
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
CORBA-VisiBroker (Client)
User’s Guide

Release 5.0.5 for Schema Run-time Environment (SRE)

Monk Version

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050405222348.

e*Way Intelligent Adapter for
CORBA-VisiBroker (Client) User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

e*Way Intelligent Adapter for
CORBA-VisiBroker (Client) User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 6
Overview 6

Components 7
Features 7

Supported Operating Systems 7

System Requirements 7

External System Requirements 8

Chapter 2

Installation 9
Installing the CORBA e*Way on Windows 9

Pre-installation 9
Installation Procedure 9

Installing the CORBA e*Way on UNIX 10
Pre-Installation 10
Installation Procedure 10

Files/Directories Created by the Installation 11

Chapter 3

Configuration 12
e*Way Configuration Parameters 12

General Settings 13
Journal File Name 13
Max Resends Per Message 13
Max Failed Messages 13
Forward External Errors 14

Communication Setup 14
Start Exchange Data Schedule 14
Stop Exchange Data Schedule 15
Exchange Data Interval 15
Down Timeout 15
Up Timeout 16

Contents

e*Way Intelligent Adapter for
CORBA-VisiBroker (Client) User’s Guide 4 SeeBeyond Proprietary and Confidential

Resend Timeout 16
Zero Wait Between Successful Exchanges 16

Monk Configuration 16
Operational Details 17
How to Specify Function Names or File Names 23
Additional Path 24
Auxiliary Library Directories 24
Monk Environment Initialization File 24
Startup Function 25
Process Outgoing Event Function 25
Exchange Data with External Function 26
External Connection Establishment Function 27
External Connection Verification Function 27
External Connection Shutdown Function 28
Positive Acknowledgment Function 28
Negative Acknowledgment Function 29
Shutdown Command Notification Function 29

External Configuration Requirements 30

Chapter 4

Implementation 31
Overview 31

Method Invocation 31

CORBA VisiBroker Client Converter Build Tool 31
Using the Build Tool 32

CORBA-Visibroker Supported Types 34

Installing the CORBA Client Sample Schema 34
CORBA Client Sample Schema Overview 35
Create the Sample Application 35
Create Sample Data File 36
Import the Sample Schema 36
Run the Sample Schema 36

Chapter 5

Functions 38
Overview 38

Basic Functions 38

CORBA-VisiBroker Monk Functions 42

Contents

e*Way Intelligent Adapter for
CORBA-VisiBroker (Client) User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 6

Troubleshooting 47
General Troubleshooting 47

Password Problems 48

Operating System Problems 48

Index 50

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document provides instructions for installing and configuring the SeeBeyondTM
Technology Corporation’s (SeeBeyondTM) e*WayTM Intelligent Adapter for CORBA-
VisiBroker (Client). This chapter provides an introduction to the e*Way.

1.1 Overview
The CORBA-VisiBroker Client e*Way provides a Monk programming language
interface to external applications that have CORBA interfaces. This allows access to
CORBA objects via the Monk scripting language.

The CORBA-VisiBroker Client e*Way provides functions and services to applications
that use CORBA to implement interface APIs. Through its Monk extension, the
CORBA-Visibroker e*Way acts as a client to a CORBA object server.

The CORBA-VisiBroker Client e*Way takes advantage of the CORBA Dynamic
Invocation Interface (DII) in order to utilize CORBA capabilities and allow it to function
dynamically. Through DII, the CORBA-VisiBroker Client e*Way has the ability to
identify interfaces at runtime. DII also allows a scripting language such as Monk to
make calls into CORBA objects without the static binding normally done with the IDL
(Interface Definition Language) compiler.

When a Monk script accesses an operation on a CORBA object, the Monk engine can
use DII to assemble a remote method invocation from the IDL, then pass the proper
arguments to the method, and finally return the result to the script.

This Chapter Includes:

“Overview” on page 6

“Components” on page 7

“Features” on page 7

“System Requirements” on page 7

Chapter 1 Section 1.2
Introduction Supported Operating Systems

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 7 SeeBeyond Proprietary and Confidential

1.1.1 Components
The CORBA-VisiBroker Client e*Way comprises the following:

stcewgenericmonk.exe, the executable component

Configuration files, which the e*Way Editor uses to define configuration
parameters

Monk function scripts, discussed in Chapter 5

Dynamic link library (DLL)—a monk script automatically loads the DLL when the
e*Way starts

CORBA Visibroker Client Converter, see “CORBA VisiBroker Client Converter
Build Tool” on page 31.

A complete list of installed files appears in Table 1 on page 11.

1.1.2 Features
The CORBA-VisiBroker Client e*Way supports the following:

This e*Way is based on VisiBroker 3.3 for C++, which is compliant with CORBA
version 2.1.

1.2 Supported Operating Systems
The CORBA-VisiBroker Client e*Way is available on the following operating systems:

Windows 2000, Windows XP, and Windows Server 2003

Sun Solaris 8 and 9

1.3 System Requirements
To use the CORBA VisiBroker Client e*Way, you need to meet the following
requirements:

An eGate Participating Host

A TCP/IP network connection

The e*Way must be configured and administered using the e*Gate Schema Designer.

Note: Additional disk space can be required to process and queue the data that this e*Way
processes. The amount necessary can vary based on the type and size of the data
being processed and any external applications doing the processing.

Chapter 1 Section 1.4
Introduction External System Requirements

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 8 SeeBeyond Proprietary and Confidential

1.4 External System Requirements
The CORBA-VisiBroker Client e*Way supports the following external system:

CORBA applications

CORBA applications may have their own requirements; see the specific application’s
documentation for details.

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter covers procedures for installing the CORBA-VisiBroker Client e*Way on
Windows and UNIX systems. A list of the files and directories created during
installation are also included.

This Chapter Explains:

“Installing the CORBA e*Way on Windows” on page 9

“Installing the CORBA e*Way on UNIX” on page 10

“Files/Directories Created by the Installation” on page 11

2.1 Installing the CORBA e*Way on Windows

2.1.1 Pre-installation
Exit all Windows programs before running the setup program, including any anti-
virus applications.

You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the CORBA-VisiBroker Client e*Way on Windows systems

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

Chapter 2 Section 2.2
Installation Installing the CORBA e*Way on UNIX

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 10 SeeBeyond Proprietary and Confidential

6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

10 Select the CORBA-VisiBroker Client e*Way. Click the continue button to return to
the Select Components dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the CORBA-VisiBroker Client
e*Way. Be sure to install the e*Way files in the suggested client installation
directory. The installation utility detects and suggests the appropriate installation
directory. Unless you are directed to do so by SeeBeyond support personnel, do
not change the suggested installation directory setting.

12 Copy the file named stcjcs.jar from <eGate>\server\registry\repository\classes
to <eGate>\client\classes, where <eGate> is the directory in which e*Gate is
installed.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 Installing the CORBA e*Way on UNIX

2.2.1 Pre-Installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privilege to
create files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the CORBA-VisiBroker Client e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 11 SeeBeyond Proprietary and Confidential

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 Copy the file named stcjcs.jar from <eGate>\server\registry\repository\classes
to <eGate>\client\classes, where <eGate> is the directory in which e*Gate is
installed.

7 After installation is complete, exit the installation utility and launch the Schema
Designer.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The CORBA-VisiBroker Client e*Way installation process will install the following files
within the e*Gate “client” directory tree:

Table 1 Files created by the installation

e*Gate “Client” Directory File(s)

\bin stcewgenericmonk.exe
stc_monkcorbavb.dll

\configs\stcewgenericmonk stcewcorba.def

\monk_library\ewcorba corba-stdver-eway-funcs.monk
corba-struct-call.monk

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

The CORBA-VisiBroker Client e*Way must be configured before use. This chapter
describes all of the configuration parameters, including Monk configuration for
connection to the external system.

This Chapter Explains:

“e*Way Configuration Parameters” on page 12

“General Settings” on page 13

“Communication Setup” on page 14

“Monk Configuration” on page 16

“External Configuration Requirements” on page 30

3.1 e*Way Configuration Parameters
The CORBA-VisiBroker Client e*Way configuration parameters are set using the e*Way
Editor.

To configure the CORBA-VisiBroker Client e*Way:

1 In the Schema Designer’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, do one of three things:

Click New to create a new file. Then, from the e*Way Template Selection list,
select stcewcorba and click OK.

Click Find to select an existing configuration file.

Click Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the Working with e*Ways chapter in the e*Gate Integrators User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 13 SeeBeyond Proprietary and Confidential

General Settings

Communication Setup

Monk Configuration

3.1.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the
e*Gate SystemData directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event is journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message in the
next section)

When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 14 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the
external system after receiving an error.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way allows.
When the specified number of failed messages is reached, the e*Way shuts down and
exits.

Required Values

An integer between 1 and 1,024. The default is 3.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 14 SeeBeyond Proprietary and Confidential

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are
received from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 26 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

See “Schedule-driven Data Exchange Functions” on page 20 for information about
how the e*Way uses this function.

3.1.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Schema Designer controls
when the e*Way executable will run. The schedule you set within the parameters
discussed in this section (using the e*Way Editor) determines when data will be
exchanged. Be sure you set the "exchange data" schedule to fall within the "run the
executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

Exchange Data With External Function

Positive Acknowledgment Function

Negative Acknowledgment Function

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether the connection to the external system is active. If no ACK/NAK

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 15 SeeBeyond Proprietary and Confidential

is pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function
will be called according to the Exchange Data Interval parameter until the Stop
Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 26, “Exchange Data Interval”
on page 15, and “Stop Exchange Data Schedule” on page 15 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Start Exchange Data Schedule” on page 14 and “Stop Exchange Data Schedule”
on page 15 for more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 27 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 16 SeeBeyond Proprietary and Confidential

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification function. See “External Connection Verification Function” on
page 27 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Specifies the number of seconds the e*Way will wait between attempts to resend a
message (Event) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned data.
If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 26 for more information.

3.1.3 Monk Configuration
The parameters in this section help you set up the information the e*Way requires to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 1, below) handles communication with the external system; the other
half manages the Collaborations that process data and subscribe or publish to other
e*Gate components.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 17 SeeBeyond Proprietary and Confidential

Figure 1 e*Way internal architecture

The “communications half” of the e*Way uses Monk functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
“Events” and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The Monk Configuration options discussed in this
section control the Monk environment and define the Monk functions used to perform
these basic e*Way operations. You can create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad or UNIX vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The “business logic” side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Operational Details

The Monk functions in the “communications half” of the e*Way fall into the following
groups:

Type of Operation Name

Initialization Startup Function on page 25 (also see Monk
Environment Initialization File on page 24)

Connection External Connection Establishment Function
on page 27
External Connection Verification Function on
page 27
External Connection Shutdown Function on
page 28

Communication
with external
system

Business logic and
communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 18 SeeBeyond Proprietary and Confidential

A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Initialization Functions

Figure 2 illustrates how the e*Way executes its initialization functions.

Figure 2 Initialization Functions

Schedule-driven data
exchange

Exchange Data with External Function on
page 26
Positive Acknowledgment Function on
page 28
Negative Acknowledgment Function on
page 29

Shutdown Shutdown Command Notification Function
on page 29

Event-driven data exchange Process Outgoing Event Function on page 25

Type of Operation Name

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 19 SeeBeyond Proprietary and Confidential

Connection Functions

Figure 3 illustrates how the e*Way executes the connection establishment and
verification functions.

Figure 3 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 5 on page 21 and Figure 7 on
page 23 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 39 and send-external-down on page 40 for more
information.

Figure 4 illustrates how the e*Way executes its “connection shutdown” function.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 20 SeeBeyond Proprietary and Confidential

Figure 4 Connection shutdown function

Schedule-driven Data Exchange Functions

Figure 5 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

The “Start Data Exchange” time occurs

Periodically during the data-exchange schedule (after “Start Data Exchange” time,
but before “Stop Data Exchange” time), as set by the Exchange Data Interval

The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or
command.

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 21 SeeBeyond Proprietary and Confidential

Figure 5 Schedule-driven data exchange functions

Shutdown Functions

 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgement

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgement

function

Yes

No

YesNo

Call Exchange Data with
External function

Return

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 22 SeeBeyond Proprietary and Confidential

Figure 6 Shutdown functions

Event-driven Data Exchange Functions

Figure 7 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 23 SeeBeyond Proprietary and Confidential

Figure 7 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

.monk

.tsc

.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 24 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files
and data (set internally within Monk). The directory specified in Additional Path will
be searched after the default load paths.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 25 SeeBeyond Proprietary and Confidential

Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See “Additional Path” on page 24 for more information about the “load path.”

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 2 on page 18).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration is reloaded. This function should be used to
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 2 on page 18). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Process Outgoing Event Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External Function, which is schedule-driven).

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 26 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Schema Designer). The function
returns one of the following (see Figure 7 on page 23 for more details):

Null string: Indicates that the Event was published successfully to the external
system.

“RESEND”: Indicates that the Event should be resent.

“CONNERR”: Indicates that there is a problem communicating with the external
system.

“DATAERR”: Indicates that there is a problem with the message (Event) data itself.

If a string other than the above is returned, the e*Way will create an entry in the log file
indicating that an attempt has been made to access an unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 41 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input and must return a string (see Figure 5 on page 21 for
more details):

Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

“CONNERR”: Indicates that a problem with the connection to the external system
has occurred.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 27 SeeBeyond Proprietary and Confidential

“DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 5 on page 21 for more details.

Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 39 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 28 SeeBeyond Proprietary and Confidential

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
e*Way.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a “suspend” command
from a Control Broker. When the “suspend” command is received, the e*Way will
invoke this function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

Null string: The function completed execution successfully.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 29 SeeBeyond Proprietary and Confidential

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a “shut down”
command from the Control Broker.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will
call this function with the string “SHUTDOWN_NOTIFICATION” passed as a
parameter.

The function accepts a string as input and must return a string:

A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

Chapter 3 Section 3.2
Configuration External Configuration Requirements

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 30 SeeBeyond Proprietary and Confidential

Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 41).

Note: If you postpone a shutdown using this function, be sure to use the
(shutdown-request) function to complete the process in a timely manner.

3.2 External Configuration Requirements
There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter describes information pertinent to implementing the CORBA-VisiBroker
Client e*Way in a production environment, including procedures for using the CORBA
VisiBroker Client Converter Build tool to create an Event Type Definition (.ssc file)
from an IDL. A list of the supported IDL primitive types is also provided.

This Chapter Includes:

“CORBA VisiBroker Client Converter Build Tool” on page 31

“CORBA-Visibroker Supported Types” on page 34

“Installing the CORBA Client Sample Schema” on page 34

4.1 Overview
The CORBA-VisiBroker Client e*Way utilizes existing Monk capabilities to directly call
CORBA object interfaces using extensions within Monk scripts. After loading the
monk_corba DLL, Monk scripts can use the corba-invoke function to establish and
communicate with CORBA objects. See corba-invoke on page 42.

4.1.1 Method Invocation
Invoking remote methods on a CORBA object is simplified through the use of Monk
defined message structures (Event Type Definitions). The e*Way provides two
components to implement simplified method invocation.

CORBA VisiBroker Client Converter Build tool

The Monk script corba-struct-call.monk (see corba-struct-call on page 43)

4.2 CORBA VisiBroker Client Converter Build Tool
The CORBA VisiBroker Client Converter Build tool (stcir2ssc.exe) can create an Event
Type Definition (.ssc) file automatically by interrogating the VisiBroker Interface
Repository. The nodes of the Event Type Definition are used to both represent details of
the interface definition (method name, parameter names/data-types/direction) and to
hold the argument values passed during invocation.

Chapter 4 Section 4.2
Implementation CORBA VisiBroker Client Converter Build Tool

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 32 SeeBeyond Proprietary and Confidential

The Build tool can be run from the e*Gate ETD Editor, or directly from a command line
or a command script.

4.2.1 Using the Build Tool
Use one of the following procedures to create an Event Type Definition from an IDL
file.

To create an ETD using the Build tool from the GUI:

1 Launch the ETD Editor.

2 On the ETD Editor’s Toolbar, click Build.

The Build an Event Type Definition dialog box appears (see Figure 8).

Figure 8 Build an Event Type Definition Dialog

3 In the File name field, type the name of the ETD file you wish to build. Do not
specify any file extension—the Build tool supplies the .ssc extension automatically.

4 Click Next. A new dialog displays (see Figure 9). In the Input file field, type the
name and path of the input file upon which you want to base the ETD or browse to
the an existing file by clicking on the Browse button next to the Input file field.

5 Under Build From, select Library Converter.

6 Under Select a Library Converter, select CORBA VisiBroker Client Converter.

7 Click Finish.

The Converter Wizard will launch.

8 Follow the Wizard’s instructions to finish building the ETD file.

Chapter 4 Section 4.2
Implementation CORBA VisiBroker Client Converter Build Tool

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 33 SeeBeyond Proprietary and Confidential

Figure 9 Build an Event Type Definition - CORBA VisiBroker Client Converter

To create an ETD using the Build tool from a command line:

From a command line enter:

stcir2ssc.exe VisiBroker_args outputSSCfileName repositoryName

where:

Visibroker_args represents any optional arguments required by your VisiBroker
configuration, such as the Smart Agent port number. See the VisiBroker documentation
for syntax and usage.

outputSSCfileName is the name of the file that will be written without the .ssc extension.
If the file already exists it will be overwritten. (The Build tool adds the .ssc extension
automatically.)

repositoryName is an optional argument to specify the name of the Interface Repository
to use. If there is more than one repository on the network, the default VisiBroker
behavior is to "round-robin" between all the repository servers running. We
recommend that you use this parameter to avoid confusion since different repository
objects may be started to make different IDLs available for different projects.

The Build tool reads the Interface Repository and generates a corresponding structure
file suitable for use with corba-struct-call.

Example

1 Start the repository object for your IDL. For example,

irep -console AccountRepository account.idl

Chapter 4 Section 4.3
Implementation CORBA-Visibroker Supported Types

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 34 SeeBeyond Proprietary and Confidential

2 Run the Build tool to read the repository and write an .ssc file. The entire command
should be typed on one line; it is illustrated wrapping here due to page size. For
example,

stcir2ssc.exe monk_scripts\common\corba-account.ssc
AccountRepositry

4.3 CORBA-Visibroker Supported Types
The CORBA-VisiBroker Client e*Way supports the following IDL primitive types as IN,
OUT and INOUT arguments to methods.

In addition to these IDL primitive types, the e*Way supports object references and can
handle CORBA and user-defined exceptions.

4.4 Installing the CORBA Client Sample Schema
The e*Gate Installation CD contains a sample scenario to demonstrate a simple Schema
using the CORBA Client e*Way. The sample Schema can be installed on a local registry
host for demonstration purposes.

Table 2 IDL Primitive Types

IDL Type VisiBroker Type Monk Type

short CORBA::Short integer

long CORBA::Long integer

unsigned short CORBA::UShort integer

unsigned long CORBA::ULong integer

longlong ASCII numeric string

float CORBA::Float real

double CORBA::Double real

char CORBA::Char character

octet

boolean CORBA::Boolean boolean

string CORBA::String string

sequence

struct

Chapter 4 Section 4.4
Implementation Installing the CORBA Client Sample Schema

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 35 SeeBeyond Proprietary and Confidential

4.4.1 CORBA Client Sample Schema Overview
The CORBA Client sample Schema uses a sample application (dict_server.exe) to
process a request for a term and return a definition for that term. The sample Schema
uses a file e*Way to load in the request (the word “network”). The CORBA Client
e*Way forwards this request to the dict_server program. The sample external
application returns the definition of the word to the CORBA Client e*Way. The file
e*Way writes the definition of the term to a text file.

Figure 10 CORBA Client Sample Schema

4.4.2 Create the Sample Application
The sample application used in this schema is included with the VisiBroker 3.3 for C++
from Borland.

To create the sample application

1 Install the VisiBroker 3.3 for C++ application from Borland.

Follow the installation instructions that accompany the VisiBroker application.

2 In Windows Explorer, navigate to the location where the VisiBroker examples were
installed. The default location is C:\Inprise\vbroker\examples.

3 Open the folder containing the Smart Stub example:
C:\Inprise\vbroker\examples\sstub.

4 Follow the instructions found in sstub.html to compile the sample code and
generate the dict_server.exe sample executable.

e*Gate System

File e*Way

Intput
File

CORBA
Client e*Way

dict_server.exe

Output
File

Chapter 4 Section 4.4
Implementation Installing the CORBA Client Sample Schema

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 36 SeeBeyond Proprietary and Confidential

4.4.3 Create Sample Data File
You must create a sample data file before running the schema.

To create a sample data file:

1 Create the file CORBA_data_In.fin in file d:\eGate\client\data\CORBA
directory (where d: is the letter drive of your eGate participating host), and create
the contents, consisting of five words separated by a new line. The five words are:

distribute
object
network
application
infrastructure

2 Save the CORBA_data_In.fin file.

4.4.4 Import the Sample Schema
After you create a sample data file, you must import the sample schema.

To import the sample Schema:

1 Start e*Gate Schema Designer and create a new schema.

2 On the File menu, click Import Definitions from File.

3 On the Import Wizard Introduction window, click Next.

4 Click Schema, then click Next.

5 Specify the sample schema file name, and then click Next. The installation CD path
name of this file should be \samples\ewvbcorbaclient\ewvbcorbaclient.zip.

4.4.5 Run the Sample Schema
Running the sample scenario is a two step process. The sample CORBA executable
(dict_server.exe) must be started and the Control Broker must be started.

To start the CORBA executable:

1 From the command line navigate to the d:\Inprise\vbroker\examples\sstub
directory (where d: is the drive letter for your Inprise Visibroker installation).

2 The the following at the command prompt:

start dict_server

The dict_server application will start up. (See Figure 11 below).

Figure 11 The dict_server Window

Chapter 4 Section 4.4
Implementation Installing the CORBA Client Sample Schema

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 37 SeeBeyond Proprietary and Confidential

To start the Control Broker

From the command line, type the following command:

stccb -ln logical_name -rh registry -rs CORBA_Client -un user_name
-up password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use a text editor to view the output that was written to the output file
(CORBA_output0.dat) in the d:\eGate\client\data\CORBA directory (where d: is the
drive letter for your e*Gate participating host).

Note: The configuration for the output file is CORBA_output%d.dat--the “%d”
represents a counter or sequence number, as evidenced by the “0” in the file above.

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5

Functions

The functions described in this chapter control the CORBA-VisiBroker Client e*Way’s
basic operations as well as those needed to interface with the CORBA server object.

5.1 Overview
The functions described in this section can only be used by the functions defined within
the e*Way’s configuration file. None of the functions are available to Collaboration
Rules scripts executed by the e*Way.

The CORBA-Visibroker Client e*Way’s functions fall into the following categories:

Basic Functions on page 38

CORBA-VisiBroker Monk Functions on page 42

5.2 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are

start-schedule on page 39

stop-schedule on page 39

send-external-up on page 39

send-external-down on page 40

get-logical-name on page 40

event-send-to-egate on page 41

shutdown-request on page 41

Chapter 5 Section 5.2
Functions Basic Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 39 SeeBeyond Proprietary and Confidential

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the “Exchange Data with External”
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with
External” function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Chapter 5 Section 5.2
Functions Basic Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 40 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

None.

Throws

None.

send-external-down

Syntax

(send-external-down)

Description

send-external-down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Schema Designer).

Throws

None.

Chapter 5 Section 5.2
Functions Basic Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 41 SeeBeyond Proprietary and Confidential

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

shutdown-request

Syntax

(shutdown-request)

Description

shutdown request requests the e*Way to perform the shutdown procedure when there
is no outstanding incoming/outgoing event. When the e*Way is ready to act on the
shutdown request, in invokes the Shutdown Command Notification Function (see
“Shutdown Command Notification Function” on page 29). Once this function is
called, the shutdown proceeds immediately.

Parameters

None.

Return Values

None.

Throws

None.

Name Type Description

string string The data to be sent to the e*Gate
system

Chapter 5 Section 5.3
Functions CORBA-VisiBroker Monk Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 42 SeeBeyond Proprietary and Confidential

5.3 CORBA-VisiBroker Monk Functions
The CORBA VisiBroker Monk functions are:

corba-invoke on page 42

corba-struct-call on page 43

corba-struct-call-obj on page 44

corba-struct-call-imp on page 45

corba-invoke

Syntax

(corba-invoke IDL-name objectname methodname args-vector
exception-vector)

Description

corba-invoke invokes a CORBA object.

Parameters

Return Values

Upon return, the first element in the vector has the return type and each element that
was “out” or “inout” has a value in the third element of that sub vector.

Throws

None.

Additional Information

If objectname is omitted, the VisiBroker ORB will search for any server object that
matches the IDL-name. (VisiBroker’s behavior is to “round-robin” requests between all
instances of the IDL-name on the network.)

Name Type Description

IDL-name String The name of the interface as registered in the
interface repository, for example IDL:Account:1.0

objectname String An optional parameter used to specify a particular
CORBA server object. For more information see
“Additional information”, below.

methodname String The name of the method in the server to be called

args-vector Vector A vector containing all the required arguments to
the method and the return type expected. For
more information see “Additional information”,
below.

exception-vector Vector A vector that describes the types of exceptions
that may be thrown by the method.

Chapter 5 Section 5.3
Functions CORBA-VisiBroker Monk Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 43 SeeBeyond Proprietary and Confidential

The first element in the args-vector vector is the string name of the return type. The
remaining elements are one per argument. Each element is itself a vector comprising
the input/output specifier, the parameter data type, parameter name and value:

#("type of return value" #("in"/"out"/
"inout" "name of parameter" value)...)

For example, to invoke a method declared in the IDL as:

long getOrderStatus (in string orderNum, inout string custName, out f
loat accountBalance)

args-vector would look like:

("long" # ("in" "string" "orderNum" "AB01234") # ("inout" "string"
"custName" "John Doe" # ("out" "float" "accountBalance"))

Examples

Here is an example of the use of this function:

(define args #("float" #("in" "custom" "jay")))
(corba-invoke "IDL:Account:1.0" "balance" args)

By way of explanation, the following code example includes coding and comments
(designated with ‘;’) for a Monk script that calls two methods within a CORBA object:

;; Load the monk extension that provides an interface to corba
(load-extension "monk_corba.dll")

;; define the parameter vector
;; the first item is the return type. in this case float
;; the second is the first input parameter,
;; which is an "in" (input) parameter and is of type "string",
;; the name of the input parameter is "param1" and its
;; value is "value"
(define vec #("float" #("in" "string" "param1" "value")))

;; Here we actually make the call
;; the first parameter is the name of the object
;; the second is the name of the method that we are invoking
;; and finally the third is the vector that we created above.
(corba-invoke "IDL:Test:1.0" "test" vec)

;; display the return value which will be a float
(display (vector-ref vec 0))

The following example represents a more complicated usage.

;; Now an output parameter is the argument
;; the "out" indicates it is an out parameter
(define vec2 #("string" #("out" "float" "pounds")))

(corba-invoke "IDL:Test:1.0" "price" vec2)

;; The output value will be in the vec2
;; it is item 3 of item 1 of the vector
(display (vector-ref 3 (vector-ref vec2 1)))

corba-struct-call

Syntax

(corba-struct-call method-path)

Chapter 5 Section 5.3
Functions CORBA-VisiBroker Monk Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 44 SeeBeyond Proprietary and Confidential

Description

corba-struct-call uses the specified method-path to generate a call to corba-invoke (see
corba-invoke on page 42).

The Monk script corba-struct-call.monk provides a helper function for building a
CORBA method invocation based on the information held in the generated Event Type
Definition (ETD). Before invoking corba-struct-call, in and inout data nodes are primed
with the required values. The CORBA method is then called by passing the method-path
for the method name node to the corba-struct-call function. Upon return from a
successful invocation, the values placed in the return value and in/inout data nodes
can be retrieved.

Parameters

Return Values

Upon return from a successful invokation, the return value holder and the OUT/
INOUT parameter value holders are updated. The corba-struct-call expression
evaluates to the expression value of the corba-invoke call.

Additional Information

The ETD contains nodes named “data” to hold the data values for method arguments,
and may be used with the SeeBeyond Collaboration Rules Editor to graphically
construct method invocations.

corba-struct-call-obj

Syntax

(corba-struct-call-obj method-path object-handle)

Description

corba-struct-call-obj provides a helper function for building a CORBA method
invocation based on the information held in the generated ETD, functioning in the
same manner as corba-struct-call. This function, however, takes an additional
parameter which is an object reference returned from a previous method call as either a
return value or an output parameter.

Name Type Description

method-path String A path reference to a node corresponding to a
method in an ETD generated by the CORBA
VisiBroker Client Converter Build tool.

Chapter 5 Section 5.3
Functions CORBA-VisiBroker Monk Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 45 SeeBeyond Proprietary and Confidential

Parameters

Return Values

Upon return from a successful invocation, the return value holder and the OUT/
INOUT parameter value holders are updated. The corba-struct-call-obj expression
evaluates to unspecified.

Additional Information

The ETD contains nodes named “data” to hold the data values for method arguments,
and may be used with the SeeBeyond Collaboration Rules Editor to graphically
construct method invocations.

Example

This function can be useful for inter-orb communication, for example, between the
CORBA-Visibroker (Client) e*Way and an object written using Iona's Orbix. Given the
Orbix server object's IOR string, a call to the object can be made as follows:

(define objHandle (string->corbaobject IORstring))
(corba-struct-call-obj method-name objHandle)

corba-struct-call-imp

Syntax

(corba-struct-call-imp method-path implementation-name)

Description

corba-struct-call-imp provides a helper function for building a CORBA method
invocation based on the information held in the generated message structure,
functioning in the same manner as corba-struct-call. This function, however, takes an
additional parameter which is the implementation name of a server object. This may be
used to invoke methods on the specified server object, instead of the default behavior of
corba-struct-call which will locate any server object that implements the IDL.

Name Type Description

method-path String A path reference to a node corresponding to a
method in an ETD generated by the CORBA
VisiBroker Client Converter Build tool.

object-handle String An object reference returned from a previous
method call as either a return value or an output
parameter.

Chapter 5 Section 5.3
Functions CORBA-VisiBroker Monk Functions

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 46 SeeBeyond Proprietary and Confidential

Parameters

Return Values

Upon return from a successful invocation, the return value holder and the OUT/
INOUT parameter value holders are updated. The corba-struct-call-imp expression
evaluates to unspecified.

Additional Information

The ETD contains nodes named “data” to hold the data values for method arguments,
and may be used with the SeeBeyond Collaboration Rules Editor to graphically
construct method invocations.

Name Type Description

method-path String A path reference to a node
corresponding to a method in an
ETD generated by the CORBA
VisiBroker Client Converter Build
tool.

implementation-name string The implementation name of the
server object.

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 6

Troubleshooting

This chapter discusses troubleshooting for the CORBA VisiBroker Client e*Way. The
range of customizations that you can apply to any e*Way makes it impossible for a
single chapter to present an exhaustive list of everything that could possibly go wrong
with any given e*Way. However, we can give you some guidelines to follow when
troubleshooting any e*Way’s operation or performance.

6.1 General Troubleshooting
In the initial stages of developing your e*Gate system, most problems with e*Ways can
be traced to configuration.

In the Schema Designer:

Does the e*Way have the correct Collaborations assigned?

Do those Collaborations use the correct Collaboration Services?

Is the logic correct within any Collaboration Rules employed by this e*Way’s
Collaborations?

Do those Collaborations subscribe to and publish Events appropriately?

Are all the components that “feed” this e*Way properly configured, and are they
sending the appropriate Events correctly?

Are all the components that this e*Way “feeds” properly configured, and are they
subscribing to the appropriate Events correctly?

In the e*Way Editor:

Check that all configuration options are set appropriately. Be sure that any settings
that you changed are set correctly; that you have overlooked no required changes;
and that any defaults are acceptable for your installation.

On the Participating Host supporting the e*Way:

Check that the Participating Host is operating properly, and that it has sufficient
disk space to hold the IQ data that this e*Way’s Collaborations publish.

In the external application with which the e*Way communicates:

Check that the application is configured correctly, is operating properly, and is
sending or receiving the correct data appropriately.

Chapter 6 Section 6.2
Troubleshooting Password Problems

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 48 SeeBeyond Proprietary and Confidential

Check that the connection between the external application and the e*Way is
functioning appropriately.

Once the e*Way is up and running properly, operational problems can be due to
external influences (network or other connectivity problems), problems in the
operating environment (low disk space or system errors), problems or changes in the
data the e*Way is processing. There may also be corrections required to Collaboration
Rules scripts that become evident in the course of normal operations.

One of the most important tools in the troubleshooter’s arsenal is the e*Way log file.
Please see the e*Gate System Administration and Operations Guide for an extensive
discussion of log files, debugging options, and how to use the Schema Monitoring
system to monitor both operations and performance.

6.2 Password Problems
Problem

The e*Way’s configuration file contains the correct password, but the remote server
reports that the password is incorrect.

Solution

The e*Way Editor encrypts the password based upon the entry in the “user name”
configuration field; this problem can occur if the correct password is entered before the
user name is entered.

1 In the Schema Designer, display the e*Way’s properties.

2 Under Configuration file, click Edit.

3 The e*Way Editor will launch. Use the parameter- and section-selection controls to
navigate to the user-name and password options.

4 Make sure that the correct user name is entered (re-enter it if necessary).

5 Enter the password, replacing any entry that may already exist.

6 Save the configuration file, and exit the e*Way Editor.

7 When you return to the e*Way’s property sheet in the Schema Designer, click OK to
apply the changes and close the property sheet.

8 Restart the e*Way if necessary.

6.3 Operating System Problems
Problem

When running the CORBA-VisiBroker e*Way on Solaris, a message similar to the
following appears:

The referenced symbol _RT_CLASS_xyz_vtbl cannot be found

Chapter 6 Section 6.3
Troubleshooting Operating System Problems

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 49 SeeBeyond Proprietary and Confidential

Additionally, the dynamic link editor ld.so.1 fails to load the required library, probably
due to differences in symbol table format between operating system versions. This is
despite the directory /usr/lib already being in LD_LIBRARY_PATH.

Solution

Rename the executable file for the e*Way and replace it with a wrapper script that
exports the environment variable

LD_PRELOAD=/usr/lib/libC.so.5

and then calls the renamed executable.

If this does not solve the problem, load the Solaris patch that updates the file /usr/lib/
libC.so.5.

For more information, see the Solaris documentation on ld.so.1.

The problem may occur on some versions of Solaris but is dependent on the version
and patches installed. This problem does not occur on other operating systems.

Index

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 50 SeeBeyond Proprietary and Confidential

Index

A
Additional Path parameter 24
Auxiliary Library Directories parameter 24

B
Build tool 31

C
Communication Setup parameters 14
Configuration parameters 12
CORBA exceptions 34
CORBA VisiBroker Client Converter 31
corba-invoke function 31, 42
corba-struct-call function 43
corba-struct-call-impl function 45
corba-struct-call-obj function 44

D
DII 6
Down Timeout parameter 15
Dynamic Invocation Interface 6

E
event-send-to-egate function 41
exceptions

CORBA 34
user-defined 34

Exchange Event Interval parameter 15
Exchange Events with External Function parameter
26
External Connection Establishment Function
parameter 27
External Connection Shutdown Function parameter
28
External Connection Verification Function
parameter 27

F
Forward External Errors parameter 14

functions
corba-invoke 42
corba-struct-call 43
corba-struct-call-impl 45
corba-struct-call-obj 44
event-send-to-egate 41
get-logical-name 40
send-external-down 40
send-external-up 39
shutdown-request 41
start-schedule 39
stop-schedule 39

G
General Settings parameters 13
get-logical-name function 40

I
IDL 6
IDL primitive types 34
installation

UNIX 10
Windows 9

J
Journal File Name parameter 13

M
Max Failed Events parameter 13
Max Resends Per Event parameter 13
Method invocation 31
Monk Configuration parameters 16
Monk Environment Initialization File parameter 24
Monk functions, see functions
monk_corba DLL 31

N
Negative Acknowledgment Function parameter 29

O
object references 34

P
Positive Acknowledgment Function parameter 28
Process Outgoing Event Function parameter 25

Index

e*Way Intelligent Adapter for CORBA-VisiBroker (Client)
User’s Guide 51 SeeBeyond Proprietary and Confidential

S
send-external-down function 40
send-external-up function 39
Shutdown Command Notification Function
parameter 29
shutdown-request function 41
Start Exchange Event Schedule parameter 14
start-schedule function 39
Startup Function parameter 25
Stop Exchange Event Schedule parameter 15
stop-schedule function 39
system requirements 7

U
Up Timeout parameter 16
user-defined exceptions 34

Z
Zero Wait Between Successful Exchanges parameter
16

	e*Way Intelligent Adapter for CORBA-VisiBroker (Client) User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Components
	1.1.2 Features

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.4 External System Requirements

	Installation
	2.1 Installing the CORBA e*Way on Windows
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 Installing the CORBA e*Way on UNIX
	2.2.1 Pre-Installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.1.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.1.3 Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Event Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.2 External Configuration Requirements

	Implementation
	4.1 Overview
	4.1.1 Method Invocation

	4.2 CORBA VisiBroker Client Converter Build Tool
	4.2.1 Using the Build Tool

	4.3 CORBA-Visibroker Supported Types
	4.4 Installing the CORBA Client Sample Schema
	4.4.1 CORBA Client Sample Schema Overview
	4.4.2 Create the Sample Application
	4.4.3 Create Sample Data File
	4.4.4 Import the Sample Schema
	4.4.5 Run the Sample Schema

	Functions
	5.1 Overview
	5.2 Basic Functions
	start-schedule
	stop-schedule
	send-external-up
	send-external-down
	get-logical-name
	event-send-to-egate
	shutdown-request

	5.3 CORBA-VisiBroker Monk Functions
	corba-invoke
	corba-struct-call
	corba-struct-call-obj
	corba-struct-call-imp

	Troubleshooting
	6.1 General Troubleshooting
	6.2 Password Problems
	6.3 Operating System Problems

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	P
	S
	U
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

