory should be the one containing
the C client library against which the extension was built.

If you need to check whether your Connector/Python installation is aware of the C Extension, test the
HAVE CEXT value. There are different approaches for this. Suppose that your usual arguments for
nysql . connect or. connect () are specified in a dictionary:

config = {
‘user': 'scott',
' password': ' password'
"host': '127.0.0.1'
' dat abase': ' enpl oyees'
}

The following example illustrates one way to add use_pur e to the connection arguments:
i mport nysql . connect or

if nysql.connector.__version_info__ > (2, 1) and nysql.connect or. HAVE_CEXT
config['use_pure'] = Fal se

If use_pur e=Fal se and the C Extension is not available, then Connector/Python will automatically fall
back to the pure Python implementation.

8.2 The _mysql_connector C Extension Module

To use the C Extension directly, import the _nysql _connect or module rather than nysql . connect or,
then use the _nysql _connect or. MySQL() class to obtain a My SQL instance. For example:

i mport _mysql _connect or

ccnx = _nysql _connector. MySQL()
ccnx. connect (user='scott', password='password'
host='127.0.0.1', database='enpl oyees')

ccnx. quer y(" SHOW VARI ABLES LI KE ' versi on% ")
row = ccnx. fetch_row)
whi | e row.
print (row)
row = ccnx. fetch_row)
ccnx. free_result()

ccnx. cl ose()

For more information, see Chapter 11, Connector/Python C Extension API Reference.

38

Chapter 9 Connector/Python Other Topics

Table of Contents

9.1 CoNNECLOI/PYINON LOGUING ..eettniiiiiiiieieii ettt ettt ettt ettt e e et e e et e e e et e e e eba s 39
S I =1 =T 4011 VST U o] o Lo A SR SPPPTR 39
9.3 Executing MUIIpIe STATEMENTSouuiiiiiii e et e e e e e enaanns 43
9.4 ASYNCNAIONOUS CONNECLIVILYieiiiiieiiiii et e e e et e e et eeaeaa s 46
9.5 Connector/Python ConNECtioN POOIINGiiiiiiiiiii e e eeees 56
9.6 Connector/Python Django Back ENGcccuuuiiiiiiiiiiii e 58

9.1 Connector/Python Logging

By default, logging functionality follows the default Python logging behavior. If logging functionality is not
configured, only events with a severity level of WARNING and greater are printed to sys.stderr. For related
information, see Python's Configuring Logging for a Library documentation.

Outputting additional levels requires configuration. For example, to output debug events to sys.stderr set
logging.DEBUG and add the logging.StreamHandler handler. Additional handles can also be added, such
as logging.FileHandler. This example sets both:

Classic Protocol Exanple

i mport | ogging
i mport mnysql . connect or

| ogger = | oggi ng. get Logger (" mysql . connector")
| ogger . set Level (| oggi ng. DEBUG)

formatter = | ogging. Formatter ("% asctine)s - % nanme)s - %I evel nane)s- % nessage)s")

stream handl er = | oggi ng. Streantandl er ()
stream handl er. set Formatter (formatter)
| ogger . addHandl er (st ream handl er)

file_handl er = |ogging. Fil eHandl er ("cpy.|o0g")
file_handl er.setFormatter(formatter)
| ogger . addHand! er (fi | e_handl er)

XDevAPl Protocol Exanple
i mport | ogging
i mport mysql x

| ogger = | oggi ng. get Logger (" mysql x")
| ogger . set Level (| oggi ng. DEBUG)

formatter = | ogging. Formatter ("% asctine)s - % nanme)s - %I evel nane)s- % nessage)s")
stream handl er = | oggi ng. St reantandl er ()

stream handl er. set Formatter (formatter)

| ogger . addHandl er (st ream handl er)

file_handl er = | ogging.Fil eHandl er ("cpy.|o0g")

file_handl er.setFormatter(formatter)
| ogger . addHand! er (fi | e_handl er)

9.2 Telemetry Support

MySQL Server added OpenTelemetry support in MySQL Enterprise Edition version 8.1.0, which is a
commercial product. OpenTelemetry tracing support was added in Connector/Python 8.1.0.

39

https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library
https://www.mysql.com/products/enterprise/

Introduction to OpenTelemetry

Introduction to OpenTelemetry

OpenTelemetry is an observability framework and toolkit designed to create and manage telemetry data
such as traces, metrics, and logs. Visit What is OpenTelemetry? for an explanation of what OpenTelemetry
offers.

Connector/Python only supports tracing, so this guide does not include information about metric and log
signals.

Installing Telemetry Support

Install the OpenTelemetry API, SDK, and OTLP Exporter packages on the system along with Connector/
Python. Optionally use the [t el enet ry] shortcut when installing the nysql - connect or - pyt hon pip
package to pull in specific OpenTelemetry versions as defined by the connector.

Manual installation:

pip install opentel emetry-ap

pip install opentel emetry-sdk

pip install opentel emetry-exporter-otlp-proto-http
pip install nysql-connector-python

Or pass in [telemetry] when installing Connector/Python to perform the same actions except it installs a
specific and tested OpenTelemetry version, which for Connector/Python 9.4.0 and later is OpenTelemetry
v1.33.1:

pip install nysql-connector-python[tel enetry]

Connector/Python 8.1.0 through 8.4.0 included an [opentelemetry] option that installed a bundled version
of the OpenTelemetry SDK/API libraries. Doing so in those versions was not recommended.

Instrumentation

For instrumenting an application, Connector/Python utilizes the official OpenTelemetry SDK to initialize
OpenTelemetry, and the official OpenTelemetry API to instrument the application's code. This emits
telemetry from the application and from utilized libraries that include instrumentation.

An application can be instrumented as demonstrated by this generic example:

from opentel enetry inport trace

from opentel enetry. sdk.trace i nport Tracer Provi der

from opentel enetry. sdk. trace. export inport BatchSpanProcessor
from opentel enetry. sdk. trace. export inport Consol eSpanExporter

provi der = Tracer Provi der ()

processor = Bat chSpanProcessor (Consol eSpanExporter())
provi der. add_span_pr ocessor (processor)
trace.set_tracer_provider(provider)

tracer = trace.get_tracer(__nanme_)

with tracer.start_as_current _span("app"):
my_app()

To better understand and get started using OpenTelemetry tracing for Python, see the official
OpenTelemetry Python Instrumentation guide.

MySQL Connector/Python

Connector/Python includes a MySQL instrumentor to instrument MySQL connections. This instrumentor
provides an APl and usage similar to OpenTelemetry's own MySQL package named opentelemetry-
instrumentation-mysq|.

40

https://opentelemetry.io/docs/what-is-opentelemetry/
https://opentelemetry.io/docs/instrumentation/python/manual/
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-mysql
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-mysql

Morphology of the Emitted Traces

An exception is raised if a system does not support OpenTelemetry when attempting to use the
instrumentor.

An example that utilizes the system's OpenTelemetry SDK/API and implements tracing with MySQL
Connector/Python:

i mport os
i mport mysql . connect or

An instrumentor that cones with nysql - connect or - pyt hon

from nmysqgl . connect or. opentel emetry. i nstrunentation inport (
MySQLI nst rument or as O acl eMySQLI nst r unent or,

)

Loadi ng SDK from the system

from opentel enetry inport trace

from opentel enetry. sdk.trace i nport Tracer Provider

from opentel enetry. sdk. trace. export inmport BatchSpanProcessor
from opentel enetry. sdk. trace. export inmport Consol eSpanExporter

provi der = TracerProvider ()

processor = Bat chSpanProcessor (Consol eSpanExporter())
provi der. add_span_pr ocessor (pr ocessor)
trace.set_tracer_provider(provider)

tracer = trace.get_tracer(__name__)

config = {
"host": "127.0.0.1",
"user": "root",

"password": os.environ.get("password"),
"use_pure": True,

"port": 3306,

"dat abase": "test",

}

dobal instrumentation: all connection objects returned by
mnysql . connector. connect will be instrunented.
O acl eMySQLI nstrument or (). i nstrument ()

with tracer.start_as_current_span("client_app"):
wi th mysqgl . connector. connect (**config) as cnx:
with cnx.cursor() as cur:
cur . execut e(" SELECT @@er si on")
_ = cur.fetchall ()

Morphology of the Emitted Traces

A trace generated by the Connector/Python instrumentor contains one connection span, and zero or more

guery spans as described in the rest of this section.
Connection Span

» Time from connection initialization to the moment the connection ends. The span is named
connecti on.

« If the application does not provide a span, the connection span generated is a ROOT span, originating in

the connector.

« If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

Query Span

Disabling Trace Context Propagation

« Time from when an SQL statement is requested (on the connector side) to the moment the connector
finishes processing the server's reply to this statement.

» A query span is created for each query request sent to the server. If the application does not provide a
span, the query span generated is a ROOT span, originating in the connector.

« If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

e The query span is linked to the existing connection span of the connection the query was executed.
* Query attributes with prepared statements is supported as of MySQL Enterprise Edition 8.3.0.

* Query spans for the connection object is supported as of Connector/Python 8.3.0, which includes
methods such as commit(), rollback(), and cmd_change_user().

Context Propagation
By default, the trace context of the span in progress (if any) is propagated to the MySQL server.

Propagation has no effect when the MySQL server either disabled or does not support OpenTelemetry
(the trace context is ignored by the server), however, when connecting to a server with OpenTelemetry
enabled and configured, the server processes the propagated traces and creates parent-child relationships
between the spans from the connector and those from the server. In other words, this provides trace
continuity.

Note

Context propagation with prepared statements is supported as of MySQL Enterprise
Edition 8.3.0.

» The trace context is propagated for statements with query attributes defined in the MySQL client/server
protocol, such as COM_QUERY.

The trace context is not propagated for statements without query attributes defined in the MySQL client/
server protocol, statements such as COM_PING.

» Trace context propagation is done via query attributes where a new attribute named "traceparent" is
defined. Its value is based on the current span context. For details on how this value is computed, read
the traceparent header W3C specification.

If the "traceparent” query attribute is manually set for a query, then it is not be overwritten by the
connector; it's assumed that it provides OTel context intended to forward to the server.

Disabling Trace Context Propagation

The boolean connection property named ot el _cont ext _propagati on is Tr ue by default. Setting it to
Fal se disables context propagation.

Since ot el _cont ext _propagati on is a connection property that can be changed after a connection is
established (a connection object is created), setting such property to Fal se does not have an effect over
the spans generated during the connection phase. In other words, spans generated during the connection
phase are always propagated since ot el _cont ext propagati on is Tr ue by default.

This implementation is distinct from the implementation provided through the MySQL client library (or the
relatedt el enetry_cl i ent client-side plugin).

42

https://www.w3.org/TR/trace-context/#traceparent-header

Executing Multiple Statements

9.3 Executing Multiple Statements

Connector/Python can execute either a single or multiple statements, this section references multiple
statement and associated delimiter support.

Note

Before Connector/Python 9.2.0, the nul t i option was required to execute multiple
statements. This option provided inconsistent results and was removed in 9.2.0.

Basic usage example:
sql _operation = """
SET @=1, @='2024-02-01';

SELECT @, LENGTH('hello'), @b;
SELECT @@er si on;

with cnx.cursor() as cur:
Execute SQ; it can contain one or nultiple statenents
cur . execut e(sqgl _operati on)

Fetch result set, see other exanples for additional information

Custom delimiters are also supported (as of Connector/Python 9.2.0), including in scripts that include
delimiters and multiple statements. The Sakila sample database file saki | a- schena. sql is an example:
with cnx.cursor() as cur:
wi th open(
os.path.join("/path/to/files", "sakila-schema.sql"), encodi ng="utf-8"
) as code:
cur . execut e(code. read())

Fetch result set, see other exanples for additional information

Multiple Statement Result Mapping

The optional map_r esul t s option (defaults to Fal se) makes each statement relate to its corresponding
result set.

sql _operation = ...

with cnx.cursor() as cur:
Execute SQ; it can contain one or nmultiple statenents
cur. execut e(sql _operation, map_results=True)

Fetch result set, see other exanples for additional information

A MySQL multi statement or script is composed of one or more single statements. There are two types of
single statements:

» Si npl e: these do not include a BEG N- END body declaration.

» Conmpound: these do include a BEG N- END body declaration, such as:

CREATE PROCEDURE dor epeat (pl | NT)

BEG N

SET @& = O;

REPEAT SET @ = @ + 1; UNTIL @ > pl END REPEAT,;
END;

43

Fetching Result Sets

Connector/Python uses custom delimiters to break up a multi statement into individual statements when
handling compound single statements, like how the MySQL client does. Simple single statements do not
require custom delimiters but they can be used.

If no delimiters are utilized when working with compound single statements, the statement-result mapping
may cause unexpected results. If mapping is disabled, compound single statements may or may not utilize
delimiters.

An example using a mix of simple and compound statements:
DROP PROCEDURE | F EXI STS dor epeat ;
DELI M TER //

CREATE PROCEDURE dor epeat (pl | NT)
BEG N

SET @& = O;

REPEAT SET @& = @ + 1; UNTIL @ > pl END REPEAT;
END/ /

DELI M TER ;

SELECT @;

Connector/Python carries on a pre-processing step for handling delimiters that may affect performance for
large scripts. There are also limitations when working with custom delimiters:

* Unsupported delimters:the following characters are not supported by the connector in
DELI M TER statements:

doubl e quot e:

singl e quote:

hash: #

sl ash plus star: /*
star plus slash: */

Avoid using these symbols as part of a string representing a delimiter.

» DELI M TER: the word DELIMITER and any of its lower and upper case combinations such as delimiter,
DeLiMiter, and so on, are considered reserved words by the connector. Users must quote these when
included in multi statements for other purposes different from declaring an actual statement delimiter;
such as names for tables, columns, variables, in comments, and so on. Example:

CREATE TABLE “delimter” (begin INT, end INT); -- | ama " DELini Ter conmment

Fetching Result Sets

Basic usage (mapping disabled):

sql _operation = """

SET @=1, @-='2024-02-01";
SELECT @, LENGTH('hello'), @;
SELECT @@er si on;

with cnx.cursor() as cur:
Execute a statement; it can be single or multi.
cur . execut e(sqgl _operati on)

Fetch result sets and do sonething with them
result_set = cur.fetchall ()

do sonething with result set

44

Shortcut for consuming result sets

whi | e cur.nextset():
result_set = cur.fetchall ()
do sonething with result set

The multi statement execution generates one or more result sets, in other words a set of result sets. The
first result set is loadable after execution completes. You might fetch (using f et chal | ()) the current

result set and process it, or not, and move onto the next one.

Alternatively, use the nextset() cursor APl method to traverse a result set. This method makes the cursor

skip to the next available set, discarding any remaining rows from the current set.

For executions generating only one result set, which happens when your script only includes one

statement, the call to nextset() can be omitted as at most one result set is expected. Calling it returns None

as there are no more sets.

With Statement-ResultSet mapping usage:
sql _operation = ...

with cnx.cursor() as cur:
Execute a statenent; it can be single or nulti.
cur. execut e(sql _operation, map_results=True)

Fetch result sets and do sonething with them

statement 1 is ~SET @=1, @='2025-01-01" ",

result set fromstatement 1 is "[]° - aka, an enpty set.
result_set, statenent = cur.fetchall (), cur.statenent

do sonething with result set

1st call to "nextset()” will load the result set from statenent 2,
statement 2 is "SELECT @, LENGTH('hello'), @,
result set fromstatenent 2 is "[(1, 5, '2025-01-01")]".

2nd call to "nextset()” will load the result set from statenent 3,
statement 3 is ~SELECT @@ersion’,
result set fromstatement 3 is "[('9.2.0',)] .

3rd call to "nextset() wll return "None as there are no nore sets,
leading to the end of the consunption process of result sets.

whi l e cur.nextset():

result_set, statenent = cur.fetchall (), cur.statenent

do sonething with result set

#
#
#
#
#
#
#
#
#
#

When the mapping is disabled (map_r esul t s=Fal se), all result sets are related to the same statement,

which is the one provided when calling execut e() . In other words, the st at enent property does
not change while result sets are consumed, which differs from when mapping is enabled, when the
st at ement property returns the statement that caused the current result set. Therefore, the value of

statement changes accordingly while the result sets are traversed.

Shortcut for consuming result sets

A fetch-related APl command shortcut is available to consume result sets, this example is equivalent to the

previously presented workflow.

sql _operation = """’

SET @=1, @-='2025-01-01";
SELECT @, LENGTH('hello'), @;
SELECT @@er si on;

45

Asynchronous Connectivity

with cnx.cursor() as cur:
cur. execut e(sql _operation, map_results=True)
for statement, result_set in cur.fetchsets():
do sonething with result set

The fetchsets() method returns a generator where each item is a 2-tuple; the first element is the statement
that caused the result set, and the second is the result set itself. If mapping is disabled, statement will not
change as result sets are consumed.

If statement is not needed, then consider this simpler option:

sql _operation = ...
with cnx.cursor() as cur:
cur.execute(...)
for _, result_set in cur.fetchsets():
do sonething with result set

9.4 Asynchronous Connectivity

Installing Connector/Python also installs the mysql . connect or . ai o package that integrates asyncio
with the connector to allow integrating asynchronous MySQL interactions with an application.

Here are code examples that integrate nysql . connect or. ai o functionality:

Basic Usage:

from nmysqgl . connector. ai o i nport connect

Connect to a MySQL server and get a cursor
chx = await connect (user="myuser", password="mypass")
cur = await cnx.cursor()

Execute a non-bl ocki ng query
await cur. execut e(" SELECT version()")

Retrieve the results of the query asynchronously
results = await cur.fetchall ()
print(results)

Cl ose cursor and connection
await cur.close()
await cnx. cl ose()

Usage with context managers:

from nysqgl . connector. ai o inport connect

Connect to a MySQL server and get a cursor
async with await connect(user="myuser", password="mypass") as cnx:
async with await cnx.cursor() as cur:
Execute a non-bl ocki ng query
awai t cur.execute("SELECT version()")

Retrieve the results of the query asynchronously
results = await cur.fetchall ()
print(results)

Running Multiple Tasks Asynchronously

This example showcases how to run tasks asynchronously and the usage of to_thread, which is the
backbone to asynchronously run blocking functions:

46

https://docs.python.org/3/library/asyncio.html

Running Multiple Tasks Asynchronously

Note

The synchronous version of this example implements coroutines instead of
following a common synchronous approach; this to explicitly demonstrate that
only awaiting coroutines does not make the code run asynchronously. Functions
included in the asyncio APl must be used to achieve asynchronicity.

i mport asynci o
i mport os
import time

from nysqgl . connector. ai o i nport connect

G obal variable which will help to format the job sequence out put.
DI SCLAIMER: this is an exanpl e for showcasi ng/ deno purposes,

you shoul d avoi d gl obal variabl es usage for production code.

gl obal indent

indent = 0

MySQL Connection argunents

config = {
"host": "127.0.0.1",
"user": "root",
"password": os.environ.get("MPASS', ":("),
"use_pure": True,
"port": 3306,
}

async def job_sleep(n):
"""Take a nap for n seconds.

This job represents any generic task - it may be or not an | O task.
| ncrenent indent

gl obal indent

offset = "\t" * indent

indent += 1

Emul ati ng a generic job/task
print(f"{offset}START_SLEEP")
awai t asynci o. sl eep(n)
print(f"{offset}END SLEEP")

return f"I slept for {n} seconds"

async def job_nysql ():
"""Connect to a MySQL Server and do sone operations.

Run queries, run procedures, insert data, etc.
| ncrenent indent

gl obal indent

offset = "\t" * indent

indent += 1

MySQL operations
print(f"{of fset}START_MySQ._OPS")
async with await connect(**config) as cnx:
async with await cnx.cursor() as cur:
awai t cur.execute("SELECT @@ersion")
res = await cur.fetchone()
tine.sleep(l) # for sinulating that the fetch isn't i mediate
print(f"{of fset}END MYSQL_OPS")

47

Running Multiple Tasks Asynchronously

return server version
return res

async def job_io()
"""Emul ate an | O operation

“to_thread” allows to run a blocking function asynchronously.

Ref er ences
[asyncio.to_thread]: https://docs. python.org/3/1ibrary/asynci o-task. htm #asynci o.to_t hread

Emul ating a native bl ocking | O procedure
def io():
""" Bl ocking | O operation
time. sl eep(5)

| ncrenment indent

gl obal i ndent

offset = "\t" * indent
indent += 1

Showcasi ng how a native bl ocking | O procedure can be awaited
print(f"{of fset}START_| O")

await asyncio.to_thread(io)

print(f"{of fset}END_| O")

return "I aman | O operation”

async def mai n_asynchronous()
""" Runni ng tasks asynchronously.

Ref er ences
[asynci o. gather]: https://docs. python.org/3/1ibrary/asynci o-task. ht m #asynci o. gat her

A0 {3 (Pocanomnoann anoan nno - ASYNCHRONQUS - = - - = === === =comamn ")

reset indent
gl obal i ndent
indent = 0

clock = tine.tine()

~asyncio.gather()" allows to run awaitabl e objects
in the aws sequence asynchronously.\

If all awaitables are conpl eted successfully,

the result is an aggregate list of returned val ues
aws = (job_io(), job_nysqgl (), job_sleep(4))
returned_val s = await asynci o. gat her (*aws)

print(f"El apsed tine: {tine.tine() - clock:0.2f}")
The order of result values corresponds to the
order of awaitables in aws.

print(returned_vals, end="\n" * 2)

Exanpl e expected out put

B ccoosessecocassassse ASYNCHRONQUS - - == === === m oz o e o
START_| O

START_MYSQL_OPS

START_SLEEP

END_MYSQL_CPS

END_SLEEP

END_| O

48

Running Multiple Tasks Asynchronously

El apsed tine: 5.01
#['l aman IO operation', ('8.3.0-comercial',), 'I slept for 4 seconds']

async def mai n_non_asynchronous()

if

__hane =="_min__

""" Runni ng tasks non-asynchronousl y"""
print("--------------o---- NON- ASYNCHRONQUS - - - -------------m-- ")

reset indent
gl obal i ndent
indent = 0

clock = tine.tine()

Sequence of awaitabl e objects
aws = (job_io(), job_nysqgl (), job_sleep(4))

The |ine below this docstring is the short version of:

corol, coro2, coro3 = *aws

resl awai t corol

res2 awai t cor o2

res3 = await coro3

returned_vals = [resl, res2, res3]
NOTE: Sinply awaiting a coro does not nake the code run asynchronously!
returned_vals = [await coro for coro in aws] # this will run synchronously

#
#
#
#
#
#

print(f"El apsed tine: {tine.tine() - clock:0.2f}")
print(returned_vals, end="\n")

Exanpl e expected out put
——————————————————— NON- ASYNCHRONQUS - - --------------o--
START_| O
END_| O
START_MYSQL_OPS
END_MYSQL_OPS
START_SLEEP
END_SLEEP
El apsed time: 10.07
['l aman IO operation', ('8.3.0-comercial',), '|I slept for 4 seconds']

HH O HHH R HHHR

‘asyﬁcio.run()“ all ows to execute a coroutine (‘coro’) and return the result
You cannot run a coro without it.

Ref erences
[asynci o.run]: https://docs. python.org/ 3/1i brary/asynci o-runner. htm #asynci o. run
assert asynci o.run(mai n_asynchronous()) == asynci o. run(mai n_non_asynchronous())

It shows these three jobs running asynchronously:

» j ob_i o: Emulate an I/O operation; with to_thread to allow running a blocking function asynchronously.

Starts first, and takes five seconds to complete so is the last job to finish.

» job_nysql : Connects to a MySQL server to perform operations such as queries and stored

procedures.

Starts second, and takes one second to complete so is the first job to finish.

* j ob_sl eep: Sleeps for n seconds to represent a generic task.

Starts last, and takes four seconds to complete so is the second job to finish.

49

Asynchronous MySQL Queries

Note

A lock/mutex wasn't added to the i ndent variable because multithreading isn't
used; instead the unique active thread executes all of the jobs. Asynchronous
execution is about completing other jobs while waiting for the result of an 1/0
operation.

Asynchronous MySQL Queries
This is a similar example that uses MySQL queries instead of generic jobs.
Note

While cursors are not utilized in the these examples, the principles and workflow
could apply to cursors by letting every connection object create a cursor to operate
from.

Synchronous code to create and populate hundreds of tables:

i mport os
inmport tinme
fromtyping inport TYPE CHECKI NG Call able, List, Tuple

from mysqgl . connector inport connect
i f TYPE_CHECKI NG

from nmysqgl . connect or. abstracts inport (
MySQLConnect i onAbst r act ,

)

MySQL Connection argunents

config = {
"host": "127.0.0.1",
“user": "root",
"password": os.environ. get("MPASS', ":("),
"use_pure": True,
“port": 3306,
}

exec_sequence = []

def create_tabl e(
exec_seq: List[str], table_nanmes: List[str], cnx: "M/SQ.ConnectionAbstract", i: int
) -> None:
"""Creates a table. """
if i >= len(tabl e_nanes):
return Fal se

exec_seq. append(f"start_{i}")
stmt = f"""
CREATE TABLE | F NOT EXI STS {table_nanes[i]} (
dish_id INT(11) UNSI GNED AUTO_ | NCREMENT UNI QUE KEY,
cat egory TEXT,
di sh_nane TEXT,
price FLOAT,
servi ngs | NT,
order _time TIME

e

cnx. cmd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
cnx. crmd_query(stnt)
exec_seq. append(f"end_{i}")

50

Asynchronous MySQL Queries

def

) 5

def

) 5

if

return True

drop_t abl e(

exec_seq: List[str], table_nanes: List[str], cnx: "M/SQ.ConnectionAbstract", i:
> None:

"""Drops a table."""

if i >= len(tabl e_nanes):

return Fal se

exec_seq. append(f"start_{i}")

cnx. cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")

exec_seq. append(f"end_{i}")

return True

mai n(

kernel : Callable[[List[str], List[str], "MySQConnectionAbstract", int], None],

tabl e_nanmes: List[str],
> Tupl e[Li st, List]:

exec_seq = []
dat abase_nanme = " TABLE_CREATOR'

wi th connect (**config) as cnx:
Create/ Setup dat abase
cnx. cnd_quer y(f" CREATE DATABASE | F NOT EXI STS {dat abase_nane}")
cnx. cnd_query(f"USE {dat abase_nane}")

Execute Kernel: Create or Delete tables
for i in range(len(table_nanes)):
kernel (exec_seq, table_nanes, cnx, i)

Show t abl es
cnx. cnd_query(" SHOW t abl es")
show_t abl es = cnx. get _rows()[0]

Return execution sequence and table nanmes retrieved with “SHOWt abl es; .
return exec_seq, show_tabl es

__nane__ == "__main__":
with numtabl es=511 -> El apsed tinme ~ 25.86

clock = tine.tine()

print_exec_seq = Fal se

num tables = 511

tabl e_nanmes = [f"table_sync_{n}" for n in range(numtabl es)]

print("-------------------- SYNC CREATOR ------------mmmmmm - ")
exec_seq, show_tables = main(kernel =create_tabl e, table_nanmes=tabl e_nanes)
assert | en(show_tabl es) == num tabl es

if print_exec_seq:
print (exec_seq)

print("-------------------- SYNC DROPPER ----------ommmoo o ")
exec_seq, show_tables = main(kernel =drop_table, table_nanes=tabl e_nanes)
assert |en(show_tables) ==
if print_exec_seq:

print (exec_seq)

print(f"El apsed tine: {tine.tine() - clock:0.2f}")

Expected output with numtables = 11:

#oom o SYNC CREATOR --------------------
[

"start_0",

"end_0",

int

51

Asynchronous MySQL Queries

"start_1",
"end_1",
"start_2",
"end_2",
"start_3",
"end_3",
"start_4",
"end_4",
"start_5",
"end_5",
"start_6",
"end_6",
"start_7",
"end_7",
"start_8",
"end_8",
"start_9",
"end_9",
"start_10",
"end_10",

"start_0",
"end_0",
"start_1",
"end_1",
"start_2",
"end_2",
"start_3",
"end_3",
"start_4",
"end_4",
"start_5",
"end_5",
"start_6",
"end_6",
"start_7",
"end_7",
"start_8",
"end_8",
"start_9",
"end_9",
"start_10",
"end_10",

HHFHFFHFFFEHFFEHFRFEHFFHFFRFFRFEFRFEFREHFSEFHRFHFEFEFEHFEH R

]

That script creates and deletes {num_tables} tables, and is fully sequential in that it creates and deletes
table_{i} before moving to table_{i+1}.

An asynchronous code example for the same task:

i mport asynci o

i mport os

import tinme

fromtyping i nport TYPE CHECKI NG Callable, List, Tuple

from nmysqgl . connector. ai o i nport connect

i f TYPE_CHECKI NG
from nmysqgl . connector. ai 0. abstracts inmport (
MySQLConnect i onAbst r act ,

)

MySQL Connection arguments
config = {

Asynchronous MySQL Queries

}

“host": "127.0.0.1",

"user": "root",

"password": os.environ.get("MPASS', ":("),
"use_pure": True,

"port": 3306,

exec_sequence = []

async def create_tabl e(

)

exec_seq: List[str], table_nanmes: List[str], cnx: "MySQ.ConnectionAbstract", i: int

-> None:

"""Creates a table.
if i >= len(tabl e_nanes):
return Fal se

exec_seq. append(f"start_{i}")
stmt = f"""
CREATE TABLE | F NOT EXI STS {tabl e_nanes[i]} (
dish_id INT(11) UNSI GNED AUTO_ | NCREMENT UNI QUE KEY,
cat egory TEXT,
di sh_name TEXT,
price FLOAT,
servi ngs | NT,
order_tinme TIME

await cnx.cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanmes[i]}")
await cnx.cnd_query(stnt)

exec_seq. append(f"end_{i}")

return True

async def drop_tabl e(

)

exec_seq: List[str], table_nanmes: List[str], cnx: "MySQ.ConnectionAbstract", i: int

-> None:

"""Drops a table.
if i >= len(tabl e_nanes):
return Fal se

exec_seq. append(f"start_{i}")

await cnx.cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
exec_seq. append(f"end_{i}")

return True

async def mai n_async(

)

kernel : Callable[[List[str], List[str], "MySQConnectionAbstract", int], None],
tabl e_nanmes: List[str],
num j obs: int = 2,

-> Tupl e[List, List]:

"""The asynchronous tables creator...
Ref er ence:
[as_conpl eted]: https://docs. python.org/3/1ibrary/asynci o-task. ht m #asynci 0. as_conpl et ed
exec_seq = []
dat abase_nanme = " TABLE_CREATOR'

Create/ Setup dat abase

No asynchronous execution is done here.

NOTE: observe usage W TH cont ext manager .

async with await connect(**config) as cnx:
await cnx.cnmd_query(f" CREATE DATABASE | F NOT EXI STS {dat abase_nane}")
await cnx.cnmd_query(f"USE {dat abase_nane}")

confi g["dat abase"] = database_nane

53

Asynchronous MySQL Queries

Open connections

“as_conpleted” allows to run awaitable objects in the "aws™ iterable asynchronously.
NOTE: observe usage W THOUT cont ext nanager.
aws = [connect(**config) for _ in range(numj obs)]
cnxs: List["M/SQ.ConnectionAbstract"] = [
await coro for coro in asyncio.as_conpl et ed(aws)
]

Execute Kernel: Create or Delete tables

N tabl es nust be created/deleted and we can run up to ~numjobs® jobs asynchronously,
therefore we execute jobs in batches of size numjobs'.

returned_values, i = [True], O
whil e any(returned_values): # Keep running until i >= |len(table_nanes) for all jobs
Prepare coros: map connections/cursors and table-nane IDs to jobs.
aws = [
kernel (exec_seq, table_nanes, cnx, i + idx) for idx, cnx in enunerate(cnxs)

]

When i >= |l en(tabl e_names) coro sinply returns Fal se, el se True.
returned_values = [await coro for coro in asyncio.as_conpl et ed(aws)]
Update tabl e-name | D of fset based on the nunber of jobs

i += numj obs

Cl ose cursors

“as_conpleted” allows to run awaitable objects in the "aws™ iterable asynchronously.
for coro in asyncio.as_conpl eted([cnx.close() for cnx in cnxs]):
awai t coro

Load tabl e nanes

No asynchronous execution is done here.
async wWith await connect(**config) as cnx:
Show t abl es
await cnx.cnd_query("SHOWN t abl es")
show tables = (await cnx.get_rows())[0]

Return execution sequence and table nanmes retrieved with “SHOWt abl es; .
return exec_seq, show_tabl es

name__ == "__main__":
“asyncio.run() " allows to execute a coroutine (‘coro’) and return the result.
You cannot run a coro without it.

Ref er ences:
[asynci o.run]: https://docs. python.org/3/1i brary/asynci o-runner. htm #asynci o. run

with numtabl es=511 and num j obs=3 -> El apsed time ~ 19.09
with numtabl es=511 and num j obs=12 -> El apsed tine ~ 13.15
clock = tine.tine()

print_exec_seq = Fal se

num tables = 511

num j obs = 12

tabl e_names = [f"table_async_{n}" for n in range(numtabl es)]

print("-------------------- ASYNC CREATOR -------------------- ")
exec_seq, show_tables = asyncio.run(
mai n_async(kernel =create_tabl e, tabl e_nanmes=t abl e_nanmes, num j obs=num j obs)

assert | en(show_tabl es) == num tabl es
if print_exec_seq:
print (exec_seq)

A0 {3 (Pocanomnoann anoan nno - ASYNC DROPPER - -« - -« --=-z-camcmnn- ")

54

Asynchronous MySQL Queries

exec_seq, show_tables = asyncio.run(
mai n_async(kernel =drop_t abl e, tabl e_nanes=tabl e_nanes, num j obs=num j obs)
)
assert |en(show_tables) ==
if print_exec_seq:
print (exec_seq)

print(f"El apsed tine: {tine.tine() - clock:0.2f}")

Expected output with numtables = 11 and numjobs = 3:
———————————————————— ASYNC CREATOR --------------------

"start_2",
"start_1",
"start_0",
"end_2",
"end_0",
"end_1",
"start_5",
"start_3",
"start_4",
"end_3",
"end_5",
"end_4",
"start_8",
"start_7",
"start_6",
"end_7",
"end_8",
"end_6",
"start_10",
"start_9",
"end_9",
"end_10",

"start_1",
"start_2",
"start_0",
"end_1",
"end_2",
"end_0",
"start_3",
"start_5",
"start_4",
"end_4",
"end_5",
"end_3",
"start_6",
"start_8",
"start_7",
"end_7",
"end_6",
"end_8",
"start_10",
"start_9",
"end_9",
"end_10",

HHEFHFFHFFFEHFBFEHFFHFFFFRFEFRFEHFRFEHFFRFFRFFRFEFREFSEFFFFHF T F R E R

fa—

This output shows how the job flow isn't sequential in that up to {num_jobs} can be executed
asynchronously. The jobs are run following a batch-like approach of {num_jobs} and waits until all
terminate before launching the next batch, and the loop ends once no tables remain to create.

Connector/Python Connection Pooling

Performance comparison for these examples: the asynchronous implementation is about 26% faster
when using 3 jobs, and 49% faster using 12 jobs. Note that increasing the number of jobs does add job

management overhead which at some point evaporates the initial speed-up. The optimal number of jobs is
problem-dependent, and is a value determined with experience.

As demonstrated, the asynchronous version requires more code to function than the non-asynchronous
variant. Is it worth the effort? It depends on the goal as asynchronous code better optimizes performance,
such as CPU usage, whereas writing standard synchronous code is simpler.

For additional information about the asyncio module, see the official Asynchronous I/O Python
Documentation.

9.5 Connector/Python Connection Pooling

Simple connection pooling is supported that has these characteristics:

The nysql . connect or. pool i ng module implements pooling.

A pool opens a number of connections and handles thread safety when providing connections to
requesters.

The size of a connection pool is configurable at pool creation time. It cannot be resized thereafter.

A connection pool can be named at pool creation time. If no name is given, one is generated using the
connection parameters.

The connection pool name can be retrieved from the connection pool or connections obtained from it.

It is possible to have multiple connection pools. This enables applications to support pools of
connections to different MySQL servers, for example.

For each connection request, the pool provides the next available connection. No round-robin or other
scheduling algorithm is used. If a pool is exhausted, a Pool Er r or is raised.

It is possible to reconfigure the connection parameters used by a pool. These apply to connections
obtained from the pool thereafter. Reconfiguring individual connections obtained from the pool by calling
the connection confi g() method is not supported.

Applications that can benefit from connection-pooling capability include:

Middleware that maintains multiple connections to multiple MySQL servers and requires connections to
be readily available.

websites that can have more “permanent” connections open to the MySQL server.

A connection pool can be created implicitly or explicitly.

To create a connection pool implicitly: Open a connection and specify one or more pool-related
arguments (pool _nane, pool _si ze). For example:

dbconfig = {
"dat abase": "test",
"user” "j oe"

}

cnx = mysql . connect or. connect (pool _nane

= "mypool ",

pool _si ze
**dbconfi g)

56

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio

Connector/Python Connection Pooling

The pool name is restricted to alphanumeric characters and the special characters ., ,*, $, and #. The
pool name must be no more than pool i ng. CNX_POOL_MAXNANESI ZE characters long (default 64).

The pool size must be greater than 0 and less than or equal to pool i ng. CNX_POOL_MAXSI ZE (default
32).

With either the pool _nane or pool _si ze argument present, Connector/Python creates the new pool. If
the pool _nane argument is not given, the connect () call automatically generates the name, composed
from whichever of the host , port, user, and dat abase connection arguments are given, in that order. If
the pool _si ze argument is not given, the default size is 5 connections.

Subsequent calls to connect () that name the same connection pool return connections from the existing
pool. Any pool _si ze or connection parameter arguments are ignored, so the following connect () calls
are equivalent to the original connect () call shown earlier:

cnx = nysql . connector. connect (pool _nane = "nypool ", pool _size = 3)
cnx = nysql . connector. connect (pool _nane = "nypool ", **dbconfi g)
cnx = mysql . connector. connect (pool _nane = "nypool ")

Pooled connections obtained by calling connect () with a pool-related argument have a class

of Pool edMySQLConnect i on (see Section 10.4, “pooling.PooledMySQLConnection Class”).

Pool edMySQLConnect i on pooled connection objects are similar to My SQLConnect i on unpooled
connection objects, with these differences:

» To release a pooled connection obtained from a connection pool, invoke its cl ose() method, just as
for any unpooled connection. However, for a pooled connection, cl ose() does not actually close the
connection but returns it to the pool and makes it available for subsequent connection requests.

» A pooled connection cannot be reconfigured using its conf i g() method. Connection changes must be
done through the pool object itself, as described shortly.

* A pooled connection has a pool _nane property that returns the pool name.

To create a connection pool explicitly: Create a MySQLConnect i onPool object (see Section 10.3,
“pooling.MySQLConnectionPool Class”):

dbconfig = {
"dat abase": "test"
"user”: "j oe"
}
cnxpool = nysql.connector. pool i ng. My'SQ.Connect i onPool (pool _nane = "nypool "

pool _size = 3
**dbconfi g)

To request a connection from the pool, use its get _connecti on() method:

cnxl
cnx2

cnxpool . get _connection()
cnxpool . get _connection()

When you create a connection pool explicitly, it is possible to use the pool object's set _confi g() method
to reconfigure the pool connection parameters:

dbconfig = {
"dat abase": "performance_schem"
"user": "adm n",
"password": "password"

}

cnxpool . set _config(**dbconfi g)

57

Connector/Python Django Back End

Connections requested from the pool after the configuration change use the new parameters. Connections
obtained before the change remain unaffected, but when they are closed (returned to the pool) are
reopened with the new parameters before being returned by the pool for subsequent connection requests.

9.6 Connector/Python Django Back End

Connector/Python includes a mysql . connect or . dj ango module that provides a Django back end for
MySQL. This back end supports new features found as of MySQL 5.6 such as fractional seconds support
for temporal data types.

Django Configuration

Django uses a configuration file named set t i ngs. py that contains a variable called DATABASES (see
https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES). To configure Django to use
Connector/Python as the MySQL back end, the example found in the Django manual can be used as a
basis:

DATABASES = {
"default': {
' NAME' : 'user_data',
"ENG NE' : ' nysql . connector. dj ango',
"HOST' @ '127.0.0.1',
' PORT' : 3306,
"USER : 'nysql _user',
' PASSWORD' : ' password',
"OPTIONS' : {
"autoconmit': True,
'use_oure': True,
"init_comrmand': "SET foo='bar';"

b
}

It is possible to add more connection arguments using OPTI ONS.

Support for MySQL Features

Django can launch the MySQL client application nysql . When the Connector/Python back end does this, it
arranges for the sql _node system variable to be set to TRADI Tl ONAL at startup.

Some MySQL features are enabled depending on the server version. For example, support for fractional
seconds precision is enabled when connecting to a server from MySQL 5.6.4 or higher. Django's

Dat eTi meFi el d is stored in a MySQL column defined as DATETI ME(6) , and Ti neFi el d is stored as
TI ME(6) . For more information about fractional seconds support, see Fractional Seconds in Time Values.

Using a custom class for data type conversation is supported as a subclass of
mysgl.connector.django.base.DjangoMySQLConverter. This support was added in Connector/Python
8.0.29.

58

https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_sql_mode
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/fractional-seconds.html

Chapter 10 Connector/Python API Reference

Table of Contents

O 4\ 2T | o] o g T=Tox (TG 1 o Yo 10| - PN 61
10.1.1 mysqgl.connector.connect() MethOdcoouiiiiiii e 61
10.1.2 mysqgl.connector.apileVel PrOPEIYc..uiiiiieii et e e e e 62
10.1.3 mysqgl.connector.paramstyle PrOPEIYc..iiiiiieiiieiii e e e e e e e e e e eaaeees 62
10.1.4 mysql.connector.threadsafety Propertyc..viiiiiiiiiiii e 62
10.1.5 mysql.connNector. VErSION_ PrOPEILYciiunieiiieii et e e e e e e e e e e e e e e eeanns 62
10.1.6 mysql.connector._ version _iNfO_ PrOPEIYccouuiiiiiieiiiiciie e e e e 62

10.2 connection.MySQLCONNECHION CIASSiiviiiiiii e e e e e e e e e e eaas 62
10.2.1 connection.MySQLConNection() CONSIIUCIONcc.uiiiuieiieeiii e e e e e e e e 62
10.2.2 MySQLConnection.close() Methodcouuiiiiiiiiii e e 63
10.2.3 MySQLConnection.commit() Methodccouiiiiiiiiii e 63
10.2.4 MySQLConnection.config() Methodcooiiiiiiiii e 63
10.2.5 MySQLConnection.connect() Methodcouuiiiiiiiiiiii e 64
10.2.6 MySQLConnection.cursor() Methodoiiiiiiiiii e 64
10.2.7 MySQLConnection.cmd_change_user() Methodccooeiiiiiii i, 65
10.2.8 MySQLConnection.cmd_debug() Methodcouiiiiiiii e 65
10.2.9 MySQLConnection.cmd_init_db() Methodcoiiiiiiiiii e 65
10.2.10 MySQLConnection.cmd_ping() Methodcciiiiii i 65
10.2.11 MySQLConnection.cmd_process_info() Methodccoooiiiiiiiii e 65
10.2.12 MySQLConnection.cmd_process_Kill() Methodccooeiiiiiiiiiiin e, 65
10.2.13 MySQLConnection.cmd_query() Methodcoouiiiiiiiiii e 66
10.2.14 MySQLConnection.cmd_query_iter() Methodc.ooeiiiiiiiiii e, 66
10.2.15 MySQLConnection.cmd_quit() Methodcooiiiiiiiiii e 66
10.2.16 MySQLConnection.cmd_refresh() Methodccoooiiiiiiii e, 67
10.2.17 MySQLConnection.cmd_reset_connection() Methodccoooiiiiiiiiiiin e 67
10.2.18 MySQLConnection.cmd_shutdown() Methodcooeiiiiiiiiiii e 67
10.2.19 MySQLConnection.cmd_statistics() Methodcooviiiiiiiii e 67
10.2.20 MySQLConnection.disconnect() Methodccoooiiiiiiiiii e 67
10.2.21 MySQLConnection.get row() Methodcccooiiiiiii e 68
10.2.22 MySQLConnection.get rows() Methodcouoiiiiiiiiiiiici e 68
10.2.23 MySQLConnection.get_server_info() Methodccooviiiiiiiiiiii e 68
10.2.24 MySQLConnection.get_server_version() Methodcccccociiiiiiiiiii e, 68
10.2.25 MySQLConnection.is_connected() Methodcooviiiiiiiiiiii e 69
10.2.26 MySQLConnection.isset_client_flag() Methodccooiiiiiiiiii e 69
10.2.27 MySQLConnection.ping() Methodcocuiiiiiiiiiiiic e e 69
10.2.28 MySQLConnection.reconnect() Methodooiiiiiiiii e 69
10.2.29 MySQLConnection.reset_session() Methodc.ovviiiiiiiiiiiii e 69
10.2.30 MySQLConnection.rollback() Methodcooiiiiiiiii e 70
10.2.31 MySQLConnection.set_charset_collation() Methodccoooiiiiiiiiiii e, 70
10.2.32 MySQLConnection.set_client_flags() Methodccooviiiiiiiiiiii e 70
10.2.33 MySQLConnection.shutdown() Methodoiiiiiiiiii e 71
10.2.34 MySQLConnection.start_transaction() Methodccooviiiiiiiiiii e 71
10.2.35 MySQLConnection.autoCoOmMmMIit PrOPEITYc.uuiiiiiiiiii e e e e 72
10.2.36 MySQLConnection.unread_reSults ProPertYoviiuiiiiiieiiieeie e 72
10.2.37 MySQLConnection.can_consume_resSultsS PrOPErtYcc.oveiiiiieiiieeiiiiecie e e e 72
10.2.38 MySQLCOoNNECtioN.ChAarSet PrOPEITYuuiiiiiieiiiee e e e e e e e 72
10.2.39 MySQLConnection.client_flags Propertyoocuuioiiiioiie e e e 72
10.2.40 MySQLConnection.collation PrOPEILYcccuuiiiiieiii e e e e e e eaens 73

59

10.2.41 MySQLConNNection.CoONNECIEA PrOPEILYu.iiiieeiiieiiiieeeee e e e e e e e e e e e aanas 73

10.2.42 MySQLConnection.connection_id PrOPertYviiiiiieiiieii i e e e e 73
10.2.43 MySQLConnection.converter-class PrOPEItYcociuiiiiiiiiiii e e e e 73
10.2.44 MySQLConnection.database Propertyccceuiiiiiiiiii e 73
10.2.45 MySQLConnection.get_ warnings PrOPEILYco.uiiiiuieiiiieiii e e e e e e e e 73
10.2.46 MySQLConnection.in_transSaction PrOPEIYieiiieiiiieiiiii e eeie e e e e e e aines 74
10.2.47 MySQLConnection.raise_on_warnings PrOPErtYcccoeeiiiiiiiiieiii e e e 74
10.2.48 MySQLConnection.server_hoSt PrOPertYuveviiiiiii e e e e e 75
10.2.49 MySQLConnection.server_info ProOPertyco.iiiiiiiii e 75
10.2.50 MySQLConnection.server_port PrOPEIYo.uciiiiiii e e e 75
10.2.51 MySQLConnection.server_VEersion PrOPErtYieviuiieiii i e e e e e e e 75
10.2.52 MySQLConnection.sgl_mode PrOPEItYccuuieiuuiiiiieiiii e e e e e e e e e e 75
10.2.53 MySQLCoNNECtion.timMe_ZONE PIOPEILYuiiiieeiiieiiii e e e e e e e e e e e e e aanas 75
10.2.54 MySQLConnection.use_uniCoOde PrOPEIYcccuuiiiiuieiiiieiiiie e e e e e e e e e e eanaeeaen 76
10.2.55 MySQLConnection.unix_SOCKEt PrOPEITYciuuiiiiieiiiee et e e e e e e e e e eens 76
10.2.56 MySQLCONNECON.USEN PrOPEIY ...uiiiiiiii e e e e e e e et e e e e eeen 76
10.3 pooling.MySQLCoNNECHONPOOI CIASSc.uuiiiiieiiieiie e e e e 76
10.3.1 pooling.MySQLConNNectioNPOOl CONSIIUCTONc.uuiiiiiieiii i e e e e e eaae e 76
10.3.2 MySQLConnectionPool.add_connection() Methodc.cccoiiiiiiiiiii e, 77
10.3.3 MySQLConnectionPool.get_connection() Methodcoooeiiiiiiiiiii e 77
10.3.4 MySQLConnectionPool.set_config() Methodccooiiiiiiii e 77
10.3.5 MySQLConnectionPool.po0l_Name PrOPEIYcc.uiiiiieiiieei e e e e 78
10.4 pooling.PooledMySQLCONNECHION CIASSuuiiieiieiiieie e e e e e e e e e e e eaen 78
10.4.1 pooling.PooledMySQLCONNECtION CONSIIUCIONuuiiiiieiiiieiiiieeei e e e e e e e e e e 78
10.4.2 PooledMySQLConnection.close() Methodccoiiiiiiiiiii e 78
10.4.3 PooledMySQLConnection.config() Methodccooiiiiiiiiii e 79
10.4.4 PooledMySQLConnection.pool_Name Propertyoooveiiiiiiiiie e 79
10.5 CUrSOr.-MYSQLECUISON CIASS .uuuiiiuuiiiiieiiiieti e et et e e e et e e e e ettt et e e et e e et e eat e e st e e et aeesneeanaees 79
10.5.1 cursor.MySQLCUISOr CONSIIUCTONiuiitiiiieie e e e e e aen e e anaanas 80
10.5.2 MySQLCursor.add_attribute() Methodccooiiiiiiiiii e 80
10.5.3 MySQLCursor.clear_attributes() Methodcooouiiiiii e 81
10.5.4 MySQLCursor.get_attributes() Methodcouiiiiiii e 81
10.5.5 MySQLCursor.callproc() Methodcoouiiiiiei e 81
10.5.6 MySQLCuUrsor.close() Methodccouuiiiiiiiiie e e e aaas 82
10.5.7 MySQLCursor.execute() Methodcoouiiiiiii e 82
10.5.8 MySQLCursor.executemany() Methodcouiiiiiiiiiiii e 83
10.5.9 MySQLCursor.fetchall() Methodcc.iiiiiiii e 83
10.5.10 MySQLCursor.fetchmany() Methodc.ooiiiiiiiiiiiiii e 84
10.5.11 MySQLCursor.fetchone() Methodcoouiiiiiiiiii e 84
10.5.12 MySQLCursor.nextset() Methodccouiiiiiiiii e 84
10.5.13 MySQLCursor.fetchsets() Methodooiiiiiiii e 85
10.5.14 MySQLCursor.fetchwarnings() Methodcooouiiiiiiii e 85
10.5.15 MySQLCursor.stored_results() Methodcooiiiiiiii e 86
10.5.16 MySQLCursor.column_Names PrOPEIYcc.uieiiieiiiieiiie et ee e e e e e e e e e e e e et e eaaaees 86
10.5.17 MySQLCUrsor.descCription PrOPEITYciuu i e e e 86
10.5.18 MySQLCUrsor.warnings PrOPEIYc.uiiiiiiii e e e e e e et e e eees 87
10.5.19 MySQLCUrsSOr.Iastrowid PrOPEItYcc.uiiiiiiieiiee e e e e e e e e e e e ean s 88
10.5.20 MySQLCUISOr.FOWCOUNT PrOPEITY ...vvniieiieiieieee et e e e e e e e e e e e e e e et e e e eaeaannas 88
10.5.21 MySQLCUrsOor.StatemeENnt PrOPEITYvue i et e e e e e eaaeees 88
10.5.22 MySQLCUrsOr.With_ roWS PrOPEITYciieiiii e e e e e 88
10.6 SUbClasSES CUISOr.IMYSQLCUISOL . ..uuiiii it eei et e e e e e e e e e e et e et e e et e e et e e et e e et e e eaa e eanneeeens 89
10.6.1 cursor.MySQLCUrsorBUffered Classcccceuuieiiiiiiiicie e e 89
10.6.2 cursor.MySQLCUISOIRAW CIaASScvuuuiiiiieiiiieii e et e e e e e e e e e e e e e e et e e et e eeenaes 89

10.6.3 cursor.MySQLCUISOIDICE CIASSucvvuuiiiiiieiiie et et e et e e e e e e e e e e e e et e e eanees 90

mysql.connector Module

10.6.4 cursor.MySQLCursorBufferedDiCt CIASsSvevuuiiiiiieiii e e e 90
10.6.5 cursor.MySQLCUrsSOrPrepar@d CIaSSccuuiiiuiieiiiieiie e e e e e e e e e 91
10.7 constantS.CHENtFIAg ClasScc.uiiiiiiiiii e e e e e e et e e e et e e aanaees 92
10.8 CONSLANES. FIEIAdTYPE CIASS ...cvuiiiiiiiii e e e e e e e e e e e e et e e et e e aanaaes 92
10.9 constantS.SQLIMOAE ClASSciuuiiiiii i e e e e e e e e e et e e et e e et e e et e aaaaaes 93
10.10 constantS.CharaCterSet CIASSuuiiiiiiiiieiiii ettt e e et e e e e et e e e eatnneeeeees 93
10.11 constants.RefreShOPLION CIASSccuuiiiiiiiiiie e e e e e aan s 93
O o2 ¢ (0T ¢ R= U o I (=Y o] 1o 94
10.12.1 errorCoUe MOGUIE ... e e e e e et e e e et e e e e et 95
O =T o £ = o Bl (o7 =T 1 [o [95
10.12.3 errors.DataError EXCEPLIONcouuiiii e e e e e e e e e e e e e e 96
10.12.4 errors.DatabaseError EXCEPLIONcccuuiiiiiiiiii e e e e e e e e e e e et eeaneees 96
10.12.5 errors.IntegrityError EXCEPLIONcovuiiiii e e e e e e e e e e e e 97
10.12.6 errors.InterfaCeError EXCEPLIONciiuiiiiieii e e e e e e 97
10.12.7 errors.InternalError EXCEPLIONcouuiii e e e e e e e e e e e e e e e eaaes 97
10.12.8 errors.NotSUppOortedError EXCEPLIONcc.uuiiiiieiii e e e e e e e 97
10.12.9 errors.OperatioNalError EXCEPLION ... cc.uuiiii e e e e e e e e e e e e e et e e e eees 97
10.12.10 errors.POOIEITOr EXCEPLON ...ccvuiiiiiicii et e e e e e e e e aaaees 97
10.12.11 errors.ProgrammingError EXCEPLIONiiviiiriiiiiii e e e e e e e e e e 97
10.12.12 errors.Warning EXCEPLIONuuiiii e e e e e e e e e e e e e e eaneeas 98
10.12.13 errors.custom_error_exception() FUNCLONccooiiiiiiiii e 98

This chapter contains the public API reference for Connector/Python. Examples should be considered
working for Python 2.7, and Python 3.1 and greater. They might also work for older versions (such as
Python 2.4) unless they use features introduced in newer Python versions. For example, exception
handling using the as keyword was introduced in Python 2.6 and will not work in Python 2.4.

Note
Python 2.7 support was removed in Connector/Python 8.0.24.

The following overview shows the nysql . connect or package with its modules. Currently, only the most
useful modules, classes, and methods for end users are documented.

nmysql . connect or

errorcode
errors
connecti on
const ants
conver si on
cur sor
dbapi
| ocal es

eng

client_error

pr ot oco
utils

10.1 mysql.connector Module

The nysql . connect or module provides top-level methods and properties.

10.1.1 mysqgl.connector.connect() Method

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 7.1, “Connector/Python Connection Arguments”.

61

mysql.connector.apilevel Property

A connection with the MySQL server can be established using either the mysqgl . connect or. connect ()
method or the nysql . connect or. MySQLConnect i on() class:

cnx
cnx

nmysql . connect or. connect (user='j oe', database="test"')
MySQLConnecti on(user="'joe', database='test')

For descriptions of connection methods and properties, see Section 10.2, “connection.MySQLConnection
Class”.

10.1.2 mysqgl.connector.apilevel Property

This property is a string that indicates the supported DB API level.

>>> nysql . connect or. api | eve
"o 0

10.1.3 mysqgl.connector.paramstyle Property

This property is a string that indicates the Connector/Python default parameter style.

>>> nysql . connect or . paranstyl e
' pyf ormat"’

10.1.4 mysqgl.connector.threadsafety Property

This property is an integer that indicates the supported level of thread safety provided by Connector/
Python.

>>> nysql . connector. t hreadsaf ety
1

10.1.5 mysqgl.connector.__version__ Property

This property indicates the Connector/Python version as a string. It is available as of Connector/Python
1.1.0.

>>> nysql . connector.__version__
'1.1.0

10.1.6 mysqgl.connector.__version_info__ Property

This property indicates the Connector/Python version as an array of version components. It is available as
of Connector/Python 1.1.0.

>>> nysql . connector.__version_info__
(1, 1, o, 'a', 0)

10.2 connection.MySQLConnection Class

The MySQLConnect i on class is used to open and manage a connection to a MySQL server. It also used
to send commands and SQL statements and read the results.

10.2.1 connection.MySQLConnection() Constructor

62

MySQLConnection.close() Method

Syntax:

cnx = MySQ.Connecti on(**kwar gs)

The MySQ.Connect i on constructor initializes the attributes and when at least one argument is passed, it
tries to connect to the MySQL server.

For a complete list of arguments, see Section 7.1, “Connector/Python Connection Arguments”.

10.2.2 MySQLConnection.close() Method

Syntax:

cnx. cl ose()

cl ose() is a synonym for di sconnect (). See Section 10.2.20, “MySQLConnection.disconnect()
Method".

For a connection obtained from a connection pool, cl ose() does not actually close it but returns it to
the pool and makes it available for subsequent connection requests. See Section 9.5, “Connector/Python
Connection Pooling”.

10.2.3 MySQLConnection.commit() Method

This method sends a COVM T statement to the MySQL server, committing the current transaction. Since
by default Connector/Python does not autocommit, it is important to call this method after every transaction
that modifies data for tables that use transactional storage engines.

>>> cursor. execute("1 NSERT | NTO enpl oyees (first_nanme) VALUES (%), (%)", ('Jane', 'Mary'))
>>> cnx. conmmit ()

To roll back instead and discard modifications, see the rollback() method.

10.2.4 MySQLConnection.config() Method

Syntax:

cnx. confi g(**kwar gs)

Configures a MySQLConnect i on instance after it has been instantiated. For a complete list of possible
arguments, see Section 7.1, “Connector/Python Connection Arguments”.

Arguments:
» kwar gs: Connection arguments.
You could use the conf i g() method to change (for example) the user name, then call r econnect () .

Example:

cnx = mysql . connector. connect (user="'joe', database="test')
Connected as 'joe

cnx. config(user='jane')

chx. reconnect ()

Now connected as 'jane

For a connection obtained from a connection pool, conf i g() raises an exception. See Section 9.5,
“Connector/Python Connection Pooling”.

63

MySQLConnection.connect() Method

10.2.5 MySQLConnection.connect() Method

Syntax:

MySQLConnect i on. connect (**kwar gs)

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 7.1, “Connector/Python Connection Arguments”.

Arguments:
e kwar gs: Connection arguments.

Example:

cnx = MySQ.Connection(user="'joe', database="test')

For a connection obtained from a conection pool, the connection object class is
Pool edMySQLConnect i on. A pooled connection differs from an unpooled connection as described in
Section 9.5, “Connector/Python Connection Pooling”.

10.2.6 MySQLConnection.cursor() Method

Syntax:

cursor = cnx.cursor([arg=val ue[, arg=value]...])

This method returns a My SQLCur sor () object, or a subclass of it depending on the passed arguments.
The returned object is a cur sor . Cur sor Base instance. For more information about cursor objects, see
Section 10.5, “cursor.MySQLCursor Class”, and Section 10.6, “Subclasses cursor.MySQLCursor”.

Arguments may be passed to the cur sor () method to control what type of cursor to create:

« If buf f er ed is Tr ue, the cursor fetches all rows from the server after an operation is executed. This is
useful when queries return small result sets. buf f er ed can be used alone, or in combination with the
di cti onary argument.

buf f er ed can also be passed to connect () to set the default buffering mode for all cursors created
from the connection object. See Section 7.1, “Connector/Python Connection Arguments”.

For information about the implications of buffering, see Section 10.6.1, “cursor.MySQLCursorBuffered
Class”.

e Ifrawis Tr ue, the cursor skips the conversion from MySQL data types to Python types when fetching
rows. A raw cursor is usually used to get better performance or when you want to do the conversion
yourself.

r awcan also be passed to connect () to set the default raw mode for all cursors created from the
connection object. See Section 7.1, “Connector/Python Connection Arguments”.

« Ifdi ctionary is Tr ue, the cursor returns rows as dictionaries. This argument is available as of
Connector/Python 2.0.0.

» If preparedis Tr ue, the cursor is used for executing prepared statements. This argument is available
as of Connector/Python 1.1.2. The C extension supports this as of Connector/Python 8.0.17.

» The cursor _cl ass argument can be used to pass a class to use for instantiating a new cursor. It must
be a subclass of cur sor . Cur sor Base.

64

MySQLConnection.cmd_change_user() Method

The returned object depends on the combination of the arguments. Examples:
« If not buffered and not raw: My SQLCur sor

* If buffered and not raw: My SQLCur sor Buf f er ed

« If not buffered and raw: My SQLCur sor Raw

« If buffered and raw: My SQLCur sor Buf f er edRaw

10.2.7 MySQLConnection.cmd_change_user() Method

Changes the user using user nane and passwor d. It also causes the specified dat abase to become the
default (current) database. It is also possible to change the character set using the char set argument.

Syntax:

cnx. cnd_change_user (usernane='"', password='',6 database='', charset=33)

Returns a dictionary containing the OK packet information.

10.2.8 MySQLConnection.cmd_debug() Method

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Returns a dictionary containing the OK packet information.

10.2.9 MySQLConnection.cmd_init_db() Method

Syntax:

cnx. cnd_i ni t _db(db_nane)

This method makes specified database the default (current) database. In subsequent queries, this
database is the default for table references that include no explicit database qualifier.

Returns a dictionary containing the OK packet information.

10.2.10 MySQLConnection.cmd_ping() Method

Checks whether the connection to the server is working.
This method is not to be used directly. Use ping() or is_connected() instead.

Returns a dictionary containing the OK packet information.

10.2.11 MySQLConnection.cmd_process_info() Method

This method raises the NotSupportedError exception. Instead, use the SHOW PROCESSLI| ST statement or
query the tables found in the database | NFORMATI ON_SCHENMA.

I Deprecation

This MySQL Server functionality is deprecated.

10.2.12 MySQLConnection.cmd_process_kill() Method

65

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_super

MySQLConnection.cmd_query() Method

Syntax:

cnx. cnd_process_kill (nysqgl _pi d)
Deprecation
This MySQL Server functionality is deprecated.

Asks the server to kill the thread specified by mysql _pi d. Although still available, it is better to use the
Kl LL SQL statement.

Returns a dictionary containing the OK packet information.

The following two lines have the same effect:

>>> cnx. cnd_process_kill (123)
>>> cnx. cnd_query(' KILL 123")

10.2.13 MySQLConnection.cmd_query() Method

Syntax:

cnx. cnd_quer y(st at ement)

This method sends the given st at enent to the MySQL server and returns a result. To send multiple
statements, use the cmd_query_iter() method instead.

The returned dictionary contains information depending on what kind of query was executed. If the query is
a SELECT statement, the result contains information about columns. Other statements return a dictionary
containing OK or EOF packet information.

Errors received from the MySQL server are raised as exceptions. An | nt er f aceEr r or is raised when
multiple results are found.

Returns a dictionary.

10.2.14 MySQLConnection.cmd_query _iter() Method

Syntax:

cnx.cnd_query_iter(statenment)

Similar to the cmd_query() method, but returns a generator object to iterate through results. Use
cnd_query_iter () when sending multiple statements, and separate the statements with semicolons.

The following example shows how to iterate through the results after sending multiple statements:

statenment = ' SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cnx.cnd_query_iter(statenent):
if 'colums' in result:
colums = result['colums']
rows = cnx.get_rows()
el se:
do sonething useful with | NSERT result

Returns a generator object.

10.2.15 MySQLConnection.cmd_quit() Method

66

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html

MySQLConnection.cmd_refresh() Method

This method sends a QUI T command to the MySQL server, closing the current connection. Since there is
no response from the MySQL server, the packet that was sent is returned.

10.2.16 MySQLConnection.cmd_refresh() Method
Syntax:
cnx. cnd_r ef r esh(opt i ons)
Deprecation
I This MySQL Server functionality is deprecated.

This method flushes tables or caches, or resets replication server information. The connected user must
have the RELOAD privilege.

The opt i ons argument should be a bitmask value constructed using constants from the
const ant s. Ref reshOpt i on class.

For a list of options, see Section 10.11, “constants.RefreshOption Class”.

Example:

>>> from nysql . connector inport RefreshOption
>>> refresh = RefreshOption. LOG | RefreshQOpti on. THREADS
>>> cnx. cmd_refresh(refresh)

10.2.17 MySQLConnection.cmd_reset_connection() Method
Syntax:
cnx. cnd_r eset _connection()

Resets the connection by sending a COM RESET CONNECTI ON command to the server to clear the
session state.

This method permits the session state to be cleared without reauthenticating. For MySQL servers older
than 5.7.3 (when COM RESET _CONNECTI ON was introduced), the r eset _sessi on() method can be
used instead. That method resets the session state by reauthenticating, which is more expensive.

This method was added in Connector/Python 1.2.1.

10.2.18 MySQLConnection.cmd_shutdown() Method

Deprecation
This MySQL Server functionality is deprecated.
Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.

Returns a dictionary containing the OK packet information.

10.2.19 MySQLConnection.cmd_statistics() Method

Returns a dictionary containing information about the MySQL server including uptime in seconds and the
number of running threads, questions, reloads, and open tables.

10.2.20 MySQLConnection.disconnect() Method

67

MySQLConnection.get_row() Method

This method tries to send a QUI T command and close the socket. It raises no exceptions.
MySQLConnect i on. cl ose() is a synonymous method name and more commonly used.

To shut down the connection without sending a QUI T command first, use shut down() .

10.2.21 MySQLConnection.get_row() Method

This method retrieves the next row of a query result set, returning a tuple.
The tuple returned by get _r ow() consists of:
» The row as a tuple containing byte objects, or None when no more rows are available.

» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count , or None when
the row returned is not the last row.

The get _row() method is used by MySQLCursor to fetch rows.

10.2.22 MySQLConnection.get_rows() Method
Syntax:
cnx. get _rows(count =None)

This method retrieves all or remaining rows of a query result set, returning a tuple containing the rows as
sequences and the EOF packet information. The count argument can be used to obtain a given number of
rows. If count is not specified or is None, all rows are retrieved.

The tuple returned by get _r ows() consists of:

» A list of tuples containing the row data as byte objects, or an empty list when no rows are available.
» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count .

An | nterfaceError is raised when all rows have been retrieved.

MySQLCursor uses the get _rows() method to fetch rows.

Returns a tuple.

10.2.23 MySQLConnection.get_server_info() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.49, “MySQLConnection.server_info Property” instead.

This method returns the MySQL server information verbatim as a string, for example ' 5. 6. 11-1 og' , or
None when not connected.

10.2.24 MySQLConnection.get_server_version() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.51, “MySQLConnection.server_version Property” instead.

68

MySQLConnection.is_connected() Method

This method returns the MySQL server version as a tuple, or None when not connected.

10.2.25 MySQLConnection.is_connected() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.41, “MySQLConnection.connected Property” instead.

Reports whether the connection to MySQL Server is available.

This method checks whether the connection to MySQL is available using the ping() method, but unlike
pi ng(),is_connected() returns Tr ue when the connection is available, Fal se otherwise.

10.2.26 MySQLConnection.isset_client_flag() Method

Syntax:

cnx.isset_client_flag(flag)

This method returns Tr ue if the client flag was set, Fal se otherwise.

10.2.27 MySQLConnection.ping() Method

Syntax:
cnx. pi ng(reconnect =Fal se, attenpts=1, del ay=0)
Check whether the connection to the MySQL server is still available.

When r econnect is setto Tr ue, one or more at t enpt s are made to try to reconnect to the MySQL
server, and these options are forwarded to the reconnect()>method. Use the del ay argument (seconds) if
you want to wait between each retry.

When the connection is not available, an | nt er f aceEr r or is raised. Use the is_connected() method to
check the connection without raising an error.

Raises | nt er f aceEr r or on errors.

10.2.28 MySQLConnection.reconnect() Method

Syntax:

cnx. reconnect (attenpts=1, del ay=0)
Attempt to reconnect to the MySQL server.

The argument at t enpt s specifies the number of times a reconnect is tried. The del ay argument is the
number of seconds to wait between each retry.

You might set the number of attempts higher and use a longer delay when you expect the MySQL server to
be down for maintenance, or when you expect the network to be temporarily unavailable.

10.2.29 MySQLConnection.reset_session() Method

Syntax:

cnx. reset_session(user_variabl es = None, session_variables = None)

69

MySQLConnection.rollback() Method

Resets the connection by reauthenticating to clear the session state. user vari abl es, if given, is a
dictionary of user variable names and values. sessi on_var i abl es, if given, is a dictionary of system
variable names and values. The method sets each variable to the given value.

Example:

user _variables = {*var1l': '"1', 'var2': '10'}
session_variables = {'wait_tinmeout': 100000, 'sqgl_node': 'TRADI TlI ONAL'}
sel f.cnx. reset_sessi on(user_vari abl es, session_vari abl es)

This method resets the session state by reauthenticating. For MySQL servers 5.7 or higher, the
cnd_reset_connection() method is a more lightweight alternative.

This method was added in Connector/Python 1.2.1.

10.2.30 MySQLConnection.rollback() Method

This method sends a ROLLBACK statement to the MySQL server, undoing all data changes from the
current transaction. By default, Connector/Python does not autocommit, so it is possible to cancel
transactions when using transactional storage engines such as | nnoDB.

>>> cursor. execute("1 NSERT | NTO enpl oyees (first_nanme) VALUES (%), (%)", ('Jane', 'Mary'))
>>> cnx. rol | back()

To commit modifications, see the commit() method.

10.2.31 MySQLConnection.set_charset_collation() Method
Syntax:
cnx. set _charset _col |l ati on(charset =None, col | ati on=None)

This method sets the character set and collation to be used for the current connection. The char set
argument can be either the name of a character set, or the numerical equivalent as defined in
const ant s. Char act er Set .

When col | ati on is None, the default collation for the character set is used.

In the following example, we set the character setto | at i n1 and the collationto | ati n1_swedi sh_ci
(the default collation for: | ati n1):

>>> cnx = nysql.connector.connect (user='scott"')
>>> cnx.set_charset_collation('latinl')

Specify a given collation as follows:

>>> cnx = nysql.connector. connect (user='scott"')
>>> cnx.set_charset_collation('latinl', 'latinl_general _ci')

10.2.32 MySQLConnection.set_client_flags() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.39, “MySQLConnection.client_flags Property” instead.

70

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/glossary.html#glos_commit

MySQLConnection.shutdown() Method

Syntax:

cnx. set_client_flags(flags)

This method sets the client flags to use when connecting to the MySQL server, and returns the new value
as an integer. The f | ags argument can be either an integer or a sequence of valid client flag values (see
Section 10.7, “constants.ClientFlag Class”).

If f | ags is a sequence, each item in the sequence sets the flag when the value is positive or unsets it
when negative. For example, to unset LONG FLAG and set the FOUND ROWS flags:

>>> from nysqgl . connector. constants inport ClientFlag
>>> cnx.set_client_flags([CientFlag. FOUND ROA5, -ClientFl ag. LONG FLAG)
>>> cnx. reconnect ()

Note

Client flags are only set or used when connecting to the MySQL server. It is
therefore necessary to reconnect after making changes.

10.2.33 MySQLConnection.shutdown() Method

This method closes the socket. It raises no exceptions.

Unlike di sconnect (), shut down() closes the client connection without attempting to send a QUI T
command to the server first. Thus, it will not block if the connection is disrupted for some reason such as
network failure.

shut down() was added in Connector/Python 2.0.1.

10.2.34 MySQLConnection.start_transaction() Method

This method starts a transaction. It accepts arguments indicating whether to use a consistent snapshot,
which transaction isolation level to use, and the transaction access mode:

cnx. start_transacti on(consi st ent _snapshot =bool ,
i sol ati on_| evel =l evel ,
readonl y=access_nnde)

The default consi st ent _snapshot value is Fal se. If the value is Tr ue, Connector/Python sends W TH
CONSI STENT SNAPSHOT with the statement. MySQL ignores this for isolation levels for which that option
does not apply.

The defaulti sol ati on_| evel value is None, and permitted values are ' READ UNCOVM TTED , ' READ
COW TTED , ' REPEATABLE READ , and' SERI ALI ZABLE' . Ifthei sol ati on_| evel value is None,
no isolation level is sent, so the default level applies.

The r eadonl y argument can be Tr ue to start the transaction in READ ONLY mode or Fal se to start

it in READ WRI TE mode. If r eadonl y is omitted, the server's default access mode is used. For details
about transaction access mode, see the description for the START TRANSACTI ON statement at START
TRANSACTION, COMMIT, and ROLLBACK Statements. If the server is older than MySQL 5.6.5, it does
not support setting the access mode and Connector/Python raises a Val ueErr or.

Invoking st art _transacti on() raises a Progr anmi ngEr r or if invoked while a transaction is currently
in progress. This differs from executing a START TRANSACTI ON SQL statement while a transaction is in
progress; the statement implicitly commits the current transaction.

71

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/commit.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/commit.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/commit.html

MySQLConnection.autocommit Property

To determine whether a transaction is active for the connection, use the in_transaction property.

start _transaction() was added in MySQL Connector/Python 1.1.0. The r eadonl y argument was
added in Connector/Python 1.1.5.

10.2.35 MySQLConnection.autocommit Property

This property can be assigned a value of Tr ue or Fal se to enable or disable the autocommit feature of
MySQL. The property can be invoked to retrieve the current autocommit setting.

Note

Autocommit is disabled by default when connecting through Connector/Python. This
can be enabled using the aut oconmi t connection parameter.

When the autocommit is turned off, you must commit transactions when using transactional storage
engines such as | nnoDB or NDBCl ust er .

>>> cnx. aut oconmmi t

Fal se

>>> cnx.autocommt = True
>>> cnx. aut oconmmi t

Tr ue

10.2.36 MySQLConnection.unread_results Property

Indicates whether there is an unread result. It is set to Fal se if there is not an unread result, otherwise
Tr ue. This is used by cursors to check whether another cursor still needs to retrieve its result set.

Do not set the value of this property, as only the connector should change the value. In other words, treat
this as a read-only property.

10.2.37 MySQLConnection.can_consume_results Property

This property indicates the value of the consune_r esul t s connection parameter that controls whether
result sets produced by queries are automatically read and discarded. See Section 7.1, “Connector/Python
Connection Arguments”.

This method was added in Connector/Python 2.1.1.

10.2.38 MySQLConnection.charset Property

This property returns a string indicating which character set is used for the connection, whether or not it is
connected.

10.2.39 MySQLConnection.client_flags Property

Syntax:

>>> cnx. client_fl ags=fl ags
>>> cnx. cl i eng_f | ags

This property sets the client flags to use when connecting to the MySQL server, and returns the set value
as an integer. The f | ags value can be either an integer or a sequence of valid client flag values (see
Section 10.7, “constants.ClientFlag Class”).

72

MySQLConnection.collation Property

If f | ags is a sequence, each item in the sequence sets the flag when the value is positive or unsets it
when negative. For example, to unset LONG FLAG and set the FOUND ROWS flags:

>>> from nmysql . connector.constants inport CientFl ag
>>> cnx. client_flags=[dientFl ag. FOUND_ROA5, -CientFl ag. LONG FLAG
>>> cnx. reconnect ()

Note

Client flags are only set or used when connecting to the MySQL server. It is
therefore necessary to reconnect after making changes.

10.2.40 MySQL Connection.collation Property

This property returns a string indicating which collation is used for the connection, whether or not it is
connected.

10.2.41 MySQLConnection.connected Property
Reports whether the connection to MySQL Server is available.

This read-only property checks whether the connection to MySQL is available using the ping() method; but
unlike pi ng(), connect ed returns Tr ue when the connection is available, and Fal se otherwise.

10.2.42 MySQLConnection.connection_id Property

This property returns the integer connection ID (thread ID or session ID) for the current connection or None
when not connected.

10.2.43 MySQLConnection.converter-class Property

This property sets and returns the converter class to use when configuring the connection.

get the current converter class being used
print (cnx. converter_cl ass)
>> <cl ass ' nysql.connector. conversi on. \ySQ.Converter' >

cl ass Test Converter(M/SQ.ConverterBase): ...
set the custom converter class
cnx. converter_class = Test Converter

print (cnx. converter_cl ass)
>> <class '__main__. Test Converter'>

10.2.44 MySQLConnection.database Property

This property sets the current (default) database by executing a USE statement. The property can also be
used to retrieve the current database name.

"test'
" nysql

>>> cnx. dat abase
>>> cnx. dat abase
>>> cnx. dat abase

u' mysql

Returns a string.

10.2.45 MySQLConnection.get_warnings Property

73

MySQLConnection.in_transaction Property

This property can be assigned a value of Tr ue or Fal se to enable or disable whether warnings should be
fetched automatically. The default is Fal se (default). The property can be invoked to retrieve the current
warnings setting.

Fetching warnings automatically can be useful when debugging queries. Cursors make warnings available
through the method MySQLCursor.fetchwarnings().

>>> cnx. get _warni ngs = True

>>> cursor. execute(' SELECT "a"+1")

>>> cursor. fetchall ()

[(1.0,)]

>>> cursor. f et chwar ni ngs()

[(u' Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

Returns Tr ue or Fal se.

10.2.46 MySQLConnection.in_transaction Property

This property returns Tr ue or Fal se to indicate whether a transaction is active for the connection. The
value is Tr ue regardless of whether you start a transaction using the st art _transacti on() API call or
by directly executing an SQL statement such as START TRANSACTI ON or BEG N.

>>> cnx. start_transaction()
>>> cnx.in_transaction
True

>>> cnx. commit ()

>>> cnx.in_transaction

Fal se

i n_transacti on was added in MySQL Connector/Python 1.1.0.

10.2.47 MySQLConnection.raise_on_warnings Property

This property can be assigned a value of Tr ue or Fal se to enable or disable whether warnings should
raise exceptions. The default is Fal se (default). The property can be invoked to retrieve the current
exceptions setting.

Setting r ai se_on_war ni ngs also sets get _war ni ngs because warnings need to be fetched so they
can be raised as exceptions.

Note

You might always want to set the SQL mode if you would like to have the
MySQL server directly report warnings as errors (see Section 10.2.52,
“MySQLConnection.sql_mode Property”). It is also good to use transactional
engines so transactions can be rolled back when catching the exception.

Result sets needs to be fetched completely before any exception can be raised. The following example
shows the execution of a query that produces a warning:

>>> cnx.rai se_on_warni ngs = True
>>> cursor. execute(' SELECT "a"+1")
>>> cursor. fetchall ()

nmysql . connector.errors. DataError: 1292: Truncated incorrect DOUBLE val ue: 'a

Returns Tr ue or Fal se.

74

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/commit.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/commit.html

MySQLConnection.server_host Property

10.2.48 MySQLConnection.server_host Property

This read-only property returns the host name or IP address used for connecting to the MySQL server.

Returns a string.

10.2.49 MySQLConnection.server_info Property

This read-only property returns the MySQL server information verbatim as a string: for example 8. 4. 0-
| og, or None when not connected.

10.2.50 MySQLConnection.server_port Property

This read-only property returns the TCP/IP port used for connecting to the MySQL server.

Returns an integer.

10.2.51 MySQLConnection.server_version Property

This read-only property returns the MySQL server version as a tuple, or None when not connected.

10.2.52 MySQLConnection.sql_mode Property

This property is used to retrieve and set the SQL Modes for the current connection. The value should
be a list of different modes separated by comma (*,"), or a sequence of modes, preferably using the
const ant s. SQLMode class.

To unset all modes, pass an empty string or an empty sequence.

>>> cnx. sql _node = ' TRADI TI ONAL, NO_ENG NE_SUBSTI TUTI ON

>>> cnx. sql _node.split(',")

[u' STRICT_TRANS_TABLES', u' STRICT_ALL_TABLES', u' NO ZERO | N DATE ,
u' NO_ZERO DATE', u' ERROR_FOR DI VI SI ON_BY_ZERO , u' TRADI TI ONAL',

u' NO_AUTO _CREATE_USER , u' NO_ENG NE_SUBSTI TUTI ON]

>>> from nmysql . connect or. constants inport SQ.Mbde

>>> cnx. sql _nbde = [SQLMbde. NO_ZERO DATE, SQ.Mode. REAL_AS FLOAT]
>>> cnx. sql _node

u' REAL_AS_FLOAT, NO_ZERO DATE'

Returns a string.

10.2.53 MySQLConnection.time_zone Property

This property is used to set or retrieve the time zone session variable for the current connection.

>>> cnx. time_zone = ' +00: 00

>>> cursor = cnx.cursor()

>>> cursor. execute(' SELECT NON)') ; cursor.fetchone()
(datetine.dateti me(2012, 6, 15, 11, 24, 36),)

>>> cnx.tinme_zone = '-09: 00

>>> cursor. execute(' SELECT NON()') ; cursor.fetchone()
(datetine.dateti me(2012, 6, 15, 2, 24, 44),)

>>> cnx.time_zone

u' -09: 00

Returns a string.

75

MySQLConnection.use_unicode Property

10.2.54 MySQLConnection.use_unicode Property

This property sets and returns whether the connection uses Unicode with the value Tr ue or Fal se.

gets whether the connector returns string fields as unicode or not
print (cnx. use_uni code)
>> True

set or update use_uni code property
cnx. use_uni code = Fal se

print (cnx. use_uni code)

>> Fal se

10.2.55 MySQLConnection.unix_socket Property

This read-only property returns the Unix socket file for connecting to the MySQL server.

Returns a string.

10.2.56 MySQLConnection.user Property

This read-only property returns the user name used for connecting to the MySQL server.

Returns a string.

10.3 pooling.MySQLConnectionPool Class

This class provides for the instantiation and management of connection pools.

10.3.1 pooling.MySQLConnectionPool Constructor

Syntax:
MySQLConnect i onPool (pool _nanme=None
pool _si ze=5
pool _reset _sessi on=True
** kwar gs)
This constructor instantiates an object that manages a connection pool.
Arguments:

» pool nane: The pool name. If this argument is not given, Connector/Python automatically generates
the name, composed from whichever of the host , port, user, and dat abase connection arguments
are given in kwar gs, in that order.

It is not an error for multiple pools to have the same name. An application that must distinguish pools by
their pool _nane property should create each pool with a distinct name.

* pool _si ze: The pool size. If this argument is not given, the default is 5.

» pool reset_sessi on: Whether to reset session variables when the connection is returned to the pool.
This argument was added in Connector/Python 1.1.5. Before 1.1.5, session variables are not reset.

» kwar gs: Optional additional connection arguments, as described in Section 7.1, “Connector/Python
Connection Arguments”.

Example:

76

MySQLConnectionPool.add_connection() Method

dbconfig = {
"dat abase": "test"
"user": "j oe",
}
cnhxpool = nysql . connector. pool i ng. My'SQ.Connect i onPool (pool _nane = "nypool "

pool _size = 3
**dbconfi g)

10.3.2 MySQLConnectionPool.add_connection() Method

Syntax:

cnxpool . add_connecti on(cnx = None)

This method adds a new or existing My SQLConnect i on to the pool, or raises a Pool Er r or if the pool is
full.

Arguments:

» cnx: The MySQLConnect i on object to be added to the pool. If this argument is missing, the pool
creates a new connection and adds it.

Example:

cnxpool . add_connecti on() # add new connection to poo
cnxpool . add_connecti on(cnx) # add exi sting connection to poo

10.3.3 MySQLConnectionPool.get_connection() Method

Syntax:

chxpool . get _connecti on()
This method returns a connection from the pool, or raises a Pool Er r or if no connections are available.

Example:

cnx = cnxpool . get _connection()

10.3.4 MySQLConnectionPool.set_config() Method

Syntax:

chxpool . set _confi g(**kwar gs)

This method sets the configuration parameters for connections in the pool. Connections requested from
the pool after the configuration change use the new parameters. Connections obtained before the change
remain unaffected, but when they are closed (returned to the pool) are reopened with the new parameters
before being returned by the pool for subsequent connection requests.

Arguments:

» kwar gs: Connection arguments.

Example:

dbconfig = {
"dat abase": "performance_schema"
"user": "adm n",

77

MySQLConnectionPool.pool_name Property

"password": "password"

}

cnhxpool . set _confi g(**dbconfi g)

10.3.5 MySQLConnectionPool.pool_name Property

Syntax:
cnxpool . pool _nane
This property returns the connection pool hame.

Example:

nane = cnxpool . pool _nane

10.4 pooling.PooledMySQLConnection Class

This class is used by MySQLConnect i onPool to return a pooled connection instance. It is also the class
used for connections obtained with calls to the connect () method that name a connection pool (see
Section 9.5, “Connector/Python Connection Pooling”).

Pool edMySQLConnect i on pooled connection objects are similar to My SQLConnect i on unpooled
connection objects, with these differences:

» To release a pooled connection obtained from a connection pool, invoke its cl ose() method, just as
for any unpooled connection. However, for a pooled connection, cl ose() does not actually close the
connection but returns it to the pool and makes it available for subsequent connection requests.

» A pooled connection cannot be reconfigured using its conf i g() method. Connection changes must be
done through the pool object itself, as described by Section 9.5, “Connector/Python Connection Pooling”.

» A pooled connection has a pool _nane property that returns the pool name.

10.4.1 pooling.PooledMySQLConnection Constructor

Syntax:

Pool edMySQLConnect i on(cnxpool , cnx)

This constructor takes connection pool and connection arguments and returns a pooled connection. It is
used by the MySQ_Connect i onPool class.

Arguments:
e cnxpool : AMySQ.Connect i onPool instance.
* cnx: AMySQLConnect i on instance.

Example:

pcnx = nysql . connect or. pool i ng. Pool edMySQ.Connect i on(cnxpool , cnx)

10.4.2 PooledMySQLConnection.close() Method

Syntax:

cnx. cl ose()

78

PooledMySQLConnection.config() Method

Returns a pooled connection to its connection pool.

For a pooled connection, cl ose() does not actually close it but returns it to the pool and makes it
available for subsequent connection requests.

If the pool configuration parameters are changed, a returned connection is closed and reopened with the
new configuration before being returned from the pool again in response to a connection request.

10.4.3 PooledMySQLConnection.config() Method

For pooled connections, the conf i g() method raises a Pool Err or exception. Configuration for pooled
connections should be done using the pool object.

10.4.4 PooledMySQLConnection.pool_name Property
Syntax:
cnx. pool _nane
This property returns the name of the connection pool to which the connection belongs.

Example:

cnx = cnxpool . get _connection()
nane = cnx. pool _nane

10.5 cursor.MySQLCursor Class

The MySQLCur sor class instantiates objects that can execute operations such as SQL statements. Cursor
objects interact with the MySQL server using a My SQLConnect i on object.

To create a cursor, use the cur sor () method of a connection object:
i nport nysqgl . connect or

cnx = nysql . connector. connect (dat abase="wor | d")
cursor = cnx.cursor()

Several related classes inherit from My SQLCur sor . To create a cursor of one of these types, pass the
appropriate arguments to cur sor () :

* MySQLCur sor Buf f er ed creates a buffered cursor. See Section 10.6.1, “cursor.MySQLCursorBuffered
Class”.

cursor = cnx. cursor (buf fered=True)

* MySQ.Cur sor Raw creates a raw cursor. See Section 10.6.2, “cursor.MySQLCursorRaw Class”.

cursor = cnx.cursor (raw=True)

* MySQLCur sor Di ct creates a cursor that returns rows as dictionaries. See Section 10.6.3,
“cursor.MySQLCursorDict Class”.

cursor = cnx. cursor (dictionary=True)

e MySQL.Cur sor Buf f er edDi ct creates a buffered cursor that returns rows as dictionaries. See
Section 10.6.4, “cursor.MySQLCursorBufferedDict Class”.

cursor = cnx.cursor(dictionary=True, buffered=True)

79

cursor.MySQLCursor Constructor

e MySQL.Cur sor Pr epar ed creates a cursor for executing prepared statements. See Section 10.6.5,
“cursor.MySQLCursorPrepared Class”.

cursor = cnx. cursor (prepared=True)

10.5.1 cursor.MySQLCursor Constructor

In most cases, the MySQLConnect i on cur sor () method is used to instantiate a My SQLCur sor object:
i nport nysqgl . connect or

cnx = mysql . connector. connect (dat abase="wor | d")
cursor = cnx.cursor()

It is also possible to instantiate a cursor by passing a My SQLConnect i on object to My SQLCur sor :

i mport nysql . connect or
from nmysql . connect or. cursor inport MySQLCursor

cnx = mysql . connect or. connect (dat abase="wor| d')
cursor = MySQLCur sor (cnx)

The connection argument is optional. If omitted, the cursor is created but its execut e() method raises an
exception.

10.5.2 MySQLCursor.add_attribute() Method

Syntax:

cursor.add_attribute(name, val ue)
Adds a new named query attribute to the list, as part of MySQL server's Query Attributes functionality.

nane: The name must be a string, but no other validation checks are made; attributes are sent as is to the
server and errors, if any, will be detected and reported by the server.

val ue: a value converted to the MySQL Binary Protocol, similar to how prepared statement parameters
are converted. An error is reported if the conversion fails.

Query attributes must be enabled on the server, and are disabled by default. A warning is logged when
setting query attributes server connection that does not support them. See also Prerequisites for Using
Query Attributes for enabling the query_attributes MySQL server component.

Example query attribute usage:

Each invocation of “add_attribute’ nethod will add a new query attri bute:
cur.add_attribute("foo", 2)
cur. execut e("SELECT first_nane, |ast_name FROM clients")
The query above sent attibute "foo" with value 2.

cur.add_attribute(*("bar", "3"))
cur. execut e("SELECT * FROM products WHERE price < ?", 10)
The query above sent attributes ("foo", 2) and ("bar", "3").

ny_attributes = [("page_nane", "root"), ("previous_page", "login")]
for attribute_tuple in ny_attributes:
cur.add_attribute(*attribute_tuple)
cur. execut e("SELECT * FROM of fers WHERE publish = ?", 0)
The query above sent 4 attri butes.

To check the current query attributes:

80

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/query-attributes.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/query-attributes.html#query-attributes-prerequisites
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/query-attributes.html#query-attributes-prerequisites

MySQLCursor.clear_attributes() Method

print(cur.get_attributes())
prints
[("foo", 2), ("bar", "3"), ("page_nane", "root"), ("previous_page", "login")]

Query attributes are not cleared until the cursor is closed or
of the clear_attributes() nethod is invoked

cur.clear_attributes()
print(cur.get_attributes())

prints

[

cur. execut e("SELECT first_nane, |ast_name FROM clients")
The query above did not send any attibute

This method was added in Connector/Python 8.0.26.

10.5.3 MySQLCursor.clear_attributes() Method

Syntax:

cursor.clear_attributes()

Clear the list of query attributes on the connector's side, as set by Section 10.5.2,
“MySQLCursor.add_attribute() Method".

This method was added in Connector/Python 8.0.26.

10.5.4 MySQLCursor.get_attributes() Method

Syntax:

cursor.get _attributes()
Return a list of existing query attributes, as set by Section 10.5.2, “MySQLCursor.add_attribute() Method".

This method was added in Connector/Python 8.0.26.

10.5.5 MySQLCursor.callproc() Method

Syntax:

result_args = cursor.call proc(proc_nane, args=())

This method calls the stored procedure named by the pr oc_nane argument. The ar gs sequence of
parameters must contain one entry for each argument that the procedure expects. cal | proc() returns
a modified copy of the input sequence. Input parameters are left untouched. Output and input/output
parameters may be replaced with new values.

Result sets produced by the stored procedure are automatically fetched and stored as
MySQLCursorBuffered instances. For more information about using these result sets, see
stored_results().

Suppose that a stored procedure takes two parameters, multiplies the values, and returns the product:

CREATE PROCEDURE nul tiply(IN pFacl INT, IN pFac2 | NT, OUT pProd | NT)
BEG N

SET pProd : = pFacl * pFac2
END;

The following example shows how to execute the mul ti pl y() procedure:

81

MySQLCursor.close() Method

>>> args = (5, 6, 0) # 0 is to hold value of the OQUT paraneter pProd
>>> cursor.callproc(' multiply', args)
("5, '6', 30L)

Connector/Python 1.2.1 and up permits parameter types to be specified. To do this, specify a parameter
as a two-item tuple consisting of the parameter value and type. Suppose that a procedure sp1() has this
definition:

CREATE PROCEDURE spl1(IN pStr1l VARCHAR(20), IN pStr2 VARCHAR(20),
QUT pConCat VARCHAR(100))
BEG N
SET pConCat := CONCAT(pStrl, pStr2);
END;

To execute this procedure from Connector/Python, specifying a type for the OUT parameter, do this:

args = ('ham, 'eggs', (0, 'CHAR))
result_args = cursor.callproc('spl', args)
print(result_args[2])

10.5.6 MySQLCursor.close() Method

Syntax:

cursor. cl ose()

Use cl ose() when you are done using a cursor. This method closes the cursor, resets all results, and
ensures that the cursor object has no reference to its original connection object.

10.5.7 MySQLCursor.execute() Method

Syntax:

cursor. execut e(operati on, parans=None)
iterator = cursor.execute(operation, paranms=None)

Al owed before 9.2.0
iterator = cursor.execute(operation, params=None, nulti=True)

This method executes the given database oper at i on (query or command). The parameters found in
the tuple or dictionary par ans are bound to the variables in the operation. Specify variables using %s or
% nane) s parameter style (that is, using f or mat or pyf or mat style).

Before Connector/Python 9.2.0, execut e() accepted a mul ti option and returned an iterator if set to
Tr ue. That option was removed in 9.2.0, and Section 9.3, “Executing Multiple Statements” was added.

Note

In Python, a tuple containing a single value must include a comma. For example,
(‘abc') is evaluated as a scalar while (‘abc',) is evaluated as a tuple.

This example inserts information about a new employee, then selects the data for that person. The
statements are executed as separate execut e() operations:

insert_stm = (
"I NSERT | NTO enpl oyees (enp_no, first_nane, |ast_nanme, hire_date) "
"VALUES (%, %, %, %)"
)
data = (2, 'Jane', 'Doe', datetinme.date(2012, 3, 23))
cursor.execute(insert_stnt, data)

82

MySQLCursor.executemany() Method

sel ect_stnt = "SELECT * FROM enpl oyees WHERE enp_no = % enp_no)s"
cursor.execute(select_stnt, { "enmp_no': 2 })

The data values are converted as necessary from Python objects to something MySQL understands. In the
preceding example, the dat et i ne. dat e() instance is converted to ' 2012- 03- 23" .

If the connection is configured to fetch warnings, warnings generated by the operation are available
through the MySQLCursor.fetchwarnings() method.

10.5.8 MySQLCursor.executemany() Method

Syntax:

cur sor. execut emany(operati on, seq_of _parans)

This method prepares a database oper at i on (query or command) and executes it against all parameter
sequences or mappings found in the sequence seq_of par ans.

Note

In Python, a tuple containing a single value must include a comma. For example,
(‘abc’) is evaluated as a scalar while (‘abc',) is evaluated as a tuple.

In most cases, the execut enany() method iterates through the sequence of parameters, each time
passing the current parameters to the execut e() method.

An optimization is applied for inserts: The data values given by the parameter sequences are batched
using multiple-row syntax. The following example inserts three records:

data = [
(' Jane', date(2005, 2, 12)),
('Joe', date(2006, 5, 23)),
(' John', date(2010, 10, 3)),

]
stnmt = "I NSERT | NTO enpl oyees (first_nanme, hire_date) VALUES (%, %)"
cursor. execut emany(stnt, data)

For the preceding example, the | NSERT statement sent to MySQL is:

I NSERT | NTO enpl oyees (first_nanme, hire_date)
VALUES ('Jane', '2005-02-12'), ('Joe', '2006-05-23'), ('John', '2010-10-03')

With the execut emrany () method, it is not possible to specify multiple statements to execute in the
oper at i on argument. Doing so raises an | nt er nal Er r or exception. Consider using Section 9.3,
“Executing Multiple Statements” instead.

10.5.9 MySQLCursor.fetchall() Method

Syntax:

rows = cursor.fetchall ()

The method fetches all (or all remaining) rows of a query result set and returns a list of tuples. If no more
rows are available, it returns an empty list.

The following example shows how to retrieve the first two rows of a result set, and then retrieve any
remaining rows:

>>> cursor. execut e(" SELECT * FROM enpl oyees ORDER BY enp_no")
>>> head_rows = cursor.fetchmany(size=2)

83

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html

MySQLCursor.fetchmany() Method

>>> remai ni ng_rows = cursor.fetchall ()

You must fetch all rows for the current query before executing new statements using the same connection.

10.5.10 MySQLCursor.fetchmany() Method

Syntax:

rows = cursor.fetchmany(size=1)

This method fetches the next set of rows of a query result and returns a list of tuples. If no more rows are
available, it returns an empty list.

The number of rows returned can be specified using the si ze argument, which defaults to one. Fewer
rows are returned if fewer rows are available than specified.

You must fetch all rows for the current query before executing new statements using the same connection.

10.5.11 MySQLCursor.fetchone() Method

Syntax:

row = cursor. fetchone()

This method retrieves the next row of a query result set and returns a single sequence, or None if no
more rows are available. By default, the returned tuple consists of data returned by the MySQL server,
converted to Python objects. If the cursor is a raw cursor, no such conversion occurs; see Section 10.6.2,
“cursor.MySQLCursorRaw Class”.

The f et chone() method is used by fetchall() and fetchmany(). It is also used when a cursor is used as
an iterator.

The following example shows two equivalent ways to process a query result. The first uses f et chone()
in a whi | e loop, the second uses the cursor as an iterator:

Using a while | oop
cursor. execut e(" SELECT * FROM enpl oyees")
row = cursor. fetchone()
while row is not None:
print (row)
row = cursor. fetchone()

Using the cursor as iterator
cursor. execut e(" SELECT * FROM enpl oyees")
for rowin cursor:

print (row)

You must fetch all rows for the current query before executing new statements using the same connection.

10.5.12 MySQLCursor.nextset() Method

Syntax:

row = cursor. nextset()

This method makes the cursor skip to the next available set, discarding any remaining rows from the
current set. It returns None if there are no more sets or returns Tr ue and subsequent calls to the
cursor.fetch*() methods returns rows from the next result set.

This method can be used as part of the multi statement execution workflow.

84

MySQLCursor.fetchsets() Method

sql _operation = """

SET @=1, @-='2025-01-01";
SELECT @, LENGTH('hello'), @;
SELECT @@er si on;

with cnx.cursor() as cur:
cur . execut e(sqgl _operati on)

result_set = cur.fetchall ()

do sonething with result set

whi l e cur.nextset():
result_set = cur.fetchall ()
do sonething with result set

This method was added in Connector/Python 9.2.0.

10.5.13 MySQLCursor.fetchsets() Method

Syntax:

for statement, result_set in cursor.fetchsets():
do sonething with statenent and/or result set

This method generates a set of result sets caused by the last cursor.execute*(). It returns a generator

where each item is a 2-tuple; the first element is the statement that caused the result set, and the second is
the result set itself.

This method can be used as part of the multi statement execution workflow.
sql _operation = "'""'
SET @=1, @-='2025-01-01";
SELECT @, LENGTH('hello'), @;
SELECT @@er si on;
with cnx.cursor() as cur:
cur . execut e(sqgl _operation)

for statenment, result_set in cur.fetchsets():
do sonething with statenent and/or result set

This method was added in Connector/Python 9.2.0.

10.5.14 MySQL Cursor.fetchwarnings() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.5.18, “MySQLCursor.warnings Property” instead.

Syntax:

tupl es = cursor. fetchwarni ngs()

This method returns a list of tuples containing warnings generated by the previously executed operation.
To set whether to fetch warnings, use the connection's get _war ni ngs property.

The following example shows a SELECT statement that generates a warning:

>>> cnx. get_warni ngs = True
>>> cursor. execut e(" SELECT 'a' +1")
>>> cursor.fetchall ()

85

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html

MySQLCursor.stored_results() Method

[(1.0,)]

>>> cursor. f et chwar ni ngs()
[(u" Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

When warnings are generated, it is possible to raise errors instead, using the connection's
rai se_on_war ni ngs property.

10.5.15 MySQLCursor.stored_results() Method

Deprecation
This method has been deprecated as of 9.3.0.

Syntax:

iterator = cursor.stored_results()

This method returns a list iterator object that can be used to process result sets produced by a stored
procedure executed using the callproc() method. The result sets remain available until you use the cursor
to execute another operation or call another stored procedure.

The following example executes a stored procedure that produces two result sets, then uses
stored_resul ts() to retrieve them:

>>> cursor.cal |l proc(' nyproc')

0

>>> for result in cursor.stored_results()
print result.fetchall ()

[(1)]
[(2)]

10.5.16 MySQLCursor.column_names Property

Syntax:

sequence = cursor. col unm_nanes
This read-only property returns the column names of a result set as sequence of Unicode strings.

The following example shows how to create a dictionary from a tuple containing data with keys using
col um_nanes:

cursor. execut e("SELECT | ast_nane, first_nanme, hire_date "
"FROM enpl oyees WHERE enp_no = %", (123,))

row = dict(zi p(cursor.colum_nanes, cursor.fetchone()))

print("{last_nanme}, {first_nanme}: {hire_date}".format(row))

Alternatively, as of Connector/Python 2.0.0, you can fetch rows as dictionaries directly; see Section 10.6.3,
“cursor.MySQLCursorDict Class”.

10.5.17 MySQLCursor.description Property

Syntax:

tupl es = cursor.description

This read-only property returns a list of tuples describing the columns in a result set. Each tuple in the list
contains values as follows:

86

MySQLCursor.warnings Property

(col um_nane
type,

None

None

None

None

nul | _ok,

col um_f | ags)

The following example shows how to interpret descri pti on tuples:

i mport nysql . connect or
from nysqgl . connector inport FieldType

cursor. execut e(" SELECT enp_no, |ast_nanme, hire_date "
" FROM enpl oyees WHERE enp_no = %", (123,))
for i in range(len(cursor.description)):
print("Columm {}:".format(i+1))
desc = cursor.description[i]
print(" colum_nane = {}".fornmat (desc[0]))
print(" type = {} ({})".format(desc[1l], FieldType.get_info(desc[1])))
print(" null_ok = {}".format(desc[6]))
print(" colum_flags = {}".format(desc[7]))

The output looks like this:

Col umm 1
col utm_nane = enp_no
type = 3 (LONG

null _ok =0
colum_fl ags = 20483
Col um 2
col um_nane = | ast_nane
type = 253 (VAR _STRI NG
null _ok =0
colum_fl ags = 4097
Col umm 3
col um_nane = hire_date
type = 10 (DATE)
null _ok =0
colum_fl ags = 4225

The col unm_f | ags value is an instance of the const ant s. Fi el dFl ag class. To see how to interpret it,
do this:

>>> from nysql . connector inport FieldFlag
>>> Fj el dFl ag. desc

10.5.18 MySQLCursor.warnings Property

Syntax:

tupl es = cursor. war ni ngs

This property returns a list of tuples containing warnings generated by the previously executed operation.
To set whether to fetch warnings, use the connection's get _war ni ngs property.

The following example shows a SELECT statement that generates a warning:

>>> cnx. get_warni ngs = True
>>> cursor. execut e(" SELECT 'a' +1")
>>> cursor. fetchall ()

87

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html

MySQLCursor.lastrowid Property

[(1.0,)]
>>> print (cursor.warni ngs)
[(u" Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

When warnings are generated, it is possible to raise errors instead, using the connection's
rai se_on_war ni ngs property.

10.5.19 MySQLCursor.lastrowid Property

Syntax:

id = cursor.lastrow d

This read-only property returns the value generated for an AUTO_| NCREMENT column by the previous
I NSERT or UPDATE statement or None when there is no such value available. For example, if you
perform an | NSERT into a table that contains an AUTO | NCREMVENT column, | ast r owi d returns the
AUTO | NCREMENT value for the new row. For an example, see Section 5.3, “Inserting Data Using
Connector/Python”.

The | ast r owi d property is like the nysql i nsert id() C API function; see mysql_insert_id().

10.5.20 MySQLCursor.rowcount Property

Syntax:
count = cursor.rowount
This read-only property returns the number of rows returned for SELECT statements, or the number of

rows affected by DML statements such as | NSERT or UPDATE. For an example, see Section 10.5.7,
“MySQLCursor.execute() Method”.

For nonbuffered cursors, the row count cannot be known before the rows have been fetched. In this case,
the number of rows is -1 immediately after query execution and is incremented as rows are fetched.

The r owcount property is like the mysqgl _af f ect ed _rows() C API function; see
mysql_affected_rows().

10.5.21 MySQLCursor.statement Property

Syntax:

str = cursor. statenent

This read-only property returns the last executed statement as a string. The st at enent property can be
useful for debugging and displaying what was sent to the MySQL server.

The string can contain multiple statements if a multiple-statement string was executed. This occurs for
execut e() with mul ti =Tr ue. In this case, the st at enent property contains the entire statement
string and the execut e() call returns an iterator that can be used to process results from the individual
statements. The st at enent property for this iterator shows statement strings for the individual
statements.

10.5.22 MySQL Cursor.with_rows Property

Syntax:

bool ean = cursor.with_rows

88

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/mysql-insert-id.html
https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/mysql-insert-id.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/mysql-affected-rows.html
https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/mysql-affected-rows.html

Subclasses cursor.MySQLCursor

This read-only property returns Tr ue or Fal se to indicate whether the most recently executed operation
could have produced rows.

The wi t h_r ows property is useful when it is necessary to determine whether a statement produces a
result set and you need to fetch rows. The following example retrieves the rows returned by the SELECT
statements, but reports only the affected-rows value for the UPDATE statement:

i mport mysql . connect or

chx = mysql . connector. connect (user="'scott', database='test')
cursor = cnx.cursor()
operation = ' SELECT 1; UPDATE t1 SET c1 = 2; SELECT 2
for result in cursor.execute(operation)
if result.wth_rows:
result.fetchall ()
el se
print("Number of affected rows: {}".format(result.rowount))

10.6 Subclasses cursor.MySQLCursor

The cursor classes described in the following sections inherit from the My SQLCur sor class, which is
described in Section 10.5, “cursor.MySQLCursor Class”.

10.6.1 cursor.MySQLCursorBuffered Class
The My SQLCur sor Buf f er ed class inherits from My SQLCur sor .

After executing a query, a My SQLCur sor Buf f er ed cursor fetches the entire result set from the server and
buffers the rows.

For queries executed using a buffered cursor, row-fetching methods such as f et chone() return rows
from the set of buffered rows. For nonbuffered cursors, rows are not fetched from the server until a row-
fetching method is called. In this case, you must be sure to fetch all rows of the result set before executing
any other statements on the same connection, or an | nt er nal Er r or (Unread result found) exception will
be raised.

My SQLCur sor Buf f er ed can be useful in situations where multiple queries, with small result sets, need to
be combined or computed with each other.

To create a buffered cursor, use the buf f er ed argument when calling a connection's cur sor () method.
Alternatively, to make all cursors created from the connection buffered by default, use the buf f er ed
connection argument.

Example:
i mport mnysql . connect or
cnx = mysqgl . connect or. connect ()

Only this particular cursor will buffer results
cursor = cnx. cursor (buffered=True)

All cursors created fromcnx2 will be buffered by default
cnx2 = mysqgl . connect or. connect (buf f er ed=Tr ue)

For a practical use case, see Section 6.1, “Tutorial: Raise Employee's Salary Using a Buffered Cursor”.

10.6.2 cursor.MySQLCursorRaw Class

89

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html

cursor.MySQLCursorDict Class

The My SQLCur sor Raw class inherits from My SQLCur sor .

A MySQLCur sor Raw cursor skips the conversion from MySQL data types to Python types when fetching
rows. A raw cursor is usually used to get better performance or when you want to do the conversion
yourself.

To create a raw cursor, use the r aw argument when calling a connection's cur sor () method.
Alternatively, to make all cursors created from the connection raw by default, use the r aw connection
argument.

Example:
i mport mnysql . connect or
cnx = mysqgl . connect or. connect ()

Only this particular cursor will be raw
cursor = cnx.cursor (raw=True)

All cursors created fromcnx2 will be raw by default
chx2 = nmysgl . connect or. connect (raw=Tr ue)

10.6.3 cursor.MySQLCursorDict Class

The MySQLCur sor Di ct class inherits from My SQLCur sor . This class is available as of Connector/Python
2.0.0.

A MySQLCur sor Di ct cursor returns each row as a dictionary. The keys for each dictionary object are the
column names of the MySQL result.

Example:

cnx = nysql . connector. connect (dat abase="wor | d")
cursor = cnx.cursor(dictionary=True)
cursor. execut e("SELECT * FROM country WHERE Continent = 'Europe'")

print("Countries in Europe:")
for rowin cursor:
print("* {Nane}".format (Nanme=row ' Nane']

The preceding code produces output like this:

Countries in Europe:
* Al bani a
* Andorra
* Austria
* Bel gi um
* Bul garia

It may be convenient to pass the dictionary to f or mat () as follows:
cur sor. execut e(" SELECT Nane, Popul ati on FROM country WHERE Conti nent = ' Europe'")
print("Countries in Europe with popul ation:")

for rowin cursor:
print("* {Nane}: {Popul ation}".format(**row))

10.6.4 cursor.MySQLCursorBufferedDict Class

The MySQLCur sor Buf f er edDi ct class inherits from MySQLCur sor . This class is available as of
Connector/Python 2.0.0.

90

cursor.MySQLCursorPrepared Class

A MySQLCur sor Buf f eredDi ct cursor is like a MySQLCur sor Di ct cursor, but is buffered: After
executing a query, it fetches the entire result set from the server and buffers the rows. For information
about the implications of buffering, see Section 10.6.1, “cursor.MySQLCursorBuffered Class”.

To get a buffered cursor that returns dictionaries, add the buf f er ed argument when instantiating a new
dictionary cursor:

cursor = cnx.cursor(dictionary=True, buffered=True)

10.6.5 cursor.MySQLCursorPrepared Class

The MySQLCur sor Pr epar ed class inherits from My SQLCur sor .
Note

This class is available as of Connector/Python 1.1.0. The C extension supports it as
of Connector/Python 8.0.17.

In MySQL, there are two ways to execute a prepared statement:
» Use the PREPARE and EXECUTE statements.

» Use the binary client/server protocol to send and receive data. To repeatedly execute the same
statement with different data for different executions, this is more efficient than using PREPARE and
EXECUTE. For information about the binary protocol, see C API Prepared Statement Interface.

In Connector/Python, there are two ways to create a cursor that enables execution of prepared statements
using the binary protocol. In both cases, the cur sor () method of the connection object returns a
My SQLCur sor Pr epar ed object:

» The simpler syntax uses a pr epar ed=Tr ue argument to the cur sor () method. This syntax is
available as of Connector/Python 1.1.2.

i mport mysql . connect or

cnx = mysql . connect or. connect (dat abase="' enpl oyees')
cursor = cnx. cursor (prepared=True)

 Alternatively, create an instance of the MySQLCur sor Pr epar ed class using the cur sor _cl ass
argument to the cur sor () method. This syntax is available as of Connector/Python 1.1.0.

i nport nysql . connect or
from nysql . connector. cursor inport MySQLCursor Prepared

cnx = nysql.connector. connect (dat abase=' enpl oyees')
cursor = cnx. cursor (cursor_cl ass=MySQ.Cur sor Pr epar ed)

A cursor instantiated from the My SQLCur sor Pr epar ed class works like this:

» The first time you pass a statement to the cursor's execut e() method, it prepares the statement. For
subsequent invocations of execut e() , the preparation phase is skipped if the statement is the same.

e The execut e() method takes an optional second argument containing a list of data values to associate
with parameter markers in the statement. If the list argument is present, there must be one value per
parameter marker.

Example:

cursor = cnx. cursor (prepared=True)

91

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/prepare.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/execute.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/prepare.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/execute.html
https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/c-api-prepared-statement-interface.html

constants.ClientFlag Class

stnt = "SELECT ful |l nane FROM enpl oyees WHERE id = %" # (1)

cursor. execute(stnt, (5,)) # (2)
... fetch data ...
cursor.execute(stnt, (10,)) # (3)
... fetch data ...

1. The % within the statement is a parameter marker. Do not put quote marks around parameter markers.

2. For the first call to the execut e() method, the cursor prepares the statement. If data is given in the
same call, it also executes the statement and you should fetch the data.

3. For subsequent execut e() calls that pass the same SQL statement, the cursor skips the preparation
phase.

Prepared statements executed with My SQLCur sor Pr epar ed can use the f or mat (%) or gmar k (?)
parameterization style. This differs from nonprepared statements executed with My SQLCur sor , which can
use the f or mat or pyf or mat parameterization style.

To use multiple prepared statements simultaneously, instantiate multiple cursors from the
My SQLCur sor Pr epar ed class.

The MySQL client/server protocol has an option to send prepared statement parameters via the
COM STMT_SEND LONG_DATA command. To use this from Connector/Python scripts, send the parameter
in question using the | OBase interface. Example:

fromio inport |OBase

cur = cnx.cursor (prepared=True)
cur.execute("SELECT (%)", (io.ByteslQbytes("A", "latinl")),))

10.7 constants.ClientFlag Class

This class provides constants defining MySQL client flags that can be used when the connection
is established to configure the session. The Cl i ent Fl ag class is available when importing
nmysql . connect or.

>>> jnport nysqgl.connect or
>>> nysql . connector. d i ent Fl ag. FOUND_ROWS
2

See Section 10.2.32, “MySQLConnection.set_client_flags() Method” and the connection argument
client flag.

The Cl i ent FI ag class cannot be instantiated.

10.8 constants.FieldType Class

This class provides all supported MySQL field or data types. They can be useful when dealing with raw
data or defining your own converters. The field type is stored with every cursor in the description for each
column.

The following example shows how to print the name of the data type for each column in a result set.

from__future__ inmport print_function
i mport mysql . connect or
from nmysqgl . connector inport FieldType

92

constants.SQLMode Class

cnx = mnysgl.connector. connect (user="'scott', database="test')
cursor = cnx.cursor()

cur sor. execut e(
"SELECT DATE(NOW()) AS "cl', TIME(NOAN)) AS "c2°, "
"NON) AS "c3", 'a string' AS "'c4, 42 AS "c5 ")
rows = cursor.fetchall ()

for desc in cursor.description
col name = desc[0]
col type desc[1]
print("Colum {} has type {}".format(
col nanme, Fi el dType. get _i nfo(col type)))

cursor. cl ose()
cnx. cl ose()

The Fi el dType class cannot be instantiated.

10.9 constants.SQLMode Class

This class provides all known MySQL Server SQL Modes. It is mostly used when setting the
SQL modes at connection time using the connection's sql _node property. See Section 10.2.52,
“MySQLConnection.sgl_mode Property”.

The SQLMbde class cannot be instantiated.

10.10 constants.CharacterSet Class

This class provides all known MySQL characters sets and their default collations. For examples, see
Section 10.2.31, “MySQLConnection.set_charset_collation() Method”.

The Char act er Set class cannot be instantiated.

10.11 constants.RefreshOption Class

This class performs various flush operations.
* RefreshQOpti on. GRANT

Refresh the grant tables, like FLUSH PRI VI LEGES.
 RefreshOption. LOG

Flush the logs, like FLUSH LOGS.
* RefreshOpti on. TABLES

Flush the table cache, like FLUSH TABLES.
 RefreshOption. HOSTS

Flush the host cache, like FLUSH HOSTS.
* RefreshOpti on. STATUS

Reset status variables, like FLUSH STATUS.

* RefreshOpti on. THREADS

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/sql-mode.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-privileges
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-logs
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-hosts
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-status

Errors and Exceptions

Flush the thread cache.
* RefreshOpti on. REPLI CA

On a replica replication server, reset the source server information and restart the replica, like RESET
SLAVE. This constant was named "RefreshOption.SLAVE" before v8.0.23.

10.12 Errors and Exceptions

The nysql . connect or. err or s module defines exception classes for errors and warnings raised
by MySQL Connector/Python. Most classes defined in this module are available when you import
nysql . connect or.

The exception classes defined in this module mostly follow the Python Database API Specification v2.0
(PEP 249). For some MySQL client or server errors it is not always clear which exception to raise. It is
good to discuss whether an error should be reclassified by opening a bug report.

MySQL Server errors are mapped with Python exception based on their SQLSTATE value (see Server
Error Message Reference). The following table shows the SQLSTATE classes and the exception
Connector/Python raises. It is, however, possible to redefine which exception is raised for each server
error. The default exception is Dat abaseErr or.

Table 10.1 Mapping of Server Errors to Python Exceptions

SQLSTATE Class Connector/Python Exception
02 Dat aErr or

02 Dat aErr or

07 Dat abaseErr or

08 Oper ati onal Error
0A Not Support edErr or
21 Dat aError

22 Dat aErr or

23 IntegrityError
24 Pr ogr ammi ngErr or
25 Pr ogr ammi ngErr or
26 Pr ogr ammi ngEr r or
27 Pr ogr anm ngError
28 Pr ogr ammi ngErr or
2A Pr ogr ammi ngErr or
2B Dat abaseErr or

2C Pr ogr anm ngError
2D Dat abaseErr or

2E Dat abaseErr or

33 Dat abaseErr or

34 Pr ogr anm ngError
35 Pr ogr ammi ngErr or

94

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset-slave.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset-slave.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html

errorcode Module

SQLSTATE Class Connector/Python Exception
37 Pr ogr anm ngErr or
3C Pr ogr amm ngErr or
3D Pr ogr ammi ngErr or
3F Pr ogr ammi ngEr r or
40 I nternal Error

42 Pr ogr amm ngErr or
44 I nternal Error

Hz Qper ati onal Error
XA IntegrityError
0K Qper ational Error
HY Dat abaseErr or

10.12.1 errorcode Module

This module contains both MySQL server and client error codes defined as module attributes with the error
number as value. Using error codes instead of error numbers could make reading the source code a bit
easier.

>>> from nysql . connector inmport errorcode
>>> errorcode. ER BAD TABLE ERROR
1051

For more information about MySQL errors, see Error Messages and Common Problems.

10.12.2 errors.Error Exception

This exception is the base class for all other exceptions in the er r or s module. It can be used to catch all
errors in a single except statement.

The following example shows how we could catch syntax errors:
i mport mnysql . connect or

try:
cnx = mysql . connect or. connect (user="'scott', database='enpl oyees')
cursor = cnx.cursor()
cursor. execut e(" SELECT * FORM enpl oyees") # Syntax error in query
chx. cl ose()

except nysql.connector.Error as err:
print("Something went wong: {}".format(err))

Initializing the exception supports a few optional arguments, namely nsg, er r no, val ues and sql st at e.
All of them are optional and default to None. err ors. Error is internally used by Connector/Python to
raise MySQL client and server errors and should not be used by your application to raise exceptions.

The following examples show the result when using no arguments or a combination of the arguments:

>>> from nysql . connector.errors inmport Error
>>> str(Error())
" Unknown error'’

95

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/error-handling.html

errors.DataError Exception

>>> str(Error (" Oops! There was an error."))
' QCops! There was an error.

>>> str(Error(errno=2006))
' 2006: MySQL server has gone away'

>>> str(Error(errno=2002, val ues=('/tnp/ mysql.sock', 2)))
"2002: Can't connect to |local MySQL server through socket '/tnp/nysql.sock' (2)"

>>> str(Error(errno=1146, sql state='42S02', nsg="Table 'test.spam doesn't exist"))
"1146 (42S02): Table 'test.spaml doesn't exist”

The example which uses error number 1146 is used when Connector/Python receives an error packet from
the MySQL Server. The information is parsed and passed to the Er r or exception as shown.

Each exception subclassing from Er r or can be initialized using the previously mentioned arguments.
Additionally, each instance has the attributes er r no, nsg and sql st at e which can be used in your code.

The following example shows how to handle errors when dropping a table which does not exist (when the
DROP TABLE statement does not include a | F EXI STS clause):

i mport mysql . connect or
from nmysqgl . connector inport errorcode

cnx = mysqgl . connect or. connect (user="'scott', database='test')
cursor = cnx.cursor()
try:
cur sor. execut e(" DROP TABLE spani')
except nysql.connector.Error as err
if err.errno == errorcode. ER BAD TABLE ERROR
print("Creating table spani)
el se
rai se

Prior to Connector/Python 1.1.1, the original message passed to err ors. Error () is not saved in such
a way that it could be retrieved. Instead, the Er r or . nsg attribute was formatted with the error number
and SQLSTATE value. As of 1.1.1, only the original message is saved in the Er r or . nsg attribute. The
formatted value together with the error number and SQLSTATE value can be obtained by printing or
getting the string representation of the error object. Example:

try:
conn = nmysqgl . connect or. connect (dat abase = "baddb")
except nysql.connector.Error as e
print "Error code:", e.errno # error nunber
print "SQLSTATE val ue:", e.sqlstate # SQ.STATE val ue
print "Error message:", e.nsg # error nmessage
print "Error:", e # errno, sqglstate, nsg val ues
s = str(e)
print "Error:", s # errno, sqglstate, nsg val ues

errors. Error is asubclass of the Python St andar dEr r or .

10.12.3 errors.DataError Exception

This exception is raised when there were problems with the data. Examples are a column set to NULL that
cannot be NULL, out-of-range values for a column, division by zero, column count does not match value
count, and so on.

errors. Dat aError is a subclass of error s. Dat abaseError.

10.12.4 errors.DatabaseError Exception

96

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html

errors.IntegrityError Exception

This exception is the default for any MySQL error which does not fit the other exceptions.

errors. Dat abaseError isasubclassoferrors. Error.

10.12.5 errors.IntegrityError Exception

This exception is raised when the relational integrity of the data is affected. For example, a duplicate key
was inserted or a foreign key constraint would fail.

The following example shows a duplicate key error raised as IntegrityError:

cursor . execut e(" CREATE TABLE t1 (id int, PRIMARY KEY (id))")
try:
cursor.execute("INSERT INTOt1 (id) VALUES (1)")
cursor.execute("INSERT INTOt1 (id) VALUES (1)")
except mysql.connector.IntegrityError as err:
print("Error: {}".format(err))

errors.IntegrityError isasubclass of errors. Dat abaseError.

10.12.6 errors.InterfaceError Exception

This exception is raised for errors originating from Connector/Python itself, not related to the MySQL
server.

errors. I nterfaceError isasubclassoferrors. Error.

10.12.7 errors.InternalError Exception

This exception is raised when the MySQL server encounters an internal error, for example, when a
deadlock occurred.

errors. I nternal Error is asubclass of errors. Dat abaseErr or.

10.12.8 errors.NotSupportedError Exception
This exception is raised when some feature was used that is not supported by the version of MySQL that
returned the error. It is also raised when using functions or statements that are not supported by stored
routines.
errors. Not Support edError is a subclass of errors. Dat abaseError.

10.12.9 errors.OperationalError Exception
This exception is raised for errors which are related to MySQL's operations. For example: too many
connections; a host name could not be resolved; bad handshake; server is shutting down, communication
errors.
errors. Operational Error isasubclass of errors. Dat abaseError.

10.12.10 errors.PoolError Exception

This exception is raised for connection pool errors. er r or s. Pool Err or is a subclass of errors. Error.

10.12.11 errors.ProgrammingError Exception

97

errors.Warning Exception

This exception is raised on programming errors, for example when you have a syntax error in your SQL or
a table was not found.

The following example shows how to handle syntax errors:

try:
cursor. execut e("CREATE DESK t1 (id int, PRI MARY KEY (id))")
except nysql.connector. Progranmi ngError as err
if err.errno == errorcode. ER_ SYNTAX ERROR
print ("Check your syntax!")
el se
print("Error: {}".format(err))

errors. Progranm ngError is asubclass of errors. Dat abaseErr or.

10.12.12 errors.Warning Exception

This exception is used for reporting important warnings, however, Connector/Python does not use it. It is
included to be compliant with the Python Database Specification v2.0 (PEP-249).

Consider using either more strict Server SQL Modes or the raise_on_warnings connection argument to
make Connector/Python raise errors when your queries produce warnings.

errors. War ni ng is a subclass of the Python St andar dEr r or .

10.12.13 errors.custom_error_exception() Function

Syntax:

errors. custom error_excepti on(error=None, excepti on=None)
This method defines custom exceptions for MySQL server errors and returns current customizations.

If error is a MySQL Server error number, you must also pass the except i on class. The err or
argument can be a dictionary, in which case the key is the server error number, and value the class of the
exception to be raised.

To reset the customizations, supply an empty dictionary.

i nport nysqgl . connect or
from nysql . connector inport errorcode

Server error 1028 should rai se a DatabaseError
nysql . connect or. cust om error_excepti on(1028, nysql.connect or. Dat abaseError)

O using a dictionary:

nysql . connect or . cust om error _excepti on({
1028: nysgl . connect or . Dat abaseErr or
1029: nysql . connect or. Oper ati onal Error

})

To reset, pass an enpty dictionary:
nysql . connect or. cust om error_exception({})

98

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/sql-mode.html

Chapter 11 Connector/Python C Extension API Reference

Table of Contents

11.1 _mysqgl_conNECtOr MOAUIEiiiiii ettt e e e e e 100
11.2 _mysgl_connector.MYSQL() ClIASSuiiiiiiiieiiiiiee ettt 100
11.3 _mysql_connector.MySQL.affected_rows() Methodooviiiiiiiiiiiii e 100
11.4 _mysql_connector.MySQL.autocommit() Methodoiiiiiiiiiiiiii e 101
11.5 _mysql_connector.MySQL.buffered() Methodcoouuiiiiiiiiiic e 101
11.6 _mysql_connector.MySQL.change_user() Method ..o 101
11.7 _mysql_connector.MySQL.character_set_name() Methodcccooveiiiiiiiiiiiinic e 101
11.8 _mysqgl_connector.MySQL.cloSe() MethOdcooiiiiiiiiiiiii e 101
11.9 _mysql_connector.MySQL.commit() Methodccoouiiiiiiiiiiii e 102
11.10 _mysql_connector.MySQL.connect() Methodccooiiiiiiiiiiiiiei e 102
11.11 _mysql_connector.MySQL.connected() Methodiiiiiiiiiiiiii e 102
11.12 _mysqgl_connector.MySQL.consume_result() Methodocoouiiiiiiiii e, 102
11.13 _mysgl_connector.MySQL.convert_to_mysgl() Methodooooiiiiiiii e 102
11.14 _mysqgl_connector.MySQL.escape_string() Methodccoiiiiiiiiiiiii e 103
11.15 _mysql_connector.MySQL.fetch_fields() Methodc.oiiiiiiiiiiiiii e 103
11.16 _mysql_connector.MySQL.fetch_row() Methodiiiiiiiiiiiii e 103
11.17 _mysql_connector.MySQL.field_count() Methodoooiiiiiiiiiii e 103
11.18 _mysqgl_connector.MySQL.free_result() Methodcoieiiiiiiiii e 104
11.19 _mysqgl_connector.MySQL.get_character_set_info() Methodcccooiiiiiiiiiiiiiiic e, 104
11.20 _mysqgl_connector.MySQL.get_client_info() Methodcooiiiiiiiiii e 104
11.21 _mysgl_connector.MySQL.get_client_version() Methodcccooiiiiiiiiiiiiiii e, 104
11.22 _mysqgl_connector.MySQL.get_host_info() Methodccoooiiiiiiii e 104
11.23 _mysqgl_connector.MySQL.get_proto_info() Method ..., 104
11.24 _mysqgl_connector.MySQL.get_server_info() Method ..., 104
11.25 _mysqgl_connector.MySQL.get_server_version() Methodccoooeiiiiiiiiiiiine e 105
11.26 _mysqgl_connector.MySQL.get_ssl_cipher() Methodcooviiiiiiiii e 105
11.27 _mysql_connector.MySQL.hex_string() Methodiiiiiiiiiiiii e 105
11.28 _mysql_connector.MySQL.insert_id() Methodcoooiiiiiiiii e 105
11.29 _mysqgl_connector.MySQL.more_results() Methodooviiiiiiiiiiiii e 105
11.30 _mysqgl_connector.MySQL.next_result() Methodooviiiiiiiiiiii e 105
11.31 _mysqgl_connector.MySQL.num_fields() Methodoooiiiiiiiiii e 105
11.32 _mysql_connector.MySQL.numM_rows() Methodouiiiiiiiiiiiiiiii e 106
11.33 _mysql_connector.MySQL.pING() MENOTccoimiiiiiiii e 106
11.34 _mysql_connector.MySQL.query() Methodcoouuiiiiiiiiiiii e 106
11.35 _mysql_connector.MySQL.raw() MethOdcouuiiiiiiiiiiii e 106
11.36 _mysql_connector.MySQL.refresh() Methodccooiiiiiiiiiiii e 107
11.37 _mysqgl_connector.MySQL.reset_connection() Methodcoooeiiiiiiiiiiiii e 107
11.38 _mysql_connector.MySQL.rollback() Methodoiiiiiiiiiiiii e 107
11.39 _mysql_connector.MySQL.select_db() Methodccoiiiiiiiiiiiii e 107
11.40 _mysqgl_connector.MySQL.set_character_set() Methodccoiiiiiiiiiiiiiiii e, 107
11.41 _mysql_connector.MySQL.shutdown() Methodccoiiiiiiiiiiiii e 107
11.42 _mysql_connector.MySQL.Stat() MethOdcooouuiiiiiiii e 108
11.43 _mysql_connector.MySQL.thread_id() Methodocoimiiiiiiiiii e 108
11.44 _mysql_connector.MySQL.use_unicode() Methodoiiiiiiiiiiiiiii e 108
11.45 _mysgl_connector.MySQL.warning_count() Methodccciiiiiiiiiiiiii e 108
11.46 _mysqgl_connector.MySQL.have_result_Set Propertyccoovieieiiiieiiiiiiieee e 108

99

_mysgl_connector Module

This chapter contains the public API reference for the Connector/Python C Extension, also known as the
_nysgl _connect or Python module.

The nysqgl connect or C Extension module can be used directly without any other code of Connector/
Python. One reason to use this module directly is for performance reasons.

Note

Examples in this reference use ccnx to represent a connector object as used
with the _nysqgl _connect or C Extension module. ccnx is an instance of the
_nysql _connect or. MySQL() class. It is distinct from the cnx object used in
examples for the nysql . connect or Connector/Python module described in
Chapter 10, Connector/Python API Reference. cnx is an instance of the object
returned by the connect () method of the MySQ_Connect i on class.

Note

The C Extension is not part of the pure Python installation. It is an optional module
that must be installed using a binary distribution of Connector/Python that includes
it, or compiled using a source distribution. See Chapter 4, Connector/Python
Installation.

11.1 _mysql_connector Module

The nysqgl connect or module provides classes.

11.2 mysql _connector.MySQL() Class

Syntax:

ccnx = _nysgl _connect or. MySQL(ar gs)

The My SQL class is used to open and manage a connection to a MySQL server (referred to elsewhere in
this reference as “the My SQL instance”). It is also used to send commands and SQL statements and read
results.

The My SQL class wraps most functions found in the MySQL C Client APl and adds some additional
convenient functionality.

i mport _nysql _connect or
ccnx = _nysql _connector. MySQL()
ccnx. connect (user='scott', password='password',

host='127.0.0.1', database='enpl oyees')
ccnx. cl ose()

Permitted arguments for the My SQL class are aut h_pl ugi n, buf f er ed, char set _nane,
connection_timeout,raw, use_uni code. Those arguments correspond to the arguments of the same
names for MySQLConnect i on. connect () as described at Section 7.1, “Connector/Python Connection
Arguments”, except that char set _nane corresponds to char set .

11.3 _mysql _connector.MySQL.affected rows() Method

Syntax:

count = ccnx. affected_rows()

100

_mysgl_connector.MySQL.autocommit() Method

Returns the number of rows changed, inserted, or deleted by the most recent UPDATE, | NSERT, or
DELETE statement.

11.4 mysql _connector.MySQL.autocommit() Method
Syntax:
ccnx. aut oconmi t (bool)
Sets the autocommit mode.

Raises a Val ueEr r or exception if node is not Tr ue or Fal se.

11.5 mysql _connector.MySQL.buffered() Method

Syntax:
is_buffered = ccnx. buffered() # getter
ccnx. buf f er ed(bool) # setter

With no argument, returns Tr ue or Fal se to indicate whether the My SQL instance buffers (stores) the
results.

With a boolean argument, sets the My SQL instance buffering mode.

For the setter syntax, raises a TypeEr r or exception if the value is not Tr ue or Fal se.

11.6 _mysql _connector.MySQL.change user() Method

Syntax:

ccnx. change_user (user =' user _nane
passwor d=' password_val '
dat abase=' db_nane')

Changes the user and sets a new default database. Permitted arguments are user, passwor d, and
dat abase.

11.7 _mysql _connector.MySQL.character_set _name() Method
Syntax:
charset = ccnx.character_set_nane()
Returns the name of the default character set for the current MySQL session.

Some MySQL character sets have no equivalent names in Python. When this is the case, a name usable
by Python is returned. For example, the ' ut f 8nb4' MySQL character set name is returned as ' utf 8' .

11.8 _mysql_connector.MySQL.close() Method

Syntax:

ccnx. cl ose()

Closes the MySQL connection.

101

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/delete.html

_mysql_connector.MySQL.commit() Method

11.9 mysql _connector.MySQL.commit() Method

Syntax:

ccnx. commit ()

Commits the current transaction.

11.10 _mysqgl_connector.MySQL.connect() Method

Syntax:

ccnx. connect (ar gs)

Connects to a MySQL server.
i mport _nysql _connect or

ccnx = _nysql _connector. MySQL()

ccnx. connect (user ="' scott', password='password'
host='127.0.0.1', database='enpl oyees')

ccnx. cl ose()

connect () supports the following arguments: host , user, passwor d, dat abase, port, uni x_socket,
client flags,ssl _ca,ssl _cert,ssl _key,ssl _verify cert, conpress. See Section 7.1,
“Connector/Python Connection Arguments”.

If ccnx is already connected, connect () discards any pending result set and closes the connection
before reopening it.

Raises a TypeEr r or exception if any argument is of an invalid type.

11.11 mysqgl_connector.MySQL.connected() Method

Syntax:

i s_connected = ccnx. connect ed()

Returns Tr ue or Fal se to indicate whether the My SQL instance is connected.

11.12 mysqgl _connector.MySQL.consume_result() Method

Syntax:
ccnx. consune_resul t ()
Consumes the stored result set, if there is one, for this My SQL instance, by fetching all rows. If the

statement that was executed returned multiple result sets, this method loops over and consumes all of
them.

11.13 _mysqgl _connector.MySQL.convert_to_mysql() Method

Syntax:

converted_obj = ccnx.convert_to_mysql (obj))

Converts a Python object to a MySQL value based on the Python type of the object. The converted object
is escaped and quoted.

102

_mysqgl_connector.MySQL.escape_string() Method

ccnx. query(' SELECT CURRENT_USER(), 1 + 3, NOW)')
row = ccnx. fetch_row)
for col in row
print (ccnx.convert _to_nysqgl (col))
ccnx. consune_resul t ()

Raises a MySQLI nt er f aceEr r or exception if the Python object cannot be converted.

11.14 mysql _connector.MySQL.escape_string() Method

Syntax:

str = ccnx. escape_string(str_to_escape)

Uses the nysql _escape_string() C API function to create an SQL string that you can use in an SQL
statement.

Raises a TypeEr r or exception if the value does not have a Uni code, byt es, or (for Python 2) st ri ng
type. Raises a My SQLEr r or exception if the string could not be escaped.

11.15 mysqgl _connector.MySQL.fetch fields() Method

Syntax:

field_info = ccnx.fetch_fields()
Fetches column information for the active result set. Returns a list of tuples, one tuple per column

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.
ccnx. query(' SELECT CURRENT_USER(), 1 + 3, NOW)')
field_info = ccnx.fetch_fields()
for fi in field_info:
print(fi)
ccnx. consune_resul t ()

11.16 _mysqgl_connector.MySQL.fetch _row() Method

Syntax:

row = ccnx. fetch_row)

Fetches the next row from the active result set. The row is returned as a tuple that contains the values
converted to Python objects, unless r awwas set.

ccnx. query(' SELECT CURRENT_USER(), 1 + 3, NOW)')
row = ccnx. fetch_row)

print (row)

ccnx. free_result()

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.

11.17 mysqgl _connector.MySQL.field count() Method

Syntax:

count = ccnx.field_count()

Returns the number of columns in the active result set.

103

https://docs.oracle.com/cd/E17952_01/c-api-8.0-en/mysql-escape-string.html

_mysql_connector.MySQL.free_result() Method

11.18 mysql _connector.MySQL.free_result() Method

Syntax:

ccnx. free_result()

Frees the stored result set, if there is one, for this MySQL instance. If the statement that was executed
returned multiple result sets, this method loops over and consumes all of them.

11.19 _mysqgl_connector.MySQL.get_character_set_info() Method

Syntax:

info = ccnx. get_character_set_info()

Returns information about the default character set for the current MySQL session. The returned dictionary
has the keys nunber , nane, csnane, conment , di r, nbni nl en, and nbrmax!| en.

11.20 _mysqgl_connector.MySQL.get client_info() Method

Syntax:

info = ccnx.get_client_info()

Returns the MySQL client library version as a string.

11.21 mysqgl _connector.MySQL.get_client_version() Method

Syntax:

info = ccnx.get_client_version()

Returns the MySQL client library version as a tuple.

11.22 mysqgl _connector.MySQL.get _host_info() Method

Syntax:

info = ccnx. get_host_info()

Returns a description of the type of connection in use as a string.

11.23 _mysqgl_connector.MySQL.get proto_info() Method

Syntax:

info = ccnx. get_proto_info()

Returns the protocol version used by the current session.

11.24 mysqgl_connector.MySQL.get_server_info() Method

Syntax:

info = ccnx. get_server_info()

104

_mysql_connector.MySQL.get_server_version() Method

Returns the MySQL server version as a string.

11.25 mysqgl _connector.MySQL.get server_version() Method

Syntax:

info = ccnx. get_server_version()

Returns the MySQL server version as a tuple.

11.26 _mysqgl_connector.MySQL.get_ssl cipher() Method

Syntax:

info = ccnx. get_ssl _cipher ()

Returns the SSL cipher used for the current session, or None if SSL is not in use.

11.27 _mysqgl_connector.MySQL.hex_string() Method

Syntax:

str = ccnx. hex_string(string_to_hexify)

Encodes a value in hexadecimal format and wraps it within X' ' . For example, " han!' becomes
X 68616D .

11.28 mysqgl _connector.MySQL.insert_id() Method

Syntax:

insert_id = ccnx.insert_id()

Returns the AUTO | NCREMENT value generated by the most recent executed statement, or O if there is no

such value.

11.29 mysqgl_connector.MySQL.more_results() Method

Syntax:

nore = ccnx. nore_resul ts()

Returns Tr ue or Fal se to indicate whether any more result sets exist.

11.30 _mysqgl_connector.MySQL.next_result() Method

Syntax:

ccnx. next _resul t()

Initiates the next result set for a statement string that produced multiple result sets.

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.

11.31 _mysqgl _connector.MySQL.num_fields() Method

105

_mysqgl_connector.MySQL.num_rows() Method

Syntax:

count = ccnx. numfields()

Returns the number of columns in the active result set.

11.32 _mysqgl _connector.MySQL.num_rows() Method

Syntax:

count = ccnx. num.rows()
Returns the number of rows in the active result set.

Raises a MySQLEr r or exception if there is no result set.

11.33 _mysqgl _connector.MySQL.ping() Method

Syntax:

alive = ccnx. pi ng()

Returns Tr ue or Fal se to indicate whether the connection to the MySQL server is working.

11.34 mysqgl _connector.MySQL.query() Method

Syntax:

ccnx. query(args)

Executes an SQL statement. The permitted arguments are st at enent , buf f er ed, r aw, and
raw_as_string.

ccnx. query(' DROP TABLE |F EXISTS t')

ccnx. query(' CREATE TABLE t (i INT NOT NULL AUTO | NCREMENT PRI MARY KEY)')
ccnx. query(' INSERT INTOt (i) VALUES (NULL), (NULL), (NULL)')

ccnx. query(' SELECT LAST_I NSERT_ID()")

row = ccnx. fetch_row)

print('LAST_INSERT_ID(): ', row)

ccnx. consune_resul t()

buf f er ed and r aw, if not provided, take their values from the My SQL instance. raw_as_stringisa
special argument for Python v2 and returns st r instead of byt ear r ay (compatible with Connector/Python
v1.x).

To check whether the query returns rows, check the have result set property of the MySQL instance.

qguery() returns Tr ue if the query executes, and raises an exception otherwise. It raises a TypeEr r or
exception if any argument has an invalid type, and a MySQLI nt er f aceEr r or exception for any MySQL
error returned by the MySQL server.

11.35 _mysqgl_connector.MySQL.raw() Method

Syntax:
is_raw = ccnx.raw) # getter
ccnx. raw bool) # setter

106

_mysqgl_connector.MySQL.refresh() Method

With no argument, returns Tr ue or Fal se to indicate whether the My SQL instance return the rows as is
(without conversion to Python objects).

With a boolean argument, sets the My SQL instance raw mode.

11.36 _mysqgl_connector.MySQL.refresh() Method

Syntax:

ccnx. refresh(fl ags)

Flushes or resets the tables and caches indicated by the argument. The only argument currently permitted
is an integer.

Raises a TypeEr r or exception if the first argument is not an integer.

11.37 _mysqgl_connector.MySQL.reset_connection() Method
Syntax:
ccnx. reset _connection()

Resets the user variables and session variables for a connection session.

11.38 mysqgl _connector.MySQL.rollback() Method

Syntax:

ccnx. rol | back()
Rolls back the current transaction.

Raises a MySQLI nt er f aceEr r or exception on errors.

11.39 mysql _connector.MySQL.select_db() Method

Syntax:

ccnx. sel ect _db(db_nane)
Sets the default (current) database for the current session.

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.

11.40 mysqgl _connector.MySQL.set_character_set() Method
Syntax:
ccnx. set _charact er_set (charset nane)

Sets the default character set for the current session. The only argument permitted is a string that contains
the character set name.

Raises a TypeEr r or exception if the argumentis nota PyStri ng_type.

11.41 mysqgl _connector.MySQL.shutdown() Method

107

_mysql_connector.MySQL.stat() Method

Syntax:

ccnx. shut down(f | ags)

Shuts down the MySQL server. The only argument currently permitted is an integer that describes the
shutdown type.

Raises a TypeEr r or exception if the first argument is not an integer. Raises a MySQLEr ror I nt er f ace
exception if an error is retured by the MySQL server.

11.42 mysqgl_connector.MySQL.stat() Method
Syntax:
info = ccnx.stat()
Returns the server status as a string.

Raises a MySQLEr r or | nt er f ace exception if an error is retured by the MySQL server.

11.43 mysqgl _connector.MySQL.thread_id() Method

Syntax:

thread_id = ccnx.thread_id()

Returns the current thread or connection ID.

11.44 mysqgl_connector.MySQL.use_unicode() Method

Syntax:
i s_uni code = ccnx. use_uni code() # getter
ccnx. use_uni code(bool) # setter

With no argument, returns Tr ue or Fal se to indicate whether the My SQL instance returns nonbinary
strings as Unicode.

With a boolean argument, sets whether the My SQL instance returns nonbinary strings as Unicode.

11.45 mysqgl _connector.MySQL.warning_count() Method

Syntax:

count = ccnx. war ni ng_count ()

Returns the number of errors, warnings, and notes produced by the previous SQL statement.

11.46 _mysqgl _connector.MySQL.have result_set Property

Syntax:

has_rows = ccnx. have_result_set

After execution of the quer y() method, this property indicates whether the query returns rows.

108

|ndeX _mysqgl_connector.MySQL.stat() method, 108
_mysgl_connector.MySQL.thread_id() method, 108
_mysqgl_connector.MySQL.use_unicode() method, 108

Sym bols _mysgl_connector.MySQL.warning_count() method, 108
_mysql_connector module, 100
_mysql_connector.MySQL() class, 100 C

_mysql_connector.MySQL.affected_rows() method, 100
_mysql_connector.MySQL.autocommit() method, 101
_mysql_connector.MySQL.buffered() method, 101
_mysql_connector.MySQL.change_user() method, 101
mysql_connector.MySQL.character_set_name()

class
connection.MySQLConnection, 62
constants.CharacterSet, 93
constants.ClientFlag, 92
constants.FieldType, 92

method, 101 constants.RefreshOption, 93
_mysql_connector.MySQL.close() method, 101 constants.SQLMode, 93
_mysql_connector.MySQL.commit() method, 102 cursor.MySQLCurso,r 79
_mysql_connector.MySQL.connect() method, 102 cursor.MySQLCursorBuffered, 89
_mysql_connector.MySQL.connected() method, 102 cursor.MySQLCursorBufferedDict, 90
_mysql_connector.MySQL.consume_result() method, cursor.MySQLCursorDict, 90

102 cursor.MySQLCursorPrepared, 91
_mysql_connector.MySQL.convert_to_mysql() method, cursor.MySQLCursorRaw, 89

102 ,

, pooling.MySQLConnectionPool, 76
_mysql_connector.MySQL.escape_string() method, 103 pooling.PooledMySQL Connection, 78

_mysqgl_connector.MySQL.fetch_fields() method, 103 mysql_connector.MySQL(), 100
_mysqgl_connector.MySQL.fetch_row() method, 103 COM STMT SEND LONG D:ATA
_mysql_connector.MySQL.field_count() method, 103 prepared statements, 92
_mysql_connector.MySQL.free_result() methoq, 104 connection.MySQLConnection class, 62
_mysql_connector.MySQL.get_character_set_info() connection.MySQLConnection() constructor, 62
method, 104 o Connector/Python, 1
_mysgl_connector.MySQL.get_client_info() method, 104 ., stants.CharacterSet class. 93
_mysql_connector.MySQL.get_client_version() method, constants.ClientFlag class 9é

104 . constants.FieldType class, 92
_mysql_connector.MySQL.get_host_info() method, 104 constants.RefreshOption class, 93
_mysql_connector.MySQL.get_proto_info() method, 104 constants.SQLMode class, 93
_mysgl_connector.MySQL.get_server_info() method, 104 . structor ,
_mysql_connector.MySQL.get_server_version() method, connection.MySQLConnection(), 62
105 . cursor.MySQLCursor, 80
_mysqgl_connector.MySQL.get_ssl_cipher() method, 105 pooling.MySQLConnectionPool, 76

_mysql_connector.MySQL.have_result_set property, 108 pooling.PooledMySQLConnection, 78
_mysql_connector.MySQL.hex_string() method, 105 cursor.mysglcursor

_mysql_connector.MySQL.insert_id() method, 105 Subclasses, 89
_mysql_connector.MySQL.more_results() method, 105 cursor.MySQLCursor class, 79
_mysqgl_connector.MySQL.next_result() method, 105 cursor.MySQLCursor constructor, 80
_mysqgl_connector.MySQL.num_fields() method, 105 cursor.MySQLCursorBuffered class, 89
_mysgl_connector.MySQL.num_rows() method, 106 cursor.MySQLCursorBufferedDict class, 90
_mysqgl_connector.MySQL.ping() method, 106 cursor.MySQLCursorDict class, 90
_mysql_connector.MySQL.query() method, 106 cursor.MySQLCursorPrepared class, 91

_mysql_connector.MySQL.raw() method, 106 cursor.MySQLCursorRaw class, 89
_mysql_connector.MySQL.refresh() method, 107

_mysql_connector.MySQL.reset_connection() method, D
107
_mysql_connector.MySQL.rollback() method, 107

_mysql_connector.MySQL.select_db() method, 107

DYLD_LIBRARY_PATH environment variable, 37

_mysql_connector.MySQL.set_character_set() method, E
107 environment variable
_mysql_connector.MySQL.shutdown() method, 107 DYLD_LIBRARY_PATH, 37

109

errorcode module, 95
errors.custom_error_exception() function, 98
errors.DatabaseError exception, 96
errors.DataError exception, 96
errors.Error exception, 95
errors.IntegrityError exception, 97
errors.InterfaceError exception, 97
errors.InternalError exception, 97
errors.NotSupportedError exception, 97
errors.OperationalError exception, 97
errors.PoolError exception, 97
errors.ProgrammingError exception, 97
errors.Warning exception, 98
exception
errors.DatabaseError, 97
errors.DataError, 96
errors.Error, 95
errors.IntegrityError, 97
errors.InterfaceError, 97
errors.InternalError, 97
errors.NotSupportedError, 97
errors.OperationalError, 97
errors.PoolError, 97
errors.ProgrammingError, 98
errors.Warning, 98

F

function
errors.custom_error_exception(), 98

M

method
mysql.connector.connect(), 61
MySQLConnection.close(), 63
MySQLConnection.cmd_change_user(), 65
MySQLConnection.cmd_debug(), 65
MySQLConnection.cmd_init_db(), 65
MySQLConnection.cmd_ping(), 65
MySQLConnection.cmd_process_info(), 65
MySQLConnection.cmd_process_kill(), 65
MySQLConnection.cmd_query(), 66
MySQLConnection.cmd_query_iter(), 66
MySQLConnection.cmd_quit(), 66
MySQLConnection.cmd_refresh(), 67
MySQLConnection.cmd_reset_connection(), 67
MySQLConnection.cmd_shutdown(), 67
MySQLConnection.cmd_statistics(), 67
MySQLConnection.commit(), 63
MySQLConnection.config(), 63

MySQLConnection.get_rows(), 68
MySQLConnection.get_server_info(), 68
MySQLConnection.get_server_version(), 68
MySQLConnection.isset_client_flag(), 69
MySQLConnection.is_connected(), 69
MySQLConnection.ping(), 69
MySQLConnection.reconnect(), 69
MySQLConnection.reset_session(), 69
MySQLConnection.rollback(), 70
MySQLConnection.set_charset_collation(), 70
MySQLConnection.set_client_flags(), 70
MySQLConnection.shutdown(), 71
MySQLConnection.start_transaction(), 71
MySQLConnectionPool.add_connection(), 77
MySQLConnectionPool.get_connection(), 77
MySQLConnectionPool.set_config(), 77
MySQLCursor.add_attribute(), 80
MySQLCursor.callproc(), 81
MySQLCursor.clear_attributes(), 81
MySQLCursor.close(), 82
MySQLCursor.execute(), 82
MySQLCursor.executemany(), 83
MySQLCursor.fetchall(), 83
MySQLCursor.fetchmany(), 84
MySQLCursor.fetchone(), 84
MySQLCursor.fetchsets(), 85
MySQLCursor.fetchwarnings(), 85
MySQLCursor.get_attributes(), 81
MySQLCursor.nextset(), 84
MySQLCursor.stored_results(), 86
PooledMySQLConnection.close(), 78
PooledMySQLConnection.config(), 79

_mysqgl_connector.MySQL.affected_rows(), 100
_mysgl_connector.MySQL.autocommit(), 101
_mysqgl_connector.MySQL.buffered(), 101
_mysgl_connector.MySQL.change_user(), 101
_mysqgl_connector.MySQL.character_set_name(), 101
_mysqgl_connector.MySQL.close(), 101
_mysqgl_connector.MySQL.commit(), 102
_mysgl_connector.MySQL.connect(), 102
_mysgl_connector.MySQL.connected(), 102
_mysqgl_connector.MySQL.consume_result(), 102
_mysqgl_connector.MySQL.convert_to_mysql(), 102
_mysqgl_connector.MySQL.escape_string(), 103
_mysgl_connector.MySQL.fetch_fields(), 103
_mysgl_connector.MySQL.fetch_row(), 103
_mysqgl_connector.MySQL.field_count(), 103
_mysqgl_connector.MySQL.free_result(), 104
_mysqgl_connector.MySQL.get_character_set_info(),

104

MySQLConnection.connect(), 64
MySQLConnection.cursor(), 64
MySQLConnection.disconnect(), 67
MySQLConnection.get_row(), 68

_mysqgl_connector.MySQL.get_client_info(), 104
_mysqgl_connector.MySQL.get _client_version(), 104
_mysqgl_connector.MySQL.get_host_info(), 104
_mysqgl_connector.MySQL.get_proto_info(), 104

110

__mysql_connector.MySQL.get_server_info(), 104
_mysql_connector.MySQL.get_server_version(), 105
_mysql_connector.MySQL.get_ssl_cipher(), 105
_mysql_connector.MySQL.hex_string(), 105
_mysql_connector.MySQL.insert_id(), 105
_mysql_connector.MySQL.more_results(), 105
_mysql_connector.MySQL.next_result(), 105
_mysql_connector.MySQL.num_fields(), 106
_mysql_connector.MySQL.num_rows(), 106
__mysql_connector.MySQL.ping(), 106
_mysql_connector.MySQL.query(), 106
_mysql_connector.MySQL.raw(), 106
_mysql_connector.MySQL.refresh(), 107
_mysql_connector.MySQL.reset_connection(), 107
_mysql_connector.MySQL.rollback(), 107
_mysql_connector.MySQL.select_db(), 107
_mysql_connector.MySQL.set_character_set(), 107
_mysql_connector.MySQL.shutdown(), 108
_mysql_connector.MySQL.stat(), 108
_mysql_connector.MySQL.thread_id(), 108
_mysql_connector.MySQL.use_unicode(), 108
_mysql_connector.MySQL.warning_count(), 108
module
errorcode, 95
mysql.connector, 61
__mysql_connector, 100
mysql.connector module, 61
mysql.connector.apilevel property, 62
mysql.connector.connect() method, 61
mysql.connector.paramstyle property, 62
mysql.connector.threadsafety property, 62
mysql.connector.__version_info__ property, 62
mysql.connector.__version__ property, 62
MySQLConnection.autocommit property, 72
MySQLConnection.can_consume_results property, 72
MySQLConnection.charset property, 72
MySQLConnection.client_flags property, 72
MySQLConnection.close() method, 63
MySQLConnection.cmd_change_user() method, 65
MySQLConnection.cmd_debug() method, 65
MySQLConnection.cmd_init_db() method, 65
MySQLConnection.cmd_ping() method, 65
MySQLConnection.cmd_process_info() method, 65
MySQLConnection.cmd_process_kill() method, 65
MySQLConnection.cmd_query() method, 66
MySQLConnection.cmd_query_iter() method, 66
MySQLConnection.cmd_quit() method, 66
MySQLConnection.cmd_refresh() method, 67
MySQLConnection.cmd_reset_connection() method, 67
MySQLConnection.cmd_shutdown() method, 67
MySQLConnection.cmd_statistics() method, 67
MySQLConnection.collation property, 73
MySQLConnection.commit() method, 63
MySQLConnection.config() method, 63

MySQLConnection.connect() method, 64
MySQLConnection.connected property, 73
MySQLConnection.connection_id property, 73
MySQLConnection.converter-class property, 73
MySQLConnection.cursor() method, 64
MySQLConnection.database property, 73
MySQLConnection.disconnect() method, 67
MySQLConnection.get_row() method, 68
MySQLConnection.get_rows() method, 68
MySQLConnection.get_server_info() method, 68
MySQLConnection.get_server_version() method, 68
MySQLConnection.get_warnings property, 73
MySQLConnection.in_transaction property, 74
MySQLConnection.isset_client_flag() method, 69
MySQLConnection.is_connected() method, 69
MySQLConnection.ping() method, 69
MySQLConnection.raise_on_warnings property, 74
MySQLConnection.reconnect() method, 69
MySQLConnection.reset_session() method, 69
MySQLConnection.rollback() method, 70
MySQLConnection.server_host property, 75
MySQLConnection.server_info property, 75
MySQLConnection.server_port property, 75
MySQLConnection.server_version property, 75
MySQLConnection.set_charset_collation() method, 70
MySQLConnection.set_client_flags() method, 70
MySQLConnection.shutdown() method, 71
MySQLConnection.sql_mode property, 75
MySQLConnection.start_transaction() method, 71
MySQLConnection.time_zone property, 75
MySQLConnection.unix_socket property, 76
MySQLConnection.unread_results property, 72
MySQLConnection.user property, 76
MySQLConnection.use_unicode property, 76
MySQLConnectionPool.add_connection() method, 77
MySQLConnectionPool.get_connection() method, 77
MySQLConnectionPool.pool_name property, 78
MySQLConnectionPool.set_config() method, 77
MySQLCursor.add_attribute() method, 80
MySQLCursor.callproc() method, 81
MySQLCursor.clear_attributes() method, 81
MySQLCursor.close() method, 82
MySQLCursor.column_names property, 86
MySQLCursor.description property, 86
MySQLCursor.execute() method, 82
MySQLCursor.executemany() method, 83
MySQLCursor.fetchall() method, 83
MySQLCursor.fetchmany() method, 84
MySQLCursor.fetchone() method, 84
MySQLCursor.fetchsets() method, 85
MySQLCursor.fetchwarnings() method, 85
MySQLCursor.get_attributes() method, 81
MySQLCursor.lastrowid property, 88
MySQLCursor.nextset() method, 84

111

MySQLCursor.rowcount property, 88
MySQLCursor.statement property, 88
MySQLCursor.stored_results() method, 86
MySQLCursor.warnings property, 87
MySQLCursor.with_rows property, 88

P

PEP 249, 1
PooledMySQLConnection.close() method, 78
PooledMySQLConnection.config() method, 79
PooledMySQLConnection.pool_name property, 79
pooling.MySQLConnectionPool class, 76
pooling.MySQLConnectionPool constructor, 76
pooling.PooledMySQLConnection class, 78
pooling.PooledMySQLConnection constructor, 78
prepared statements, 91
property
mysql.connector.apilevel, 62
mysql.connector.paramstyle, 62
mysql.connector.threadsafety, 62
mysql.connector.__version_info__, 62
mysql.connector.__ version__, 62
MySQLConnection.autocommit, 72
MySQLConnection.can_consume_results, 72
MySQLConnection.charset, 72
MySQLConnection.client_flags, 72
MySQLConnection.collation, 73
MySQLConnection.connected, 73
MySQLConnection.connection_id, 73
MySQLConnection.converter-class, 73
MySQLConnection.database, 73
MySQLConnection.get_warnings, 73
MySQLConnection.in_transaction, 74
MySQLConnection.raise_on_warnings, 74
MySQLConnection.server_host, 75
MySQLConnection.server_info, 75
MySQLConnection.server_port, 75
MySQLConnection.server_version, 75
MySQLConnection.sgql_mode, 75
MySQLConnection.time_zone, 75
MySQLConnection.unix_socket, 76
MySQLConnection.unread_results, 72
MySQLConnection.user, 76
MySQLConnection.use_unicode, 76
MySQLConnectionPool.pool_name, 78
MySQLCursor.column_names, 86
MySQLCursor.description, 86
MySQLCursor.lastrowid, 88
MySQLCursor.rowcount, 88
MySQLCursor.statement, 88
MySQLCursor.warnings, 87
MySQLCursor.with_rows, 88
PooledMySQLConnection.pool_name, 79

_mysgl_connector.MySQL.have_result_set, 108
Python, 1

Python Database API Specification v2.0 (PEP 249), 1

S

Subclasses cursor.mysglcursor, 89

112

	MySQL Connector/Python Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to MySQL Connector/Python
	Chapter 2 Guidelines for Python Developers
	Chapter 3 Connector/Python Versions
	Chapter 4 Connector/Python Installation
	4.1 Quick Installation Guide
	4.2 Differences Between Binary And Source Distributions
	4.3 Obtaining Connector/Python
	4.4 Installing Connector/Python from a Binary Distribution
	4.4.1 Installing Connector/Python with pip
	4.4.2 Installing by RPMs
	4.4.2.1 Using the MySQL Yum Repository
	4.4.2.2 Using an RPM Package

	4.5 Installing Connector/Python from a Source Distribution
	4.6 Verifying Your Connector/Python Installation

	Chapter 5 Connector/Python Coding Examples
	5.1 Connecting to MySQL Using Connector/Python
	5.2 Creating Tables Using Connector/Python
	5.3 Inserting Data Using Connector/Python
	5.4 Querying Data Using Connector/Python

	Chapter 6 Connector/Python Tutorials
	6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

	Chapter 7 Connector/Python Connection Establishment
	7.1 Connector/Python Connection Arguments
	7.2 Connector/Python Option-File Support

	Chapter 8 The Connector/Python C Extension
	8.1 Application Development with the Connector/Python C Extension
	8.2 The _mysql_connector C Extension Module

	Chapter 9 Connector/Python Other Topics
	9.1 Connector/Python Logging
	9.2 Telemetry Support
	9.3 Executing Multiple Statements
	9.4 Asynchronous Connectivity
	9.5 Connector/Python Connection Pooling
	9.6 Connector/Python Django Back End

	Chapter 10 Connector/Python API Reference
	10.1 mysql.connector Module
	10.1.1 mysql.connector.connect() Method
	10.1.2 mysql.connector.apilevel Property
	10.1.3 mysql.connector.paramstyle Property
	10.1.4 mysql.connector.threadsafety Property
	10.1.5 mysql.connector.__version__ Property
	10.1.6 mysql.connector.__version_info__ Property

	10.2 connection.MySQLConnection Class
	10.2.1 connection.MySQLConnection() Constructor
	10.2.2 MySQLConnection.close() Method
	10.2.3 MySQLConnection.commit() Method
	10.2.4 MySQLConnection.config() Method
	10.2.5 MySQLConnection.connect() Method
	10.2.6 MySQLConnection.cursor() Method
	10.2.7 MySQLConnection.cmd_change_user() Method
	10.2.8 MySQLConnection.cmd_debug() Method
	10.2.9 MySQLConnection.cmd_init_db() Method
	10.2.10 MySQLConnection.cmd_ping() Method
	10.2.11 MySQLConnection.cmd_process_info() Method
	10.2.12 MySQLConnection.cmd_process_kill() Method
	10.2.13 MySQLConnection.cmd_query() Method
	10.2.14 MySQLConnection.cmd_query_iter() Method
	10.2.15 MySQLConnection.cmd_quit() Method
	10.2.16 MySQLConnection.cmd_refresh() Method
	10.2.17 MySQLConnection.cmd_reset_connection() Method
	10.2.18 MySQLConnection.cmd_shutdown() Method
	10.2.19 MySQLConnection.cmd_statistics() Method
	10.2.20 MySQLConnection.disconnect() Method
	10.2.21 MySQLConnection.get_row() Method
	10.2.22 MySQLConnection.get_rows() Method
	10.2.23 MySQLConnection.get_server_info() Method
	10.2.24 MySQLConnection.get_server_version() Method
	10.2.25 MySQLConnection.is_connected() Method
	10.2.26 MySQLConnection.isset_client_flag() Method
	10.2.27 MySQLConnection.ping() Method
	10.2.28 MySQLConnection.reconnect() Method
	10.2.29 MySQLConnection.reset_session() Method
	10.2.30 MySQLConnection.rollback() Method
	10.2.31 MySQLConnection.set_charset_collation() Method
	10.2.32 MySQLConnection.set_client_flags() Method
	10.2.33 MySQLConnection.shutdown() Method
	10.2.34 MySQLConnection.start_transaction() Method
	10.2.35 MySQLConnection.autocommit Property
	10.2.36 MySQLConnection.unread_results Property
	10.2.37 MySQLConnection.can_consume_results Property
	10.2.38 MySQLConnection.charset Property
	10.2.39 MySQLConnection.client_flags Property
	10.2.40 MySQLConnection.collation Property
	10.2.41 MySQLConnection.connected Property
	10.2.42 MySQLConnection.connection_id Property
	10.2.43 MySQLConnection.converter-class Property
	10.2.44 MySQLConnection.database Property
	10.2.45 MySQLConnection.get_warnings Property
	10.2.46 MySQLConnection.in_transaction Property
	10.2.47 MySQLConnection.raise_on_warnings Property
	10.2.48 MySQLConnection.server_host Property
	10.2.49 MySQLConnection.server_info Property
	10.2.50 MySQLConnection.server_port Property
	10.2.51 MySQLConnection.server_version Property
	10.2.52 MySQLConnection.sql_mode Property
	10.2.53 MySQLConnection.time_zone Property
	10.2.54 MySQLConnection.use_unicode Property
	10.2.55 MySQLConnection.unix_socket Property
	10.2.56 MySQLConnection.user Property

	10.3 pooling.MySQLConnectionPool Class
	10.3.1 pooling.MySQLConnectionPool Constructor
	10.3.2 MySQLConnectionPool.add_connection() Method
	10.3.3 MySQLConnectionPool.get_connection() Method
	10.3.4 MySQLConnectionPool.set_config() Method
	10.3.5 MySQLConnectionPool.pool_name Property

	10.4 pooling.PooledMySQLConnection Class
	10.4.1 pooling.PooledMySQLConnection Constructor
	10.4.2 PooledMySQLConnection.close() Method
	10.4.3 PooledMySQLConnection.config() Method
	10.4.4 PooledMySQLConnection.pool_name Property

	10.5 cursor.MySQLCursor Class
	10.5.1 cursor.MySQLCursor Constructor
	10.5.2 MySQLCursor.add_attribute() Method
	10.5.3 MySQLCursor.clear_attributes() Method
	10.5.4 MySQLCursor.get_attributes() Method
	10.5.5 MySQLCursor.callproc() Method
	10.5.6 MySQLCursor.close() Method
	10.5.7 MySQLCursor.execute() Method
	10.5.8 MySQLCursor.executemany() Method
	10.5.9 MySQLCursor.fetchall() Method
	10.5.10 MySQLCursor.fetchmany() Method
	10.5.11 MySQLCursor.fetchone() Method
	10.5.12 MySQLCursor.nextset() Method
	10.5.13 MySQLCursor.fetchsets() Method
	10.5.14 MySQLCursor.fetchwarnings() Method
	10.5.15 MySQLCursor.stored_results() Method
	10.5.16 MySQLCursor.column_names Property
	10.5.17 MySQLCursor.description Property
	10.5.18 MySQLCursor.warnings Property
	10.5.19 MySQLCursor.lastrowid Property
	10.5.20 MySQLCursor.rowcount Property
	10.5.21 MySQLCursor.statement Property
	10.5.22 MySQLCursor.with_rows Property

	10.6 Subclasses cursor.MySQLCursor
	10.6.1 cursor.MySQLCursorBuffered Class
	10.6.2 cursor.MySQLCursorRaw Class
	10.6.3 cursor.MySQLCursorDict Class
	10.6.4 cursor.MySQLCursorBufferedDict Class
	10.6.5 cursor.MySQLCursorPrepared Class

	10.7 constants.ClientFlag Class
	10.8 constants.FieldType Class
	10.9 constants.SQLMode Class
	10.10 constants.CharacterSet Class
	10.11 constants.RefreshOption Class
	10.12 Errors and Exceptions
	10.12.1 errorcode Module
	10.12.2 errors.Error Exception
	10.12.3 errors.DataError Exception
	10.12.4 errors.DatabaseError Exception
	10.12.5 errors.IntegrityError Exception
	10.12.6 errors.InterfaceError Exception
	10.12.7 errors.InternalError Exception
	10.12.8 errors.NotSupportedError Exception
	10.12.9 errors.OperationalError Exception
	10.12.10 errors.PoolError Exception
	10.12.11 errors.ProgrammingError Exception
	10.12.12 errors.Warning Exception
	10.12.13 errors.custom_error_exception() Function

	Chapter 11 Connector/Python C Extension API Reference
	11.1 _mysql_connector Module
	11.2 _mysql_connector.MySQL() Class
	11.3 _mysql_connector.MySQL.affected_rows() Method
	11.4 _mysql_connector.MySQL.autocommit() Method
	11.5 _mysql_connector.MySQL.buffered() Method
	11.6 _mysql_connector.MySQL.change_user() Method
	11.7 _mysql_connector.MySQL.character_set_name() Method
	11.8 _mysql_connector.MySQL.close() Method
	11.9 _mysql_connector.MySQL.commit() Method
	11.10 _mysql_connector.MySQL.connect() Method
	11.11 _mysql_connector.MySQL.connected() Method
	11.12 _mysql_connector.MySQL.consume_result() Method
	11.13 _mysql_connector.MySQL.convert_to_mysql() Method
	11.14 _mysql_connector.MySQL.escape_string() Method
	11.15 _mysql_connector.MySQL.fetch_fields() Method
	11.16 _mysql_connector.MySQL.fetch_row() Method
	11.17 _mysql_connector.MySQL.field_count() Method
	11.18 _mysql_connector.MySQL.free_result() Method
	11.19 _mysql_connector.MySQL.get_character_set_info() Method
	11.20 _mysql_connector.MySQL.get_client_info() Method
	11.21 _mysql_connector.MySQL.get_client_version() Method
	11.22 _mysql_connector.MySQL.get_host_info() Method
	11.23 _mysql_connector.MySQL.get_proto_info() Method
	11.24 _mysql_connector.MySQL.get_server_info() Method
	11.25 _mysql_connector.MySQL.get_server_version() Method
	11.26 _mysql_connector.MySQL.get_ssl_cipher() Method
	11.27 _mysql_connector.MySQL.hex_string() Method
	11.28 _mysql_connector.MySQL.insert_id() Method
	11.29 _mysql_connector.MySQL.more_results() Method
	11.30 _mysql_connector.MySQL.next_result() Method
	11.31 _mysql_connector.MySQL.num_fields() Method
	11.32 _mysql_connector.MySQL.num_rows() Method
	11.33 _mysql_connector.MySQL.ping() Method
	11.34 _mysql_connector.MySQL.query() Method
	11.35 _mysql_connector.MySQL.raw() Method
	11.36 _mysql_connector.MySQL.refresh() Method
	11.37 _mysql_connector.MySQL.reset_connection() Method
	11.38 _mysql_connector.MySQL.rollback() Method
	11.39 _mysql_connector.MySQL.select_db() Method
	11.40 _mysql_connector.MySQL.set_character_set() Method
	11.41 _mysql_connector.MySQL.shutdown() Method
	11.42 _mysql_connector.MySQL.stat() Method
	11.43 _mysql_connector.MySQL.thread_id() Method
	11.44 _mysql_connector.MySQL.use_unicode() Method
	11.45 _mysql_connector.MySQL.warning_count() Method
	11.46 _mysql_connector.MySQL.have_result_set Property

	Index

