
SeeBeyond Proprietary and Confidential

ASC X12 OTD Library User’s
Guide

Release 5.0.5

ASC X12 OTD Library User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2005 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050401071312.

Contents

ASC X12 OTD Library User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

List of Figures 6

Chapter 1

Introduction 7
About This Document 7

What’s In This Document? 7
Scope 8
Intended Audience 8
Document Conventions 8
Screenshots 8
Related Documents 8

References 9

SeeBeyond Web Site 9

SeeBeyond Documentation Feedback 9

Chapter 2

Overview of the ASC X12 OTD Library 10
About the ASC X12 OTD Library 10

ASC X12 Version Support 11

SEF File Support 12

ASC X12 Validation Support 12

On Demand Parsing 12

Alternative Formats: ANSI and XML 13
XML Format for X12 13

XML X12 DTD 13
Sample XML X12 Output 14
Sample of ANSI Output 14

Errors and Exceptions 15

Contents

ASC X12 OTD Library User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 3

Installing the ASC X12 OTD Library 16
System Requirements 16

Supported Operating Systems 16

Installing the ASC X12 OTD Library 17

Increasing the Enterprise Designer Heap Size 18
Resolving Memory Errors at Enterprise Designer Startup 18

Chapter 4

Using ASC X12 OTDs 19
Displaying ASC X12 OTDs 19

Building ASC X12 OTD Collaborations 20

Customizing the ASC X12 OTDs 23

Creating ASC X12 OTDs from SEF Files 24

Possible Differences in Output When Using Pass-Through 26

Chapter 5

Java Methods for ASC X12 OTDs 28
Get and Set Methods 28

Setting Delimiters 29
Incoming Message 29
Outgoing Message 30

Available Methods 30
check 30
checkAll 30
clone 31
countxxx 31
countLoopxxx 31
getxxx 32
getAllErrors 32
getDecimalMark 32
getElementSeparator 32
getFGValidationResult 33
getICValidationResult 33
getInputSource 33
getLoopxxx 34
getMaxDataError 34
getMaxFreedSegsComsNum 34
getMaxParsedSegsComsNum 34
getMsgValidationResult 35
getRepetitionSeparator 35
getSegmentCount 35
getSegmentTerminator 36

Contents

ASC X12 OTD Library User’s Guide 5 SeeBeyond Proprietary and Confidential

getSubelementSeparator 36
getTSValidationResult 36
getUnmarshalError 37
getXmlOutput 37
hasxxx 37
hasLoopxxx 38
isUnmarshalComplete 38
marshal 38
marshalToBytes 38
marshalToString 39
performValidation 39
reset 39
setxxx 40
setDefaultX12Delimiters 40
setElementSeparator 41
setLoopxxx 41
setMaxDataError 41
setMaxFreedSegsComsNum 42
setMaxParsedSegsComsNum 42
setRepetitionSeparator 42
setSegmentTerminator 43
setSubelementSeparator 43
setXmlOutput 43
unmarshal 44
unmarshalFromBytes 44
unmarshalFromString 44

Appendix A

X12OTDErrors Schema File and Sample XML 46
Contents of the X12OTDErrors.xsd File 46

Sample of Validation Output XML 47

Index 49

List of Figures

ASC X12 OTD Library User’s Guide 6 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 Increasing Enterprise Designer Heap Size 18

Figure 2 OTDs for ASC X12 Version 4010 20

Figure 3 Selecting the Web Service 21

Figure 4 Adding Envelopes to the Collaboration 22

Figure 5 Adding OTDs to the Collaboration 23

Figure 6 Saving ASC X12 OTD 24

Figure 7 Creating ASC X12 OTDs 25

Figure 8 Selecting the SEF File 25

Figure 9 Selecting the OTD Options 26

ASC X12 OTD Library User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter provides an overview of the this user’s guide, including its contents and
writing conventions.

What’s in This Chapter

About This Document on page 7

Related Documents on page 8

SeeBeyond Web Site on page 9

SeeBeyond Documentation Feedback on page 9

1.1 About This Document
The sections below provide information about this document, such as an overview of
its contents, scope, and intended audience.

1.1.1 What’s In This Document?
This document contains the following information:

Chapter 1, “Introduction”, provides a general preview of this document, its
purpose, scope, and organization.

Chapter 2, “Overview of the ASC X12 OTD Library”, provides an overview of the
ASC X12 OTD Library as well as its support for X12 versions, SEF file versions, and
validation.

Chapter 3, “Installing the ASC X12 OTD Library”, describes how to install ASC
X12 OTDs, the SEF OTD wizard, and the ASC X12 OTD Library documentation.

Chapter 4, “Using ASC X12 OTDs”, describes how to display and customize
OTDs, and how to build Collaborations with ASC X12 OTDs.

Chapter 5, “Java Methods for ASC X12 OTDs”, provides the syntax for the Java
methods provided with the ASC X12 OTDs.

Appendix A, “X12OTDErrors Schema File and Sample XML”, provides the
X12OTDErrors schema file and a sample validation output XML.

Chapter 1 Section 1.1
Introduction About This Document

ASC X12 OTD Library User’s Guide 8 SeeBeyond Proprietary and Confidential

1.1.2 Scope
This document describes the X12 OTD library and how to install and use it with eGate
Integrator. For detailed information about eGate-specific procedures, refer to the eGate
Integrator User’s Guide. If you are using the OTD library with eXchange, refer to the
eXchange Integrator User’s Guide for eXchange-specific procedures.

1.1.3 Intended Audience
This document provides information for those who are designing, deploying, and
managing ICAN Projects that use X12 OTDs. This document assumes that you are
familiar with eGate-specific procedures.

1.1.4 Document Conventions
The following conventions are observed throughout this document.

1.1.5 Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.1.6 Related Documents
The following SeeBeyond documents provide additional information about the
SeeBeyond ICAN Suite:

SeeBeyond ICAN Suite Installation Guide

eGate Integrator User’s Guide

eGate Integrator JMS Reference Guide

Table 1 Document Conventions

Text Convention Example

Names of buttons, files,
icons, parameters, variables,
methods, menus, and objects

Bold text Click OK to save and close.
From the File menu, select Exit.
Select the logicalhost.exe file.
Enter the timeout value.
Use the getClassName() method.
Configure the Inbound File eWay.

Command line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -p password

Hypertext links Blue text See Document Conventions on
page 8

Hypertext links for Web
addresses (URLs) or email
addresses

Blue underlined text http://www.seebeyond.com
docfeedback@seebeyond.com

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com

Chapter 1 Section 1.2
Introduction References

ASC X12 OTD Library User’s Guide 9 SeeBeyond Proprietary and Confidential

eGate Integrator System Administrator Guide

eGate Integrator Deployment Guide

eXchange Integrator User’s Guide

eXchange Integrator Designer’s Guide

eInsight Business Process Manager User’s Guide

ASC X12 Manager Composite Application User’s Guide

1.2 References
The following Web sites provide additional information about the ASC X12 protocol:

http://www.disa.org

http://www.x12.org/x12org/index.cfm

http://www.wpc-edi.com

1.3 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

1.4 SeeBeyond Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

docfeedback@seebeyond.com

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com
http://www.disa.org
http://www.x12.org/x12org/index.cfm
http://www.wpc-edi.com

ASC X12 OTD Library User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 2

Overview of the ASC X12 OTD Library

This chapter provides an overview of the ASC X12 OTD Library as well as its support
for ASC X12 directory versions, SEF file versions, and validation.

What’s in This Chapter

About the ASC X12 OTD Library on page 10

ASC X12 Version Support on page 11

SEF File Support on page 12

ASC X12 Validation Support on page 12

On Demand Parsing on page 12

Alternative Formats: ANSI and XML on page 13

Errors and Exceptions on page 15

2.1 About the ASC X12 OTD Library
X12 is an EDI (electronic data interchange) standard, developed for the electronic
exchange of machine-readable information between businesses.

The Accredited Standards Committee (ASC) X12 was chartered by the American
National Standards Institute (ANSI) in 1979 to develop uniform standards for
interindustry electronic interchange of business transactions—electronic data
interchange (EDI). The result was the X12 standard.

The X12 body develops, maintains, interprets, and promotes the proper use of the ASC
standard. Data Interchange Standards Association (DISA) publishes the X12 standard.
The X12 body comes together three times a year to develop and maintain EDI
standards. Its main objective is to develop standards to facilitate electronic interchange
relating to business transactions such as order placement and processing, shipping and
receiving information, invoicing, and payment information.

For more information on the X12 standard, visit the following Web sites:

http://www.disa.org and specifically http://www.x12.org/x12org/index.cfm

X12 implementation guides can be obtained from Washington Publishing Company:

http://www.wpc-edi.com; specifically, http://www.wpc-edi.com/tg4/tg4home.asp

http://www.disa.org
http://www.wpc-edi.com
http://www.wpc-edi.com/tg4/tg4home.asp
http://www.x12.org/x12org/index.cfm

Chapter 2 Section 2.2
Overview of the ASC X12 OTD Library ASC X12 Version Support

ASC X12 OTD Library User’s Guide 11 SeeBeyond Proprietary and Confidential

ASC X12 messages have a message structure, which indicates how data elements are
organized and related to each other for a particular EDI transaction. In the ICAN Suite,
message structures are defined as OTDs. Each OTD consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular ASC X12 EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The transaction set structure of an invoice that is sent from one trading partner to
another defines the header, trailer, segments, and data elements required by invoice
transactions. The ASC X12 OTD Library for a specific version includes transaction set
structures for each of the transactions available in that version. You can use these
structures as provided, or customize them to suit your business needs.

eGate Integrator uses Object Type Definitions based on ASC X12 message structures to
verify that the data in the messages coming in or going out is in the correct format.
There is a message structure for each ASC X12 transaction.

The list of transactions provided is different for each version of ASC X12.

The ASC X12 OTD Library provides ASC X12 OTDs that you can use to build ICAN
Projects for interfacing with ASC X12 systems. You can use the OTDs standalone with
eGate Integrator or in combination with eXchange Integrator and eGate Integrator.

2.2 ASC X12 Version Support
This product includes OTDs for the following X12 versions.

The library OTDs only accept messages with all the envelope segment information. If
you need to generate a custom OTD without an envelope segment, use the SEF OTD
wizard as described in “Creating ASC X12 OTDs from SEF Files” on page 24.

Table 2 Supported X12 Versions

4010
4011
4012

4020
4021
4022

4030
4031
4032

4040
4041
4042

4050
4051
4052

4060
4061

Chapter 2 Section 2.3
Overview of the ASC X12 OTD Library SEF File Support

ASC X12 OTD Library User’s Guide 12 SeeBeyond Proprietary and Confidential

2.3 SEF File Support
This product supports SEF versions 1.5 and 1.6 when the SEF OTD wizard is used to
build custom OTDs. For more information about the SEF OTD wizard, refer to
“Creating ASC X12 OTDs from SEF Files” on page 24.

The SEF OTD wizard does not handle the following information and sections:

In the .SEMREFS section, semantic rules with its type of the “exit routine” are
ignored as per SEF specification. An exit routine specifies an external routine (such
as a COM-enabled server program supporting OLE automation) to run for
translators or EDI data analyzers.

The .TEXT sections (including subsections such as .TEXT,SETS, .TEXT,SEGS,
.TEXT,COMS, .TEXT,ELMS, .TEXT,SEGS) are ignored due to the fact that these
sections store information about changes in a standard's text, such as notes,
comments, names, purposes, descriptions, titles, semantic notes, explanations, and
definitions.

2.4 ASC X12 Validation Support
Within each X12 OTD are Java methods and Java bean nodes for handling validation
(see “performValidation” on page 39). The marshal and unmarshal methods of the
envelope OTDs handle enveloping and de-enveloping (see “marshal” on page 38 and
“unmarshal” on page 44). No pre-built translations are supplied with the OTD
libraries; these can be built in the Java Collaboration Editor.

X12 OTDs have validations and translations, but a validation does not generate an
acknowledgment transaction. Instead, it generates a string.

The output string of the validation (see “check” on page 30 and “checkAll” on
page 30) is in XML format conforming to the X12OTDErrors.xsd file. Refer to
“Contents of the X12OTDErrors.xsd File” on page 46 for more information. For a
sample of the validation output XML, refer to “Sample of Validation Output XML” on
page 47.

2.5 On Demand Parsing
For performance enhancement reasons, the unmarshal() method does not unmarshal
the entire message to the leaf element and subelement level. Instead, it does the
following:

Unmarshals the incoming message at the segment and composite level. In other
words, the OTD checks for all relevant segments and composites and reports any
missing or extra segments or composites.

Reports excess trailing delimiter for elements and composites.

Chapter 2 Section 2.6
Overview of the ASC X12 OTD Library Alternative Formats: ANSI and XML

ASC X12 OTD Library User’s Guide 13 SeeBeyond Proprietary and Confidential

This is also referred to as “parse on demand,” meaning that elements within a segment
or composite are not unmarshaled until an element in that segment or composite is
accessed by a getxxx() method invoked in a Collaboration or during marshaling. The
OTD may assign unmarshaled segments and composites to a pool that is ready to be
freed from memory by the Java Virtual Machine (JVM). Once these segments or
composites are freed from memory, they become unparsed. If the element within
segment or composite is accessed again, the OTD reparses the segment or composite.

By default, X12 OTDs set no limit of parsed segments or composites held in memory.
You can specify a limit for parsed and freed segments or composites by using the
following methods at the OTD root levels:

setMaxParsedSegsComsNum() method (“setMaxParsedSegsComsNum” on
page 42

setMaxFreedSegsComsNum() method (“setMaxFreedSegsComsNum” on page 42)

You can use these methods to set and control the runtime memory use of the
unmarshaling process.

2.6 Alternative Formats: ANSI and XML
The X12 OTDs accept either standard ANSI X12 format or XML format as input, by
default; you do not need to specify the input format for existing Business Processes or
Collaborations.

By default, the OTD output is ANSI. To change the output to XML, use the
setXmlOutput (boolean) method. For information, refer to “setXmlOutput” on page 43.

To verify whether the output is XML, use the getXmlOutput() method. For information,
refer to “getXmlOutput” on page 37.

2.6.1. XML Format for X12
Because there is XML standard for X12, the ASC X12 OTD Library uses Open Business
Objects for EDI (OBOE) as the XML format for X12.

XML X12 DTD

The XML X12 DTD is as follows:

<!ELEMENT envelope (segment, segment?, functionalgroup+, segment)>
<!ATTLIST envelope format CDATA #IMPLIED>

<!ELEMENT functionalgroup (segment, transactionset+, segment)>

<!ELEMENT transactionset (table+)>
<!ATTLIST transactionset code CDATA #REQUIRED>
<!ATTLIST transactionset name CDATA #IMPLIED>

<!ELEMENT table (segment)+>
<!ATTLIST table section CDATA #IMPLIED>

Chapter 2 Section 2.6
Overview of the ASC X12 OTD Library Alternative Formats: ANSI and XML

ASC X12 OTD Library User’s Guide 14 SeeBeyond Proprietary and Confidential

<!ELEMENT segment ((element | composite)+, segment*)>
<!ATTLIST segment code CDATA #REQUIRED>
<!ATTLIST segment name CDATA #IMPLIED>

<!ELEMENT composite (element)+>
<!ATTLIST composite code CDATA #REQUIRED>
<!ATTLIST composite name CDATA #IMPLIED>

<!ELEMENT element (value)>
<!ATTLIST element code CDATA #REQUIRED>
<!ATTLIST element name CDATA #IMPLIED>

<!ELEMENT value (#PCDATA)>
<!ATTLIST value description CDATA #IMPLIED>

Sample XML X12 Output

Below is an excerpt of the XML X12 output for the 4010 850 transaction.
envelope format="X12">
 <segment code="ISA" name="Interchange Control Header">
 <element code="I01" name="Authorization Information Qualifier">
 <value>00</value>
 </element>
 <element code="I02" name="Authorization Information">
 <value/>
 </element>
 <element code="I03" name="Security Information Qualifier">
 <value>00</value>
 </element>
 <element code="I04" name="Security Information">
 <value/>
 </element>
 <element code="I05" name="Interchange ID Qualifier">
 <value>01</value>
 </element>
 <element code="I06" name="Interchange Sender ID">
 <value>9012345720000 </value>
 </element>
 <element code="I05" name="Interchange ID Qualifier">
 <value>01</value>
 </element>
 <element code="I07" name="Interchange Receiver ID">
 <value>9088877320000 </value>
 </element>
 <element code="I08" name="Interchange Date">
 <value>011001</value>
 </element>
 <element code="I09" name="Interchange Time">
 <value>1718</value>
 </element>
 <element code="I10" name="Interchange Control Standards Identifier">
 <value>U</value>
 </element>
 <element code="I11" name="Interchange Control Version Number">
 <value>00200</value>
 </element>
 <element code="I12" name="Interchange Control Number">
 <value>000000001</value>
 </element>
 <element code="I13" name="Acknowledgment Requested">
 <value>0</value>
 </element>
 <element code="I14" name="Usage Indicator">
 <value>T</value>
 </element>
 <element code="I15" name="Component Element Separator">
 <value>^</value>
 </element>
 </segment>

Sample of ANSI Output

Below is an excerpt of the same transaction in ANSI format:

ISA*00* *00* *01*9012345720000 *01*9088877320000
*011001*1718*U*00200*000000001*0*T*:~GS*PO*901234572000*908887732000*
20011001*1615*1*T*004010~ST*850*0001~BEG*01*BK*99AKDF9DAL393*39483920

Chapter 2 Section 2.7
Overview of the ASC X12 OTD Library Errors and Exceptions

ASC X12 OTD Library User’s Guide 15 SeeBeyond Proprietary and Confidential

193843*20011001*AN3920943*AC*IBM*02*AE*02*BA~CUR*AC*USA*.2939*SE*USA*
IMF*002*20011001*0718*021*20011001*1952*038*20011001*1615*002*2001100
1*0718*021*20011001*1952~REF*AB*3920394930203*GENERAL
PURPOSE*BT:12345678900987654321768958473:CM:500:AB:3920394930203~PER*
AC*ARTHUR JONES*TE*(614)555-1212*TE*(614)555-1212*TE*(614)555-
1212*ADDL CONTACT The figure below shows an example of the same
transaction, an X12 997 Functional Acknowledgment, using standard
ANSI format.

2.7 Errors and Exceptions
For all X12 OTDs, including the two envelope OTDs, if the incoming message cannot be
parsed (for example, if the OTD cannot find the UNB segment), then the unmarshal()
method generates a com.stc.otd.runtime.UnmarshalException.

You can also use the isUnmarshalComplete() method on an OTD to verify whether the
unmarshal() method completed successfully. Successful completion does not guarantee
that the OTD instance is free of data errors within segments and composites because
elements are not unmarshaled until the first invocation of the leaf element
getElementXxxx() method of a segment or composite. For more information, refer to
“On Demand Parsing” on page 12. Encountering this triggers an automatic
background unmarshal of the entire segment. Note that the value returned by the
isUnmarshalComplete() method is not influenced by the outcome of the automatic
background unmarshal; instead, its value reflects what was set by the explicit
invocation of the unmarshal() method.

ASC X12 OTD Library User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3

Installing the ASC X12 OTD Library

This chapter describes how to install the X12 OTD Library and its documentation. This
chapter also includes the system requirements and supported operating systems for the
ASC X12 OTD Library.

What’s in This Chapter

System Requirements on page 16

Supported Operating Systems on page 16

Installing the ASC X12 OTD Library on page 17

Increasing the Enterprise Designer Heap Size on page 18

3.1 System Requirements
Each X12 OTD .sar file requires approximately 8 MB disk space; the combined disk
space required to load all .sar files is approximately 140 MB.

Due to the size of the X12 OTDs, it is recommended that you increase the heap size
property of the Enterprise Designer. For information, refer to “Increasing the
Enterprise Designer Heap Size” on page 18.

Other than that, the system requirements for the X12 OTD Library are the same as those
for eGate Integrator and eInsight Business Process Manager. For information, refer to
the SeeBeyond ICAN Suite Installation Guide.

3.2 Supported Operating Systems
The ASC X12 OTD Library is available for the following operating systems:

Windows XP, Windows 2000, and Windows Server 2003

HP Tru64 V5.1A

HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23)

IBM AIX 5.1L and 5.2

Red Hat Enterprise Linux Advanced Server 2.1 (Intel x86)

Chapter 3 Section 3.3
Installing the ASC X12 OTD Library Installing the ASC X12 OTD Library

ASC X12 OTD Library User’s Guide 17 SeeBeyond Proprietary and Confidential

Red Hat Linux 8 (Intel x86)

Sun Solaris 8 and 9

3.3 Installing the ASC X12 OTD Library
During the ASC X12 OTD Library installation process, the Enterprise Manager, a Web-
based application, is used to select and upload products as .sar files from the ICAN
Suite installation CD-ROM to the Repository.

The installation process includes the following steps:

Installing the Repository

Uploading products to the Repository

Downloading components (such as Enterprise Designer and Logical Host)

Viewing product information home pages

Follow the instructions for installing the eGate Integrator in the SeeBeyond ICAN Suite
Installation Guide, and include the steps below to install the ASC X12 OTDs. You must
have uploaded a license.sar to the ICAN Repository that includes a license for the ASC
X12 OTD Library.

To install the ASC X12 OTD Library

1 After uploading the eGate.sar or eInsightESB.sar file to the ICAN Repository,
select and upload the items below as described in the SeeBeyond ICAN Suite
Installation Guide:

The .sar file for the OTDs to be used, for example
ASC_X12_OTD_Lib_v4050.sar (to install version 4050)

X12_OTD_Docs.sar (to install the user’s guide)

SEF_OTD_Wizard.sar (to install the SEF OTD wizard from Products CD 3 to be
able to build SEF OTDs)

2 Click the DOCUMENTATION page, click ASC X12 OTD Library in the left pane,
and click ASC X12 OTD Library User’s Guide to download the documentation in
PDF form.

3 Start (or restart) the Enterprise Designer, and click Update Center on the Tools
menu. The Update Center shows a list of components ready for updating.

4 Click Add All (the button with a doubled chevron pointing to the right). All
modules move from the Available/New pane to the Include in Install pane.

5 Click Next and, in the next window, click Accept to accept the license agreement.

6 When the progress bars indicate the download has ended, click Next.

7 Review the certificates and installed modules, and then click Finish.

8 When prompted to restart Enterprise Designer, click OK.

Chapter 3 Section 3.4
Installing the ASC X12 OTD Library Increasing the Enterprise Designer Heap Size

ASC X12 OTD Library User’s Guide 18 SeeBeyond Proprietary and Confidential

3.4 Increasing the Enterprise Designer Heap Size
Due to the size of the ASC X12 OTDs, you may need to increase the heap size property
of the Enterprise Designer. If the heap size is not increased, out of memory errors may
occur.

To increase the Enterprise Designer heap size

1 On the Tools menu in Enterprise Designer, click Options. The Options Setup
dialog box appears.

2 Set the configured heap size for the Enterprise Designer, OTD Tester, and JCE Tester
to no less than 512 MB, and click OK.

Figure 1 Increasing Enterprise Designer Heap Size

3 Restart Enterprise Designer.

3.4.1 Resolving Memory Errors at Enterprise Designer Startup
If an out of memory error occurs at Enterprise Designer startup, change the setting in
the heapSize.bat file. This file is resides in the folder ICAN_Suite\edesigner\bin,
where ICAN_Suite is the folder where eGate Integrator is installed.

Open the file with a text editor, and change the heap size settings to no less than
512 MB. Save the file, and restart the Enterprise Designer.

ASC X12 OTD Library User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 4

Using ASC X12 OTDs

This chapter describes how you use ASC X12 OTDs provided in the ASC X12 OTD
Library, such as customizing OTDs and building ASC X12 Collaborations.

What’s in This Chapter

Displaying ASC X12 OTDs on page 19

Building ASC X12 OTD Collaborations on page 20

Customizing the ASC X12 OTDs on page 23

Possible Differences in Output When Using Pass-Through on page 26

4.1 Displaying ASC X12 OTDs
After installing the ASC X12 OTDs, you can view the OTDs in the OTD Editor as
described below.

To display ASC X12 OTDs

1 In the Project Explorer tab of Enterprise Designer, expand the following folders:

SeeBeyond

OTD Library

X12

Folder containing the X12 version

The Project Explorer tab displays the installed OTDs per ASC X12 version, for
example v4010.

Chapter 4 Section 4.2
Using ASC X12 OTDs Building ASC X12 OTD Collaborations

ASC X12 OTD Library User’s Guide 20 SeeBeyond Proprietary and Confidential

Figure 2 OTDs for ASC X12 Version 4010

The Project Explorer tab displays the OTDs available for the ASC X12 version folder
selected. The table below described the OTD naming conventions.

The folder also includes a Metadata folder, which holds the SEF file for the OTDs. You
can use the SEF file to customize the OTD as described in Customizing the ASC X12
OTDs on page 23.

4.2 Building ASC X12 OTD Collaborations
This section describes how you build Java Collaborations that use the ASC X12 OTDs
provided in the ASC X12 OTD Library.

To customize the OTDs before building the Collaboration, refer to “Customizing the
ASC X12 OTDs” on page 23.

Before you can build the Collaboration, you must have installed the .sar file for the
particular OTD to be used. For information, see “Installing the ASC X12 OTD
Library” on page 17.

Table 3 OTD Naming Convention

x12_ Protocol name

vnnnn_ ASC X12 version

997_FuncAckn Transaction code and transaction name abbreviation

_Full Fully enveloped OTD version that includes the inner and
outer envelopes

Chapter 4 Section 4.2
Using ASC X12 OTDs Building ASC X12 OTD Collaborations

ASC X12 OTD Library User’s Guide 21 SeeBeyond Proprietary and Confidential

To build ASC X12 OTD Collaborations

1 In the Project Explorer tab of Enterprise Designer, right-click the Project for which
you want to create a Collaboration, click New, and click Collaboration Definition
(Java). The Collaboration Definition Wizard dialog box appears.

2 Enter the name of the Collaboration and click Next. The Select Web Service
Operation page appears.

3 Select to the Web service to be used for this Collaboration, for example,
SeeBeyond>eGate>JMS>receive, and click Next.

Figure 3 Selecting the Web Service

The Select OTDs page appears.

4 To use envelopes OTDs, under Look In, navigate to the envelopes by double-
clicking the folders below. If the Collaboration does not use enveloping, continue
with step 6.

SeeBeyond

OTD Library

X12

envelope

The Look In area displays the envelope OTDs.

5 Double-click the envelope(s) to be used. This adds the envelopes under Selected
OTDs.

Chapter 4 Section 4.2
Using ASC X12 OTDs Building ASC X12 OTD Collaborations

ASC X12 OTD Library User’s Guide 22 SeeBeyond Proprietary and Confidential

Figure 4 Adding Envelopes to the Collaboration

6 Under Look In, navigate to the OTDs by double-click the following folders:

SeeBeyond

OTD Library

X12

Folder indicating the ASC X12 version, such as v4010

The Look In area displays the OTDs for the selected ASC X12 directories. The table
below describes the naming convention for the OTDs.

7 Double-click the OTDs to be used. This adds the OTDs under Selected OTDs.

Table 4 OTD Naming Convention

x12_ Protocol name

vnnnn_ ASC X12 version

997_FuncAckn Transaction code and transaction name abbreviation

_Full Fully enveloped OTD version that includes the inner and
outer envelopes

Chapter 4 Section 4.3
Using ASC X12 OTDs Customizing the ASC X12 OTDs

ASC X12 OTD Library User’s Guide 23 SeeBeyond Proprietary and Confidential

Figure 5 Adding OTDs to the Collaboration

8 Click Finish. The Collaboration appears in the Collaboration Editor. You can now
use the eGate and OTD methods to build the business logic for the Collaboration.
For information about the ASC X12 OTD methods, refer to “Java Methods for ASC
X12 OTDs” on page 28.

4.3 Customizing the ASC X12 OTDs
OTDs provided in the OTD Library cannot be customized. However, the OTD Library
provides the SEF file to allow you to modify the file and then rebuild it. The SEF file
contains definitions for all transaction sets of the ASC X12 version.

You can then rebuild the OTD with the customized SEF file as described in the
following section. The procedure below describes how to save the SEF file locally for
editing.

To customize ASC X12 OTDs

1 In the Project Explorer tab of Enterprise Designer, expand the following folders:

SeeBeyond

OTD Library

X12

Folder indicating the ASC X12 version, such as v4010

Metadata

The metadata folder displays the available SEF file.

Chapter 4 Section 4.4
Using ASC X12 OTDs Creating ASC X12 OTDs from SEF Files

ASC X12 OTD Library User’s Guide 24 SeeBeyond Proprietary and Confidential

Figure 6 Saving ASC X12 OTD

2 Right-click the SEF file to be customized and click Export. The Save As dialog box
appears.

3 Select a location for the SEF file and click Save.

4 Use a SEF editor to customize the SEF file.

5 Use the SEF OTD wizard to rebuild the OTD as described in the next section.

4.4 Creating ASC X12 OTDs from SEF Files
This section describes how you create ASC X12 OTDs using SEF files. The ASC X12
OTD Library includes the SEF files for the OTDs to allow you to customize the OTD as
described in the section above. Once you have tailored the SEF file to your business
requirements, you can then use the procedure below to recreate the OTD.

To create OTDs from SEF files, you use the SEF OTD wizard to build the OTD using
selected SEF files. The SEF OTD wizard is packaged separately from the OTD Library,
so make sure that you uploaded the SEF_OTD_Wizard.sar to the ICAN Repository,
and used the Update Center in Enterprise Designer to install it. For information, refer
to “Installing the ASC X12 OTD Library” on page 16.

To create ASC X12 OTDs from SEF files

1 In the Explorer tab of the Enterprise Designer, right click the Project, click New, and
click Object Type Definition. The New Object Type Definition dialog box
appears.

Chapter 4 Section 4.4
Using ASC X12 OTDs Creating ASC X12 OTDs from SEF Files

ASC X12 OTD Library User’s Guide 25 SeeBeyond Proprietary and Confidential

Figure 7 Creating ASC X12 OTDs

2 Click SEF and click Next. The Select SEF File(s) page appears.

3 In the Look In box, navigate to the folder where the SEF file for this OTD resides,
and then double-click the SEF file. This adds the file to the selection box as shown
below.

Figure 8 Selecting the SEF File

4 Click Next. The Select OTD Options page appears.

Chapter 4 Section 4.5
Using ASC X12 OTDs Possible Differences in Output When Using Pass-Through

ASC X12 OTD Library User’s Guide 26 SeeBeyond Proprietary and Confidential

Figure 9 Selecting the OTD Options

5 To include the inner and outer envelopes, select the Include Outer and Inner
Envelopes option.

6 To use local codes for segment IDs, select the Segment IDs Using Local Codes
option and enter the code.

7 To avoid the OTD using eInsight interfaces for date and time types, select the Do
Not Use Interfaces for Date and Time Types option.

Select this option to make the OTD compatible with Collaborations that were
created with earlier X12 OTD Library versions.

Selecting this option creates OTDs that do not support mapping a date or time node
to another node of eInsight’s date and time type in a Business Process.

8 Click Finish. The OTD Editor appears, displaying the OTD.

4.5 Possible Differences in Output When Using Pass-
Through

If you are using pass-through, the output file contains essentially the same data as the
input file.

Certain differences in output, based on variations in acceptable interpretation of the
information, are acceptable, provided that the data conforms to the formats specified
for the elements. For example:

Chapter 4 Section 4.5
Using ASC X12 OTDs Possible Differences in Output When Using Pass-Through

ASC X12 OTD Library User’s Guide 27 SeeBeyond Proprietary and Confidential

If the input file includes a six-digit date, the output file might represent this as an
eight-digit value. For example, 040715 in the input file might be represented as
20040705 in the output file.

The number of trailing zeros after a decimal point might vary. For example, an
input value of 10.000 might be represented as 10 in the output file.

The reason these changes occur is that, during pass-through, certain data fields are
parsed and stored as Java objects other than strings; for example, Date or Double.

The actual value of all the information must remain the same.

ASC X12 OTD Library User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 5

Java Methods for ASC X12 OTDs

This chapter describes the Java methods available for ASC X12 OTDs.

What’s in This Chapter

Get and Set Methods on page 28

Setting Delimiters on page 29

Available Methods on page 30

5.1 Get and Set Methods
The OTDs in the ASC X12 OTD Library contain the Java methods that enable you to set
and get the delimiters, which in turn extend the functionality of the ASC X12 OTD
Library.

The following get and set methods are available under the root node and at the
xxx_Outer, xxx_Inner, and xxx levels:

setDefaultX12Delimiters on page 40

getElementSeparator on page 32 and setElementSeparator on page 41

getFGValidationResult on page 33

getICValidationResult on page 33

getInputSource on page 33

getMaxDataError on page 34 and setMaxDataError on page 41

getMaxFreedSegsComsNum on page 34 and setMaxFreedSegsComsNum on
page 42

getMaxParsedSegsComsNum on page 34and setMaxParsedSegsComsNum on
page 42

getMsgValidationResult on page 35

getRepetitionSeparator on page 35 and setRepetitionSeparator on page 42

getSegmentCount on page 35

getSegmentTerminator on page 36 and setSegmentTerminator on page 43

getSubelementSeparator on page 36 and setSubelementSeparator on page 43

Chapter 5 Section 5.2
Java Methods for ASC X12 OTDs Setting Delimiters

ASC X12 OTD Library User’s Guide 29 SeeBeyond Proprietary and Confidential

getTSValidationResult on page 36

getUnmarshalError on page 37

getXmlOutput on page 37

The following methods are available from the loop elements:

getLoopxxx on page 34 and setLoopxxx on page 41

getSegmentCount on page 35

setXmlOutput on page 43

Note: The get and set methods are automatically generated from the bean nodes. On
occasion, this means get and set methods may be available that are not beneficial,
such as setFGValidationResult.

5.2 Setting Delimiters
The OTDs must include some way for delimiters to be defined so that they can be
mapped successfully from one OTD to another. The ASC X12 delimiters are as follows:

Data element separator (default is an asterisk)

Subelement separator/component element separator (default is a colon)

Repetition separator (version 4020 and later) (default is a plus sign)

Segment terminator (default is a tilde)

The repetition separator and subelement separator are explicitly specified in the
interchange header segment. The other two delimiters are implicitly defined within the
structure of the interchange header segment, by their first use. For example, after the
fourth character defines the data element separator, the same character is used
subsequently to delimit all data elements; and after the 107th character defines the
segment terminator, the same character is used subsequently to delimit all segments.

5.2.1 Incoming Message
Because the fully-enveloped OTD automatically detects delimiters in an incoming
message that has the interchange header segment while unmarshaling, do not specify
delimiters for the incoming message. Any delimiters that are set before unmarshaling
are ignored, and the unmarshal() method picks up the delimiter used in the ISA segment
of the incoming message.

For non-enveloped OTDs, if the incoming message uses non-standard delimiters, set
the delimiters on the OTD instance before the unmarshal() method is invoked.

You can set the delimiters in the Java Collaboration Editor using the methods or bean
nodes that are provided in the OTDs. Use the following methods to specify delimiters:

setDefaultX12Delimiters on page 40

setElementSeparator on page 41

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 30 SeeBeyond Proprietary and Confidential

setSegmentTerminator on page 43

setSubelementSeparator on page 43

setRepetitionSeparator on page 42

setSubelementSeparator on page 43)

If the input data is already unmarshaled into an ASC X12 OTD, you can use the get
methods to retrieve the delimiters from the input data. For information, refer to “Get
and Set Methods” on page 28.

5.2.2 Outgoing Message
If an OTD outputs ANSI X12 data rather than XML, you must specify the delimiters
only if non-standard delimiters are used. If the delimiters are not specified, the industry
standard delimiters are used. For information about which methods to use for delimiter
setting, refer to the section above.

For fully-enveloped OTDs, you can also set the subelement separator and repetition
separator from the corresponding elements within the ISA segment.

5.3 Available Methods
This section describes the signature and description for each available ASC X12 OTD
method.

check

Signature

public java.lang.String[] check()

Description

Validates the content of the OTD data tree at runtime and returns a string array of
validation errors for the message body only; validation errors for envelope segments
are not included. To include envelope segments, see the checkAll() method below.

The method returns null if there are no validation errors.

Exceptions

None.

checkAll

Signature

public java.lang.String[] checkAll()

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 31 SeeBeyond Proprietary and Confidential

Description

Validates the content of the OTD data tree at runtime and returns a string array of
validation errors for the message body and the envelope segments. The checkAll()
method is available only for full-enveloped OTDs.

The method returns null if there are no validation errors.

Exceptions

None.

clone

Signature

public java.lang.Object clone()

Description

Creates and returns a copy of this OTD instance.

Exceptions

java.lang.CloneNotSupportedException

countxxx

Signature

public int countxxx()

where xxx is the bean name for repeatable nodes.

Description

Counts the repetitions of the node at runtime.

Exceptions

None.

countLoopxxx

Signature

public int countLoopxxx()

where xxx is the bean node for a repeatable segment loop.

Description

Counts the repetitions of the loop at runtime.

Exceptions

None.

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 32 SeeBeyond Proprietary and Confidential

getxxx

Signature

public item getxxx()

where xxx is the bean name for the node and where item is the Java type for the node.

public item[] getxxx()

where xxx is the bean name for the repeatable node and where item[] is the Java type for
the node.

Description

Returns the node object or the object array for the node.

Exceptions

None.

getAllErrors

Signature

public java.lang.String[] getAllErrors()

Description

Returns all the validation errors as a string array. These validation errors include errors
encountered during unmarshaling input data and the validation results from both the
message and the envelope segments.

Exceptions

None.

getDecimalMark

Signature

public char getDecimalMark()

Description

Returns the decimal mark.

Exceptions

None.

getElementSeparator

Signature

public char getElementSeparator()

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 33 SeeBeyond Proprietary and Confidential

Description

Gets the elementSeparator character.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char elmSep=myOTD.getElementSeparator();

getFGValidationResult

Signature

public com.stc.otd.runtime.edi.FGError[] getFGValidationResult()

Description

Returns the validation errors for the functional group envelope in the format of an
FGError array. This method is available for fully enveloped OTDs at the Outer and
Inner root levels.

Exceptions

None.

getICValidationResult

Signature

public com.stc.otd.runtime.edi.ICError[] getICValidationResult()

Description

Returns the validation errors for the interchange envelope in the format of an ICError
array. This method is available only at the Outer root level in fully enveloped OTDs.

Exceptions

None.

getInputSource

Signature

public byte[] getInputSource()

Description

Returns the byte array of the original input data source.

Exceptions

None.

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 34 SeeBeyond Proprietary and Confidential

getLoopxxx

Signature

public item getLoopxxx()

where Loopxxx is the bean name for the segment loop and where item is the Java type
for the segment loop.

public item[] getLoopxxx()

where Loopxxx is the bean name for the repeatable segment loop and where item[] is the
Java type for the repeatable segment loop.

Description

Returns the segment loop object or the object array for the segment loop.

Exceptions

None.

getMaxDataError

Signature

public int getMaxDataError()

Description

Returns the maximum number of message validation errors held in the
msgValidationResult bean node. If this method returns -1 there is no limit of how many
errors can be reported.

Exceptions

None.

getMaxFreedSegsComsNum

Signature

public int getMaxFreedSegsComsNum()

Description

Returns the maximum number of segment and composite objects marked to be freed
from memory. For more information, refer to “On Demand Parsing” on page 12.

Exceptions

None.

getMaxParsedSegsComsNum

Signature

public int getMaxParsedSegsComsNum()

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 35 SeeBeyond Proprietary and Confidential

Description

Returns the maximum number of segments and composite objects to be parsed. For
more information, refer to “On Demand Parsing” on page 12.

Exceptions

None.

getMsgValidationResult

Signature

public com.stc.otd.runtime.check.sef.DataError[]
getMsgValidationResult()

Description

Returns the validation errors for the message body. Use this method after the
performValidation() method. For information, refer to “performValidation” on page 39.

This method is available only at the Outer, Inner and transaction set levels in fully
enveloped OTDs.

Exceptions

None.

getRepetitionSeparator

Signature

public char getRepetitionSeparator()

Description

Returns the repetition separator character.

Exceptions

None.

Example

x12_4020.x12_4020_850_PurcOrde_Outer myOTD=new x12_4020.x12_4020_850_
PurcOrde_Outer();
......
......
char repSep=myOTD.getRepetitionSeparator();

getSegmentCount

Signature

public int getSegmentCount()

Description

Returns the segment count at the current level.

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 36 SeeBeyond Proprietary and Confidential

Exceptions

None.

getSegmentTerminator

Signature

public char getSegmentTerminator()

Description

Returns the segment terminator character.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char segTerm=myOTD.getSegmentTerminator();

getSubelementSeparator

Signature

public char getSubelementSeparator()

Description

Returns the subelement/composite element separator character.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char subeleSep=myOTD.getSubelementSeparator();

getTSValidationResult

Signature

public com.stc.otd.runtime.edi.TSError[] getTSValidationResult()

Description

Returns the validation errors for the message envelope (segments UNH/UIH and
UNT/UIT) in the format of an TSError array.

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 37 SeeBeyond Proprietary and Confidential

This methods is available at the Outer, Inner, and transaction set levels in fully
enveloped OTDs. It is also available at the top root level of non-enveloped OTDs.

Exceptions

None.

getUnmarshalError

Signature

public com.stc.otd.runtime.check.sef.DataError[] getUnmarshalError()

Description

Returns the unmarshal errors as an array of the DataError objects. The unmarshal
errors are reported from an UnmarshalException generated during unmarshaling.
Usually these errors are associated with otd.isUnmarshalComplete=false.

Exceptions

None.

getXmlOutput

Signature

public boolean getXmlOutput()

Description

Verifies whether the X12 OTD will output data in XML format.

For more information, refer to “Alternative Formats: ANSI and XML” on page 13.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
boolean isXml=myOTD.getXmlOutput();

hasxxx

Signature

public boolean hasxxx()

where xxx is the bean name for the node.

Description

Verifies if the node is present in the runtime data.

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 38 SeeBeyond Proprietary and Confidential

Exceptions

None.

hasLoopxxx

Signature

public boolean hasLoopxxx()

where Loopxxx is the bean name for the segment loop.

Description

Verifies if the segment loop is present in the runtime data.

Exceptions

None.

isUnmarshalComplete

Signature

public boolean isUnmarshalComplete()

Description

Flag for whether or not unmarshaling completed successfully. For more information,
see “On Demand Parsing” on page 12 and “Errors and Exceptions” on page 15.

Exceptions

None.

marshal

Signature

public void marshal(com.stc.otd.runtime.OtdOutputStream)

Description

Marshals the internal data tree into an output stream.

Exceptions

java.io.IOException for output problems

com.stc.otd.runtime.MarshalException for an inconsistent internal tree

marshalToBytes

Signature

public byte[] marshalToBytes()

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 39 SeeBeyond Proprietary and Confidential

Description

Marshals the internal data tree into a byte array.

Exceptions

java.io.IOException for output problems

com.stc.otd.runtime.MarshalException for an inconsistent internal tree

marshalToString

Signature

public java.lang.String marshalToString()

Description

Marshals the internal data tree into a String.

Throws

java.io.IOException for input problems

com.stc.otd.runtime.MarshalException for an inconsistent internal tree

performValidation

Signature

public void performValidation()

Description

Performs validation on the OTD instance unmarshaled from input data.

You can access the validation results from a list of nodes, such as allErrors,
msgValidationResult, and the node for reporting envelope errors (such as
ICValidationResult, FGValidationResult, and TSValidationResult).

For more information, refer to “ASC X12 Validation Support” on page 12.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
myOTD.performValidation();

reset

Signature

public void reset()

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 40 SeeBeyond Proprietary and Confidential

Description

Clears out any data and resources held by this OTD instance.

Exceptions

None.

setxxx

Signature

public void setxxx(item)

where xxx is the bean name for the node and where item is the Java type for the node.

public void setxxx(item[])

where xxx is the bean name for the repeatable node and where item[] is the Java type for
the node.

Description

Sets the node object or the object array for the node.

Exceptions

None.

setDefaultX12Delimiters

Signature

public void setDefaultX12Delimiters()

Description

Sets the current delimiters to the default ASC X12 delimiters:

segment terminator = ~

element separator = *

subelement separator = :

repetition separator = +

For more information, refer to “Setting Delimiters” on page 29.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
myOTD.setDefaultX12Delimiters();

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 41 SeeBeyond Proprietary and Confidential

setElementSeparator

Signature

public void setElementSeparator(char)

Description

Sets the element separator character. For more information, refer to “Setting
Delimiters” on page 29.

Exceptions

None

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char c='+';
myOTD.setElementSeparator(c);

setLoopxxx

Signature

public void setLoopxxx(item)

where Loopxxx is the bean name for the segment loop and where item is the Java type
for the segment loop.

public void setLoopxxx(item[])

where Loopxxx is the bean name for the repeatable segment loop and where item[] is the
Java type for the repeatable segment loop.

Description

Sets the segment loop object or the object array for the segment loop.

Exceptions

None.

setMaxDataError

Signature

public void setMaxDataError(int)

Description

Returns the maximum number of message validation errors held in the
msgValidationResult bean node. If this method returns -1 there is no limit of how many
errors can be reported.

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 42 SeeBeyond Proprietary and Confidential

Exceptions

None.

setMaxFreedSegsComsNum

Signature

public void setMaxFreedSegsComsNum(int)

Description

Sets the maximum number of segment and composite objects marked to be freed from
memory. For more information, refer to “On Demand Parsing” on page 12.

Exceptions

None.

setMaxParsedSegsComsNum

Signature

public void setMaxParsedSegsComsNum(int)

Description

Sets the maximum number of segments and composite objects to be parsed. For more
information, refer to “On Demand Parsing” on page 12.

Exceptions

None.

setRepetitionSeparator

Signature

public void setRepetitionSeparator(char)

Description

Sets the repetition separator character. For more information, refer to “Setting
Delimiters” on page 29.

Exceptions

None.

Example

x12_4030.x12_4030_850_PurcOrde_Outer myOTD=new x12_4030.x12_4030_850_
PurcOrde_Outer();
......
......
char c='*';
myOTD.setRepetitionSeparator(c);

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 43 SeeBeyond Proprietary and Confidential

setSegmentTerminator

Signature

public void setSegmentTerminator(char)

Description

Sets the segment terminator character. For more information, refer to “Setting
Delimiters” on page 29.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char c='~';
myOTD.setSegmentTerminator(c);

setSubelementSeparator

Signature

public void setSubelementSeparator(char)

Description

Sets the subelement separator character. For more information, refer to “Setting
Delimiters” on page 29.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char c=':';
myOTD.setSubelementSeparator(c);

setXmlOutput

Signature

public void setXmlOutput(boolean)

Description

When used with the parameter set to true, this method causes the X12 OTD involved to
output XML.

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 44 SeeBeyond Proprietary and Confidential

When used with the parameter set to false, this method causes the X12 OTD to output
ANSI (which is the default output if this method is not used at all).

For more information, refer to “Alternative Formats: ANSI and XML” on page 13.

Exceptions

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
myOTD.setXmlOutput(true);

unmarshal

Signature

public void unmarshal(com.stc.otd.runtime.OtdInputStream)

Description

Unmarshals the given input into an internal data tree.

For more information “On Demand Parsing” on page 12 and “Errors and Exceptions”
on page 15.

Exceptions

java.io.IOException for output problems

com.stc.otd.runtime.UnmarshalException for a lexical or other mismatch

unmarshalFromBytes

Signature

public void unmarshalFromBytes(byte[])

Description

Unmarshals the given input byte array into an internal data tree.

Exceptions

java.io.IOException for input problems

com.stc.otd.runtime.UnmarshalException for an inconsistent internal tree

unmarshalFromString

Signature

public void unmarshalFromString(java.lang.String)

Chapter 5 Section 5.3
Java Methods for ASC X12 OTDs Available Methods

ASC X12 OTD Library User’s Guide 45 SeeBeyond Proprietary and Confidential

Description

Unmarshals the given input string into an internal data tree.

Exceptions

java.io.IOException for input problems

com.stc.otd.runtime.UnmarshalException for an inconsistent internal tree. This
typically occurs when the OTD does not recognize the incoming message as X12.

ASC X12 OTD Library User’s Guide 46 SeeBeyond Proprietary and Confidential

Appendix A

X12OTDErrors Schema File and Sample
XML

This appendix provides the contents of the X12OTDErrors.xsd file, which is the schema
file the validation output string conforms to. This appendix also includes a sample of
validation output XML. For more information, refer to “ASC X12 Validation Support”
on page 12 and “performValidation” on page 39.

What’s in This Chapter

Contents of the X12OTDErrors.xsd File on page 46

Sample of Validation Output XML on page 47

6.1 Contents of the X12OTDErrors.xsd File
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by Tony (TechLeader) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="X12OTDErrors">
 <xs:annotation>
 <xs:documentation>Validation Errors from an X12 OTD validation</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="X12ICError" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="X12FGError" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="X12TSError" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="X12DataError" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="X12ICError">
 <xs:annotation>
 <xs:documentation>Interchange Envelope Validation Error Structure. For TA1 generations</
xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="InteContNumb" type="xs:string"/>
 <xs:element name="InteContDate" type="xs:string"/>
 <xs:element name="InteContTime" type="xs:string"/>
 <xs:element name="InteNoteCode" type="xs:string"/>
 <xs:element name="ICErrorDesc" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="X12FGError">
 <xs:annotation>
 <xs:documentation>Functional Group Envelope Validation Error Structure. For AK1AK9
generations</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FuncIdenCode" type="xs:string"/>
 <xs:element name="GrouContNumb" type="xs:string"/>
 <xs:element name="NumbOfTranSetsIncl" type="xs:string"/>
 <xs:element name="FuncGrouSyntErroCode" type="xs:string"/>

Appendix A Section 6.2
X12OTDErrors Schema File and Sample XML Sample of Validation Output XML

ASC X12 OTD Library User’s Guide 47 SeeBeyond Proprietary and Confidential

 <xs:element name="FGErrorDesc" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="X12TSError">
 <xs:annotation>
 <xs:documentation>Transaction Set Envelope Validation Error Structure. For AK2AK5
generations</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TranSetIdenCode" type="xs:string"/>
 <xs:element name="TranSetContNumb" type="xs:string"/>
 <xs:element name="TranSetSyntErroCode" type="xs:string"/>
 <xs:element name="TSErrorDesc" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="X12DataError">
 <xs:annotation>
 <xs:documentation>Transaction Set (excluding envelopes) Validation Error Structure. For AK3AK4
generations</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Level" type="xs:short" minOccurs="0"/>
 <xs:element name="SegmIDCode" type="xs:string"/>
 <xs:element name="SegmPosiInTranSet" type="xs:int"/>
 <xs:element name="LoopIdenCode" type="xs:string" minOccurs="0"/>
 <xs:element name="SegmSyntErroCode" type="xs:short" minOccurs="0"/>
 <xs:element name="ElemPosiInSegm" type="xs:short"/>
 <xs:element name="CompDataElemPosiInComp" type="xs:short" minOccurs="0"/>
 <xs:element name="DataElemRefeNumb" type="xs:string" minOccurs="0"/>
 <xs:element name="DataElemSyntErroCode" type="xs:short"/>
 <xs:element name="CopyOfBadDataElem" type="xs:string" minOccurs="0"/>
 <xs:element name="RepeatIndex" type="xs:short" minOccurs="0"/>
 <xs:element name="ErrorCode" type="xs:int"/>
 <xs:element name="ErrorDesc" type="xs:string" minOccurs="0"/>
 <xs:element name="Severity" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

6.2 Sample of Validation Output XML
<X12OTDErrors>
 <X12ICError>
 <InteContNumb>000000001</InteContNumb>
 <InteContDate>041102</InteContDate>
 <InteContTime>1441</InteContTime>
 <InteNoteCode>021</InteNoteCode>
 <ICErrorDesc>Invalid Number of Included Groups Value</ICErrorDesc>
 </X12ICError>
 <X12FGError>
 <FuncIdenCode>PO</FuncIdenCode>
 <GrouContNumb>1</GrouContNumb>
 <NumbOfTranSetsIncl>2</NumbOfTranSetsIncl>
 <FuncGrouSyntErroCode>5</FuncGrouSyntErroCode>
 </X12FGError>
 <X12FGError>
 <FuncIdenCode>PO</FuncIdenCode>
 <GrouContNumb>1</GrouContNumb>
 <NumbOfTranSetsIncl>2</NumbOfTranSetsIncl>
 <FuncGrouSyntErroCode>4</FuncGrouSyntErroCode>
 <FGErrorDesc>Number of Included Transaction Sets Does Not Match Actual Count</FGErrorDesc>
 </X12FGError>
 <X12TSError>
 <TranSetIdenCode>850</TranSetIdenCode>
 <TranSetContNumb>0001</TranSetContNumb>
 <TranSetSyntErroCode>4</TranSetSyntErroCode>
 <TSErrorDesc>Number of Included Segments Does Not Match Actual Count</TSErrorDesc>
 </X12TSError>
 <X12DataError>
 <Level>1</Level>
 <SegmIDCode>MEA</SegmIDCode>
 <SegmPosiInTranSet>21</SegmPosiInTranSet>
 <LoopIdenCode/>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>4</ElemPosiInSegm>
 <DataElemRefeNumb>C001</DataElemRefeNumb>
 <DataElemSyntErroCode>10</DataElemSyntErroCode>
 <ErrorCode>15025</ErrorCode>
 <ErrorDesc>MEA_4 at 21: [Syntax rule E-Exclusion: One or None] Exclusion condition violated
because E0412</ErrorDesc>
 <Severity>ERROR</Severity>

Appendix A Section 6.2
X12OTDErrors Schema File and Sample XML Sample of Validation Output XML

ASC X12 OTD Library User’s Guide 48 SeeBeyond Proprietary and Confidential

 </X12DataError>
 <X12DataError>
 <Level>1</Level>
 <SegmIDCode>N4</SegmIDCode>
 <SegmPosiInTranSet>195</SegmPosiInTranSet>
 <LoopIdenCode>N1</LoopIdenCode>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>7</ElemPosiInSegm>
 <DataElemRefeNumb>1715</DataElemRefeNumb>
 <DataElemSyntErroCode>10</DataElemSyntErroCode>
 <CopyOfBadDataElem>CNT</CopyOfBadDataElem>
 <ErrorCode>15025</ErrorCode>
 <ErrorDesc>N1_N4_7 at 195 [CNT]: [Syntax rule E-Exclusion: One or None] Exclusion condition
violated because E0207</ErrorDesc>
 <Severity>ERROR</Severity>
 </X12DataError>
</X12OTDErrors>

Index

ASC X12 OTD Library User’s Guide 49 SeeBeyond Proprietary and Confidential

Index

A
AllErrors 32

C
check() method 30
checkAll() method 30
clone() method 31
Collaborations, building 20
component element separator 29
conventions, document 8
count() method 31
countLoopxxx() method 31
customizing OTDs 23

D
data element separator 29
decimalMark 32
delimiters 11, 29

component element separator 29
data element separator 29
repetition separator 29
segment terminator 29
subelement separator 29

displaying OTDs 19
document conventions 8

E
EDFOTDErrors.xsd 46
elementSeparator 32, 41
Exceptions

IOException 38, 39, 44, 45
MarshalException 38, 39
UnmarshalException 44, 45

F
FGError 33
FGValidationResult 33

G
get methods, overview 28
getAllErrors() method 32
getDecimalMark() method 32
getElementSeparator() method 32
getFGValidationResult() method 33
getICValidationResult() method 33
getInputSource() method 33
getLoopxxx() method 34
getMaxDataError() method 34
getMaxFreedSegsComsNum() method 34
getMaxParsedSegsComsNum() method 34
getMsgValidationResult() method 35
getRepetitionSeparator() method 35
getSegmentCount() method 35
getSegmentTerminator() method 36
getSubelementSeparator() method 36
getTSValidationResult() method 36
getUnmarshalError() method 37
getXmlOutput() method 37
getxxx() method 32

H
hasLoopxxx() method 38
hasxxx() method 37
heap size

adjusting heap memory size 18

I
ICError 33
ICValidationResult 33
Index 49
inputSource 33
isUnmarshalComplete() method 38

M
marshal() method 38
marshaling

marshal() 38
marshalToBytes() 38
marshalToString() 39

marshalToBytes() method 38
marshalToString() method 39
maxDataError 41
maxFreedSegsComsNum 42
maxParsedSegsComsNum 34, 42
memory

management 12
message structure

defined 11

Index

ASC X12 OTD Library User’s Guide 50 SeeBeyond Proprietary and Confidential

OTD in eGate 11
methods

check 30
checkAll 30
clone() 31
count() 31
countLoopxxx() 31
get/set methods, overview 28
getAllErrors() 32
getDecimalMark() 32
getElementSeparator() 32
getFGValidationResult() 33
getICValidationResult() 33
getInputSource() 33
getLoopxxx() 34
getMaxDataError() 34
getMaxFreedSegsComsNum() 34
getMaxParsedSegsComsNum() 34
getMsgValidationResult() 35
getRepetitionSeparator() 35
getSegmentCount() 35
getSegmentTerminator() 36
getSubelementSeparator() 36
getTSValidationResult() 36
getUnmarshalError() 37
getXmlOutput() 37
getxxx() 32
hasLoopxxx() 38
hasxxx() 37
isUnmarshalComplete() 38
marshal() 38
marshalToBytes() 38
marshalToString() 39
performValidation() 39
reset() 39
setDefaultX12Delimiters() 40
setElementSeparator() 41
setLoopxxx() 41
setMaxDataError() 41
setMaxFreedSegsComsNum() 42
setMaxParsedSegsComsNum() 42
setRepetitionSeparator() 42
setSegmentTerminator() 43
setSubelementSeparator() 43
setXmlOutput() 43
setxxx() 40
unmarshal() 44
unmarshalFromBytes() 44
unmarshalFromString() 44

msgValidationResult 34, 35

O
on demand parsing 12

Options Setup
dialog box 18

organization of information, document 7
OTDs

Collaborations, using in 20
customizing 23
displaying 19
performValidation() method 39
reset() method 39
SEF file, creating from 24
SEF files 23

OutOfMemoryError
increase heap size 18

P
parse on demand 12
performValidation() method 39

R
repetition separator 29
repetitionSeparator 35, 42
reset() method 39
runtime exceptions

UnmarshalException 15

S
Screenshots 8
SEF file 12

creating OTD from 24
OTD, customizing 23

SEF OTD wizard
installing 17
using 24

segment terminator 29
segmentCount 35
segmentTerminator 36, 43
set methods, overview 28
setDefaultX12Delimiters() method 40
setElementSeparator() method 41
setLoopxxx() method 41
setMaxDataError() method 41
setMaxFreedSegsComsNum() method 42
setMaxParsedSegsComsNum() method 42
setRepetitionSeparator() method 42
setSegmentTerminator() method 43
setSubelementSeparator() method 43
setXmlOutput() method 43
setxxx() method 40
subelement separator 29
subelementSeparator 36, 43

Index

ASC X12 OTD Library User’s Guide 51 SeeBeyond Proprietary and Confidential

support
SEF file 12
validation 12
X12 versions 11

supporting documents 8

T
TSvalidationResult 36

U
unmarshal() method 44
unmarshalError 37
UnmarshalException 15
unmarshalFromBytes() method 44
unmarshalFromString() method 44
unmarshaling

delayed 12
isUnmarshalComplete() 38
unmarshal() method 44
unmarshalFromBytes() method 44
unmarshalFromString() method 44

V
validation

EDFOTDErrors.xsd 46
performValidation() method 39
reset() method 39
support 12

version support 11

X
X12 versions, supported 11

	ASC X12 OTD Library User’s Guide
	Contents
	List of Figures
	Introduction
	1.1 About This Document
	1.1.1 What’s In This Document?
	1.1.2 Scope
	1.1.3 Intended Audience
	1.1.4 Document Conventions
	1.1.5 Screenshots
	1.1.6 Related Documents

	1.2 References
	1.3 SeeBeyond Web Site
	1.4 SeeBeyond Documentation Feedback

	Overview of the ASC X12 OTD Library
	2.1 About the ASC X12 OTD Library
	2.2 ASC X12 Version Support
	2.3 SEF File Support
	2.4 ASC X12 Validation Support
	2.5 On Demand Parsing
	2.6 Alternative Formats: ANSI and XML
	2.6.1. XML Format for X12
	XML X12 DTD
	Sample XML X12 Output
	Sample of ANSI Output

	2.7 Errors and Exceptions

	Installing the ASC X12 OTD Library
	3.1 System Requirements
	3.2 Supported Operating Systems
	3.3 Installing the ASC X12 OTD Library
	3.4 Increasing the Enterprise Designer Heap Size
	3.4.1 Resolving Memory Errors at Enterprise Designer Startup

	Using ASC X12 OTDs
	4.1 Displaying ASC X12 OTDs
	4.2 Building ASC X12 OTD Collaborations
	4.3 Customizing the ASC X12 OTDs
	4.4 Creating ASC X12 OTDs from SEF Files
	4.5 Possible Differences in Output When Using Pass- Through

	Java Methods for ASC X12 OTDs
	5.1 Get and Set Methods
	5.2 Setting Delimiters
	5.2.1 Incoming Message
	5.2.2 Outgoing Message

	5.3 Available Methods
	check
	checkAll
	clone
	countxxx
	countLoopxxx
	getxxx
	getAllErrors
	getDecimalMark
	getElementSeparator
	getFGValidationResult
	getICValidationResult
	getInputSource
	getLoopxxx
	getMaxDataError
	getMaxFreedSegsComsNum
	getMaxParsedSegsComsNum
	getMsgValidationResult
	getRepetitionSeparator
	getSegmentCount
	getSegmentTerminator
	getSubelementSeparator
	getTSValidationResult
	getUnmarshalError
	getXmlOutput
	hasxxx
	hasLoopxxx
	isUnmarshalComplete
	marshal
	marshalToBytes
	marshalToString
	performValidation
	reset
	setxxx
	setDefaultX12Delimiters
	setElementSeparator
	setLoopxxx
	setMaxDataError
	setMaxFreedSegsComsNum
	setMaxParsedSegsComsNum
	setRepetitionSeparator
	setSegmentTerminator
	setSubelementSeparator
	setXmlOutput
	unmarshal
	unmarshalFromBytes
	unmarshalFromString

	X12OTDErrors Schema File and Sample XML
	6.1 Contents of the X12OTDErrors.xsd File
	6.2 Sample of Validation Output XML

	Index
	A
	AllErrors 32

	C
	check() method 30
	checkAll() method 30
	clone() method 31
	Collaborations, building 20
	component element separator 29
	conventions, document 8
	count() method 31
	countLoopxxx() method 31
	customizing OTDs 23

	D
	data element separator 29
	decimalMark 32
	delimiters 11, 29
	displaying OTDs 19
	document conventions 8

	E
	EDFOTDErrors.xsd 46
	elementSeparator 32, 41
	Exceptions

	F
	FGError 33
	FGValidationResult 33

	G
	get methods, overview 28
	getAllErrors() method 32
	getDecimalMark() method 32
	getElementSeparator() method 32
	getFGValidationResult() method 33
	getICValidationResult() method 33
	getInputSource() method 33
	getLoopxxx() method 34
	getMaxDataError() method 34
	getMaxFreedSegsComsNum() method 34
	getMaxParsedSegsComsNum() method 34
	getMsgValidationResult() method 35
	getRepetitionSeparator() method 35
	getSegmentCount() method 35
	getSegmentTerminator() method 36
	getSubelementSeparator() method 36
	getTSValidationResult() method 36
	getUnmarshalError() method 37
	getXmlOutput() method 37
	getxxx() method 32

	H
	hasLoopxxx() method 38
	hasxxx() method 37
	heap size

	I
	ICError 33
	ICValidationResult 33
	Index 49
	inputSource 33
	isUnmarshalComplete() method 38

	M
	marshal() method 38
	marshaling
	marshalToBytes() method 38
	marshalToString() method 39
	maxDataError 41
	maxFreedSegsComsNum 42
	maxParsedSegsComsNum 34, 42
	memory
	message structure
	methods
	msgValidationResult 34, 35

	O
	on demand parsing 12
	Options Setup
	organization of information, document 7
	OTDs
	OutOfMemoryError

	P
	parse on demand 12
	performValidation() method 39

	R
	repetition separator 29
	repetitionSeparator 35, 42
	reset() method 39
	runtime exceptions

	S
	Screenshots 8
	SEF file 12
	SEF OTD wizard
	segment terminator 29
	segmentCount 35
	segmentTerminator 36, 43
	set methods, overview 28
	setDefaultX12Delimiters() method 40
	setElementSeparator() method 41
	setLoopxxx() method 41
	setMaxDataError() method 41
	setMaxFreedSegsComsNum() method 42
	setMaxParsedSegsComsNum() method 42
	setRepetitionSeparator() method 42
	setSegmentTerminator() method 43
	setSubelementSeparator() method 43
	setXmlOutput() method 43
	setxxx() method 40
	subelement separator 29
	subelementSeparator 36, 43
	support
	supporting documents 8

	T
	TSvalidationResult 36

	U
	unmarshal() method 44
	unmarshalError 37
	UnmarshalException 15
	unmarshalFromBytes() method 44
	unmarshalFromString() method 44
	unmarshaling

	V
	validation
	version support 11

	X
	X12 versions, supported 11

