
eView Studio Reference
Guide

Release 5.0.4
SeeBeyond Proprietary and Confidential

eView Studio Reference Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040526155048.

Contents
Contents

List of Tables 7

Chapter 1

Introduction 8
Document Purpose and Scope 8

Intended Audience 8
Using this Guide 9
Document Organization 9

Writing Conventions 9
Special Notation Conventions 9

Supporting Documents 10

Online Documents 11

SeeBeyond Web Site 11

Chapter 2

eView Studio Overview 12
Introduction 12

eView Components 12
eView Wizard 13
Editors 13
Project Components 13

Figure 1 illustrates the Project and Environment components of eView Studio. 14
Configuration Files 14
Database Scripts 15
Custom Plug-ins 15
Match Engine Configuration Files 16
Dynamic Java API 16
Outbound Object Type Definition (OTD) 17
Connectivity Components 18
Deployment Profile 18

Environment Components 19

Learning about the Master Index 19
Functions of the Master Index 19
Master Index Components 20
eView Studio Reference Guide 3 SeeBeyond Proprietary and Confidential

Contents
Matching Service 21
eView Manager Service 21
Query Builder 21
Query Manager 22
Update Manager 22
Object Persistence Service (OPS) 22
Database 22
Enterprise Data Manager 22

Chapter 3

The Database Structure 23
Overview of the Master Index Database 23

Master Index Database Description 23
Database Table Overview 23
Database Table Details 25

SBYN_<OBJECT_NAME> 25
SBYN_<OBJECT_NAME>SBR 26
SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR 26
SBYN_APPL 27
SBYN_ASSUMEDMATCH 27
SBYN_AUDIT 28
SBYN_COMMON_DETAIL 29
SBYN_COMMON_HEADER 29
SBYN_ENTERPRISE 30
SBYN_MERGE 31
SBYN_OVERWRITE 31
SBYN_POTENTIALDUPLICATES 32
SBYN_SEQ_TABLE 33
SBYN_SYSTEMOBJECT 34
SBYN_SYSTEMS 35
SBYN_SYSTEMSBR 36
SBYN_TRANSACTION 37
SBYN_USER_CODE 38

Sample Database Model 39

Chapter 4

Understanding Operational Processes 43
Learning About Message Processing 43

Inbound Message Processing 44
About Inbound Messages 45

Outbound Message Processing 46
About Outbound Messages 46

Inbound Message Processing Logic 48
eView Studio Reference Guide 4 SeeBeyond Proprietary and Confidential

Contents
Chapter 5

Working with the Java API 54
Overview 54

Java Class Types 54
Static Classes 54
Dynamic Object Classes 55
Dynamic OTD Methods 55
Dynamic Business Process Methods 55

Dynamic Object Classes 55
Parent Object Classes 55

<ObjectName>Object 56
add<Child> 56
addSecondaryObject 57
copy 57
dropSecondaryObject 58
get<ObjectName>Id 58
get<Field> 59
get<Child> 59
getChildTags 60
getMetaData 60
getSecondaryObject 60
getStatus 61
set<ObjectName>Id 61
set<Field> 62
setStatus 62
structCopy 63

Child Object Classes 63
<Child>Object 64
copy 64
get<Child>Id 64
get<Field> 65
getMetaData 65
getParentTag 66
set<Child>Id 66
set<Field> 67
structCopy 67

Dynamic OTD Methods 67
activateEnterpriseRecord 68
activateSystemRecord 69
addSystemRecord 69
deactivateEnterpriseRecord 70
deactivateSystemRecord 71
executeMatch 71
executeMatchUpdate 72
findMasterController 73
getEnterpriseRecordByEUID 74
getEnterpriseRecordByLID 74
getEUID 75
getLIDs 75
getLIDsByStatus 76
getSBR 76
getSystemRecord 77
getSystemRecordsByEUID 78
getSystemRecordsByEUIDStatus 78
lookupLIDs 79
mergeEnterpriseRecord 79
mergeSystemRecord 80
eView Studio Reference Guide 5 SeeBeyond Proprietary and Confidential

Contents
searchBlock 81
searchExact 81
searchPhonetic 82
transferSystemRecord 82
updateEnterpriseRecord 83
updateSystemRecord 84

Dynamic Business Process Methods 84

Helper Classes 85
System<ObjectName> 85

ClearFieldIndicator Field 86
System<ObjectName> 86
getClearFieldIndicator 86
get<Field> 87
get<ObjectName> 87
setClearFieldIndicator 88
set<Field> 88
set<ObjectName> 89

Parent Beans 89
<ObjectName>Bean 90
count<Child> 90
countChildren 91
countChildren 91
delete<Child> 92
get<Child> 92
get<Child> 93
get<Field> 93
get<ObjectName>Id 94
set<Child> 94
set<Child> 95
set<Field> 95
set<ObjectName>Id 96

Child Beans 96
<Child>Bean 97
delete 97
get<Field> 98
get<Child>Id 98
set<Field> 99
set<Child>Id 99

DestinationEO 100
getEnterprise<ObjectName> 100

Search<ObjectName>Result 100
getEUID 101
getComparisonScore 101
get<ObjectName> 101

SourceEO 102
getEnterprise<ObjectName> 102

System<ObjectName>PK 103
System<ObjectName>PK 103
getLocalId 103
getSystemCode 104

Glossary 105

Index 110
eView Studio Reference Guide 6 SeeBeyond Proprietary and Confidential

List of Tables

eView Studio Reference Guide 7 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Special Notation Conventions 9

Table 2 Master Index Database Tables 24

Table 3 SBYN_<OBJECT_NAME> Table Description 26

Table 4 SBYN_<OBJECT_NAME>SBR Table Description 26

Table 5 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description 27

Table 6 SBYN_APPL Table Description 27

Table 7 SBYN_ASSUMEDMATCH Table Description 27

Table 8 SBYN_AUDIT Table Description 28

Table 9 SBYN_COMMON_DETAIL Table Description 29

Table 10 SBYN_COMMON_HEADER Table Description 30

Table 11 SBYN_ENTERPRISE Table Description 30

Table 12 SBYN_MERGE Table Description 31

Table 13 SBYN_OVERWRITE Table Description 31

Table 14 SBYN_POTENTIALDUPLICATES Table Description 32

Table 15 SBYN_SEQ_TABLE Table Description 33

Table 16 Default Sequence Numbers 33

Table 17 SBYN_SYSTEMOBJECT Table Description 34

Table 18 SBYN_SYSTEMS Table Description 35

Table 19 SBYN_SYSTEMSBR Table Description 36

Table 20 SBYN_TRANSACTION Table Description 37

Table 21 SBYN_USER_CODE Table Description 38

Table 22 Outbound OTD SBR Node 47

Chapter 1

Introduction

This guide provides comprehensive information about the database structure, the Java
API, and message processing for the master indexes created by the SeeBeyond® eView
Studio (eView). As a component of SeeBeyond’s Integrated Composite Application
Network (ICAN) Suite, eView helps you integrate information from disparate systems
throughout your organization. This guide describes how messages are processed
through the master index, provides a reference for the dynamic Java API, and describes
the database structure. The master index is highly customizable, so your
implementation may differ from some of the descriptions contained in this guide. This
guide is intended to be used with the eView Studio Configuration Guide and the eView
Studio User’s Guide.

This chapter provides an overview of this guide and the conventions used throughout,
as well as a list of supporting documents and information about using this guide.

1.1 Document Purpose and Scope
This guide provides information about message processing in an eView master index
system and about the eView Java API. The API is designed to help you transform data
and transfer the information into and out of the master index database using eGate
Collaborations, Services, and eWays. This guide also provides an overview of the data
processing flow, based on the the sample Project, and describes the database structure.

This guide provides information about the Java API Library, but does not serve as a
complete reference. This is provided in the Javadocs for eView. This guide does not
explain how to install eView, or how to implement an eView Project. For a list of
publications that contain this information, see “Supporting Documents” on page 10.

1.1.1 Intended Audience
Any user who works with the connectivity components or uses the Java API should
read this guide. A thorough knowledge of eView is not needed to understand this
guide. It is presumed that the reader of this guide is familiar with the eGate
environment and GUIs, eGate Projects, Oracle database administration, and the Java
programming language. The reader should also be familiar with the data formats used
by the systems linked to the master index, the operating system(s) on which eGate and
the master index database run, and current business processes and information system
(IS) setup.
eView Studio Reference Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Writing Conventions
1.1.2 Using this Guide
For best results, skim through the guide to familiarize yourself with the locations of
essential information you need. The beginning of each chapter provides introductory
information on the topics covered in that chapter. This introductory material contains
background and explanatory information you may need to understand before moving
into the more detailed information later in the chapter.

This guide compliments the eView Studio User’s Guide, the eView Studio Configuration
Guide, and the eView Javadocs. Once you understand the default processing, you can
configure eView for your custom data and processing requirements.

1.1.3 Document Organization
This guide is divided into five chapters that cover the topics shown below.

Chapter 1 “Introduction” gives a general preview of this document—its purpose,
scope, and organization—and provides sources of additional information.

Chapter 2 “eView Studio Overview” gives an overview of eView and the master
index, and of how eView creates a customized master index. It also discusses the
architecture, integration servers, and the eView Project.

Chapter 4 “Understanding Operational Processes” gives an overview of how
inbound and outbound messages are processed, and includes information about
how certain configuration attributes affect processing.

Chapter 3 “The Database Structure” describes the database structure and how the
structure is defined based on the object structure definition. It also provides a
sample database diagram.

Chapter 5 “Working with the Java API” gives implementation information about
the eView Java API, and provides a reference of the dynamic methods created for
the method OTD and eInsight integration.

1.2 Writing Conventions
Before you start using this guide, it is important to understand the special notation and
mouse conventions observed throughout this document.

1.2.1 Special Notation Conventions
The following special notation conventions are used in this document.

Table 1 Special Notation Conventions

Text Convention Example

Titles of publications Title caps in italic
font

eView Studio User’s Guide
eView Studio Reference Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supporting Documents
Additional Conventions

Windows Systems—The eView system is fully compliant with Windows NT,
Windows 2000, and Windows XP platforms. When this document refers to Windows,
such statements apply to all three Windows platforms.

UNIX Systems—This guide uses the backslash (\) as the separator within path names.
If you are working on a UNIX system, please make the appropriate substitutions.

1.3 Supporting Documents
SeeBeyond has developed a suite of user's guides and related publications that are
distributed in an electronic library. The following documents may provide information
useful in creating your customized index. In addition, complete documentation of the
eView Java API is provided in Javadoc format.

eView Studio User’s Guide

eView Studio Configuration Guide

Implementing the SeeBeyond Match Engine with eView Studio

Implementing Ascential INTEGRITY with eView Studio

eGate Integrator User’s Guide

eGate Integrator System Administration Guide

SeeBeyond ICAN Suite Deployment Guide

Button, Icon,
Command, Function,
and Menu Names

Bold text Click OK to save and close.
From the File menu, select Exit.

Parameter, Variable,
and Method Names

Bold text Use the executeMatch() method.
Enter the field-type value.

Command Line
Code and Code
Samples

Courier font
(variables are
shown in bold
italic)

bootstrap -p password
<tag>Person</tag>

Hypertext Links Blue text For more information, see “Writing Conventions”
on page 9.

File Names and Paths Bold text To install eView, upload the eView.sar file.

Notes Bold Italic text Note: If a toolbar button is dimmed, you
cannot use it with the selected
component.

Table 1 Special Notation Conventions (Continued)

Text Convention Example
eView Studio Reference Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Online Documents
1.4 Online Documents
The documentation for the SeeBeyond ICAN Suite is distributed as a collection of
online documents. These documents are viewable with the Acrobat Reader application
from Adobe Systems. Acrobat Reader can be downloaded from:

http://www.adobe.com

1.5 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.SeeBeyond.com
eView Studio Reference Guide 11 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
http://www.adobe.com

Chapter 2

eView Studio Overview

eView allows you to design, configure, and create a master index application that can
identify and cross-reference records throughout an organization. This chapter provides
overview information about eView and the master indexes it creates.

2.1 Introduction

eView provides a flexible framework to allow you to create matching and indexing
applications called enterprise-wide master indexes (or just master indexes). It is an
application building tool to help you design, configure, and create a master index that
will uniquely identify and cross-reference the business objects stored in your system
databases. Business objects can be any type of entity for which you store information,
such as customers, members, vendors, businesses, hardware parts, and so on. In eView,
you define the data structure of the business objects to be stored and cross-referenced.
In addition, you define the logic that determines how data is updated, standardized,
weighted, and matched in the master index database.

The structure and logic you define is located in a group of XML configuration files that
you create using the eView Wizard. These files are created within the context of an
eGate Project, and can be further customized using the XML editor provided in the
Enterprise Designer.

2.2 eView Components
The components of eView are designed to work within the eGate Enterprise Designer
to create and configure the master index, and to define connectivity between external
systems and the master index. The primary components of eView are:

eView Wizard

Editors

Project Components

Environment Components
eView Studio Reference Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eView Studio Overview eView Components
2.2.1 eView Wizard
The eView Wizard takes you through each step of the master index setup process, and
creates the XML files that define the configuration of the application. The eView Wizard
allows you to define the name of the master index, the objects to store, the fields in each
object and their attributes, the EDM configuration, and the database and match engine
platforms to use. The eView Wizard generates a set of configuration files and database
scripts based on the information you specify. You can further customize these files as
needed.

2.2.2 Editors
eView provides the following editors to help you customize the files generated in the
eView Project.

XML Editor—allows you to review and customize the XML configuration files
created by the eView Wizard. This editor provides verification services for XML
syntax (schema validation is provided by eView). The XML editor is automatically
launched when you open an eView configuration file.

Text Editor—allows you to review and customize the database scripts created by
the eView Wizard. This editor is very similar to the XML editor but without the
verification services. The text editor is automatically launched when you open an
eView database script.

Java Source Editor—allows you to create and customize custom plug-in classes for
the master index. This editor is a simple text editor, similar to the Java Source Editor
in the Java Collaboration Editor. The Java source editor is automatically launched
when you open a custom plug-in file.

2.2.3 Project Components
An eView master index is implemented within a Project in Enterprise Designer. When
you create an eView application, a set of configuration files and a set of database files
are generated based on the information you specified in the eView Wizard. When you
generate the Project, additional components are created, including a method OTD, an
outbound OTD, eInsight Business Process methods, necessary .jar files, and a Custom
Plug-in function that allows you to define additional, custom processing for the index.
To complete the Project, you create a Connectivity Map and Deployment Profile.

Additional eGate components must be added to the client Projects accessing the eView
master index, including Services, Collaborations, OTDs, Web Connectors, eWays, JMS
Queues, JMS Topics, and so on. You can use the standard Enterprise Designer editors,
such as the OTD or Collaboration editors, to create these components.

Following is a list of eView Project components.

Configuration Files

Database Scripts

Custom Plug-ins

Match Engine Configuration Files
eView Studio Reference Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Figure 1 illustrates the Project and Environment components of eView Studio.
Object Type Definitions

Dynamic Java Methods

Connectivity Components

Deployment Profile

2.3 Figure 1 illustrates the Project and Environment
components of eView Studio.

Figure 1 eView Project and Environment Components

Configuration Files

Several XML files together determine certain characteristics of the master index, such as
how data is processed, queried, and matched. These files configure runtime
components of the master index, which are listed in “Master Index Components” on
page 20.

Object Definition—Defines the data structure of the object being indexed in a
master index.

eView Project

eGate Repository

Configuration

Configuration Files:
Object Definition
Runtime Configuration

Database Scripts
Systems
Code List
Create

Deployment
Profile

OTDs
Outbound
Method
eInsight

eView Environment

Logical
Host

Message
Server

Custom
Plug-ins

Integration
ServerConnectivity

Client Projects

External Systems

eInsight Business Process

eVision Web Interfaces
eView Studio Reference Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Figure 1 illustrates the Project and Environment components of eView Studio.
Enterprise Data Manager—Configures the search functions and appearance of the
EDM, along with debug information and security information for authorization.

Candidate Select—Configures the Query Builder component of the master index,
and defines the queries available for the index.

Match Field—Configures the Matching Service, and defines the fields to be
standardized and the fields to use for matching. It also specifies the match and
standardization engines to use.

Threshold—Configures the eView Manager Service, and defines certain system
parameters, such as match thresholds, EUID attributes, and update modes. It also
specifies the query from the Query Builder to use for matching queries.

Best Record—Configures the Update Manager, and defines the strategies used by
the survivor calculator to determine the field values for the SBR. It also allows you
to define custom update procedures.

Field Validation—Defines rules for validating field values. Rules are predefined for
validating the local ID field, and you can create custom validation rules to plug in to
this file.

Security—This file is a placeholder to be used in future versions.

Database Scripts

Two database scripts are generated by the eView Wizard: Systems and Code List. Two
additional scripts are created when you generate the Project (or by the wizard if you
choose to create all Project files at once).

Systems—Contains the SQL insert statements that add the external systems you
specified in the eView Wizard to the database. You can define additional systems in
this file. This file is executed after the create script is run.

Code List—Contains the SQL statements to insert processing codes and drop-down
list values into the database. You must define these elements in this file to make
them available to the master index system.

Create database script—Defines the structure of the master index database based
on the object structure defined in the eView Wizard. You can customize this file, and
then run it against an Oracle database to create a customized master index database.
This file is named the same name as was specified for the eView application in the
eView Wizard.

Drop database script—Used primarily in testing, when you need to drop existing
database tables and create new ones. The delete script removes all tables related to
the master index so you can recreate a fresh database for your Project.

You can also create custom scripts to store in the eView Project and run against the
master index database.

Custom Plug-ins

eView provides a method by which you can create custom processing logic for the
master index. To do this, you need to define and name a custom plug-in, which is a Java
eView Studio Reference Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Figure 1 illustrates the Project and Environment components of eView Studio.
class that performs the required functions. Once you create a custom plug-in, you
incorporate it into the index by adding it to the appropriate configuration file. You can
create custom update procedures and field validations, as well as define custom eView
components. Update procedures must be referenced in the update policies of the Best
Record file; field validations must be referenced in the Field Validation file; and custom
components must be referenced in the configuration file for that component.

Match Engine Configuration Files

If you specified the SeeBeyond Match Engine in the eView Wizard, several
configuration files for the engine are created in the eView Project. The configuration
files under the Match Engine node define certain weighting characteristics and
constants for the match engine. The configuration files under the Standardization
Engine node define how to standardize names, business names, and address fields. You
can customize any of these fields as necessary. For more information, refer to
Implementing the SeeBeyond Match Engine with eView Studio.

Dynamic Java API

Due to the flexibility of the object structure, eView generates several dynamic Java
methods for use in Collaborations and in the Web service. One set is provided in a
method OTD for use in Collaborations and one set is provided for Web services. The
names, parameter types, and return types of these methods vary based on the objects
you defined in the object structure. These methods are described in “Dynamic Object
Classes” on page 55.

Method OTD

Generating the eView instance creates a method OTD containing Java functions you
can use to define data processing rules in Collaborations. These functions allow you to
define how messages received from external systems are processed by the
Collaboration Service. You can define rules for inserting new records, retrieving record
information, updating existing records, performing match processing on incoming
records, and so on. Figure 2 illustrates the method OTD in the OTD Editor of Enterprise
Designer.
eView Studio Reference Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Figure 1 illustrates the Project and Environment components of eView Studio.
Figure 2 eView Method OTD

Business Process Java Methods

In addition to the method OTD, which can be used in Collaborations, eView creates a
set of Java methods that can be incorporated into eInsight Business Processes and into
eVision Web services. These methods are a subset of those defined for the method OTD,
providing the ability to view, retrieve, and match information in the master index
database.

Outbound Object Type Definition (OTD)

eView generates an outbound OTD based on the object structure defined in the Object
Definition file. This OTD is used for distributing information that has been added or
updated in the master index to the external systems that share data with the master
index. It includes the objects and fields defined in the Object Definition file plus
additional SBR information (such as the create date and create user) and additional
system object information (such as the local ID and system code). If you plan to use this
OTD to make the master index data available to external systems, you must define a
JMS Topic in the eView Connectivity Map to which the master index can publish
transactions.
eView Studio Reference Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Figure 1 illustrates the Project and Environment components of eView Studio.
Figure 3 Outbound OTD

Connectivity Components

The eView Project Connectivity Map consists of two required components: the Web
application file and the application file. Two optional components are a JMS Topic for
broadcasting messages and an Oracle eWay for database connectivity. In client Project
Connectivity Maps you can use any of the standard Project components to define
connectivity and data flow to and from the master index. Client Projects include those
created for the external systems sharing data with the index and for Business Processes.

For the client Projects, you can use connectivity components from the eView server
Project and create any standard eGate connectivity components, such as OTDs,
Services, Collaborations, JMS Queues, JMS Topics, and eWays. Client Project
components transform and route incoming data into the master index database
according to the rules contained in the Collaborations. They can also route the
processed data back to the appropriate local systems through eWays.

Deployment Profile

The Deployment Profile defines information about the production environment of the
master index. It contains information about the assignment of Services and message
destinations to integration servers and JMS IQ Managers within the eView system.
Each eView Project must have at least one Deployment Profile, and can have several,
depending on the Project requirements and the number of Environments used. You
eView Studio Reference Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
eView Studio Overview Learning about the Master Index
must activate the deployment before you can use the custom master index you created
using eView.

2.3.1 Environment Components
The eView Environments define configuration of the deployment environment of the
master index, including the Logical Host and application server. If eView client Projects
use the same Environment, it may also include a JMS IQ Manager, constants, Web
Connectors, and External Systems. Each Environment represents a unit of software that
implements one or more eView applications. You must define and configure at least one
Environment for the master index before you can deploy the application. The
integration server hosting the eView application is configured within the Environment
in the Enterprise Designer. Security is defined through the Environment configuration.

For more information about Environments, see the eGate Integrator User’s Guide.

2.4 Learning about the Master Index

In today’s business environment, important information about certain business objects
in your organization may exist in many disparate information systems. It is vital that
this information flow seamlessly and rapidly between departments and systems
throughout the entire business network. As organizations grow, merge, and form
affiliations, sharing data between different information systems becomes a complicated
task. The master indexes you create from eView can help you manage this data, and
ensure that the data you have is the most current and accurate information available.

Regardless of how you define the structure of the business object and configure the
runtime environment for the master index, the final product will include much of the
same functions and features. The master index provides a cross-reference of centralized
information that is kept current by the logic you define for unique identification,
matching, and update transactions.

2.4.1 Functions of the Master Index
The master index provides the following functions to help you monitor and maintain
the data shared throughout the index system.

Transaction History—The system provides a complete history of each object by
recording all changes to each object's data. This history is maintained for both the
local system records and the SBR.

Data Maintenance—The web-based user interface supports all the necessary
features for maintaining data records. It allows you to add new records; view,
update, deactivate, or reactivate existing records; and compare records for
similarities and differences. You can also view each local system record associated
with an SBR.

Search—The information contained in each SBR or system record can be obtained
from the database using a variety of search criteria. You can perform searches
eView Studio Reference Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
eView Studio Overview Learning about the Master Index
against the database for a specific object or a set of objects. For certain searches, the
results are assigned a matching weight that indicates the probability of a match.

Potential Duplicate Detection and Handling—One of the most important features
of the master index system is its ability to match records and identify possible
duplicates. Using matching algorithm logic, the index identifies potential duplicate
records, and provides the functionality to correct the duplication. Potential
duplicate records are easily corrected by either merging the records in question or
marking the records as “resolved.”

Merge and Unmerge—You can compare potential duplicate records and then
merge the records if you find them to be actual duplicates of one another. You can
merge records at either the EUID or system record level. At the EUID level, you can
determine which record to retain as the active record. At the system level, you can
determine which record to retain, and which information from each record to
preserve in the resulting record.

2.4.2 Master Index Components
The master index created by eView is made up of several components that work
together to form the complete indexing system. The primary components of the master
index are:

eView Manager Service

Matching Service

Query Builder

Query Manager

Update Manager

Object Persistence Service

Database

Enterprise Data Manager

In addition, the master index uses the connectivity components defined in the eView
server and client Projects to route data between external systems and the master index.

The eGate Repository stores information about the configuration and structure of the
master index environment. Because the master index is deployed within eGate, it can
be implemented in a distributed environment. The master index system requires the
SeeBeyond Integration Server to enable Web service connectivity.

The components of an eView master index are illustrated in Figure 4 on page 21.
eView Studio Reference Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
eView Studio Overview Learning about the Master Index
Figure 4 eView Master Index Architecture

2.4.3 Matching Service
The Matching Service stores the logic for standardization (which includes data parsing
and normalization), phonetic encoding, and matching. It includes the specified
standardization and match engines, along with the configuration you defined for each.
The Matching Service also contains the data standardization tables and configuration
files for the match engine, such as the configuration files for the SeeBeyond Match
Engine or the rule set files for INTEGRITY. The configuration of the Matching Service is
defined in the Match Field file.

2.4.4 eView Manager Service
The eView Manager Service provides a session bean to all components of the master
index, such as the Enterprise Data Manager, Query Builder, and Update Manager. The
service also provides connectivity to the master index database. The configuration of
the eView Manager Service specifies the query to use for matching, and defines system
parameters that control EUID generation, matching thresholds, and update modes. The
configuration of the eView Manager Service is defined in the Threshold file.

2.4.5 Query Builder
The Query Builder defines all queries available to the master index. This includes the
queries performed automatically by the master index when searching for possible
matches to an incoming record. It also includes the queries performed manually
through the Enterprise Data Manager (EDM). The EDM queries can be either

Master Index
Database

Application or Integration Server

eView Manager Service
(Master Controller Session Bean)

Matching Service

Match and
Standardization

Engine

Query
Builder

Query
Manager

Update
Manager

Object
Persistence

Service (OPS)

Enterprise Data
Manager Workstations

Master Index Runtime Components
eView Studio Reference Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
eView Studio Overview Learning about the Master Index
alphanumeric or phonetic, and have the option of using wildcard characters. The
configuration of the Query Builder is defined in the Candidate Select file.

2.4.6 Query Manager
The Query Manager is a service that performs queries against the master index
database and returns a list of objects that match or closely match the query criteria. The
Query Manager uses classes specified in the Match Field file to determine how to
perform a query for match processing. All queries performed in the master index
system are executed through the Query Manager.

2.4.7 Update Manager
The Update Manager controls how updates are made to an entity’s single best record
(SBR) by defining a survivor strategy for each field. The survivor calculator in the
Update Manager uses these strategies to determine the relative reliability of the data
from external systems and to determine which value for each field is populated into the
SBR. The Update Manager also manages certain update policies, allowing you to define
additional processing to be performed against incoming data. The configuration of the
Update Manager is defined in the Best Record file.

2.4.8 Object Persistence Service (OPS)
OPS is a database service that translates high-level and descriptive object requests into
actual JDBC calls. The service provides mapping from the Java object to the database
and from the database to the Java object.

2.4.9 Database
The master index uses an Oracle database to store the information you specify for the
business objects being cross-referenced. The database stores local system records, the
single best record for each object record, and certain administrative information, such
as drop-down menu lists, processing codes, and information about the systems from
which data originates. The scripts that are generated to create the database tables are
based on the information specified in the Object Definition file.

2.4.10 Enterprise Data Manager
The Enterprise Data Manager (EDM) is a web-based interface that allows you to
monitor and maintain the data in your master index database. Most of the configurable
attributes of the EDM are defined by information you specify in the eView Wizard, but
you can further configure the EDM in the Enterprise Data Manager file after you
generate the eView application. The EDM provides the ability to manually search for
records; update, add, deactivate, and reactivate records; merge and unmerge records;
view potential duplicates; and view comparisons of object records.
eView Studio Reference Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3

The Database Structure

This chapter provides information about the master index database, including
descriptions of each table and a sample entity relationship diagram. All information in
this chapter pertains to the default version of the database. Your implementation may
vary depending on the customizations made to the Object Definition and to the scripts
used to create the master index database.

3.1 Overview of the Master Index Database
The master index database stores information about the entities being indexed, such as
people or businesses. The database stores records from local systems in their original
form, and also stores a record for each object that is considered to be the single best
record (SBR).

The structure of the database tables that store object information is dependent on the
information specified in the Object Definition file created by the eView Wizard. eView
creates a script to create the tables and fields in the master index database based on the
information in the Object Definition file. This allows you to define the database as you
define the object structure.

3.2 Master Index Database Description
While most of the structures created in the database are based on information in the
Object Definition file, some of the tables, such as sbyn_seq_table and
sbyn_common_detail, are standard for all implementations. This section describes both
types of tables and the fields contained in each table.

3.2.1 Database Table Overview
The master index database includes tables that store common maintenance
information, transactional information, external system information, and information
about the objects stored in the database. The database includes the tables listed in Table
2 on the following page.
eView Studio Reference Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
Table 2 Master Index Database Tables

Table Name Description

SBYN_<OBJECT_NAME> Stores information for the parent objects
associated with local system records. This
database table is named by the parent object
name. For example, a table storing company
objects is named sbyn_company; a table
storing person objects is named sbyn_person.
Only one table stores parent object
information for system records.

SBYN_<OBJECT_NAME>SBR Stores information for the parent objects
associated with single best records. This
database table is named by the parent object
name followed by “SBR”. For example, a table
storing company objects is named
sbyn_companysbr; a table storing person
objects is named sbyn_personsbr. Only one
table stores parent object information for
SBRs.

SBYN_<CHILD_OBJECT> Stores information for child objects associated
with local system records. These database
tables are named by their object name. For
example, a table storing address objects is
named sbyn_address; a table storing comment
objects is named sbyn_comment. There may
be several tables storing child object
information for system records.

SBYN_<CHILD_OBJECT>SBR Stores information for child objects associated
with a single best record. These database
tables are named by their object name
followed by “SBR”. For example, a table storing
address objects is named sbyn_addresssbr; a
table storing comment objects is named
sbyn_commentsbr. There may be several tables
storing child object information for SBRs.

SBYN_APPL Lists the applications with which each item in
stc_common_header is associated. Currently
the only item in this table is eView.

SBYN_ASSUMEDMATCH Stores information about records that were
automatically merged by the master index.

SBYN_AUDIT Stores audit information about each time
object information is accessed in the master
index database.

SBYN_COMMON_DETAIL Contains all of the processing codes associated
with the items listed in sbyn_common_header.
eView Studio Reference Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
3.2.2 Database Table Details
The tables on the following pages describe each column in the default master index
database tables.

SBYN_<OBJECT_NAME>

This table stores the parent object in each system record received by the master index. It
is linked to the tables that store each child object in the system record by the
<object_name>id column (where <object_name> is the name of the parent object). This

SBYN_COMMON_HEADER Contains a list of the different types of
processing codes used by the master index.
These types are also associated with the drop-
down lists you can specify for the EDM.

SBYN_ENTERPRISE Stores the local ID and system pairs, along with
their associated EUID.

SBYN_MERGE Stores information about all merge and
unmerge transactions processed from either
external systems or the EDM.

SBYN_OVERWRITE Stores information about fields that are locked
for updates in an SBR.

SBYN_POTENTIALDUPLICATES Stores a list of potential duplicate records and
flags potential duplicate pairs that have been
resolved.

SBYN_SEQ_TABLE Stores the sequential codes that are used in
other tables in the master index database, such
as EUIDs, transaction numbers, and so on.

SBYN_SYSTEMOBJECT Stores information about the system objects in
the database, including the local ID and
system, create date and user, status, and so on.

SBYN_SYSTEMS Stores a list of systems in your organization,
along with defining information.

SBYN_SYSTEMSBR Stores transaction information about an SBR,
such as the create or update date, status, and
so on.

SBYN_TRANSACTION Stores a history of changes to each record
stored in the database.

SBYN_USER_CODE Like the sbyn_common_detail table, this table
stores processing codes and drop-down list
values. This table contains additional validation
information that allows you to validate
information in a dependent field (for example,
to validate cities against the entered postal
code).

Table 2 Master Index Database Tables

Table Name Description
eView Studio Reference Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
table contains the columns listed below regardless of the design of the object structure,
and also contains a column for each field you defined for the parent object in the Object
Definition file. Columns to store standardized or phonetic versions of certain fields are
automatically added when you specify certain match types in the eView Wizard.

Table 3 SBYN_<OBJECT_NAME> Table Description

SBYN_<OBJECT_NAME>SBR

This table stores the parent object of the SBR for each enterprise object in the master
index database. It is linked to the tables that store each child object in the SBR by the
<object_name>id column (where <object_name> is the name of the parent object). This
table contains the columns listed below regardless of the design of the object structure,
and also contains a column for each field defined for the parent object in the Object
Definition file. In addition, columns to store standardized or phonetic versions of
certain fields are automatically added when you specify certain match types in the
eView Wizard.

Table 4 SBYN_<OBJECT_NAME>SBR Table Description

SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR

The sbyn_<child_object> tables (where <child_object> is the name of a child object in the
object structure) store information about the child objects associated with a system
record in the master index. The sbyn_<child_object>sbr tables store information about

Column Name Data Type Column Description

SYSTEMCODE VARCHAR2(20) The system code for the system that
produced the EUID record.

LID VARCHAR2(25) A local identification code assigned
by the specified system.

<OBJECT_NAME>ID Varies A unique ID for the parent object in
a system record. This is named
according to the parent object. For
example, if the parent object is
“Company”, the name of this
column is “companyid”; if the parent
object is “Person”, the name of this
column is “personid”.

Column Name Data Type Column Description

EUID VARCHAR2(20) The enterprise unique identifier
assigned by the master index.

<OBJECT_NAME>ID VARCHAR2(20) A unique ID for the parent object in
a system record. This is named
according to the parent object. For
example, if the parent object is
“Company”, the name of this
column is “companyid”; if the parent
object is “Person”, the name of this
column is “personid”.
eView Studio Reference Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
the child objects associated with an SBR. All tables storing child object information
contain the columns listed below. The remaining columns are defined by the fields you
specify for each child object in the object structure definition file, including any
standardized or phonetic fields.

SBYN_APPL

This table stores information about the applications used in the master index system.
Currently, there is only one entry, “eView”.

SBYN_ASSUMEDMATCH

This table maintains a record of each assumed match transaction that occurs in the
master index, allowing you to review these transactions and, if necessary, reverse an
assumed match. This table can grow quite large over time; it is recommended that the
table be archived periodically.

Table 5 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description

Column Name Data Type Column Description

<OBJECT_NAME>ID VARCHAR2(20) The unique identification code for the
parent object associated with the child
object.

<CHILD_OBJECT>ID VARCHAR2(20) The unique identification code for each
record in the child object table. This
column cannot be null.

Table 6 SBYN_APPL Table Description

Column Name Data Type Description

APPL_ID NUMBER(10) The unique sequence number code
for the listed application.

CODE VARCHAR2(8) A unique code for the application.

DESCR VARCHAR2(30) A brief description of the
application.

READ_ONLY CHAR(1) An indicator of whether the current
entry can be modified. If the value of
this column is “Y”, the entry cannot
be modified.

CREATE_DATE DATE The date the application entry was
created.

CREATE_USERID VARCHAR2(20) The logon ID of the user who
created the application entry.

Table 7 SBYN_ASSUMEDMATCH Table Description

Column Name Data Type Description

ASSUMEDMATCHID VARCHAR2(20) The unique ID for the assumed
match transaction.
eView Studio Reference Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_AUDIT

This table maintains a log of each instance in which any of the eView tables are accessed
in the master index database through the EDM. This includes each time a record
appears on a search results page, a comparison page, the View/Edit page, and so on.
This log is only maintained if the EDM is configured for it.

EUID VARCHAR2(20) The EUID into which the incoming
record was merged.

SYSTEMCODE VARCHAR2(20) The processing code of the system
from which the incoming record
originated.

LID VARCHAR2(25) The local ID of the record in the
source system.

WEIGHT VARCHAR2(20) The matching weight between the
incoming record and the EUID
record into which it was merged.

TRANSACTION NUMBER VARCHAR2(20) The transaction number associated
with the assumed match transaction.

Table 8 SBYN_AUDIT Table Description

Column Name Data Type Description

AUDIT_ID VARCHAR2(20) The unique identification code for
the audit record. This column
cannot be null.

PRIMARY_OBJECT_TYPE VARCHAR2(20) The name of the parent object as
defined in the Object Definition file.

EUID VARCHAR2(15) The EUID whose information was
accessed during an EDM transaction.

EUID_AUX VARCHAR2(15) The second EUID whose information
was accessed during an EDM
transaction. A second EUID appears
when viewing information about
merge and unmerge transactions,
comparisons, and so on.

FUNCTION VARCHAR2(32) The type of transaction that caused
the audit record to be written. This
column cannot be null.

DETAIL VARCHAR2(120) A brief description of the transaction
that caused the audit record to be
written.

CREATE_DATE DATE The date the transaction that created
the audit record was performed.
This column cannot be null.

Table 7 SBYN_ASSUMEDMATCH Table Description

Column Name Data Type Description
eView Studio Reference Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_COMMON_DETAIL

This table stores the processing codes and description for all of the common
maintenance data elements. This is the detail table for sbyn_common_header. Each data
element in sbyn_common_detail is associated with a data type in
sbyn_common_header by the common_header_id column. None of the columns in this
table can be null.

SBYN_COMMON_HEADER

This table stores a description of each type of common maintenance data, and is the
header table for sbyn_common_detail. Together, these tables store the processing codes
and drop-down menu descriptions for each common table data type. For a person
index, common table data types might include Religion, Language, Marital Status, and

CREATE_BY VARCHAR2(20) The user ID of the person who
performed the transaction that
caused the audit log. This column
cannot be null.

Table 9 SBYN_COMMON_DETAIL Table Description

Column Name Data Type Description

COMMON_DETAIL_ID NUMBER(10) The unique identification code of
the common table data element.

COMMON_HEADER_ID NUMBER(10) The unique identification code of
the common table data type
associated with the data element (as
stored in the common_header_id
column of the
sbyn_common_header table).

CODE VARCHAR2(20) The processing code for the
common table data element.

DESCR VARCHAR2(50) A description of the common table
data element.

READ_ONLY CHAR(1) An indicator of whether the
common table data element can be
modified.

CREATE_DATE DATE The date the data element record
was created.

CREATE_USERID VARCHAR2(20) The user ID of the person who
created the data element record.

Table 8 SBYN_AUDIT Table Description

Column Name Data Type Description
eView Studio Reference Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
so on. For a business index, common table data types might include Address Type,
Phone Type, and so on. None of the columns in this table can be null.

SBYN_ENTERPRISE

This table stores a list of all the system and local ID pairs assigned to the enterprise
records in the master index database, along with the associated EUID for each pair. This
table is linked to sbyn_systemobject by the systemcode and lid columns, and is linked
to sbyn_systemsbr by the euid column. This table maintains links between the SBR and
its associated system objects. None of the columns in this table can be null.

Table 10 SBYN_COMMON_HEADER Table Description

Column Name Data Type Description

COMMON_HEADER_ID VARCHAR2(10) The unique identification code of
the common table data type.

APPL_ID VARCHAR2(10) The application ID from sbyn_appl
that corresponds to the application
for which the common table data
type is used.

CODE VARCHAR2(8) A unique processing code for the
common table data type.

DESCR VARCHAR2(50) A description of the common table
data type.

READ_ONLY CHAR(1) An indicator of whether an entry in
the table is read-only (if this column
is set to “Y”, the entry is read-only).

MAX_INPUT_LEN NUMBER(10) The maximum number of characters
allowed in the code column for the
common table data type.

TYP_TABLE_CODE VARCHAR2(3) This column is not currently used.

CREATE_DATE DATE The date the common table data
type record was created.

CREATE_USERID VARCHAR2(20) The user ID of the person who
created the common table data type
record.

Table 11 SBYN_ENTERPRISE Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The processing code of the system
associated with the local ID.

LID VARCHAR2(25) The local ID associated with the
system and EUID.

EUID VARCHAR2(20) The EUID associated with the local
ID and system.
eView Studio Reference Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_MERGE

This table maintains a record of each merge transaction that occurs in the master index,
both through the EDM and the eGate Project. It also records any unmerges that occur.

SBYN_OVERWRITE

This table stores information about the fields that are locked for updates in the SBRs. It
stores the EUID of the SBR, the ePath to the field, and the current locked value of the
field.

Table 12 SBYN_MERGE Table Description

Column Name Data Type Description

MERGE_ID VARCHAR2(20) The unique, sequential
identification code of merge record.
This column cannot be null.

KEPT_EUID VARCHAR2(20) The EUID of the record that was
retained after the merge transaction.
This column cannot be null.

MERGED_EUID VARCHAR2(20) The EUID of the record that was not
retained after the merge transaction.

MERGE_TRANSACTIONNUM VARCHAR2(20) The transaction number associated
with the merge transaction. This
column cannot be null.

UNMERGE_TRANSACTIONNUM VARCHAR2(20) The transaction number associated
with the unmerge transaction.

Table 13 SBYN_OVERWRITE Table Description

Column Name Data Type Description

EUID VARCHAR2(20) The EUID of an SBR containing fields
for which the overwrite lock is set.

PATH VARCHAR2(200) The ePath to a field that is locked in
an SBR from the EDM.

TYPE VARCHAR2(20) The data type of a field that is locked
in an SBR.

INTEGERDATA NUMBER(38) The data that is locked for overwrite
in an integer field.

BOOLEANDATA NUMBER(38) The data that is locked for overwrite
in a boolean field.

STRINGDATA VARCHAR2(200) The data that is locked for overwrite
in a string field.

BYTEDATA CHAR(2) The data that is locked for overwrite
in a byte field.

LONGDATA LONG The data that is locked for overwrite
in a long integer field.
eView Studio Reference Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_POTENTIALDUPLICATES

This table maintains a list of all records that are potential duplicates of one another. It
also maintains a record of whether a potential duplicate pair has been resolved or
permanently resolved.

DATEDATA DATE The data that is locked for overwrite
in a date field.

FLOATDATA NUMBER(38,4) The data that is locked for overwrite
in a floating integer field.

TIMESTAMPDATA DATE The data that is locked for overwrite
in a timestamp field.

Table 14 SBYN_POTENTIALDUPLICATES Table Description

Column Name Data Type Description

POTENTIALDUPLICATEID VARCHAR2(20) The unique identification number of
the potential duplicate transaction.

WEIGHT VARCHAR2(20) The matching weight of the potential
duplicate pair.

TYPE VARCHAR2(15) This column is reserved for future
use.

DESCRIPTION VARCHAR2(120) A description of what caused the
potential duplicate flag.

STATUS VARCHAR2(15) The status of the potential duplicate
pair. The possible values are:

U—Unresolved
R—Resolved
A—Resolved permanently

HIGHMATCHFLAG VARCHAR2(15) This column is reserved for future
use.

RESOLVEDUSER VARCHAR2(30) The user ID of the person who
resolved the potential duplicate
status.

RESOLVEDDATE DATE The date the potential duplicate
status was resolved.

RESOLVEDCOMMENT VARCHAR2(120) Comments regarding the resolution
of the duplicate status.

EUID2 VARCHAR2(20) The EUID of the second record in
the potential duplicate pair.

TRANSACTIONNUMBER VARCHAR2(20) The transaction number associated
with the transaction that produced
the potential duplicate flag.

Table 13 SBYN_OVERWRITE Table Description

Column Name Data Type Description
eView Studio Reference Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_SEQ_TABLE

This table controls and maintains a record of the sequential identification numbers used
in various tables in the database, ensuring that each number is unique and assigned in
order. Several of the ID numbers maintained in this table are determined by the object
structure. The numbers are assigned sequentially, but are allocated in chunks of 1000
numbers for optimization (so the index does not need to query the sbyn_seq_table table
for each transaction). The chunk size for the EUID sequence is configurable. If the
Repository server is reset before all allocated numbers are used, the unused numbers
are discarded and never used, and numbering is restarted at the beginning of the next
1000-number chunk.

The default sequence numbers are listed in Table 16.

EUID1 VARCHAR2(20) The EUID of the first record in the
potential duplicate pair.

Table 15 SBYN_SEQ_TABLE Table Description

Column Name Data Type Description

SEQ_NAME VARCHAR2(20) The name of the object for which the
sequential ID is stored.

SEQ_COUNT NUMBER(38) The current value of the sequence.
The next record will be assigned the
current value plus one.

Table 16 Default Sequence Numbers

Sequence Name Description

EUID The sequence number that determines how EUIDs are
assigned to new records. The chunk size for the EUID
sequence number is configurable in the eView Project
Threshold file.

POTENTIALDUPLICATE The sequence number assigned each potential duplicate
transaction record in sbyn_potentialduplicates (column
name “potentialduplicateid”).

TRANSACTIONNUMBER The sequence number assigned to each transaction in
the master index. This number is stored in
sbyn_transaction (column name “transactionnumber”).

ASSUMEDMATCH The sequence number assigned to each assumed match
transaction record in sbyn_assumedmatch (column
name “assumedmatchid”).

AUDIT The sequence number assigned to each audit log record
in sbyn_audit (column name “audit_id”).

MERGE The sequence number assigned to each merge
transaction in sbyn_merge (column name “merge_id”).

Table 14 SBYN_POTENTIALDUPLICATES Table Description

Column Name Data Type Description
eView Studio Reference Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_SYSTEMOBJECT

This table stores information about the system records in the database, including their
local ID and source system pairs. It also stores transactional information, such as the
create or update date and function.

SBYN_APPL The sequence number assigned to each application
listed in sbyn_appl (column name “appl_id”)

SBYN_COMMON_HEADER The sequence number assigned to each common table
data type listed in sbyn_common_header (column name
“common_header_id”).

SBYN_COMMON_DETAIL The sequence number assigned to each common table
data element listed in sbyn_common_detail (column
name “common_detail_id”).

<OBJECT_NAME> Each parent and child object system record table is
assigned a sequential ID. The column names are named
after the object (for example, sbyn_address has a
sequential column named “addressid”). The parent
object ID is included in each child object table.

<OBJECT_NAME>SBR Each parent and child object SBR table is assigned a
sequential ID. The column names are named after the
object (for example, sbyn_addresssbr has a sequential
column named “addressid”). The parent object ID is
included in each child object SBR table.

Table 17 SBYN_SYSTEMOBJECT Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The processing code of the system
associated with the local ID. This
column cannot be null.

LID VARCHAR2(25) The local ID associated with the
system and EUID (the associated
EUID is found in sbyn_enterprise).
This column cannot be null.

CHILDTYPE VARCHAR2(20) The type of object being processed
(currently only the name of the
parent object). This column is
reserved for future use.

CREATEUSER VARCHAR2(30) The user ID of the person who
created the system record.

CREATEFUNCTION VARCHAR2(20) The type of transaction that created
the system record.

CREATEDATE DATE The date the system record was
created.

Table 16 Default Sequence Numbers

Sequence Name Description
eView Studio Reference Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_SYSTEMS

This table stores information about each system integrated into the master index
environment, including the system’s processing code and name, a brief description, the
format of the local IDs, and whether any of the system information should be masked.

UPDATEUSER VARCHAR2(30) The user ID of the person who last
updated the system record.

UPDATEFUNCTION VARCHAR2(20) The type of transaction that last
updated the system record.

UPDATEDATE DATE The date the system record was last
updated.

STATUS VARCHAR2(15) The status of the system record. The
status can be one of these values:

active
inactive
merged

Table 18 SBYN_SYSTEMS Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The unique processing code of the
system.

DESCRIPTION VARCHAR2(120) A brief description of the system, or
the system name.

STATUS CHAR(1) The status of the system in the
master index. “A” indicates active
and “D” indicates deactivated.

ID_LENGTH NUMBER The length of the local identifiers
assigned by the system. This length
does not include any additional
characters added by the input mask.

FORMAT VARCHAR2(60) The required data pattern for the
local IDs assigned by the system. For
more information about possible
values and using Java patterns, see
“Patterns” in the class list for
java.util.regex in the Javadocs
provided with Java 2Software
Development Kit (SDK).

Table 17 SBYN_SYSTEMOBJECT Table Description

Column Name Data Type Description
eView Studio Reference Guide 35 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_SYSTEMSBR

This table stores transactional information about the system records for the SBR, such as
the create or update date and function. The sbyn_systemsbr table is indirectly linked to
the sbyn_systemobjects table through sbyn_enterprise.

INPUT_MASK VARCHAR2(60) A mask used by the EDM to add
punctuation to the local ID. For
example, the input mask DD-DDD-
DDD inserts a hyphen after the
second and fifth characters in an 8-
digit ID. These character types can
be used.

D—Numeric character
L—Alphabetic character
A—Alphanumeric character

VALUE_MASK VARCHAR2(60) A mask used to strip any extra
characters that were added by the
input mask for database storage. The
value mask is the same as the input
mask, but with an “x” in place of
each punctuation mark. Using the
input mask described above, the
value mask is DDxDDDxDDD. This
strips the hyphens before storing
the ID.

CREATE_DATE DATE The date the system information was
inserted into the database.

CREATE_USERID VARCHAR2(20) The logon ID of the user who
inserted the system information into
the database.

UPDATE_DATE DATE The most recent date the system’s
information was updated.

UPDATE_USERID VARCHAR2(20) The logon ID of the user who last
updated the system’s information.

Table 19 SBYN_SYSTEMSBR Table Description

Column Name Data Type Description

EUID VARCHAR2(20) The EUID associated with system
record (the associated system and
local ID are found in
sbyn_enterprise). This column
cannot be null.

Table 18 SBYN_SYSTEMS Table Description

Column Name Data Type Description
eView Studio Reference Guide 36 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_TRANSACTION

This table stores a history of changes made to each record in the master index, allowing
you to view a transaction history and to undo certain actions, such as merging two
object profiles.

CHILDTYPE VARCHAR2(20) The type of object being processed
(currently only the name of the
parent object). This column is
reserved for future use.

CREATESYSTEM VARCHAR2(20) The system in which the system
record was created.

CREATEUSER VARCHAR2(30) The user ID of the person who
created the system record.

CREATEFUNCTION VARCHAR2(20) The type of transaction that created
the system record.

CREATEDATE DATE The date the system object was
created.

UPDATEUSER VARCHAR2(30) The user ID of the person who last
updated the system record.

UPDATEFUNCTION VARCHAR2(20) The type of transaction that last
updated the system record.

UPDATEDATE DATE The date the system object was last
updated.

STATUS VARCHAR2(15) The status of the enterprise record.
The status can be one of these
values:

active
inactive
merged

REVISIONNUMBER NUMBER(38) The revision number of the SBR. This
is used for version control.

Table 20 SBYN_TRANSACTION Table Description

Column Name Data Type Description

TRANSACTIONNUMBER VARCHAR2(20) The unique number of the
transaction.

LID1 VARCHAR2(25) This column is reserved for future
use.

LID2 VARCHAR2(25) The local ID of the second system
record involved in the transaction.

EUID1 VARCHAR2(20) This column is reserved for future
use.

Table 19 SBYN_SYSTEMSBR Table Description

Column Name Data Type Description
eView Studio Reference Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
The Database Structure Master Index Database Description
SBYN_USER_CODE

This table is similar to the sbyn_common_header and sbyn_common_detail tables in
that it stores processing codes and drop-down list values. This table is used when the
value of one field is dependent on the value of another. For example, if you store credit
card information, you could list each credit card type and specify a required format for
the credit card number field. The data stored in this table includes the processing code,
a brief description, and the format of the dependent fields.

EUID2 VARCHAR2(20) The EUID of the second object
profile involved in the transaction.

FUNCTION VARCHAR2(20) The type of transaction that
occurred, such as update, add,
merge, and so on.

SYSTEMUSER VARCHAR2(30) The logon ID of the user who
performed the transaction.

TIMESTAMP DATE The date and time the transaction
occurred.

DELTA BLOB A list of the changes that occurred to
system records as a result of the
transaction.

SYSTEMCODE VARCHAR2(20) The processing code of the source
system in which the transaction
originated.

LID VARCHAR2(25) The local ID of the system record
involved in the transaction.

EUID VARCHAR2(20) The EUID of the enterprise record
involved in the transaction.

Table 21 SBYN_USER_CODE Table Description

Column Name Data Type Description

CODE_LIST VARCHAR2(20) The code list name of the user code
type (using the credit card example
above, this might be similar to
“CREDCARD”). This column links
the values for each list.

CODE VARCHAR2(20) The processing code of each user
code element.

DESCRIPTION VARCHAR2(50) A brief description or name for the
user code. This is the value that
appears in the drop-down list.

Table 20 SBYN_TRANSACTION Table Description

Column Name Data Type Description
eView Studio Reference Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
The Database Structure Sample Database Model
3.3 Sample Database Model
The diagrams on the following pages illustrate the table structure and relationships for
a sample eView database designed for storing information about companies. The
diagrams display attributes for each database column, such as the field name, data
type, whether the field can be null, and primary keys. They also show directional
relationships between tables and the keys by which the tables are related.

FORMAT VARCHAR2(60) The required data pattern for the
field that is constrained by the user
code. For more information about
possible values and using Java
patterns, see “Patterns” in the class
list for java.util.regex in the Javadocs
provided with Java 2Software
Development Kit (SDK).

INPUT_MASK VARCHAR2(60) A mask used by the EDM to add
punctuation to the constrained field.
For example, the input mask DD-
DDD-DDD inserts a hyphen after
the second and fifth characters in an
8-digit ID. These character types can
be used.

D—Numeric character
L—Alphabetic character
A—Alphanumeric character

VALUE_MASK VARCHAR2(60) A mask used to strip any extra
characters that were added by the
input mask for database storage. The
value mask is the same as the input
mask, but with an “x” in place of
each punctuation mark. Using the
input mask described above, the
value mask is DDxDDDxDDD. This
strips the hyphens before storing
the ID.

Table 21 SBYN_USER_CODE Table Description

Column Name Data Type Description
eView Studio Reference Guide 39 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
The Database Structure Sample Database Model
FK_ADDRESS_COMPANYID

FK_COMPANY_SYSTEMCODE_LID

FK_CONTACT_COMPANYID

FK_PHONE_COMPANYID

FK_SYSTEMOBJECT_SYSTEMCODE

SBYN_ADDRESS

COMPANYID
ADDRESSID
ADDRESSTYPE
ADDRESSLINE1
ADDRESSLINE1_HOUSENUMBER
ADDRESSLINE1_STREETDIR
ADDRESSLINE1_STREETNAME
ADDRESSLINE1_STNAMEPHONCODE
ADDRESSLINE1_STREETTYPE
ADDRESSLINE2
CITY
STATECODE
POSTALCODE
POSTALCODEEXT
COUNTY
COUNTRYCODE

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(10)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(20)
VARCHAR2(20)

<ak,fk>
<pk>
<ak>

null
not null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

U_ADDRESS
PK_ADDRESS

<ak>
<pk>

SBYN_COMPANY

SYSTEMCODE
LID
COMPANYID
COMPANYNAME
COMPANYNAME_NAME
COMPANYNAME_NAMEPHONCODE
COMPANYNAME_ORGTYPE
COMPANYNAME_ASSOCTYPE
COMPANYNAME_INDUSTRY
COMPANYNAME_SECTOR
COMPANYNAME_ALIAS
COMPANYNAME_URL
COMPANYTYPE
EXCHANGE
STOCKSYMBOL
SIC
INDUSTRY
SALESREGION
TAXPAYERID
CREDITSTANDING
NOOFEMPLOYEES

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(20)
VARCHAR2(16)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(12)
NUMBER

<ak,fk>
<ak,fk>
<pk>

null
null
not null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

U_COMPANY
PK_COMPANY

<ak>
<pk>

SBYN_CONTACT

COMPANYID
CONTACTID
CONTACTTYPE
FIRSTNAME
LASTNAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(32)
VARCHAR2(32)
VARCHAR2(32)

<ak,fk>
<pk>

null
not null
null
null
null

U_CONTACT
PK_CONTACT

<ak>
<pk>

SBYN_PHONE

COMPANYID
PHONEID
PHONETYPE
PHONE
PHONEEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(6)

<ak,fk>
<pk>
<ak>

null
not null
null
null
null

U_PHONE
PK_PHONE

<ak>
<pk>

SBYN_SYSTEMOBJECT

SYSTEMCODE
LID
CHILDTYPE
CREATEUSER
CREATEFUNCTION
CREATEDATE
UPDATEUSER
UPDATEFUNCTION
UPDATEDATE
STATUS

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(15)

<pk,fk>
<pk>

not null
not null
null
null
null
null
null
null
null
null

PK_SBYNSYSTEMOBJECT <pk>

SBYN_SYSTEMS

SYSTEMCODE
DESCRIPTION
STATUS
ID_LENGTH
FORMAT
INPUT_MASK
VALUE_MASK
CREATE_DATE
CREATE_USERID
UPDATE_DATE
UPDATE_USERID

VARCHAR2(20)
VARCHAR2(50)
CHAR
NUMBER
VARCHAR2(60)
VARCHAR2(60)
VARCHAR2(60)
DATE
VARCHAR2(20)
DATE
VARCHAR2(20)

<pk> not null
not null
not null
not null
null
null
null
not null
not null
null
null

To SBYN_ENTERPRISE
by

FK_ENTERPRISE_
SYSTEMCODE_LID
eView Studio Reference Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
The Database Structure Sample Database Model
FK_ADDRESSSBR_COMPANYID

FK_COMPANYSBR_EUID

FK_CONTACTSBR_COMPANYID

FK_ENTERPRISE_EUID

FK_SYSTEMSBR_EUID

FK_PHONESBR_COMPANYID

SBYN_ADDRESSSBR

COMPANYID
ADDRESSID
ADDRESSTYPE
ADDRESSLINE1
ADDRESSLINE1_HOUSENUMBER
ADDRESSLINE1_STREETDIR
ADDRESSLINE1_STREETNAME
ADDRESSLINE1_STNAMEPHONCODE
ADDRESSLINE1_STREETTYPE
ADDRESSLINE2
CITY
STATECODE
POSTALCODE
POSTALCODEEXT
COUNTY
COUNTRYCODE

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(10)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(20)
VARCHAR2(20)

<ak,fk>
<pk>
<ak>

null
not null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

U_ADDRESSSBR
PK_ADDRESSSBR

<ak>
<pk>

SBYN_COMPANYSBR

EUID
COMPANYID
COMPANYNAME
COMPANYNAME_NAME
COMPANYNAME_NAMEPHONCODE
COMPANYNAME_ORGTYPE
COMPANYNAME_ASSOCTYPE
COMPANYNAME_INDUSTRY
COMPANYNAME_SECTOR
COMPANYNAME_ALIAS
COMPANYNAME_URL
COMPANYTYPE
EXCHANGE
STOCKSYMBOL
SIC
INDUSTRY
SALESREGION
TAXPAYERID
CREDITSTANDING
NOOFEMPLOYEES

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(20)
VARCHAR2(16)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(12)
NUMBER

<ak,fk>
<pk>

null
not null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

U_COMPANYSBR
PK_COMPANYSBR

<ak>
<pk>

SBYN_CONTACTSBR

COMPANYID
CONTACTID
CONTACTTYPE
FIRSTNAME
LASTNAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(32)
VARCHAR2(32)
VARCHAR2(32)

<ak,fk>
<pk>

null
not null
null
null
null

U_CONTACTSBR
PK_CONTACTSBR

<ak>
<pk>

SBYN_ENTERPRISE

SYSTEMCODE
LID
EUID

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)

<pk,fk2>
<pk,fk2>
<pk,fk1>

not null
not null
not null

PK_ENTERPRISE <pk>

SBYN_OVERWRITE

EUID
PATH
TYPE
INTEGERDATA
BOOLEANDATA
STRINGDATA
BYTEDATA
LONGDATA
DATEDATA
FLOATDATA
TIMESTAMPDATA

VARCHAR2(20)
VARCHAR2(200)
VARCHAR2(20)
NUMBER(38)
NUMBER(38)
VARCHAR2(200)
CHAR(2)
LONG
DATE
NUMBER(38,4)
DATE

<pk,fk>
<pk>

not null
not null
null
null
null
null
null
null
null
null
null

PK_SBROVERWRITE <pk>

SBYN_PHONESBR

COMPANYID
PHONEID
PHONETYPE
PHONE
PHONEEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(6)

<ak,fk>
<pk>
<ak>

null
not null
null
null
null

U_PHONESBR
PK_PHONESBR

<ak>
<pk>

SBYN_SYSTEMSBR

EUID
CHILDTYPE
CREATESYSTEM
CREATEUSER
CREATEFUNCTION
CREATEDATE
UPDATESYSTEM
UPDATEUSER
UPDATEFUNCTION
UPDATEDATE
STATUS
REVISIONNUMBER

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(15)
NUMBER(38)

<pk> not null
null
null
null
null
null
null
null
null
null
null
null

PK_SBYNSYSTEMSBR <pk>

To
SBYN_SYSTEMOBJECT

by
FK_ENTERPRISE_
SYSTEMCODE_LID
eView Studio Reference Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
The Database Structure Sample Database Model
FK_AM_TRANSACTIONNUMBER

FK_COMM_DET_COMM_HEAD

FK_SBYN_MERGE

SBYN_APPL

APPL_ID
CODE
DESCR
READ_ONLY
CREATE_DATE
CREATE_USERID

NUMBER(10)
VARCHAR2(8)
VARCHAR2(30)
CHAR
DATE
VARCHAR2(20)

<pk> not null
not null
not null
not null
not null
not null

PK_UP_SBYN_APPL <pk>

SBYN_ASSUMEDMATCH

ASSUMEDMATCHID
EUID
SYSTEMCODE
LID
WEIGHT
TRANSACTIONNUMBER

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(20) <fk>

null
null
null
null
null
null

SBYN_AUDIT

AUDIT_ID
PRIMARY_OBJECT_TYPE
EUID
EUID_AUX
FUNCTION
DETAIL
CREATE_DATE
CREATE_BY

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(15)
VARCHAR2(15)
VARCHAR2(32)
VARCHAR2(120)
DATE
VARCHAR2(20)

<pk> not null
null
null
null
not null
null
not null
not null

PK_SBYN_AUDIT <pk>

SBYN_COMMON_DETAIL

COMMON_DETAIL_ID
COMMON_HEADER_ID
CODE
DESCR
READ_ONLY
CREATE_DATE
CREATE_USERID

NUMBER(10)
NUMBER(10)
VARCHAR2(20)
VARCHAR2(50)
CHAR
DATE
VARCHAR2(20)

<pk>
<fk>

not null
not null
not null
not null
not null
not null
not null

PK_SBYN_COMMON_DETAIL <pk>

SBYN_COMMON_HEADER

COMMON_HEADER_ID
APPL_ID
CODE
DESCR
READ_ONLY
MAX_INPUT_LEN
TYP_TABLE_CODE
CREATE_DATE
CREATE_USERID

NUMBER(10)
NUMBER(10)
VARCHAR2(8)
VARCHAR2(50)
CHAR
NUMBER(10)
VARCHAR2(3)
DATE
VARCHAR2(20)

<pk> not null
not null
not null
not null
not null
not null
not null
not null
not null

PK_SBYN_COMMON_HEADER <pk>

SBYN_MERGE

MERGE_ID
KEPT_EUID
MERGED_EUID
MERGE_TRANSACTIONNUM
UNMERGE_TRANSACTIONNUM

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)

<pk>
<fk>
<fk>
<fk>

not null
not null
null
not null
null

PK_SBYN_MERGE <pk>

SBYN_POTENTIALDUPLICATES

POTENTIALDUPLICATEID
WEIGHT
TYPE
DESCRIPTION
STATUS
HIGHMATCHFLAG
RESOLVEDUSER
RESOLVEDDATE
RESOLVEDCOMMENT
EUID2
TRANSACTIONNUMBER
EUID1

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(15)
VARCHAR2(120)
VARCHAR2(15)
VARCHAR2(15)
VARCHAR2(30)
DATE
VARCHAR2(120)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)

<pk> not null
null
null
null
null
null
null
null
null
null
null
null

PK_POTENTIALDUPLICATES <pk>

SBYN_SEQ_TABLE

SEQ_NAME
SEQ_COUNT

VARCHAR2(20)
NUMBER(38)

<ak> null
null

U_SEQ_NAME <ak1>

SBYN_TRANSACTION

TRANSACTIONNUMBER
LID1
LID2
EUID1
EUID2
FUNCTION
SYSTEMUSER
TIMESTAMP
DELTA
SYSTEMCODE
LID
EUID

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(30)
DATE
BLOB
VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)

<pk,ak>

<ak>

<ak>

not null
null
null
null
null
null
null
null
null
null
null
null

AK_TRANSACTION
PK_TRANSACTION

<ak>
<pk>
eView Studio Reference Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4

Understanding Operational Processes

Master indexes created by eView use a custom Java API library and the eGate
Integrator to transform and route data into and out of the master index database. In
order to customize the way the Java methods transform the data, it is helpful to
understand the logic of the primary processing function (executeMatch) and how
messages are typically processed through the master index system.

This chapter describes and illustrates the processing flow of messages to and from the
master index, providing background information to help design and create custom
processing rules for your implementation.

4.1 Learning About Message Processing
This section of the chapter provides a summary of how inbound and outbound
messages can be processed in an eView master index environment. A master index
cross-references records stored in various computer systems in an organization, and
identifies records that might represent or do represent the same object. The master
index uses the eGate Integrator, along with the connectivity components available
through eGate, to connect to and share data with these external systems.

Figure 5 on page 44 illustrates the flow of information through the master index.
eView Studio Reference Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
Figure 5 Master Index Processing Flow

4.1.1 Inbound Message Processing
An inbound message refers to the transmission of data from external systems to the
eGate Integrator and then to the master index database. These messages may be sent
into the database via a number of Services, using Java Collaborations and eInsight
Business Processes. Inbound messages are stored and tracked in the eGate log files. The
steps below describe how inbound messages are processed.

1 Messages are created in an external system, and the enveloped message is
transmitted to eGate via that system's eWay.

2 eGate identifies the message and the appropriate Service to which the message
should be sent. The message is then routed to the appropriate Service for
processing.

Master Index
Database

When the database is updated, the
Event is sent back out through the
Outbound Service with the EUID
attached.

Manual queries and
updates to the database

Entering new
address

information

Enterprise
Data

Manager

original
Event

translated
Event

outbound
Event

outbound
Event

Source eWay Destination
eWay

eGate
Integrator

Inbound
Service

Outbound
Service

Accessing
new address

information
eView Studio Reference Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
3 The message is modified into the appropriate format for the master index database,
and validations are performed against the data elements of the message to ensure
accurate delivery. The message is validated using the Java code in the Service’s
Collaboration or Business Process and other information stored in the eView
configuration files.

4 If the message was successfully transmitted to the database, the appropriate
changes to the database are processed.

5 After the master index processes the message, an EUID is returned (for either a new
or updated record). That EUID can be sent back out through a different Service to
the external system. Alternatively, the entire updated message can be published
using the outbound OTD (see “Outbound Message Processing” on page 46 next).

Figure 6 below illustrates the flow of a message inbound to an eView application.

Figure 6 Inbound Message Processing Data Flow

About Inbound Messages

The format of inbound messages is defined by the inbound OTD, located in the client
Project for each external system. The inbound messages can either conform to the
required format for the eView master index, or they can be mapped to the correct
format in the Collaboration. The required format depends on how the object structure
of the master index is defined (in the Object Definition file of the eView Project).

In addition to the objects and fields defined in the Object Definition file, you can
include standard eView fields. For example, you must include the system and local ID
fields, and you can also include transaction information, such as the date and time of
the transaction, the transaction type, user ID, and so on. If you want to use transaction
information from the source systems, be sure to include these fields in the OTD. These
fields include the user ID of the user who performed the transaction, the date and time
of the transaction, and so on. If you do not send these fields into the master index,
default values are used (for example, the user ID defaults to “eGate” and the date and
time fields default to the date and time the transaction is processed by the master
index). The inbound OTD in the eView sample Project includes the system and local ID
fields, but not transactional information. The inbound OTD also includes the standard
Java methods unmarshalFromString, reset, marshalToString, marshal, and unmarshal.

Master Index
Database

External
System

eView
Service

eGate

eGate
eView Studio Reference Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
4.1.2 Outbound Message Processing
An outbound message refers to the transmission of data from the master index
database to any external system. Messages can be transmitted from the master index in
two ways. The first way is by transmitting the output of executeMatch (an EUID). This
is described earlier in “Inbound Message Processing” on page 44, and is only used for
messages received from external systems.

The second way is by publishing messages to a JMS Topic, which publishes complete,
updated records to any system subscribing to that topic. Outbound messages are
generated in the format of the outbound OTD when updates are made to the database
from either external systems or the Enterprise Data Manager. This section describes
how the second type of outbound message is processed.

1 When a message is received and processed by the master index, an XML message is
generated and sent to a JMS Topic, which is configured to publish messages from
the master index.

2 Messages published by the JMS Topic are processed through a Service whose
Collaboration or Business Process uses the master index outbound OTD. This
Service modifies the message into the appropriate format.

3 eGate identifies the message and the external systems to which it should be sent,
and then routes the message for processing via an external system eWay.

Note: Outbound messages are stored and tracked in the eGate log files.

Figure 7 below illustrates the flow of data for a message outbound from the master
index.

Figure 7 Outbound Message Processing Data Flow

About Outbound Messages

When you customize the object definition and generate the eView application, an
outbound OTD is created, the structure of which is based on the object definition. This
OTD is used to publish changes in the master index database to external systems via a
JMS Topic. The output of the executeMatch process described earlier is an EUID of the
new or updated record. You can use this EUID to obtain additional information and
configure a Collaboration and Service to output the data, or you can process all updates
in the master index through a JMS Topic using the outbound OTD.

Outbound OTD Structure

The outbound OTD is named after the application name of the master index (for
example, OUTCompany or OUTPerson). This OTD contains eight primary nodes:
Event, ID, SBR, and the standard Java methods unmarshalFromString, reset,

eGateJMS TopicMaster Index
Database

External
System

eView
Service
eView Studio Reference Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
marshalToString, marshal, and unmarshal. The “Event” field is populated with the
type of transaction that created the outbound message, and the “ID” field is populated
with the unique identification code of that transaction. The SBR node is the portion of
the OTD created from the Object Definition file. In the eView sample, the outbound
OTD publishes messages in XML format. Table 22 describes the components of the SBR
portion of the outbound OTD.

Outbound Message Trigger Events

When outbound messaging is enabled, the following transactions automatically
generate an outbound message that is sent to the JMS Topic.

Table 22 Outbound OTD SBR Node

Node Descriptions

EUID The EUID of the record that was inserted or
modified.

Status The status of the record.

CreateFunction The date the record was first created.

CreateUser The logon ID of the user who created the record.

UpdateSystem The processing code of the external system from
which the updates to an existing record originated.

ChildType The name of the parent object.

CreateSystem The processing code of the external system from
which the record originated.

UpdateDateTime The date and time the record was last updated.

CreateDateTime The date and time the record was created.

UpdateFunction The type of function that caused the record to be
modified.

RevisionNumber The revision number of the record.

UpdateUser The logon ID of the user who last updated the
record.

SystemObject The fields in this node contain local ID and system
information.

SystemCode The processing code of the system that created the
new record or caused an existing record to be
updated.

LID The local ID associated with the above system for
the published record.

Status The status of the system record.

<Object_Name> The fields in this node are defined by the object
structure (as defined in the Object Definition file). It
is named by the parent object and contains all fields
and child objects defined in the structure. This
section varies depending on your customizations.
eView Studio Reference Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
Activating a system record

Activating an enterprise record

Adding a system record

Creating an enterprise record

Deactivating a system record

Deactivating an enterprise record

Merging an enterprise record

Merging a system record

Transferring a system record

Unmerging an enterprise record

Unmerging a system record

Updating an enterprise record

Updating a system record

4.1.3 Inbound Message Processing Logic
When records are transmitted to the master index, executeMatch is called and a series
of processes are performed to ensure that accurate and current data is maintained in the
database. In the sample Project configuration, these processes are defined in the
Collaboration using the functions defined in the customized method OTD. The steps
performed by executeMatch are outlined below, and the diagrams on the following
pages illustrate the message processing flow. The processing steps performed in your
environment may vary from this depending on how you customize the Collaboration
and Connectivity Map.

The following steps refer to the following elements in the eView Threshold file (these
are described in the eView Studio Configuration Guide):

OneExactMatch parameter

SameSystemMatch parameter

MatchThreshold parameter

DuplicateThreshold parameter

update-mode element

1 When a message is received by the master index, a search is performed for any
existing records with the same local ID and system as those contained in the
message. This search only includes records with a status of A, meaning only active
records are included. If a matching record is found, an existing EUID is returned.

2 If an existing record is found with the same system and local ID as the incoming
message, it is assumed that the two records represent the same object. Using the
EUID of the existing record, the master index performs an update of the record’s
information in the database.
eView Studio Reference Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
If the update does not make any changes to the object’s information, no further
processing is required and the existing EUID is returned.

If there are changes to the object’s information, the updated record is inserted
into database, and the changes are recorded in the sbyn_transaction table.

If there are changes to key fields (that is, fields used for matching or for the
blocking query) and the update mode is set to pessimistic, potential duplicates
are re-evaluated for the updated record.

3 If no records are found that match the record’s system and local identifier, a second
search is performed using the blocking query. A search is performed on each of the
defined query blocks to retrieve a candidate pool of potential matches.

Each record returned from the search is weighted using the fields defined for
matching in the inbound message.

4 After the search is performed, the number of resulting records is calculated.

If a record or records are returned from the search with a matching probability
weight above the match threshold, the master index performs exact match
processing (see Step 5).

If no matching records are found, the inbound message is treated as a new
record. A new EUID is generated and a new record is inserted into the database.

5 If records were found within the high match probability range, exact match
processing is performed as follows:

If only one record is returned from this search with a matching probability that
is equal to or greater than the match threshold, additional checking is
performed to verify whether the records originated from the same system (see
Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is set to false, then the
record with the highest matching probability is checked against the incoming
message to see if they originated from the same system (see Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is true, a new EUID is
generated and a new record is inserted into the database.

If no record is returned from the database search, or if none of the matching
records have a weight in the exact match range, a new EUID is generated and a
new record is inserted into the database.

Note: Exact matching is determined by the OneExactMatch parameter, and the match
threshold is defined by the MatchThreshold parameter. For more information about
these parameters, see the eView Studio Configuration Guide.

6 When records are checked for same system entries, the master index tries to retrieve
an existing local ID using the system of the new record and the EUID of the record
that has the highest match weight.
eView Studio Reference Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
If a local ID is found and same system matching is set to true, a new record is
inserted, and the two records are considered to be potential duplicates. These
records are marked as same system potential duplicates.

If a local ID is found and same system matching is set to false, it is assumed that
the two records represent the same object. Using the EUID of the existing
record, the master index performs an update, following the process described in
Step 2 earlier.

If no local ID is found, it is assumed that the two records represent the same
object and an assumed match occurs. Using the EUID of the existing record, the
master index performs an update, following the process described in Step 2
earlier.

7 If a new record is inserted, all records that were returned from the blocking query
are weighed against the new record using the matching algorithm. If a record is
updated and the update mode is pessimistic, the same occurs for the updated
record. If the matching probability weight of a record is greater than or equal to the
potential duplicate threshold, the record is flagged as a potential duplicate (for
more information about thresholds, see the eView Studio Configuration Guide).

The flow charts on the following pages provide a visual representation of the processes
performed by the default sample Project. Figures 8 and 9 represent the primary flow of
information. Figure 10 expands on update procedures illustrated in Figures 8 and 9.
eView Studio Reference Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
Figure 8 Inbound Message Processing in the Sample Project

Message
containing a

system and local
ID, plus relevant
data, is received

Lookup system and
local ID in the

sbyn_enterprise
table

Perform update on
the existing record

(see Figure 10
expansion)

Yes

No

Are records
found with

matching weights equal to or
greater than the duplicate

threshold?

No Perform a new
record insert

Go to A

Yes

Perform
matching

algorithm search

Processing
complete

Are the
system and local ID

pair found?
eView Studio Reference Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
Figure 9 Inbound Message Processing (cont'd)

1 record found

A

Perform new
record insert

0 records found

More than 1
record found

Is exact
matching set

to true?

Yes

No

Process potential
duplicates for
records above

and equal to the
duplicate
threshold

Processing
complete

Perform update
on matching

record (see Figure
10 expansion)

No

Yes

Perform update
on matching
record (see
Figure 10

expansion)

No

Yes

Perform new
record insert

Process potential
duplicates for
records above

and equal to the
duplicate
threshold

Processing
complete

Is same
system matching

set to true?

 Did highest
matching record

originate from the
same system?

No

 Did matching
 records originate

from the same
system?

Yes

 Were records
 found with matching

weights above or equal
to the match
threshold?
eView Studio Reference Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding Operational Processes Learning About Message Processing
Figure 10 Record Update Expansion

Find the existing
record using the

EUID

Are there
changes

 to the entity's
data?

Update
existing recordYes

Insert changes
into the

sbyn_transaction
table

Is update
mode

pessimistic?

Yes

Perform
potential
duplicate

processing

No

Were
changes made
to significant*

fields?

Yes

No

* Significant fields for potential duplicate processing include those defined for
matching and those included in the blocking query used for matching

No

Processing
complete
eView Studio Reference Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5

Working with the Java API

eView provides several Java classes and methods to use in the Collaborations for an
eView Project. The eView API is specifically designed to help you maintain the integrity
of the data in the master index database by providing specific methods for updating,
adding, and merging records in the database.

5.1 Overview
This chapter provides an overview of the Java API for eView, and describes the
dynamic classes and methods that are generated based on the object structure of the
master index. For detailed information about the static classes and methods, refer to the
eView Javadocs, provided as a download through the Enterprise Manager. Unless
otherwise noted, all classes and methods described in this chapter are public. Methods
inherited from classes other than those described in this chapter are listed, but not
described.

5.1.1 Java Class Types
eView provides a set of static API classes that can be used with any object structure and
any eView master index. eView also generates several dynamic API classes that are
specific to each master index. The dynamic classes contain similar methods, but the
number and names of methods change depending on the object structure. In addition,
several methods are generated in an OTD for use in external system Collaborations and
another set of methods is generated for use within an eInsight Business Process.

Static Classes

Static classes provide the methods you need to perform basic data cleansing functions
against incoming data, such as performing searches, reviewing potential duplicates,
adding and updating records, and merging and unmerging records. The primary class
containing these functions is the MasterController class, which includes the
executeMatch method. Several classes support the MasterController class by defining
additional objects and functions. Documentation for the static methods is provided in
Javadoc format. The static classes are listed and described in the Javadocs provided
with eView.
eView Studio Reference Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Dynamic Object Classes

When you generate an eView Project, several dynamic methods are created that are
specific to the object structure defined for the master index. This includes classes that
define each object in the object structure and that allow you to work with the data in
each object.

Dynamic OTD Methods

When you generate an eView Project, a method OTD is created that contains Java
methods to help you define how records will be processed into the master index
database from external systems. These methods rely on the dynamic object classes to
create the objects in the master index and to define and retrieve field values for those
objects.

Dynamic Business Process Methods

When you generate an eView Project, several methods are listed under the method
OTD folder that are designed for use within an eInsight Business Process. These
methods are a subset of the eView API that can be used to access data within the master
index database.

5.2 Dynamic Object Classes
Several dynamic classes are generated for each eView Project for use in Collaborations.
One class is created for each parent and child object defined in the Object Structure.

5.2.1 Parent Object Classes
AJava class is created to represent each parent object defined in the object definition of
the master index. The methods in these classes provide the ability to create a parent
object and to set or retrieve the field values for that object.

The name of each parent object class is the same as the name of each parent object, with
the word “Object” appended. For example, if the parent object in your object structure
is “Person”, the name of the parent class is “PersonObject”. The methods in this class
include a constructor method for the parent object, and get and set methods for each
field defined for the parent object. Most methods have dynamic names based on the
name of the parent object and the fields and child objects defined for that object. In the
following methods described for the parent object, <ObjectName> indicates the name of
the parent object, <Child> indicates the name of a child object, and <Field> indicates the
name of a field defined for the parent object.

Definition

public class <ObjectName>Object
eView Studio Reference Guide 55 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Methods

<ObjectName>Object

Description

<ObjectName>Object is the user-defined object name class. You can instantiate this
class to create a new instance of the parent object class.

Syntax

new <ObjectName>Object()

Parameters

None.

Returns

An instance of the parent object.

Throws

ObjectException

add<Child>

Description

add<Child> associates a new child object with the parent object. The new child object is
of the type specified in the method name. For example, to associate a new address
object with a parent object, call “addAddress”.

Syntax

public void add<Child>(<Child>Object <child>)

Note: The type of object passed as a parameter depends on the child object to associate with
the parent object. For example, the syntax for associating an address object is as
follows: public void addAddress(AddressObject address).

<ObjectName>Object on page 56 getChildTags on page 60

add<Child> on page 56 getMetaData on page 60

addSecondaryObject on page 57 getSecondaryObject on page 60

copy on page 57 getStatus on page 61

dropSecondaryObject on page 58 set<ObjectName>Id on page 61

get<ObjectName>Id on page 58 set<Field> on page 62

get<Child> on page 59 setStatus on page 62

get<Field> on page 59 structCopy on page 63
eView Studio Reference Guide 56 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Parameters

Returns

None.

Throws

None.

addSecondaryObject

Description

addSecondaryObject associates a new child object with the parent object. The object
node passed as the parameter defines the child object type.

Syntax

public void addSecondaryObject(ObjectNode obj)

Parameters

Returns

None.

Throws

SystemObjectException

copy

Description

copy copies the structure and field values of the specified object node.

Syntax

public ObjectNode copy()

Parameters

None.

Name Type Description

<child> <Child>Object A child object to associate with the
parent object. The name and type of
the parameter is specified by the child
object name.

Name Type Description

obj ObjectNode An ObjectNode representing the child
object to associate with the parent
object.
eView Studio Reference Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Returns

A copy of the object node.

Throws

ObjectException

dropSecondaryObject

Description

dropSecondaryObject removes a child object associated with the parent object (in the
memory copy of the object). The object node passed in as the parameter defines the
child object type. Use this method to remove a child object before it has been committed
to the database. This method is similar to ObjectNode.removeChild. Use
ObjectNode.deleteChild to remove the child object permanently from the database.

Syntax

public void dropSecondaryObject(ObjectNode obj)

Parameters

Returns

None.

Throws

SystemObjectException

get<ObjectName>Id

Description

get<ObjectName>Id retrieves the unique identification code (primary key) of the
object, as assigned by the master index.

Syntax

public String get<ObjectName>Id()

Parameters

None.

Returns

A string containing the unique ID of the parent object.

Throws

ObjectException

Name Type Description

obj ObjectNode An ObjectNode representing the child
object to drop from the parent object.
eView Studio Reference Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the parent object. For example, if
the parent object contains a field named “FirstName”, the getter method for this field is
named “getFirstName”.

Syntax

public String get<Field>()

Note: The syntax for the getter methods depends of the type of data specified for the field in
the object structure. For example, the getter method for a date field would have the
following syntax: public Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

get<Child>

Description

get<Child> retrieves all child objects associated with the parent object that are of the
type specified in the method name. For example, to retrieve all address objects
associated with a parent object, call “getAddress”.

Syntax

public Collection get<Child>()

Parameters

None.

Returns

A collection of child objects of the type specified in the method name.

Throws

None.
eView Studio Reference Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
getChildTags

Description

getChildTags retrieves a list of the names of all child object types defined for the object
structure.

Syntax

public ArrayList getChildTags()

Parameters

None.

Returns

An array of child object names.

Throws

SystemObjectException

getMetaData

Description

getMetaData retrieves the metadata for the parent object.

Syntax

public AttributeMetaData getMetaData()

Parameters

None.

Returns

An AttributeMetaData object containing the parent object’s metadata.

Throws

None.

getSecondaryObject

Description

getSecondaryObject retrieves all child objects that are associated with the parent object
and are of the specified type.

Syntax

public Collection getSecondaryObject(String type)
eView Studio Reference Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Parameters

Returns

A collection of child objects of the specified type.

Throws

SystemObjectException

getStatus

Description

getStatus retrieves the status of the object.

Syntax

public String getStatus()

Parameters

None.

Returns

A string containing the status of the object.

Throws

ObjectException

set<ObjectName>Id

Description

set<ObjectName>Id sets the value of the <ObjectName>Id field in the parent object.

Syntax

public void set<ObjectName>Id(Object value)

Parameters

Returns

None.

Name Type Description

type String The child type of the objects to
retrieve.

Name Type Description

value Object An object containing the value of the
<ObjectName>Id field.
eView Studio Reference Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Throws

ObjectException

set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “CompanyName”, the setter method for this field is
named “setCompanyName”. A setter method is created for each field in the parent
object, including any fields containing standardized or phonetic data.

Syntax

public void set<Field>(Object value)

Parameters

Returns

None.

Throws

ObjectException

setStatus

Description

setStatus sets the status of the parent object.

Syntax

public void setStatus(Object value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value Object An object containing the value of the
field specified by the method name.

Name Type Description

value Object An object containing the value of the
status field.
eView Studio Reference Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
structCopy

Description

structCopy copies the structure of the specified object node.

Syntax

public ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Throws

ObjectException

5.2.2 Child Object Classes
One Java class is created for each child object defined in the object definition of the
master index. If the object definition contains three child objects, three child object
classes are created. The methods in these classes provide the ability to create the child
objects and to set or retrieve the field values for those objects.

The name of each child object class is the same as the name of the child object, with the
word “Object” appended. For example, if a child object in your object structure is
named “Address”, the name of the corresponding child class is “AddressObject”. The
methods in these classes include a constructor method for the child object, and get and
set methods for each field defined for the child object. Most methods have dynamic
names based on the name of the child object and the fields defined for that object. In the
following methods described for the child objects, <Child> indicates the name of the
child object and <Field> indicates the names of a field defined for that object.

Definition

public class <Child>Object

Methods

<Child>Object on page 64 getParentTag on page 66

copy on page 64 set<Child>Id on page 66

get<Child>Id on page 64 set<Field> on page 67

get<Field> on page 65 structCopy on page 67

getMetaData on page 65
eView Studio Reference Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
<Child>Object

Description

<Child>Object is the child object class. This class can be instantiated to create a new
instance of a child object class.

Syntax

new <Child>Object()

Parameters

None.

Returns

An instance of the child object.

Throws

ObjectException

copy

Description

copy copies the structure and field values of the specified object node.

Syntax

public ObjectNode copy()

Parameters

None.

Returns

A copy of the object node.

Throws

ObjectException

get<Child>Id

Description

get<Child>Id retrieves the unique identification code (primary key) of the object, as
assigned by the master index.

Syntax

public String get<Child>Id()

Parameters

None.
eView Studio Reference Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Returns

A string containing the unique ID of the child object.

Throws

ObjectException

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the child object. For example, if the
child object contains a field named “TelephoneNumber”, the getter method for this
field is named “getTelephoneNumber”. A getter method is created for each field in the
object, including fields that store standardized or phonetic data.

Syntax

public String get<Field>()

Note: The syntax for the getter methods depends on the type of data specified for the field
in the object structure. For example, the getter method for a date field would have the
following syntax: public Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

getMetaData

Description

getMetaData retrieves the metadata for the child object.

Syntax

public AttributeMetaData getMetaData()

Parameters

None.

Returns

An AttributeMetaData object containing the child object’s metadata.
eView Studio Reference Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Throws

None.

getParentTag

Description

getParentTag retrieves the name of the parent object of the given child object.

Syntax

public String getParentTag()

Parameters

None.

Returns

A string containing the name of the parent object.

Throws

None.

set<Child>Id

Description

set<Child>Id sets the value of the <Child>Id field in the child object.

Syntax

public void set<Child>Id(Object value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value Object An object containing the value of the
<Child>Id field.
eView Studio Reference Guide 66 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “CompanyName”, the setter method for this field is
named “setCompanyName”.

Syntax

public void set<Field>(Object value)

Parameters

Returns

None.

Throws

ObjectException

structCopy

Description

structCopy copies the structure of the specified object node.

Syntax

public ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Throws

ObjectException

5.3 Dynamic OTD Methods
A set of Java methods are created in an OTD for use in the master index Collaborations.
These methods wrap static Java API methods, allowing them to work with the dynamic
object classes. Many OTD methods return objects of the dynamic object type, or they

Name Type Description

value Object An object containing the value of the
field specified by the method name.
eView Studio Reference Guide 67 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
use these objects as parameters. In the following methods described for the OTD
methods, <ObjectName> indicates the name of the parent object.

activateEnterpriseRecord

Description

activateEnterpriseRecord changes the status of a deactivated enterprise object back to
active.

Syntax

void activateEnterpriseRecord(String euid)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

activateEnterpriseRecord on page 68 getSBR on page 76

activateSystemRecord on page 69 getSystemRecord on page 77

addSystemRecord on page 69 getSystemRecordsByEUID on page 78

deactivateEnterpriseRecord on page 70 getSystemRecordsByEUIDStatus on page 78

deactivateSystemRecord on page 71 lookupLIDs on page 79

executeMatch on page 71 mergeEnterpriseRecord on page 79

executeMatchUpdate on page 72 mergeSystemRecord on page 80

findMasterController on page 73 searchBlock on page 81

getEnterpriseRecordByEUID on page 74 searchExact on page 81

getEnterpriseRecordByLID on page 74 searchPhonetic on page 82

getEUID on page 75 transferSystemRecord on page 82

getLIDs on page 75 updateEnterpriseRecord on page 83

getLIDsByStatus on page 76 updateSystemRecord on page 84

Name Type Description

euid String The EUID of the enterprise object to
activate.
eView Studio Reference Guide 68 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
activateSystemRecord

Description

activateSystemRecord changes the status of a deactivated system object back to active.

Syntax

void activateSystemRecord(String systemCode, String localId)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

addSystemRecord

Description

addSystemRecord adds the system object to the enterprise object associated with the
specified EUID.

Syntax

void addSystemRecord(String euid, System<ObjectName> systemObject)

Name Type Description

systemCode String The processing code of the system
associated with the system record to
be activated.

localID String The local identifier associated with the
system record to be activated.
eView Studio Reference Guide 69 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

deactivateEnterpriseRecord

Description

deactivateEnterpriseRecord changes the status of an active enterprise object to
inactive.

Syntax

void deactivateEnterpriseRecord(String euid)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

Name Type Description

euid String The EUID of the enterprise object to
which you want to add the system
object.

systemObject System<ObjectName> The system object to be added to the
enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Company”, the name of this
parameter will appear as
“systemCompany”.

Name Type Description

euid String The EUID of the enterprise object to
deactivate.
eView Studio Reference Guide 70 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
UserException

deactivateSystemRecord

Description

deactivateSystemRecord changes the status of an active system object to inactive.

Syntax

void deactivateSystemRecord(String euid)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

executeMatch

executeMatch is one of two methods you can call to process an incoming system object
based on the configuration defined for the eView Manager Service and associated
runtime components (the second method is executeMatchUpdate on page 72). This
process searches for possible matches in the database and contains the logic to add a
new record or update existing records in the database. One of the two execute match
methods should be used for inserting or updating a record in the database.

The following runtime components configure executeMatch.

The Query Builder defines the blocking queries used for matching.

The Threshold file specifies which blocking query to use and specifies matching
parameters, including duplicate and match thresholds.

The pass controller and block picker classes specify how the blocking query is
executed.

Important: If executeMatch determines that an existing system record will be updated by the
incoming record, it replaces the entire existing record with the information in the
new record. This could result in loss of data; for example, if the incoming record does

Name Type Description

system String The system code of the system object
to deactivate.

localid String The local ID of the system object to
deactivate.
eView Studio Reference Guide 71 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
not include all address information, existing address information could be lost. To
avoid this, use the executeMatchUpdate function instead.

Syntax

MatchColResult executeMatch(System<ObjectName> systemObject)

Parameters

Returns

A match result object containing the results of the matching process.

Throws

RemoteException

ProcessingException

UserException

executeMatchUpdate

Like executeMatch on page 71, executeMatchUpdate processes the system object based
on the configuration defined for the eView Manager Service and associated runtime
components. It is configured by the same runtime components as executeMatch. One of
the two execute match methods should used for inserting or updating a record in the
database.

The primary difference between these two methods is that when executeMatchUpdate
finds that an incoming record matches an existing record, only the changed data is
updated. With executeMatch, the entire existing record would be replaced by the
incoming record. The executeMatchUpdate method differs from executeMatch in the
following ways:

If a partial record is received, executeMatchUpdate only updates fields whose
values are different in the incoming record. Unless the clearFieldIndicator field is
used, empty or null fields in the incoming record do not update existing values.

The clearFieldIndicator field can be used to null out specific fields.

Child objects in the existing record are not deleted if they are not present in the
incoming record.

Name Type Description

systemObject System<ObjectName> The system object to be added to or
updated in the enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Person”, the name of this parameter
will appear as “systemPerson”.
eView Studio Reference Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Child objects in the existing record are updated if the same key field value is found
in both the incoming and existing records.

To allow a child object to be removed from the parent object when using
executeMatchUpdate, each child bean object includes a “delete” method.

Syntax

MatchColResult executeMatchUpdate(System<ObjectName> systemObject)

Parameters

Returns

A match result object containing the results of the matching process.

Throws

ProcessingException

UserException

findMasterController

findMasterController obtains a handle to the MasterController class, providing access
to all of the methods of that class. For more information about the available methods,
see the Javadoc provided with eView.

Syntax

MasterController findMasterController()

Parameters

None.

Returns

A handle to the com.stc.eindex.ejb.master.MasterController class.

Throws

None.

Name Type Description

systemObject System<ObjectName> The system object to be added to or
updated in the enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Person”, the name of this parameter
will appear as “systemPerson”.
eView Studio Reference Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
getEnterpriseRecordByEUID

Description

getEnterpriseRecordByEUID returns the enterprise object associated with the specified
EUID.

Syntax

Enterprise<ObjectName> getEnterpriseRecordByEUID(String euid)

Parameters

Returns

An enterprise object associated with the specified EUID, or null if the enterprise object
is not found.

Throws

RemoteException

ProcessingException

UserException

getEnterpriseRecordByLID

Description

getEnterpriseRecordByLID returns the enterprise object associated with the specified
system code and local ID pair.

Syntax

Enterprise<ObjectName> getEnterpriseRecordByLID(String system, String
localid)

Parameters

Returns

An enterprise object, or null if the enterprise object is not found.

Name Type Description

euid String The EUID of the enterprise object you
want to retrieve.

Name Type Description

system String The system code of a system
associated with the enterprise object
to find.

localid String A local ID associated with the
specified system.
eView Studio Reference Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Throws

RemoteException

ProcessingException

UserException

getEUID

Description

getEUID returns the EUID of the enterprise object associated with the specified system
code and local ID.

Syntax

String getEUID(String system, String localid)

Parameters

Returns

A string containing an EUID, or null if the EUID is not found.

Throws

RemoteException

ProcessingException

UserException

getLIDs

Description

getLIDs retrieves the local ID and system pairs associated with the given EUID.

Syntax

System<ObjectName>PK[] getLIDs(String euid)

Parameters

Name Type Description

system String A known system code for the
enterprise object.

localid String The local ID corresponding with the
given system.

Name Type Description

euid String The EUID of the enterprise object
whose local ID and system pairs you
want to retrieve.
eView Studio Reference Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Returns

An array of system object keys (System<ObjectName>PK objects) or null if no results
are found.

Throws

RemoteException

ProcessingException

UserException

getLIDsByStatus

Description

getLIDsByStatus retrieves the local ID and system pairs that are of the specified status
and that are associated with the given EUID.

Syntax

System<ObjectName>PK[] getLIDsByStatus(String euid, String status)

Parameters

Returns

An array of system object keys (System<ObjectName>PK objects), or null if no system
object keys are found.

Throws

RemoteException

ProcessingException

UserException

getSBR

Description

getSBR retrieves the single best record (SBR) associated with the specified EUID.

Syntax

SBR<ObjectName> getSBR(String euid)

Name Type Description

euid String The EUID of the enterprise object
whose local ID and system pairs to
retrieve.

status String The status of the local ID and system
pairs to retrieve.
eView Studio Reference Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Parameters

Returns

An SBR object, or null if no SBR associated with the specified EUID is found.

Throws

RemoteException

ProcessingException

UserException

getSystemRecord

Description

getSystemRecord retrieves the system object associated with the given system code
and local ID pair.

Syntax

System<ObjectName> getSystemRecord(String system, String localid)

Parameters

Returns

A system object containing the results of the search, or null if no system objects are
found.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

euid String The EUID of the enterprise object
whose SBR you want to retrieve.

Name Type Description

system String The system code of the system object
to retrieve.

localid String The local ID of the system object to
retrieve.
eView Studio Reference Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
getSystemRecordsByEUID

Description

getSystemRecordsByEUID returns the active system objects associated with the
specified EUID.

Syntax

System<ObjectName>[] getSystemRecordsByEUID(String euid)

Parameters

Returns

An array of system objects associated with the specified EUID.

Throws

RemoteException

ProcessingException

UserException

getSystemRecordsByEUIDStatus

Description

getSystemRecordsByEUIDStatus returns the system objects of the specified status that
are associated with the given EUID.

Syntax

System<ObjectName>[] getSystemRecordsByEUIDStatus(String euid, String
status)

Parameters

Returns

An array of system objects associated with the specified EUID, or null if no system
objects are found.

Name Type Description

euid String The EUID of the enterprise object
whose system objects you want to
retrieve.

Name Type Description

euid String The EUID of the enterprise object
whose system objects you want to
retrieve.

status String The status of the system objects you
want to retrieve.
eView Studio Reference Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Throws

RemoteException

ProcessingException

UserException

lookupLIDs

Description

lookupLIDs first looks up the EUID associated with the specified source system and
source local ID. It then retrieves the local ID and system pairs that are associated with
that EUID and are from the specified destination system.

Syntax

System<ObjectName>PK[] lookupLIDs(String sourceSystem, String
sourceLID, String destSystem, String status)

Parameters

Returns

An array of system object keys (System<ObjectName>PK objects).

Throws

RemoteException

ProcessingException

UserException

mergeEnterpriseRecord

Description

mergeEnterpriseRecord merges two enterprise objects, specified by their EUIDs.

Syntax

Merge<ObjectName>Result mergeEnterpriseRecord(String fromEUID, String
toEUID, boolean calculateOnly)

Name Type Description

sourceSystem String The system code of the known system
and local ID pair.

sourceLID String The local ID of the known system and
local ID pair.

destSystem String The system from which the local ID
and system pairs to retrieve originated.

status String The status of the local ID and system
pairs to retrieve.
eView Studio Reference Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Parameters

Returns

A merge result object containing the results of the merge.

Throws

RemoteException

ProcessingException

UserException

mergeSystemRecord

Description

mergeSystemRecord merges two system objects, specified by their local IDs, from the
specified system. The system objects can belong to a single enterprise object or to two
different enterprise objects.

Syntax

Merge<ObjectName>Result mergeSystemRecord(String sourceSystem, String
sourceLID, String destLID, boolean calculateOnly)

Parameters

Name Type Description

fromEUID String The EUID of the enterprise object that
will not survive the merge.

toEUID String The EUID of the enterprise object that
will not survive the merge.

calculateOnly boolean An indicator of whether to commit
changes to the database or to simply
compute the merge results. Specify
false to commit the changes.

Name Type Description

sourceSystem String The processing code of the system to
which the two system objects belong.

sourceLID String The local ID of the system object that
will not survive the merge.

destLID String The local ID of the system object that
will survive the merge.

calculateOnly boolean An indicator of whether to commit
changes to the database or to simply
compute the merge results. Specify
false to commit the changes.
eView Studio Reference Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Returns

A merge result object containing the results of the merge.

Throws

RemoteException

ProcessingException

UserException

searchBlock

Description

searchBlock performs a blocking query against the database using the blocking query
specified in the Threshold file and the criteria contained in the specified object bean.

Syntax

Search<ObjectName>Result searchBlock(<ObjectName>Bean searchCriteria)

Parameters

Returns

The results of the search.

Throws

RemoteException

ProcessingException

UserException

searchExact

Description

searchExact performs an exact match search using the criteria specified in the object
bean. Only records that exactly match the search criteria are returned in the search
results object.

Syntax

Search<ObjectName>Result searchExact(<ObjectName>Bean searchCriteria)

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the blocking
query.
eView Studio Reference Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Parameters

Returns

The results of the search stored in a Search<ObjectName>Result object.

Throws

RemoteException

ProcessingException

UserException

searchPhonetic

Description

searchPhonetic performs search using phonetic values for some of the criteria specified
in the object bean. This type of search allows for typos and misspellings.

Syntax

Search<ObjectName>Result searchPhonetic(<ObjectName>Bean
searchCriteria)

Parameters

Returns

The results of the search.

Throws

RemoteException

ProcessingException

UserException

transferSystemRecord

Description

transferSystemRecord transfers a system record from one enterprise record to another
enterprise record.

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the exact match
search.

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the phonetic
search.
eView Studio Reference Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Syntax

void transferSystemRecord(String toEUID, String systemCode, String
localID)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

updateEnterpriseRecord

Description

updateEnterpriseRecord updates an existing enterprise object in the master index
database with the new values of the specified enterprise object.

Syntax

void updateEnterpriseRecord(Enterprise<ObjectName> enterpriseObject)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

toEUID String The EUID of the enterprise record to
which the system record will be
transferred.

systemCode String The processing code of the system
record to transfer.

localID String The local ID of the system record to
transfer.

Name Type Description

enterpriseObject Enterprise<ObjectName> The enterprise object to be updated.
eView Studio Reference Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Working with the Java API Dynamic Business Process Methods
updateSystemRecord

Description

updateSystemRecord updates the existing system object in the database with the given
system object.

Syntax

void updateSystemRecord(System<ObjectName> systemObject)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

5.4 Dynamic Business Process Methods
A set of Java methods are created in the eView Project for use in eInsight interfaces.
These methods include a subset of the dynamic OTD methods, which are documented
above. Many of these methods return objects of the dynamic object type, or they use
these objects as parameters. In the descriptions for these methods, <ObjectName>
indicates the name of the parent object.

The following methods are available for eInsight interfaces. They are described in the
previous section, “Dynamic OTD Methods”.

Name Type Description

systemObject System<ObjectName> The system object to be updated to
the enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Person”, the name of this parameter
will appear as “systemPerson”.

executeMatch on page 71 getSBR on page 76

executeMatchUpdate on page 72 getSystemRecordsByEUID on page 78

getEnterpriseRecordByEUID on page 74 getSystemRecordsByEUIDStatus on
page 78
eView Studio Reference Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
5.5 Helper Classes
Helper classes include objects that can be passed as parameters to an OTD method or a
Business Process method. They also include the methods that you can access through
the system<ObjectName> variable in the eView Collaboration (where <ObjectName> is
the name of a parent object.

5.5.1 System<ObjectName>
In order to run executeMatch in a Java Collaboration, you must define a variable of the
class type System<ObjectName>, where <ObjectName> is the name of a parent object.
This class is passed as a parameter to executeMatch. The class contains a constructor
method and several get and set methods for system fields. It also includes one field that
specifies the value of the “clear field character” (for more information, see
“ClearFieldIndicator Field” on page 86). In the methods described in this section,
<ObjectName> indicates the name of the parent object, <Child> indicates the name of a
child object, and <Field> indicates the name of a field defined for the parent object.

Definition

public class System<ObjectName>

Fields

ClearFieldIndicator Field on page 86

Methods

Inherited Methods

The following methods are inherited from java.lang.Object.

equals

hashcode

notify

notifyAll

getEnterpriseRecordByLID on page 74 lookupLIDs on page 79

getEUID on page 75 searchBlock on page 81

getLIDs on page 75 searchExact on page 81

getLIDsByStatus on page 76 searchPhonetic on page 82

System<ObjectName> on page 86 setClearFieldIndicator on page 88

getClearFieldIndicator on page 86 set<Field> on page 88

get<Field> on page 87 set<ObjectName> on page 89

set<ObjectName> on page 89
eView Studio Reference Guide 85 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
toString

wait()

wait(long arg)

wait(long timeout, int nanos)

ClearFieldIndicator Field

The ClearFieldIndicator field allows you to specify whether to treat a field in the
primary parent object as null when performing an update from an external system.
When an update is performed in the master index, empty fields typically do not
overwrite the value of an existing field. You can specify to nullify a field that already
has an existing value in the master index by entering an indicator in that field. This
indicator is specified by the ClearFieldIndicator field. By default, the
ClearFieldIndicator field is set to double-quotes (““), so if a field is set to double-
quotes, that field will be blanked out. If you do not want to use this feature, set the clear
field indicator to null.

System<ObjectName>

Description

System<ObjectName> is the user-defined system class for the parent object. You can
instantiate this class to create a new instance of the system class.

Syntax

new System<ObjectName>()

Parameters

None.

Returns

An instance of the System<ObjectName> class.

Throws

ObjectException

getClearFieldIndicator

Description

getClearFieldIndicator retrieves the value of the ClearFieldIndicator field.

Syntax

public String getClearFieldIndicator()

Parameters

None.
eView Studio Reference Guide 86 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Returns

A String containing the value of the ClearFieldIndicator field.

Throws

None.

get<Field>

Description

get<Field> retrieves the value of the specified system field. There are getter methods
for the following fields: LocalId, SystemCode, Status, CreateDateTime, CreateFunction,
and CreateUser.

Syntax

public String get<Field>()

or

public Date get<Field>()

Parameters

None.

Returns

The value of the specified field. The type of value returned depends on the field from
which the value was retrieved.

Throws

ObjectException

get<ObjectName>

Description

get<ObjectName> retrieves the parent object Java Bean for the system record (where
<ObjectName> is the name of the parent object).

Syntax

public <ObjectName>Bean get<ObjectName>()

Parameters

None.

Returns

A Java Bean containing the parent object.

Throws

None.
eView Studio Reference Guide 87 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
setClearFieldIndicator

Description

setClearFieldIndicator sets the value of the clear field character (in the
ClearFieldIndicator field). By default, this is set to double quotes (““).

Syntax

public void setClearFieldIndicator(String value)

Parameters

Returns

None.

Throws

None.

set<Field>

Description

set<Field> sets the value of the specified system field. There are setter methods for the
following fields: LocalId, SystemCode, Status, CreateDateTime, CreateFunction, and
CreateUser.

Syntax

public void set<Field>(value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value String The value that should be entered into
a field to indicate that any existing
values should be replaced with null.

Name Type Description

value varies The value to set in the specified field.
The type of value depends on the field
into which the value is being set.
eView Studio Reference Guide 88 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
set<ObjectName>

Description

set<ObjectName> sets the parent object Java Bean for the system record (where
<ObjectName> is the name of the parent object).

Syntax

public String set<ObjectName>(<ObjectName>Bean object)

Parameters

Returns

None.

Throws

ObjectException

5.5.2 Parent Beans
A Java Bean is created to represent each parent object defined in the object definition of
the master index. The methods in these classes provide the ability to create a parent
object Bean and to set or retrieve the field values for that object Bean.

The name of each parent object Bean class is the same as the name of each parent object,
with the word “Bean” appended. For example, if a parent object in your object structure
is “Person”, the name of the associated parent Bean class is “PersonBean”. The methods
in this class include a constructor method for the parent object Bean, and get and set
methods for each field defined for the parent object. Most methods have dynamic
names based on the name of the parent object and the fields and child objects defined
for that object. In the methods described in this section, <ObjectName> indicates the
name of the parent object, <Child> indicates the name of a child object, and <Field>
indicates the name of a field defined for the parent object.

Definition

public final class <ObjectName>Bean

Methods

Name Type Description

object <ObjectName>Bean The Java Bean for the parent object.

<ObjectName>Bean on page 90 get<Field> on page 93

count<Child> on page 90 get<ObjectName>Id on page 94

countChildren on page 91 set<Child> on page 94

countChildren on page 91 set<Child> on page 95

delete<Child> on page 92 set<Field> on page 95
eView Studio Reference Guide 89 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Inherited Methods

The following methods are inherited from java.lang.Object.

equals

hashcode

notify

notifyAll

toString

wait()

wait(long arg)

wait(long timeout, int nanos)

<ObjectName>Bean

Description

<ObjectName>Bean is the user-defined object Bean class. You can instantiate this class
to create a new instance of the parent object Bean class.

Syntax

new <ObjectName>Bean()

Parameters

None.

Returns

An instance of the parent object Bean.

Throws

ObjectException

count<Child>

Description

count<Child> returns the total number of child objects contained in a system object.
The type of child object is specified by the method name (such as Phone or Address).

Syntax

public int count<Child>()

Parameters

None.

get<Child> on page 92 set<ObjectName>Id on page 96

get<Child> on page 93
eView Studio Reference Guide 90 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Returns

An integer indicating the number of child objects in a collection.

Throws

None.

countChildren

Description

countChildren returns a count of the total number of child objects belonging to a
system object.

Syntax

public int countChildren()

Parameters.

None.

Returns

An integer representing the total number of child objects.

Throws

None.

countChildren

Description

countChildren returns a count of the total number of child objects of a specific type that
belong to a system object.

Syntax

public int countChildren(String type)

Parameters.

Returns

An integer representing the total number of child objects of the specified type.

Throws

None.

Name Type Description

type String The type of child object to count, such
as Phone or Address.
eView Studio Reference Guide 91 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
delete<Child>

Description

delete<Child> removes the specified child object from the system object. The type of
child object to remove is specified by the name of the method, and the specific child
object to remove is specified by its unique identification code assigned by the master
index.

Syntax

public void delete<Child>(String <Child>Id)

Parameters

Returns

None.

Throws

ObjectException

get<Child>

Description

get<Child> retrieves an array of child object Beans. Each getter method is named
according to the child objects defined for the parent object. For example, if the parent
object contains a child object named “Address”, the getter method for this field is
named “getAddress”. A getter method is created for each child object in the parent
object.

Syntax

public <Child>Bean[] get<Child>()

Parameters

None.

Returns

An array of Java Beans containing the type of child objects specified by the method
name.

Throws

None.

Name Type Description

<Child>Id String The unique identification code of the
child object to delete.
eView Studio Reference Guide 92 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
get<Child>

Description

get<Child> retrieves a child object Bean based on its index in a list of child objects. Each
getter method is named according to the child objects defined for the parent object. For
example, if the parent object contains a child object named “Address”, the getter
method for this field is named “getAddress”. A getter method is created for each child
object in the parent object.

Syntax

public <Child>Bean get<Child>(int i)

Parameters

Returns

A Java Bean containing the child object specified by the index value. The method name
indicates the type of child object returned.

Throws

ObjectException

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the parent object. For example, if
the parent object contains a field named “FirstName”, the getter method for this field is
named “getFirstName”.

Syntax

public String get<Field>()

Note: The syntax for the getter methods depends of the type of data specified for the field in
the object structure. For example, the getter method for a date field would have the
following syntax: public Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Name Type Description

i int The index of the child object to
retrieve from a list of child objects.
eView Studio Reference Guide 93 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Throws

ObjectException

get<ObjectName>Id

Description

get<ObjectName>Id retrieves the unique identification code (primary key) of the
object, as assigned by the master index.

Syntax

public String get<ObjectName>Id()

Parameters

None.

Returns

A string containing the unique ID of the parent object.

Throws

ObjectException

set<Child>

Description

set<Child> adds a child object to the system object.

Syntax

public void set<Child>(int index, <Child>Bean child)

Parameters.

Returns

None.

Throws

None.

Name Type Description

index integer The index number for the new child
object.

child <Child>Bean The Java Bean containing the child
object to add.
eView Studio Reference Guide 94 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
set<Child>

Description

set<Child> adds an array of child objects of one type to the system object.

Syntax

public void set<Child>(<Child>Bean[] children)

Parameters.

Returns

None.

Throws

None.

set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “CompanyName”, the setter method for this field is
named “setCompanyName”. A setter method is created for each field in the parent
object, including any fields containing standardized or phonetic data.

Syntax

public void set<Field>(value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

children <Child>Bean[] The array of child objects to add.

Name Type Description

value varies The value of the field specified by the
method name. The type of value
depends on the field being populated.
eView Studio Reference Guide 95 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
set<ObjectName>Id

Description

set<ObjectName>Id sets the value of the <ObjectName>Id field in the parent object.

Note: This ID is set internally by the master index. Do not set this field manually.

Syntax

public void set<ObjectName>Id(String value)

Parameters

Returns

None.

Throws

ObjectException

5.5.3 Child Beans
A Java Bean is created to represent each child object defined in the object definition of
the master index. The methods in these classes provide the ability to create a child
object Bean and to set or retrieve the field values for that object Bean.

The name of each child object Bean class is the same as the name of each child object,
with the word “Bean” appended. For example, if a child object in your object structure
is named “Address”, the name of the corresponding child class is “AddressBean”. The
methods in this class include a constructor method for the child object Bean, and get
and set methods for each field defined for the child object. Most methods have dynamic
names based on the name of the child object and the fields defined for that object. In the
following methods, <Child> indicates the name of a child object and <Field> indicates
the name of a field defined for the parent object.

Definition

public final class <Child>Bean

Methods

Name Type Description

value String The value of the <ObjectName>Id
field.

set<ObjectName>Id on page 96 get<Child>Id on page 98

<Child>Bean on page 97 set<Field> on page 99

delete on page 97 set<Child>Id on page 99

get<Field> on page 98
eView Studio Reference Guide 96 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Inherited Methods

The following methods are inherited from java.lang.Object.

equals

hashcode

notify

notifyAll

toString

wait()

wait(long arg)

wait(long timeout, int nanos)

<Child>Bean

Description

<Child>Bean is the user-defined object Bean class. You can instantiate this class to
create a new instance of the child object Bean class.

Syntax

new <Child>Bean()

Parameters

None.

Returns

An instance of the child object Bean.

Throws

ObjectException

delete

Description

delete removes the child object from the eView object. This is used with the
executeMatchUpdate function to update a system object by deleting one of the child
objects from the eView object.

Syntax

public void delete()

Parameters

None.

Returns

None.
eView Studio Reference Guide 97 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Throws

ObjectException

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the child object. For example, if the
child object contains a field named “ZipCode”, the getter method for this field is named
“getZipCode”.

Syntax

public String get<Field>()

Note: The syntax for the getter methods depends of the type of data specified for the field in
the object structure. For example, the getter method for a date field would have the
following syntax: public Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

get<Child>Id

Description

get<Child>Id retrieves the unique identification code (primary key) of the object, as
assigned by the master index.

Note: This ID is set internally by the master index. Do not set this field manually.

Syntax

public String get<Child>Id()

Parameters

None.

Returns

A string containing the unique ID of the child object.
eView Studio Reference Guide 98 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Throws

ObjectException

set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the child object. For example, if the child
object contains a field named “Address”, the setter method for this field is named
“setAddress”. A setter method is created for each field in the child object, including any
fields containing standardized or phonetic data.

Syntax

public void set<Field>(value)

Parameters

Returns

None.

Throws

ObjectException

set<Child>Id

Description

set<Child>Id sets the value of the <Child>Id field in the child object.

Syntax

public void set<Child>Id(String value)

Parameters

Returns

None.

Name Type Description

value varies The value of the field specified by the
method name. The type of value
depends on the data type of the field
being populated.

Name Type Description

value String The value of the <Child>Id field.
eView Studio Reference Guide 99 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Throws

ObjectException

5.5.4 DestinationEO
This class represents an enterprise object involved in a merge. This is the enterprise
object whose EUID was kept in the final merge result record. A DestinationEO object is
used when unmerging two enterprise objects.

Definition

public class DestinationEO

Methods

getEnterprise<ObjectName>

Description

getEnterprise<ObjectName> (where <ObjectName> is the name of the primary parent
object) retrieves the surviving enterprise object from a merge transaction in order to
allow the records to be unmerged.

Syntax

public Enterprise<ObjectName> getEnterprise<ObjectName>()

where <ObjectName> is the name of the primary parent object.

Parameters

None.

Returns

The surviving enterprise object from a merge transaction.

Throws

None.

5.5.5 Search<ObjectName>Result
This class represents the results of a search. A Search<ObjectName>Result object (where
<ObjectName> is the name of the primary parent object) is returned as a result of a call
to “searchBlock”, “searchExact”, or “searchPhonetic”.

Definition

public class Search<ObjectName>Result

getEnterprise<ObjectName> on page 100
eView Studio Reference Guide 100 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Methods

getEUID

Description

getEUID retrieves the EUID of a search result record.

Syntax

public String getEUID()

Parameters

None.

Returns

A string containing an EUID.

Throws

None.

getComparisonScore

Description

getComparisonScore retrieves the weight that indicates how closely a search result
record matched the search criteria.

Syntax

public String getComparisonScore()

Parameters

None.

Returns

A string containing a comparison weight.

Throws

None.

get<ObjectName>

Description

get<ObjectName> retrieves an object bean for a search result record.

Syntax

public String get<ObjectName>Bean()

getEnterprise<ObjectName> on
page 102
eView Studio Reference Guide 101 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
where <ObjectName> is the name of the primary parent object.

Parameters

None.

Returns

An object bean.

Throws

None.

5.5.6 SourceEO
This class represents an enterprise object involved in a merge. This is the enterprise
object whose EUID was not kept in the final merge result record. A SourceEO object is
used when unmerging two enterprise objects.

Definition

public class SourceEO

Methods

getEnterprise<ObjectName>

Description

getEnterprise<ObjectName> (where <ObjectName> is the name of the primary parent
object) retrieves the non-surviving enterprise object from a merge transaction in order
to allow the records to be unmerged.

Syntax

public Enterprise<ObjectName> getEnterprise<ObjectName>()

where <ObjectName> is the name of the primary parent object.

Parameters

None.

Returns

The non-surviving enterprise object from a merge transaction.

Throws

None.

getEnterprise<ObjectName> on page 102
eView Studio Reference Guide 102 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
5.5.7 System<ObjectName>PK
This class represents the primary keys in a system object, which include the processing
code for the originating system and the local ID of the object in that system. The class is
named for the primary object. For example, if the primary object is named “Person”,
this class is named “SystemPersonPK”. If the primary object is named “Company”, this
class is named “SystemCompanyPK”. The methods in these classes provide the ability
to create an instance of the class and to retrieve the system processing code and the
local ID.

Definition

public class System<ObjectName>PK

where <ObjectName> is the name of the primary parent object.

Methods

System<ObjectName>PK

Description

System<ObjectName>PK is the user-defined system primary key object. This object
contains a system code and a local ID. Use this constructor method to create a new
instance of a system primary key object.

Syntax

new System<ObjectName>PK()

where <ObjectName> is the name of the primary parent object.

Parameters

None.

Returns

An instance of the system primary key object.

Throws

None.

getLocalId

Description

getLocalID retrieves the local identifier from a system primary key object.

System<ObjectName>PK on page 103

getLocalId on page 103

getSystemCode on page 104
eView Studio Reference Guide 103 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working with the Java API Helper Classes
Syntax

public String getLocalId()

Parameters

None.

Returns

A string containing a local identifier.

Throws

None.

getSystemCode

Description

getSystemCode retrieves the system’s processing code from a system primary key
object.

Syntax

public String getSystemCode()

Parameters

None.

Returns

A string containing the processing code for a system.

Throws

None.
eView Studio Reference Guide 104 SeeBeyond Proprietary and Confidential

Glossary
Glossary

alphanumeric search
A type of search that looks for records that precisely match the specified criteria. This
type of search does not allow for misspellings or data entry errors, but does allow the
use of wildcard characters.

assumed match
When the matching weight between two records is at or above a weight you specify,
(depending on the configuration of matching parameters) the objects are an assumed
match and are merged automatically (see “Automatic Merge”).

automatic merge
When two records are assumed to be matches of one another (see “Assumed Match”),
the system performs an automatic merge to join the records rather than flagging them
as potential duplicates.

Blocking Query
The query used during matching to search the database for possible matches to a new
or updated record. This query makes multiple passes against the database using
different combinations of criteria. The criteria is defined in the Candidate Select file.

Candidate Select file
The eView configuration file that defines the queries you can perform from the
Enterprise Data Manager (EDM) and the queries that are performed for matching.

candidate selection
The process of performing the blocking query for match processing. See Blocking Query.

candidate selection pool
The group of possible matching records that are returned by the blocking query. These
records are weighed against the new or updated record to determine the probability of
a match.

checksum
A value added to the end of an EUID for validation purposes. The checksum for each
EUID is derived from a specific mathematical formula.

code list
A list of values in the sbyn_common_detail database table that is used to populate
values in the drop-down lists of the EDM.
eView Studio Reference Guide 105 SeeBeyond Proprietary and Confidential

Glossary
code list type
A category of code list values, such as states or country codes. These are defined in the
sbyn_common_header database table.

duplicate threshold
The matching probability weight at or above which two records are considered to
potentially represent the same entity.

EDM
See Enterprise Data Manager.

Enterprise Data Manager
Also known as the EDM, this is the web-based interface that allows monitoring and
manual control of the master index database. The configuration of the EDM is stored in
the Enterprise Data Manager file in the eView Project.

enterprise object
A complete object representing a specific entity, including the SBR and all associated
system objects.

ePath
A definition of the location of a field in an eView object. Also known as the element path.

EUID
The enterprise-wide unique identification number assigned to each object profile in the
master index. This number is used to cross-reference objects and to uniquely identify
each object throughout your organization.

eView Manager Service
An eView component that provides an interface to all eView components and includes
the primary functions of the master index. This component is configured by the
Threshold file.

field IDs
An identifier for each field that is defined in the standardization engine and referenced
from the Match Field file.

Field Validator
An eView component that specifies the Java classes containing field validation logic for
incoming data. This component is configured by the Field Validation file.

Field Validation file
The eView configuration file that specifies any custom Java classes that perform field
validations when data is processed.

local ID
A unique identification code assigned to an object in a specific local system. An object
profile may have several local IDs in different systems.
eView Studio Reference Guide 106 SeeBeyond Proprietary and Confidential

Glossary
master index
A database application that stores and cross-references information on specific objects
in a business organization, regardless of the computer system from which the
information originates.

Match Field File
An eView configuration file that defines normalization, parsing, phonetic encoding,
and the match string for an instance of eView. The information in this file is dependent
on the type of data being standardized and matched.

match pass
During matching several queries are performed in turn against the database to retrieve
a set of possible matches to an incoming record. Each query execution is called a match
pass.

match string
The data string that is sent to the match engine for probabilistic weighting. This string is
defined by the match system object defined in the Match Field file.

match type
An indicator specified in the MatchingConfig section of the Match Field configuration
file that tells the match engine which rules to use to match information.

matching probability weight
An indicator of how closely two records match one another. The weight is generated
using matching algorithm logic, and is used to determine whether two records
represent the same object.

Matching Service
An eView component that defines the matching process. This component is configured
by the Match Field file.

matching threshold
The lowest matching probability weight at which two records can be considered a
match of one another.

matching weight or match weight
See matching probability weight.

merge
To join two object profiles or system records that represent the same entity into one
object profile.

merged profile
See non-surviving profile.

non-surviving profile
An object profile that is no longer active because it has been merged into another object
profile. Also called a merged profile.
eView Studio Reference Guide 107 SeeBeyond Proprietary and Confidential

Glossary
normalization
A component of the standardization process by which the value of a field is converted
to a standard version, such as changing a nickname to a common name.

object
A component of an object profile, such as a company object, which contains all of the
demographic data about a company, or an address object, which contains information
about a specific address type for the company.

object profile
A set of information that describes characteristics of one enterprise object. A profile
includes identification and other information about an object and contains a single best
record and one or more system records.

parsing
A component of the standardization process by which a freeform text field is separated
into its individual components, such as separating a street address field into house
number, street name, and street type fields.

phonetic encoding
A standardization process by which the value of a field is converted to its phonetic
version.

phonetic search
A search that returns phonetic variations of the entered search criteria, allowing room
for misspellings and typographic errors.

potential duplicates
Two different enterprise objects that have a high probability of representing the same
entity. The probability is determined using matching algorithm logic.

probabilistic weighting
A process during which two records are compared for similarities and differences, and
a matching probability weight is assigned based on the fields in the match string. The
higher the weight, the higher the likelihood that two records match.

probability weight
See matching probability weight.

Query Builder
An eView component that defines how queries are processed. The user-configured
logic for this component is contained in the Candidate Select file.

SBR
See single best record.

single best record
Also known as the SBR, this is the best representation of an entity’s information. The
SBR is populated with information from all source systems based on the survivor
eView Studio Reference Guide 108 SeeBeyond Proprietary and Confidential

Glossary
strategies defined for each field. It is a part of an entity’s enterprise object and is
recalculated each time a system record is updated.

standardization
The process of parsing, normalizing, or phonetically encoding data in an incoming or
updated record. Also see normalization, parsing, and phonetic encoding.

survivor calculator
The logic that determines which fields from which source systems should be used to
populate the SBR. This logic is a combination of Java classes and user-configured logic
contained in the Best Record file.

survivorship
Refers to the logic that determines which fields are used to populate the SBR. The
survivor calculator defines survivorship.

system
A computer application within your company where information is entered about the
objects in the master index and that shares this information with the master index (such
as a registration system). Also known as “source system” or “external system”.

system object
A record received from a local system. The fields contained in system objects are used
in combination to populate the SBR. The system objects for one entity are part of that
entity’s enterprise object.

tab
A heading on an application window that, when clicked, displays a different type of
information. For example, click the EDM tab on the Define Enterprise Object window to
display the EDM attributes.

Threshold file
An eView configuration file that specifies duplicate and match thresholds, EUID
generator parameters, and which blocking query defined in the Candidate Select file to
use for matching.

transaction history
A stored history of an enterprise object. This history displays changes made to the
object’s information as well as merges, unmerges, and so on.

Update Manager
The component of the master index that contains the Java classes and logic that
determines how records are updated and how the SBR is populated. The user-
configured logic for this component is contained in the Best Record file.
eView Studio Reference Guide 109 SeeBeyond Proprietary and Confidential

Index
Index

A
API classes 54
appl_id column 27, 30
application server 19
assumedmatch sequence number 33
assumedmatchid column 27
audience 8
audit sequence number 33
audit_id column 28

B
Best Record file 15, 16
blocking query 49
booleandata column 31
business objects 12
bytedata column 31

C
candidate pool 49
Candidate Select file 15
child Bean methods 97–100
child class methods 64–67
child objects 24
childtype column 34, 37
client Projects 18
code column 27, 29, 30, 38
Code List script 15
common_detail_id column 29
common_header_id column 29, 30
components

Environment 19
eView 12
eView Project 13
master index 20–22

configuration files 13
connectivity components 18
conventions 9–10
creatdate column 34
Create database script 15
create_by column 29
create_date column 27, 28, 29, 30, 36
create_userid column 27, 29, 30, 36

createdate column 37
createfunction column 34, 37
createsystem column 37
createuser column 34, 37
cross-reference 19
Custom Plug-ins 15

D
data maintenance 19
data structure 12
database

diagram 39
tables 23–25

database scripts 13
Code List 15
Create database 15
Drop database 15
Systems 15

datedata column 32
delta column 38
Deployment Profile 18
descr column 27, 29, 30
description column 32, 35, 38
DestinationEO methods 100
detail column 28
document conventions 10
documents, related 10
Drop database script 15
DuplicateThreshold 48

E
editors

Java source 13
text 13
XML 13

eGate Integrator 44
eInsight

Java methods for 17
eInsight Integration

methods 84–85
eInsight integration 55
Enterprise Data Manager file 15, 22
Enterprise Designer 12

Projects 13
Environment components 19
EUID column 26, 28, 30, 31, 36, 38
EUID sequence number 33
euid_aux column 28
EUID1 column 33, 37
EUID2 column 32, 38
eView

components 12
eView Studio Reference Guide 110 SeeBeyond Proprietary and Confidential

Index
Environment 19
eView Manager Service 15, 21
eView Projects

components 13
eView Wizard 12, 13, 23
eVision Studio

Java methods for 17
exact match processing 49
executeMatch 48, 54
External Systems 19

method OTD for 16

F
Field Validation file 15, 16
floatdata column 32
format column 35, 39
function column 28, 38

H
highmatchflag column 32

I
id_length column 35
identification 19
inbound messages 44
input_mask column 36, 39
integerdata column 31

J
Java API 54
Java methods, dynamic 16
Java reference 54
Java source editor 13
JMS IQ Managers 19

K
kept_euid column 31

L
lid column 26, 28, 30, 34, 38
lid1 column 37
lid2 column 37
Logical Host 19
longdata column 31

M
master index

components 20–22
functions 19
overview 19

MasterController 54
match engine 15
Match Engine node 16
Match Field file 15
match threshold 49
Matching Service 15, 21
MatchThreshold 48, 49
max_input_len column 30
merge 20, 25
merge sequence number 33
merge_euid column 31
merge_id column 31
merge_transactionnum column 31
message processing 49

blocking query 49
candidate pool 49
exact match 49
match threshold 49
potential duplicates 49
same system 49–50

messages
inbound 44
inbound processing 48
origin 44
outbound 46
processing 43
routing 44
transformation 45

method OTD 16, 48, 55, 67–84
classes

child classes 63
parent class 55

helper classes
child bean class 96
parent bean class 89
Search(Object)Result class 100
System(Object) class 100, 102, 103

O
Object Definition 23
Object Definition file 14
Object Persistence Service 22
object structure 17
Object Type Definition 17
OneExactMatch 48, 49
online documents 11
outbound messages 46
eView Studio Reference Guide 111 SeeBeyond Proprietary and Confidential

Index
P
parent Bean methods 90–96
parent class methods 56–63
parent objects 24
path column 31
potential duplicates 20, 25, 49
potentialduplicate sequence number 33
potentialduplicateid column 32
primary_object_type column 28
processing logic 48
Project components

Custom Plug-ins 15
database scripts 15
Deployment Profile 18
for connectivity 18
Match Engine node 16
outbound OTD 17
Standardization Engine node 16

Projects
client 18

Q
queries 49
Query Builder 15, 21
Query Manager 22

R
read_only column 27, 29, 30
related publications 10
resolvedcomment column 32
resolveddate column 32
resolveduser 32
revisionnumber column 37

S
same system processing 49–50
SameSystemMatch 48
sbyn_(child_object) 24, 26
sbyn_(child_object)sbr 24, 26
sbyn_(object_name) 24, 25
sbyn_(object_name)sbr 24, 26
sbyn_appl 24, 27
sbyn_appl sequence number 34
sbyn_assumedmatch 24, 27
sbyn_audit 24, 28
sbyn_common_detail 24, 29
sbyn_common_detail sequence number 34
sbyn_common_header 24, 29
sbyn_common_header sequence number 34
sbyn_enterprise 25, 30

sbyn_merge 25, 31
sbyn_overwrite 25, 31
sbyn_potentialduplicates 25, 32
sbyn_seq_table 25, 33
sbyn_system 25
sbyn_systemobject 25, 34
sbyn_systems 35
sbyn_systemsbr 25, 36
sbyn_transaction 25, 37
sbyn_user_code 38
sbyn_user_table 25
search function 19
search object result methods 101
Security 19

file 15
SeeBeyond Match Engine

configuration files 16
SeeBeyond Web site 11
seq_count column 33
seq_name column 33
sequence numbers

 34
assumedmatch 33
audit 33
EUID 33
merge 33
potentialduplicate 33
sbr 34
sbyn_appl 34
sbyn_common_detail 34
sbyn_common_header 34
transactionnumber 33

Services 18, 44
single best record 22, 23, 24
SourceEO methods 102
standardization engine 15
Standardization Engine node 16
STATUS column 35
status column 32, 35, 37
stringdata column 31
survivor calculator 15, 22
survivor strategy 22
system object primary key methods 103–104
system record 24
systemcode column 26, 28, 30, 34, 35, 38
Systems database script 15
Systems script

database scripts
Systems 15

systemuser column 38

T
text editor 13
eView Studio Reference Guide 112 SeeBeyond Proprietary and Confidential

Index
Threshold file 15
timestamp column 38
timestampdata column 32
transaction history 19, 25
transactionnumber column 28, 32, 37
transactionnumber sequence number 33
typ_table_code column 30
type column 31, 32

U
unmerge 20
unmerge_transactionnum column 31
update 48
Update Manager 15, 22
update policies 16
update_date column 36
update_userid column 36
UPDATEDATE column 35
updatedate column 37
updatefunction column 35, 37
update-mode 48
updateuser column 35, 37

V
value_mask column 36, 39

W
Web Connectors 19
weight column 28, 32

X
XML editor 13
eView Studio Reference Guide 113 SeeBeyond Proprietary and Confidential

	eView Studio Reference Guide
	Contents
	List of Tables
	Introduction
	1.1 Document Purpose and Scope
	1.1.1 Intended Audience
	1.1.2 Using this Guide
	1.1.3 Document Organization

	1.2 Writing Conventions
	1.2.1 Special Notation Conventions

	1.3 Supporting Documents
	1.4 Online Documents
	1.5 SeeBeyond Web Site

	eView Studio Overview
	2.1 Introduction
	2.2 eView Components
	2.2.1 eView Wizard
	2.2.2 Editors
	2.2.3 Project Components

	2.3 Figure 1 illustrates the Project and Environment components of eView Studio.
	Configuration Files
	Database Scripts
	Custom Plug-ins
	Match Engine Configuration Files
	Dynamic Java API
	Outbound Object Type Definition (OTD)
	Connectivity Components
	Deployment Profile
	2.3.1 Environment Components

	2.4 Learning about the Master Index
	2.4.1 Functions of the Master Index
	2.4.2 Master Index Components
	2.4.3 Matching Service
	2.4.4 eView Manager Service
	2.4.5 Query Builder
	2.4.6 Query Manager
	2.4.7 Update Manager
	2.4.8 Object Persistence Service (OPS)
	2.4.9 Database
	2.4.10 Enterprise Data Manager

	The Database Structure
	3.1 Overview of the Master Index Database
	3.2 Master Index Database Description
	3.2.1 Database Table Overview
	3.2.2 Database Table Details
	SBYN_<OBJECT_NAME>
	SBYN_<OBJECT_NAME>SBR
	SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR
	SBYN_APPL
	SBYN_ASSUMEDMATCH
	SBYN_AUDIT
	SBYN_COMMON_DETAIL
	SBYN_COMMON_HEADER
	SBYN_ENTERPRISE
	SBYN_MERGE
	SBYN_OVERWRITE
	SBYN_POTENTIALDUPLICATES
	SBYN_SEQ_TABLE
	SBYN_SYSTEMOBJECT
	SBYN_SYSTEMS
	SBYN_SYSTEMSBR
	SBYN_TRANSACTION
	SBYN_USER_CODE

	3.3 Sample Database Model

	Understanding Operational Processes
	4.1 Learning About Message Processing
	4.1.1 Inbound Message Processing
	About Inbound Messages

	4.1.2 Outbound Message Processing
	About Outbound Messages

	4.1.3 Inbound Message Processing Logic

	Working with the Java API
	5.1 Overview
	5.1.1 Java Class Types
	Static Classes
	Dynamic Object Classes
	Dynamic OTD Methods
	Dynamic Business Process Methods

	5.2 Dynamic Object Classes
	5.2.1 Parent Object Classes
	<ObjectName>Object
	add<Child>
	addSecondaryObject
	copy
	dropSecondaryObject
	get<ObjectName>Id
	get<Field>
	get<Child>
	getChildTags
	getMetaData
	getSecondaryObject
	getStatus
	set<ObjectName>Id
	set<Field>
	setStatus
	structCopy

	5.2.2 Child Object Classes
	<Child>Object
	copy
	get<Child>Id
	get<Field>
	getMetaData
	getParentTag
	set<Child>Id
	set<Field>
	structCopy

	5.3 Dynamic OTD Methods
	activateEnterpriseRecord
	activateSystemRecord
	addSystemRecord
	deactivateEnterpriseRecord
	deactivateSystemRecord
	executeMatch
	executeMatchUpdate
	findMasterController
	getEnterpriseRecordByEUID
	getEnterpriseRecordByLID
	getEUID
	getLIDs
	getLIDsByStatus
	getSBR
	getSystemRecord
	getSystemRecordsByEUID
	getSystemRecordsByEUIDStatus
	lookupLIDs
	mergeEnterpriseRecord
	mergeSystemRecord
	searchBlock
	searchExact
	searchPhonetic
	transferSystemRecord
	updateEnterpriseRecord
	updateSystemRecord

	5.4 Dynamic Business Process Methods
	5.5 Helper Classes
	5.5.1 System<ObjectName>
	ClearFieldIndicator Field
	System<ObjectName>
	getClearFieldIndicator
	get<Field>
	get<ObjectName>
	setClearFieldIndicator
	set<Field>
	set<ObjectName>

	5.5.2 Parent Beans
	<ObjectName>Bean
	count<Child>
	countChildren
	countChildren
	delete<Child>
	get<Child>
	get<Child>
	get<Field>
	get<ObjectName>Id
	set<Child>
	set<Child>
	set<Field>
	set<ObjectName>Id

	5.5.3 Child Beans
	<Child>Bean
	delete
	get<Field>
	get<Child>Id
	set<Field>
	set<Child>Id

	5.5.4 DestinationEO
	getEnterprise<ObjectName>

	5.5.5 Search<ObjectName>Result
	getEUID
	getComparisonScore
	get<ObjectName>

	5.5.6 SourceEO
	getEnterprise<ObjectName>

	5.5.7 System<ObjectName>PK
	System<ObjectName>PK
	getLocalId
	getSystemCode

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

