
Cobol Copybook Converter
User’s Guide

Release 5.0.5

Draft Version: SeeBeyond Internal Use Only
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, eGate, and eWay are the registered trademarks of SeeBeyond Technology Corporation in the United States and select
foreign countries; the SeeBeyond logo, e*Insight, and e*Xchange are trademarks of SeeBeyond Technology Corporation. The absence
of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property rights
concerning that trademark. This document may contain references to other company, brand, and product names. These company,
brand, and product names are used herein for identification purposes only and may be the trademarks of their respective owners.

© 2005 by SeeBeyond Technology Corporation. All Rights Reserved.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050428144229.
Cobol Copybook Converter User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 5
About Cobol Copybooks 5

Copybooks with content beyond column 72 5

About the Cobol Copybook Converter 6
Unsupported Features 6

What’s New in This Release 7

About This Document 7
What’s in This Document 7
Scope 7
Intended Audience 7
Document Conventions 7
Screenshots 8

Related Documents 8

SeeBeyond Web Site 8

Feedback 9

Chapter 2

Installing the Cobol Copybook Converter 10
Supported Operating Systems 10

System Requirements 10

Installing the Product Files 11

After You Install 11

Chapter 3

Using the OTD Wizard 12
About the Cobol Copybook Wizard 12

Creating Cobol Copybook OTDs 12

Cobol Copybook OTD 15
Cobol Copybook Converter User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Cobol Copybook OTD Methods 16
OTD Method Guidelines 16

Encoding Behavior for Redefinitions 16
Root-level Methods 17

enableUnmarshalValidation(boolean enable) 17
marshal() 18
marshal(String charset) 19
marshal(OtdOutputStream out) 19
marshal(OtdOutputStream out, String charset) 20
marshalToString() 20
reset() 21
resetHigh() 21
resetLow() 21
retrieveEncoding() 21
unmarshal(byte[] in) 22
unmarshal(OtdInputStream in) 22
unmarshal(OtdInputStream in, String charset) 22
unmarshal(byte[] in, String charset) 23
unmarshalFromString(String in) 23
useEncoding(String enc) 23

Non-Root Methods 24

Chapter 4

Locating, Importing, and Using the Sample Projects 26
About the Sample Projects 26

Cobol_BPEL_Sample 27
Cobol_Copybook_Sample 27

Locating the Sample Projects 27

Importing the Sample Projects 28

Running the Sample Projects 29

Building Cobol Copybook Business Logic with eInsight 29
Adding a New Business Process 29
Building the Business Processes 29
Creating the Connectivity Map 31
Binding the Business Process and eWays 32

Building Cobol Copybook Business Logic with eGate 33
Creating a COBOL Copybook Project and OTD 34
Creating the Connectivity Map 34
Creating the Collaboration Definition 35
Building Collaboration Definitions 37

Unmarshaling the Input Formats 37
Specifying Destinations 40
Writing The Output to a File 42

Binding the Collaboration Definition and eWays 42

Index 44
Cobol Copybook Converter User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This user’s guide describes how to use the Cobol Copybook Converter to convert input
data to COBOL copybook specifications.

What’s in This Chapter

About Cobol Copybooks on page 5

About the Cobol Copybook Converter on page 6

What’s New in This Release on page 7

About This Document on page 7

Related Documents on page 8

SeeBeyond Web Site on page 8

Feedback on page 9

1.1 About Cobol Copybooks
Copybooks are common fragments of code that are typically distributed throughout a
software application. Functionally similar to the #include file of a C or C++ application,
mainframes reference these books, which are usually stored in a source library file, and
call structures as needed. When integrating mainframe applications with other
platforms, it is necessary to retrieve and generate the data structure of the copybook.
Without the copybook’s data structure, your disparate applications are not able to
communicate with each other and are not capable of transferring data between
applications and platforms.

1.1.1 Copybooks with content beyond column 72

The content of the Cobol Copybook, compliant with the IBM Cobol Reference standard,
does not go past column 72. To process a copybook that contains data beyond column
72 (e.g., content that is not line numbering or comments, which should be ignored),
deselect the Ignore copybook content beyond column 72 option.

Caution: It is still possible for a copybook with data beyond the 72th column to process
successfully--but not correctly--if the latter option is selected.
Cobol Copybook Converter User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction About the Cobol Copybook Converter
Figure 1 demonstrates copybook content beyond column 72 that may be incorrectly
processed.

Figure 1 Copybook content beyond column 72.

If you disable content past column 72, the word “COMP” that begins in column 73 is
ignored. Even without this word, the content that appears within the first 72 columns
composes a correct (but now misinterpreted) description entry. With the option
selected, the entry describes XYZABC12345678ZZ as a 18-character alpha-numeric
item, using 18 bytes of storage (implicit USAGE is DISPLAY). With the option disabled,
the entry describes a 18-digit numeric item using 8 bytes of storage (USAGE is COMP).

1.2 About the Cobol Copybook Converter
The Cobol Copybook Converter converts copybook descriptions, and creates OTDs
designed to encapsulate data conforming to the description. The generated OTD is a
model, containing a user-friendly abstraction of the data. Cobol Copybook Converter
OTDs enable you to handle the data, which is COBOL/EBCDIC in form, as objects of
the Java programming language.

The Cobol Copybook Converter reads the copybook specification from a flat file. The
converter feature uses the 01 segment of the Cobol copybook as the root node of the
OTD. For example, if you are using a CICS eWay, after you have generated an OTD file,
the eGate Project can populate the file and present it into the COMM AREA for CICS
calls. Similarly, the system can parse the output COMM AREA from CICS into OTDs
created by the Cobol Copybook Converter.

Note: The Cobol Copybook Converter must have valid COBOL syntax to complete an
accurate conversion. The Cobol Copybook Converter performs limited syntax
validation on an input copybook. To ensure a functional OTD conversion, verify
that the copybook supplied to the converter is well-formed and valid.

1.2.1 Unsupported Features
The following Cobol Copybook features are not supported by the Cobol Copybook
Converter:

Cobol Copy Statements — Cobol copy statements that are embedded within the
Cobol Copybook are not supported.

Usage Pointer — Usage pointer statements are not supported. To accommodate
these elements, you must change the statement to PIC X(4). The Cobol Copybook
Converter interprets this and creates a node of the correct length with the
subsequent nodes as siblings instead of child nodes.
Cobol Copybook Converter User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction What’s New in This Release
Complete COBOL programs — these contain non-working storage and non-
linkage areas (such as an Environment Division area). The Cobol Copybook
Converter processes COBOL files with working-storage and linkage-section record
entries only.

1.3 What’s New in This Release
This release provides support for Japanese Data.

1.4 About This Document
This guide explains how to install, configure, and operate the SeeBeyond® Integrated
Composite Application Network Suite™ (ICAN) Cobol Copybook Converter.

1.4.1 What’s in This Document
This guide contains the following information:

Chapter 2, “Installing the Cobol Copybook Converter” on page 10 describes how
to install the Cobol Copybook Converter and its sample Project.

Chapter 3, “Using the OTD Wizard” on page 12 describes how to use the OTD
wizard to create and configure Object Type Definitions.

Chapter 4, “Locating, Importing, and Using the Sample Projects” on page 26
describes how to use the Cobol Copybook Converter. The chapter also includes
procedures for importing and using the Cobol Copybook sample Project.

1.4.2 Scope
This document describes the process of installing, configuring, and running the Cobol
Copybook Converter.

1.4.3 Intended Audience
This guide is intended for experienced computer users who have the responsibility of
helping to set up and maintain a fully functioning ICAN Suite system. This person
must also understand any operating systems on which the ICAN Suite will be installed
(Windows, UNIX, and/or HP NonStop Server), and must be thoroughly familiar with
Windows-style GUI operations.

1.4.4 Document Conventions
The following conventions are observed throughout this document.
Cobol Copybook Converter User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction Related Documents
1.4.5 Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.5 Related Documents
The following SeeBeyond documents provide additional information about the ICAN
Suite:

SeeBeyond Integrated Composite Application Network Suite Primer

SeeBeyond ICAN Suite Installation Guide

eGate Integrator User’s Guide

eGate Integrator Tutorial

SeeBeyond ICAN Suite Deployment Guide

1.6 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

Table 1 Document Conventions

Text Convention Example

Names of buttons, files,
icons, parameters, variables,
methods, menus, and objects

Bold text Click OK to save and close.
From the File menu, select Exit.
Select the logicalhost.exe file.
Enter the timeout value.
Use the getClassName() method.
Configure the Inbound File eWay.

Command line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -p password

Hypertext links Blue text See Document Conventions on
page 7

Hypertext links for Web
addresses (URLs) or email
addresses

Blue underlined text http://www.seebeyond.com
docfeedback@seebeyond.com
Cobol Copybook Converter User’s Guide 8 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com
http://www.SeeBeyond.com

Chapter 1 Section 1.7
Introduction Feedback
1.7 Feedback
If you have any feedback on any SeeBeyond documentation, please send an e-mail to:

docfeedback@seebeyond.com
Cobol Copybook Converter User’s Guide 9 SeeBeyond Proprietary and Confidential

mailto:docfeedback@seebeyond.com

Chapter 2

Installing the Cobol Copybook Converter

This chapter describes how to install the Cobol Copybook Converter.

What’s in This Chapter

Supported Operating Systems on page 10

System Requirements on page 10

Installing the Product Files on page 11

After You Install on page 11

2.1 Supported Operating Systems
The Cobol Copybook Converter supports Japanese data and is available for the
following operating systems:

Windows 2000

Windows XP

Windows 2000 Japanese

Windows XP Japanese

2.2 System Requirements
The system requirements for the Cobol Copybook Converter are the same as for eGate
Integrator. For information, refer to the eGate Integrator Installation Guide. Additional
system requirements include:

The system where the Cobol Cobybook Converter is installed needs approximately
20 MB of free disk space for the application and its configuration, library, and script
files.

Cobol Copybook Converter 5.0.4 requires a 5.0.4 or higher version of the logical
host.
Cobol Copybook Converter User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installing the Cobol Copybook Converter Installing the Product Files
2.3 Installing the Product Files
During the eGate Integrator installation process, the Enterprise Manager, a web-based
application, is used to select and upload products as .sar files from the eGate
installation CD-ROM to the Repository.

The installation process includes installing the following components:

Installing the Repository

Uploading products to the Repository

Downloading components (such as Enterprise Designer and Logical Host)

Viewing product information home pages

Follow the instructions for installing the eGate Integrator in the SeeBeyond ICAN Suite
Installation Guide, and include the following steps:

1 After uploading the eGate.sar file (using Enterprise Manager) select and upload the
following files as described in the SeeBeyond ICAN Suite Installation Guide:

CobolCopyBook.sar (to install the Cobol Copybook Converter)

FileeWay.sar (to install the File eWay, used in the sample Projects)

CobolCopyBookDocs.sar (to install the user’s guide and the sample Projects)

2 In the Enterprise Manager, click the DOCUMENTATION tab.

3 Click Cobol Copybook Converter.

4 In the right-hand pane, click Download Sample, and select a location for the .zip
file to be saved.

For information about importing and using the sample, refer to Locating,
Importing, and Using the Sample Projects on page 26.

2.4 After You Install
Upon successful completion of the required files and documentation installation, open
the readme file included with the Cobol Copybook Converter documentation SAR file.
This file contains information about patches or ESRs that may be required to run the
Cobol Copybook Converter or to run project sample files that use the Cobol Copybook
Converter.

After ensuring you have all the required Cobol Copybook Converter patches or ESRs,
you must then incorporate the Cobol Copybook Converter into an eGate Project and
Environment in Enterprise Designer. The next chapters describe how to incorporate the
Cobol Copybook Converter into an eGate Project and an eGate Environment, as well as
configuring it and building the necessary OTDs.
Cobol Copybook Converter User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 3

Using the OTD Wizard

This chapter describes how to build the business logic for Cobol Copybook Converter
Projects. Project business logic is contained in Business Processes for eInsight, and in
Collaborations for eGate Integrator used without eInsight.

To build Cobol Copybook Project business logic, you use the Cobol Copybook wizard
to create the Cobol Copybook Converter OTD. You then create the Business Processes
or Collaborations, and the Connectivity Maps.

What’s in This Chapter

About the Cobol Copybook Wizard on page 12

Creating Cobol Copybook OTDs on page 12

Cobol Copybook OTD on page 15

Cobol Copybook OTD Methods on page 16

3.1 About the Cobol Copybook Wizard
You use the Cobol Copybook wizard to create copybook converter OTDs. These OTDs
can then later be used in Collaboration Definitions to create the business logic behind
the Collaborations.

3.2 Creating Cobol Copybook OTDs
You create Cobol Copybook Converter OTDs with the Cobol Copybook wizard in the
Enterprise Designer.

To create Cobol Copybook OTDs

1 In the Explorer tab of the Enterprise Designer, right-click %Project Name% > New
> Object Type Definition. The New Object Type Definition Wizard dialog box
appears.

2 Click Cobol Copybook and click Next. The Select Cobol Copybook Files page
appears.
Cobol Copybook Converter User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Using the OTD Wizard Creating Cobol Copybook OTDs
Figure 2 Cobol Copybook Wizard—Cobol Copybook Selection

3 Browse for the desired Cobol Copybook file and highlight it.

4 Click the Add button to include a copybook file in a project.

5 Repeat Steps 3 and 4 for each file to include in the project.

6 To remove a copybook file from the project, highlight the file name in the Select
Files container and click Remove.

7 Click Next. The Declare Copybook Encodings page appears only if the Extended
Language Option, in the Options menu, has been selected.
Cobol Copybook Converter User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Using the OTD Wizard Creating Cobol Copybook OTDs
Figure 3 Cobol Copybook Wizard—Declare Copybook Encodings

8 Select the charset encoding, from the drop-down list, to be used by each input
(copybook) file.

9 Click Next. The Configure Converter Options page appears.

Figure 4 Cobol Copybook Wizard—Configure Converter Options
Cobol Copybook Converter User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Using the OTD Wizard Cobol Copybook OTD
10 Optionally, add/remove checks from boxes to enable/disable options:

Ignore copybook content beyond column 72 -- The converter expects
copybooks to be width-compliant with IBM’s Cobol reference format. Uncheck
this box to process books with content (excluding comments/line numbers)
beyond column 72. Default: enabled (box is checked).

Check Item names against reserved words -- The converter disallows data item
names that match reserved words. Uncheck this box to process copy books that
use reserve words for item names. When name checking is disabled, the
converter cannot process copy books with unnamed items (i.e., implicit
‘FILLER’ items). Default: enabled (box is checked).

11 Click Finish. The OTD Editor window appears, displaying the OTD.

The section below describes the cobol copybook methods (operations) that are available
for you to use in the source code for the Collaborations or Business Activities.

3.3 Cobol Copybook OTD
When an OTD is built from a copybook file (as is the Sample copybook file) it creates an
OTD which contains methods that may be used with the converted contents of the
copybook business object.

Figure 5 Sample Copybook OTD

The figure above shows the copybook converter OTD. The OTD has a node for each of
the business processes that may be performed on the converted copybook. The
unmarshal method allows business processes to flow data into the copybook OTDs and
access contents field-by-field.
Cobol Copybook Converter User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
3.4 Cobol Copybook OTD Methods
The Object Type Definitions (OTDs) created by the Cobol Copybook Converter provide
the method that you can use to extract or insert content into OTDs.

“OTD Method Guidelines” on page 16

“Root-level Methods” on page 17

“Non-Root Methods” on page 24

3.4.1 OTD Method Guidelines
This section addresses the concerns of global behavior, effects, and assumptions
inherent to most methods.

Encoding Behavior for Redefinitions

The unmarshal and marshal methods of a Cobol Copybook OTD (with the exception of
the marshalToString and unmarshalFromString) have been reimplemented to heed the
OTD structure's data type information. When data flows into or out of the OTD,
character set encoding is applied only to the portions of the data that fall on or draw
from OTD fields corresponding to items in the Copybook specification that store
character data (i.e., usage display items, whether implicitly or explicitly specified). Data
for other types of OTD fields are not subject to charset encoding, since these fields are
capable of containing binary (non-character) data.

An ambiguity arises when an OTD field, corresponding to a usage display item, is also
the object of redefinition(s) in the Copybook. Redefined items may have alternate,
multiple storage types, and to deal with such an item, the OTD must decide which one
of the multiple definition is in effect at the time of unmarshaling or marshaling, in
relation to the available data. The current implementation of Cobol Copybook OTDs
resolve this ambiguity by ignoring redefinitions. The decision whether or not to apply
encoding to a field is based solely on the item's original storage specification in the
Copybook.

DBCS Items

Cobol Copybook OTDs do not support any particular DBCS encoding. When inserted
into DBCS nodes, it will not perform inspections of data to determine what specific
DBCS encoding is used by character codes or byte sequences (e.g., discerning between a
double-byte and a multi-byte encoding). As a consequence:

DBCS items are represented in the OTD by Java byte array nodes, and their content
will be treated as binary "blobs" with the following rules:

If content is set directly to a DBCS node, it is stored as-is.

If the content is retrieved directly from the DBCS node, the content that was
originally set is also returned as-is.

If content is unmarshaled via the OTD root, the portion corresponding to the
DBCS node is stored as-is. It should be noted however, that correctness of the
Cobol Copybook Converter User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
aggregate input is the responsibility of the root-level unmarshal call (e.g., do not
use unmarshalFromString if the OTD contains DBCS items).

If the OTD's content is marshaled, the portion corresponding to the DBCS node
is yielded as-is, and is excluded from any character set transcoding that
character data nodes of the OTD may be subjected to.

Copybook OTDs will not auto-truncate DBCS data. Since the OTD cannot know the
specific DBCS encoding of the data, it cannot correctly truncate it at the correct
character boundaries. If the content which is set directly to a DBCS node exceeds
the item's width, the OTD will raise an exception.

3.4.2. Root-level Methods
The following methods are the root-level methods provided:

“enableUnmarshalValidation(boolean enable)”

“marshal()”

“marshal(String charset)”

“marshal(OtdOutputStream out)”

“marshal(OtdOutputStream out, String charset)”

“marshalToString()”

“reset()”

“resetHigh()”

“resetLow()”

“retrieveEncoding()”

“unmarshal(byte[] in)”

“unmarshal(OtdInputStream in)”

“unmarshal(OtdInputStream in, String charset)”

“unmarshal(byte[] in, String charset)”

“unmarshalFromString(String in)”

“useEncoding(String enc)”

enableUnmarshalValidation(boolean enable)

Causes the OTD to validate data flow during an unmarshal call.

Syntax

void enableUnmarshalValidation(boolean enable)

Throws

none.
Cobol Copybook Converter User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
Examples

// enable validation during unmarshal

// call to unmarshal may raise an exception if content is not compatible

byte[] content = ...

OTD_1.enableUnmarshalValidation(true);

OTD_1.unmarshal(content);

// disable validation during unmarshal

// call to unmarshal will not raise data-related exceptions

// instead, data-related exceptions may/will occur when

// accessing specific nodes with invalid data.

byte[] content = ...

OTD_1.enableUnmarshalValidation(false);

OTD_1.unmarshal(content);

marshal()

Serializes the OTD’s content as an array of bytes. The content is encoded with the
OTD's current encoding, which is the encoding specified when data was last
unmarshaled (see setEncoding() and unmarshal() for additional details). If no data was
unmarshaled prior to a marshal call, then the OTD defaults to EBCDIC CP037
encoding. If the OTD content is incompatible with the current encoding (this can
happen when data was unmarshaled with a different encoding that the current one), a
com.stc.otd.runtime.MarshalException occurs.

Syntax

byte [] marshal()

Throws

MarshalException, IOException, UnsupportedEncodingException

Examples

// populate OTD and marshal entire content in EBCDIC

OTD_1.setField1(...

OTD_1.setField2(...

...

byte[] output = OTD_1.marshal();

// write ASCII data to OTD

// edit some fields
Cobol Copybook Converter User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
// marshal OTD data (still ASCII)

byte[] content = ...

OTD_1.unmarshal(content, "US-ASCII");

OTD_1.setField9(...

OTD_1.setField10(...

byte[] output = OTD_1.marshal();

// write ASCII data to OTD

// edit some fields

// marshal OTD data using different encoding (may fail depending on data)

byte[] content = ...

OTD_1.unmarshal(content, "US-ASCII");

OTD_1.setField9(...

OTD_1.setField10(...

OTD_1.useEncoding("CP277");

byte[] output = OTD_1.marshal();

marshal(String charset)

This method serializes the content of the OTD as an array of bytes. The content is
encoded using the user-specified character set. The encoding specified in this call acts
as a temporary override to the OTD's current encoding, but does not become the
current encoding (see setEncoding and unmarshal documentation for information). If
the OTD content is not compatible with the current encoding (this can happen if data
was unmarshaled using an encoding different from the current one),
com.stc.otd.MarshalException occurs. If the specified charset value does not name a
supported character set, a java.io.UnsupportedEncodingException is generated.

Syntax

byte[] marshal(String charset)

Throws

MarshalException, IOException, UnsupportedEncodingException

Examples

byte[] content = cocoOtd.marshal("cp037"); // retrieve OTD content as EBCDIC data
byte[] content = cocoOtd.marshal("US-ASCII"); // retrieve OTD content as ASCII data

marshal(OtdOutputStream out)

This method serializes the content of the OTD and writes it to the supplied output
stream object. The output is encoded using the same user-specified encoding used
when the data was last unmarshaled (see setEncoding and unmarshal documentation
Cobol Copybook Converter User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
for additional details). If no data was unmarshaled prior to the call to marshal, then
EBCDIC CP037 encoding is used. If the OTD content is not compatible with the current
encoding (this can happen if the data was unmarshaled using an encoding different
from the current one), com.stc.otd.MarshalException occurs. A java.io.IOException is
generated if an output error occurs in attempting to write data to the stream object.

Syntax

void marshal(OtdOutputStream out)

Throws

MarshalException, IOException, UnsupportedEncodingException

marshal(OtdOutputStream out, String charset)

This method flows data out from the OTD to the supplied stream object, using the
specified charset encoding. The given encoding acts as a temporary override to the
OTD's current encoding, it does not become the current encoding (see setEncoding and
unmarshal documentation for information).

If the specified charset is not compatible with the OTD content (this can happen when
the data was unmarshaled to the OTD using a different encoding),
com.stc.otd.runtime.MarshalException occurs. If the encoding is not supported or
recognized, java.io.UnsupportedEncodingException is generated.

Syntax

void marshal(OtdOutputStream stream, String charset)

Throws

MarshalException, IOException, UnsupportedEncodingException

marshalToString()

This method serializes the content of the OTD to a String object. The String is created by
decoding the byte data with the OTD's current encoding, which is the encoding
specified when data was last unmarshaled (see setEncoding and unmarshal
documentation for additional details). If no data was unmarshaled prior to a marshal
call, then the OTD defaults to EBCDIC CP037 encoding. Only use this method with
copybook OTDs built from copybooks comprised solely of usage display entries. Using
this method on OTDs designed to hold binary data (e.g., packed decimal, internal
decimal) may invalidate the data, because portions of the binary content may not have
a suitable mapping to UTF-8. A java.io.UnsupportedEncodingException may occur if
the current encoding (i.e., the encoding used by the last unmarshal call) is not capable
of encoding the data. This is possible because certain charset encodings in Java are not
two-way encodings (encodings that can decode or encode, but not both).

Syntax

String marshalToString()

Throws

MarshalException, IOException, UnsupportedEncodingException
Cobol Copybook Converter User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
reset()

Initializes the storage space of the OTD as follows:
alphanumeric fields (PIC X) - blank spaces (EBCDIC value 0x40)

numeric fields (PIC 9) - binary zero

packed decimal fields - signed-trailing packed binary zero

Syntax

void reset()

Throws

none

resetHigh()

Initializes the entire storage space of the OTD to high bit values; each byte is initialized
to 0xFF.

Syntax

void resetHigh()

Throws

none

resetLow()

Initializes the OTD storage space to low bit values; each byte is initialized to 0x0.
Syntax

void resetLow()

Throws

none

retrieveEncoding()

Returns the canonical name of the current OTD encoding. The default current OTD
encoding is "CP037" until it is changed by a successful useEncoding call, or by a call to
one of the encoding-specifiable unmarshal methods. The canonical name may differ
from the one used previously to set the current encoding. See the Java 2 API
documentation for java.nio.charset. Charset for more information.

Syntax

String retrieveEncoding()

Throws

none
Cobol Copybook Converter User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
unmarshal(byte[] in)

Deserializes the given input into an internal data tree. Data flowed to the OTD using
this method must use EBCDIC CP037 encoding. This method sets the OTD's current
encoding to EBCDIC CP037, which is used when data is subsequently marshaled
without an overriding encoding; e.g., as allowed in a marshal(OtdOutputStream,
String) call.

Syntax

void unmarshal(byte[] in)

Throws

UnmarshalException, IOException

unmarshal(OtdInputStream in)

This method populates the OTD using the supplied OtdInputStream object as the data
source. The supplied object must be an opened stream with available data. A
com.stc.otd.runtime.UnmarshalException is generated if the data obtained from the
stream is incompatible with the OTD, and a java.io.IOException is generated if any
other input error occurs in attempting to read data from the stream object. The stream
object must flow data encoded in EBCDIC CP037. This method sets the OTD's current
encoding to EBCDIC CP037, which is used when data is subsequently marshaled
without overriding encoding; e.g., as allowed in a marshal (OtdOutputStream, String)
call.

Syntax

void unmarshal(OtdInputStream in)

Throws

UnmarshalException, IOException

unmarshal(OtdInputStream in, String charset)

This method flows data to the OTD from the supplied Stream object. The stream must
be open and have available data. The charset argument specifies the encoding of the
stream data. The specified encoding becomes the current encoding of the OTD and is
used when data is subsequently marshaled without overriding encoding; e.g., as
allowed in a marshal(OtdOutputStream, String) call.

If the stream data is incompatible with the OTD, a
com.stc.otd.runtime.UnmarshalException is generated. If the stream data cannot be
read, a java.io.IOException is generated. If the charset value does not name a supported
charset, or if it names a supported charset with one-way encoding (capable of decoding
or encoding, but not both), a java.io.UnsupportedEncodingException is generated.

Syntax

void unmarshal(OtdInputStream in, String charset)
Cobol Copybook Converter User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
Throws

UnmarshalException, IOException, UnsupportedEncodingException

unmarshal(byte[] in, String charset)

This method populates the OTD using the data supplied in the byte array in. The
charset argument specifies the encoding of the given data. The specified encoding
becomes the current encoding of the OTD, and is used when data is subsequently
marshaled without an overriding encoding; e.g., as allowed in a marshal
(OtdOutputStream, String) call. If the specified charset value does not name a
supported character set or names a supported charset with one-way encoding (one that
can decode or encode, but not both), a java.io.UnsupportedEncodingException is
generated.

Syntax

void unmarshal(byte[] in, String charset)

Throws

UnmarshalException, IOException, UnsupportedEncodingException

Examples

byte[] bytes = ...
cocoOtd.unmarshal(bytes, "cp037"); // Interpret bytes content as EBCDIC data
cocoOtd.unmarshal(bytes, "US-ASCII"); // Interpret bytes content as ASCII data

unmarshalFromString(String in)

This method populates the OTD using the specified String object as the input source.
This method is useful only to unmarshal wholly character data to copybook OTDs
comprised solely of character-data records (entries specified implicitly or explicitly as
USAGE DISPLAY). The current OTD encoding (see setEncoding and unmarshal
document for additional details) is used to encode the String's bytes.

Syntax

void unmarshalFromString(String in)

Throws

UnmarshalException, IOException

useEncoding(String enc)

Use this method to designate a particular encoding to be used as the OTD's current
encoding. The current OTD encoding is used when the OTD is marshaled without an
overriding encoding, which is permitted for the marshal (OtdOutputStream, String)
method.
Cobol Copybook Converter User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
An OTD's current encoding is initially EBCDIC (CP037) when it is instantiated. There
are two ways to change it:

1 Unmarshaling the data, whereby the data's stated encoding becomes the current
encoding.

2 Using this method to specify it.

Changing the encoding thru the use of this method causes reset() to be subsequently
(and automatically) called, causing the OTD's existing content to be erased. This
behaviour exists to avoid situations where data, successfully unmarshaled with one
charset, fails to marshal under a different charset, due to the absence of codepoint
mappings between the two encodings. Use the marshal(String) method when data,
which flowed in using a charset, must then be flowed out with a different charset.

If the specified encoding is the same as the current OTD encoding, the call returns
without affecting the OTD's state (i.e., reset() is not called) and the data and current
encoding will remain unchanged.

If the specified encoding is not supported, or is not a two-way encoding (one that can
decode or encode, but not both), a java.io.UnsupportedEncodingException is thrown.

Syntax

void useEncoding(String enc)

Throws

UnsupportedEncodingException

3.4.3. Non-Root Methods
Every leaf node in a Cobol Copybook OTD represents an elementary item in the
Copybook source. For every given leaf node, the OTD provides “getter” and “setter”
methods of which the return type and input types depend on the data type and usage
type specified in the copybook for the elementary item to which the node corresponds.

For a given non-repeating leaf node named Datum, the following method forms are
provided, where T is determined from the follow table.

T getDatum()

void setDatum(T)

Usage Types Display
COMP

or
COMP-4

COMP-1 COMP-2 COMP-3 COMP-5 INDEX

Data Types

Alphabetic
For example:
PIC AAA

String

Alphanumeric
For example:
PIC X9

String String String
Cobol Copybook Converter User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the OTD Wizard Cobol Copybook OTD Methods
For repeating leaf nodes, these two alternative methods are provided:

T getDatum(int i)

void setDatum(int i, T)

where i is expected to be a value from 0, representing the ordinal of the desired
repetition instance, and where T is determined as previously described.

Alphanumeric
edited
For example:
PIC XB9

String

Numeric
edited
For example:
PIC ZZZ99

String

DBCS
For example
PIC GGBGG

byte[]

External
floating point
For example:
PIC +9V99E+99

BigDecimal

Numeric
integer (9 digits
or less)

int int int int

Numeric
floating point
(COMP-1 or
COMP-2 items)

BigDecimal

Numeric
Integer (10 to
18 digits)

long long long long

Numeric
integer (19
digits or more)

BigDecimal Big
Decimal

Big
Decimal

Big
Decimal

Usage Types Display
COMP

or
COMP-4

COMP-1 COMP-2 COMP-3 COMP-5 INDEX

Data Types
Cobol Copybook Converter User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4

Locating, Importing, and Using the Sample
Projects

This chapter describes how to use the Cobol Copybook Converter to convert COBOL
copybooks into OTDs. It also includes how to use the sample that comes with the Cobol
Copybook Converter.

What’s in This Chapter

About the Sample Projects on page 26

Locating the Sample Projects on page 27

Importing the Sample Projects on page 28

Running the Sample Projects on page 29

Building Cobol Copybook Business Logic with eInsight on page 29

Building Cobol Copybook Business Logic with eGate on page 33

4.1 About the Sample Projects
The Cobol Copybook Converter utility includes the following sample Projects that you
can import. This enables you to see how ICAN Projects can work with Cobol
copybooks.

Cobol_BPEL_Sample for use with eInsight/eGate

Cobol_Copybook_Sample for use with eGate

Each Project contains the following:

Input data

Connectivity Maps

Collaborations

Business Processes

Version Support

Consult the Cobol_Converter.txt file provided in the CobolCopyBookDocs.sar file for
specific ESR requirements (if they exist) to import or run each of the sample projects.
Cobol Copybook Converter User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Locating, Importing, and Using the Sample Projects Locating the Sample Projects
4.1.1. Cobol_BPEL_Sample
The Cobol BPEL Sample is for use with eInsight. It provides an implementation of the
Cobol Copybook Converter that uses the newly supported BPEL functionality. The
unzipped Cobol_BPEL_Sample.zip project consists of the following files:

Cobol_BPEL_Sample.zip - the project that needs to be imported to an eGate/eInsight
installation.

qan3glr1.cobol - the cobol copybook file used for the conversion to create the OTD.

inputcobolBPEL.txt - the input file that the sample project requires when it is run.

CobolBPELoutput1.dat - contains the expected output when the project is executed
with the given input file.

4.1.2. Cobol_Copybook_Sample
The Cobol Copybook Sample is designed for use with eGate. It provides an
implementation of the Cobol Copybook Converter that uses Java Collaborations to
execute the desired business logic. The unzipped Cobol_Copybook_Sample.zip project
consists of the following files:

EBCDICtoASCII_Sample.zip - the project that needs to be imported to an eGate
installation.

misco1a.cobol - the cobol copybook file used for the conversion to create the OTD.

input.txt - the input file that the sample project requires when it is run.

COBOLoutput1.dat - contains the expected output when the project is executed with
the given input file.

This sample Project converts EBCDIC input data to the format specified in the
copybook. The input data is provided by a File eWay. This data is read into a Cobol
Copybook OTD generated from the same copybook. The Collaboration shows the use
of the Cobol Copybook OTD to retrieve the EBCDIC data as Java Strings for
concatenation and forwards the output to an outbound File eWay. The resulting file
output is the ASCII translation of the original input data.

4.2 Locating the Sample Projects
The sample Projects are included in the CobolCopyBookDocs.sar. You upload this file
separately from the Cobol Copybook sar file during installation. For information, refer
to “Installing the Product Files” on page 11.

Once you have uploaded the CobolCopyBookDocs.sar to the Repository and you have
downloaded the sample Projects (Cobol_Copybook_Sample.zip) using the
DOCUMENTATION tab in the Enterprise Manager, the sample resides in the folder
specified during the download.
Cobol Copybook Converter User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Locating, Importing, and Using the Sample Projects Importing the Sample Projects
4.3 Importing the Sample Projects
This section describes the process required to import each of the sample projects into
the Enterprise Designer.

To import the eGate sample

1 Unzip the Cobol_Converter_Sample.zip file to a temporary directory.

For information about locating this file, refer to Locating the Sample Projects on
page 27.

2 In the Project Explorer tab of the Enterprise Designer, right-click the Repository and
click Import Project. The Select File to Import dialog box appears.

3 Browse to the temporary directory.

4 Double-click EBCDICtoASCII_Sample.zip. The File Destination dialog box
appears.

5 Click Import to a new Project, enter the name of the Project, and click OK.

6 When the import has successfully completed, right-click the Repository and click
Refresh All from Repository.

The Project is now imported. Before you deploy and run the Project, do the following:

Configure the Cobol Copybook Converter for the correct input and output
directories. Refer to the documentation for more information.

Create an Environment and Deployment Profile, and run the Project. Refer to the
eGate Integrator User’s Guide for more information.

To import the eInsight sample

1 Unzip the Cobol_Converter_Sample.zip file to a temporary directory.

For information about locating this file, refer to Locating the Sample Projects on
page 27.

2 In the Project Explorer tab of the Enterprise Designer, right-click the Repository and
click Import Project. The Select File to Import dialog box appears.

3 Browse to the temporary directory.

4 Double-click Cobol_BPEL_Sample.zip. The File Destination dialog box appears.

5 Click Import to a new Project, enter the name of the Project, and click OK.

6 When the import has successfully completed, right-click the Repository and click
Refresh All from Repository.

The Project is now imported. Before you deploy and run the Project, do the following:

Configure the Cobol Copybook Converter for the correct input and output
directories. Refer to the relevant documentation for more information.

Create an Environment and Deployment Profile, and run the Project. Refer to the
eGate Integrator User’s Guide for more information.
Cobol Copybook Converter User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Locating, Importing, and Using the Sample Projects Running the Sample Projects
4.4 Running the Sample Projects
The sample Projects do not include the eGate Environments, Deployment Profiles, and
the physical configuration needed for the files to deploy the Projects. The steps required
to run the sample projects include:

1 Create an Environment Profile as described in the eGate Integrator User’s Guide.

2 Create a Deployment Profile as described in the eGate Integrator User’s Guide.

3 Run the Project as described in the eGate Integrator User’s Guide.

4.5 Building Cobol Copybook Business Logic with eInsight
This section describes how to build the business logic with eInsight:

Adding a New Business Process on page 29

Building the Business Processes on page 29

Creating the Connectivity Map on page 31

Binding the Business Process and eWays on page 32

To see an example of Business Processes and Connectivity Maps, import the
Cobol_BPEL_Sample sample Project as described in Locating, Importing, and Using
the Sample Projects on page 26.

4.5.1. Adding a New Business Process
To add Business Processes

In the Project Explorer tab of the Enterprise Designer, right-click the Project for
which you intend to create a Business Process, click New, and then Business
Process.

4.5.2. Building the Business Processes
To build Business Processes

1 In the Project Explorer tab of the Enterprise Designer, expand the OTD. This
displays the OTD methods.
Cobol Copybook Converter User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eInsight
Figure 6 Cobol Copybook OTD Methods

2 Drag the unmarshal Cobol Copybook OTD method to the Business Process Designer
canvas.

3 Expand the SeeBeyond, eWays, File, and FileClient folders in the Project Explorer
tab.

4 Drag the write method to the Business Process Designer canvas.

5 Drag the receive method to the Business Process Designer canvas.

6 Click the unmarshal Business Activity and click Show Properties. The Properties
dialog box appears.

Figure 7 Unmarshal Properties

7 Click the Input box and select %OTDNAME%.unmarshal.input.

8 Click the Output box and select %OTDNAME%.unmarshal.output.

9 Configure all other Activities by highlighting the Activity and clicking Show
Properties. Refer to Cobol Copybook OTD Methods on page 16 for Business
Operations syntax.

10 Link all components as described in eInsight Business Process Manager User’s Guide.

11 To create data mappings, right-click the link between the Activities and click Add
Business Rule.

12 In the Business Rule Editor window, create the code and the data mappings. For
details, refer to the eInsight Business Process Manager User’s Guide.

Figure 8 shows an example of an Business Process including the data mapping in the
Business Rule Editor window. To explore the business logic design for an actual
Cobol Copybook Converter User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eInsight
Project, import the Cobol_BPEL_Sample Project as described in Importing the Sample
Projects on page 28.

Figure 8 Business Process and Data Mapping

4.5.3. Creating the Connectivity Map
The procedure below describes how to create the Connectivity Map for the COBOL
copybook conversion Project.

To create the Connectivity Map

1 In the Project Explorer tab of the Enterprise Designer, right-click the copybook
conversion Project, click New, and click Connectivity Map. A blank Connectivity
Map appears.

2 Click the eWay icon and click the eWay type.

3 Drag the eWay icon to the Connectivity Map to create the inbound eWay.

4 Drag the Service icon to the Connectivity Map.

5 Click the eWay icon and click the eWay type.

6 Drag the eWay icon to the Connectivity Map to create the outbound eWay. The
Connectivity Map looks similar to the figure below.
Cobol Copybook Converter User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eInsight
Figure 9 COBOL Copybook Conversion Connectivity Map

4.5.4. Binding the Business Process and eWays
Once you have created the Business Process and its business logic, you can bind the
new business process to the Service, and then connect the Business Process to the
eWays.

To bind the Business Process and eWays

1 From the Project Explorer of the Enterprise Designer, drag the newly-created
Business Process to the Service in the Connectivity Map as shown below.

Figure 10 Binding the Business Process and Service

2 Double-click the Service icon. The Service1 window appears.

3 Drag the input service to the inbound eWay. For example, for a File eWay, the input
service is FileSender.

4 Drag the output service to the outbound eWay as shown below.
Cobol Copybook Converter User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 11 Connecting the Business Process to the eWays

5 Close the BusinessProcess11 window and click Save.

Completing the Project

Once you have completed the Connectivity Map binding, you must do the following to
finish the Project:

1 Configure the File eWays as described in the eWay documentation.

2 Create an Environment and Deployment Profile and run the Project as described in
the eGate Integrator User’s Guide.

4.6 Building Cobol Copybook Business Logic with eGate
This section describes how to use the Cobol Cobybook Converter to convert files using
COBOL copybooks. As a quick start, the following list provides an overview of the
steps taken:

1 Create an eGate Project (if necessary).

2 Create a Cobol Object Type Definition (OTD) that indicates the Collaboration will
receive data, use the supplied COBOL copybook file to convert it, and forward the
converted data to an output eWay - see Creating a COBOL Copybook Project and
OTD on page 34.

3 Create a Connectivity Map with an inbound eWay, a Collaboration, and an
outbound eWay - see Creating the Connectivity Map on page 34.

4 Creating the Collaboration Definition and its business logic - see Creating the
Collaboration Definition on page 35 and Building Collaboration Definitions on
page 37.

5 Bind the newly-created Cobol OTD to the Collaboration and connect the
Collaboration to the eWays - seeBinding the Collaboration Definition and eWays
on page 42.

6 Create an eGate Environment - see Running the Sample Projects on page 29.

7 Create a Deployment Profile - see Running the Sample Projects on page 29.
Cobol Copybook Converter User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
8 Deploy and run the Project - see Running the Sample Projects on page 29.

To see an example of Cobol Copybook Converter Collaborations and Connectivity
Maps, import the EBCDICtoASCII sample Project as described in Locating, Importing,
and Using the Sample Projects on page 26.

4.6.1. Creating a COBOL Copybook Project and OTD
See Creating Cobol Copybook OTDs on page 12 for details about how to create a
Cobol Copybook Converter OTD.

4.6.2. Creating the Connectivity Map
The procedure below describes how to create the Connectivity Map for the COBOL
copybook conversion Project.

To create the Connectivity Map

1 In the Project Explorer tab of the Enterprise Designer, right-click the copybook
conversion Project, click New, and click Connectivity Map. A blank Connectivity
Map appears.

2 Click the eWay icon and click the eWay type.

3 Drag the eWay icon to the Connectivity Map to create the inbound eWay.

4 Drag the Service icon to the Connectivity Map.

5 Click the eWay icon and click the eWay type.

6 Drag the eWay icon to the Connectivity Map to create the outbound eWay. The
Connectivity Map looks similar to the figure below.

Figure 12 COBOL Copybook Conversion Connectivity Map
Cobol Copybook Converter User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
4.6.3. Creating the Collaboration Definition
To create the Collaboration Definition

1 In the Project Explorer of the Enterprise Designer, right-click the COBOL copybook
conversion Project, click New and click Collaboration Definition (Java). The
Collaboration Definition wizard appears.

2 In the Collaboration Name box, enter the name for the Collaboration and click
Next. The Select Operation page appears as shown below.

Figure 13 Selecting Collaboration Operations

3 Double-click SeeBeyond and eWays—continue to double-click to select the
inbound eWay and the (inbound) web service. For example, for the a File eWay,
double-click File, FileClient, and click receive as shown below.
Cobol Copybook Converter User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 14 Selecting File Receive

4 Click Next.

5 Double-click SeeBeyond, eWays—continue to double-click to select the outbound
eWay and the (outbound) web service. For example, for the File eWay, double-click
File, and then FileClient.

6 In the Look In box, browse to the Project with the copybook file to be used for this
conversion.

7 Double-click the copybook file. This adds the copybook file as shown below.
Cobol Copybook Converter User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 15 Completed Collaboration Definition

8 Click Finish. The Collaboration Editor window appears.

You can now create the business logic for the Collaboration as described below.

4.6.4. Building Collaboration Definitions
Once you have created the Collaboration Definition as described in the section above,
you can create the business logic for the Collaboration. The business logic for a
copybook conversion consist of the following components:

1 Unmarshaling the Input Formats on page 37

2 Specifying Destinations on page 40

3 Writing The Output to a File on page 42

Unmarshaling the Input Formats

The first step in the business logic is to handle the data when it comes into the Project.
The Cobol Copybook OTD can process text data, and as such, text data can easily be
unmarshaled with the unmarshalFromString method().

For other data, you must convert the array data into an array input stream, and then
into an OTD input stream.

To unmarshal text input format

1 Right-click the copybook OTD and click Select a method to call. A list of methods
appears.
Cobol Copybook Converter User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 16 Cobol Copybook Converter Methods

2 Click unmarshalFromString(). The unmarshalFromString box appears.

3 Expand the input node and drag Text into in (String) as shown below.

Figure 17 Unmarshaling Text Input

To handle bytes input format

1 Click Local Variable. The Create a variable dialog box appears.

2 In the Variable Name box, enter the variable name.

3 Click Class and the ellipsis button. The Find Class dialog box appears.

4 In the Find Class box, type bytearray and press ENTER. The Find Class dialog box
shows the package available for the ByteArrayInputStream as shown below.
Cobol Copybook Converter User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 18 Creating a ByteArrayInputStream Variable

5 Click OK twice.

6 Click Local Variable to create the second variable to convert the array input stream
to the OTD input stream. The Create a variable dialog box appears.

7 In the Variable Name box, enter the name of the variable, for example, OTDstream.

8 In the Class box, type:

com.stc.otd.runtime.OtdInputStream

9 Click OK. This add the following business rule:

com.stc.otd.runtime.OtdInputStream.otdstream;

10 Click Source code mode and scroll to the business rule.

11 Delete the semi colon at the end of the line.

12 Add the following code:

= new com.stc.otd.runtime.provider.SimpleOtdInputStreamImpl(firstvariable);

Where firstvariable is the variable created in step 6.
Cobol Copybook Converter User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 19 Added Variable Code

13 Click Commit Changes.

14 Right-click the copybook OTD (with the copybook filename) and click Select a
method to call.

15 Click unmarshal(). This adds the unmarshal box.

16 Drag the firstvariable created in step 6 to in (OtdInputStream) as shown below.

Figure 20 Unmarshaling Non-String Data

Specifying Destinations

You can specify destinations by mapping specific input data to output data, or you can
marshal the data to the destination.

To map input and output data

1 Expand the input OTD node.

2 Drag the input nodes to the output data type under the output service as shown
below.
Cobol Copybook Converter User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 21 Mapping Input and Output Data

To marshal data as strings to an output destination

1 Right-click the copybook OTD, click Select a method to call, and click
marshalToString(). The marshalToString box appears.

2 Drag Result (String) to the output OTD as shown below.

Figure 22 Marshaling Data as String to an Output Destination

To marshal data to an output destination

1 Right-click the copybook OTD, click Select a method to call, and click marshal().
The marshal box appears.

2 Drag Out (OtdOutputStream) to the appropriate payload node of the output OTD.
Verify that the marshal method you selected has a result type compatible with the
payload type.
Cobol Copybook Converter User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Writing The Output to a File

If you are using a File eWay for the output of the copybook conversion Project, you can
use the method below to write the output to a file.

To write the output to a file

1 Right-click FileClient_1 in the input column, click Select a method to call, and click
write().

2 Click Save.

4.6.5. Binding the Collaboration Definition and eWays
Once you have created the Collaboration and its business logic as described in the
section above, you can bind the new Collaboration Definition to the Service, and then
connect the Collaboration to the eWays.

To bind the Collaboration Definition and eWays

1 From the Project Explorer of the Enterprise Designer, drag the newly-created
Collaboration Definition to the Service in the Connectivity Map as shown below.

Figure 23 Binding the Collaboration Definition and Service

2 Double-click the Service icon. The Service1 window appears.

3 Drag the input service to the inbound eWay. For example, for a File eWay, the input
service is FileClient input.

4 Drag the output service to the outbound eWay as shown below.
Cobol Copybook Converter User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Locating, Importing, and Using the Sample Projects Building Cobol Copybook Business Logic with eGate
Figure 24 Connecting the Collaboration to the eWays

5 Close the Service1 window and click Save.

Once you have completed the Connectivity Map binding, you must do the following to
finish the Project:

1 Configure the File eWays as described in the eWay documentation.

2 Create an Environment and Deployment Profile and run the Project as described in
the eGate Integrator User’s Guide.
Cobol Copybook Converter User’s Guide 43 SeeBeyond Proprietary and Confidential

Index

Cobol Copybook Converter User’s Guide 44 SeeBeyond Proprietary and Confidential

Index

C
CICS 6

COMM AREA 6
Cobol Copy statements 6
COMM AREA 6
conventions, document 7
converter methods 16

D
document

scope 7
document conventions 7
document purpose and scope 5

E
enableUnmarshalValidation(boolean enable) 17
Encoding Behaviour 16

G
guidelines

OTD methods 16

I
in) 22
in, String charset) 23
installing 10
introduction 5

J
Java methods 16

M
marshal() 18
marshal(OtdOutputStream out) 19
marshal(OtdOutputStream out, String charset) 20
marshal(OtdOutputStream) 19
marshal(String charset) 19
marshalToString 20

marshalToString() 20
methods 16

O
organization of information, document 7
OTD Interpretation 16
OTD method guidelines 16
overview 5

P
PIC X(4) 6
platforms, supported 10

R
readme 11
requirements 10
reset() 21
resetHigh() 21
resetLow() 21
retrieveEncoding() 21

S
scope 7
Screenshots 8
statements

Cobol Copy 6
usage pointer 6

supported platforms 10
supporting documents 8
system requirements 10

U
unmarshal(OtdInputStream in) 22
unmarshal(OtdInputStream in, String charset) 22
unmarshalFromString(String in) 23
unsupported features 6
usage pointer statements 6
useEncoding(String enc) 23

	Cobol Copybook Converter User’s Guide
	Contents
	Introduction
	1.1 About Cobol Copybooks
	1.1.1 Copybooks with content beyond column 72

	1.2 About the Cobol Copybook Converter
	1.2.1 Unsupported Features

	1.3 What’s New in This Release
	1.4 About This Document
	1.4.1 What’s in This Document
	1.4.2 Scope
	1.4.3 Intended Audience
	1.4.4 Document Conventions
	1.4.5 Screenshots

	1.5 Related Documents
	1.6 SeeBeyond Web Site
	1.7 Feedback

	Installing the Cobol Copybook Converter
	2.1 Supported Operating Systems
	2.2 System Requirements
	2.3 Installing the Product Files
	2.4 After You Install

	Using the OTD Wizard
	3.1 About the Cobol Copybook Wizard
	3.2 Creating Cobol Copybook OTDs
	3.3 Cobol Copybook OTD
	3.4 Cobol Copybook OTD Methods
	3.4.1 OTD Method Guidelines
	Encoding Behavior for Redefinitions

	3.4.2. Root-level Methods
	enableUnmarshalValidation(boolean enable)
	marshal()
	marshal(String charset)
	marshal(OtdOutputStream out)
	marshal(OtdOutputStream out, String charset)
	marshalToString()
	reset()
	resetHigh()
	resetLow()
	retrieveEncoding()
	unmarshal(byte[] in)
	unmarshal(OtdInputStream in)
	unmarshal(OtdInputStream in, String charset)
	unmarshal(byte[] in, String charset)
	unmarshalFromString(String in)
	useEncoding(String enc)

	3.4.3. Non-Root Methods

	Locating, Importing, and Using the Sample Projects
	4.1 About the Sample Projects
	4.1.1. Cobol_BPEL_Sample
	4.1.2. Cobol_Copybook_Sample

	4.2 Locating the Sample Projects
	4.3 Importing the Sample Projects
	4.4 Running the Sample Projects
	4.5 Building Cobol Copybook Business Logic with eInsight
	4.5.1. Adding a New Business Process
	4.5.2. Building the Business Processes
	4.5.3. Creating the Connectivity Map
	4.5.4. Binding the Business Process and eWays

	4.6 Building Cobol Copybook Business Logic with eGate
	4.6.1. Creating a COBOL Copybook Project and OTD
	4.6.2. Creating the Connectivity Map
	4.6.3. Creating the Collaboration Definition
	4.6.4. Building Collaboration Definitions
	Unmarshaling the Input Formats
	Specifying Destinations
	Writing The Output to a File

	4.6.5. Binding the Collaboration Definition and eWays

	Index
	C
	D
	E
	G
	I
	J
	M
	O
	P
	R
	S
	U

