
Secure Messaging Extension
User’s Guide

Release 5.0.4
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040528133625.
Secure Messaging Extension User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introducing Secure Messaging Extension 6
Document Organization 7

Overview 7
Components 7

Supported Operating Systems 8

System Requirements 8

Introducing Secure Messaging Extension (SME) 9
Security Component 9
Compression Component 9

Introducing Multipurpose Internet Mail Extension (MIME) 10

Introducing Secure Multipurpose Internet Mail Extension (S/MIME) 11

Overview of SME Processes 12
SME Encryption/Decryption Process 12
SME Signature/Verification Process 14
SME Compression/Decompression Process 15

Chapter 2

Installation 16
Before Installing Secure Messaging Extension 16

Installing the Secure Messaging Extension 16
Installing eGate 16

Additional Files Required to Run SME 18

Chapter 3

Encrypted Message Formats, Digital Signature Formats, and
Certificate Formats 19
Encrypted Message Formats 19

Digital Signature Formats 21
Secure Messaging Extension User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Signing and Attaching Signatures 24

Private Key Format 25

Certificate Formats 25

Chapter 4

Managing Keystores and Truststores 32
Overview 32

Steps Required to Create and Manage Private Keys 33
To Import a New Certificate: 33
To Manage a Public Certificate: 36
To Create a New Truststore: 39
To Import a Certificate into a Truststore 41

Chapter 5

S/MIME Collaboration Definitions 42
SME Collaborations 42

Available OTDs 43

Chapter 6

Locating, Importing, and Using Sample Projects 44
Sample Projects Overview 44

Sample Data Used 45
Data Input Parameters 45
Data Conversion Limitations 47

eInsight 47
eGate 47

Locating and Importing the Sample Projects 47

Running the Sample Projects 48
Setting the Properties 48
Creating the Environment Profile 49
Deploying the Sample Project 49
Running the Sample Project 49

Using the Sample Project with eInsight 49
The eInsight Engine and Components 49
The SME_BPEL_Project Sample Project 50
Sample Project Business Process 50
Business Process Activities 51
Configuring the Modeling Elements 52

Converting and Compressing Data 52
Signing the Data 53
Secure Messaging Extension User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Encrypting the Data 54
Write Data to an Input File 55
Gathers and Decrypts Data 56
Verify the Signature 57
Decompress the Data 57
Write Data to a Text File 58

Using the Sample Project in eGate 58
Working with the Sample Project in eGate 58
Configuring the File eWays 59

Chapter 5

Using SME Java Methods 60

Index 61
Secure Messaging Extension User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1

Introducing Secure Messaging Extension

This document describes how to install, configure, and use the SeeBeyond Technology
Corporation’s Secure Messaging Extension, referred to as SME throughout the rest of
this document.

The topics in this chapter include:

“Document Organization” on page 7

“Overview” on page 7

“Supported Operating Systems” on page 8

“System Requirements” on page 8

“Introducing Secure Messaging Extension (SME)” on page 9

“Introducing Multipurpose Internet Mail Extension (MIME)” on page 10

“Introducing Secure Multipurpose Internet Mail Extension (S/MIME)” on
page 11

“Overview of SME Processes” on page 12
Secure Messaging Extension User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introducing Secure Messaging Extension Document Organization
1.1 Document Organization
This User’s Guide is organized into two parts. The first part, consisting of Chapters 1-2,
introduces SME and describes the procedures for installing and setting up the program.
This part should be of particular interest to a System Administrator or other user
charged with the task of getting the system up and running.

The second part, consisting of Chapters 3-6, describes the details of SME operation and
configuration, including descriptions of encrypted message formats, instructions on
Keystore management, and implementation of sample SME Projects. This part should
be of particular interest to a Developer involved in customizing SME for a specific
purpose.

1.2 Overview
SME enables eGate to process Events using the S/MIME (Secure Multipurpose Internet
Mail Extensions) message format. This format is the IETF RFC 2311 specification for
encrypting and/or signing types of data.

SME supports encryption, decryption and authentication of messages and is
interoperable with any other client applications that support the S/MIME standard.

SME adds the following features to transactions:

privacy

message (Event) authentication

sender authentication

nonrepudiation

1.2.1 Components
Components required to run SME include:

eGate Integrator

File eWay (required for the sample Project)

Keys and Certificates
Secure Messaging Extension User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introducing Secure Messaging Extension Supported Operating Systems
1.3 Supported Operating Systems
Secure Messaging Extension is supported on the following operating systems:

Windows Server 2003, Windows XP, and Windows 2000

Sun Solaris 8 and 9

IBM AIX 5.1 and 5.2

HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23)

HP Tru64 5.1A

Red Hat Linux 8 (Intel Version)

Red Hat Enterprise Linux AS 2.1

1.4 System Requirements
To set up and run the SME with the eGate Enterprise Designer, you need the following:

A TCP/IP network connection.

Windows Server 2003, Windows 2000, or Windows XP. This is required for the User
Interface.

Microsoft Internet Explorer 6.0 SP1 or above.

Note: Open and review the Readme.txt prior to installation for any additional
requirements.
Secure Messaging Extension User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introducing Secure Messaging Extension Introducing Secure Messaging Extension (SME)
1.5 Introducing Secure Messaging Extension (SME)
The SME product has the dual purpose of offering security features, which allow
protected transmission of public domains such as the internet, and compression/
decompression technology to effectively reduce/expand the size of files.

Security Component

As part of the security component, SME uses Public Key Infrastructure (PKI)
technology to ensure the confidentiality of exchanges. This is done by digitally signing
and encrypting messages as they are sent, and decrypting and authenticating messages
when they are received.

SME performs the encryption and decryption of messages using the Secure/
Multipurpose Internet Mail Extension (S/MIME). S/MIME is a specification for
securing electronic mail, and is designed to add security to e-mail messages in MIME
format.

S/MIME creates one-way hash algorithms that ensure data integrity by verifying no
modifications are made to the message while in transit. In addition, the message
sender’s identity is verified through the use of digital signatures, proving that the
message actually originated from the entity who claims to have sent it. For more
information on the S/MIME format, see “Introducing Secure Multipurpose Internet
Mail Extension (S/MIME)” on page 11

Security Services Offered Through SME Include:

Encryption

Decryption

Sign

Verify

Compression Component

SME compression converts string and binary file formats, such as those found in text,
graphics, audio, and video files, into smaller sized files. This is done using Java-based
mathematical equations that scan and index repetitive patterns. If a file contains
repetitive patterns—such as colors used in an image—then code is written to index the
number of and exact placement of those patterns, effectively reducing the size of the
file. When you decompress a file, the code that contains the index of repetitive patterns
rebuilds the file to its original format.

Compression Services Offered Through SME Include:

Compression

Decompression
Secure Messaging Extension User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.6
Introducing Secure Messaging Extension Introducing Multipurpose Internet Mail Extension (MIME)
1.6 Introducing Multipurpose Internet Mail Extension
(MIME)
MIME Message Format

As a specification for formatting non-ASCII messages, MIME enables the transfer and
acceptance of files via the Internet mail system. MIME-compliant messages may
contain any type of data, including the following:

Text messages in US-ASCII

Messages of unlimited length

Binary files

Character sets other than US-ASCII

Multi-media: Image, Audio, and Video objects

Multiple, nested objects in a single message

When later sent over a protocol such as HTTP or FTP, which provide a “binary clean”
data path, MIME messages may be left in binary format. However, if the MIME
message is sent via SMTP (E-mail) or other text-only protocols, binary objects must be
encoded using the Base64 content transfer encoding format, which produces a textual
representation of the original binary data.

Messages in MIME format consist of two parts: the header and the body. The header
forms a collection of metadata in the form of keyword/value pairs structured to
provide information necessary for the transmission and interpretation of the message.
The body of the message contains the bulk data to be transferred. In turn, S/MIME
defines the security services, adding digital signatures and encryption, thus preventing
forgery and interception.

For more information regarding MIME, see the Internet Engineering Task Force Text
Messages specification (RFC 822) and the MIME Message Body Format (RFC 2045), at
http://www.ietf.org.

The S/MIME Version 3 specification (RFC 2623) is also found at http://www.ietf.org.
Secure Messaging Extension User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.7
Introducing Secure Messaging Extension Introducing Secure Multipurpose Internet Mail Extension (S/MIME)
1.7 Introducing Secure Multipurpose Internet Mail
Extension (S/MIME)

S/MIME is an encryption supported version of the MIME protocol. It is based on the
Public Key Cryptography Standards (PKCS), which specify how the RSA public-key
cryptographic algorithm should be used to implement enveloped encryption and
digital signatures.

The RSA public-key system makes use of two related keys to perform the mathematical
algorithms necessary to encrypt or decrypt data: a public key, which may be made
available to any prospective correspondent, and a private key known only to the key's
owner. A public key can be published openly, thereby assuring the ability of anyone to
send secure messages that can only be decrypted by the owner of the respective private
key.

Encryption can also be performed using one's private key, and decrypted with the
corresponding public key. In this case, the encryption result is known as a digital
signature, which guarantees to the intended recipient that the signed message is
authentic and genuinely came from the stated originator of the message.

Digital signatures provide data integrity, authentication and non-repudiation of an
electronic document. Successful verification of a digital signature ensures the recipient
that the “document received” is identical to the “document sent” (data integrity) and
confirms the identity of the sender (authentication). It also prevents any subsequent
denial by the sender that the document originated with them (non-repudiation).

In practice, public keys are stored as certificates that comply with the X.509 standard. In
addition to the public key, a certificate also contains information about the key owner's
identity, the key's validity, and the issuer of the certificate, also known as a Certificate
Authority.
Secure Messaging Extension User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.8
Introducing Secure Messaging Extension Overview of SME Processes
1.8 Overview of SME Processes
The following diagrams outline the key activities involved in the SME processes,
including:

SME Encryption/Decryption Process

SME Signature/Verification Process

SME Compression/Decompression Process

1.8.1 SME Encryption/Decryption Process
This section describes the internal and external flow of the SME encryption, using the
key pair encryption method.

The encryption process begins when the sender’s message is encrypted with the public
key. The message is also signed by the sender, and the signature itself is encrypted with
the sender’s private key. When the reader receives the message, the encryption is
decoded with the reader’s private key. The sender’s Public Certificate, located in the
Keystore is used to verify the authenticity of the public key.

In addition to verifying the public key, public certificates also contain the sender’s
personal information, such as name, institution, and e-mail address, and are signed by
a trusted Certificate Authority.

During encryption, a Public Certificate alias is used to identity the Public Certificate
located in the Keystore. During decryption, the reader’s private key alias and password
is used to access the Private Key from the Keystore and decrypt the message.

The encryption/decryption process illustrated in Figure 1 on page 13, details the SME
Input Requirements for both encryption and decryption of data.
Secure Messaging Extension User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.8
Introducing Secure Messaging Extension Overview of SME Processes
Figure 1 Secure Messaging Extension Encryption Process

Note: Input parameters listed with a “*” symbol denote the default used.
Secure Messaging Extension User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.8
Introducing Secure Messaging Extension Overview of SME Processes
1.8.2 SME Signature/Verification Process
The SME signature/verification process begins when a subscriber publishes a
certificate to a Certificate Authority. Published certificates contain the subscriber’s
identity and public key, and are digitally signed by the Certification Authority. The
Certification Authority is also responsible for safeguarding access to the subscriber’s
private key, which is required during the verification process.

When a subscriber signs and sends a message, the SME Sign process converts the
message from MIME to S/MIME format. The S/MIME message format also contains
the digital footprint of the subscribers private key, so when the message is received by
another user, the public key held by the Certification Authority “reads” and then
verifies the digital signature created by the private key.

Figure 2 Secure Messaging Extension Signature Verification Process

Note: Input parameters listed with a “*” symbol denote the default used.
Secure Messaging Extension User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.8
Introducing Secure Messaging Extension Overview of SME Processes
1.8.3 SME Compression/Decompression Process
The SME compression process converts byte type files into PKCS#7 format using the
zlib compression library. For more information on the PKCS#7 see “PKCS#7 encrypted
message format” on page 19.

For more information on the zlib compression library, visit the gzip home page at:

http://www.gzip.org

Figure 3 Secure Messaging Extension Compression Process
Secure Messaging Extension User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the procedures for installing SME.

“Before Installing Secure Messaging Extension” on page 16

“Installing the Secure Messaging Extension” on page 16

“Additional Files Required to Run SME” on page 18

2.1 Before Installing Secure Messaging Extension
Open and review either the Readme.txt for any additional information or requirements,
prior to installation. The Readme.txt is located on the Repository CD-ROM.

2.2 Installing the Secure Messaging Extension
During the installation process, the Enterprise Manager, a web-based application, is
used to select and upload the SME component (SMEWebServices.sar) from the eGate
installation CD-ROM to the Repository.

Installing eGate

The eGate installation process includes the following components:

Installing the eGate Repository

Uploading products to the Repository

Downloading components (including eGate Enterprise Designer and Logical Host)

Viewing product information home pages
Secure Messaging Extension User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Installing the Secure Messaging Extension
To install the SME component on an eGate supported system, follow the instructions
for installing the eGate Integrator in the ICAN Installation Guide, and include the
following steps:

1 During the procedures for uploading files to the eGate Repository using the
Enterprise Manager, after uploading the eGate.sar file, select and upload the
following file:

SMEWebServices.sar (to install the SME component)

FileeWay.sar

SMEWebServicesDoc.sar (to install the User’s Guide, JavaDoc, and sample
Projects)

2 In the Enterprise Manager, click the DOCUMENTATION tab.

3 Click Secure Messaging Extension.

4 In the right pane, click Download Sample, and select a location for the .zip file to be
saved.
Secure Messaging Extension User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Additional Files Required to Run SME
2.3 Additional Files Required to Run SME
Additional policy JAR files are needed to run SME. The type of JAR files required
depends on the JVM used. Refer to your JVM vendor for exact details on the specific
policy JAR file requirements.

Use the following table to determine which JRE is included in the eGate logical host.

Table 1 JRE Versions Listed by Operating System

To download the required JAR files:

1 Scroll to the bottom of the web page listed in Table 1 for the JRE.

2 Click the link to the Unlimited Strength Jurisdiction Policy Files 1.4.1 or 1.4.2.

3 Click the link to download the ZIP file containing the required policy jar files.

Required policy jar files include:

local_policy.jar

US_export_policy.jar

Then, for each of your logical hosts, replace the versions of these files in:

<logicalhost>/jre/lib/security/

In addition, if you are running a repository on AIX, also replace the versions of these
files in:

<AIXrepository>/jre/1.4.1/security/

Operating System JRE URL location

Windows, Solaris, Linux,
HP-UX, Tru64

1.4.2 http://java.sun.com/j2se/1.4.2/download.html

AIX 1.4.1 http://java.sun.com/products/archive/j2se/
1.4.1_07/index.html
Secure Messaging Extension User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3

Encrypted Message Formats, Digital
Signature Formats, and Certificate Formats

This chapter provides an overview of the encrypted message formats, digital signatures
and certificates that are handled by SME. In addition, this chapter describes how to use
Microsoft™ Internet Explorer tools to transfer certificate formats accepted by the SME.

3.1 Encrypted Message Formats
This section provides examples of encrypted message formats.

PKCS#7 encrypted message format

The PKCS#7 format, as specified by RFC 2315, is used for basic digitally signed and/or
encrypted data. This format does not provide a MIME header, and produces mostly
binary data, except for a few character strings in an embedded certificate, as shown in
the following example:

0€ *†H†÷ €0€ 1‚$0‚ 0ˆ0‚10UUS10\U

California1\0/UMonrovia1

0

U

STC10UDevelopment1'0%USTC Test Certificate Authority0*†H†÷
€V<±ïíà»‚¯‡¾l-êÒTâž|g®<êÆ<õ¢\)Ç‰‡îQt£rµ»Ÿ½TûRP[Myß÷ ×ÚÚh-Íá–Ù¾—áô)Ã|bF©[_ˆHESM†2?k_

z¸~½ ï/ÈÕ+¶>æ³G¨šXK8yÃ!·Âyá—œB4U0€*†H†÷0*†H†÷b

4˜mDY €jE¯††‚ë-]2žI¯e´G®†Ö¤ŸQÜ&ZÈX‚¶Ê!4`RK”ÆE«9ýìÂPÝ Q- ní\=(-÷þÚïL
Secure Messaging Extension User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Encrypted Message Formats
S/MIME2 encrypted message format (base64)

The S/MIME2 format is also used to represent digitally signed and/or encrypted data.
This format provides a MIME header and encrypted results, with the binary data
encoded as printable characters using the base64 method, as shown in the following
example:

Content-Type: application/pkcs7-mime; name = "smime.p7m"

Content-Transfer-Encoding:base64

MIAGCSqGSIb3DQEHA6CAMIACAQAxggEkMIIBIAIBADCBiDCBgjELMAkGA1UEBhMCVVMxEzARBgNV

BAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCE1vbnJvdmlhMQwwCgYDVQQKEwNTVEMxFDASBgNVBAsT

C0RldmVsb3BtZW50MScwJQYDVQQDEx5TVEMgVGVzdCBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkCARMw

DQYJKoZIhvcNAQEBBQAEgYBR3Hwe+1JB2pZuR2XdNFS1DISYbgWHaXcmmpRZE+r35Ar5iaNlfRAj

ipc1RBW0HmidnWz3zBGYOml91btVjy2z6dmoDknnksgTI77YX727hESHgjCpxxcs+1kRzzI5ZUlU

WvvXeX/7wNkx3ZgJOrtIiXjfs6t8zW4edd1/13fQgjCABgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcE

CBUeyy6UZb4koIAECOpD8MyUjNZ/BAjB0O2dStz8HgQIiPOI1H4tpfsECARjsNRDbMpqBAgtC3S1

7FnAWQQI8ymbLzoB4kUECF38LESRhXN2BAhcGnYwRqQDMgAAAAAAAAAAAAA=

S/MIME2 encryption message format (binary)

This format represents a message as binary, non-printable data, with appropriate MIME
headers, as shown in the following example:

Content-Type: application/pkcs7-mime; name = "smime.p7m"

Content-Transfer-Encoding:binary

0€ *†H†÷ €0€ 1‚$0‚ 0ˆ0‚10UUS10\U

California1\0/UMonrovia10

U

STC10UDevelopment1'0%USTC Test Certificate Authority0*†H†÷

€V<±ïíà»‚¯Qt£rµ»Ÿ½TûRP[Myß÷ ×ÚÚh-Íá–Ù¾—áô)Ã|bF©[_ˆHESM†2?k …Bmm_t1Gòz

~½ ï/ÈÕ+¶>æ³G¨šXK8yÃ!·Âyá—œB4U0€*†H†÷0*†H†÷b

4˜mDY €jE¯††‚ë-]2žI¯e´G®†Ö¤ŸQÜ&ZÈX‚¶Ê!4`RK”ÆE«9ýìÂPÝ Q- ní\=(-÷þÚïL
Secure Messaging Extension User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Digital Signature Formats
3.2 Digital Signature Formats
Although signatures are normally found attached to the message or file that they sign,
detached signatures are also supported. A detached signature may be stored and
transmitted separately from the message it signs.

Table 2 lists the features of each encrypted message format for attached signatures.

Table 2 Formats for attached signatures

PKCS#7 Format S/MIME2 Format

Includes original document in plain text,
digital signature, and certificates involved,
encapsulated, and encoded in Abstract
Syntax Notation One (ASN.1) standard
format.

Note: ASN.1 is an ISO/IEC standard
for encoding rules used in
ANSI X.509 certificates and
PKCS documents.

Example

0€*†H†÷ €0€10+
 0€*†H†÷ €$€:
This is only a test message!
 ‚m0‚i0‚Ò0*†H†÷ 0‚10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒw¯¥S®¢_{!0Õ¢„&KÇéL›Ä,″1Än§lÏ»¶Õï¬©¥$lym´žÏ—
ÍoÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„g,″>©k£ÄXqÜ±Q½êÔú9PºKÍ~’ú“/
0*†H†÷ _bšFïo7r
ç¦«HêAßl“"zgÛæAÌœXú,‘Õ:Þˆ=›P}°æå·ÌZ§R˜øüÅÌ(àØIãµ€÷Ñj
#›òR1/″Œ80@ìûÍ‚-/a†ÛZýý¥·s!ß¿ayS‘″#}
…÷üç_"ëµÐÉµ4½¦1‚-0‚)0ˆ0‚10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ €″Ö>»/éR8¶ZaÖ” ¡ÝXS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶I/’{–
ªÓIÊF62žSð€‡/ñI²e^ü#â„àðf·n(″aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË{lÊ—0%#t‹¥Œåœ€ô› VÝ¹k

Includes:

MIME headers

PKCS#7 attached signature
object

Example

Content-Type: application/pkcs7-mime; name =
"smime.p7m"
Content-Transfer-Encoding:binary
0€*†H†÷ €0€10+
 0€*†H†÷ €$€:
This is only a test message!
 ‚m0‚i0‚Ò0*†H†÷ 0‚10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒw¯¥S®¢_{!0Õ¢„&KÇéL›Ä,″1Än§lÏ»¶Õï¬©¥$lym´žÏ—
ÍoÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„g,″>©k£ÄXqÜ±Q½êÔú9PºKÍ~’ú“/
0*†H†÷ _bšFïo7r
ç¦«HêAßl“"zgÛæAÌœXú,‘Õ:Þˆ=›P}°æå·ÌZ§R˜øüÅÌ(àØIãµ€÷Ñj
#›òR1/″Œ80@ìûÍ‚-/a†ÛZýý¥·s!ß¿ayS‘″#}
…÷üç_"ëµÐÉµ4½¦1‚-0‚)0ˆ0‚10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ €″Ö>»/éR8¶ZaÖ” ¡ÝXS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶I/’{–
ªÓIÊF62žSð€‡/ñI²e^ü#â„àðf·n(″aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË{lÊ—0%#t‹¥Œåœ€ô› VÝ¹k
Secure Messaging Extension User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Digital Signature Formats
Table 3 lists the features of each encrypted message format for detached signatures.

Table 3 Formats for detached signatures

PKCS#7 Format S/MIME2 Format

Includes signature and certificate without the
signed data.

Note: RNIF1.1 uses PKCS#7 and
detached format

Example

0€*†H†÷ €0€10+
 0€*†H†÷ ‚m0‚i0‚Ò0*†H†÷ 0‚10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒw¯¥S®¢_{!0Õ¢„&KÇéL›Ä,″1Än§lÏ»¶Õï¬©¥$lym´žÏ—
ÍoÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„g,″>©k£ÄXqÜ±Q½êÔú9PºKÍ~’ú“/
0*†H†÷ _bšFïo7r
ç¦«HêAßl“"zgÛæAÌœXú,‘Õ:Þˆ=›P}°æå·ÌZ§R˜øüÅÌ(àØIãµ€÷Ñj
#›òR1/″Œ80@ìûÍ‚-/a†ÛZýý¥·s!ß¿ayS‘″#}
…÷üç_"ëµÐÉµ4½¦1‚-0‚)0ˆ0‚10UUS10\U
California1\0/UMonrovia1
0
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ €″Ö>»/éR8¶ZaÖ” ¡ÝXS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶I/’{–
ªÓIÊF62žSð€‡/ñI²e^ü#â„àðf·n(″aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË{lÊ—0%#t‹¥Œåœ€ô› VÝ¹k .

Includes a MIME multipart message
consisting of the original data in one
segment, and the binary format signature in a
second segment.

Example

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg="SHA1"; boundary="Boundary_12e4421e_NOEWUDYA"

--Boundary_12e4421e_NOEWUDYA
Content-Type: text/plain

This is only a test message!

--Boundary_12e4421e_NOEWUDYA
Content-Type: application/pkcs7-signature;
name="smime.p7s"
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename=smime.p7s

0€*†H†÷ €0€10+
 0€*†H†÷ ‚m0‚i0‚Ò0*†H†÷ 0‚10UUS10\U
California1\0/UMonrovia1
0
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒw¯¥S®¢_{!0Õ¢„&KÇéL›Ä,″1Än§lÏ»¶Õï¬©¥$lym´žÏ—
ÍoÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„g,″>©k£ÄXqÜ±Q½êÔú9PºKÍ~’ú“/
0*†H†÷ _bšFïo7r
ç¦«HêAßl“"zgÛæAÌœXú,‘Õ:Þˆ=›P}°æå·ÌZ§R˜øüÅÌ(àØIãµ€÷Ñj
#›òR1/″Œ80@ìûÍ‚-/a†ÛZýý¥·s!ß¿ayS‘″#}
…÷üç_"ëµÐÉµ4½¦1‚-0‚)0ˆ0‚10UUS10\U
California1\0/UMonrovia1
0
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ €″Ö>»/éR8¶ZaÖ” ¡ÝXS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶I/’{–
ªÓIÊF62žSð€‡/ñI²e^ü#â„àðf·n(″aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË{lÊ—0%#t‹¥Œåœ€ô› VÝ¹k

--Boundary_12e4421e_NOEWUDYA--
Secure Messaging Extension User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Digital Signature Formats
Includes a MIME multipart message
consisting of the original data in one
segment, and the base64-encoded signature
in a second segment

Example

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg="SHA1"; boundary="Boundary_12e4421e_FNGBRNRI"

--Boundary_12e4421e_FNGBRNRI
Content-Type: text/plain

This is only a test message!

--Boundary_12e4421e_FNGBRNRI
Content-Type: application/pkcs7-signature;
name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqG
SIb3DQEHAQAAoIICbTCCAmkw
ggHSAgETMA0GCSqGSIb3DQEBBAUAMIGCMQswCQYDVQQGEwJVUzET
MBEGA1UECBMKQ2FsaWZvcm5p
YTERMA8GA1UEBxMITW9ucm92aWExDDAKBgNVBAoTA1NUQzEUMBIG
A1UECxMLRGV2ZWxvcG1lbnQx
JzAlBgNVBAMTHlNUQyBUZXN0IENlcnRpZmljYXRlIEF1dGhvcml0
eTAeFw0wMjA1MDkxODQ2MzNa
Fw0wMzA1MDkxODQ2MzNaMHcxCzAJBgNVBAYTAlVTMRMwEQYDVQQI
EwpDYWxpZm9ybmlhMREwDwYD
VQQHEwhNb25yb3ZpYTESMBAGA1UEChMJU2VlQmV5b25kMQwwCgYD
VQQLEwNSQUQxHjAcBgNVBAMT
FVNlZUJleW9uZCBUZXN0IFVzZXIgMTCBnzANBgkqhkiG9w0BAQEF
AAOBjQAwgYkCgYEAropHa5XJ
g3evpQFTrqJfeyEw1aKEJksfx+lMm8QsnTHEbqdsj8+7ttXvrKml
JGx5bbSezzkIl81v0Uwfc3XJ
QSOaA2teIxr8swvFDcWnXfFzSkFtkKM482Zzb1WiJhZtVf6EZywD
nT6pAmujxFhx3LFRverU+jlQ
ukvNfpL6ky8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQBfE2IVmo9G
7xRvN3IZC+emq0jqE0HfbJMi
eg1nf9vmQcycWBT6LJHVOt6IPZtQfbDmf+W3zFqnUpj4/
MUGzCjg2EnjtYD30Y9qI5vyF1IxL52M
ODBA7PvNgq0vYYYY239a/f2lt3Mh378dYXlTkZ0jfQmF9/
znXyLrtdDJtTS9pjGCAS0wggEpAgEB
MIGIMIGCMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5p
YTERMA8GA1UEBxMITW9ucm92
aWExDDAKBgNVBAoTA1NUQzEUMBIGA1UECxMLRGV2ZWxvcG1lbnQx
JzAlBgNVBAMTHlNUQyBUZXN0
IENlcnRpZmljYXRlIEF1dGhvcml0eQIBEzAHBgUrDgMCGjANBgkq
hkiG9w0BAQEFAASBgJCd1gU+
uw/pUji2WmHWlCChE91YUyq/
o3X1VQVS0YipcEPLn8LNLI2ftkkvknuWqtNJykY2Mp5T8ICHFy/x
SbJlXvwj4oTg8Ga3bgUdKJ1hRbFj0yzFpT7MsF0yxXDGMirMCnzq
z8t7bMqBlzAlIw10i6WM5ZyA
9JsaH1bdE7lrAAAAAAAA
--Boundary_12e4421e_FNGBRNRI--

Table 3 Formats for detached signatures

PKCS#7 Format S/MIME2 Format
Secure Messaging Extension User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Signing and Attaching Signatures
3.3 Signing and Attaching Signatures
In an S/MIME message with a detached signature, the signature is calculated over on
the entire payload data, in addition to its MIME header(s). The default Content-Type
for such a MIME part is text/plain.

If signing a Content-Type other than text/plain, the user must generate a Content-Type
header line for the payload. All other MIME headers and boundaries, including those
of the detached signature part, are produced by SME.

An example XML message, digitally signed with a base64-encoded detached S/MIME
signature is shown below.

MIME-Version: 1.0
Content-Type: multipart/signed;
protocol="application/x-pkcs7-signature"; micalg=sha1;
 boundary="----FA4D3A12E6192B82B05284F061C7CE55"

This is an S/MIME signed message

------FA4D3A12E6192B82B05284F061C7CE55
Content-Type: application/xml

------FA4D3A12E6192B82B05284F061C7CE55
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"

------FA4D3A12E6192B82B05284F061C7CE55--

p a y l o a d

S i g n a t u r e a n d c e r t i f i c a t e i n
b a s e 6 4 o r b i n a r y f o r m a t
Secure Messaging Extension User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Private Key Format
3.4 Private Key Format
Private keys, used by SME in the decryption and signing processes, are required to be
in PKCS#12 format. If a key has been generated through a browser-based process and
appears among your personal certificates in Microsoft Internet Explorer, it may be
exported to a PKCS#12 file for use by SME. Procedures on converting and exporting
certificate formats are included in section 3.5 of this chapter.

Note: Remember the password you specify to encrypt the exported file; it is needed during
the SME configuration process, in order to allow decryption and use the key.

3.5 Certificate Formats
A Certificate, also called a Public Key Certificate, is an electronic message issued by a
Certificate Authority that is used to match the value of the public key to the identity of
the person, device, or service that holds the corresponding private key.

SME only accepts certificates in PKCS#7 format and DER encoded binary X.509.

Microsoft Internet Explorer (IE) provides a Certificate Wizard tool to convert between
formats.

Using IE to convert one certificate format to another

1 Double-click the certificate file to open the certificate properties, as shown in Figure
4.

Figure 4 Certificate File

2 Select the Details tab, as shown in Figure 5 on page 26.
Secure Messaging Extension User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats
Figure 5 Certificate Detail Tab

3 Click Copy to File. The Certificate Export Wizard appears, as shown in Figure 6.

Figure 6 Certificate Export Wizard

4 Click Next to open the certificate export file format, as shown in Figure 7 on
page 27, and select the format.
Secure Messaging Extension User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats
Figure 7 File Format window

5 Click the Next button. The File to Export window appears, as shown in Figure 8.

Figure 8 File to Export window

6 Browse to and select the file name for the Certificate and choose the Next button.
Details of the completed certificate appear, as shown in Figure 9 on page 28.
Secure Messaging Extension User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats
Figure 9 Completed Certificate Details window

7 Click the Finish button to exit the Wizard.

To transfer the certificate formats using Microsoft Internet Explorer

1 From the Tools menu, click Internet Options.

2 Click the Content tab and then click Certificates. The Certificates dialog appears, as
shown in Figure 10.

Figure 10 Internet Explorer Certificates

3 Click the Import button, the Certificate Import Wizard appears, as shown in Figure
11 on page 29.
Secure Messaging Extension User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats
Figure 11 Certificate Import Wizard

4 Click the Next button, the File to Import window appears, as shown in Figure 12.

Figure 12 File to Import window
Secure Messaging Extension User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats
5 Click the Browse button and locate the certificate to open.

Figure 13 File to Import window

6 Click the Next button. The Certificate Store window appears, as shown in Figure 14.

Figure 14 Certificate Store window

7 Browse to the location where you want the certificate stored and click the Next
button. Details of the completed certificate import appear, as shown in Figure 15 on
page 31.
Secure Messaging Extension User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats
Figure 15 Completed Certificate Details window

8 Click the Finish button to exit the Wizard.
Secure Messaging Extension User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4

Managing Keystores and Truststores

This chapter describes the procedures for creating and managing Private Keys, Public
Keys, and truststore certificates.

This Chapter Includes

“Overview” on page 32

“Steps Required to Create and Manage Private Keys” on page 33

4.1 Overview
Keystores are repositories for the sensitive cryptographic key information required for
self-authentication. Key entries are typically private keys and are accompanied by the
certificate chain for the corresponding public key.

Truststores hold all public key certificates belonging to the other party, or in the case
with SME, the message sender. Certificates held in the Trust Store are considered
Trusted Certificates since the Key Store owner trusts that the public key in the
certificate belongs to the identity provided by the subject or owner of the certificate.

During runtime, one Keystore is created for each ICAN Environment, but several
truststores may exist to accommodate the different relationships between trading
partners. ICAN commonly groups both Keystores and truststores under the common
name “Keystore”, however, both are considered separate entities.
Secure Messaging Extension User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
4.2 Steps Required to Create and Manage Private Keys
eGate Integrator includes Keystore and truststore management functionality. Using
Environment Explorer, you first create a new Keystore environment, and then import or
export private keys, create new truststores, and manage public certificates.

To Import a New Certificate:

1 From the Environment Explorer, right-click the Environment icon and choose New
Environment.

Figure 16 Creating a New Environment

2 Right-click the new Environment and choose New Keystore from the selection
menu, as shown in Figure 17 on page 34. This creates a new Keystore called
Environment-ks-store.
Secure Messaging Extension User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
Figure 17 New Keystore selection

3 Right-click Environment-ks-store and choose Manage Private Keys from the
selection menu.

Figure 18 Manage Private Keys
Secure Messaging Extension User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
4 The Private Keys for “environment1_ks_store” window appears.

Figure 19 Private Keys for “environment1_ks_store” window

5 Click the Import button, the Import Private Key window appears.

Enter the following information:

Alias – the name you want associated with the certificate

File – the location of the certificate

Password – the password required to access the Private Key

Figure 20 Import Private Key window

6 Click the Import button. A Message window appears confirming the import.

Figure 21 Import Confirmation Message
Secure Messaging Extension User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
7 Click the OK button, the Private Keys for “environment1_ks_store” window
appears with a key pair description that displays the name and details of the
imported key pair, as shown in Figure 22 on page 36.

Figure 22 Key Pair Description window

To Manage a Public Certificate:

1 From Enterprise Explorer, right-click Environment-ks-store and choose Manage
Public Certificates from the selection menu.

Figure 23 Manage Public Certificates

2 The Private Keys for “environment1_ks_store” window appears, as shown in
Figure 24 on page 37.
Secure Messaging Extension User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
Figure 24 Manage Public Certificates window

3 Click the Import button. The Import Private Key window appears.

Enter the following information:

Alias – the name you want associated with the certificate

File – the location of the certificate

Figure 25 Import Certificate window

4 Click the Import button. A Message window appears confirming the import.

Figure 26 Import Confirmation Message

5 Click the OK button. The Public Certificates for “environment1_ks_store”
window appears. To view the field details, click on the imported certificate, as
shown in Figure 27 on page 38.
Secure Messaging Extension User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
Figure 27 Public Certificates for “environment_ks_store” window

6 Click the Import button. A Message window appears confirming the import.

Figure 28 Import Confirmation Message
Secure Messaging Extension User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
To Create a New Truststore:

1 Right-click Environment-ks-store and choose Manage Truststores from the
selection menu.

Figure 29 Manage Truststores

2 The Truststores for “environment1_ks_store” window appears.

Figure 30 Truststores for “environment1_ks_store” window

3 Click the New button. The New TrustStore window appears, as shown in Figure 31
on page 40
Secure Messaging Extension User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
Figure 31 New Truststore

4 Enter an Alias to identify the truststore and click the OK button.

5 The Trust Stores for “environment_ks_store” window appears.

A number of trust certificates also appears in the right pane. These are industry
known Trust Certificates loaded from the JVM of the Enterprise Designer.

Figure 32 Trust Stores for “environment_ks_store”
Secure Messaging Extension User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Managing Keystores and Truststores Steps Required to Create and Manage Private Keys
To Import a Certificate into a Truststore

1 Click the Import button. The Trust Stores for “environment_ks_store” window
appears.

2 Enter the Alias and File location of certificate and click the OK button.

3 A message appears confirming the import. Click the OK button.

4 The Manage Truststore Certificate Description window appears, containing the
imported certificate.

Figure 33 Truststores with Imported Certificate window
Secure Messaging Extension User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5

S/MIME Collaboration Definitions

This chapter lists the various Collaboration Definitions and OTDs used in SME.

SME includes several completed Collaboration Definitions containing the encoded
business rules used to compress, decrypt, and create digital signatures.

Every Collaboration Definition is also associated with both an input and an output
OTD. The structure and rules defined in each OTD define the necessary data
transformations required to complete each function. You select OTDs from the OTD
Library, located on the root of the SME node in Enterprise Explorer.

5.1 SME Collaborations
Collaboration Definitions used in SME include:

CompressService: used to compress data

DecompressService: used to decompress data

EncryptService: used to encrypt data

DecryptService: used to decrypt data

SignService: used to electonically sign data

VerifySignatureService: used to verify electonically signed data.
Secure Messaging Extension User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
S/MIME Collaboration Definitions Available OTDs
5.2 Available OTDs
Several OTDs are available for use, including:

SMIMECompressInput_SMIMECompressInput

SMIMECompressOutput_SMIMECompressOutput

SMIMEDecompressInput_SMIMEDecompressInput

SMIMEDecompressOutput_SMIMEDecompressOutput

SMIMEDecryptInput_SMIMEDecryptInput

SMIMEDecryptOutput_SMIMEDecryptOutput

SMIMEEncryptInput_SMIMEEncryptInput

SMIMEEncryptOutput_SMIMEEncryptOutput

SMIMESignInput_SMIMESignInput

SMIMESignOutput_SMIMESignOutput

SMIMEVerifyInput_SMIMEVerifyInput

SMIMEVerifyOutput_SMIMEVerifyOutput
Secure Messaging Extension User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 6

Locating, Importing, and Using Sample
Projects

This chapter describes how to use the sample Project included in the installation
CD-ROM package.

This Chapter Includes:

Sample Projects Overview on page 44

Locating and Importing the Sample Projects on page 47

Running the Sample Projects on page 48

Using the Sample Project with eInsight on page 49

Using the Sample Project in eGate on page 58

Note: While several key steps are required to create, activate, and deploy a Project, only
steps containing information relevant to the SME are included in this chapter. For
more detailed information on how to compete a sample Project, see the eGate
Integrator Tutorial.

6.1 Sample Projects Overview
Sample Projects are designed to provide an overview of the security and compression/
decompression services offered in SME.

Sample Projects Include:

SME_BPEL_Project – describes how to compress/decompress, sign/verify, and
encrypt/decrypt sample data in an eInsight Business Process. For more information,
see “Using the Sample Project with eInsight” on page 49.

SME_JCE_Project – describes how to compress/decompress, sign/verify, and
encrypt/decrypt sample data using eGate. For more information, see “Using the
Sample Project in eGate” on page 58.
Secure Messaging Extension User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Locating, Importing, and Using Sample Projects Sample Projects Overview
6.1.1 Sample Data Used
The data used for the sample Projects are contained within an input file called
SampleData.txt. See Figure 34 for a description of the data found in the file.

Figure 34 Input Data File

6.1.2 Data Input Parameters
The following tables detail input requirements for the encryption, decryption, sign, and
verify processes. You enter these format requirements when you are creating your
business rules.

Encryption/Decryption Parameters

For more information on how these requirements are used in the encryption and
decryption process, see Figure 1 on page 13.

Table 4 SME Encryption Input Parameters

Requirement Valid Values

Data Entry Type bytes

Public Certificate Alias (required entry) any alphanumeric

Message Format PKCS7 or SMIME (SMIME is the default)

Encoding Format binary or base64 (base64 is the default)

Encryption Algorithm RC2 or DES3 (DES3 is the default)

start of sample data

AAAAAAAAAAAAAAAAAAAAAA
BBBBBBBBBBBBBBBBBBBBBB
CCCCCCCCCCCCCCCCCCCCCC
DDDDDDDDDDDDDDDDDDDDDD
EEEEEEEEEEEEEEEEEEEEEE
FFFFFFFFFFFFFFFFFFFFFF
GGGGGGGGGGGGGGGGGGGGGG
HHHHHHHHHHHHHHHHHHHHHH
IIIIIIIIIIIIIIIIIIIIII
JJJJJJJJJJJJJJJJJJJJJJ
KKKKKKKKKKKKKKKKKKKKKK
LLLLLLLLLLLLLLLLLLLLLL
MMMMMMMMMMMMMMMMMMMMMM

1111111111111111111111
2222222222222222222222
3333333333333333333333
4444444444444444444444
5555555555555555555555
6666666666666666666666
7777777777777777777777
8888888888888888888888
9999999999999999999999
0000000000000000000000

end of sample data
Secure Messaging Extension User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Locating, Importing, and Using Sample Projects Sample Projects Overview
Sign/Verify Parameters

For more information on how these requirements are used in the encryption and
decryption process, see Figure 2 on page 14.

Table 5 SME Decryption Input Parameters (continued)

Requirement Valid Values

Private Key alias (required entry) any alphanumeric

Password of the key (required entry) any alphanumeric

Encoding Format binary or base64 (base64 is the default)

Message Format PKCS7 or SMIME (SMIME is the default)

Encryption Algorithm RC2 or DES3 (DES3 is the default)

Table 6 SME Sign Input Parameters

Requirement Valid Values

Data Entry Type bytes

Public certificate alias (required entry) any alphanumeric

Password (required entry) any alphanumeric

Message Format SMIME or PKCS7 (PKCS7 is the default)

Detach Signature boolean (true/false)

If true, the original data is not part of signed data. If
false.
If false, the original data is embedded in the signed
data.

Table 7 SME Verify Input Parameters

Requirement Valid Values

Sender’s Alias (required entry) any alphanumeric

Detached Signature boolean (true/false)

If true, the original data is not part of signed data. If
false.
If false, the original data is embedded in the signed
data.

Signed Message Format MIME boolean (true/false)

if true, the signed data format is MIME.
If false, the signed data format is PKCS7.
Secure Messaging Extension User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Locating, Importing, and Using Sample Projects Locating and Importing the Sample Projects
6.1.3 Data Conversion Limitations
The following lists data conversion limitations known in SME.

eInsight

Not all data types are converted reliably in eInsight. Currently, SME expresses data
internally in binary format, and the output from SME compression services is also
binary, but the output from SME encryption service can either be binary or base64.
Unlike base64 which can reliably convert between text and binary data types, binary
data converted into text and then back to binary may become corrupted. This means
that data produced by compression, or encryption using a binary encoding format must
be handled as binary data. When using SME with eInsight, you can pass binary data
directly between the SME java collaborations, but not write out or pass between
business processes.

eGate

When exporting or importing SME objects in a JCE collaboration, you must first select
the input and output methods for reading and writing byteArray (file eWay writeBytes
or JMS Bytes messages). Binary data corruption can occur if a File eWay is used in text
mode or if writing to a JMS text message requires converting the byte data into a Java
string. In these cases, you can treat the Base64 format as text and then convert between
java byte and Java string without affecting the data content.

6.2 Locating and Importing the Sample Projects
Sample Projects are included in the SMEWebServicesDocs.sar. This file is uploaded
separately from the SME sar file during installation. For information, refer to “Installing
eGate” on page 16.

Once you have uploaded the SMEWebServicesDocs.sar to the Repository, you can
begin downloading the sample Projects using the DOCUMENTATION tab in the
Enterprise Manager to a folder.

Before you can use the sample Project, you must first import it into the SeeBeyond
Enterprise Designer using the Enterprise Designer Project Import utility.

To Import the Sample Project

1 From the Enterprise Designer’s Project Explorer pane, right-click the Repository
and select Import.

2 In the Import Manager window, browse to the directory that contains the sample
Project zip file.

3 Select the sample file and then click Open.

4 Click the Import button. If the import was successful, then click the OK on the
Import Status window.
Secure Messaging Extension User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Locating, Importing, and Using Sample Projects Running the Sample Projects
5 Close the Import Manager window.

6.3 Running the Sample Projects
Steps required to run a sample Project include:

Setting the Properties

Creating the Environment Profile

Deploying the Sample Project

Running the Sample Project

6.3.1 Setting the Properties
The sample Project uses both an inbound and an outbound File eWay.

To Configure the File eWays:

1 On the Connectivity Map canvas double-click the Inbound File eWay.

2 Select Inbound File eWay in the Templates window and click OK.

3 The Properties window for the Inbound File eWay opens. Modify the parameter
settings for your system. Change the Directory and Input file name to match the
location and name of the sample data file.

4 Click OK to close the Properties window.

5 On the Connectivity Map, double-click the Outbound File eWay, select Outbound
File eWay in the templates dialog box and click OK.

6 The Properties window for the Inbound File eWay opens. Modify the required
parameter settings for your system, including the target Directory and Output file
name.

7 Click OK to close the Properties window.
Secure Messaging Extension User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
6.3.2 Creating the Environment Profile
Environments include the external systems, Logical Hosts, integration servers and
message servers used by a Project and contain the configuration information for these
components. Environments are created using the Enterprise Designer’s Environment
Explorer and Environment Editor.

For instruction on creating an Environment, see the eGate Integrator Tutorial.

6.3.3 Deploying the Sample Project
A Deployment Profile is used to assign Collaborations and message destinations to the
integration server and message server. Deployment Profiles are created using the
Deployment Editor.

For instruction on creating and activating a Deployment Profile, see the eGate Integrator
Tutorial.

6.3.4 Running the Sample Project

For instruction on running a sample Project, see the eGate Integrator Tutorial.

6.4 Using the Sample Project with eInsight
This section describes how to use the SME_BPEL_Project with the ICAN Suite’s
eInsight Business Process Manager and it’s Web Services interface. This section does
not provide an explanation of how to create a Project that uses a Business Process. For
these instructions, you should refer to the eInsight Enterprise Bus User’s Guide.

Before running a sample Project using eInsight, you must:

Import the sample Project (see “Locating and Importing the Sample Projects” on
page 47)

Configure the File eWays

Create an Environment for the sample Project

Create a Deployment Profile

6.4.1 The eInsight Engine and Components
You can deploy an eGate component as an Activity in an eInsight Business Process.
Once you have associated the desired component with an Activity, the eInsight engine
can invoke it using a Web Services interface. Examples of eGate components that can
interface with eInsight in this way are:

Java Messaging Service (JMS)

Object Type Definitions (OTDs)
Secure Messaging Extension User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
An eWay

Collaborations

Using the eGate Enterprise Designer and eInsight, you can add an Activity to a
Business Process, then associate that Activity with an eGate component. When eInsight
runs the Business Process, it automatically invokes that component via its Web Services
interface.

6.4.2 The SME_BPEL_Project Sample Project
The SME_BPEL_Project contains two business processes. The first business process is
designed to compress, sign, and encrypt data from an input file, while the second
business process performs a decrypt, verify, and decompress before writing the data to
an output file.

The figure below shows the business process used by the sample Project.

Figure 35 SME BPEL Business Processes

6.4.3 Sample Project Business Process
Creation of a business process includes:

Dragging and dropping business process activities from the Project explorer tree to
the eInsight Business Process Designer’s modeling canvas.

Connecting logical business activities together.

Adding business rules between activities.

Figure 36 on page 51 illustrates a completed business process, containing the compress,
sign and encrypt service.
Secure Messaging Extension User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
Figure 36 Example Business Process 1

Table 37 on page 51 illustrates a completed business process, containing the decrypt,
verify and decompress service.

Figure 37 Example Business Process 2

6.4.4 Business Process Activities
An eInsight Business Process Activity can be associated with the SME web service
during system design phase. To make this association, select the desired operators
under SME in the Enterprise Explorer and drag it onto the eInsight Business Process
Designer canvas.

The SME has the following operators available:

receive

compress

decompress

sign

verify

encrypt

decrypt

write

The operation is automatically changed to an Activity with an icon identifying
component that is the basis for the Activity. At run time, eInsight invokes each the order
defined in the Business Process. Using eInsight’s Web Services interface, Activity in
turn invokes the SME web service operators.
Secure Messaging Extension User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
6.4.5 Configuring the Modeling Elements
Business rules are defined and configured between the business process activities
located on the modeling canvas. The sample Project SME_BPEL_Project contains
business rules between each of the activities listed in the business process flow.

Note: A detailed description of the steps required to configure modeling elements are found
in the eGate Integrator’s User’s Guide.

During the first business process, the sample Project:

Receives a text data; converts and compresses

Accepts signature input parameters

Accepts encryption input parameters

Writes data to a text file

During the second business process, the sample Project:

Receives text data; accepts decryption input parameters

Accepts verify (public certificate) input parameters

Decompresses data

Writes data to a text file

Converting and Compressing Data

Data is first received in text format, then converted to byte format. Data is compressed
using the SMIMECompressInput OTD.

Figure 38 Converting and Compressing Data
Secure Messaging Extension User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
Signing the Data

To sign the data, the SMIMESignInput OTD accepts the compressed data along with the
following input string literals:

The sender’s private key (key 1)

The sender’s password (passwd)

The certificate format (PKCS7)

Figure 39 Signing the Data
Secure Messaging Extension User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
Encrypting the Data

To encrypt the data, the SMIMEEncryptionInput OTD accepts the signed data, along
with the following input string literals:

The public certificate alias (cert 1)

The message format (smime)

The encoding format (base64)

The Encryption algorithm (DES3)

Figure 40 Encrypting the Data
Secure Messaging Extension User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
Write Data to an Input File

An input file is required to create objects shareable between the business processes.

Figure 41 Writing Data to a FileClient.write.Input OTD
Secure Messaging Extension User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
Gathers and Decrypts Data

To decrypt data, the SMIMEDecryptInput OTD accepts data from the
FileClient.write.Input OTD along with the following input string literals:

The private key alias (key 1)

The password of the key (passwd)

The message format (smime)

The encoding format (base64)

The Encryption algorithm (DES3)

Figure 42 Decrypting Data
Secure Messaging Extension User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using Sample Projects Using the Sample Project with eInsight
Verify the Signature

To verify the signature, the SMIMEVerifyInput OTD accepts the decrypted data, along
with the following input string literals:

The sender’s public certificate

Figure 43 Verifying the Signature

Decompress the Data

To decompress the data, the SMIMEDecompressInput OTD accepts the verified data.

Figure 44 Decompress the Data
Secure Messaging Extension User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Locating, Importing, and Using Sample Projects Using the Sample Project in eGate
Write Data to a Text File

In the final step, data is converted from bytes to text, then sent to the
FileClient.write.Input OTD.

Figure 45 Write Data to a Text File

6.5 Using the Sample Project in eGate
This section describes how to use the SME_JCE_Project with eGate. This section does
not provide an explanation of how to create a Project. For these instructions, you should
refer to the eGate Integrator Tutorial.

Before running a sample eGate Project, you must:

Import the sample Project (see Locating and Importing the Sample Projects on
page 47)

Configure the File eWays

Configure the JMS Clients

Create an Environment for the sample Project

Create a Deployment Profile

6.5.1 Working with the Sample Project in eGate
The eGate sample Project SME_JCE_Project contains two Connectivity Maps (CMap1
and CMap2). The first Connectivity Map contains a process that compress, encrypts,
and signs sample data, while the second Connectivity Map contains a process that
decrypts, decompresses, and verifies the data.

The Connectivity Maps for these samples appear as follows:
Secure Messaging Extension User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Locating, Importing, and Using Sample Projects Using the Sample Project in eGate
Figure 46 Connectivity Map - Encryption

Figure 47 Connectivity Map - Decryption

6.5.2 Configuring the File eWays
The sample uses an inbound and an outbound File eWay. To configure the sample
Projects, use the following information.

1 Double-click the Inbound File eWay, select Inbound File eWay in the Templates
dialog box and click OK.

2 The Parameters dialog box opens to the Inbound File eWay configuration. Modify
the configuration for your system, including the settings for the Inbound File eWay
in Table 8, and click OK. The configuration settings are saved for the eWay.

Table 8 Inbound File eWay Settings

3 In the same way, modify the Outbound File eWay configuration for your system,
including the settings in Table 9, and click OK.

Table 9 Outbound File eWay Settings

Inbound eWay Connection Parameters

Directory C:/temp

Input file name Input*.txt

Outbound eWay Connection Parameters

Directory C:/temp

Output file name output%.txt
Secure Messaging Extension User’s Guide 59 SeeBeyond Proprietary and Confidential

Secure Messaging Extension User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5

Using SME Java Methods

The SME exposes various Java methods to add extra functionality, making it easier to
set, and get information in the SME OTDs. For a complete list of the Java methods
within the classes listed below, refer to the Javadoc.

SMEUtil

SMIMECompressor

SMIMEDecompressor

SMIMEDecryptor

SMIMEEncryptor

SMIMESignatureVerifier

SMIMESigner

You can find the Javadoc in the SMEWebServicesDocs.sar file. For complete instructions,
see the ICAN Installation Guide.

Index
Index

A
Abstract Syntax Notation One (ASN.1) 21
Alias 35, 37, 40

B
base64 method 20

C
Certificate Authority 12
Certificate Wizard 25
Certification Authority 14
Collaboration Definitions 42
components 7
compression 9

D
data integrity 11
decompression 9
decryption 9
Deployment Profile 49
DER 25

E
eGate.sar 17
encryption 9

F
File 35, 37
FileeWay.sar 17
Format

IETF RFC 2311 7

G
gzip 15

I
implementation 44

installation
Windows 16

Internet Engineering Task Force 10

J
Java methods and classes

overview 60

K
keypair 12
Keystore 12
Keystore - new 33
Keystores 32

M
Manage Public Certificates 36
Manage Truststores 39
MIME 24
MIME Message Body Format 10

N
New Keystore 33
non-ASCII 10
non-repudiation 11

O
OTD 42
overview 7

P
Password 35
PKCS#12 25
PKCS#7 15, 19, 25
Private Key 35
private key 12
Public Certificate 12
Public Certificate alias 12
Public Key Cryptography Standards (PKCS) 11
Public Key Infrastructure (PKI) 9

R
RFC 2315 19
RSA 11
running a project 49
Secure Messaging Extension User’s Guide 61 SeeBeyond Proprietary and Confidential

Index
S
S/MIME 10, 11, 24

introduction 10
S/MIME2 20
Secure Messaging Extension

introduction 9
Sign Service 9
Signature Verification Service 9
SME

introduction 9
SMEWebServices.sar 17
SMTP (E-mail) 10
Supported Operating Systems 8
system requirements 8

T
Truststore 40
Truststores 32

U
US-ASCII 10

W
Web Services interface 49

X
X.509 25
X.509 standard 11
XML message 24
Secure Messaging Extension User’s Guide 62 SeeBeyond Proprietary and Confidential

	Secure Messaging Extension User’s Guide
	Contents
	Introducing Secure Messaging Extension
	1.1 Document Organization
	1.2 Overview
	1.2.1 Components

	1.3 Supported Operating Systems
	1.4 System Requirements
	1.5 Introducing Secure Messaging Extension (SME)
	Security Component
	Compression Component

	1.6 Introducing Multipurpose Internet Mail Extension (MIME)
	1.7 Introducing Secure Multipurpose Internet Mail Extension (S/MIME)
	1.8 Overview of SME Processes
	1.8.1 SME Encryption/Decryption Process
	1.8.2 SME Signature/Verification Process
	1.8.3 SME Compression/Decompression Process

	Installation
	2.1 Before Installing Secure Messaging Extension
	2.2 Installing the Secure Messaging Extension
	Installing eGate

	2.3 Additional Files Required to Run SME

	Encrypted Message Formats, Digital Signature Formats, and Certificate Formats
	3.1 Encrypted Message Formats
	3.2 Digital Signature Formats
	3.3 Signing and Attaching Signatures
	3.4 Private Key Format
	3.5 Certificate Formats

	Managing Keystores and Truststores
	4.1 Overview
	4.2 Steps Required to Create and Manage Private Keys
	To Import a New Certificate:
	To Manage a Public Certificate:
	To Create a New Truststore:
	To Import a Certificate into a Truststore

	S/MIME Collaboration Definitions
	5.1 SME Collaborations
	5.2 Available OTDs

	Locating, Importing, and Using Sample Projects
	6.1 Sample Projects Overview
	6.1.1 Sample Data Used
	6.1.2 Data Input Parameters
	6.1.3 Data Conversion Limitations
	eInsight
	eGate

	6.2 Locating and Importing the Sample Projects
	6.3 Running the Sample Projects
	6.3.1 Setting the Properties
	6.3.2 Creating the Environment Profile
	6.3.3 Deploying the Sample Project
	6.3.4 Running the Sample Project

	6.4 Using the Sample Project with eInsight
	6.4.1 The eInsight Engine and Components
	6.4.2 The SME_BPEL_Project Sample Project
	6.4.3 Sample Project Business Process
	6.4.4 Business Process Activities
	6.4.5 Configuring the Modeling Elements
	Converting and Compressing Data
	Signing the Data
	Encrypting the Data
	Write Data to an Input File
	Gathers and Decrypts Data
	Verify the Signature
	Decompress the Data
	Write Data to a Text File

	6.5 Using the Sample Project in eGate
	6.5.1 Working with the Sample Project in eGate
	6.5.2 Configuring the File eWays

	Using SME Java Methods
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

