20.28.3 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table contains information about every transaction currently executing inside InnoDB, including whether the transaction is waiting for a lock, when the transaction started, and the SQL statement the transaction is executing.

Table 20.3 INNODB_TRX Columns

Column nameDescription
TRX_IDUnique transaction ID number, internal to InnoDB. (Starting in MySQL 5.6, these IDs are not created for transactions that are read-only and non-locking. See Optimizations for Read-Only Transactions for details.)
TRX_WEIGHTThe weight of a transaction, reflecting (but not necessarily the exact count of) the number of rows altered and the number of rows locked by the transaction. To resolve a deadlock, InnoDB selects the transaction with the smallest weight as the victim to rollback. Transactions that have changed non-transactional tables are considered heavier than others, regardless of the number of altered and locked rows.
TRX_STATETransaction execution state. One of RUNNING, LOCK WAIT, ROLLING BACK or COMMITTING.
TRX_STARTEDTransaction start time.
TRX_REQUESTED_LOCK_IDID of the lock the transaction is currently waiting for (if TRX_STATE is LOCK WAIT, otherwise NULL). Details about the lock can be found by joining with INNODB_LOCKS on LOCK_ID.
TRX_WAIT_STARTEDTime when the transaction started waiting on the lock (if TRX_STATE is LOCK WAIT, otherwise NULL).
TRX_MYSQL_THREAD_IDMySQL thread ID. Can be used for joining with PROCESSLIST on ID. See Section 14.3.15.3.3.3, “Possible Inconsistency with PROCESSLIST.
TRX_QUERYThe SQL query that is being executed by the transaction.
TRX_OPERATION_STATEThe transaction's current operation, or NULL.
TRX_TABLES_IN_USEThe number of InnoDB tables used while processing the current SQL statement of this transaction.
TRX_TABLES_LOCKEDNumber of InnoDB tables that the current SQL statement has row locks on. (Because these are row locks, not table locks, the tables can usually still be read from and written to by multiple transactions, despite some rows being locked.)
TRX_LOCK_STRUCTSThe number of locks reserved by the transaction.
TRX_LOCK_MEMORY_BYTESTotal size taken up by the lock structures of this transaction in memory.
TRX_ROWS_LOCKEDApproximate number or rows locked by this transaction. The value might include delete-marked rows that are physically present but not visible to the transaction.
TRX_ROWS_MODIFIEDThe number of modified and inserted rows in this transaction.
TRX_CONCURRENCY_TICKETSA value indicating how much work the current transaction can do before being swapped out, as specified by the innodb_concurrency_tickets option.
TRX_ISOLATION_LEVELThe isolation level of the current transaction.
TRX_UNIQUE_CHECKSWhether unique checks are turned on or off for the current transaction. (They might be turned off during a bulk data load, for example.)
TRX_FOREIGN_KEY_CHECKSWhether foreign key checks are turned on or off for the current transaction. (They might be turned off during a bulk data load, for example.)
TRX_LAST_FOREIGN_KEY_ERRORDetailed error message for last FK error, or NULL.
TRX_ADAPTIVE_HASH_LATCHEDWhether or not the adaptive hash index is locked by the current transaction. (Only a single transaction at a time can modify the adaptive hash index.)
TRX_ADAPTIVE_HASH_TIMEOUTWhether to relinquish the search latch immediately for the adaptive hash index, or reserve it across calls from MySQL. When there is no AHI contention, this value remains zero and statements reserve the latch until they finish. During times of contention, it counts down to zero, and statements release the latch immediately after each row lookup.
TRX_IS_READ_ONLY

A value of 1 indicates the transaction is read-only. (5.6.4 and up.)

TRX_AUTOCOMMIT_NON_LOCKING

A value of 1 indicates the transaction is a SELECT statement that does not use the FOR UPDATE or LOCK IN SHARED MODE clauses, and is executing with the autocommit setting turned on so that the transaction will only contain this one statement. (5.6.4 and up.) When this column and TRX_IS_READ_ONLY are both 1, InnoDB optimizes the transaction to reduce the overhead associated with transactions that change table data.


Notes: