
ASC X12 Manager
Composite Application
User’s Guide

Release 5.0.1
SeeBeyond Proprietary and Confidential

ASC X12 Manager Composite Application User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050408172217.

Contents
Contents

List of Figures 7

List of Tables 8

Chapter 1

Introduction 9
About This Document 9

What’s in This Document 9
Intended Audience 10
Document Conventions 10
Screenshots 10

Related Documents 10

References 11

SeeBeyond Web Site 11

SeeBeyond Documentation Feedback 11

Chapter 2

Overview of the ASC X12 Manager 12
About the ASC X12 Manager Composite Application 12

How the ASC X12 Manager Works 14

About the ASC X12 Protocol 14
What Is X12? 14
What Is a Message Structure? 15

Components of an X12 Envelope 16
Data Elements 16
Segments 16
Loops 17
Delimiters 17

Structure of an X12 Envelope 18
Transaction Set (ST/SE) 19
Functional Group (GS/GE) 20
Interchange Envelope (ISA/IEA) 21
ASC X12 Manager Composite Application User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Control Numbers 22
ISA13 (Interchange Control Number) 22
GS06 (Functional Group Control Number) 22
ST02 (Transaction Set Control Number) 22

Backward Compatibility 22

Example of EDI Usage 23
Overview of EDI Payments Processing 23

Types of Information That Is Exchanged Electronically 24
Types of Electronic Payment 24
Transfer of Funds 25

Payment-Related EDI Transactions 25

Acknowledgment Types 26
TA1, Interchange Acknowledgment 26
997, Functional Acknowledgment 26
Application Acknowledgments 26

Key Parts of EDI Processing Logic 27
Structures 27
Validations, Translations, Enveloping, Acknowledgments 27
Trading Partner Agreements 27

ASC X12 Version Support 28

SEF File Support 28

Chapter 3

Installing the ASC X12 Manager 29
System Requirements 29

Supported Operating Systems 29

Supported External Applications 30

Required ICAN Suite Products 30

Installing the ASC X12 Manager Composite Application 30

Increasing the Enterprise Designer Heap Size 32
Resolving Memory Errors at Enterprise Designer Startup 32

Configuring the Oracle Database 32

Chapter 4

Working with Validation BPs 34
Importing Validation BPs into Projects 34

Customizing Validation BPs 35
ASC X12 Manager Composite Application User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Chapter 5

Configuring Trading Partners 39
Overview of the ePM Parameter Hierarchy 39

Configuring Trading Partners 40
Configuring Trading Partners 40

Setting Up Trading Partner Profiles (TPP) 44

Configuring Business Services 44
Business Service > Business Actions 45

Configuring Business Actions 45

Chapter 6

Working with the ASC X12 Sample 48
About the ASC X12 Manager Sample 48

Process Flow in the ASC X12 Sample 48
Process Flow in the Atlanta Environment 49
Process Flow in the Berlin Environment 50

About the X12_Host 50

Quick Steps to Get the Sample Up and Running 51

Unzipping the Sample File 53

Importing the Sample Projects 54

Understanding the 850 Feeder Project 55
About the 850 Project Connectivity Map 56
About the 850 Project BP 57

Understanding the 855 Feeder Project 58
About the 855 Project Connectivity Map 58
About the 855 Project BP 59

Configuring the Oracle External Application 61

Creating the Validation Connectivity Map 62

Creating and Activating Deployment Profiles 63

Importing and Activating Trading Partners 64

Running the X12 Sample 65
Starting the Logical Hosts 65
Preparing the Input Data 66

Appendix A

OTD Syntax Validation BPs 67
Activity Flow 67
ASC X12 Manager Composite Application User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Fault Handling 70
ValidateException 70
UnmarshalException 71
GenericException 71
Other Faults 71

Variables Referenced by OTD Validation BPs 72
The Value of the ${BizRespCorrPath} Variable 72

Index 75
ASC X12 Manager Composite Application User’s Guide 6 SeeBeyond Proprietary and Confidential

List of Figures

ASC X12 Manager Composite Application User’s Guide 7 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 ASC X12 Manager Validation BPs 13

Figure 2 X12 Envelope Schematic 18

Figure 3 X12 997 (Functional Acknowledgment) Segment Table 19

Figure 4 Example of a Transaction Set Header (ST) 19

Figure 5 Example of a Transaction Set Trailer (SE) 19

Figure 6 Example of a Functional Group Header (GS) 20

Figure 7 Example of a Functional Group Trailer (GE) 20

Figure 8 Example of an Interchange Header (ISA) 21

Figure 9 Example of an Interchange Trailer (IEA) 22

Figure 10 Increasing Enterprise Designer Heap Size 32

Figure 11 Validation BP .zip Files 34

Figure 12 Opening the X12 v4021 219 Full Syntax Validation Handler 36

Figure 13 Mappings for the Request/Response Correlation Key 37

Figure 14 ePM Parameter Hierarchy of TP > TP Profile > Service 40

Figure 15 Trading Partner Profile: “Properties” Tab 44

Figure 16 Business Service Configuration: “Business Actions” Tab 45

Figure 17 ASC X12 Sample Process Flow 49

Figure 18 B2B Host (X12_Host)— Project Components 51

Figure 19 The Sample Project Validation Connectivity Map 52

Figure 20 Importing Sample Projects 55

Figure 21 Connectivity Map for 850 Feeder Project 56

Figure 22 850_BP1 for the 850 Feeder Project 57

Figure 23 Connectivity Map for 855 Feeder Project 59

Figure 24 855_BP1 for the 855 Feeder Project 60

Figure 25 Locating Validation BPs 62

Figure 26 Creating the Validation Connectivity Map 63

List of Tables

ASC X12 Manager Composite Application User’s Guide 8 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Document Conventions 10

Table 2 Default Delimiters in X12 OTD Libraries 17

Table 3 Key Parts of EDI Processing 27

Table 4 Supported ASC X12 Versions 28

Table 5 General XDC Bindings Settings 41

Table 6 Setting ToPartner Envelope Binding Configurations 42

Table 7 Setting FromPartner DeEnvelope Binding Configurations 43

Table 8 Parameters in the (TP->TPP->) “Properties” Tab 44

Table 9 Parameters in the (TP->TPP-> Business Service) “Business Actions” Tab 45

Table 10 Deployment Profiles To Be Created and Activated 52

Table 11 X12Manager_Sample.zip Project Files 54

Table 12 Deployment Profiles To Be Created and Activated 63

Table 13 Variables Referenced by OTD Validation BPs 72

Chapter 1

Introduction

This chapter introduces you to this guide, its general purpose and scope, and its
organization. It also provides sources of related documentation and information.

What’s in This Chapter

About This Document on page 9

Related Documents on page 10

References on page 11

SeeBeyond Web Site on page 11

SeeBeyond Documentation Feedback on page 11

1.1 About This Document
This user’s guide describes how to install and use the ASC X12 Manager Composite
Application (ASC X12 Manager) to create ICAN Projects that process and validate X12
messages.

1.1.1 What’s in This Document
This guide includes the following chapters:

Chapter 1, “Introduction” provides an overview of this document’s purpose,
contents, writing conventions, and supported documents.

Chapter 2, “Overview of the ASC X12 Manager” provides an overview of the ASC
X12 Manager Composite Application.

Chapter 3, “Installing the ASC X12 Manager” describes how to install the ASC X12
Composite Application and sample Projects. It also lists system requirements and
supported operating systems and external applications.

Chapter 4, “Working with Validation BPs” describes how to customize validation
handler BPs by using an example of locating and modifying a SeeBeyond-supplied
B2B protocol.

Chapter 5, “Configuring Trading Partners” discusses the ASC X12-specific items
that can or must be configured in eXchange Partner Manager (ePM).
ASC X12 Manager Composite Application User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Related Documents
Chapter 6, “Working with the ASC X12 Sample” describes how to import,
configure, and run the ASC X12sample.

Appendix A, “OTD Syntax Validation BPs” provides in-depth technical
information on B2B protocol processes for handling Object Type Definition (OTD)
syntax validation.

1.1.2 Intended Audience
This user’s guide is intended for ICAN Project developers who have experience with he
ASC X12 protocol standards.

1.1.3 Document Conventions
The following conventions are observed throughout this document.

1.1.4 Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.2 Related Documents
For more information about eGate Integrator, eInsight Partner Manager, eXchange
Integrator, and the eWays used for the ASC X12 sample Projects, refer to the following
documents:

SeeBeyond ICAN Suite Installation Guide

eGate Integrator User’s Guide

Table 1 Document Conventions

Text Convention Example

Names of buttons, files,
icons, parameters, variables,
methods, menus, and objects

Bold text Click OK to save and close.
From the File menu, select Exit.
Select the logicalhost.exe file.
Enter the timeout value.
Use the getClassName() method.
Configure the Inbound File eWay.

Command line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -p password

Hypertext links Blue text See Related Documents on
page 10

Hypertext links for Web
addresses (URLs) or email
addresses

Blue underlined text http://www.seebeyond.com
docfeedback@seebeyond.com
ASC X12 Manager Composite Application User’s Guide 10 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com

Chapter 1 Section 1.3
Introduction References
eGate Integrator JMS Reference Guide

eGate Integrator System Administrator Guide

eGate Integrator Deployment Guide

eXchange Integrator User’s Guide

eXchange Integrator Designer’s Guide

eInsight Business Process Manager User’s Guide

ASC X12 OTD Library User’s Guide

Oracle eWay Intelligent Adapter User’s Guide

Batch eWay Intelligent Adapter User’s Guide

File eWay Intelligent Adapter User’s Guide

1.3 References

The following Web sites provide additional information about the ASC X12 protocol:

http://www.disa.org

http://www.x12.org/x12org/index.cfm

http://www.wpc-edi.com

1.4 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

1.5 SeeBeyond Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

docfeedback@seebeyond.com
ASC X12 Manager Composite Application User’s Guide 11 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com
http://www.disa.org
http://www.x12.org/x12org/index.cfm
http://www.wpc-edi.com

Chapter 2

Overview of the ASC X12 Manager

This chapter provides a general overview of the ASC X12 Manager and its place in the
ICAN Suite.

What’s in This Chapter

About the ASC X12 Manager Composite Application on page 12

How the ASC X12 Manager Works on page 14

About the ASC X12 Protocol on page 14

ASC X12 Version Support on page 28

SEF File Support on page 28

2.1 About the ASC X12 Manager Composite Application
The ASC X12 Manager Composite Application integrates with eGate Integrator,
eXchange Integrator, and the ASC X12 OTD Library to enable you to design ICAN
Projects that process and validate ASC X12 messages.

The ASC X12 Manager includes a business service—a sequence of events incorporating
the rules set by the protocol specifications, such as:

Interchange and acknowledgment processing

Business message correlation

Enveloping and de-enveloping

Document batching and splitting

Event archiving

ASC X12 Manager and eXchange Integrator

eGate Integrator and eXchange Integrator enable you to build ICAN Projects that
process standard B2B business protocols and enveloping protocols such as ASC X12.
The ASC X12 Manager works with eXchange to provide the following during message
processing:

Error handling

Message tracking

Trading partner profile database lookup
12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of the ASC X12 Manager About the ASC X12 Manager Composite Application
ASC X12 Manager and the ASC X12 OTD Library

The ASC X12 Manager provides packaged Business Protocol (BP) rules to validate ASC
X12 message structures, which are called Object Type Definitions (OTDs) in the ICAN
Suite. The ICAN Suite provides packaged X12 OTDs with the ASC X12 OTD Library.
You can also build your own OTDs with the SEF OTD wizard, which is supplied with
eGate Integrator.

Importing and customizing validation rules

The ASC X12 Manager enables you to tailor validation rules for your specific Project;
you can import validation rules into your ICAN Project and customize them. For
information about importing validation rules, refer to “Importing Validation BPs into
Projects” on page 34.

The figure below shows the BPs supplied with the ASC X12 Manager and the canvas
shows one of the ASC X12 BPs. All business logic is exposed, and each action is
customizable.

Figure 1 ASC X12 Manager Validation BPs
13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the ASC X12 Manager How the ASC X12 Manager Works
2.2 How the ASC X12 Manager Works
In the View layer: The eXchange Protocol Designer provides the ability to create ASC
X12 Projects, and the eXchange Message Tracker allows searching and viewing of ASC
X12 messages.

In the Services Orchestration layer: You use the eXchange Service Designer to design a
transaction set; then the ASC X12 Project prepares and returns the interchange and
functional acknowledgments (TA1 and 997) to the trading partner, and also performs
message correlation to associate the business response to the request.

In the Integration Services layer: The ASC X12 Project validates ISA and GS envelopes
from incoming messages, prepares ISA and GS envelopes for outgoing messages,
batches together documents to be delivered as a single transaction (ISA), and records
the activity in Message Tracking.

2.3 About the ASC X12 Protocol
This section provides the following information:

An overview of X12, including the structure of an X12 envelope, data elements, and
syntax.

An explanation of how to use the generic message structures provided as an add-on
to eGate to help you quickly create the structures you need for X12 transactions.

An example of how X12 is used in payment processing.

2.3.1. What Is X12?
X12 is an EDI (electronic data interchange) standard, developed for the electronic
exchange of machine-readable information between businesses.

The Accredited Standards Committee (ASC) X12 was chartered by the American
National Standards Institute (ANSI) in 1979 to develop uniform standards for
interindustry electronic interchange of business transactions—electronic data
interchange (EDI). The result was the X12 standard.

An organization called the X12 body develops, maintains, interprets, and promotes the
proper use of the ASC standard. Data Interchange Standards Association (DISA)
publishes the X12 standard and the UN/EDIFACT standard. The X12 body comes
together three times a year to develop and maintain EDI standards. Its main objective is
to develop standards to facilitate electronic interchange relating to business
transactions such as order placement and processing, shipping and receiving
information, invoicing, and payment information.

X12 was originally intended to handle large batches of transactions. However, it has
been extended to encompass real-time processing (transactions sent individually as
they are ready to send, rather than held for batching).
14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Overview of the ASC X12 Manager About the ASC X12 Protocol
2.3.2. What Is a Message Structure?
ASC X12 messages have a message structure that indicates how data elements are
organized and related to each other for a particular EDI transaction. In the ICAN Suite,
message structures are defined as OTDs. Each OTD consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular ASC X12 EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The transaction set structure of an invoice that is sent from one trading partner to
another defines the header, trailer, segments, and data elements required by invoice
transactions. The ASC X12 OTD for a specific version includes transaction set structures
for each of the transactions available in that version. You can use these structures as
provided, or customize them to suit your business needs.

eXchange uses OTDs based on ASC X12 message structures to verify that the data in
the messages coming in or going out is in the correct format. There is a message
structure for each ASC X12 transaction. The list of transactions provided is different for
each version of ASC X12.

ASC X12 messages have a message structure that indicates how data elements are
organized and related to each other for a particular EDI transaction. In the ICAN Suite,
message structures are defined as OTDs. Each OTD consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular ASC X12 EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The transaction set structure of an invoice that is sent from one trading partner to
another defines the header, trailer, segments, and data elements required by invoice
transactions. The ASC X12 OTD for a specific version includes transaction set structures
for each of the transactions available in that version. You can use these structures as
provided, or customize them to suit your business needs.
15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Overview of the ASC X12 Manager Components of an X12 Envelope
eXchange uses OTDs based on ASC X12 message structures to verify that the data in
the messages coming in or going out is in the correct format. There is a message
structure for each ASC X12 transaction. The list of transactions provided is different for
each version of ASC X12.

2.4 Components of an X12 Envelope
X12 messages are all ASCII text, with one exception: the BIN segment is binary.

Each X12 message is made up of a combination of the following elements:

Data elements

Segments

Loops

Elements are separated by delimiters.

More information on each of these is provided below.

2.4.1. Data Elements
The data element is the smallest named unit of information in the X12 standard. Data
elements can be broken down into two types. The distinction between the two is strictly
a matter of how they are used. The two types are:

Simple

If a data element occurs in a segment outside the defined boundaries of a composite
data structure, it is called a simple data element.

Composite

If a data element occurs as an ordinally positioned member of a composite data
structure, it is called a composite data element. A telephone number is a simple
example of a composite: It has an area code, which must precede the digits for the
local exchange, which must precede the final group of digits.

Each data element has a unique reference number; it also has a name, description, data
type, and minimum and maximum length.

2.4.2. Segments
A segment is a logical grouping of data elements. In X12, the same segment can be used
for different purposes. This means that a field’s meaning can change based on the
segment. For example:

The NM1 segment is for any name (patient, provider, organization, doctor)

The DTP segment is for any date (date of birth, discharge date, coverage period)

For more information on the X12 enveloping segments, refer to “Structure of an X12
Envelope” on page 18.
16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Overview of the ASC X12 Manager Components of an X12 Envelope
2.4.3. Loops
Loops are sets of repeating ordered segments. In X12 you can locate elements by
specifying:

The transaction set (for example, 270)

The loop (for example, “loop 1000” or “info. receiver loop”)

The occurrence of the loop

The segment (for example, BGN)

The field number (for example, 01)

The occurrence of the segment (if it is a repeating segment)

2.4.4. Delimiters
In an X12 message, the various delimiters act as syntax, dividing up the different
elements of a message. The delimiters used in the message are defined in the
interchange control header, the outermost layer enveloping the message. For this
reason, there is flexibility in the delimiters that are used.

No suggested delimiters are recommended as part of the X12 standards, but the
industry-specific implementation guides do have recommended delimiters.

The default delimiters used by the SeeBeyond X12 OTD Libraries are the same as those
recommended by the industry-specific implementation guides. These delimiters are
shown in Table 2.

Within eXchange Integrator, delimiters are specified at the enveloping level. The
delimiters defined for an envelope apply to all transactions in the same business
service. (A business service is a choreographed dialog between the two parties.)

If you do not specify delimiters, and do not override them in the payload transactions
fed into FROMINTERNAL, eXchange expects the default delimiters shown in Table 2.

Note: It is important to note that errors could result if the transmitted data itself includes
any of the characters that have been defined as delimiters. Specifically, the existence
of asterisks within transmitted application data is a known issue in X12, and can
cause problems with translation.

Table 2 Default Delimiters in X12 OTD Libraries

Type of Delimiter Default Value

Segment terminator ~ (tilde)

Data element separator * (asterisk)

Subelement (component) separator : (colon)

Repetition separator (version 4020 and later) + (plus sign)
17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Overview of the ASC X12 Manager Structure of an X12 Envelope
2.5 Structure of an X12 Envelope
The rules applying to the structure of an X12 envelope are very strict, to ensure the
integrity of the data and the efficiency of the information exchange.

The actual X12 message structure has three main levels. From the highest to the lowest
they are:

Interchange Envelope

Functional Group

Transaction Set

A schematic of X12 envelopes is shown in Figure 2. Each of these levels is explained in
more detail in the following sections.

Figure 2 X12 Envelope Schematic

Figure 3 shows the standard segment table for an X12 997 (Functional
Acknowledgment) as it appears in the X12 standard and in most industry-specific
implementation guides.
18 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Overview of the ASC X12 Manager Structure of an X12 Envelope
Figure 3 X12 997 (Functional Acknowledgment) Segment Table

2.5.1. Transaction Set (ST/SE)
Each transaction set (also called a transaction) contains three things:

A transaction set header

A transaction set trailer

A single message, enveloped within the header and footer

The transaction has a three-digit code, a text title, and a two-letter code; for example,
997, Functional Acknowledgment (FA).

The transaction is composed of logically related pieces of information, grouped into
units called segments. For example, one segment used in the transaction set might
convey the address: city, state, postal code, and other geographical information. A
transaction set can contain multiple segments. For example, the address segment could
be used repeatedly to convey multiple sets of address information.

The X12 standard defines the sequence of segments in the transaction set and also the
sequence of elements within each segment. The relationship between segments and
elements could be compared to the relationship between records and fields in a
database environment.

Figure 4 Example of a Transaction Set Header (ST)

Figure 5 Example of a Transaction Set Trailer (SE)

ST*270*0159~

Transaction Set
Identifier Code

Transaction Set Control
Number

SE*41*0159~

Number of
Included Segments

Transaction Set Control
Number
19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Overview of the ASC X12 Manager Structure of an X12 Envelope
2.5.2. Functional Group (GS/GE)
A functional group is composed of one or more transaction sets, all of the same type,
that can be batched together in one transmission. The functional group is defined by the
header and trailer; the Functional Group Header (GS) appears at the beginning, and the
Functional Group Trailer (GE) appears at the end. Many transaction sets can be
included in the functional group, but all transactions must be of the same type.

Within the functional group, each transaction set is assigned a functional identifier
code, which is the first data element of the header segment. The transaction sets that
constitute a specific functional group are identified by this functional ID code.

The functional group header (GS) segment contains the following information:

Functional ID code (the two-letter transaction code; for example, PO for an 850
Purchase Order, HS for a 270 Eligibility, Coverage or Benefit Inquiry) to indicate the
type of transaction in the functional group

Identification of sender and receiver

Control information (the functional group control numbers in the header and trailer
segments must be identical)

Date and time

The functional group trailer (GE) segment contains the following information:

Number of transaction sets included

Group control number (originated and maintained by the sender)

Figure 6 Example of a Functional Group Header (GS)

Figure 7 Example of a Functional Group Trailer (GE)

GS*HS*6264712000*6264716000*20000515*1457*126*X*004010X092~

Functional ID code

Group control number

Sender’s ID code

Receiver’s ID code

Date Time Version/Release/
Identifier Code

Responsible Agency Code

GE*1*126~

Number of
transaction sets

Group control
number
20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Overview of the ASC X12 Manager Structure of an X12 Envelope
2.5.3. Interchange Envelope (ISA/IEA)
The interchange envelope is the wrapper for all the data to be sent in one transmission.
It can contain multiple functional groups. This means that transactions of different
types can be included in the interchange envelope, with each type of transaction stored
in a separate functional group.

The interchange envelope is defined by the header and trailer; the Interchange Control
Header (ISA) appears at the beginning, and the Interchange Control Trailer (IEA)
appears at the end.

As well as enveloping one or more functional groups, the interchange header and
trailer segments include the following information:

Data element separators and data segment terminator

Identification of sender and receiver

Control information (used to verify that the message was correctly received)

Authorization and security information, if applicable

The sequence of information that is transmitted is as follows:

Interchange header

Optional interchange-related control segments

Actual message information, grouped by transaction type into functional groups

Interchange trailer

Figure 8 Example of an Interchange Header (ISA)

Interchange Header Segments from Figure 8:

1 Authorization Information Qualifier
2 Security Information Qualifier
3 Interchange ID Qualifier
4 Interchange Sender ID
5 Interchange ID Qualifier
6 Interchange Receiver ID
7 Date

8 Time
9 Repetition Separator
10 Interchange Control Version Number
11 Interchange Control Number
12 Acknowledgment Requested
13 Usage Indicator

ISA*00* *00* *01*6264712000 *01*6264716000

*000515*1457*U*00401*000000028*0*T*:~

10 11987 12 13

1 2 3 4 5 6
21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
Overview of the ASC X12 Manager Backward Compatibility
Figure 9 Example of an Interchange Trailer (IEA)

2.5.4. Control Numbers
The X12 standard includes a control number for each enveloping layer:

ISA13—Interchange Control Number

GS06—Functional Group Control Number

ST02—Transaction Set Control Number

The control numbers act as identifiers, useful in message identification and tracking.
eXchange Integrator includes a flag for each control number, so you can choose not to
assign control numbers to outgoing messages and not to store control numbers on
incoming messages.

ISA13 (Interchange Control Number)

The ISA13 is assigned by the message sender. It must be unique for each interchange.
This is the primary means used by eXchange Integrator to identify an individual
interchange.

GS06 (Functional Group Control Number)

The GS06 is assigned by the sender. It must be unique within the Functional Group
assigned by the originator for a transaction set.

eXchange ensures that the Functional Group control number GS06 in the header must
be identical to the same data element in the associated Functional Group trailer, GE02.

ST02 (Transaction Set Control Number)

The ST02 is assigned by the sender, and is stored in the transaction set header. It must
be unique within the Functional Group.

eXchange ensures that the control number in ST02 is identical with the SE02 element in
the transaction set trailer, and is unique within a Functional Group (GS-GE). Once you
have defined a value for SE02, eXchange Integrator uses the same value for SE02.

2.6 Backward Compatibility
Each version of X12 is slightly different. Each new version has some new transactions;
in addition, existing transactions can change from version to version.

IEA*1*000000028~

Number of included
functional groups

Interchange
control number
22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.7
Overview of the ASC X12 Manager Example of EDI Usage
New versions of X12 are usually backward compatible; however, this is not a
requirement of the X12 rules. You should not expect different versions of X12 to be
backward compatible, but you can expect that when you analyze the differences only a
few changes are required in the message structures.

Note: In this context, backward compatible means that software that parses one version
can, in some circumstances, be unable to parse the next version, even if the software
ignores any unexpected new segments, data elements at the end of segments, and
sub-elements at the end of composite data elements. Not backward compatible means
that required segments can disappear entirely, data elements can change format and
usage, and required data elements can become optional.

2.7 Example of EDI Usage
This section provides an overview of the normal processes involved in EDI payment
processing.

Note: This section is a general overview of how electronic payments processing is used.
Not everything in this section applies to the use of X12 in processing payments.

2.7.1. Overview of EDI Payments Processing
EDI payments processing encompasses both collection and disbursement transactions.
The exchange of funds is accomplished by means of credit and debit transfers. It can
also include a related bank balance, as well as transaction and account analysis
reporting mechanisms.

Most non-monetary EDI trading partner communications are handled either directly
between the parties or indirectly through their respective value added networks
(VANs). However, the exchange of funds requires a financial intermediary. This is
normally the bank or banks that hold deposit accounts of the two parties.

EDI involves the exchange of remittance information along with the order to pay. In the
United States this can become complex as two standards are involved in the
transaction. The remittance information, which acts as an electronic check stub, can be
sent in any of the following ways:

Directly between trading partners or through their respective EDI VAN mailboxes

Through the banking system, with the beneficiary’s bank sending notice of
payment to the beneficiary

By the originator to the originator’s bank as an order to pay, with the originator’s
bank notifying the beneficiary

The trading partners and the capabilities of their respective banks determine the
following:

The routing of the electronic check stub
23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.7
Overview of the ASC X12 Manager Example of EDI Usage
Which of the following the payment is:

a debit authorized by the payor and originated by the beneficiary

a credit transfer originated by the payor

Types of Information That Is Exchanged Electronically

There are several types of information that can be exchanged electronically between
bank and customer, including:

Daily reports of balances and transactions

Reports of lockbox and EFT (electronic funds transfer) remittances received by the
bank

Authorizations issued to the bank to honor debit transfers

Monthly customer account analysis statements

Account reconcilement statements

Statements of the demand deposit account

The electronic payment mechanism, which is a subset of EDI, involves two separate
activities:

The exchange of payment orders, causing value to transfer from one account to
another

The exchange of related remittance information in standardized machine-
processable formats.

Types of Electronic Payment

The electronic payment can be either of the following:

Credit transfer, initiated by the payor

Debit transfer, initiated by the payee as authorized by the payor

Regardless of how the credit transfer was initiated, the payor sends a payment order to
its bank in the form of an X12 Payment Order/Remittance Advice (transaction set 820).

The bank then adds data in a format prescribed in the United States by the National
Automated Clearing House Association (NACHA) and originates the payment through
the Automated Clearing House (ACH) system.

A corporate-to-corporate payment performs two functions:

Transfers actual monetary value

Transfers notification of payment from payor to payee

When a credit transfer occurs, these two functions are sometimes treated as one, and
sometimes treated separately. The two functions can travel in either of these two ways:

Together through the banking system

Separately and by different routes
24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.7
Overview of the ASC X12 Manager Example of EDI Usage
X12 820 is a data format for transporting a payment order from the originator to its
bank. This payment order can be either of the following:

An instruction to the originator’s bank to originate a credit transfer

An instruction to the trading partner to originate a debit transfer against the payor’s
bank account

Once this decision has been made, the 820 transports the remittance information to the
beneficiary. The transfer can either be through the banking system or by a route that is
separate from the transport of funds.

Note: Whenever the 820 remittance information is not transferred with the funds, it can be
transmitted directly from the originator to the beneficiary. It can also be transmitted
through an intermediary, such as a VAN.

Transfer of Funds

Before funds can be applied against an open accounts receivable account, the
beneficiary must reconcile the two streams—the payment advice from the receiving
bank and the remittance information received through a separate channel—that were
separated during the transfer. If this reconciliation does not take place and if the
amount of funds received differs from the amount indicated in the remittance advice,
the beneficiary might have problems balancing the accounts receivable ledger.

The value transfer begins when the originator issues a payment order to the
originator’s bank. If a credit transfer is specified, the originator’s bank charges the
originator’s bank account and pays the amount to the beneficiary’s bank for credit to
the beneficiary’s account.

If the payment order specifies a debit transfer, the originator is the beneficiary. In this
case, the beneficiary’s bank originates the value transfer, and the payor’s account is
debited (charged) for a set amount, which is credited to the originator’s (beneficiary’s)
bank account. The payor must issue approval to its bank to honor the debit transfer,
either before the beneficiary presents the debit transfer or at the same time. This debit
authorization or approval can take one of four forms:

Individual item approval

Blanket approval of all incoming debits with an upper dollar limit

Blanket approval for a particular trading partner to originate any debit

Some combination of the above

2.7.2. Payment-Related EDI Transactions
X12 uses an end-to-end method to route the 820 Payment Order/Remittance Advice
from the originator company through the banks to the beneficiary. This means that
there can be several relay points between the sender and the receiver.

The 820 is wrapped in an ACH banking transaction for the actual funds transfer
between the banks.
25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.8
Overview of the ASC X12 Manager Acknowledgment Types
2.8 Acknowledgment Types
X12 includes two types of acknowledgment, the TA1 Interchange Acknowledgment
and the 997 Functional Acknowledgment.

2.8.1. TA1, Interchange Acknowledgment
The TA1 acknowledgment verifies the interchange envelopes only. The TA1 is a single
segment and is unique in the sense that this single segment is transmitted without the
GS/GE envelope structures. A TA1 acknowledgment can be included in an interchange
with other functional groups and transactions.

2.8.2. 997, Functional Acknowledgment
The 997 includes much more information than the TA1; see Figure 3 on page 19. The
997 was designed to allow trading partners to establish a comprehensive control
function as part of the business exchange process.

There is a one-to-one correspondence between a 997 and a functional group. Segments
within the 997 identify whether the functional group was accepted or rejected. Data
elements that are incorrect can also be identified.

Many EDI implementations have incorporated the acknowledgment process into all of
their electronic communications. Typically, the 997 is used as a functional
acknowledgment to a functional group that was transmitted previously.

The 997 is the acknowledgment transaction recommended by X12.

The acknowledgment of the receipt of a payment order is an important issue. Most
corporate originators want to receive at least a Functional Acknowledgment (997) from
the beneficiary of the payment. The 997 is created using the data about the identity and
address of the originator found in the ISA and/or GS segments.

2.8.3. Application Acknowledgments
Application acknowledgments are responses sent from the destination system back to
the originating system, acknowledging that the transaction has been successfully or
unsuccessfully completed. The application advice (824) is a generic application
acknowledgment that can be used in response to any X12 transaction. However, it has
to be set up as a response transaction; only TA1 and 997 transactions are sent out
automatically.

Other types of responses from the destination system to the originating system, which
can also be considered application acknowledgments, are responses to query
transactions—for example, the Eligibility Response (271) is a response to the Eligibility
Inquiry (270).
26 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.9
Overview of the ASC X12 Manager Key Parts of EDI Processing Logic
2.9 Key Parts of EDI Processing Logic
The five key parts of EDI processing logic are listed in Table 3.

eGate uses the structures, validations, translations, enveloping, and acknowledgments
listed below to support the X12 standard.

2.9.1. Structures
The X12 OTD Library includes pre-built OTDs for all supported X12 versions.
These OTDs can be viewed in the OTD Editor, but cannot be modified.

To customize the OTD structure—for example, to add a segment or loop—you must
first generate a SEF file (typically using a third-party tool, such as the EDISIM tool from
Foresight Corporation). You then use the SEF OTD Wizard to generate the OTD.

2.9.2. Validations, Translations, Enveloping, Acknowledgments
Within each OTD are Java methods and Java bean nodes for handling validation; and
the marshal and unmarshal methods of the two envelope OTDs handle enveloping and
de-enveloping. No pre-built translations are supplied with the OTD libraries; these can
be built in an eGate GUI called the Java Collaboration Editor (JCE).

Note: In eGate, X12 translations are called Collaborations.

2.9.3. Trading Partner Agreements
There are three levels of information that guide the final format of a specific transaction.
These three levels are:

The X12 standard—The Accredited Standards Committee publishes a standard
structure for each X12 transaction.

Table 3 Key Parts of EDI Processing

Term Description
Language
Analogy

eGate Component

structures format, segments, loops syntax rules OTD elements and fields

validations data contents “edit” rules semantic rules validation methods

translations (also
called mappings)

reformatting or
conversion

translation collaborations

enveloping header and trailer
segments

envelope for a
written letter

the special “envelope” OTDs:
FunctionalGroupEnv and
InterchangeEnv

acks acknowledgments return receipt specific acknowledgment
elements in the OTD
27 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.10
Overview of the ASC X12 Manager ASC X12 Version Support
Industry-specific Implementation Guides—Specific industries publish
Implementation Guides customized for that industry. Normally, these are provided
as recommendations only. However, in certain cases, it is extremely important to
follow these guidelines. Specifically, since HIPAA regulations are law, it is
important to follow the guidelines for these transactions closely.

Trading Partner Agreements—It is normal for trading partners to have individual
agreements that supplement the standard guides. The specific processing of the
transactions in each trading partner’s individual system can vary from one site to
another. Because of this, additional documentation providing information about the
differences is helpful to the site’s trading partners and simplifies implementation.
For example: Although a certain code might be valid in an implementation guide, a
specific trading partner might not use that code in transactions; in such a case, it
would be important to include that information in a trading partner agreement.

2.10 ASC X12 Version Support

This product provides support for the following ASC X12 versions:

2.11 SEF File Support
You can use this product with custom SEF OTDs built with the SEF OTD wizard. The
wizard supports SEF versions 1.5 and 1.6.

The SEF OTD wizard does not handle the following information and sections:

In the .SEMREFS section, semantic rules with its type of the “exit routine” are
ignored as per SEF specification. An exit routine specifies an external routine (such
as a COM-enabled server program supporting OLE automation) to run for
translators or EDI data analyzers.

The .TEXT sections (including subsections such as .TEXT,SETS, .TEXT,SEGS,
.TEXT,COMS, and .TEXT,ELMS) are ignored, because these sections store
information about changes in a standard's text, such as notes, comments, names,
purposes, descriptions, titles, semantic notes, explanations, and definitions.

Table 4 Supported ASC X12 Versions

4010
4011
4012

4020
4021
4022

4030
4031
4032

4040
4041
4042

4050
4051
4052

4060
4061
28 SeeBeyond Proprietary and Confidential

Chapter 3

Installing the ASC X12 Manager

This chapter describes how to install the ASC X12 Manager Composite Application, its
documentation, and sample Projects. This chapter also includes the system
requirements and supported operating systems for the ASC X12 Manager Composite
Application.

What’s in This Chapter

System Requirements on page 29

Supported Operating Systems on page 29

Supported External Applications on page 30

Required ICAN Suite Products on page 30

Installing the ASC X12 Manager Composite Application on page 30

Increasing the Enterprise Designer Heap Size on page 32

Configuring the Oracle Database on page 32

3.1 System Requirements
Each ASC X12 validation BP .sar file requires approximately 6 MB disk space. The large
size of the ASC X12validation BPs normally requires an increased heap size property of
the Enterprise Designer. For information, refer to “Increasing the Enterprise Designer
Heap Size” on page 32.

Other than that, the system requirements for the ASC X12 Manager are the same as
those for eGate Integrator and eInsight Business Process Manager. For information,
refer to the SeeBeyond ICAN Suite Installation Guide.

3.2 Supported Operating Systems
The ASC X12 Manager Composite Application is available for the following operating
systems:

Microsoft Windows 2000 SP3 or SP4, Windows XP SP1a, and Windows Server 2003

Sun Solaris 8 and Solaris 9, with required patches
29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Installing the ASC X12 Manager Supported External Applications
HP Tru64 V5.1A, with required patches

HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23) with required patches and
parameter changes

IBM AIX 5.1L and AIX 5.2 (either 64-bit kernel or 32-bit kernel with 64-bit
extension), with required maintenance level patches

Red Hat Linux 8 (Intel x86) and Linux Advanced Server 2.1 (Intel x86)

3.3 Supported External Applications
Database support for the ASC X12 Manager is the same as for eXchange Integrator. For
information, refer to the eXchange Integrator User’s Guide.

3.4 Required ICAN Suite Products
The ASC X12 Manager Composite Application requires the following products to be
installed:

eGate Integrator

Batch eWay Intelligent Adapter

Oracle eWay Intelligent Adapter

eXchange Integrator

3.5 Installing the ASC X12 Manager Composite Application
During the ASC X12 Manager installation process, the Enterprise Manager, a Web-
based application, is used to select and upload products as .sar files from the ICAN
Suite installation CD-ROM to the Repository.

The installation process includes the following steps:

Installing the Repository

Uploading products to the Repository

Downloading components (such as Enterprise Designer and Logical Host)

Viewing product information home pages

Follow the instructions for installing the eGate Integrator in the SeeBeyond ICAN Suite
Installation Guide, and include the steps below to install the ASC X12 Manager. You
must have uploaded a license.sar to the ICAN Repository that includes a license for the
ASC X12 Manager.

30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installing the ASC X12 Manager Installing the ASC X12 Manager Composite Application
To install the ASC X12 Manager Composite Application

1 Upload the following files to the eGate Repository using the Enterprise Manager as
described in the SeeBeyond ICAN Suite Installation Guide. You must upload the .sar
files in the order presented here:

A eGate.sar

B BatcheWay.sar and Oracle.sar (must be installed before you install eXchange)

C eXchange.sar

D X12_Manager.sar (to install ASC X12 Manager)

E ASC_X12_OTD_Lib_***.sar (to install the ASC X12 OTDs as described in the
ASC X12OTD Library User’s Guide)

F ASC_X12_OTD_Validation_BP_***.sar (to install the BPs to validate the OTDs
installed in step D)

2 If you need to build custom SEF OTDs, upload SEF_OTD_Wizard.sar from
Products CD3.

3 To work with the sample Projects as described in “Working with the ASC X12
Sample” on page 48, do the following:

A Upload the following items:

ASC_X12_OTD_Lib_v4010sar (to install the ASC X12 OTDs)

ASC_X12_OTD_Validation_BP_v4010.sar (to install the validation BP)

HIPAA_2000_Addenda_OTD_Lib.sar (optional)

HIPAA_2000_Addenda_OTD_Validation_BP.sar (optional)

FileeWay.sar (to install the File eWay)

HTTPeWay.sar (to install the HTTP(S) eWay)

X12_ManagerDocs.sar (to install the user’s guide and the sample)

B In the Enterprise Manager, click the DOCUMENTATION page, and click
ASC X12 Manager Composite Application.

C In the right-hand pane, click Download Sample, and save the .zip file to
c:\temp\eXchange.

4 Start (or restart) the Enterprise Designer, and click Update Center on the Tools
menu. The Update Center shows a list of components ready for updating.

5 Click Add All (the button with a doubled chevron pointing to the right). All
components move from the Available/New pane to the Include in Install pane.

6 Click Next and, in the next window, click Accept to accept the license agreement.

7 When the progress bars indicate the download has ended, click Next.

8 Review the certificates and installed modules, and then click Finish.

9 When prompted to restart Enterprise Designer, click OK.
31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
Installing the ASC X12 Manager Increasing the Enterprise Designer Heap Size
3.6 Increasing the Enterprise Designer Heap Size
Due to the size of the ASC X12 OTDs, you may need to increase the heap size property
of the Enterprise Designer. If the heap size is not increased, out of memory errors may
occur.

To increase the Enterprise Designer heap size

1 On the Tools menu in Enterprise Designer, click Options. The Options Setup
dialog box appears.

2 Set the configured heap size for the Enterprise Designer, OTD Tester, and JCE Tester
to no less than 512 MB, and click OK.

Figure 10 Increasing Enterprise Designer Heap Size

3 Restart Enterprise Designer.

3.6.1 Resolving Memory Errors at Enterprise Designer Startup
If an out of memory error occurs at Enterprise Designer startup, change the setting in
the heapSize.bat file. This file resides in the folder ICAN_Suite\edesigner\bin, where
ICAN_Suite is the folder where eGate Integrator is installed.

Open the file with a text editor, and increase the heap size setting. Save the file, and
restart the Enterprise Designer.

3.7 Configuring the Oracle Database
Before using the ASC X12 Manager, refer to the eXchange Integrator User’s Guide and the
Oracle eWay Intelligent Adapter User’s Guide for additional installation instructions for
setting up the Oracle database. eXchange provides the createuser.sql script to create
username/password combinations and the createdb.sql script to populate tablespaces
for each user.

To use the sample Projects provided with the ASC X12 Manager, the database must
contain the following usernames and passwords:

user: ex_A, password: ex_A
32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
Installing the ASC X12 Manager Configuring the Oracle Database
user: ex_B, password: ex_B
33 SeeBeyond Proprietary and Confidential

Chapter 4

Working with Validation BPs

The ASC X12 Manager provides packaged BPs that validate corresponding X12
message structures (OTDs). This chapter describes how you can import validation BPs
into ICAN Projects, and how you can customize the BPs.

What’s in This Chapter

Importing Validation BPs into Projects on page 34

Customizing Validation BPs on page 35

4.1 Importing Validation BPs into Projects
When you install a validation BP as described in Installing the ASC X12 Manager
Composite Application on page 30, the BP is included in Enterprise Designer as a .zip
file. This enables you to save the .zip file and import this .zip file into your ICAN
Project as described below.

To import validation BPs

1 In the Project Explorer tab of Enterprise Designer, expand the SeeBeyond >
eXchange > Templates > OTDValidationBPsExport folders.

Figure 11 Validation BP.zip Files

2 Right-click the .zip file and click Export.
34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Working with Validation BPs Customizing Validation BPs
3 In the Save dialog box, select the location for the .zip to be saved and click Save.

4 In the Project Explorer tab of Enterprise Designer, right-click the Project to use the
validation rules, and click Import.

5 In the Import Manager dialog box, navigate to the validation BP .zip file, double-
click the file, and click Import.

6 Click OK at the confirmation message and click Close to close the Import Manager
dialog box.

The validation BP now displays under the ICAN Project.

4.2 Customizing Validation BPs
In the following procedures, you open an ASC X12 syntax-validation BP and locate two
activities that involve a correlation key in a Request/Reply pair of transactions. For
each of those activities, you locate the OTD node that currently supplies data to the
correlation key, and change it to a different OTD node.

For more in-depth information on the activity flow, fault-handling, and variable usage
in syntax-validation handler BPs, see Appendix A.

It is assumed you have already installed eXchange and the ASC X12 Manager, as well
as at least one ASC X12 OTD library and a validation BP corresponding to it. This
procedure uses version 4021; if you use a different version, adjust accordingly.

To customize a validation handler BP so as to use a specific correlation key

1 In the Project Explorer tab in the Enterprise Designers, expand the SeeBeyond >
eXchange > User Components > OTD Validations > X12 > v4021 folders.

2 Right-click X12_4021_219_Full_SynValHandler, click Check Out, and expand the
folder.
35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Working with Validation BPs Customizing Validation BPs
Figure 12 Opening the X12 v4021 219 Full Syntax Validation Handler

3 On the canvas toolbar, click to open the Business Rule Designer (BRD).

4 On the canvas, click the Set BizRespCorrKey using BizTxID business rule.

5 Expand the BRD pane and trace the mappings without changing them.
36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Working with Validation BPs Customizing Validation BPs
Figure 13 Mappings for the Request/Response Correlation Key

The Input side of the mapping receives the end result of a multiple
concatenation into a node named BizResponseCorrelationKey, which is located
under:

eXBusinessProtocolService.BusinessMessageSyntaxValidationHandler.Input
ExStdEvent

Container[1]
KeysSection

CorrelationKeys

Several nodes on the left side go into this mapping, but you are only interested
in the one that feeds into the final (rightmost) concat operation: Its name is
E329_2_TranSetContNumb, and it is the second node located under:

X12_4021_219_LogiServRequ_Outer
X12_4021_219Logi_Serv_Requ_Inner[1]

X12_4021_219_LogiServRequ[1]
ST_1_1_TranSetHead

In Figure 13, the highlighted mapping is the one you will replace.

6 Delete the line connecting E329_2_TranSetContNumb to string2 of the concat box.

7 Replace it with a mapping from a node that is more suitable as a business
correlation key, such as B9A_3_ServRequ/E1644_1_ServRequCode.

8 Validate the BP and save your changes.
37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Working with Validation BPs Customizing Validation BPs
9 Perform the same steps for the business rule for the “NotRequest” path in the BP:
Set BizRespCorrKey using ProtRespToMsgID

10 Validate the BP and save your changes.

Instead of using the value passed by E329_2_TranSetContNumb as a business
correlation key, this BP now uses the value passed by the node you selected, such as
E1644_1_ServRequCode.
38 SeeBeyond Proprietary and Confidential

Chapter 5

Configuring Trading Partners

This chapter describes how to configure Trading Partners in eXchange Partner Manager
(ePM).

What’s in This Chapter

Overview of the ePM Parameter Hierarchy on page 39

Configuring Trading Partners on page 40

Setting Up Trading Partner Profiles (TPP) on page 44

Configuring Business Services on page 44

Configuring Business Actions on page 45

5.1 Overview of the ePM Parameter Hierarchy
A trading partner’s configuration parameters can be set at three different levels:

You can configure the properties and components of the trading partner (TP) itself.

You can configure the properties of trading partner profiles (TPPs) within a TP.

You can configure the properties and business actions for services defined for a TPP.
Business and messaging services are organized according to Business Attributes
Definitions (BAD).

Figure 14 shows an Environment (AtlantaEnv) with one TP (Berlin), whose first TPP
(profile_850_Out) is fully expanded; under the BAD (ASC X12 version 1.0) is its “leaf”
terminus—a business service (dlg_850_Out) with four actions (850, 997, 855, 997).
39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring Trading Partners Configuring Trading Partners
Figure 14 ePM Parameter Hierarchy of TP > TP Profile > Service

5.2 Configuring Trading Partners
Configuration parameters for the Trading Partner itself are organized into two major
tabs: Properties and Components.

5.2.1 Configuring Trading Partners
The top of the Delivery Channels subtab lists all bindings currently defined for the
TP’s external delivery channels (XDCs). An XDC “binding” is an association of XDC
metadata parameters to a particular set of values.

The Enveloping Channels subtab allows you to add, modify, and delete bindings for
the TP’s enveloping channels. The ASC X12 protocol, unlike AS2 and ebXML, requires
enveloping channels.

To configure Trading Partners

1 In the Properties > General tab for the Trading Partner, enter the Trading Partner
name.

2 Click Components and click Delivery Channels for the Trading Partner.

3 To specify bindings for delivery channels:

A Click the XDC for which you want to add a new binding from the list of delivery
channels defined for the current host.

B To specify general settings, enter the following information in the General tab
and click Save:

Environment

Trading Partner

TP Profile

Business
Service

Business
Actions

Host

40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring Trading Partners Configuring Trading Partners
C In the ToPartner Transport tab, enter the required values.

The names, types, and possible values for parameters in the ToPartner
Transport tab depend on the XDC definition in the B2B host’s External Delivery
Channels window: The transport attributes definition (TAD) that was specified
as “To Partner Transport Attributes Definition” for this XDC specifies the
attributes that appear in the “ToPartner Transport” tab for all bindings
referencing the XDC.

D In the FromPartner Transport tab, enter the required values.

The names, types, and possible values for parameters in the FromPartner
Transport tab depend on the XDC definition in the B2B host’s External Delivery
Channels window: The TAD that was specified as “From Partner Transport
Attributes Definition” for this XDC specifies the attributes that appear in the
“FromPartner Transport” tab for all bindings referencing the XDC.

4 To configure enveloping channels:

A Click Components and click Enveloping Channels for the Trading Partner.

The top of the Enveloping Channels subtab lists all bindings currently defined
for the TP’s enveloping protocols. A “binding” is an association of enveloping
protocol metadata parameters to a particular set of values.

B If you have not already done so: In the Explorer (left) pane, select the trading
partner; then, in the Trading Partner (right) pane, click the Components tab and
the Enveloping Channels subtab.

C In the Trading Partner (right) pane, click New.

D Click the enveloping attributes definitions (EAD) for which you want to add a
new binding from the EADs list, and click Continue.

In the list of bindings at the top of the pane, a row for the new binding is added

Table 5 General XDC Bindings Settings

Parameter Name Default Value Description / Notes

Delivery Channel (read-only) This tells you which XDC was chosen when the
binding was initially created.

Binding Name (dropdown list) Initially, this shows you the name supplied when the
binding was created. Do not use spaces in this name.

Description

Delivery Channel
Handler

[None] If your B2B host has a handler BP of this type, choose
it from the dropdown list.
(SeeBeyond supplies two standard delivery channel
handler BPs: bpEX_DeliveryChannel_File, used in
the sample, and bpEX_DeliveryChannel_FTP.)

Delivery Message Syntax
Validation Handler

[None] If your B2B host has a handler BP of this type, select
it from the list.
41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring Trading Partners Configuring Trading Partners
to the end; below the list, three new subtabs appear, with General preselected.
All three subtabs for the new binding have been populated with default
parameters; to modify them, see the following procedure.

E In the General tab, enter the following information and click Save:

Entries marked req indicate an entry is required but the default is blank.

Table 6 Setting ToPartner Envelope Binding Configurations

Parameter Name
Default
Value

Description / Notes

Release Quantity 1 Nonnegative integer. Required. Specifies the threshold
beyond which a batch send is triggered. Set Release
Quantity to a very high value (99999999) if you want to send
messages on a schedule, using Release Scheduler String.

Release Scheduler String A expression specifying when and how often to run. The
expression uses cron syntax and consists of six (or optionally
seven) arguments, separated by spaces, to specify: second,
minute, hour, day-of-month, month, day-of-week (and
optionally year).
When a trigger time occurs, a batch is sent even if its count
has not reached Release Quantity.

Time-Out (Minutes) req Nonnegative integer. Required. Specifies maximum time to
wait for a reply before attempting a re-send.

Max Retry Count req Nonnegative integer. Required. Specifies maximum number
of times to retry sending before giving up.

Batcher Handler [None] If your B2B host has a handler BP of this type, choose it from
the list.
(SeeBeyond supplies a standard batcher handler BP for ASC
X12: bpEX_Batcher_ASC X12, used in the sample.)

ISA01 Author Info Qual req Refer to the ASC X12 documentation.

ISA02 Author
Information

Refer to the ASC X12 documentation.

ISA03 Sec Info Qual req Refer to the ASC X12 documentation.

ISA04 Security
Information

Refer to the ASC X12 documentation.

ISA05 IC Sender ID Qual req Refer to the ASC X12 documentation.

ISA06 Interchange
Sender ID

Refer to the ASC X12 documentation.

ISA07 IC Rcvr ID Qual req Refer to the ASC X12 documentation.

ISA08 Interchange Rcvr
ID

req Refer to the ASC X12 documentation.

ISA11 IC Control
Standard Identifier

U Refer to the ASC X12 documentation.

ISA12 IC Version
Number

00401 Refer to the ASC X12 documentation.
42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring Trading Partners Configuring Trading Partners
ISA13 IC Control
Number

0 Refer to the ASC X12 documentation.

ISA14 Acknowledgment
Requested

1 Refer to the ASC X12 documentation.

ISA15 Usage Indicator P Refer to the ASC X12 documentation.

ISA16 Comp Elem Sep : If you use nondefault delimiters (for example, if you use “!”
for segment terminator in v4060), you must ensure that your
business rules manually pass the nondefault delimiters into
the ExStdEvent/PayloadSection/Envelopes/BusinessProtocol/
location: In other words, pass the ISA into .../Batch/Header,
the IEA into .../Batch/Trailer, the GS into .../Group/Header,
and the GE into .../Group/Trailer.
To use a control character as a delimiter, pass the escaped
Unicode UTF-16 representation of the character (\uXXXX).
For example, if you wanted to use a carriage return (ASCII
0x0d) as a delimiter, you would pass the string \u000d

Segment Terminator ~

Element Separator *

GS06 Group Control
Num

5

Table 7 Setting FromPartner DeEnvelope Binding Configurations

Parameter Name Default Value Description / Notes

Batch Splitter Handler [None] Select a BP from the list.

ISA01 Author Info Qual req Refer to the ASC X12 documentation.

ISA02 Author
Information

Refer to the ASC X12 documentation.

ISA03 Sec Info Qual req Refer to the ASC X12 documentation.

ISA04 Security
Information

Refer to the ASC X12 documentation.

ISA05 IC Sender ID Qual req Refer to the ASC X12 documentation.

ISA06 Interchange
Sender ID

Refer to the ASC X12 documentation.

ISA07 IC Rcvr ID Qual req Refer to the ASC X12 documentation.

ISA08 Interchange Rcvr
ID

Refer to the ASC X12 documentation.

ISA11 IC Control
Standard Identifier

U Refer to the ASC X12 documentation.

ISA12 IC Version
Number

00401 Refer to the ASC X12 documentation.

ISA14 Acknowledgment
Requested

1 Refer to the ASC X12 documentation.

Table 6 Setting ToPartner Envelope Binding Configurations

Parameter Name
Default
Value

Description / Notes
43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Configuring Trading Partners Setting Up Trading Partner Profiles (TPP)
5.3 Setting Up Trading Partner Profiles (TPP)
Configuration parameters for each TP Profile are all contained in the Properties tab.

Figure 15 Trading Partner Profile: “Properties” Tab

5.4 Configuring Business Services
Configuration parameters for a business service (or messaging service) are organized
into two major tabs: Properties and Components.

ISA15 Usage Indicator P Refer to the ASC X12 documentation.

Table 8 Parameters in the (TP->TPP->) “Properties” Tab

Parameter Name Default Value Description / Notes

Profile Name Use this field to rename a TP profile.

Max Concurrent
Conversations

(no preset value) Use this field to specify an upper limit to the number
of simultaneous business services being processed.

Table 7 Setting FromPartner DeEnvelope Binding Configurations (Continued)

Parameter Name Default Value Description / Notes
44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Configuring Trading Partners Configuring Business Actions
5.4.1 Business Service > Business Actions
In the Business Service Configuration window, click the Business Actions tab to display
a list of all business actions defined for the current business service. You can expand
one or more of the business actions to view or modify its parameters; see Table 9.

5.5 Configuring Business Actions

Figure 16 Business Service Configuration: “Business Actions” Tab

Table 9 Parameters in the (TP->TPP-> Business Service) “Business Actions” Tab

Parameter Name Default Value Description / Notes

Send To Partner (Read only; value
depends on
action type)

true indicates an outbound (Send ToPartner) action.
false indicates an inbound (Receive FromPartner)
action.

Delivery Channel (dropdown) Choose from a dropdown list of XDC bindings that
have been defined for this TP.

Internal Delivery
Channel

[None] If your host uses IDCs, choose from a dropdown list
of IDC bindings that have been defined for this TP.

Enveloping Channel (dropdown) Choose from a dropdown list of XDC bindings that
have been defined for this TP.

Expect
Acknowledgments

[None] If set to true, then an error is issued if no CONTRL is
received within the Time-Out period (see below).
The value set here—either true or false—appears in
Message Tracking of Request/Response.

Character Set Encoding (Leave blank for default character set encoding.)

Send warnings with
ACKs

[None]
45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Configuring Trading Partners Configuring Business Actions
Batch Tracking Both Retain the default setting to assure tracking of
outbound and inbound batches.

Group Tracking Both Retain the default setting to assure tracking of
outbound and inbound groups.

Transaction Tracking Both Retain the default setting to assure tracking of
outbound and inbound transactions.

Time-Out (Minutes) 10 Set the maximum amount of time to wait before
issuing an error. Even if received afterward, Message
Tracking still shows the timeout error occurred.

Business Protocol
Validation Handler

[None] Choose a handler BP of this type from the list. The
list is populated by values in the B2B host.

Business Message
Syntax Validation
Handler

[None] Required for all actions except 997L. Choose a
handler BP of this type from the list.

Business Transaction
Type Handler

[None] Choose a handler BP of this type from the list. The
list is populated by values in the B2B host.

Custom Business
Protocol Validation
Handler

[None] If your B2B host has a handler BP of this type, choose
it from the dropdown list.

Business ACK Generator
Handler

[None] If your B2B host has a handler BP of this type, choose
it from the list.

Business ACK Processor
Handler

[None] Choose a handler BP of this type from the list.

Error Handler [None] If your B2B host uses error handler BPs, choose one
from the list.

Custom External Unique
ID Handler

[None] If your B2B host has a custom handler BP of this type,
choose it from the list.

GS01 Functional ID (depends on
business action)

This must match the value of the “Group Name”
attribute of this business action, set in the B2B host’s
business service.
For example, a Group Name of “HS” is for a 270
action; “HB” for a 271; “PO” for an 850; “PR” for an
855; “FA” for a 997.

GS02 Application Sender
Code

req Refer to the X12 standards documentation.

GS03 Application Rcvr
Code

req Refer to the X12 standards documentation.

GS04 Date Format CCYYMMDD Choose from the list to use four-digit or two-digit
year format. Examples:

20041201 = December 1, 2004
050112 = January 12, 2004

Table 9 Parameters in the (TP->TPP-> Business Service) “Business Actions” Tab (Continued)

Parameter Name Default Value Description / Notes
46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Configuring Trading Partners Configuring Business Actions
GS05 Time Format HHMM Choose from the list to specify seconds and degree
of accuracy. Examples:

2359 = 11:59PM
235959 = 11:59:59PM
23595999 = 11:59:59.99PM

GS07 Resp Agency Code X Refer to the X12 standards documentation.

GS08 Vers/Rel/Indust ID
Code

req Refer to the X12 standards documentation.

Starting Control
Number

0

Table 9 Parameters in the (TP->TPP-> Business Service) “Business Actions” Tab (Continued)

Parameter Name Default Value Description / Notes
47 SeeBeyond Proprietary and Confidential

Chapter 6

Working with the ASC X12 Sample

The ASC X12 Manager Composite Application comes with a sample ICAN Project. You
can import this Project into Enterprise Designer and use it to quickly learn how to set
up ASC X12 Projects and business logic.

What’s in This Chapter

About the ASC X12 Manager Sample on page 48

Quick Steps to Get the Sample Up and Running on page 51

Unzipping the Sample File on page 53

Importing the Sample Projects on page 54

Understanding the 850 Feeder Project on page 55

Configuring the Oracle External Application on page 61

Creating and Activating Deployment Profiles on page 63

Importing and Activating Trading Partners on page 64

Running the X12 Sample on page 65

6.1 About the ASC X12 Manager Sample
The ASC X12 Manager sample includes several Projects that you can import into
Enterprise Designer to see how ICAN Projects for ASC X12 are designed.

The sample demonstrates how ASC X12 Manager is used for outbound and inbound
message processing, exchanging ASC X12 850 requests and 855 responses with 997
acknowledgments between enterprises named “Atlanta” and “Berlin”.

The following section describes the sample process flow in detail.

6.1.1 Process Flow in the ASC X12 Sample
The following figure shows the process flow and most important components in the
sample. The numbered items in the following diagram shows the message flow.
48 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Working with the ASC X12 Sample About the ASC X12 Manager Sample
Figure 17 ASC X12 Sample Process Flow

Process Flow in the Atlanta Environment

Initiate processing and prepare/pass the 850 action

1 The Atlanta feeder Project, 4010_850_FromInt_Inc, is triggered by an inbound File
eWay when it detects a file of the form X12_dlg_850_Out*.in. It passes XML data to
the 850_BP process; the data identifies a trading partner and specifies a service, an
action, and a source of data. (For the presupplied .in file, the TP is named Berlin,
the service is dlg_850_Out, the action is 850, and the data comes from a well-
qualified filename.)

2 Using these four data items, the 850_BP process obtains and modifies the
ExStdEvent message and publishes to a standard eXchange topic named
EX_FROMINTERNAL.

One of this topic’s subscribers is a business process (bpEX_MainFromTP) that
provides ExStdEvent messages to the eXchange Service for the B2B host for Atlanta
X12_Host.

For more information about ExStdEvent, standard eXchange JMS topics lke
EX_FROMINTERNAL, and core BPs like bpEX_MainFromTP, see the eXchange
Integrator Protocol Designer’s Guide.

For more information about the 850_BP, see “About the 850 Project BP” on
page 57.

3 Based on the specified service and action (dlg_850_Out and 850) in the ExStdEvent
message, the ASC X12 Manager and eXchange process the message, and then the
Atlanta host passes an 855 response to the specified trading partner.

Feeder project:
4010_855_FromInt_850

Feeder project:
4010_850_FromInt_Inc

Host project:
X12_Host

EX_FROM
INTERNAL

EX_TO
INTERNAL

EX_TO
INTERNAL

EX_FROM
INTERNAL

FileIn

850_BP
Host project:
X12_Host850

997

3, 4

855

997

8, 9

FileIn

855_BP
1 2 5

710

6

Atlanta Environment (AtlantaEnv) Berlin Environment (BerlinEnv)
49 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Working with the ASC X12 Sample About the ASC X12 Manager Sample
Process Flow in the Berlin Environment

Validate the 850 request, acknowledge, and prepare/pass the 855

1 When Berlin’s B2B host (also named X12_Host) receives the inbound 850 request
from its trading partner Atlanta, it validates the message (per a business message
syntax validation selector/handler) and sends back a 997 acknowledgment.

2 One of X12_Host’s BPs (bpEX_SendToInternalAndDialogX12) publishes the
ExStdEvent message to a standard eXchange topic named EX_TOINTERNAL, one
of whose subscribers is a sample process named 855_BP

3 The 855_BP process, having obtained the ExStdEvent message, uses the Batch eWay
to read information to generate a response. For more information on 855_BP, see
“About the 855 Project BP” on page 59.

4 The 855_BP process creates a new ExStdEvent message containing the 855 response
and publishes it to the standard eXchange topic EX_FROMINTERNAL. As before,
a subscriber (bpEX_MainFromInternal) in the eXchange Service provides the
message to the B2B host, X12_Host.

5 Based on the specified service and action (dlg_850_In and 855) that it finds in the
ExStdEvent, the Berlin host passes an 855 response to the specified trading partner
(Atlanta).

On the Atlanta side: Validate the 855 response, acknowledge, and continue

6 When Atlanta’s B2B host (X12_Host) receives the inbound 855 request from its
trading partner Berlin, it validates the message (per a business message syntax
validation handler) and sends back a 997 acknowledgment.

One of the X12_Host’s BPs (bpEX_SendToInternalAndDialogX12) publishes the
message to the standard eXchange topic EX_TOINTERNAL.

6.1.2 About the X12_Host
dlg_<action>_Out and dlg_<action>_In are the host project’s services, also called
“business dialogs”:

The dlg_<action>_Out dialog has six actions (see Figure 18 on page 51):
It starts with an outbound internal-to-host action, then continues with an
outbound-to-TP action (such as an 850 or a 270) and a 997 acknowledgment,
followed by an inbound-from-TP reply (such as an 855 or a 271) and a 997
acknowledgment; and it ends with an inbound host-to-internal action.

The dlg_<action>_In dialog also has six actions: It starts with an inbound-from-
TP action and a 997 acknowledgment, then continues with an inbound host-to-
internal action, followed by an outbound internal-to-host action; and it ends an
outbound-to-TP reply action and a 997 acknowledgment.

mad_X12 is the host project’s message attributes definition (MAD).

X12 is the name of the B2B host itself, as well as the project name:
50 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Working with the ASC X12 Sample Quick Steps to Get the Sample Up and Running
Its Business Protocols window references the services (business dialogs) named
dlg_<action>_Out and dlg_<action>_In. To find them, open the BADs folder
and open the BAD named “X12”.

This window also references the MAD, mad_X12. To find it, open the MAD
folder.

Its External Delivery Channels window defines two delivery channels for the
ASC X12 MAD. The sample implementation uses channels named BLF_*, which
reference the BatchLocalFile transport attributes definition (TAD) as their sender
(to partner) transport protocol, and a ChannelManagerFile TAD as their receiver
(from partner) transport protocol.

cm_X12_Host is the map of which activation creates the “eXchange Service”
external:

Its only input is an instance of X12_Host, with two connections going out
(towards the right).

Its only output is an instance of Oracle, with two connections coming in (from
the left).

Connecting to both is an instance of a SeeBeyond-supplied tracking application.

Figure 18 B2B Host (X12_Host)— Project Components

6.2 Quick Steps to Get the Sample Up and Running
The following provides an overview of the steps necessary to get the sample up and
running as quickly as possible. For detailed information, refer to the cross reference
mentioned for each step.

To configure and run the ASC X12 Manager sample:

1 Unzip the ASC X12 Manager sample file in the following folder as described in
“Unzipping the Sample File” on page 53.

C:\temp\eXchange

2 Import the sample Project .zip file from the following folders as described in
“Importing the Sample Projects” on page 54.

C:\temp\eXchange\Sample\X12\Projects
C:\temp\eXchange\Sample\Common\Projects

3 Configure the server name for the Oracle external application myExtOracleOut as
described in “Configuring the Oracle External Application” on page 61.

4 In the eXchange > Deployment folder, create a Connectivity Map to specify which
validation BPs are to be used by the Project as described in “Creating the
Validation Connectivity Map” on page 62.
51 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Working with the ASC X12 Sample Quick Steps to Get the Sample Up and Running
The validation BPs reside in the SeeBeyond > eXchange > User Components >
OTD Validations > X12 > v4010 folder. Set the eWay icon to Inbound Exchange
Service. The figure below shows the completed Connectivity Map.

Figure 19 The Sample Project Validation Connectivity Map

5 For each Project, create, automap, and activate Deployment Profiles for each Project
as defined in the table below. The Extra Steps column define additional steps you
must take before activating profiles.

For details, refer to “Creating and Activating Deployment Profiles” on page 63.

If the error “Failed to obtain JNDI name prefix(ERROR_GET_JNDINAMEPREFIX)”
occurs, you need to map to the X12_DataDir constant.

Table 10 Deployment Profiles To Be Created and Activated

Project Name Deployment Profile(s) Extra Steps

X12_Host 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

--

ChMgr_Inb_FromPartner 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

Assign an eXchangeService
connection to X12_Host
eXchange Service for each
profile.

Errors_to_File 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

Map to the Directory constant in
each Environment before
activating profiles.

4010_850_FromInt_Inc 1 profile for AtlantaEnv Map to the X12_DataDir constant
in the Environment before
activating the profile.

4010_855_FromInt_850 1 profile for BerlinEnv Map to the X12_DataDir constant
in the Environment before
activating the profile.

eXchange > Deployment 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

--
52 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Working with the ASC X12 Sample Unzipping the Sample File
6 Import and activate the Trading Partners in the eXchange Partner Manager by
following the steps below. For details, refer to “Importing and Activating Trading
Partners” on page 64.

A In the Configuration tab, click Import.

B Open the Repository and BerlinEnv and click X12_Host1.

C Enter Atlanta for the name, browse to
C:\temp\eXchange\Sample\TradingPartners\X12TP_for-BerlinEnv_to-
from_Atlanta.xml, and click Import.

D Do the same to create the Berlin TP for the AtlantaEnv but name the Trading
Partner Berlin and point it to
C:\temp\eXchange\Sample\TradingPartners\X12TP_for-AtlantaEnv_to-
from_Berlin.xml.

7 In the LogicalHost\bootstrap\bin folder, start the AtlantaEnv and BerlinEnv
Logical Hosts with the following syntax:

bootstrap -r http://myBox:nnnnn/myRepository -i myId -p myPassword
-e EnvironmentName -l LogicalHost1

For details, refer to “Running the X12 Sample” on page 65.

8 Rename the .~in extension to .in in the
c:\temp\eXchange\Sample\X12\Data\Atlanta folder.

6.3 Unzipping the Sample File
The ASC X12 Manager sample Projects are included in the X12ManagerDocs.sar. This
file is uploaded separately from the ASC X12 Manager product file (X12Manager.sar)
during installation. For information about uploading the X12ManagerDocs.sar, refer to
Installing the ASC X12 Manager Composite Application on page 30.

Once you have uploaded the X12ManagerDocs.sar to the Repository and you have
downloaded the sample Project (X12Manager_Sample.zip) using the
DOCUMENTATION tab in the Enterprise Manager, the sample resides in the folder
specified during the download, which should be c:\temp\eXchange.

Note: If you unzip the sample Project .zip file to a different location, modifications will be
required. We recommend that you unzip the sample Project file to
c:\temp\eXchange to avoid complications. Modifications would entail changing
the value of the data root directory Project variables in Enterprise Designer, the
fields in the ToPartner and FromPartner tabs in eXchange Partner Manager (), and
the contents of the sample data files named X12dlg_*.

Unzip the X12Manager_Sample.zip file in the c:\temp\eXchange folder. The folder
now contains the data files and importable Projects that make up the X12 sample.

The Projects are in the following folders:
53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Working with the ASC X12 Sample Importing the Sample Projects
c:\temp\eXchange\Sample\Common\Projects
(eXchange Project and Environment)

c:\temp\eXchange\Sample\X12\Projects
(ASC X12 Projects)

The table below describes the purpose of each Project .zip file:

6.4 Importing the Sample Projects
After unzipping the sample .zip file as described in the previous section, you can
import the ASC X12 Manager sample into Enterprise Designer. The procedure below
describes how you import the Project .zip files included in the X12 sample.

Note: This procedure does not describe importing the HIPAA and
4010_270_271_feeders.zip or HIPAA_278a1_278a3_feeders.zip. Those Projects are
optional.

To import the sample Projects

1 In the Project Explorer tab of the Enterprise Designer, right-click the Repository
and click Import. A message confirms if you want to save your changes.

2 Click Yes to save your changes. The Import Manager dialog box appears.

3 Click Browse, navigate to the C:\temp\eXchange\Common\Projects folder, and
click eX_Common_Projects.zip.

4 Click Open. The Import Manager dialog box appears.

Table 11 X12Manager_Sample.zip Project Files

Project File Name Description

eX_Common_Projects.zip eXchange Project

eX_Common_Environments.zip eXchange Environments

4010_270_271_feeders.zip Input Project for 270/271 requests (optional for
running the sample)

4010_850_855_feeders.zip Input Project for 850/855 requests

X12_Host.zip ASC X12 Logical Host Project

HIPAA_270_271_feeders.zip Input Project for 270/271 HIPAA transactions
(optional for running the sample)

HIPAA_278a1_278a3_feeders.zip Input Project for 278 A1/178 A3 HIPAA
transactions (optional for running the sample)
54 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Working with the ASC X12 Sample Understanding the 850 Feeder Project
Figure 20 Importing Sample Projects

5 Click Import. If an “Missing APIs” warning appears, click Continue.

If another error message occurs, a *.sar file has not been uploaded. Verify that all
*.sar files required for the sample have been installed. For information, refer to
“Installing the ASC X12 Manager Composite Application” on page 30.

6 Click OK at the dialog box confirming that the Project imported successfully.

7 Click Browse and repeat steps 5 and 6 to import eX_Common_Environments.zip.

8 Click Browse and navigate to the c:\temp\eXchange\X12\Projects folder.

9 Repeat step 5 and 6 to import the following Projects:

4010_850_855_feeders.zip

X12Host.zip

10 Click Close.

6.5 Understanding the 850 Feeder Project
This section describes the Connectivity Map and BPs for the 850 feeder Project.
55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Working with the ASC X12 Sample Understanding the 850 Feeder Project
6.5.1 About the 850 Project Connectivity Map
The request feeder Project, 4010_850_FromInt_Inc, has a Connectivity Map named
850_FromInternal_CMap. This is illustrated below and explained in the callouts that
follow Figure 21.

Figure 21 Connectivity Map for 850 Feeder Project

1 FileIn eWay: Connects to 850_BP1 and supplies the TP, service, action, and direction
information required to look up a Trading Partner, as well as a data source for the
initial ExStdEvent payload.

2 850_BP1 Business Process: Receives the data, looks up the trading partner, gets
ExStdEvent, increments the ID, updates ExStdEvent, and publishes it to the
EX_FROMINTERNAL topic. For more information, refer to “About the 850 Project
BP” on page 57.

3 eXchangeService1: Provides services for the Atlanta host used by 850_BP1 for
retrieving the ExStdEvent message and looking up the Trading Partner.

4 BatchLocalFileOut eWay: Writes out the 850 file for Berlin.

5 BatchLocalSenderIn eWay: Reads the 850 template file.

6 EX_FROMINTERNAL topic: A JMS topic whose publisher is ICAN and whose
subscriber is the bpEX_MainFromInternal BP, which provides the message to the
eXchange Service. For more information on standard eXchange JMS topics, see the
eXchange Integrator Protocol Designer’s Guide.

1 2

3

4

5

6

56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Working with the ASC X12 Sample Understanding the 850 Feeder Project
6.5.2 About the 850 Project BP
The 850_BP1 initiates the data flow for the 850 feeder Project. Figure 22 shows the
850_BP1 in the Enterprise Designer.

Figure 22 850_BP1 for the 850 Feeder Project

850_BP1: Initiating the data flow

1 receive Activity (of the “FileClient” service, from SeeBeyond > eWays > File):
Receives the message.

2 unmarshal Activity (of the “FeederParameters_[...]” OTD, in the Project):
Unmarshals the message.

1

2

3 6 7

8 9 10 11

15

12

13
3

4

5
14
57 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Working with the ASC X12 Sample Understanding the 855 Feeder Project
3 Assign FeederParams business rule: Assigns the file information parameters, such as
filename and location set in the Trading Partner Profile.

4 read Activity (of the “BatchLocalFile” service, from SeeBeyond > eWays >
BatcheWay): Reads the input file.

5 Wait timer: Waits with processing and calling the standard event.

6 getExStdEvent Activity (of “eXCommonService”, from SeeBeyond > eXchange >
Core Services): Retrieves the ExStdEvent to prefill the next standard event.

7 unmarshal Activity (of the ExStdEvent OTD, from SeeBeyond > eXchange >
Core Components): Unmarshals the input message into the standard event.

8 Duplicate ExStdEvent business rule: Duplicates the standard event.

9 unmarshal Activity (of the X12_4010_850_PurcOrde” OTD, from SeeBeyond >
OTD Library > X12 > v4010): Unmarshals the template data that was read in.

10 Increment PurcOrdeNumb business rule: Increments the purchase order number.

11 marshal Activity (of the X12_4010_850_PurcOrde” OTD, from SeeBeyond >
OTD Library > X12 > v4010): Creates the purchase order.

12 marshal Activity (of the “ExStdEvent” OTD, from SeeBeyond > eXchange >
Core Components): Marshals the standard event.

13 send Activity (of the “JMS” OTD, from SeeBeyond > eGate): Sends the message to
the JMS IQ Manager.

14 Increment FileRepCntr business rule: Increments the template file number.

15 write Activity (of the “BatchLocalFile” service, from SeeBeyond > eWays >
BatcheWay): Writes the 850 out for the Trading Partner to retrieve.

6.6 Understanding the 855 Feeder Project
This section describes the Connectivity Map and BPs for the 855 feeder Project.

6.6.1 About the 855 Project Connectivity Map
The response feeder Project, 4010_855_FromInt_850, has a Connectivity Map named
855_FromInternal_CMap. This is illustrated below and explained in the callouts that
follow Figure 23.
58 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Working with the ASC X12 Sample Understanding the 855 Feeder Project
Figure 23 Connectivity Map for 855 Feeder Project

1 EX_TOINTERNAL topic: A JMS topic whose publisher is the
bpEX_SendToInternalAndDialogX12BP, which provides the message from the
trading partner, and whose subscriber is ICAN.

2 855_BP1: Receives the data, looks up the Trading Partner, retrieves ExStdEvent,
increments the ID, updates ExStdEvent, and publishes it to the
EX_FROMINTERNAL topic. For more information, refer to “About the 855 Project
BP” on page 59.

3 BatchLocalFile eWay: Writes out the 855template file.

4 eXchangeService1: Provides services for the Berlin B2B host used by 855_BP1 for
retrieving the standard event and looking up the Trading Partner.

5 EX_FROMINTERNAL topic: A JMS topic whose publisher is ICAN and whose
subscriber is the bpEX_MainFromInternal BP which provides the message to the
eXchange Service.

6.6.2 About the 855 Project BP
The 855_BP1 replies to a request for the 850 feeder Project. Figure 24 shows the 855_BP1
in the Enterprise Designer.

1
2

3

5

4

59 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Working with the ASC X12 Sample Understanding the 855 Feeder Project
Figure 24 855_BP1 for the 855 Feeder Project

1 receive Activity (of the JMS OTD, from SeeBeyond > eGate): Receives message.

2 unmarshal Activity (of the ExStdEvent OTD, from SeeBeyond > eXchange >
Core Components): Unmarshals the message using the standard event OTD.

3 Delivery Attributes business rules: Assigns delivery attributes (file, location) as
defined in the Trading Partner Profile.

4 unmarshal Activity (of the “BatchFTP” or “BatchLocalFile” service, from
SeeBeyond > eWays > BatcheWay): Sets all batch parameters to indicate to the read
Activity which files to pick up and where.

5 Set Response Service Param FileName business rule: Dynamically creates the file to
be retrieved.

6 read Activity (of the “BatchLocalFile” service, from SeeBeyond > eWays >
BatcheWay): Reads the 855 message.

7 unmarshal Activity (of the “InputParameters_[...]” OTD, in the Project): Fills in the
next read Activity with parameter information.

1 2
3 4 5

6

7

8 9

12

11

13
14

15

16
17

10
60 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Working with the ASC X12 Sample Configuring the Oracle External Application
8 read Activity (of the “BatchLocalFile” service, from SeeBeyond > eWays >
BatcheWay): Reads the 855 template.

9 getExStdEvent Activity (of “eXCommonService”, from SeeBeyond > eXchange >
Core Services): Generates an updated standard event.

10 unmarshal Activity (of the ExStdEvent OTD, from SeeBeyond > eXchange >
Core Components): Unmarshals the updated standard event.

11 Business Rule(empty): A marker indicating the last activity in the business process
that must not be modified.

12 unmarshal Activity (of the X12_4010_850_PurcOrde OTD, from SeeBeyond >
OTD Library > X12 > v4010): Unmarshals the 850 message.

13 unmarshal Activity (of the X12_4010_855_PurcOrde OTD, from SeeBeyond >
OTD Library > X12 > v4010): Generates the 855 message.

14 Duplicate Response business rule: Verifies whether there are duplicates.

15 marshal Activity (of the X12_4010_855_PurcOrde OTD, from SeeBeyond >
OTD Library > X12 > v4010): Marshals the 855 message.

16 marshal Activity (of the ExStdEvent OTD, from SeeBeyond > eXchange >
Core Components): Marshals the standard event.

17 send Activity (of the JMS OTD, from SeeBeyond > eGate): Sends the message to the
JMS IQ Manager.

6.7 Configuring the Oracle External Application
The procedure below describes how to configure the Oracle external application for the
sample. As described in “Configuring the Oracle Database” on page 32, the database
must have the users ex_A and ex_B. The only other configuration to change is the
server name. By default, the server name is localhost.

To configuring the Oracle External Application

1 In the Environment Explorer tab in the Enterprise Designer, expand AtlantaEnv,
right-click myExtOracleOut, and click Check Out.

2 Right-click myExtOracleOut and click Properties.

3 Enter the server name for your Oracle database.

4 Verify that the other options are configured appropriately as follows:

Option Setting

DatabaseName SID for the eXchange database

DataSourceName local

Password ex_A

PortNumber 1521 (unless the Oracle administrator changed
the default)
61 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Working with the ASC X12 Sample Creating the Validation Connectivity Map
5 Click OK to close the Properties dialog box.

1 Expand BerlinEnv, right-click myExtOracleOut, and click Check Out.

2 Right-click myExtOracleOut and click Properties.

3 Enter the server name for your Oracle database and verify that the other options are
correct as described in step 4. The user name and password must be ex_B.

6.8 Creating the Validation Connectivity Map
The procedure below describes how to create a Connectivity Map to specify which
validation BPs are to be used in the sample Project.

To create the validation Connectivity Map

1 In the Project Explorer tab in the Enterprise Designer, expand eXchange, right-click
Deployment, click New, and click Connectivity Map.

2 Drag eXchangeService to the new map.

3 Expand the eXchange, User Components, OTD Validations, X12, and v4010
folders.

Figure 25 Locating Validation BPs

4 Drag X12_4010_850_Full_SynValHandler and X12_4010_855_Full_SynValHandler
onto the Connectivity Map.

ServerName name of the Oracle server

User ex_A

Option Setting
62 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.9
Working with the ASC X12 Sample Creating and Activating Deployment Profiles
5 Link eXchangeService to the 850 validation handler and to the 855 validation
handler as shown below.

Figure 26 Creating the Validation Connectivity Map

6 Double-click the eWay icon for each link, click Inbound Exchange Service in the
Templates dialog box appears and click OK. The Properties dialog box appears.

7 Click OK and click Save. The Connectivity Map is now complete.

6.9 Creating and Activating Deployment Profiles
After creating the validation Connectivity Map, create, automap, and activate
Deployment Profiles for each Project as defined in the table below. The Extra Steps
column defines additional steps you must take before activating profiles.

Table 12 Deployment Profiles To Be Created and Activated

Project Name Deployment Profile(s) Extra Steps

X12_Host 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

ChMgr_Inb_FromPartner 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

Assign an eXchangeService connection
to X12_Host eXchange Service for each
profile.

Errors_to_File 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

Map to the Directory constant in each
Environment before activating profiles.

4010_850_FromInt_Inc 1 profile for AtlantaEnv Map to the X12_DataDir constant in the
Environment before activating the
profile.

4010_855_FromInt_850 1 profile for BerlinEnv Map to the X12_DataDir constant in the
Environment before activating the
profile.

eWay icon
63 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.10
Working with the ASC X12 Sample Importing and Activating Trading Partners
Note: If the error “Failed to obtain JNDI name
prefix(ERROR_GET_JNDINAMEPREFIX)” occurs, you forgot to map to the
X12_DataDir constant.

The procedure below describes how to create, automap, and activate the Deployment
Profiles listed in the table above.

To create and activate Deployment Profiles

1 In the Project Explorer tab of Enterprise Designer, right-click the Project for which
you are adding a Deployment Profile, click New, Deployment Profile, enter a
name, click AtlantaEnv or BerlinEnv and click OK.

2 For the following Projects, click Map Variables, click Mapped Name, click
X12_DataDir, and click OK.

Errors_to_File

4010_850_FromInt_Inc

4010_855_FromInt_850

3 Click Automap and click OK when the confirmation message appears.

Both ChMgr_Inb_FromPartner profiles require you to assign an eXchangeService
connection to the X12_Host eXchange Service; select protocol mad_X12.

4 Click Save All.

5 Click Activate. Click No when the Apply to Logical Host message appears.

6.10 Importing and Activating Trading Partners
After activating the Deployment Profiles as described in the previous section, import
and activate Trading Partners in ePM as described in the procedure below.

You are importing a Trading Partner configured for either the Atlanta or the Berlin
Environment. In BerlinEnv, you take the viewpoint of the Berlin host: “ToPartner”
means “to Atlanta”; “FromPartner” means “from Atlanta”. In AtlantaEnv, you take the

[eXchange] Deployment 2 profiles; one for AtlantaEnv
and a second for BerlinEnv

If you use the optional 270/271 Projects
in addition to the 850/855 Project,
create and activate the 270/271 profiles
(only—do not activate the 850/855
profiles)

HIPAA_270_FromInt_Inc 1 profile for AtlantaEnv (optional—not necessary to run the
sample)

HIPAA_271_FromInt_850 1 profile for BerlinEnv (optional—not necessary to run the
sample)

Table 12 Deployment Profiles To Be Created and Activated

Project Name Deployment Profile(s) Extra Steps
64 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.11
Working with the ASC X12 Sample Running the X12 Sample
viewpoint of the Atlanta host: “ToPartner” means “to Berlin”; “FromPartner” means
“from Berlin”.

The Repository and Oracle database must be running and accessible for this procedure.

For detailed information about setting up Trading Partners in ePM, refer to the
eXchange Integrator User’s Guide.

To import and activate the Trading Partners

1 In the Configuration tab in ePM, click Import.

2 Open the Repository and BerlinEnv and click X12_Host1.

3 Enter Atlanta for the name, browse to:

C:\temp\eXchange\Sample\TradingPartners\X12TP_for-BerlinEnv_to-
from_Atlanta.xml, and click Import.

4 Do the same to create the Berlin TP for the AtlantaEnv but name the Trading
Partner Berlin and point it to:

C:\temp\eXchange\Sample\TradingPartners\X12TP_for-AtlantaEnv_to-
from_Berlin.xml.

5 Select Atlanta or Berlin, click Activate.

6 Click Activate.

6.11 Running the X12 Sample
Once you have completed all the steps in the sections in this chapter, you are ready to
run the sample. The section below describes how to start the Logical Hosts. After the
Logical Hosts are running, change the file extensions of the input files in the data
directory as described in “Preparing the Input Data” on page 66.

6.11.1 Starting the Logical Hosts
The procedure below describes how to start the Logical Hosts for the AtlantaEnv and
BerlinEnv Environments.

To start the Logical Hosts

1 Navigate to the LogicalHost\bootstrap\bin directory, where LogicalHost is the
Logical Host name for the AtlantaEnv or BerlinEnv Environment.

2 Use the following syntax to start the Logical Host

bootstrap -r http://myBox:nnnnn/myRepository -i myId -p myPassword
-e EnvironmentName -l LogicalHost1

Where myBox is the host name, nnnnn is the host port number, myRepository is the
Repository name, myID is the ID, mypassword is the password, and
EnvironmentName is AtlantaEnv or BerlinEnv depending on what you entered in
step 1.
65 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.11
Working with the ASC X12 Sample Running the X12 Sample
3 Repeat steps 1 and 2 to start the second Logical Host.

6.11.2 Preparing the Input Data
Once both Logical Hosts are up and running, go to the data directories and rename the
input files so that they are picked up by the sample.

To prepare the input data

In the c:\temp\eXchange\Sample\X12\Data\Atlanta folder, change the file
extension .~in to .in for the following file:

X12dlg_850_Out_feeder_Berlin.~in

The Atlanta host ...

Reads files of this form:
...\Sample\X12\Data\Atlanta\X12dlg_<action>_Out_feeder_Berlin.in

The .in file is an XML file that points to the
C:\temp\eXchange\Sample\Data\X12\Atlanta folder and _incremented.st file.

Writes output resulting from successful processing to files of this form:
...\Sample\X12\Data\Berlin\Atlanta_850_In_ISA_<timestamp>.dat

Writes error messages to files of this form:
...\Sample\X12\Data\Atlanta\ProcessedError_%d.dat
...\Sample\X12\Data\Atlanta\DeadLetter_%d.dat

The Berlin host ...

Reads files of this form:
...\Sample\X12\Data\Berlin\X12*

Writes output resulting from successful processing to files of this form:
...\Sample\X12\Data\Atlanta\Berlin_850_Out_ISA_<timestamp>.dat

Writes error messages to files of this form:
...\Sample\X12\Data\Berlin\ProcessedError_%d.dat
...\Sample\X12\Data\Berlin\DeadLetter_%d.dat
66 SeeBeyond Proprietary and Confidential

Appendix A

OTD Syntax Validation BPs

This appendix provides background and conceptual information on OTD syntax
validation BPs.

What’s in This Appendix

Activity Flow on page 67

Fault Handling on page 70

Variables Referenced by OTD Validation BPs on page 72

A.1 Activity Flow
The activity flow of an OTD syntax validation handler B2B protocol process consists of
these eight steps: (1) Receive input; (2) Copy ExStdEvent; (3) Concatenate the payload’s
headers/data/trailer into a string; (4) Unmarshal the concatenated string; (5) Populate
BizAckCorrKey; (6) Set BizRespCorrKey; (7) Perform validate; (8) Check results.

These steps are discussed in detail below.

1 The BP receives the inbound message data from its invoker.

2 The BP copies ExStdEvent from inbound to outbound: In other words, copying the
entire content of the ExStdEvent portion of the inbound data into the ExStdEvent
portion of the outbound data for the handler.

3 The BP concatenates the following headers, data, and trailers, in order, from the
PayloadSection part of the inbound data's ExStdEvent, and then copying this
concatenated string into the contents part of input of unmarshal:

A Envelopes/BusinessProtocol/Batch/Header

B Envelopes/BusinessProtocol/Group/Header

C Envelopes/BusinessProtocol/Group/Header

D RawData

E Envelopes/BusinessProtocol/Group/Trailer

F Envelopes/BusinessProtocol/Batch/Trailer

4 The BP unmarshals the input string constructed in step 3.
67 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
OTD Syntax Validation BPs Activity Flow
If the unmarshaling process throws an UnmarshalException or GenericException,
the exceptions are handled by fault handlers. See “Fault Handling” on page 70.

5 The BP populates BizAckCorrKey in the following four sub-steps:

For the ExStdEvent part of the Handler's outbound data: Populate the
KeysSection/CorrelationKeys/BizAckCorrelationKey with a string formed by
concatenating by the following components, in order:

A PayloadSection/KeysSection/InternalIDs/ExTradingPartnerGUID
(this comes from the ExStdEvent part of inbound data).

B |
(the pipe character)

C PayloadSection/MetaDataSection/Event/BusinessProtocolName
(this comes from the ExStdEvent part of inbound data)

D |
(the “pipe” character)

E ${OuterNodeName}/${InnerNodeName}[1]/${TransNodeName}[1]/
${TSHeaderNodeName}/${BusinessTransactionIdentifier}
(this comes from the unmarshaled OTD).

F |
(the “pipe” character)

G ${OuterNodeName}/${InnerNodeName}[1]/${FGHeaderNodeName}/
${FGCtrlNumNodeName}
(this comes from the unmarshaled OTD)

H |
(the “pipe” character)

I ${OuterNodeName}/${InnerNodeName}[1]/${TransNodeName}[1]/
${TSHeaderNodeName}/${TransactionExternalID}
(this comes from the unmarshaled OTD)

Assign ${OuterNodeName}/${InnerNodeName}[1]/${TransNodeName}[1]/
${TSHeaderNodeName}/${BusinessTransactionIdentifier} (from the
unmarshaled OTD) to MetaDataSection/Event/BusinessTransactionIdentifier
(of the ExStdEvent part of Handler's outbound data)

Assign ${OuterNodeName}/${InnerNodeName}[1]/${TransNodeName}[1]/
${TSHeaderNodeName}/${TransactionExternalID} (from the unmarshaled
OTD) to KeysSection/ExternalIDs/TransactionExternalID (of the ExStdEvent
part of Handler's outbound data)

Assign unmarshaled OTD to the OTD part of the validate input.

6 At this point, are two possibilities for setting BizRespCorrKey, depending on
whether the inbound data is a request or a response. This is determined by the
MetaDataSection/Event/BusinessTransactionType (of the ExStdEvent part of
inbound data).

In the case of a request (that is, the BusinessTransationType is 'Request'), then the
BP sets BizRespCorrKey using BizTxID by populating KeysSection/
68 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
OTD Syntax Validation BPs Activity Flow
CorrelationKeys/BizResponseCorrelationKey (of the ExStdEvent part of the
Handler's outbound data) with a string formed by concatenating the following
components, in order:

A KeysSection/InternalIDs/ExTradingPartnerGUID
(from the ExStdEvent part of inbound data).

B |
(the “pipe” character)

C MetaDataSection/Event/BusinessProtocolName
(from the ExStdEvent part of inbound data)

D |
(the “pipe” character)

E MetaDataSection/Event/BusinessTransactionIdentifier
(from the ExStdEvent part of inbound data)

F |
(the “pipe” character)

G ${OuterNodeName}/${InnerNodeName}[1]/${TransNodeName}[1]/
${BizRespCorrPath}
(from the unmarshaled OTD)

In the case of a response or reply (that is, the BusinessTransationType is not
'Request'), then the BP sets BizRespCorrKey using BizTxID by populating the
KeysSection/CorrelationKeys/BizResponseCorrelationKey (of the ExStdEvent
part of the Handler's outbound data) with a string formed by concatenating the
following components, in order:

A KeysSection/InternalIDs/ExTradingPartnerGUID
(from the ExStdEvent part of inbound data)

B |
(the “pipe” character)

C MetaDataSection/Event/BusinessProtocolName
(from the ExStdEvent part of inbound data)

D |
(the “pipe” character)

E MetaDataSection/Event/ProtocolRespondToMessageID
(from the ExStdEvent part of inbound data)

F |
(the “pipe” character)

G ${OuterNodeName}/${InnerNodeName}[1]/${TransNodeName}[1]/
${BizRespCorrPath}
(from the unmarshaled OTD)

7 The BP performs a validate operation.

8 The BP checks the output of the validate operation and acts based on its severity.
There are three cases: error, warning, or no problem.
69 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
OTD Syntax Validation BPs Fault Handling
In the case of an error (in other words, when the contents of the output includes
the string <Severity>ERROR</Severity>): The BP copies the validate output's
contents into the message part of the validate fault, and throws this populated
fault. The validate fault is then handled by the fault handler. See
“ValidateException” on page 70.

In the case of an warning only (that is, the output does not contain the string
<Severity>ERROR</Severity> but is found to contain the string
<Severity>WARN</Severity>), the BP populates the following fields in the
ExStdEvent part of Handler's output before the Handler returns the populated
ExStdEvent part to its invoker:

It assigns contents (from the validate output) to ErrorSection/ExException/
ExceptionDetails/OTDParsingErrors/ParsingErrorsXML

It assigns '${OtdName}' to ErrorSection/ExException/ExceptionDetails/
OTDParsingErrors/OTDIdentifier

It assigns 'BusinessMessageSyntaxValidation results' to ErrorSection/
ExException/ExceptionDetails/ErrorDescription

It assigns 'OtdErrors' to ErrorSection/ExException/ExceptionDetails/
ErrorCode

It assigns WARN' to ErrorSection/ExException/ExceptionDetails/
ErrorSeverity

In the case of no problem (that is, the output does not contain either string
<Severity>ERROR</Severity> or <Severity>WARN</Severity>): The BP
returns to its invoker. Some fields of the ExStdEvent part have been populated
already, as noted in previous steps.

A.2 Fault Handling
This section takes a closer look at the Fault Handling activity flow mentioned in steps 4
and 8 in the previous section.

In this section

ValidateException on page 70

UnmarshalException on page 71

GenericException on page 71

Other Faults on page 71

A.2.1. ValidateException
If a ValidateException (validate fault) is thrown during the validate operation, then the
following additional assignments are performed to populate certain fields in the
ExStdEvent part of the handler's output before the handler returns the populated
ExStdEvent part to its invoker:
70 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
OTD Syntax Validation BPs Fault Handling
The message part of the validate fault is assigned to ErrorSection/ExException/
ExceptionDetails/OTDParsingErrors/ParsingErrorsXML

The variable ${OtdName} is assigned to ErrorSection/ExException/
ExceptionDetails/OTDParsingErrors/OTDIdentifier

The string literal 'BusinessMessageSyntaxValidation results' is assigned to
ErrorSection/ExException/ExceptionDetails/ErrorDescription

The string literal 'OtdErrors' is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorCode

The string literal 'ERROR' is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorSeverity

A.2.2. UnmarshalException
If an UnmarshalException is thrown during the unmarshal operation, then the
following additional assignments are performed to populate certain fields in the
ExStdEvent part of the handler's output before the handler returns the populated
ExStdEvent part to its invoker:

The message part of the unmarshal fault is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorDescription

The string literal 'com.stc.otd.runtime.UnmarshalException' is assigned to
ErrorSection/ExException/ExceptionDetails/ErrorCode

The string literal 'ERROR' is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorSeverity

A.2.3. GenericException
If a GenericException is thrown during the unmarshal operation, then the following
additional assignments are performed to populate certain fields in the ExStdEvent part
of the handler's output before the handler throws the populated output as a fault:

The message part of the unmarshal fault is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorDescription

The string literal 'Unknown Exception from otd unmarshal' is assigned to
ErrorSection/ExException/ExceptionDetails/ErrorCode

The string literal 'ERROR' is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorSeverity

After the assignments are made, the BP throws the populated output as a fault. It is
expected that a GenericException fault will be handled by the handler's invoker.

A.2.4. Other Faults
If another fault is thrown but not caught as a ValidateException, UnmarshalException,
or GenericException, then the following additional assignments are performed to
71 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
OTD Syntax Validation BPs Variables Referenced by OTD Validation BPs
populate certain fields in the ExStdEvent part of the Handler's output before the
Handler throws the populated output as a fault.

The string literal 'Unknown Error(s) Occurred in the OTD message syntax
validation handler' is assigned to ErrorSection/ExException/ExceptionDetails/
ErrorDescription

The string literal 'Unknown Errors' is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorCode

The string literal 'ERROR' is assigned to ErrorSection/ExException/
ExceptionDetails/ErrorSeverity

A.3 Variables Referenced by OTD Validation BPs
The table below lists the variables that the validation BPs reference. The assignment
column uses an 850 of the X12 version 4010 as an example.

A.3.1. The Value of the ${BizRespCorrPath} Variable
The value of the ${BizRespCorrPath} variable is obtained by looking up mapping tables
with entries of key=value where key is the OTD name and value is the lookup value.

If lookup does not retrieve a value from mapping tables, then a default value is
supplied based on the protocol (ASC X12, HIPAA, UN/EDIFACT, or EANCOM), as
described below.

Table 13 Variables Referenced by OTD Validation BPs

Variable Name Assignment (using X12 v4010 850 as an example)

${OtdName} X12_4010_850_PurcOrde_Full

${HandlerName} X12_4010_850_Full_SynValHandler

${OuterNodeName} X12_4010_850_PurcOrde_Outer

${InnerNodeName} X12_4010_850_PurcOrde_Inner

${TransNodeName} X12_4010_850_PurcOrde

${TSHeaderNodeName} ST_1_TranSetHead

${BusinessTransactionIdentifier} E143_1_TranSetIdenCode

${TransactionExternalID} E329_2_TranSetContNumb

${FGHeaderNodeName} GS_FuncGrouHead

${FGCtrlNumNodeName} E28_6_GrouContNumb

${BizRespCorrPath} BEG_2_BegiSegmForPurcOrde/E324_3_PurcOrdeNumb

${BizRespCorrPath} (see below)
72 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
OTD Syntax Validation BPs Variables Referenced by OTD Validation BPs
Default Value for ${BizRespCorrPath} in X12 v4010

Mapping table entries:

X12_4010_270_EligCoveOrBeneInqu_Full=BHT_2_BegiOfHierTran/
E127_3_RefeIden

X12_4010_271_EligCoveOrBeneInfo_Full=BHT_2_BegiOfHierTran/
E127_3_RefeIden

X12_4010_850_PurcOrde_Full=BEG_2_BegiSegmForPurcOrde/
E324_3_PurcOrdeNumb

X12_4010_855_PurcOrdeAckn_Full=BAK_2_BegiSegmForPurcOrdeAckn/
E324_3_PurcOrdeNumb

X12_4010_997_FuncAckn_Full=ST_1_TranSetHead/E329_2_TranSetContNumb

Default value: ST_1_TranSetHead/E329_2_TranSetContNumb

Default Value for ${BizRespCorrPath} in X12 v4030

Mapping table entries:

X12_4030_270_EligCoveOrBeneInqu_Full=BHT_2_BegiOfHierTran/
E127_3_RefeIden

X12_4030_271_EligCoveOrBeneInfo_Full=BHT_2_BegiOfHierTran/
E127_3_RefeIden

X12_4010_850_PurcOrde_Full=BEG_2_BegiSegmForPurcOrde/
E324_3_PurcOrdeNumb

X12_4010_855_PurcOrdeAckn_Full=BAK_2_BegiSegmForPurcOrdeAckn/
E324_3_PurcOrdeNumb

X12_4030_997_FuncAckn_Full=ST_1_TranSetHead/E329_2_TranSetContNumb

Default value: ST_1_TranSetHead/E329_2_TranSetContNumb

Default Value for ${BizRespCorrPath} in X12 v4061

Mapping table entries:

X12_4061_270_EligCoveOrBeneInqu_Full=BHT_2_BegiOfHierTran/
E127_3_RefeIden

X12_4061_271_EligCoveOrBeneInfo_Full=BHT_2_BegiOfHierTran/
E127_3_RefeIden

X12_4061_850_PurcOrde_Full=BEG_2_BegiSegmForPurcOrde/
E324_3_PurcOrdeNumb

X12_4061_855_PurcOrdeAckn_Full=BAK_2_BegiSegmForPurcOrdeAckn/
E324_3_PurcOrdeNumb
73 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
OTD Syntax Validation BPs Variables Referenced by OTD Validation BPs
X12_4061_997_FuncAckn_Full=ST_1_TranSetHead/E329_2_TranSetContNumb

Default value: ST_1_TranSetHead/E329_2_TranSetContNumb

Default Value for ${BizRespCorrPath} in Other X12 Versions

Default value: ST_1_TranSetHead/E329_2_TranSetContNumb

Default Value for ${BizRespCorrPath} in HIPAA Addenda

Mapping table entries:

X12_004010X092A1_00_hipaa_270_EligCoveOrBeneInqu_Full=BHT_msk1_2_BegiO
fHierTran/E127_3_RefeIden

X12_004010X092A1_00_hipaa_271_EligCoveOrBeneInfo_Full=BHT_msk1_2_BegiOf
HierTran/E127_3_RefeIden

Default value: ST_1_TranSetHead/E329_2_TranSetContNumb

Default Value for ${BizRespCorrPath} in HIPAA Standard

Mapping table entries:

X12_004010X092_00_hipaa_270_EligCoveOrBeneInqu_Full=BHT_msk1_2_BegiOfHi
erTran/E127_3_RefeIden

X12_004010X092_00_hipaa_271_EligCoveOrBeneInfo_Full=BHT_msk1_2_BegiOfHi
erTran/E127_3_RefeIden

Default value: ST_1_TranSetHead/E329_2_TranSetContNumb

Default Value for ${BizRespCorrPath} in UN/EDIFACT v3 and v4

Default value: BGM_2_BegiOfMess/C106_2_DocuIden/E1004_1_DocuIden

Default Value for ${BizRespCorrPath} in EANCOM v3 and v4

Default value: BGM_2_BegiOfMess/C106_2_DocuIden/E1004_1_DocuIden
74 SeeBeyond Proprietary and Confidential

Index
Index

A
Accredited Standards Committee 14
acknowledgments

application 26
as part of EDI logic 27
functional acknowledgment (997) 26
interchange acknowledgment (TA1) 26
receipt of payment order 26
types of 26

American National Standards Institute 14
ANSI 14
application acknowledgments 26
ASC 14

B
backward compatibility 22

C
configuring

Oracle eWay 61
control numbers 22

functional group control number (GS06) 22
interchange control number (ISA13) 22
transaction set control number (ST02) 22

conventions, document 10

D
data element separator 17
data elements 16
Data Interchange Standards Association 14
delimiters 15, 17

data element separator 17
repetition separator 17
segment terminator 17
subelement (component) separator 17

DISA 14
document conventions 10

E
EDI 14

payment processing overview 23
usage example 23

EDISIM 27
enveloping

as part of EDI logic 27
example of EDI usage 23
eXchange support

for platforms 29

F
finding sample Projects 53
Foresight Corporation 27
functional acknowledgments (997) 26
functional group 20
functional group control number (GS06) 22

G
GS06 (functional group control number) 22

H
heap size

adjusting heap memory size 32

I
IC (interchange envelope) 21
implementation 27
importing sample Projects 54
interchange acknowledgment (TA1) 26
interchange control number (ISA13) 22
interchange envelope 21
ISA13 (interchange control number) 22

L
loops 17

M
message structure

defined 15
OTD in eGate 15

O
operating systems supported by eXchange 29
Options Setup

dialog box 32
Oracle eWay, configuring 61
OutOfMemoryError
ASC X12 Manager Composite Application User’s Guide 75 SeeBeyond Proprietary and Confidential

Index
increase heap size 32
overview

of EDI payments processing 23
of X12 14–28
sample Projects 48

P
payment-related EDI transactions 25
platforms supported by eXchange 29

R
repetition separator 17
response transactions 26

S
sample Projects

finding 53
importing 54
overview 48

Screenshots 10
SEF file 27
SEF OTD Wizard 27
SEF OTD wizard

installing 31
segment terminator 17
segments 16
ST02 (transaction set control number) 22
structure of an X12 envelope 18
structures 27

as part of EDI logic 27
subelement (component) separator 17
supporting documents 10
syntax

control numbers 22
delimiters 17

T
TA1 (interchange acknowledgment) 26
trading partner agreements 27
transaction set control number (ST02) 22
translations

as part of EDI logic 27

U
UN/EDIFACT standard 14

V
validations

as part of EDI logic 27

W
what is a message structure? 15

X
X12

acknowledgment types 26
data elements 16
end-to-end example 25
envelope structure 18
functional group 20
interchange envelope 21
loops 17
segments 16
what is it? 14

X12 body 14
X12 overview 14–28
ASC X12 Manager Composite Application User’s Guide 76 SeeBeyond Proprietary and Confidential

	ASC X12 Manager Composite Application User’s Guide
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 About This Document
	1.1.1 What’s in This Document
	1.1.2 Intended Audience
	1.1.3 Document Conventions
	1.1.4 Screenshots

	1.2 Related Documents
	1.3 References
	1.4 SeeBeyond Web Site
	1.5 SeeBeyond Documentation Feedback

	Overview of the ASC X12 Manager
	2.1 About the ASC X12 Manager Composite Application
	2.2 How the ASC X12 Manager Works
	2.3 About the ASC X12 Protocol
	2.3.1. What Is X12?
	2.3.2. What Is a Message Structure?

	2.4 Components of an X12 Envelope
	2.4.1. Data Elements
	2.4.2. Segments
	2.4.3. Loops
	2.4.4. Delimiters

	2.5 Structure of an X12 Envelope
	2.5.1. Transaction Set (ST/SE)
	2.5.2. Functional Group (GS/GE)
	2.5.3. Interchange Envelope (ISA/IEA)
	2.5.4. Control Numbers
	ISA13 (Interchange Control Number)
	GS06 (Functional Group Control Number)
	ST02 (Transaction Set Control Number)

	2.6 Backward Compatibility
	2.7 Example of EDI Usage
	2.7.1. Overview of EDI Payments Processing
	Types of Information That Is Exchanged Electronically
	Types of Electronic Payment
	Transfer of Funds

	2.7.2. Payment-Related EDI Transactions

	2.8 Acknowledgment Types
	2.8.1. TA1, Interchange Acknowledgment
	2.8.2. 997, Functional Acknowledgment
	2.8.3. Application Acknowledgments

	2.9 Key Parts of EDI Processing Logic
	2.9.1. Structures
	2.9.2. Validations, Translations, Enveloping, Acknowledgments
	2.9.3. Trading Partner Agreements

	2.10 ASC X12 Version Support
	2.11 SEF File Support

	Installing the ASC X12 Manager
	3.1 System Requirements
	3.2 Supported Operating Systems
	3.3 Supported External Applications
	3.4 Required ICAN Suite Products
	3.5 Installing the ASC X12 Manager Composite Application
	3.6 Increasing the Enterprise Designer Heap Size
	3.6.1 Resolving Memory Errors at Enterprise Designer Startup

	3.7 Configuring the Oracle Database

	Working with Validation BPs
	4.1 Importing Validation BPs into Projects
	4.2 Customizing Validation BPs

	Configuring Trading Partners
	5.1 Overview of the ePM Parameter Hierarchy
	5.2 Configuring Trading Partners
	5.2.1 Configuring Trading Partners

	5.3 Setting Up Trading Partner Profiles (TPP)
	5.4 Configuring Business Services
	5.4.1 Business Service > Business Actions

	5.5 Configuring Business Actions

	Working with the ASC X12 Sample
	6.1 About the ASC X12 Manager Sample
	6.1.1 Process Flow in the ASC X12 Sample
	Process Flow in the Atlanta Environment
	Process Flow in the Berlin Environment

	6.1.2 About the X12_Host

	6.2 Quick Steps to Get the Sample Up and Running
	6.3 Unzipping the Sample File
	6.4 Importing the Sample Projects
	6.5 Understanding the 850 Feeder Project
	6.5.1 About the 850 Project Connectivity Map
	6.5.2 About the 850 Project BP

	6.6 Understanding the 855 Feeder Project
	6.6.1 About the 855 Project Connectivity Map
	6.6.2 About the 855 Project BP

	6.7 Configuring the Oracle External Application
	6.8 Creating the Validation Connectivity Map
	6.9 Creating and Activating Deployment Profiles
	6.10 Importing and Activating Trading Partners
	6.11 Running the X12 Sample
	6.11.1 Starting the Logical Hosts
	6.11.2 Preparing the Input Data

	OTD Syntax Validation BPs
	A.1 Activity Flow
	A.2 Fault Handling
	A.2.1. ValidateException
	A.2.2. UnmarshalException
	A.2.3. GenericException
	A.2.4. Other Faults

	A.3 Variables Referenced by OTD Validation BPs
	A.3.1. The Value of the ${BizRespCorrPath} Variable
	Default Value for ${BizRespCorrPath} in X12 v4010
	Default Value for ${BizRespCorrPath} in X12 v4030
	Default Value for ${BizRespCorrPath} in X12 v4061
	Default Value for ${BizRespCorrPath} in Other X12 Versions
	Default Value for ${BizRespCorrPath} in HIPAA Addenda
	Default Value for ${BizRespCorrPath} in HIPAA Standard
	Default Value for ${BizRespCorrPath} in UN/EDIFACT v3 and v4
	Default Value for ${BizRespCorrPath} in EANCOM v3 and v4

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

