JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Solaris Dynamic Tracing Guide
search filter icon
search icon

Document Information

Preface

1.  Introduction

2.  Types, Operators, and Expressions

3.  Variables

4.  D Program Structure

5.  Pointers and Arrays

6.  Strings

7.  Structs and Unions

8.  Type and Constant Definitions

9.  Aggregations

10.  Actions and Subroutines

11.  Buffers and Buffering

12.  Output Formatting

13.  Speculative Tracing

14.  dtrace(1M) Utility

15.  Scripting

16.  Options and Tunables

17.  dtrace Provider

18.  lockstat Provider

Overview

Adaptive Lock Probes

Spin Lock Probes

Thread Locks

Readers/Writer Lock Probes

Stability

19.  profile Provider

20.  fbt Provider

21.  syscall Provider

22.  sdt Provider

23.  sysinfo Provider

24.  vminfo Provider

25.  proc Provider

26.  sched Provider

27.  io Provider

28.  mib Provider

29.  fpuinfo Provider

30.  pid Provider

31.  plockstat Provider

32.  fasttrap Provider

33.  User Process Tracing

34.  Statically Defined Tracing for User Applications

35.  Security

36.  Anonymous Tracing

37.  Postmortem Tracing

38.  Performance Considerations

39.  Stability

40.  Translators

41.  Versioning

Glossary

Index

Thread Locks

Thread locks are a special kind of spin lock that are used to lock a thread for purposes of changing thread state. Thread lock hold events are available as spin lock hold-event probes (that is, spin-acquire and spin-release), but contention events have their own probe specific to thread locks. The thread lock hold-event probe is in Table 18-3.

Table 18-3 Thread Lock Probe

thread-spin
Contention-event probe that fires after a thread has spun on a thread lock. Like other contention-event probes, if both the contention-event probe and the hold-event probe are enabled, thread-spin will fire before spin-acquire. Unlike other contention-event probes, however, thread-spin fires before the lock is actually acquired. As a result, multiple thread-spin probe firings may correspond to a single spin-acquire probe firing.