
Batch e*Way Intelligent
Adapter User’s Guide

Release 5.0.5 for Schema Run-time Environment (SRE)

Java Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the copyright
laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20051011105650.

Batch e*Way Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Contents 3

Chapter 1

Batch e*Way User’s Guide 12

Intended Reader 12

General e*Way Operation 12
ETDs and Collaborations 13
Multi-Mode e*Way 13
e*Way Configuration 13
e*Way Overview Diagrams 13

Case 1: Moving Small Files 14
Case 2: Moving Large Files 15
Case 3: Moving a Data Payload 16

General Features 17
e*Way Components 17

Supported Operating Systems 18

System Requirements 18

External System Requirements 19

Chapter 2

Installation on Windows Systems 20
e*Way Installation Procedure 20
After Installation 21

UNIX 21
Installation Procedure 21
After Installation 22

Files/Directories Created by the Installation 22

Chapter 3

Multi-Mode e*Way Properties 24

JVM Settings 25
JNI DLL Absolute Pathname 25
CLASSPATH Prepend 26
CLASSPATH Override 26
CLASSPATH Append From Environment Variable 27
Batch e*Way Intelligent Adapter User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Initial Heap Size 27
Maximum Heap Size 27
Maximum Stack Size for Native Threads 27
Maximum Stack Size for JVM Threads 27
Disable JIT 28
Remote Debugging Port Number 28
Suspend Option for Debugging 28

General Settings 28
Rollback Wait Interval 28
Standard IQ FIFO 29

Chapter 4

Configuring e*Way Connection Properties 30

BatchRecordETD: Configuration Parameters 33
General Settings Configuration 33

Parse or Create Mode 33
Record Configuration 33

Record Type 33
Record Delimiter 34
Delimiter on Last Record 35
Record Size 35

User Class Configuration 35
User Class 35
User Properties 36

Connector Configuration 36
Type 36
Class 36
Property.Tag 37

FtpETD: Configuration Parameters 37
General Settings Configuration 37

Transaction Type 37
FTP Configuration 38

Directory Listing Style 38
Host Name 38
Server Port 38
User Name 39
Password 39
Mode 39
Use PASV 40
Command Connection Timeout 40
Data Connection Timeout 40

Target Location Configuration 41
Target Directory Name 41
Target Directory Name Is Pattern 41
Target File Name 41
Target File Name Is Pattern 42
Append 42

Pre Transfer Configuration 43
Pre Transfer Command 43
Pre Directory Name 43
Batch e*Way Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Pre Directory Name Is Pattern 44
Pre File Name 44
Pre File Name Is Pattern 45

Post Transfer Configuration 45
Post Transfer Command 45
Post Directory Name 46
Post Directory Name Is Pattern 46
Post File Name 46
Post File Name Is Pattern 47

FTP Raw Commands Configuration 47
Pre Transfer Raw Commands 47
Post Transfer Raw Commands 48

Sequence Numbering Configuration 48
Starting Sequence Number 48
Max Sequence Number 48

SOCKS Configuration 49
Socks Enabled 49
Socks Host Name 49
Socks Server Port 49
Socks Version 50
Socks User Name 50
Socks Password 50

Batch e*Way and SSH Tunneling 50
Additional SSH-supporting Software 51
Port-forwarding Configuration 51

SSH Tunneling Configuration 51
SSH Tunneling Enabled 51
SSH Channel Established 52
SSH Command Line 52
SSH Listen Host 53
SSH Listen Port 54
SSH User Name 54
SSH Password 55

Extensions Configuration 55
Provider Class Name 55
Client Class Name 55
User Properties File 56

Connector Configuration 56
Type 56
Class 57
Property.Tag 57
Connection Establishment Mode 57
Connection Inactivity Timeout 57
Connection Verification Interval 58

Dynamic Configuration 58
Publish Status Record on Success 58
Publish Status Record on Error 59
Include Order Record in Error Record 59
Include Payload in Error Record 60
Action on Malformed Command 60

LocalFileETD: Configuration Parameters 60
General Settings Configuration 61

Transaction Type 61
Batch e*Way Intelligent Adapter User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Resume Reading Enabled 61
Target Location Configuration 61

Target Directory Name 62
Target Directory Name Is Pattern 62
Target File Name 62
Target File Name Is Pattern 63
Append 63

Pre Transfer Configuration 63
Pre Transfer Command 63
Pre Transfer Name 64
Pre Transfer Name Is Pattern 65

Post Transfer Configuration 65
Post Transfer Command 65
Post Transfer Name 66
Post Transfer Name Is Pattern 66

Sequence Numbering Configuration 66
Starting Sequence Number 66
Max Sequence Number 67

Connector Configuration 67
Type 67
Class 67
Property.Tag 68

Dynamic Configuration 68
Publish Status Record on Success 68
Publish Status Record on Error 69
Include Order Record in Error Record 69
Include Payload in Error Record 69
Action on Malformed Command 70

FtpFileETD: Configuration Parameters 70
Connector Configuration 70

Type 70
Class 71
Property.Tag 71

FTP File Configuration 71
Directory Listing Style 71
Host Name 71
User Name 71
Password 72
Mode 72
Use PASV 72
Server Port 72
Remote Directory Name 72
Remote File Name 73
Overwrite Or Append 73
Command After Transfer 73
Rename or Archive Name 74
Pre Transfer Raw Commands 74
Post Transfer Raw Commands 74
Starting Sequence Number 75
Max Sequence Number 75

Using FTP Heuristics 75
FTP Heuristics: e*Way Operation 75
Platform or File Type Selection 76
Batch e*Way Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential

Contents
Configuration Parameters 77
Commands Supported by FTP Server 77
Header Lines To Skip 77
Header Indication Regex Expression 77
Trailer Lines To Skip 78
Trailer Indication Regex Expression 78
Directory Indication Regex Expression 78
File Link Real Data Available 79
File Link Indication Regex Expression 79
File Link Symbol Regex Expression 79
List Line Format 80
Valid File Line Minimum Position 80
File Name Is Last Entity 81
File Name Position 81
File Name Length 81
File Extension Position 82
File Extension Length 82
File Size Verifiable 82
File Size Position 83
File Size Length 83
Special Envelope For Absolute Path Name 83
Listing Directory Yields Absolute Path Names 84
Absolute Path Name Delimiter Set 84
Change Directory Before Listing 85
Directory Name Requires Terminator 85

Connection Manager 85
Using the Connection Manager 85
Controlling Connection Timing and Status 86

When a Connection Is Made 86
When a Connection is Disconnected 86
Connectivity Status 87

Chapter 5

e*Way ETDs: Overview 88
Types of ETDs 88
ETD Components 89

ETD for FTP Operations 90
ETD Structure and Operation 90

Configuration Node 92
Client and Provider Nodes 92

FTP ETD Node Functions 92
Using the FTP ETD 93

Handling Type Conversions 93
Essential FTP ETD Methods 94
Sequence Numbering 95
Additional FTP File Transfer Commands 96

ETD for Record Processing 96
ETD Structure and Operation 97
Record-processing ETD Node Functions 98
Using the Record-processing ETD 99
Batch e*Way Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential

Contents
Using get() and put() 99
Choosing the Parse or Create Mode 99
Creating a Payload 99
Parsing a Payload 100
Parser Interface 101
Use With Data Streaming 101

ETD for Local File 101
ETD Structure and Operation 101

Configuration Node 102
Client Node 103

Local File ETD Node Functions 103
Using the Local File ETD 104

Advantages of Using the ETD 104
Pre/post File Transfer Commands 104
Essential Local File ETD Methods 107
Resume Reading Feature 107
Data Stream-adapter Provider 109
Sequence Numbering 110
Handling Type Conversions 110

Recommended Practice 110
Example 1: Parsing a Large File 110
Example 2: Slow, Complex Query 110

ETD Limitations 111

FTP File ETD 111
ETD Structure 112
ETD Methods 113
Handling Type Conversions 113
Encrypting Passwords 113

Using Regular Expressions 113
Regular Expressions: Overview 114

Entering Regular Expressions 115
Regular Expressions and the e*Way 115

Rules for Directory Regular Expressions 115
Basic Directory Regular Expression Rules 115
Directory Regular Expression Examples 116

Using Special Characters 116
Types of Name Expansion 117
Resolving Names 117
Date/time Format Syntax 118

Chapter 6

Extending e*Way Functionality: Overview 120
Designed With Extensibility In Mind 120
Specifying User Classes and Properties Files 120
Interface-based e*Way Functionality 121

Extending the Record-processing ETD 122
Parser Interface Operation 122
Record-parser Hierarchy 122
Deriving From the Parser Interface 123
Batch e*Way Intelligent Adapter User’s Guide 8 SeeBeyond Proprietary and Confidential

Contents
Using get() and put() Methods 124
Using the initialize() Method 124

Using Your Parser Implementation 124

Extending the FTP ETD 125
FTP Client and Provider Interfaces 125
FTP Client and Provider Hierarchies 125
Deriving From Client and Provider Interfaces 126
Using Your Client and Provider Implementations 127

Supplying User Properties to Your Implementation Class 127
Sample Implementation 127

Chapter 7

Implementation Overview 128

Sample Schema: Basic FTP With Streaming 130
BasicFtpSample Schema Overview 130

Schema Setup 130
Schema Operation 131
Schema Components 132

Creating the BasicFtpSample Sample Schema 132
Creating a New Schema 133
Creating Event Types and ETDs 134
Creating and Configuring e*Ways 136
Creating and Configuring e*Way Connections 138
Creating Collaboration Rules 148
Creating Collaborations 168
Running the Schema 170

Sample Schema: Local File Streaming and GEOD 171
RPStreamingSample Schema Overview 171

Schema Setup 171
Schema Operation 172
Schema Components 174

Creating the RPStreamingSample Sample Schema 174
Creating a New Schema 174
Creating Event Types and ETDs 174
Creating and Configuring e*Ways 180
Creating and Configuring e*Way Connections 181
Checking the IQ Manager 202
Creating Collaboration Rules 203
Creating Collaborations 233
Running the Schema 235

Sample Schema: FTP and ETD Extensibility 236
FtpExtensibilitySample Schema Overview 236

Schema Setup 236
Schema Operation 237
Schema Components 238

Creating the FtpExtensibilitySample Schema 238
Creating a New Schema 239
Creating Event Types and ETDs 239
Creating and Configuring e*Ways 245
Creating and Configuring e*Way Connections 247
Batch e*Way Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential

Contents
Checking the IQ Manager 256
Creating Collaboration Rules 256
Creating Collaborations 268
Running the Schema 270

Sample Schema: Using Secure FTP 271
FtpSecuritySample Schema Overview 271

Schema Setup 271
Schema Operation 271
Schema Components 272

Creating the FtpSecuritySample Schema 272
Creating and Configuring e*Way Connections 272
Running the Schema 280

Chapter 8

Dynamic Configuration: Overview 281
General Operation 281

Dynamic Configuration Messages and Files 282
Order Messages 282
Error Messages 283
Data Messages 284
Configuration Parameters 284
Limitations of the Feature 285

Message Descriptions 285
Send or Receive Order Message 285

Additional Information: Order Messages 286
Sending Data with a Send Order 286
Receiving Data with a Receive Order 287

Error Message 288
Additional Information: Error Messages 289

Data Message 291
Additional Information: Data Messages 292
Payload Data 292

Dynamic Configuration Template 293
Importing the Dynamic Configuration Schema Template 293
Schema Setup 293
Schema Operation 294
Schema Components 295
Overview of Event Types and ETDs 297
Configuring the e*Way Connections 298
Configuring the File e*Ways 315
Collaboration Rules and Collaboration Operation 315

Using the Predefined Collaboration Rules 316
Collaboration Rules Components: File e*Ways 316
Collaboration Rules Component: cr_DynBatch 317
Malformed Command Actions 322
Schema Collaborations 322
Before Running the Schema 326
Running the Schema 327
After Running the Schema 327
Batch e*Way Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential

Contents
Chapter 9

Streaming Data Between Components 328
Introduction to Data Streaming 328
Overcoming Large-file Limitations 329
Using Data Streaming 329

Data-streaming Operation 329
Data Streaming Versus Payload Data Transfer 330
Data Streaming Setups 331
Consuming-stream Adapters 339

Stream-adapter Interfaces 340
Inbound Transfers 340
Outbound Transfers 340

Secure FTP and the e*Way 341
SOCKS Support 341

SOCKS: Overview 341
SOCKS and the Batch e*Way 342

SSH Tunneling 343
SSH Tunneling: Overview 343
Additional Software Requirements 343
SSH Tunneling and the Batch e*Way 343

Guaranteed Exactly Once Delivery 346
XA Compliance 346
Rollback and Commit 346
Working With GEOD Collaborations 347

Restrictions 347
Behavior With get() 348
Behavior With put() 348

Enabling the XA Mode 349

Chapter 10

Batch e*Way Methods and Classes: Overview 351

Java Classes 351

Using Java Methods 352

Index 353
Batch e*Way Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This guide explains the Batch e*WayTM Intelligent Adapter. This chapter provides an
introduction to the guide and the e*Way.

1.1 Batch e*Way User’s Guide
This document gives a general overview of the Batch e*Way and explains how to
install, configure, and operate it. The guide also explains the e*Way’s usability features,
as well as how to implement it in a typical e*Gate Integrator environment.

Note: This e*Way is enabled by the Java programming language.

1.2 Intended Reader
The reader of this guide is presumed:

To be a developer or system administrator with the responsibility for maintaining
the e*Gate system

To have high-level knowledge of Windows operations and administration

To be thoroughly familiar with Windows-style user interface operations

To have an understanding of how to use the File Transfer Protocol (FTP)

1.3 General e*Way Operation
The Batch e*Way enables the e*Gate system to use an FTP connection to exchange data
with other network hosts, for the purpose of receiving and delivering Events stored in
files. The e*Way provides an FTP Event Type Definition (ETD) to perform this
operation. In addition, the e*Way provides you with a record-processing ETD and a
local file ETD.

Note: The e*Way supports standard FTP according to RFC-959.
Batch e*Way Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation
All e*Ways provide a communication bridge between the e*Gate environment and one
or more external systems. As a result, e*Ways are two-sided. They communicate with
the e*Gate system on one side and externally on the other. The communication between
the e*Way and e*Gate is common to all e*Ways, while communication with external
systems is different for each e*Way.

The Batch e*Way is specialized to perform a variety of FTP and FTP-related operations,
depending on your specific needs, network environment, record-processing, file
transfer, and external system requirements.

1.3.1 ETDs and Collaborations
The combination of specialized ETDs, working with e*Way Connections with
configurable parameters, allows you to define the characteristics of your own external
interfaces.

Essentially, a Batch e*Way ETD is a mirror image of the e*Way Connection and allows
you to redefine desired parameters at the Collaboration level, as opposed to doing this
operation at every separate e*Way Connection.

Through these specific, specialized ETDs and configurable e*Way Connections, you can
create Collaboration Rules that make the e*Way behave as desired. Use the e*Gate
Schema Designer’s Collaboration Rules Editor to create Collaboration Rules.

Note: For more information on the Schema Designer, ETDs, and Collaborations/
Collaboration Rules, as well as their use in e*Gate, see the e*Gate Integrator
User’s Guide. Chapter 7 provides an overview of e*Gate and its components as
part of explaining the e*Way’s schema samples.

1.3.2 Multi-Mode e*Way
The Batch e*Way Intelligent Adaptor employs the Multi-Mode e*Way (with the
stceway.exe executable file) to communicate with external systems and within the
e*Gate system. The Multi-Mode e*Way is a core e*Gate component. One or more Java
Collaborations are utilized to maintain communication between the e*Way and external
systems.

For information about configuring the Multi-Mode e*Way, see Chapter 3.

1.3.3 e*Way Configuration
An e*Way’s configuration settings allow you to specify necessary parameters of
operation. In turn, these parameters are adopted into the associated ETD’s
configuration.

1.3.4 e*Way Overview Diagrams
This section provides general diagrams showing how the e*Way operates in typical
use-case situations. See Chapter 7 for more information on how to implement these
types of scenarios, including e*Gate sample schemas.
Batch e*Way Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation
Case 1: Moving Small Files

Figure 1 shows a diagram of the e*Way set up for use with small files. The e*Way gets
files from a remote source and parses them into specified records.

Figure 1 Case 1 Diagram: Moving Small Files

e*Gate Integrator

Each call to get() retrieves the
next record from the Payload.

Call get() to retrieve a file
from the FTP server.

External
FTP Server

FTP ETD

JMS QueueFile

Record-
processing

ETDDrag and
Drop

Payload

Collaboration

User-defined
ETD
Batch e*Way Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation
Case 2: Moving Large Files

Figure 2 shows a diagram of the e*Way set up for use with large files. The e*Way gets
files from a remote source and parses them into specified records. This setup promotes
the exactly-once delivery of Events.

Figure 2 Case 2 Diagram: Moving Large Files

For small files (using a payload-data transfer as shown in case 1) the advantage of using
this type of setup is that it provides for optimum performance. If you know ahead of
time that the size of the file (payload data) is relatively small, this setup gives you faster
operation since the transfer from ETD to ETD is in-memory.

In the case of a large file, however, it is better to use data streaming because this feature
does not load the payload (file) into e*Gate’s memory.

e*Gate Integrator

External
FTP Server

FTP ETD

Call get() to
retrieve file
(FTP get)

File

Local File System

File

Use
Streaming
Interface

Use
Streaming
Interface

JMS Queue

Collaboration 1

Collaboration 2

Local File
ETD

Local File
ETD

Record-
processing

ETD

Queue in
GEOD (XA)

Mode

User-
defined ETD
Batch e*Way Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation
Case 3: Moving a Data Payload

Figure 3 shows a diagram of the e*Way set up for moving payload data. The e*Way
builds a payload and sends it to a local file or remote FTP system.

Figure 3 Case 3 Diagram: Moving a Data Payload

FTP ETD Local File ETD

e*Gate Integrator

e*Way to/from
MQSeries System

MQSeries ETD

Drag the payload
from the record-
processing ETD
to the Payload

node of the FTP
or local file ETD.

Local File System

File

For each message in
queue, call put() on

the record-processing
ETD to build the data

payload.

Collaboration

Remote FTP System

File OR

Call put() to create
a local file.

Record-processing
ETD

Call put() to send to the
remote FTP system.
Batch e*Way Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation
1.3.5 General Features
The Batch e*Way provides the following basic features and implementation
applications:

Receiving and sending individual files

Receiving files, breaking files up into records, and sending files individually

Using FTP heuristics to talk to a variety of external system platforms

Using regular expressions and special characters

Allowing you to get or put a file synchronously inside a Collaboration

Retrieving and re-marshaling a file in the same Collaboration

ETDs

Available with the e*Way are extensible ETDs, in which you can override the default
configurations. Chapter 5 details the user-extensible FTP, record-processing, and local
file ETDs.

Advanced Features

The following chapters explain how to use the e*Way’s advanced features and
operations:

Chapter 8 “Dynamic Configuration” Explains how to use the e*Way’s Dynamic
Configuration feature, including its message-based operations.

Chapter 6 “Extending the e*Way” Discusses ways you can customize the e*Way
and extend its functionality.

Chapter 9 “Additional Features” Explains the following features:

How to employ payload data streaming and minimize memory resource usage.

The e*Way’s secure FTP features, SOCKS and Secure Shell (SSH) tunneling.

How to use the Guaranteed Exactly Once Delivery (GEOD) of Events feature, that
is, the e*Way’s XA-mode functionality.

1.3.6 e*Way Components
The Batch e*Way is made up of the following components:

Multi-Mode e*Way, a core e*Gate component (uses the stceway.exe executable file);
see Chapter 3 for details

Three custom ETDs, for FTP, record processing, and local file transfer

Java methods for added functionality; see Chapter 10 and the Javadoc

Configuration files, that the e*Gate Schema Designer’s e*Way Configuration Editor
uses to define configuration parameters; see Chapter 4 for details

Additional files necessary for operation, as shown in Table 1 on page 22 (which
provides a complete list of installed files)
Batch e*Way Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Supported Operating Systems
1.4 Supported Operating Systems
The Batch e*Way is available on the following operating systems:

Windows 2000, Windows XP, and Windows Server 2003

HP Tru64 5.1A and 5.1B

HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23)

IBM AIX 5L version 5.1, 5.2, and 5.3

Red Hat Enterprise Linux AS 2.1 (Intel x86)

Sun Solaris 8 and 9

Japanese Windows 2000, Windows XP, and Windows 2003

Japanese HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23)

Japanese IBM AIX 5L version 5.1, 5.2, and 5.3

Japanese Sun Solaris 8 and 9

Korean Windows 2000, Windows XP, and Windows 2003

Korean HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23)

Korean IBM AIX 5L version 5.1 and 5.2

Korean Sun Solaris 8 and 9

Traditional Chinese Windows 2000, Windows XP, and Windows 2003

Traditional Chinese Sun Solaris 8 and 9

Note: The Batch e*Way supports IBM z/OS V1.3 and V1.4 for the Monk version
only. The Batch e*Way Java version does not support z/OS.

1.5 System Requirements
To use the Batch e*Way, you need the following:

An e*Gate Participating Host.

A TCP/IP network connection.

Java SDK version 1.3.1_02 or later.

A machine running Windows, on which you can use the e*Gate Schema Designer
and its related features, the ETD Editor, e*Way Configuration Editor, and
Collaboration Rules Editor.
Batch e*Way Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.6
Introduction External System Requirements
The e*Way must be configured and administered using the Schema Designer.

Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes. The amount necessary varies based on the type and size of the data being
processed and any external applications performing the processing.

Open and review the Readme.txt for the Batch e*Way regarding any additional
requirements prior to installation. The Readme.txt is located on the Installation
CD_ROM at setup\addons\ewbatch.

1.6 External System Requirements
There are external system requirements if you use Secure Shell (SSH) tunneling. See
“SSH Tunneling” on page 343 for details on these requirements.

Your network must contain an operational SOCKS server if SOCKS will be used for
secure data transfer. See “SOCKS Support” on page 341 for details.

Your network must contain an operational FTP server if FTP operations will be
performed.
Batch e*Way Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains how to install the Batch e*Way Intelligent Adapter.

2.1 Installation on Windows Systems
Pre-installation

Exit all Windows programs before running the setup program, including any
antivirus applications.

You must have Administrator privileges to install this e*Way.

2.1.1 e*Way Installation Procedure
To install the Batch e*Way on Windows systems

1 Log on as an Administrator on the workstation where you want to install the e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Auto-run feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the setup.exe file
on the CD-ROM drive.

4 After the InstallShield setup application launches, follow the on-screen
instructions to install the e*Way.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.
Batch e*Way Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
2.1.2 After Installation
Once you have installed and configured this e*Way, you must incorporate it into a
schema before it can perform its intended functions. This is done by defining and
incorporating the following:

Collaborations

Collaboration Rules

Intelligent Queues (IQs)

Event Types

Event Type Definitions (ETDs)

See the e*Gate Integrator User’s Guide for details on incorporating the e*Way into a
schema.

2.2 UNIX
Pre-installation

You do not require root privileges to install this e*Way. Log on under the name of the
user who owns the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree.

2.2.1 Installation Procedure
To install the Batch e*Way on a UNIX system

1 Log on to the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type:

cd /cdrom/setup

4 Start the installation script by typing:

setup.sh

5 A menu of options appears. Select the e*Gate Add-on Applications option. Then,
follow any additional on-screen directions.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.
Batch e*Way Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
2.2.2 After Installation
Once you have installed and configured this e*Way, you must incorporate it into a
schema before it can perform its intended functions. This is done by defining and
incorporating the following:

Collaborations

Collaboration Rules

Intelligent Queues (IQs)

Event Types

Event Type Definitions (ETDs)

See the e*Gate Integrator User’s Guide for details on incorporating the e*Way into a
schema.

2.3 Files/Directories Created by the Installation
On both Windows and UNIX machines, the Batch e*Way installation installs the files
shown in Table 1. Files are installed within the eGate\client directory on the
Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files Created by Installation

Directories Files

classes stcbatchext.jar
stcbatch.jar
stcewcommoneway.jar

ThirdParty\NetComponents\classes NetComponents-1.3.8a.jar

configs\FtpHeuristics FtpHeuristics.cfg
FtpHeuristics.def
FtpHeuristics.sc

etd\batchclient FtpFileETD.xsc

etd\batchclientext FtpETD.xsc
LocalFileETD.xsc
BatchRecordETD.xsc

configs\batchclient FtpFileETD.def

configs\batchclientext FtpETD.def
LocalFileETD.def
BatchRecordETD.def

etd batchftp.ctl
localfile.ctl
batchrecord.ctl
ftpfile.ctl
Batch e*Way Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
Note: The files installed in the etd\batchclient and configs\batchclient directories are
from the previous version of the e*Way and are installed to maintain backward
compatibility. The files installed in etd\batchclientext and
configs\batchclientext are for the newest version of the e*Way.

Some of the files used by this e*Way are installed by the Monk programming language-
enabled version of the e*Way. For information on these files, see the Batch e*Way
Intelligent Adapter User’s Guide (Monk Version).
Batch e*Way Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

The Batch e*Way Intelligent Adapter employs the Multi-Mode e*Way (a core e*Gate
component) to communicate with external systems and within the e*Gate system.

This chapter describes how to configure the Multi-Mode e*Way.

3.1 Multi-Mode e*Way Properties
You will use the e*Gate Schema Designer to set the Multi-Mode e*Way properties. This
section provides instructions for setting the properties you must configure before you
can use an e*Way.

Note: For complete information on how to create and configure the Multi-Mode e*Way,
see the Standard e*Way Adapter User’s Guide. Chapter 7 provides more
detailed procedures as part of explaining the e*Way’s schema samples.

To set necessary properties for a Multi-Mode e*Way

1 Click the Components tab in the Navigator pane of Main window of the Schema
Designer.

2 Open the host and Control Broker where you want to create the e*Way.

3 Click the new e*Way icon.

4 Enter the name of the new e*Way, then click OK.

5 Select the new component, then click the Properties icon to edit its properties.

The e*Way Properties dialog box opens

6 Click Find beneath the Executable File field, and select an executable file
(stceway.exe is located in the bin directory).

7 Under the Configuration File field, click New.

The e*Way Configuration Editor window opens.

8 When the Settings page opens, set the configuration parameters for this e*Way’s
configuration file.

Note: See “JVM Settings” on page 25 and “General Settings” on page 28 for
detailed information about these configuration parameters.
Batch e*Way Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Multi-Mode e*Way Configuration JVM Settings
9 When you are finished setting the configuration parameters, click Save on the File
menu. This will save your settings to the configuration (.cfg) file.

10 Close the .cfg file and e*Way Configuration Editor.

11 Set the properties for the e*Way in the e*Way Properties dialog box.

12 Click OK to close the dialog box and save the properties.

3.2 JVM Settings
To correctly configure the Batch e*Way Intelligent Adapter, you must configure the Java
Virtual Machine (JVM) settings. This section provides detailed information about these
configuration parameters, which are displayed in the e*Way Configuration Editor
window.

JNI DLL Absolute Pathname

Description

Specifies the absolute path of the installation location of the JNI .dll (Windows) or
shared library (UNIX) file is installed by the Java SDK on the Participating Host, for
example:

C:\eGate\client\bin\Jre or C:\jdk\jre\bin\server

This parameter is mandatory.

Required Values

A valid path name.

Additional Information

The JNI .dll or shared library file name varies, depending on the current operating
system (OS). Table 2 lists the file names by OS.

Table 2 JNI.dll and shared library file names

Operating System Java 2 JNI .dll or Shared
Library Name

Windows systems jvm.dll

Solaris libjvm.so

HP-UX libjvm.sl

AIX libjvm.a

Compaq libjvm.so

Red Hat Linux libjvm.so
Batch e*Way Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Multi-Mode e*Way Configuration JVM Settings
The value assigned can contain a reference to an environment variable. Enclose the
variable name within a pair of “%” symbols, for example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
OS/platforms.

Caution: To ensure that the JNI .dll file loads successfully, the Dynamic Load Library search-
path environment variable must be set appropriately to include all the directories
under the Java SDK installation directory, which contain shared library or .dll files.

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of “%” symbols, for example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH) is
set.

Note: All necessary .jar and .zip files needed by both e*Gate and the JVM must be
included. It is recommended that you use the CLASSPATH Prepend parameter.

Required Values

An absolute path or an environment variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of “%” symbols, for example:

%MY_CLASSPATH%
Batch e*Way Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Multi-Mode e*Way Configuration JVM Settings
CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable
to .jar and .zip files needed by the JVM.

Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If this value is set to 0 (zero), the
preferred value for the initial heap size of the JVM is used.

Required Values

An integer from 0 to 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If this value is set to 0 (zero), the
preferred value for the maximum heap size of the JVM is used.

Required Values

An integer from 0 to 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If this value is
set to 0 (zero), the default value is used.

Required Values

An integer from 0 to 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If this value is
set to 0 (zero), the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.
Batch e*Way Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Multi-Mode e*Way Configuration General Settings
Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.

Required Values

YES or NO.

Remote Debugging Port Number

Description

Specifies whether to allow remote debugging of the JVM.

Required Values

YES or NO.

Suspend Option for Debugging

Description

Indicates whether to suspend the Option for Debugging on JVM startup.

Required Values

YES or NO.

3.3 General Settings
This section contains the parameters for rollback wait and IQ messaging priority.

Note: For more information on the General Settings configuration parameters, see the
e*Gate Integrator User's Guide.

3.3.1 Rollback Wait Interval
Description

Specifies the time interval to wait before rolling back the transaction.

Required Values

A number within the range of 0 to 99999999, representing the time interval in
milliseconds.
Batch e*Way Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Multi-Mode e*Way Configuration General Settings
3.3.2 Standard IQ FIFO
Description

Specifies whether the highest priority messages from all SeeBeyond Standard IQs are
delivered in the first-in-first-out (FIFO) order.

Required Values

Select Yes or No. Yes indicates that the e*Way retrieves messages from all SeeBeyond
Standard IQs in the first-in-first-out (FIFO) order. No indicates that this feature is
disabled; No is the default.
Batch e*Way Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter explains how to configure e*Way Connections for the Batch e*Way
Intelligent Adapter.

4.1 Configuring e*Way Connection Properties
You will use the e*Gate Schema Designer to set e*Way connection properties. This
section provides instructions for setting the properties you must configure before you
can use an e*Way connection with the Batch e*Way.

Note: For complete information on how to create and configure e*Way Connections, see
the e*Gate Integrator User’s Guide. Chapter 7 provides more detailed
procedures as part of explaining the e*Way’s schema samples.

To set necessary properties for a Batch e*Way Connection

1 Click the Components tab in the Navigator pane of the Main window of the Schema
Designer.

2 Select the e*Way Connections folder.

3 On the palette, click the new e*Way Connection icon.

The New e*Way Connection Component dialog box appears.

4 Enter a name for the e*Way Connection, then click OK.

An icon for your new e*Way Connection appears in the Component pane.

5 Double-click the new e*Way Connection icon.

The e*Way Connection Properties dialog box appears.

6 Select Batchext from the e*Way Connection Type drop-down box.

7 Enter the appropriate Event Type “get” interval in the dialog box provided.

8 Under e*Way Connection Configuration File, click New.

Note: To use an existing e*Way Connection configuration file, click Find.
Batch e*Way Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connection Properties
9 From the ETD Template Selection dialog box, select the desired Event Type
Definition (ETD). Your options are:

BatchRecordETD: Record-processing ETD

FtpETD: FTP ETD

LocalFileETD: Local file ETD

Note: If you require backward compatibility, you can select Batch for the e*Way
Connection type (step 6 above). Then, you will be able to select the FtpFileETD.xsc
ETD template in the ETD Template Selection dialog box. However, if you do not
need backward compatibility, it is recommended that you use FtpETD.xsc for FTP
operations.

10 After you make your selection, click OK. The e*Way Configuration Editor window
appears.

Note: For complete information on how to use the e*Way Configuration Editor, see the
e*Gate Integrator User’s Guide.

11 Select the appropriate configuration parameters available in the e*Way
Configuration Editor window to create a new configuration file for this e*Way
Connection (this chapter explains these parameters).

12 When you are finished, save the new configuration file and close the e*Way
Configuration Editor.

Note: Chapter 5 contains a detailed explanation of the Batch e*Way’s ETDs.

Each Batch e*Way Connection component utilizes one of the e*Way’s ETDs. You can use
the e*Way Configuration editor to set each component’s configuration parameters.

This chapter explains these parameters as follows:

“BatchRecordETD: Configuration Parameters” on page 33

“General Settings Configuration” on page 33

“Record Configuration” on page 33

“User Class Configuration” on page 35

“Connector Configuration” on page 36
Batch e*Way Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connection Properties
“FtpETD: Configuration Parameters” on page 37

“General Settings Configuration” on page 37

“FTP Configuration” on page 38

“Target Location Configuration” on page 41

“Pre Transfer Configuration” on page 43

“Post Transfer Configuration” on page 45

“FTP Raw Commands Configuration” on page 47

“Sequence Numbering Configuration” on page 48

“SOCKS Configuration” on page 49

“SSH Tunneling Configuration” on page 51

“Extensions Configuration” on page 55

“Connector Configuration” on page 56

“Dynamic Configuration” on page 58

“LocalFileETD: Configuration Parameters” on page 60

“General Settings Configuration” on page 61

“Target Location Configuration” on page 61

“Pre Transfer Configuration” on page 63

“Post Transfer Configuration” on page 65

“Sequence Numbering Configuration” on page 66

“Connector Configuration” on page 67

“Dynamic Configuration” on page 68

“FtpFileETD: Configuration Parameters” on page 70

“Connector Configuration” on page 70

“FTP File Configuration” on page 71

“Using FTP Heuristics” on page 75

“Configuration Parameters” on page 77

Note: Individual ETD configuration settings can override e*Way Connection component
settings. For more information, see Chapter 5.

In addition, this chapter provides a section that explains how to use the e*Gate
Connection Manager: “Connection Manager” on page 85.
Batch e*Way Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Connection Configuration BatchRecordETD: Configuration Parameters
4.2 BatchRecordETD: Configuration Parameters
This section explains the configuration parameters for the Batch e*Way Connection
with the record-processing ETD (BatchRecordETD.xsc).

4.2.1 General Settings Configuration
This section provides you with configuration information for the General Settings
parameter, Parse or Create Mode.

Parse or Create Mode
Description

Allows you to specify how this e*Way Connection for the record-processing ETD is
used. Set this parameter as follows:

To use the ETD for parsing an inbound payload, choose Parse.

To use the ETD for creating an outbound payload, choose Create.

An instance of the ETD can be used for parsing an inbound payload (only) or for
creating an outbound payload (only). A single ETD cannot be used for both purposes at
the same time in the same Collaboration.

Required Values

Create or Parse; the default is Parse.

4.2.2 Record Configuration
This section allows you to configure the Record parameters, specifying the record
characteristics you want the e*Way to recognize.

Record Type
Description

Allows you to specify the format of the records in the data payload in the
Collaboration.
Batch e*Way Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Connection Configuration BatchRecordETD: Configuration Parameters
Each payload can contain zero or more records. Using this and related parameters, it is
possible to pass the records individually to another component within e*Gate. Select
one of the following options:

Delimited: The records are separated by the delimiter specified under the Record
Delimiter parameter.

Fixed: The records are all of a given size; the size of each record is specified by the
Record Size parameter.

Single record: If the payload is to be processed “as-is,” select this option.

User defined: This option allows for user extensibility. If it is chosen, the semantics
of what constitutes a record are defined by your own implementation of the parser
interface. For more information on the e*Way’s extensibility features, see Chapter 6.

Note: If you select User Defined, you must enter a Java class name under the User Class
(see “User Class Configuration” on page 35) configuration settings.

Required Values

Delimited (the default), Fixed, Single Record, or User Defined.

Record Delimiter
Description

Allows you to enter the delimiter to be used for records. Use this parameter when the
Record Type is set to Delimited.

The value entered is interpreted as a sequence of one or more bytes. If there are
multiple bytes in the delimiter, each must be separated by a comma.

Note: When using character delimiters with DBCS data, use single byte character(s) or
equivalent hex values with hex values that do not coincide with either byte of the
double byte character.

You can enter the delimiters in the following formats:

ASCII Characters: The e*Way supports all ASCII characters.

Example: *,*,* (records separated by ***)

Example: | (records separated by a |)

Escaped ASCII: The e*Way supports \r, \n, \t, and \f.

Example: \r,\n (records separated by CR NL)

Example: \n (records separated by NL only)

Hex: The e*Way supports 0x00 to 0x7E

Example: \0x0D,\0x0A (records separated by CR NL)

Octal: The e*Way supports 000 to 0177.

Example: \015,\012 (same as \0x0D,\0x0A)
Batch e*Way Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Connection Configuration BatchRecordETD: Configuration Parameters
Note: When you are using escaped ASCII, Hex, or Octal, the “\” character is required.

Required Values

A valid data record delimiter.

Delimiter on Last Record
Description

Allows you to supply the delimiter to be used with the final record. Use this parameter
only when the Record Type is set to Delimited.

Some message formats insist that the final message in a record set has no trailing
delimiter. However, in most cases, you can safely leave this parameter set to Yes.

Required Values

No or Yes (the default).

Record Size
Description

Allows you to specify a number indicating the record size. Use this parameter when the
Record Type is set to Fixed, and a number indicating length must be supplied. The
number specifies the byte count of each record.

Required Values

An integer from 1 to 2,147,483,647.

4.2.3 User Class Configuration
This section allows you to configure the User Class parameters.

User Class
Description

Allows you to specify the name of a Java class you create. This is an advanced
parameter and allows for user extensibility of the record-parsing capabilities of the
e*Way.

This option is only used when the User Defined parameter is selected under the
Record Type (see “Record Type” on page 33) settings in the Record configuration. In
this case, you must enter the full class name of your class, for example:

com.mycompany.batch.MyParser

Required Values

A valid Java class name. This class must either implement the BatchRecordParser
interface or extend one of the SeeBeyond-supplied implementations.
Batch e*Way Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Connection Configuration BatchRecordETD: Configuration Parameters
Note: See Chapter 6 for information on how to extend the e*Way.

User Properties

Description

Allows you to specify the fully qualified file name of a Java properties file. This is an
advanced parameter and is part of the user-extensibility features of the record-parsing
capabilities of the e*Way.

This option is only used when the User Defined parameter is chosen under the Record
Type (see “Record Type” on page 33) settings, and you have supplied a class name for
the User Class parameter. This parameter is ignored by all SeeBeyond-supplied parser
implementations.

This parameter is optional but, if supplied, the full path must be given. If a file name is
supplied, it is loaded and passed to your implementation class as a Java Properties
object immediately after construction.

The format of the file is totally user-defined and is not interpreted by e*Gate or the
e*Way in any way. In this way, you can create the file manually in a text editor ahead of
time or dynamically on the fly, as long as it exists before the initialization of the e*Way
at run time.

For more information on the e*Way’s extensibility features, see Chapter 6.

Required Values

The fully qualified file name for the Java properties file; this parameter is optional.

4.2.4 Connector Configuration
This section allows you to configure the e*Gate Collaboration engine to identify the
e*Way Connection with the record-processing ETD.

Note: For information on how to use the Connection Manager, see “Connection
Manager” on page 85.

Type

Description

Allows you to specify the type of e*Way Connection.

Required Values

The e*Gate name of the record-processing ETD. The value defaults to
BatchRecordETD.

Class

Description

Allows you to specify the class name of the Batch e*Way ETD connector object.
Batch e*Way Intelligent Adapter User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Required Values

A valid class name. The default is com.stc.eways.batchext.BatchRecordConnector.

Property.Tag

Description

Allows you to identify the data source. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name. Accept the default.

4.3 FtpETD: Configuration Parameters
This section provides information about the configuration parameters for the Batch
e*Way Connection with the FTP ETD (FtpETD.xsc).

Caution: Several of these configuration options allow you to use regular expressions. This
advanced feature is useful but must be used carefully. An improperly formed regular
expression can cause the creation of undesired data or even the loss of data. You
must have a clear understanding of regular-expression syntax and construction
before attempting to use this feature. It is recommended that you test such
configurations thoroughly before moving them to production.

4.3.1 General Settings Configuration
This section allows you to configure the General Settings parameter, Transaction Type.

Transaction Type
Description

Allows you to specify the transaction type, that is, whether to use the XA-compliant
Guaranteed Exactly Once Delivery (GEOD) of Events.

Your options are:

Non-Transactional: Do not use GEOD (no XA mode).

XA-compliant: Use GEOD; enables the XA mode.

Required Values

Non-Transactional (the default) or XA-compliant.

4.3.2 FTP Configuration
This section allows you to configure the FTP parameters.
Batch e*Way Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Directory Listing Style
Description

Allows you to select the system that reflects the remote host. This parameter is used to
determine the format in which the LIST command returns file-listing information.

Required Values

One of the following values: UNIX, HCLFTPD 5.1, HCLFTPD 6.0.1.3, VMS,
MSFTPD 2.0, MVS PDS, MVS GDG, MVS Sequential, VM/ESA, Netware 4.11,
AS400, AS400-UNIX, or MPE.

Note: For more information, see “Using FTP Heuristics” on page 75.

Host Name

Description

Allows you to specify the name of the external system that the e*Way connects to.

If the parameter SSH Tunneling Enabled under the SSH Tunneling configuration
settings is set to Yes, the parameters Host Name and Server Port, under the FTP
settings, are ignored. In this case, the FTP host name is determined by an SSH option,
according to the following model:

ssh -L ListenPort:FtpServerHost:FtpServerPort SSHServer

In the previous example, the FTP feature communicates with the FTP server
FtpServerHost:FtpServerPort using an existing SSH tunnel. See “SSH Tunneling
Configuration” on page 51 for details.

If the parameter Socks Enabled under the SOCKS configuration parameters is set to
Yes, the host name under the FTP configuration could fail to resolve some names, for
example, localhost or 127.0.0.1 correctly. Use real IP or machine names to represent the
hosts. See “SOCKS Configuration” on page 49 for details.

Required Values

A valid host name.

Server Port

Description

Allows you to specify the port number to use on the FTP server when connecting to it.

If the parameter SSH Tunneling Enabled under the SSH Tunneling configuration is
set to Yes, the parameters Host Name and Server Port under the FTP configuration are
ignored. In this case, the FTP server port number is determined by an SSH option,
according to the following model:

ssh -L ListenPort:FtpServerHost:FtpServerPort SSHServer

In the previous example, the FTP feature communicates with the FTP server
FtpServerHost:FtpServerPort using an existing SSH tunnel. See “SSH Tunneling
Configuration” on page 51 for details.
Batch e*Way Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Required Values

A valid server port number.

User Name

Description

When a log on to the external system is required, enter the appropriate user name.

Required Values

A valid user name.

Password

Description

If a password is required to log on to an external system, enter the password that
corresponds to the user name.

The corresponding Java accessor methods are getPassword(), setPassword(), and
setEncryptedPassword(). For complete information on the e*Way’s Java methods, see
Chapter 10.

Required Values

A valid password.

Mode

Description

Allows you to specify the mode used to transfer data to or from the FTP server, using
the Ascii, Binary, or Ebcdic mode.

Required Values

Ascii, Binary, or Ebcdic; the default is Binary.

Note: If you choose Ebcdic, make sure that:
Your FTP server supports the EBCDIC mode.
You are processing EBCDIC data.

Use PASV

Description

Allows you to cause the e*Way to enter the passive or active mode.

Normally, when you connect to an FTP site, the site establishes the data connection to
your computer. However, some FTP sites allow passive transfers, meaning that your
computer establishes the data connection.

By default, the passive mode is used. It is recommended that you use this mode for
transfers to and from FTP sites that support it.
Batch e*Way Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
The passive mode can be required in the following situations:

For users on networks behind some types of router-based firewalls

For users on networks behind a gateway requiring passive transfers

If transfers are erratic

If data-channel errors are prevalent in your environment

Required Values

Yes or No; the default is Yes.

Command Connection Timeout

Description

Allows you to set the timeout of the FTP command/control connection socket.
Normally, the larger the file you are transferring, the higher this value must be. Of
course, the quality of the network connection also affects this setting.

The value is in milliseconds. A timeout of zero is interpreted as an infinite timeout.

Required Values

An integer from 0 to 2147483647. The default is 0.

Data Connection Timeout

Description

Allows you to set the timeout of the FTP data connection socket. Normally, a slow or
busy network connection requires a higher timeout setting.

The value is in milliseconds. A timeout of zero is interpreted as an infinite timeout.

For setting the timeout of the command/control connection socket, see the parameter
Command Connection Timeout.

Required Values

An integer from 0 to 2147483647. The default is 45000.

4.3.3 Target Location Configuration
This section allows you to configure the parameters for the Target Location (remote
location) of the FTP directories and files.

Target Directory Name

Description

Allows you to specify the directory on the external system from which files are
retrieved or where they are sent. The absolute directory name is preferred, otherwise,
this path is relative to the home directory where you are when you log on to the FTP
server.
Batch e*Way Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
For outbound FTP operations (publishing), the directory is created if it does not already
exist.

Required Values

A valid directory name/path location on the target external system.

Target Directory Name Is Pattern

Description

Allows you to indicate whether the pattern entered for the directory is interpreted
literally (if No) or as a regular expression or name expansion (if Yes), as follows:

If you choose No, it is assumed that the name entered represents what you want as
an exact match. No pattern matching of any kind is done.

If you choose Yes, the value you enter is assumed to be a regular expression (when
doing inbound) or name expansion (when doing an outbound FTP to the file
system).

For more information on using regular expressions with FTP and the e*Way, see “Using
Regular Expressions” on page 113.

Note: Target directory names are resolved relative to the home directory of the user unless
an absolute path is given.

Required Values

Yes or No; the default is No.

Target File Name

Description

Allows you to specify the name of the remote FTP file to be retrieved or sent. This
parameter can specify the exact file name or a regular-expression pattern. For outbound
data (publishing), the file is created if it does not already exist. This parameter
represents the base file name instead of the full file name.

For MVS GDG systems, the target file name can be the version of the data set, for
example:

Target directory name = ‘STC.SAMPLE.GDGSET’

Target file name = (0) to indicate the current version

Required Values

A valid file name or a regular expression or name expansion file name.

For more information on regular expressions you can use with the e*Way, see “Using
Regular Expressions” on page 113.
Batch e*Way Intelligent Adapter User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Target File Name Is Pattern

Description

Allows you to indicate whether the pattern entered for the file name is interpreted
literally (if No) or as a regular expression or name expansion (if Yes), as follows:

If you choose No, it is assumed that the name entered represents what you want as
an exact match. No pattern matching of any kind is done.

If you choose Yes, the value you enter is assumed to be a regular expression (when
doing inbound) or name expansion (when doing an outbound FTP to the file
system).

For more information on using regular expressions with FTP and the e*Way, see “Using
Regular Expressions” on page 113.

Required Values

Yes or No; the default is Yes.

Append

Description

Allows you to specify whether to overwrite or append the data to the existing file. Use
this parameter for outbound FTP transfers only. Choose the appropriate setting as
follows:

If you select Yes and the target file already exists, the data is appended to the
existing file.

If you select No, the e*Way overwrites the existing file on the remote system.

If a file with the same name does not exist, both Yes and No create a new file on the
external host.

Note: Append is not supported in the XA mode (GEOD feature).

Required Values

Yes or No; the default is No.

4.3.4 Pre Transfer Configuration
This section allows you to configure the Pre Transfer parameters. Pre-transfer
operations are those performed before the file transfer.

Note: For more information on this feature, see “Pre/post File Transfer Commands”
on page 104.
Batch e*Way Intelligent Adapter User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Pre Transfer Command

Description

Allows you to execute a desired action directly before the actual file transfer. For an
inbound transfer, the file can be made unavailable to other clients polling the target
system with the same directory and file pattern or name. For an outbound transfer, you
can perform an automatic backup or clean-up of the existing file.

The options are:

Rename: Rename the target file for protection or recovery.

Copy: Copy the target file for backup or recovery.

None: Do nothing.

Note: The Copy option could slow system performance, especially if you are copying a
large file.

To gain proper protection, backup, or recovery, you must choose the appropriate setting
that serves your purpose. For example, to recover from failures on an outbound
appending transfer, use the Copy setting.

Caution: When you are using Rename, if the destination file exists, different FTP servers can
behave differently. For example, on some UNIX FTP servers, the destination file is
overwritten without question. That is, no error or warning message is given. On
other FTP servers, the system generates an error that results in exception’s being
thrown in the called ETD method.

Be sure you are familiar with the native behavior of the corresponding FTP server. If
you are in doubt, try the action at the command prompt. If the action displays an
error message, it is likely to result in an exception’s being thrown in the
Collaboration.

Required Values

Rename, Copy, or None. The default is None.

Pre Directory Name

Allows you to specify the directory on the external system in which a file is renamed or
copied. The absolute directory name is expected.

For an outbound transfer (publishing), the directory is created if it does not already
exist. This setting is only for the Rename or Copy operations of Pre Transfer Command
parameter.

Special characters are allowed. For example, the pattern %f indicates the original
working directory name. The expansion of any special characters is carried out each
time this parameter is used. See “Using Special Characters” on page 116 for details on
using these characters.
Batch e*Way Intelligent Adapter User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Required Values

A valid directory name and path location on the target system; special characters are
allowed.

Pre Directory Name Is Pattern

Description

Allows you to indicate whether the pattern entered for the directory is interpreted
literally (if No) or as a name expansion (if Yes), as follows:

If you choose No, it is assumed that the name entered represents what you want as
an exact match. No pattern matching of any kind is done.

If you choose Yes, the value you enter is assumed to be a pattern for name
expansion.

Required Values

Yes or No; the default is Yes.

Pre File Name

Description

Allows you to specify the file name on the external system, to which a file is renamed or
copied. The value represents the base file name instead of the full file name.

This setting is only for the Rename or Copy operations of Pre Transfer Command
parameter.

Special characters are allowed, for example, the pattern %f means the original working
file name. The expansion of any special characters is carried out each time this
parameter is used. See “Using Special Characters” on page 116 for details on using
these characters.

Required Values

A valid file name on the target system; special characters are allowed.

Pre File Name Is Pattern

Description

Allows you to indicate whether the pattern entered for the file name is interpreted
literally (if No) or as a name expansion (if Yes), as follows:

If you choose No, it is assumed that the name entered represents what you want as
an exact match. No pattern matching of any kind is done.

If you choose Yes, the value you enter is assumed to be a pattern for name
expansion.

Required Values

Yes or No; the default is Yes.
Batch e*Way Intelligent Adapter User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
4.3.5 Post Transfer Configuration
This section allows you to configure the Post Transfer configuration parameters. Post-
transfer operations are those performed after the file transfer.

Note: For more information on this feature, see “Pre/post File Transfer Commands”
on page 104.

Post Transfer Command

Description

Allows you to execute a desired action directly after the actual file transfer or during
the “commit” phase when the Transaction Type parameter is set to XA-Compliant.

Note: For more information on the e*Way’s XA-compliant GEOD features, see
“Guaranteed Exactly Once Delivery” on page 346.

For an inbound transfer, you can mark the transferred file as “consumed” by making an
automatic backup (Rename) or by destroying it permanently (Delete). For an outbound
transfer, you can make the transferred file available to other clients by renaming it.

The options are:

Rename: Rename the transferred file.

Delete: Delete the transferred file (inbound transfers only).

None: Do nothing.

Caution: When you are using Rename, if the destination file exists, different FTP servers can
behave differently. For example, on some UNIX FTP servers, the destination file is
overwritten without question. That is, no error or warning message is given. On
other FTP servers, the system generates an error that results in exception’s being
thrown in the called ETD method.

Be sure you are familiar with the native behavior of the corresponding FTP server. If
you are in doubt, try the action at the command prompt. If the action displays an
error message, it is likely to result in an exception’s being thrown in the
Collaboration.

Required Values

Rename, Delete, or None; the default is None.

Post Directory Name

Description

Allows you to specify the directory on the external system in which a file is renamed.
The absolute directory name is expected.
Batch e*Way Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
For an outbound transfer (publishing), the directory is created if it does not already
exist. This setting is only for the Rename operation of the Post Transfer Command
parameter.

Special characters are allowed, for example, the pattern %f means the original working
directory name. The expansion of any special characters is carried out each time this
parameter is used. See “Using Special Characters” on page 116 for details on using
these characters.

Required Values

A valid directory name and path location on the target system; special characters are
allowed.

Post Directory Name Is Pattern

Description

Allows you to indicate whether the pattern entered for the directory is interpreted
literally (if No) or as a name expansion (if Yes), as follows:

If you choose No, it is assumed that the name entered represents what you want as
an exact match. No pattern matching of any kind is done.

If you choose Yes, the value you enter is assumed to be a pattern for name
expansion.

Required Values

Yes or No; the default is Yes.

Post File Name

Description

Allows you to specify the file name on an external system to which a file is renamed.
The value represents the base file name instead of the full file name.

This setting is only for Rename operation of Post Transfer Command parameter.

Special characters are allowed. For example, the pattern %f indicates the original
working file name. The expansion of any special characters is carried out each time this
parameter is used. See “Using Special Characters” on page 116 for details on using
these characters.

Required Values

A valid file name on the target system; special characters are allowed.
Batch e*Way Intelligent Adapter User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Post File Name Is Pattern

Description

Allows you to indicate whether the pattern entered for the file name is interpreted
literally (if No) or as a name expansion (if Yes), as follows:

If you choose No, it is assumed that the name entered represents what you want as
an exact match. No pattern matching of any kind is done.

If you choose Yes, the value you enter is assumed to be a pattern for name
expansion.

Required Values

Yes or No; the default is Yes.

4.3.6 FTP Raw Commands Configuration
This section provides information about configuring the FTP Raw Commands
parameters. FTP raw commands are commands that are sent directly to the FTP server.

Note: If you are using the XA mode for GEOD transmission, you cannot use FTP raw
commands.

Pre Transfer Raw Commands
Description

Allows you to specify the FTP raw commands to be used directly before the file-transfer
command, for example, some SITE commands.

Use a ; (semi-colon) to separate the command set, for example,

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE
TRACKS;SITE PRI=5;SITE SEC=5

These commands are sent one by one, in the sequence they are listed.

Required Values

One or more valid FTP raw commands.

Note: These commands are sent to the FTP server directly and are not interpreted by the
e*Way in any way.

Post Transfer Raw Commands

Description

Allows you to specify the FTP raw commands to be used directly after the file-transfer
command, for example, some SITE commands.
Batch e*Way Intelligent Adapter User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Use a ; (semi-colon) to separate the command set, for example,

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE
TRACKS;SITE PRI=5;SITE SEC=5

These commands are sent one by one, in the sequence they are listed.

Caution: Certain combinations of post-transfer raw commands can cause the loss of data if
there is a failure on the FTP server. For example, if the inbound post-transfer
command is Delete, and your post-transfer raw commands fail, the deleted file is
not recoverable.

Required Values

One or more valid FTP raw commands.

Note: These commands are sent to the FTP server directly and are not interpreted by the
e*Way in any way.

4.3.7 Sequence Numbering Configuration
This section allows you to configure the Sequence Numbering parameters.

Starting Sequence Number

Description

Use this parameter when you have set up the target directory or file name to contain a
sequence number. It tells the e*Way which value to start with in the absence of a
sequence number from the previous run.

This parameter is used for the name pattern %#.

When the Max Sequence Number value is reached, the sequence number rolls over to
the Starting Sequence Number value.

Required Values

An integer from 0 to 2147483647. The value of the Starting Sequence Number must be
less than the Max Sequence Number value. The default value is 1.

Max Sequence Number

Description

Use this parameter when you have set up the target directory or file name to contain a
sequence number. It tells the e*Way that when this value (the Max Sequence Number)
is reached, to reset the sequence number to the Starting Sequence Number value.

This parameter is used for the name pattern %#.

Required Values

An integer from 1 to 2147483647. The value of Max Sequence Number must be greater
than that of Starting Sequence Number. The default value is 999999.
Batch e*Way Intelligent Adapter User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
4.3.8 SOCKS Configuration
This section provides information about configuring the SOCKS secure FTP
configuration parameters. The e*Way supports the following negotiation methods:

 No-authentication

User/password

For more information on SOCKS, see “SOCKS Support” on page 341.

Socks Enabled

Description

Allows you to specify whether the FTP command connection goes through a SOCKS
server.

If you choose No, the e*Way does not connect to a SOCKS server. In this case, all other
parameters under the SOCKS section are ignored.

Note: If this parameter is set to Yes, the host name under the FTP configuration could fail
to resolve some names, such as localhost or 127.0.0.1 correctly. Use real IP or
machine names to represent the hosts. See “Host Name” on page 38 for more
details.

Required Values

Yes or No; the default is No.

Socks Host Name

Description

Allows you to enter the SOCKS host name. When you are communicating with a
SOCKS server, enter the SOCKS server name in this parameter.

Required Values

A valid SOCKS server host name.

Socks Server Port

Description

Allows you to enter the port number to use on the SOCKS server, when connecting to it.

Required Values

An integer from 1 to 65,535; the default is 1080.
Batch e*Way Intelligent Adapter User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Socks Version

Description

Allows you to specify the SOCKS server version. If you choose Unknown, the e*Way
detects the actual version for you.

Note: For the best performance, specify the version number, 4 or 5.

Required Values

Version 4 or 5, or Unknown (the default).

Socks User Name

Description

Allows you to specify the user name to use (together with the password specified
under the Socks Password parameter) for authentication with a SOCKS5 server, if
necessary. This parameter is used for the user/password negotiation method.

Required Values

A valid SOCKS5 user name.

Socks Password

Description

Allows you to specify the password to use (together with the user name specified
under the Socks User Name parameter) for authentication with a SOCKS5 server, if
necessary. This parameter is used for the user/password negotiation method.

Note: The corresponding Java accessors are getSocksPassword(),
setSocksPassword(java.lang.String p) and
setSocksEncryptedPassword(java.lang.String p).

Required Values

A valid SOCKS5 password.

4.3.9 Batch e*Way and SSH Tunneling
This section provides a brief explanation of how the e*Way supports Secure Shell (SSH)
tunneling.

Note: SSH tunneling is also known as port forwarding.

Additional SSH-supporting Software

The e*Way’s SSH tunneling feature depends on your using an existing SSH-supporting
software application, for example, Plink on Windows or OpenSSH on UNIX.
Batch e*Way Intelligent Adapter User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
For different SSH client implementations, the command syntax and environment
configuration can be different. See your SSH-supporting application user’s guides for
details. For more information, see the following Web site:

http://www.openssh.com

Port-forwarding Configuration

Through SSH tunneling, the FTP command connection is protected. This mechanism is
based on an existing SSH port-forwarding configuration. You must configure SSH port
forwarding on the SSH listen host before you configure the supporting e*Way
Connection.

For example, on the e*Gate client host localhost, you can issue a command, such as:

ssh -L 4567:apple:21 -o BatchMode=yes apple

Under the e*Way’s configuration for the previous example, you must specify:

localhost for the parameter SSH Listen Host

4567 for the parameter SSH Listen Port

In this case, the e*Way connects to the FTP server apple:21 through an SSH tunnel. For
more information on SSH tunneling, see “SSH Tunneling” on page 343.

Note: It is possible to use SOCKS and SSH tunneling at the same time. However, this
practice is not recommended.

4.3.10 SSH Tunneling Configuration
This section provides information for configuring the SSH Tunneling secure FTP
configuration parameters.

SSH Tunneling Enabled
Description

Allows you to specify whether the FTP command connection is secured through an
SSH tunnel.

If you choose No, all other parameters in this section are ignored.

Note: If you want to use the SSH port-forwarding feature, you may need to reconfigure
your FTP server, depending on what kind of server you are using and how it is
currently configured. See your SSH documentation for more information.

Required Values

Yes or No; the default is No.
Batch e*Way Intelligent Adapter User’s Guide 51 SeeBeyond Proprietary and Confidential

http://www.openssh.com

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
SSH Channel Established
Description

Allows you to specify whether the e*Way needs to launch an SSH subprocess.

Selecting No means the SSH channel has not yet been established. The e*Way spawns a
subprocess internally then establishes the channel on your behalf.

If you select No, you must set the following parameters:

SSH Command Line

SSH Listen Port

If you select No, setting the following parameters is optional:

SSH User Name

SSH Password

Selecting Yes means an SSH channel has already been established. That is, the channel
has already been started outside the e*Way, and the e*Way does not need to establish it.
For example, you could have issued a command outside of e*Gate, or you could know
that another Batch e*Way instance has already established the channel by the time this
e*Way runs.

If you select Yes, you must set the following parameters:

SSH Listen Host

SSH Listen Port

Required Values

Yes or No; the default is No.

SSH Command Line
Description

Allows you to enter the command line used to establish an SSH channel. This
parameter is required only when you set the SSH Channel Established parameter to
No.

This entry must be the complete, correct command line required by the additional
software application you are using to support SSH tunneling. This command line is
executed as it is, so you must be sure that it:

Contains all the necessary arguments

Is correct in syntax

Is compliant with your SSH-environment

To verify these requirements, test this command line manually outside of e*Gate to
make sure it works correctly. Execute the command line from the shell and ensure that
it does not prompt for any additional user input. If it does, continue to add whatever
additional parameters are required until it no longer prompts for additional input, then
use that command line in the e*Way’s configuration.
Batch e*Way Intelligent Adapter User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
You can specify any other options that are based on your SSH-environment. However,
if you do so, you must still be sure this command line is correct and complete. For
example, port forwarding could be specified using the following command-line option:

-L ListenPort:FtpServerHost:FtpServerPort

In the previous example, ListenPort must be same value as that given for the parameter
SSH Listen Port. The value given for FtpServerHost overwrites the parameter setting
for Host Name under the FTP parameters. The value given for FtpServerPort
overwrites the parameter setting for Server Port under the FTP parameters. All other
settings under the FTP parameters operate for the specified FTP server:
FtpServerHost:FtpServerPort.

If the SSH channel established by an SSH command line must be shared by other Batch
e*Way instances located on different e*Gate client hosts, you must configure SSH port
forwarding to allow non-local connections from other hosts. For some SSH clients, you
can use the option -g.

Note: You also can specify port forwarding in your SSH configuration file.

The command-line syntax can differ, depending on the type of SSH client
implementation you are using. See your SSH-tunneling support software user
documentation for details.

Examples

ssh -L 3456:ftp.sun.com:21 -o BatchMode=yes apple
ssh -L 4567:apple:21 -o BatchMode=yes apple
ssh -L 5678:orange:21 -o BatchMode=yes apple
ssh -L 6789:orange:21 -g -o BatchMode=yes apple
plink -L 4567:apple:21 apple
plink -L 5678:orange:21 apple
plink -L 6789:orange:21 -g apple

Required Values

A valid SSH command line.

SSH Listen Host
Description

Allows you to specify the name of the host where the SSH support software runs, and
the host it listens to.

This parameter is required only when you set the SSH Channel Established parameter
to Yes. If you choose No, the Listen Host is always localhost because the SSH support
software is always started from the local host. For optimum security, it is recommended
that you use localhost as your choice. The connection to the corresponding port
number on this host is forwarded to the FTP server through an SSH-secure channel.

On this listen host, the SSH support software must be configured and started with the
port-forwarding option. The FTP command connection is forwarded through the secure
tunnel. The corresponding SSH command uses the following model:

ssh -L ListenPort:FtpServerHost:FtpServerPort -o BatchMode=yes
SSHServer
Batch e*Way Intelligent Adapter User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
For example, on an SSH listen host, you could issue a command, such as:

ssh -L 4567:apple:21 -o BatchMode=yes apple or ssh -L 5678:orange:
21 -o BatchMode=yes apple

If this host name is not localhost, the data transport between the local host and the SSH
listen host is not secure. Also, your SSH support software must be configured to allow
connections to other hosts (for some SSH applications, you can use an option -g).

Regardless, the transport between the SSH listen host and the FTP server is still secure.

Required Values

A valid SSH listen host name; the default is localhost.

SSH Listen Port
Description

Allows you to specify the port number that the SSH-tunneling support software uses to
check for incoming connections. This port number can be any unused port number on
the SSH listen host.

The connection to this port is forwarded to the FTP server through an SSH-secure
channel. This parameter is required and it must be exactly same as the ListenPort value
in the SSH command you issue either inside or outside the e*Gate system. The
corresponding SSH command line uses the following model:

ssh -L ListenPort:FtpServerHost:FtpServerPort -o BatchMode=yes
SSHServer Required Values

Required Values

An integer from 1 to 65535; the default is 4567.

SSH User Name
Description

Allows you to specify an SSH user name. This parameter can be required when the
setting for the SSH Channel Established parameter is No.

This parameter is required only if the SSH support software is started from within the
e*Way (refer to the corresponding SSH command line). Even then, it is only required if
your SSH implementation executes in an interactive way that requires you to enter a
user name. Again, this requirement depends on how you specify the SSH command
line and how your SSH environment is configured.

Required Values

A valid SSH user name.
Batch e*Way Intelligent Adapter User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
SSH Password
Description

Allows you to specify an SSH password corresponding to the user name entered under
SSH User Name. This parameter can be required only when the setting for the SSH
Channel Established parameter is No. For more information, see SSH User Name.

Required Values

A valid SSH password.

4.3.11 Extensions Configuration
This section allows you to configure the Extensions configuration parameters. These
parameters allow you to use the extensibility features of the e*Way.

Provider Class Name
Description

Allows you to enter the name of a Java class you are using to extend the capabilities of
the FTP ETD’s provider interface.

This is an advanced parameter that allows you to replace e*Way’s native
implementation of the provider interface (FtpFileProvider). For details on extending
the e*Ways’s capabilities, see Chapter 6.

The user class specified here must either:

Implement the interface com.stc.eways.batchext.FtpFileProvider

Extend the class com.stc.eways.batchext.FtpFileProviderImpl

Required Values

You must enter either:

com.stc.eways.batchext.FtpFileProviderImpl

A user class that implements the com.stc.eways.batchext.FtpFileProvider interface
or extends FtpFileProviderImpl

Client Class Name
Description

Allows you to enter the name of a Java class you are using to extend the capabilities of
the FTP ETD’s client interface.

This is an advanced parameter that allows you to replace e*Way’s native
implementation of the client interface (FtpFileClient). For details on extending the
e*Ways’s capabilities, see Chapter 6.
Batch e*Way Intelligent Adapter User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
The user class specified here must either:

Implement the interface com.stc.eways.batchext.FtpFileClient

Extend the class com.stc.eways.batchext.FtpFileClientImpl

Required Values

You must enter either:

com.stc.eways.batchext.FtpFileClientImpl

A user class that implements the com.stc.eways.batchext.FtpFileClient interface or
extends FtpFileClientImpl

User Properties File
Description

Allows you to specify the name and path location of a Java properties file.

This is an advanced parameter and is part of the user-extensibility features of the
e*Way’s FTP ETD. This Java file is one you have used to provide custom properties to
any replacement implementation of either of the following interfaces:

com.stc.eways.batchext.FtpFileClient

com.stc.eways.batchext.FtpFileProvider

The fully qualified file name is required. The contents of the file are loaded into a
java.util.Properties instance during the ETD’s initialization. These properties are then
available at run time as the UserProperties node in the ETD configuration.

For more information on the e*Way’s extensibility features, see Chapter 6.

Required Values

A valid path location and file name. The file must be a valid Java properties file with
key/value pairs.

4.3.12 Connector Configuration
This section allows you to configure the e*Gate Collaboration engine to identify the
e*Way Connection with the FTP ETD.

Note: For information on how to use the Connection Manager, see “Connection
Manager” on page 85.

Type

Description

Specifies the type of e*Way Connection.

Required Values

The e*Gate name of the FTP ETD. The value defaults to batchftp.
Batch e*Way Intelligent Adapter User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
Class

Description

Specifies the class name of the Batch e*Way ETD connector object.

Required Values

A valid class name. The default is com.stc.eways.batchext.FtpConnector.

Property.Tag

Description

Identifies the data source. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name. Accept the default value.

Connection Establishment Mode

Description

Allows you to specify how a connection to the external system is established and
closed:

Automatic indicates that the connection is automatically established when the
Collaboration is started, and it keeps the connection alive as needed.

OnDemand indicates that the connection is established on demand, as Business
Rules requiring a connection to the external system are performed. The connection
is closed after the methods are completed.

Manual indicates that you must explicitly call the connection connect and
disconnect methods in the current Collaboration as Business Rules.

Note: If you are using the Dynamic Configuration feature, you must be in the Manual
mode and call the connect() and disconnect() methods.

Required Values

Automatic, OnDemand, or Manual; the default is Automatic.

Connection Inactivity Timeout

Description

Allows you to specify the timeout (in milliseconds) for the Automatic connection
establishment mode, so you only need to set this parameter if you are using this mode.

If you do not set this parameter (or set it to 0), the connection is not closed by inactivity
and is always kept alive. If it goes down, re-establishing the connection is automatically
attempted.
Batch e*Way Intelligent Adapter User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
If a non-zero value is specified, the e*Gate Connection Manager monitors the e*Way
Connection for inactivity, and it is closed if the specified value is reached. For more
information on the e*Gate Connection Manager, see “Connection Manager” on
page 85.

Required Values

An integer (in milliseconds) representing the desired timeout interval.

Connection Verification Interval

Description

This value is used to specify the minimum period of time (milliseconds) between
checks for the connection status to the FTP server. If the connection to the server is
detected to be down during verification, the relevant Collaboration’s
onConnectionDown() method is called. If the connection comes from a previous
connection error, the relevant Collaboration’s onConnectionUp() method is called.

Required Values

An integer (in milliseconds) representing the desired verification interval; the default is
60,000 ms.

4.3.13 Dynamic Configuration
This section contains the parameters for the e*Way's Dynamic Configuration feature.
These options allow you to provide information for your own use, via the FTP ETD's
Dynamic Messaging configuration nodes.

Dynamic Messaging allows the e*Way to subscribe to XML messages that determine its
activities. These messages can contain all the relevant parameters governing an FTP
data transfer, including the data to be sent (if it is an outbound transfer).

Note: In using this feature, keep in mind that the e*Way is Event-driven, so it does not
exchange data based on scheduling.

For a complete explanation of the Dynamic Configuration feature and its schema
template, see Chapter 8.

Publish Status Record on Success

Description

If you want to publish a status record on every successful FTP transfer, set this
parameter to Yes. This setting does not cause the e*Way to publish the message. Instead,
it only passes the Yes setting information to the corresponding configuration node on
the FTP ETD. If you set it to No (the default), that information is also passed.
Batch e*Way Intelligent Adapter User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Way Connection Configuration FtpETD: Configuration Parameters
You must create this feature yourself, in a Dynamic Configuration Collaboration. For
example, you can configure the Collaboration to send a status record to e*Gate, with the
format of batch_eway_error.dtd, when the payload has been successfully sent to the
remote FTP host. In this case, you must configure an inbound topic and make sure this
Event is processed.

You can set the error_code element of the XML message to zero (0) to indicate no errors
and allow the error_text to represent the time the file was successfully transferred, for
example:

Successfully sent on: Fri, 29 Jun 2001 at 14:02:30 PDT

Required Values

Yes or No; the default is No.

Publish Status Record on Error

Description

If you want to publish a status record on every FTP transfer error, set this parameter to
Yes. This setting does not cause the e*Way to publish the message. Instead, it only
passes the Yes setting information to the corresponding configuration node on the
FTP ETD. If you set it to No (the default), that information is also passed.

You must create this feature yourself, in a Dynamic Configuration Collaboration. For
example, you can configure the Collaboration to send a status record to e*Gate, with the
format of batch_eway_error.dtd, whenever there has been an FTP error. In this case,
you must configure an inbound topic and make sure this Event is processed.

Required Values

Yes or No; the default is No.

Include Order Record in Error Record

Description

If you want to include an order record as part of an error record when the Publish
Status Record on Error parameter is selected, set this parameter to Yes. This setting
does not cause the e*Way to publish the message. Instead, it only passes the Yes setting
information to the corresponding configuration node on the FTP ETD. If you set it to
No (the default), that information is also passed.

You must create this feature yourself, in a Dynamic Configuration Collaboration, along
with your configuration for publishing the error status record.

Required Values

Yes or No; the default is No.
Batch e*Way Intelligent Adapter User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Include Payload in Error Record

Description

If you want to include the data payload as part of the error status record when the order
record command is SEND, set this parameter to Yes. This setting does not cause the
e*Way to publish the message. Instead, it only passes the Yes setting information to the
corresponding configuration node on the FTP ETD. If you set it to No (the default), that
information is also passed.

You must create this feature yourself, in a Dynamic Configuration Collaboration, along
with your configuration for publishing the error status record.

Required Values

Yes or No; the default is No.

Action on Malformed Command

Description

If you want the e*Way to take a specific action whenever there is an FTP transfer error,
choose the desired action here. This setting does not cause the e*Way to take this action.
Instead, it only passes the setting information to the corresponding configuration node
on the FTP ETD. The default is Exit.

You must configure these actions yourself, in a Dynamic Configuration Collaboration.
The options in case of an error are:

Exit: Shut down the e*Way.

Ignore: The e*Way does nothing.

Raise Alert: Send an Alert to the Schema Manager.

Publish Error Record: Publish an XML error status record (see the Publish Status
Record on Error parameter.

Required Values

Ignore, Raise Alert, Publish Error Record, or Exit (the default).

Caution: Be careful when using the Ignore option, because no action is taken. Data could be
lost without your being able to take any recourse action.

4.4 LocalFileETD: Configuration Parameters
This section provides the information about the configuration parameters for the Batch
e*Way Connection with the local file ETD (LocalFileETD.xsc).
Batch e*Way Intelligent Adapter User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Caution: Several of these configuration options allow for or regular expressions to be used.
This advanced feature is useful but must be used carefully. An improperly formed
regular expression can cause undesired data or even the loss of data. You must have
a clear understanding of regular-expression syntax and construction before
attempting to use this feature. It is recommended that you test such configurations
thoroughly before moving them to production.

4.4.1 General Settings Configuration
This section provides information about configuring the General Settings parameter,
Transaction Type.

Transaction Type
Description

Allows you to specify the transaction type, that is, whether to use the XA-compliant
GEOD feature.

Your options are:

Non-Transactional: Do not use GEOD (no XA mode).

XA-compliant: Use GEOD; enables the XA mode.

Required Values

Non-Transactional (the default) or XA-compliant.

Resume Reading Enabled

Description

Allows you to specify whether the ETD handles the Resume Reading feature as follows:

Yes: Enables the ETD to store any state information necessary to resume reading
from the current file in a subsequent execution of the Collaboration Rule.

No: Means the file is considered “consumed” even if the streaming consumer did
not read until the end of file.

Note: This feature is available for inbound data-streaming transfers only. See “Resume
Reading Feature” on page 107 for more information.

Required Values

Yes or No; the default is No.

4.4.2 Target Location Configuration
This section provides information about configuring the Target Location parameters.
Batch e*Way Intelligent Adapter User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Target Directory Name
Description

Allows you to specify the directory on the local system from which files are retrieved or
where they are sent. This parameter can specify the exact directory path or a regular-
expression pattern. For an outbound transfer, the directory is created if it does not
already exist.

Required Values

A valid directory name and path location or the regular-expression pattern directory
name and path location on the local system.

Target Directory Name Is Pattern
Description

Allows you to specify the meaning of the Target Directory Name parameter as follows:

Yes means that the Target Directory Name represents a pattern to be used as a
regular expression for pattern matching on inbound transfers or name expansion on
outbound transfers.

No means that the Target Directory Name represents the exact directory name to be
used for the transfer. No pattern matching of any kind is performed.

For more information on using regular expressions with the e*Way, see “Using Regular
Expressions” on page 113.

Required Values

Yes or No; the default is No.

Target File Name
Description

Allows you to specify the name of the file on the local system to be retrieved or sent.
This parameter can specify the exact file name or a regular-expression pattern. For
outbound data (publishing), the file is created if it does not already exist. This
parameter represents the base file name instead of the full file name.

Required Values

A valid file name or a regular-expression file name.
Batch e*Way Intelligent Adapter User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Target File Name Is Pattern
Description

Allows you to specify the meaning of the Target File Name parameter as follows:

Yes means that the Target File Name represents a pattern to be used as a regular
expression for pattern matching on inbound transfers or name expansion on
outbound transfers.

No means that the Target File Name represents the exact directory name to be used
for the transfer. No pattern matching of any kind is performed.

For more information on using regular expressions with the e*Way, see “Using Regular
Expressions” on page 113.

Required Values

Yes or No; the default is Yes.

Append

Description

Allows you to specify whether to overwrite or append the data to the existing file. Use
this parameter for outbound file transfers only. Choose the appropriate setting as
follows:

If you select Yes and the target file already exists, the data is appended to the
existing file.

If you select No, the e*Way overwrites the existing file on the remote system.

If a file with the same name does not exist, both Yes and No create a new file on the
external host.

Note: Append is not supported in the XA mode (GEOD feature).

Required Values

Yes or No; the default is No.

4.4.3 Pre Transfer Configuration
This section provides information about configuring the Pre Transfer parameters. Pre-
transfer operations are those performed before the data transfer.

Note: For more information on this feature, see “Pre/post File Transfer Commands”
on page 104.

Pre Transfer Command
Description

Allows you to determine the action executed directly before the actual file transfer.
Batch e*Way Intelligent Adapter User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
In the case of an inbound file transfer, you can make the file unavailable to other clients
polling the target system via the same directory and file pattern or name. In the case of
an outbound transfer, you can make an automatic backup of the existing file.

Your options are:

Rename: Rename the target file.

Move: Move the target file to another directory.

None: Do nothing.

Caution: Rename and Move overwrite the file or directory specified by the Pre Transfer
Name parameter, if either or both have been entered.

Required Values

Rename, Move, or None; the default is None.

Pre Transfer Name
Description

Allows you to specify either the name of the file that the remote file is renamed to
(Rename), or the directory it is moved to (Move), depending on the value set in the
parameter Pre Transfer Command.

Special characters are allowed. The expansion of any special characters are carried out
each time this parameter is used.

If you are entering a path name, use the forward slash (/) instead of the back slash (\)
because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for a path location, not c:\temp\dir.

For more information on special characters you can use with the e*Way, see “Using
Special Characters” on page 116.

Required Values

One of the following values:

A valid file name or a regular-expression file name

A valid directory name and path location or the regular-expression directory name
and path location on the local system
Batch e*Way Intelligent Adapter User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Pre Transfer Name Is Pattern
Description

Allows you to specify the meaning of the Pre Transfer Name parameter as follows:

Yes means that the Pre Transfer Name (file or directory) represents a pattern to be
used as a regular expression for pattern matching on inbound transfers or name
expansion on outbound transfers.

No means that the Pre Transfer Name (file or directory) represents the exact
directory name to be used for the transfer. No pattern matching of any kind is
performed.

For more information on using regular expressions with the e*Way, see “Using Regular
Expressions” on page 113.

Required Values

Yes or No; the default is Yes.

4.4.4 Post Transfer Configuration
This section allows you to configure the Post Transfer parameters. Post-transfer
operations are those performed after the data transfer

Note: For more information on this feature, see “Pre/post File Transfer Commands”
on page 104.

Post Transfer Command

Description

Allows you to execute a desired action directly after the actual file transfer or during
the “commit” phase when the Transaction Type parameter is set to XA-Compliant. For
an inbound transfer, you can mark the transferred file as “consumed” by making an
automatic backup (Rename or Move) or by destroying it permanently (Delete). For an
outbound transfer, you can make the transferred file available to other clients by
renaming or moving it.

The options are:

Rename: Rename the transferred file.

Move: Move the target file to another directory.

Delete: Delete the transferred file (inbound transfers only).

None: Do nothing.

Note: For more information on the e*Way’s XA-compliant GEOD features, see
“Guaranteed Exactly Once Delivery” on page 346.

The Rename and Move settings overwrite the file specified under the Pre Transfer
Name parameter, if one is specified.
Batch e*Way Intelligent Adapter User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Post Transfer Name
Description

Allows you to specify either the name of the file that the transferred file is renamed to
(Rename) or the directory it is moved to (Move), depending on the setting in the
parameter Post Transfer Command.

Special characters are allowed. The expansion of any special characters are carried out
each time this parameter is used. See “Using Special Characters” on page 116 for
details on using these characters.

If you are entering a path name, use the forward slash (/) instead of the back slash (\)
because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for a path location, not c:\temp\dir.

Required Values

One of the following values:

A valid file name or a regular-expression file name.

A valid directory name and path location or the regular-expression directory name
and path location on the local system.

For more information on using regular expressions with the e*Way, see “Using Regular
Expressions” on page 113.

Post Transfer Name Is Pattern
Description

Allows you to specify the meaning of the Post Transfer Name parameter as follows:

Yes means that the Post Transfer Name (file or directory) represents a pattern to be
used for name expansion.

No means that the Post Transfer Name represents the exact file or directory name to
be used for the transfer. No pattern matching of any kind is performed.

Required Values

Yes or No; the default is Yes.

4.4.5 Sequence Numbering Configuration
This section allows you to configure the Sequence Numbering parameters.

Starting Sequence Number

Description

Use this parameter when you have set up the target file name to contain a sequence
number. It tells the e*Way which value to start with in the absence of a sequence
number from a previous run.
Batch e*Way Intelligent Adapter User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Also, when the Max Sequence Number value is reached, the sequence number rolls
over to the Starting Sequence Number value.

This parameter is used for the name pattern %#.

Required Values

An integer from 0 to 2147483647. The value of the Starting Sequence Number must be
less than the Max Sequence Number. The default value is 1.

Max Sequence Number

Description

Use this parameter when you have set up the target file name to contain a sequence
number. It tells the e*Way that when this value (the Max Sequence Number) is reached,
to reset the sequence number to the Starting Sequence Number value.

This parameter is used for the name pattern %#.

Required Values

An integer from 1 to 2147483647. The value of Max Sequence Number must be greater
than that of Starting Sequence Number. The default value is 999999.

4.4.6 Connector Configuration
This section provides information about configuring the e*Gate Collaboration engine to
identify the e*Way Connection with the local file ETD.

Type

Description

Specifies the type of e*Way Connection.

Required Values

The e*Gate name of the local file ETD. The value defaults to LocalFile.

Class

Description

Specifies the class name of the Batch e*Way ETD connector object.

Required Values

A valid class name. The default is com.stc.eways.batchext.LocalFileConnector.
Batch e*Way Intelligent Adapter User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Property.Tag

Description

Identifies the data source. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name. Accept the default value.

4.4.7 Dynamic Configuration
This section contains the parameters for the e*Way's Dynamic Configuration feature.
These options allow you to provide information for your own use through the local file
ETD's Dynamic Messaging configuration nodes.

Dynamic Messaging allows the e*Way to subscribe to XML messages that determine its
activities. These messages can contain all the relevant parameters governing a local file
data transfer, including the data to be sent (if it is an outbound transfer).

Note: In using this feature, keep in mind that the e*Way is Event-driven, so it does not
exchange data based on scheduling.

For a complete explanation of the Dynamic Configuration feature and its schema
template, see Chapter 8.

Publish Status Record on Success

Description

If you want to publish a status record on every successful local file transfer, set this
parameter to Yes. This setting does not cause the e*Way to publish the message. Instead,
it only passes the Yes setting information to the corresponding configuration node on
the local file ETD. If you set it to No (the default), that information is also passed.

You must create this feature yourself, in a Dynamic Configuration Collaboration. For
example, you can configure the Collaboration to send a status record to e*Gate, with the
format of batch_eway_error.dtd, when the payload has been successfully sent. In this
case, you must configure an inbound topic and make sure this Event is processed.

You can set the error_code element of the XML message to zero (0) to indicate no errors
and allow the error_text to represent the time the file was successfully transferred, for
example:

Successfully sent on: Fri, 29 Jun 2001 at 14:02:30 PDT

Required Values

Yes or No; the default is No.
Batch e*Way Intelligent Adapter User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Way Connection Configuration LocalFileETD: Configuration Parameters
Publish Status Record on Error

Description

If you want to publish a status record on every data transfer error, set this parameter to
Yes. This setting does not cause the e*Way to publish the message. Instead, it only
passes the Yes setting information to the corresponding configuration node on the local
file ETD. If you set it to No (the default), that information is also passed.

You must create this feature yourself, in a Dynamic Configuration Collaboration. For
example, you can configure the Collaboration to send a status record to e*Gate, with the
format of batch_eway_error.dtd, whenever there has been an error. In this case, you
must configure an inbound topic and make sure this Event is processed.

Required Values

Yes or No; the default is No.

Include Order Record in Error Record

Description

If you want to include an order record as part of an error record when the Publish
Status Record on Error parameter is selected, set this parameter to Yes. This setting
does not cause the e*Way to publish the message. Instead, it only passes the Yes setting
information to the corresponding configuration node on the local file ETD. If you set it
to No (the default), that information is also passed.

You must create this feature yourself, in a Dynamic Configuration Collaboration, along
with your configuration for publishing the error status record.

Required Values

Yes or No; the default is No.

Include Payload in Error Record

Description

If you want to include the data payload as part of the error status record when the order
record command is SEND, set this parameter to Yes. This setting does not cause the
e*Way to publish the message. Instead, it only passes the Yes setting information to the
corresponding configuration node on the local file ETD. If you set it to No (the default),
that information is also passed.

You must create this feature yourself, in a Dynamic Configuration Collaboration, along
with your configuration for publishing the error status record.

Required Values

Yes or No; the default is No.
Batch e*Way Intelligent Adapter User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
e*Way Connection Configuration FtpFileETD: Configuration Parameters
Action on Malformed Command

Description

If you want the e*Way to take a specific action whenever there is a transfer error, choose
the desired action here. This setting does not cause the e*Way to take this action.
Instead, it only passes the setting information to the corresponding configuration node
on the local file ETD. The default is Exit.

You must configure these actions yourself, in a Dynamic Configuration Collaboration.
The options in case of an error are:

Exit: Shut down the e*Way.

Ignore: The e*Way does nothing.

Raise Alert: Send an Alert to the Schema Manager.

Publish Error Record: Publish an XML error status record (see the Publish Status
Record on Error parameter.

Required Values

Ignore, Raise Alert, Publish Error Record, or Exit (the default).

Caution: Be careful when using the Ignore option, because no action is taken. Data could be
lost without your being able to take any recourse action.

4.5 FtpFileETD: Configuration Parameters
This section explains the configuration parameters for the Batch e*Way Connection
with the FTP file ETD (FtpFileETD.xsc).

Note: This ETD and its corresponding Java implementation is provided for backward
compatibility because its functionality has been supplanted by the newer and more
functional FtpETD.xsc. It is recommended that you use the FtpETD.xsc ETD for
all new development.

4.5.1 Connector Configuration
This section provides configuration information for the e*Gate Collaboration engine to
identify the e*Way Connection with the FTP file ETD.

Type

Description

Specifies the type of connection.

Required Values

The e*Gate name of the FTP ETD. The value defaults to ftpfile.
Batch e*Way Intelligent Adapter User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
e*Way Connection Configuration FtpFileETD: Configuration Parameters
Class

Description

Specifies the class name of the FTP file connector object.

Required Values

A valid class name. The default is com.stc.eways.batch.FtpConnector.

Property.Tag

Description

Identifies the data source. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

4.5.2 FTP File Configuration
This section lists the e*Way Connection configuration parameters for the FTP file ETD.

Directory Listing Style

Description

Select the system that reflects the remote host. This parameter is used to determine the
format in which the LIST command returns file listing information.

Required Values

From the list provided, select the name of the desired system.

Host Name

Description

The name of the external system that the e*Way connects to.

Required Values

Enter the name of the external host system, for example, ftphost.

User Name

Description

When a log on to the external system is required, enter the logon user name to be used.

Required Values

Enter the desired user name.
Batch e*Way Intelligent Adapter User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
e*Way Connection Configuration FtpFileETD: Configuration Parameters
Password

Description

If a password is required in order to log on to the external system, enter the password
that corresponds to the given user name.

Required Values

Enter the required password.

Mode

Description

Allows you to specify the mode used to transfer data to and from the FTP server, using
the Ascii or Binary mode.

Required Values

Ascii or Binary; the default is Binary.

Use PASV

Description

Causes the e*Way to enter the passive or active mode.

Required Values

Select either Yes or No; the default is No.

Server Port

Description

The port number to use on the FTP server when connecting to it.

Required Values

Enter the desired port number.

Remote Directory Name

Description

The directory (absolute path location) on the external system where files are retrieved
or sent.

Required Values

Enter the desired directory name and path location.
Batch e*Way Intelligent Adapter User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
e*Way Connection Configuration FtpFileETD: Configuration Parameters
Remote File Name

Description

For inbound (subscriber), it is the remote file name regular expression. For outbound
(publisher), it is the remote file name.

For inbound, files in the remote directory that match the regular expression are
retrieved to payload, through get(), for processing.

For outbound, this is the name of the file as it appears on the remote system for put().
Special characters for date and time and sequence numbering expansions may be used,
which are expanded by the e*Way before the file is transmitted.

Required Values

Enter the appropriate remote file name, as specified previously. For example, for
MVS GDG, this entry can be the version of the data set.

Additional Examples:

Remote Directory Name = 'STC.SAMPLE.GDGSET'

Remote File Name = (0) to indicate the current version

Overwrite Or Append

Description

Select the appropriate parameter, as follows:

If Append is selected and the remote file already exists, then the payload is
appended to the existing file.

If Overwrite is selected, then the e*Way overwrites the existing file on the remote
system.

If a file with the same name does not exist, both Append and Overwrite create a
new file on the external host.

This parameter is for outbound only.

Required Values

Select either Append or Overwrite, as directed previously.

Command After Transfer

Description

After a file has been successfully retrieved from or sent to the external system, the
following actions can be performed on the remote copy: delete, rename, archive. Also,
no action can be taken at all.

The rename and archive functions may not be available in all cases. In the case of FTP,
they rely on the RNFR command being available on the remote FTP daemon.

When retrieving multiple files, use the Rename parameter with care. You set this value
yourself, so, to use maximum caution, use name sequencing. There is no default.
Batch e*Way Intelligent Adapter User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
e*Way Connection Configuration FtpFileETD: Configuration Parameters
Required Values

Delete: Delete the file from the remote host.

Rename: Rename the file.

Archive: Move the file to another directory.

None: Do nothing (leaves the file on the remote host intact).

Rename or Archive Name

Description

Depending on the value in the parameter Command After Transfer, this command
either specifies the name of the file that the remote file is renamed to or the directory it
is archived to (see “Command After Transfer” on page 73).

Required Values

Enter either the file or directory name, as explained previously.

Special characters are allowed. The expansion of any special characters is carried out
each time this parameter is used.

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

Pre Transfer Raw Commands

Description

These are FTP raw commands needed before the file transfer command, for example,
some SITE commands.

Note: These commands are sent to the FTP server directly and are not interpreted by the
e*Way in any way, so they must be valid FTP raw commands.

Required Values

Enter the required FTP raw commands. Use semicolons (;) to separate the command
set, for example: PWD;CWD;SITE (and so on).

Post Transfer Raw Commands

Description

These are FTP raw commands needed after the file transfer command, for example,
some SITE commands.

Note: These commands are sent to the FTP server directly and are not interpreted by the
e*Way in any way, so they must be valid FTP raw commands.
Batch e*Way Intelligent Adapter User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
Required Values

Enter the required FTP raw commands. Use semicolons (;) to separate the command
set, for example: PWD;CWD;SITE (and so on).

Starting Sequence Number

Description

Use this parameter when you have set up the remote file name to contain a sequence
number. It tells the e*Way which value to start with in the absence of a sequence
number from a previous run.

Also, when the Max Sequence Number is reached, the sequence number rolls over to
the Starting Sequence Number.

This parameter is used for the name pattern %#.

Required Values

The value of the Starting Sequence Number must be less than the Max Sequence
Number. The default value is 1.

Max Sequence Number

Description

Use this parameter when you have set up the remote file name to contain a sequence
number. It tells the e*Way that when this value (the Max Sequence Number) is reached,
to reset the sequence number to the Starting Sequence Number.

This parameter is used for the name pattern %#.

Required Values

The value of the Max Sequence Number must be greater than the Starting Sequence
Number.

4.6 Using FTP Heuristics
This section provides a general explanation of how the FTP heuristics feature of the
e*Way operates, as well as some basic information on how to use it. It also explains the
FTP heuristics configuration parameters for the e*Way.

FTP Heuristics: e*Way Operation

The FTP heuristics are a set of parameters that the e*Way uses to interact with external
FTP daemons on a platform-specific level. The primary functions of FTP heuristics are
to create and parse both path and file names in the style required by the external
systems’ platforms (operating systems).
Batch e*Way Intelligent Adapter User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
You do not normally need to change any of the FTP heuristics, since the default
parameters have been set up for the most commonly used platforms. However, these
parameters are provided in case any changes are necessary to accommodate your site’s
requirements.

FTP heuristics are stored in the file FtpHeuristics.cfg. If you want to modify the
e*Way’s FTP heuristics to accommodate an additional host type, you must make the
addition by manually editing the following files:

FtpHeuristics.cfg

FtpHeuristics.def

FtpHeuristics.sc

FtpETD.def

Note: If you are using the backward-compatibility FtpFileETD.xsc ETD instead of
FtpETD.xsc, you must edit the FtpFileETD.def file instead of FtpETD.def.
However, it is recommended that you use FtpETD.xsc for all new development.

Platform or File Type Selection

Each platform defined within the FTP heuristics file sets the parameters listed in this
section. In the e*Way Configuration Editor, the platform is selected using the
appropriate e*Way Connection configuration parameter.

The e*Way’s FTP heuristics support the following file types:

UNIX

HCLFTPD 5.1

HCLFTPD 6.0.1.3

VMS

MSFTPD 2.0

MVS PDS (Partition Data Sets)

MVS Sequential

MVS GDG (Generation Data Group)

VM/ESA

Netware 4.11

AS400

AS400-UNIX

MPE

The FTP heuristic methods used for communication with MVS Sequential, MVS GDG,
and MVS PDS for the Batch e*Way are designed for FTP servers (at the mainframe) that
use the IBM IP stack. See Chapter 10 for an overview of the e*Way’s methods, or you
can refer to the Javadoc for complete details.
Batch e*Way Intelligent Adapter User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
Therefore, when you use FTP to an MVS Sequential, MVS GDG, or MVS PDS file
system on a mainframe computer, you need to make sure that the FTP server is using
an IBM IP stack. If any other IP stack is in place, the FTP heuristic features do not work
or can require modification.

4.6.1 Configuration Parameters
The section explains the configuration parameters for FTP heuristics feature of the
Batch e*Way. The e*Way Configuration Editor allows you to configure this complete set
of parameters for each of the platforms listed under “Platform or File Type Selection”
on page 76.

Commands Supported by FTP Server

Description

Specifies the commands that the FTP server on the given host supports.

Required Values

One or more FTP commands as selected from the list.

Header Lines To Skip

Description

Specifies the number of beginning lines from a LIST command to be considered as a
potential header (subject to the Header Indication Regex Expression configuration
parameter, discussed below) and skipped.

Required Values

A non-negative integer. Enter zero if there are no headers.

Additional Information

In the example below, the line “total 6” comprises a one-line header.

total 6
-rw-r----- 1 ed usr 110 Apr 15 13:43 AAA
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa

Header Indication Regex Expression

Description

Specifies a regular expression used to help identify lines which comprise the header in
the output of a LIST command. All the declared lines of the header (see Header Lines
To Skip, above) must match the regular expression.

Required Values

A regular expression. The default varies based on the FTP server’s operating system. If
there is no reliable way of identifying the header lines in the LIST command’s output,
leave this parameter undefined.
Batch e*Way Intelligent Adapter User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
Additional Information

The regular expression “^ *total” indicates that each line in the header starts with
“total,” possibly preceded by blanks, for example:

total 6
-rw-r----- 1 ed usr 110 Apr 15 13:43 AAA
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa

If the regular expression is undefined, then the header is solely determined by the value
of the configuration parameter Header Lines To Skip.

Trailer Lines To Skip

Definition

Specifies the number of ending lines from a LIST command that are to be considered as
a potential Trailer (subject to the Trailer Indication Regex Expression) and skipped.

Required Values

A non-negative integer. Enter zero if there are no trailers.

Trailer Indication Regex Expression

Definition

Specifies the regular expression used to help identify lines which comprise the trailer in
the output of a LIST command. All the declared lines of the trailer (see Trailer Lines To
Skip) must match the regular expression.

Required Values

A regular expression. If there is no reliable way of identifying the trailer lines in the
LIST output, then leave this parameter undefined.

Additional Information

If the regular expression is undefined, then the header is determined solely by the value
of the Trailer Lines To Skip configuration parameter.

Directory Indication Regex Expression

Definition

Specifies a regular expression used to identify external directories in the output of a
LIST command. Directories cannot be retrieved and must be filtered out of the file list.

Required Values

A regular expression. If there is no reliable way of identifying the trailer lines in the
LIST output, then leave this parameter undefined.
Batch e*Way Intelligent Adapter User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
Additional Information

The regular expression “^ *d” specifies that a directory is indicated by a line starting
with the lowercase ‘d,’ possibly preceded by blanks, for example:

drwxr-xr-x 2 ed usr 2048 Apr 17 17:43 public_html

File Link Real Data Available

Definition

Specifies whether a file may be a file link (a pointer to a file) on those operating systems
whereon an FTP server will return the data for the real file as opposed to the content of
the link itself.

Required Values

Yes or No.

File Link Indication Regex Expression

Definition

Specifies a regular expression that identifies external file links in the output of a LIST
command. File links are pointers to the real file and usually have some visual symbol,
such as ->, mixed in with the file name in the output of the LIST command. Only the
link name is desired within the returned list.

Required Values

A regular expression. If there is no reliable way of identifying a file link within a LIST
output, then leave this parameter undefined.

Additional Information

The regular expression “^ *l” specifies that a file link is indicated by a line starting with
the lowercase “l,” preceded possibly by blanks, for example:

lrwxr-xr-x 2 ed usr 2048 Apr 17 17:43 p -> public_html

File Link Symbol Regex Expression

Definition

Specifies a regular expression that parses the external file link name in the output of a
LIST command. Only the link name is required for the file list to be returned.

Required Values

A regular expression. If there is no reliable way of identifying a file link within a LIST
output, then leave this parameter undefined.

Additional Information

The regular expression “[] ->[]” defines that a file link symbol is represented by an
arrow surrounded by spaces (“ -> “). When parsed, only the file name to the right of the
symbol is used.
Batch e*Way Intelligent Adapter User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
In the following example, only the public_html would be used, not the “p” character:

lrwxrwxrwx 2 ed usr 4 Apr 17 17:43 p -> public_html

List Line Format

Definition

Specifies whether fields in each line are blank delimited or fixed, that is, whether
information always appears at certain columns.

Required Values

Blank Delimited or Fixed.

Additional Information

Even though some lines appear to be blank delimited, be wary of certain fields
continuing their maximum value when juxtaposed with the next field without any
separating blank. In such a case, we recommend you declare the line as “Fixed,” for
example:

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9

Valid File Line Minimum Position

Definition

Specifies the minimum number of positions (inclusive) a listing line must have in order
to be considered as a possible valid file name line.

Required Values

For a Fixed list line format, enter a value equal to the number of columns, counting the
first column at the far left as column 1. For a Blank Delimited list line format, enter a
value equal to the number of fields, counting the first field on the far left as field 1.

For either case, if no minimum can be determined, set this value to zero (0).

Additional Information

For example, in the Blank Delimited line below, the minimum number of fields is 9:

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9
 File Name

Note: The URL FTP Proxy will fail on ascertaining file names that have leading blanks,
trailing blanks, or both.
Batch e*Way Intelligent Adapter User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
File Name Is Last Entity

Definition

Specifies whether the file name is the last entity on each line. This allows the file name
to have imbedded blanks (however, leading or trailing blanks are not supported).

Required Values

Yes or No.

File Name Position

Definition

Specifies the starting position (inclusive) of a file name.

Required Values

For Fixed list line format, enter the column number, counting the first column on the far
left as column 1. For Blank Delimited list line format, enter the field number, counting
the first field on the extreme left as field 1.

Additional Information

For Blank Delimited List Line Format only, if the file name has imbedded blanks, then
it can span over several fields, for example:

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

1 2 3 4 5 6 7 8 9
 File Name

File Name Length

Definition

Represents the maximum width of a file name; valid only for Fixed list line format.

Required Values

An Integer: Positive lengths imply that the file name is right-justified within the
maximum field width, and thus leading-blanks are discarded.

Negative Lengths: That is, compared to the absolute length, imply that the file
name is left-justified and trailing-blanks are discarded.

Zero (0) Value Length: If the file name is at the end of a file listing line, this value
implies that the file name field extends to the end of the line.

Note: For Blank Delimited list line format, this value is usually zero (0). However, if the
File Name Length parameter is supplied even though a Blank Delimited list line
format is specified, this implies that if the file name field exceeds the given length,
then the rest of the List Line data occurs on the following line.
Batch e*Way Intelligent Adapter User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
File Extension Position

Definition

Specifies the left-most position of the file extension for those operating systems that
present the file name extension separated from the main file name.

Required Values

For Fixed list line format, enter the column number, counting the first column at the
extreme left as column 1. For Blank Delimited list line format, enter the field number,
counting the first field at the far left as field 1. If there is no file extension (as on UNIX
systems) set the value to zero (0).

File Extension Length

Definition

Specifies the maximum width of the file extension; valid only for Fixed list line format.

Required Values

An Integer

Positive Lengths: Imply that the file extension is right-justified within the
maximum field width and therefore leading-blanks are discarded.

Negative Lengths: Imply that the file extension is left-justified and trailing-blanks
are discarded (the absolute length is used).

Value of Zero (0): Always for the Blank Delimited list line format.

File Size Verifiable

Definition

Specifies whether the file size is verifiable, significant, and accurate within a directory
listing.

Required Values

Yes or No. The File Size Stability Check configurable parameter must also be enabled.

Additional Information

Even if the file size field of a listing line is not significant (that is, it is there but only
represents an approximate value), the value of this parameter must be No. However,
the file size location must still be declared in the File Size Position parameter below to
assist determining which line of listing represents a valid file name, for example:

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
 ^^^
 File Size

Note: Use of this parameter does not guarantee that the file is actually stable. As this
feature is intended only for backward compatibility with previous FTP
implementations, we do not recommend that you rely on this functionality for
critical data.
Batch e*Way Intelligent Adapter User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
File Size Position

Definition

Specifies the left-most position in the listing line that represents the size of the file. Even
though for some operating systems the value shown might not truly reflect the file size,
this position is still important in ascertaining that the line contains a valid file name.

Required Values

A non-negative integer. For Fixed list line format, the position value is the column
number (starting with one (1) on the far left). For Blank Delimited, this value
represents the field number (starting with one (1) on the far left). If the LIST line does
not have a size field, set this parameter to zero (0).

Example

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9
File

 Size

The following text represents valid number representations of file sizes:

1234 or 1,234,567 or -12345 or +12345 or ' 1234 ' or 12/34 or
1,234/56

The following text represents invalid number representations of file sizes (the ^
indicates where the error occurs):

'12 34' or 123,45,678 or 123-456-789 or --123 or 123-
 ^ ^ ^ ^ ^

or 12345678901 or any number > 4294967295 or < -2147483647
 ^ (too large)

or 123.45 or 12AB34 or 0x45 or ,123,456 or 12//34
^ ^ ^ ^ ^

or /123 or 123/ or 12,3/45
 ^ ^ ^

File Size Length

Definition

Specifies the maximum width (number of columns) of the file size field, only valid for
Fixed List Line Format.

Required Values

A non-negative integer. For Blank Delimited list line format, set this value to zero (0).

Special Envelope For Absolute Path Name

Definition

Specifies special enveloping characters required to surround an absolute path name (for
example, single quotes are used in MVS). Only use a single quote at the start of the
directory name.
Batch e*Way Intelligent Adapter User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
e*Way Connection Configuration Using FTP Heuristics
Required Values

A pair of enveloping characters. Even if the leading and trailing character is identical,
enter it twice.

If no enveloping characters are required for an operating system, leave this parameter
undefined.

Note: On UNIX, this parameter is always undefined.

Listing Directory Yields Absolute Path Names

Definition

Specifies whether, when the DIR command is used on a directory name, the resulting
file names are absolute.

Required Values

Yes or No.

Note: On UNIX, this character is always set to No.

Absolute Path Name Delimiter Set

Definition

Specifies any absolute path requiring certain delimiters to separate directory names (or
their equivalent) from each other and from the file name.

Required Values

Enter the delimiters for the absolute path, starting from the left, for:

Initial (left-most) directory delimiter

Intermediate directory delimiters

Initial (left-most) file name delimiter

Optionally, the ending (right-most) file name delimiter

Wherever there is no specific delimiter, use “\0” (backslash zero) to act as a
placeholder. Delimiters that are backslashes need to be escaped with another backslash
(see Table 3).

Table 3 Delimiters and Path Naming by Platform

OS Path Name Format
Delimiter Set

1 2 3 4 Enter

UNIX /dir1/dir2/file.ext / / / ///

Windows C:\dir1\dir2\file.ext \\ \\ \\ \\\\\\

VMS disk1:[dir1.dir2]file.ext;1 [.] ; [.];

MVS PDS dir1.dir2(member) \0 . () \0.()
Batch e*Way Intelligent Adapter User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
e*Way Connection Configuration Connection Manager
* where version # = 0 for current, +1 for new, -1 (-2, -3, etc.) for previous generations.

Change Directory Before Listing

Definition

Determines whether a change directory (cd) command needs to be done before issuing
the DIR command to get a listing of files under the desired directory.

Required Values

Yes or No.

Note: The current Batch e*Way implementation does not rely on this parameter.

Directory Name Requires Terminator

Definition

Determines whether a directory name that is not followed immediately by a file name
requires the ending directory delimiter as a terminator (for example, as on VMS).

Required Values

Yes or No.

4.7 Connection Manager
The e*Gate Connection Manager allows you to define external connection functionality
of an e*Way. You can choose:

When to make a connection

When to close a connection and disconnect

Connection status

4.7.1 Using the Connection Manager
The Connection Manager is controlled in the Batch e*Way’s configuration, as explained
in “Connector Configuration” on page 36.

MVS Sequential dir1.dir2.filename \0 . . \0..

MVS GDG dir1.dir2.file(version#)* \0 . . \0..

AS400 dir1/file.ext \0 / . \0/.

Table 3 Delimiters and Path Naming by Platform (Continued)

OS Path Name Format
Delimiter Set

1 2 3 4 Enter
Batch e*Way Intelligent Adapter User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
e*Way Connection Configuration Connection Manager
Table 4 provides additional information on manually controlling the connections.

4.7.2 Controlling Connection Timing and Status
This section explains how you can control when a connection is made, when it is
disconnected, and connectivity status.

When a Connection Is Made

Using the Connector parameters, you can choose to have an e*Way’s connections
controlled manually, through the Collaboration, or automatically, through the e*Way
Connection’s configuration.

If you choose to control a connection, you can specify:

To connect when the Collaboration is loaded

To connect when the Collaboration is executed

To connect by using an additional connection method in the ETD

To connect by overriding any custom values you have assigned in the Collaboration

To connect by using the isConnected() method (called per connection if your ETD
has multiple connections)

When a Connection is Disconnected

In addition to controlling when a connection is made, you can also manually or
automatically control when an e*Way’s connection is terminated or disconnected.

Table 4 e*Way Connection Control Settings

Method or Action Automatic On-demand Manual

onConnectionUp() Yes No No

onConnectionDown() Yes Yes only if the
connection
attempt fails

No

Automatic Transaction (GEOD/XA) Yes No No

Manual Transaction Yes No No

connect() No No Yes

isConnected() No No Yes

disconnect() No No Yes

Timeout or connect() Yes Yes No

Verify connection interval Yes No No
Batch e*Way Intelligent Adapter User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
e*Way Connection Configuration Connection Manager
To control the disconnect, you can specify:

To disconnect at the end of a Collaboration

To disconnect at the end of the execution of the Collaboration’s Business Rules

To disconnect during a timeout

To disconnect after a method call

Connectivity Status

You can control how often an e*Way Connection checks to verify whether its external
connection is still alive. You can also set how often it checks. See the following sections
for more information:

“Connector Configuration” on page 56 for how to set connection control-related
configuration parameters

Table 4 on page 86 for a list of connection control settings
Batch e*Way Intelligent Adapter User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 5

e*Way Event Type Definitions

This chapter explains the specialized Event Type Definitions (ETDs) available with the
Batch e*Way Intelligent Adapter.

5.1 e*Way ETDs: Overview
The Batch e*Way contains separate ETD components that access the e*Way’s basic
functions in the e*Gate Integrator system. Each ETD allows you to use a different
functional set of the e*Way’s features.

5.1.1 Types of ETDs
Table 5 shows the specialized ETDs available with the e*Way.

Each ETD also has its own .def file provided for e*Way Connection configuration (see
Chapter 4 for details), for example FtpETD.def.

Note: The FtpFileETD.xsc ETD and its corresponding Java implementation is from a
previous version of the e*Way. It is provided only for backward compatibility. It is
recommended that you use the newer FtpETD.xsc for all new development.

This chapter explains each of these ETDs and how to use them with the e*Way.

Table 5 Batch e*Way ETDs

ETD Name File Name Description

FTP FtpETD.xsc Provides FTP access to remote systems.

Record-processing BatchRecordETD.xsc Allows the e*Way to parse or create (or both)
payloads of records in specified formats.

Local file LocalFileETD.xsc Provides easy access to local file systems.

FTP file FtpFileETD.xsc Provides FTP access; supported for backward
compatibility with a previous e*Way version.
Batch e*Way Intelligent Adapter User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
e*Way Event Type Definitions e*Way ETDs: Overview
5.1.2 ETD Components
Each of the ETDs is made up of the following components:

ETD Operation: The ETD itself is an .xsc file in e*Gate and can be used in a
Collaboration Rule to operate with e*Way Connections.

Definition and e*Gate Schema Designer: An e*Way Connection Properties dialog
box is available, providing a central location in which you can define the e*Way’s
properties. The Schema Designer also allows you to access the e*Way Configuration
Editor.

e*Way Connection: An e*Way Connection provides access to the information
necessary to interface with a specified external connection (more information about
e*Way Connections is provided in Chapter 4).

Configuration: A .def file accompanies each ETD. You can use this file to configure
any of the ETD’s e*Way Connections. The e*Way Configuration Editor uses .def
files to set the e*Way’s configuration parameters.

All ETDs must be configured and administered using the Schema Designer.

Note: For complete information on how to use the Schema Designer and the e*Way
Configuration Editor, see the e*Gate Integrator User’s Guide.

Client Components

Any client components relevant to these ETDs have their own requirements. See the
subject system’s documentation for details.
Batch e*Way Intelligent Adapter User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Way Event Type Definitions ETD for FTP Operations
5.2 ETD for FTP Operations
The Batch e*Way includes an ETD that allows you to perform FTP data-transfer
functions, the FTP ETD. Although this ETD is a component of the Batch e*Way, you can
also use it as a stand-alone module outside of the e*Way to provide FTP functionality
for any purpose.

The combination of this ETD, working with a specific e*Way Connection with its own
set of configurable parameters, defines the characteristics of the external interface.
Using the FTP ETD and one or more e*Way Connections, you can create the
Collaboration Rules to make the Batch e*Way behave in specific ways, as desired.

Note: Create Collaboration Rules using the e*Gate Schema Designer’s Collaboration
Rules Editor. For more information on this feature, see the e*Gate Integrator
User’s Guide.

The FTP ETD enables the e*Gate system to exchange data with other network hosts for
the purpose of receiving and delivering Events stored in files. The FTP ETD data
payload uses a byte array. You must also use a byte array for the payload copy,
specifically for binary transfers.

Caution: It is recommended to use a byte array in all cases. Failure to do so can cause loss of
data.

5.2.1 ETD Structure and Operation
Figure 4 on page 91 shows the FTP ETD as it appears in the e*Gate Schema Designer
ETD Editor’s Main window.
Batch e*Way Intelligent Adapter User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Way Event Type Definitions ETD for FTP Operations
Figure 4 FTP ETD Structure: Top-level Nodes

As illustrated in Figure 4, the FTP ETD contains three top-level nodes, Configuration,
Client, and Provider. Each is described in the sections to follow. You can expand these
nodes in the ETD Editor to reveal additional sub-nodes.
Batch e*Way Intelligent Adapter User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Way Event Type Definitions ETD for FTP Operations
Configuration Node

Each field sub-node in the Configuration node of the ETD corresponds to one of the
e*Way Connection’s FTP configuration parameters.

Client and Provider Nodes

This ETD includes two additional top-level nodes, the Client and Provider. These
nodes implement their respective functionality interfaces in the e*Way.

The client interface represents how the functionality of the provider is actually used.

The provider interface represents all the general FTP operations that can be
performed in the ETD.

These operations are the FTP services provided to those who want to use them to create
their own implementation.

Note: For more information on the ETD’s client and provider interfaces, as well as ETD
extensibility, see Chapter 6.

5.2.2 FTP ETD Node Functions
The following list provides an explanation of each node in the FTP ETD, including
primary functions:

FtpETD: Represents the ETD’s root node.

Configuration: Each field sub-node within this node corresponds to an e*Way
Connection configuration parameter and contains settings information. See
“FtpETD: Configuration Parameters” on page 37 for details on these parameters
and settings.

Note: This ETD has configuration parameters that can be regular expressions. See
“Using Regular Expressions” on page 113 for details.

Client: This node contains the following sub-nodes, which implement the e*Way’s
client interface in the ETD (FtpFileClient):

Payload: An in-memory buffer that contains the payload or message data you
want to transfer by FTP, in the form of a byte array.

UserProperties: Only used if you have provided a user-defined implementation
of the FtpFileClient interface (see Chapter 6 for details); in such cases, the node
represents the properties specified in the configuration.

InputStreamAdapter and OutputStreamAdapter: Allow you to use and control
the ETD’s data-streaming features; see “Streaming Data Between
Components” on page 328 for details.
Batch e*Way Intelligent Adapter User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Way Event Type Definitions ETD for FTP Operations
Note: You can transfer data using the Payload node or by using data streaming
(InputStreamAdapter and OutputStreamAdapter nodes), but you cannot use
both methods in the same ETD.

ResolvedNamesForGet and ResolvedNamesForPut: Allow you to get the real
file or directory name used during a transfer and perform an operation with it.
For example, you could do a file transfer, with get() or put(), using the real
name. You are able to retrieve the real file or directory name, even if these names
have been expressed using regular expressions or special characters.

These nodes contain sub-nodes allowing you to resolve file and directory names
for target destinations, as well as names for pre- and post-transfer commands
(see “Pre/post File Transfer Commands” on page 104 for details).

Note: See “Resolving Names” on page 117 for more information on these nodes; see
“Using Regular Expressions” on page 113 for more information on regular
expressions.

get(), put(), reset(), connect(), disconnect(), and isConnected(): See “Essential
FTP ETD Methods” on page 94.

Provider: The sub-nodes contained in this node are methods that implement the
e*Way’s provider interface in this ETD (FtpFileProvider). These methods allow you
to do the general FTP operations that can be performed using the ETD. See
Chapter 10 and the Javadoc for details on these methods.

5.2.3 Using the FTP ETD
Essentially, the FTP ETD nodes are a mirror image of the e*Way Connection. These
nodes allow you to configure specific e*Way Connection (configuration) parameters for
the Java Collaboration controlling the FTP process. Once you have set the configuration
parameters as desired, you do not have to define the same parameters in each
corresponding e*Way Connection component that uses this Collaboration.

Handling Type Conversions

The Payload node in the FtpETD.xsc structure is predefined as a byte array (byte[]).
This definition allows the e*Way to handle both binary and character data.

For example, you could be using another ETD (such as an ETD from another e*Way or a
user-defined ETD) where the “data” node has been defined as a string
(java.lang.String). If you were to drag and drop that string to the FTP ETD’s Payload
node, the e*Gate Collaboration Rules Editor can do an automatic type conversion and
create code similar to that shown in the next example.

You must use care with this feature. While it works in many situations, there can be
occasions when the default encoding causes errors in the translation.
Batch e*Way Intelligent Adapter User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Way Event Type Definitions ETD for FTP Operations
Code Conversion and Generation

For example, in a string-to-byte array conversion (or vice versa), the generated Java
code could be:

getoutput().setPayload(STCTypeConverter.toByteArray
(getinput().getBlob()));

or

getinput().setBlob(STCTypeConverter.toString
(getoutput().getPayload()));

If you define the blob data as a byte array, no type conversion is necessary. When there
is a conversion, the Collaboration Rules Editor uses the Java Virtual Machine (JVM)
default encoding to do the conversion to code, as shown in the previous examples.

Note: For more information on the FTP ETD’s node structure, see “FTP ETD Node
Functions” on page 92.

Type Conversion Troubleshooting

As explained previously, the default encoding and translation works for many
situations. There are cases, however (for example, binary data such as a .zip file), when
the encoding could cause errors in the translation. Depending on the data character set
and JVM default encoding, you must choose the appropriate encoding. In most cases,
using the encoding string “ISO-8859-1” is the best choice.

To use this encoding, you can modify the code manually by adding the encoding string.
Taking the previous examples, the resulting code using “ISO-8859-1” is:

getoutput().setPayload(STCTypeConverter.toByteArray
(getinput().getBlob(), "ISO-8859-1"));

or

getinput().setBlob(STCTypeConverter.toString
(getoutput().getPayload(), "ISO-8859-1"));

Using this string solves this type conversion problem. For more information, see the
appropriate JVM encoding reference manuals.

Essential FTP ETD Methods

In addition to the field elements shown in Figure 4 on page 91, the FTP ETD’s Client
node contains methods that extend the client interface functionality of the e*Way. These
methods are essential to the proper use of the ETD and require some additional
explanation. They are:

get(): Retrieves a file from the remote FTP server then stores its contents as a data
payload. The method retrieves the first matching file based on the Target Directory
Name and Target File Name parameters and stores the contents as a data payload
(a byte array). It then performs any Post Transfer Command.

Note: After this method call, you can get the payload’s contents via the method
getPayload().
Batch e*Way Intelligent Adapter User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Way Event Type Definitions ETD for FTP Operations
If no qualified file is available for retrieving, you get the exception containing
java.io.FTPFileException as a nested exception.

put(): Places the payload data on the FTP server, that is, it performs an append or
put action from the Payload node to the remote FTP server and performs any Post
Transfer Command.

If no qualified file is available for sending, you get the exception containing
java.io.FTPFileException as a nested exception.

Note: When you are using the e*Way’s data-streaming feature, the get() and put()
methods operate differently. See “Streaming Data Between Components” on
page 328 for details on this operation.

reset(): Allows you to return the Client node to its state immediately after the
previous initialization.

Note: The reset() method is available in both FTP and local file ETDs. It must be called
when the ETD has to be reused for another transfer during the same execution of
executeBusinessRules(), for example, if you are using the Dynamic Configuration
feature. The reset() method resets the content of the Client node without resetting
the whole ETD. If you attempt another transfer without calling reset() first, the
system throws an exception and makes an entry in the e*Way’s error log file.

restoreConfigValues(): Allows you to restore the configuration parameter defaults
to the related e*Way Connection configuration.

connect(), disconnect(), and isConnected(): Perform connection-related operations
with respect to the FTP server.

Note: See Chapter 10 and the Javadoc for more information on these methods.

Sequence Numbering

The sequence numbering feature allows you to set up the FTP target directory or file
name to contain a sequence number. You can set the starting and maximum sequence
numbers using the e*Way Connection configuration parameters for the ETD.

This parameter is used for the name pattern %#.

Starting Sequence Number

This parameter tells the e*Way which value to start with in the absence of a sequence
number from the previous run.

When the maximum sequence number is reached, the sequence number rolls over to
the starting sequence number.

Maximum Sequence Number

This parameter tells the e*Way that when this value (the maximum sequence number)
is reached, to reset the sequence number to the starting sequence number.
Batch e*Way Intelligent Adapter User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Way Event Type Definitions ETD for Record Processing
Note: Keep in mind that the maximum sequence number must be greater than the starting
sequence number.

For information on the parameter settings see:

FTP ETD

“Sequence Numbering Configuration” on page 48

Local File ETD

This feature is also available with the local file ETD. For more information on these
configuration parameters, see “Sequence Numbering Configuration” on page 66.

Additional FTP File Transfer Commands

The FTP ETD also allows you to enter commands to be executed directly before and
after the file transfer operation. See “Pre/post File Transfer Commands” on page 104
for details.

5.3 ETD for Record Processing
The Batch e*Way’s record-processing ETD allows you to parse (extract) records from an
incoming payload (payload data) or to create an outgoing payload consisting of records.
Understanding the operation of this ETD and how to use it requires an explanation of
some of these terms.

The word payload here refers to an in-memory buffer, that is, a sequence of bytes or a
stream. Also, records in this context are not records in the database sense. Instead, a
record simply means a sequence of bytes with a known and simple structure, for
example, fixed-length or delimited records.

For example, each of the following types of records can be parsed or created by this
ETD:

A large data file that contains a number of SAP IDocs, with each 1024 bytes in
length

A data file that contains a large number of X12 purchase orders, each terminated by
a special sequence of bytes

The record-processing ETD can handle records in the following formats:

Fixed length: Each record in the payload is exactly the same size.

Delimited: Each record is followed by a specific sequence of bytes, for example,
CR,LF.

Single: The entire payload is the record.

Note: When using character delimiters with DBCS data, use single byte character(s) or
equivalent hex values with hex values that do not coincide with either byte of the
double byte character.
Batch e*Way Intelligent Adapter User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Way Event Type Definitions ETD for Record Processing
You can also easily extend the ETD to handle other custom record formats. Chapter 6
contains information on how to extend the ETD’s capabilities.

5.3.1 ETD Structure and Operation
Figure 5 shows the record-processing ETD (BatchRecordETD) as it appears in the
e*Gate Schema Designer ETD Editor’s Main window.

Figure 5 Record-processing ETD Structure

As illustrated in Figure 5, each field node in the Configuration node in the ETD
(Figure 5) corresponds to one of the e*Way Connection’s record-processing
configuration parameters.

Note: For more information on the ETD’s extensibility features, see Chapter 6.
Batch e*Way Intelligent Adapter User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Way Event Type Definitions ETD for Record Processing
5.3.2 Record-processing ETD Node Functions
See Figure 5 for an illustration of this ETD as it appears in the ETD Editor’s Main
window. The following list explains these primary nodes in the record-processing ETD,
including their functions:

BatchRecord: Represents the ETD’s root node.

Configuration: Each sub-node within this node corresponds to an e*Way
Connection configuration parameter and contains the corresponding settings
information, except for the Parse or Create parameter. See “BatchRecordETD:
Configuration Parameters” on page 33 for details.

Note: For the record-processing ETD, these configuration nodes are read-only. They are
provided only for the purpose of accessing and checking the configuration
information at run time.

Record: A properties node that represents either:

The current record just retrieved via the get() method, if the call succeeded

The current record to be added to the data payload when put() is called

Payload: The in-memory buffer containing the data payload byte array you are
parsing or creating.

Caution: It is a good idea to use a byte array in all cases. Failure to do so can cause loss of
data.

InputStreamAdapter and OutputStreamAdapter: Allow you to use and control the
data-streaming features of the ETD. For details on their operation, see “Streaming
Data Between Components” on page 328.

Note: You can transfer data using the Payload node or by using data streaming
(InputStreamAdapter and OutputStreamAdapter nodes), but you cannot use
both methods in the same ETD.

put(): Adds whatever is currently in the Record node to the data payload. The
method returns true if the call is successful.

get(): Retrieves the next record from the data payload (or stream), and it populates
the Record node with the record retrieved. The method returns true if the call is
successful.

finish(): Allows you to indicate a successful completion of either a parse or create
loop for both put() and get().

Note: Use reset() to indicate any errors and allow the ETD to clean up any unneeded
internal data structures.
Batch e*Way Intelligent Adapter User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Way Event Type Definitions ETD for Record Processing
5.3.3 Using the Record-processing ETD
This ETD has the following basic uses:

Parsing a payload: When the payload comes from an external system

Creating a payload: Before sending the payload to an external system

A single instance of the ETD is not designed to be used for both purposes at the same
time in the same Collaboration. To enforce this restriction, there is a setting under the
e*Way Connection’s General Settings parameters called Parse or Create Mode, for
which you can select either Parse or Create.

Using get() and put()

The get() and put() methods are the heart of the ETD’s functionality. If you call either
method, the record retrieved or added is assumed to be of the type specified in the
e*Way Connection configuration, for example, fixed-length or delimited.

The get() method can throw an exception, but generally this action only happens when
there is a severe failure. One such failure is an attempt to call get() before the payload
data (or stream if you are streaming) has been set. However, the best practice is to code
the Collaboration to check the return value from a get() call. A return of true means a
successful get operation; a false means the opposite.

Choosing the Parse or Create Mode

The e*Way checks to ensure that the proper calls are made according to your mode
setting. For example, calling put() in a parse-mode environment would cause the e*Way
to throw an exception with an appropriate error message explaining why. Calling get()
in the create mode would also result in an error.

The e*Way requires these restrictions because:

If you are processing an inbound payload, you are calling get() to extract records
from the payload (parsing). In this situation it makes little sense to call put(). Doing
so at this point has would alter the payload while you are trying to extract records
from it. Calling put() would overwrite the payload and destroy the data you are
trying to obtain.

Conversely, when you are creating a payload by calling put(), you have no need to
extract or parse data at this point. Therefore, you cannot call get().

As a result, you can place the ETD on the source or destination side of a given
Collaboration, as desired, and use the ETD for either parsing or creating a payload.
However, you cannot parse and create at the same time. Implement your ETD in a
Collaboration using the e*Gate Collaboration Rules Editor.

Creating a Payload

When you want the payload data sent to an external system, you can place the ETD on
the outbound side of the Collaboration interfacing with that system. Successive calls to
put() build up the payload data in the format defined in the e*Way Connection
configuration.
Batch e*Way Intelligent Adapter User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Way Event Type Definitions ETD for Record Processing
Once all the records have been added to the payload, you can drag and drop the
payload onto the node or nodes that represent the Collaboration’s outbound
destination. Also, you can set an output stream as the payload’s destination (see
Chapter 9 for details on payload streaming).

When you are building a data payload, you must take into account the type and format
of the data you are sending. The e*Way allows you to use the following formats:

Single Record

This type of payload represents a single record to be sent. Each successive call to put()
has the effect of growing the payload by the size of the data being put, and the payload
is one contiguous stream of bytes.

Fixed-size Records

This type of payload is made up of records, with each being exactly the same size. An
attempt to put() a record that is not of the size specified causes an exception to be
thrown.

Delimited Records

This type of payload is made up of records that have a delimiter at the end. Each record
can be a different size. Do not add any delimiters to this data type when it is passed to
put(). The delimiters are added automatically by the e*Way.

User Defined

In this type of payload, the semantics are fully controlled by your own implementation.

Parsing a Payload

To represent payload data inbound from an external system, you drag and drop the
data onto the payload node in the ETD (in the Collaboration Rules Editor). In addition,
you can specify an input stream as a source (see Chapter 9 for details on payload
streaming).

Extracting Records

Either way, each successive call to get() extracts the next record from the payload. The
type of record extracted depends on the parameters you set in the e*Way Connection’s
configuration, for example, fixed size or delimited.

You must design the parsing Collaboration with instructions on what to do with each
record extracted. Normally, the record can be sent to another Collaboration where a
custom ETD describes the record format and carries on further processing.

Fully Consuming a Payload

It is possible to fully consume a payload. That is, after a number of successive calls to
get(), you can retrieve all the records in the payload. After this point, successive calls to
get() return the Boolean false. You must design the business rules in the subject
Collaboration to take this possibility into account.
Batch e*Way Intelligent Adapter User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
Parser Interface

The functionality underlying the record-processing component is described in the
parser interface (BatchRecordParser). This interface is defined in the
com.stc.eways.batchext package. See Chapter 10 of this user’s guide for details.

If you want to write your own record-parsing implementation, you can either
implement this interface from scratch or derive it from one of our implementations
changing only the method or methods you need to change.

Note: See Chapter 6 for information on how to extend the ETD’s capabilities.

Use With Data Streaming

If you are using the record-processing ETD with data streaming, you must be careful
not to overwrite the output files. If the ETD is continually streaming to a local file ETD
that uses the same output file name, the ETD can write over files on the output side.

To avoid this problem, you must use either file sequence numbering or change the
output file names in the Collaboration Rules. Sequence numbering allows the local file
ETD to distinguish individual files by adding a sequence number to them. If you use
target file names, post-transfer file names, or both, you can change the name of the
output file to a different file name.

For more information on how to use these features, see:

“Sequence Numbering” on page 110

“Pre/post File Transfer Commands” on page 104

5.4 ETD for Local File
The local file ETD provides access to files on your local system. While file access is not
always necessary in e*Gate, it makes sense for the Batch e*Way to have this feature
because file processing is one of its core functionalities.

Additional local file features include regular expressions for accessing files and a
sequence-numbering scheme for creating files. This section provides information about
these features.

5.4.1 ETD Structure and Operation
Figure 6 on page 102 shows the local file ETD (LocalFileETD) as it appears in the e*Gate
Schema Designer ETD Editor’s Main window.
Batch e*Way Intelligent Adapter User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
Figure 6 Local File ETD Structure

Configuration Node

As in the FTP ETD, each field sub-node under the Configuration node in the local file
ETD (Figure 6) corresponds to one of the e*Way Connection’s configuration parameters
for that ETD. See “LocalFileETD: Configuration Parameters” on page 60 for details.
Batch e*Way Intelligent Adapter User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
Client Node

This ETD includes an additional top-level node, the Client. This node implements its
respective functionality interface in the e*Way.

The client interface represents how the functionality of the ETD is actually used. This
functionality includes the basic operations and features of the ETD. The client interface
provides the ETD’s the file services those who want to use them.

5.4.2 Local File ETD Node Functions
The following list explains the nodes in the local file ETD, including primary functions:

Configuration: The field sub-nodes within this node corresponds to an e*Way
Connection configuration parameter and contains the corresponding settings
information. See “LocalFileETD: Configuration Parameters” on page 60 for details
on these parameters and settings.

Note: This ETD has configuration parameters that can be regular expressions. See
“Using Regular Expressions” on page 113 for details.

Client: The following sub-nodes, contained in this node, implement the e*Way’s
client interface in the ETD (LocalFileClient):

ResolvedNamesToGet and ResolvedNamesToPut: Allow you to get the real
file or directory name used during a transfer and perform an operation with it.
For example, you could do a local file transfer, with get() or put(), using the real
name. You are able to retrieve the real file or directory name, even if these names
have been expressed using regular expressions or special characters.

Note: See “Using Regular Expressions” on page 113 and “Using Special
Characters” on page 116 for more information on these features.

InputStreamAdapter and OutputStreamAdapter: Allow you to use and control
the ETD’s data-streaming features; see “Streaming Data Between
Components” on page 328 for details.

These nodes contain sub-nodes allowing you to resolve file and directory names
for target destinations, as well as names for pre- and post-transfer commands
(see “Pre/post File Transfer Commands” on page 104 for details).

Payload: An in-memory buffer that contains the payload or message data you
want to transfer by local file, in the form of a byte array.

Caution: It is a good idea to use a byte array in all cases. Failure to do so can cause loss of
data.

get(), put(), and reset(): See “Essential Local File ETD Methods” on page 107.

ResumeReadingInProgress: This node allows you to resume a data-streaming
file transfer operation that was interrupted for whatever reason. These transfers
occur piece by piece and usually involve large files. This feature allows you to
resume at the same point where the transfer left off when it stopped.
Batch e*Way Intelligent Adapter User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
Note: You can transfer data using the Payload node or by using data streaming
(InputStreamAdapter and OutputStreamAdapter nodes), but you cannot use
both methods in the same ETD.

5.4.3 Using the Local File ETD
This section explains how to use the local file ETD’s features.

Note: There is no particular order for the calls that can be made on the local file ETD. The
only required call is reset() after a transfer, if it is used for more than one transfer
per Collaboration Rules execution. An example of this usage is a dynamic batch
order with multiple files to be transferred.

Advantages of Using the ETD

Using the local file ETD to read records from a local file has the following advantages:

Guaranteed Exactly Once Delivery (GEOD): Allows your system to perform file
read/write operations using an XA mode, ensuring the file’s data integrity when
file read/write operations are required in a Collaboration.

Data Streaming: Allows your system to stream data directly to and from a local file
system when used together with the FTP ETD or the record-processing ETD. This
feature minimizes the required RAM when large files are read, because the entire
file is never loaded in memory.

Resume Reading: Allows your system to read large files in a number of subsequent
Business Rule executions, when you are using data streaming. This operation is
achieved by persisting information about the current successful file read operation
and resuming the next read operation from that last stored position.

This feature is also available in the XA mode. In that case Resume Reading allows
for reliably processing large files without overloading the e*Gate system with large
amounts of data during a single XA-mode transaction.

Note: For more information on the e*Way’s XA-compliant GEOD features, see
“Guaranteed Exactly Once Delivery” on page 346. For more information on
the Resume Reading feature, see “Resume Reading Feature” on page 107.

Pre/post File Transfer Commands

The e*Way has features that allow you to execute desired actions directly before or after
the actual file transfer. You can enter these settings at the e*Way Connection
configuration parameters or in the Configuration node of the desired ETD.

These features are available with both the local file ETD and the FTP ETD.

Caution: When you are using Rename, if the destination file exists, different FTP servers can
behave differently. For example, on some UNIX FTP servers, the destination file is
overwritten without question. That is, no error or warning message is given. On
other FTP servers, the system generates an error that results in exception’s being
thrown in the called ETD method.
Batch e*Way Intelligent Adapter User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
Be sure you are familiar with the native behavior of the corresponding FTP server. If
you are in doubt, try the action at the command prompt. If the action displays an
error message, it is likely to result in the throwing of an exception in the
Collaboration.

Pre Commands

For an inbound transfer, the file can be made unavailable to other clients polling the
target system with the same directory and file pattern or name (Rename). For an
outbound transfer, you can perform an automatic backup of the existing file (Copy).

Your pre-transfer options are:

Rename: Rename the target file for protection or recovery; you must provide a
desired directory and file name.

Copy: Copy the target file for backup or recovery; you must enter a desired
directory and file name.

None: Do nothing.

Note: The directory is created if it does not already exist.

To gain proper protection, backup, or recovery, you must choose the appropriate setting
that serves your purpose. For example, to recover from failures on an outbound
appending transfer, use the Copy setting. When specifying file and directory names
you can use regular expressions, special characters, or both.

Post Commands

These commands allow you to execute a desired action directly after the actual file
transfer or during the “commit” phase when the Transaction Type mode is set to
XA-Compliant (see “Guaranteed Exactly Once Delivery” on page 346).

For an inbound transfer, you can mark the transferred file as “consumed” by making an
automatic backup (Rename) or by destroying it permanently (Delete). For an outbound
transfer, you can make the transferred file available to other clients by renaming it.
When specifying file and directory names you can use regular expressions, special
characters, or both.

Your post-transfer options are:

Rename: Rename the transferred file; you must provide a desired directory and file
name.

Delete: Delete the transferred file (inbound transfers only).

None: Do nothing.

Note: For an outbound transfer (publishing), the directory is created if it does not already
exist.
Batch e*Way Intelligent Adapter User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
Figure 7 shows a diagram of how the different pre- and post-file-transfer commands
operate in carrying out get() and put() method calls.

Figure 7 Pre- and Post-transfer Processes

For information on the e*Way Connection configuration parameters for these
commands, see:

FTP ETD

“Pre Transfer Configuration” on page 43

“Post Transfer Configuration” on page 45

Local File ETD

“Pre Transfer Configuration” on page 63

“Post Transfer Configuration” on page 65

e*Gate Integrator
Memory

get()

get()

put()

put()

Target File

Pre Copy
File

Pre
Rename

File

Post
Delete

Post
Delete

Post
Rename

File

Inbound
Only

Inbound
Only
Batch e*Way Intelligent Adapter User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
Essential Local File ETD Methods

In addition to the field elements shown in Figure 6 on page 102, the local file ETD’s
Client node contains methods that extend the client interface functionality of the
e*Way. These methods are essential to the proper use of the ETD and require some
additional explanation. They are:

get(): Retrieves a local file then stores its contents as a data payload. The method
retrieves the first matching file based on the Target Directory Name and Target File
Name parameters and stores the contents as a data payload (a byte array). It then
performs any Post Transfer Command.

Note: After this method call, you can get the payload’s contents via the method
getPayload().

put(): Stores the data payload (as a byte array) to a file. It then performs any Post
Transfer Command.

Note: Before using this method call, you must set the file contents using the method
setPayload().

The method throws an exception (LocalFileException) if there is a problem.

reset(): Allows you to return the Client node to its state immediately after the
previous initialization.

Note: The reset() method is available in both FTP and local file ETDs. It must be called
when the ETD has to be reused for another transfer during the same execution of
executeBusinessRules(), for example, if you are using the Dynamic Configuration
feature. The reset() method resets the content of the Client node without resetting
the whole ETD.

See Chapter 10 and the Javadoc for more information on these methods.

Resume Reading Feature

The purpose of this feature is to allow the system to read large files in parts instead of
processing the whole file at once. Resume Reading allows your system to read files in a
number of subsequent Business Rule executions, when you are using data streaming.

This feature is also available in the XA mode. In that case Resume Reading allows for
reliably processing large files without overloading the e*Gate system with large
amounts of data during a single XA-mode transaction.See “Resume Reading Enabled”
on page 61 for a description of the e*Way Connection configuration.

General Operation

The Resume Reading feature’s operation is achieved by keeping persistent information
about the current successful file read operation, breaking, then resuming the next read
operation from that last stored break position. As a result, the current file is read in
parts, and the beginning and end of each part is determined by a predefined break
condition.
Batch e*Way Intelligent Adapter User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
You determine the break condition through the definition of your Business Rules. Since
the Resume Reading feature operates based on reading one part of a file at a time per
Business Rule, these rules must determine the break. Each Business Rule executes
reading a part of the file, breaks, then passes to the next rule, which reads the next part
up to the break, and so on, until the entire file is read.

A break condition can be any type of stopping point you determine in your
Collaboration Rules. For example, this condition could be a fixed number of records, a
delimiter, or reaching a specific character string.

Note: One of the e*Way’s implementation sample schemas contains a Collaboration Rule
that uses the Resume Reading feature. See “Creating Collaboration Rules” on
page 203 for details.

The Client node in the ETD has a read-only property (ResumeReadingInProgress
node; see Figure 6 on page 102) indicating whether there is a resume-reading operation
in progress. This node is for informational purposes only. Also, the Resume Reading
feature is available in the data-streaming mode only.

The feature has no special operational requirements besides setting the e*Way
Connection configuration option. The e*Way Connection configuration has an option to
enable or disable this feature. This option is also accessible at run time.

Note: If this feature is enabled, the e*Way always checks first for a resume-reading
operation in progress. If this feature is not in progress, the e*Way determines the
next file based on the e*Way Connection configuration settings.

Step-by-step Operation

Figure 8 shows a diagram of how the Resume Reading feature operates along with pre-
and post-file-transfer commands. This Collaboration Rule has four Business Rules, each
of which reads a part of the file.

Figure 8 Resume Reading Operation

Because the file in Figure 8 on page 108 is read in four parts, there are three instances of
the break condition. The lines at the end of Parts 1, 2, and 3 represent these conditions.

Target File

1 3 42Pre-
Transfer

Commands

Post-
Transfer

Commands
Batch e*Way Intelligent Adapter User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
In this example, the reading happens in the following steps:

The e*Way starts reading the file then reaches a break condition after a partial data
read (the end of Part 1), the e*Way’s pre-transfer commands have already been
executed. The resume-reading state is stored, and no post-transfer commands are
executed. The e*Way is waiting for the next execution of the Business Rule.

The resume-reading operation is in progress but still attains only partial data reads.
The e*Way reads from one break condition to the next (Part 2 and Part 3 in the
figure) The resume-reading state is stored in each case, and the e*Way executes the
Business Rule once per each part.

The resume-reading operation is in progress and completes its data read during the
final execution of the Business Rule (Part 4). The e*Way reads from a break
condition to the end of a file. No resume-reading state is stored, and any post-
transfer commands are then executed.

In all of the previous steps, the Business Rule is executed repeatedly, and the current
read position in the file changes on each execution. If the file is smaller than Part 1 in
the figure, the e*Way does not reach a break condition. The operation is normal, and no
resume-reading state is stored. The pre- and post-transfer commands are executed.

Operation Without Resume Reading Enabled

If the Resume Reading feature is not enabled:

Data-read Stop Then Restart: Any unread data at the end of the file is ignored.

Resume Reading in Progress: If there is a resume-reading operation in progress
from a previous execution, an error is generated, and an exception is thrown.

Note: If there is a resume-reading operation in progress it cannot be interrupted and must
be completed. The executeBusinessRules() method must be called enough times to
fully consume the file. In other words, do not discontinue processing the file before it
has been completely consumed.

To Avoid Storing a Resume Reading State

Sometimes a partial data-stream read is necessary even when the Resume Reading
feature is enabled. For example, there could be some application logic on top of the
record parsers, which might abandon the rest of the file because of a corrupted record
and close the file successfully after reading only part of the file’s content.

In this case, you must set the LocalFileETD.Configuration.ResumeReading node to
False before calling finish(). This setting tells the local file ETD to complete the
operation without storing a resume-reading state. You can set up the Collaboration
Rule to then send notifications or take other measures, as desired.

Data Stream-adapter Provider

You can use the local file ETD to implement the e*Way’s data streaming feature. This
feature is also available with the FTP and record-processing ETDs. However, the local
file ETD is a data stream-adapter provider, while the other two ETDs are only
consumers.
Batch e*Way Intelligent Adapter User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
e*Way Event Type Definitions ETD for Local File
See “Streaming Data Between Components” on page 328 for details on how to use the
ETD’s data streaming feature.

Sequence Numbering

This feature in this ETD operates in the same way as sequence numbering for the
FTP ETD. See “Sequence Numbering” on page 95 for details.

Handling Type Conversions

This feature in this ETD operates in the same way as type conversion for the FTP ETD.
See “Handling Type Conversions” on page 93 for details.

5.4.4 Recommended Practice
It is recommended that Collaboration Rules use the record-processing ETD together
with the local file ETD to parse records or construct payloads. This usage is a better
practice than the use of only the FTP ETD.

Example 1: Parsing a Large File

For example, you have set up a Collaboration Rule to parse a large file and submit the
records to a database or a JMS IQ Manager. If something goes wrong during the parsing
process, the whole file needs to be transmitted again from the FTP server.

In contrast, streaming from a local file system can avoid later FTP transfers of the same
file in case of error. This approach has the advantage of allowing you to use data
streaming and the Resume Reading feature with large files (see “Streaming Data
Between Components” on page 328 and “Resume Reading Feature” on page 107).

Example 2: Slow, Complex Query

Another scenario could be a case where a slow, complex SQL query is used to retrieve a
number of records. The Collaboration Rule packs them into a Payload node using the
record-processing ETD then sends them via FTP to an external system. If the FTP
transfer fails, the SQL query must be executed again.

In contrast, if the data payload has been stored locally with the local file ETD, the FTP
transfer can be repeated without the need to re-execute the SQL query. In such cases,
you can also use data streaming and local-file appending.

In both cases, the use of a data-streaming link can significantly reduce the memory
requirements compared to the in-memory data-payload transfer used with the
FTP ETD.

Note: This practice is especially recommended for use with GEOD transactions in the XA
mode. See “Guaranteed Exactly Once Delivery” on page 346 for more
information on the e*Way’s XA-related features.
Batch e*Way Intelligent Adapter User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
e*Way Event Type Definitions FTP File ETD
5.4.5 ETD Limitations
The local file ETD supports mapped drives and NFS mounted drives. It does not,
however, support the mapping of the drives. That is, the drive must already be mapped
or mounted. The e*Way itself does not perform any mapping or mounting.

The ETD supports Universal Reference Identifiers (URIs) but the scheme must be left
off as follows:

\\drive\directory\file_name

5.5 FTP File ETD
The Batch e*Way contains an ETD for FTP operations called the FTP file ETD. The
current Java version of this e*Way supports this ETD as a backward-compatibility
feature for a previous version of the e*Way.

Although this FTP file ETD (FtpFileETD.xsc) is still supported in the current version of
this e*Way, be careful not to confuse this ETD with the more versatile FTP ETD
(FtpETD.xsc).

Note: This ETD and its corresponding Java implementation is provided for backward
compatibility because its functionality has been supplanted by the newer and more
functional FtpETD.xsc. It is recommended that you use the FtpETD.xsc ETD for
all new development.
Batch e*Way Intelligent Adapter User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
e*Way Event Type Definitions FTP File ETD
5.5.1 ETD Structure
Figure 9 shows the FTP file ETD as it appears in the ETD Editor’s Main window.

Figure 9 FTP File ETD Structure

Note that each field element in the ETD structure corresponds to one of the e*Way
Connection’s configuration parameters. See Chapter 4 for an explanation of each of
these parameters.

Caution: You cannot use both the FTP file ETD and the FTP ETD in the same Collaboration.
Batch e*Way Intelligent Adapter User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
e*Way Event Type Definitions Using Regular Expressions
5.5.2 ETD Methods
In addition to the field elements shown in Figure 9 on page 112, the FTP file ETD
contains the following methods:

get(): Retrieves the payload from the FTP server, that is, it retrieves the first
matching file based on Remote Directory Name and Remote File Name to the
payload and performs Command After Transfer. It also returns a Boolean true if
the data is retrieved successfully or false if no data is available.

put(): Places the payload on the FTP server, that is, it performs an append or put
from the payload to the remote FTP server and performs Command After Transfer.
It also returns a Boolean true if the data is sent successfully or false if the operation
fails.

restoreConfigValues(): Restores all the values from the e*Way Connection to the
appropriate values in the FTP file ETD.

See Chapter 4 for more information on each of these methods.

Note: Chapter 10 and the Javadoc contain more information about the FTP file ETD’s
methods.

5.5.3 Handling Type Conversions
The Payload node in the FtpETD.xsc structure is predefined as a byte array (byte[]).
This definition allows the e*Way to handle both binary and character data.

See “Handling Type Conversions” on page 93 for details on this feature.

Caution: It is recommended to use a byte array in all cases. Failure to do so can cause loss of
data.

5.5.4 Encrypting Passwords
The FTP file ETD has the method setPassword() that accepts the encrypted password as
its input. If you want to encrypt the password yourself, you can use the class
com.stc.common.utils.ScEncrypt.

The method scEncrypt.encrypt(user, password) returns the encrypted password.

5.6 Using Regular Expressions
This section explains some basic guidelines on how to use regular expressions with the
Batch e*Way.
Batch e*Way Intelligent Adapter User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
e*Way Event Type Definitions Using Regular Expressions
5.6.1 Regular Expressions: Overview
Regular expressions allow you to specify wildcard patterns for the file name and
directory name.

Note: The full scope of regular expressions is not covered here. For a good explanation of
regular expressions, see the book “sed and awk” by Dale Dougherty and Arnold
Robbins (published by O'Reilly).

Both the local file and FTP ETD’s configurations allow you to use regular expressions,
for example, if you want to access all files with the same extension. For more
information on how to use regular expressions with the e*Way, see the following Web
site:

http://www.cacas.org/java/gnu/regexp/syntax.html

Regular expressions operate with the local file and FTP ETDs as follows:

The directory/file names can be defined as either:

Actual file names (everywhere)

Name patterns (all names for put operations and pre/post transfer names for
get operations)

Regular expressions (target names for get operations)

The difference between the regular expressions and name patterns is:

Regular expressions are used to match existing names on the FTP server or the
local file system.

Name patterns are used to create names by replacing the special characters in
the pattern.

Note: For more information on name patterns, using special characters, see “Using
Special Characters” on page 116.

You can specify an extension, for example, .*\.dat$. Then, each time the get() method is
called, the e*Way gets the next file with a .dat extension. The e*Way then retrieves each
file into the ETD’s Payload node and updates the working file-name attribute with the
name of the file currently being accessed.

For another example, you can use the file-matching the pattern data\.00[1-9] to get the
files data.001, then data.002, and so on. Note that in each case the “.” is escaped, which
is consistent with regular-expression syntax.

Caution: The use of regular expressions is an advanced feature and must be implemented
carefully. An improperly formed regular expression can cause undesired data or
even the loss of data. You must have a clear understanding of regular-expression
syntax and construction before attempting to use this feature. It is recommended
that you test such configurations thoroughly before moving them to production.
Batch e*Way Intelligent Adapter User’s Guide 114 SeeBeyond Proprietary and Confidential

http://www.cacas.org/java/gnu/regexp/syntax.html

Chapter 5 Section 5.6
e*Way Event Type Definitions Using Regular Expressions
Entering Regular Expressions

You can enter a regular expression for the FTP or local file name in a variety of ways, for
example, .*\.dat$ or ^xyz.*\.dat$. The first case indicates all files with an extension
of .dat. The second case indicates all file names with an extension of .dat whose names
start with xyz.

Another example could be file[0-9]\.dat. This expression specifies file0.dat, file1.dat,
file2.dat, and so on, through file9.dat. You can use these types of regular expression
patterns for a get operation.

Regular Expressions and the e*Way

You must exercise great care when using regular expressions. This tool can give the
new, inexperienced user problems.

Note that there is a File Name Is Pattern or Directory Name Is Pattern configuration
parameter in the e*Way Connection configuration interface, after every parameter
where you can choose whether to enter a regular expression. This feature allows you to
specify that the pattern entered is a regular expression or just a static text entry to be
interpreted literally.

Important: Regular expressions resolve even with a partial match to the file name. The
resolution process searches for what the file name contains instead of what the file
name is.

5.6.2 Rules for Directory Regular Expressions
There are special considerations you must take into account when you are using regular
expressions for directories. This section explains the general rules and guidelines for
using directory regular expressions with the Batch e*Way. It also provides some
examples.

Basic Directory Regular Expression Rules

The following are the general rules for directory regular expressions:

The directory root, the drive name, and directory separators must be expressed
exclusively. That is, do not express any of these elements as a regular expression.
Only folder names are expected to appear as regular expressions.

A regular expression must not span over the directory separators. So, if you use a
regular expression between two directory separators, it must be one whole
expression.

Escape all directory separators in a directory pattern if the separator conflicts with a
regular expression special character (that is, ‘ * [] () | + { } : . ^ $? \"). The back
slash (\) is the special character used to escape other special characters in regular
expressions. For Windows platforms, the directory separator is the back slash, so it
must be escaped as \\ (but, as noted previously, you should use the / character and
not \ anyway).
Batch e*Way Intelligent Adapter User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
e*Way Event Type Definitions Using Special Characters
For the Windows Universal Naming Convention (UNC), the directory root
(including the computer name and the shared root folder name) must be expressed
exclusively. That is, do not express the computer name and shared root folder as a
regular expression.

Different platforms require different regular expression patterns, for example:

With Windows platforms, use the following pattern:

drive:\\regexp1\\regexp2\\regexp3 ...

With UNIX platforms, including mounted directories, use the following pattern:

/regexp1/regexp2/regexp3 ...

With Windows UNC platforms, use the following pattern:

\\\\machineName\\shared_folder\\regexp1\\regexp2\\regexp3 ...

Directory Regular Expression Examples

Several examples of directory regular expression usage follow:

Windows Examples

c:\\eGate$\\^client\\collab\D\\ ...

The expression \D means any non-digit character.

d:\\a.b\\c.d\\e.f\\g.h\\[0-9]\\ ...

The symbol “.” means any character

UNIX Examples

/abc\d/def/ghi/ ...

The expression \d means any digit character.

/^PRE[0-9]{5}\.dat$/ ...

This expression means to begin with PRE followed by a five-digit number and use
a .dat extension. The symbol \. means to interpret the real character (a period) instead
of any character. Therefore, PRE12345.dat does match, but PRE123456dat does not.

Windows UNC Example

\\\\My_Machine\\public\\xyz$\\^abc

The prefix for Windows UNC platforms is \\. After escaping, it becomes \\\\.

5.7 Using Special Characters
The Batch e*Way allows you to use special characters to symbolize often-used
information in a short-hand way. You can use these character combinations to specify
place holders for this information. Using these symbols, you can quickly convey date/
time, number, and file-name information.
Batch e*Way Intelligent Adapter User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
e*Way Event Type Definitions Using Special Characters
Special characters are utilities the e*Way uses for file-name expansion. The general
rules for their use are:

Use % to indicate the special character that needs to be expanded.

Use %% to indicate the escaped character %; for example, abc%%d means abc%d,
and the %d is not expanded again.

Note: For information on regular expressions, see “Using Regular Expressions” on
page 113.

For example, for a put operation, a pattern such as file%#.dat can be used. This pattern
uses the sequence number setting in the configuration, and each put creates successive
files named file1.dat, file2.dat, and so on.

5.7.1 Types of Name Expansion
The e*Way provides the following types of name expansion:

Date/Time stamp

Uses the format %[GyMdhHmsSEDFwWakKz], for example, abc%y%y%y%y
means abc2001 (see Table 6 on page 118 for more information).

Sequence number

Uses the format %#, %5#, for example, abc%# means abc1, abc2, abc3, and so on;
for another example, abc%5# (zero-padded) means abc00001, abc00002,
abc00003, ..., abc00010, ..., abc00100, and so on.

Working-file name

Uses the format %f; normally, it is used for pre- or post-file-transfer commands (see
“Pre/post File Transfer Commands” on page 104), for example, %f.abc means
working_filename.abc.

The sequence of expansion operates in the reverse order of the previous list, that is, first
the file name is expanded, then the sequence number, and finally the time stamp.

Additional Examples

abc.%y%y%y%y%M%M%d%d.%h%h%m%m%s%s%S%S%S means
abc.20011112.162532678

abc%#.def%# means abc2.def3

%f.%# means xxxxx.4, xxxxx.5, ...

Where xxxxx is the working-file name.

5.7.2 Resolving Names
Typically, the pre/post names with patterns are resolved during get() and put() method
calls. But sometimes, in using Collaboration Rules, the e*Way has to get the resolved
names before the actual get() or put() call.
Batch e*Way Intelligent Adapter User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
e*Way Event Type Definitions Using Special Characters
In such cases, you can get the resolved names in this way through the
ResolvedNamesForGet and ResolvedNamesForPut nodes in the FTP ETD, for
example:

getResolvedNamesForPut().getTargetFileName()

The previous code yields file1 based on the pattern file%#. In this usage, the ETD
nodes can be used to make the desired method call.

Note: See “FTP ETD Node Functions” on page 92 for more information on FTP ETD
nodes.

5.7.3 Date/time Format Syntax
The e*Way uses the Java simple default date and time format syntax (U.S. locale). To
specify these formats for name expansion, you must use a time pattern string.

Note: The e*Way uses the Java standard for date/time stamps from the Java class
java.text.SimpleDateFormat. Some of these formats can differ from the list given
here, depending on the Java SDK version you are using.

In these patterns, all ASCII letters are reserved as pattern letters. See Table 6 for a
complete list.

Table 6 Time Pattern Strings and Meanings

Symbol Meaning Presentation Example

%G Era designator Text AD

%y Year Number 1996

%M Month in year Text and number July & 07

%d Day in month Number 10

%h Hour in a.m./p.m. (1 through12) Number 12

%H Hour in day (0 through 23) Number 0

%m Minute in hour Number 30

%s Second in minute Number 55

%S Millisecond Number 978

%E Day in week Text Tuesday

%D Day in year Number 189

%F Day of week in month Number 2 (second Wednesday
in July)

%w Week in year Number 27

%W Week in month Number 2

%a Marker for a.m./p.m. Text PM

%k Hour in day (1 through 24) Number 24
Batch e*Way Intelligent Adapter User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
e*Way Event Type Definitions Using Special Characters
The general rules for date/time formats are:

Text: The count of pattern letters determines the format as follows:

For four or more pattern letters, use the full form.

For fewer than four, use the short or abbreviated form if one exists.

Number: The minimum number of digits as follows:

Shorter numbers are zero-padded to this amount.

The year is handled differently; that is, if the count of “y” is two, the year is
truncated to two digits.

Text and number: For three or more pattern letters, use text; otherwise use a
number.

Quotes and delimiters: Use these symbols as follows:

Enclose literal text you want rendered within single quotes.

Use double quotes to mean single quotes.

Use commas for delimiters.

Examples

Table 7 shows some examples using the U.S. locale.

%K Hour in a.m./p.m. (0 through 1) Number 0

%z Time zone Text Pacific Standard Time

Table 7 U.S. Locale Date/time Patterns

Format Pattern Result

yyyy.MM.dd, G, 'at' hh:mm:ss, z 1996.07.10 AD at 15:08:56 PDT

E, M, dd, ''yy Wednesday, July 10, '96

h:mm, a 12:08 PM

h, 'o''clock' a, z 12 o’clock PM., Pacific Daylight Time

K:mm a, z 0:00 p.m., PST

yyyyy.M.dd, G, hh:mm, a 1996.July.10 AD 12:08 PM

Table 6 Time Pattern Strings and Meanings (Continued)

Symbol Meaning Presentation Example
Batch e*Way Intelligent Adapter User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 6

Extending the e*Way

This chapter explains how to customize the Batch e*Way Intelligent Adapter’s
functionality by extending its capabilities.

6.1 Extending e*Way Functionality: Overview
The Batch e*Way has been designed to handle the vast majority of your needs as
delivered. However, you may be required to customize one or more functions for your
individual requirements. In such cases, you have many options available to easily
extend the e*Way’s functionality.

6.1.1 Designed With Extensibility In Mind
The e*Way has been designed from the ground up with user extensibility in mind and
provides a variety of extensibility features. You can use these features to customize
functionality to perform a multitude of specialized tasks. For example, you can
override how file operations are performed, how records are processed, and how
records are created.

To extend the e*Way’s functionality, you can create your own implementations of its
Java classes. Also, you can create your own Java properties files. If you want to use
these extensions, you must enter your class or file name in the appropriate e*Way
Connection configuration.

The use of these features is optional, and Java programming is required to employ
them. For this reason, to extend the e*Way’s functionality, you need a more advanced
programming knowledge than you would if you only used the product “out of the
box.” However, these extensibility features are readily available in those cases where
you need to use them.

6.1.2 Specifying User Classes and Properties Files
Use the e*Way Connection configuration to specify the user classes and Java properties
files you are using to extend your e*Way’s functionality. If you use these features, you
must enter them as configuration parameters in the e*Gate Schema Designer’s e*Way
Configuration Editor.
Batch e*Way Intelligent Adapter User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Extending the e*Way Extending e*Way Functionality: Overview
For details on how to set these parameters, see the following sections:

Record-processing ETD

“User Class” on page 35

“User Properties” on page 36

FTP ETD

“Provider Class Name” on page 55

“Client Class Name” on page 55

“User Properties File” on page 56

6.1.3 Interface-based e*Way Functionality
Most of the functionality exposed in the e*Way's Event Type Definitions (ETDs) is
represented internally by Java interfaces. It is the implementation of those interfaces that
determines how the ETDs operate.

In programming terms, an interface describes a contract and the semantics of how to use
a Java object. Interfaces are used in many programming languages, including Java. In
fact, Java uses them quite heavily. For example, the java.io.InputStream interface
defines the contract and semantics for any client code that seeks to use the services of
an InputStream object. This concept is used in the Batch e*Way as well.

The true power of these features is that you can provide your own implementation for any of
these interfaces and use it instead of the default implementation.

Record-processing ETD

The record-processing ETD uses a parser interface to describe the functionality of record
parsing and creation semantics. The implementation of that parser interface controls
the ETD’s functionality. In this case, there are three SeeBeyond-supplied
implementations: delimited, fixed-size, and single-record.

FTP ETD

The FTP ETD uses two interfaces, a provider and a client. The provider interface
represents the ETD’s general FTP-related operations. The client interface represents
how the functionality of the provider is actually used.

The rest of this chapter explains these interfaces and concepts in detail.
Batch e*Way Intelligent Adapter User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Extending the e*Way Extending the Record-processing ETD
6.2 Extending the Record-processing ETD
This section explains how to extend the record-processing functionality in the e*Way.

6.2.1 Parser Interface Operation
The record-processing ETD uses an interface named BatchRecordParser (the parser
interface). This interface defines the functionality for the record-processing ETD,
including parsing and creating a payload of records. Records, in this context, are a
section of a file. If you extend the capabilities of the e*Way by implementing your own
parser, the way these records (or a section) are processed is up to you.

In terms of operation, the get() and put() methods in the ETD route to the get() and
put() methods of the e*Way’s inner interface implementation. This interface is defined
in the com.stc.eways.batchext package (see Chapter 10 and the Javadoc for more
information).

The e*Way has the following “out of the box” parser implementations:

Delimited records

Fixed-size records

Single records

Keep in mind that, though this interface is called a parser, it can either parse or create a
payload. The actual parser implementation used is determined by the settings in the
e*Way Connection configuration for the ETD. Based on the record type chosen, an
instance of the appropriate parser implementation is created and inserted into the ETD
implementation code.

To use your own version of a record-parser implementation in the ETD

Create your own user-defined class, and optionally, a Java properties file.

In the e*Way Connection Configuration, go to the User Class section in the e*Way
Connection configuration for the record-processing ETD.

Enter the class name of your own implementation.

If desired, you can also supply a full path to a Java properties file to be loaded
and passed into the initialize() method of the parser immediately after
construction (see “Using the initialize() Method” on page 124).

6.2.2 Record-parser Hierarchy
Figure 10 on page 123 shows a simplified Unified Modeling Language (UML)
representation of the parser’s operation as it relates to the record-processing ETD and
its underlying parser interface structure. Unrelated methods are not shown, for clarity.
Batch e*Way Intelligent Adapter User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Extending the e*Way Extending the Record-processing ETD
Figure 10 Diagram: Parser Operation

The top section of Figure 10 shows the parser interface and class hierarchy, and the
bottom half shows how the get() and put() methods in the ETD route to the
implementation of those methods in the parser implementation.

Note: When creating a custom parser implementation, you can create one entirely from
scratch, or you can extend one of the SeeBeyond-supplied implementations, only
overriding the method or methods that you need to.

6.2.3 Deriving From the Parser Interface
Code for the parser interface is in the com.stc.eways.batchext package. See the Javadoc
section on this interface for an explanation of each of these methods in detail.

 +initialize()
 +get()
 +put()
 (and so on)

<<BatchRecordParser>>

UserDefined

FixedRecordParser

UserDefined

DelimitedRecordParser

UserDefined

SingleRecordParser UserDefined

 -parser

 +get()
 +put()

BatchRecordETD

 +get()
 +put()

Parser Implementation1

Calls
Calls
Batch e*Way Intelligent Adapter User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Extending the e*Way Extending the Record-processing ETD
This section explains the three most important methods in this interface:

get()

put()

initialize()

Using get() and put() Methods

The get() and put() methods represent the functionality exposed through the get() and
put() methods in the ETD. They are, consequently, the methods most likely to require
your attention when you are extending the e*Way’s functionality. Your implementation
of these methods determines the nature of a record in a payload.

Using the initialize() Method

When creating your own class, use the initialize() method to initialize the parser. This
method is called internally by the e*Way immediately after an instance of the parser
class has been created. It is called only once, and you can use it to initialize internal
operations of your object. The method also allows you to pass user-specified properties
into your object, if desired.

The initialize() method takes an instance of the BatchRecordConfiguration class. This
class represents the properties as entered in the e*Way Connection configuration. If user
properties were specified in this configuration, those properties are also accessible from
this class. See the Javadoc for more information on this class.

6.2.4 Using Your Parser Implementation
After you have created your parser implementation, you must configure your e*Way
Connection so that the e*Way knows to use your implementation class. This action is
accomplished by:

Selecting User Defined as the Record Type parameter under the Record section

Then entering your user-defined class name under the User Class section as a
parameter

For more information, see “User Class” on page 35 and “Record Type” on page 33.

Actions at Run Time

At run time, the e*Way detects that a user-defined implementation has been requested
and takes the following actions:

Creates an instance of your class

Loads the user properties file (if a file name was entered)

Calls the initialize() method

From that point on, the other methods in your implementation are called as directed by
what you do in the Collaboration. For example, if you make a call to put() in the
Collaboration it routes to the put() method in your implementation.
Batch e*Way Intelligent Adapter User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Extending the e*Way Extending the FTP ETD
6.3 Extending the FTP ETD
This section explains how to extend the FTP ETD functionality in the e*Way.

6.3.1 FTP Client and Provider Interfaces
In a sense, extending the FTP ETD is much like extending the record-processing ETD in
that most of the functionality shown on the ETD actually routes to the e*Way’s inner
interface implementation. The FTP ETD has the following interfaces:

Provider (FtpFileProvider)

Client (FtpFileClient)

The provider interface represents the general FTP-related operations that can be
performed in the ETD. That is, it represents the FTP services provided to users who
want to utilize them. The client interface represents how the functionality of the provider
interface is actually used.

You can create your own implementations or override the e*Way’s default
implementations for either or both of these interfaces.

6.3.2 FTP Client and Provider Hierarchies
Figure 11 on page 126 shows a simplified UML representation of how the client and
provider interfaces operate in relation to the FTP ETD and its underlying client/
provider interface structure. Unrelated methods are not shown, for clarity.
Batch e*Way Intelligent Adapter User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Extending the e*Way Extending the FTP ETD
Figure 11 Diagram: FTP Client and Provider Operation

6.3.3 Deriving From Client and Provider Interfaces
Code for these interfaces is in the com.stc.eways.batchext package, and the Javadoc
contains explanations for each method.

There are, however, a large number of methods on these interfaces, so it is advised that
you derive your own implementations from the SeeBeyond-supplied implementation.
In this case, you only need to override any method or methods when doing so is
dictated by your own implementation. Using this approach is much easier than
implementing the entire interface from scratch (although you can if desired).

 +appendFile()
 +appendFileStream()
 (and so on)

<<FtpFileProvider>>

UserDefined

FtpFileProviderImpl

UserDefined

 -FtpFileProvider
 -FtpFileClient

 +get()
 +put()
 (and so on)

FtpETD

 +get()
 +put()
 (and so on)

FtpFileClient Implementation

1

Calls

Calls

 +DirectoryName
 +FileName
 +get()
 +put()
 (and so on)

<<FtpFileClient>>

UserDefined

FtpFileClientImpl

UserDefined

FtpFileProvider Implementation

Calls

1

Batch e*Way Intelligent Adapter User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Extending the e*Way Extending the FTP ETD
6.3.4 Using Your Client and Provider Implementations
Once you have created your implementation, you need to configure your e*Way
Connection so that the e*Way knows to use your implementation class. This action is
accomplished by:

Entering your user-defined provider class name under the Extensions section for
the Provider Class Name parameter

Entering your user-defined client class name under the Extensions section for the
Client Class Name parameter

For more information, see “Extensions Configuration” on page 55.

Supplying User Properties to Your Implementation Class

You can, if desired, supply the fully qualified path name of a Java properties file under
the User Properties File parameter under the ETD’s Extensions configuration in the
e*Way Connection. If you use a properties file, this file is loaded into a
java.util.Properties object and is available in the UserProperties node in the ETD.

Sample Implementation

A sample e*Gate schema that illustrates these concepts can be found on the installation
CD-ROM. The sample implements a custom version of the FTP ETD. See “Sample
Schema: FTP and ETD Extensibility” on page 236 for details on this sample.
Batch e*Way Intelligent Adapter User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 7

Implementation

This chapter provides information about a series of sample schemas. These will help
you understand how to implement the Batch e*Way Intelligent Adapter in a production
environment.

7.1 Implementation Overview
This section explains how to implement the Batch e*Way using e*Gate Integrator
schema samples included on your installation CD-ROM. You can find these samples on
the CD-ROM at the following path location:

\samples\ewbatch\Java

These samples allow you to observe end-to-end data-exchange scenarios involving
e*Gate, the e*Way, and sample interfaces. This chapter explains how to implement these
sample schemas that use the Batch e*Way.

You can also use the procedures given in this chapter to create your own schemas based
on the samples provided. It is recommended that you use a combination of both
methods, creating your own schema like each sample, then importing the samples into
e*Gate to check your results.

Before Importing or Running a Sample Schema

To import and run a sample schema, the Batch e*Way must be installed, and you must
also have access to a remote File Transfer Protocol (FTP) location.

To import a sample schema

1 Copy the desired .zip file, for example, BasicFtpSample.zip, from the
samples\ewbatch\Java directory in the install CD-ROM to your desktop or to a
temporary directory, then unzip the file.

2 Start the e*Gate Schema Designer.

3 On the Open Schema from Registry Host dialog box, click New.

4 On the New Schema dialog box, click Create from export, and then click Find.

5 On the Import from File dialog box, browse to the directory that contains the
sample schema.

6 Click the .zip file then click Open.

The schema is installed.
Batch e*Way Intelligent Adapter User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Implementation Implementation Overview
To create the sample schema

Use the following implementation sequence:

Chapter Organization

Each sample spotlights key features of the e*Way. The first sample section describes a
complete end-to-end e*Gate scenario showing how to build a schema using the Batch
e*Way, from the beginning. Additional sample descriptions focus on creating and
configuring the specialized features each sample seeks to illustrate.

1 The first step is to create a new schema. The rest of
these steps apply only to this schema.

2 The second step is to create and define the Event
Types you are transporting and processing within
the schema.

3 You need to associate the Event Types created in the
previous step with Event Type Definitions (ETDs)
you want to use in the schema.

4 The next step is to create and configure the
required e*Ways.

5 You must create and configure the e*Way
Connections.

6 Now you need to create Intelligent Queues (IQs)
and IQ Managers (if necessary) to hold published
Events.

7 You need to create the desired Collaboration Rules
for your schema, along with their associated
Business Rules.

8 Next, you need to define and configure the
necessary Collaborations.

9 Finally, you must check and test your schema. Once
you have verified that it is working correctly, you can
deploy it in your production environment.

Create
Intelligent Queues

Create & Configure
e*Way Connections

Define Event Types

Create Schema

Create & Configure
e*Ways

Test & Deploy

Generate Event Type
Definitions

Define & Configure
Collaborations
Batch e*Way Intelligent Adapter User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
List of Samples

The samples included with this e*Way are:

“Sample Schema: Basic FTP With Streaming” on page 130: Provides a simple,
easily implemented schema that illustrates basic FTP operations and data streaming
with the e*Way.

“Sample Schema: Local File Streaming and GEOD” on page 171: Shows you how
to create and add the record-processing, local file data-streaming, and Guaranteed
Exactly Once Delivery (GEOD) of Events features.

“Sample Schema: FTP and ETD Extensibility” on page 236: Illustrates how to
extend the FTP ETD, defining your own features.

“Sample Schema: Using Secure FTP” on page 271: Explains how to add secure FTP
to the Batch e*Way in a typical e*Gate schema.

7.2 Sample Schema: Basic FTP With Streaming
This section explains how to implement the basic FTP sample schema for the Batch
e*Way. The schema demonstrates how to set up the essential features of the e*Way in a
typical e*Gate environment, including basic FTP operations, data streaming, and data
payload transfer.

7.2.1 BasicFtpSample Schema Overview
This section provides a general overview of the basic FTP sample schema, its
configuration, and how it operates. The name of this schema is BasicFtpSample, and it
is contained in the import file BasicFtpSample.zip.

Schema Setup

Figure 12 on page 131 shows a diagram of the schema’s general architecture. The
arrows show the direction of data flow.
Batch e*Way Intelligent Adapter User’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 12 BasicFtpSample Schema Diagram

Schema Operation

This sample schema has the following input/output setup:

Input: A file (ftpSample.dat) from a remote FTP server.

Output: The same file (renamed to ftpFileSample.dat) to a remote FTP server.

This sample schema demonstrates the basic FTP get() and put() operations of the
e*Way's FTP ETD, using both data streaming and payload transfer. The schema also
uses the local file ETD for data streaming and local disk file transfers.

Remote FTP
Server

e*Gate Integrator

Local File
System

FTP ETD

File

FromExternal e*Way and cr_fromExternal

Local
File
ETD

e*Way
Connection

e*Way
Connections

Remote FTP
Server

File

e*Way
Connection

FTP ETD
Local
File
ETD

cpFTPin

cpFileIn

cpFTPOut

File

cpFileOut

ToExternal e*Way and cr_toExternal
Batch e*Way Intelligent Adapter User’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
To run the sample schema

1 Start only the FromExternal e*Way.

This e*Way returns a file, ftpSample.dat, via FTP from a remote FTP system. This
file is then renamed on the remote system to sample.finished. The returned file is
written to the local disk to C:\eGate\data\ftpFileSample.dat using data
streaming.

2 Shut down the FromExternal e*Way.

3 Start the ToExternal e*Way.

This e*Way picks up the local file, ftpFileSample.dat, written by the FromExternal
e*Way and puts it on a remote FTP system via FTP using payload data transfer.

Schema Components

The BasicFtpSample schema with basic FTP implementation consists of the following
main e*Gate components:

FromExternal: Inbound Multi-Mode e*Way that brings the into e*Gate from a
remote FTP system.

ToExternal: Outbound Multi-Mode e*Way that sends the file to a remote FTP
system.

collabfrmExt: Collaboration for the FromExternal e*Way.

cr_fromExternal: Collaboration Rule for collabfrmExt.

collabToExt: Collaboration for the ToExternal e*Way.

cr_toExternal: Collaboration Rule for collabToExt.

localhost_iqmgr: SeeBeyond JMS IQ Manager (not used in this sample).

cpFTPin: e*Way Connection (FTP ETD) for FTP from the remote system to the
FromExternal e*Way.

cpFTPout: e*Way Connection (FTP ETD) for FTP from the ToExternal e*Way to the
remote system.

cpFileOut: e*Way Connection (local file ETD) for data-streaming the file from the
FromExternal e*Way to the local file system.

cpFileIn: e*Way Connection (local file ETD) for payload-transferring the file from
the local file system to the ToExternal e*Way.

7.2.2 Creating the BasicFtpSample Sample Schema
This section explains the basic steps for how to create the sample schema
BasicFtpSample.

Note: For complete information on how to set up an e*Gate schema, see the e*Gate
Integrator User’s Guide and Creating and End-to-end Scenario with e*Gate
Integrator.
Batch e*Way Intelligent Adapter User’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Creating a New Schema

The first task in deploying the schema sample is to create a new schema name. While it
is possible to use the default schema for this implementation example, it is
recommended that you create a separate schema for testing purposes.

To create a new schema

1 Start the e*Gate Schema Designer.

2 When the Schema Designer prompts you to log on, select the host that you specified
during installation, and enter your password.

3 You are then be prompted to select a schema. Click New.

4 Enter a name for the new schema, BasicFtpSample.

Note: You can enter any name you want, but it is recommended that you use the same
name as the .zip file, to avoid confusion among the different samples for this e*Way.

5 Click Open. The Schema Designer displays a new, unconfigured schema.

The Schema Designer opens under your new schema, with many of the schema’s basic
components already created. From the Schema Designer, you can access the ETD Editor
and Collaboration Rules Editor features. You are now ready to begin creating the
necessary components for this sample schema.

Figure 13 on page 134 shows an example of the Schema Designer window with the
BasicFtpSample schema already created.
Batch e*Way Intelligent Adapter User’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 13 Schema Designer Main Window for BasicFtpSample

Creating Event Types and ETDs

The e*Way installation includes two of the .xsc files for the Batch e*Way.

Creating Event Types

Using the Schema Designer, you create the following Event Types:

etFileETD (local file ETD)

etFtpETD (FTP ETD)

Using the ETDs

In this sample schema, you use the following ETDs:

LocalFileETD.xsc

FtpETD.xsc

To create the Event Types and ETDs

1 Highlight the Event Type folder on the Components tab of the e*Gate Schema
Designer.

2 On the palette, click the icon to create a new Event Type.

3 Enter the name of the Event Type (etFileETD), then click OK.

4 Select the new Event Type, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
5 The Event Type Properties dialog box appears (see Figure 14).

Figure 14 etFileETD Event Type Properties Dialog Box

Figure 14 shows the ETD already selected. To select the desired ETD, go to the next
step.

6 Click Find. The Event Type Definition Selection dialog box appears.

7 Navigate to and open the client\etd\batchclientext directory then select the
LocalFileETD.xsc file.

8 Click Select. The LocalFileETD.xsc file name appears in the Event Type Definition
text box, as shown in Figure 14.

9 Click OK to close the Event Type Properties dialog box and save your changes.

10 To create the next Event Type and select its associated ETD, repeat steps 2
through 9. Use the name etFtpETD for this Event Type and find the FtpETD.xsc
ETD file to associate with this Event Type.

11 When you are finished with the dialog box, click OK to close it and save your
changes.
Batch e*Way Intelligent Adapter User’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Creating and Configuring e*Ways

You must create the following Multi-Mode e*Ways:

Inbound: FromExternal

Outbound: ToExternal

Note: For detailed information on the Multi-Mode e*Way, see the Standard e*Way
Intelligent Adapter User’s Guide.

To create the inbound and outbound Multi-Mode e*Ways

1 Select the e*Gate Schema Designer’s Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that manages the new e*Way.

4 On the palette, click the icon to create a new e*Way.

5 Enter the name of the new e*Way (FromExternal), then click OK.

6 Select the new component, then double-click to edit its properties.

7 When the e*Way Properties dialog box appears, use the default executable file,
stceway.exe (see Figure 15 on page 137).
Batch e*Way Intelligent Adapter User’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 15 FromExternal e*Way Properties Dialog Box

Configure the FromExternal e*Way properties as shown in the previous figure.

8 To edit the JVM Settings, select New under the Configuration File text box. Use the
default configuration parameters, as shown in the e*Way Configuration Editor.

Note: See Chapter 3 for more information on how to configure the Multi-Mode e*Way.

9 Save the .cfg file, and exit the e*Way Configuration Editor, returning to the e*Way
Properties dialog box..

10 Use the Startup, Advanced, and Security tabs to modify the default settings for
each.

A Use the Startup tab to specify whether the Multi-Mode e*Way starts
automatically, restarts after abnormal termination or due to, for example,
scheduling.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

11 Select OK to close the e*Way Properties dialog box and save your settings.
Batch e*Way Intelligent Adapter User’s Guide 137 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
12 Repeat steps 4 through 11 for the ToExternal e*Way (see Figure 16).

Figure 16 ToExternal e*Way Properties Dialog Box

Configure the ToExternal e*Way properties as shown in the previous figure. Use the
default configuration parameters.

Creating and Configuring e*Way Connections

The e*Way Connection configuration file contains the connection information needed
to communicate with the local file system and the remote FTP server.

To create and configure the cpFTPin e*Way Connection

1 Highlight the e*Way Connection folder on the Components tab of the e*Gate
Schema Designer.

2 On the palette, click the icon to create a new e*Way Connection.

3 Enter the name of the e*Way Connection (cpFTPin), then click OK.

4 Select the new e*Way Connection, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 138 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
5 When the e*Way Connection Properties dialog box opens, select Batchext from the
e*Way Connection Type drop-down menu (see Figure 17).

Figure 17 cpFTPin e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure.

6 Under e*Way Connection Configuration File, click New (where the Edit button is
in the previous figure). Select the FtpETD.

The e*Way Configuration Editor Main window opens (see Figure 18 on page 140).
Batch e*Way Intelligent Adapter User’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 18 e*Way Configuration Editor: cpFTPin General Settings
Batch e*Way Intelligent Adapter User’s Guide 140 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
7 Select the desired parameters, including those that correspond to the remote FTP
system you are using. See “FtpETD: Configuration Parameters” on page 37 for
details.

Note: See the e*Gate Integrator User’s Guide for complete information on how to use
the e*Way Configuration Editor.

8 Using the e*Way Configuration Editor accept the default settings for all parameters
except for:

FTP:

Directory Listing Style

Host Name

User Name

Password

Target Location:

Target Directory Name

You must enter your system settings for these parameters (see Figure 19 on
page 142 through Figure 21 on page 144).
Batch e*Way Intelligent Adapter User’s Guide 141 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 19 e*Way Configuration Editor: Necessary cpFTPin Settings (FTP First Set)
Batch e*Way Intelligent Adapter User’s Guide 142 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 20 e*Way Configuration Editor: Necessary cpFTPin Settings (FTP Second Set)
Batch e*Way Intelligent Adapter User’s Guide 143 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 21 e*Way Configuration Editor: Necessary cpFTPin Settings (Target)

9 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

10 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the cpFTPout e*Way Connection

1 Repeat steps 2 through 6 under the procedure on page 138 for the cpFTPout e*Way
Connection (see Figure 22 on page 145).
Batch e*Way Intelligent Adapter User’s Guide 144 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 22 cpFTPout e*Way Connection Properties Dialog Box

2 Using the e*Way Configuration Editor, set the parameters for the remote FTP
system. See “FtpETD: Configuration Parameters” on page 37 for details.

Be sure to provide the appropriate system settings for the same FTP and Target
Location parameters as you did for the cpFTPin e*Way Connection. (see the
procedure on page 138).

3 When you are finished, save the .cfg file, close the e*Way Configuration Editor, and
promote the file to run time.

4 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the cpFileIn e*Way Connection

1 Repeat steps 2 through 6 under the procedure on page 138 for the cpFileIn e*Way
Connection (see Figure 23 on page 146), except that you select the LocalFileETD.
Batch e*Way Intelligent Adapter User’s Guide 145 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 23 cpFileIn e*Way Connection Properties Dialog Box

2 Using the e*Way Configuration Editor, set the parameters for your local file system
as necessary. See “LocalFileETD: Configuration Parameters” on page 60 for
details. For the other settings, you can use the defaults.

Figure 24 on page 147 shows the General Settings parameters for this e*Way
Connection in the e*Way Configuration Editor.
Batch e*Way Intelligent Adapter User’s Guide 146 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 24 e*Way Configuration Editor: General Settings for cpFileIn

3 When you are finished, save the .cfg file, close the e*Way Configuration Editor, and
promote the file to run time.

4 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the cpFileOut e*Way Connection

1 Repeat steps 2 through 6 under the procedure on page 138 for the cpFileOut e*Way
Connection (see Figure 25 on page 148), except that you select the LocalFileETD.
Batch e*Way Intelligent Adapter User’s Guide 147 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 25 cpFileOut e*Way Connection Properties Dialog Box

2 Using the e*Way Configuration Editor, set the parameters for your local file system
as necessary. See “LocalFileETD: Configuration Parameters” on page 60 for
details. For the other settings, you can use the defaults.

3 When you are finished, save the .cfg file, close the e*Way Configuration Editor, and
promote the file to run time.

4 Click OK to close the e*Way Connection Properties dialog box.

Creating Collaboration Rules

The next step is to create the Collaboration Rules that extract and process selected
information from the source Event Type defined previously, according to its associated
Collaboration Service.

From the Schema Designer Menu bar, click Options and select Default Editor. For this
schema, set the default to Java.

To create the cr_fromExternal Collaboration Rules file

1 Select the Components tab in the e*Gate Schema Designer.

2 In the Navigation pane, select the Collaboration Rules folder.
Batch e*Way Intelligent Adapter User’s Guide 148 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
3 On the palette, click the Collaboration Rules icon.

4 Enter the name of the new Collaboration Rule, then click OK. Use cr_fromExternal
for this example, for the FromExternal e*Way’s Collaboration, collabfrmExt.

5 Select the new Collaboration Rule, then right-click to edit its properties.

6 The Collaboration Rules Properties dialog box appears (see Figure 26).

Figure 26 Collaboration Rules Properties Dialog Box for cr_fromExternal: General

7 On the General tab in the dialog box select the Java Collaboration Service. In this
example, the Collaboration Rules use the e*Gate Java Collaboration Service to
manipulate Events or Event data.

8 In the Initialization String text box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

9 Click the Collaboration Mapping tab.
Batch e*Way Intelligent Adapter User’s Guide 149 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
10 Using the Add Instance button, create instances to coincide with the ETDs (see
Figure 27).

Figure 27 Collaboration Rules Properties Dialog Box for cr_fromExternal: Mapping

Configure the rest of cr_fromExternal as shown in the previous figure.

11 Select the General tab again, then click New (where the Edit button is in Figure 26
on page 149).

The Collaboration Rules Editor Main window opens.
Batch e*Way Intelligent Adapter User’s Guide 150 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
12 Expand the window to full size for optimum viewing (see Figure 28).

Figure 28 Collaboration Rules Editor: cr_fromExternal Start
Batch e*Way Intelligent Adapter User’s Guide 151 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
13 Expand the source and destination Events, as well as the Business Rules. Figure 29
shows the results.

Figure 29 Collaboration Rules Editor: cr_fromExternal Expanded

14 To begin creating the first Business Rule, first click the retBoolean method in the
Business Rules pane (see Figure 30 on page 153).
Batch e*Way Intelligent Adapter User’s Guide 152 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 30 Collaboration Rules Editor: Getting Started

15 Drag the OutputStreamAdapter node of the Destination Event onto the
OutputStreamAdapter node of the Source Event (see Figure 31 on page 154). This
action creates the new rule.

16 Name the rule setup Stream to Local File.

First, click here. Then, click here.
Batch e*Way Intelligent Adapter User’s Guide 153 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 31 Collaboration Rules Editor: cr_fromExternal First Rule (Drag/drop)

17 When you first complete this operation, the code shown in the Rule scroll box in the
Rule Properties window is not correct (unlike the previous figure). To complete this
implementation, you must delete the code listed in the Rule scroll box in the Rule
Properties window and enter the following code:

getfrmExt().getClient().setOutputStreamAdapter(gettoLocal()
.getClient().getOutputStreamAdapter())

When you are finished typing, the code looks like what is shown in Figure 31. This
rule sets up the data-streaming transfer.

Note: For more information on the data-streaming feature, see “Streaming Data
Between Components” on page 328.
Batch e*Way Intelligent Adapter User’s Guide 154 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
18 With the previous rule highlighted, click try to begin creating another new rule (see
Figure 32).

Figure 32 Collaboration Rules Editor: cr_fromExternal (Click try)

19 Click rule (with try highlighted) to finish creating this rule. Name the rule Try to get
the file from the FTP server.

In this rule, you must call the get method on the FTP ETD, which consumes the
stream adapter, to perform the transfer.
Batch e*Way Intelligent Adapter User’s Guide 155 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
20 Drag the get method from the Source Event to the Rule scroll box in the Rule
Properties window (see Figure 33).

Figure 33 Collaboration Rules Editor: cr_fromExternal Second Rule (Drag get)

This rule completes the data-streaming transfer.

21 Click catch (with the previous rule highlighted) to begin creating the last rule (see
Figure 34 on page 157).
Batch e*Way Intelligent Adapter User’s Guide 156 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 34 Collaboration Rules Editor: cr_fromExternal (Click catch)

This final rule allows your Collaboration Rule to handle errors.

Note: See the Javadoc for complete information on the exceptions thrown by the e*Way’s
methods.
Batch e*Way Intelligent Adapter User’s Guide 157 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
22 Click rule (with catch highlighted) to finish creating the final rule (see Figure 35).

Figure 35 Collaboration Rules Editor: cr_fromExternal Third Rule (Error Handling)

23 Type the following text in the Rule scroll box (see Figure 35) in the Rule Properties
window:

EGate.traceln(EGate.TRACE_EWAY,
EGate.TRACE_EVENT_TRACE,"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_TRACE,"!!!
FTPFileException Caught!!!");
EGate.traceln(EGate.TRACE_EWAY,
EGate.TRACE_EVENT_TRACE,"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");

Note: See the Javadoc for details on this code.

You are now finished creating your Business Rules.
Batch e*Way Intelligent Adapter User’s Guide 158 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
24 You must create a Collaboration Rules class or use one from the sample
(cr_fromExternal.class).

Note: See the e*Gate Integrator User’s Guide for details on this procedure.

25 To save the Collaboration Rules file, click Save on the File menu. The Save dialog
box appears.

26 Provide a name for the .xpr file (for this example, use cr_fromExternal.xpr) then
click Save.

27 Before compiling the code, on the Tools menu, click Options and verify that all
necessary .jar files are included (see “Collaboration Rules Editor: Java Classpaths
Dialog Box” on page 256).

28 When you have finished defining all the desired business logic, compile the Java
code by selecting Compile from the File menu.

If the code compiles successfully, the message Compile Completed appears. If the
outcome is unsuccessful, a Java Compiler error message appears. If there are any
Java errors, be sure to correct them.

29 Once the compilation is complete, you can exit the Collaboration Rules Editor.

To create the cr_toExternal Collaboration Rules file

1 Repeat steps 3 through 5 under the procedure on page 148 to create the next
Collaboration Rule.

Use cr_toExternal as the name for this example, for the ToExternal e*Way’s
Collaboration, collabToExt.

2 The Collaboration Rules Properties dialog box appears (see Figure 36 on
page 160).
Batch e*Way Intelligent Adapter User’s Guide 159 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 36 Collaboration Rules Properties Dialog Box for cr_toExternal: General

3 On the General tab in the dialog box select the Java Collaboration Service. In this
example, the Collaboration Rules use the e*Gate Java Collaboration Service to
manipulate Events or Event data.

4 In the Initialization String text box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

5 Click the Collaboration Mapping tab.
Batch e*Way Intelligent Adapter User’s Guide 160 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
6 Using the Add Instance button, create instances to coincide with the ETDs (see
Figure 37).

Figure 37 Collaboration Rules Properties Dialog Box for cr_toExternal: Mapping

Configure the rest of cr_toExternal as shown in the previous figure.

7 Select the General tab again, then click New (where the Edit button is in Figure 36
on page 160).

The Collaboration Rules Editor Main window opens.
Batch e*Way Intelligent Adapter User’s Guide 161 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
8 Expand the window to full size for optimum viewing, then expand the source and
destination Events, as well as the Business Rules. Figure 38 shows the results.

Figure 38 Collaboration Rules Editor: cr_toExternal Expanded

9 To create the first Business Rule, click the retBoolen method in the Business Rules
window then click try (you can delete the finally rule that appears).

10 With try highlighted, click rule. Name the new rule get the file from the local file
system.
Batch e*Way Intelligent Adapter User’s Guide 162 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
11 Drag the get method from the Destination Event to the Rule scroll box in the Rule
Properties window (see Figure 39).

Figure 39 Collaboration Rules Editor: cr_toExternal First Rule (Drag get)

This rule gets the file from the local file system.

12 Click if (with the previous rule highlighted) to begin creating another new rule as
shown in Figure 40 on page 164. Name the new if rule if payload has data.
Batch e*Way Intelligent Adapter User’s Guide 163 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 40 Collaboration Rules Editor: cr_toExternal (Click if)

This rule sets up the final payload data transfer and sending to the external FTP
system.

13 As shown in Figure 40, type the following text in the he Rule scroll box in the Rule
Properties window:

getfrmFile().getClient().getPayload() != null

14 Click the then statement and name it then process data.
Batch e*Way Intelligent Adapter User’s Guide 164 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
15 With the previous rule still selected, drag the Payload node of the Source Event
onto the Payload node of the Destination Event (see Figure 41). This action creates
a new rule. Make sure this rule is a child of the then process data rule.

Figure 41 Collaboration Rules Editor: cr_toExternal Second Rule (Drag/drop Payload)

This rule transfers the payload data from one ETD to the other.

16 Name the new rule copy payload in to payload out.
Batch e*Way Intelligent Adapter User’s Guide 165 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
17 With the then process data rule still selected, drag the put method from the
Destination Event to the Rule scroll box in the Rule Properties window (see
Figure 42). This action creates a new rule. Make sure this rule is a child of the then
process data rule.

Figure 42 Collaboration Rules Editor: cr_toExternal Third Rule (Drag put)

18 Name the new rule Call FTP put() sends the file to the external.

19 Click try (to highlight it) then catch to begin creating the last rule as shown in
Figure 43 on page 167.
Batch e*Way Intelligent Adapter User’s Guide 166 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
20 With catch highlighted, click rule (see Figure 43).

Figure 43 Collaboration Rules Editor: cr_toExternal Fourth Rule (Click catch, rule)

This final rule allows your Collaboration Rule to handle errors.

Note: See the Javadoc for complete information on the exceptions thrown by the e*Way’s
methods.
Batch e*Way Intelligent Adapter User’s Guide 167 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
21 Type the following text in the Rule scroll box (see Figure 43 on page 167) in the
Rule Properties window:

EGate.traceln(EGate.TRACE_EWAY,
EGate.TRACE_EVENT_TRACE,"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
EGate.traceln(EGate.TRACE_EWAY,
EGate.TRACE_EVENT_TRACE,"!!!LocalFileException Caught!!!");
EGate.traceln(EGate.TRACE_EWAY,
EGate.TRACE_EVENT_TRACE,"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");

You are now finished creating your Business Rules.

22 You must create a Collaboration Rules class or use one from the sample
(cr_toExternal.class).

23 Compile and save this Collaboration Rules file in the same way as you did the
previous file for cr_fromExternal. Name this file cr_toExternal.xpr.

24 When you are finished, exit the Collaboration Rules Editor.

Creating Collaborations

Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external system.

Collaborations consist of the subscriber, which receives Events of a known type
(sometimes from a given source), and the publisher, which distributes transformed
Events to a specified recipient.

To create the Collaborations

1 In the e*Gate Schema Designer, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select the Control Broker for this schema.

4 Select the FromExternal e*Way to assign the Collaboration.

5 On the palette, click the Collaboration icon.

6 Enter the name (collabfrmExt) of the new Collaboration, then click OK.

7 Select the new Collaboration, then right-click to edit its properties.

The Collaboration Properties dialog box appears (see Figure 44 on page 169).
Batch e*Way Intelligent Adapter User’s Guide 168 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 44 collabfrmExt Properties Dialog Box

Configure the appropriate Collaboration properties as shown in the previous figure.

8 From the Collaboration Rules list, select the first Collaboration Rule that you
created previously (cr_fromExternal) for this Collaboration.

9 Click OK to close the dialog box and save your changes.

10 Select the ftpOut e*Way to assign the next Collaboration.

11 On the palette, click the Collaboration icon.

12 Enter the name (collabToExt) of the new Collaboration, then click OK.

13 Select the new Collaboration, then right-click to edit its properties.

The Collaboration Properties dialog box appears (see Figure 45 on page 170).
Batch e*Way Intelligent Adapter User’s Guide 169 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Implementation Sample Schema: Basic FTP With Streaming
Figure 45 collabToExt Properties Dialog Box

Configure the appropriate Collaboration properties as shown in the previous figure.

14 From the Collaboration Rules list, select the Collaboration Rule that you created
previously (cr_toExternal) for this Collaboration.

15 Click OK to close the dialog box and save your changes.

Running the Schema

To run the schema

From the command line prompt, enter on a single line:

stccb -rh hostname -rs schemaname -un username
-up user_password -ln localhost_cb

Substitute the appropriate names for hostname, username, schemaname, and
user_password as appropriate.

The schema components start automatically. When there are no more run-time
messages, check the output file. If the schema is operating correctly, the remote FTP site
contains the payload data in the directory you specified.
Batch e*Way Intelligent Adapter User’s Guide 170 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
7.3 Sample Schema: Local File Streaming and GEOD
This section explains how to implement the local file data-streaming and record-
processing features in a sample schema for the Batch e*Way. The schema also employs
GEOD (XA mode) along with the local file ETD’s Resume Reading feature.

7.3.1 RPStreamingSample Schema Overview
This section provides an overview of the sample schema and how it operates. The name
of this schema is RPStreamingSample, and it is contained in the import file
RPStreamingSample.zip.

Schema Setup

Figure 46 on page 172 shows a diagram of the schema’s general architecture. The
arrows show the direction of data flow.
Batch e*Way Intelligent Adapter User’s Guide 171 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 46 RPStreamingSample Schema Diagram

Schema Operation

This sample schema has the following input/output setup:

Input: A simple data file, fixed50.dat (provided in a .zip file with sample) from a
local file system.

Output: A file with the same name, to the same location on a local file system.

This sample schema demonstrates the Batch e*Way's local file access and record-
processing features using data-streaming Event Type Definition (ETD) links with the
Resume Reading feature in the e*Way’s XA mode (using GEOD).

Local File
System

Local File
System

e*Gate Integrator

Local File
ETD

JMS IQ Mgr.

File 1

ewReader e*Way and colReader
e*Way

Connection

e*Way
Connection

ewWriter e*Way and colWriter

file
Reader

record
Queue

Record-
processing

ETD

e*Way
Connection

fixed
Record
Parser

Local File
ETD

e*Way
Connection

file
Writer

Record-
processing

ETD

e*Way
Connection

del.
Record
Comp.

User-
defined

ETD

User-
defined

ETD

File 2
Batch e*Way Intelligent Adapter User’s Guide 172 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Before Starting

Before you run this schema, make sure that the e*Way Connections have been
configured properly. You must pay special attention to the directory and file names
specifying the locations on the local file system.

Make sure that the sample input file has been extracted in the correct location, and the
e*Gate system has the proper access rights.

Basic Setup

The sample has two Collaboration Rules demonstrating record parsing from a file and
constructing files from records.

The first Collaboration Rule reads a file in batches using local-file data streaming with
the Resume Reading feature of the local file ETD enabled. Each batch is processed using
the record-processing ETD, which extracts fixed-length records. They are in turn
converted to strings and posted to an e*Way Connection representing a JMS
IQ Manager.

The second Collaboration Rule retrieves the strings from the JMS IQ Manager and
writes them as delimited records to another file. A new file is created every time a
maximum number of records is reached or when the JMS IQ Manager is empty.

The pre- and post-transfer commands in the local file e*Way Connection are set up in
such a way that, after processing, the sample data file ends up with the same name. In
this way, the schema becomes self-feeding with input data and runs continually. If you
want the schema to process the file only once, select a different post-transfer file or
directory name.

All local file and the JMS e*Way Connections are in the XA mode. The XA mode is
optional and can be turned off using the corresponding e*Way Connections' XA-related
configuration parameter.

Caution: Disabling the XA mode can cause data loss or duplication.

Sample Data

The file RPStreamingSampleData.zip contains a sample data file. Please extract
this .zip file in your e*Gate directory. The sample schema configuration assumes that
e*Gate has been installed in C:\eGate.

Note: The purpose of this sample schema is only to demonstrate the features of the local file
and record-processing ETDs, so there is no error-handling logic in the Collaboration
Rules. See “Sample Schema: Basic FTP With Streaming” on page 130 for a
sample with error-handling logic.

Additional Information

For more information on the features demonstrated in this sample schema see the
following sections:

“ETD for Local File” on page 101

“Streaming Data Between Components” on page 328

“Guaranteed Exactly Once Delivery” on page 346
Batch e*Way Intelligent Adapter User’s Guide 173 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Schema Components

The RPStreamingSample schema with data-streaming and record-processing
implementations consists of the following main e*Gate components:

ewReader: Inbound Multi-Mode e*Way that brings the local file into e*Gate.

ewWriter: Outbound Multi-Mode e*Way that sends the file back to the local file
system.

colReader: Collaboration for the ewReader e*Way.

crReader: Collaboration Rule for colReader.

colWriter: Collaboration for the ewWriter e*Way.

crWriter: Collaboration Rule for colWriter.

localhost_iqmgr: SeeBeyond JMS IQ Manager.

fileReader: File-reading (input) e*Way Connection for the ewReader e*Way.

fixedRecordParser: Record-processing e*Way Connection for the ewReader e*Way.

delimitedRecordComposer: Record-processing e*Way Connection for the
ewWriter e*Way.

fileWriter: File-writing (output) e*Way Connection for the ewWriter e*Way.

recordQueue: e*Way Connection for the localhost_iqmgr IQ Manager.

7.3.2 Creating the RPStreamingSample Sample Schema
This section explains the basic steps for how to create the RPStreamingSample schema,
including the data-streaming and record-processing features.

Creating a New Schema

This step is the same as for the BasicFtpSample schema. The name of the new schema is
RPStreamingSample. Follow the procedures provided under “Creating a New
Schema” on page 133.

Creating Event Types and ETDs

The e*Way installation provides the three .xsc files for this schema. You must create
Event Types and associate them with ETDs as shown in Table 8.

Table 8 RPStreamingSample Schema ETDs

Event Type Type of ETD ETD File Name

file Local file ETD LocalFileETD.xsc

record Record-processing ETD BatchRecordETD.xsc

transport User-defined ETD TransportString.xsc
Batch e*Way Intelligent Adapter User’s Guide 174 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Event Types and ETDs

See “Creating Event Types and ETDs” on page 134 for instructions on how to create
Event Types, locate the ETDs, and how to associate each Event Type with its ETD. The
transport Event Type requires a user-defined ETD.

To create the transport Event Type and ETD

1 Highlight the Event Type folder on the Components tab of the e*Gate Schema
Designer.

2 On the palette, click the icon to create a new Event Type.

3 Enter the name of the Event Type (transport), then click OK.

4 Select the new Event Type, then right-click to edit its properties.

5 The Event Type Properties dialog box appears (see Figure 47).

Figure 47 transport Event Type Properties Dialog Box

Because this Event Type is for a user-defined ETD, you must use the ETD Editor
feature of the Schema Designer to create this ETD.

6 From the Schema Designer menu bar, select Options and click Default Editor. For
this schema, set the default to Java.
Batch e*Way Intelligent Adapter User’s Guide 175 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
7 Click the icon in the toolbar for the ETD Editor.

The ETD Editor Main window appears (see Figure 48 on page 176).

Figure 48 ETD Editor Main Window

8 Click the New Event Type Definition icon in the window’s tool bar.

The New Event Type Definition dialog box appears (see Figure 49 on page 177).

New Event Type
Definition icon
Batch e*Way Intelligent Adapter User’s Guide 176 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 49 New Event Type Definition Dialog Box

9 Double-click the Custom ETD Wizard icon.

The Introduction dialog box for the Custom ETD wizard appears (see Figure 50).

Figure 50 Custom ETD Wizard: Introduction

10 Follow the instructions given by the wizard to create a new ETD and name its root
node TransportString. Be sure to give it the appropriate Java package name.
Batch e*Way Intelligent Adapter User’s Guide 177 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Note: For complete instructions on how to use the Custom ETD wizard to create a new
ETD, see the e*Gate Integrator User’s Guide.

The contents of the file appear in the ETD Editor window.

11 Assign the new ETD the properties shown in Figure 51.

Figure 51 TransportString.xsc in ETD Editor: Root Node

Note: For complete instructions on how to use the ETD Editor, see the e*Gate Integrator
User’s Guide.
Batch e*Way Intelligent Adapter User’s Guide 178 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
12 Add payload as a child node under the root node. Be sure that you give this node
the properties shown in Figure 52.

Figure 52 TransportString.xsc in ETD Editor: ByteData Node

13 Finish building the ETD until it looks like the one shown in Figure 52.

14 When you are finished editing the ETD, save your changes and close the
ETD Editor. Be sure to create the ETD (TransportString.xsc) in the client\etd
directory.
Batch e*Way Intelligent Adapter User’s Guide 179 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
15 From the Schema Designer, open the Event Type Properties dialog box for the
transport Event Type and associate it with the TransportString.xsc ETD you created
(see Figure 47 on page 175).

16 When you are finished with the dialog box, click OK to close it and save your
changes.

Creating and Configuring e*Ways

You must create the following Multi-Mode e*Ways:

Inbound: ewReader with ewReader.cfg configuration file.

Outbound: ewWriter with ewWriter.cfg configuration file.

For details on how to create and configure e*Ways, see “Creating and Configuring
e*Ways” on page 136.

Figure 53 and Figure 54 on page 181 show the e*Way Properties dialog boxes for the
ewReader and ewWriter e*Ways. Configure and name these e*Ways as shown in both
of the figures.

Figure 53 ewReader e*Way Properties Dialog Box
Batch e*Way Intelligent Adapter User’s Guide 180 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 54 ewWriter e*Way Properties Dialog Box

Creating and Configuring e*Way Connections

The e*Way Connection configuration file contains the connection information needed
to communicate with the local file system and the JMS IQ Manager.

To create and configure the fileReader e*Way Connection

1 Highlight the e*Way Connection folder on the Components tab of the e*Gate
Schema Designer.

2 On the palette, click the icon to create a new e*Way Connection.

3 Enter the name of the e*Way Connection (fileReader), then click OK.

4 Select the new e*Way Connection, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 181 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
5 When the e*Way Connection Properties dialog box opens, select Batchext from the
e*Way Connection Type drop-down menu (see Figure 55).

Figure 55 fileReader e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure.

6 Under e*Way Connection Configuration File, click New (where the Edit button is
in the previous figure). Select the LocalFileETD.

The e*Way Configuration Editor Main window opens (see Figure 56 on page 183).
Batch e*Way Intelligent Adapter User’s Guide 182 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 56 e*Way Configuration Editor: fileReader General Settings

7 Select the following parameters:

XA-compliant for the Transaction Type; this parameter enables GEOD for the
e*Way Connection and places it in the XA mode.

Yes for Resume Reading; this parameter enables the Resume Reading feature
for the e*Way Connection.

Note: See the e*Gate Integrator User’s Guide for complete information on how to use
the e*Way Configuration Editor.
Batch e*Way Intelligent Adapter User’s Guide 183 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
8 Select the Target Location settings (see Figure 57). Under this section, set the
appropriate parameters for the target directory and file name as shown in the
figure. Enter the information that corresponds to your local file system.

In addition, do not use pattern matching or appending.

Figure 57 e*Way Configuration Editor: fileReader Target Location Settings
Batch e*Way Intelligent Adapter User’s Guide 184 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
9 Select the Pre Transfer settings (see Figure 58). Under this section, set the
appropriate parameters for the commands you want to execute before the file
transfer as shown in the figure.

In addition, enter %f.proc for the pre file name and use pattern matching.

Figure 58 e*Way Configuration Editor: fileReader Pre Transfer Settings
Batch e*Way Intelligent Adapter User’s Guide 185 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
10 Select the Post Transfer settings (see Figure 59). Under this section, set the
appropriate parameters for the commands you want to execute after the file transfer
as shown in the figure.

In addition, enter %f for the post file name and use pattern matching for the file
name as well.

Figure 59 e*Way Configuration Editor: fileReader Post Transfer Settings

11 For the rest of the parameters, use the defaults. See “LocalFileETD: Configuration
Parameters” on page 60 for details.

12 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

13 Click OK to close the e*Way Connection Properties dialog box.
Batch e*Way Intelligent Adapter User’s Guide 186 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
To create and configure the fileWriter e*Way Connection

1 Follow the same procedures as you did previously to create the new e*Way
Connection and name the new component fileWriter.

2 When the e*Way Connection Properties dialog box opens, select Batchext from the
e*Way Connection Type drop-down menu (see Figure 60).

Figure 60 fileWriter e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure.

3 Under e*Way Connection Configuration File, click New (where the Edit button is
in the previous figure). Select the LocalFileETD.

The e*Way Configuration Editor Main window opens (see Figure 61 on page 188).
Batch e*Way Intelligent Adapter User’s Guide 187 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 61 e*Way Configuration Editor: fileWriter General Settings

4 Select the following parameters:

XA-compliant for the Transaction Type; this parameter enables GEOD for the
e*Way Connection and places it in the XA mode.

No for Resume Reading; you do not want to enable the Resume Reading
feature for the e*Way Connection.
Batch e*Way Intelligent Adapter User’s Guide 188 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
5 Select the Target Location settings (see Figure 62). Under this section, set the
appropriate parameters for the target directory and file name as shown in the
figure. Enter the information that corresponds to your local file system.

In addition, do not use pattern matching or appending.

Figure 62 e*Way Configuration Editor: fileWriter Target Location Settings

6 Select the Pre Transfer settings (see Figure 63 on page 190). Under this section, set
the appropriate parameters for the commands you want to execute before the file
transfer as shown in the figure.

In addition, make sure that there is no pre file name, and be sure Pre File Name Is
Pattern is set to NO.
Batch e*Way Intelligent Adapter User’s Guide 189 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 63 e*Way Configuration Editor: fileWriter Pre Transfer Settings
Batch e*Way Intelligent Adapter User’s Guide 190 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
7 Select the Post Transfer settings (see Figure 59). Under this section, set the
appropriate parameters for the commands you want to execute after the file transfer
as shown in the figure. In addition, enter %#-%f for the post file name and use
pattern matching.

Figure 64 e*Way Configuration Editor: fileWriter Post Transfer Settings

8 For the rest of the parameters, use the defaults. See “LocalFileETD: Configuration
Parameters” on page 60 for details.

9 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

10 Click OK to close the e*Way Connection Properties dialog box.
Batch e*Way Intelligent Adapter User’s Guide 191 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
To create and configure the fixedRecordParser e*Way Connection

1 Follow the same procedures as you did previously to create the new e*Way
Connection and name the new component fixedRecordParser.

2 When the e*Way Connection Properties dialog box opens, select Batchext from the
e*Way Connection Type drop-down menu (see Figure 65).

Figure 65 fixedRecordParser e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure.

3 Under e*Way Connection Configuration File, click New (where the Edit button is
in the previous figure). Select the BatchRecordETD. The e*Way Configuration
Editor appears.

Note: See “BatchRecordETD: Configuration Parameters” on page 33 for details on
the record-processing ETD’s configuration.
Batch e*Way Intelligent Adapter User’s Guide 192 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
4 Under the General Settings section, set the Parse or Create Mode to Parse (see
Figure 66).

Figure 66 e*Way Configuration Editor: fixedRecordParser General Settings
Batch e*Way Intelligent Adapter User’s Guide 193 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
5 Under the Record section, set the parameters as shown in Figure 67.

Figure 67 e*Way Configuration Editor: fixedRecordParser General Settings

For the rest of the parameters, use the defaults.
Batch e*Way Intelligent Adapter User’s Guide 194 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
6 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

7 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the delimitedRecordComposer e*Way Connection

1 Follow the same procedures as you did previously to create the new e*Way
Connection and name the new component delimitedRecordComposer.

2 When the e*Way Connection Properties dialog box opens, select Batchext from the
e*Way Connection Type drop-down menu (see Figure 68).

Figure 68 delimitedRecordComposer e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure.

3 Under e*Way Connection Configuration File, click New (where the Edit button is
in the previous figure). Select the BatchRecordETD. The e*Way Configuration
Editor appears.
Batch e*Way Intelligent Adapter User’s Guide 195 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
4 Under the General Settings section, set the Parse or Create Mode to Create (see
Figure 69).

Figure 69 e*Way Configuration Editor: delimitedRecordComposer General Settings
Batch e*Way Intelligent Adapter User’s Guide 196 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
5 Under the Record section, set the parameters as shown in Figure 70. Leave the
Record Size blank; you do not need to set this parameter for delimited records.

Figure 70 e*Way Configuration Editor: delimitedRecordComposer General Settings

For the rest of the parameters, use the defaults.

6 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

7 Click OK to close the e*Way Connection Properties dialog box.
Batch e*Way Intelligent Adapter User’s Guide 197 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
To create and configure the recordQueue e*Way Connection

1 Follow the same procedures as you did previously to create the new e*Way
Connection except that you do not need to select an ETD. Name the new component
recordQueue (see Figure 71).

Figure 71 recordQueue e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure. Be
sure to select SeeBeyond JMS as the e*Way Connection Type.

2 Using the e*Way Configuration Editor accept the default settings for all parameters
except for:

General Settings (all parameters)

You must enter your system settings for these parameters as shown in Figure 72 on
page 199 and Figure 73 on page 200.
Batch e*Way Intelligent Adapter User’s Guide 198 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 72 e*Way Configuration Editor: Necessary recordQueue Settings 1
Batch e*Way Intelligent Adapter User’s Guide 199 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 73 e*Way Configuration Editor: Necessary recordQueue Settings 2

In addition, set the following parameters (see Figure 74 on page 201) to match your
own system:

Message Service:

Server Name

Host Name

Port Number
Batch e*Way Intelligent Adapter User’s Guide 200 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 74 e*Way Configuration Editor: Necessary recordQueue Settings 3

3 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

4 Click OK to close the e*Way Connection Properties dialog box.
Batch e*Way Intelligent Adapter User’s Guide 201 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Checking the IQ Manager

By default, the IQ Manager in your schema is configured to use the SeeBeyond Java
Messaging Service (JMS) IQ Service. The system has already named the IQ Manager for
you, so you can keep that name if desired. In the sample, the component is named
localhost_iqmgr.

IQs use IQ Services to transport data. IQ Services provide the mechanism for moving
Events between IQs, handling the low-level implementation of data exchange (such as
system calls to initialize or reorganize a database).

For an illustration of the IQ Manager Properties dialog box for this schema, see
Figure 75.

Figure 75 IQ Manager Properties Dialog Box

Note: See the SeeBeyond JMS Intelligent Queue User’s Guide for more information on
the JMS IQ Manager feature.
Batch e*Way Intelligent Adapter User’s Guide 202 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Creating Collaboration Rules

The next step is to create the Collaboration Rules that extract and process selected
information from the source Event Type defined previously, according to its associated
Collaboration Service.

From the Schema Designer menu bar, select Options and click Default Editor. For this
schema, set the default to Java.

To create the crReader Collaboration Rules file

1 Select the Components tab in the e*Gate Schema Designer.

2 In the Navigation pane, select the Collaboration Rules folder.

3 On the palette, click the Collaboration Rules icon.

4 Enter the name of the new Collaboration Rule, then click OK. Use crReader for this
example, for the ewReader e*Way’s Collaboration, colReader.

5 Select the new Collaboration Rule, then right-click to edit its properties.

6 The Collaboration Rules Properties dialog box appears (see Figure 76).

Figure 76 Collaboration Rules Properties Dialog Box for crReader: General Tab
Batch e*Way Intelligent Adapter User’s Guide 203 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
7 On the General tab in the dialog box select the Java Collaboration Service. In this
example, the Collaboration Rules use the e*Gate Java Collaboration Service to
manipulate Events or Event data.

8 In the Initialization String text box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

9 Click the Collaboration Mapping tab.

10 Using the Add Instance button, create instances to coincide with the ETDs (see
Figure 77).

Figure 77 Collaboration Rules Properties Dialog Box for crReader: Mapping Tab

Configure the rest of crReader as shown in the previous figure.

Note: You can use the transport.xsc ETD from the sample for your user-defined ETD or
create one of your own that fits the example.

11 Select the General tab again, then click New (where the Edit button is in Figure 76
on page 203).

The Collaboration Rules Editor Main window opens.
Batch e*Way Intelligent Adapter User’s Guide 204 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
12 Expand the window for optimum viewing then expand the source and destination
Events, as well as the Business Rules. Figure 78 shows the results.

Figure 78 Collaboration Rules Editor: crReader Expanded

13 To create the first Business Rule (if resume reading is enabled), first click the
retBoolean method in the Business Rules pane then click the if button (see
Figure 79 on page 206).
Batch e*Way Intelligent Adapter User’s Guide 205 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 79 Collaboration Rules Editor: Getting Started

14 Click the new if rule and give it the name if resume reading is enabled.

First, click here. Then, click here.
Batch e*Way Intelligent Adapter User’s Guide 206 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
15 Drag the ResumeReadingEnabled configuration parameter from the local file
Source Event to the Rule scroll box in the Rule Properties window (see Figure 80).

Figure 80 Collaboration Rules Editor: crReader if Rule

This action enables the Resume Reading feature for the ETD.

16 To create the next portion of this rule, first click then in the Business Rules window
then click if to create a nested if rule (give it the name, report the status).
Batch e*Way Intelligent Adapter User’s Guide 207 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
17 With report the status selected, drag the ResumeReadingInProgress node of the
local file ETD Source Event into the Rule scroll box in the Rule Properties window
(see Figure 81).

Figure 81 Collaboration Rules Editor: crReader then Statement

18 To create the then rule for this nested if rule, first click then and next click rule. This
rule and the next give you messages for the Resume Reading feature.
Batch e*Way Intelligent Adapter User’s Guide 208 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
19 With rule selected, as shown in Figure 82, type the following text in the Rule scroll
box in the Rule Properties window:

EGate.collabDebug("'Resume reading' state is present, reading the
rest of the file.")

Figure 82 Collaboration Rules Editor: crReader then Rule
Batch e*Way Intelligent Adapter User’s Guide 209 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
20 Click else (see Figure 83) then rule and repeat the same actions for the else rule,
typing:

EGate.collabDebug("'Resume reading' state not present. A new file
will be read.")

Figure 83 Collaboration Rules Editor: crReader else Rule
Batch e*Way Intelligent Adapter User’s Guide 210 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
21 Click else in the main rule then throw to create the final else rule and complete this
Business Rule. This rule provides an error message.

22 As shown in the previous steps and figures, type the following text in the Rule
scroll box in the Rule Properties window:

new CollabConnException("'Resume reading' required for this
collaboration rule, because it may perform partial reads from the
file.")

23 To create the next Business Rule, click the previous rule.

24 Click the rule button again and give it the name set up file to record processor
inbound streaming link (see Figure 84 on page 212).

25 First, drag the InputStreamAdapter node from the record-processing ETD Source
Event to the Rule scroll box in the Rule Properties window (see Figure 84 on
page 212). Next, do the same with the get method from the same ETD.

26 You must change one get to set in the Rule scroll box in the Rule Properties
window to make it read as follows:

getfixedRecordParser().setInputStreamAdapter(getfileReader()
.getClient().getInputStreamAdapter())

See Figure 84 on page 212 for details. You have now created the data-streaming
setup.

27 To create the next Business Rule, click the previous rule.
Batch e*Way Intelligent Adapter User’s Guide 211 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 84 Collaboration Rules Editor: crReader Streaming Setup

28 Click for to create a for rule (see Figure 85 on page 213). Name it for maximum of
30 records. This rule sets up the Resume Reading feature to operate with the
Collaboration Rule. Each part of a file transferred by a Business Rule must be
30 records or less long.

29 Make sure the information in the For Properties window matches the information
shown in Figure 85 on page 213.
Batch e*Way Intelligent Adapter User’s Guide 212 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 85 Collaboration Rules Editor: crReader while Rule

30 Click if to create another nested if rule (see Figure 86 on page 214). Name this rule
if we got a record.
Batch e*Way Intelligent Adapter User’s Guide 213 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
31 Drag the get method from the record-processing Source Event to the Rule scroll
box in the Rule Properties window (see Figure 86).

Figure 86 Collaboration Rules Editor: crReader get Method
Batch e*Way Intelligent Adapter User’s Guide 214 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
32 Click then and drag the Record node from the record-processing ETD Source Event
to the payload node of the Destination Event (see Figure 87).

Figure 87 Collaboration Rules Editor: crReader Assigning Record to Output

33 Name the new rule assign it to the output.
Batch e*Way Intelligent Adapter User’s Guide 215 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
34 With the previous rule still selected, click rule to create a new rule.

35 Drag the first send method from the Destination Event to the Rule scroll box in the
Rule Properties window (see Figure 88).

Figure 88 Collaboration Rules Editor: crReader Sending to IQ Manager

36 Name the new rule send it to the queue (see Figure 88).
Batch e*Way Intelligent Adapter User’s Guide 216 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
37 Click else then click rule again. Name the new rule exit the loop (see Figure 89).

38 Enter a break in the Rule scroll box in the Rule Properties window (see Figure 89).

Figure 89 Collaboration Rules Editor: crReader Exiting the Loop

39 To create the next Business Rule, click for maximum of 30 records.
Batch e*Way Intelligent Adapter User’s Guide 217 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
40 Click rule and name the new rule tell the record processor that we are done, so it
can successfully release the streaming link (see Figure 90). Use the pop-up dialog
box to make the rule a Sibling rule.

41 Drag the finish method from the record-processing Source Event to the Rule scroll
box in the Rule Properties window (see Figure 90).

Figure 90 Collaboration Rules Editor: crReader Finishing Record Processing

You have now finished creating the Business Rules.

42 You must create a Collaboration Rules class or use one from the sample.

Note: See the e*Gate Integrator User’s Guide for details on this procedure.
Batch e*Way Intelligent Adapter User’s Guide 218 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
43 To save the Collaboration Rules file, click Save on the File menu. The Save dialog
box appears.

44 Provide a name for the .xpr file (for this example, use crReader.xpr) then click Save.

45 Before compiling the code, on the Tools menu, click Options and verify that all
necessary .jar files are included (see “Collaboration Rules Editor: Java Classpaths
Dialog Box” on page 256).

46 When you have finished defining all the desired business logic, compile the Java
code by selecting Compile from the File menu.

If the code compiles successfully, the message Compile Completed appears. If the
outcome is unsuccessful, a Java Compiler error message appears. If there are any
Java errors, be sure to correct them.

47 Once the compilation is complete, you can exit the Collaboration Rules Editor.

To create the crWriter Collaboration Rules file

1 Repeat steps 3 through 5 under the procedure on page 148 to create the next
Collaboration Rule.

Use crWriter as the name for this example, for the ewWriter e*Way’s Collaboration,
colWriter.

2 Double-click on the crWriter icon. The Collaboration Rules Properties dialog box
appears (see Figure 91 on page 220).
Batch e*Way Intelligent Adapter User’s Guide 219 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 91 Collaboration Rules Properties Dialog Box for crWriter: General Tab

On the General tab in the dialog box select the Java Collaboration Service.

3 In the Initialization String text box (optional), enter any required initialization
string that the Collaboration Service may require.

4 Click the Collaboration Mapping tab.
Batch e*Way Intelligent Adapter User’s Guide 220 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
5 Using the Add Instance button, create instances to coincide with the ETDs (see
Figure 92).

Figure 92 Collaboration Rules Properties Dialog Box for crWriter: Mapping Tab

Configure the rest of crWriter as shown in the previous figure.

6 Select the General tab again, then click New.

The Collaboration Rules Editor Main window opens. Expand the source and
destination Events, as well as the Business Rules. Figure 93 on page 222 shows the
results.
Batch e*Way Intelligent Adapter User’s Guide 221 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 93 Collaboration Rules Editor: crWriter Expanded

7 Click retBoolean then click var to create a variable rule. Name the variable
msgCount (Figure 94 on page 223).
Batch e*Way Intelligent Adapter User’s Guide 222 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
8 Enter information in the Variable Properties window as shown in Figure 94.

Figure 94 Collaboration Rules Editor: crWriter msgCount Variable

9 First, drag the OutputStreamAdapter node from the record-processing ETD
Destination Event to the Rule scroll box in the Rule Properties window (see
Figure 95 on page 224). Next, do the same with the OutputStreamAdapter method
from the local file ETD. These actions create a new rule.
Batch e*Way Intelligent Adapter User’s Guide 223 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
Figure 95 Collaboration Rules Editor: crWriter Streaming Setup

10 Name the new rule set up a record processor to file outbound streaming link (see
Figure 95).

11 You must edit (change set to get) the text in the Rule scroll box in the Rule
Properties window to make it read as follows:

getdelimitedRecordComposer().setOutputStreamAdapter(getfileWriter
().getClient().getOutputStreamAdapter())

See Figure 95 for details. You have now created the data-streaming setup.

12 To create the next Business Rule, click the previous rule.

13 Click do to create a do rule then click rule to create a new rule under do.

Drag first

Drag second
Batch e*Way Intelligent Adapter User’s Guide 224 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
14 Drag the payload node from the Source Event onto the Record node of the
Destination Event record-processing ETD and select Child node in the pop-up
dialog box (see Figure 96).

Figure 96 Collaboration Rules Editor: crWriter Transferring Records

15 Name the new rule transfer the incoming record to the record processor.

16 Click rule again to create another rule. Name the new rule put it to the file (see
Figure 97).
Batch e*Way Intelligent Adapter User’s Guide 225 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
17 Drag the put method from the Source Event into the Rule scroll box in the Rule
Properties window (see Figure 97).

Figure 97 Collaboration Rules Editor: crWriter put to File

18 Click rule again to create another rule. Name the new rule increment the message
counter (see Figure 98 on page 227).
Batch e*Way Intelligent Adapter User’s Guide 226 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
19 Enter information in the Rule scroll box in the Rule Properties window as shown in
Figure 98.

Figure 98 Collaboration Rules Editor: crWriter Message Counter

20 Click do to create another rule under it then click if to create an if rule (see
Figure 99 on page 228). Name the new rule if 35 messages were processed.
Batch e*Way Intelligent Adapter User’s Guide 227 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
21 Enter information in the Rule scroll box in the Rule Properties window as shown in
Figure 99.

Figure 99 Collaboration Rules Editor: crWriter if Rule

22 Click then and next click rule to create a rule under then (see Figure 100 on
page 229). Name the new rule exit the loop.
Batch e*Way Intelligent Adapter User’s Guide 228 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
23 Enter a break in the Rule scroll box in the Rule Properties window as shown in
Figure 100.

Figure 100 Collaboration Rules Editor: crWriter Exiting the Loop
Batch e*Way Intelligent Adapter User’s Guide 229 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
24 Drag the first receive method under the Source Event into the Rule scroll box in the
Rule Properties window (see Figure 101).

Figure 101 Collaboration Rules Editor: crWriter receive Method

25 Name the new rule while there are messages in the queue.

26 To create the next Business Rule, click the do rule and select Sibling in the pop-up.

27 Name the new rule tell the record processor we are done, so it can release the
streaming link successfully (see Figure 102 on page 231).
Batch e*Way Intelligent Adapter User’s Guide 230 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
28 Drag the finish method from the Destination Event into the Rule scroll box in the
Rule Properties window (see Figure 102).

Figure 102 Collaboration Rules Editor: crWriter finish Method

29 Click rule and name the new rule emit log message (see Figure 103 on page 232).
Batch e*Way Intelligent Adapter User’s Guide 231 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
30 With rule selected, as shown in Figure 103, type the following text in the Rule scroll
box in the Rule Properties window:

EGate.collabDebug("Exiting the rule, processed " + msgCount +
" records this time.")

Figure 103 Collaboration Rules Editor: crWriter Log Message

You have now finished creating the Business Rules.

31 You must create a Collaboration Rules class or use one from the sample.
Batch e*Way Intelligent Adapter User’s Guide 232 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
32 To save the Collaboration Rules file, click Save on the File menu. The Save dialog
box appears.

33 Provide a name for the .xpr file (for this example, use crWriter.xpr) then click Save.

34 Compile and save this Collaboration Rule in the same way as you did the previous
one.

35 Once the compilation is complete, you can exit the Collaboration Rules Editor.

Creating Collaborations

Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external system.

Collaborations consist of the subscriber, which receives Events of a known type
(sometimes from a given source), and the publisher, which distributes transformed
Events to a specified recipient.

To create the Collaborations

1 In the e*Gate Schema Designer, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select the Control Broker for this schema.

4 Select the ewReader e*Way to assign the Collaboration.

5 On the palette, click the Collaboration icon.

6 Enter the name (colReader) of the new Collaboration, then click OK.

7 Select the new Collaboration, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 233 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
8 The Collaboration Properties dialog box appears (see Figure 104).

Figure 104 colReader Properties Dialog Box

Configure the appropriate Collaboration properties as shown in the previous figure.

9 From the Collaboration Rules list, select the first Collaboration Rule that you
created previously (crReader) for this Collaboration.

10 Click OK to close the dialog box and save your changes.

11 Select the ewWriter e*Way to assign the next Collaboration.

12 On the palette, click the Collaboration icon.

13 Enter the name (colWriter) of the new Collaboration, then click OK.

14 Select the new Collaboration, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 234 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Implementation Sample Schema: Local File Streaming and GEOD
15 The Collaboration Properties dialog box appears (see Figure 105).

Figure 105 colWriter Properties Dialog Box

Configure the appropriate Collaboration properties as shown in the previous figure.

16 From the Collaboration Rules list, select the Collaboration Rule that you created
previously (crWriter) for this Collaboration.

17 Click OK to close the dialog box and save your changes.

Running the Schema

For an explanation of how to run the schema see “Running the Schema” on page 170.
Batch e*Way Intelligent Adapter User’s Guide 235 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
7.4 Sample Schema: FTP and ETD Extensibility
This section explains how to implement the FTP ETD with its extensibility features. In
this schema, the ETD’s FTP functionality has been modified by the user to customize
specific features.

Note: For more information on ETD extensibility and adding user-defined features, see
Chapter 6.

7.4.1 FtpExtensibilitySample Schema Overview
This section provides an overview of the sample schema and how it operates. The name
of this schema is FtpExtensibilitySample, and it is contained in the import file
FtpExtensibilitySample.zip.

Schema Setup

Figure 106 on page 237 shows a diagram of the schema’s general architecture. The
arrows show the direction of data flow. The remote FTP locations can be the same or
two different FTP servers.
Batch e*Way Intelligent Adapter User’s Guide 236 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 106 FtpExtensibilitySample Schema Diagram

Schema Operation

This sample schema has the following input/output setup:

Input: An inbound e*Way retrieves a remote file from a remote FTP location and
sends it as an Event to a JMS IQ Manager.

Output: An outbound e*Way gets the Event from the IQ Manager and stores it as
another remote FTP file.

Before you run this schema, make sure an FTP input file is provided and is accessible to
e*Gate. Because no post-transfer command is specified, the input file is transferred
continually until you shut down the e*Way.

e*Gate Integrator

Remote FTP
Server

FTP ETD

JMS IQ Mgr.

File

ew_ftp_in e*Way and col_ftp_in

User-
defined

ETD

e*Way
Connection

e*Way
Connection

Remote FTP
Server

File

e*Way
Connection

FTP ETD

ew_ftp_out e*Way and col_ftp_out

User-
defined

ETD

conn_ftp
in

conn
_jms

conn_ftp
out
Batch e*Way Intelligent Adapter User’s Guide 237 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
The user-defined Java classes for this schema are:

FtpFileClientImplSample0: For the inbound e*Way’s client interface
implementation.

FtpFileProviderImplSample0: For the outbound e*Way’s provider interface
implementation.

The appropriate e*Way Connections have been configured to use these classes, under
the Extensions parameters section. See “Creating and Configuring e*Way
Connections” on page 247 for details.

Once the schema starts running, e*Gate displays log messages, such as:

FtpFileClientImplSample0.get():

The previous message is for an FTP get() operation. Messages like it mean the user-
defined class FtpFileClientImplSample0 is being utilized.

Note: The purpose of this sample schema is only to demonstrate the extensibility of the
FTP ETD, so there is no error-handling logic in the Collaboration Rules. See
“Sample Schema: Basic FTP With Streaming” on page 130 for a sample with
error-handling logic.

Schema Components

The FtpExtensibilitySample schema with a user-defined FTP extensibility
implementation consists of the following main e*Gate components:

ew_ftp_in: Inbound Multi-Mode e*Way that brings the file from a remote FTP
server into e*Gate.

ew_ftp_out: Outbound Multi-Mode e*Way that sends the file from e*Gate to a
remote FTP server.

col_ftp_in: Collaboration for the ew_ftp_in e*Way.

cr_ftp_in: Collaboration Rule for col_ftp_in.

col_ftp_out: Collaboration for the ew_ftp_out e*Way.

cr_ftp_out: Collaboration Rule for col_ftp_out.

localhost_iqmgr: SeeBeyond JMS IQ Manager.

conn_ftp_in: e*Way Connection for the ew_ftp_in e*Way.

conn_jms: e*Way Connection for the JMS IQ Manager localhost_iqmgr.

conn_ftp_out: e*Way Connection for the ew_ftp_out e*Way.

7.4.2 Creating the FtpExtensibilitySample Schema
This section explains the basic steps in creating the sample schema, focusing on how to
add and configure the FTP extensibility feature to the schema.
Batch e*Way Intelligent Adapter User’s Guide 238 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Creating a New Schema

This step is the same as for the BasicFtpSample schema. The name of the new schema is
FtpExtensibilitySample. Follow the procedures provided under “Creating a New
Schema” on page 133.

Creating Event Types and ETDs

The FtpExtensibilitySample schema uses the following Java-based ETDs:

FtpETD.xsc

transport.xsc

The e*Way installation includes the FtpETD.xsc ETD. You must create the transport.xsc
ETD yourself.

Event Types and ETDs

Using the Schema Designer, create the Event Types and associate them with ETDs as
shown in Table 9.

See “Creating Event Types and ETDs” on page 134 for instructions on how to create
Event Types, locate, and how to associate each Event Type with its ETD.

To create the et_Ftp Type

1 Highlight the Event Type folder on the Components tab of the e*Gate Schema
Designer.

2 On the palette, click the icon to create a new Event Type.

3 Enter the name of the Event Type (et_Ftp), then click OK.

4 Select the new Event Type, then right-click to edit its properties.

5 The Event Type Properties dialog box appears (see Figure 107 on page 240).

Table 9 FtpExtensibilitySample Schema Event Types and ETDs

Event Type Type of ETD ETD File Name

et_Ftp FTP ETD FtpETD.xsc

et_transport User-defined ETD transport.xsc
Batch e*Way Intelligent Adapter User’s Guide 239 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 107 et_Ftp Event Type Properties Dialog Box

6 Click Find and from the resulting dialog box select the FtpETD.xsc ETD to associate
with the new Event Type you created.

7 When you have found the file, click Select.

8 When you are finished with the Event Type Properties dialog box, click OK to close
it and save your changes.

To create the et_transport Event Type and ETD

1 Highlight the Event Type folder on the Components tab of the e*Gate Schema
Designer.

2 On the palette, click the icon to create a new Event Type.

3 Enter the name of the Event Type (et_transport), then click OK.

4 Select the new Event Type, then right-click to edit its properties.

5 The Event Type Properties dialog box appears (see Figure 108 on page 241).
Batch e*Way Intelligent Adapter User’s Guide 240 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 108 et_transport Event Type Properties Dialog Box

Because this Event Type is for a user-defined ETD, you must use the ETD Editor
feature of the Schema Designer to create this ETD.

6 From the Schema Designer menu bar, select Options and click Default Editor. For
this schema, set the default to Java.

7 Click the icon in the toolbar for the ETD Editor.

The ETD Editor Main window appears.

8 Click the New Event Type Definition icon in the window’s tool bar.

The New Event Type Definition dialog box appears (see Figure 109 on page 242).
Batch e*Way Intelligent Adapter User’s Guide 241 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 109 New Event Type Definition Dialog Box

9 Double-click the Custom ETD Wizard icon.

The Introduction dialog box for the Custom ETD wizard appears (see Figure 110).

Figure 110 Custom ETD Wizard: Introduction

10 Follow the instructions given by the wizard to create a new ETD and name the root
node transport. Be sure to give it an appropriate Java package name.

The contents of the file appear in the ETD Editor window.
Batch e*Way Intelligent Adapter User’s Guide 242 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
11 Assign the new ETD the properties shown in Figure 111.

Figure 111 transport.xsc in ETD Editor: Root Node

Note: For complete instructions on how to use the ETD Editor, see the e*Gate Integrator
User’s Guide.
Batch e*Way Intelligent Adapter User’s Guide 243 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
12 Add byteData as a child node under the root node. Be sure that you give this node
the properties shown in Figure 112.

Figure 112 transport.xsc in ETD Editor: ByteData Node

13 Finish building the ETD until it looks like the one shown in Figure 112.
Batch e*Way Intelligent Adapter User’s Guide 244 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
14 When you are finished editing the ETD, save your changes and close the
ETD Editor. Be sure to create the ETD (transport.xsc) in the client\etd directory.

15 From the Schema Designer, open the Event Type Properties dialog box for the
et_transport Event Type and associate it with the transport.xsc ETD you created.

16 When you are finished with the dialog box, click OK to close it and save your
changes.

Creating and Configuring e*Ways

You must create the following Multi-Mode e*Ways:

Inbound: ew_ftp_in

Outbound: ew_ftp_out

For details on how to create and configure e*Ways, see “Creating and Configuring
e*Ways” on page 136.

Figure 113 on page 246 and Figure 114 on page 247 show the e*Way Properties dialog
boxes for the ew_ftp_in and ew_ftp_out e*Ways. Configure and name these e*Ways as
shown in both of the figures. Give each .cfg file the name of its e*Way.
Batch e*Way Intelligent Adapter User’s Guide 245 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 113 ew_ftp_in e*Way Properties Dialog Box
Batch e*Way Intelligent Adapter User’s Guide 246 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 114 ew_ftp_out e*Way Properties Dialog Box

Creating and Configuring e*Way Connections

In general, you can create and configure the e*Way Connections for this schema in the
same way as those for the other sample schemas. The e*Way Connection configuration
file contains the connection information needed to communicate with the remote FTP
server and the JMS IQ Manager.

You must create and configure the following e*Way Connections:

To create and configure the conn_ftp_in e*Way Connection

1 Highlight the e*Way Connection folder on the Components tab of the e*Gate
Schema Designer.

2 On the palette, click the icon to create a new e*Way Connection.

3 Enter the name of the e*Way Connection (conn_ftp_in), then click OK.

4 Select the new e*Way Connection, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 247 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
5 When the e*Way Connection Properties dialog box opens, select Batchext from the
e*Way Connection Type drop-down menu (see Figure 115).

Figure 115 conn_ftp_in e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure.

6 Under e*Way Connection Configuration File, click New (where the Edit button is
in the previous figure). Select the FtpETD.

The e*Way Configuration Editor Main window opens. Use this interface to select
the desired parameters, including those that correspond to the remote FTP system
you are using. See “FtpETD: Configuration Parameters” on page 37 for details.

7 Select the FTP settings (see Figure 116 on page 249).
Batch e*Way Intelligent Adapter User’s Guide 248 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 116 e*Way Configuration Editor: conn_ftp_in FTP Settings

Note: See the e*Gate Integrator User’s Guide for complete information on how to use
the e*Way Configuration Editor.
Batch e*Way Intelligent Adapter User’s Guide 249 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
8 Under the FTP settings, accept the default settings for all parameters except for:

Directory Listing Style

Host Name

Server Port

User Name

Password

You must enter your system settings for these parameters.

9 Select the Target Location settings (see Figure 117 on page 251).

10 Under the Target Location settings, accept the default settings for all parameters
except for:

Target Directory Name

Target File Name

You must enter your system settings for these parameters (see Figure 117 on
page 251).
Batch e*Way Intelligent Adapter User’s Guide 250 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Figure 117 e*Way Configuration Editor: conn_ftp_in Target Location Settings
Batch e*Way Intelligent Adapter User’s Guide 251 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
11 In addition to the parameters listed previously, you must also enter parameters for
your user-defined extensions. Select the Extensions settings (see Figure 118).

Figure 118 e*Way Configuration Editor: conn_ftp_in Extensions Settings
Batch e*Way Intelligent Adapter User’s Guide 252 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
12 Select the Provider Class Name as shown in Figure 118 on page 252.

13 Under the Client Class Name, enter your user-defined class
FtpFileClientImplSample0, as shown in Figure 118 on page 252.

14 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

15 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the conn_ftp_out e*Way Connection

1 Access the e*Way Connection Properties dialog box for this component in the same
way as you did for the previous e*Way Connection.

2 Set the properties as shown in (see Figure 119).

Figure 119 conn_ftp_out e*Way Connection Properties Dialog Box

3 Set the FTP and Target Location parameters for this e*Way Connection, using the
appropriate information from the FTP system you are interfacing with.
Batch e*Way Intelligent Adapter User’s Guide 253 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
4 You must also enter parameters for your user-defined extensions. Select the
Extensions settings (see Figure 120).

Figure 120 e*Way Configuration Editor: conn_ftp_out Extensions Settings
Batch e*Way Intelligent Adapter User’s Guide 254 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
5 Select the Client Class Name as shown in Figure 120 on page 254.

6 Under the Provider Class Name, enter your user-defined class
FtpFileProviderImplSample0, as shown in Figure 120 on page 254.

7 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

8 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the conn_jms e*Way Connection

1 Access the e*Way Connection Properties dialog box for this component in the same
way as you did for the previous e*Way Connection.

2 Set the properties as shown in (see Figure 121).

Figure 121 conn_jms e*Way Connection Properties Dialog Box

3 There are some parameters for this component that you must set. See “To create
and configure the recordQueue e*Way Connection” on page 198, and set the
parameters for this component in the same way as they are set for that component,
using your own system settings.
Batch e*Way Intelligent Adapter User’s Guide 255 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Checking the IQ Manager

By default, the IQ Manager in your schema is configured to use the JMS IQ Manager.
See “Checking the IQ Manager” on page 202 for more information.

Creating Collaboration Rules

Before creating your Collaboration Rules, be sure to check the Java user-defined
implementation file, ImplSamples.jar, provided with this schema. This file shows how
to extend the standard FTP ETD implementation. Ensure that this file is in the Java
classpath. To verify its location, open the Collaboration Rules Editor’s Main window,
click the Tools menu, and select Options (see Figure 122 on page 256).

Note: For more information, see the Java source programs
FtpFileClientImplSample0.java and FtpFileProviderImplSample0.java
contained in the ImplSamples.jar file.

Figure 122 Collaboration Rules Editor: Java Classpaths Dialog Box
Batch e*Way Intelligent Adapter User’s Guide 256 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
The FtpExtensibilitySample schema uses two Collaboration Rules, one for each of its
e*Ways. Create and set up the Collaboration Rules as follows:

To create the cr_ftp_in Collaboration Rules file

1 Select the Components tab in the e*Gate Schema Designer.

2 In the Navigation pane, select the Collaboration Rules folder.

3 On the palette, click the Collaboration Rules icon.

4 Enter the name of the new Collaboration Rule, then click OK. Use cr_ftp_in for this
example, for the ew_ftp_in e*Way’s Collaboration, col_ftp_in.

5 Select the new Collaboration Rule, then right-click to edit its properties.

6 The Collaboration Rules Properties dialog box appears (see Figure 123).

Figure 123 Collaboration Rules Properties Dialog Box for cr_ftp_in: General Tab

7 On the General tab in the dialog box select the Java Collaboration Service.

8 In the Initialization String text box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

9 Click the Collaboration Mapping tab.
Batch e*Way Intelligent Adapter User’s Guide 257 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
10 Using the Add Instance button, create instances to coincide with the ETDs (see
Figure 124).

Figure 124 Collaboration Rules Properties Dialog Box for cr_ftp_in: Mapping Tab

Configure the rest of cr_ftp_in as shown in the previous figure.

11 Select the General tab again, then click New (where the Edit button is in Figure 123
on page 257).

The Collaboration Rules Editor Main window opens.
Batch e*Way Intelligent Adapter User’s Guide 258 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
12 After the window has opened, expand the source and destination Events, as well as
the Business Rules. Figure 125 shows the results.

Figure 125 Collaboration Rules Editor: cr_ftp_in Expanded

13 Click retBoolean to begin creating a new rule (see Figure 126 on page 260).
Batch e*Way Intelligent Adapter User’s Guide 259 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
14 Drag the get method from the Source Event to the Rule scroll box in the Rule
Properties window (see Figure 126). This action creates a new rule.

Figure 126 Collaboration Rules Editor: cr_ftp_in First Rule
Batch e*Way Intelligent Adapter User’s Guide 260 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
15 With the previous rule selected, drag the Payload node from the Source Event onto
the byteData node of the Destination Event (see Figure 127). This action creates
another rule.

Figure 127 Collaboration Rules Editor: cr_ftp_in Second Rule

You have now finished creating the Business Rules.

16 You must create a Collaboration Rules class or use one from the sample.
Batch e*Way Intelligent Adapter User’s Guide 261 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
Note: See the e*Gate Integrator User’s Guide for details on this procedure.

17 To save the Collaboration Rules file, click Save on the File menu. The Save dialog
box appears.

18 Provide a name for the .xpr file (for this example, use cr_ftp_in.xpr) then click Save.

19 Before compiling the code, on the Tools menu, click Options and verify that all
necessary .jar files are included (see “Collaboration Rules Editor: Java Classpaths
Dialog Box” on page 256).

20 When you have finished defining all the desired business logic, compile the Java
code by selecting Compile from the File menu.

If the code compiles successfully, the message Compile Completed appears. If the
outcome is unsuccessful, a Java Compiler error message appears. If there are any
Java errors, be sure to correct them.

21 Once the compilation is complete, you can exit the Collaboration Rules Editor.

To create the cr_ftp_out Collaboration Rules file

1 Select the Components tab in the e*Gate Schema Designer.

2 In the Navigation pane, select the Collaboration Rules folder.

3 On the palette, click the Collaboration Rules icon.

4 Enter the name of the new Collaboration Rule, then click OK. Use cr_ftp_out for
this example, for the ew_ftp_out e*Way’s Collaboration, col_ftp_out.

5 Select the new Collaboration Rule, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 262 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
6 The Collaboration Rules Properties dialog box appears (see Figure 128).

Figure 128 Collaboration Rules Properties Dialog Box for cr_ftp_out: General Tab

7 On the General tab in the dialog box select the Java Collaboration Service.

8 In the Initialization String text box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

9 Click the Collaboration Mapping tab.
Batch e*Way Intelligent Adapter User’s Guide 263 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
10 Using the Add Instance button, create instances to coincide with the ETDs (see
Figure 129).

Figure 129 Collaboration Rules Properties Dialog Box for cr_ftp_out: Mapping Tab

Configure the rest of cr_ftp_out as shown in the previous figure.

11 Select the General tab again, then click New (where the Edit button is in Figure 128
on page 263).

The Collaboration Rules Editor Main window opens.
Batch e*Way Intelligent Adapter User’s Guide 264 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
12 After the window has opened, expand the source and destination Events, as well as
the Business Rules. Figure 130 shows the results.

Figure 130 Collaboration Rules Editor: cr_ftp_out Expanded

13 Click retBoolean to begin creating a new rule (see Figure 131 on page 266).
Batch e*Way Intelligent Adapter User’s Guide 265 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
14 Drag the byteData node from the Source Event onto the Payload node of the
Destination Event (see Figure 131). This action creates a new rule.

Figure 131 Collaboration Rules Editor: cr_ftp_out First Rule

15 Click the previous rule to begin creating a new rule (see Figure 132 on page 267).
Batch e*Way Intelligent Adapter User’s Guide 266 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
16 Drag the put method from the Destination Event into the Rule scroll box in the
Rule Properties window (see Figure 132). This action creates a new rule.

Figure 132 Collaboration Rules Editor: cr_ftp_out Second Rule

You have now finished creating the Business Rules.

17 You must create a Collaboration Rules class or use one from the sample.

18 To save the Collaboration Rules file, click Save on the File menu. The Save dialog
box appears.
Batch e*Way Intelligent Adapter User’s Guide 267 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
19 Provide a name for the .xpr file (for this example, use cr_ftp_out.xpr) then click
Save.

20 Compile and save this Collaboration Rule in the same way as you did the previous
one.

21 Once the compilation is complete, you can exit the Collaboration Rules Editor.

Creating Collaborations

This section explains how to create the Collaborations for this schema.

To create the Collaborations

1 In the e*Gate Schema Designer, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select the Control Broker for this schema.

4 Select the ew_ftp_in e*Way to assign the Collaboration.

5 On the palette, click the Collaboration icon.

6 Enter the name (col_ftp_in) of the new Collaboration, then click OK.

7 Select the new Collaboration, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 268 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
8 The Collaboration Properties dialog box appears (see Figure 133).

Figure 133 col_ftp_in Properties Dialog Box

Configure the appropriate Collaboration properties as shown in the previous figure.

9 From the Collaboration Rules list, select the first Collaboration Rule that you
created previously (cr_ftp_in) for this Collaboration.

10 Click OK to close the dialog box and save your changes.

11 Select the ew_ftp_out e*Way to assign the next Collaboration.

12 On the palette, click the Collaboration icon.

13 Enter the name (col_ftp_out) of the new Collaboration, then click OK.

14 Select the new Collaboration, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 269 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Implementation Sample Schema: FTP and ETD Extensibility
15 The Collaboration Properties dialog box appears (see Figure 134).

Figure 134 col_ftp_out Properties Dialog Box

Configure the appropriate Collaboration properties as shown in the previous figure.

16 From the Collaboration Rules list, select the Collaboration Rule that you created
previously (cr_ftp_out) for this Collaboration.

17 Click OK to close the dialog box and save your changes.

Running the Schema

For an explanation of how to run the schema see “Running the Schema” on page 170.
Batch e*Way Intelligent Adapter User’s Guide 270 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
7.5 Sample Schema: Using Secure FTP
This section explains how to add secure FTP to the Batch e*Way in a typical e*Gate
schema environment.

Note: For more information on secure FTP and how the e*Way implements it, see “Secure
FTP and the e*Way” on page 341.

7.5.1 FtpSecuritySample Schema Overview
This section provides an overview of the sample schema and how it operates. The name
of this schema is FtpSecuritySample, and it is contained in the import file
FtpSecuritySample.zip.

Schema Setup

This schema is set up in the same way as the FtpExtensibilitySample. So you can use
Figure 106 on page 237 to see a diagram of the schema’s general architecture. The
arrows show the direction of data flow. The remote FTP locations can be the same or
two different FTP servers.

Schema Operation

This sample schema has the following input/output setup:

Input: An inbound e*Way retrieves a remote file from a remote FTP location and
sends it as an Event to a JMS IQ Manager.

Output: An outbound e*Way gets the Event from the IQ Manager and stores it as
another remote FTP file.

This sample schema demonstrates the Batch e*Way's secure FTP feature Secure Shell
(SSH) tunneling. It does not include the SOCKS feature.

Before you run this schema, make sure you configure the SSH environment properly.
For details on how to configure the SSH tunneling configuration parameters, see “SSH
Tunneling Configuration” on page 51.

You also need to be sure an FTP input file is provided and is accessible to e*Gate.
Because no post-transfer command is specified, the input file is transferred continually
until you shut down the e*Way.

In this sample schema, the inbound e*Way establishes an SSH channel. The outbound
e*Way uses that channel, relying on the inbound. Therefore, the outbound e*Way works
properly only when the inbound e*Way has established the SSH channel successfully. If
desired, you can configure the outbound e*Way to establish its own SSH channel and
avoid this dependency.
Batch e*Way Intelligent Adapter User’s Guide 271 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
Note: The purpose of this sample schema is only to demonstrate how to implement SSH
tunneling, so there is no error-handling logic in the Collaboration Rules. See
“Sample Schema: Basic FTP With Streaming” on page 130 for a sample with
error-handling logic.

Schema Components

The FtpSecuritySample schema with the SSH tunneling security implementation
consists of the following main e*Gate components:

ew_ftp_in: Inbound Multi-Mode e*Way that brings the file from a remote FTP
server into e*Gate.

ew_ftp_out: Outbound Multi-Mode e*Way that sends the file from e*Gate to a
remote FTP server.

col_ftp_in: Collaboration for the ew_ftp_in e*Way.

cr_ftp_in: Collaboration Rule for col_ftp_in.

col_ftp_out: Collaboration for the ew_ftp_out e*Way.

cr_ftp_out: Collaboration Rule for col_ftp_out.

localhost_iqmgr: SeeBeyond JMS IQ Manager.

conn_ftp_in: e*Way Connection for the ew_ftp_in e*Way.

conn_jms: e*Way Connection for the JMS IQ Manager localhost_iqmgr.

conn_ftp_out: e*Way Connection for the ew_ftp_out e*Way.

7.5.2 Creating the FtpSecuritySample Schema
Because this schema is set up in the same way as the previous FtpExtensibilitySample
schema, you can follow those steps for basic schema creating and configuration. See
“Sample Schema: FTP and ETD Extensibility” on page 236 for details.

The exception to this similarity is in setting up the e*Way Connection configuration
parameters. Instead of setting the Extensions parameters, you must set the SSH
Tunneling parameters. There are also a few additional parameters that are different.
The rest of this section explains how to set all of these parameters.

Creating and Configuring e*Way Connections

To create and configure the conn_ftp_in e*Way Connection

1 Highlight the e*Way Connection folder on the Components tab of the e*Gate
Schema Designer.

2 On the palette, click the icon to create a new e*Way Connection.

3 Enter the name of the e*Way Connection (conn_ftp_in), then click OK.

4 Select the new e*Way Connection, then right-click to edit its properties.
Batch e*Way Intelligent Adapter User’s Guide 272 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
5 When the e*Way Connection Properties dialog box opens, select Batchext from the
e*Way Connection Type drop-down menu (see Figure 135).

Figure 135 conn_ftp_in e*Way Connection Properties Dialog Box

Configure the e*Way Connection properties as shown in the previous figure.

6 Under e*Way Connection Configuration File, click New (where the Edit button is
in the previous figure). Select the FtpETD.

The e*Way Configuration Editor Main window opens. Use this interface to select
the desired parameters, including those that correspond to the remote FTP system
you are using. See “FtpETD: Configuration Parameters” on page 37 for details.

7 Select the FTP settings (see Figure 136 on page 274).
Batch e*Way Intelligent Adapter User’s Guide 273 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
Figure 136 e*Way Configuration Editor: conn_ftp_in FTP Settings
Batch e*Way Intelligent Adapter User’s Guide 274 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
8 Under the FTP settings, accept the default settings for all parameters except for:

Directory Listing Style

Host Name

Server Port

User Name

Password

You must enter your system settings for these parameters.

9 Select the Target Location settings (see Figure 137 on page 276).

10 Under the Target Location settings, accept the default settings for all parameters
except for:

Target Directory Name

Target File Name

You must enter your system settings for this parameter (see Figure 137 on
page 276).
Batch e*Way Intelligent Adapter User’s Guide 275 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
Figure 137 e*Way Configuration Editor: conn_ftp_in Target Location Settings
Batch e*Way Intelligent Adapter User’s Guide 276 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
11 In addition to the parameters listed previously, you must also enter parameters for
security. Select the SSH Tunneling settings (see Figure 138).

Figure 138 e*Way Configuration Editor: conn_ftp_in SSH Tunneling Settings
Batch e*Way Intelligent Adapter User’s Guide 277 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
12 Set the SSH Tunneling Enabled to Yes and SSH Channel Established to No as
shown in Figure 138 on page 277.

13 Set the rest of these parameters as required by your own system.

14 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

15 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the conn_ftp_out e*Way Connection

1 Access the e*Way Connection Properties dialog box for this component in the same
way as you did for the previous e*Way Connection.

2 Set the properties as shown in (see Figure 139).

Figure 139 conn_ftp_out e*Way Connection Properties Dialog Box

3 Set the FTP and Target Location parameters for this e*Way Connection, using the
appropriate information from the FTP system you are interfacing with.
Batch e*Way Intelligent Adapter User’s Guide 278 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
4 In addition to the parameters listed previously, you must also enter parameters for
security. Select the SSH Tunneling settings (see Figure 140).

Figure 140 e*Way Configuration Editor: conn_ftp_out SSH Tunneling Settings
Batch e*Way Intelligent Adapter User’s Guide 279 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Implementation Sample Schema: Using Secure FTP
5 Set the SSH Tunneling Enabled to Yes and SSH Channel Established to Yes as
shown in Figure 140 on page 279.

6 Set the rest of these parameters as required by your own system.

7 When you are finished, save the .cfg file as the name of the e*Way Connection, close
the e*Way Configuration Editor, and promote the file to run time.

8 Click OK to close the e*Way Connection Properties dialog box.

To create and configure the conn_jms e*Way Connection

See “To create and configure the conn_jms e*Way Connection” on page 255 for
details.

Running the Schema

For an explanation of how to run the schema see “Running the Schema” on page 170.
Batch e*Way Intelligent Adapter User’s Guide 280 SeeBeyond Proprietary and Confidential

Chapter 8

Dynamic Configuration

This chapter explains how to use the Batch e*Way Intelligent Adapter’s Dynamic
Configuration features, including its message-based operations.

8.1 Dynamic Configuration: Overview
The Batch e*Way’s Dynamic Configuration feature allows you to dynamically change
an e*Gate Integrator schema’s Event Type Definition (ETD) configuration parameters.
Using messages based on the Extensible Markup Language (XML), you can change
these parameters “on the fly,” as desired.

You can base these changes on predefined conditions, depending on the business logic
(Business Rules) you create in your e*Gate schemas. Although this business logic is
available normally in e*Gate via Collaborations and Collaboration Rules, Dynamic
Configuration utilizes the convenience of XML. This feature uses XML messages to give
you the flexibility to meet changing conditions.

Using XML messaging, you can allow Dynamic Configuration routines to repeat
indefinitely or give them the ability to respond to multiple changes immediately. Again,
using this feature’s provided XML messages, you can create your own business logic to
customize the configuration and combine this logic with any other operation you want
your e*Gate schema to do.

Schema Template

Using this feature requires that you import a schema template into e*Gate. See
“Dynamic Configuration Template” on page 293 for details on this template.

8.1.1 General Operation
In its simplest form, the Dynamic Configuration feature is an input-output mechanism.
You input XML message-based orders, and the Dynamic Configuration Collaboration
in the schema template outputs XML message-based data, error information, or both.
The input orders can contain data, or they can be only orders.

The Dynamic Configuration feature allows the following types of messages:

Order (send and receive)

Error

Data
Batch e*Way Intelligent Adapter User’s Guide 281 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Dynamic Configuration Dynamic Configuration: Overview
Dynamic Configuration Messages and Files

Use the Document Type Definition (DTD) and e*Gate ETD files for the Dynamic
Configuration XML messages, as shown in Table 10. You can find the .xsc files in the
eGate\client\monk_scripts\common directory, along with their corresponding .jar
files.

The rest of this section explains these message types.

Order Messages

Order messages are transmitted to the schema template in either of the following ways:

Ordering it to send once (to one or more destinations)

Ordering it to receive once (from one or more destinations)

In either of these cases, the order message, in XML, has the following basic format:

<batch_eWay_order>
<command> (command) </command>
<order_record>

<file_transfer_method>(method)
</file_transfer_method>

<payload> (DATA or reference to DATA)</payload>
</batch_eWay_order>

This message contains the following primary elements:

command: Can only be send or receive.

order_record: Contains the details for sending or retrieving to or from a single
source or destination, for which the mandatory element is file_transfer_method.

payload: Specifies the data to be sent (for a send command).

The payload data, if it is present (for the send command), can come in one of the
following forms as specified by the location attribute:

base64InSitu: Tells the schema template that the data is Base64-encoded and that it
is located in the body of the payload element; this is the default value.

Binary or HTML/XML content (that is, special XML-reserved characters that
require encoding), or unicode/multi-byte data must be encoded in the Base64
format.

Table 10 Dynamic Configuration Messages and Files

Message Type DTD File Corresponding ETD File

Order batch_eway_order.dtd batch_eway_order.xsc

Error batch_eway_error.dtd batch_eway_error.xsc

Data batch_eway_data.dtd batch_eway_data.xsc
Batch e*Way Intelligent Adapter User’s Guide 282 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Dynamic Configuration Dynamic Configuration: Overview
localDir: Tells the schema template that the payload data is contained in a file in a
local directory on the Participating Host. The local directory is specified by a value
(a directory name) stored in the payload element. In this case the payload element
has a location attribute equal to localDir (for more information, see “More on the
localDir Attribute” on page 283).

Empty string (“ “) or the absence of the location attribute.

The payload node can contain unencoded raw data, in which case it has a location
attribute set to either an empty string (“ “) or simply not specified. It is important
that the data in this case must not contain XML-reserved or binary characters.
Base64 encoding must be used with the base64Insitu location attribute.

More on the localDir Attribute

Use the localDir attribute if you do not want to transport large files through the
Intelligent Queues (IQs) for the sole purpose of sending files to an external location.

If you only specify a directory name, the file name is assumed to represent either one of
the following:

The working file, as specified in the remote file name element of the XML order

The default file named in the e*Way Connection configuration (if the XML order
does not overwrite the remote file name)

If the payload data contains a valid file name with full path information, the specified
file is read for the payload element.

See “Send or Receive Order Message” on page 285 for the corresponding DTD file and
additional information.

Error Messages

If the schema template has problems with an order, it publishes the command message
with a corresponding error record. It also publishes the corresponding order record or
payload data, as defined in the Dynamic Configuration parameter settings.

Even if the template schema does not encounter a problem, it can still be configured to
publish a success status record based on the XML error message.

Also, you can control whether the order record, payload data, or both, are included in
the error message, using the appropriate Dynamic Configuration parameter settings in
the corresponding e*Way Connection.

See the Dynamic Configuration parameters in Chapter 4 for more information.
Batch e*Way Intelligent Adapter User’s Guide 283 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Dynamic Configuration Dynamic Configuration: Overview
The error message, in XML, has the following basic format:

<batch_eWay_order>
<command> (command) </command>
<order_record>…

</order_record>

<error_record>
<error_code> </error_code>
<error_text> </error_text>
<last_action> </last_action>
</error_record>
<payload> (DATA) </payload>

</batch_eWay_order>

This message has the following error-related elements:

error_record

error_code

error_text

See “Error Message” on page 288 for the corresponding DTD file and additional
information.

Data Messages

Data messages follow the same general format as outlined in the previous sections and
carry Dynamic Configuration output data.

The data message, in XML, has the following basic format:

<batch_eWay_data>
<command> (command) </command>
<order_record> (order_record) </order_record>
<payload> (DATA) </payload>

</batch_eWay_data>

If the location attribute of the payload element is localDir for the corresponding order
message, the XML data message contains the actual content of the data so it can be
forwarded to other Collaborations through e*Gate IQs.

See “Data Message” on page 291 for the corresponding DTD file and additional
information.

Configuration Parameters

For an explanation of the e*Way Connection configuration parameters associated with
this feature, see the following sections:

FTP ETD

“Dynamic Configuration” on page 58

Local File ETD

“Dynamic Configuration” on page 68
Batch e*Way Intelligent Adapter User’s Guide 284 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
Limitations of the Feature

The Dynamic Configuration processor has the following limitations:

Does not support XA-mode operations for FTP or local file operations

Does not support the Resume Reading feature for the local file ETD, because any
data transfer is completed within each instance of the business file execution

Can only process one incoming order per e*Gate Event; when it is sending data
with a send order, it does not support the return_tag element

Does not support regular expressions to the extent that all the files that satisfy the
expression are operated upon all at once for multiple-file merging, archiving, and so
on (see “Receiving Data with a Receive Order” on page 287)

Note: You can create additional regular expression business logic for the schema template
yourself, if desired. See “Dynamic Configuration Template” on page 293 for
information on the template.

8.2 Message Descriptions
This section shows the text for each XML DTD message used in the Dynamic
Configuration feature.

8.2.1 Send or Receive Order Message
The following DTD file provides details of the XML message that can be used for send
orders or receive orders:

<!-- Copyright (C) 2000, SeeBeyond Technology Corporation, All rights
reserved. -->
<!-- batch eway order record format. -->
<!ELEMENT batch_eWay_order (command, (order_record)+, payload?)>
<!ELEMENT command (#PCDATA)>
<!ATTLIST command

Enumeration (send | receive) "send"
>
<!ELEMENT order_record (external_host_setup?, (subscribe_to_external
| publish_to_external)?, FTP?, SOCKS?)>
<!ELEMENT external_host_setup (host_type?, external_host_name?,
user_name?, encrypted_password?, file_transfer_method?, return_tag?)>
<!ELEMENT host_type (#PCDATA)>
<!ELEMENT external_host_name (#PCDATA)>
<!ELEMENT user_name (#PCDATA)>
<!ELEMENT encrypted_password (#PCDATA)>
<!ELEMENT file_transfer_method (#PCDATA)>
<!ATTLIST file_transfer_method

Enumeration (ftp | copy) "ftp"
>
<!ELEMENT return_tag (#PCDATA)>
<!ELEMENT subscribe_to_external (remote_directory_name?,
remote_file_regexp?, remote_command_after_transfer?,
remote_rename_or_archive_name?, local_command_after_transfer?,
local_archive_directory?)>
Batch e*Way Intelligent Adapter User’s Guide 285 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
<!ELEMENT remote_directory_name (#PCDATA)>
<!ELEMENT remote_file_regexp (#PCDATA)>
<!ELEMENT remote_command_after_transfer (#PCDATA)>
<!ATTLIST remote_command_after_transfer

Enumeration (archive | delete | none | rename) "delete"
>
<!ELEMENT remote_rename_or_archive_name (#PCDATA)>
<!ELEMENT local_command_after_transfer (#PCDATA)>
<!ATTLIST local_command_after_transfer

Enumeration (archive | delete) "delete"
>
<!ELEMENT local_archive_directory (#PCDATA)>
<!ELEMENT publish_to_external (remote_directory_name?,
remote_file_name?, append_or_overwrite_when_transferring_files?,
remote_command_after_transfer?, remote_rename_or_archive_name?,
local_command_after_transfer?, local_archive_directory?)>
<!ELEMENT remote_file_name (#PCDATA)>
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA)>
<!ATTLIST append_or_overwrite_when_transferring_files

Enumeration (append | overwrite) "append"
>
<!ELEMENT FTP (server_port, mode, Pretransfer_Commands,
Posttransfer_Commands)>
<!ELEMENT server_port (#PCDATA)>
<!ELEMENT mode (#PCDATA)>
<!ELEMENT Pretransfer_Commands (#PCDATA)>
<!ELEMENT Posttransfer_Commands (#PCDATA)>
<!ELEMENT SOCKS (server_host_name, server_port, method, user_name,
encrypted_password)>
<!ELEMENT server_host_name (#PCDATA)>
<!ELEMENT method (#PCDATA)>
<!ELEMENT payload (#PCDATA)>
<!ATTLIST payload

Location (base64InSitu | localDir) #IMPLIED
>

Additional Information: Order Messages

The following elements in the order message are mandatory:

Command element (send or receive)

file_transfer method element (ftp or copy; use lower case)

For the send command, there must be a payload element

All other elements of the XML order message are optional. If other elements are present
in an XML order message, they are used to overwrite the corresponding default
parameters.

Sending Data with a Send Order

The following representation shows the structure of an XML send order message:

<batch_eWay_order>
<command> send </command>
<order_record>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password> liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>
Batch e*Way Intelligent Adapter User’s Guide 286 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
</external_host_setup>
<publish_to_external>

<remote_directory_name>/usr/home/honest_abe/to
</remote_directory_name>

<remote_file_name> X1.tmp </remote_file_name>
<append_or_overwrite_when_transferring_files>overwrite

</append_or_overwrite_when_transferring_files>
<remote_rename_or_archive name>X1.dat

</remote_rename_or_archive_name>
</publish_to_external>
</order_record>
<payload> (DATA) </payload>

</batch_eWay_order>

Note: The payload (DATA) attribute must be either Base64-encoded data or a file location.

This example shows the delivery of a file to an external system. The file is sent by the
generation of the XML message, batch_eWay_order. This message contains a command
record, an order record, and finally a single payload message. The order record
represents one piece of information on the destination for this payload data.

Receiving Data with a Receive Order

Receiving from a file is similar to sending. The following representation shows the
structure of an XML receive order message:

<batch_eWay_order>
<command> receive </command>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password>liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>
<return_tag> Factor order </return_tag>

</external_host_setup>
<subscribe_to_external>

<remote_directory_name> /usr/home/honest_abe/from
</remote_directory_name>

<remote_file_regexp> Y*.dat </remote_file_regexp>
</subscribe_to_external>

</batch_eWay_order>

In this case, the e*Way template schema retrieves the first file in the designated
directory that matches the given regular expression. The template then reads the entire
content of the file and sends it to the e*Gate component you specified, as a publication.
Batch e*Way Intelligent Adapter User’s Guide 287 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
The following order message elements or attributes require special explanation:

encrypted_password: Used for SOCKS or simple FTP; you can use the method
com.stc.common.utils.ScEncrypt.encrypt() to encrypt a password in the XML order
for a Collaboration.

return_tag: Not used by the template schema because the schema can process only
one order at a time.

remote_file_regexp: For the receive command, this element can be a regular
expression, but only the first matching file is processed. For the send command, this
element cannot be a regular expression; it can only write to one file.

remote_command_after_transfer:

archive: Translated to rename in the e*Way’s ETDs because this ETD does not
support the archive operation. The remote_rename_or_archive_name element
is instead intrepreted as the archive directory name, and the current working
file (expansion of the remote_file_regexp element) is used to simulate the
archive effect.

rename: For this element, the remote_rename_or_archive_name element is
interpreted as the new file name, and the working directory (that is, the
remote_directory_name element) is used.

local_command_after_transfer:

archive: For the local command after transfer. If it is archive, the element
local_archive_directory is interpreted as the directory name to which the
working file (that is, the expansion of the remote_file_regexp element) is
archived. If this directory does not exist, it is created by the schema template.

delete: No operation is carried out because no temporary file is created that
requires clean up.

payload: Contains the attribute, location, which can have one of the values listed
and explained under “Payload Data” on page 292.

8.2.2 Error Message
The following DTD file is used for the error-reporting XML message:

<!-- Copyright (C) 2000, SeeBeyond Technology Corporation, All rights
reserved. -->
<!-- batch eway error record format. -->
<!ELEMENT batch_eWay_error (command, (return_tag | order_record)?,
error_record, payload?)>
<!ELEMENT command (#PCDATA)>
<!ATTLIST command

Enumeration (send | receive) "send"
>
<!ELEMENT order_record (external_host_setup?, (subscribe_to_external
| publish_to_external)?, FTP?, SOCKS?)>
<!ELEMENT external_host_setup (host_type?, external_host_name?,
user_name?, encrypted_password?, file_transfer_method?, return_tag?)>
<!ELEMENT host_type (#PCDATA)>
<!ELEMENT external_host_name (#PCDATA)>
<!ELEMENT user_name (#PCDATA)>
<!ELEMENT encrypted_password (#PCDATA)>
Batch e*Way Intelligent Adapter User’s Guide 288 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
<!ELEMENT file_transfer_method (#PCDATA)>
<!ATTLIST file_transfer_method

Enumeration (ftp | copy) "ftp"
>
<!ELEMENT return_tag (#PCDATA)>
<!ELEMENT subscribe_to_external (remote_directory_name?,
remote_file_regexp?, remote_command_after_transfer?,
remote_rename_or_archive_name?, local_command_after_transfer?,
local_archive_directory?)>
<!ELEMENT remote_directory_name (#PCDATA)>
<!ELEMENT remote_file_regexp (#PCDATA)>
<!ELEMENT remote_command_after_transfer (#PCDATA)>
<!ATTLIST remote_command_after_transfer

Enumeration (archive | delete | none | rename) "delete"
>
<!ELEMENT remote_rename_or_archive_name (#PCDATA)>
<!ELEMENT local_command_after_transfer (#PCDATA)>
<!ATTLIST local_command_after_transfer

Enumeration (archive | delete) "delete"
>
<!ELEMENT local_archive_directory (#PCDATA)>
<!ELEMENT publish_to_external (remote_directory_name?,
remote_file_name?, append_or_overwrite_when_transferring_files?,
remote_command_after_transfer?, remote_rename_or_archive_name?,
local_command_after_transfer?, local_archive_directory?)>
<!ELEMENT remote_file_name (#PCDATA)>
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA)>
<!ATTLIST append_or_overwrite_when_transferring_files

Enumeration (append | overwrite) "append"
>
<!ELEMENT FTP (server_port, mode, Pretransfer_Commands,
Posttransfer_Commands)>
<!ELEMENT server_port (#PCDATA)>
<!ELEMENT mode (#PCDATA)>
<!ELEMENT Pretransfer_Commands (#PCDATA)>
<!ELEMENT Posttransfer_Commands (#PCDATA)>
<!ELEMENT SOCKS (server_host_name, server_port, method, user_name,
encrypted_password)>
<!ELEMENT server_host_name (#PCDATA)>
<!ELEMENT method (#PCDATA)>
<!ELEMENT payload (#PCDATA)>
<!ATTLIST payload

Location (base64InSitu | localDir) #IMPLIED
>
<!ELEMENT error_record (error_code, error_text, last_action)>
<!ELEMENT error_code (#PCDATA)>
<!ELEMENT error_text (#PCDATA)>
<!ELEMENT last_action (#PCDATA)>
>

Additional Information: Error Messages

The inclusion of the order record, payload data, or both, in an error message is
configurable in the corresponding e*Way Connection. See the Dynamic Configuration
parameters in Chapter 4 for more information.
Batch e*Way Intelligent Adapter User’s Guide 289 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
The following require special explanation:

If there is no error, and the error message is sent as a result of a successful transfer
when the Publish Status Record on Success parameter is set to Yes, the following
elements are present:

error_code: Zero (0).

error_text: A timestamp showing when the order was successfully processed,
for example:

Successfully sent on: Fri, 11 Oct 2002 at 14:02:30 PDT

last_action: An empty string (reserved for future use).

If there is an error in processing an order message when the Publish Status Record
on Error parameter is set to Yes, and the file_transfer method is ftp, the following
elements are present:

error_code: The reply/return code of the last FTP reply command.

error_text: The exception message as supplied by the corresponding ETD.

last_action: The entire text of the last FTP server response exactly as it was
received.

If there is an error in processing an order message when the Publish Status Record
on Error parameter is set to Yes, and the file_transfer method is copy, the following
elements are present:

error_code: -1 to indicate an error.

error_text: The exception message as supplied by the corresponding ETD.

last_action: The text No information (reserved for future use).

If there is an error in processing an order message when the Publish Status Record
on Error parameter is set to Yes, and there is another error, for example:

An unknown file transfer method (neither ftp nor copy)

A problem converting the output message’s data payload to the Base64 format

An invalid malformed command action (see “Malformed Command Actions”
on page 322)

Then, the following elements are present:

error_code: -1 to indicate an error.

error_text: The exception message or explanation.

last_action: The text No information (reserved for future use).
Batch e*Way Intelligent Adapter User’s Guide 290 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
8.2.3 Data Message
The following DTD file provides a data structure, includes a data payload, and is used
for transporting data from the schema template:

<!-- Copyright (C) 2000, SeeBeyond Technology Corporation, All rights
reserved. -->
<!-- batch eway data record format. -->
<!ELEMENT batch_eWay_data (command,
 (return_tag|order_record)?,
 payload) >
<!ELEMENT command (#PCDATA) >
<!ATTLIST command Enumeration (send|receive) "send" >
<!ELEMENT order_record (external_host_setup?,
 (subscribe_to_external|publish_to_external)?,
 FTP?,
 SOCKS?) >
<!ELEMENT external_host_setup (host_type?,
 external_host_name?,
 user_name?,
 encrypted_password?,
 file_transfer_method?,
 return_tag?) >
<!ELEMENT host_type (#PCDATA) >
<!ELEMENT external_host_name (#PCDATA) >
<!ELEMENT user_name (#PCDATA) >
<!ELEMENT encrypted_password (#PCDATA) >
<!ELEMENT file_transfer_method (#PCDATA) >
<!ATTLIST file_transfer_method Enumeration (ftp|copy) "ftp" >
<!ELEMENT return_tag (#PCDATA) >
<!ELEMENT subscribe_to_external (remote_directory_name?,
 remote_file_regexp?,
 remote_command_after_transfer?,
 remote_rename_or_archive_name?,
 local_command_after_transfer?,
 local_archive_directory?) >
<!ELEMENT remote_directory_name (#PCDATA) >
<!ELEMENT remote_file_regexp (#PCDATA) >
<!ELEMENT remote_command_after_transfer (#PCDATA) >
<!ATTLIST remote_command_after_transfer Enumeration
(archive|delete|none|rename) "delete" >
<!ELEMENT remote_rename_or_archive_name (#PCDATA) >
<!ELEMENT local_command_after_transfer (#PCDATA) >
<!ATTLIST local_command_after_transfer Enumeration (archive|delete)
"delete" >
<!ELEMENT local_archive_directory (#PCDATA) >
<!ELEMENT publish_to_external (remote_directory_name?,
 remote_file_name?,

append_or_overwrite_when_transferring_files?,
 remote_command_after_transfer?,
 remote_rename_or_archive_name?,
 local_command_after_transfer?,
 local_archive_directory?) >
<!ELEMENT remote_file_name (#PCDATA) >
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA) >
<!ATTLIST append_or_overwrite_when_transferring_files Enumeration
(append|overwrite) "append" >
<!ELEMENT FTP (server_port,
 mode,
 Pretransfer_Commands,
 Posttransfer_Commands) >
Batch e*Way Intelligent Adapter User’s Guide 291 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Dynamic Configuration Message Descriptions
<!ELEMENT server_port (#PCDATA) >
<!ELEMENT mode (#PCDATA) >
<!ELEMENT Pretransfer_Commands (#PCDATA) >
<!ELEMENT Posttransfer_Commands (#PCDATA) >
<!ELEMENT SOCKS
(server_host_name,server_port,method,user_name,encrypted_password) >
<!ELEMENT server_host_name (#PCDATA) >
<!ELEMENT method (#PCDATA) >
<!ELEMENT payload (#PCDATA) >

Additional Information: Data Messages

The XML data message, batch_eWay_data, sent by the schema template is similar to the
XML message receive order that initiated the transfer. The major difference is that, if the
processing of a receive order is successful, the message contains a payload field with
the data received. This data is encoded in the Base64 format, along with the original
order record.

As a result of a receive order (if the command is receive) a data XML message is
published by the schema template. See the following example:

<batch_eWay_data>
<command> receive </command>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password> liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>

</external_host_setup>
<subscribe_to_external>

<remote_directory_name> /usr/home/honest_abe/from
</remote_directory_name>

<remote_file_regexp> Y*.dat </remote_file_regexp>
</subscribe_to_external>
<payload> (DATA encoded in Base64)</payload>

</batch_eWay_data>

Caution: The payload (DATA) attribute must be encoded in the Base64 format.

Payload Data

Normally, there is no payload data corresponding to a send order unless there is an
error condition. If an order fails, the schema template can publish an error record,
depending on your setting for the Publish Status Record on Error feature. If this
parameter is set to Yes, the payload data is included in the XML error message.
Batch e*Way Intelligent Adapter User’s Guide 292 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
8.3 Dynamic Configuration Template
This section explains how to import and use the Dynamic Configuration e*Gate schema
template for the Batch e*Way. It also provides a general overview of how the template
operates.

Note: See the e*Gate Integrator User’s Guide and Creating an End-to-end Scenario
With e*Gate Integrator for more information on how to create an e*Gate schema.

This e*Way provides a specialized transport component for incorporation into an
operational schema. The schema also contains specialized Collaborations, linking
different Event Types and IQs. Typically, other types of e*Ways (in addition to the
Batch) also can be used as components of a Dynamic Configuration schema.

Using the Dynamic Configuration Template

It is recommended that you import this schema template into e*Gate in order to use the
Batch e*Way’s Dynamic Configuration feature. You must base all implementations of
this feature on the template. The rest of this chapter explains how to implement and use
the relevant features of the schema template.

Note: After you are thoroughly familiar with this template schema, you can change its
operation to suit your individual needs, if desired. However, it is recommended that
you first gain complete familiarity with this schema’s operation.

8.3.1 Importing the Dynamic Configuration Schema Template
For detailed instructions on how to import this schema, see “Implementation
Overview” on page 128. This section also provides a list of the basic steps in creating an
e*Gate schema.

The template is on the installation CD-ROM in the following location:

\samples\ewbatch\Java\DynConfigSampleTemplate.zip

8.3.2 Schema Setup
Figure 141 on page 294 shows a diagram of the schema’s general architecture, using the
e*Gate Schema Designer’s Network View. The arrows show the direction of data flow.
Batch e*Way Intelligent Adapter User’s Guide 293 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 141 Dynamic Configuration Template Schema: Network View

8.3.3 Schema Operation
This schema template has the following input/output setup:

Input: XML orders, via the blob Event Type, to the feeder file e*Way (one order per
Event); can contain data or orders only.

Output: Data in the form of XML messages (BatchEwayData Event Type); can also
output error information (BatchEwayError Event Type).
Batch e*Way Intelligent Adapter User’s Guide 294 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Because this schema is a template, it is created with a modular architecture. It contains
the basic framework of a Dynamic Configuration setup only. After you import the
schema, you can add whatever functionality you want, for example, get and put
operations to remote FTP systems or data record processing via the record-processing
ETD.

Data enters through the feeder e*Way as XML order messages via the blob Event Type.
The orders are published to the inputorderqueue IQ as the BatchEwayOrder Event
Type.

The DynBatch e*Way and its Collaboration pick up this Event Type. The DynBatch_col
Collaboration (via its Collaboration Rules) does the actual Dynamic Configuration
processing and publishes XML-based Events to the errorqueue (error information) IQ,
batchdataqueue (payload data) IQ, or both.

The file e*Ways operate as follows:

BatchDataEater picks up the BatchEwayData Events (data messages) and writes
out the payload data, if any, to a file in the designated target location.

BatchErrorEater picks up the BatchEwayError Events (error messages) and writes
out the success or error message.

The DynBatch_col Collaboration and its Collaboration Rules cr_DynBatch component
make up the heart of the schema and do the actual Dynamic Configuration analyzing
and processing. The Collaboration Rules component sends out data and error
messages, as desired, based on the business logic (Business Rules) you configure in the
schema.

Important: As described previously, you can only input one XML order message per Event into
the DynBatch_col Collaboration. The Dynamic Configuration processor can only
process one order per a single Event.

8.3.4 Schema Components
The most important Dynamic Configuration components in this schema template are:

e*Way Connections

Collaborations

Collaboration Rules

These are the components that control the Dynamic Configuration feature’s operation.

The template contains all the additional components of an operating e*Gate schema,
including:

Event Types

ETDs

e*Ways

IQs and IQ Manager
Batch e*Way Intelligent Adapter User’s Guide 295 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Table 11 lists the names of the major components in this schema template, along with a
brief description of each one.

Table 11 Components in Schema Template

Component Name in Schema Description

Event Types BatchEwayData For the batch_eway_data.dtd output data XML
Events.

BatchEwayError For the batch_eway_error.dtd output error
XML Events.

BatchEwayOrder For the batch_eway_order.dtd input order
XML Events.

FtpETD For the FTP ETD (for FTP operations).

LocalFileETD For the local file ETD (for local file operations.)

blob For input XML messages coming into e*Gate
to the feeder e*Way.

e*Ways BatchDataEater File e*Way contains the batchdataeater_col
Collaboration.

BatchErrorEater File e*Way contains the batcherroreater_col
Collaboration.

DynBatch Multi-Mode e*Way contains the DynBatch_col
Collaboration.

feeder File e*Way contains the feeder_col
Collaboration.

e*Way Connections ConDynFtp For remote FTP system connections.

ConDynLocalFile For local file system connections.

IQ Manager localhost_iq Manages the schema’s IQs.

IQs batchdataqueue Holds BatchEwayData Events from the
DynBatch_col Collaboration.

errorqueue Holds BatchEwayError Events from the
DynBatch_col Collaboration.

inputorderqueue Holds BatchEwayOrder Events from the
feeder_col Collaboration.

Collaboration Rules cr_batchdataeater Sends out Dynamic Configuring messages
output data messages.

cr_batcherroreater Sends out Dynamic Configuration output
error messages.

cr_DynBatch Performs the Dynamic Configuration
analyzing and processing.

cr_feeder Brings messaging XML order data into e*Gate
for Dynamic Configuration processing.
Batch e*Way Intelligent Adapter User’s Guide 296 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
For instructions on how to create and define components in an e*Gate schema with the
Batch e*Way, see “Sample Schema: Basic FTP With Streaming” on page 130.

The rest of this section explains the operation and definition of the e*Gate components
in this schema template, with special emphasis on the e*Way Connections,
Collaborations, and Collaboration Rules.

8.3.5 Overview of Event Types and ETDs
As shown in the Event Type Properties dialog box example in Figure 142, the schema
contains an Event Type for each of its precompiled ETDs. For example, the figure shows
the BatchEwayOrder Event Type for the batchewayorder.xsc ETD. This ETD
corresponds to the batch_eway_order.dtd XML message.

Figure 142 BatchEwayOrder Event Type Properties Dialog Box

Collaborations batchdataeater_col Executes the cr_batchdataeater Collaboration
Rules.

batcherroreater_col Executes the cr_batcherroreater Collaboration
Rules.

DynBatch_col Executes the cr_DynBatch Collaboration
Rules.

feeder_col Executes the cr_feeder Collaboration Rules.

Table 11 Components in Schema Template (Continued)

Component Name in Schema Description
Batch e*Way Intelligent Adapter User’s Guide 297 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
The following list shows the schema’s Event Types with their corresponding ETD and
DTD files, along with an explanation of each:

BatchEwayData: batchewaydata.xsc

Utilizes the precompiled ETD based on the batch_eway_data.dtd XML file to carry
data messages.

BatchEwayError: batchewayerror.xsc

Utilizes the precompiled ETD based on the batch_eway_error.dtd XML file to carry
error messages.

BatchEwayOrder: batchewayorder.xsc

Utilizes the precompiled ETD based on the batch_eway_order.dtd XML file to carry
order messages (send and receive).

FtpETD: FtpETD.xsc

Enables data transactions with remote FTP systems.

Note: For more information on the FTP ETD, see “ETD for FTP Operations” on
page 90.

LocalFileETD: LocalFileETD.xsc

Enables data transactions with local file systems.

Note: For more information on the local file ETD, see “ETD for Local File” on
page 101.

blob: blob.xsc

Used for raw input data, for example, an XML order.

Note: This ETD is user-defined. For information on how to use the Custom ETD wizard
to create a user-defined ETD, see “Creating Event Types and ETDs” on
page 174.

8.3.6 Configuring the e*Way Connections
This section explains how to configure the e*Way Connections for the Dynamic
Configuration feature and schema template. The configuration parameters set in these
e*Way Connections serve as the default order message parameter values for the schema
template. You can overwrite any one or more of them with the individual XML orders
as desired.

Note: The default configuration parameter settings in the e*Way Connections must be
valid values. For example, if the default value of the Host Name parameter is
localhost, an FTP server on the machine localhost must be accessible.

To configure the ConDynFtp e*Way Connection

1 Run the e*Gate Schema Designer and go to the Main window.
Batch e*Way Intelligent Adapter User’s Guide 298 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Note: If you want to change the name of an e*Way Connection, make sure that you also
update the corresponding publication destination as entered in any relevant
Collaboration Properties dialog box.

2 In the Component pane, select the ConDynFtp e*Way Connection, then right-click
to edit and view its properties.

3 When the e*Way Connection Properties dialog box opens, you see the defined
properties as shown in Figure 143 on page 299.

Figure 143 ConDynFtp e*Way Connection Properties Dialog Box

You can adjust the Event Type “get” interval as needed.

4 Under e*Way Connection Configuration File, click Edit to edit the FTP ETD’s
configuration parameters.

The e*Way Configuration Editor Main window opens. Use this interface to select
the desired parameters, including those that correspond to the remote FTP system
you are using.

Note: See “FtpETD: Configuration Parameters” on page 37 for details on setting
these parameters.

5 Under the General Settings, make sure that the XA mode is not enabled (see
Figure 144 on page 300).
Batch e*Way Intelligent Adapter User’s Guide 299 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 144 e*Way Configuration Editor: ConDynFtp General Settings
Batch e*Way Intelligent Adapter User’s Guide 300 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
6 Select the FTP settings (see Figure 145).

Figure 145 e*Way Configuration Editor: ConDynFtp FTP Settings 1
Batch e*Way Intelligent Adapter User’s Guide 301 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
7 Under the FTP settings, accept the default settings for all parameters except:

Directory Listing Style

Host Name

Server Port

User Name

Password

You must enter your default system settings for these parameters. Also, see
Figure 146 on page 303.
Batch e*Way Intelligent Adapter User’s Guide 302 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 146 e*Way Configuration Editor: ConDynFtp FTP Settings 2

8 Select the Target Location settings (see Figure 147 on page 304).

9 Under the Target Location settings, you can accept the default settings for all
parameters except:

Target Directory Name

Target File Name
Batch e*Way Intelligent Adapter User’s Guide 303 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
You must enter your system default settings for these parameters (see Figure 147).

10 Make sure to set all of the pre/post file transfer command parameters as desired
(see Figure 148 on page 305 and Figure 149 on page 306). Your desired settings may
differ from those in the schema template, depending on your system needs.

Figure 147 e*Way Configuration Editor: ConDynFtp Target Location Settings
Batch e*Way Intelligent Adapter User’s Guide 304 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 148 e*Way Configuration Editor: ConDynFtp Pre File Transfer Settings
Batch e*Way Intelligent Adapter User’s Guide 305 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 149 e*Way Configuration Editor: ConDynFtp Post File Transfer Settings

11 In addition to the parameters listed previously, you must also enter parameters for
the Dynamic Configuration feature. Select the Dynamic Configuration settings (see
Figure 150 on page 307) and set these parameters as desired.
Batch e*Way Intelligent Adapter User’s Guide 306 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 150 e*Way Configuration Editor: ConDynFtp Dynamic Configuration Settings

Note: It is recommended that the Dynamic Configuration parameter settings be the same
for the corresponding local file ETD e*Way Connection so that the behavior for FTP
and local file operations are identical. For more information, see “Dynamic
Configuration” on page 58.
Batch e*Way Intelligent Adapter User’s Guide 307 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
12 Make sure that the Connection Establishment Mode is set to Manual (see
Figure 151) under the connector configuration settings.

Figure 151 e*Way Configuration Editor: Connector Settings

13 Set the rest of these parameters in the same way either as they are set in the schema
template or as required by your own system.

14 When you are finished, save the .cfg file, close the e*Way Configuration Editor, and
promote the file to run time.

15 Click OK to close the e*Way Connection Properties dialog box.

To configure the ConDynLocalFile e*Way Connection

1 Access the e*Way Connection Properties dialog box for this component in the same
way as you did for the previous e*Way Connection. The name of this e*Way
Connection in the schema template is ConDynLocalFile.
Batch e*Way Intelligent Adapter User’s Guide 308 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
2 Figure 152 shows the schema’s default settings. Set the “get” interval as desired.

Figure 152 ConDynLocalFile e*Way Connection Properties Dialog Box

3 Under e*Way Connection Configuration File, click Edit to edit the local file ETD’s
configuration parameters.

The e*Way Configuration Editor Main window opens. Use this interface to select
the desired parameters, including those that correspond to the local file system you
are using. See “LocalFileETD: Configuration Parameters” on page 60 for details.

4 Under the General Settings, make sure that the XA mode is not enabled (see
Figure 153 on page 310). Also, make sure that Resume Reading is not enabled.
Batch e*Way Intelligent Adapter User’s Guide 309 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 153 e*Way Configuration Editor: ConDynLocalFile General Settings

5 Select the Target Location settings (see Figure 154 on page 311).

6 Under the Target Location settings, you can accept the default settings for all
parameters except for:

Target Directory Name

Target File Name

You must enter your system default settings for these parameters (see Figure 154 on
page 311).

7 Make sure to set all of the pre/post file transfer command parameters as desired
(see Figure 155 on page 312 and Figure 156 on page 313). Your desired settings may
differ from those in the schema template, depending on your system needs.
Batch e*Way Intelligent Adapter User’s Guide 310 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 154 e*Way Configuration Editor: ConDynFtp Target Location Settings
Batch e*Way Intelligent Adapter User’s Guide 311 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 155 e*Way Configuration Editor: ConDynFtp Pre File Transfer Settings
Batch e*Way Intelligent Adapter User’s Guide 312 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 156 e*Way Configuration Editor: ConDynFtp Post File Transfer Settings

8 In addition to the parameters listed previously, you must also enter parameters for
the Dynamic Configuration feature. Select the Dynamic Configuration settings (see
Figure 157 on page 314) and set these parameters as desired.
Batch e*Way Intelligent Adapter User’s Guide 313 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 157 e*Way Configuration Editor: ConDynFtp Dynamic Configuration Settings

Note: It is recommended that the Dynamic Configuration parameter settings be the same
for the corresponding FTP ETD e*Way Connection so that the behavior for FTP and
local file operations are identical. For more information, see “Dynamic
Configuration” on page 68.

9 Set the rest of these parameters in the same way either as they are set in the schema
template or as required by your own system.
Batch e*Way Intelligent Adapter User’s Guide 314 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
10 When you are finished, save the .cfg file, close the e*Way Configuration Editor, and
promote the file to run time.

11 Click OK to close the e*Way Connection Properties dialog box.

8.3.7 Configuring the File e*Ways
Make sure the following configuration parameters (feeder.cfg file) are set in the schema
template’s file e*Ways:

When configuring the feeder file e*Way

Make sure that the MultipleRecordsPerFile parameter is set to No. This way, even
if the XML order input file contains carriage returns, the feeder Collaboration still
accepts the whole file as a single record.

Increase the MaxBytesPerLine parameter setting to account for the largest data size
(Base64 or not) and the rest of the XML order message; the default is 64 KB.

Set the default input directory (PollDirectory parameter) as desired.

When configuring the BatchDataEater and BatchErrorEater file e*Ways

Make sure that the MultipleRecordsPerFile parameter is set to No here also, so that
a new XML data and error file is generated for each new XML order.

Set the default output directory (OutputDirectory parameter) as desired.

Note: In adapting this template schema to your needs, keep in mind that the output file
becomes an XML ETD published to another Collaboration via an IQ.

8.3.8 Collaboration Rules and Collaboration Operation
Collaborations transform incoming Events into outgoing Events. A Collaboration is
driven by a Collaboration Rules script component, which defines the relationship
between the source (incoming) and destination (outgoing) ETDs (see Figure 158 on
page 316).
Batch e*Way Intelligent Adapter User’s Guide 315 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 158 Collaboration and Collaboration Rules Operation

Note: Java Collaboration Rules can have more than one source and more than one
destination Event.

Using the Predefined Collaboration Rules

The current version of the Batch e*Way provides predefined Dynamic
Configuration .class files in the schema template. These files are based on e*Gate .xpr
Collaboration Rules files.

While it is possible to create your own Collaboration Rules to control this feature, in
most cases the predefined Collaboration Rules component is sufficient.

Collaboration Rules Components: File e*Ways

The schema template contains the following file e*Ways:

BatchDataEater

BatchErrorEater

DynBatch

Through their Collaborations, these e*Ways contain the following Collaboration Rules
components:

cr_feeder

cr_batchdataeater

cr_batcherroreater

Blue Martini e*Way

CollaborationEvent
A

Event
B

Collaboration Rule

ETD
A

ETD
B

Batch e*Way Intelligent Adapter User’s Guide 316 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Collaboration Rules Component: cr_DynBatch

The central Collaboration Rules component in the schema template is cr_DynBatch in
the DynBatch_col Collaboration. This component does the actual Dynamic
Configuration message processing. Use its Business Rules to control your
implementation of the Dynamic Configuration feature.

Figure 159 and Figure 160 on page 318 show the properties for the cr_DynBatch
Collaboration Rule. Note that on the Collaboration Mapping tab, under Mode, the
input is order messages and the output is data and error messages. The FTP and local
file ETD outputs allow you to additionally send data using these ETDs.

Figure 159 cr_DynBatch Properties: General Tab
Batch e*Way Intelligent Adapter User’s Guide 317 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 160 cr_DynBatch Properties: Collaboration Mapping Tab

Make sure that the BatchError and BatchData instances are set to Manual Publish (see
Figure 160). You must use these settings because the DynBatch_col Collaboration may
not always automatically generate these two instances.

For example, if the Publish Status Record on Success and Publish Status Record on
Error parameters are both set to No, then no BatchError Event is generated. However, if
all the incoming orders in this case are send orders, there are no outbound XML data
messages.

Figure 161 on page 319 shows the cr_DynBatch Collaboration Rules file open in the
Collaboration Rules Main window. The Business Rules are contracted to show only the
top-level Business Rules in the Business Rules window.
Batch e*Way Intelligent Adapter User’s Guide 318 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 161 Collaboration Rules Editor: Collaboration Rules File for cr_DynBatch

This Collaboration Rules component is the primary Dynamic Configuration processor.
Its purpose is to analyze the incoming XML orders and map all relevant elements in
each order to corresponding parameters of the FTP or local file ETD.

Note: For the Dynamic Configuration feature, your Collaboration must call connect()
inside the executeBusinessRules() method after all the values have been set from
the incoming XML message.
Batch e*Way Intelligent Adapter User’s Guide 319 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
In general, this Collaboration Rules component performs the following tasks:

Checks the incoming XML order to make sure it is in the appropriate format; if so,
the Event is processed, but if not, it is rejected

In case of rejection, performs malformed command handling logic according to the
Action on Malformed Command parameter setting; the options in case of an error
are:

Exit: Shut down the e*Way.

Ignore: The e*Way does nothing.

Raise Alert: Send an Alert to the Schema Manager.

Publish Error Record: Publish an XML error status record.

Note: See Chapter 4 for complete information on the e*Way’s configuration parameters.

Processes and analyzes the incoming order to map its output to the FTP or local file
ETD (must be one or the other)

Processes and analyzes the incoming order to map its output and generate XML
message output, either data or error, or both

Handles exceptions, if present

You can open the cr_DynBatch file in the Collaboration Rules Editor yourself to
observe its exact Business Rule structure. Each Business Rule is commented to explain
its specific function to the user.

Outline of Operation

The following list provides a high-level outline of how the cr_DynBatch Collaboration
Rules component operates and what it does:

Main executeBusinessRules Operation

1 Checks the transaction type of the ETD and invokes the malformed command
handler if the ETD is set to XA-compliant.

2 Invokes the FTP ETD or local file ETD handler according to the
FileTransferMethod of the XML order and invokes the malformed command
handler if it is invalid.

3 Restores all the original parameter values from the ETD’s e*Way Connection.

4 Invokes the reset() methods of the ETDs to clear the client to allow for another
transfer (not necessary for cr_DynBatch but a recommended practice).

ProcessFtpETD Operation

This operation handles the FTP ETD. It also analyzes the XML order message and maps
it to the FTP ETD parameters as necessary.

1 Sets the passive mode data connection.

2 Checks to see if it needs to overwrite the various entries in the FTP ETD with any
corresponding part in the XML order.
Batch e*Way Intelligent Adapter User’s Guide 320 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
3 Uses the transfer direction of the XML order as follows:

Determines whether to map any FTP get operation (SubscribeToExternal in the
XML order) as needed to overwrite the configured parameters. Then it takes the
following steps:

Performs an FTP get operation for the file specified.

Obtains and validates the payload data obtained before transferring the
payload to the XML data message.

Determines whether to map any FTP put operation (PublishToExternal in the
XML order) as needed to overwrite the configured parameters. Then it takes the
following steps:

Checks the location attribute to validate the data format or source and loads
the payload data for the FTP ETD.

Performs an FTP put operation for the file specified.

4 For either transfer direction, publishes the status record (XML error message) if
configured, performs the local command after transfer command if provided, or
both.

5 Invokes the nested exception handler for the FtpFileException exception as needed.

6 Sends messages of other error exceptions, if any, to the e*Way’s log file (if the log
level is set to TRACE for EWAY) and also sends the exception stack trace to the
corresponding .stderr file.

7 Invokes the malformed command handler as needed.

ProcessLocalFileETD Operation

This operation handles the local file ETD. It also analyzes the XML order message and
maps it to the local file ETD parameters as necessary.

1 Disables the Resume Reading feature.

2 Uses the transfer direction of the XML order to determine:

Whether to map the local file get or read operation (SubscribeToExternal in the
XML order) as needed to overwrite the configured parameters. Then it takes the
following steps:

Performs a local file get or read operation for the file specified.

Obtains and validates the payload data obtained before sending it to the
XML data message.

Whether to map the local file put or write operation (PublishToExternal in the
XML order) as needed to overwrite the configured parameters. Then it takes the
following steps:

Checks the location attribute to validate the data format or source and loads
the payload data for the local file ETD.

Performs a local file put or write operation for the file specified.
Batch e*Way Intelligent Adapter User’s Guide 321 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
3 For either transfer direction, publishes the status record (XML error message) if
configured, performs the local command after transfer command if provided, or
both.

4 Invokes the nested exception handler for the LocalFileException exception as
needed.

5 Sends messages of other error exceptions, if any, to the e*Way’s log file (if the log
level is set to TRACE for EWAY) and also sends the exception stack trace to the
corresponding .stderr file.

6 Invokes the malformed command handler as needed.

Malformed Command Actions

The following errors cause a malformed command action:

The configured Transaction Type of the FTP ETD is XA-compliant, which is not
supported by the schema template.

The configured Transaction Type of the local file ETD is XA-compliant, which is
not supported by the schema template.

An invalid file transfer() method is being used, that is the method is not ftp or copy.
In these cases, an error record is published in the component’s error log, and an
alert message is sent to the Schema Manager. No attempt is made to get the Action
On Malformed Command from either of the configConDynFtp.cfg
ConDynLocalFile.cfg configuration files.

An invalid command type was used, that is, the type was neither send nor receive.

There was no payload element for a send order.

A send order contains a payload element with a location attribute that is:

invalid (not base64InSitu, localDir, or an empty string)

localDir information with an invalid full-path file name

Unread because of a problem in reading the file content

There is a missing entry for the command in the local command after transfer
element when the local archive directory is not empty.

There is an invalid archive file name corresponding to the command in the local
command after transfer element.

Note: If you have configured Publish Error Record as the malformed command action,
the error message published always includes the order message but not the payload
data.

Schema Collaborations

This section shows how the Collaborations are defined in this schema template.

To view the Collaborations’ properties

1 Run the e*Gate Schema Designer and go to the Main window.
Batch e*Way Intelligent Adapter User’s Guide 322 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
2 In the Component pane, open the host where the template schema resides.

3 Select the BatchDataEater e*Way.

4 Select the batchdataeater_col Collaboration in the right pane, then right-click to edit
or view its properties.

5 The Collaboration Properties dialog box appears (see Figure 162 on page 323).

Figure 162 batchdataeater_col Properties Dialog Box

You can configure any Collaboration properties as desired or use the default
properties shown in Figure 162.

6 Click OK to close the dialog box and save any changes.

7 Select the BatchErrorEater e*Way and batcherroreater_col Collaboration in the
same way as you did the previous e*Way and Collaboration.

8 The Collaboration Properties dialog box appears (see Figure 163 on page 324).
Batch e*Way Intelligent Adapter User’s Guide 323 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 163 batcherroreater_col Properties Dialog Box

You can configure any Collaboration properties as desired or use the default
properties shown in Figure 163.

9 Click OK to close the dialog box and save any changes.

10 Select the DynBatch e*Way and DynBatch_col Collaboration in the same way as
you did the previous e*Ways and Collaborations.

11 The Collaboration Properties dialog box appears (see Figure 164 on page 325).
Batch e*Way Intelligent Adapter User’s Guide 324 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 164 DynBatch_col Properties Dialog Box

You can configure any Collaboration properties as desired or use the default
properties shown in Figure 164.

12 Click OK to close the dialog box and save any changes.

13 Select the feeder e*Way and feeder_col Collaboration in the same way as you did
the previous e*Ways and Collaborations.

14 The Collaboration Properties dialog box appears (see Figure 165 on page 326).
Batch e*Way Intelligent Adapter User’s Guide 325 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Figure 165 feeder_col Properties Dialog Box

You can configure any Collaboration properties as desired or use the default
properties shown in Figure 165.

15 Click OK to close the dialog box and save any changes.

Before Running the Schema

Before you run the schema, you must create certain XML order files, as explained under
“Sending Data with a Send Order” on page 286 and “Receiving Data with a Receive
Order” on page 287. Place these files in the configured input directory for the feeder
e*Way.

Make sure that the name pattern of the order files conforms to that specified by the
feeder e*Way’s configuration (feeder.cfg file). By default, the file name must have a .fin
extension. Also, ensure that the order files are ready to be consumed by the feeder
e*Way’s Collaboration.

Note: If you want to easily view the input data file (data XML message) using an XML-
enabled Web browser, you can rename the file to .xml (from .~in or .fin) for this
purpose.
Batch e*Way Intelligent Adapter User’s Guide 326 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Dynamic Configuration Dynamic Configuration Template
Running the Schema

For instructions on how to run an e*Gate schema, see “Running the Schema” on
page 170.

After Running the Schema

Observe the following schema template operations:

The schema generates files for the XML send orders. Verify that an XML error/
status record file is also generated in the appropriate output directory as specified
by the BatchErrorEater e*Way’s configuration (batcherroreater.cfg file).

The schema generates an XML data file (encoded in the Base64 format) for an XML
receive order. This file is generated in the appropriate output directory as specified
by the BatchDataEater e*Way’s configuration (batchdataeater.cfg file). Verify that
an XML error/status record file is also generated in the output directory as
specified by the BatchErrorEater e*Way’s configuration (batcherroreater.cfg file).

Note: The exact output directory location depends on the settings for the Dynamic
Configuration, as shown in Figure 150 on page 307 and Figure 157 on
page 314.

When you are adapting this template schema to your own needs, keep the following
schema operations in mind:

The input XML order files become XML ETDs that need to be generated by the
Business Rules of other Collaborations via IQs.

The output XML files also become XML ETDs and are published to other
Collaborations via IQs.
Batch e*Way Intelligent Adapter User’s Guide 327 SeeBeyond Proprietary and Confidential

Chapter 9

Additional Features

This chapter explains the following additional features of the Batch e*Way Intelligent
Adapter:

Data streaming: The e*Way’s ability to stream data between Event Type Definition
(ETD) components.

Secure FTP: The e*Way supports SOCKS and SSH tunneling to provide secure FTP
data transmission.

Guaranteed Exactly Once Delivery (GEOD) of Events: The XA-related features of
the e*Way.

9.1 Streaming Data Between Components
Components in the Batch e*Way implement a feature for data streaming. This chapter
explains data streaming, how it works, and how to use it with the e*Way and e*Gate
Integrator.

9.1.1 Introduction to Data Streaming
Data streaming provides a means for interconnecting any two components of the e*Way
by means of a data stream channel. This channel provides an alternate way of
transferring the data between the Batch e*Way components.

Each ETD component in the e*Way has a Payload node. This node represents the
in-memory data and is used when the data is known to be relatively small in size or has
already been loaded into memory. The node can represent, for example, the buffer in
the record-processing ETD, as it is being built or parsed, or the contents of a file read
into memory.

Instead of moving the data all at once between components in e*Gate’s memory, you
can use a data-stream channel to provide for streaming the data between them a little at a
time, outside of e*Gate.

Data streaming was designed primarily to handle large files, but you can use it for
smaller data sizes as well.

You will use the e*Gate Schema Designer’s Collaboration Rules Editor to set up data-
streaming operations. The rest of this section explains the data streaming feature and
how to set it up.
Batch e*Way Intelligent Adapter User’s Guide 328 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Note: Payload-based and streaming-based transfers are mutually exclusive. You can use
one or the other but not both for the same data.

9.1.2 Overcoming Large-file Limitations
The primary advantage of using data streaming is that it helps to overcome the
limitations of dealing with large files. For example, if you have a 1-gigabyte file that
contains a large number of records, you need a large amount of resources to load the
payload into memory just to parse it.

Streaming allows you to read from the file, little by little, using a data-streaming
mechanism. This way, you do not need to load the file into the e*Gate system’s memory.
Using streaming is not as fast as using in-memory operations, but it is far less resource-
intensive.

9.1.3 Using Data Streaming
Each data-streaming transfer involves two ETDs in a Collaboration as follows:

One provides the stream adapter.

The other consumes the stream adapter to perform the data transfer.

This section explains how the two data-streaming ETDs operate to effect the transfer of
data.

Data-streaming Operation

Each of the ETDs in the Batch e*Way exposes stream adapter nodes, allowing any ETD
to participate in data-streaming transfers. The nodes are named InputStreamAdapter
and OutputStreamAdapter. You can associate the stream adapters by using the drag-
and-drop features of the e*Gate Schema Designer’s Collaboration Rules Editor (see
“Data Streaming Setups” on page 331 for details).

Figure 166 on page 330 shows an example of the local file ETD, as shown in the e*Gate
ETD Editor’s Main window.
Batch e*Way Intelligent Adapter User’s Guide 329 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Figure 166 Local File ETD With Data-streaming Nodes

Figure 166 shows the InputStreamAdapter (highlighted) and OutputStreamAdapter
nodes in the ETD, which you use for data streaming. Basically, this feature operates as
follows:

Stream-adapter consumers: The FTP and the record-processing ETDs can only
consume stream adapters. Therefore, their stream-adapter nodes are write-only. Their
node values can be set (modified).

Stream-adapter provider: The local file ETD can only provide stream adapters, so its
stream-adapter nodes are read-only. Its node value can only be retrieved.

The local file ETD is always the stream provider, and the FTP and record-processing
ETDs are the consumers.

Note: For an explanation of the e*Way’s different types of ETDs, see Chapter 5.

Data Streaming Versus Payload Data Transfer

Use of the InputStreamAdapter and OutputStreamAdapter nodes is an alternative to
using the Payload node as follows:

Use these stream adapter nodes to transfer data if you want data streaming.

Use the Payload node for a data transfer without data streaming (payload data
transfer).
Batch e*Way Intelligent Adapter User’s Guide 330 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
All operations that, in payload data transfer, read from the Payload node require the
InputStreamAdapter node when you are setting up data streaming. Using the same
logic, all operations that, in payload data transfer, write to the Payload node require
OutputStreamAdapter node for data streaming.

Do not confuse the stream adapter nodes with the get() and put() methods on the ETDs.
For example, the FTP ETD’s client interface get() method writes to the Payload node
during a payload transfer, so it requires an OutputStreamAdapter node to write to for
data streaming. In contrast, the record-processing ETD’s get() method reads from the
Payload node during a payload transfer, so for data streaming, get() requires an input
stream adapter to read from.

Data Streaming Setups

The e*Way provides four basic data-streaming setups, allowing you to transfer data:

From a local file system to a record-processing setup (uses InputStreamAdapter
node in ETD)

From a record-processing setup to a local file system (uses OutputStreamAdapter
node in ETD)

From a local file system to a remote FTP server (uses InputStreamAdapter node in
ETD)

From a remote FTP server to a local file system (uses OutputStreamAdapter node
in ETD)

Using the Collaboration Rules Editor

Use the Collaboration Rules Editor to set up data streaming between ETDs. Because the
local file ETD is the stream provider and the FTP and record-processing ETD are
consumers, when you use the Collaboration Rules Editor, you always drag from the
input-output ETD to either of the other ETDs.

Note: For details on how to use the Collaboration Rules Editor, see the e*Gate Integrator
User’s Guide.

This section explains how to create a simple version of each setup in the e*Gate
Collaboration Rules Editor and the basics of how each operates. These are general
procedures applicable to all of the types of data streaming in the previous list. Which
exact procedures you will follow before and after the steps listed in this section are
dependent on your specific implementation.

Note: All the streaming-related interactions are handled by the ETD implementations. See
Chapter 7 for complete sample implementations of data streaming.

Local File System to Record-processing Setup

Set up this operation as follows:

1 Using the e*Gate Collaboration Rules Editor’s Main window, set up the desired
local file ETD as the source and a record-processing ETD as the destination.
Batch e*Way Intelligent Adapter User’s Guide 331 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
2 Drag the InputStreamAdapter node from the local file ETD to the
InputStreamAdapter node on the record-processing ETD (see Figure 167 on
page 332).

Figure 167 Collaboration Rules Editor Local File to Record Processing: Step 2

3 Create another rule. In this rule, drag the get() method from the Destination Event
to the Rule scroll box in the Rule Properties window.

This action invokes the get() method on the record-processing ETD, which
consumes the stream adapter, to perform the transfer (see Figure 168 on page 333).
Batch e*Way Intelligent Adapter User’s Guide 332 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Figure 168 Collaboration Rules Editor Local File to Record Processing: Step 3

Record-processing Setup to Local File System

Set up this operation as follows:

1 Using the e*Gate Collaboration Rules Editor’s Main window, set up the desired
record-processing ETD file as the source and a local file ETD as the destination.

2 Drag the OutputStreamAdapter node from local file ETD to the
OutputStreamAdapter node on the record-processing ETD (see Figure 169 on
page 334).
Batch e*Way Intelligent Adapter User’s Guide 333 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Figure 169 Collaboration Rules Editor Record Processing to Local File: Step 2

3 To complete this implementation, you must delete the code listed in the Rule scroll
box in the Rule Properties window and enter the following code:

getComingFrom().setOutputStreamAdapter(getGoingTo()
.getClient().getOutputStreamAdapter())

4 Create another rule. In this rule, invoke the put() method on the record-processing
ETD, which consumes the stream adapter, to perform the transfer (see Figure 170
on page 335).

You must replace
this code.
Batch e*Way Intelligent Adapter User’s Guide 334 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Figure 170 Collaboration Rules Editor Record Processing to Local File: Step 4

Note: You may get the FileNotFoundException after a put() transfer, when you are
using data streaming, and the local file ETD runs out of files.

Local File System to a Remote FTP Server

Set up this operation as follows:

1 Using the e*Gate Collaboration Rules Editor’s Main window, set up the desired
local file ETD as the source and an FTP ETD as the destination.

2 Drag the InputStreamAdapter node from the local file ETD to the
InputStreamAdapter node on the FTP ETD (see Figure 171 on page 336).
Batch e*Way Intelligent Adapter User’s Guide 335 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Figure 171 Collaboration Rules Editor Local File to FTP: Step 2

3 Create another rule. In this rule, invoke the put() method on the FTP ETD, which
consumes the stream adapter, to perform the transfer (see Figure 172 on page 337).
Batch e*Way Intelligent Adapter User’s Guide 336 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Figure 172 Collaboration Rules Editor Local File to FTP: Step 3

Remote FTP Server to a Local File System

Set up this operation as follows:

1 Using the e*Gate Collaboration Rules Editor’s Main window, set up the desired
FTP ETD as the source and a local file ETD as the destination.
Batch e*Way Intelligent Adapter User’s Guide 337 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
2 Drag the OutputStreamAdapter node from the local file ETD to the
OutputStreamAdapter node on the FTP ETD (see Figure 173).

Figure 173 Collaboration Rules Editor FTP to Local File: Step 2

3 To complete this implementation, you must delete the code listed in the Rule scroll
box in the Rule Properties window and enter the following code:

getComingFrom().getClient().setOutputStreamAdapter(getGoingTo()
.getClient().getOutputStreamAdapter())

4 Create another rule. In this rule, invoke the get() method on the FTP ETD, which
consumes the stream adapter, to perform the transfer (see Figure 174 on page 339).

You must replace
this code.
Batch e*Way Intelligent Adapter User’s Guide 338 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
Figure 174 Collaboration Rules Editor FTP to Local File: Step 4

Consuming-stream Adapters

This section explains how to use consuming-stream adapters.

To obtain a stream

Use the requestXXStream() method to obtain the corresponding XX stream.

To use a stream

Perform the transfer using the methods provided by the stream.
Batch e*Way Intelligent Adapter User’s Guide 339 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Additional Features Streaming Data Between Components
To dispose of a stream

Release any references to the stream.

Release the stream (XX) using the releaseXXStream() method. Some of the ETDs
support post-transfer commands. The Success parameter indicates whether these
commands are executed. If the ETD providing the stream adapter is operating in the
Guaranteed Exactly Once Delivery (GEOD or XA) mode, it uses the Success
configuration parameter to determine whether the transaction must be rolled back.

Note: See “Guaranteed Exactly Once Delivery” on page 346 for details on how to
use the e*Way’s GEOD feature.

Do not close the stream.

9.1.4 Stream-adapter Interfaces
This section provides the Batch e*Way’s ETD stream-adapter Java interfaces. This
information is only for advanced users familiar with Java programming, who want to
provide custom ETD implementations for stream-adapter consumers or providers.

Inbound Transfers

The following Java programming-language interface provides support for inbound
transfers from an external system:

public interface com.stc.eways.common.eway.streaming.
InputStreamAdapter {

public java.io.InputStream requestInputStream() throws
StreamingException;

public void releaseInputStream(boolean success) throws
StreamingException;

}

Outbound Transfers

The following Java interface provides support for outbound transfers to an external
system:

public interface com.stc.eways.common.eway.streaming.
OutputStreamAdapter {

public java.io.OutputStream requestOutputStream() throws
StreamingException;

public void releaseOutputStream(boolean success) throws
StreamingException;

}

Batch e*Way Intelligent Adapter User’s Guide 340 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Additional Features Secure FTP and the e*Way
9.2 Secure FTP and the e*Way
This section explains the secure FTP features available with the Batch e*Way Intelligent
Adapter. The Batch e*Way supports the following types of secure FTP:

SOCKS versions 4 and 5

Secure shell (SSH) tunneling

The rest of this chapter discusses these features and how the Batch e*Way uses them.

9.2.1 SOCKS Support
SOCKS is an IETF (Internet Engineering Task Force)-approved standard (RFC 1928)
generic, proxy protocol for TCP/IP-based networking applications. The SOCKS
protocol provides a flexible framework for developing secure communications by
easily integrating other security technologies.

Note: The e*Way only supports SOCKS protocols that conform to this IETF standard.

There are two versions of the SOCKS protocol, version 4 and version 5 (called
SOCKSv4 and SOCKSv5). The SOCKSv4 protocol performs the following functions:

Makes connection requests

Sets up proxy circuits

Relays application data

In addition to the functions listed above, the SOCKSv5 protocol also provides
authentication.

The Batch e*Way supports both SOCKSv4 and SOCKSv5. To enable SOCKS support,
the following must be specified in the e*Way Connection’s configuration file:

SOCKS server name

SOCKS server port number

User name

Encrypted password

Details of these configuration parameters are provided under “SOCKS Configuration”
on page 49.

Note: In the Collaboration Rules, make sure you set the SOCKS version number to 4, 5, or
-1 (unknown). Do not set this value to any other number.

SOCKS: Overview

SOCKS includes two components, the SOCKS server and SOCKS client. The SOCKS
server is implemented at the application layer, while the SOCKS client is implemented
between the application and transport layers.
Batch e*Way Intelligent Adapter User’s Guide 341 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Additional Features Secure FTP and the e*Way
Primarily, the protocol allows hosts on one side of a SOCKS server to gain access to
systems on the other side of a SOCKS server, without requiring direct IP-accessibility.

SOCKS Proxy Server

When an application client needs to connect to an application server, the client connects
to a SOCKS proxy server. The proxy server connects to the application server on behalf
of the client and relays data between the client and the application server. For the
application server, the proxy server is the client.

SOCKS and the Batch e*Way

The e*Way can use SOCKS to provide for secure FTP during data transmission.

Negotiation Methods

The e*Way supports the following negotiation methods:

 No-authentication

User/password

SOCKS Configuration Parameters

This section lists the SOCKS parameters you must set to configure the e*Way
Connection. For more information, see “SOCKS Configuration” on page 49.

Socks Enabled

Allows you to specify whether the FTP command connection goes through a SOCKS
server.

If you choose No, the e*Way does not connect to a SOCKS server. In this case, all other
parameters under the SOCKS section are ignored.

Socks Host Name

Allows you to enter the SOCKS host name. When you are communicating with a
SOCKS server, enter the SOCKS server name in this parameter.

Socks Server Port

Allows you to enter the port number to use on the SOCKS server, when connecting to it.

Socks Version

Allows you to specify the SOCKS server version. For the best performance, it is a good
idea to specify a version number instead of Unknown.

Socks User Name

Allows you to specify the user name to use along with the password for authentication
with a SOCKS5 server. This parameter is used for the user/password negotiation
method.

Socks Password

Allows you to specify the password to use along with the user name for authentication
with a SOCKS5 server. This parameter is used for the user/password negotiation
method.
Batch e*Way Intelligent Adapter User’s Guide 342 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Additional Features Secure FTP and the e*Way
9.2.2 SSH Tunneling
This section explains the Batch e*Way’s Secure Shell (SSH) tunneling features.

Note: SSH tunneling is also called SSH port forwarding.

SSH Tunneling: Overview

Developed by SSH Communications Security Ltd., SSH is a program that logs on to
another computer over a network. Once you have used SSH to log on, you can execute
commands in a remote machine and move files from one machine to another. SSH
provides strong authentication and secure communications over insecure channels.
This feature is a replacement for rlogin, rsh, rcp, and rdist.

SSH protects a network from attacks such as Internet protocol (IP) spoofing, IP source
routing, and Domain Name System (DNS) spoofing. An attacker who has managed to
take over a network can only force SSH to disconnect. The attacker cannot play back the
traffic or hijack the connection as long as encryption is enabled.

When you are using the SSH slogin (instead of rlogin), the entire logged-on session,
including the transmission of the password, is encrypted. As a result, it is almost
impossible for an outsider to collect passwords.

Note: For improved security, the number of times the e*Way can log on during a single
session is limited because, during a disconnect, the SSH tunnel is not closed. This
method of operation allows you to establish another connection without logging on.

For more information on SSH and how to use it, see the following Web site:

http://www.openssh.com

Additional Software Requirements

The e*Way makes use of an additional software application for the SSH tunneling. The
e*Way supports either of the following applications:

OpenSSH: For details, see:

http://www.openssh.org

Plink.exe: Plink is a Win32-only command-line interface to the PuTTY back ends
and is available from the PuTTY distribution at:

http://www.chiark.greenend.org.uk/~sgtatham/putty

In either case, the you are responsible for downloading, installing, and properly
configuring the necessary software. You must refer to the appropriate software
provider for support and documentation.

SSH Tunneling and the Batch e*Way

The e*Way can use SSH tunneling to provide for secure logon IDs and passwords. The
e*Way makes use of additional SSH-tunneling software for this functionality.
Batch e*Way Intelligent Adapter User’s Guide 343 SeeBeyond Proprietary and Confidential

http://www.openssh.com
http://www.openssh.org
http://www.chiark.greenend.org.uk/~sgtatham/putty

Chapter 9 Section 9.2
Additional Features Secure FTP and the e*Way
Enabling SSH Tunneling

To enable SSH tunneling, select Yes under the SSH Tunneling Enabled parameter in
the e*Way Connection configuration (see “SSH Tunneling Configuration” on page 51).
You can use the SSH-tunneling software in either of the following ways:

By using an existing SSH channel where a secure connection has already been
established

By internally launching an SSH process for the e*Way's use

Using an Existing Channel

To use an existing channel, select Yes under the SSH Channel Established parameter in
the configuration. The e*Way then operates under the assumption that you have
already established the SSH channel using the additional software. Once you set this
parameter to Yes, the e*Way automatically uses that channel.

Using an Internal Channel

If you choose No, under the SSH Channel Established parameter, the e*Way launches
a process within e*Gate to establish a channel. In this case, you must specify, under the
SSH Command Line parameter, a full and correct command-line statement for your
SSH-tunneling application and environment.

Note: You can obtain this information from the SSH-tunneling application’s
configuration. See the application’s documentation for details.

You must enter a correct and complete command-line statement. That is, all necessary
command line parameters must be provided so that the SSH-tunneling software can
run correctly without requiring further interaction.

Check the accuracy of this information by executing the command line from the shell. If
the software prompts for more information, add the required information to the
command line and try again. Continue this process until the software starts and
operates properly without additional action.

Note: You may need to launch the application at least once from the shell before using it in
the e*Way. This requirement depends on the SSH-tunneling application and
platform. Some applications prompt for trust-related information on the first
attempt, to connect to a remote host.

Port-forwarding Configuration

Through SSH tunneling, the FTP command connection is protected. This mechanism is
based on an existing SSH port-forwarding configuration. You must configure SSH port
forwarding on the SSH listen host before you configure the supporting e*Way
Connection.

For example, on the e*Gate client host localhost, you can issue a command, such as:

ssh -L 4567:atlas:21 -o BatchMode=yes atlas
Batch e*Way Intelligent Adapter User’s Guide 344 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Additional Features Secure FTP and the e*Way
Under the e*Way’s configuration for the previous example, you must specify:

localhost for the parameter SSH Listen Host

4567 for the parameter SSH Listen Port

In this case, the e*Way connects to the FTP server atlas:21 through an SSH tunnel.

SSH Tunneling Configuration Parameters

This section lists the SSH tunneling parameters you must set to configure the e*Way
Connection. For more information, see “SSH Tunneling Configuration” on page 51.

SSH Tunneling Enabled

Allows you to specify whether the FTP command connection is secured through an
SSH tunnel.

If you choose No, all other parameters in this section are ignored.

SSH Channel Established

Allows you to specify whether the e*Way needs to launch an SSH subprocess.

No means there is no existing SSH channel for an FTP transfer.

Yes means an SSH channel has been established, so the e*Way does not need to
spawn an SSH subprocess. If you select Yes, the following parameters are required:

SSH Listen Host

SSH Listen Port

SSH Command Line

Allows you to enter the command line used to establish an SSH channel. This
parameter is required only when you set the SSH Channel Established parameter to
No.

The command-line syntax can be different, depending on the specific SSH client
implementation. See your SSH-tunneling support software user’s guides for details.

SSH Listen Host

Allows you to specify the host name where the SSH support software runs, as well as
the host it listens to.

This parameter is required only when you set the SSH Channel Established parameter
to Yes. If you choose No, the Listen Host is always localhost because the SSH support
software is always started from the local host.

SSH Listen Port

Allows you to specify the port number that the SSH-tunneling support software uses to
check for incoming connections. This port number can be any unused port number on
the SSH listen host.

SSH User Name

Allows you to specify an SSH user name. This parameter can be required when the
setting for the SSH Channel Established parameter is No.
Batch e*Way Intelligent Adapter User’s Guide 345 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
Additional Features Guaranteed Exactly Once Delivery
SSH Password

Allows you to specify an SSH password corresponding to the user name entered under
SSH User Name. This parameter can be required only when the setting for the SSH
Channel Established parameter is No. For more information, see SSH User Name.

9.3 Guaranteed Exactly Once Delivery
Occasionally, a failure condition can occur in data transfer systems. Data can be lost
through system errors. To compound these problems, identical data is often delivered
more than once after system restarts.

The Batch e*Way allows you to guarantee that each unit of data is delivered exactly. In
e*Gate, this feature is called Guaranteed Exactly Once Delivery (GEOD) of Events.
Along with the e*Gate system, the e*Way guarantees exactly once delivery via
utilization of the XA protocol, from the X/Open Consortium.

9.3.1 XA Compliance
If cooperating software systems are XA-compliant, they guarantee that for each unit of
data transferred between systems:

No data is lost.

No unit of data is duplicated.

This vendor-neutral XA protocol was devised to manage transactions between
multiple-client application programs and multiple database systems. Data transactions
occur as a part of the following process:

Prepare: Transactions are prepared to commit.

Commit or Rollback: Transactions are either fully committed or rolled back.

You can enable GEOD in the e*Way by setting the XA-related configuration parameter
in the e*Way Connection to Yes. This action causes all data transmission through the
e*Way Connection to be performed in the e*Way’s XA mode. See “Working With GEOD
Collaborations” on page 347 for details on how to set this parameter.

Note: The e*Way cannot perform multiple file transfers within the same Collaboration
Rule, while in the XA mode. Also, this mode is not supported with the e*Way’s
Dynamic Configuration feature. See Chapter 8 for details on this feature.

9.3.2 Rollback and Commit
In the Batch e*Way, GEOD utilizes this same two-phase commit process. Under normal
circumstances, once a unit of data is prepared, it becomes committed. However, in the
event of a failure, e*Way data that has been prepared but not committed is rolled back
to ensure the non-duplication of data.
Batch e*Way Intelligent Adapter User’s Guide 346 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
Additional Features Guaranteed Exactly Once Delivery
GEOD data management features keep track of prepared/uncommitted versus
committed data units, as well as managing data recovery. Therefore, when normal
system operations return, the e*Way can resume data transactions where they left off.
Keep mind that the commit phase completes after the full execution of any Business
Rule.

Note: The e*Way does not support the XA mode with sub-Collaborations.

9.3.3 Working With GEOD Collaborations
For a Collaboration to be fully GEOD-enabled, all of its sources and destinations must
be e*Way Connections that support XA, and XA must be activated in all of its e*Way
Connections. If only a subset of the e*Way Connections are XA, then only those e*Way
Connections are guaranteed to participate in the two-phase commit process.

Important: You must make sure there is no manual or other activity in respect to the files
transmitted in the XA mode. The transmission must be isolated from any outside
activity.

This feature is available with the following ETDs:

FTP

Local file

Note: No concurrent access to a file is allowed (also true for non-XA mode).

Restrictions

The use of the XA mode with the e*Way has the following restrictions:

FTP ETD Only

The FTP append operation cannot be used.

FTP raw commands cannot be used.

FTP and Local File ETDs

Only one get() or put() call per ETD can be made during the execution of a
Collaboration Rule.

Direct calls to Provider ETD nodes do not participate in any XA-mode transactions.
That is, only the get() and put() methods’ operation participates in the XA mode.
None of the other methods under the Provider node take part in XA transactions.

All existing destination files are overwritten and not restored during any XA-mode
transaction rollback (also valid in non-XA mode). If you set up the ETD to write
files to a particular destination, any file there with the same name is overwritten
during the e*Way’s operation. No backup copy is maintained in either the XA or
non-XA mode.
Batch e*Way Intelligent Adapter User’s Guide 347 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
Additional Features Guaranteed Exactly Once Delivery
Caution: If the e*Way stops or does not start, and generates the error message Incorrect
State, you must delete certain state files. In these cases, you can go to the
eGate\client\LocalFileETD\<Collaboration UID> or
eGate\client\FtpETD\<Collaboration UID> directory and delete all files
named in the following format:
CollaborationName_ETDInstanceName.Extension
Where CollaborationName is the name of the Collaboration that generated the
error, ETDInstanceName is the name of the current ETD instance, and Extension
is the file extension. The files reside in subdirectories named after the Collaboration's
UID.

Behavior With get()

When you are getting data, using the FTP or local file ETD, the XA commit phase is
completed after the current file is completely transmitted to e*Gate, and post-transfer
commands are performed.

In case of a mid-transfer problem, the e*Way completes rollback as follows:

The incomplete file is deleted from e*Gate’s memory; this action also rolls back any
pre-transfer commands.

When operation resumes, the current file transaction starts over again from the
beginning; any pre-transfer commands are repeated.

When the transaction is done, any post-transfer commands are executed (commit
phase complete).

Behavior With put()

When you are sending data, using the FTP or local file ETD, the XA commit phase is
completed after the data is transmitted to the remote FTP or local file system, and post-
transfer commands are performed.

In case of a problem in mid transfer, the e*Way completes rollback as follows:

The incomplete file is deleted from the remote or local location; this action also rolls
back any pre-transfer commands.

When operation resumes, the current file transaction starts over again from the
beginning; any pre-transfer commands are repeated.

When the transaction is done, any post-transfer commands are executed (commit
phase complete).

Note: You must use JMS e*Way Connections because these components can be XA-
enabled. JMS IQs are not XA-compliant and do not provide XA-mode operation in a
GEOD schema.
Batch e*Way Intelligent Adapter User’s Guide 348 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
Additional Features Guaranteed Exactly Once Delivery
9.3.4 Enabling the XA Mode
This section provides general procedures on how to enable the XA mode. For more
information on the e*Way’s configuration parameters and how to set them, see
Chapter 4.

For specific information on configuring the e*Way Connection parameters, see:

FTP ETD

“Transaction Type” on page 37

Local File ETD

“Transaction Type” on page 61

To enable the XA Mode in an e*Way Connection

1 In the e*Gate Schema Designer, with the Components tab active, open the e*Way
Connections folder and, in the Editor pane (on the right), double-click the e*Way
Connection you want to edit.

A Properties dialog box for the e*Way Connection opens, displaying the General
tab.

2 In the e*Way Connection Configuration File area, click Edit.

The e*Way Configuration Editor window opens. Initially, the General Settings
section is active.

3 In the Transaction Type area, select XA-compliant (see Figure 175 on page 350).

Note: Using pre-and post-transfer configuration parameter commands allows you to move
a file to a temporary location during an XA-mode transfer. Then, after the transfer,
you can take subsequent action from there or from the new location.
Batch e*Way Intelligent Adapter User’s Guide 349 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
Additional Features Guaranteed Exactly Once Delivery
Figure 175 e*Way Configuration Editor: Enabling GEOD

4 After you finish setting parameters for the e*Way Connection, close the editor.

5 In the Properties dialog box for the e*Way Connection, click OK.

When all sources and destinations for a Collaboration are XA-compliant e*Way
Connections, the e*Way and e*Gate take care of the rest of the GEOD process, such as
logging, exchanging prepare, commit and rollback calls, and managing data recovery.

Note: For more information on e*Gate’s GEOD feature and how to use it, see the e*Gate
Integrator User’s Guide.
Batch e*Way Intelligent Adapter User’s Guide 350 SeeBeyond Proprietary and Confidential

Chapter 10

e*Way Java Methods

This chapter provides an overview of the Java classes and methods contained in the
Batch e*Way Intelligent Adapter. These methods are used to extend the functionality of
the e*Way.

10.1 Batch e*Way Methods and Classes: Overview
The Batch e*Way has been enabled by the Java programming language. Java methods
have been added to make it easier to set information in the Batch e*Way Event Type
Definitions (ETDs), as well as get information from them.

The nature of this data transfer depends on the configuration parameters (see
Chapter 4) you set for the e*Way in the e*Gate Schema Designer’s e*Way Configuration
Editor window. These Java methods are organized into related groups or classes.

Note: For more information on the Batch e*Way ETD structures, their nodes, and
attributes (within an e*Gate .xsc file), see Chapter 5.

For the e*Way, the stceway.exe file (this file creates a Java-based Multi-Mode e*Way; see
Chapter 3) is used to communicate between the e*Way and other e*Gate components. A
Java Collaboration is utilized to keep the communication open between the e*Way and
the external system or network.

10.2 Java Classes
The methods for this e*Way are organized into the following Java classes:

BatchException

BatchRecordConfiguration

BatchRecordETD

BatchRecordParser

FtpETD

FtpFileClient
Batch e*Way Intelligent Adapter User’s Guide 351 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Way Java Methods Using Java Methods
10.3 Using Java Methods
The Schema Designer’s Collaboration Rules Editor window allows you to call Java
methods by dragging and dropping an ETD node into the Rules scroll box of the Rules
Properties window.

Note: The node name can be different from the Java method name.

After you drag and drop, the actual conversion takes place in the .xsc file. To view
the .xsc file, use the Schema Designer’s ETD Editor or Collaboration Rules Editor
windows.

For example, if the node name is TargetFileName, the associated javaName is
TargetFileName. If you want to get the node value, use the Java method called
getTargetFileName(). If you want to set the node value, use the Java method called
setTargetFileName().

For a complete list of Java methods with an explanation of each, refer to the Javadoc at
the following location:

Javadocs\Batch_eWay\index.html

Note: This path is relative to the eGate\client\docs installation directory.

FtpFileConfiguration

FtpFileException

FtpFileProvider

FtpHeuristics

InputStreamAdapter

LocalFileClient

LocalFileConfiguration

LocalFileETD

LocalFileException

NestedException

OutputStreamAdapter

StreamingException
Batch e*Way Intelligent Adapter User’s Guide 352 SeeBeyond Proprietary and Confidential

Index
Index

A
Action on Malformed Command parameter 70
Action on Malformed parameter 60
Append parameter 42, 63

B
basic features, Batch e*Way 17
BatchRecordETD configuration parameters 33
book 120, 328

C
Class parameter 36, 57, 67, 71
CLASSPATH Override parameter 26
CLASSPATH Prepend parameter 26
Client Class Name parameter 55
Collaboration 315
Collaboration Rules 315
Collaborations 168, 233, 268, 322
Command After Transfer parameter 73
Command Connection Timeout parameter 40
components of e*Way 17
configuration parameters, e*Way 30–85
Connection Establishment Mode parameter 57
Connection Inactivity Timeout parameter 57
Connection Manager 85

controlling connection timing and status 86
Connection Verification Interval parameter 58
Connector Configuration, BatchRecordETD 36
Connector configuration, FTP file ETD 70
Connector Configuration, FtpETD 56
Connector Configuration, LocalFileETD 67

D
Data Connection Timeout parameter 40
data streaming

consuming-stream adapters 339
four basic setups 331
overcoming large-file limitations 329
overview 328
stream-adapter interfaces 340
use and operation 329

Delimiter on Last Record parameter 35
Directory Listing Style parameter 38
Disable JIT parameter 28
Dynamic Configuration feature

data DTD 291
data messages 284
DTD files 282
error DTD 288
error messages 283
general operation 281
limitations 285
order messages 282
overview 281
send or receive DTD 285

Dynamic Configuration, FtpETD 58
Dynamic Configuration, local file ETD 68

E
e*Way Connections

XA-compliant 349
e*Way operation, general 12
e*Way overview diagram

case 1 14
case 2 15
case 3 16

ETDs, e*Way
components 89
types 88

Event Type Definitions and Collaborations 13
extending e*Way functionality

design 120
interface-based functionality 121
overview 120
user classes and properties files 120

extending FTP ETD
client and provider hierarchies 125
client and provider interfaces 125
deriving from client and provider interfaces 126
using your client and provider implementations

127
extending record-processing ETD

configure() 124
deriving from parser interface 123
get() and put() 124
parser interface operation 122
record-parser hierarchy 122
using your parser implementation 124

Extensions Configuration, FtpETD 55
external system requirements 19

F
file transfer commands, pre and post 104
Batch e*Way Intelligent Adapter User’s Guide 353 SeeBeyond Proprietary and Confidential

Index
FTP Configuration, FtpETD 38
FTP ETD

essential methods 94
node functions 92
overview 90
sequence numbering 95
structure and operation 90
type conversions 93
usage 93

FTP file ETD
handling type conversions 113
methods 113
overview 111
structure 112

FTP heuristics
file type selection 76
platform selection 76

FTP heuristics, overview 75
FTP Raw Commands Configuration, FtpETD 47
FtpETD configuration parameters 37

G
General Settings Configuration, BatchRecordETD
33
General Settings Configuration, FtpETD 37
General Settings Configuration, LocalFileETD 61
Guaranteed Exactly Once Delivery (GEOD)

overview 346
procedure 349
rollback and commitment 346
working with Collaborations 347
XA-compliance, how achieved 346

H
Host Name parameter 38, 71

I
implementation overview 128
Include Order Record in Error Record parameter 59,
69
Include Payload in Error Record parameter 60, 69
index

book 120, 328
Initial Heap Size parameter 27
installation

UNIX 21
Windows 20

installed files 22
intended reader 12

J
Java methods and classes

overview 351
using 352

javadoc, link to 352
JNI DLL Absolute Pathname parameter 25

L
local file ETD

data stream-adapter provider 109
essential methods 107
node functions 103
overview 101
pre/post file transfer commands 104
resume reading feature 107
structure and operation 101
usage 104

LocalFileETD configuration parameters 60, 70

M
Max Sequence Number parameter 48, 67, 75
Maximum Heap Size parameter 27
Maximum Stack Size for JVM Threads parameter 27
Maximum Stack Size for Native Threads parameter
27
Mode parameter 39, 72
Multi-Mode e*Way

configuring JVM Settings 25
setting properties 24, 30

MVS Generation Data Group (GDG) 76
MVS Partition Data Sets (PDS) 76
MVS Sequential 76

O
Overwrite Or Append parameter 73

P
Parse or Create Mode parameter 33
Password parameter 39, 72
Post Directory Name Is Pattern parameter 46
Post Directory Name parameter 46
Post File Name Is Pattern parameter 47
Post File Name parameter 46
Post Transfer Command parameter 45, 65
Post Transfer Configuration, FtpETD 45
Post Transfer Configuration, LocalFileETD 65
Post Transfer Name Is Pattern parameter 66
Post Transfer Name parameter 66
Post Transfer Raw Commands parameter 48, 74
Batch e*Way Intelligent Adapter User’s Guide 354 SeeBeyond Proprietary and Confidential

Index
Pre Directory Name Is Pattern parameter 44
Pre Directory Name parameter 43
Pre File Name Is Pattern parameter 45
Pre File Name parameter 44
Pre Transfer Command parameter 43, 63
Pre Transfer Configuration, FtpETD 43
Pre Transfer Configuration, LocalFileETD 63
Pre Transfer Name Is Pattern parameter 65
Pre Transfer Name parameter 64
Pre Transfer Raw Commands parameter 47, 74
Property.Tag parameter 37, 57, 68
Property.tag parameter 71
Provider Class Name parameter 55
Publish Status Record on Error parameter 59, 69
Publish Status Record on Success parameter 58, 68

R
Record Configuration, BatchRecordETD 33
Record Delimiter parameter 34
Record Size parameter 35
Record Type parameter 33
record-processing ETD

creating a payload 99
get() and put() 99
node functions 98
overview 96
parse or create mode 99
parser interface 101
parsing a payload 100
structure and operation 97
usage 99

regular expressions
examples 116
examples of directories/platforms 116
overview 114
rules for directory usage 115

Remote Debugging Port Number parameter 28
Remote Directory Name parameter 72
Remote File Name parameter 73
Rename or Archive Name parameter 74
Resume Reading Enabled parameter 61
running a schema 170

S
sample schema, BasicFtpSample

components 132
creating 132
operation 131
overview 130
setup 130

sample schema, FtpExtensibilitySample
components 238, 272

creating 238, 272
diagram 236, 271
operation 237
overview 236

sample schema, FtpSecuritySample
operation 271
overview 271

sample schema, importing 128
sample schema, RPStreamingSample

components 174
creating 174
operation 172
overview 171
setup 171

schema creation, steps 129
sequence numbering 95
Sequence Numbering Configuration, FtpETD 48
Sequence Numbering Configuration, LocalFileETD
66
Server Port parameter 38, 72
SOCKS Configuration, FtpETD 49
Socks Enabled parameter 49
Socks Host Name parameter 49
Socks Password parameter 50
Socks Server Port parameter 49
SOCKS support

general information 341
overview 341
use with Batch e*Way 342

Socks User Name parameter 50
Socks Version parameter 50
SOCKS, configuration parameters overview 342
special characters

date/time format syntax 118
overview 116
resolving names 117
types of name expansion 117

SSH Channel Established parameter 52
SSH Command Line parameter 52
SSH Listen Host parameter 53
SSH Listen Port parameter 54
SSH Password parameter 55
SSH tunneling

 344
enabling with Batch e*Way 344
overview 343

SSH Tunneling and Batch e*Way, overview 50
SSH Tunneling Configuration, FtpETD 51
SSH Tunneling Enabled parameter 51
SSH tunneling, configuration parameters overview
345
SSH User Name parameter 54
Starting Sequence Number parameter 48, 66, 75
supported operating systems 18
Batch e*Way Intelligent Adapter User’s Guide 355 SeeBeyond Proprietary and Confidential

Index
Suspend Option for Debugging parameter 28
system requirements 18

T
Target Directory Name Is Pattern parameter 41, 62
Target Directory Name parameter 41, 62
Target File Name Is Pattern parameter 42, 63
Target File Name parameter 41, 62
Target Location Configuration, FtpETD 41
Target Location Configuration, LocalFileETD 61
template schema, Dynamic Configuration

Collaboration Rules and Collaborations 315
components 295
diagram 293
e*Way Connections 298
Event Types and ETDs 297
importing 293
introduction 293
operation 294

Transaction Type parameter 37, 61
Type parameter 36, 56, 67, 70

U
Use PASV parameter 40, 72
User Class Configuration, BatchRecordETD 35
User Class parameter 35
User Name parameter 39, 71
User Properties File parameter 56
User Properties parameter 36

X
X/Open Consortium 346
XA compliance, see also GEOD 346
XA-compliant e*Way Connections 349
Batch e*Way Intelligent Adapter User’s Guide 356 SeeBeyond Proprietary and Confidential

	Batch e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 Batch e*Way User’s Guide
	1.2 Intended Reader
	1.3 General e*Way Operation
	1.3.1 ETDs and Collaborations
	1.3.2 Multi-Mode e*Way
	1.3.3 e*Way Configuration
	1.3.4 e*Way Overview Diagrams
	Case 1: Moving Small Files
	Case 2: Moving Large Files
	Case 3: Moving a Data Payload

	1.3.5 General Features
	1.3.6 e*Way Components

	1.4 Supported Operating Systems
	1.5 System Requirements
	1.6 External System Requirements

	Installation
	2.1 Installation on Windows Systems
	2.1.1 e*Way Installation Procedure
	2.1.2 After Installation

	2.2 UNIX
	2.2.1 Installation Procedure
	2.2.2 After Installation

	2.3 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way Properties
	3.2 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote Debugging Port Number
	Suspend Option for Debugging

	3.3 General Settings
	3.3.1 Rollback Wait Interval
	3.3.2 Standard IQ FIFO

	e*Way Connection Configuration
	4.1 Configuring e*Way Connection Properties
	4.2 BatchRecordETD: Configuration Parameters
	4.2.1 General Settings Configuration
	Parse or Create Mode

	4.2.2 Record Configuration
	Record Type
	Record Delimiter
	Delimiter on Last Record
	Record Size

	4.2.3 User Class Configuration
	User Class
	User Properties

	4.2.4 Connector Configuration
	Type
	Class
	Property.Tag

	4.3 FtpETD: Configuration Parameters
	4.3.1 General Settings Configuration
	Transaction Type

	4.3.2 FTP Configuration
	Directory Listing Style
	Host Name
	Server Port
	User Name
	Password
	Mode
	Use PASV
	Command Connection Timeout
	Data Connection Timeout

	4.3.3 Target Location Configuration
	Target Directory Name
	Target Directory Name Is Pattern
	Target File Name
	Target File Name Is Pattern
	Append

	4.3.4 Pre Transfer Configuration
	Pre Transfer Command
	Pre Directory Name
	Pre Directory Name Is Pattern
	Pre File Name
	Pre File Name Is Pattern

	4.3.5 Post Transfer Configuration
	Post Transfer Command
	Post Directory Name
	Post Directory Name Is Pattern
	Post File Name
	Post File Name Is Pattern

	4.3.6 FTP Raw Commands Configuration
	Pre Transfer Raw Commands
	Post Transfer Raw Commands

	4.3.7 Sequence Numbering Configuration
	Starting Sequence Number
	Max Sequence Number

	4.3.8 SOCKS Configuration
	Socks Enabled
	Socks Host Name
	Socks Server Port
	Socks Version
	Socks User Name
	Socks Password

	4.3.9 Batch e*Way and SSH Tunneling
	Additional SSH-supporting Software
	Port-forwarding Configuration

	4.3.10 SSH Tunneling Configuration
	SSH Tunneling Enabled
	SSH Channel Established
	SSH Command Line
	SSH Listen Host
	SSH Listen Port
	SSH User Name
	SSH Password

	4.3.11 Extensions Configuration
	Provider Class Name
	Client Class Name
	User Properties File

	4.3.12 Connector Configuration
	Type
	Class
	Property.Tag
	Connection Establishment Mode
	Connection Inactivity Timeout
	Connection Verification Interval

	4.3.13 Dynamic Configuration
	Publish Status Record on Success
	Publish Status Record on Error
	Include Order Record in Error Record
	Include Payload in Error Record
	Action on Malformed Command

	4.4 LocalFileETD: Configuration Parameters
	4.4.1 General Settings Configuration
	Transaction Type
	Resume Reading Enabled

	4.4.2 Target Location Configuration
	Target Directory Name
	Target Directory Name Is Pattern
	Target File Name
	Target File Name Is Pattern
	Append

	4.4.3 Pre Transfer Configuration
	Pre Transfer Command
	Pre Transfer Name
	Pre Transfer Name Is Pattern

	4.4.4 Post Transfer Configuration
	Post Transfer Command
	Post Transfer Name
	Post Transfer Name Is Pattern

	4.4.5 Sequence Numbering Configuration
	Starting Sequence Number
	Max Sequence Number

	4.4.6 Connector Configuration
	Type
	Class
	Property.Tag

	4.4.7 Dynamic Configuration
	Publish Status Record on Success
	Publish Status Record on Error
	Include Order Record in Error Record
	Include Payload in Error Record
	Action on Malformed Command

	4.5 FtpFileETD: Configuration Parameters
	4.5.1 Connector Configuration
	Type
	Class
	Property.Tag

	4.5.2 FTP File Configuration
	Directory Listing Style
	Host Name
	User Name
	Password
	Mode
	Use PASV
	Server Port
	Remote Directory Name
	Remote File Name
	Overwrite Or Append
	Command After Transfer
	Rename or Archive Name
	Pre Transfer Raw Commands
	Post Transfer Raw Commands
	Starting Sequence Number
	Max Sequence Number

	4.6 Using FTP Heuristics
	FTP Heuristics: e*Way Operation
	Platform or File Type Selection
	4.6.1 Configuration Parameters
	Commands Supported by FTP Server
	Header Lines To Skip
	Header Indication Regex Expression
	Trailer Lines To Skip
	Trailer Indication Regex Expression
	Directory Indication Regex Expression
	File Link Real Data Available
	File Link Indication Regex Expression
	File Link Symbol Regex Expression
	List Line Format
	Valid File Line Minimum Position
	File Name Is Last Entity
	File Name Position
	File Name Length
	File Extension Position
	File Extension Length
	File Size Verifiable
	File Size Position
	File Size Length
	Special Envelope For Absolute Path Name
	Listing Directory Yields Absolute Path Names
	Absolute Path Name Delimiter Set
	Change Directory Before Listing
	Directory Name Requires Terminator

	4.7 Connection Manager
	4.7.1 Using the Connection Manager
	4.7.2 Controlling Connection Timing and Status
	When a Connection Is Made
	When a Connection is Disconnected
	Connectivity Status

	e*Way Event Type Definitions
	5.1 e*Way ETDs: Overview
	5.1.1 Types of ETDs
	5.1.2 ETD Components

	5.2 ETD for FTP Operations
	5.2.1 ETD Structure and Operation
	Configuration Node
	Client and Provider Nodes

	5.2.2 FTP ETD Node Functions
	5.2.3 Using the FTP ETD
	Handling Type Conversions
	Essential FTP ETD Methods
	Sequence Numbering
	Additional FTP File Transfer Commands

	5.3 ETD for Record Processing
	5.3.1 ETD Structure and Operation
	5.3.2 Record-processing ETD Node Functions
	5.3.3 Using the Record-processing ETD
	Using get() and put()
	Choosing the Parse or Create Mode
	Creating a Payload
	Parsing a Payload
	Parser Interface
	Use With Data Streaming

	5.4 ETD for Local File
	5.4.1 ETD Structure and Operation
	Configuration Node
	Client Node

	5.4.2 Local File ETD Node Functions
	5.4.3 Using the Local File ETD
	Advantages of Using the ETD
	Pre/post File Transfer Commands
	Essential Local File ETD Methods
	Resume Reading Feature
	Data Stream-adapter Provider
	Sequence Numbering
	Handling Type Conversions

	5.4.4 Recommended Practice
	Example 1: Parsing a Large File
	Example 2: Slow, Complex Query

	5.4.5 ETD Limitations

	5.5 FTP File ETD
	5.5.1 ETD Structure
	5.5.2 ETD Methods
	5.5.3 Handling Type Conversions
	5.5.4 Encrypting Passwords

	5.6 Using Regular Expressions
	5.6.1 Regular Expressions: Overview
	Entering Regular Expressions
	Regular Expressions and the e*Way

	5.6.2 Rules for Directory Regular Expressions
	Basic Directory Regular Expression Rules
	Directory Regular Expression Examples

	5.7 Using Special Characters
	5.7.1 Types of Name Expansion
	5.7.2 Resolving Names
	5.7.3 Date/time Format Syntax

	Extending the e*Way
	6.1 Extending e*Way Functionality: Overview
	6.1.1 Designed With Extensibility In Mind
	6.1.2 Specifying User Classes and Properties Files
	6.1.3 Interface-based e*Way Functionality

	6.2 Extending the Record-processing ETD
	6.2.1 Parser Interface Operation
	6.2.2 Record-parser Hierarchy
	6.2.3 Deriving From the Parser Interface
	Using get() and put() Methods
	Using the initialize() Method

	6.2.4 Using Your Parser Implementation

	6.3 Extending the FTP ETD
	6.3.1 FTP Client and Provider Interfaces
	6.3.2 FTP Client and Provider Hierarchies
	6.3.3 Deriving From Client and Provider Interfaces
	6.3.4 Using Your Client and Provider Implementations
	Supplying User Properties to Your Implementation Class
	Sample Implementation

	Implementation
	7.1 Implementation Overview
	7.2 Sample Schema: Basic FTP With Streaming
	7.2.1 BasicFtpSample Schema Overview
	Schema Setup
	Schema Operation
	Schema Components

	7.2.2 Creating the BasicFtpSample Sample Schema
	Creating a New Schema
	Creating Event Types and ETDs
	Creating and Configuring e*Ways
	Creating and Configuring e*Way Connections
	Creating Collaboration Rules
	Creating Collaborations
	Running the Schema

	7.3 Sample Schema: Local File Streaming and GEOD
	7.3.1 RPStreamingSample Schema Overview
	Schema Setup
	Schema Operation
	Schema Components

	7.3.2 Creating the RPStreamingSample Sample Schema
	Creating a New Schema
	Creating Event Types and ETDs
	Creating and Configuring e*Ways
	Creating and Configuring e*Way Connections
	Checking the IQ Manager
	Creating Collaboration Rules
	Creating Collaborations
	Running the Schema

	7.4 Sample Schema: FTP and ETD Extensibility
	7.4.1 FtpExtensibilitySample Schema Overview
	Schema Setup
	Schema Operation
	Schema Components

	7.4.2 Creating the FtpExtensibilitySample Schema
	Creating a New Schema
	Creating Event Types and ETDs
	Creating and Configuring e*Ways
	Creating and Configuring e*Way Connections
	Checking the IQ Manager
	Creating Collaboration Rules
	Creating Collaborations
	Running the Schema

	7.5 Sample Schema: Using Secure FTP
	7.5.1 FtpSecuritySample Schema Overview
	Schema Setup
	Schema Operation
	Schema Components

	7.5.2 Creating the FtpSecuritySample Schema
	Creating and Configuring e*Way Connections
	Running the Schema

	Dynamic Configuration
	8.1 Dynamic Configuration: Overview
	8.1.1 General Operation
	Dynamic Configuration Messages and Files
	Order Messages
	Error Messages
	Data Messages
	Configuration Parameters
	Limitations of the Feature

	8.2 Message Descriptions
	8.2.1 Send or Receive Order Message
	Additional Information: Order Messages
	Sending Data with a Send Order
	Receiving Data with a Receive Order

	8.2.2 Error Message
	Additional Information: Error Messages

	8.2.3 Data Message
	Additional Information: Data Messages
	Payload Data

	8.3 Dynamic Configuration Template
	8.3.1 Importing the Dynamic Configuration Schema Template
	8.3.2 Schema Setup
	8.3.3 Schema Operation
	8.3.4 Schema Components
	8.3.5 Overview of Event Types and ETDs
	8.3.6 Configuring the e*Way Connections
	8.3.7 Configuring the File e*Ways
	8.3.8 Collaboration Rules and Collaboration Operation
	Using the Predefined Collaboration Rules
	Collaboration Rules Components: File e*Ways
	Collaboration Rules Component: cr_DynBatch
	Malformed Command Actions
	Schema Collaborations
	Before Running the Schema
	Running the Schema
	After Running the Schema

	Additional Features
	9.1 Streaming Data Between Components
	9.1.1 Introduction to Data Streaming
	9.1.2 Overcoming Large-file Limitations
	9.1.3 Using Data Streaming
	Data-streaming Operation
	Data Streaming Versus Payload Data Transfer
	Data Streaming Setups
	Consuming-stream Adapters

	9.1.4 Stream-adapter Interfaces
	Inbound Transfers
	Outbound Transfers

	9.2 Secure FTP and the e*Way
	9.2.1 SOCKS Support
	SOCKS: Overview
	SOCKS and the Batch e*Way

	9.2.2 SSH Tunneling
	SSH Tunneling: Overview
	Additional Software Requirements
	SSH Tunneling and the Batch e*Way

	9.3 Guaranteed Exactly Once Delivery
	9.3.1 XA Compliance
	9.3.2 Rollback and Commit
	9.3.3 Working With GEOD Collaborations
	Restrictions
	Behavior With get()
	Behavior With put()

	9.3.4 Enabling the XA Mode

	e*Way Java Methods
	10.1 Batch e*Way Methods and Classes: Overview
	10.2 Java Classes
	10.3 Using Java Methods

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	X

