
Implementing the
SeeBeyond Match Engine
with eView Studio

Release 5.0.4
SeeBeyond Proprietary and Confidential

Implementing the SeeBeyond Match 2 SeeBeyond Proprietary and Confidential
Engine with eView Studio

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040526162802.

Contents
Contents

List of Tables 8

Chapter 1

Introduction 10
Document Purpose and Scope 10

Intended Audience 10
Document Organization 11

Writing Conventions 12

Supporting Documents 12

Online Documents 13

SeeBeyond Web Site 13

Chapter 2

The SeeBeyond Match Engine 14
About the Matching Algorithm 14

Standardization and Matching 14
Data Types 15
How it Works 15
Matching Weight Formulation 16

Matching and Unmatching Probabilities 16
Agreement and Disagreement Weight Ranges 17

Chapter 3

Standardization Configuration Files 18
About Standardization Configuration Files 18

Standardization Configuration File Types 18
Internationalization 19

Implementing Domain-specific Files 20
Loading Standardization Files 20
Specifying a Domain Selector 20
Implementing the SeeBeyond Match 3 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Contents
Chapter 4

Matching Configuration Files 22
About Matching Configuration Files 22

The Match Configuration File 22
Match Configuration File Format 23

Sample 23
Probability Type 23
Matching Rules 23

Matching Comparison Functions 25

The Match Constants File 27

Chapter 5

eView and the SeeBeyond Match Engine 29
SeeBeyond Match Engine and the Master Index 29

Searching and Matching in the Master Index 29
The Standardization and Matching Process 30
The Match String 30
Field Identifiers 30
Match and Standardization Types 35
Customizing SeeBeyond Match Engine Configuration Files 37

Matching Service Configuration 37
Standardization Configuration 38

Normalization Structures 38
Standardization Structures (Parsing and Normalization) 39
Phonetic Encoding Structures 40

Matching Configuration 40
Configuring the Match and Standardization Engines 40

Chapter 6

Person Data Type Configuration 42
Person Matching Overview 42

Person Data Processing Fields 42
Match String Fields 42
Standardized Fields 43
The Object Structure 43

Match Configuration for Person Data 43

Standardization Configuration for Person Data 44
Common Standardization Files for Person Data 44

personConstants.cfg 44
personFirstNameDash.dat 45
personNamePatt.dat 46
personRemoveSpecChars.dat 46
Implementing the SeeBeyond Match 4 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Contents
United States Person Data Standardization Files 46
personConjonUS.dat 47
personFirstNameUS.dat 47
personGenSuffixUS.dat 48
personLastNamePrefixUS.dat 49
personLastNameUS.dat 49
personOccupSuffixUS.dat 50
personThreeUS.dat 50
personTitleUS.dat 50
personTwoUS.dat 51
businessOrRelatedUS.dat 51

Customizing Person Data Configuration Files 51

Configuring the eView Match Service 52
Configuring StandardizationConfig 52

Step 1: Configure the System Object 52
Step 2: Configure the Normalization Structures 53
Step 3: Configure Fields to Phonetically Encode 55

Configuring the Match String 56
Configuring the Match and Standardization Engines 58

Chapter 7

Address Data Type Configuration 59
Address Matching Overview 59

Address Data Processing Fields 59
Match String Fields 59
Standardized Fields 60
The Object Structure 60

Match Configuration for Address Data 61

Standardization Configuration for Address Data 61
Common Address Standardization Files 61

addressConstants.cfg 61
addressInternalConstants.cfg 62

United States Address Standardization Files 63
addressClueAbbrevUS.dat 63
addressMasterCluesUS.dat 64
addressPatternsUS.dat 65
addressOutPatternsUS.dat 67
Address Pattern File Components 68

Modifying Address Data Configuration Files 71

Configuring the eView Match Service 71
Configuring StandardizationConfig 71

Step 1: Configure the System Object 72
Step 2: Configure Fields to Parse and Normalize 72
Step 3: Configure Fields to Phonetically Encode 74

Configuring the Match String 75
Configuring the Match and Standardization Engines 76
Implementing the SeeBeyond Match 5 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Contents
Chapter 8

Business Names Data Type Configuration 78
Business Name Matching Overview 78

Business Name Processing Fields 78
Match String Fields 78
Standardized Fields 79
The Object Structure 79

Match Configuration for Business Names 80

Standardization Configuration for Business Names 80
bizConstants.cfg 80
bizAdjectivesTypeKeys.dat 81
bizAliasTypeKeys.dat 82
bizAssociationTypeKeys.dat 82
bizBusinessGeneralTerms.dat 83
bizCityorStateTypeKeys.dat 83
bizCompanyFormerNames.dat 84
bizCompanyMergerNames.dat 84
bizCompanyPrimaryNames.dat 85
bizConnectorTokens.dat 86
bizCountryTypeKeys.dat 86
bizIndustryCategoryCode.dat 87
bizIndustryTypeKeys.dat 87
bizOrganizationTypeKeys.dat 88
bizPatterns.dat 89
bizRemoveSpecChars.dat 91

Modifying Business Name Configuration Files 92

Configuring the eView Match Service 92
Configuring StandardizationConfig 92

Step 1: Configure the System Object 93
Step 2: Configure Fields to Parse and Normalize 93
Step 3: Configure Fields to Phonetically Encode 95

Configuring the Match String 96
Configuring the Match and Standardization Engines 97

Appendix A

Fine-tuning Weights and Thresholds 98
Overview 98

Customizing the Match Configuration and Thresholds 98
Determine the Match Fields 98
Customize the Match Configuration 99

Probabilities or Agreement Weights 99
Defining Relative Value 99
Determining the Weight Range 99
Comparison Functions 101

Define the Weight Thresholds 101
Implementing the SeeBeyond Match 6 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Contents
Weight Threshold Overview 101
Specifying the Weight Thresholds 102
Fine-tuning the Thresholds 103

Appendix B

Match Configuration Comparison Functions 105
Comparison Functions 105

Bigram Comparison Functions 105
Uncertainty Comparison Functions 106
Exact Comparison Function (c) 108
Numeric Comparison Functions 108
Date Comparison Functions 110
Prorated Comparison Function (p) 112

Comparison Function Options 114

Appendix C

Standardization Files for United Kingdom Data 115
Overview 115

Person Name Files 115
personConjonUK.dat 115
personFirstNameUK.dat 116
personGenSuffixUK.dat 117
personLastNamePrefixUK.dat 117
personLastNameUK.dat 118
personOccupSuffixUK.dat 118
personThreeUK.dat 119
personTitleUK.dat 119
personTwoUK.dat 119
businessOrRelatedUK.dat 120

Address Files 120
addressConstantsUK.cfg 120
addressClueAbbrevUK.dat 121
addressInternalConstantsUK.cfg 122
addressMasterCluesUK.dat 122
addressPatternsUK.dat 124

addressOutPatternsUS.dat 125

Glossary 127

Index 133
Implementing the SeeBeyond Match 7 SeeBeyond Proprietary and Confidential
Engine with eView Studio

List of Tables
List of Tables

Table 1 Special Notation Conventions 12

Table 2 Match Configuration File Columns 24

Table 3 Comparison Functions 25

Table 4 Standardization Field Identifiers 31

Table 5 Standardization Types 35

Table 6 Match Types 36

Table 7 Person Constants File Parameters 44

Table 8 Hyphenated Name Category File 46

Table 9 US First Name Category File 47

Table 10 US Generational Suffix Category File 48

Table 11 US Last Name Prefix Category File 49

Table 12 US Last Name Category File 49

Table 13 US Person Title Category File 50

Table 14 Person Information structures-to-normalize Elements 54

Table 15 Person Domain phoneticize-fields Elements 56

Table 16 Person Domain match-column Elements 57

Table 17 Address Constants File Parameters 62

Table 18 US Address Clues File Columns 63

Table 19 US Address Master Clue File Columns 64

Table 20 US Address Patterns File 66

Table 21 US Address Output Patterns File 67

Table 22 Input Address Pattern Type Tokens 68

Table 23 Output Address Pattern Tokens 69

Table 24 Address free-form-text-to-standardize Elements 74

Table 25 Address phoneticize-fields Elements 75

Table 26 Address match-column Elements 76

Table 27 Business Constants File Parameters 81

Table 28 Alias Key Type File 82

Table 29 Association Type Key Table 82

Table 30 City or State Key Type File 83

Table 31 Business Former Name Reference File 84

Table 32 Business Merger Name Category File 85
Implementing the SeeBeyond Match 8 SeeBeyond Proprietary and Confidential
Engine with eView Studio

List of Tables
Table 33 Business Primary Name Reference File 85

Table 34 Country Key Type Files 86

Table 35 Industry Sector Reference File 87

Table 36 Industry Key Type File 88

Table 37 Organization Key Type File 88

Table 38 Business Patterns File Components 89

Table 39 Business Name Input Pattern Tokens 90

Table 40 Business Name Output Pattern Tokens 91

Table 41 Business Name Domain free-form-text-to-standardize Elements 94

Table 42 Business Name Data Type phoneticize-fields Elements 96

Table 43 Business Name Data Type match-column Elements 97

Table 44 Sample Agreement and Disagreement Weight Ranges 100

Table 45 Sample m-probabilities and u-probabilities 100

Table 46 usu Comparison Function Parameter 108

Table 47 n, nI, and nR Comparison Function Parameters 109

Table 48 nS Comparison Function Parameters 110

Table 49 Date Comparison Function Parameters 112

Table 50 Prorated Comparison Function Parameters 114

Table 51 UK First Name Category File 116

Table 52 UK Generational Suffix Category File 117

Table 53 US Last Name Prefix Category File 118

Table 54 UK Last Name Category File 118

Table 55 UK Person Title Category File 119

Table 56 UK Address Constants File Parameters 120

Table 57 UK Address Clues File Columns 122

Table 58 UK Address Master Clue File Columns 123

Table 59 UK Address Patterns File 124

Table 60 UK Address Output Patterns File 126
Implementing the SeeBeyond Match 9 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 1

Introduction

This guide provides comprehensive information on working with the components of
the SeeBeyond® Match Engine, and implementing the match engine with a SeeBeyond
eView Studio (eView) master index. As a component of SeeBeyond’s Integrated
Composite Application Network (ICAN) Suite, eView helps you integrate information
from disparate systems throughout your organization, using a matching algorithm to
identify data.

This guide includes complete descriptions of the components of the SeeBeyond Match
Engine along with information about customizing each component. It also describes
how to customize the eView configuration files to define standardization and matching
fields for the SeeBeyond Match Engine. This guide is designed to be used in
conjunction with the eView Studio User’s Guide and the eView Studio Configuration Guide.

This chapter provides an overview of this guide and the conventions used throughout,
as well as a list of supporting documents and information about using this guide.

1.1 Document Purpose and Scope
This guide provides background information and instructions for implementing the
SeeBeyond Match Engine with an eView master index. It includes descriptions of all
components and the default configuration, and also provides instructions for
customizing the eView configuration files for the match engine.

This guide does not include information or instructions for installing or configuring
eView. These topics are covered in the appropriate user guide (for more information,
see “Supporting Documents” on page 12).

1.1.1 Intended Audience
Any user who configures the eView Match Service (that is, the Match Field file), or who
creates or customizes the match engine configuration files, should read this book. A
thorough knowledge of eView is not needed to understand this guide, but familiarity
with the eView configuration files (especially the Match Field file) is recommended. A
general understanding of basic standardization and matching logic is helpful. It is
presumed that the reader of this guide is familiar with the type of data being stored in
the master index and the processing requirements for that data.
Implementing the SeeBeyond Match 10 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 1 Section 1.1
Introduction Document Purpose and Scope
1.1.2 Document Organization
This guide is divided into eight chapters and three appendixes that cover the topics
shown below.

Chapter 1 “Introduction” gives a general preview of this document—its purpose,
scope, and organization—and provides sources of additional information.

Chapter 2 “The SeeBeyond Match Engine” gives an overview of the SeeBeyond
Match Engine, the underlying matching algorithm, and the components of the
match engine.

Chapter 3 “Standardization Configuration Files” gives an overview of the
standardization configuration files and their purpose.

Chapter 4 “Matching Configuration Files” describes the matching configuration
files and gives a reference of the comparison functions for matching.

Chapter 5 “eView and the SeeBeyond Match Engine” describes how the
SeeBeyond Match Engine works with an eView master index.

Chapter 6 “Person Data Type Configuration”gives information and instructions
for customizing the standardization and matching configuration files for person
data, and gives instructions for customizing the Match Field file.

Chapter 7 “Address Data Type Configuration”gives information and instructions
for customizing the standardization and matching configuration files for address
fields, and gives instructions for customizing the Match Field file.

Chapter 8 “Business Names Data Type Configuration”gives information and
instructions for customizing the standardization and matching configuration files
for business name fields, and gives instructions for customizing the Match Field
file.

Appendix A “Fine-tuning Weights and Thresholds” describes the process of fine-
tuning the matching logic and weight thresholds.

Appendix B “Match Configuration Comparison Functions” lists and describes the
comparison functions you can use with the SeeBeyond Match Engine.

Appendix C “Standardization Files for United Kingdom Data” describes the
standardization files that are specific to the United Kingdom domain.
Implementing the SeeBeyond Match 11 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 1 Section 1.2
Introduction Writing Conventions
1.2 Writing Conventions
Before you start using this guide, it is important to understand the conventions
observed throughout this document.Table 1 lists these conventions.

1.3 Supporting Documents
SeeBeyond has developed a suite of user's guides and related publications that are
distributed in an electronic library. The following documents may provide information
useful in implementing the SeeBeyond Match Engine.

eView Studio User’s Guide

eView Studio Configuration Guide

eView Studio Reference Guide

Table 1 Special Notation Conventions

Text Convention Example

Titles of publications Title caps in italic
font

eView Studio Configuration Guide

Button, Icon,
Command, Function,
and Menu Names

Bold text Click OK to save and close.
From the File menu, select Exit.

Parameter, Variable,
and Method Names

Bold text Use the executeMatch() method.
Enter the field-type value.

Command Line
Code and Code
Samples

Courier font
(variables are in
bold italic)

bootstrap -p password
<tag>Person</tag>

Hypertext Links Blue text For more information, see “Writing Conventions”
on page 12.

File Names and Paths Bold text The matchConfigFile.cfg file contains the matching
rules for each field.

Notes Bold Italic text Note: If a toolbar button is dimmed, you cannot use
it with the selected component.
Implementing the SeeBeyond Match 12 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 1 Section 1.4
Introduction Online Documents
1.4 Online Documents
The documentation for the SeeBeyond ICAN Suite is distributed as a collection of
online documents. These documents are viewable with the Acrobat Reader application
from Adobe Systems. Acrobat Reader can be downloaded from:

http://www.adobe.com

1.5 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.SeeBeyond.com
Implementing the SeeBeyond Match 13 SeeBeyond Proprietary and Confidential
Engine with eView Studio

http://www.seebeyond.com
http://www.adobe.com

Chapter 2

The SeeBeyond Match Engine

The SeeBeyond Match Engine is the standard match engine for the master indexes
created by eView. It is highly configurable in the eView environment and can be used to
match on various types of data.

This chapter provides information about the configurable components of the match
engine, and how the SeeBeyond Match Engine standardizes and matches data.

2.1 About the Matching Algorithm
The SeeBeyond Matching Engine compares records containing similar data types by
calculating how closely the records match. The resulting comparison weight is either a
positive or negative numeric value that represents the degree to which the two sets of
data are similar. The match engine relies on probabilistic algorithms to compare data of
a given type using a comparison function specific to the type of data being compared.
The comparison functions for each matching field are defined in a match configuration
file that you configure specifically for the type of data you are indexing. The formula
used to determine the matching weight is based on either matching and unmatching
probabilities or on specific agreement and disagreement weight ranges.

The SeeBeyond Match Engine is also designed to standardize freeform text fields, such
as street address fields or business names. This allows the match engine to generate a
more accurate weight for freeform data.

2.1.1 Standardization and Matching
The matching algorithm in the SeeBeyond Match Engine uses a proven methodology to
process and weight records in the master index database. By providing both
standardization and matching capabilities, the match engine allows you to condition
data prior to matching. You can also use these capabilities to review legacy data prior to
loading it into the database. This review helps you determine data anomalies, invalid or
default values, and missing fields.

Both matching and standardization occur when two records are analyzed for matching
probability. Before matching, certain fields are standardized and converted into their
phonetic values if necessary. The match fields are analyzed and weighted according to
the rules defined in a match configuration file. The weights for each field are combined
to determine the overall matching weight for the two records. After the match engine
has performed these steps, survivorship is determined by the master index, based on
Implementing the SeeBeyond Match 14 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 2 Section 2.1
The SeeBeyond Match Engine About the Matching Algorithm
how the overall matching weight compares to the duplicate and match thresholds set
for the master index. These thresholds are configured for the eView Manager Service in
the Threshold file.

2.1.2 Data Types
You can standardize and match on different types of data with the SeeBeyond Match
Engine. In its default implementation with eView, the match engine supports data
standardization and matching on the three primary types of data listed below.

Person Information

Street Addresses

Business Names

In addition, the SeeBeyond Match Engine provides comparison functions for matching
on various types of fields contained within the primary data types, such as numbers,
dates, Social Security Numbers, single characters, and so on.

When processing person information, the match engine assumes that each match field
is stored in a separate field. For street address and business name processing, eView is
configured to parse free-form fields for searching and matching. Each data type
requires specific customizations to the Match Field file in the master index Project. The
required customizations for each type are described in chapters 6 through 8 of this
guide.

2.1.3 How it Works
The SeeBeyond Match Engine compares two records and returns a match weight
indicating the likelihood of a match between the two records. There are three primary
components of the match engine.

Configuration Files
The SeeBeyond Match Engines includes a set of files that define standardization
and matching logic for all supported data types. You can customize these files to
adapt the standardization and matching logic to your specific needs.

Standardization Engine
Standardization involves converting non-standard data into a standardized form so
it is more accurate and efficient to process. Standardization consists of any one or
more of the following actions:

Parsing — separating a free-text field into its individual components, such as
street address information or a business name.

Normalization — changing the value of a field to a standard version, such as
changing a nickname to a common name.

Phonetic Encoding — changing the value of a field to its phonetic version. The
field to be converted can be the original field, a parsed field, a normalized field,
or a parsed and normalized field.

Using the person data type, for example, first names such as “Bill” and “Will” are
normalized to “William”, which is then phonetically converted using Soundex.
Implementing the SeeBeyond Match 15 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 2 Section 2.1
The SeeBeyond Match Engine About the Matching Algorithm
Using the street address data type, street addresses are parsed into their component
parts, such as house numbers, street names, and so on. The street name is then
phonetically converted. Standardization logic is defined in the configuration files
and in the StandardizationConfig section of the eView Match Field file, and is
carried out prior to assigning match weights.

Match Engine
Matching involves comparing two standardized records and returning a weight that
indicates the likelihood of a match between the two records. A higher weight
indicates a greater likelihood of a match. Matching criteria and logic are defined in
the match engine configuration files. The data fields that are sent to the SeeBeyond
Match Engine for matching, known as the match string, are defined in the
MatchingConfig module of the eView Match Field file. The match engine
configuration files define how the match string is standardized and which matching
rules to use to process each match field.

2.1.4 Matching Weight Formulation
The SeeBeyond Match Engine determines the matching weight between two records by
comparing the match string fields using the rules defined in the match configuration
file and by taking into account the matching logic specified for each field. The
SeeBeyond Match Engine can use either matching (m) and unmatching (u) conditional
probabilities or agreement and disagreement weight ranges to fine-tune the match
process. It uses the underlying algorithm to arrive at a match weight for each match
string field. A weight is generated for each field in the match string indicating the level
of match between each field. The weights assigned to each field are then summed
together for a total, composite matching weight. Agreement and disagreement weight
ranges or m-probabilities and u-probabilities are defined in the match configuration
file.

Matching and Unmatching Probabilities

When matching and unmatching conditional probabilities are used, the match engine
uses a logarithmic formula to determine agreement and disagreement weights between
fields. The m-probabilities and u-probabilities you specify determine the maximum
agreement weight and minimum disagreement weight for each field, and so define the
agreement and disagreement weight ranges for each field and for a complete record.
These probabilities allow you to specify which fields provide the most reliable
matching information and which provide the least. For example, in person matching,
the gender field is not as reliable as the SSN field for determining a match since a
person's SSN is more specific. Therefore, the SSN field should have a higher m-
probability than the gender field. The more reliable the field, the greater the m-
probability for that field should be.

If a field matches between two records, an agreement weight, determined by the
logarithmic formula using the m-probability and u-probability, is added to the
composite match weight for the record. If the fields disagree, a disagreement weight is
subtracted from the composite match weight. m-probabilities and u-probabilities are
expressed as decimals between one and zero (excluding one and zero).
Implementing the SeeBeyond Match 16 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 2 Section 2.1
The SeeBeyond Match Engine About the Matching Algorithm
Agreement and Disagreement Weight Ranges

Defining agreement and disagreement weight ranges is a more direct way to
implement m-probabilities and u-probabilities. Like probabilities, the maximum
agreement and minimum disagreement weights you define for each field allow you to
define the relative reliability of each field; however, the match weight has a more linear
relationship with the numbers you specify. When you use agreement and disagreement
weight ranges to determine the match weight, you define a maximum weight for each
field when they are in complete agreement and a minimum weight for when they are in
complete disagreement. The SeeBeyond Match Engine assigns a matching weight to
each field that falls between the agreement and disagreement weights specified for the
field. This provides a more convenient and intuitive representation of conditional
probabilities.

Using the SSN and gender field example above, the SSN field would be assigned a
higher maximum agreement weight and a lower minimum disagreement weight than
the gender field because it is more reliable. If you assign a maximum agreement weight
of “10” and two SSNs match, the match weight for that field is “10”. If you assign a
minimum disagreement weight of “-10” and two SSNs are in complete disagreement,
the match weight for that field is “-10”.
Implementing the SeeBeyond Match 17 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 3

Standardization Configuration Files

The standardization configuration files for the SeeBeyond Match Engine must follow
certain rules for formatting and interdependencies. This chapter provides an overview
of the types of configuration files provided for standardization, the architecture of those
files, and formatting descriptions.

3.1 About Standardization Configuration Files
The standardization configuration files define additional logic used by the SeeBeyond
Match Engine to standardize specific data types. This logic helps define how fields in
incoming records are parsed, standardized, and classified for processing.
Standardization files include data patterns files, category files, clues value tables, type
key tables, and constants files. Reference files define special characters that are stripped
from the initial data string to aid in standardization or that are used to join different
parts of an address or business name.

The standardization configuration files are stored in the eView Project, and appear as
nodes in the Standardization Engine node of the Project. Most standardization files are
common to all implementations of the SeeBeyond Match Engine, but each national
domain uses a subset of unique files. The common files are listed directly under the
Standardization Engine node of the eView Project; the files unique to each national
domain are listed in individual sub-folders under the Standardization Engine node.

3.1.1 Standardization Configuration File Types
Several different types of configuration files are included with the SeeBeyond Match
Engine, each providing specific information to help the engine standardize and match
data according to requirements. Most of these files are common to all supported
nationalities, but a small subset is specific to each.

Category Files—The SeeBeyond Match Engine uses category files when processing
person or business names. These files list common values for certain types of data,
such as titles, suffixes, and nicknames for person names or industries and
organizations for business names. Category files also define standardized versions
of each term or classify the terms into different categories, and some files perform
both functions. When processing address files, category files named “clues files” are
used.
Implementing the SeeBeyond Match 18 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 3 Section 3.1
Standardization Configuration Files About Standardization Configuration Files
Clues Files—The SeeBeyond Match Engine uses clues files when processing
address data types. These files list general terms used in street address fields, define
standardized versions of each term, and classify the terms into various component
types using predefined address tokens. These files are used by the standardization
engine to determine how to parse a street address into its various components.
Clues files provide clues in the form of tokens to help the engine recognize the
component type of certain values in the input fields.

Constants Files—The SeeBeyond Match Engine refers to constants files for
information about the standardization files, such as the maximum length of the
files. For the address data type, the constants file also describes input and output
field lengths.

Patterns Files
The patterns files specify how incoming data should be interpreted for
standardization based on the format, or pattern, of the data. These files are used
only for processing data contained in freeform text fields that must be parsed prior
to matching (such as street address fields or business names). Patterns files list
possible input data patterns, which are encoded in the form of tokens. Each token
signifies a specific component of the freeform text field. For example, in a street
address field, the house number is identified by one token, the street name by
another, and so on. Patterns files also define the format of the output fields for each
input pattern.

Key Type Files
For business name processing, the SeeBeyond Match Engine refers to a number of
key type files for processing information. These files generally define standard
versions of terms commonly found in business names and some classify these terms
into various components or industries. These files are used by the standardization
engine to determine how to parse a business name into its different components
and to recognize the component type of certain values in the input fields.

Reference Files
Reference files define general terms that appear in input fields for each data type.
Some reference files define terms to ignore, and some define terms that indicate the
business name is continuing. For example, in business name processing “and” is
defined as a joining term. This helps the standardization engine to recognize that
the primary business name in “Martin and Sons, Inc.” is “Martin and Sons” instead
of just “Martin”. Reference files can also define characters to be ignored by the
standardization engine.

3.1.2 Internationalization
The SeeBeyond Match Engine supports addresses and names originating from the
United States or the United Kingdom. Each national domain uses a set of common files
and a smaller set of unique, domain-specific files to account for international
differences in address formats, names, and so on. The main chapters of this document
describe the standardization files specific to the United States. Any files that are unique
to the United Kingdom domain are described in Appendix C of this guide.
Implementing the SeeBeyond Match 19 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 3 Section 3.2
Standardization Configuration Files Implementing Domain-specific Files
3.2 Implementing Domain-specific Files
Implementing domain-specific standardization files involves two primary steps:
loading the files and then specifying the appropriate domain-selector. You only need to
perform the first step if you are upgrading eView. Perform the second step if you are
upgrading eView or if you are implementing the UK national domain.

3.2.1 Loading Standardization Files
Loading the standardization files brings them into the Repository and the eView
Project. The files are loaded into the Standardization Engine node, with domain-
specific files being loaded into their own subdirectory. In a fresh installation of eView,
all files are automatically loaded.

To load standardization files

1 In the Project Explorer in Enterprise Designer, expand the eView Project, and then
expand the eView application.

2 Right-click the Standardization Engine folder, and then select Load Configuration
Files from the context menu.

3 In the Open dialog, open the folder containing the files you want to load.

4 Select the files to load, and then click Open.

5 On the Information dialog, click OK.

6 Restart the Enterprise Designer.

3.2.2 Specifying a Domain Selector
An attribute in the Match Field file, domain-selector, lets the standardization engine
know which standardization files to use. Each standardization and normalization
structure must be modified to point to the correct domain. If a domain is not specified,
the default is US.

Note: For more information about modifying the Match Field file, see the eView Studio
Configuration Guide.

To specify a domain selector

1 In the Project Explorer in Enterprise Designer, expand the eView Project, expand the
eView application, and then expand the Configuration folder.

2 Check out and open the Match Field file.

3 For each normalization or standardization structure, change the value of the
domain-selector attribute to the appropriate domain processor. (For upgraded
Projects, you need to add the attribute, as shown below.)

<group standardization-type="PersonName" domain-selector=
"com.stc.eindex.matching.impl.SingleDomainSelectorUK">
Implementing the SeeBeyond Match 20 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 3 Section 3.2
Standardization Configuration Files Implementing Domain-specific Files
Note: For the default configuration, you can specify either SingleDomainSelectorUK or
SingleDomainSelectorUS. You can also define a custom domain selector if needed.

4 Save and check in the Match Field file.

5 Regenerate the application and reactivate the Project.
Implementing the SeeBeyond Match 21 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 4

Matching Configuration Files

The matching configuration files for the SeeBeyond Match Engine must follow certain
rules for formatting and interdependencies. This chapter provides an overview of the
two matching configuration files provided, the architecture of those files, and
formatting descriptions. It also provides a reference of comparison functions for use in
the match configuration file.

4.1 About Matching Configuration Files
The matching configuration files define how the SeeBeyond Match Engine processes
records to assign matching probability weights, allowing the master index to identify
matches, potential duplicates, and non-matches. These files consist of two configurable
files, the match configuration file and the match constants file. Together these files
define additional logic for the SeeBeyond Match Engine to use when determining the
matching probability between two records. A third file, the internal match constants
file, is read-only and used internally by the match engine. It defines each comparison
function and the comparison options.

The matching configuration files are very flexible, allowing you to customize the
matching logic according to the type of data stored in the master index and for the
record matching requirements of your business. The matching configuration files are
stored in the eView Project, and appear as nodes in the Match Engine node of the
Project. The SeeBeyond Engine standardizes the data prior to matching, so the match
process is performed against the standardized data.

4.2 The Match Configuration File
The match configuration file, matchConfigFile.cfg, contains the matching logic for
each field on which matching is performed. This file handles the matching logic for the
three primary data types (person names, business names, and addresses), and can also
handle generic data types, such as dates, numbers, social security numbers, and
characters.

The match configuration file defines matching logic for each field on which matching is
performed. The SeeBeyond Match Engine provides several comparison functions that
you can call in this file to fine-tune the match process. Comparison functions contain
Implementing the SeeBeyond Match 22 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
the logic to compare different types of fields between records in very specific ways in
order to arrive at a match weight for each field. These functions allow you to define
how matching is performed for different data types, and can be used in conjunction
with either matching and unmatching probabilities or agreement and disagreement
weight ranges for each field. This file also defines how to handle missing fields.

4.2.1 Match Configuration File Format
The match configuration file is divided into two sections. The first section consists of
one line that indicates the matching probability type. The second section consists of the
matching rules to use for each match field.

Sample

Following is an excerpt from the default match configuration file. This excerpt
illustrates the components that are described in the following sections.

ProbabilityType 1

FirstName 15 0 uf 0.99 0.001 15 -5
LastName 15 0 ul 0.99 0.001 15 -5
String 25 0 ua 0.99 0.001 10 -5
DateDays 20 0 dD 0.99 0.001 10 -10 y 15 30
DateMonths 20 0 dM 0.99 0.001 10 -10 n
DateHours 20 0 dH 0.99 0.001 10 -10 y 30 60
DateMinutes 20 0 dm 0.99 0.001 10 -10 y 300 600
DateSeconds 20 0 ds 0.99 0.001 10 -10 y 75 60
Numeric 15 0 n 0.99 0.001 10 -10 y 8
Integer 15 0 nI 0.99 0.001 10 -10 n
Real 15 0 nR 0.99 0.001 10 -10 n
Char 1 0 c 0.99 0.001 5 -5
pro 15 0 p 0.99 0.001 10 -10 20 5 5

Probability Type

The first line of the match configuration file defines the probability type to use for
matching. Specify “0” (zero) to use m-probabilities and u-probabilities to determine a
field’s match weight; specify “1” (one) to use agreement and disagreement weight
ranges to determine a field’s match weight. If the probability type is set to use
agreement and disagreement weight ranges, the m-prob and u-prob columns in the
matching rules section are ignored. If the probability type is set to use m-probabilities
and u-probabilities, the agreement-weight and disagreement-weight columns in the
matching rules section are ignored. The default is to use agreement and disagreement
weight ranges because they are more intuitive.

Matching Rules

The section after the first line of the match configuration file contains match field rows,
which define how each field will be matched. The syntax for this section is:

match-type maximum-length null-field function m-prob u-prob
agreement-weight disagreement-weight parameters

Table 2 describes each element in a match field row.
Implementing the SeeBeyond Match 23 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
Table 2 Match Configuration File Columns

Column
Number

Column Name Description

1 match-type A value that indicates to the SeeBeyond Match
Engine how each field should be weighted. Each
field specified for matching in the MatchingConfig
section of the Match Field file must have a match
type corresponding to a value in this column.

2 size The number of characters in the field on which
matching is performed, beginning with the first
character. For example, to match on only the first
four characters in a 10-digit field, the value of this
column should be “4”.

3 null-field An index that specifies how to calculate the total
weight for null fields or fields that only contain
spaces. You can specify any of the following values:

0 — (zero) If one or both fields are empty, the
weight used for the field is 0 (zero).
1 — (one) If both fields are empty, the agreement
weight is used; if only one field is empty, the
disagreement weight is used.
a# — An “a” followed by a number specifies to use
the agreement weight if both fields are empty. The
agreement weight is divided by the number
following the “a” to obtain the match weight for
that field. If no number is specified, the default is
“2”. You can specify any number from 1 through
10.
d# — A “d” followed by a number specifies to use
the disagreement weight if only one field is empty.
The disagreement weight is divided by the
number following the “d” to obtain the match
weight for the field. If no number is specified, the
default is “2”. You can specify any number from 1
through 10.

Note: In the above descriptions, the agreement and
disagreement weights are either specified in this file
or calculated using a logarithmic formula based on
the m and u-probabilities (depending on the
probability type).

4 function The type of comparison to perform when weighting
the field. For information about the available
comparison functions, see Appendix B.

5 m-prob The initial probability that the specified field in two
records will match if the records match. The
probability is on a scale from 0 to 1.
Implementing the SeeBeyond Match 24 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
4.2.2 Matching Comparison Functions
Match field comparison functions compare the values of a field in two records to
determine whether the fields match. The fields are then assigned a matching weight
based on the results of the comparison function. You can use several different types of
comparison functions in the match configuration file to define how the SeeBeyond
Match Engine should match two records. The SeeBeyond Match Engine also provides
several options to use with each function. Table 3 summarizes each comparison
function. A complete reference of the comparison functions and options is included in
Appendix B.

6 u-prob The initial probability that the specified field in two
records will match if the records do not match. The
probability is on a scale from 0 to 1.

7 agreement-weight The matching weight to be assigned to a field given
that the fields match between two records. This
number can be between 0 and 100 and represents
the maximum match weight for a field.

8 disagreement-weight The matching weight to be assigned to a field given
that the fields do not match between two records.
This number can be between 0 and -100 and
represents the minimum match weight for a field.

9 parameters The parameters correspond to the comparison
function. Some comparison functions do not take
any parameters, and some take multiple parameters.
For additional information about parameters, see
Appendix B.

Table 3 Comparison Functions

Comparison
Function

Description

b1 Based on the Bigram algorithm, this function compares two
strings using all combinations of two consecutive characters
and returns the total number of combinations that are the
same.

b2 Similar to the standard Bigram comparison function (b1), but
allows for character transpositions.

u Based on the Jaro algorithm, this function compares two
strings taking into account uncertainty factors, such as string
length, transpositions, and characters in common.

Table 2 Match Configuration File Columns

Column
Number

Column Name Description
Implementing the SeeBeyond Match 25 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 4 Section 4.2
Matching Configuration Files The Match Configuration File
ua Based on the Jaro algorithm with variants of Winkler/Lynch
and McLaughlin , this function is similar to the basic
uncertainty comparison function (u), but increases the
agreement weight if the initial characters of each string are
exact matches. This comparison function takes into account
key punch and visual memory errors.

uf Based on the simplex uncertainty comparison function (u),
this function is designed to specifically weight first name
values. The string is analyzed and the weight adjusted based
on statistical data.

ul Based on the simplex uncertainty comparison function (u),
this function is designed to specifically weight last name
values. The string is analyzed and the weight adjusted based
on statistical data.

un Based on the simplex uncertainty comparison function (u),
this function is designed to specifically weight house
number values. The string is analyzed and the weight
adjusted based on statistical data.

us A custom uncertainty comparison function that compares
two strings taking into account such uncertainty factors as
string length, transpositions, key punch errors, and visual
memory errors. Unlike the uncertainty comparison function
(“u”), this function handles diacritical marks. This function
also improves processing speed.

usu A custom uncertainty comparison function similar in all
ways to the us comparison function with the exception that
it is based in Unicode to support multiple languages and
alphabets.

c Compares string fields character by character. Each
character must match in order for an agreement weight to
be assigned.

n Compares numeric fields using a relative distance value to
determine the match weight. As the difference between the
two fields increases, the match weight decreases. Once the
difference is beyond the relative distance, a disagreement
weight it assigned.

nI Compares integer fields using a relative distance
comparison. This comparison function is based on the
standard numeric comparison function (n).

nR Compares fields containing real numbers using a relative
distance comparison. This comparison function is based on
the standard numeric comparison function (n).

Table 3 Comparison Functions

Comparison
Function

Description
Implementing the SeeBeyond Match 26 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 4 Section 4.3
Matching Configuration Files The Match Constants File
4.3 The Match Constants File
The match constants file, matchConstants.txt, defines certain configurable constants
used by the match engine. This file includes four parameters, but currently only the
first parameter, nFields, is used. This parameter defines the maximum number of fields
being used for matching. This must be equal to or greater than the number of fields
defined in the match-columns element of the eView Match Field file. The match
constants file defines the following constants for the match engine.

nFields

This constant defines the maximum number of different matching fields. You can enter
any integer, but this number must be equal to or greater than the number of fields
defined in the match-columns elements in the eView Match Field file.

nS Compares social security numbers, taking into account any
of these options:

Field length
Character types
Invalid values

dY Compares year values using relative distance values prior to
and following the given year to determine the match weight.
As the difference between the two fields increases, the
match weight decreases. Once the difference is beyond the
relative distance, a disagreement weight it assigned. The
date comparison functions handle Gregorian years.

dM Compares the month and year using a relative distance, as
described above for the year comparison function (dY).

dD Compares the day, month, and year using a relative distance,
as described above for the year comparison function (dY).

dH Compares the hour, day, month, and year using a relative
distance, as described above for the year comparison
function (dY).

dm Compares the minute, hour, day, month, and year using a
relative distance, as described above for the year
comparison function (dY).

ds Compares the second, minute, hour, day, month, and year
using a relative distance, as described above for the year
comparison function (dY).

p Prorates the disagreement weight for a date or numeric field
based on values you specify. Differences greater than the
amount you specify receive the full disagreement weight.

Table 3 Comparison Functions

Comparison
Function

Description
Implementing the SeeBeyond Match 27 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 4 Section 4.3
Matching Configuration Files The Match Constants File
maxFreqTableSize

This constant is only used when frequency tables are used. This is not currently
available, and this constant is ignored.

maxNumberTables

This constant is only used when frequency tables are used. This is not currently
available, and this constant is ignored.

mcls

This constant is only used when the generic-type frequency tables are used. This is not
currently available, and this constant is ignored.
Implementing the SeeBeyond Match 28 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5

eView and the SeeBeyond Match Engine

Implementing the SeeBeyond Match Engine in an eView master index requires certain
configurations to the Match Field file in the eView Project. You can also customize the
SeeBeyond Match Engine configuration files to better suit your data standardization
and matching requirements.

This chapter provides information about the required configurations, and how the
Match Field file corresponds to the configuration files.

5.1 SeeBeyond Match Engine and the Master Index
The eView master index uses the SeeBeyond Match Engine specifically for
standardization and probabilistic weighting, while the master index determines
survivorship. This process relies on the logic specified in the configuration files of the
eView Project and of the SeeBeyond Match Engine.

5.1.1 Searching and Matching in the Master Index
When a new record is passed to the master index database, the index selects a subset of
possible matches from the database. The index then uses the SeeBeyond Match
Engine’s matching algorithm to assign a matching probability weight for each record in
this subset (known as the candidate selection pool). To create the candidate selection
pool, the index makes series of query passes of the existing data, searching for matches
on specific combinations of data. These combinations are defined by the blocking query
that is defined in the Candidate Select file and specified in the Threshold file.

Matching is performed on the data elements included in the match string in the Match
Field file. Each data element is assigned a matching weight. The weights for each data
element are summed to determine the matching probability weight for the entire
record. Before matching on certain fields, such as the first name, the index may
standardize that field based on information in certain standardization files. You can
customize how each data element is weighted in the match configuration file.
Implementing the SeeBeyond Match 29 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.1
eView and the SeeBeyond Match Engine SeeBeyond Match Engine and the Master Index
5.1.2 The Standardization and Matching Process
The standardization and matching processes use logic that is defined by a combination
of SeeBeyond Match Engine configuration files and eView configuration files. During
the standardization and match processes, the following occurs.

1 The SeeBeyond Match Engine receives the match string from an incoming record, as
defined by the match-columns elements of the MatchingConfig section of the
Match Field file.

2 The SeeBeyond Match Engine standardizes the fields specified for parsing,
normalization, and phonetic encoding. These fields are defined in the
StandardizationConfig section of the Match Field file, and the rules for
standardization are defined in the SeeBeyond Match Engine standardization
configuration files.

3 eView queries the database for records that are possible matches using the specified
blocking query. If the blocking query uses standardized or phonetic fields, the
criteria values are obtained from the database.

4 For each possible match, eView creates a match string (based on the match columns
in MatchingConfig) and sends the string to the SeeBeyond Match Engine.

5 The SeeBeyond Match Engine matches the incoming record against each possible
match, producing a matching weight. Matching is performed using the weighting
rules defined in the match configuration file.

5.1.3 The Match String
The data string that is passed to the SeeBeyond Match Engine for match processing is
called the match string, and is defined in the MatchingConfig section of the Match Field
file. The SeeBeyond Match Engine configuration files, the blocking query, and the
matching configuration are closely linked in the search and matching processes. The
blocking query defines the select statements for creating the candidate selection pool
during the matching process. The matching configuration defines the match string that
is passed to the SeeBeyond Match Engine. Finally, the SeeBeyond Match Engine
configuration files define how the match string is processed.

The SeeBeyond Match Engine configuration files are dependent upon the match string,
and it is very important when you modify the match string to ensure that the match
type you specify corresponds to the correct row in the match configuration file
(matchConfigFile.cfg). For example, if you are using person matching and add
“MaritalStatus” as a match field, you need to specify a match type for the MaritalStatus
field that is listed in the first column of the match configuration file. You must also
make sure that the matching logic defined in the corresponding row of the match
configuration file is defined appropriately for matching on the MaritalStatus field.

5.1.4 Field Identifiers
The SeeBeyond Match Engine breaks down fields into various components. For
example, it breaks addresses into floor numbers, street number, street name, street
direction, and so on. Some of these components are similar, and are typically stored in
Implementing the SeeBeyond Match 30 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.1
eView and the SeeBeyond Match Engine SeeBeyond Match Engine and the Master Index
the same field in the database. In the default configuration, for example, when the
standardization engine finds a house number, rural route number, or PO box number,
the value is stored in the HouseNumber database field. You can customize this as
needed, as long as any field you specify to store a component is also included in the
object definition.

The SeeBeyond Match Engine uses field identifiers to determine how to process fields
that are defined for normalization or parsing. The IDs are defined internally in the
match engine, and are referenced in the Match Field file. The field IDs you specify for
each field in the Match Field file determine how that field is processed by the
standardization engine. The field IDs for person names determine how each name is
normalized. The field IDs for business names specify which business type key file to
use for standardization. The field IDs for addresses determine which database fields
store each field component and how each component is standardized.

Table 4 lists each field component generated by the SeeBeyond Match Engine, along
with their corresponding field IDs. You can only specify the predefined field IDs that
are listed in this table.

Table 4 Standardization Field Identifiers

Field ID Description

Person Name Standardization Field Identifiers

FirstName Specifies a first name field for normalization.

MiddleName Specifies a middle name field for
normalization.

LastName Specifies a last name field for normalization.

Address Standardization Field Identifiers

HouseNumber Specifies the parsed house number from a
standardized address field. By default, this is
stored in the <field_name>_HouseNo field.

RuralRouteIdentif Specifies the parsed rural route identifier from
a standardized address field. By default, this is
stored in the <field_name>_HouseNo field.

BoxIdentif Specifies the parsed PO box number from a
standardized address field. By default, this is
stored in the <field_name>_HouseNo field.

OrigStreetName Specifies the parsed street name from a
standardized address field. By default, this is
stored in the <field_name>_StName field.

RuralRouteDescript Specifies the parsed rural route description
from a standardized address field. By default,
this is stored in the <field_name>_StName
field.

BoxDescript Specifies the PO box type from a standardized
address field. By default, this is stored in the
<field_name>_StName field.
Implementing the SeeBeyond Match 31 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.1
eView and the SeeBeyond Match Engine SeeBeyond Match Engine and the Master Index
PropDesPrefDirection Specifies the parsed street direction from a
standardized address field. This field ID
handles cases where the direction is a prefix to
the property description. By default, this is
stored in the <field_name>_StDir field.

PropDesSufDirection Specifies the parsed street direction from a
standardized address field. This field ID
handles cases where the direction is a suffix to
the property description. By default, this is
stored in the <field_name>_StDir field.

StreetNamePrefDirection Specifies the parsed street direction from a
standardized address field. This field ID
handles cases where the direction is a prefix to
the street name. By default, this is stored in the
<field_name>_StDir field.

StreetNameSufDirection Specifies the parsed street direction from a
standardized address field. This field ID
handles cases where the direction is a suffix to
the street name. By default, this is stored in the
<field_name>_StDir field.

StreetNameSufType Specifies the parsed street type from a
standardized address field. This field ID
handles cases where the street type is a suffix
to the street name. By default, this is stored in
the <field_name>_StType field.

StreetNamePrefType Specifies the parsed street type from a
standardized address field. This field ID
handles cases where the street type is a prefix
to the street name. By default, this is stored in
the <field_name>_StType field.

PropDesSufType Specifies the parsed street type from a
standardized address field. This field ID
handles cases where the street type is a suffix
to the property description. By default, this is
stored in the <field_name>_StType field.

PropDesPrefType Specifies the parsed street type from a
standardized address field. This field ID
handles cases where the street type is a prefix
to the property description. By default, this is
stored in the <field_name>_StType field.

HouseNumPrefix Specifies the parsed house number prefix from
a standardized address field (such as the “A” in
“A 1587 4th Street”). This address component is
not included in the default standardization
structure, but you can add it if needed.

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the SeeBeyond Match 32 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.1
eView and the SeeBeyond Match Engine SeeBeyond Match Engine and the Master Index
SecondHouseNumberPrefix Specifies the parsed second house number
prefix from a standardized address field (such
as “25” in “25 319 10th Ave.”). This address
component is not included in the default
standardization structure, but you can add it if
needed.

SecondHouseNumber Specifies the parsed second house number
prefix from a standardized address field. This
address component is not included in the
default standardization structure, but you can
add it if needed.

HouseNumSuffix Specifies the parsed house number suffix from
a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

OrigSecondStreetName Specifies the parsed second street name from
a standardized address field (for example, an
address may include a cross-street or a
thoroughfare and dependent thoroughfare).
This address component is not included in the
default standardization structure, but you can
add it if needed.

SecondStreetNameSufDirection Specifies the parsed second street direction
from a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

SecondStreetNameSufType Specifies the parsed second street type from a
standardized address field.This address
component is not included in the default
standardization structure, but you can add it if
needed.

MatchStreetName Specifies the parsed match street name from a
standardized address field and is used
internally by the match engine for blocking
and phonetic encoding. This address
component is not included in the default
standardization structure, but you can add it if
needed.

StreetNameExtensionIndex Specifies the parsed street name extension
from a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the SeeBeyond Match 33 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.1
eView and the SeeBeyond Match Engine SeeBeyond Match Engine and the Master Index
WithinStructDescript Specifies the parsed internal descriptor (such
as “Floor”) from a standardized address field.
This address component is not included in the
default standardization structure, but you can
add it if needed.

WithinStructIdentif Specifies the parsed internal identifier (such as
a floor number) from a standardized address
field. This address component is not included
in the default standardization structure, but
you can add it if needed.

OrigPropertyName Specifies the parsed original property name
(such as the name of a complex or business
park) from a standardized address field. This
address component is not included in the
default standardization structure, but you can
add it if needed.

MatchPropertyName Specifies the parsed match property name
from a standardized address field and is used
internally by the match engine for blocking
and phonetic encoding. This address
component is not included in the default
standardization structure, but you can add it if
needed.

CenterDescript Specifies the parsed structure description from
a standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

CenterIdentif Specifies the parsed structure identifier from a
standardized address field. This address
component is not included in the default
standardization structure, but you can add it if
needed.

ExtraInfo Specifies any extra information that was not
included in any of the other parsed
components. This address component is not
included in the default standardization
structure, but you can add it if needed.

Business Name Standardization Field Identifiers

PrimaryName Specifies the field containing the parsed name
in a freeform text business name field.

OrgTypeKeyword Specifies the field containing the parsed
organization type in a freeform text business
name field.

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the SeeBeyond Match 34 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.1
eView and the SeeBeyond Match Engine SeeBeyond Match Engine and the Master Index
5.1.5 Match and Standardization Types
The Match Field file in the eView Project uses indicators to reference the type of
matching and standardization to perform on each field. You must specify one of these
indicators, called match types and standardization types, for the fields you define for
standardization or matching. The match types correspond to the match types listed in
the first column of the match configuration file (matchConfigFile.cfg). The
standardization types are defined internally in the match engine. The types let the
SeeBeyond Match Engine know how to process each field.

Table 5 lists the default standardization types; Table 6 lists the default match types. You
can modify the match type names, but not the standardization type names. For more
information about match and standardization types, see “Match and Standardization
Types” in Appendix B of the eView Studio User’s Guide. Note that the match types you
can specify in the Match Field file (listed in Table 6) are not the same values you specify
for the Match Type field drop-down list in the eView Wizard.

The standardization types listed above correspond to the match types listed below. You
can also specify miscellaneous match types, which do not correspond to any
standardization types.

AssocTypeKeyword Specifies the field containing the parsed
association type in a freeform text business
name field.

IndustrySectorList Specifies the field containing the parsed
industry sector in a freeform text business
name field.

IndustryTypeKeyword Specifies the field containing the parsed
industry type in a freeform text business name
field.

AliasList Specifies the field containing the parsed alias
in a freeform text business name field.

Url Specifies the field containing the parsed URL
in a freeform text business name field.

Table 5 Standardization Types

This indicator ... processes this data type ...

Address Free-form street address fields.

PersonName Pre-parsed name fields (including any first,
middle, last, or alias names).

BusinessName Free-form business names.

Table 4 Standardization Field Identifiers

Field ID Description
Implementing the SeeBeyond Match 35 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.1
eView and the SeeBeyond Match Engine SeeBeyond Match Engine and the Master Index
Table 6 Match Types

This indicator ... processes this type of data

Business Name Match Types

PrimaryName The parsed name field of a business name.

OrgTypeKeyword The parsed organization type field of a
business name.

AssocTypeKeyword The parsed association type field of a
business name.

AliasList The parsed alias type field of a business
name.

IndustrySectorList The parsed location type field of a business
name.

IndustryTypeKeyword The parsed industry type field of a business
name.

Url The parsed URL field of a business name.

Address Match Types

StreetName The parsed street name field of a street
address.

HouseNumber The parsed house number field of a street
address.

StreetDir The parsed street direction field of a street
address.

StreetType The parsed street type field of a street
address.

Person Name Match Types

FirstName A first name field, including middle name,
alias first name, and alias middle name fields.

LastName A last name field, including alias last name
fields.

Date Match Types

DateDays The day, month, and year of a date field.

DateMonths The month and year of a date field.

DateHours The hour, day, month, and year of a date
field.

DateMinutes The minute, hour, day, month, and year of a
date field.

DateSeconds The seconds, minute, hour, day, month, and
year of a date field.

Miscellaneous Match Types

String A generic string field.

Numeric A numeric field.
Implementing the SeeBeyond Match 36 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.2
eView and the SeeBeyond Match Engine Matching Service Configuration
5.1.6 Customizing SeeBeyond Match Engine Configuration Files
The SeeBeyond Match Engine configuration files are designed to perform very specific
functions in the standardization and match processes. These files should only be
modified by personnel with an understanding of the SeeBeyond Match Engine and an
understanding of the data integrity requirements of your organization. SeeBeyond
recommends that any modifications to both the eView configuration files and the
SeeBeyond Match Engine configuration files be made while the master index is in the
pre-production stages. Modifying the files after the master index has moved into
production may cause variances in matching weights and data processing.

The most common modifications to the SeeBeyond Match Engine configuration files are
generally in the match configuration file, where you can fine-tune the weighting
process. This file defines probabilities used by the algorithm to determine a matching
probability weight for each match field. You can use the match comparison functions
provided by the SeeBeyond Match Engine to fine-tune the matching logic in this file.
Another common modification is inserting additional names or terms into category
files, such as the first name category file (personFirstNameUS.dat).

Depending on your data requirements, you might need to modify additional
standardization files. Some of the patterns files (most notably the address patterns files)
are very complex, and should only be modified by personnel who thoroughly
understand the defined patterns and tokens. Make sure you modify the files for the
national domain specified in the Match Field file for each standardization or
normalization structure.

5.2 Matching Service Configuration
To configure an eView master index for specific data types and the SeeBeyond Match
Engine, you must customize the Matching Service by modifying the Match Field file in
the eView Project. The Match Field file has three sections to customize: standardization
configuration, match field configuration, and match and standardization engine
configuration.

Integer A field containing integers.

Real A field containing real numbers.

SSN A field containing a social security number.

Char A field containing a single character.

pro Any field on which you want the SeeBeyond
Match Engine to use prorated weights.

Exac Any field you want the SeeBeyond Match
Engine to match character for character.

Table 6 Match Types

This indicator ... processes this type of data
Implementing the SeeBeyond Match 37 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.2
eView and the SeeBeyond Match Engine Matching Service Configuration
5.2.1 Standardization Configuration
The StandardizationConfig section of the Match Field file determines which fields are
normalized, parsed, or phonetically encoded. It also defines the nationality of the data
being processed. This section of the file includes the following structures.

Normalization Structures on page 38

Standardization Structures (Parsing and Normalization) on page 39

Phonetic Encoding Structures on page 40

This section defines fields that will be normalized, fields that will be parsed and
normalized, and fields that will be phonetically encoded. The standardization types
you specify in this section correspond to the match configuration file; the field IDs you
can specify are listed in Table 4 on page 31.

Normalization Structures

The normalization structure defines fields that are already parsed, but need to be
normalized. It also tells the SeeBeyond Match Engine where to place the normalized
data in the object structure. Matching on any of these fields is determined by the match
string and the logic is defined in the match configuration file.

Of the three data types processed by the SeeBeyond Match Engine, it only expects the
person name data type to provide information in parsed fields; that is, the first, last,
and middle names appear in separate fields, as do the suffix, title, and so on. The
person standardization files define logic for normalizing person name fields. By
default, only person first, last, and middle names and the alias first, last, and middle
names are defined for normalization. You can specify additional name fields for
normalization, such as maiden name, spouse’s name, and so on. For each normalization
structure, you must specify the national domain for the data you are processing.

Defining new Fields for Normalization

The fields you define for normalization in the Match Field file can include any name
fields. If you define normalization for fields that are not currently defined for
normalization in the Match Field file, you must make the following modifications to the
remaining configuration files.

1 Define the normalization structure, using the appropriate standardization type
(PersonName), domain selector, and field IDs (FirstName, MiddeName, or
LastName).

2 Add the new fields that will store the normalized version of the original field value
to the appropriate objects in the eView Object Definition file.

3 If any of the normalized fields are to be used for blocking, modify the Candidate
Select file by adding the new fields to the blocking query being used.

4 Regenerate the eView application in Enterprise Designer to include the new fields
in the database creation script, the outbound Object Type Definition (OTD), and the
method OTD.
Implementing the SeeBeyond Match 38 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.2
eView and the SeeBeyond Match Engine Matching Service Configuration
Defining new Normalized Fields for Matching

If you want to match on the new fields storing the normalized data, you must perform
the following steps.

1 Determine the match type or the match comparison function you want to use to
match the normalized data, and modify the match configuration file
(matchConfigFile.cfg) if needed.

2 Add the new normalized field to the match-columns element of the
MatchingConfig section of the Match Field file, making sure to use the appropriate
match type from the match configuration file.

Standardization Structures (Parsing and Normalization)

The fields that must be parsed, and possibly normalized, are defined in a
standardization structure in StandardizationConfig. The standardization structure
tells the SeeBeyond Match Engine where to place the standardized information
extracted from the fields that are parsed. The target fields you specify for
standardization facilitate searching by the parsed fields. Matching on any of these fields
is determined by the match string and the logic is defined in the match configuration
file.

The SeeBeyond Match Engine expects business names and street address information
in freeform text fields that must be parsed and normalized prior to matching. The logic
for parsing and normalizing street address information is contained in the address
standardization files; the logic for parsing and normalizing business names is contained
in the business standardization files. You can customize the standardization of these
data types by modifying the appropriate patterns file. For each standardization
structure, you must specify the national domain for the data you are processing.

Defining new Fields for Standardization

The fields you define for standardization in the Match Field file can include any street
address field or fields containing business names. Perform the following tasks if you
need to define one of these field types for standardization.

1 If necessary, modify the patterns file (you can define new input and output patterns
or modify existing ones).

2 Define the standardization structure, using the appropriate standardization type
(BusinessName or Address), domain selector, and field IDs (described in Table 4 on
page 31).

3 Add the new fields that will store the parsed or normalized data to the appropriate
objects in the Object Definition file.

4 If any of the parsed or normalized fields are to be used for blocking, modify the
Candidate Select file by adding the new fields to the blocking query being used.

5 Regenerate the eView application in Enterprise Designer to include the new fields
in the database creation script, the outbound Object Type Definition (OTD), and the
method OTD.
Implementing the SeeBeyond Match 39 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.2
eView and the SeeBeyond Match Engine Matching Service Configuration
Defining new Standardized Fields for Matching

If you want to match on the new fields storing standardized data, you must perform
the following steps.

1 Determine the match type or the match comparison function you want to use to
match the parsed data, and modify the match configuration file
(matchConfigFile.cfg) if needed.

2 Add the new standardized field to the match-columns element of the
MatchingConfig section of the Match Field file, making sure to use the appropriate
match type from the match configuration file.

Phonetic Encoding Structures

The fields that must be phonetically encoded are defined in a phonetic encoding
structure in StandardizationConfig. The phonetic encoding structure tells the
SeeBeyond Match Engine where to place the phonetic data created from the fields that
are encoded. You can define any field in the object structure for phonetic encoding.

Defining new Fields for Phonetic Encoding

The fields you define for phonetic encoding in the Match Field file can include any
field.

1 Determine the type of phonetic encoder to use to convert the field. You can use
either Soundex or NYSIIS encoding.

2 Define the phonetic encoding structure, as described in chapters 6 through 8.

3 Add the new fields that will store the phonetic version of the original field value to
the appropriate objects in the Object Definition file.

4 If any the phonetic fields are to be used for blocking, modify the Candidate Select
file by adding the new fields to the blocking query being used.

5 Regenerate the eView application in Enterprise Designer to include the new fields
in the database creation script, the outbound OTD, and the method OTD.

5.2.2 Matching Configuration
The MatchingConfig section determines which fields are passed to the SeeBeyond
Match Engine for matching (the match string). If you are matching on fields parsed
from a freeform text field, define each individual parsed field you want to use for
matching. The default fields listed in MatchingConfig depend on the fields you
specified for matching in the eView Wizard.

The match types you can use for each field in this section are defined in the first column
of the match configuration file. Make sure the match type you specify has the correct
matching logic defined in the match configuration file.

5.2.3 Configuring the Match and Standardization Engines
To configure the master index to use the SeeBeyond Match Engine for standardization
and matching, you must specify the SeeBeyond Match Engine in the MEFAConfig
Implementing the SeeBeyond Match 40 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 5 Section 5.2
eView and the SeeBeyond Match Engine Matching Service Configuration
section of the Match Field file. This includes modifying the standardizer-api,
standardizer-config, matcher-api, and matcher-config elements in MEFAConfig. For
more information, see “MEFA Configuration” in Chapter 6 of the eView Studio
Configuration Guide.

Following is a sample illustrating the four elements that define the match and
standardization engines.

<MEFAConfig module-name="MEFA"
parser-class="com.stc.eindex.configurator.impl.MEFAConfiguration">
...

<standardizer-api>
<class-name>com.stc.eindex.matching.adapter.SbmeStandardizerAdapter
</class-name>

</standardizer-api>
<standardizer-config>

<class-name>com.stc.eindex.matching.adapter.SbmeStandardizerAdapterConfig
</class-name>

</standardizer-config>
<matcher-api>

<class-name>com.stc.eindex.matching.adapter.SbmeMatcherAdapter
</class-name>

</matcher-api>
<matcher-config>

<class-name>com.stc.eindex.matching.adapter.SbmeMatcherAdapterConfig
</class-name>

</matcher-config>
</MEFAConfig>

To Specify the Standardization Engine

To specify the SeeBeyond Match Engine as the standardization engine, you must
specify the API and configuration classes for the engine.

1 Open the Match Field file in the eView Project.

2 Scroll to the MEFAConfig section of the file.

3 In the standardizer-api element, enter
com.stc.eindex.matching.adapter.SbmeStandardizerAdapter.

4 In the standardizer-config element, enter
com.stc.eindex.matching.adapter.SbmeStandardizerAdapter Config.

5 Save and close the file.

To Specify the Match Engine

To specify the SeeBeyond Match Engine as the match engine, you must specify the API
and configuration classes for the engine.

1 Open the Match Field file in the eView Project.

2 Scroll to the MEFAConfig section of the file.

3 In the matcher-api element, enter
com.stc.eindex.matching.adapter.SbmeMatcherAdapter.

4 In the matcher-config element, enter
com.stc.eindex.matching.adapter.SbmeMatcherAdapter Config.

5 Save and close the file.
Implementing the SeeBeyond Match 41 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6

Person Data Type Configuration

Processing person data involves normalizing and phonetically encoding certain fields
prior to matching. This chapter describes the configuration files that define person
processing logic, and provides instructions for modifying the Match Field file for
processing person data.

6.1 Person Matching Overview
Matching on the person data type includes standardizing and matching on
demographic information about a person. The SeeBeyond Match Engine can create
normalized and phonetic values for person data. Several configuration files designed
specifically to handle person data are included to provide additional logic for the
standardization and phonetic encoding process. These include files referenced by the
standardization engine for information about how to standardize different types of
person data. The SeeBeyond Match Engine can phonetically encode any field you
specify, with some modification to the standardization files. It can also match on any
field, as long as the match type for the field is defined in the match specifications file
(matchConfigFile.cfg).

In addition, when storing person information, you might want to standardize
addresses to enable searching against address information. This requires working with
the address configuration files, described in Chapter 7, “Address Data Type
Configuration”.

6.1.1 Person Data Processing Fields
When matching on person data, not all fields in a record need to be processed by the
SeeBeyond Match Engine. The match engine only needs to process fields that must be
parsed, normalized, or phonetically converted, and the fields against which matching is
performed. These fields are defined in the Match Field file, and processing logic for
each field is defined in the standardization and matching configuration files.

Match String Fields

The match string processed by the SeeBeyond Match Engine is defined by the match
fields specified in the Match Field file. The match engine can process any combination
of fields you specify for matching. By default, the match configuration file includes
rows specifically for matching on first name, last name, social security number, and
Implementing the SeeBeyond Match 42 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.2
Person Data Type Configuration Match Configuration for Person Data
dates (such as a date of birth). It also includes a row for matching a single character,
such as might be the case in a gender field. You can use any of the existing rows for
matching, or you can create new rows for the fields you want to match. Any fields for
which you specify a Match Type in the eView Wizard are added to the match string.

Standardized Fields

The SeeBeyond Match Engine expects person data to be provided in separate fields
within a single record, meaning that no parsing is required of the name fields prior to
normalization. The match engine is designed to normalize only first and last name
fields in person data. Finally, the match engine can phonetically convert any field you
choose using either the NYSIIS or Soundex phonetic encoder.

The Object Structure

The fields you specify for person name matching in the eView Wizard are automatically
defined for standardization and phonetic encoding. If you specify the appropriate
match types in the eView Wizard, the following fields are automatically added to the
object structure and database creation script.

<field_name>_Std

<field_name>_Phon

where <field_name> is the name of the field for which you specified person name
matching. For example, if you specify the PersonFirstName match type for the
FirstName field, two fields, FirstName_Std and FirstName_Phon, are automatically
added to the structure.You can also add these fields manually if you do not specify
match types in the eView Wizard. If you store additional names in the database, such as
alias names, maiden names, parent names, and so on, you can modify the phonetic
structure to phonetically encode these additional names as well.

6.2 Match Configuration for Person Data
The default match configuration file, matchConfigFile.cfg, defines several match types
for the kinds of data typically included in a person master index. You can customize the
existing match types or create new match types for the data being processed. The
following match types are typical for matching on person data

FirstName Integer

MiddleName Real

LastName SSN

String Char

Date pro

Numeric Exac
Implementing the SeeBeyond Match 43 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
This file appears under the Match Engine node of the eView Project. For more
information about the comparison functions used for each match type and how the
weights are tuned, see “The Match Configuration File” on page 22 and Appendix B.

6.3 Standardization Configuration for Person Data
Several configuration files are used to define processing logic for the SeeBeyond Match
Engine. You can customize any of the configuration files described in this section to fit
your processing and standardization requirements for person data. There are two types
of standardization files for person data: common and domain-specific. The common
files appear under the Standardization Engine node of the eView Project; the domain-
specific files appear within sub-folders of the Standardization Engine node.

6.3.1 Common Standardization Files for Person Data
The standardization files described in this section are common to all national domains.
These files define constants used by the standardization engine, special characters to
remove, and define hyphenated first names. A patterns file is also common, but is not
currently used.

personConstants.cfg

The person constants file defines certain information about the standardization files
used for processing person data, primarily the number of lines contained in each file.
The number of lines specified here must be equal to or greater than the number of lines
actually contained in each file.

Table 7 lists and describes each parameter in the constants file. The files referenced by
these parameters are described on the following pages.

Table 7 Person Constants File Parameters

Parameter Description

words The maximum number of words in a given freeform text
field containing a person name. This parameter is not
currently used.
Default: 11

conjmax The maximum number of lines in the person conjunctions
reference file (personConjon*.dat).
Default: 25

jrsrmax The maximum number of lines in the generational suffix
category file (personGenSuffix*.dat).
Default: 25

nickmax The maximum number of lines in the first name category file
(personFirstName*.dat).
Default: 3900
Implementing the SeeBeyond Match 44 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
personFirstNameDash.dat

The hyphenated name category file defines first names that include hyphens (such as
Anne-Marie) to help the SeeBeyond Match Engine recognize and process these values
as first names. The file also classifies each name into a gender category.

The syntax of this file is:

name gender-class

lastmax The maximum number of lines in the last name category file
(personLastName*.dat).
Default: 3900

premax The maximum number of lines in the last name prefix
category file (personLastNamePrefix*.dat).
Default: 30

titlmax The maximum number of lines in the title category file
(personTitle*.dat).
Default: 46

sufmax The maximum number of lines in the occupational suffix
category file (personOccupSuffix*.dat).
Default: 25

skpmax The maximum number of lines in the business name
reference file (businessOrRelated*.dat).
Default: 1200

ptrnmax1 The maximum number of lines in the person patterns file
(personNamePatt.dat).
Default: 900

twomax The maximum number of lines in the two-character
reference file for occupational suffixes (personTwo*.dat).
Default: 16

thredmax The maximum number of lines in the three-character
reference file for occupational suffixes (personThree*.dat).
Default: 16

blnkmax The maximum number of lines in the special characters
reference file (personRemoveSpecChars.dat).
Default: 16

dashSize The maximum number of lines in the hyphenated name
category file (personFirstNameDash.dat).
Default: 20

Table 7 Person Constants File Parameters

Parameter Description
Implementing the SeeBeyond Match 45 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
You can modify or add entries in this table as needed. Table 8 describes the columns in
the personFirstNameDash.dat file.

Following is an excerpt from the personFirstNameDash.dat file.

ANNE-MARIE F
JEAN-NOEL M
JEAN-MARIE M
JEAN-BAPTISTE M
JEAN-PIERRE M
JEAN-YVES M

personNamePatt.dat

The person name patterns file is not used in version 5.0.4, but is designed to
standardize freeform text name fields.

personRemoveSpecChars.dat

The special characters reference file lists characters that may appear in person data, but
that should be ignored. The SeeBeyond Match Engine removes these characters from a
field before making any comparisons or before normalizing data. You can define
additional characters to remove from person data by simply adding the character to the
list.

An excerpt from the personRemoveSpecChars.dat file appears below.

[
]
{
}
<
>
/
?
*
^

!

6.3.2 United States Person Data Standardization Files
Most standardization files for person data are specific to each national domain. The
files defined in this section are used specifically for United States person data. For

Table 8 Hyphenated Name Category File

Column Description

name A hyphenated first name.

gender-class An indicator of the gender with which the first
name corresponds. The possible values are:

N—the title is neutral, and can be applied to
male or female first names.
F—the title is used for females.
M—the title is used for males.
Implementing the SeeBeyond Match 46 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
information about the person data files for the United Kingdom, see “Person Name
Files” on page 115 in Appendix C.

Note: By default, the information listed in these files are based on United States data. You
can customize these files to add entries of other nationalities or languages, including
those containing diacritical marks.

personConjonUS.dat

The conjunction reference file is not used in version 5.0.4, but is designed to work with
the person name patterns file during standardization.

personFirstNameUS.dat

The first name category file defines standardized versions of first names, and assigns a
gender classification for each name. This file is used to standardize first names when
comparing person names. The gender classification helps to further clarify the match.
The SeeBeyond Match Engine uses this file when a first name field is defined for
normalization or standardization in the Match Field file.

The syntax of this file is:

original-value standardized-form gender-class

You can modify or add entries in this table as needed. Table 9 describes the columns in
the personFirstNameUS.dat file.

Following is an excerpt from the personFirstNameUS.dat file. Certain rows contain a
zero (0) for the standardized form, indicating that the name is already standard
(Stephen, Sterling, and Summer, for example).

Table 9 US First Name Category File

Column Description

original-value The original value of the first name.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.

gender-class An indicator of the gender with which the first
name corresponds. The possible values are:

N—the title is neutral, and can be applied to
male or female first names.
F—the title is used for females.
M—the title is used for males.
Implementing the SeeBeyond Match 47 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
STEPHEN 0 M
STEPHENIE STEPHANIE F
STEPHIE STEPHANIE F
STEPHINE STEPHANIE F
STEPHNIE STEPHANIE F
STERLING 0 M
STEVE STEPHEN M
STEVEN STEPHEN M
STEVIE STEPHEN N
STEW STUART M
STEWART STUART M
STU STUART M
STUART 0 M
SU SUSAN F
SUE SUSAN F
SUHANTO 0 M
SULLIVAN 0 F
SULLY SULLIVAN F
SUMMER 0 F

personGenSuffixUS.dat

The generational suffix category file defines standardized versions of generational
suffixes (such as Jr., III, and so on). This file is used to compare standard versions of the
suffix field. You can define additional suffixes and their standardized form, following
the syntax below.

field-value standard-form

Table 10 describes each column of the personGenSuffixUS.dat file.

An excerpt from the personGenSuffixUS.dat file appears below. In this excerpt, certain
suffixes, such as 2ND, 3RD and JR, are already in their standardized form.

11 2ND
111 3RD
1V 4TH
2ND 0
3RD 0
4TH 0
FOURTH 4TH
II 2ND
III 3RD
IV 4TH
JR 0
JUNIOR JR
SECOND 2ND
SENIOR SR
SR 0

Table 10 US Generational Suffix Category File

Column Description

field-value The original value of the generational suffix in
the record being processed.

standard-form The standard form of the generational suffix. A
zero (‘0’) in this column indicates that the value
listed in column one is already in its
standardized form.
Implementing the SeeBeyond Match 48 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
personLastNamePrefixUS.dat

The last name prefix category file defines standardized versions of last name prefixes,
such as “Van” or “Le”. This file is used to standardize these prefixes prior to
standardizing the last name when comparing person names. The SeeBeyond Match
Engine uses this file when a last name field is defined for normalization or
standardization in the Match Field file.

The syntax of this file is:

original-value standardized-form

You can modify or add entries in this table as needed. Table 11 describes the columns in
the personLastNamePrefixUS.dat file.

Following is an excerpt from the personLastNamePrefixUS.dat file. Some of these
prefixes are already in their standardized form, such as “Los” and “Mac”.

LOS 0
MAC 0
MC MAC
SAINT 0
ST SAINT
VAN 0
VAN DER 0
VANDE VAN DER

personLastNameUS.dat

The last name category file defines standardized versions of last names. This file is used
to standardize last names when comparing person names. The SeeBeyond Match
Engine uses this file when a last name field is defined for normalization or
standardization in the Match Field file.

The syntax of this file is:

original-value standardized-form

Currently the file only contains two names, but you can modify or add entries in this
table as needed. Table 12 describes the columns in the personLastNameUS.dat file.

Table 11 US Last Name Prefix Category File

Column Description

original-value The original value of the last name prefix.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.

Table 12 US Last Name Category File

Column Description

original-value The original value of the last name.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.
Implementing the SeeBeyond Match 49 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.3
Person Data Type Configuration Standardization Configuration for Person Data
Following is an excerpt from the personLastNameUS.dat file.

FINK 0
PHINQUE FINK

personOccupSuffixUS.dat

The occupational suffix category file is not used in version 5.0.4, but is designed to
work with the person name patterns file during standardization.

personThreeUS.dat

This reference file is not used in version 5.0.4, but is designed to work with the person
name patterns file during standardization.

personTitleUS.dat

The title category file defines standard forms for titles and classifies each title into a
gender category. For example, “Mister” is standardized to “MR” and is classified as
male; “Doctor” is standardized to “DR” and is classified as gender neutral. You can
add, modify, or delete entries in this file as needed. Use the following syntax.

original-value standardized-form gender-class

Table 13 describes each column of the personTitleUS.dat file.

An excerpt from the personTitleUS.dat file appears below. In this excerpt, certain titles,
such as DR, GEN, and MISS, are already in their standardized form.

Table 13 US Person Title Category File

Column Description

original-value The original value of the title in the person
name field.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.

gender-class An indicator of the gender with which the title
corresponds. The default values are:

N—the title is neither male nor female.
F—the title is used for females.
M—the title is used for males.
Implementing the SeeBeyond Match 50 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.4
Person Data Type Configuration Customizing Person Data Configuration Files
CTO 0 N
DEAN 0 N
DIR DIRECTOR N
DIRECTOR 0 N
DOC DR N
DOCTOR DR N
DR 0 N
DRS 0 N
EMERITUS 0 N
FOUNDER 0 N
GEN 0 N
GENERAL GEN N
MANAGER 0 N
MGR MANAGER N
MISS 0 F
MISSUS MRS F

personTwoUS.dat

This reference file is not used in version 5.0.4, but is designed to work with the person
name patterns file during standardization.

businessOrRelatedUS.dat

The business-related category file is used to identify business terms in person name
information. Examples of when this could occur would be when indexing both person
and business names, or when business information is included within a person object
structure. The SeeBeyond Match Engine removes these terms for person matching. This
file contains a list of common business terms that might be found in person data. You
can modify this file by adding, changing, or deleting terms.

An excerpt from the businessOrRelatedUS.dat file appears below.

ACCOUNTANT
ACCT
ACDY
ACRE
ACREAGE
ACRES
ACS
ACT
AD
ADATU
ADM
ADMIN
ADMINISTRATIO
ADMINISTRATION
ADMINISTRATOR

6.4 Customizing Person Data Configuration Files
To customize the SeeBeyond Match Engine configuration files for processing person
data, you can modify any of the files described in this chapter using the text editor
provided in the Enterprise Designer. Before modifying the match configuration file,
review the information provided in Chapter 4 and Appendix B of this guide. Make
Implementing the SeeBeyond Match 51 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Match Service
sure a thorough data analysis has been performed to determine the best fields for
matching, and the best comparison functions to use for each field.

Updating most standardization files is a straight-forward process. Make sure to follow
the syntax guidelines provided in “Standardization Configuration for Person Data”
on page 44. If you add any lines to any of the standardization configuration files, be
sure to adjust the corresponding parameter in the person constants file
(personConstants.cfg).

6.5 Configuring the eView Match Service
To ensure the master index uses the SeeBeyond Match Engine to process person
information, you must customize the eView Match Service. This includes modifying the
Match Field file to support the fields on which you want to match, to standardize the
appropriate fields, and to specify the SeeBeyond Match Engine as the match and
standardization engine. Perform the following tasks to configure the eView Match
Service.

Configuring StandardizationConfig on page 52

Configuring the Match String on page 56

Configuring the Match and Standardization Engines on page 58

When configuring the eView Match Service, keep in mind the information presented in
“Matching Service Configuration” on page 37.

6.5.1 Configuring StandardizationConfig
The StandardizationConfig section of the Match Field file is described in detail in
Chapter 6 of the eView Studio Configuration Guide. Perform the following steps to
configure the required fields for standardization and phonetic encoding.

Step 1: Configure the System Object on page 52

Step 2: Configure the Normalization Structures on page 53

Step 3: Configure Fields to Phonetically Encode on page 55

Note: In the current configuration, the rules defined for the person data type assume the
incoming data to be parsed prior to processing. Therefore, you do not need to
configure fields to parse and normalize unless you want to search on address
information. In that case, you must configure address fields to parse and normalize,
as described in “Step 2: Configure Fields to Parse and Normalize” on
page 72.

Step 1: Configure the System Object

The system object defined for standardization must be the parent object of the object
structure (typically, this is “Person” for a person database, but it can be whatever you
defined).
Implementing the SeeBeyond Match 52 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Match Service
To configure the system object

1 In the Project Explorer pane of the Enterprise Designer, double-click the Match
Field node in the Configuration folder of the Project you want to modify.

2 Scroll to the standardize-system-object element.

3 Make sure the value of the system-object-name element is the name of the parent
object in the object structure (as defined in the Object Definition file).

A sample is shown below.

<standardize-system-object>
<system-object-name>Person</system-object-name>

...
</standardize-system-object>

4 Save your changes to the file.

Step 2: Configure the Normalization Structures

The fields defined for normalization for the person data type can include any name
fields. By default this includes first, middle, and last name fields. The fields are
identified by the field identifiers specified for names in Table 4 on page 31.

A sample normalization structure for person data is shown below. This sample specifies
that the PersonName standardization type is used to normalize the first name, alias first
name, last name, and alias last name fields.

<structures-to-normalize>
<group standardization-type="PersonName"
 domain-selector="com.stc.eindex.matching.impl.SingleDomainSelectorUS">

<unnormalized-source-fields>
<source-mapping>

<unnormalized-source-field-name>Person.FirstName
</unnormalized-source-field-name>
<standardized-object-field-id>FirstName
</standardized-object-field-id>

</source-mapping>
<source-mapping>

<unnormalized-source-field-name>Person.LastName
</unnormalized-source-field-name>
<standardized-object-field-id>LastName
</standardized-object-field-id>

</source-mapping>
</unnormalized-source-fields>

<normalization-targets>
<target-mapping>

<standardized-object-field-id>FirstName
</standardized-object-field-id>
<standardized-target-field-name>Person.FirstName_Std
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>LastName
</standardized-object-field-id>
<standardized-target-field-name>Person.LastName_Std
</standardized-target-field-name>

</target-mapping>
</normalization-targets>

</group>
<group standardization-type="PersonName"
 domain-selector="com.stc.eindex.matching.impl.SingleDomainSelectorUK">

<unnormalized-source-fields>
<source-mapping>

<unnormalized-source-field-name>Person.Alias[*].FirstName
Implementing the SeeBeyond Match 53 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Match Service
</unnormalized-source-field-name>
<standardized-object-field-id>FirstName
</standardized-object-field-id>

</source-mapping>
<source-mapping>

<unnormalized-source-field-name>Person.Alias[*].LastName
</unnormalized-source-field-name>
<standardized-object-field-id>LastName
</standardized-object-field-id>

</source-mapping>
</unnormalized-source-fields>
<normalization-targets>

<target-mapping>
<standardized-object-field-id>FirstName
</standardized-object-field-id>
<standardized-target-field-name>
 Person.Alias[*].FirstName_Std
</standardized-target-field-name>

</target-mapping>
<target-mapping>

<standardized-object-field-id>LastName
</standardized-object-field-id>
<standardized-target-field-name>
 Person.Alias[*].LastName_Std
</standardized-target-field-name>

</target-mapping>
</normalization-targets>

</group>
</structures-to-normalize>

To configure the normalization structures

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the structures-to-normalize element.

3 Add, modify, or delete source or target fields for standardization using the
instructions under “Defining Normalization” in Chapter 6 of the eView Studio
Configuration Guide.

See Table 14 for guidelines on how to populate the normalization elements for
person matching.

4 Save and close the Match Field file.

Table 14 Person Information structures-to-normalize Elements

Element Description

standardization-type For name fields, enter “PersonName”. For additional
information, see “Standardization and Match Types”
on page 33.

domain-selector The national domain of the data being standardized. To
standardize on data from the United States, specify
“SingleDomainSelectorUS”. To standardize on data from
the United Kingdom, specify
“SingleDomainSelectorUK”.

unnormalized-source-fields elements

source-mapping Defines a source field to be normalized.
Implementing the SeeBeyond Match 54 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Match Service
Step 3: Configure Fields to Phonetically Encode

When you specify a name field for person name matching in the eView Wizard, these
fields are automatically defined for phonetic encoding by default. You can define
additional names, such as maiden names or alias names, for phonetic encoding as well.
A sample of fields defined for phonetic encoding is shown below. This sample converts
name and alias name fields, as well as the street name.

<phoneticize-fields>
<phoneticize-field>

<unphoneticized-source-field-name>Person.FirstName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.FirstName_Phon
</phoneticized-target-field-name>
<encoding-type>Soundex</encoding-type>

</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>Person.LastName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.LastName_Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>Person.Alias[*].FirstName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.FirstName_Phon
</phoneticized-target-field-name>
<encoding-type>Soundex</encoding-type>

</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>Person.Alias[*].LastName_Std
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.LastName_Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

unnormalized-source-field-name The ePath of a field in the input record to be normalized.
For example, if the parent object is “Person”, and you
want to specify the alias last name, the value would be
similar to Person.Alias[*].LastName.

standardized-object-field-id The SeeBeyond Match Engine field ID of the field
defined by unnormalized-source-field-name (for more
information, see Table 4 on page 31).

normalization-targets elements

target-mapping Defines a target field for the corresponding source-
mapping element.

standardized-object-field-id The match configuration field ID of the field defined by
the standardized-target-field-name element. This is the
same value as the standardized-object-field-id element
in the unnormalized-source-field element.

standardized-target-field-name The name of the field that stores the standardized
version of the field specified by unnormalized-source-
field-name. As with unnormalized-source-field-name,
this value must be the ePath of the field.

Table 14 Person Information structures-to-normalize Elements

Element Description
Implementing the SeeBeyond Match 55 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Match Service
</phoneticize-field>
<phoneticize-field>

<unphoneticized-source-field-name>
Person.Address[*].AddressLine1_StName

</unphoneticized-source-field-name>
<phoneticized-target-field-name>
 Person.Address[*].AddressLine1_StPhon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field></phoneticize-fields>

To configure fields to phonetically encode

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the phoneticize-fields element.

3 Add, modify, or delete fields for phonetic conversion using the instructions under
“Defining Phonetic Conversion” in Chapter 6 of the eView Studio Configuration
Guide.

See Table 15 for guidelines on how to populate the phonetic elements for person
matching.

4 Save and close the Match Field file.

6.5.2 Configuring the Match String
You can include any fields on which you want to match in the match string. The match
string is defined by the match-column elements in the MatchingConfig section of the
Match Field file. If you specify a Match Type for a field in the eView Wizard, that field
(or any fields parsed from that field) is automatically defined in the match string.

A sample match string for person matching is shown below. This sample matches on
first and last names, date of birth, social security number, gender, and the street name of
the address.

<match-system-object>
<object-name>Person</object-name>
 <match-columns>

<match-column>

Table 15 Person Domain phoneticize-fields Elements

Element Description

unphoneticized-source-field-name The ePath of a field in the input record to convert to its
phonetic version. For example, if the parent object is
“Person” and you want to specify the first name of an
alias name, the value would be similar to
Person.Alias[*].FirstName.

phoneticized-object-field-id This element is not used by the SeeBeyond Match
Engine and can be omitted.

phoneticized-target-field-name The name of the field that stores the phonetic version of
the field. As with the unphoneticized-source-field-name
element, this value must be the ePath of the field.

encoding-type The type of encoding to use for the phonetic
conversion. Specify “NYSIIS” or “Soundex”.
Implementing the SeeBeyond Match 56 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Match Service
<column-name>
Enterprise.SystemSBR.Person.FirstName_Std

</column-name>
<match-type>FirstName</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.LastName_Std
</column-name>
<match-type>LastName</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.SSN
</column-name>
<match-type>SSN</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.DOB
</column-name>
<match-type>DateDays</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Gender
</column-name>
<match-type>Char</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.StreetName
</column-name>
<match-type>StreetName</match-type>

</match-column>
</match-columns>

</match-system-object>

To configure the match string for person matching

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the MatchingConfig module.

3 Add, modify, or delete fields in the match string using the instructions under
“Configuring the Match String” in Chapter 6 of the eView Studio Configuration Guide.

See Table 16 for guidelines on how to populate the column-name and match-type
elements for person matching.

4 Save and close the Match Field file.

Table 16 Person Domain match-column Elements

Element Description

column-name The fully qualified field name of the field in the SBR to be
included in the match string, with “Enterprise” as the root
object. For example, to specify a person’s maiden name, the
column-name would be similar to
Enterprise.SystemSBR.Person.Maiden.

match-type For the SeeBeyond Match Engine, each data type has a
different match type. The FirstName, MiddleName, and
LastName match types are specific to person matching. You
can specify any of the other match types defined in the
match configuration file, as well. For more information, see
“Match and Standardization Types” on page 35.
Implementing the SeeBeyond Match 57 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 6 Section 6.5
Person Data Type Configuration Configuring the eView Match Service
6.5.3 Configuring the Match and Standardization Engines
The MEFAConfig section of the Match Field file defines which standardization and
match engines to use based on the adapter and API Java classes specified. Make sure
this section is configured for the SeeBeyond Match Engine. Instructions are provided in
“Configuring the Match and Standardization Engines” on page 40. For more
information, see “MEFA Configuration” in Chapter 6 of the eView Studio Configuration
Guide.
Implementing the SeeBeyond Match 58 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7

Address Data Type Configuration

Processing street addresses involves parsing, normalizing, and phonetically encoding
certain fields prior to matching. This chapter describes the configuration files that
define address processing logic, and provides instructions for modifying the Match
Field file for processing address fields.

7.1 Address Matching Overview
Matching on the address data type includes standardizing and matching on address
information in the master index. You can implement street address standardization and
matching on its own, or within a master index designed to process person or business
information. For example, standardizing address information allows you to include
address fields in Enterprise Data Manager search criteria, even though matching might
not be performed against these fields.

The SeeBeyond Match Engine can create standardized and phonetic values for United
States or United Kingdom street address information. Several configuration files
designed specifically to handle address data are included to define additional logic for
the standardization and phonetic encoding process. These include address clues files, a
patterns file, and a constants file. The address standardization engine is based on the
work performed at the US Census Bureau. The clues files, in particular, are based on
census bureau statistics.

The SeeBeyond Match Engine can match on any field, as long as the match type for the
field is defined in the match specifications file (matchConfigFile.cfg).

7.1.1 Address Data Processing Fields
When matching on address data, not all fields in a record need to be processed by the
SeeBeyond Match Engine. The match engine only needs to process fields that must be
parsed, normalized, or phonetically converted, and the fields against which matching is
performed. These fields are defined in the Match Field file, and processing logic for
each field is defined in the standardization and matching configuration files.

Match String Fields

The match string processed by the SeeBeyond Match Engine is defined by the match
fields specified in the Match Field file. If you specify an “Address” match type for any
Implementing the SeeBeyond Match 59 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.1
Address Data Type Configuration Address Matching Overview
field in the eView Wizard, the parsed address fields are automatically added to the
match string in the Match Field file. These fields include the house number, street
direction, street type, and street name. You can remove any of these fields from the
match string.

The match engine can process any combination of fields you specify for matching. By
default, the match specifications file includes rows specifically for matching on the
fields that are parsed from the street address fields, such as the street number, street
direction, and so on. The file also defines several generic match types. You can use any
of the existing rows for matching, or you can create new rows for the fields you want to
match.

Standardized Fields

The SeeBeyond Match Engine expects that street address data will be provided in a
freeform text field containing several components that must be parsed. The match
engine is designed to parse these components, and to normalize and phonetically
encode the street name. You can specify additional fields for phonetic encoding.

If you specify an “Address” match type for any field in the eView Wizard, a
standardization structure for that field is defined in the Match Field file. The fields
listed below under “The Object Structure” are automatically defined as the target
fields. Each of these fields has several entries in the standardization structure. This is
because different parsed components can be stored in the same field. For example, the
house number, post office box number, and rural route identifier are all stored in the
house number field.

The Object Structure

The address fields specified for standardization are parsed into several additional
fields, including one normalized field. If you specify the “Address” match type in the
eView Wizard, the following fields are automatically added to the object structure and
database creation script.

<field_name>_HouseNo

<field_name>_StName

<field_name>_StDir

<field_name>_StType

<field_name>_StPhon

where <field_name> is the name of the field for which you specified address
matching. For example, if you specify the Address match type for the AddressLine1
field, the following fields are automatically added to the structure:
AddressLine1_HouseNo, AddressLine1_StName, AddressLine1_StDir,
AddressLine1_StType, and AddressLine1_StPhon.

You can add these fields manually if you do not specify a match type in the eView
Wizard.
Implementing the SeeBeyond Match 60 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.2
Address Data Type Configuration Match Configuration for Address Data
7.2 Match Configuration for Address Data
The default match configuration file, matchConfigFile.cfg, defines several match types
for the kinds of address data typically included in the match string. You can customize
the existing match types or create new match types for the data being processed. The
following match types are typical for matching on address data.

In addition, you can use any of these generic match types for matching on address data.

This file appears under the Match Engine node of the eView Project. For more
information about the comparison functions used for each match type and how the
weights are tuned, see “The Match Configuration File” on page 22 and Appendix B.

7.3 Standardization Configuration for Address Data
Several configuration files are used to define certain processing logic for the SeeBeyond
Match Engine. You can customize any of the configuration files described in this section
to fit your processing and standardization requirements for address data. There are two
types of address standardization files: common and domain-specific. The common files
appear under the Standardization Engine node of the eView Project; the domain-
specific files appear within sub-folders of the Standardization Engine node.

7.3.1 Common Address Standardization Files
Two address standardization files are common to most national domains. These files
define internal and external constants used by the standardization engine. These files
are not used when the domain in use is the United Kingdom. For information about the
constants files for the United Kingdom, see “Address Files” on page 120 in
Appendix C.

addressConstants.cfg

The address constants file defines certain information about the standardization files
used for processing address data, primarily the number of lines contained in each file.
The number of lines specified here must be equal to or greater than the number of lines
actually contained in each file.

StreetNumber StreetDir

HouseNumber StreetType

String SSN

Date Char

Numeric pro

Integer Exac

Real
Implementing the SeeBeyond Match 61 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
Table 17 lists and describes each parameter in the constants file. The files referenced by
these parameters are described on the following pages.

addressInternalConstants.cfg

The address internal constants file defines and configures tokens and array sizes used
by the address standardizer. This file is used internally by the standardization engine,
and should not be modified.

Table 17 Address Constants File Parameters

Parameter Description

maxWords The maximum number of words in a given address
field.
Default: 15

clueArraySize The maximum number of lines in the address clues
file (addressClueAbbrevUS.dat).
Default: 2000

patternArraySize The maximum number of lines in the patterns file
(addressPatternsUS.dat).
Default: 1100

maxPattSize The maximum length (in characters) of any pattern
in the address patterns file.
Default: 35

imageSize The maximum length of an input address field.
Default: 25

nameOutputFieldSize The maximum output length of a street or property
name.
Default: 25

numberOutputFieldSize The maximum output length of a house number or
rural route number within the structure identifier or
post office box fields.
Default: 15

directionOutputFieldSize The maximum output length of a directional field
(prefix or suffix).
Default: 15

typeOutputFieldSize The maximum output length of a street type field
(prefix or suffix).
Default: 25

prefixOutputFieldSize The maximum length of a number prefix fields.
Default: 10

suffixOutputFieldSize The maximum length of a number suffix fields.
Default: 10

extensionOutputFieldSize The maximum output length of any extension field.
Default: 10

extrainfoOutputFieldSize The maximum output length of any miscellaneous
information that is not recognized as a known type.
Default: 30
Implementing the SeeBeyond Match 62 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
7.3.2 United States Address Standardization Files
Patterns and clues files are specific to each national domain. The patterns and clues files
defined in this section are used for United States addresses. For information about the
patterns and clues files for the United Kingdom, see “Address Files” on page 120 in
Appendix C.

addressClueAbbrevUS.dat

The address clues file lists common terms in street addresses, specifies a normalized
value for each common term, and categorizes the terms into street address component
types. A term can be categorized into multiple component types. The relevance value
specifies which of the component types the term is most likely to be. For example, the
term “Junction” is standardized as “Jct”, and is classified as a street type, building unit,
and generic term (giving relevance in that order).

This file helps the SeeBeyond Match Engine recognize common terms in street
addresses, and to parse and normalize the values correctly. The syntax of this file is:

common-term normalized-term ID-number/type-token

You can modify or add entries in this table as needed. Table 18 describes the columns in
the addressClueAbbrevUS.dat file.

Following is an excerpt from the addressClueAbbrevUS.dat file.

TRLR VILLAGE Trpk 59BU
TRLR VLG Trpk 59BU
TRPK Trpk 59BU
TRPRK Trpk 59BU
VILLA Vlla 305TY 60BU
VLLA Vlla 305TY 60BU
VILLAS Vlla 60BU
VILL Vlg 317TY 61BU 364AU
VILLAG Vlg 317TY 61BU 364AU
VLG Vlg 317TY 61BU 364AU
VILLAGE Vlg 317TY 61BU 364AU
VILLG Vlg 317TY 61BU 364AU
VILLIAGE Vlg 317TY 61BU 364AU
VLGE Vlg 317TY 61BU 364AU
VIVI Vivi 62BU
VIVIENDA Vivi 62BU

Table 18 US Address Clues File Columns

Column Description

common-term A term commonly found in street addresses.

normalized-term The normalized version of the common term.

ID-number/type-token An ID number and a token indicating the type
of address component represented by the
common term. The ID number corresponds to
an ID number in the address master clues file,
and the type token corresponds to the type
specified for that ID number in the address
master clues file. One term might have several
ID number and token type pairs.
Implementing the SeeBeyond Match 63 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
COLLEGE Coll 64BU 0AU
CLG Coll 64BU
COTTAGE Cott 65BU 65BP 0AU

addressMasterCluesUS.dat

The address master clues file lists common terms in street addresses, as defined by the
US Postal Service. For each common term, this file specifies a normalized value, defines
USPS information, and categorizes the terms into street address component types. A
term can be categorized into multiple component types.

The syntax of this file is:

ID-number common-term normalized-term short-abbrev USPS-abbrev CFCCS
type-token usage-flag USPS-flag

You can modify or add entries in this table as needed. Table 19 describes the columns in
the addressMasterCluesUS.dat file.

Table 19 US Address Master Clue File Columns

Column Description

ID-number A unique identification number for the address
common term. This number corresponds to an
ID number for the same term in the address
clues file.

common-term A common address term, such as Park, Village,
North, and so on.

normalized-term The normalized version of the common term.

short-abbrev A short abbreviation of the common term.

USPS-abbrev The standard Postal Office abbreviation of the
common term.

CFCCS The census feature class code of the term (as
defined in the Census Tiger® database). The
following values are used:

A—Road
B—Railroad
C—Miscellaneous
D—Landmark
E—Physical feature
F—Nonvisible feature
H—Hydrography
X—Unclassified

type-token The type of address component represented
by the common term. Types are specified by an
address token (for more information, see
“Address Type Tokens” on page 68).

usage-flag A flag indicating how the term is used (for
more information, see “Pattern Classes” on
page 70)

USPS-flag The Postal Office code for the term.
Implementing the SeeBeyond Match 64 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
Following is an excerpt from the addressMasterCluesUS.dat file.

11Alley Alley Al Aly A TY R U
12Alternate Route Alt Rte Alt Alt A TY R
15Arcade Arcade Arc Arc A TY R U
16Arroyo Arroyo Arryo ArryHA TY R
17Autopista Atpta Apta AptaA TY R
18Avenida Avenida Ava Ava A TY R
19Avenue Avenue Ave Ave A TY R U
26Boulevard Blvd Blvd BlvdA TY R U
32Bulevar Blvr Blv Blv A TY R
33Business Route Bus Rte BusRt BsRtA TY R
34Bypass Bypass Byp Byp A TY R U
36Calle Calle Calle ClleA TY R
37Calleja Calleja Cja Cja A TY R
38Callejon Callej Cjon CjonA TY R
39Camino Camino Cam Cam A TY R
47Carretera Carrt Carr CarrA TY R
48Causeway Cswy Cswy CswyAH TY R U
51Center Center Ctr Ctr DA TY R U

addressPatternsUS.dat

The address patterns file defines the expected input patterns of each individual street
address field being standardized so the SeeBeyond Match Engine can recognize and
process these values. Tokens are used to indicate the type of address component in the
input and output fields. This file contains two rows for each pattern. The first row
defines the input pattern for each address field and provides an example. The second
row defines the output pattern for each address field, the pattern type, the relative
importance of the pattern compared to other patterns, and usage flags (as shown
below).

AU A1 TY 01 Oak B Street
NA NA ST T* 75 TX

When an address is parsed, each line of the address (delineated by a pipe (|)) is sent to
the parser separately, and the output tokens for each line are concatenated. The output
pattern is then processed using the addressOutPatterns.dat file to determine whether
the output pattern is listed in the file. If the pattern is found, output patterns are
modified as indicated in the addressOutPatterns.dat file to resolve any ambiguities
that might arise when two lines of address information contain common elements. The
relative importance determines which pattern to use in the case that the format of the
input field matches more than one pattern. This file should only be modified by
personnel with a thorough understanding of address patterns and tokens.

The syntax of this file is:

input-pattern example
output-pattern pattern-class pattern-modifier priority usage-flag
exclude-flag
Implementing the SeeBeyond Match 65 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
You can modify or add entries in this table as needed. Table 20 describes the columns in
the addressPatternsUS.dat file.

Following is an excerpt from the addressPatternsUS.dat file.

NU DR TY A1 AU 01 123 South Avenida B Oak
HN PD PT NA NA H* 70

NU DR TY NU DR 01 123 South Avenida 1 West
HN PD PT NA SD H* 70

NU A1 TY AU TY 01 123 C circle hill drive
HN HS NA NA ST H* 70

NU A1 AM A1 TY 01 123 M & M road
HN NA NA NA ST H* 65

Table 20 US Address Patterns File

Column Description

input-pattern Tokens that represent a possible input pattern
from an individual unparsed street address
field. Each token represents one component.
For more information about address tokens,
see “Address Type Tokens” on page 68.

example An example of a street address that fits the
specified pattern. This file element is optional.

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component of the output of
the SeeBeyond Match Engine. For more
information about address tokens, see
“Address Type Tokens” on page 68.

pattern-class An indicator of the type of address component
represented by the pattern. Possible pattern
types are listed in “Pattern Classes” on
page 70.

pattern-modifier An indicator of whether the priority of the
pattern is averaged against other patterns that
match the input. Pattern modifiers are listed in
“Pattern Modifiers” on page 70.

priority The priority weight to use for the pattern when
the pattern is a sub-pattern of a larger input
pattern.

usage-flag A flag indicating how the term is used (for
more information, see “Pattern Classes” on
page 70). This file element is optional.

exclude-flag This file element is optional.
Implementing the SeeBeyond Match 66 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
NU TY AU A1 01 123 Avenida Oak B
HN PT NA NA H* 60

NU TY NU A1 01 123 Avenida 1 B
HN PT NA NA H* 60

addressOutPatternsUS.dat

The address output patterns file uses the field patterns output by the
addressPatternsUS.dat file to determine how to parse all standardized address fields.
As with the addressPatternsUS.dat file, tokens are used to indicate the type of address
component in the input and output data. This file contains two rows for each pattern.
The first row defines the input pattern received from addressPatternsUS.dat and
provides an example. The second row defines the output pattern (as shown below).

EI|BN BT|* // HILLVIEW|FULBOURN HOSPITAL
BN|BI BY

The syntax of this file is:

input-pattern example
output-pattern

You can modify or add entries in this table as needed. Table 21 describes the columns in
the addressOutPatternsUS.dat file.

Following is an excerpt from the addressPatternsUS.dat file. In the first example,
addressPatternsUS.dat output three address fields containing these components:
building name and type; street name and type; and street name and type.
addressOutPatternsUS.dat changes the tokens for the second street name and type to
indicate they are not the primary street name and type. Therefore, “New Bridge” is
populated into the parsed street name field in the database.

Table 21 US Address Output Patterns File

Column Description

input-pattern Tokens that represent a possible input pattern
from addressPatternsUS.dat. Each token
represents one component, and the pattern for
each address field in the address is separated
by a pipe (|). For more information about
address tokens, see “Address Type Tokens”
on page 68. Note that this file only uses output
tokens.

example An example of a street address that fits the
specified pattern. This file element is optional.

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component of the output of
the SeeBeyond Match Engine. For more
information about address tokens, see
“Address Type Tokens” on page 68.
Implementing the SeeBeyond Match 67 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
BN BT|NA ST|NA ST|* // PROTEA HOUSE|NEW BRIDGE|MARINE PARADE
BN BT|NA ST|N2 S2

HN NA ST|HN NA ST|* // 21 HEIGHWAY COURT|45 BROOKLAND ROAD
HN NA ST|H2 N2 S2

HN NA ST|NA ST|* // 21 HEIGHWAY COURT|BROOKLAND ROAD
HN NA ST|N2 S2

NA ST|HN NA ST|* // HEIGHWAY COURT|45 BROOKLAND ROAD
NA ST|H2 N2 S2

Address Pattern File Components

The address patterns files use pattern type tokens, pattern classes, pattern modifies,
and priority indicators to process and parse address data. Before modifying any of the
patterns files, you must have a good understanding of these file components.

Address Type Tokens

The address pattern and clues files use tokens to denote different components in a
street address, such as street type, house number, street names, and so on. These files
use one set of tokens for input fields and another set for output fields. You can use only
the predefined tokens to represent address components; the SeeBeyond Match Engine
does not recognize custom tokens.

Table 22 lists and describes each input token; Table 23 lists and describes each output
token.

Table 22 Input Address Pattern Type Tokens

Token Description

A1 Alphabetic value, one character in length

AM Ampersand

AU Generic word

BP Building property

BU Building unit

BX Post office box

DA Dash (as a starting character)

DR Street direction

EI Extra information

EX Extension

FC Numeric fraction

HR Highway route

MP Mile posts

NL Common words, such as “of”, “the”, and so on

NU Numeric value

OT Ordinal type

PT Prefix type
Implementing the SeeBeyond Match 68 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
RR Rural route

SA State abbreviations

TY Street type

WD Descriptor within the structure

WI Identifier within the structure

Table 23 Output Address Pattern Tokens

Token Description

1P Building number prefix

2P Second building number prefix

BD Property or building directional suffix

BI Structure (building) identifier

BN Property or building name

BS Building number suffix

BT Property or building type suffix

BX Post office box descriptor

BY Structure (building) descriptor

DB Property or building directional prefix

EI Extra information

EX Extension index

H1 First house number (the actual number)

H2 Second house number (house number suffix)

HN House number

HS House number suffix

N2 Second street name

NA Street name

NB Building number

NL Conjunctions that connect words or phrases in one
component type (usually the street name)

P1 House number prefix

P2 Second house number prefix

PD Directional prefix to the street name

PT Street type prefix to the street name

RR Rural route descriptor

RN Rural route identifier

Table 22 Input Address Pattern Type Tokens

Token Description
Implementing the SeeBeyond Match 69 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.3
Address Data Type Configuration Standardization Configuration for Address Data
Pattern Classes

Each pattern defined in the address patterns file must have an associated pattern class.
The pattern class indicates a portion of the input pattern or the type of address data that
is represented by the pattern. You can specify any of the following pattern classes.

H—the address pattern represents a house.

B—the address pattern represents a building.

W—the address pattern represents a unit within a structure, such as an apartment
or suite number.

T—the address pattern represents a street type or direction.

R—the address pattern represents a rural route.

P—the address pattern represents a Post Office box.

N—the address pattern is mostly numeric.

These classes are also specified as usage flags in the patterns file and the master clues
file.

Pattern Modifiers

Each pattern type must be followed by a pattern modifier that indicates how to handle
cases where one or more defined patterns is found to be a sub-pattern of a larger input
pattern. In this case, the SeeBeyond Match Engine must know how to prioritize each
defined pattern that is a part of the larger pattern. The pattern modifiers are:

*—An asterisk indicates that the priority weight for the matching pattern is
averaged down equally with the other matching sub-patterns.

+—A plus sign indicates that the priority weight for the matching pattern is not
averaged down equally with the other matching sub-patterns.

Priority Indicators

The priority indicator is a numeric value following the pattern modifier that indicates
the priority weight of the pattern. These values work best when defined as a multiple of
five between and including 35 and 95. If a pattern is assigned a priority of 90 or 95 and
the pattern matches, or is a sub-pattern of, the input pattern, the match engine stops
searching for additional matching patterns and uses the high-priority matching pattern.

S2 Street type suffix to the second street name

SD Directional suffix to the street name

ST Street type suffix to the street name

TB Property or building type prefix

WI Identifier within the structure

WD Descriptor within the structure

XN Post office box identifier

Table 23 Output Address Pattern Tokens

Token Description
Implementing the SeeBeyond Match 70 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.4
Address Data Type Configuration Modifying Address Data Configuration Files
7.4 Modifying Address Data Configuration Files
To customize the SeeBeyond Match Engine configuration files for processing street
address data, you can modify any of the files described in this chapter using the text
editor provided in the Enterprise Designer. Before modifying the match configuration
file, review the information provided in Chapter 4 and Appendix B of this guide. Make
sure a thorough data analysis has been performed to determine the best fields for
matching, and the best comparison functions to use for each field.

Updating most standardization files is a straight-forward process. Make sure to follow
the syntax guidelines provided in “Standardization Configuration for Address Data”
on page 61. If you add rows to any of the standardization files, make sure to adjust the
corresponding parameter in the address constants file (addressConstants.cfg).

Modifying the patterns file is a more complex task. Only modify this file once you fully
understand pattern tokens, types, relevance, and flags.

7.5 Configuring the eView Match Service
To ensure the master index uses the SeeBeyond Match Engine to process address
information, you must customize the eView Match Service. This includes modifying the
Match Field file to support the fields on which you want to match, to standardize the
appropriate fields, and to specify the SeeBeyond Match Engine as the match and
standardization engine. Perform the following tasks to configure the eView Match
Service.

Configuring StandardizationConfig on page 71

Configuring the Match String on page 75

Configuring the Match and Standardization Engines on page 76

When configuring the eView Match Service, keep in mind the information presented in
“Matching Service Configuration” on page 37.

7.5.1 Configuring StandardizationConfig
The StandardizationConfig section of the Match Field file is described in detail in
Chapter 6 of the eView Studio Configuration Guide. Perform the following steps to
configure the required fields for standardization and phonetic encoding.

Step 1: Configure the System Object on page 72

Step 2: Configure Fields to Parse and Normalize on page 72

Step 3: Configure Fields to Phonetically Encode on page 74

Note: In the default configuration, the rules defined for the address data type assume that
all input fields must be parsed as well as normalized. Thus, this section does not
describe the process of configuring fields only for normalization.
Implementing the SeeBeyond Match 71 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Match Service
Step 1: Configure the System Object

The system object defined for standardization must be the parent object of the object
structure.

To configure the system object

1 In the Project Explorer pane of the Enterprise Designer, double-click the Match
Field node in the Configuration folder of the Project you want to modify.

2 Scroll to the standardize-system-object element.

3 Make sure the value of the system-object-name element is the name of the parent
object in the object structure (as defined in the Object Definition file).

A sample is shown below.

<standardize-system-object>
<system-object-name>Business</system-object-name>

...
</standardize-system-object>

4 Save your changes to the file.

Step 2: Configure Fields to Parse and Normalize

For address fields, the source fields in the standardization structure must include the
fields predefined for parsing and normalization. This includes any fields containing
street address information, which are parsed into the street address fields listed in “The
Object Structure” on page 60 (except the phonetic street name field). The target fields
can include any of these parsed fields.

A sample standardization structure for address data is shown below. This structure
parses the first two lines of street address into the standard street address fields.

<free-form-texts-to-standardize>
<group standardization-type="ADDRESS"
 domain-selector="com.stc.eindex.matching.impl.SingleDomainSelectorUS">

<unstandardized-source-fields>
 <unstandardized-source-field-name>Person.Address[*].Address1
 </unstandardized-source-field-name>
 <unstandardized-source-field-name>Person.Address[*].Address2
 </unstandardized-source-field-name>
</unstandardized-source-fields>
<standardization-targets>
 <target-mapping>

<standardized-object-field-id>HN
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].HouseNumber
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>RV
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].HouseNumber
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>BV

</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].HouseNumber
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>SN
Implementing the SeeBeyond Match 72 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Match Service
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetName
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>RT
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetName
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>BT
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetName
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>PD
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetDir
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>SD
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetDir
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>ST
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetType
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>PT
</standardized-object-field-id>
<standardized-target-field-name>Person.Address[*].StreetType
</standardized-target-field-name>

 </target-mapping>
</standardization-targets>

</group>
</free-form-texts-to-standardize>

To configure fields to parse and normalize

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the free-form-text-to-standardize element.

3 Add, modify, or delete source or target fields for parsing and normalization using
the instructions under “Defining Standardization” in Chapter 6 of the eView Studio
Configuration Guide.

See Table 24 for guidelines on how to populate the standardization elements for
address matching.
Implementing the SeeBeyond Match 73 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Match Service
4 Save and close the Match Field file.

Step 3: Configure Fields to Phonetically Encode

When you match or standardize on street address fields, the street name should be
specified for phonetic conversion. A sample of the phoneticize-fields element is shown
below. This sample only converts the address street name. You can define additional
fields for phonetic encoding.

Table 24 Address free-form-text-to-standardize Elements

Element Description

standardization-type Specifies the type of standardization for the SeeBeyond
Match Engine to use for the fields defined in the
unstandardized-source-field-name elements of the
group. For parsing street address fields, the value of this
element must be “ADDRESS”. For more information, see
“Standardization and Match Types” on page 33.

domain-selector The national domain of the data being standardized. To
standardize on data from the United States, specify
“SingleDomainSelectorUS”. For the United Kingdom,
specify “SingleDomainSelectorUK”.

unstandardized-source-fields elements

unstandardized-source-field-name The ePath of a field in the input record containing the
freeform text to be standardized. You can have more
than one source field (such as AddressLine1 and
AddressLine2). The source fields you specify in a group
are concatenated, with a pipe (|) between lines, to
determine the target values for the group.
For example, if the parent object is “Business” and you
want to specify the first line of the street address, the
value would be similar to
Business.Address[*].AddressLine1.

standardized-targets elements

target-mapping Defines a target field for the corresponding
unstandardized-source-fields element. You can have
multiple target-mapping elements for one
unstandardized-source-field element.

standardized-object-field-id The match configuration field ID of the field defined by
the standardized-target-field-name element (for more
information, see Table 4 on page 31)

standardized-target-field-name The name of the fields that store the standardized
version of the input fields. As with the unstandardized-
source-field-name element, this value must be the ePath
of the field.
Implementing the SeeBeyond Match 74 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Match Service
<phoneticize-fields>
<phoneticize-field>

<unphoneticized-source-field-name>Person.Address[*].StreetName
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Person.Address[*].StreetName_Phon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>
</phoneticize-fields>

To configure fields to phonetically encode

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the phoneticize-fields element.

3 Add, modify, or delete fields for phonetic conversion using the instructions under
“Defining Phonetic Conversion” in Chapter 6 of the eView Studio Configuration
Guide.

See Table 25 for guidelines on how to populate the phonetic elements for address
matching.

4 Save and close the Match Field file.

7.5.2 Configuring the Match String
For matching on street address fields, make sure the match string you specify in
MatchingConfig contains all or a subset of the fields defined for standardization in
StandardizationConfig. You can include additional fields for matching, such as the city
name or zip code. A sample match string for address matching is shown below.

Table 25 Address phoneticize-fields Elements

Element Description

unphoneticized-source-field-name The ePath of a field in the input record to convert to its
phonetic version. For example, if the parent object is
“Business” and you want to specify the street name, the
value would be similar to
Business.Address[*].StreetName.

phoneticized-object-field-id This element is not used by the SeeBeyond Match
Engine and can be omitted.

phoneticized-target-field-name The name of the field that stores the phonetic version of
the field. As with the unphoneticized-source-field-name
element, this value must be the ePath of the field.

encoding-type The type of encoding to use for the phonetic
conversion. You can specify “NYSIIS” or “Soundex”.
Implementing the SeeBeyond Match 75 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Match Service
<match-system-object>
<object-name>Person</object-name>
<match-columns>

<match-column>
<column-name>Enterprise.SystemSBR.Person.Address.StreetName
</column-name>
<match-type>StreetName</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.HouseNumber
</column-name>
<match-type>HouseNumber</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.StreetDir
</column-name>
<match-type>StreetDir</match-type>

</match-column>
<match-column>

<column-name>Enterprise.SystemSBR.Person.Address.StreetType
</column-name>
<match-type>StreetType</match-type>

</match-column>
</match-columns>

</match-system-object>

To configure the match string for address matching

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the MatchingConfig module.

3 Add, modify, or delete fields in the match string using the instructions under
“Configuring the Match String” in Chapter 6 of the eView Studio Configuration Guide.

See Table 26 for guidelines on how to populate the column-name and match-type
elements for address matching.

4 Save and close the Match Field file.

7.5.3 Configuring the Match and Standardization Engines
The MEFAConfig section of the Match Field file defines which standardization and
match engines to use based on the adapter and API Java classes specified. Make sure

Table 26 Address match-column Elements

Element Description

column-name The fully qualified field name of the field in the SBR to be
included in the match string, with “Enterprise” as the root
object. For example, to specify the street name of an
address, this value would be similar to
Enterprise.SystemSBR.Business.Address.StreetName.

match-type Each component of a street address has a different match
type. The default match types are StreetName,
HouseNumber, StreetDir, and StreetType. For more
information, see “Match and Standardization Types” on
page 35.
Implementing the SeeBeyond Match 76 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 7 Section 7.5
Address Data Type Configuration Configuring the eView Match Service
this section is configured for the SeeBeyond Match Engine. Instructions are provided in
“Configuring the Match and Standardization Engines” on page 40.

For more information, see “MEFA Configuration” in Chapter 6 of the eView Studio
Configuration Guide.
Implementing the SeeBeyond Match 77 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8

Business Names Data Type Configuration

Processing unparsed business name fields involves parsing, normalizing, and
phonetically encoding certain fields prior to matching. This chapter describes the
configuration files that define business name processing logic, and provides
instructions for modifying the Match Field file for processing business names.

8.1 Business Name Matching Overview
Matching on the business name data type includes standardizing and matching on
freeform business name fields. You can implement business name standardization and
matching on its own, or within a master index designed to process person information.
For example, standardizing business name fields allows you to include these fields in
Enterprise Data Manager search criteria, even though matching might not be
performed against these fields.

The SeeBeyond Match Engine can create standardized and phonetic values for business
names. Several configuration files designed specifically to handle business names are
included to define additional logic for the standardization and phonetic encoding
process. These include reference files, a patterns file, and key type files. The SeeBeyond
Match Engine can match on any field, as long as the match type for the field is defined
in the match specifications file (matchConfigFile.cfg).

8.1.1 Business Name Processing Fields
When matching on freeform business names, not all fields in a record need to be
processed by the SeeBeyond Match Engine. The match engine only needs to process
fields that must be parsed, normalized, or phonetically converted, and the fields
against which matching is performed. These fields are defined in the Match Field file,
and processing logic for each field is defined in the standardization and matching
configuration files.

Match String Fields

The match string processed by the SeeBeyond Match Engine is defined by the match
fields specified in the Match Field file. If you specify a “BusinessName” match type for
any field in the eView Wizard, most of the parsed business name fields are
automatically added to the match string in the Match Field file. The fields added to the
Implementing the SeeBeyond Match 78 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.1
Business Names Data Type Configuration Business Name Matching Overview
match string include the name, organization type, association type, sector, industry, and
URL. You can remove any of these fields from the match string.

The match engine can process any combination of fields you specify for matching. By
default, the match specifications file includes rows specifically for matching on the
fields that are parsed from the business name fields, such as the name, industry, and so
on. The file also defines several generic match types. You can use any of the existing
rows for matching, or you can create new rows for the fields you want to match.

Standardized Fields

The SeeBeyond Match Engine expects that business name data will be provided in a
freeform text field containing several components that must be parsed. The match
engine is designed to parse these components, and to normalize and phonetically
encode the business name. You can specify additional fields for phonetic encoding.

If you specify the “BusinessName” match type for any field in the eView Wizard, a
standardization structure for that field is defined in the Match Field file. The fields
defined as the target fields are listed in the next section, “The Object Structure”.

The Object Structure

For the default configuration of the business name data type, the address fields
specified for standardization are parsed into several additional fields, including one
normalized field. If you specify the appropriate match type in the eView Wizard, the
following fields are automatically added to the object structure and database creation
script.

<field_name>_Name

<field_name>_NamePhon

<field_name>_OrgType

<field_name>_AssocType

<field_name>_Industry

<field_name>_Sector

<field_name>_Alias

<field_name>_Url

where <field_name> is the name of the field for which you specified business name
matching. For example, if you specify the BusinessName match type for the
Company field, the fields automatically added to the structure include
Company_Name, Company_NamePhon, Company_OrgType, and so on.

You can add these fields manually if you do not specify a match type in the eView
Wizard.
Implementing the SeeBeyond Match 79 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.2
Business Names Data Type Configuration Match Configuration for Business Names
8.2 Match Configuration for Business Names
The default match configuration file, matchConfigFile.cfg, defines several match types
for the kinds of business name data typically included in the match string. You can
customize the existing match types or create new match types for the data being
processed. The following match types are typical for matching on business names.

In addition, you can use any of these generic match types for matching on business
names.

This file appears under the Match Engine node of the eView Project. For more
information about the comparison functions used for each match type and how the
weights are tuned, see “The Match Configuration File” on page 22 and Appendix B.

8.3 Standardization Configuration for Business Names
Several configuration files are used to define certain processing logic for the SeeBeyond
Match Engine. You can customize any of the configuration files described in this section
to fit your data processing and standardization requirements. These files appear under
the Standardization Engine node of the eView Project.

bizConstants.cfg

The business constants file defines certain information about the standardization files
used for processing business data, primarily the number of lines contained in each file.
The number of lines specified here must be equal to or greater than the number of lines
actually contained in each file.

PrimaryName AliasList

OrgTypeKeyword IndustryTypeKeyword

AssocTypeKeyword URL

IndustrySectorList

String Real

Date Char

Numeric pro

Integer Exac
Implementing the SeeBeyond Match 80 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Table 27 lists and describes each parameter in the constants file. The files referenced by
these parameters are described on the following pages.

bizAdjectivesTypeKeys.dat

The adjectives key type file defines adjectives commonly found in business names to
help the SeeBeyond Match Engine recognize and process these values as a part of the
business name. This file contains one column with a list of commonly used adjectives,
such as General, Financial, Central, and so on.

You can modify or add entries in this file as needed. Following is an excerpt from the
bizAdjectivesTypeKeys.dat file.

Table 27 Business Constants File Parameters

Parameter Description

cityMax The maximum number of lines in the city or state key type
file (bizCityorStateTypeKey.dat).
Default: 180

primaryMax The maximum number of lines in the primary business
names reference file (bizCompanyPrimaryNames.dat).
Default: 525

countryMax The maximum number of lines in the country key type file
(bizCountryTypeKeys.dat).
Default: 99

industryMax The maximum number of lines in the industry key type file
(bizIndustryTypeKeys.dat).
Default: 900

patternMax The maximum number of lines in the business patterns file
(bixPatterns.dat).
Default: 400

mergerMax The maximum number of lines in the merged business name
category file (bizCompanyMergerNames.dat).
Default: 40

adjectiveMax The maximum number of lines in the adjective key type file
(bizAdjectiveTypeKeys.dat).
Default: 80

orgMax The maximum number of lines in the organization key type
file (bizOrganizationTypeKeys.dat).
Default: 50

assocMax The maximum number of lines in the association key type
file (bizAssociationTypeKeys.dat).
Default: 20

genTermMax The maximum number of lines in the general terms
reference file (bizBusinessGeneralTerms.dat).
Default: 20

charsMax The maximum number of lines in the special characters
reference file (bizRemoveSpecChars.dat).
Default: 25
Implementing the SeeBeyond Match 81 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
DIGITAL
DIRECTED
DIVERSIFIED
EDUCATIONAL
ELECTROCHEMICAL
ENGINEERED
EVOLUTIONARY
EXTENDED
FACTUAL
FEDERAL

bizAliasTypeKeys.dat

The alias key type file lists business name acronyms and abbreviations along with their
standardized names. This helps the SeeBeyond Match Engine recognize and process
these values appropriately. You can add entries to the alias key type file using the
following syntax.

alias standardized-name

Table 28 describes the columns in the bizAliasTypeKeys.dat file.

Following is an excerpt from the bizAliasTypeKeys.dat file.

BBH BARTLE BOGLE HEGARTY
BBH BROWN BROTHERS HARRIMAN
IBM INTERNATIONAL BUSINESS MACHINE
IDS INCOMES DATA SERVICES
IDS INSURANCE DATA SERVICES
IDS THE INTEGRATED DECISION SUPPORT GROUP
IDS THE INTERNET DATABASE SERVICE
CAL-TECH CALIFORNIA INSTITUTE OF TECHNOLOGY

bizAssociationTypeKeys.dat

The association key type file lists business association types along with their
standardized names. This helps the SeeBeyond Match Engine recognize and process
these values appropriately. You can add entries to the association key type file using the
following syntax.

association-type standardized-type

Table 29 describes the columns in the bizAssociationTypeKeys.dat file.

Table 28 Alias Key Type File

Column Description

alias An abbreviation or acronym commonly used in
place of a specific business name.

standardized-name The normalized version of the alias name.

Table 29 Association Type Key Table

Column Description

association-type A common association type for businesses,
such as Partners, Group, and so on.
Implementing the SeeBeyond Match 82 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Following is an excerpt from the bizAssociationTypeKeys.dat file.

ASSOCIATES 0
BANCORP 0
BANCORPORATION BANCORP
COMPANIES 0
GP GROUP
GROUP 0
PARTNERS 0

bizBusinessGeneralTerms.dat

The general terms reference file lists terms commonly used in business names. This file
is used to identify terms that indicate a business, such as bank, supply, factory, and so
on. This helps the SeeBeyond Match Engine recognize and process the business name.

This file contains one column that lists the connector tokens in the business names you
process. You can add entries as needed. Below is an excerpt from the
bizBusinessGeneralTerms.dat file.

BUILDING
CITY
CONSUMER
EAST
EYE
FACTORY
LATIN
NORTH
SOUTH

bizCityorStateTypeKeys.dat

The city or state key type file lists various cities and states that might be used in
business names. It also classifies each entry as a city (CT) or state (ST) and indicates the
country in which the city or state is located. This helps the SeeBeyond Match Engine
recognize and process these values appropriately. You can add entries to the city or
state key type file using the following syntax.

city-or-state type country

Table 30 describes the columns in the bizCityorStateTypeKeys.dat file.

standardized-type The standardized version of the association
type.

Table 30 City or State Key Type File

Column Description

city-or-state The name of a city or state used in business
names.

type An indicator of whether the value is a city or
state. “CT” indicates city and “ST” indicates
state.

Table 29 Association Type Key Table

Column Description
Implementing the SeeBeyond Match 83 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Following is an excerpt from the bizCityorStateTypeKeys.dat file.

ADELAIDE CT AU
ALABAMA ST US
ALASKA ST US
ALGIERS CT DZ
AMSTERDAM CT NL
ARIZONA ST US
ARKANSAS ST US
ASUNCION CT PY
ATHENS CT GR

bizCompanyFormerNames.dat

The business former name reference file provides a list of common company names
along with names by which the companies were formerly known. This helps the
SeeBeyond Match Engine recognize a business when a record containing their previous
business name is processed. You can add entries to the business former name table
using the following syntax.

former-name current-name

Table 31 describes each column in the bizCompanyFormerNames.dat file.

Below is an excerpt from the bizCompanyFormerNames.dat file.

HELLENIC BOTTLING COCA-COLA HBC
INTERNATIONAL PRODUCTS THE TERLATO WINE
ORGANIC FOOD PRODUCTS SPECTRUM ORGANIC PRODUCTS
SOFTWARE TECHNOLOGY CORPORATION SEEBEYOND TECHNOLOGY CORPORATION
SUTTER HOME WINERY TRINCHERO FAMILY ESTATES

bizCompanyMergerNames.dat

The merged business name category file provides a list of companies whose name
changed because of a merger along with the name of the company after the merge. It
also classifies the business names into industry sectors and sub-sectors. This helps the
SeeBeyond Match Engine recognize the current company name and to determine the
sector of the business. You can add entries to the business merger name file using the
following syntax.

former-name/merged-name sector-code

country The country code of the country in which the
city or state is located.

Table 31 Business Former Name Reference File

Column Description

former-name One of the company’s previous names.

current-name The company’s current name.

Table 30 City or State Key Type File

Column Description
Implementing the SeeBeyond Match 84 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Table 32 describes each column in the bizCompanyMergerNames.dat file.

Below is an excerpt from the bizCompanyMergerNames.dat file.

DUKE/FLUOR DANIEL 20005
FAULTLESS STARCH/BON AMI 09004
FIND/SVP 10013
FIRST WAVE/NEWPARK SHIPBUILDING 27005
GUNDLE/SLT 19020
HMG/COURTLAND 23004
J BROWN/LMC 10014
KORN/FERRY 10020
LINSCO/PRIVATE LEDGER 14005

bizCompanyPrimaryNames.dat

The primary business name reference file provides a list of companies by their primary
name. It also classifies the business names into industry sectors and sub-sectors. This
helps the SeeBeyond Match Engine determine the correct value of the sector field when
parsing the business name. You can add entries to the primary business name file using
the following syntax.

primary-name sector-code

Table 33 describes the columns in the bizCompanyPrimaryNames.dat file.

Below is an excerpt from the bizCompanyPrimaryNames.dat file.

Table 32 Business Merger Name Category File

Column Description

former-name The name of the company whose name was
not kept after the merger.

merged-name The name of the company whose name was
kept after the merger.

sector-code The industry sector code of the business.
Sector codes are listed in the
bizIndustryCategoriesCode.dat file.

Table 33 Business Primary Name Reference File

Column Description

primary-name The primary name of the company.

sector-code The industry sector code of the business.
Sector codes are listed in the
bizIndustryCategoriesCode.dat file.
Implementing the SeeBeyond Match 85 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
BROTHER INTERNATIONAL 12006
BRYSTOL-MYERS SQUIBB 11005
BURLINGTON COAT FACTORY 24003
BURLINGTON NORTHERN SANTA FE 27005
BV SOLUTIONS 06012
CABLEVISION 26001
CABOT 04006
CADENCE 06010
CAMPBELL 22006
CAPITAL BLUE CROSS 17001

bizConnectorTokens.dat

The connector tokens reference file defines common values (typically conjunctions) that
connect words in business names. For example, in the business name “Nursery of
Venice”, “of” is a connector token. This helps the SeeBeyond Match Engine recognize
and process the full name of a business by indicating that the token connects two parts
of the full name.

This file contains one column that lists the connector tokens in the business names you
process. You can add entries as needed. Below is an excerpt from the
bizConnectorTokens.dat file.

AN
DE
DES
DOS
LA
LAS
LE
OF
THE

bizCountryTypeKeys.dat

The country key type file lists countries and continents, along with their abbreviations
and assigned nationalities. For continents, the abbreviation is “CON” to separate them
from countries. This helps the SeeBeyond Match Engine recognize and process these
values as countries or continents. You can add entries to the country key type file using
the following syntax.

country abbreviation nationality

Table 34 describes the columns in the bizCountryTypeKeys.dat file.

Following is an excerpt from the bizCountryTypeKeys.dat file.

Table 34 Country Key Type Files

Column Description

country The name of a country or continent.

abbreviation The common abbreviation for the specified
country. The abbreviation for a continent is
always “CON”.

nationality The nationality assigned to a person or
business originating in the specified country.
Implementing the SeeBeyond Match 86 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
AMERICA CON AMERICAN
AFRICA CON AFRICAN
EUROPE CON EUROPEAN
ASIA CON ASIAN
AFGHANISTAN AF AFGHAN
ALBANIA AL ALBANIAN
ALGERIA DZ ALGERIAN

bizIndustryCategoryCode.dat

The industry sector reference file lists and groups various industry sectors and sub-
sectors, and includes an identification code for each type. This helps the SeeBeyond
Match Engine determine and process the industry sectors for different businesses. You
can add entries to the industry sector reference file using the following syntax.

sector-code industry-sector

Table 35 describes each column in the bizIndustryCategoryCode.dat file.

02006 Automotive & Transport Equipment - Recreational Vehicles
02007 Automotive & Transport Equipment - Shipbuilding & Related Services
02008 Automotive & Transport Equipment - Trucks, Buses & Other Vehicles
03001 Banking - Banking
04001 Chemicals - Agricultural Chemicals
04002 Chemicals - Basic & Intermediate Chemicals & Petrochemicals
04003 Chemicals - Diversified Chemicals
04004 Chemicals - Paints, Coatings & Other Finishing Products
04005 Chemicals - Plastics & Fibers
04006 Chemicals - Specialty Chemicals
05001 Computer Hardware - Computer Peripherals
05002 Computer Hardware - Data Storage Devices
05003 Computer Hardware - Diversified Computer Products

bizIndustryTypeKeys.dat

The industry key type file is used to standardize the value of the Industry field into
common industries to which businesses belong. This helps the SeeBeyond Match
Engine recognize and process the industry types for different businesses. You can add
entries to the industry key type file using the following syntax.

industry-type standardized-form sectors

Table 35 Industry Sector Reference File

Column Description

sector-code The identification code of the specified sector.
The first two numbers of each code identify
the general industry sector; the last three
number identify a sub-sector.

industry-sector A description of the industry category. This is
written in the format “<sector> - <sub-
sector>”, where <sector> is a general category
of industry types, and <sub-sector> is a specific
industry within that category.
Implementing the SeeBeyond Match 87 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
Table 36 describes each column in the bizIndustryTypeKeys.dat file.

Below is an excerpt from the bizIndustryTypeKeys.dat file.

TECH TECHNOLOGY 05001-05007
TECHNOLOGIES TECHNOLOGY 05001-05007
TECHNOLOGY 0 05001-05007
TECHSYSTEMS 0 05001-05007
TELE PHONE TELEPHONE 16005
TELE PHONES TELEPHONES 16005
TELEVISION TV 11013 21014
TELECOM 0 16005 26006 26009 26010
TELECOMM TELECOMMUNICATION 16005 26006 26008
TELECOMMUNICATION 0 16005 26006 26008

bizOrganizationTypeKeys.dat

The organization key type file is used to standardize the value of the Organization field
into common organizations to which businesses belong. This helps the SeeBeyond
Match Engine recognize and process the organization types for different businesses.
You can add entries to the organization key type file using the following syntax.

original-type standardized-form

Table 37 describes each column in the bizOrganizationTypeKeys.dat file.

Below is an excerpt from the bizOrganizationTypeKeys.dat file.

Table 36 Industry Key Type File

Column Description

industry-type The original value of the industry type in the
input record.

standardized-form The normalized version of the industry type.

sectors The industry categories of the specified
industry type. These values correspond to the
sector codes listed in the industry sector file
(bizIndustryCategoryCode.dat). You can list as
many categories as apply for each type, but
they must be entered with a space between
each and no line breaks, and they must
correspond to an entry in the industry sector
file.

Table 37 Organization Key Type File

Column Description

original-type The original value of the organization field in
an input record.

standardized-form The normalized version of an organization
type. A zero (0) in this field indicates that the
value in the first column is already in its
standardized form.
Implementing the SeeBeyond Match 88 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
INC INCORPORATED
INCORPORATED 0
KG 0
KK 0
LIMITED 0
LIMITED PARTNERSHIP 0
LLC 0
LLP 0
LP LIMITED PARTNERSHIP
LTD LIMITED

bizPatterns.dat

The business patterns file defines multiple formats expected from the business name
input fields along with the standardized output of each format. The patterns and
output appear in two-row pairs in this file, as shown below.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

The first line describes the input pattern and the second line describes the output
pattern. This file uses tokens to denote each component. The allowed tokens are
described in “Business Name Tokens” on page 90. A number at the beginning of the
first line indicates the number of components in the given business name format. You
can modify this file using the following syntax.

length input-pattern
output-pattern

Table 38 lists and describes the syntax components.

Below is an excerpt from the bizPatterns.dat file.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

4 NFG AJT SEP-GLC ORT
PNT PNT DEL ORT

4 NF AJT SEP-GLC ORT
PNT PNT DEL ORT

Table 38 Business Patterns File Components

Component Description

length The number of business name components in
the input field.

input-pattern Tokens that represent a possible input pattern
from the unparsed business name fields. Each
token represents one component. For more
information about address tokens, see
“Business Name Tokens” on page 90.

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component. For more
information about business name tokens, see
“Business Name Tokens” on page 90.
Implementing the SeeBeyond Match 89 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
4 CST IDT NF ORT
PNT PNT PNT ORT

4 PNT AJT SEP-GLC ORT
PNT PNT DEL ORT

4 PNT IDT IDT ORT
PNT IDT IDT ORT

Business Name Tokens

The business patterns file uses tokens to denote different components in a business
name, such as the primary name, alias type key, URL, and so on. These files use one set
of tokens for input fields and another set for output fields. The tokens indicate the type
key files to use to determine the appropriate values for each output field. You can use
only the predefined tokens to represent business name components; the SeeBeyond
Match Engine does not recognize custom tokens.

Table 39 lists and describes each input token; Table 40 lists and describes each output
token.

Table 39 Business Name Input Pattern Tokens

Pattern Identifier Description

CTT A connector token

PNT A primary name of a business

PN-PN A hyphenated primary name of a business

BCT A common business term

URL The URL of the business’ web site

ALT A business alias type key (usually an acronym)

CNT A country name

NAT A nationality

CST A city or state type key

IDT An industry type key

IDT-AJT Both an industry and an adjective type key

AJT An adjective type key

AST An association type key

ORT An organization type key.

SEP A separator key

NFG Generic term, not recognized as a specific
business name component, with an internal
hyphen

NF Generic term, not recognized as a specific
business name component

NFC A single character, not recognized as a specific
business name component

SEP-GLC A joining comma (a glue type separator)

SEP-GLD A joining hyphen (a glue type separator)
Implementing the SeeBeyond Match 90 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.3
Business Names Data Type Configuration Standardization Configuration for Business Names
bizRemoveSpecChars.dat

The special characters reference file lists certain characters that should be removed from
a business name prior to processing the field. These typically include punctuation
marks such as exclamation points, parenthesis, and so on. This helps the SeeBeyond
Match Engine recognize the business name.

This file contains one column that lists the characters to be removed from the business
names you process. You can add entries as needed. Below is an excerpt from the
bizRemoveSpecChars.dat file.

AND The text “and”

GLU A glue type key, such as a forward slash,
connecting two parts of a business name
component

PN-NF A business primary name followed by a
hyphen and a generic term that is not
recognized as a specific business name
component

NF-PN A generic term that is not recognized as a
specific business name component, followed
by a hyphen and a recognized business
primary name

NF-NF Two generic terms, not recognized as specific
business name components and separated by
a hyphen

Table 40 Business Name Output Pattern Tokens

Pattern Identifier Description

PNT The primary name of the business

URL The URL of the business

ALT The alias type key of the business (usually an
acronym)

IDT The industry type key of the business

AST The association type key of the business

ORT The organization type key of the business

NF A generic term not recognized as a business
name component

Table 39 Business Name Input Pattern Tokens

Pattern Identifier Description
Implementing the SeeBeyond Match 91 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.4
Business Names Data Type Configuration Modifying Business Name Configuration Files
[
]
{
}
<
>
/
?

8.4 Modifying Business Name Configuration Files
To customize the SeeBeyond Match Engine configuration files for processing business
names, you can modify any of the files described in this chapter using the text editor
provided in the Enterprise Designer. Before modifying the match configuration file,
review the information provided in Chapter 4 and Appendix B of this guide. Make
sure a thorough data analysis has been performed to determine the best fields for
matching, and the best comparison functions to use for each field.

Updating most standardization files is a straight-forward process. Make sure to follow
the syntax guidelines provided in “Standardization Configuration for Business
Names” on page 80. If you add rows to any standardization files, make sure to modify
the corresponding parameter in the business constants file (bizConstants.cfg). Before
making any changes to the patterns file, make sure you understand the tokens used to
represent business name field components.

8.5 Configuring the eView Match Service
To ensure the master index uses the SeeBeyond Match Engine to process business
names, you must customize the eView Match Service. This includes modifying the
Match Field file to support the fields on which you want to match, to standardize the
appropriate fields, and to specify the SeeBeyond Match Engine as the match and
standardization engine. Perform the following tasks to configure the eView Match
Service.

Configuring StandardizationConfig on page 92

Configuring the Match String on page 96

Configuring the Match and Standardization Engines on page 97

When configuring the eView Match Service, keep in mind the information presented in
“Matching Service Configuration” on page 37.

8.5.1 Configuring StandardizationConfig
The StandardizationConfig section of the Match Field file is described in detail in
Chapter 6 of the eView Studio Configuration Guide. Perform the following steps to
configure the required fields for standardization and phonetic encoding.
Implementing the SeeBeyond Match 92 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Match Service
Step 1: Configure the System Object on page 93

Step 2: Configure Fields to Parse and Normalize on page 93

Step 3: Configure Fields to Phonetically Encode on page 95

Note: In the default configuration, the rules defined for the business data type assume that
all input fields must be parsed as well as normalized. Thus, this section does not
describe the process of configuring fields only for normalization.

Step 1: Configure the System Object

The system object defined for standardization must be the parent object of the object
structure.

To configure the system object

1 In the Project Explorer pane of the Enterprise Designer, double-click the Match
Field node in the Configuration folder of the Project you want to modify.

2 Scroll to the standardize-system-object element.

3 Make sure the value of the system-object-name element is the name of the parent
object in the object structure (as defined in the Object Definition file).

A sample is shown below.

<standardize-system-object>
<system-object-name>Company</system-object-name>

...
</standardize-system-object>

4 Save your changes to the file.

Step 2: Configure Fields to Parse and Normalize

For business name fields, the source fields in the standardization structure must
include the fields predefined for parsing and normalization. This includes any fields
containing business name information, which are parsed into the business name fields
listed in “The Object Structure” on page 79 (except the phonetic business name field).
The target fields can include any of these parsed fields.

A sample standardization structure for business name data is shown below. This
structure parses a business name field into the standard business name fields.

<free-form-texts-to-standardize>
<group standardization-type="BusinessName">

<unstandardized-source-fields>
 <unstandardized-source-field-name>Company.Name
 </unstandardized-source-field-name>
</unstandardized-source-fields>
<standardization-targets>
 <target-mapping>

<standardized-object-field-id>PrimaryName
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_Name
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>

<standardized-object-field-id>OrgTypekeyword
Implementing the SeeBeyond Match 93 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Match Service
</standardized-object-field-id>
<standardized-target-field-name>Company.Name_OrganizationType
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>AssocTypeKeyword

</standardized-object-field-id>
<standardized-target-field-name>Company.Name_AssociationType
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>IndustrySectorList

</standardized-object-field-id>
<standardized-target-field-name>Company.Name_Sector
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>IndustryTypeKeyword

</standardized-object-field-id>
<standardized-target-field-name>Company.Company.Name_Industry
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>AliasList

</standardized-object-field-id>
<standardized-target-field-name>Company.Company.Name_Alias
</standardized-target-field-name>

 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>Url

</standardized-object-field-id>
<standardized-target-field-name>Company.Company.Name_URL
</standardized-target-field-name>

 </target-mapping>
</standardization-targets>

</group>
</free-form-texts-to-standardize>

To configure fields to parse and normalize

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the free-form-text-to-standardize element.

3 Add, modify, or delete source or target fields for parsing and normalization using
the instructions under “Defining Standardization” in Chapter 6 of the eView Studio
Configuration Guide.

See Table 41 for guidelines on how to populate the standardization elements for
business name matching.

4 Save and close the Match Field file.

Table 41 Business Name Domain free-form-text-to-standardize Elements

Element Description

standardization-type Specifies the type of standardization to perform on the
fields defined in the unstandardized-source-field-name
elements of the group. For parsing business name fields,
the value of this element must be “BusinessName”. For
more information, see “Standardization and Match
Types” on page 33.
Implementing the SeeBeyond Match 94 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Match Service
Step 3: Configure Fields to Phonetically Encode

When you match on business name fields, the name field should be specified for
phonetic conversion. A sample of the phoneticize-fields element is shown below. This
sample only converts the business name. You can define additional fields for phonetic
encoding.

<phoneticize-fields>
<phoneticize-field>

<unphoneticized-source-field-name>Company.Name_Name
</unphoneticized-source-field-name>
<phoneticized-target-field-name>Company.Name_NamePhon
</phoneticized-target-field-name>
<encoding-type>NYSIIS</encoding-type>

</phoneticize-field>
</phoneticize-fields>

To configure fields to phonetically encode

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the phoneticize-fields element.

3 Add, modify, or delete fields for phonetic conversion using the instructions under
“Defining Phonetic Conversion” in Chapter 6 of the eView Studio Configuration
Guide.

See Table 42 for guidelines on how to populate the phonetic elements for business
name matching.

unstandardized-source-fields elements

unstandardized-source-field-name The ePath of a field in the input record containing the
free-form text to be standardized. You can specify more
than one source field. The source fields you specify in a
group are concatenated, with a pipe (|) between lines,
to determine the target values for the group.
For example, if the parent object is “Company” and you
want to specify the industry type, the value would be
similar to Company.Industry_Type.

standardized-targets elements

target-mapping Defines a target field for the corresponding
unstandardized-source-fields element.

standardized-object-field-id The match configuration field ID of the field defined by
the standardized-target-field-name element (for more
information, see Table 4 on page 31).

standardized-target-field-name The name of the fields that store the standardized
version of the input fields. As with the unstandardized-
source-field-name element, this value must be the ePath
of the field.

Table 41 Business Name Domain free-form-text-to-standardize Elements

Element Description
Implementing the SeeBeyond Match 95 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Match Service
4 Save and close the Match Field file.

8.5.2 Configuring the Match String
For matching on business name fields, make sure the match string you specify in
MatchingConfig contains all or a subset of the fields defined for standardization in
StandardizationConfig. You can include additional fields for matching if required. A
sample match string for business name matching is shown below. This sample matches
on the company name, the organization type, and the sector.

<match-system-object>
<object-name>Company</object-name>
<match-columns>

<match-column>
 <column-name>Enterprise.SystemSBR.Company.Name_PrimaryName
 </column-name>
 <match-type>PrimaryName</match-type>
</match-column>
<match-column>
 <column-name>Enterprise.SystemSBR.Company.Name_OrganizationType
 </column-name>
 <match-type>OrgTypeKeyword</match-type>
</match-column>
<match-column>
 <column-name>Enterprise.SystemSBR.Company.Name_Sector
 </column-name>
 <match-type>IndustryTypeKeyword</match-type>
</match-column>

</match-columns>
</match-system-object>

To configure the match string for address matching

1 In the Project Explorer pane of the Enterprise Designer, double-click Match Field
under the Configuration folder in the Project you want to modify.

2 Scroll to the MatchingConfig module.

3 Add, modify, or delete fields in the match string using the instructions under
“Configuring the Match String” in Chapter 6 of the eView Studio Configuration Guide.

See Table 43 for guidelines on how to populate the column-name and match-type
elements for business name matching.

Table 42 Business Name Data Type phoneticize-fields Elements

Element Description

unphoneticized-source-field-name The ePath of a field in the input record to convert to its
phonetic version. For example, if the parent object is
“Company” and you want to specify the company name,
the value would be similar to
Company.Company_Name.

phoneticized-object-field-id This element is not used by the SeeBeyond Match
Engine and can be omitted.

phoneticized-target-field-name The name of the field that will store the phonetic version
of the field. As with the unphoneticized-source-field-
name element, this value must be the ePath of the field.

encoding-type The type of encoding to use for the phonetic
conversion. You can specify “NYSIIS” or “Soundex”.
Implementing the SeeBeyond Match 96 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Chapter 8 Section 8.5
Business Names Data Type Configuration Configuring the eView Match Service
4 Save and close the Match Field file.

8.5.3 Configuring the Match and Standardization Engines
The MEFAConfig section of the Match Field file defines which standardization and
match engines to use based on the adapter and API Java classes specified. Make sure
this section is configured for the SeeBeyond Match Engine. Instructions are provided in
“Configuring the Match and Standardization Engines” on page 39.

For more information, see “MEFA Configuration” in Chapter 6 of the eView Studio
Configuration Guide.

Table 43 Business Name Data Type match-column Elements

Element Description

column-name The fully qualified field name of the field in the SBR to be
included in the match string, with “Enterprise” as the root
object. For example, to specify the company name, the
column-name would be similar to
Enterprise.SystemSBR.Company.CompanyName.

match-type Each component of a business name has a different match
type. The default match types are PrimaryName,
OrgTypeKeyword, AssocTypeKeyword, IndustrySectorList,
IndustryTypeKeyword, and Url. For more information, see
“Match and Standardization Types” on page 35.
Implementing the SeeBeyond Match 97 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix A

Fine-tuning Weights and Thresholds

Each eView implementation is unique, typically requiring extensive data analysis to
determine how to best configure the structure and matching logic of the master index.
This chapter provides an overview of the process of fine-tuning the matching logic in
the match configuration file and fine-tuning the match and duplicate thresholds.

A.6 Overview
A thorough analysis of the data to be shared with the master index is a must before
beginning any implementation. This analysis not only defines the types of data to
include in the structure, but indicates the relative reliability of each system’s data, helps
determine which fields should be used for matching, and should indicate the relative
reliability of each match field.

To begin the analysis, the legacy data that will be converted into the database should be
extracted and analyzed. Once the initial analysis is complete, you can perform an
iterative process to help fine-tune the matching and duplicate thresholds, and to
determine the level of potential duplication in the existing data.

A.7 Customizing the Match Configuration and Thresholds
There are three primary steps to customizing the way records are matched in the master
index. These tasks are described on the following pages.

Determine the Match Fields on page 98

Customize the Match Configuration on page 99

Define the Weight Thresholds on page 101

A.7.1 Determine the Match Fields
Before extracting data for analysis, review the types of data stored in the messages
generated by each system. Use these messages to determine which fields and objects
will be included in the object structure of the master index. From this object structure,
select the fields to be used for matching. When selecting these fields, keep in mind how
representative each field is of a specific object. For example, in a master person index,
Implementing the SeeBeyond Match 98 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix A Section A.7
Fine-tuning Weights and Thresholds Customizing the Match Configuration and Thresholds
the social security number field, first and last name fields, and birth date are good
representations. Certain address information or a home telephone number might also
be considered. In a master company index, the match fields might include any of the
fields parsed from the complete company name field, as well as a tax ID number or
address and telephone information.

A.7.2 Customize the Match Configuration
Once you’ve determined the fields on which matching will be performed, you need to
determine how the weights will be generated for each field. The primary tasks include
determining whether to use probabilities or agreement weight ranges, and then
choosing the best comparison functions to use for each match field.

Probabilities or Agreement Weights

The first step in configuring the match configuration is to decide whether to use m-
probabilities and u-probabilities or agreement and disagreement weight ranges. Both
methods will give you similar results, but agreement and disagreement weight ranges
allow you to specify the precise maximum and minimum weights that can be applied to
each match field, giving you control over the value of the highest and lowest matching
weights that can be assigned to each record.

Defining Relative Value

For each field you will use for matching, you need to define either the m-probabilities
and u-probabilities or the agreement and disagreement weight ranges in the match
configuration file. Review the information provided under “Matching Weight
Formulation” on page 16 to help determine how to configure these values. Remember
that a higher m-probability or agreement weight gives the field a higher weight when
field values agree.

Determining the Weight Range

In order to find the initial values to set for the match and duplicate thresholds, you
must determine the total range of matching weights that can be assigned to a record.
This weight is the sum of all weights assigned to each match field.

Weight Ranges using Agreement Weights

For agreement and disagreement weight ranges, determining the match weight ranges
that will be generated is very straightforward. Simply total the maximum agreement
weights for each field to determine the maximum match weight, and total the
minimum disagreement weights for each field to determine the minimum match
weight. Table 44 provides a sample agreement/disagreement configuration for
matching on person data. As you can see, the range of match weights generated for the
master index with this configuration is from -36 to +38.
Implementing the SeeBeyond Match 99 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix A Section A.7
Fine-tuning Weights and Thresholds Customizing the Match Configuration and Thresholds
Weight Ranges using Probabilities

Determining the match weight ranges when using m-probabilities and u-probabilities
is a little more complicated than using agreement and disagreement weights. To
determine the maximum weight that will be generated for each field, use the following
formula:

LOG2(m_prob/u_prob)

To determine the minimum match weight that will be generated for each field, use the
following formula:

LOG2((1-m_prob)/(1-u_prob))

Table 45 below illustrates a sample of m-probabilities and u-probabilities, including the
corresponding agreement and disagreement weights that are generated with each
combination of probabilities. As you can see, the range of match weights generated for
the master index with this configuration is from -35.93 to +38

Table 44 Sample Agreement and Disagreement Weight Ranges

Field Name
Maximum

Agreement Weight
Minimum

Disagreement Weight

First Name 8 -8

Last Name 8 -8

Date of Birth 7 -5

Gender 5 -5

SSN 10 -10

Maximum Match Weight 38

Minimum Match Weight -36

Table 45 Sample m-probabilities and u-probabilities

Field Name m-probability u-probability
Max Agreement

Weight
Min Disagreement

Weight

First Name .996 .004 7.96 -7.96

Last Name .996 .004 7.96 -7.96

Date of Birth .97 .007 7.11 -5.04

Gender .97 .03 5.01 -5.01

SSN .999 .001 9.96 -9.96

Maximum Match Weight 38

Minimum Match Weight -35.93
Implementing the SeeBeyond Match 100 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix A Section A.7
Fine-tuning Weights and Thresholds Customizing the Match Configuration and Thresholds
Comparison Functions

The match configuration file defines several match types for different types of fields.
You can either modify existing rows in this file, or create new rows that define custom
matching logic. To determine which comparison functions to use, review the
information provided in Appendix B “Match Configuration Comparison Functions”.
Choose the comparison functions that best suit how you want the match fields to be
processed.

A.7.3 Define the Weight Thresholds

Weight Threshold Overview

Weight thresholds tell the master index how to process incoming records based on the
matching probability weights generated by the SeeBeyond Match Engine. Two
parameters in the Threshold configuration file provide the master index with the
information needed to determine if records should be flagged as potential duplicates, if
records should be automatically merged, or if a record is not a potential match to any
existing records.

Match Threshold—Specifies the weight at which two profiles are assumed to
represent the same person and are automatically merged.

Duplicate Threshold—Specifies the minimum weight at which two profiles are
considered potential duplicates of one another. The matching threshold indicates
the maximum weight for potential duplicates.

Figure 1 illustrates the match and duplicate thresholds in comparison to total composite
match weights.
Implementing the SeeBeyond Match 101 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix A Section A.7
Fine-tuning Weights and Thresholds Customizing the Match Configuration and Thresholds
Figure 1 Weight Thresholds

Specifying the Weight Thresholds

There are two techniques for determining the initial match and duplicate thresholds.
The first method, the weight distribution method, is based on the calculation of the
error rates of false matches and false non-matches from analyzing the distribution
spectrum of all the weighted pairs. This is the standard method, and is illustrated in
Figure 2. The second method, the percentage method, relies on measuring the total
maximum and minimum weights of all the matched fields and then specifying a certain
percentage of these values as the initial thresholds.

The weight distribution method is more thorough and powerful, but requires a large
amount of data (match weights) to be statistically reliable. It does not apply well in
cases where one candidate record is matched against very few reference records. The
percentage method, though simple, is very reliable and precise when dealing with such
situations. For both methods, defining the match threshold and the duplicate threshold
is an iterative process.

Weight Distribution Method

Each record pair in the master index can be classified into three categories: matches,
non-matches, and potential matches. In general, the distribution of records is similar to
the graph shown in Figure 2. Your goal is to make sure that very few records fall into
the False Matches region (if any), and that as few as possible fall into the False Non-
matches region. You can see how modifying the thresholds will change this
distribution. Balance this against the number of records falling within the Manual

SeeBeyond Match
Engine

New Member
Profle

New or
Matched

Member Profile

Profiles are a match

Profiles might be
a match

Profiles do not match

Matching Threshold

Duplicate Threshold

Maximum Weight

Master Index
Database

Minimum Weight
Implementing the SeeBeyond Match 102 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix A Section A.7
Fine-tuning Weights and Thresholds Customizing the Match Configuration and Thresholds
Review section, as these will each need to be reviewed, researched, and resolved
individually.

Figure 2 Weight Distribution Chart

Percentage Method

Using this method, you set the initial thresholds as a percentage of the maximum and
minimum weights. Using the information provided under “Weight Ranges using
Agreement Weights” or “Weight Ranges using Probabilities”, determine the
maximum and minimum values that will be generated as a composite match weight.
For the initial run, the the match threshold is set intentionally high to catch only the
most probable matches. The duplicate threshold is set intentionally low to catch a large
set of possible matches.

Set the match threshold at 70% of the maximum composite weight starting from zero as
the neutral value. Using the weight range samples earlier, this would be 70% of 38, or
26.6. Set the duplicate threshold near the neutral value (that is, the value in the center of
the maximum and minimum weight range). The value could be set between 10% of the
maximum weight and 10% of the minimum weight. Using the samples above, this
would be between 3.8 (10% of 38) and -3.6 (10% of -36).

Fine-tuning the Thresholds

Achieving the correct thresholds for your implementation is an iterative process. First,
using the initial thresholds described earlier, process the data extracts into the master
index database. Then analyze the assumed match and potential duplicates, paying
close attention to the assumed match records with matching weights close to the match
threshold, to potential duplicate records close to either threshold, and to non-matches
near the duplicate threshold.

If you find that most or all of the assumed matches at the low end of the match range
are not actually duplicate records, raise the match threshold accordingly. If, on the other
hand, you find several potential duplicates at the high end of the duplicate range that
are actual matches, decrease the match threshold accordingly. If you find that most or
all of the potential duplicate records in the low end of the duplicate range should not be

Correct Assumed
Matches

Match
Threshold

Duplicate
Threshold

Manual
Review

Non-matching
Records

False
Matches

False
Non-matches
Implementing the SeeBeyond Match 103 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix A Section A.7
Fine-tuning Weights and Thresholds Customizing the Match Configuration and Thresholds
considered duplicate matches, consider raising the duplicate threshold. Conversely, if
you find several non-matches with weight near the duplicate threshold that should be
considered potential duplicates, lower the duplicate threshold.

Repeat the process of loading and analyzing data and adjusting the thresholds until
you are satisfied with the results.
Implementing the SeeBeyond Match 104 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B

Match Configuration Comparison Functions

Match field comparison functions compare the values of a field in two records to
determine whether the fields match or how closely they match. The fields are then
assigned a matching weight based on the results of the comparison function. You can
use several different types of comparison functions in the match configuration file in
order to customize how the SeeBeyond Match Engine should match two records.

B.1 Comparison Functions
There are six primary types of comparison functions used by the SeeBeyond Match
Engine. The following types of comparison functions are available.

Bigram Comparison Functions on page 105

Uncertainty Comparison Functions on page 106

Exact Comparison Function (c) on page 108

Numeric Comparison Functions on page 108

Date Comparison Functions on page 110

Prorated Comparison Function (p) on page 112

Certain comparison function types are very specific to the type of data being matched,
such as the numeric functions and the date functions. Others, such as the Bigram and
uncertainty functions, are more general and can be applied to various data fields.

Bigram Comparison Functions

The SeeBeyond Match Engine provides two different comparison functions based on
the Bigram algorithm:

Standard bigram (b1)

Transposition bigram (b2)

A Bigram algorithm compares two strings using all combinations of two consecutive
characters within each string. For example, the word “bigram” contains the following
bigrams: ‘bi”, “ig”, “gr”, “ra”, and “am”. The Bigram comparison function returns a
value between 0 and 1, which accounts for the total number of bigrams that are in
common between the two strings divided by the average number of bigrams in the two
strings. Bigrams handle minor typographical errors well.
Implementing the SeeBeyond Match 105 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
Standard bigram (b1)

This is a standard Bigram comparison function, processing match fields as described
above. This comparison function takes no parameters.

Transposition bigram (b2)

This comparison function is based on the standard Bigram comparison function, but
handles transpositions of characters within a string. This comparison function takes no
parameters.

Uncertainty Comparison Functions

The SeeBeyond Match Engine provides the following uncertainty comparison functions
for comparing string fields. The first three comparison functions are generic, and the
last three comparison functions are designed for specific types of information.

Basic uncertainty (u)

Advanced uncertainty (ua)

Uncertainty, simplex (us)

Uncertainty, first name (uf)

Uncertainty, last name (ul)

Uncertainty, house number (un)

Uncertainty, simplex Unicode (usu)

Basic uncertainty (u)

This is the standard uncertainty comparison function, and processes string fields as
described above. As more differences are found between two fields, the agreement
weight decreases non-linearly. Thus, the agreement weight can remain high for several
differences, but will drop sharply at a certain point. This comparison function takes no
parameters.

The uncertainty comparison function is based on the Jaro algorithm with McLaughlin
adjustments for similarities. The Jaro algorithm is a string comparison function that
accounts for insertions, deletions, and transpositions by performing the following
steps.

1 Compute the lengths of both strings to be matched.

2 Determine the number of common characters between the two strings. In order for
characters to be considered common, they must be within one-half the length of the
shorter string.

3 Determine the number of transpositions. A transposition means a character from
the first string is out of order with the corresponding common character from the
second string.

Advanced uncertainty (ua)

This comparison function is based on the standard uncertainty comparison function, u,
with variants of Winkler/Lynch and McLaughlin. It has additional features to handle
specific differences between fields, such as key punch and visual memory errors. Each
Implementing the SeeBeyond Match 106 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
feature makes use of the information made available from previous features. This
comparison function takes no parameters.

These features are included in the advanced uncertainty function.

The function determines each character in exact agreement and then assigns a value
of 1.0 to each agreeing character. It then determines each disagreeing but similar
character and assigns a value of 0.3 to each. Similar characters might occur because
of scanning errors (for example, “1” the number versus” the letter) or keypunch
errors (for example, “S” versus “D”).

The function gives increased value to agreement on the beginning characters of a
string. The algorithm adjusts the weighting value up by a fixed amount if the first
four characters in each string agree; it adjusts the weighting value up by smaller
value if the first three, two, or one characters agree.

The function adjusts the string comparison function value if the strings are longer
than six characters and more than half of the characters after the fourth character
agree.

Uncertainty, simplex (us)

This comparison function is a custom SeeBeyond version of a generic string
comparison function. It is similar to the basic uncertainty comparison function, u, but
processes data in a more simple and efficient manner, improving processing speed. The
agreement weights generated by this comparison function decrease in a more uniform
manner for each difference found between two fields.

Like the basic uncertainty function, the simplex function takes into account such
uncertainty factors as string length, transpositions, key punch errors, and visual
memory errors. Unlike the uncertainty comparison function (“u”), this function
handles diacritical marks. This comparison function takes no parameters.

Uncertainty, first name (uf)

This comparison function is designed specifically for matching on first name fields, and
is based on the simplex uncertainty comparison function, us. This comparison function
analyzes the string and then adjusts the weight based on statistical data. This
comparison function takes no parameters.

Uncertainty, last name (ul)

This comparison function is designed specifically for matching on last name fields, and
is based on the simplex uncertainty comparison function, us. This comparison function
analyzes the string and then adjusts the weight based on statistical data. This
comparison function takes no parameters.

Uncertainty, house number (un)

This comparison function is designed specifically for matching on house numbers, and
is based on the simplex uncertainty comparison function, u. This comparison function
analyzes the string and then adjusts the weight based on statistical data. This
comparison function takes no parameters.

Uncertainty, simplex Unicode (usu)

This comparison function is a custom SeeBeyond version of a generic string
comparison function. It is similar to the simplex uncertainty comparison function, us,
Implementing the SeeBeyond Match 107 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
but is based in Unicode to enable multilingual support. This locale-oriented comparator
recognizes the nuances of each language and, as such, supports the complexities and
subtleties of each. For example, when configured to use the German language set, the
function recognizes “ß” and “ss” as equivalent. Like the simplex uncertainty function,
the Unicode function takes into account such uncertainty factors as string length,
transpositions, key punch errors, and visual memory errors. This comparison function
takes the parameter described in Table 46.

Exact Comparison Function (c)

The SeeBeyond Match Engine provides one exact-match comparison function, “c”.
With this comparison function, two fields must match on each character in order to be
considered a match. This comparison function takes no parameters.

Numeric Comparison Functions

The SeeBeyond Match Engine provides several comparison functions for matching on
numeric fields.

Basic numeric (n)

Numeric, integer (nI)

Numeric, real (nR)

Numeric, string (nS)

All but the nS comparison function can perform numeric string comparisons or relative
distance calculations. When set for a string comparison, the functions compare numeric
strings based on the advanced uncertainty comparator. When set for relative distance
calculations, the matching weight between two numbers decreases as the numbers
become further apart, until the relative distance plus one is reached. At this point, the
numbers are considered non-matches. For example, if the relative distance is “10” and
the base number for comparison is “2”, a field value of 8 receives a lower matching

Table 46 usu Comparison Function Parameter

Parameter Description

language An indicator of the language being used for the
information stored in the master index database.
Enter one of the following codes to indicate the
language in use.
da - Danish
sv - Swedish
nb - Norwegian Bokmål
nn - Norwegian Nynorsk
nl - Dutch
es - Spanish
fr - French
en - English
it - Italian
de - German
Implementing the SeeBeyond Match 108 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
weight than a field value of 4; but a field value of 13 is considered a complete non-
match (since the distance between 2 and 13 is 11).

Figure 3 illustrates how the weight is decreased as the difference between the two
compared fields reaches the relative distance. In this diagram, the relative distance is 10
and the light blue line represents the agreement weight. When the difference between
two fields reaches 11 (relative distance plus one), the fields are considered a non-match
and are given the full disagreement weight.

Figure 3 Numeric Relative Distance Comparison

Basic numeric (n)

This is a basic numeric comparison function, processing numeric fields as described
above. It accepts the parameters listed in Table 47.

Table 47 n, nI, and nR Comparison Function Parameters

Parameter Description

distance-or-string Specifies whether a relative distance calculation or a
direct string comparison is used. Specify “y” to use a
relative distance calculation; specify “n” to use a
string comparison.

relative-distance The greatest difference between two integers at
which the values could still be considered a possible
match. When the difference between two numbers
is greater than the relative distance, the numbers are
considered a non-match (the weight becomes zero
at when the actual difference is the relative distance
plus one). Only use this parameter

-10 Full
Disagreement

Full
Agreement

+10
Difference

Weight
less relative

distance

plus relative
distance

-11 +11
Implementing the SeeBeyond Match 109 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
Numeric, integer (nI)

This numeric comparison function matches specifically on integers, and accepts the
parameters listed in Table 47.

Numeric, real (nR)

This numeric comparison function matches specifically on real numbers, and accepts
the parameters listed in Table 47.

Numeric, string (nS)

This numeric comparison function is designed specifically for matching on numeric
strings, and is very useful for matching social security numbers. This is the only
numeric comparator that can compare alphanumeric values rather than just numeric
values. It accepts the parameters listed in Table 48.

Date Comparison Functions

The SeeBeyond Match Engine provides various date comparison functions. When
comparing dates, the match engine compares each date component (for example, it
compares the year in the first date against the year in the second date, the month
against the month, and the day against the day). This allows for multiple transpositions
in each date field. The date comparators use the Java date format (java.sql.Date),
allowing the comparator to use the Gregorian calendar and to take into account the
time zone where the date field originated.

The following comparison functions are available for matching on date fields.

Date, year (dY)

Date, month (dM)

Table 48 nS Comparison Function Parameters

Parameter Description

fixed-length An optional parameter that takes the length of the
field value into account. If a fixed length is specified,
the match engine considers any field of a different
length to be a non-match. Specify any integer
smaller than the value specified for the size
specified for the field (for more information, see
“Matching Rules” on page 23).

character-type An indicator of whether the field must be all
numeric. Specify “nu” for numeric only, or specify
“an” to allow alphanumeric characters. The match
engine considers any fields containing characters
that are not allowed to be a non-match.

invalid-characters A list of invalid characters for the field. If you specify
a character, the match engine considers fields that
consist of only that character to be a non-match. For
example, if you specify “0”, then an SSN field cannot
contain all zeros. Specify as many alphanumeric
characters as needed, separated by a space.
Implementing the SeeBeyond Match 110 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
Date, day (dD)

Date, hour (dH)

Date, minute (dm)

Date, second (ds)

As with the numeric comparison functions, the date comparison functions can use
either a direct string comparison or a relative distance calculation. When using a
relative distance calculation, the matching weight between two dates decreases as the
dates become further apart, until the relative distance is reached. When the difference
becomes the relative distance plus one, the dates are considered non-matches. You can
specify different relative distances for before and after the given date. Any dates falling
outside of the specified time period receive a complete disagreement weight. The
relative distances are specified in the smallest unit of time being matched (this differs
for each date comparison function).

Figure 4 illustrates how the weight is decreased as the difference between the two
compared fields reaches either the before or after relative distance. In this diagram, the
before relative distance is 11, the after relative distance is 5, and the light blue line
represents the agreement weight. When the base date is later than the compared date
and the difference between the dates reaches 11 (distance before plus one), the fields are
considered a non-match and are given the full disagreement weight. When the base
date is earlier than the compared date and the difference between the dates reaches 6
(distance after plus 1), the fields are considered a non-match.

Figure 4 Date Relative Distance Comparison

-10 Full
Disagreement

Full
Agreement

+5
Difference

Weight
distance
before

distance
after

-11 +6
Implementing the SeeBeyond Match 111 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
The date comparison functions take the parameters listed in Table 49.

Date, year (dY)

This date comparison function takes only the 4-character year into account for
matching. If relative distance calculation is specified, the relative distance is specified in
years.

Date, month (dM)

This date comparison function takes the month and year into account for matching. If
relative distance calculation is specified, the relative distance is specified in months.

Date, day (dD)

This date comparison function takes the day, month, and year into account for
matching. If relative distance calculation is specified, the relative distance is specified in
days.

Date, hour (dH)

This date comparison function takes the hour, day, month, and year into account for
matching. If relative distance calculation is specified, the relative distance is specified in
hours.

Date, minute (dm)

This date comparison function takes the minute, hour, day, month, and year into
account for matching. If relative distance calculation is specified, the relative distance is
specified in minutes.

Date, second (ds)

This date comparison function takes the second, minute, hour, day, month, and year
into account for matching. If relative distance calculation is specified, the relative
distance is specified in seconds.

Prorated Comparison Function (p)

The prorated comparison function uses a relative distance calculation and allows you to
specify how quickly the agreement weight between two fields decreases. Matching
weights are assigned with a linear adjustment according to the parameters you specify.

Table 49 Date Comparison Function Parameters

Parameter Description

distance-or-string Specifies whether a relative distance calculation or a
direct string comparison is used. Specify “y” to use a
relative distance calculation; specify “n” to use a
string comparison.

distance-before The number of units prior to the reference date/time
for which two date fields can still be considered a
match.

distance-after The number of units following the reference date/
time for which two date fields can still be considered
a match.
Implementing the SeeBeyond Match 112 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.1
Match Configuration Comparison Functions Comparison Functions
You specify an initial agreement range. If the difference between two fields falls within
that range, the fields are considered a complete match. You also specify a disagreement
range ending with the relative distance. If the difference between two fields falls within
that range, the fields are considered a non-match. When the difference between the
fields falls between those two ranges, they are considered to be partial matches and the
agreement weight is adjusted linearly. Any difference greater than the relative distance
is always considered a non-match.

Figure 5 illustrates how weighting is adjusted per the parameters you define. In these
diagrams, the green line indicates full agreement, the light blue line indicates prorated
agreement, and the red line indicates full disagreement. The diagrams illustrate how
increasing the disagreement weight causes the prorated agreement weight to decrease
more sharply.

Figure 5 Prorated Linear Adjustment Comparison

5
Full

Disagreement

Full
Agreement

2010 15
Difference

Weight
agreement

range

relative distance less
disagreement range

relative
distance

relative distance = 20
agreement range = 5
disagreement range = 5

5
Full

Disagreement

Full
Agreement

2010 15
Difference

Weight
agreement

range

relative distance less
disagreement range

relative
distance

relative distance = 20
agreement range = 5
disagreement range = 10
Implementing the SeeBeyond Match 113 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix B Section B.2
Match Configuration Comparison Functions Comparison Function Options
The prorated comparison functions takes the parameters listed in Table 50.

B.2 Comparison Function Options
The options listed below can be used in conjunction with the above string comparison
function to give them more functionality. For example, you can use an ‘ufI’ string
comparison function that refers to first name comparison function with the possibility
to switch fields if the first one disagree

I—This is a major inversion option that allows for field transpositions. If two
compared fields do not match, this option lets the match engine know to compare
the original field in the first record with the next field in the second record. If those
fields agree, the match engine assigns the full agreement weight and switches the
fields.

i—This is a minor inversion option similar to the major inversion (I) described
above. This option only assigns one-half of the full agreement weight if the
transposed fields match.

x—If two or more fields with this option match, their weight is doubled; but if any
of the fields with this option disagree, the weight is not doubled.

k—This option can be used with the ‘x’ option to give more importance to one field.
Specifying this option on a field tells the match engine to double the match weight
for a sub-group of fields with the ‘x’ option by doubling the weight as soon as it
comes to the field with the ‘k’ option.

Table 50 Prorated Comparison Function Parameters

Parameter Description

relative-distance The greatest difference between two numbers at
which they can still be considered a match or partial
match.

agreement-range The greatest difference between two numbers at
which they are considered a full match. This number
must be less than the relative distance.

disagreement-range This number indicates the minimum difference at
which two numbers are considered a non-match and
shortens or lengthens the weighting scale. To find
this difference, the match engine subtracts this value
from the relative distance. If the fields differ by that
amount or greater, they are considered to be a non-
match.
The weighting scale decreases in size as the value of
the full-disagreement parameter increases (see
diagram).
Implementing the SeeBeyond Match 114 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C

Standardization Files for United Kingdom
Data

While most of the standardization files are common to all implementations of the
SeeBeyond Match Engine, each national domain uses a subset of unique files. This
appendix describes the standardization files that are unique to data originating from
the United Kingdom.

C.1 Overview
A set of standardization files for processing person names and address data is
customized to handle data originating from the United Kingdom. These files have the
same format as the US files described earlier in this guide, but contain data that is more
specific to names and addresses found in the United Kingdom. The United Kingdom
standardization files must be loaded prior to use, and the Match Field file must be
modified to use these files. For information about performing these procedures, see
“Implementing Domain-specific Files” on page 20 of this guide.

Note: By default, the information listed in these files are based on United Kingdom data.
You can customize these files to add entries of other nationalities or languages,
including those containing diacritical marks.

C.2 Person Name Files
Several standardization files are used to define processing logic for person names that
originate specifically from the United Kingdom. You can customize any of the
configuration files described in this section to fit your data processing and
standardization requirements. These files appear under the Standardization Engine/
United Kingdom node of the eView Project.

C.7.4 personConjonUK.dat
The conjunction reference file is not used in version 5.0.4, but is designed to work with
the person name patterns file during standardization.
Implementing the SeeBeyond Match 115 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.2
Standardization Files for United Kingdom Data Person Name Files
C.7.5 personFirstNameUK.dat
The first name category file defines standardized versions of first names, and assigns a
gender classification for each name. This file is used to standardize first names when
comparing person names. The gender classification helps to further clarify the match.
The SeeBeyond Match Engine uses this file when a first name field is defined for
normalization or standardization in the Match Field file.

The syntax of this file is:

original-value standardized-form gender-class

You can modify or add entries in this table as needed. Table 51 describes the columns in
the personFirstNameUK.dat file.

Following is an excerpt from the personFirstNameUK.dat file. Certain rows contain a
zero (0) for the standardized form, indicating that the name is already standard
(Stephen, Sterling, and Summer, for example).

STEPHEN 0 M
STEPHENIE STEPHANIE F
STEPHIE STEPHANIE F
STEPHINE STEPHANIE F
STEPHNIE STEPHANIE F
STERLING 0 M
STEVE STEPHEN M
STEVEN STEPHEN M
STEVIE STEPHEN N
STEW STUART M
STEWART STUART M
STU STUART M
STUART 0 M
SU SUSAN F
SUE SUSAN F
SUHANTO 0 M
SULLIVAN 0 F
SULLY SULLIVAN F
SUMMER 0 F

Table 51 UK First Name Category File

Column Description

original-value The original value of the first name.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.

gender-class An indicator of the gender with which the first
name corresponds. The possible values are:

N—the title is neutral, and can be applied to
male or female first names.
F—the title is used for females.
M—the title is used for males.
Implementing the SeeBeyond Match 116 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.2
Standardization Files for United Kingdom Data Person Name Files
C.7.6 personGenSuffixUK.dat
The generational suffix category file defines standardized versions of generational
suffixes (such as Jr., III, and so on). This file is used to compare standard versions of the
suffix field. You can define additional suffixes and their standardized form, following
the syntax below.

field-value standard-form

Table 52 describes each column of the personGenSuffixUK.dat file.

An excerpt from the personGenSuffixUK.dat file appears below. In this excerpt,
certain suffixes, such as 2ND, 3RD and JR, are already in their standardized form.

11 2ND
111 3RD
1V 4TH
2ND 0
3RD 0
4TH 0
FOURTH 4TH
II 2ND
III 3RD
IV 4TH
JR 0
JUNIOR JR
SECOND 2ND
SENIOR SR
SR 0

C.7.7 personLastNamePrefixUK.dat
The last name prefix category file defines standardized versions of last name prefixes,
such as “Van” or “Le”. This file is used to standardize these prefixes prior to
standardizing the last name when comparing person names. The SeeBeyond Match
Engine uses this file when a last name field is defined for normalization or
standardization in the Match Field file.

The syntax of this file is:

original-value standardized-form

Table 52 UK Generational Suffix Category File

Column Description

field-value The original value of the generational suffix in
the record being processed.

standard-form The standard form of the generational suffix. A
zero (‘0’) in this column indicates that the value
listed in column one is already in its
standardized form.
Implementing the SeeBeyond Match 117 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.2
Standardization Files for United Kingdom Data Person Name Files
You can modify or add entries in this table as needed. Table 53 describes the columns in
the personLastNamePrefixUS.dat file.

Following is an excerpt from the personLastNamePrefixUS.dat file. Some of these
prefixes are already in their standardized form, such as “Los” and “Mac”.

LOS 0
MAC 0
MC MAC
SAINT 0
ST SAINT
VAN 0
VAN DER 0
VANDE VAN DER

C.7.8 personLastNameUK.dat
The last name category file defines standardized versions of last names. This file is used
to standardize last names when comparing person names. The SeeBeyond Match
Engine uses this file when a last name field is defined for normalization or
standardization in the Match Field file.

The syntax of this file is:

original-value standardized-form

Currently the file only contains two names, but you can modify or add entries in this
table as needed. Table 54 describes the columns in the personLastNameUK.dat file.

Following is an excerpt from the personLastNameUK.dat file.

DAVIES DAVIS
DAVIS 0

C.7.9 personOccupSuffixUK.dat
The occupational suffix category file is not used in version 5.0.4, but is designed to
work with the person name patterns file during standardization.

Table 53 US Last Name Prefix Category File

Column Description

original-value The original value of the last name prefix.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.

Table 54 UK Last Name Category File

Column Description

original-value The original value of the last name.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.
Implementing the SeeBeyond Match 118 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.2
Standardization Files for United Kingdom Data Person Name Files
C.7.10personThreeUK.dat
This reference file is not used in version 5.0.4, but is designed to work with the person
name patterns file during standardization.

C.7.11personTitleUK.dat
The title category file defines standard forms for titles and classifies each title into a
gender category. For example, “Mister” is standardized to “MR” and is classified as
male; “Doctor” is standardized to “DR” and is classified as gender neutral. You can
add, modify, or delete entries in this file as needed. Use the following syntax.

original-value standardized-form gender-class

Table 55 describes each column of the personTitleUK.dat file.

An excerpt from the personTitleUK.dat file appears below. In this excerpt, certain titles,
such as DR, GEN, and MISS, are already in their standardized form.

CTO 0 N
DEAN 0 N
DIR DIRECTOR N
DIRECTOR 0 N
DOC DR N
DOCTOR DR N
DR 0 N
DRS 0 N
EMERITUS 0 N
FOUNDER 0 N
GEN 0 N
GENERAL GEN N
MANAGER 0 N
MGR MANAGER N
MISS 0 F
MISSUS MRS F

C.7.12personTwoUK.dat
This reference file is not used in version 5.0.4, but is designed to work with the person
name patterns file during standardization.

Table 55 UK Person Title Category File

Column Description

original-value The original value of the title in the person
name field.

standardized-form The standardized version of the original value.
A zero (0) in this field indicates that the original
value is already in its standardized form.

gender-class An indicator of the gender with which the title
corresponds. The default values are:

N—the title is neither male nor female.
F—the title is used for females.
M—the title is used for males.
Implementing the SeeBeyond Match 119 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.3
Standardization Files for United Kingdom Data Address Files
C.7.13businessOrRelatedUK.dat
The business-related category file is used to identify business terms in person name
information. Examples of when this could occur would be when indexing both person
and business names, or when business information is included within a person object
structure. The SeeBeyond Match Engine removes these terms for person matching. This
file contains a list of common business terms that might be found in person data. You
can modify this file by adding, changing, or deleting terms.

An excerpt from the businessOrRelated.dat file appears below.

ACCOUNTANT
ACCT
ACDY
ACRE
ACREAGE
ACRES
ACS
ACT
AD
ADATU
ADM
ADMIN
ADMINISTRATIO
ADMINISTRATION
ADMINISTRATOR

C.3 Address Files
Several standardization files are used to define processing logic for addresses that
originate specifically from the United Kingdom. You can customize any of the
configuration files described in this section to fit your data processing and
standardization requirements. These files appear under the Standardization Engine/
United Kingdom node of the eView Project.

C.7.14addressConstantsUK.cfg
The address constants file defines certain information about the standardization files
used for processing address data, primarily the number of lines contained in each file.
The number of lines specified here must be equal to or greater than the number of lines
actually contained in each file.

Table 56 lists and describes each parameter in the constants file. The files referenced by
these parameters are described on the following pages.

Table 56 UK Address Constants File Parameters

Parameter Description

maxWords The maximum number of words in a given address
field.
Default: 25
Implementing the SeeBeyond Match 120 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.3
Standardization Files for United Kingdom Data Address Files
C.7.15addressClueAbbrevUK.dat
The address clues file lists common terms in street addresses, specifies a normalized
value for each common term, and categorizes the terms into street address component
types. A term can be categorized into multiple component types. The relevance value
specifies which of the component types the term is most likely to be. For example, the
term “Junction” is standardized as “Jct”, and is classified as a street type, building unit,
and generic term (giving relevance in that order).

This file helps the SeeBeyond Match Engine recognize common terms in street
addresses, and to parse and normalize the values correctly. The syntax of this file is:

clueArraySize The maximum number of lines in the address clues
file (addressClueAbbrevUK.dat).
Default: 2000

patternArraySize The maximum number of lines in the patterns file
(addressPatternsUK.dat).
Default: 2050

maxPattSize The maximum length (in characters) of any pattern
in the address patterns file.
Default: 45

imageSize The maximum length of an input address field.
Default: 25

nameOutputFieldSize The maximum output length of a street or property
name.
Default: 25

numberOutputFieldSize The maximum output length of a house number or
rural route number within the structure identifier or
post office box fields.
Default: 25

directionOutputFieldSize The maximum output length of a directional field
(prefix or suffix).
Default: 15

typeOutputFieldSize The maximum output length of a street type field
(prefix or suffix).
Default: 25

prefixOutputFieldSize The maximum length of a number prefix fields.
Default: 10

suffixOutputFieldSize The maximum length of a number suffix fields.
Default: 10

extensionOutputFieldSize The maximum output length of any extension field.
Default: 10

extrainfoOutputFieldSize The maximum output length of any miscellaneous
information that is not recognized as a known type.
Default: 30

Table 56 UK Address Constants File Parameters

Parameter Description
Implementing the SeeBeyond Match 121 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.3
Standardization Files for United Kingdom Data Address Files
common-term normalized-term ID-number/type-token

You can modify or add entries in this table as needed. Table 57 describes the columns in
the addressClueAbbrevUK.dat file.

Following is an excerpt from the addressClueAbbrevUK.dat file.

TRLR VILLAGE Trpk 59BU
TRLR VLG Trpk 59BU
TRPK Trpk 59BU
TRPRK Trpk 59BU
VILLA Vlla 305TY 60BU
VLLA Vlla 305TY 60BU
VILLAS Vlla 305TY 60BU
VILL Vlg 317TY 61BU 364AU
VILLAG Vlg 317TY 61BU 364AU
VLG Vlg 317TY 61BU 364AU
VILLAGE Vlg 317TY 61BU 364AU
VILLG Vlg 317TY 61BU 364AU
VILLIAGE Vlg 317TY 61BU 364AU
VLGE Vlg 317TY 61BU 364AU
VIVI Vivi 62BU
VIVIENDA Vivi 62BU
COLLEGE Coll 64BU 0AU
CLG Coll 64BU

C.7.16addressInternalConstantsUK.cfg
The address internal constants file defines and configures tokens and array sizes used
by the address standardizer. This file is used internally by the standardization engine,
and should not be modified.

C.7.17addressMasterCluesUK.dat
The address master clues file lists common terms in street addresses, as defined by
United Kingdom’s Royal Mail. For each common term, this file specifies a normalized
value, defines postal information, and categorizes the terms into street address
component types. A term can be categorized into multiple component types.

Table 57 UK Address Clues File Columns

Column Description

common-term A term commonly found in street addresses.

normalized-term The normalized version of the common term.

ID-number/type-token An ID number and a token indicating the type
of address component represented by the
common term. The ID number corresponds to
an ID number in the address master clues file,
and the type token corresponds to the type
specified for that ID number in the address
master clues file. One term might have several
ID number and token type pairs.
Implementing the SeeBeyond Match 122 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.3
Standardization Files for United Kingdom Data Address Files
The syntax of this file is:

ID-number common-term normalized-term short-abbrev RM-abbrev CFCCS
type-token usage-flag RM-flag

You can modify or add entries in this table as needed. Table 58 describes the columns in
the addressMasterCluesUK.dat file.

Following is an excerpt from the addressMasterCluesUK.dat file.

68Court Crt Ct Ct BUR
69Limited Ltd Ltd Ltd BUR
70Point Pt Pt Pt BUR
71Surgery Sur Sur Sur BUR
72Medical Practice Mprc Mprc Mprc BUR
73Health Park Hprk Hprk Hprk BUR
74Business Village BsVlg Bsvl Bsvl BUC
75Business Centre BsCtr Bsct Bsct BUC
76Headquarters HQ HQ HQ BUR
77Health Center HthCtr HthCtr HthCtr BUR

Table 58 UK Address Master Clue File Columns

Column Description

ID-number A unique identification number for the address
common term. This number corresponds to an
ID number for the same term in the address
clues file.

common-term A common address term, such as Park, Village,
North, and so on.

normalized-term The normalized version of the common term.

short-abbrev A short abbreviation of the common term.

RM-abbrev The standard Royal Mail abbreviation of the
common term.

CFCCS The census feature class code of the term (as
defined in the Census Tiger® database). The
following values are used:

A—Road
B—Railroad
C—Miscellaneous
D—Landmark
E—Physical feature
F—Nonvisible feature
H—Hydrography
X—Unclassified

type-token The type of address component represented
by the common term. Types are specified by an
address token (for more information, see
“Address Type Tokens” on page 68).

usage-flag A flag indicating how the term is used (for
more information, see “Pattern Classes” on
page 70)

RM-flag The Royal Mail code for the term.
Implementing the SeeBeyond Match 123 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.3
Standardization Files for United Kingdom Data Address Files
78Medical Centre MedCtr MedCtr MedCtr BUR
79Medical Group MedGrp MedG MedG BUR
80Farm Frm Frm Frm BUR
81Post Office PtOfc POfc POfc BUR
82University Univ Univ Univ BUR
83Offices Offi Offic Offic BUR
84Health Group HGrp HGrp HGrp BUR

C.3.1 addressPatternsUK.dat
The address patterns file defines the expected input patterns of each individual street
address field being standardized so the SeeBeyond Match Engine can recognize and
process these values. Tokens are used to indicate the type of address component in the
input and output fields. This file contains two rows for each pattern. The first row
defines the input pattern for each address field and provides an example. The second
row defines the output pattern for each address field, the pattern type, the relative
importance of the pattern compared to other patterns, and usage flags (as shown
below).

AU A1 TY 01 Oak B Street
NA NA ST T* 75 TX

When an address is parsed, each line of the address (delineated by a pipe (|)) is sent to
the parser separately, and the output tokens for each line are concatenated. The output
pattern is then processed using the addressOutPatterns.dat file to determine whether
the output pattern is listed in the file. If the pattern is found, output patterns are
modified as indicated in the addressOutPatterns.dat file to resolve any ambiguities
that might arise when two lines of address information contain common elements. The
relative importance determines which pattern to use in the case that the format of the
input field matches more than one pattern.

The syntax of this file is:

input-pattern example
output-pattern pattern-class pattern-modifier priority usage-flag
exclude-flag

You can modify or add entries in this table as needed. Table 59 describes the columns in
the addressPatternsUK.dat file.

Table 59 UK Address Patterns File

Column Description

input-pattern Tokens that represent a possible input pattern
from an individual unparsed street address
field. Each token represents one component.
For more information about address tokens,
see “Address Type Tokens” on page 68.

example An example of a street address that fits the
specified pattern. This file element is optional.
Implementing the SeeBeyond Match 124 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.3
Standardization Files for United Kingdom Data Address Files
Following is an excerpt from the addressPatternsUK.dat file.

NU DR TY A1 AU 01 123 South Avenida B Oak
HN PD PT NA NA H* 70

NU DR TY NU DR 01 123 South Avenida 1 West
HN PD PT NA SD H* 70

NU A1 TY AU TY 01 123 C circle hill drive
HN HS NA NA ST H* 70

NU A1 AM A1 TY 01 123 M & M road
HN NA NA NA ST H* 65

NU TY AU A1 01 123 Avenida Oak B
HN PT NA NA H* 60

NU TY NU A1 01 123 Avenida 1 B
HN PT NA NA H* 60

addressOutPatternsUS.dat

The address output patterns file uses the field patterns output by the
addressPatternsUK.dat file to determine how to parse all standardized address fields.
As with the addressPatternsUK.dat file, tokens are used to indicate the type of address
component in the input and output data. This file contains two rows for each pattern.
The first row defines the input pattern received from addressPatternsUK.dat and
provides an example. The second row defines the output pattern (as shown below).

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component of the output of
the SeeBeyond Match Engine. For more
information about address tokens, see
“Address Type Tokens” on page 68.

pattern-class An indicator of the type of address component
represented by the pattern. Possible pattern
types are listed in “Pattern Classes” on
page 70.

pattern-modifier An indicator of whether the priority of the
pattern is averaged against other patterns that
match the input. Pattern modifiers are listed in
“Pattern Modifiers” on page 70.

priority The priority weight to use for the pattern when
the pattern is a sub-pattern of a larger input
pattern.

usage-flag A flag indicating how the term is used (for
more information, see “Pattern Classes” on
page 70). This file element is optional.

exclude-flag This file element is optional.

Table 59 UK Address Patterns File

Column Description
Implementing the SeeBeyond Match 125 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Appendix C Section C.3
Standardization Files for United Kingdom Data Address Files
EI|BN BT|* // HILLVIEW|FULBOURN HOSPITAL
BN|BI BY

The syntax of this file is:

input-pattern example
output-pattern

You can modify or add entries in this table as needed. Table 60 describes the columns in
the addressOutPatternsUK.dat file.

Following is an excerpt from the addressPatternsUK.dat file. In the first example,
addressPatternsUK.dat output three address fields containing these components:
building name and type; street name and type; and street name and type.
addressOutPatternsUK.dat changes the tokens for the second street name and type to
indicate they are not the primary street name and type. Therefore, “New Bridge” is
populated into the parsed street name field in the database.

BN BT|NA ST|NA ST|* // PROTEA HOUSE|NEW BRIDGE|MARINE PARADE
BN BT|NA ST|N2 S2

HN NA ST|HN NA ST|* // 21 HEIGHWAY COURT|45 BROOKLAND ROAD
HN NA ST|H2 N2 S2

HN NA ST|NA ST|* // 21 HEIGHWAY COURT|BROOKLAND ROAD
HN NA ST|N2 S2

NA ST|HN NA ST|* // HEIGHWAY COURT|45 BROOKLAND ROAD
NA ST|H2 N2 S2

Table 60 UK Address Output Patterns File

Column Description

input-pattern Tokens that represent a possible input pattern
from addressPatternsUK.dat. Each token
represents one component, and the pattern for
each address field in the address is separated
by a pipe (|). For more information about
address tokens, see “Address Type Tokens”
on page 68. Note that this file only uses output
tokens.

example An example of a street address that fits the
specified pattern. This file element is optional.

output-pattern Tokens that represent the output pattern for
the specified input pattern. Each token
represents one component of the output of
the SeeBeyond Match Engine. For more
information about address tokens, see
“Address Type Tokens” on page 68.
Implementing the SeeBeyond Match 126 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Glossary
Glossary

agreement weight
A positive weight assigned to a match field if the values agree between two fields.

alphanumeric search
A type of search that looks for records that precisely match the specified criteria. This
type of search does not allow for misspellings or data entry errors, but does allow the
use of wildcard characters.

assumed match
When the matching weight between two records is at or above a weight you specify,
(depending on the configuration of matching parameters) the objects are an assumed
match and are merged automatically (see “Automatic Merge”).

automatic merge
When two records are assumed to be matches of one another (see “Assumed Match”),
the system performs an automatic merge to join the records rather than flagging them
as potential duplicates.

Blocking Query
The query used during matching to search the database for possible matches to a new
or updated record. This query makes multiple passes against the database using
different combinations of criteria. The criteria is defined in the Candidate Select file.

Candidate Select file
The eView configuration file that defines the queries you can perform from the
Enterprise Data Manager (EDM) and the queries that are performed for matching.

candidate selection
The process of performing the blocking query for match processing. See Blocking Query.

candidate selection pool
The group of possible matching records that are returned by the blocking query. These
records are weighed against the new or updated record to determine the probability of
a match.

checksum
A value added to the end of an EUID for validation purposes. The checksum for each
EUID is derived from a specific mathematical formula.
Implementing the SeeBeyond Match 127 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Glossary
code list
A list of values in the sbyn_common_detail database table that is used to populate
values in the drop-down lists of the EDM.

code list type
A category of code list values, such as states or country codes. These are defined in the
sbyn_common_header database table.

comparison function
A command specific to the SeeBeyond Match Engine that specifies how two fields are
compared. Comparison functions are specified for each match field in the match
configuration file.

disagreement weight
A negative weight assigned to a match field if the field values disagree between two
fields.

duplicate threshold
The matching probability weight at or above which two records are considered to
potentially represent the same entity.

EDM
See Enterprise Data Manager.

Enterprise Data Manager
Also known as the EDM, this is the web-based interface that allows monitoring and
manual control of the master index database. The configuration of the EDM is stored in
the Enterprise Data Manager file in the eView Project.

enterprise object
A complete object representing a specific entity, including the SBR and all associated
system objects.

ePath
A definition of the location of a field in an eView object. Also known as the element path.

EUID
The enterprise-wide unique identification number assigned to each object profile in the
master index. This number is used to cross-reference objects and to uniquely identify
each object throughout your organization.

eView Manager Service
An eView component that provides an interface to all eView components and includes
the primary functions of the master index. This component is configured by the
Threshold file.

field IDs
An identifier for each field that is defined in the standardization engine and referenced
from the Match Field file.
Implementing the SeeBeyond Match 128 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Glossary
Field Validator
An eView component that specifies the Java classes containing field validation logic for
incoming data. This component is configured by the Field Validation file.

Field Validation file
The eView configuration file that specifies any custom Java classes that perform field
validations when data is processed.

local ID
A unique identification code assigned to an object in a specific local system. An object
profile may have several local IDs in different systems.

master index
A database application that stores and cross-references information on specific objects
in a business organization, regardless of the computer system from which the
information originates.

Match Field File
An eView configuration file that defines normalization, parsing, phonetic encoding,
and the match string for an instance of eView. The information in this file is dependent
on the type of data being standardized and matched.

match pass
During matching several queries are performed in turn against the database to retrieve
a set of possible matches to an incoming record. Each query execution is called a match
pass.

match string
The data string that is sent to the match engine for probabilistic weighting. This string is
defined by the match system object defined in the Match Field file.

match type
An indicator specified in the MatchingConfig section of the Match Field file that tells
the SeeBeyond Match Engine which matching rules in the match configuration file to
use for weighting.

match type
An indicator specified in the MatchingConfig section of the Match Field configuration
file that tells the match engine which rules to use to match information.

matching probability weight
An indicator of how closely two records match one another. The weight is generated
using matching algorithm logic, and is used to determine whether two records
represent the same object.

Matching Service
An eView component that defines the matching process. This component is configured
by the Match Field file.
Implementing the SeeBeyond Match 129 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Glossary
matching threshold
The lowest matching probability weight at which two records can be considered a
match of one another.

matching weight or match weight
See matching probability weight.

merge
To join two object profiles or system records that represent the same entity into one
object profile.

merged profile
See non-surviving profile.

non-surviving profile
An object profile that is no longer active because it has been merged into another object
profile. Also called a merged profile.

normalization
A component of the standardization process by which the value of a field is converted
to a standard version, such as changing a nickname to a common name.

object
A component of an object profile, such as a company object, which contains all of the
demographic data about a company, or an address object, which contains information
about a specific address type for the company.

object profile
A set of information that describes characteristics of one enterprise object. A profile
includes identification and other information about an object and contains a single best
record and one or more system records.

parsing
A component of the standardization process by which a freeform text field is separated
into its individual components, such as separating a street address field into house
number, street name, and street type fields.

phonetic encoding
A standardization process by which the value of a field is converted to its phonetic
version.

phonetic search
A search that returns phonetic variations of the entered search criteria, allowing room
for misspellings and typographic errors.

potential duplicates
Two different enterprise objects that have a high probability of representing the same
entity. The probability is determined using matching algorithm logic.
Implementing the SeeBeyond Match 130 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Glossary
probabilistic weighting
A process during which two records are compared for similarities and differences, and
a matching probability weight is assigned based on the fields in the match string. The
higher the weight, the higher the likelihood that two records match.

probability weight
See matching probability weight.

Query Builder
An eView component that defines how queries are processed. The user-configured
logic for this component is contained in the Candidate Select file.

SBR
See single best record.

single best record
Also known as the SBR, this is the best representation of an entity’s information. The
SBR is populated with information from all source systems based on the survivor
strategies defined for each field. It is a part of an entity’s enterprise object and is
recalculated each time a system record is updated.

standardization
The process of parsing, normalizing, or phonetically encoding data in an incoming or
updated record. Also see normalization, parsing, and phonetic encoding.

standardization type
An indicator specified in the StandardizationConfig section of the Match Field file that
tells the SeeBeyond Match Engine how to standardize information.

survivor calculator
The logic that determines which fields from which source systems should be used to
populate the SBR. This logic is a combination of Java classes and user-configured logic
contained in the Best Record file.

survivorship
Refers to the logic that determines which fields are used to populate the SBR. The
survivor calculator defines survivorship.

system
A computer application within your company where information is entered about the
objects in the master index and that shares this information with the master index (such
as a registration system). Also known as “source system” or “external system”.

system object
A record received from a local system. The fields contained in system objects are used
in combination to populate the SBR. The system objects for one entity are part of that
entity’s enterprise object.
Implementing the SeeBeyond Match 131 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Glossary
tab
A heading on an application window that, when clicked, displays a different type of
information. For example, click the EDM tab on the Define Enterprise Object window to
display the EDM attributes.

Threshold file
An eView configuration file that specifies duplicate and match thresholds, EUID
generator parameters, and which blocking query defined in the Candidate Select file to
use for matching.

transaction history
A stored history of an enterprise object. This history displays changes made to the
object’s information as well as merges, unmerges, and so on.

Update Manager
The component of the master index that contains the Java classes and logic that
determines how records are updated and how the SBR is populated. The user-
configured logic for this component is contained in the Best Record file.
Implementing the SeeBeyond Match 132 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
Index

Numerics
1P address token 69
2P address token 69

A
A1 address token 68
address clues file 63, 121

column descriptions 63, 122
address constants file 61, 120
address data type

input and output patterns 65, 124
match configuration file 61
match string 59, 75
object structure 60
phonetic encoding 74
standardization files 61, 120
standardization structure 60
UK standardization files 120–126

address field identifiers 31
address internal constants file 62, 122
address master clues file 64, 122

column descriptions 64, 123
address match types 36
address output pattern file 125
address output patterns file 67

column descriptions 126
address patterns file 65, 124

classes 70
column descriptions 66, 67, 124–125
modifiers 70
priority indicator 70
tokens 68

Address standardization type 35
addressClueAbbrevUK.dat 121

column descriptions 122
addressClueAbbrevUS.dat 63

column descriptions 63
addressConstants.cfg 61
addressConstantsUK.cfg 120
addressInternalConstants.cfg 62
addressInternalConstantsUK.cfg 122
addressMasterCluesUK.dat 122
addressMasterCluesUS.dat 64

column descriptions 64, 123
addressOutPatternsUK.dat 125
addressOutPatternsUS.dat 67

column descriptions 126
addressPatternsUK.dat 124

column descriptions 124–125
addressPatternsUS.dat 65

column descriptions 66, 67
adjectiveMax parameter 81
adjectives key type file 81
advanced uncertainty comparison function 26, 106
agreement weights 14, 17, 23
AJT business name token 90
alias key type file 82

column descriptions 82
AliasList field identifier 35
AliasList match type 36
ALT business name token 90, 91
AM address token 68
AND business name token 91
association key type file 82

column descriptions 82
assocMax parameter 81
AssocTypeKeyword field identifier 35
AssocTypeKeyword match type 36
AST business name token 90, 91
AU address token 68

B
B address pattern class 70
b1 comparison function 25, 106
b2 comparison function 25, 106
BCT business name token 90
BD address token 69
BI address token 69
bigram comparison functions 105–106

standard bigram 25, 106
transposition bigram 25, 106

bizAdjectivesTypeKeys.dat 81
bizAliasTypeKeys.dat 82

column descriptions 82
bizAssociationTypeKeys.dat 82

column descriptions 82
bizBusinessGeneralTerms.dat 83
bizCityorStateTypeKeys.dat

column descriptions 83
bizCityorStateTypekeys.dat 83
bizCompanyFormerNames.dat 84

column descriptions 84
bizCompanyMergerNames.dat 84

column descriptions 85
bizCompanyPrimaryNames.dat 85

column descriptions 85
Implementing the SeeBeyond Match 133 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
bizConnectorTokens.dat 86
bizConstants.cfg 80
bizCountryTypeKeys.dat 86

column descriptions 86
bizIndustryCategoryCode.dat 87

column descriptions 87
bizIndustryTypeKeys.dat 87

column descriptions 88
bizOrganizationTypeKeys.dat 88

column descriptions 88
bizPatterns.dat 89

column descriptions 89
bizRemoveSpecChars.dat 91
blnkmax parameter 45
blocking query 29, 30, 38, 39, 40
BN address token 69
BoxDescript field identifier 31
BoxIdentif field identifier 31
BP address token 68
BS address token 69
BT address token 69
BU address token 68
business constants file 80
business former name reference file 84

column descriptions 84
business name data type

input and output patterns 89
match configuration file 80
match string 78
object structure 79
phonetic encoding 95–96
standardization files 80
standardization structure 79

business name field identifiers 34
business name match types 36
business patterns file 89

column descriptions 89
tokens 90

BusinessName standardization type 35
businessOrRelatedUK.dat 120
businessOrRelatedUS.dat 51
business-related category file 51, 120
BX address token 68, 69
BY address token 69

C
c comparison function 26, 108
Candidate Select file 29, 38, 39, 40
candidate selection pool 29, 30
category files 18
Char match type 37
charsMax parameter 81
city or state key type file 83

column descriptions 83
cityMax parameter 81
clueArraySize parameter 62, 121
clues files 19
CNT business name token 90
column-name 57, 76, 97
comparison functions 22

advanced uncertainty 26, 106
b1 25, 106
b2 25, 106
bigram 25, 105–106
c 26, 108
date 27, 110–112

minute 112
second 112

date, day 27, 112
date, hour 27, 112
date, minute 27
date, month 27, 112
date, second 27
date, year 27, 112
dD 27, 112
dH 27, 112
dM 27, 112
dm 27, 112
ds 27, 112
dY 27, 112
exact 26, 108
n 26, 109
nI 26, 110
nR 26, 110
nS 27, 110
numeric 26, 108–110
numeric integer 26, 110
numeric real 26, 110
numeric SSN 27, 110
options 114
overview 25–27
p 27, 112
prorated 27, 112
transposition bigram 25, 106
types 105
u 25, 106
ua 26, 106
uf 26, 107
ul 26, 107
un 26, 107
uncertainty 25, 106–108
uncertainty, first name 26, 107
uncertainty, house number 26, 107
uncertainty, last name 26, 107
uncertainty, simplified 26, 107
uncertainty, simplified Unicode 107
us 26, 107
Implementing the SeeBeyond Match 134 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
usu 107
components 15

configuration files 15
match engine 16
standardization engine 15

configuration files
about 18
modifying 37
types 18

configuration files, about 15
conjmax parameter 44
conjunction reference file 47, 115
connector tokens reference file 86
constants files 19
country key type file 86

column descriptions 86
countryMax parameter 81
CST business name token 90
CTT business name token 90

D
DA address token 68
dashSize parameter 45
data analysis

and initial load 98
data extract 98

data types 15
database 43, 60, 79
date

day comparison function 27, 112
hour comparison function 27, 112
match types 36
minute comparison function 27
month comparison function 27, 112
second comparison function 27
year comparison function 27

date comparison functions 110–112
parameters 112

date, minute comparison function 112
date, second comparison function 112
date, year comparison function 112
DateDays match type 36
DateHours match type 36
DateMinutes match type 36
DateMonths match type 36
DateSeconds match type 36
DB address token 69
dD comparison function 27, 112
dH comparison function 27, 112
directionOutputFieldSize parameter 62, 121
disagreement weights 14, 17, 23
dM comparison function 27, 112
dm comparison function 27, 112

domain-selector 20, 54, 74
DR address token 68
ds comparison function 27, 112
duplicate threshold 98
dY comparison function 27, 112

E
EI address token 68, 69
encoding-type 56, 75, 96
Enterprise Designer 38, 39, 40
ePath 55, 56, 74, 95, 96
eView configuration

Candidate Select 38, 39, 40
Match Field 37–41, 42, 52, 71, 78, 92
Object Definition 38, 39, 40

eView Project 29
EX address token 68, 69
Exac match type 37
exact comparison function 26, 108
extensionOutputFieldSize parameter 62, 121
extrainfoOutputFieldSize parameter 62, 121

F
FC address token 68
field identifiers 31–35

address 31
AliasList 35
AssocTypeKeyword 35
BoxDescript 31
BoxIdentif 31
business name 34
FirstName 31
HouseNumber 31
IndustrySectorList 35
IndustryTypeKeyword 35
LastName 31
MiddleName 31
OrgTypeKeyword 34
OrigStreetName 31
person name 31
PrimaryName 34
PropDesPrefDirection 32
PropDesPrefType 32
PropDesSufDirection 32
PropDesSufType 32
RuralRouteDescript 31
RuralRouteIdentif 31
StreetNamePrefDirection 32
StreetNamePrefType 32
StreetNameSufDirection 32
StreetNameSufType 32
Url 35
Implementing the SeeBeyond Match 135 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
first name category file 47, 116
column descriptions 47, 49, 116, 118

FirstName
field identifier 31
match type 36

free-form-text-to-standardize 73, 94
fully qualified field name 57, 76, 97

G
general terms reference file 83
generational suffix category file 48, 117

column descriptions 48, 117
genTermMax parameter 81
GLU business name token 91

H
H address pattern class 70
H1 address token 69
H2 address token 69
HN address token 69
HouseNumber

field identifier 31
match type 36

HR address token 68
HS address token 69
hyphenated name category file 45

column descriptions 46

I
IDT business name token 90, 91
IDT-AJT business name token 90
imageSize parameter 62, 121
industry key type file 87

column descriptions 88
industry sector reference file 87

column descriptions 87
industryMax parameter 81
IndustrySectorList

field identifier 35
match type 36

IndustryTypeKeyword
field identifier 35
match type 36

input patterns
address data 65, 124
business names 89

Integer match type 37
internal match constants file 22
inversion option 114

J
jrsrmax parameter 44

K
key type files 19

L
last name category file 49, 118
last name prefix category file 49, 117
lastmax parameter 45
LastName field identifier 31
LastName match type 36

M
match configuration file 22, 42

address data type 61
business name data type 80
column descriptions 24–25
file format 24–25
person name data type 43

match constants file 22, 27
parameters 27

match constants file, internal 22
match engine 16

configuring 40
specifying 41

match engine components 15
configuration files 15
match engine 16
standardization engine 15

match field configuration 37, 40
Match Field file 20, 29, 30, 31, 37–41, 42, 52, 59, 71,
78, 92
match process 14, 29, 30
match string 29, 30, 39, 40

address data type 59, 75
address sample 76
business name data type 78
business sample 96
person name data type 42, 56
person sample 56

match threshold 98
match types 35

address 36
AliasList 36
AssocTypeKeyword 36
business name 36
Char 37
DateDays 36
DateHours 36
Implementing the SeeBeyond Match 136 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
DateMinutes 36
DateMonths 36
dates 36
DateSeconds 36
Exac 37
FirstName 36
HouseNumber 36
IndustrySectorList 36
IndustryTypeKeyword 36
Integer 37
LastName 36
miscellaneous 36
Numeric 36
OrgTypeKeyword 36
person name 36, 43
PrimaryName 36
pro 37
Real 37
SSN 37
StreetDir 36
StreetName 36
StreetType 36
string 36
Url 36

match-columns 39, 40
matching configuration files 22
matching probability 14, 16
matching probability type 23
matching probability weights 22

formulation 16
matching rules 23
MatchingConfig 30, 39, 40, 56, 75, 96
match-type 57, 76, 97
maxFreqTableSize parameter 28
maxNumberTables parameter 28
maxPattSize parameter 62, 121
maxWords parameter 62, 120
mcls parameter 28
MEFAConfig 58, 76, 97
merged business name category file 84

column descriptions 85
mergerMax parameter 81
MiddleName field identifier 31
miscellaneous match types 36
missing values 24
MP address token 68
m-probability 14, 16, 23

N
N address pattern class 70
n comparison function 26, 109
N2 address token 69
NA address token 69

nameOutputFieldSize parameter 62, 121
NAT business name token 90
NB address token 69
NF business name token 90, 91
NFC business name token 90
NFG business name token 90
nFields parameter 27
NF-NF business name token 91
NF-PN business name token 91
nI comparison function 26, 110
nickmax parameter 44
NL address token 68, 69
normalization 15, 38–39
normalization structure 20, 38

person data type 53
person data type sample 53

normalization-targets 55
nR comparison function 26, 110
nS comparison function 27, 110

parameters 110
NU address token 68
null fields 24
numberOutputFieldSize parameter 62, 121
numeric comparison function 26, 109

parameters 109
numeric comparison functions 108–110
numeric integer comparison function 26, 110
Numeric match type 36
numeric real comparison function 26, 110
numeric SSN comparison function 27, 110
NYSIIS 43, 56, 75, 96

O
Object Definition 38, 39, 40
object structure

address data type 60
business name data type 79
person data type 43

Object Type Definition 38, 39, 40
occupational suffix category file 50, 118
online documents 13
organization key type file 88

column descriptions 88
orgMax parameter 81
OrgTypeKeyword

field identifier 34
match type 36

OrigStreetName field identifier 31
ORT business name token 90, 91
OT address token 68
OTD 38, 39, 40
output patterns

address data 65, 124
Implementing the SeeBeyond Match 137 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
business names 89

P
P address pattern class 70
p comparison function 27, 112
P1 address token 69
P2 address token 69
parsing 15
patternArraySize parameter 62, 121
patternMax parameter 81
patterns files 19, 39

address data type 65, 67, 124, 125
person data type 46

PD address token 69
person constants file 44
person name data type

match string 42
match types 43
normalized fields 43
phonetic encoding 55
phonetic fields 43
standardization files 44–51
UK standardization files 115–120

person name field identifiers 31
person name match types 36
person name patterns file 46
personConjonUK.dat 115
personConjonUS.dat 47
personConstants.cfg 44
personFirstNameDash.dat 45

column descriptions 46
personFirstNameUK.dat 116

column descriptions 49, 116, 118
personFirstNameUS.dat 47

column descriptions 47
personGenSuffixUK.dat 117
personGenSuffixUS.dat 48

column descriptions 48, 117
personLastNamePrefixUK.dat 117
personLastNamePrefixUS.dat 49
personLastNameUK.dat 118
personLastNameUS.dat 49
PersonName standardization type 35
personNamePatt.dat 46
personOccupSuffixUK.dat 118
personOccupSuffixUS.dat 50
personRemoveSpecChars.dat 46
personThreeUK.dat 119
personThreeUS.dat 50
personTitleUK.dat 119
personTitleUS.dat 50

column descriptions 50, 119
personTwoUK.dat 119

personTwoUS.dat 51
phonetic encoding 15, 40

address data type 74
business name data type 95–96
person name data type 55

phonetic structure
address data type sample 74
business name data type sample 95
person name data type sample 55

phoneticized-object-field-id 56, 75, 96
phoneticized-target-field-name 56, 75, 96
phoneticize-fields 56, 75, 95
PN-NF business name token 91
PN-PN business name token 90
PNT business name token 90, 91
prefixOutputFieldSize parameter 62, 121
premax parameter 45
primary business name reference file 85

column descriptions 85
primaryMax parameter 81
PrimaryName

field identifier 34
match type 36

pro match type 37
probabilistic weighting 29
probability type 23
PropDesPrefDirection field identifier 32
PropDesPrefType field identifier 32
PropDesSufDirection field identifier 32
PropDesSufType field identifier 32
prorated comparison function 27, 112

parameters 114
prorated weighting illustration 113
PT address token 68, 69
ptrnmax1 parameter 45

R
R address pattern class 70
Real match type 37
reference files 19
relative distance

calculations 108, 111
illustration 109, 111

RN address token 69
RR address token 69
RuralRouteDescript field identifier 31
RuralRouteIdentif field identifier 31

S
S2 address token 70
SA address token 69
SD address token 70
Implementing the SeeBeyond Match 138 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
SeeBeyond Web site 13
SEP business name token 90
SEP-GLC business name token 90
SEP-GLD business name token 90
skpmax parameter 45
Soundex 43, 56, 75, 96
source-mapping 54
special characters reference file 46, 91
SSN match type 37
ST address token 70
standardization 14, 29, 39–40

address data type 72
business name data type 93
configuration files 18
normalization 15
parsing 15
phonetic encoding 15

standardization configuration 37
standardization engine 15

configuring 40
specifying 41

standardization files
address data type 61, 120
business name data type 80
category 18
clues 19
constants 19
key type 19
loading 20
patterns 19
person name data type 44–51
reference 19
UK address data type 120–126
UK person name data type 115–120

standardization process 30
standardization structure 20

address data type 60, 72
address data type sample 72
business name data type 79, 93
business name data type sample 93

standardization types 35
Address 35
BusinessName 35
default 35
PersonName 35

StandardizationConfig 38, 39, 40, 52, 71, 92
standardization-type 54, 74, 94
standardized-object-field-id 55, 74, 95
standardized-target-field-name 55, 74, 95
standardized-targets 74, 95
StreetDir match type 36
StreetName match type 36
StreetNamePrefDirection field identifier 32
StreetNamePrefType field identifier 32

StreetNameSufDirection field identifier 32
StreetNameSufType field identifier 32
StreetType match type 36
string comparison 108, 111
String match type 36
structures-to-normalize 54
suffixOutputFieldSize parameter 62, 121
sufmax parameter 45
survivorship 29

T
T address pattern class 70
target fields 39
target-mapping 55, 74, 95
TB address token 70
thremax parameter 45
Threshold file 29
title category file 50, 119

column descriptions 50, 119
titlmax parameter 45
tokens 19

address data type 68
in business patterns 90

transposition bigram comparison function 106
transposition bigram comparison functions

transposition bigram 25
twomax parameter 45
TY address token 69
typeOutputFieldSize parameter 62, 121

U
u comparison function 25, 106
u probability 14
ua comparison function 26, 106
uf comparison function 26, 107
ul comparison function 26, 107
un comparison function 26, 107
uncertainty comparison function 106
uncertainty comparison functions 25, 106–108
uncertainty, first name comparison function 26, 107
uncertainty, house number comparison function 26,
107
uncertainty, last name comparison function 26, 107
uncertainty, simplified comparison function 26, 107
uncertainty, simplified Unicode comparison
function 107
Unicode comparison function

parameters 108
unmatching probability 14, 16
unnormalized-source-field-name 55
unnormalized-source-fields 54
unphoneticized-source-field-name 56, 75, 96
Implementing the SeeBeyond Match 139 SeeBeyond Proprietary and Confidential
Engine with eView Studio

Index
unstandardized-source-field-name 74, 95
unstandardized-source-fields 74, 95
u-probability 16, 23
URL business name token 90, 91
Url field identifier 35
Url match type 36
us comparison function 26, 107
usu comparison function 107

W
W address pattern class 70
WD address token 69, 70
WI address token 69, 70
words parameter 44

X
XN address token 70
Implementing the SeeBeyond Match 140 SeeBeyond Proprietary and Confidential
Engine with eView Studio

	Implementing the SeeBeyond Match Engine with eView Studio
	Contents
	List of Tables
	Introduction
	1.1 Document Purpose and Scope
	1.1.1 Intended Audience
	1.1.2 Document Organization

	1.2 Writing Conventions
	1.3 Supporting Documents
	1.4 Online Documents
	1.5 SeeBeyond Web Site

	The SeeBeyond Match Engine
	2.1 About the Matching Algorithm
	2.1.1 Standardization and Matching
	2.1.2 Data Types
	2.1.3 How it Works
	2.1.4 Matching Weight Formulation
	Matching and Unmatching Probabilities
	Agreement and Disagreement Weight Ranges

	Standardization Configuration Files
	3.1 About Standardization Configuration Files
	3.1.1 Standardization Configuration File Types
	3.1.2 Internationalization

	3.2 Implementing Domain-specific Files
	3.2.1 Loading Standardization Files
	3.2.2 Specifying a Domain Selector

	Matching Configuration Files
	4.1 About Matching Configuration Files
	4.2 The Match Configuration File
	4.2.1 Match Configuration File Format
	Sample
	Probability Type
	Matching Rules

	4.2.2 Matching Comparison Functions

	4.3 The Match Constants File

	eView and the SeeBeyond Match Engine
	5.1 SeeBeyond Match Engine and the Master Index
	5.1.1 Searching and Matching in the Master Index
	5.1.2 The Standardization and Matching Process
	5.1.3 The Match String
	5.1.4 Field Identifiers
	5.1.5 Match and Standardization Types
	5.1.6 Customizing SeeBeyond Match Engine Configuration Files

	5.2 Matching Service Configuration
	5.2.1 Standardization Configuration
	Normalization Structures
	Standardization Structures (Parsing and Normalization)
	Phonetic Encoding Structures

	5.2.2 Matching Configuration
	5.2.3 Configuring the Match and Standardization Engines

	Person Data Type Configuration
	6.1 Person Matching Overview
	6.1.1 Person Data Processing Fields
	Match String Fields
	Standardized Fields
	The Object Structure

	6.2 Match Configuration for Person Data
	6.3 Standardization Configuration for Person Data
	6.3.1 Common Standardization Files for Person Data
	personConstants.cfg
	personFirstNameDash.dat
	personNamePatt.dat
	personRemoveSpecChars.dat

	6.3.2 United States Person Data Standardization Files
	personConjonUS.dat
	personFirstNameUS.dat
	personGenSuffixUS.dat
	personLastNamePrefixUS.dat
	personLastNameUS.dat
	personOccupSuffixUS.dat
	personThreeUS.dat
	personTitleUS.dat
	personTwoUS.dat
	businessOrRelatedUS.dat

	6.4 Customizing Person Data Configuration Files
	6.5 Configuring the eView Match Service
	6.5.1 Configuring StandardizationConfig
	Step 1: Configure the System Object
	Step 2: Configure the Normalization Structures
	Step 3: Configure Fields to Phonetically Encode

	6.5.2 Configuring the Match String
	6.5.3 Configuring the Match and Standardization Engines

	Address Data Type Configuration
	7.1 Address Matching Overview
	7.1.1 Address Data Processing Fields
	Match String Fields
	Standardized Fields
	The Object Structure

	7.2 Match Configuration for Address Data
	7.3 Standardization Configuration for Address Data
	7.3.1 Common Address Standardization Files
	addressConstants.cfg
	addressInternalConstants.cfg

	7.3.2 United States Address Standardization Files
	addressClueAbbrevUS.dat
	addressMasterCluesUS.dat
	addressPatternsUS.dat
	addressOutPatternsUS.dat
	Address Pattern File Components

	7.4 Modifying Address Data Configuration Files
	7.5 Configuring the eView Match Service
	7.5.1 Configuring StandardizationConfig
	Step 1: Configure the System Object
	Step 2: Configure Fields to Parse and Normalize
	Step 3: Configure Fields to Phonetically Encode

	7.5.2 Configuring the Match String
	7.5.3 Configuring the Match and Standardization Engines

	Business Names Data Type Configuration
	8.1 Business Name Matching Overview
	8.1.1 Business Name Processing Fields
	Match String Fields
	Standardized Fields
	The Object Structure

	8.2 Match Configuration for Business Names
	8.3 Standardization Configuration for Business Names
	bizConstants.cfg
	bizAdjectivesTypeKeys.dat
	bizAliasTypeKeys.dat
	bizAssociationTypeKeys.dat
	bizBusinessGeneralTerms.dat
	bizCityorStateTypeKeys.dat
	bizCompanyFormerNames.dat
	bizCompanyMergerNames.dat
	bizCompanyPrimaryNames.dat
	bizConnectorTokens.dat
	bizCountryTypeKeys.dat
	bizIndustryCategoryCode.dat
	bizIndustryTypeKeys.dat
	bizOrganizationTypeKeys.dat
	bizPatterns.dat
	bizRemoveSpecChars.dat

	8.4 Modifying Business Name Configuration Files
	8.5 Configuring the eView Match Service
	8.5.1 Configuring StandardizationConfig
	Step 1: Configure the System Object
	Step 2: Configure Fields to Parse and Normalize
	Step 3: Configure Fields to Phonetically Encode

	8.5.2 Configuring the Match String
	8.5.3 Configuring the Match and Standardization Engines

	Fine-tuning Weights and Thresholds
	A.6 Overview
	A.7 Customizing the Match Configuration and Thresholds
	A.7.1 Determine the Match Fields
	A.7.2 Customize the Match Configuration
	Probabilities or Agreement Weights
	Defining Relative Value
	Determining the Weight Range
	Comparison Functions

	A.7.3 Define the Weight Thresholds
	Weight Threshold Overview
	Specifying the Weight Thresholds
	Fine-tuning the Thresholds

	Match Configuration Comparison Functions
	B.1 Comparison Functions
	Bigram Comparison Functions
	Uncertainty Comparison Functions
	Exact Comparison Function (c)
	Numeric Comparison Functions
	Date Comparison Functions
	Prorated Comparison Function (p)

	B.2 Comparison Function Options

	Standardization Files for United Kingdom Data
	C.1 Overview
	C.2 Person Name Files
	C.7.4 personConjonUK.dat
	C.7.5 personFirstNameUK.dat
	C.7.6 personGenSuffixUK.dat
	C.7.7 personLastNamePrefixUK.dat
	C.7.8 personLastNameUK.dat
	C.7.9 personOccupSuffixUK.dat
	C.7.10 personThreeUK.dat
	C.7.11 personTitleUK.dat
	C.7.12 personTwoUK.dat
	C.7.13 businessOrRelatedUK.dat

	C.3 Address Files
	C.7.14 addressConstantsUK.cfg
	C.7.15 addressClueAbbrevUK.dat
	C.7.16 addressInternalConstantsUK.cfg
	C.7.17 addressMasterCluesUK.dat
	C.3.1 addressPatternsUK.dat
	addressOutPatternsUS.dat

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

