

Oracle® Universal Content Management
Content Portlet Suite Developer Guide

10g Release 3 (10.1.3.3.5)

June 2009

Oracle Content Portlet Suite Developer Guide, 10g Release 3 (10.1.3.3.5)

Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Will Harris

Contributor: Anand Vaidyanathan, Chandrasekhar Atla

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Related Documents ... v
Conventions ... v
Documentation Accessibility ... v

1 General Information

1.1 CIS Server Dependency Removed.. 1-1
1.2 Portlet Descriptions .. 1-1
1.3 Request Handling ... 1-2

2 CPS Portlet Software Development Kit

2.1 SDK Directory Structure .. 2-1
2.2 Portlet Development Tips.. 2-1
2.3 Using ReferencePortlets and PortletBuilder ... 2-2
2.4 Using Ant to Build Portlet Distributions... 2-3
2.5 Using the CPS Portlet Tag Libraries... 2-3
2.5.1 URI Creation... 2-3
2.5.2 Error Handling... 2-4
2.5.3 Portlet Preferences ... 2-4

3 Using the CPS Portlet SDK

3.1 Model-View-Controller Framework .. 3-1
3.2 Portlet Construction.. 3-2
3.3 Creating a Dispatch Configuration .. 3-2
3.3.1 Keywords .. 3-2
3.3.2 Active Search Dispatch Configuration ... 3-2
3.3.3 Types of Child Nodes.. 3-3
3.3.3.1 Default Action Node .. 3-3
3.3.3.2 Portlet ID Node... 3-4
3.3.3.3 Location Node... 3-4
3.3.3.4 Action Mappings Node ... 3-4
3.3.3.5 Tiles-Definitions Node... 3-5
3.4 Getting a Reference to the Portlet API Facade.. 3-6
3.5 Creating a Tile ... 3-8

iv

3.6 Creating a Controller.. 3-9

Index

v

Preface

The Oracle Content Portlet Suite (CPS) Developer Guide covers general information,
portlet descriptions, request handling, and information on using the CPS Portlet
Software Development Kit (SDK).

Audience
This guide is intended for application developers and programmers. It offers an
overview of the portlets, a presentation of their framework and architecture, and
information on using the portlet Software Development Kit (SDK).

Related Documents
For more information, see the following documents:

■ Oracle Content Portlet Suite (CPS) Installation Guide

■ Oracle Content Portlet Suite (CPS) Release Notes

■ Oracle Content Integration Suite (CIS) Administration Guide

■ Oracle Content Integration Suite (CIS) Developer Guide

■ Oracle Content Integration Suite (CIS) Release Notes

Conventions
The following text conventions are used in this document:

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

1

General Information 1-1

1General Information

This chapter provides general information on the Content Portlet Suite (CPS)
including an overview of the portlets, the high-level sequence of events for portlet
request-handling, and instructions on migrating to version 10gR3. It contains the
following sections:

■ "CIS Server Dependency Removed" on page 1-1

■ "Request Handling" on page 1-2

■ "Request Handling" on page 1-2

1.1 CIS Server Dependency Removed
This version of CPS does not require a deployment of Content Integration Suite (CIS)
Server to the application server as a prerequisite or dependency. Internally CPS still
depends on CIS classes and these dependent classes are deployed with CPS. This
architectural change has been done to eliminate remote method invocation from CPS
to CIS and thus improving the performance of CPS.

1.2 Portlet Descriptions
The CPS Portlets use the Universal Content and Process Management API (UCPM
API) to communicate with the Oracle Content Server. The Portlet API facade abstracts
the common operations within portlet containers thus allowing our framework to
work on a variety of platforms including Oracle OC4J, WebLogic, WebCenter, and
AquaLogic using the same handler code. Portlet Actions are mapped to a custom MVC
framework that uses the UCPM API to perform the desired task.

The Content Portlet Suite implements the following set of portlets that interact with
Content Server:

■ Oracle Guest Library portlet: Content can be presented to users based on their
role in the organization.

■ Oracle Guest Search portlet: Allows the user to perform a keyword or full-text
search on the Content Server and permits read-only access to the returned content.

■ Oracle Saved Search portlet: Allows the user to save frequently used queries.

■ Oracle Contribution portlet: Allows the user to contribute content to the content
server.

■ Oracle Workflow Queue portlet: The workflow portlet notifies users of their
workflow tasks.

Request Handling

1-2 Oracle Content Portlet Suite Developer Guide

■ Oracle Library portlet: Presents content to users based on their role in the
organization, and provides read/write access to the returned content.

■ Oracle Search portlet: Allows the user to perform a selected metadata and
keyword search on the content server and provides read/write access to the
returned content.

■ Oracle Metadata Admin portlet: Allows the administrator to modify the
properties of custom metadata.

The portlets are consumers of standard Content Server services (IdcCommand
services), such as CHECKIN_UNIVERSAL and GET_SEARCH_RESULTS. However,
these services are not called directly by the dispatch handlers from the portlet
controller. Rather, the UCPM API abstracts the portlets from the details of
communication with the server. The UCPM API allows for rigid parameter validation,
dynamic command selection, and standardized integration with a J2EE environment.

Refer to the CIS Developer Guide for more information (cis-developer-guide.pdf in the
/docs directory of the CIS distribution package).

1.3 Request Handling
This is the high-level sequence of events for portlet request-handling (based on the
Search portlet):

1. A user enters a query and clicks the Search button.

2. An action URL is built and routed to the portlet container, which, in turn, routes
the command to the appropriate portlet (in this case, the search portlet).

3. A processAction is called on the Search portlet.

4. The Search portlet retrieves the search parameters (they are part of the URL that
was built), and calls the search method on the CIS API.

5. The Content Integration Suite queries the Content Server via the Resource Pool
(a pool of socket connections), retrieves the data, and passes the data object to the
Search portlet.

6. The portlet container calls render on each of the portlets on the page (including the
Search portlet), and each portlet uses the received data, or refreshes the data, and
displays HTML fragments to the user.

Request Handling

General Information 1-3

Figure 1–1 Portlet Request Handling

Note A: The action request must finish before the render requests begin.

Note B: The render requests are not triggered in any specific order. They may be
executed sequentially or simultaneously.

Portlet API Facade
Because portal vendors implement the standard differently, each action handler has
access to a facade object that provides an interface that protects the user of the facade
from code incompatibilities between various portal vendors.

Request Handling

1-4 Oracle Content Portlet Suite Developer Guide

2

CPS Portlet Software Development Kit 2-1

2CPS Portlet Software Development Kit

This chapter provides information on the CPS Portlet Software Development Kit
(SDK) including information on building, customizing, and distributing portlets.
It contains the following sections:

■ "SDK Directory Structure" on page 2-1

■ "Portlet Development Tips" on page 2-1

■ "Using ReferencePortlets and PortletBuilder" on page 2-2

■ "Using Ant to Build Portlet Distributions" on page 2-3

■ "Using the CPS Portlet Tag Libraries" on page 2-3

2.1 SDK Directory Structure
The Portlet SDK can be found in the /sdk directory of the CPS distribution package.
It consists of these subdirectories:

■ ReferencePortlets: Contains the source code for the CPS Portlets, including the
Java code, JSP pages, and the Ant build.xml file used to create customized portlets.
This allows those who want to customize the portlets to have access to the source
code for the portlet JSP pages and the Model-View-Controller framework.

■ PortletBuilder: Provides the structure for creating new portlets using the
Model-View-Controller framework and the CIS layer. It includes an Ant build.xml
file that can be used to create custom portlets for a target platform such as Oracle
OC4J, WebLogic, WebCenter, and AquaLogic.

■ lib: Contains the CPS SDK tag libraries bundled in JAR files.

■ sample: Contains a sample development portlet as an example on how to use the
PortletBuilder directory to create a custom portlet.

Apache Ant is a Java-based build tool that must be installed in order to build
customized portlets. This tool is available at:

http://ant.apache.org

2.2 Portlet Development Tips
Whenever possible, CPS follows web standards and uses the Model-View-Controller
design pattern. By following these best practices your portlets will be portable and
maintainable. Portlet developers should use these coding guidelines when designing
and developing portlets.

Using ReferencePortlets and PortletBuilder

2-2 Oracle Content Portlet Suite Developer Guide

This is not intended as a primer for portlet development, as it does not address the
fundamentals of portlet programming. Instead, use these guidelines as a checklist
during design and code reviews to help promote consistent and quality portlet
implementations.

Use these practical recommendations when developing portlets:

■ Use taglibs whenever possible. Encapsulating Java code within JSP Tag Libraries
allows you to more easily reuse common functions and makes the JSP pages easier
to update.

■ Do not give portlets and servlets the same name. Some portal servers use the
portlet name to identify the portlet within a web application and may cause errors
if encounters a servlet with the same name.

■ Do not use head or body tags. The portlet JSP page contributes to the content of a
larger page. Because the HTML fragment is being added to a table cell <td></td>
in the portal, it should not include <html>, <head>, or <body> tags.

■ Avoid client-side JavaScript. Using JavaScript executed on the browser makes
your portlets browser-dependent and requires additional cross-browser testing.

■ Follow the Model-View-Controller design pattern. CPS uses a
Model-View-Controller design pattern based on the open source Struts and Tiles
framework. Thus, the presentation of data should be separated from the logic that
obtains and organizes the data.

■ Use the JavaServer Pages Standard Tag Library (JSTL). The JSTL defines many
commonly needed tags for conditions, iterations, formatting, etc. When you see
the c: prefix in the code of JSP pages, these tag libraries are being used. You can
find more information about these tag libraries at:

http://jakarta.apache.org/taglibs/

2.3 Using ReferencePortlets and PortletBuilder
The CPS Portlet SDK includes the ReferencePortlets and PortletBuilder directories. The
ReferencePortlets directory contains source code and the PortletBuilder directory
contains the portlet build files. These directories share a similar build environment and
Ant scripts.

This directory structure is used by the supplied Ant file to build a portlet distribution.
The PortletBuilder Ant script builds a single portlet as an example of how to package
the needed portlet files for a portal container such as Oracle OC4J, WebLogic,
WebCenter, and AquaLogic. Developers wanting to build many portlets should adapt
the scripts accordingly.

Directory Structure Definition

lib/compile/$portalvendor Contains the libraries needed for building the portlets.

lib/deploy/$portalvendor Contains the libraries needed for deploying the portlets.

resources/$portalvendor Contains global files and portal vendor specific files needed
for portlet packaging.

src The source files for the new portlet.

build/$appserver The directory generated during the build to hold the classes
and other build-related files.

build/$appserver The directory generated after the build is run to hold the
built portlet.

Using the CPS Portlet Tag Libraries

CPS Portlet Software Development Kit 2-3

2.4 Using Ant to Build Portlet Distributions
Both the PortletBuilder and ReferencePortlets root directories contain an Ant file that
performs the compilation and packaging of the portlet. This root directory will be
referred to as $workingdirectory. The distribution process is invoked by the following
commands:

cd $workingdirectory
ant dist

For this distribution to work correctly, the following two environment variables should
be set in the build.properties file in the $workingdirectory directory.

The newly built portlet can be found in the $workingdirectory/dist/$portal.vendor
directory. Apache Ant must be installed for this process to work properly. This tool is
available at:

http://ant.apache.org.

2.5 Using the CPS Portlet Tag Libraries
The CPS Portlet Tag Libraries includes several tags that may be useful when building
customized portlets. The CPS Portlet Tag Libraries are located in the /lib directory and
are bundled in JAR files. This section contains the following topics:

■ "URI Creation" on page 2-3

■ "Error Handling" on page 2-4

■ "Portlet Preferences" on page 2-4

2.5.1 URI Creation
Creates a URL through the PortletAPIFacade. The mode parameter is optional and, if
used, the created URL will cause the portlet mode to be switched to the user-specified
value. This tag is often used in conjunction with the following two nested tags:

<SCS:CreateURI mode=("edit" | "help" | "view"">

Modify the created URL by specifying an action to perform. This action name is
defined in the PortletDispatch.xml file (see Portlet Dispatch Framework).

<SCS:URIAction name="$actionName">

Add the name/value pair to the generated URL.

<SCS:URIParameter name="$paramName" value="$paramValue">

dist/$appserver Contains the libraries needed for building the portlets.

Property Name Definition

portal.vendor The name of the portal vendor that is the target for the current
distribution.

portlet.name The name the user wants to use for the current build. This name
will be used in the generation of the descriptor files for the portlet.

Directory Structure Definition

Using the CPS Portlet Tag Libraries

2-4 Oracle Content Portlet Suite Developer Guide

Code Sample
<a href="
<scsportlet:createURI>
<scsportlet:URIAction value="checkOut"/>
<scsportlet:URIParameter name="documentID" value='<%=id%>' />
</scsportlet:createURI>">
Check Out File

2.5.2 Error Handling
Determines if an error is present. If an error is found, the body of the tag is evaluated
and the error object variable is set.

<SCS:Error id="$errorObject">

Code Sample
<scsportlet:error id="error">
<div class="portlet-msg-error">
<%=error.getMessage ("%></div>
</scsportlet:error>

2.5.3 Portlet Preferences
Retrieves the specified portlet preferences and stores the result in the specified variable
name.

<SCS:GetPreference preference="$prefName" result="$esultVar">

Code Sample
<scsportlet:getPreference preference="maxResults" result="maxResultsVar" />

3

Using the CPS Portlet SDK 3-1

3Using the CPS Portlet SDK

This chapter provides information on the using the CPS Portlet Software Development
Kit (SDK), which is used to develop new portlets. It contains the following sections:

■ "Model-View-Controller Framework" on page 3-1

■ "Portlet Construction" on page 3-2

■ "Creating a Dispatch Configuration" on page 3-2

■ "Getting a Reference to the Portlet API Facade" on page 3-6

■ "Creating a Tile" on page 3-8

■ "Creating a Controller" on page 3-9

3.1 Model-View-Controller Framework
CPS uses a Model-View-Controller design pattern based on the open source Struts and
Tiles framework. The presentation of data is separated from the logic that obtains and
organizes the data. The model is the UCPM layer that encapsulates the data access
layer, the view is the JSP pages that render the model as a user interface element, and
the controller is the PortletDispatch handler that processes and responds to events,
typically user actions, and invokes changes on the model.

Figure 3–1 MVC Framework

Refer to the CIS Developer Guide for additional information (cis-developer-guide.pdf
in the /docs directory of the CIS distribution package).

Portlet Construction

3-2 Oracle Content Portlet Suite Developer Guide

3.2 Portlet Construction
Any portlet you build with the CPS Portlet SDK contains a dispatch configuration file,
a set of JavaServer Pages, and a set of action handlers. When the user clicks a link in a
specific portlet, the associated action handler is executed and the result of the action is
placed on the request. The Tile configured to be the destination after the action is
executed is then retrieved and the associated JSP pages are inserted. The JSP page then
models the data that was the result of the action.

3.3 Creating a Dispatch Configuration
A dispatch configuration file defines each action handler, each Tile, and information
about the portlet itself. By default, the naming convention is stellent <portletname>
dispatch.xml.

Example: stellentactivesearchdispatch.xml

The entry point to CPS Portlets is the SCSPortlet class (there may be different
implementations of this per container). This class extends the GenericPortlet class.
At initialization, this class looks for a configuration file in the /WEB-INF/config
directory.

This section contains the following topics:

■ "Keywords" on page 3-2

■ "Active Search Dispatch Configuration" on page 3-2

■ "Types of Child Nodes" on page 3-3

3.3.1 Keywords
These special keywords can be used as view targets:

■ default: Renders the default page for the portlet as defined by the default-action
node; if the user is in edit mode, the default edit mode page is displayed.

■ previous: Renders the previous page in the stack.

■ login: Specifying an action node with this name will cause the framework to
execute the action handler upon detection of a new login.

■ error: CPS displays a default error page that assumes a throwable error has been
placed on the request, you may override this error page by creating a new action
definition using the error keyword.

3.3.2 Active Search Dispatch Configuration
Here is an example of the active search dispatch configuration coding:

<portletdispatch-config>
<!--
Default action parameters, name for the default action, cacheResult is a
boolean that specifies whether the default behavior is to cache the action
result on the session. If the value is set to false, the action will be
performed each time the portlet is rendered, the result data is discarded
each time.

The cacheResult value here can be overriden by the action definition itself,
it the action does not specify, the default value is used.

-->

Creating a Dispatch Configuration

Using the CPS Portlet SDK 3-3

<default-action view="showHome" edit="showEdit" cacheResult="true"/>

<!--
Portlet-id is used to ensure that unique HTML form, javascript names are
used, this value will be available on the request object as
ISCSAction.PORTLET_ID
-->

<portlet-id value="active_search_portlet"/>

<!--
Definitions for all the action types available to this portlet
-->

<action-mappings>
<forward name="showHome" authRequired="true" path="active.search.main.page"/>
<forward name="showEdit" authRequired="true" path="active.search.edit.page"/>
<location path="/WEB-INF/actions/active_search_actions.xml"/>
<location path="/WEB-INF/actions/active_document_actions.xml"/>

</action-mappings>

<!--
Definitions for UI components available to this portlet
-->

<tiles-definitions>
<definition name=".mainLayout" path="/stellent/ui/layouts/mainlayout.jsp">
<put name="header" value="/stellent/ui/fragment/header.jsp"/>
<put name="footer" value="/stellent/ui/fragment/footer.jsp"/>
<put name="content" value="/stellent/ui/layouts/defaultContent.jsp"/>

</definition>
<location path="/WEB-INF/tiles/active_search_tiles.xml"/>
<location path="/WEB-INF/tiles/active_document_tiles.xml"/>

</tiles-definitions>
</portletdispatch-config>

3.3.3 Types of Child Nodes
The top-level node, <portletdispatch-config>, can have these types of child nodes:

■ "Default Action Node" on page 3-3

■ "Portlet ID Node" on page 3-4

■ "Location Node" on page 3-4

■ "Action Mappings Node" on page 3-4

■ "Tiles-Definitions Node" on page 3-5

3.3.3.1 Default Action Node
The <default-action> node is used to specify the action to execute or Tile to display
when the portlet or the edit mode is first visited. It will also be the action executed
when the keyword default is the target of another action.

view/edit attribute: Specifies the view/edit default; the values are the name of a
defined action and the default edit action. For example, the defined action of
showHome and the default edit action of showEdit.

cacheResult attribute: Indicates whether or not the result of the action should be
cached on the session or re-executed each time the render () method is called. When

Creating a Dispatch Configuration

3-4 Oracle Content Portlet Suite Developer Guide

users perform actions on other portlets it generates a render call which asks the portlet
to redraw itself. If the cacheResult is set to true, this redraw will not re-execute the
action but instead uses the cached result. In the case of the Active Search portlet, it is
set to true by default. Individual actions can override the default for the portlet, this
value is only used when not specified by the action definition.

3.3.3.2 Portlet ID Node
The <portlet-id> node is used to specify a unique name for the portlet. The string
value specified here is made available on the request with the parameter name
ISCSAction.PORTLET_ID. This ID is mainly used to uniquely identify HTML elements
such as forms and JavaScript functions so they do not conflict with other portlets on
the same page.

3.3.3.3 Location Node
The <location> node is used to specify another dispatch configuration file in which to
load definitions from. It takes a path attribute and indicates where to look for the
configuration file to be loaded.

This node can be a child of the Action Mappings node or the Tile Definitions node.
If there is a name conflict, the Action Mappings definitions in the current configuration
XML takes precedence over the loaded action definitions.

3.3.3.4 Action Mappings Node
The <action-mappings> node is the container for action definitions, which are usually
defined by an Action node; two exceptions are the Forward node and the Location
node.

Action Node
The <action> node specifies several attributes, which are used to perform the desired
action. Here is an example of an action definition:

<!--
Shows the form to add new saved search.
-->

<action
name="active.search.showAddSavedSearch"
class="com.stellent.portlet.components.search.active.handlers.

ShowAddSavedSearchHandler"
bean="com.stellent.portlet.components.search.active.forms.

AddSavedSearchForm"
authRequired="true"
addToStack="false">
<forward name="success" path="active.search.savedsearch.add.page"/>

</action>

The attributes are:

■ name: The name of the action. This is used when executing this action within a JSP
page.

■ class: The fully qualified class name of the class that implements the
ISCSActionHandler interface. This class is where you will add your action handler
code. Both the name and class attributes are required to define an action.

■ bean: The fully qualified class name of a class that implements the
ISCSActionForm interface. This is passed into your action handler when the

Creating a Dispatch Configuration

Using the CPS Portlet SDK 3-5

handleAction method is called. This bean can be populated through an HTML
form post or by explicit definition through a special CPS portlet tag. This is an
optional attribute, if the action does not need any input parameters this attribute
can be omitted, the ISCSActionForm passed into the handleAction will be null.

■ authRequired: Controls whether the framework will execute the action if an
unauthenticated portal user tries to perform an action. It defaults to false and is an
optional parameter. If it is set to true and an unauthenticated user attempts to
execute the action, a special system JSP page will displayed asking the user to
login before attempting to use the portlet.

■ addToStack: Defines whether the portlet framework will execute this action again
or cache the result when render is called for a redraw. It defaults to true so that
portlets will show the last state when redrawing. However, some actions should
not be performed more than once. Thus, you can define that the framework not
save the result or remember it as the last action.

The <action> node is also a container for any number of forward actions, which
specify which Tile or JSP page the portlet should display upon completion of the
action. You may specify as many different forwards as you want in this list, as long as
they have unique names. The action handler code itself specifies which forward to use
upon completion of the action. If the handler does not explicitly state the view name to
forward to upon completion of the action, it defaults to the success forward.

In addition to these framework properties, you may specify an arbitrary number of
custom attributes for an action definition. These attributes will be available to the
action handler via the ISCSActionHandler getAttributes() method. For example, the
Contribution portlet adds a custom property called async that indicates whether
contributions should leverage the Java Messaging Service (JMS) to perform document
contributions asynchronously.

Forward Node
The <forward> node is a special type of action that does not actually execute any code
but rather automatically forwards the display to the specified Tile definition or explicit
JSP page location. The path attribute accepts either of these values.

3.3.3.5 Tiles-Definitions Node
The Tiles and Struts design pattern tells the framework how to render a particular
view by specifying a main JSP page, various regions of content, and an optional
controller class that are all used to create the final view.

Example:

<definition name=".mainLayout" path="/stellent/ui/layouts/mainlayout.jsp">
<put name="header" value="/stellent/ui/fragment/header.jsp"/>
<put name="footer" value="/stellent/ui/fragment/footer.jsp"/>
<put name="content" value="/stellent/ui/layouts/defaultContent.jsp"/>

</definition>

This defines a Tile of the name .mainLayout and specifies the JSP page
/stellent/ui/layouts/mainlayout.jsp to be the main JSP page to use when rendering this
view. Notice the Put nodes, which specify the regions of content available to the main
JSP page. In this example, three regions are available: a header, footer, and content
region. Each of these Put nodes specify a name for the region and the corresponding
JSP page to use to render the region.

You can also specify a controller for Tile definitions and specify inheritance, as in the
following definition:

Getting a Reference to the Portlet API Facade

3-6 Oracle Content Portlet Suite Developer Guide

<definition name="active.search.edit.page" extends=".mainLayout"
controllerClass="com.stellent.portlet.components.search.active.
controllers.EditController">

<put name="content" value="/stellent/ui/layouts/search/active/
active_search_edit.jsp"/>

</definition>

This Tile extends the .mainLayout Tile that we defined earlier and inherits its
configuration. We add a controllerClass to this Tile which is an object that implements
the ISCSController interface and provides a hook to execute Java code before the Tile is
rendered in situations where processing is required. Notice that this Tile definition
overrides the content region and changes the JSP page that is used to render this
region.

3.4 Getting a Reference to the Portlet API Facade
An action definition is invoked through a JSP page, like the following:

<form name="subAuthSearch" method="POST" onSubmit="prepareAuthScsSearch()"
action='<scsportlet:createURI><scsportlet:URIAction
value="active.search.doSearch"/>
</scsportlet:createURI>'>

In this example, the CPS tag createURI invokes the active.search.doSearch action when
the form is submitted. The action active.search.doSearch maps to an action definition
created in the configuration file. See Action Node (page 4-5) for additional
information.

The action definition specifies a class name. The class name should be an object that
implements the ISCSActionHandler interface. This interface has a variety of methods
that can be implemented which the framework uses to exercise the object. However, by
extending the abstract base class SCSActionHandler, the developer need only
implement one method:

/**
* Handle an action from the portlet
* @param portletRequest
* @throws com.stellent.portlet.dispatcher.PortletDispatcherException
*/

public ISCSActionResult handleAction (ISCSActionForm form,
Object portletRequest)
throws PortletDispatcherException, CommandException, RemoteException;

This method will be called each time the action is invoked through the portlet
framework. The method is passed in an ISCSActionForm, which is a bean that
represents the parameters that are made available to this action.

This class will be of the type specified in the Action node.

The already initialized CISApplication object will be available to the action handler
through the getCISApplication() method when inside the handleAction method, as
will any other attributes specified on the Action node via the getAttributes() method.
You may also access a unique ID for this handler via the getID() method. This can be
used to store information on the session without conflicts.

The return type is an action result object. Usually, this is simply a container for the
result parameters that are to be stored on the request for access within the JSP page.
However, you may specify other parameters to this result, such as the view that

Getting a Reference to the Portlet API Facade

Using the CPS Portlet SDK 3-7

should be used upon return. It defaults to success if you use the base class
SCSActionResult.

Sample Action Handler
The action definition specifies the action active.document.checkOut, the
ISCSActionHandler class that performs the action, the ISCSActionForm, which is a
bean that represents the parameters passed into the handler, and the resulting Tile that
is displayed upon completion of the action.

<!--
Attempts to check out the specified document.
-->

<action
name="active.document.checkOut"
class="com.stellent.portlet.components.document.

active.handlers.CheckOutHandler"
bean="com.stellent.portlet.components.document.

active.forms.CheckOutForm"
authRequired="true" >

<forward name="success" path="active.document.checkout.page"/>
</action>

The SCSActionForm code represents the parameters the checkout handler needs to
complete its action. In the following example, checkout only requires the document ID
of the document we are planning to check out:

public class CheckOutForm extends SCSActionForm {
private String m_documentID;

public String getDocumentID () {
return m_documentID;
}

public void setDocumentID (String documentID) {
m_documentID = documentID;

}
}

The SCSActionHandler code first checks to see if the passed-in form is an instance of
CheckOutForm. It errors out if this is not the case. Otherwise, it checks out the file
through the UCPM API. This puts the resulting ICISObject on the request by calling
result.setVariable(name, object). These objects will now be available to the JSP page
rendering the view.

Refer to the CIS Developer Guide for additional information (cis-developer-guide.pdf
in the /docs directory of the CIS distribution package).

public class CheckOutHandler extends SCSActionHandler {
/**
* Checks out the specified content.
*
* @param portletRequest
* @throws com.stellent.portlet.dispatcher.PortletDispatcherException
*/

public ISCSActionResult handleAction (ISCSActionForm form,
Object portletRequest)
throws PortletDispatcherException, CommandException, RemoteException {

Creating a Tile

3-8 Oracle Content Portlet Suite Developer Guide

ISCSActionResult result = new SCSActionResult ();

if (form instanceof CheckOutForm) {
CheckOutForm cof = (CheckOutForm)form;
ISCSContext ctx = SCSSession.getSCSContext (portletRequest);

//Get checkout response
ISCSDocumentCheckoutAPI checkoutAPI =

getCISApplication ().getUCPMAPI ().getActiveAPI
().getDocumentCheckoutAPI ();

ISCSDocumentID docID =
getCISApplication ().getUCPMAPI ().getActiveAPI
()._createDocumentID (cof.getDocumentID (),
ctx.getAdapterName ());

ISCSDocumentActionResponse resp =
checkoutAPI.checkoutFileByID (ctx, docID);

//Get document info
ISCSDocumentInformationAPI docInfoAPI =

getCISApplication ().getUCPMAPI ().getActiveAPI
).getDocumentInformationAPI ();

ISCSDocumentInformationResponse docInfoResp =
docInfoAPI.getDocumentInformationByID
(SCSSession.getSCSContext (portletRequest), docID);

result.setVariable ("checkoutResponse", resp);
result.setVariable ("infoResponse", docInfoResp.getDocNode ());

} else {
throw new PortletDispatcherException ("Unexpected form type,
expected 'CheckOutForm', got " + form);

}

 return result;
}

3.5 Creating a Tile
A Tile consists of a definition, an optional controller class, and a collection of JSP
classes that will make up a portlet view. The definition section contains XML code that
identifies the main layout JSP page.

The following example specifies three different regions that reference three JSP pages:

<%@ include file="/stellent/ui/fragment/jspimport.inc" %>
<scsportlet:insert name="header"/>
<scsportlet:insert name="content"/>
<scsportlet:insert name="footer"/>

The include at the top includes commonly defined imports and taglib definitions.
This is an example of the file for the portlets:

<%@ page import="com.stellent.portlet.api.IPortletAPIFacade" %>
<%@ page import="com.stellent.portlet.api.PortletAPI" %>
<%@ include file="/stellent/ui/fragment/page.inc" %>
<%@ taglib uri="/WEB-INF/tlds/i18n.tld" prefix="i18n" %>
<%@ taglib uri="/WEB-INF/tlds/scsportlet.tld" prefix="scsportlet" %>
<%@ taglib uri="/WEB-INF/tlds/c.tld" prefix="c" %>
<%@ taglib uri="/WEB-INF/tlds/scs-databinder.tld" prefix="db" %>

<%

Creating a Controller

Using the CPS Portlet SDK 3-9

//the api facade class
IPortletAPIFacade apiFacade = PortletAPI.getInstance ().getPortletAPIFacade ();

%>

In the JSP page, three lines use the insert tag to tell the view to put the header first, the
content next, and the footer last. For each region, the insert tag tells the framework to
look up the definition and to include the JSP page specified by the insert tag.

3.6 Creating a Controller
A controller is a hook that allows the Tile author to execute Java code before the Tile
itself is rendered. To create a controller, you need to implement the ISCSController
class, which requires several methods that the portlet framework uses to control its
lifetime.

In most cases, the abstract base class SCSController performs all the operations you
need, with this one exception:

/**
* Method is called before a Tile is rendered.
*
* @param portletRequest The portlet request that generated the Tile render.
* @param portletResponse The portlet response associated with Tile render.
* @throws ServletException If a portlet container error occurs.
* @throws IOException If a portlet container error occurs.
* @throws CommandException If a CIS framework error occurs.
* @throws RemoteException If a CIS communication error occurs.
*/

public void perform (Object portletRequest,
Object portletResponse)
throws ServletException, IOException, CommandException, RemoteException;

This method will get called immediately before the Tile is rendered and any objects
you place on the request will be available to the resulting JSP page.

Creating a Controller

3-10 Oracle Content Portlet Suite Developer Guide

Index-1

Index

A
abstract base class, 3-6
action definition, 3-4
action definitions, 3-4
action handler, 3-2
action handlers, 3-2
Action Mappings node, 3-4
Action Node

addToStack attribute, 3-5
authRequired attribute, 3-5
bean attribute, 3-4
class attribute, 3-4
name attribute, 3-4

action node, 3-2, 3-4
action request, 1-3
action URL, 1-2
action-mappings node, 3-4
active.document.checkOut, 3-7
active.search.doSearch action, 3-6
Ant build.xml file, 2-1
Ant file, 2-3
Apache Ant, 2-1
AquaLogic, 1-1, 2-1, 2-2

B
body tag, 2-2
building customized portlets, 2-3
build.properties file, 2-3

C
cacheResult, 3-4
CHECKIN_UNIVERSAL, 1-2
checkout handler, 3-7
CheckOutForm, 3-7
child nodes, 3-3
CIS Developer Guide, 1-2
CISApplication object, 3-6
client-side JavaScript, 2-2
Content Server services, 1-2
Contribution portlet, 1-1
controller, 3-9
controller (MVC), 3-1
controller class, 3-8

controllerClass, 3-6
CPS Portlet Tag Libraries, 2-3
CPS Portlets, 1-1
CPS SDK tag libraries, 2-1
createURI, 3-6
custom attributes, 3-5
customized portlets, 2-3

D
data object, 1-2
Default Action Node

cacheResult attribute, 3-3
view/edit attribute, 3-3

default keyword, 3-3
default-action node, 3-2, 3-3
dispatch configuration file, 3-2, 3-4

child nodes, 3-3
coding for active search, 3-2
default keyword, 3-2
error keyword, 3-2
login keyword, 3-2
previous keyword, 3-2
top-level node, 3-3

dispatch handlers, 1-2
dispatch.xml, 3-2
dynamic command selection, 1-2

E
edit mode, 3-2
edit mode page, 3-2
encapsulating Java code, 2-2
environment variables, 2-3

portal.vendor, 2-3
portlet.name, 2-3

error handling, 2-4
error keyword, 3-2
error object variable, 2-4
error page, 3-2

F
facade object, 1-3
Forward node, 3-4
forward node, 3-5

Index-2

G
GenericPortlet class, 3-2
GET_SEARCH_RESULTS, 1-2
getAttributes method, 3-5, 3-6
getCISApplication method, 3-6
getID method, 3-6
Guest Library portlet

, 1-1
Guest Search portlet

, 1-1

H
handleAction method, 3-5
head tag, 2-2
HTML fragment, 2-2
html tag, 2-2

I
ICISObject, 3-7
IdcCommand ervices

GET_SEARCH_RESULTS, 1-2
IdcCommand services, 1-2

CHECKIN_UNIVERSAL, 1-2
insert tag, 3-9
ISCSActionForm, 3-6, 3-7
ISCSActionForm interface, 3-4
ISCSActionHandler, 3-5, 3-7
ISCSActionHandler interface, 3-4, 3-6
ISCSAction.PORTLET_ID, 3-4
ISCSController class, 3-9
ISCSController interface, 3-6

J
J2EE environment, 1-2
Java Messaging Service (JMS), 3-5
JavaScript, 2-2
JavaServer Pages Standard Tag Library, 2-2
JSP classes, 3-8
JSP Tag Libraries, 2-2
JSP Tag Library, 2-2
JSTL, 2-2

L
Library portlet, 1-2
Location node, 3-4
location node, 3-4

M
Metadata Admin portlet, 1-2
mode parameter, 2-3
model (MVC), 3-1
Model-View-Controller, 3-1
Model-View-Controller design pattern, 2-2
Model-View-Controller framework, 2-1, 3-1
MVC

controller, 3-1
model, 3-1
view, 3-1

MVC framework, 1-1

O
Oracle Contribution portlet, 1-1
Oracle Library portlet, 1-1, 1-2
Oracle Metadata Admin portlet, 1-2
Oracle Saved Search portlet, 1-1
Oracle Search portlet, 1-1, 1-2
Oracle Workflow Queue portlet, 1-1

P
parameter validation, 1-2
portal.vendor, 2-3
Portlet Actions, 1-1
Portlet API facade, 1-1
portlet controller, 1-2
portlet JSP page, 2-2
portlet name, 2-2
portlet preferences, 2-4
portlet request-handling, 1-2
Portlet SDK, 2-1
PORTLET_ID, 3-4
PortletAPIFacade, 2-3
PortletBuilder, 2-1, 2-2, 2-3
PortletDispatch, 3-1
portletdispatch-config, 3-3
PortletDispatch.xml, 2-3
portlet-id node, 3-4
portlet.nam, 2-3
portlet.name, 2-3
portlets

dispatch configuration file, 3-2
using Ant to compile and package, 2-3

processAction, 1-2
Put nodes, 3-5

R
ReferencePortlets, 2-1, 2-2, 2-3
render call, 3-4
render method, 3-3
render requests, 1-3
request-handling, 1-2
Resource Pool, 1-2
result.setVariable, 3-7

S
Saved Search portlet, 1-1
SCSActionForm code, 3-7
SCSActionHandler, 3-6
SCSActionHandler code, 3-7
SCSActionResult, 3-7
SCSController class, 3-9
SCSPortlet class, 3-2
SDK Directory Structure, 2-1

Index-3

SDK tag libraries, 2-1
search method, 1-2
Search portlet, 1-2
showEdit, 3-3
showHome, 3-3
socket connections, 1-2
standardized integration, 1-2
Struts, 2-2, 3-1
Struts and Tiles framework, 2-2, 3-1

T
table cell, 2-2
tag

body, 2-2
head, 2-2
html, 2-2

tag libraries, 2-1
Tile Definitions node, 3-4
Tiles, 2-2, 3-1

U
UCPM API, 1-1, 1-2
Universal Content and Process Management

API, 1-1

V
view (MVC), 3-1

W
WebLogic, 1-1, 2-1, 2-2
WebSphere, 1-1, 2-1, 2-2
Workflow Queue portlet, 1-1

X
XML code, 3-8

Index-4

	Contents
	Preface
	Audience
	Related Documents
	Conventions
	Documentation Accessibility

	1 General Information
	1.1 CIS Server Dependency Removed
	1.2 Portlet Descriptions
	1.3 Request Handling

	2 CPS Portlet Software Development Kit
	2.1 SDK Directory Structure
	2.2 Portlet Development Tips
	2.3 Using ReferencePortlets and PortletBuilder
	2.4 Using Ant to Build Portlet Distributions
	2.5 Using the CPS Portlet Tag Libraries
	2.5.1 URI Creation
	2.5.2 Error Handling
	2.5.3 Portlet Preferences

	3 Using the CPS Portlet SDK
	3.1 Model-View-Controller Framework
	3.2 Portlet Construction
	3.3 Creating a Dispatch Configuration
	3.3.1 Keywords
	3.3.2 Active Search Dispatch Configuration
	3.3.3 Types of Child Nodes
	3.3.3.1 Default Action Node
	3.3.3.2 Portlet ID Node
	3.3.3.3 Location Node
	3.3.3.4 Action Mappings Node
	3.3.3.5 Tiles-Definitions Node

	3.4 Getting a Reference to the Portlet API Facade
	3.5 Creating a Tile
	3.6 Creating a Controller

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

