
SonicMQ
Deployment Guide

Copyright© 2000 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This man-

ual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied,

translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from

Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no

responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

Progress® is a registered trademark of Progress Software Corporation.

SonicMQ™, AppServer™, ProVision™, ProVision Plus™, Progress SmartObjects™, Apptivity™, and all other

Progress product names are trademarks of Progress Software Corporation.

Progress SonicMQ™ contains the IBM® XML Parser for Java Edition and the IBM® Runtime Environment for Win-

dows®, Java™ Technology Edition Version 1.1.8 Runtime Modules.© Copyright IBM Corporation 1998-1999. All

rights reserved. U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM Corp.

IBM® is a registered trademark of IBM Corporation. Java™ is a trademark of Sun Microsystems Inc. Windows® is a

registered trademark of Microsoft Corp. All other company and product names are the trademarks or registered trade-

marks of their respective companies.

Printed in U.S.A.

November 2000

Contents
Preface . 11
About This Manual . 11
Conventions in This Manual . 13

Typographical Conventions and Syntax Notation. 13
Note, Important, and Warning Flags . 14

Available Documentation . 15
Worldwide Technical Support . 16

Part I: Planning Your Deployment . 19

Chapter 1: Types of Deployments . 21
Single-server Configurations . 21
Multi-server Clusters . 22

Clusters and Scalability . 22
Multi-CPU Machines . 22

Clusters and Availability . 23
Multi-node Configurations . 23

Cluster Size Limitations . 23
Cluster Functionality Limitations . 24
The Dynamic Routing Architecture Solution . 24
SonicMQ Deployment Guide 3

Contents
Chapter 2: Multi-node Architecture .27
Global Messaging Scalability and Routing Nodes .28
Dynamic Routing Architecture .29

Routing Nodes .30
Behavior of a Routing Queue in a SonicMQ Server .31
Configured and Advertised Routing Information. .33
Routing Nodes and Clusters .34

Chapter 3: Guaranteeing Messages .37
Working with Dead Message Queues .37

What Is an Undeliverable Message?. .39
Using the System Dead Message Queue .39

Guaranteeing Delivery .39
Enabling Dead Message Queue Features .40

Monitoring Dead Message Queues. .40
The System Dead Message Queue .41

Default DMQ Properties. .42
Modifying Default DMQ Properties .42
Modifying DMQ Access Control. .42

JMS_SonicMQ Message Properties .43
Handling Undelivered Messages. .44

Sample Scenarios of Handling Dead Messages .45
Preserving Expired Messages and Throwing an Administration Notification.45
Using High Priority and Throwing an Administration Notification46

What to Do When the Dead Message Queue Fills Up .46
Types of Undelivered Messages .47

TTL Is Expired. .48
Routing Node Is Invalid .49
Routing Destination Is Invalid .50
Connection Cannot Be Established Before Routing Timeout .51
INDOUBT_TIMEOUT Expires. .52
Connection Authentication Fails .53
Connection Authorization Fails .55
Message is Too Large .56
Other Cases Where Messages Might Be Lost .57
4 SonicMQ Deployment Guide

Contents
Chapter 4: Failover and Load Balancing . 59
Connect-time Failover . 59

Failover and Routing . 60
Defining the List of Connection URLs. 60

Client Access to Failover Connections . 61
Load Balancing . 61

Load Balancing and Routing. 62
Client Access to Load-balanced Connections . 62

After Connecting . 63

Chapter 5: Security. 65
SonicMQ Security Basics . 65

The Need for Security . 66
Security Tools . 66
Overall Security Policy . 66
Corporate Security Policy . 67
Security Issues Covered Elsewhere. 68

SSL Support . 68
Certificate Management Tools . 68

Securing the SonicMQ Data Store . 68
Maintaining Security . 69
Firewall Architecture Basics . 69
SonicMQ Firewall Architecture . 72

Advantages of the Screened Subnet Architecture. 76
Setting the Firewall Rules for a SonicMQ Application . 76
Adding and Testing Your SonicMQ-specific Rules . 77

Client-side Security Issues. 78
HTTP Overview . 78
Understanding HTTP Tunneling in SonicMQ . 80
HTTP Tunneling . 81
Using a Client-side Forward Proxy . 82
Using a Server-side Reverse Proxy . 83
Using an ActiveX Client with HTTP Tunneling. 84
SonicMQ Deployment Guide 5

Contents
Signed Applets .84
Browser-specific Tools. .85
Java Plug-ins. .85

Certificate-based Mutual Authentication .86
Password-based Encryption (PBE) Tool. .86

Encryption. .88
Decryption .89
Using the Encrypted broker.ini File .90

Chapter 6: Designing Messaging Models .93
Client Functions .94

Agent Applications .94
Transformation Applications .95
Routing Applications .96
Dynamic Routing Applications .97

Topologies. .98
Chain. .98
Hub and Spoke .100
Central Hub. .101
Peer-to-peer. .104
Store and Forward. .105

Part II: Implementing Your Deployment .107

Chapter 7: Dynamic Routing Architecture in a Multi-node
Application .109
Store & Forward Queue Routing from a Trading Partner. .110

Load-balanced Trading Partner Connections .113
Routing Under Failure Scenarios .115

Exchanging Connection Information for Indoubt Resolution .116
Advertising Routing Connection Information .117

Connection Timeout .119
Portal-initiated Connections .120
Connection Security .121
Load-balancing Across Portal Applications .122
6 SonicMQ Deployment Guide

Contents
Queue Routing from Portal to Trading Partners . 125
System Management . 127

Portal Management . 127
Trading Partner Management . 127

Dead Message Queue. 128
Trading Partner Request/Reply Example . 128

Chapter 8: Implementing Multi-node Installations 131
Introduction . 131
Definition of Terms . 132
High-level Architecture . 136

Trading Partner Configuration . 136
Firewall Setup . 138
SonicMQ Trading Partner Configuration . 139
SonicMQ Static Configuration . 139
SonicMQ Admin Configuration . 140

Portal Configuration . 142
Firewall Setup . 144
Configuration Server Setup . 145
Clustered Server Setup . 145
Setting Up Global Queues in a Cluster . 146
Configuration Server Security Configuration. 147
Portal Configuration for Adding a New Trading Partner . 148

Chapter 9: Running a Sample Multi-node Application with the
Dynamic Routing Architecture . 151
Introduction . 151

Assumptions . 152
Before You Start . 154

Determining Your Machine Names . 154
Installing SonicMQ for Your Portal and Trading Partner . 155
Setting the admin.echo System Property. 156

Setting Up the Portal: Xchange . 157
Setting Up the Trading Partner: Acme . 159
Testing Your Setup with the GlobalTalk Sample Application . 161
SonicMQ Deployment Guide 7

Contents
Troubleshooting Your Setup .162
Permission Problems When Sending Messages to Valid Queues .162

Sample Application and Scripts .162
The GlobalTalk Application (PTP) .162
The Admin Shell Scripts. .163

Portal_Broker_Setup .164
Portal_Config_Setup .164
Portal_Add_TP. .165
TP_Setup .166

Appendix A: Performance Tuning .169
Tuning Your JVM Properties .169

Choosing a Java Virtual Machine for the SonicMQ Server .169
Setting the Java Heap Size .170

Using the Maximum Available Memory for the Server .170
Anticipating the Size and Number of Messages and Queues on the Server170

Tuning JVM Parameters .171
Setting Buffer Limits in Message Flow Control .172
Setting Queue Save/Retrieve Extents .173
Reducing the Number of Syncpoints .173
Choosing Automatic Message Acknowledgement .174
Disk Drive Caching. .174
Using Queue Prefetch .175
Queue Cleanup Thread .175
Message Size .176

Message Type .176
Latency .176
Log Queue Size. .176

Security .177

Index .179
8 SonicMQ Deployment Guide

Contents
List of Figures

Figure 1. Intra-node Messaging . 25
Figure 2. Routing Nodes . 29
Figure 3. Routing Connection Table . 33
Figure 4. Invalid Routing Node . 49
Figure 5. Invalid Routing Destination . 50
Figure 6. Broken Routing Connection . 51
Figure 7. Failed Connection Authentication . 54
Figure 8. Failed Connection Authorization . 55
Figure 9. Message is Too Large . 56
Figure 10. Failover and Load Balancing for a Routing Node . 60
Figure 11. Screened Subnet Architecture . 70
Figure 12. Screened Subnet Architecture with SonicMQ . 72
Figure 13. Recommended Architecture: Variation I . 74
Figure 14. Recommended Architecture: Variation II . 75
Figure 15. Direct HTTP Connection . 78
Figure 16. Internet Deployment with Proxy Server and Firewall . 79
Figure 17. Internet Deployment with Reverse Proxy Server . 80
Figure 18. Password-based Encryption Architecture . 87
Figure 19. Agent Application . 94
Figure 20. Transformation Application . 95
Figure 21. Routing Application . 96
Figure 22. Dynamic Routing’s Store-and-forward mechanism . 97
Figure 23. Chain Topology . 98
Figure 24. Enhanced Chain Topology Through Dynamic Routing . 99
Figure 25. Chain Transformation Topology with Dynamic Routing . 99
Figure 26. Hub and Spoke Topology . 100
Figure 27. Central Hub Topology . 101
Figure 28. Central Hub with Application Control (Marketplace) . 102
Figure 29. Peer-to-Peer with a Central Hub . 104
Figure 30. Peer-to-peer Topology for Store-and-forward Routing . 105
Figure 31. Routing Communication . 111
Figure 32. Routing: Load Balancing . 124
Figure 33. Routing: Portal to Partner . 125
Figure 34. High-level View of Trading Partner-Portal Configuration . 131
Figure 35. Trading Partner-Portal Configuration . 136
Figure 36. Trading Partner Configuration for Acme Installation . 138
SonicMQ Deployment Guide 9

Contents
Figure 37. Typical Portal Configuration .143
Figure 38. Configuration for Dynamic Routing Architecture .153

List of Tables

Table 1. The SonicMQ Documentation Set .15
Table 2. Progress Software International Offices .17
Table 3. Dynamic Routing Architecture Topics .26
Table 4. Dead Message Queue Properties .42
Table 5. JMS SonicMQ Properties .43
Table 6. PBETool Parameters .88
Table 7. New Parameters for dbtool and startbr .90
Table 8. Connection Security Checking .121
Table 9. Names Used in Sample Admin Shell Scripts .133
Table 10. JVM Settings .171
Table 11. JVM Settings for SonicMQ Editions .171
10 SonicMQ Deployment Guide

Preface
This Preface contains the following sections:

� “About This Manual” describes this manual and its intended audience.

� “Conventions in This Manual” describes the text formatting, syntax
notation, and flags used in this manual.

� “Available Documentation” describes the printed and online
documentation that accompanies SonicMQ.

� “Worldwide Technical Support” provides information on contacting
technical support.

About This Manual
Progress SonicMQ is a fast, flexible, scalable E-Business Messaging Server
designed to simplify the development and integration of today’s highly
distributed enterprise applications and Internet-based business solutions.
SonicMQ is a complete implementation of the Java Message Service
specification Version 1.0.2, an API for accessing enterprise messaging systems
from Java programs.

This book is divided into two parts. The first part deals with issues you should
consider when planning your SonicMQ deployment and consists of the
following chapters:

� Chapter 1, “Types of Deployments,” discusses the capabilities and
limitations of single-server and cluster configurations in terms of
performance, scalability, and reliability.
SonicMQ Deployment Guide 11

Preface
� Chapter 2, “Multi-node Architecture,” describes how the Dynamic
Routing Architecture and other concepts apply when implementing a
portal and trading partner marketplace.

� Chapter 3, “Guaranteeing Messages,” describes the use of the Dead
Message Queue and the handling of undeliverable messages.

� Chapter 4, “Failover and Load Balancing,” discusses how connect-time
failover lets a client (or server acting as a client) connect to any server in a
user-supplied list. This chapter also dicusses the load-balancing feature,
which lets a client (or server acting as a client) be redirected to another
server for the purpose of redistributing load.

� Chapter 5, “Security,” presents an overview of how to plan and implement
a secure SonicMQ installation and explains how to use Signed Applets.

� Chapter 6, “Designing Messaging Models,” gives a conceptual overview
of how the portal and trading partner B2B application can be used to enable
various business-to-business scenarios.

The second part of the book describes how to implement your SonicMQ
deployment and consists of the following chapters:

� Chapter 7, “Dynamic Routing Architecture in a Multi-node Application,”
describes key elements of the Global Queue Routing Architecture in terms
of a marketplace application.

� Chapter 8, “Implementing Multi-node Installations,” describes the steps
you might follow to set up a SonicMQ deployment with portals and trading
partners.

� Chapter 9, “Running a Sample Multi-node Application with the Dynamic
Routing Architecture,” gives step-by-step instructions on how to set up a
demonstration portal and trading partner.

� Appendix A, “Performance Tuning,” discusses how you can tune some
parameters of your SonicMQ configuration to optimize the overall
performance of your implementation.
12 SonicMQ Deployment Guide

Conventions in This Manual
Conventions in This Manual
In this section, you will find a description of the text-formatting conventions
used in this manual and a description of notes, warnings, and important
messages.

Typographical Conventions and Syntax Notation
This manual uses the following typographical conventions:

� Bold typeface in this font indicates keyboard key names (such as Tab or
Enter) and the names of windows, menu commands, buttons, and other
SonicMQ user interface elements. For example, “From the File menu,
choose Open.”

Bold typeface is also used to highlight new terms when they are
introduced in conceptual and overview sections.

� Monospace typeface is used to indicate text that might appear on a
computer screen other than the names of SonicMQ user interface elements,
including all of the following:

– Code examples

– Code that the user must enter

– System output (such as responses, error messages, and so on)

– Filenames and pathnames

– Software component names, such as class and method names

Essentially, monospace typeface indicates anything that the computer is
“saying,” or that must be entered into the computer in a language that the
computer “understands.”

Bold monospace typeface is used to supply emphasis to text that would
otherwise appear in monospace typeface.

Monospace typeface in italics or Bold monospace typeface in italics
(depending on context) indicates variables or placeholders for values you
supply or that might vary from one case to another.
SonicMQ Deployment Guide 13

Preface
� This symbol and font introduce a multi-step procedure:

1. This is a first step.

1.1 This is a step within a step.

2. This is a second step.

� This symbol and font introduce a single-step procedure:

� This symbol starts a single-step procedure.

This manual uses the following syntax notation conventions:

� Where command-line examples are provided, a backslash character (\)
indicates line continuation. It should not be entered on the actual command
line.

� Brackets ([]) in syntax statements indicate parameters that are optional.

� Braces ({ }) indicate that one (and only one) of the enclosed items is
required. A vertical bar (|) separates required items.

� Ellipses (...) indicate that you can choose one or more of the preceding
items.

Note, Important, and Warning Flags
This manual highlights special kinds of information by using shading, placing
horizontal rules above and below the text, and using a flag in the left margin to
indicate the kind of information.

Note A Note flag indicates information that complements the main text flow. Such
information is especially needed to understand the concept or procedure being
discussed.

Important An Important flag indicates information that must be acted upon within the
given context in order for the procedure or task (or other) to be successfully
completed.
14 SonicMQ Deployment Guide

Available Documentation
Available Documentation
Table 1 lists the documentation supplied with SonicMQ. In addition to the
documentation listed in this table, SonicMQ comes with sample files. All
documentation is included with the SonicMQ media.

Warning A Warning flag indicates information that can cause loss of data or other
damage if ignored.

Table 1. The SonicMQ Documentation Set

Document Description

SonicMQ Documentation Portal
(SonicMQ_Help.htm)

Describes and links all SonicMQ online documentation
components.

Getting Started with SonicMQ Presents an introduction to the scope and concepts of the SonicMQ
software and its packaging. Lists the features and benefits of
SonicMQ in terms of its adherence to the Sun JMS specification and
the extensions that make SonicMQ a richer, more useful messaging
software.

SonicMQ Installation and
Administration Guide

Describes configuration of various SonicMQ client types, clusters,
and the message server and data stores. The administration chapters
fully document server management using both the command-line
interface and the graphical user interface administration tools.
Covers security concepts and installation and administration of
security features.

SonicMQ Programming Guide Presents the SonicMQ sample applications and then shows how the
programmer can enhance the samples, focusing on clients,
connections, sessions, messages (including XML), transactions, and
hierarchical topics.

SonicMQ Deployment Guide The first part describes general deployment issues, including
security. The second part concerns deployment issues for setting up
dynamic routing for a B2B infrastructure.
SonicMQ Deployment Guide 15

Preface
Worldwide Technical Support
Progress Software's support staff maintains a wealth of information at
http://www.sonicmq.com to assist you with resolving any technical problems
that you encounter when installing or using SonicMQ Developer Edition.

From the SonicMQ home page, click on Developer Exchange to take
advantage of resources for developers such as forums, downloads, tips,
whitepapers, and code snippets.

For technical support for the SonicMQ Professional Developer Edition or the
SonicMQ E-Business Edition, visit our TechSupport Direct Web page at
http://techweb.progress.com. When contacting Technical Support, please
provide the following information:

� The release version number and serial number of SonicMQ that you are
using. This information is listed at the top of the Start Broker console
window and might appear as follows:

SonicMQ E-Business Edition [Serial Number 25677051]
Release nnn Build Number nnn Protocol nnn

� Your first and last name.

� Your company name, if applicable.

� Phone and fax numbers for contacting you.

� Your e-mail address.

� The platform on which you are running SonicMQ, as well as any other
environment information you think might be relevant.

� The Java Virtual Machine (JVM) you are using.

SonicMQ API Reference Contains information on the SonicMQ API that supplements the
other manuals.

SonicMQ Product Update Bulletin Describes enhancements to SonicMQ that are new with this release.

SonicMQ Release Notes Provides late-breaking information and known issues.

Table 1. The SonicMQ Documentation Set (continued)

Document Description
16 SonicMQ Deployment Guide

http://sonicmq.com
http://techweb.progress.com

Worldwide Technical Support
To determine the JVM you are using, open a console window, go to the
directory SONICMQ_JRE (default install-dir\Java\bin), and issue the
command .\jre -d.

Table 2 provides information about Progress Software Corporation and its
international offices.

Table 2. Progress Software International Offices

Locale, Office Name, and Address Contact Information

North and Latin America:

Progress Software Corporation

14 Oak Park

Bedford, MA 01730

USA

Pre-sales:

Telephone: 800 477 6473 ext. 4900

e-mail: sonicmqpresales@progress.com

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 781 280 4999

Fax: 781 280 4543

e-mail: support@progress.com

Europe, the Middle East, Africa (EMEA):

Progress Software Europe B.V.

P.O. Box 8644

Schorpioenstraat 67

3067 GG Rotterdam

THE NETHERLANDS

Pre-sales:

e-mail: sonicmqpresales-emea@progress.com

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 31 10 286 5222

Fax: 31 10 286 5225

e-mail: emeasupport@progress.com
SonicMQ Deployment Guide 17

Preface
Asia/Pacific:

Progress Software Pty. Ltd.

1911 Malvern Road

Malvern East, VIC

Box 3145, AUSTRALIA

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 613 9885 0199

e-mail: aussupport@melbourne.progress.com

Table 2. Progress Software International Offices (continued)

Locale, Office Name, and Address Contact Information
18 SonicMQ Deployment Guide

Part I Planning Your Deployment
Part I of the SonicMQ Deployment Guide deals with issues you must consider
when planning your deployment and contains the following chapters:

� Chapter 1, “Types of Deployments,” discusses the capabilities and
limitations of single-server and cluster configurations in terms of
performance, scalability, and reliability.

� Chapter 2, “Multi-node Architecture,” describes how you can use
Dynamic Routing Architecture to implement a B2B deployment, such as a
portal and trading partner application.

� Chapter 3, “Guaranteeing Messages,” describes the use of the Dead
Message Queue and the handling of undeliverable messages in a multi-
node deployment.

� Chapter 4, “Failover and Load Balancing,” discusses how connect-time
failover lets a client (or server acting as a client) connect to any server in a
user-supplied list, so a connection can be made even if some of the servers
in the list are not available. This chapter also dicusses the load-balancing
feature, which lets a client (or server acting as a client) be redirected to
another server for the purpose of redistributing load.

� Chapter 5, “Security,” presents an overview of how to plan and implement
a secure SonicMQ installation and explains how to use Signed Applets.
19

20 SonicMQ Deployment Guide

Chapter 1 Types of Deployments
This chapter consists of several sections:

� “Single-server Configurations” on page 21 briefly sets forth the
capabilities and limitations of single-server configurations in terms of
performance, scalability, and reliability.

� “Multi-server Clusters” on page 22 describes the performance, scalability,
and reliability advantages of clusters.

� “Multi-node Configurations” on page 23 reveals the limitations of using a
multi-server cluster in certain types of applications, and briefly describes
how these limitations can be overcome by using a multi-node
configuration.

Single-server Configurations
A single-server configuration is fine for development and initial testing, but for
production use it suffers from two main limitations:

� Scalability is limited by the capacities of the host machine — Many
contemporary commercial applications must send and receive data from
more clients than can be handled by a single computer.

� Availability is limited — If the success of your business depends upon
critical applications being available 24 hours a day and 7 days a week, your
messaging system must be able to work if any single machine goes down.
If a messaging client loses a connection to a particular machine, it might
be essential that it can still use the messaging infrastructure.
SonicMQ Deployment Guide 21

Chapter 1: Types of Deployments
Multi-server Clusters
The requirements of performance and availability can largely be met by using
multi-server clusters, supported by SonicMQ Developer, Professional
Developers, and E-Business Editions. As explained in the SonicMQ
Installation and Administration Guide, a cluster consists of a group of
interconnected servers. You centrally administer the cluster using a
configuration server, which can be part of the cluster, but does not have to be.

Clusters and Scalability
Clustering allows performance to be scaled by adding additional servers to
handle heavy message loads. SonicMQ provides the option of using a round-
robin algorithm to assign connections so that all servers in a cluster share the
load. The following section discusses some issues you should consider when
adding additional servers.

Multi-CPU Machines

The servers in a cluster need not be on different machines. You can use a multi-
CPU machine, with each of several servers running on its own CPU and its own
JVM instance. However, this adds complexity to the installation and might not
be faster than using one server. A single server makes effective use of multiple
CPUs. In stress tests against a single server on a four-CPU machine, all four
CPUs attained close to 100% utilization. Less stressful tests also showed a
fairly even load distribution across the four CPUs.

Whether to use a single multi-CPU machine or multiple single-CPU machines
depends on several factors:

� On a multi-CPU machine, if you are using one server or if all servers share
a single database and the database can be put on the same machine, using
a multi-CPU machine should reduce disk access time. In this situation, the
multi-CPU solution would be faster.

Note Throughout this book, the terms “broker” and “server” will be used
interchangeably.
22 SonicMQ Deployment Guide

Multi-node Configurations
� A multi-CPU machine is likely to have a single I/O controller, so multiple
servers on such a machine would be competing for disk access, making the
multi-CPU solution slower.

� If all servers are on a multi-CPU machine and the machine fails, the
messaging system will be unavailable. However, if the servers are on
individual machines and one fails, parts of the messaging system remain
available.

Clusters and Availability
If a SonicMQ client loses its connection to a server or the server fails, the client
can redirect its messages to another server in the cluster and can receive
messages from other servers.

When the server or network connection comes back up, information can be
sent from that server to the one for which the message was originally intended.
Alternatively, you can design your application so two servers in a cluster are
mirror images of one another. If you do this, your applications will be able to
reconnect and continue operation if a single server fails.

If the configuration server goes down, you lose the ability to administer
security and cluster membership, and customers lose the ability to administer
the routing connection table and routing users that are part of the Dynamic
Routing Architecture. In this case, however, existing connections between the
servers are maintained, and work can continue uninterrupted.

Multi-node Configurations
Although clusters solve many of the problems you might otherwise encounter
when using a single server, there are certain situations where clusters by
themselves are not sufficient. These situations are ones impacted by cluster size
limitations and cluster functionality limitations, which are discussed in the
following sections.

Cluster Size Limitations
Every server in a cluster must maintain a connection to every other server. This
means that an n-server cluster must have n * (n - 1) / 2 interserver connections.
SonicMQ Deployment Guide 23

Chapter 1: Types of Deployments
Thus, a 16-server cluster has 120 interserver connections and a 32-server
cluster has 496 interserver connections. The overhead in maintaining large
numbers of connections is excessive. For this reason, you should have no more
than 16 servers in a cluster. For large scale applications requiring more than 16
servers another solution is required. SonicMQ technology provides a solution.

Cluster Functionality Limitations
Clusters have functional limitations as well. Some of the very features that let
clusters work well within a single enterprise become problems when
applications are spread over more than one enterprise:

� Clusters have centralized security management, a valuable convenience
within an enterprise. However, an inter-enterprise solution must have local
management. Each enterprise must have local management to control
access using a locally maintained list of access control rights.

� Applications in one enterprise must be able to work even when the remote
enterprise is unavailable. That is, they need a store-and-forward capability
to allow disconnected operation.

� Connections must be secure at the enterprise level, not at the level of the
ultimate user. One enterprise generally will have no way to authorize and
authenticate individual users in the other enterprise. It must be possible to
enforce enterprise-level connection security.

� You might want some sites to act as an intermediary. The main function of
these sites is to look at the message envelopes and business relationships
between two or more external enterprises and forward messages to the
appropriate site. This is complex routing based on business logic that
cannot be performed by a standard JMS implementation.

� As traffic increases, you must add resources to handle services and routing
applications. The architecture must be scalable.

The Dynamic Routing Architecture Solution
The SonicMQ solution to the shortcomings of the cluster approach is called
Dynamic Routing Architecture (DRA). In this approach, each cluster of
servers or unclustered server is a node. The DRA is a multi-node architecture.
It provides a way to send messages from a server on one node to a destination
24 SonicMQ Deployment Guide

Multi-node Configurations
on another node. Figure 1 shows a message being sent from a client on one
node to a client on another node.

Within the DRA, SonicMQ serves as the underlying transport layer for
messages. SonicMQ gives you the deployment options for physical transport
(for example, SSL or TCP) as well as Quality of Service options for guaranteed
messages.

Practically speaking, this means that each node has a server and messaging
infrastructure. This server communicates to the cluster through a Routing
Queue built on standard SonicMQ inter-server messaging.

Back-end scalability is achieved by using this Routing Queue to direct
messages between nodes. Availability and scalability are attained by allowing
the routing queue to load balance queue forwarding across connections from
applications that share replicated functionality.

Most of the remainder of this manual explains the ramifications of Dynamic
Routing Architecture. In particular, you will need to learn about the topics
listed in Table 3.

Figure 1. Intra-node Messaging

Client B

Server
1

Node 1 Node 2

Server
2

Client A
SonicMQ Deployment Guide 25

Chapter 1: Types of Deployments
Table 3. Dynamic Routing Architecture Topics

Topic Section or Chapter Where Discussed

Routing Nodes “Routing Nodes” on page 30

Queue Routing “Store & Forward Queue Routing from a Trading Partner” on
page 110

“Queue Routing from Portal to Trading Partners” on page 125

Configuration “System Management” on page 127

“Trading Partner Configuration” on page 136

“Portal Configuration” on page 142

Load Balancing Chapter 4, “Failover and Load Balancing”

“Load-balanced Trading Partner Connections” on page 113

“Load-balancing Across Portal Applications” on page 122

System Management “System Management” on page 127

“Portal Management” on page 127

“Trading Partner Management” on page 127

Dead Message Queue Chapter 3, “Guaranteeing Messages”

“Dead Message Queue” on page 128
26 SonicMQ Deployment Guide

Chapter 2 Multi-node Architecture
Sonic MQ provides a complete, robust implementation of the Java Message
Service (JMS). JMS provides reliable, secure guaranteed messaging between
applications over the Internet. However, JMS by itself operates at too low a
level to represent the complexities of business-to-business E-commerce. For
example, imagine thousands of companies working together as trading partners
through a marketplace, implemented as a portal. This scenario and other
business-to-business E-commerce scenarios are discussed in Chapter 6,
“Designing Messaging Models.”

In the portal and trading partner scenario, the trading partner plays the role of
a messaging client, and the portal acts as a message server that performs
routing, logging, authentication, and other services.

This chapter contains two sections:

� “Global Messaging Scalability and Routing Nodes” on page 28 describes
the routing node concept at a very high level.

� “Dynamic Routing Architecture” on page 29 describes, at a relatively high
level, how routing nodes and the various other components of the
architecture work together to allow the implementation of multi-node
solutions.
SonicMQ Deployment Guide 27

Chapter 2: Multi-node Architecture
Global Messaging Scalability and Routing Nodes
You can implement SonicMQ messaging either on a single server, or on a
single cluster of servers. Each of these acts as a node for messaging where
configuration can be centrally administered and where clients and servers can
be fully connected using normal JMS semantics.

In the global, business-to-business case, there is a need for connecting these
isolated, independently administered messaging nodes. SonicMQ’s Dynamic
Routing Architecture lets you connect these messaging nodes through the
concept of SonicMQ routing nodes.

You can define any SonicMQ server, or cluster of servers, as a routing node.
Network connections can be configured at any routing node to any list of other
adjacent routing nodes. Adjacent routing nodes are those nodes that have a
server-to-server connection with the current node. This connection can be
active, or you can define it administratively. This allows any client at one
routing node to address messages to both local queues and to remote queues on
adjacent routing nodes.

SonicMQ will deliver messages to adjacent routing nodes with its commitment
of guaranteed, exactly-once delivery. You can add additional routing at the
application level to take messages and send them on to subsequent routing
nodes. Figure 2 illustrates this concept.
28 SonicMQ Deployment Guide

Dynamic Routing Architecture
Each of the routing nodes in Figure 2 represents either a single server or a
cluster, plus all of the clients directly connected to the servers in that node.

Dynamic Routing Architecture
The ability to scale to thousands of trading partners and many portal
applications and services is based on the extension of SonicMQ inter-server
messaging. This messaging has been enhanced to support global queue routing
between routing nodes. This global queue routing structure is part of the
SonicMQ Dynamic Routing Architecture.

Figure 2. Routing Nodes

: Routing Node : Active Routing Connection
SonicMQ Deployment Guide 29

Chapter 2: Multi-node Architecture
Routing Nodes
With global queue routing, it is possible to send messages to global queues that
reside on other servers. You do this by creating a routing node.

A routing node can be a single unclustered server or a cluster of servers.
Routing node names are only exposed to adjacent routing nodes in a network
of routing nodes. Adjacent nodes can be established dynamically (as a remote
routing node connects into a node) or preconfigured in the server or
configuration server database (for outgoing connections).

For JMS clients connected to a server or cluster, you can specify queues that
exist in adjacent routing nodes by prepending the name of the routing node to
the queue. A queue name that is qualified by a routing node name is referred to
as a remote queue. The syntax for a remote queue is
routing_node_name::queue_name. JMS clients can retrieve messages only from
queues in servers to which they have established connections.

For example, a JMS client at a trading partner can send to the appQ queue on
the Portal routing node by using the remote queue name Portal::appQ.

A routing node name can be any Java string of up to 256 Unicode characters
that does not contain a double colon (::) or double quote (") and does not begin
with a dollar sign ($).

The following client code takes advantage of remote queue naming:

// Create the QueueSender on the Queue
javax.jms.Queue remoteQueue = session.createQueue (“Portal::appQ”);
javax.jms.QueueSender qSender = session.createSender(remoteQueue);
// Send a Message
qSender.send(msg);

The use of global queues is subject to the following rules:

� You cannot create a QueueReceiver or a QueueBrowser on a remote queue.
Attempting to do so will raise an exception.

� The remote queue must exist on the destination routing node. Existence of
the remote queue is checked only at the destination routing node. If the
queue does not exist, the message is flagged as undeliverable and, if the
sender has so requested, moved to the SonicMQ.deadMessage queue.

� Access control by a client to a remote queue is based on the queue name,
without the routing node name. That is, the ACLs are checked at the server
connected to the client.
30 SonicMQ Deployment Guide

Dynamic Routing Architecture
� Remote queues must be defined as global on the destination routing node
to have routing. Global queues are advertised over new routing
connections, unless you turn off this capability.

� To send messages to a global queue on a local routing node, you can omit
the routing node name and simply preface the name with a double colon
(::), as in this code:

session.createQueue (“::appQ”);

You can omit the routing node name for a global queue that exists on the
server that the JMS client is connected to, or to a global queue that is
defined on another server in the same cluster.

Behavior of a Routing Queue in a SonicMQ Server
The name of the routing queue is SonicMQ.routingQueue.

The routing queue automatically routes all messages that are not local to that
routing node to remote queues. The connection associated with a routing node
is initialized administratively. That is, each routing node name has an
associated connection (which maps to a list of server URLs, ports, and other
connection parameters).

When two servers connect to each other for queue routing, they exchange
information on queues that are explicitly set global. This is referred to as the
advertising of global queues. You can disable advertising by selecting the
noadvertise flag when setting a routing in the Admin tool or SonicMQ
Explorer.

Messages are checked at arrival at a routing node for user/queue write
permissions based on the security ACL configuration at the receiving server.

You specify the name of the routing node by adding the following line to the
broker.ini file:
ROUTING_NODE_NAME=name

Note Routing is enabled for all servers.
SonicMQ Deployment Guide 31

Chapter 2: Multi-node Architecture
You cannot delete or rename the routing queue. However, you can modify its
properties such as maximum size, save threshold, and retrieve threshold by
using the Admin tool, Explorer, or the Management API.

A route table is used to dynamically maintain information on global queues
for routing purposes. It allows the routing queue to determine where messages
should be sent during routing. When a global queue is advertised from a
routing node, the table retains the connection information associated with that
queue. Only the most current information is retained, along with the shortest
path to the destination queue.

The information in the route table is persisted as it is received so that remote
queue routings are known at server startup, even if no routing advertisements
are received. The full connection information for a destination queue is
retained, which allows outgoing connections to be established, if possible.

For preconfigured connections, a table of connection routing information
called the routing connection table is stored with the configuration database.
In a clustered configuration, the routing connection table is centrally
administered in the configuration server. It defines the connection parameters
and options used to establish new connections to a given routing node, if no
active connections exist. Figure 3 illustrates the configuration of the routing
connection table.
32 SonicMQ Deployment Guide

Dynamic Routing Architecture
Configured and Advertised Routing Information
The propagation of routing information is handled by the route table
forwarder (RTF) and is referred to as advertising. The RTF accepts route
information from other servers in the system and forwards this information to
other servers. The RTF is responsible for updating the information in the Route
Table as informational messages are processed. The RTF also obtains current
route information from neighboring servers when the routing system is
initialized. The RTF needs access to the logical connections in a server.

Figure 3. Routing Connection Table

Pre-configured
Routing Information

Route Information

Routing
Connection

Table

Routing Queue
(one per server)

[SonicMQ.routingQueue]

Global Queue Messages
(outgoing)

Message
Forwarder

Advertising of
Route Information
Messages (outgoing)

Incoming Messages

Route Table

Incoming Routing
Information

Forwarding supports
exactly once delivery to
replicated queues

Route Table
Forwarder

Routing Configuration
(from management
API and/or tools)
SonicMQ Deployment Guide 33

Chapter 2: Multi-node Architecture
The following restrictions apply to the advertising of queues when servers are
connected:

� Only queues explicitly defined as global are advertised.

� Only global queues defined on a routing node are advertised to another
routing node.

� When servers make connections from one routing node to another, the
connection can be configured to explicitly prevent this advertising. A
global queue is not advertised through a routing connection that disables
advertising.

� Within a cluster, the advertising of global queues always happens. This is
automatic and occurs when the server is added to the cluster or when new
global queues are created or deleted.

� Advertising must be explicitly turned on for routing connections defined
administratively between nodes.

� Any new routing information received by a clustered server is immediately
propagated to servers in that cluster. The new information will be
advertised to adjacent nodes only if that information pertains to the node
itself.

� The server originating routing information will include a timestamp to
allow for duplicate updates to be detected. Only the most recent
information will be used.

� Duplicate routing information is not forwarded. This prevents advertising
to enter an infinite loop in complex routing configurations.

Routing Nodes and Clusters
A routing node can consist of a single server or a cluster of servers. If the node
is a cluster, static routing connection information is configured for the entire
cluster through the configuration server. That is, the relationship between the
routing node name and outgoing connections is set for the entire cluster, and
must be set on the configuration server. This is similar to the way that security
information is administered and stored. Routing and security configurations
are designed to work together, but neither is a prerequisite for the other. You
can configure a cluster for routing, for security, or for both.
34 SonicMQ Deployment Guide

Dynamic Routing Architecture
Changes in route-table information are shared between servers in the routing
node using internal messaging. This applies to changes made administratively
though the management tools or API, as well as to routings defined
dynamically due to route table advertising.

Routing connections within a cluster-based routing node are made
automatically. Each server in a cluster-based routing node can route to any
other server in the same routing node. That is, within a cluster, routing
connections are, at most, one forwarding “hop.”

Using a cluster does not automatically create a routing node. To create a cluster
that is also a routing node, every server in the cluster must be configured with
the same values in the individual broker.ini files. For example, to set up the
Portal routing node, you set ROUTING_NODE_NAME=Portal for each server. Each
of the servers in the cluster is added to the cluster using the configuration
server.

The configuration server can also have the same settings, but only if it is to be
added to the cluster itself. A configuration server does not have to be part of
the routing node in order for it to administer routing connection information.
SonicMQ Deployment Guide 35

Chapter 2: Multi-node Architecture
36 SonicMQ Deployment Guide

Chapter 3 Guaranteeing Messages
This chapter provides information about how you can use the SonicMQ Dead
Message Queue (DMQ) features to guarantee that messages will not be
discarded until a client has processed them. The chapter contains the following
sections:

� “Working with Dead Message Queues” on page 37 describes dead
messages and dead message queues, and the ways SonicMQ provides for
you to handle them.

� “The System Dead Message Queue” on page 41 provides information
about the properties of the SonicMQ system dead queue.

� “Handling Undelivered Messages” on page 44 describes the process
SonicMQ uses to handle undeliverable messages

� “Types of Undelivered Messages” on page 47 defines the various cases
where messages are marked as undelivered and provides reason codes and
descriptions of each type of undelivered message, including the scenarios
in which the undelivered message might occur

Working with Dead Message Queues
JMS provides mechanisms for guaranteed delivery of messages between
clients and within the provider. However, there are cases where messages are
allowed to expire or where they are viewed by the provider as undeliverable.
These messages are called dead messages.
SonicMQ Deployment Guide 37

Chapter 3: Guaranteeing Messages
If you have a local application of SonicMQ, the only dead messages you should
encounter are those that expire. The other types of dead messages discussed in
this chapter arise in multi-node deployments. These deployments are discussed
in Part II, “Implementing Your Deployment.”

SonicMQ provides you with the ability either to deal with these messages or to
be kept aware of situations where messages are not being delivered due to high
latency or possible provider failure. This ability is achieved through use of the
Dead Message Queue.

When you use the SonicMQ Dead Message features, the SonicMQ server will
deal with undeliverable messages as follows. When the SonicMQ server finds
messages that have exceeded their time to live (TTL) and should expire or that
cannot be routed due to some external network error, the server:

� Saves the message in a dead message queue (DMQ)

and/or

� Generates an administrative notification (management event)

At an application level, you can listen for the administrative notifications,
browse the DMQ, and deal with undelivered messages as appropriate for your
application. For more information about performing these tasks, see the
SonicMQ Programming Guide.

Note The DMQ is used only for messages delivered in the Point-to-Point domain.

Note Messages sent with a NON_PERSISTENT delivery mode are subject to a
lower quality of service than PERSISTENT messages. NON_PERSISTENT
messages in the DMQ are not retained after a planned or unplanned shutdown
of the server. These messages must be processed in the same server session in
which they occur, otherwise they will be discarded.
38 SonicMQ Deployment Guide

Working with Dead Message Queues
What Is an Undeliverable Message?
In the case of server-to-server queue routing across routing nodes, there are
cases where messages are considered undeliverable. (Part II, “Implementing
Your Deployment,” introduces and discusses dynamic routing architecture.)
These cases include the following types of messages:

� Unroutable messages are messages that arrive at a routing queue where
the information on the routing is missing or incomplete.

� Indoubt messages are messages that have been forwarded to another
routing node, but where the handshaking needed to ensure once-and-only-
once delivery of messages has been interrupted due to network or hardware
failure and cannot be re-established within the cofigurable
INDOUBT_TIMEOUT (approximately one business day).

There are other reasons why a message might not be delivered, including
timeouts and network failures. See the “Types of Undelivered Messages”
section for descriptions of various scenarios under which messages are not
delivered.

Messages that do not make forward progress during queue routing for a
configured period of time are transferred to the DMQ. This period of time is
specified by the TTL parameter.

Using the System Dead Message Queue
In SonicMQ, all undeliverable messages are sent to the system DMQ, named
SonicMQ.deadMessage. The system dead message queue is treated exactly like a
normal queue in that it can be browsed or read using normal JMS objects
(QueueBrowser and QueueReceiver). The only special handling feature of
these queues is that messages are not allowed to expire from them.

Guaranteeing Delivery

JMS can guarantee delivery by using queues and setting the delivery mode to
PERSISTENT, but cannot guarantee latency of messages. When you use the
DMQ, any expired message is guaranteed to be preserved on the server. To
ensure that expired messages are preserved, you must configure your
application to monitor the DMQs and to handle all messages that arrive in the
DMQ.
SonicMQ Deployment Guide 39

Chapter 3: Guaranteeing Messages
Enabling Dead Message Queue Features

You enable the DMQ features only on a message-by-message basis. You must
specifically request enqueuing and notifications of administrative events, or the
DMQ is not used. Enabling the DMQ in this way prevents the DMQ from
accidentally filling up and shutting down the server.

See the SonicMQ Programming Guide for information on setting message
properties to request enqueueing on the DMQ.

Monitoring Dead Message Queues
It is very important that your application monitor the dead message queues and
deal with messages that arrive there. When any of these system queues exceeds
its maximum queue size, the server is shut down.

To help deal with the potential of DMQs filling up, the SonicMQ server
monitors the DMQ and sends an administrative event notification when the
queue exceeds the predefined percentage. This percentage is set to 85% by
default. An event is sent every time a message is enqueued that causes the size
of the queue to exceed the notification percentage.

Warning Applications should not directly add messages to the DMQ by creating
QueueSenders. Recommended access to the DMQ is through QueueBrowsers
and QueueReceivers.

Note Messages are enqueued in the DMQ retain their original destination and
JMSExpiration value. Ensure that QueueBrowsers and QueueReceivers on the
DMQ check the (javax.jms.Message) m.getJMSDestination() for the original
queue. Checking m.getJMSExpiration() will always yield a time in the past
40 SonicMQ Deployment Guide

The System Dead Message Queue
The System Dead Message Queue
The Dead Message Queue (DMQs not used unless you request it. You can
request administration notifications and enqueuing on the DMQ by setting
properties on each message. See the SonicMQ Programming Guide for
information on setting message properties.

The DMQ is created and populated by SonicMQ. The DMQ has the following
properties:

� Exists on every server

� Is created automatically by SonicMQ (all running SonicMQ servers have
an active DMQ)

� Is always named: SonicMQ.deadMessage

� Is a local queue

� Cannot be deleted

As with other queues, messages that have a JMSDeliveryMode of
NON_PERSISTENT are not available in the DMQ after a system shutdown
(either planned or unplanned).

As explained in the “Monitoring Dead Message Queues” section, the SonicMQ
server will shut down if the DMQ exceeds its configured capacity. Prior to
shutting down the server, however, the DMQ will raise an administrative event
when it exceeds a fraction of its maximum size. The notification factor defaults
to 0.85 (85%). You can reset this value (DMQ_NOTIFY_FACTOR) in the
broker.ini file to an appropriate limit for your application. You can monitor
these events using the Management API or the tools. SonicMQ raises the event
for every message added to the DMQ.

You can configure the SonicMQ Explorer and Admin tool to listen for these
messages. For example, in the Admin tool, enter this command:

show broker events start dmqstatus

See the SonicMQ Installation and Administration Guide for more information
about using the SonicMQ Explorer and Admin tool.

See the SonicMQ Programming Guide for an example that shows you how to
use the SonicMQ Explorer to monitor the server’s DMQ.
SonicMQ Deployment Guide 41

Chapter 3: Guaranteeing Messages
Default DMQ Properties
By default, SonicMQ creates the Dead Message Queue with the properties
listed in Table 4.

Modifying Default DMQ Properties

You can modify all the parameters of the SonicMQ.deadMessage queue, except
the name and local setting, using the Admin tool or Explorer.

The settings for retrieve threshold, save threshold, and maximum queue size
are highly specific to an application, therefore you should change these from
their default settings to values appropriate to your application.

See the SonicMQ Installation and Administration Guide for information about
using the Admin Shell and Explorer.

Modifying DMQ Access Control

The administrator can modify Access Control for the DMQ using the
Management API, Admin tool, or Explorer. Access Control is set in the same
way for the system queues as for nonsystem queues.

See the SonicMQ Installation and Administration Guide for information about
using the Management API, Admin tool, and Explorer.

Table 4. Dead Message Queue Properties

Property Value Editable

Name SonicMQ.deadMessage No

[local|global] local No

[shared|exclusive] shared Yes

retrieve threshold 1,200 K Yes

save threshold 1,400 K Yes

Maximum queue size 10,000 K Yes
42 SonicMQ Deployment Guide

The System Dead Message Queue
JMS_SonicMQ Message Properties
The following is a list of the message properties associated with messages
declared undeliverable and possibly moving to the DMQ:

� JMS_SonicMQ_preserveUndelivered

Set this boolean property to true for every message that should be
transferred to the SonicMQ.deadMessage queue when noted as being
undeliverable.

� JMS_SonicMQ_notifyUndelivered

Set this boolean property to true for every message that should raise an
administration notification when noted as being undeliverable.

� JMS_SonicMQ_undeliveredReasonCode

Read this int property to determine why SonicMQ declared this message
as undeliverable. The server sets this property when messages are moved
to a dead message queue.

� JMS_SonicMQ_undeliveredTimestamp

Read this long property to determine when SonicMQ declared this
message as undeliverable. The server sets this property when messages are
moved to a dead message queue.

These property names are available as standard constants in
progress.message.jclient.Constants. Table 5 provides the values for these
constants.

Table 5. JMS SonicMQ Properties

JMS SonicMQ Constant String Value

NOTIFY_UNDELIVERED “JMS_SonicMQ_notifyUndelivered”

PRESERVE_UNDELIVERED “JMS_SonicMQ_preserveUndelivered”

UNDELIVERED_REASON_CODE “JMS_SonicMQ_undeliveredReasonCode”

UNDELIVERED_TIMESTAMP “JMS_SonicMQ_undeliveredTimestamp”
SonicMQ Deployment Guide 43

Chapter 3: Guaranteeing Messages
Handling Undelivered Messages
The following sequence of events describes the process SonicMQ uses to
handle undeliverable messages:

1. A condition occurs where the server determines the message is not
deliverable. (See the “Types of Undelivered Messages” section for a list of
possible causes.)

2. The message is passed to a special processing object in the SonicMQ
server. That object examines the message header.

3. The special processing object determines whether to preserve the message
in the DMQ:

The message is checked for the boolean property:

JMS_SonicMQ_preserveUndelivered

If this property is TRUE, then the message is transferred to the
SonicMQ.deadMessage queue with the following properties:

JMS_SonicMQ_undeliveredReasonCode = reason_code [int]

JMS_SonicMQ_undeliveredTimestamp = GMT_timestamp [long]

See the “Types of Undelivered Messages” section for a description of
reason_code.

4. The special processing object determines whether to send a notification
that the message has been sent to the DMQ or that the message has
expired:

The message is checked for the boolean property:

JMS_SonicMQ_notifyUndelivered

If this property is TRUE, an administration notification is sent with the
following information:

� Reason code

� MessageID (of the original message)

� Destination (of the original message)

� Timestamp (of when the message underwent dead-message handling)
44 SonicMQ Deployment Guide

Handling Undelivered Messages
� Name of server (where message originated)

� Preserved boolean (TRUE, if the message was saved to the DMQ)

Programmatic handling of the undelivered message event is done using the
Management API calls in progress.message.tools.BrokerManager. You must
create a class that implements the callback for the
brokerUndeliveredMsgNotification method. See the javadoc for the
BrokerManager class and IBrokerManagerListener interface in the
progress.message.tools package for more information on these calls.

Sample Scenarios of Handling Dead Messages
The following sections describe typical scenarios in handling dead messages:

� “Preserving Expired Messages and Throwing an Administration
Notification”

� “Using High Priority and Throwing an Administration Notification”

Preserving Expired Messages and Throwing an Administration
Notification

Typically, important messages will be sent PERSISTENT and will be flagged
both to be preserved on expiration and to throw an administration notification.
The following code sample shows how this might be done:

// Create a TextMessage for the payload. Make sure the message

// is delivered within 2 hours (7,200,000 milliseconds).

// If expires, send a notification and save the message.

javax.jms.TextMessage msg = session.createTextMessage();

msg.setText(“This is a test of notification and DMQ”);

// Set 'undelivered' behavior. Optionally, we could have used the

// property names defined as static final Strings in

// progress.messages.jclient.Constants.

msg.setBooleanProperty("JMS_SonicMQ_preserveUndelivered", true);

msg.setBooleanProperty("JMS_SonicMQ_notifyUndelivered", true);
SonicMQ Deployment Guide 45

Chapter 3: Guaranteeing Messages
// Send the message with PERSISTENT, TimeToLive values.

qsender.send(msg,

 javax.jms.DeliveryMode.PERSISTENT,

 javax.jms.Message.DEFAULT_PRIORITY,

 7200000);

Using High Priority and Throwing an Administration Notification

The following code would be used to send a small message using high priority,
with the expectation that this message will be delivered in ten minutes. In this
case, we are only interested in notification events:

// Create a BytesMessage for the payload. Make sure the message

// is delivered within 10 minutes (600,000 milliseconds).

// If expires, send a notification.

javax.jms.TextMessage msg = session.createTextMessage();

msg.setText(“Test of undelivered events”);

// Set 'undelivered' behavior. Optionally, we could have used the

// property names defined as static final Strings in

// progress.messages.jclient.Constants.

msg.setBooleanProperty("JMS_SonicMQ_notifyUndelivered", true);

// Send the message for fast delivery, or not at all.

qsender.send(msg,

 javax.jms.DeliveryMode.NON_PERSISTENT,

 8, // Expedite at a high priority

 600000); // 10 minutes

What to Do When the Dead Message Queue Fills Up
When the DMQ fills up (to its maximum queue size), the server stops
processing messages after enqueuing the message that caused the DMQ to
exceed its maximum size. In this way, no messages are lost.
46 SonicMQ Deployment Guide

Types of Undelivered Messages
If a server shuts down because the DMQ is full, you can restart the server after
setting the DMQ_OVERRIDE_MAXSIZE parameter in the broker.ini file.
The server then starts up with a temporary override on the maximum size of the
dead message queue. Assuming the new value is sufficiently large, the queue
can be processed or cleared. After the queue is processed, you should restart
the server with its original settings.

If, while the DMQ_OVERRIDE_MAXSIZE parameter is in effect, the
maximum size of the dead message queue is changed administratively through
a tool or the Administration API, this new value is stored in the database and
used until the server is shut down. If the DMQ_OVERRIDE_MAXSIZE
parameter is removed before restarting the server, the new stored value is used.
However, if the DMQ_OVERRIDE_MAXSIZE parameter is left in place, it
again overrides the stored value.

See the SonicMQ Programming Guide for information about handling dead
message queues programmatically.

Types of Undelivered Messages
This section defines the various cases where messages are marked as
undelivered. The following sections provide reason codes and descriptions of
each type of undelivered message, including the scenarios in which the
undelivered message might occur. The types of undelivered messages are:

� TTL is expired

� Routing node is invalid

� Routing destination is invalid

� Connection cannot be established before routing timeout

� INDOUBT_TIMEOUT expires

� Connection authentication fails

� Connection authorization fails

� Message is too large
SonicMQ Deployment Guide 47

Chapter 3: Guaranteeing Messages
Other cases where messages might be lost are discussed at the end of this
chapter. Some of these types of undelivered messages arise in scenarios
involving the dynamic routing architecture; this concept is discussed in Part II,
“Implementing Your Deployment.”

TTL Is Expired

The reason code is: UNDELIVERED_TTL_EXPIRED

The SonicMQ server determines that a message has expired.

This dead message event is the simplest case and the one that most developers
consider when thinking about dead message queues.

When sending messages, you can optionally set the parameter time to live
(TTL). This TTL is converted to an expiration time and is stored in the
message header (in GMT).

When a SonicMQ server tries to deliver a message, it notes the expiration time
(based on the GMT as calculated from the server's system clock) and might
decide not to deliver the message due to expiration.

Checks for expiration are done only periodically within a server (in order to
avoid extra overhead). Messages are always guaranteed not to be delivered if
they have expired. However, the actual time they are moved to the dead
message queue might be significantly later than the expiration date in the
header. You can change the QUEUE_CLEANUP_INTERVAL parameter to
adjust the frequency of these checks.

Note Reason codes are defined as public final static int in the
progress.message.jclient.Constants class.
48 SonicMQ Deployment Guide

Types of Undelivered Messages
Routing Node Is Invalid

The reason code is: UNDELIVERED_ROUTING_INVALID_NODE

A client tries to send a message to a remote queue for which no routing node
connection information exists. Figure 4 shows an example of this situation.

A client tries to send a message to the remote queue: Xxx::aQ (Routing Node
= Xxx; Queue name = aQ).This message goes to the routing queue in the
server, Aaa, which is shown to have an active connection with routing node
Bbb.

The desired routing node connection, however, is Xxx, which is not active, nor
is there default connection information for this node in the routing connection
table.

As a result, the message is declared to be undeliverable and the dead message
processing will occur. The message will stay on the server at Aaa.

Figure 4. Invalid Routing Node

Server

Routing Queue

aQ

anotherQ

Routing Node: Aaa Routing Node: Bbb

Client Application

createQueueSender("Xxx::aQ")

Server

Routing Queue

Routing
Connections
Bbb - server:port
Ccc - server:port

send(msg)

Active
Routing

Connection
SonicMQ Deployment Guide 49

Chapter 3: Guaranteeing Messages
Routing Destination Is Invalid

The reason code is: UNDELIVERED_ROUTING_INVALID_DESTINATION

A client tries to send a message to a remote queue for which the connection
exists, but once the message arrives no global queue is found to exist. (The
global queue should exist on the receiving server or on another server in the
routing node, if it is comprised of a SonicMQ cluster.) Figure 5 shows an
example of this situation.

A client tries to send a message to the remote queue: Bbb::noQ (Routing Node
= Bbb; Queue name = noQ). This message goes to the routing queue in the
server, which finds an active connection with routing node, Bbb.

The message is moved to the server at routing node Bbb. When this server tries
to deliver the message, however, it realizes that there are no global queues that
have this name (including elsewhere in the cluster, if the routing node is
clustered).

Figure 5. Invalid Routing Destination

Server

Routing Queue

aQ

anotherQ

Routing Node: Aaa Routing Node: Bbb

Client Application

createQueueSender("Bbb::noQ")

Server

Routing Queue

Routing
Connections
Bbb - server:port
Ccc - server:port

send(msg)

Active
Routing

Connection
50 SonicMQ Deployment Guide

Types of Undelivered Messages
At this point, the message is sent to the dead message processing logic on the
server at Bbb.

Connection Cannot Be Established Before Routing Timeout

The reason code is: UNDELIVERED_ROUTING_TIMEOUT

A client tries to send a message to a remote queue for which the connection
should exist, but cannot be established (or re-established, in the case of a lost
connection). Figure 6 shows an example of this situation.

A client tries to send a message to the remote queue: Bbb::aQ (Routing Node
= Bbb; Queue name = aQ). This message goes to the routing queue in the
server, which finds a connection with routing node Bbb.

When an attempt is made to use this connection, however, it is found to be
down (or perhaps timed out). Repeated attempts to restart this connection to the
routing node Bbb fail.

Figure 6. Broken Routing Connection

Server

Routing Queue

aQ

anotherQ

Routing Node: Aaa Routing Node: Bbb

Client Application

createQueueSender("Bbb::aQ")

Server

Routing Queue

send(msg)
Broken
Routing

Connection

X

SonicMQ Deployment Guide 51

Chapter 3: Guaranteeing Messages
If the failures continue for a configurable length of time (the
ROUTING_TIMEOUT setting in broker.ini), the message is sent to the dead
message processing logic on the server in routing node Aaa.

INDOUBT_TIMEOUT Expires

The reason code is: UNDELIVERED_ROUTING_INDOUBT

A network failure or server failure occurs after the sending server has sent a
PERSISTENT message, but before it has received an acknowledgement,
causing the message to be in an indoubt state. The message remains in this state
until a connection is re-established between the two servers (or until the
INDOUBT_TIMEOUT expires).

The sending server automatically tries to re-establish any connections
necessary to resolve the state of the indoubt messages. Until this occurs,
however, all the indoubt messages are held where they will not be lost. There
is no possibility of message redelivery due to any failure situation.

SonicMQ handles this situation as follows:

� As part of server configuration, a parameter exists that specifies an
INDOUBT_TIMEOUT (in seconds).

� All messages that are in the indoubt state for a period that exceeds this time
automatically expire. (Typically, all PERSISTENT messages would be
configured to be sent to the DMQ and to raise an administration
notification.)

� At no point are these messages lost or inadvertently placed in a state where
they can be redelivered.

The important details of this scenario include:

� Messages are never redelivered by SonicMQ queue routing even in the
event of network failure.

� Because only PERSISENT messages are subject to the special indoubt
handling, only PERSISTENT messages can ever be declared as
undeliverable with this reason code.

� Messages may be stored on a sending server in an indoubt state.
52 SonicMQ Deployment Guide

Types of Undelivered Messages
� SonicMQ will attempt to re-establish the server-to-server connection to
resolve indoubt messages even if another server-to-cluster connection has
been created for the destination routing node.

� In the event of an unsuccessful attempt to re-establish a server-to-server
connection for the purpose of resolving indoubt messages, SonicMQ will
wait the number of seconds specified by the
INDOUBT_RECONNECT_INTERVAL parameter before a subsequent
attempt is made to re-establish the connection. This cycle is repeated until
either the connection is successfully re-established or the routing timeout
interval (INDOUBT_TIMEOUT) has passed.

� If the failed connection cannot be re-established, the message is optionally
moved to the dead message queue, after the INDOUBT_TIMEOUT.
However, there is no reason not to have this parameter set to a long period,
as the indoubt resolution process uses the SonicMQ journal to retain state.
Even if both servers fail and are restarted in the process, at different times,
guaranteed exactly-once delivery is assured.

� Indoubt messages expire only on the original, sending server. A copy is not
caused to expire on the receiving server as part of the same network or
connection failure. (However, the message might expire later for a different
reason, for example, TTL.)

Connection Authentication Fails

The reason code is:
UNDELIVERED_ROUTING_CONNECTION_AUTHENTICATION_FAILURE

A message with routing information cannot be delivered to a specified node
due to authentication failure (invalid credentials).

The routing node name is valid (that is, it does exist in the routing connections
database). However, the routing connection fails because the server being
connected to refuses the connection due to invalid credentials. Figure 7 shows
an example of this situation.
SonicMQ Deployment Guide 53

Chapter 3: Guaranteeing Messages
A client tries to send a message to the remote queue: Bbb::aQ (Routing Node
= Bbb; Queue name = aQ). This message goes to the routing queue in the server
for routing node Aaa. This server attempts to create a new connection to
routing node Bbb.

The connection information for Bbb is retrieved from the routing connection
table at Aaa, which indicates that the connection to Bbb should be done with
user=AcmeCo and password=pwd.

The server at routing node Bbb, however, does not have this user/password
combination in its table of routing users. The connection is refused, and the
message is sent to the dead message processing logic on the server in routing
node Aaa.

Figure 7. Failed Connection Authentication

Server

Routing Queue

aQ

anotherQ

Routing Node: Aaa Routing Node: Bbb

Client Application

createQueueSender("Bbb::aQ")

Server

Routing Queue

send(msg) Connection
Attempt
Failed

Routing Connection Table
Routing Node: Bbb
User: AcmeCo
Password: pwd

X

Routing User Table
No entry for user
AcmeCo, or invalid
password

AcmeCo
54 SonicMQ Deployment Guide

Types of Undelivered Messages
Connection Authorization Fails

The reason code is: UNDELIVERED_ROUTING_CONNECTION_AUTHORIZATION_FAILURE

A message with routing information cannot be delivered to a specified node
due to authorization failure (insufficient privileges).

The routing node name is valid (that is, it does exist in the routing connections
database). A connection could indeed be made, and authenticated, at that
routing node. However, the Routing Node Name of the sender does not match
the Routing Node Name in the receiver’s routing user security database.
Figure 8 shows an example of this situation.

A client tries to send a message to the remote queue: Bbb::aQ (Routing Node
= Bbb; Queue name = aQ). This message goes to the routing queue in the server
for routing node Aaa. This server attempts to create a new connection to
routing node Bbb.

Figure 8. Failed Connection Authorization

Server

Routing Queue

aQ

anotherQ

Routing Node: Aaa Routing Node: Bbb

Client Application

createQueueSender("Bbb::aQ")

Server

Routing Queue

send(msg) Connection
Attempt
Failed

Routing Connection Table
Routing Node: Bbb
User: AcmeCo
Password: pwd

X

Routing User Table
User: AcmeCo
Routing Node: Xxx
Password: pwd

AcmeCo
SonicMQ Deployment Guide 55

Chapter 3: Guaranteeing Messages
The connection information for Bbb is retrieved from the routing connection
table at Aaa, which indicates that the connection to Bbb should be done with
user=AcmeCo and password=pwd. This connection attempt has the correct
credentials, and the server at routing node Bbb does recognize AcmeCo as a
valid user with proper credentials.

However, the table of routing users indicates that the associated routing node
must be Xxx (and not Aaa). The connection is refused, and the message is sent
to the dead message processing logic on the server in routing node Aaa.

Message is Too Large

The reason code is: UNDELIVERED_MESSAGE_TOO_LARGE

An attempt is made to enqueue a message that is larger than the maximum size
of a queue.

Normally, an attempt to enqueue a message larger than the maximum queue
size would cause an exception to the sender. However, if the sender is another
server, as is the case with routing, then the sender cannot catch the
JMSException. Instead, the message is sent to the DMQ on the routing server.

Figure 9. Message is Too Large

Server

Routing Queue

aQ

anotherQ

Routing Node: Aaa Routing Node: Bbb

Client Application

createQueueSender("Bbb::aQ")

Server

Routing
Connections
Bbb - broker:port
Ccc - broker:port

send(msg)

Routing Queue X

Referred
Message

Too Large
56 SonicMQ Deployment Guide

Types of Undelivered Messages
In Figure 9 a client tries to send a message to the remote queue: Bbb::aQ
(Routing Node = Bbb; Queue name = aQ). However, the message cannot be
accepted by Bbb because the message size is bigger than the maximum size of
the queue. This event would normally cause a JMSException to be thrown to
the sender. However, because the sender in this case is another server, it cannot
catch the JMSException. The message is sent to the DMQ of the sending
server, Aaa.

Other Cases Where Messages Might Be Lost

The following questions provide information about cases where messages
might be lost.

What are the JMSDestination and JMSExpiration values for expired
messages?

When messages are enqueued in the DMQ they retain their original destination
and JMSExpiration value.

Make sure that QueueBrowsers and QueueReceivers on the DMQ check the
(javax.jms.Message) m.getJMSDestination() for the original queue. Also,
checking m.getJMSExpiration() will always yield a time in the past.

Can the DMQ be used in a “Denial of Service Attack” to shut down the
server?

If a routing user does not have permissions to write to a particular queue,
messages arriving from this routing node will be dropped regardless of their
JMS_SonicMQ_preserveUndelivered property. That is, they will not go to the
DMQ.

Are there other cases where messages with a setting for
JMS_SonicMQ_preserveUndelivered are lost?

Messages sent with a NON_PERSISTENT delivery mode are subject to a
lower quality of service than PERSISTENT messages. The DMQ is designed
to act like any other queue in SonicMQ (except where specifically noted

Note This undelivered message reason code does not apply to the case where a queue
is filling up and the remaining space is too small for the message. In that event,
flow control is implemented and the message does not go to the DMQ.
SonicMQ Deployment Guide 57

Chapter 3: Guaranteeing Messages
previously). Therefore, NON_PERSISTENT messages in the queue will not be
retained after either a planned or unplanned shutdown of the server.

These messages must be processed in the same server session where they
occurred, otherwise they will be discarded.

If the servers stay up, but the network fails, can messages be lost?

There is one case where this can happen when messages are sent with a
NON_PERSISTENT delivery mode. When routing occurs between servers,
NON_PERSISTENT messages are not subject to the same level of
acknowledgement as PERSISTENT messages. In this case, one routing node
could send a NON_PERSISTENT message to another node and the network
could fail. Additional messages will be blocked at the originating server
pending re-establishing the connection, but a message that was indoubt might
be lost if it was sent with a NON_PERSISTENT delivery mode.
58 SonicMQ Deployment Guide

Chapter 4 Failover and Load Balancing
SonicMQ implements two features which you can use singly or together to use
your resources efficiently and reliably:

� Connect-time failover lets a client (or routing node) connect to any server
in a list that you supply, so a connection can be made even if some of the
servers in the list are not available. This is covered in the “Connect-time
Failover” section.

� Load balancing lets a client (or a server acting as a client) be redirected to
another server for the purpose of redistributing load. This is covered in the
“Load Balancing” section.

Connect-time Failover
Connect-time failover is based on a client (or routing connection) specifying a
list of servers in a cluster to which it might initially connect. If one connection
attempt fails, other connections from the list will be tried until either a
connection is made or a timeout condition terminates the attempts.

You can specify a list access method, which determines which server will be
tried first. This can be either sequential or random. With the sequential
method, the first server in the list will be tried first. Sequential start is simplest
and works well for most applications. With random order, the server first tried
will be selected randomly. Random start can be used to increase throughput for
high-traffic scenarios by not overloading the servers at the start of the list. With
either sequential or random start, subsequent connection attempts will be made
in the order in which the servers occur in the list.
SonicMQ Deployment Guide 59

Chapter 4: Failover and Load Balancing
Failover and Routing
For routing connections, one server acts as a client and the other server is
usually part of a cluster.

Figure 10 shows a routing table with sequential failover selected for two
connections.

Defining the List of Connection URLs

All outbound routing connections from a routing node can be configured
within the routing node at the server or at the configuration server for the
cluster.

Figure 10. Failover and Load Balancing for a Routing Node
60 SonicMQ Deployment Guide

Load Balancing
When you create a load-balanced connection to a client, the Connection URL
list parameter lets you connect to the first available server in a list, which in
most cases maps to a subset of a cluster.

The list of server Connection URLs is separated by commas. The list can be up
to 4,000 characters long, and each element must be a valid URL. The following
example is a valid connection URL list:

myserver1:2506,myserver2:2507

Client Access to Failover Connections
It is also possible to use failover connections from a messaging client.

This feature is available from the ConnectionFactory objects and is specific to
the SonicMQ APIs. It is not JMS-standard.

The specifics on using load balancing from a client can be found in the javadoc
for the progress.message.jclient package. The relevant classes and methods
for both TopicConnectionFactory and QueueConnectionFactory are:

� setConnectionURLs(…) and getConnectionURLs()

� setSequential(…) and getSequential()

Load Balancing
Load balancing is a method of distributing connections over several servers in
a cluster to avoid creating a bottleneck that might result from overloading a
server. SonicMQ implements load balancing by using a round-robin algorithm.
Load balancing occurs at connection time and cannot be dynamically changed
without closing the connection and creating a new one.

By default, round-robin load balancing is enabled for all servers. To turn off
load balancing at a server, set the ENABLE_LOADBALANCING property to FALSE in
the broker.ini file. The client (or routing connection) must explicitly ask for
load balancing as part of the connection settings.

You can reconfigure a cluster while the round-robin load balancing agent is
running: the agent will include new servers for round-robin connections and
stop redirecting connections to servers that have left the cluster.
SonicMQ Deployment Guide 61

Chapter 4: Failover and Load Balancing
If the load-balancing parameter for a connection is set to TRUE, load balancing
is enabled for the connection. This indicates that the client (or server acting as
a client) is willing to have its connection redirected to a different server. If load
balancing is enabled on the server side, a client can still explicitly enable or
disable load balancing for a particular connection request. The redirection
happens transparently to the client.

Load Balancing and Routing
Connection balancing is performed within a cluster. Connections are
bidirectional and are reused as much as possible for routing.

When you connect to a server in a cluster that has load balancing enabled and
ask for a load-balanced connection, you are returned a URL that redirects you
to a different server in the cluster. The redirected URL will be the default
acceptor for that server.

That is, if the servers in the cluster have multiple acceptors defined
(NUM_ACCEPTORS=n, where n > 1), only the first acceptor is used for redirecting
a connection.

Figure 10 on page 60 shows a routing table with load balancing selected.

Client Access to Load-balanced Connections
You can also use load-balanced connections from a client. You should not
enable load balancing if your client application always has to connect to the
same physical server.

This feature is available from the ConnectionFactory objects and is specific to
the SonicMQ APIs. It is not JMS-standard.

The specifics on using load balancing from a client can be found in the javadoc
for the progress.message.jclient package. The relevant classes and methods
for both TopicConnectionFactory and QueueConnectionFactory are
setLoadBalancing(…) and getLoadBalancing().
62 SonicMQ Deployment Guide

After Connecting
After Connecting
Once you have a load-balanced or failover connection, you can query where
the connection ended up by using the getbrokerURL() method on the
connection.

Note Failover can specify a list of servers that may or may not be part of a cluster.
However, load balancing can only occur across clustered servers.
SonicMQ Deployment Guide 63

Chapter 4: Failover and Load Balancing
64 SonicMQ Deployment Guide

Chapter 5 Security
This chapter consists of a number of sections dealing with security topics:

� “SonicMQ Security Basics” gives a detailed overview of the way
SonicMQ helps you address security concerns.

� “Client-side Security Issues” deals with HTTP tunneling, and forward and
reverse proxies.

� “Signed Applets” gives details on how to use signed applets and Java plug-
ins to overcome the Java sandbox security restriction.

� “Certificate-based Mutual Authentication” describes how SonicMQ
supports mutual authentication for both sides of an SSL connection.

� “Password-based Encryption (PBE) Tool” describes a command line tool
for encrypting the SonicMQ broker.ini file.

� “SSL Support” mentions SonicMQ’s support for IAIK SSL and directs you
to configuration information.

� “Certificate Management Tools” mentions the GUI tools for managing
SSL certificates and directs you to usage information.

SonicMQ Security Basics
In a common SonicMQ configuration, one application communicates
asynchronously with another across the Internet. The SonicMQ client
embedded in an application communicates with another application by sending
messages to a message server. One or more SonicMQ clients then consume
SonicMQ Deployment Guide 65

Chapter 5: Security
messages from the server. All these applications are clients of a SonicMQ
server.

The Need for Security
The business data encapsulated in a message might be of a highly confidential
nature. A company’s continued success depends on retaining private
information such as a customer’s credit card number, design specifications for
an upcoming product, or the details of a sealed bid. You must also ensure the
integrity of business information; that is, you must prevent an attacker from
changing the content of a message.

In addition to maintaining the privacy and integrity of messages, a messaging
system must be configured to prevent malicious users from compromising your
computer system in some other way, such as by accessing a database or erasing
files.

Security Tools
SonicMQ supplies tools that allow you to:

� Protect messages sent and delivered

� Secure the connections over which the messages travel

� Limit access to the messaging system to authorized users only

� Limit access to specific messages to authorized users only

SonicMQ also works with third-party firewall products that enable you to
protect your internal network from individuals with malicious intent.

This chapter describes how you can use these security tools to protect your
SonicMQ applications.

Overall Security Policy
Securing a SonicMQ application should be part of an overall corporate security
strategy that protects not only the SonicMQ server, but also all applications and
data that a corporation wants to shield from attack. After all, a Web site is just
a public place on a corporate network allowing access to Internet users.
66 SonicMQ Deployment Guide

SonicMQ Security Basics
Long before SonicMQ is deployed on a corporate network, the administrator
of the network should recognize that significant threats exist and that security
solutions are needed to lower the risk of someone gaining illegal access to the
corporate network. In short, the administrator must realize the need for a set of
corporate security rules that dictates what is and is not allowed to happen on
the corporate network.

There should be at least one person at your site whose job it is to administer
security. That person is the Security Administrator. The Security
Administrator manages SonicMQ security by using the SonicMQ Explorer, the
Admin Tool, or the Management API. The administrative tool connects to a
server that centrally administers message security. If you are using a cluster of
servers, the configuration server handles security administration for the entire
cluster.

When many people think about securing an Internet application, the first thing
they consider is setting up a firewall. Establishing and implementing firewall
architecture is an important and complex topic, and this document devotes a
major subsection to it. Other security issues including authentication,
authorization, and encryption are covered in the SonicMQ Installation and
Administration Guide.

Corporate Security Policy
The first step in ensuring corporate security is to form a security policy. A
security policy is a set of rules that defines access to and from a corporate
network. A security policy must balance the risks and benefits of distributed
information and establish acceptable guidelines for employee behavior. A
security policy often limits the freedom that external (typically Internet) users
have to corporate data and limits the access that internal users have to corporate
or external sources of data. For example, you might not want to allow TELNET
requests into your corporate Web site. In addition, you might not want
corporate users to access particular Web sites available on the Internet. Both of
these are examples of rules that should be defined in your security policy. After
determining the policy you want to adopt, it is time to implement it.
SonicMQ Deployment Guide 67

Chapter 5: Security
Security Issues Covered Elsewhere
A number of security issues that you must consider are covered in the SonicMQ
Installation and Administration Guide. These include:

� User authentication

� User authorization

� Encryption at the message level

� Quality of Protection (QoP)

� Access control lists

SSL Support

Sonic MQ supports encryption at the connection level through SSL. SonicMQ
ships with BSAFE-J SSL by RSA Security to insure secure connections. Sonic
MQ also supports (but does not include) IAIK (Institute for Applied
Information Processing and Communications) SSL. See the SonicMQ
Installation and Administration Guide for more information about SSL and for
directions for configuring SSL.

Certificate Management Tools

SonicMQ supports a suite of Certificate Management Tools which are
integrated into the Explorer administration tool. For information on the
Certificate Management Tools, see the SonicMQ Installation and
Administration Guide.

Securing the SonicMQ Data Store
To keep a SonicMQ installation secure, the data store must be secure since it
contains sensitive information such as:

� Persistent messages

� User names and passwords

� Access control lists

One way to secure the data store is to limit access to it. In addition to
maintaining the access control lists in a secure manner, you also need to limit
68 SonicMQ Deployment Guide

SonicMQ Security Basics
access to the persistent data store through other means. If you are using an
external DBMS, you should use a separate database for SonicMQ security and
you should restrict access to the database to SonicMQ clients only.

Maintaining Security
After setting up your firewall and implementing your security policy, it is
critical to keep the system working properly. Here are some tips for
maintaining your security system:

� Perform regular system backups. If a system is penetrated, this will enable
you to recover information that has been hacked or destroyed.

� Manage user accounts properly. Personnel come and go from companies,
so be sure to close accounts quickly so they cannot be exploited.

� Keep hardware and software up to date. As hackers find new ways to
exploit perimeter defenses, the companies who produce the defenses
release new products to prevent those break-ins. If you fail to upgrade your
defenses, you leave your network open to damage by hackers exploiting
well-known problems.

� Monitor log files, audit trails, and alarms. These are the mechanisms that a
firewall and its components use to enable a network administrator to
discover potential problems. Pay attention to them. They might alert you
to potential problems before any damage is done.

� Respond to attackers. If you identify the source of an attack, alert the
appropriate Internet service provider.

Firewall Architecture Basics
Firewall implementations can be designed using a variety of architectures. To
ensure the highest level of security you should use a screened subnet
architecture to set up your firewall.

Figure 11 shows a typical screened subnet architecture using an exterior router
(sometimes called an access router) and an interior router (sometimes called a
choke router).

One of the most important features in this diagram is the Demilitarized Zone
(DMZ). Its job is to provide a medium-security zone that is accessible to the
SonicMQ Deployment Guide 69

Chapter 5: Security
Internet while isolating your application. If someone does get into your DMZ
machine, your application data is safe on the inside network. The DMZ area is
protected by the firewall, but does not expose the ports used to communicate
with the inside (most secure) network to the outside (least secure) world.

An important component of the DMZ is the bastion host, a host machine
whose address is known on the Internet. Due to its exposed position, it is
fortified by removing any unnecessary applications that might compromise
security.

Many variations of this architecture exist. This diagram outlines only the most
common type of screened subnet architecture. This architecture uses a DMZ to
give two major advantages:

By creating a separate network as a DMZ, you can set up a configuration that
uses both packet filtering and proxy server technology. This helps with the
diversity of your defenses and makes your internal network very hard for

Figure 11. Screened Subnet Architecture

Firewall

Internet
(Outside Network)

Exterior Router

Internal Host

Interior Router

Bastion Host

Internal Host

Private
(Inside Network)

DMZ
70 SonicMQ Deployment Guide

SonicMQ Security Basics
outside users to reach. Many of the current firewall products use a combination
of techniques so that you can customize your system to meet your security
criteria.

A DMZ minimizes the impact to your internal network if the bastion host is
compromised. This DMZ can contain another network, a series of routers, or
even another firewall to add another level of security protection should the
bastion host be compromised.

In recent years, it has become common practice to add additional DMZ
machines or networks to some firewall configurations. The value of this
practice is controversial. The main reason it is done is to set up a special DMZ
network for particular users coming in from the outside network. For example,
if you have a special partnership with a company called Acme Products, you
might want to set up a special area for them to access through the Internet. The
firewall can be configured to allow traffic from the Acme corporate IP address
to a special DMZ network where you might allow them access to more of the
inside network than users routed to the normal DMZ network. The
disadvantage here is that you complicate the set of rules that the firewall has to
deal with and open more holes in the firewall to be exploited. Use this variation
of the screened subnet architecture with care.

The screened subnet architecture is well suited for a SonicMQ configuration
because it allows you to separate application components from each other and
protect them individually.

Figure 12 shows a sample browser-based application for processing order
entries.
SonicMQ Deployment Guide 71

Chapter 5: Security
With this screened subnet architecture, the SonicMQ server and Web server
can be removed from the inside network, where the databases, application
code, and sensitive private data reside. They are removed to an area of medium
security where they can still bridge the gap between the end user’s Web
browser looking for order status and the application code and data. However,
if the network they reside on is compromised, the database for the order-entry
system and the application to access it are still protected.

SonicMQ Firewall Architecture
The best solution when building a firewall is seldom a single technique. It is
usually a combination of techniques implemented to solve the user
requirements at a particular site.

The recommended SonicMQ firewall architecture is a variation of the screened
subnet architecture. This architecture is sometimes called a three-legged
architecture in that it deals with three main networks: the outside network (least

Figure 12. Screened Subnet Architecture with SonicMQ

Internet
(Outside Network)

Screening Router

Bastion Host
Web Server

SonicMQ Server

Internal Host
Application Server Order Entry

Application Data

Single Point
of Failure

Private
(Inside Network)

Firewall
72 SonicMQ Deployment Guide

SonicMQ Security Basics
secure), the inside network (most secure), and the DMZ (medium security).
When designing an architecture for protecting your SonicMQ configurations,
you might have to make compromises to suit the needs of your particular users.

Recognizing that fact, Progress recommends an architecture that is as robust as
possible, but that still provides the best firewall security strategy. This
robustness is built into the firewall architecture by using network hubs and
network routers placed at various locations. Adding network hubs allows you
to reconfigure your firewall system as the need arises and limits the number of
changes that will be required when this time comes. For example, site security
policies might require you to add another machine to the DMZ network. If you
have a network hub in place on your DMZ network, you can simply add the
other machine to the hub, and no other rewiring or configuration is necessary.
Adding network routers involves adding extra security measures as well. This
is primarily because most routers include software that allows you to add
access rules and to notify a system administrator about potential attacks.

This architecture also gives you a depth to your firewall; that is, it has several
points where you can make security checks so that a single failure will not
leave your system open to malicious attacks.

Machines that reside in the DMZ and host the Web server and the SonicMQ
servers should be battle-hardened. That is, you should disable FTP access and
remove any unnecessary software that presents security risks.

You should implement this architecture with a diversity of defenses in mind. It
is not only important to use a number of different systems for your firewall
defense, but also to use hardware and software from different vendors. The
reason for doing this is simple: There might be a bug in a particular vendor’s
hardware or software that can compromise your system. Having systems from
different vendors reduces the risk of your whole system being open to someone
who uses that bug to compromise your system. For example, use a router from
one vendor on your line to the Internet (your external router), but use another
router from another vendor on the line to your inside network (your internal
router). If someone gains access from the outside by exploiting a router bug in
the external router, they will not be able to exploit the same bug to gain access
to the inside LAN, which has a router by a different vendor.

Figure 13 shows a recommended firewall architecture for the server side of a
typical SonicMQ server configuration.
SonicMQ Deployment Guide 73

Chapter 5: Security
With this model, the firewall software is performing the role of both an interior
router and an exterior router.

Depending on your needs, you might want to have the SonicMQ server placed
in your private inside network where you could install it on a machine non-
battle-hardened machine. You can do this using an off-the-shelf reverse proxy

Figure 13. Recommended Architecture: Variation I

Firewall

Exterior Router
(Optional)

Hub

Internet
(Outside Network)

Bastion Host
Firewall Software

Hub
DMZ Machine

SonicMQ Server
Web Server (Optional)

SonicMQ
Data

Hub

Interior Router
(Optional)

Internal Host Internal Host
Application

Application
Data

Private
(Inside Network)
74 SonicMQ Deployment Guide

SonicMQ Security Basics
server. See the SonicMQ Release Notes for the latest information about
supported reverse proxy servers for SonicMQ.

If you choose to vary the screened subnet architecture, you could place the
reverse proxy server in the DMZ and the SonicMQ server in the inside
network, as shown in Figure 14.

Figure 14. Recommended Architecture: Variation II

Firewall

Exterior Router
(Optional)

Hub

Internet
(Outside Network)

Bastion Host
Firewall Software

Hub

Interior Router
(Optional)

Internal Host
Application

Application
Data

Private
(Inside Network)

Internal Host
SonicMQ Server

SonicMQ
Data Store

Hub

DMZ Machine
Reverse Proxy

Web Server (Optional)
SonicMQ Deployment Guide 75

Chapter 5: Security
Advantages of the Screened Subnet Architecture

The screened subnet architecture is more secure than router-based solutions
because today’s firewall software products provide much better protection than
the software typically used on a standard router. In the recommended SonicMQ
firewall architecture, a host-based PC or UNIX workstation hosts the firewall
software. This allows Web sites that cannot afford expensive hardware to
implement this architecture effectively. However, you might want to add
optional routers to the recommended architecture, depending on the
complexity of your internal network or your budget. This provides an
outstanding way to add extra levels of defense.

In the first recommended variation, the Web server and the SonicMQ server
reside in the DMZ. Internet users can access these portions of the SonicMQ
application, but cannot directly access the main portion of your SonicMQ
application. The firewall is configured so that only the SonicMQ servers
themselves are allowed to talk with the inside network.

The remainder of the application resides on the inside network. In the
Figure 13, the components all reside on one host machine.

In the second recommended variation, the SonicMQ server resides in the
private inside network, and its address remains unknown to Internet users who
communicate with it through the reverse proxy server. In effect, this adds an
extra layer of security to your SonicMQ application.

Setting the Firewall Rules for a SonicMQ Application

This section explains how to use the firewall to protect the DMZ from the
outside network and using the DMZ to protect the inside network. You must
develop a set of rules to give to the firewall to set up this protection. Each
firewall system (hardware or software) will have different ways to set up these
rules. Check the documentation for the product you are using.

To set up your firewall, start the firewall software with no rules defined. Then
systematically add rules and test each rule as it is added. When you initialize
the firewall and there are no rules defined, you should not be able access any
host machine from the outside network.
76 SonicMQ Deployment Guide

SonicMQ Security Basics
Most firewall products require you to configure a Domain Name Service
(DNS), which runs on virtually all host machines. It translates the IP address
associated with a machine to a logical name. You should use DNS names to
avoid having to repeatedly supply 10-digit IP addresses.

Adding and Testing Your SonicMQ-specific Rules

Once you have configured DNS (if required) you are ready to define your rules.
There are a variety of ways to test generic rules for applications including
HTTP, FTP, and TELNET.

The first rule you set up should allow access from the outside network to the
Web server on the DMZ. Once you have set up this rule, test it by starting a
client on the outside network and have it connect to the DMZ machine. This
can be done by pinging the machine, or if ping is not supported, by telneting to
the port. If the connection is successful, proceed to the next rule. If not, recheck
your rules in the firewall rules database.

Begin adding the rules and test your configuration after adding each one.
Depending on your firewall, you might need to save and reconfigure after
adding each rule. If you do not, the rule might not be applied and the result
could be confusing. Once you have supplied these rules to your firewall
software, you can test your SonicMQ configuration components together.

All firewall products keep extensive log files. If you make a mistake, use the
log files to tell you which components are trying to access restricted ports.
Close any ports you might have opened when you defined your rules. If you
inadvertently leave the ports open, these holes might be exploited for attacks.
SonicMQ Deployment Guide 77

Chapter 5: Security
Client-side Security Issues
Client-side security involves the following topics:

� HTTP tunneling

� Use of forward proxies

� Use of reverse proxies

HTTP Overview
SonicMQ insulates the details of the protocol layer from the application
developer. Which protocol layer is to be used on the client-side is determined
entirely by how you specify the message server’s URL to the client application.

The Hypertext Transfer Protocol (HTTP), like the TCP and SSL protocols, is
always available to the client application. From the developer’s perspective all
three protocols behave the same way. Synchronous and asynchronous
communications are both available regardless of the protocol choice, and the
application does not require special coding to accommodate the protocol.

By server design or by company security policy, proxy servers and firewalls
frequently only allow HTTP-based traffic to pass through.

You can establish a direct connection between client and server using HTTP
Tunneling as the protocol, as shown in Figure 15. However, because the HTTP
tunneling protocol is significantly slower than TCP or SSL, this option is only
recommended when TCP and SSL protocols are not available.

Figure 15. Direct HTTP Connection

HTTP

SonicMQ
Server

Client
78 SonicMQ Deployment Guide

Client-side Security Issues
To deploy on the Internet, you usually use HTTP. In Figure 16, the proxy server
and firewall are optional components. The diagram shows that if the SonicMQ
server is going to directly process messages received from the clients over the
Internet, it must be deployed as if it were a Web server. It must reside on a
system in your demilitarized zone (DMZ), and not on your intranet.

The requirement that a messaging server reside in the DMZ can be removed if
you place a reverse proxy server in your DMZ and use it to re-direct data traffic
to a server running on your intranet, as shown in Figure 17. Some Web servers
can be configured to function as a reverse proxy server as well as a Web server.

Figure 16. Internet Deployment with Proxy Server and Firewall

Internet

Proxy Server

HTTP

HTTP

HTTP

Client

SonicMQ
Server

HTTP

Firewall

Intranet DMZ Boundary
SonicMQ Deployment Guide 79

Chapter 5: Security
Understanding HTTP Tunneling in SonicMQ
HTTP Tunneling supports both synchronous and asynchronous
communications. The HTTP protocol is not inherently an asynchronous
communication protocol, but SonicMQ makes it function as one. This is

Figure 17. Internet Deployment with Reverse Proxy Server

Internet

Proxy Server

HTTP

Client

Firewall

Firewall

Intranet DMZ Boundary

Reverse Proxy (or Web Server
configured for Reverse Proxy)

SonicMQ Server

HTTP

HTTP

HTTP

HTTP

HTTP
80 SonicMQ Deployment Guide

Client-side Security Issues
accomplished by creating multiple physical connections to the server from the
client. If HTTP 1.1 Persistent Connection is available between the client and
the server, SonicMQ establishes minimum of three connections:

� The first physical connection is used to initiate the JMS Connection.

� The second physical connection is used for sending data to the server.

� The third physical connection allows the server to send data back to the
client.

HTTP originally allowed only one request per physical TCP connection.
However, establishing a TCP connection is fairly expensive, so some
implementers of HTTP/1.0 added the Keep-Alive connection header value to
keep a connection open after a request was completed and to allow further
requests to be made over that connection. Unfortunately, the HTTP/1.0 Keep-
Alive connection header is not implemented in all proxy servers claiming
HTTP/1.0 compliance. The HTTP/1.1 specification defines persistent
connections and makes them the default.

The processing of the first connect request is used to determine which level of
HTTP protocol support is available. The optimum situation is when HTTP/1.1
Persistent Connections are available, so the cost of creating the physical TCP
connection is paid only one time. If HTTP/1.1 Persistent Connections are not
available, the server looks for HTTP/1.0 Keep-Alive Connections. SonicMQ
reuses connections as much as possible, minimizing the cost of creating the
physical connections. The lowest, and slowest, level is when HTTP/1.0 without
Keep-Alive is the only level available, which might well be the case if a client-
side proxy server is between the client and the server. This level is slowest
because a physical connection must be created for each request posted from the
client to the server.

HTTP Tunneling
This section presents a procedure for using HTTP tunneling.

� To use HTTP tunneling:

1. Use the SonicMQ webclient.jar file to find the JMS client classes instead
of using client.jar. The webclient.jar file includes the HTTPClient
package.
SonicMQ Deployment Guide 81

Chapter 5: Security
2. Direct the client to use the HTTP Tunneling network protocol by
beginning the URL string for the server with http:// as in the following
line of code:

TopicConnection myconn = new
TopicConnection(“http://myserverhost:80”, appid, usrname, passwd);

3. Configure the server to receive HTTP connections. Edit the following
lines in the broker.ini file:

; Set protocol
DEFAULT_SOCKET_TYPE=tcp
;DEFAULT_SOCKET_TYPE=http
;DEFAULT_SOCKET_TYPE=ssl

by commenting out the second line and uncommenting the third line as
follows:

; Set protocol
;DEFAULT_SOCKET_TYPE=tcp
DEFAULT_SOCKET_TYPE=http
;DEFAULT_SOCKET_TYPE=ssl

4. Save the broker.ini file.

When you restart the server it will display a message like:

SonicMQ Broker started, now accepting http connections on port
2506...

Using a Client-side Forward Proxy
A client-side forward proxy (proxy server) is a third-party server which lies
between one or more SonicMQ clients (or servers acting as clients) and a
firewall. SonicMQ supports the standard SSL proxy. See the SonicMQ Release
Notes for the latest information about supported forward proxies for SonicMQ.
To obtain the proxy server’s host and port information, the HTTPClient
package:

1. Reads the case-sensitive system properties http.proxyHost and
http.proxyPort from the JVM.

2. Automatically configures itself to use the proxy server to make the
connections.

3. Once the properties are set, the HTTP connections are made through that
proxy server.

The properties http.proxyHost and http.proxyPort can be read in three ways:
82 SonicMQ Deployment Guide

Client-side Security Issues
� For applications, you can set these properties from the command line:

-Dhttp.proxyHost=hostname –Dhttp.proxyPort=80

� The properties can be set programmatically as in the following example:

Properties props = System.getProperties();
props.put("http.proxyHost", proxyhost);
props.put("http.proxyPort", proxyport);

� In an applet scenario, the browser automatically sets these properties.

Because the class that uses the properties reads them in its static initializer, they
must also be set before any connection is attempted and cannot be changed
later.

When run from an applet in a browser, the SecurityException message will
appear in the Java Console every time the Applet starts. This exception is
caught inside the initializer, but the browser's AppletSecurityManager prints
the message before throwing the exception.

Applets using HTTP must be usually be signed. See “Signed Applets” on
page 84 for details.

Using a Server-side Reverse Proxy

If the Universal Resource Identifier (URI) for a resource request contains an
/SC identifier:

http://hostname:port/SC/...

a reverse proxy recognizes the request as a SonicMQ HTTP request and maps
and forwards the request to a SonicMQ server.

For example, you could use these lines for an Apache configuration:

ProxyPass /SC http://serverhost:2506/SC
ProxyPassReverse /SC http://serverhost:2506/SC

Note See the SonicMQ Release Notes for the latest information about supported
proxy servers for SonicMQ.
SonicMQ Deployment Guide 83

Chapter 5: Security
Using an ActiveX Client with HTTP Tunneling
Creating HTTP tunneling connections from an ActiveX client is essentially the
same as creating connections from a Java client, with the following caveat:

The Javasoft plug-in does not currently support setting command-line
parameters like the -Dhttp.proxyHost . There is also no way to set them
programmatically from the ActiveX container.

You can use the SonicMQ ActiveX Control’s setBrokerURL() method to
specify proxyHost and proxyPort within in the server’s URL string using the
following format:

http://serverHost:serverPort:proxyHost:proxyPort

If you are not using a proxy server, then you do not need the proxyHost and
proxyPort strings. You can use the string:

http://serverHost[:serverPort]

If you omit serverPort, the default value of 2506 is used. However, you cannot
omit serverPort if you use proxyHost and proxyPort.

Signed Applets
If you want to use applets, you are faced with the Java sandbox security
restriction. If this restriction is not lifted, use of applets is limited to the
simplest kind of deployment where the Web server and the message server are
on the same machine and there is no proxy server between the client and the
server machine.

Note Off-the-self reverse proxies may have scalability limitations in the number of
clients that can be supported.

Important If you use a reverse proxy server, you will not be able to use some SonicMQ
features, such as SSL or load balancing. This restriction does not apply to client
side forward proxies where the server is in the DMZ.
84 SonicMQ Deployment Guide

Signed Applets
Since you typically have no control over whether the client uses a proxy server
and since you often want the Web server and the message server to be on
different machines, you need to get around the Java sandbox security
restriction. To do this, you must sign your applets. There are two main ways to
do this:

� Browser-specific tools

� Java plug-ins

Browser-specific Tools
Applet signing is supported by Netscape® Communicator and Microsoft
Internet Explorer.

� To sign applets with Netscape or Microsoft browsers:

1. Create an installable signed JAR file containing all files required by the
applet.

2. Distribute the installable JAR file from the server to the user’s computer.

3. Create a trigger script which determines which files from the signed JAR
file actually need to be downloaded, and which are already present.
(Optional, Netscape only)

Each of these steps is complex and vendor-dependent. For instructions, go to
the Netscape or Microsoft Web pages.

Java Plug-ins
You can overcome the problem of the browser-dependence in the creation of
signed applets by using a Java plug-in. To sign applets using a Java plug in, you
must download the appropriate applet-signing tool:

� For JDK 1.1.x, download javakey

� For JDK 1.2 and JDK 1.3 download keytool

The JDKs are available as free downloads from the Sun Microsystem Web
page. You will also find instructions for using the Java plug-ins on the Sun
Microsystem Web page.
SonicMQ Deployment Guide 85

Chapter 5: Security
Certificate-based Mutual Authentication
Certificate-based mutual authentication is supported with Secure Socket Layer
(SSL) for server-to-server communication and for server-to-client
communication.

You can import the certificate identity, which is used as a username, directly
into the user database using the Explorer. You can use the certificate identity as
the routing username for access control to remote queues in remote routing
nodes. To use mutual authentication you specify the special routing user name
AUTHENTICATED. See “Connection Security” on page 121 for more information.

See Chapter 2, “Multi-node Architecture” for more about remote routing
nodes.

Password-based Encryption (PBE) Tool
The PBETool is a command-line tool that you can use to DES-encrypt and
DES-decrypt a broker.ini file.

When SonicMQ servers are deployed in the DMZ, the broker.ini file is also
commonly placed in the DMZ. You might be concerned about the vulnerability
of sensitive information in that file. The BROKER_PASSWORD and
SSL_PRIVATE_KEY_PASSWORD are two examples of such sensitive information.

The SonicMQ server and the SonicMQ dbtool can read both the clear-text and
the encrypted versions of the broker.ini file. Figure 18 shows the relationships
between the components involved.

Note The broker.ini file need not reside on the same system as the SonicMQ server.
The broker.ini file is opened using a java.io.FileInputStream, and therefore
broker.ini can be moved to a system on the intranet outside of the DMZ which
is available to the system inside the DMZ.
86 SonicMQ Deployment Guide

Password-based Encryption (PBE) Tool
The encrypted version of the file is base64 encoded. base64 encoding is a
method for encoding binary files so that they can be transferred easily. For
example, you can send base64-encoded binary files in the body of an e-mail
message.

SonicMQ supplies script files to simplify the use of PBETool. The PBETool
scripts set the environment for the tool and then invoke the PBETool with an
input file, output file, and password which you specify.

For encryption on Windows use the command:
pbetool /m encrypt /c broker.ini /e encrypted_file /p password [/x]

For encryption on UNIX or Linux use the command:
pbetool.sh -m encrypt -c broker.ini -e encrypted_file -p password [-x]

For decryption on Windows use the command:
pbetool /m decrypt /c broker.ini /e encrypted_file /p password [/x]

For decryption on UNIX or Linux use the command:
pbetool.sh -m decrypt -c broker.ini -e encrypted_file -p password [-x]

The PBETool can only decrypt the file using the clear-text version of the
password. This requirement ensures that if the encrypted password is
compromised, it cannot be used to decrypt the file.

Figure 18. Password-based Encryption Architecture

encrypted
broker.ini

PBETool
clear-text
broker.ini

Server

dbtool
SonicMQ Deployment Guide 87

Chapter 5: Security
Table 6 describes the parameters accepted by the pbetool command for UNIX
or Linux systems. Replace the initial dash (-) by a slash (/) for Windows
systems.

Encryption
When you invoke the PBETool you specify a clear-text version of broker.ini
as clear-text-file. See Table 6, “PBETool Parameters.” The contents of this
file are then read into a byte-array in memory.

An encryption key is derived from the password you provide, and the byte-
array is DES-encrypted using that key.

PBETool uses a Message Authentication Code (MAC) to check the integrity
of encrypted broker.ini file, based on a secret key. The MAC is produced
using the cryptographic hash function MD5 or SHA1. The MAC of the original
clear-text-file is generated and is embedded in the encrypted data. When

Table 6. PBETool Parameters

Parameter Required? Description

-m mode Yes Indicates the mode that the tool will run in. Valid values for this
option are encrypt and decrypt, which are case-insensitive.

-c clear-text-file Yes Specifies the name of the file that contains the clear-text data. This
is the input-source-file for an encryption, or the
output-destination-file for a decryption.

-e encrypted-data-file Yes Specifies the name of the file that contains the encrypted data. This
is the input-source-file for a decryption or the
output-destination-file for an encryption.

-p password Yes Specifies the password used to create the encryption key to encrypt
or decrypt the file.

-x No Specifies that an encrypted version of the specified password will
be written to the JVM standard output. This encrypted password
might be used by the server to decrypt the file. If you must place
the password in an insecure location, you should use the encrypted
password.

-h No Displays the list of command-line options for PBETool.
88 SonicMQ Deployment Guide

Password-based Encryption (PBE) Tool
decrypting the file, the embedded digest is compared against the digest
computed from the decrypted data.

The sun.misc.BASE64Encoder class base64 encodes the entire encrypted output,
including the file size. The result is written to the file you specify by
encrypted-data-file.

To enhance security SonicMQ does not require you to place passwords inside
script files. However, if you start the server automatically using a Windows
service the password is placed in the system registry. If you use the UNIX or
Linux cron command, the password is placed in crontab files. In either case,
the password is placed in an insecure location.

If you must place the password in an insecure location, you should specify
(using the /x or -x switch) that PBETool generate an encrypted version of the
password when encrypting the broker.ini file. PBETool writes this encrypted
password to standard output, allowing you to put the encrypted password into
the insecure location. That way, you avoid storing the clear-text password in a
file. If you need to read the encrypted broker.ini file, you must supply the
clear-text password.

Decryption
The entire contents of encrypted-data-file is read into a byte array in memory.
This uses the sun.misc.BASE64Decoder class to first decode the binary data.

An encryption key is derived from the password provided.

The length of the original file is first extracted from the data, and then the
binary data is decrypted using the key.

To verify that the password provided is correct and that the decrypted data is
accurate, the embedded MAC digest is compared against the digest computed
from the decrypted data.

The decrypted result is written to the clear-text-file.

Warning If you encrypt the password you will need the encrypted version to set up a
Windows service or cron command. If you lose an encrypted password, there
is no way to regenerate it. Your only option is to decrypt the file with the clear-
text version of the password and encrypt the configuration file again.
SonicMQ Deployment Guide 89

Chapter 5: Security
Using the Encrypted broker.ini File
To start a server with an encrypted server initialization file as a Windows
Service, use the parameter -inipwd=clear-text-passwd in the
SonicServiceSetup parameters. Alternatively, you can use an encrypted
password by using the parameter -encpwd=encrypted-passwd.

To start a server with an encrypted server initialization file using the UNIX or
Linux cron facility, you can use the clear-text password with the parameter
-p password. Alternatively, you can use an encrypted password with the
parameter -x enc-password.

The startbr and dbtool scripts can read the encrypted or unencrypted version
of the broker.ini file. For these tools to read the file, they must be provided a
password at startup. The password should be unrelated to any passwords
contained inside the encrypted broker.ini file.

By default, the startbr and dbtool tools assume that the server initialization
file is located in the current directory and is named broker.ini. When using an
encrypted or renamed server initialization file, use the additional parameters
described in Table 7.

Table 7. New Parameters for dbtool and startbr

Parameter Description

/f path_to_INI_file (Windows)

-f path_to_INI_file (UNIX/Linux)

Tells dbtool where to find the server initialization (INI) file. If no –p
option is specified with this option, the server initialization file is
assumed to be in clear text. If a –p option is specified, the server
initialization file is assumed to be encrypted.

/p clear-text-password (Windows)

-p clear-text-password (UNIX/Linux)

Specifies the password that will be used to decrypt an encrypted
server initialization file.

/x encrypted-password (Windows)

-x encrypted-password (UNIX/Linux)

Specifies the encrypted password that will be used to decrypt an
encrypted server initialization file. (This does not apply to dbtool.)
90 SonicMQ Deployment Guide

Password-based Encryption (PBE) Tool
Important When using dbtool, the parameters -f path_to_INI_file and
-p clear-text-password or their Windows equivalents must be the initial
parameters in the command. For example:
dbtool /f encrypted_file /p password /c basic (Windows)

dbtool.sh -f encrypted_file -p password -c basic (UNIX or Linux)
SonicMQ Deployment Guide 91

Chapter 5: Security
92 SonicMQ Deployment Guide

Chapter 6 Designing Messaging Models
This chapter shows some concepts of how you might deploy SonicMQ.
Clarifying some of the topologies can help you take advantage of SonicMQ’s
features in your application—whether it be basic messaging, a supply chain,
Enterprise Application Integration (EAI), or Portal with Trading Partners.

The flow of data during its time in a messaging system has several functions:

� Business Application Services — The fundamental messaging activity is
its integration with the applications that measure and record business and
real world activities.

� Validation — The message and its data can be verified to ensure that it is
well-formatted and contains valid values. This could be done as soon as the
message is composed, or when the message is received. The former adds
overhead to message packaging while the latter adds a function at a point
where messages that are not acceptable cannot be corrected.

� Transformation — A message might not be easily consumed by a single
target application. The message might have to change its type from an
XML message to a text message, or the message body may have to be split
up. For example, a message order for a bundled product—a computer with
cable and printer—could spawn multiple messages to other channels.

� Routing — The ultimate destination of a message might be unknown
when a message is initiated. If there is any way a message can look up
some information it can save steps in reaching its goal.

These functions, and the point at which they are applied, have a significant
impact on the overall performance of a messaging system.
SonicMQ Deployment Guide 93

Chapter 6: Designing Messaging Models
This chapter presents information about client applications then discussions on
the following topologies:

� “Topologies” on page 98 describes a chain topology, consisting of a linear
sequence of routing nodes.

� “Hub and Spoke” on page 100 describes a topology of a hub having any
number of spokes connected to the hub.

� “Central Hub” on page 101 describes a topology where a node can connect
to another node, thus creating a spoke connection to the central hub.

� “Peer-to-peer” on page 104 describes a topology where a web nodes can
communicate directly with each other.

Client Functions
What you can cause to happen through client applications combines with the
features of the message server architectures to determine just how you can set
up a deployment.

Agent Applications
Systems that are linked to record-keeping systems are normally the starting
point and endpoint in a message lifecycle. Real-time devices and accounting
document lifecycles create messages that are moved into the messaging stream
by agent applications. Correspondingly, receivers gather appropriate messages
to funnel into their application. Figure 19 shows a business application where
A produces and consumes messages at destinations on message server 1.

Figure 19. Agent Application

A

1

Business
Application
94 SonicMQ Deployment Guide

Client Functions
Transformation Applications
A transformation application watches for messages so that embedded business
logic can transform the message into pieces appropriate for several messaging
channels. By exposing the granularity of the message, each element of a
message might proceed on to a different path.

As Figure 20 illustrates, an application receives a message from a message
server, probably by first qualifying the messages that it can service. Then a
properties or XML configuration file might provide modifiable business rules
that provide the methods to unpack the message payload, determine how to
route the content elements, and then send the transformed message set.

In Figure 20, a message is transformed from its sender to its ultimate recipients
as follows:

� Application A sends a message to a queue on its local message server,
server 1.

� Application B receives the message from server 1, examines it and
determines that it can send part of the message to server 2 and the other
remainder to server 3. Application B then acknowledges the receipt of the
original message from message server 1.

� Application C receives the message from the queue on message server 2.

� Application D receives the message from the queue on message server 3.

Figure 20. Transformation Application

B

A

C

1

2

3
D

SonicMQ Deployment Guide 95

Chapter 6: Designing Messaging Models
Routing Applications
When an application works with messages for the sole purpose of forwarding
the message without touching its content and without changing the intended
service levels, that application is a routing application.

Every message has information exposed in its meta-data—the message header
fields, and the properties—that enable a routing application to choose
messages by defining qualified messages that it will receive in a message
selector string. When a message is received by the routing application, it clones
the message, looks up the data that tells it what the next destination should be,
updates the message’s destination, sends out the clone and then acknowledges
and discards the original message.

In Figure 21, the transformation at application B is a transformation of only
routing information in the message header. The message is routed from its
sender to its ultimate recipients as follows:

� Application A sends a message to a queue on its local message server,
server 1.

� Application B receives the message from server 1 because B’s selector
knows that the message can be forwarded to server 2. Application B then
acknowledges the receipt of the original message from message server 1.

� Application C receives the message from the queue on message server 2.

Figure 21. Routing Application

A

B

C 2

1

96 SonicMQ Deployment Guide

Client Functions
Dynamic Routing Applications
SonicMQ’s Dynamic Routing Architecture enables messages to be routed
across nodes so that the messaging flow from the sender to the ultimate
recipient is more efficient, and enforceable by the administrator of the routing
node. In Figure 22, message server 1 has a routing table—a list of servers and
queues that the sender can request and the server can handle—that enables the
originator of the message to present the message to the server whose tasks are
to first validate that the target queue on message server 2 is a registered
destination, and then to “store and forward” the message to server 2 on behalf
of the sender.

The syntax of the queue name is <remote_node>::<remote_queue>. When
application A wants to send a message to a queue on node 2 it might not be
authorized to connect directly to node 2. But the node where A is authorized to
connect, node 1, might have an entry in its routing table for Queuename on node
2. If so, application A can send a message node 2::Queuename. The message
would hop through node 1 and be accessible by receivers of Queuename on node
2 such as application B.

Node to node connections can be focused around one central hub where only a
limited set of controlled applications, such as M, can connect directly to the
central hub as shown in Figure 27.

Figure 22. Dynamic Routing’s Store-and-forward mechanism

A

B

1

2

SonicMQ Deployment Guide 97

Chapter 6: Designing Messaging Models
Topologies

Chain
In a chain topology, a series of nodes, each containing a SonicMQ message
server, are connected together. You can create applications for each of the
servers to enable the servers to send received messages from one hub to another
hub. This is essentially a linear chain of routing nodes. Figure 23 shows an
example of this configuration.

In this example, routing node A can send a message to routing node 1. The
routing application B can receive the message and then forward it to node 2.

When similar applications exist as receivers on a series of servers, a chain
structure emerges. The disadvantage to any chain is a weak link. Here, if one
application forwarding is lost, the chain might end at the last connection.

The chain topology is sensitive to any client or server going offline. However,
when adequate steps are taken to persist messages and provide load balanced,
reliable connections, the chain topology.

Figure 23. Chain Topology

A

2

1 B

4

D3

C

98 SonicMQ Deployment Guide

Topologies
Much of the inherent risk in a simple chain topology is handled by SonicMQ’s
Dynamic Routing Architecture (DRA), as shown in Figure 24:

In the enhanced chain topology, a single routing application carried a message
across four servers. The Dynamic Routing Architecture adds leverage to
transformations. In Figure 25, the routing application C traverses 6 servers.

Figure 24. Enhanced Chain Topology Through Dynamic Routing

Figure 25. Chain Transformation Topology with Dynamic Routing

A

2

1

4

3

C

A

2

1

14

13

C

24

23
SonicMQ Deployment Guide 99

Chapter 6: Designing Messaging Models
Hub and Spoke
The basic client-server model, the hub-and-spoke model, features a central hub
having any number of spokes connected to the hub. In this topology, the clients
can communicate only with the hub; the clients cannot communicate directly
with each other. Figure 26 shows a hub-and-spoke topology with SonicMQ
clients A through F, each located at the end of a spoke. Each client has a
connection to the hub.

The hub is presented as a SonicMQ node. A node can be a message server or a
cluster of message servers having shared security.

In this example, SonicMQ client A can communicate with client E by sending
a message to the hub. The message server at the hub then processes the
message, making it available to the intended recipient, client E.

In practical terms, the message server never sends a message to a recipient. But
if client A and client E agree that the queue (or topic) named, say, AandE, is
“their” channel, they can set security to allow only their clients access. This
creates an indirect, dedicated delivery destination. The only significant issue in
this case is who has administrative privileges over access control lists.

Figure 26. Hub and Spoke Topology

SonicMQ
Node

HUB

Client
Application

F

Client
Application

C

Client
Application

A

Client
Application

B

Client
Application

E

Client
Application

D

SPOKES
100 SonicMQ Deployment Guide

Topologies
Central Hub
When a node can connect to another node, the first node creates a spoke
connection to the central node, thus creating a central hub topology. This
topology is feasible because of SonicMQ’s Dynamic Routing Architecture
(DRA) uses relationships and registered routing routes so that an application
can be connected to a node and send a message directly to a global queue on a
remote node. See Chapter 2, “Multi-node Architecture,” for a complete
description of DRA.

Figure 27. Central Hub Topology

Central
Hub

Hub

M

SonicMQ Deployment Guide 101

Chapter 6: Designing Messaging Models
The central hub model is the essence of the marketplace model as shown in
Figure 28.

In the marketplace diagram, client application A connects to local message
server 1 that has a routing queue that can store a message where the destination
Portal::X—the <remote_node>::<remote_queue>—is listed in the routing table
and then forward it to Portal message server’s global routing queue x.

There, a Routing App receives the message on behalf of the marketplace and
examines it to determine where it should be rerouted. The hints for the next
destination are business rules that might be:

Figure 28. Central Hub with Application Control (Marketplace)

A

Portal
Trading
Partners

B

1

2

Routing
App

Global
Routing
Queues

Yx

Routing
Table

z

Yz

x

102 SonicMQ Deployment Guide

Topologies
� User-defined properties such AIA_Phase = Finishes or SIC_code = 2345.
Properties are accessible to message selectors so that routing applications
only receive known message categories.

� Manifest data stored in a message body such as XPath info in an XML
header. However, routing applications cannot ensure the integrity of a
message body, especially if it is decrypted and re-encrypted.

The Routing App sends the cloned message to an appropriate message server
where the clients are all in that market, in this case, message server 2.

The Portal’s routing table routes the message to the destination 2::y as listed
in the routing table. The message is stored on the portal and, when connection
is available, it is forwarded to message server 2’s queue y.

Assuming client application B was receiving with an inclusive message
selector on the y queue, B takes the message as the final receiver.

The message taken by B could be directed to an application where it will be
assimilated and transformed such as an open order becoming an invoice. Or the
message could continue to be routed through other portals.
SonicMQ Deployment Guide 103

Chapter 6: Designing Messaging Models
Peer-to-peer
While the structure of portals and trading partners might seem rigid, nothing
prevents the trading partners from establishing direct connections, as shown in
Figure 29. In the figure, TP1 is a trading partner on Portal. TP1 finds it in its
business interest to establish direct connections to some of its other trading
partners such as TP2, TP3, and TP4.

In this example, routing node A seeks to establish a connection with routing
node B. A first connects to the hub where some mechanism like a “Relationship
Database” provides the meta-data necessary to establish this connection to B.
A then connects directly with B using the information it obtained from the hub.
All of the routing nodes are peers in this example, and each routing node can
connect to another by first obtaining the connection information from the hub,
then directly connecting to the other routing node.

Figure 29. Peer-to-Peer with a Central Hub

TP3A

Portal

TP2

TP4

B

TP1

Relationship
Database

Application
104 SonicMQ Deployment Guide

Topologies
Store and Forward
Your application’s architecture can take advantage of routing to maintain:

� Lower expenses — As shown in the example Figure 30, connection from
New York to Paris and other locations might be an expensive measured
line. The traffic can be batched until the server is ready to send messages
from New York and the server in Paris is ready to receive messages.

� Higher efficiency — The New York server can store messages locally and
not maintain a remote connection.

� Connection independence — The client maintains a connection to the
local server in New York, and does not care whether the connection to Paris
is established. The message is sent when the connection is established.

Store-and-forward routing allows the message server to store messages until
a number, size, or elapsed time indicates to a monitoring application (such as
management functions or a queue browser) that a connection should be
established and the messages transferred. See Chapter 2, “Multi-node
Architecture,” for more information about store-and-forward routing.

Figure 30 illustrates an example of peer-to-peer routing using store and
forward routing.

Figure 30. Peer-to-peer Topology for Store-and-forward Routing

Paris

Madrid

New
York

Message
to

Paris::Q

Tokyo

LA
SonicMQ Deployment Guide 105

Chapter 6: Designing Messaging Models
A client on a New York message server is sending a message to the Paris::Q
destination. The New York server might offer immediate connection to high
priority messages and retain messages for other remote servers until it is
triggered to connect to the remote server and send the messages to the remote
server’s queue, Q on the Paris message server in this example.
106 SonicMQ Deployment Guide

Part II Implementing Your
Deployment
This part describes how SonicMQ can be deployed in very large-scale
applications, such as marketplace (portal and trading partners) scenarios, using
a multi-node architecture.

This part contains the following chapters:

� Chapter 7, “Dynamic Routing Architecture in a Multi-node Application,”
describes key elements of the Dynamic Routing Architecture.

� Chapter 8, “Implementing Multi-node Installations,” describes the steps
you might follow to set up a SonicMQ deployment with portals and trading
partners.

� Chapter 9, “Running a Sample Multi-node Application with the Dynamic
Routing Architecture,” gives step-by-step details on how to set up a
demonstration portal and trading partner.
107

108 SonicMQ Deployment Guide

Chapter 7 Dynamic Routing Architecture in a
Multi-node Application
There are many applications for dynamic routing, but this guide uses a
marketplace as a comprehensive example. This chapter describes key elements
of the Dynamic Routing Architecture (DRA) in terms of how they are used to
set up a marketplace application. In particular this chapter shows how the
elements of the SonicMQ solution relate to such areas as:

� Store & forward queue routing from Trading Partners

� Load-balanced Trading Partner connections

� Load-balancing Portal applications

� Queue routing from Portal to Trading Partners

� Trading Partner configuration

� System management

� Portal management

� Trading Partner management

� Dead message queue

� Trading Partner request/reply example
SonicMQ Deployment Guide 109

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
For the purpose of this example, we use the queue names listed below. These
names might differ in your implementation:

� Portal::appQ — The name of the queue that is to be handled by a service
on the Portal itself. This service can be replicated. Trading Partner
applications will write to this queue.

� TP name::inQ — The name of the queue that is to receive messages for a
particular Trading Partner. Only the Portal itself will be able to connect to
this routing node and forward to this queue.

� TP name::tmpQ — The name of the queue that is to receive transient reply
messages for a particular Trading Partner. The tmpQ queue does not have
to be a different queue from the inQ queue. However, there are reasons to
use a separate queue for small, nonpersistent replies to synchronous
requests. Having a separate queue facilitates easier maintenance and
administration. The tmpQ queue can be cleared without losing anything
critical, while the inQ queue contains messages you cannot afford to lose.

Store & Forward Queue Routing from a Trading Partner
The following components are installed at the Trading Partner:

� A SonicMQ Server set up for Queue Routing

� A SonicMQ administration client (Explorer or Admin)

� One or more Trading Partner Applications

These components can reside on one or more machines and do not have to be
running continuously. Only the SonicMQ server is needed to store and forward
messages to the Portal.

The Trading Partner would probably have many application users that would
be configured in the server database. These users are known only to the Trading
Partner server and are not shared with the Portal.
110 SonicMQ Deployment Guide

Store & Forward Queue Routing from a Trading Partner
Figure 31 shows how a typical installation at a Trading Partner named Xyz
Company communicates with the Portal Application running at the Portal.

� When a Trading Partner application starts, it performs the following
tasks:

� The application connects to the Trading Partner server.

� An application-specific client session is created in the connection.

� An application that wishes to send documents to the Portal must create a
QueueSender for the Portal::appQ queue.

� To receive documents routed to the Trading Partner, an application must
create a QueueReceiver for the global queue, inQ. (Applications at the
Trading Partner simply connect to the Trading Partner’s servers and
consume messages using normal calls.)

� A Trading Partner application can be a QueueSender, a QueueReceiver, or both.

Figure 31. Routing Communication

Trading Partner (Xyz)

Server SSL

Server
appQ

Routing Queue

Trading Partner App(s)

createQueueSender(“Portal::appQ”)

inQ

tmpQ

createQueueReceiver(“inQ”)

SonicMQ
Admin
Client

Cluster
Portal

Application

Routing
Queue

Portal
SonicMQ Deployment Guide 111

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
Trading Partners cannot communicate directly with one another. All
communication is made to the Portal itself. The Portal is the only routing node
that can route messages to the Trading Partner.

� When an application at the Trading Partner sends messages to the
Portal:

1. A message is created and populated with application-specific data.

2. A QueueSender is used to send the message to the Portal::appQ queue.
Both the message and the QueueSender use standard JMS calls to set
quality of service and delivery options.

3. The Trading Partner server receives the message in a guaranteed manner
subject to the quality of service options used by the sender.

4. Because the Portal::appQ is a remote queue name, the message will be
placed on the routing queue.

5. The server will process the routing queue by checking the routing node
name on each request to see if an active connection exists to this routing
node. If not, a new routing connection will be created. (See the section
“Load-balanced Trading Partner Connections” on page 113.) This
connection will be authenticated using the identity of the Trading Partner
installation as a whole, and not using the identity of the original
application connection.

The check described here ensures that a routing node can forward only to
adjacent routing nodes. That is, queue routing only applies to a single
routing node hop over a routing connection that has been defined as valid
by the administrator.

6. One of many similar servers at the Portal will reliably receive the message.

The Portal now checks if the Trading Partner has permission to send to the
appQ queue.

If the message is PERSISTENT, it is acknowledged by the Portal.

The Trading Partner server will confirm the acknowledgement. This
acknowledgement confirmation is necessary to guarantee once-and-only-
once delivery of PERSISTENT messages.

The message is now removed from the Trading Partner routing queue.
112 SonicMQ Deployment Guide

Store & Forward Queue Routing from a Trading Partner
7. The message will be delivered to one of many Portal Applications
servicing load-balanced versions of Portal::appQ. (See the section “Load-
balanced Trading Partner Connections” on page 113).

Load-balanced Trading Partner Connections
There will generally be numerous Trading Partners so that a server cluster will
be required at the Portal. The connection to these servers cannot be statically
defined. In order to provide scalability, as well as fail-over in the event of
system failure, each Trading Partner server can be configured to connect to any
one of the Portal servers.

� Trading Partner Connections are maintained as follows:

1. The Portal creates a SonicMQ cluster of servers that can receive
connections from Trading Partners.

2. At configuration, each Trading Partner establishes a list of default URLs
to connect to the cluster. Typically, this will be a subset of the servers in
the cluster and provides a level of initial correction failover. These URLs
can be SSL connections (or any other server protocol accepted by
SonicMQ). The initial connection to one cluster member is used strictly to
return a load-balanced connection to any one of the servers in the cluster.

3. When a message arrives in the Trading Partner’s Routing queue, and if
there is no routing connection, the Trading Partner server tries to establish
a connection to the Portal’s cluster.

SSL is supported for server-to-server communications between routing
nodes and can be turned off. Mutual authentication can be specified.

4. An entry in the connection list is read, chosen sequentially or randomly,
depending on configuration settings. A connection is made to this server.
This connection, however, returns the URL for another server in the
Portal’s cluster. The choice of URL is based on a round-robin of all the
servers currently active in the cluster. As servers are added or removed, the
choices for this round-robin automatically change.

Note The use of both a failover list and load balancing are optional.
SonicMQ Deployment Guide 113

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
5. The Trading Partner connection is made to the redirected server. This new
connection is where message traffic actually occurs.

6. The list of initial connect URLs for the routing connection can be updated
by the administration tool either locally at the Trading Partner or remotely
from the Portal.

The connection from the Trading Partner to the Portal remains active until
either:

� The Trading Partner server is shut down

� The Portal server is shut down or the network connection is lost

� The connection times out after an optionally preconfigured idle period

In the event of a failure (if messages remain in the routing queue), the Trading
Partner server attempts to reconnect with the connection information it
previously used. This “sticky” reconnect is tried for a number of times
specified by the CONNECT_RETRY_COUNT property. These attempts are spaced
CONNECT_RETRY_INTERVAL seconds apart. You specify these properties in the
broker.ini file.

If a connection cannot be re-established after the retry attempts, then after
waiting CONNECT_ATTEMPT_INTERVAL, updated connection information is
retrieved and a connection attempt is made from the configured list of
connection URLs. The Trading Partner server continues trying all servers in the
list until one of the connections is established.

If all attempts to establish a routing node connection fail, then errors are logged
and the process restarts. The new information is retried CONNECT_RETRY_COUNT

times before the typically longer CONNECT_ATTEMPT_INTERVAL. This continues
until the specified ROUTING_TIMEOUT is reached.

The reconnect logic handles one additional complication. If a server-to-cluster
connection fails during the forwarding of some message between a Trading
Partner and a Portal, the message might be in an indoubt state. See the “Routing
Under Failure Scenarios” section for more information about this situation.
From a connection perspective, however, the sending server remembers which
messages are indoubt and associates these with a particular connection. Even
if a new connection is created between the Trading Partner and the Portal that
goes to a different server, attempts are made (subject to a timeout parameter)
to re-establish the failed connection and resolve the indoubt state.
114 SonicMQ Deployment Guide

Store & Forward Queue Routing from a Trading Partner
That is, indoubt messages will always use the original connection, even if a
new connection is used to do routing to a routing node that is a cluster of
servers.

For more specifics on connection load-balancing properties, see Chapter 4,
“Failover and Load Balancing.”

Routing Under Failure Scenarios
This section deals with the possibility of failures during the actual process of
global queue routing.

There is always a possibility of a network failure or server failure. If this occurs
after the sending server has sent a PERSISTENT message, but before it has
received an acknowledgement, then the message is considered to be in an
indoubt state. The message will remain in this state until a connection is re-
established between the two servers (or until the INDOUBT_TIMEOUT expires).

The sending server will automatically try to re-establish any connections
necessary to resolve the state of the indoubt messages. Until this occurs,
however, all the indoubt messages will be held where they will not be lost.
There is no possibility of message redelivery due to any failure situation, but
there is a possibility that the message will take a long time to be delivered.

SonicMQ handles this situation as follows:

� As part of server configuration, a parameter exists that specifies
INDOUBT_TIMEOUT (in seconds).

� All messages that are held in the indoubt state for a period that exceeds
INDOUBT_TIMEOUT are automatically expired. You would usually configure
all PERSISTENT messages to be sent to the SonicMQ.deadMessage queue
and to raise an administration notification.

� A reason code is associated with messages in SonicMQ.deadMessage
queue that expire because they are held too long in the indoubt state.

� At no point are these messages lost or inadvertently placed in a state where
they can be redelivered.

Messages that are not PERSISTENT are not subject to the added overhead of this
acknowledgement cycle. This is in keeping with the JMS specification
requirement of “at most once” delivery for non-persistent messages.
SonicMQ Deployment Guide 115

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
It is also worth looking at the failure situation from the perspective of the
receiving server. As soon as this server receives a message from the sending
server, it prepares for guaranteed once-and-only-once delivery, and then sends
the acknowledgement back to the originating server. The message will be
logged if necessary. A tracking number is created and retained until a
confirmation is returned from that server.

If the network or the sending server fails before the receiving server has
received confirmation of the acknowledgement, then the receiving server will
not discard the acknowledgement. It will retain it until the connection has been
re-established. When the two servers reconnect, all unconfirmed
acknowledgements can automatically be resent to resolve all inconsistencies.

The important facts about these scenarios are that:

� Messages are never redelivered by SonicMQ queue routing even in the
event of network failure.

� Messages can be stored on a sending server in an indoubt state if there is
some failure.

� SonicMQ will attempt to re-establish the server-to-server connection to
resolve indoubt messages even if another server-to-cluster connection has
been created for the destination routing node.

� The destination server will process messages as soon as they have been
successfully received and the acknowledgement has been sent.

� The indoubt resolution process uses the SonicMQ journal to retain state.
Even if both servers fail in the process at different times, guaranteed
exactly once delivery is assured.

A more detailed description of SonicMQ dead message queues can be found in
Chapter 3, “Guaranteeing Messages.”

Exchanging Connection Information for Indoubt Resolution

When one server connects to another for global queue routing, the two servers
pass information about each other’s routing node between them. Two pieces of
this information relate to how the server that received the original connection
can reconnect to the originating server.
116 SonicMQ Deployment Guide

Store & Forward Queue Routing from a Trading Partner
Consider the case where a server in a Routing Node (named Mart) connects to
a portal named Xchange. Consider the most complicated case, where both Mart
and Xchange are clusters.

It is clear that Mart knows how to connect to Xchange (because it made the
original connection in the first place). Regardless of whether the initial contact
was load-balanced across the Xchange cluster, the particular server in Mart
knows exactly what the ultimate connection properties were that allowed it to
connect to a particular server in Xchange (server URL, password, username).

If the connection fails, then Mart can reuse this information to attempt to
reconnect back to the exact same server on Xchange. If Mart needs to
reconnect, it can reuse the old connection information in order to resolve
indoubt messages.

However, this does not explain how Xchange can reconnect to Mart if messages
are indoubt on Xchange. The reason Xchange can reconnect to Mart is that
Mart passed the value of its DEFAULT_ROUTING_ACCEPTOR (from its broker.ini

file) into Xchange when the connection was first established.

Advertising Routing Connection Information

The other properties for this connection (username, password, timeout,
advertising) are retrieved from the Xchange routing connection database.
Xchange looks up Mart and uses only these fields, not the entire connection
URL or load-balancing. If there is no entry for Mart, then the following defaults
are used:

� username = "AUTHENTICATED"

This indicates that the certificate identity will be used in the SSL
connection.

� password = ""

� timeout = CONNECT_IDLE_TIMEOUT

� advertise = false

Note The DEFAULT_ROUTING_ACCEPTOR property applies only to indoubt messages.
New messages that arrive can trigger a new connection to a different server in
the cluster.
SonicMQ Deployment Guide 117

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
The other piece of connection-related information that passes between Mart
and Xchange when Mart connects to Xchange is a statically defined “routing
incoming-connection.” This allows Mart to override the outgoing routing
connection pre-configured on Xchange or create a dynamic value for it if the
connection is not present.

Mart creates its routing incoming-connection by entering a routing connection
for itself in its own routing connection database. The Administrator on Mart
can use Admin tool, Explorer, or the Management API to create this entry. For
example, the Administrators could issue the following Admin tool commands:

[on Mart]:
Admin>set routing Mart “ssl://www.mart.com” user pwd 300 lb

This information will only be sent to Xchange (but only if Mart has used the
advertise flag on its connection to Xchange). That is, it has

[on Mart]:
Admin>set routing Xchange “ssl://xchange.com” user pwd advertise

Xchange can choose to ignore this incoming-connection information sent from
Mart by specifying that it is to use static routings only when going to Mart.

[on Xchange]:
Admin>set routing Mart “ssl://172.09.3.192” "" "" 4000 nolb static

Routing connections are subject to the following conditions:

� DEFAULT_ROUTING_ACCEPTOR is always passed. However, advertising the
routing incoming-connection is only done if the original routing
connection has the advertise flag set.

� The incoming-connection information is never used if the routing node has
an outgoing connection defined as static.

� To enhance security, the routing incoming-connection never passes the
username or password across the wire.

� The following parameters of an advertised incoming-connection are never
used by the receiving server: username, password, idle timeout, and the
advertise flag. These parameters are always retrieved from the outgoing
routing connection table.
118 SonicMQ Deployment Guide

Store & Forward Queue Routing from a Trading Partner
� If the outgoing routing connection table does not contain an entry for a
given routing node, the values for username, password, idle timeout, and
the advertise flag are set to:

– username = "AUTHENTICATED"

This indicates that the certificate identity will be used in the SSL
connection.

– password = ""

– timeout = CONNECT_IDLE_TIMEOUT

– advertise = false

� If DEFAULT_ROUTING_ACCEPTOR is not defined, it will default to a combination
of the first (index = 1) acceptor in the broker.ini file. That is, it will be:

DEFAULT_SOCKET_TYPE://IP_OR_HOST_1:PORT

� The username and password found in the outgoing routing connection
table. If these are not found, then AUTHENTICATED is used, which implies the
use of certificate identity on an SSL connection.

Connection Timeout
The connection from Trading Partner to Portal can be automatically closed by
the Trading Partner if the connection has been configured with a timeout (or
idle) parameter.

The value of the idle connection timeout in seconds (CONNECT_IDLE_TIMEOUT) is
specified when a routing for a routing node is defined through the Admin tool,
Explorer, or Administration API. The default value of the idle connection
timeout is 300 seconds (5 minutes). If the connection idle timeout value is 0,
the connection will not timeout.

If a routing connection remains idle for the duration specified by the timeout,
it is terminated. A message describing this event is displayed on the servers at
both ends of the connection. When the next message arrives in the routing
queue for this server new load-balanced connection will be made (using the
connection logic described above).

Each side of a connection between routing nodes independently monitors the
idle time, and either one can terminate the connection. Each uses its own
SonicMQ Deployment Guide 119

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
timeout, as specified in the routing connections database. If there is no entry
for the remote routing node, the CONNECT_IDLE_TIMEOUT in the broker.ini file
will be used. If this value is also not set, it defaults to 300 seconds.

If the idle timeout value is changed for a remote routing node and there are
active connections between the local routing node and the remote routing node,
the new value takes effect immediately (on the local side of the connection).
However, if you change an idle timeout value dynamically, a new timeout
period is started.

Portal-initiated Connections
Often the Portal will be required to send messages to the Trading Partners. In
the event that the Trading Partner has timed-out its connection, however, the
Portal will be required to re-establish the connection.

The Portal (or any server in the cluster) shares routing information by queue
name. Each Trading Partner's global queue, such as Xyz::inQ, is associated
with the connection that the Trading Partner had previously established.

In the event that no previous connection has been created, then the Portal
administrator must have created a list of routing connections that associate the
individual routing node names to particular server URLs (or lists of URLs).

If a message needs to be sent to the Trading Partner, the route table is used to
see how to re-establish the connection, if necessary. If the connection currently
exists, the message will be routed to the server in the cluster where the
connection is active. If the connection does not exist, the routing connection
table is queried for its current value of the connection URLs and other
connection properties. This is preconfigured administratively using the Admin
tool, Explorer, or the Management API.

If no connection URL has been preconfigured and no incoming-connection has
been advertised, then the message will be flagged as undeliverable and checked
to see if it will be sent to the SonicMQ.deadMessage system queue.
Administrative notifications might also be sent.

A Trading Partner can also specify a Connect URL to use for incoming routing
connections. This is specified for the server and will be advertised to the Portal
when the Trading Partner first connects. If this advertised connect URL is
specified, then it will be used before the connection URLs statically configured
120 SonicMQ Deployment Guide

Store & Forward Queue Routing from a Trading Partner
on the Portal, unless the Portal overrides this setting by using the static flag on
its preconfigured routing connection.

There might be some cases where a Trading Partner is unwilling to expose its
routing node to external connections. In this case, the Trading Partner must
maintain the connection to the Portal without a timeout. Otherwise, if the
connection times out, messages destined for the Trading Partner will be lost.

Connection Security
The connection between two servers will be mutually authenticated. Server-to-
server connections can occur when two routing nodes connect or when servers
mutually connect within a cluster. In both cases, SSL is optional.

Table 8 indicates what authentication is done on a connection by a SonicMQ
server when a client or another server attempts to get a connection.

Note: SSL support is only available with SonicMQ Professional Developer Edition
and E-Business Edition.

Table 8. Connection Security Checking

Password-based
Authentication

SSL Client
Authentication

Behavior

disabled disabled The client connection is always accepted.

disabled enabled Only valid chains that contain a trusted certificate are accepted. Valid
means that all signatures verify and no certificates are expired.

enabled disabled The client connection is accepted only if the client is successfully
authenticated by username/password.

This authentication mode is typically used in multi-node
applications, between individual clients and their local servers.
SonicMQ Deployment Guide 121

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
Load-balancing Across Portal Applications

Your Portal will probably contain a collection of replicated services. Chief
among these could be the main Portal Application whose task is to examine
incoming messages from a Trading Partner and route these to other Trading
Partners.

The tasks of the Portal Application are to:

� Receive a single request to the Portal::appQ queue.

� Look at the manifest.

� Decide where the message needs to be routed.

� Update the manifest if necessary and send the message to a Queue
associated with some other Trading Partner.

enabled enabled Only valid chains that contain a trusted certificate are accepted. Valid
means all signatures verify and no certificates are expired.

Once a client certificate chain is accepted, the client connection is
accepted only if the client is recognized by the server. This is done
by verifying that the username for the connection matches the
principal name in the security database.

If the username is the string AUTHENTICATED ,the effective username
will be retrieved from the identity embedded in the client certificate
(the Subject Common Name). When using this certificate identity,
the user is automatically authenticated without checking passwords.

This authentication mode is typically used in connections between
servers in different routing nodes.

Table 8. Connection Security Checking (continued)

Password-based
Authentication

SSL Client
Authentication

Behavior
122 SonicMQ Deployment Guide

Store & Forward Queue Routing from a Trading Partner
To accomplish this processing, you might use one or more of the following
features:

� You can make both the receive and the send part of a single local client
transaction. That is, a set of messages might need to be committed as a
single logical unit of work.

� The processing of routing requests might need to be totally stateless. In this
case, each active application should not be dedicated to a particular
Trading Partner.

� Portal Applications can be located on remote computers. Each application
can connect to many or all servers in the cluster.

The ability of the Portal to load-balance dynamically between the Portal
Applications happens automatically based on standard JMS QueueReceiver
behavior:

� Each Portal Application creates connections to one or more servers in the
Portal cluster.

� Each of these connections is used to create a transacted JMS
QueueSession.

� The QueueSession is used to create a QueueReceiver on the queue appQ,
which exists on each server in the cluster.

� A QueueSender is also created on each of these QueueSessions.

� This load-balancing across QueueReceivers on the same queue occurs
automatically in SonicMQ. Load-balancing of Portal services is not
configured at the server/cluster level.
SonicMQ Deployment Guide 123

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
Figure 32 illustrates the concept of load balancing.

When messages arrive at a cluster destined for a particular queue, they are
automatically routed to the nearest server that supports this queue. This means
that if the actual server where the connection is made supports this global
queue, the message will be delivered there. Only if the receiving server does
not support the queue directly will it be routed to another server in the routing
node where this global queue is defined.

Figure 32. Routing: Load Balancing

Portal

SSL

Server

Routing
Queue

Cluster

Server

to/from
Trading
Partners

Routing
Queue

appQ

appQ

Portal Application

Machine 1

createQueueReceiver(“appQ”);

createQueueReceiver(“appQ”);

Portal Application

Machine 2

createQueueReceiver(“appQ”);

createQueueReceiver(“appQ”);
124 SonicMQ Deployment Guide

Queue Routing from Portal to Trading Partners
Queue Routing from Portal to Trading Partners
In routing from the Portal Application to a Trading Partner, the Portal
Application simply needs to identify the appropriately named queue for that
partner. Figure 33 illustrates routing from a Portal Application to a Trading
Partner.

� To send a message from a Portal Application to a queue on a Trading
Partner:

1. The Portal Application needs to send to a particular Trading Partner so it
finds the associated routing node name for that Trading Partner. In the
example, the name is Xyz.

2. The routing node name is combined with the name of the queue to create
the remote queue name (Xyz::inQ). The Portal Application creates a JMS
queue destination for this name and sends it to a server in the cluster.

Figure 33. Routing: Portal to Partner

Trading Partner: Xyz

Server

Portal

SSL
Routing Queue

Trading Partner App(s)

Server

appQ

Routing
Queue

inQ

tmpQ

PortalApplication

send(msg,“ Xyz::inQ”)

Cluster

createQueueReceiver(“inQ”)

Server

appQ

Routing
Queue
SonicMQ Deployment Guide 125

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
3. The clustered server looks up this destination in its route table.

The connection for the Xyz routing node exists in the route table because
the last time that Trading Partner XYZ connected, it advertised this queue
to the cluster as a global queue that it supports. The route table persistently
remembers this connection.

4. When the router needs to forward to Xyz::inQ it looks up the connection
in the route table:

� If the connection is still active, it is used. This step might involve a hop
where one server in the cluster routes the message to the server that is
connected to Xyz.

� If the connection has timed-out, become idle, or just closed, the
routing server will attempt to re-establish the connection with the
Trading Partner server.

5. When the message does arrive at the Trading Partner server, it is
immediately placed on the inQ queue.

6. An existing application that has created a QueueReceiver on the inQ queue
will receive the message (either synchronously or asynchronously) as
programmed using normal design patterns.

Access control is maintained in the Portal configuration where the username of
a Trading Partner is uniquely mapped to the name of its routing node. No other
Trading Partner can receive messages for the routing node associated with a
given Trading Partner. Because the username is determined from the certificate
used to create the SSL connection, this level of security ensures that no Trading
Partner can accidentally or intentionally intercept messages intended for
another Trading Partner.
126 SonicMQ Deployment Guide

System Management
System Management
The SonicMQ multi-node solution supports centralized management of the
Portal and the Trading Partners. It also lets individual Trading Partners manage
their resources locally.

You can perform all management tasks one of three ways:

� Admin tool, a command-line tool that supports the use of scripts. See the
SonicMQ Installation and Administration Guide for a description.

� SonicMQ Explorer, a graphical interface tool. See the SonicMQ
Installation and Administration Guide for a description.

� The Management API. See progress.message.tools.BrokerManager in the
javadoc.

All three options require you to connect to the server with an administration
name and password. The connection is made through JMS, can be done
remotely, and can be secured using SSL.

Portal Management
The Portal is usually a cluster of servers, in which case you should manage all
servers using a configuration server. By using a configuration server you can
update information once for the entire Portal.

Trading Partner Management
You can manage Trading Partner servers in three ways:

� Use Admin or Explorer tools from the Trading Partner itself.

� Use Admin or Explorer tools from the Portal to allow for remote
configuration of the Trading Partner by the Portal operators.

� Have Trading Partner applications or applications running at the Portal site
manage the servers using the Management API.

Note This is optional. Trading Partners may not allow remote administration of
their server from the Portal.
SonicMQ Deployment Guide 127

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
For example, as Portal configuration changes or Trading Partner
information is updated, these applications can automatically reconfigure
the server information at the Trading Partner. This could only be done with
permissions granted by the Trading Partner.

Dead Message Queue
Because of hardware or network failures, or for other reasons, it is always
possible that a message will fail to be delivered. When this happens, an
administrative event is generated and (depending on a setting in the message
header) the message might be sent to a special system queue called the Dead
Message Queue. See Chapter 3, “Guaranteeing Messages” for a thorough
description of this subject.

Trading Partner Request/Reply Example
This section presents an example showing how applications at the Trading
Partner can implement a synchronous request/reply layer on top of global
queue routing.

Normal support for synchronous request/reply design patterns is complicated
in the case of global queue routing due to the following issues:

� Creating unique temporary queues

� Accessing temporary queues across Trading Partner security domains

Typically, the design pattern for request/reply is to:

� Make a temporary queue

� Set the JMSReplyTo header to this destination

� Do a synchronous QueueSender.receive() on the message (with an
optional timeout)

The JMSReplyTo header is likely to be used when a Trading Partner application
needs some low-latency synchronous interaction with other partners. This
might be a quick price check, inventory status, or similar type of information.
For this type of request, the application is expected to be blocking for less than
128 SonicMQ Deployment Guide

Trading Partner Request/Reply Example
10 seconds or so. The developer should use messaging with the following
settings for synchronous requests:

� Low Quality of Service (NON_PERSISTENT, unencrypted, small messages).

� Explicit, and short, Time To Live.

� Message expiration might raise a notification, but the message will not be
saved in the Dead Message Queue.

� High priority (to expedite delivery).

If the request is lost, the application is expected to simply retry the request.

The issue with the normal design pattern of using a temporary queue for this
interaction is the need to prevent a Trading Partner from knowing about
another’s requests. Instead of a temporary queue, it is more convenient to use
a second global queue at the Trading Partner’s site. This second queue can be
configured at the Portal to ensure security.

In our examples, this queue is named tmpQ. The reason this queue is not the
same as the normal inQ queue is to allow for easier administration. Messages
on tmpQ can be assumed to be transient, and the queue can be cleaned up
without worrying about losing important business documents.

Many applications at the Trading Partner might simultaneously request
information. Because of security concerns, it is easier for them to share a single
queue. Each application can use selectors on its QueueReceiver to request its
reply.

Here is sample pseudo-code that illustates this use of selectors:

// Create a request
TextMessage m = session.createTextMessage();
m.setJMSReplyTo(“acme::tmpQ”); // psuedo-code
m.setText(“Inventory Check: #1234”);
// Create a unique queue receiver for the reply
// NOTE use of selector
String uniqueID = createUniqueId();
m.setProperty(“AppUniqueId”, uniqueID);
QueueReceiver qr = session.createQueueReceiver
 (“tmpQ”, “AppUniqueID = ‘” + uniqueID + “’”);
// Wait 7 seconds for a reply.
TextMessage rep = qr.receive(m, 7000);
SonicMQ Deployment Guide 129

Chapter 7: Dynamic Routing Architecture in a Multi-node Application
130 SonicMQ Deployment Guide

Chapter 8 Implementing Multi-node Installations
Introduction
This chapter describes the SonicMQ setup needed to implement the Trading
Partner and Portal installations described earlier. Figure 34 illustrates the
relationship between the Trading Partner and Portal.

Figure 34. High-level View of Trading Partner-Portal Configuration

Portal

Internet Portal

Firewall

Firewall Firewall

Portal App
(Routing)

Portal App
(Routing)

Trading
Partners

Portal
Services

Portal
Services

SSL

SSL

Company A

App

App

Store
&

Fwd

Company B

App

App

Store
&

Fwd
SonicMQ Deployment Guide 131

Chapter 8: Implementing Multi-node Installations
In particular, this chapter addresses:

� Trading Partner Configuration:

– Firewall setup

– SonicMQ server installation and setup

– SonicMQ routing node setup

– SonicMQ security/routing configuration

� Portal Configuration:

– Firewall setup

– SonicMQ server installation and setup

– SonicMQ configuration server installation and setup

– SonicMQ routing node setup

– SonicMQ security/routing configuration

Definition of Terms
Table 9 provides definitions for the names used in the sample configuration
files and Admin Shell scripts that are presented later in the chapter to
implement the configurations. You would change most of these names when
deploying your own SonicMQ multi-node configuration.

Important See the SonicMQ Installation and Administration Guide for more information,
especially in the areas of security and server cluster configuration.
132 SonicMQ Deployment Guide

Definition of Terms
Table 9. Names Used in Sample Admin Shell Scripts

Name Definition Location

Acme The routing node name for the sample
Trading Partner

Acme's broker.ini

AcmeCo The routing username Acme uses to
connect to Xchange

Security database at portal (ntconfig)

Applications The group name for administering security
for all application users as a group (user1,
user2, and user3 are members of this
group)

Security database at Acme

appQ The global queue that is to be handled by
the portal routing application

Every portal server

ConfigServer The BROKER_NAME for the configuration
server at the portal

broker.ini on ntconfig

direct.A The global queue on portala.xchange.com
that handles synchronous requests

On server PortalA (at portal)

direct.B The global queue on portalb.xchange.com
that handles synchronous requests

On server PortalB (at portal)

direct.C The global queue on portalc.xchange.com
that handles synchronous requests

On server PortalC (at portal)

inQ The global queue that is to receive
messages for a particular Trading Partner

Acme's server

ntconfig The machine name for the configuration
server (not accessible from outside the
portal by a DNS lookup)

“Hosts” file available to all portal
machines

PortalA The BROKER_NAME for one of the clustered
servers at the portal

broker.ini on one portal machine

portala.xchange.com The name of the machine hosting one of
the portal’s publicly accessible servers

DNS lookup server on the Internet
SonicMQ Deployment Guide 133

Chapter 8: Implementing Multi-node Installations
PortalB The BROKER_NAME for one of the clustered
servers at the portal

broker.ini on one portal machine

portalb.xchange.com The name of the machine hosting one of
the portal’s publicly accessible servers

DNS lookup server on the Internet

PortalC The BROKER_NAME for one of the clustered
servers at the portal

broker.ini on one portal machine

portalc.xchange.com The name of the machine hosting one of
the portal’s publicly accessible servers

DNS lookup server on the Internet

PortalCluster The name of the cluster at the portal Cluster database at portal (ntconfig)

pUser The user name used by portal routing
applications

Security database at portal (ntconfig)

Routing Queue The internal “routing queue” automatically
created on all servers

All SonicMQ servers

RoutingUsers The group name for administering security
for all portal routing applications as a
group (pUser is a member)

Security database at portal (ntconfig)

thePortal Routing user name for the Xchange
routing node when it connects to Acme

Security database at Acme

TradingPartners The group name for administering security
for all trading partners as a group
(AcmeCo is a member)

Security database at portal (ntconfig)

user1 Sample user name for application users at
Acme

Security database at Acme

user2 Sample user name for application users at
Acme

Security database at Acme

user3 Sample user name for application users at
Acme

Security database at Acme

Table 9. Names Used in Sample Admin Shell Scripts (continued)

Name Definition Location
134 SonicMQ Deployment Guide

Definition of Terms
www.acme.com The name of the machine hosting Acme's
SonicMQ server (accessible by external
DNS lookup)

DNS lookup server on the Internet

Xchange The routing node name for the portal Each broker.ini for all clustered portal
servers

Table 9. Names Used in Sample Admin Shell Scripts (continued)

Name Definition Location
SonicMQ Deployment Guide 135

Chapter 8: Implementing Multi-node Installations
High-level Architecture
Figure 35 illustrates how a typical installation at a Trading Partner (named
Acme) communicates with the Portal Application running at the portal (named
Xchange).

The following sections discuss this setup in greater detail.

Trading Partner Configuration
This section describes the configuration of a Trading Partner named Acme
Company. This company has installed their SonicMQ server in the DMZ on a
machine accessible as www.acme.com. As part of their agreement with the
Xchange Portal, Acme Company has committed to:

Figure 35. Trading Partner-Portal Configuration

Broker

Portal Application

createQueueSender("Acme::inQ")

createQueueReceiver("appQ")

Server

Trading Partner App(s)

createQueueSender("Central::appQ")

createQueueReceiver("inQ")

Server

Routing
Queue

inQ

SonicMQ
Admin

Client(s)

Server A

Configuration
ServerSonicMQ

Admin
Client(s)

Trading Partner (Acme) Portal (Xchange)

SSL
appQ

Routing
Queue
136 SonicMQ Deployment Guide

High-level Architecture
� Install the SonicMQ server on www.acme.com.

� Punch a hole in the outside firewall to allow SSL connections on port 2507.

� Allow incoming connections from Xchange on port 2507. The Xchange
user must identify itself as thePortal over this connection.

� Use the routing node name Acme in dealings with Xchange.

When connecting to the Portal, Acme Company has agreed to:

� Connect using the Portal contact points: ssl://portala.xchange.com:2507
and ssl://portalb.xchange.com:2507.

� Identify itself using a certificate supplied by the Portal. This certificate
contains the username AcmeCo.

Acme Company also plans to use Trading Partner applications that will access
the local server on www.acme.com:

� AcmeCo will create a group of users called Applications.

� The users in this group, user1, user2, and user3, will be managed by
Acme.

� No users except user1, user2, and user3 can send to the appQ at Xchange
or can read from the inQ.

� These users must be able to access the Acme Company server. Acme
Company has decided to use normal TCP connections to the server. Their
internal firewall will be configured to allow for connections to
tcp://www.acme.com:2506.

Acme Company has refused to allow the Xchange Portal to remotely
administer their installation:

� Acme Company will not configure a RemoteXchangeAdmin user (in the
Administrators group).

� The Administrators group will have a single user, Administrator, set up
locally.
SonicMQ Deployment Guide 137

Chapter 8: Implementing Multi-node Installations
Figure 36 shows how the Acme installation will look.

Firewall Setup

The firewall setup requires the following steps:

� Configure the DMZ to allow an SSL connection over port 2507.

� Configure internal applications to allow TCP connection over port 2506.

Figure 36. Trading Partner Configuration for Acme Installation

Trading Partner App
(user1)

Trading Partner App
(user2)

Trading Partner App
(user3)

SonicMQ Admin
Client(s)

(Administrator)

to / from
portal

(Xchange)

Firewall

www.acme.com

SonicMQ
Server

hole:
ssl/2507

Routing Queue

inQ

Certificate

tcp/2506

Intranet DMZ Internet
138 SonicMQ Deployment Guide

High-level Architecture
SonicMQ Trading Partner Configuration

The following steps tell you how to configure a trading partner.

� Standard SonicMQ configuration for all Trading Partners:

1. Install SonicMQ.

2. Re-create the database using the SonicMQ dbtool to reconfigure the basic
tables and create the security database:

c:\sonic\bin> dbtool /r basic

c:\sonic\bin> dbtool /c security

3. Change the server log filename (recommended):

BROKER_LOG=server.log

4. Make any other changes to the broker.ini file that you wish. For example,
you might wish to make the server part of a cluster.

More information on standard broker.ini settings is available in the
SonicMQ Installation and Administration Guide.

SonicMQ Static Configuration

After you have completed the installation at a Trading Partner, you must set
parameters to define the specifics of this installation. Set the parameters in
broker.ini as follows:

� Global Routing Parameters:

– Set ROUTING_NODE_NAME, the unique, maximum 256-character, routing
node name for this portal.

In this example, set ROUTING_NODE_NAME=Acme.

– Set DEFAULT_ROUTING_ACCEPTOR, the preferred URL for indoubt
connections. This parameter is optional, but useful if there are any
issues with how the Routing Node is to be exposed to the Internet.
SonicMQ attempts to create this by default based on the IP address of
the node and its default socket/port, that is, ssl://www.acme.com:2507.
SonicMQ Deployment Guide 139

Chapter 8: Implementing Multi-node Installations
� SonicMQ Acceptors:

– Set the NUM_ACCEPTORS to specify how many access modes there will
be. For each mode you must also specify the IP address or name,
socket type (SSL or TCP), and port.

– For each acceptor, specify the socket type and port.

– For each SSL acceptor, specify the SSL certificate information (see
below).

In this example these settings are:

NUM_ACCEPTORS=2

DEFAULT_SOCKET_TYPE=ssl
IP_OR_HOST_1=www.acme.com
PORT=2507

SOCKET_TYPE_2=tcp
IP_OR_HOST_2=www.acme.com
PORT_NUMBER_2=2506

� SSL must be configured to support certificates and encryption:

SSL_CLIENT_AUTHENTICATION=TRUE
SSL_CIPHER_SUITES=SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_PRIVATE_KEY=certs/serverkey.der
SSL_PRIVATE_KEY_PASSWORD=your_password

This configuration assumes the default values of the following SSL
settings:

SSL_CA_CERTIFICATES_DIR=certs/ca
SSL_CERTIFICATE_CHAIN=certs/serverCertChain.chain

SonicMQ Admin Configuration

After the preceding configurations are complete, you must establish queues,
users, and groups. You can complete the following tasks with the Admin shell
script provided in this section.

You can also use Explorer or the Administration API:

1. Initialize the server configuration for those items needed to support the
Trading Partner application:

– Application queues/topics

– Application-related users/admin
140 SonicMQ Deployment Guide

High-level Architecture
2. Put the users in an Applications group and give them the following access
rights:

– SEND to appQ

– RECEIVE to inQ

3. Give the Portal routing user access rights to:

– SEND to inQ (and any other application queues)

The following Admin shell script shows the commands necessary for setting
up the Portal:

//
// Setup file for Trading Partner
//

connect broker localhost Administrator Administrator

// Create local application users (in an "Applications" group)
// Add sample users to the group

add group Applications
add user user1 pwd1
add user user2 pwd2
add user user3 pwd3

add groupuser Applications user1
add groupuser Applications user2
add groupuser Applications user3

// Portal is at "ssl://portala.xchange.com:2507". Use a load
// balanced connection with a 10 minute timeout.

set routing Xchange "ssl://portala.xchange.com:2507" /
AcmeCo pwd lb 600 advertise

// Configure the Portal user (to allow "Xchange" to
// call back into this routing node)

add routing user thePortal "Xchange" pwd

// Create incoming global queues.

set queue inQ global

// Override properties to the system queues.

set queue SonicMQ.deadMessage local 1200, 1400, 15000
set queue SonicMQ.routingQueue local 1200, 1400, 2000

// ACLs -- Prevent everyone from accessing all Queues
// unless explicitly granted below.

set queue acl # PUBLIC -snd -rcv
SonicMQ Deployment Guide 141

Chapter 8: Implementing Multi-node Installations
// ACLs -- Applications can send to appQ and direct queues
// (on Xchange), and receive from others queue

set queue acl appQ Applications +snd -rcv
set queue acl direct.* Applications +snd -rcv
set queue acl inQ Applications -snd +rcv

// ACLs -- the portal user can only send to inQ/tmpQ

set queue acl inQ thePortal +snd -rcv

// logout

bye

4. Change the Administration password for this installation.

Portal Configuration
The setup of the Portal is more complex than that of the Trading Partner
because there is a cluster of servers, and all the possible trading partners must
be configured in the security and routing database.

Figure 37 shows a typical Portal configuration.
142 SonicMQ Deployment Guide

High-level Architecture
In Figure 37, note that the configuration server (ConfigServer) is on a separate
machine from all the clustered servers in the DMZ. The machine does not have
to be accessible to the Internet so it is named locally as ntconfig. This server is
set up with BROKER_NAME=ConfigServer. The server manages the cluster
PortalCluster.

Figure 37. Typical Portal Configuration

ntconfig

ConfigServer

portala.xchange.com

portalb.xchange.com

portalc.xchange.com

Portal A

Portal B

Portal C

Routing Queue

direct.A

appQ

Routing Queue

direct.B

appQ

Routing Queue

direct.C

appQ

Certificate

Certificate

Certificate

SonicMQ Admin
Client(s)

(Administrator)

Portal Application
(pUser)

Portal Application
(pUser)

Portal Application
(pUser)

hole:
ssl:2507

to / from
Trading
Partners

(for
example,

Acme)

hole:
ssl:2507

hole:
ssl:2507

Firewall

Internet DMZ Intranet

tcp

tcp
SonicMQ Deployment Guide 143

Chapter 8: Implementing Multi-node Installations
Administration is done only on the configuration server.

All Portal Applications use the same username, pUser. The Portal Applications
connect with unique ConnectIDs to avoid conflict.

There are three machines shown as part of the cluster. Their SonicMQ server
names are PortalA, PortalB, and PortalC. These servers are exposed to the
Internet using the host names: portala.xchange.com, portalb.xchange.com, and
portalc.xchange.com.

Each of these servers supports the appQ as a global queue, but they also
support a uniquely named direct access queue that enables applications to
address messages back to this server. (For example, PortalB supports direct.B
as its global queue. Any application connected anywhere to the portal can
address messages to Xchange::direct.B and the message will be routed to the
correct server in the cluster.)

The names of the synch queues, direct.A, direct.B, and direct.C, include
periods to allow for wild card ACLs, as shown in the following example:

set queue acl direct.* pUser +snd

Firewall Setup

The following steps tell you how to configure the DMZ and internal
applications to set up a firewall for your portal.

� To set up the firewall for the Portal:

1. Configure the DMZ to allow an SSL connection over port 2507 for each
computer that is accessible from Trading Partners.

2. Configure internal applications to allow SSL connection over port 2508.

3. Server cluster communication (between servers in the cluster) is assumed
to be over TCP (port 2506).
144 SonicMQ Deployment Guide

High-level Architecture
Configuration Server Setup

You must set up the configuration server with the broker.ini settings shown in
the following procedure.

� To set up the Configuration Server:

1. Install SonicMQ.

Make sure the server name is ConfigServer. This will set up the correct
database tables, as well as set the value for BROKER_NAME=ConfigServer.

2. Recreate the database using the SonicMQ dbtool to reconfigure the basic
tables, create the security database, and include the server cluster
configurations:

c:\sonic\bin> dbtool /r all

3. Change the server log file name (recommended):

BROKER_LOG=config.log

More information on setting up configuration servers is available as part of the
SonicMQ Installation and Administration Guide.

Clustered Server Setup

You must set up each server to be clustered with a unique name.

� To set up PortalA:

1. Install SonicMQ.

1.1 Make sure the server name is PortalA. This will set up the correct
database tables and set the value for

BROKER_NAME=PortalA

2. Recreate the database using the SonicMQ dbtool to reconfigure the basic
database tables:

Note You must enter the names of clustered servers as user names in the
configuration server’s security database, and you must add those user names to
the Administrators group.
SonicMQ Deployment Guide 145

Chapter 8: Implementing Multi-node Installations
c:\sonic\bin> dbtool /r basic

3. Set up each server with the same routing node name, but with the default
routing acceptor specific to its host:

ROUTING_NODE_NAME=Xchange
DEFAULT_ROUTING_ACCEPTOR=ssl://portala.xchange.com:2507

4. Set up acceptors for PortalA. Typically, you would set up each server in
the cluster with three acceptors: one for connections from the external
trading partners (using SSL and port 2507), one for server cluster
communications (using TCP and port 2506), and one to be used by Portal
Applications (using SSL and port 2508). Use the following property
settings:

NUM_ACCEPTORS=3

DEFAULT_SOCKET_TYPE=ssl
IP_OR_HOST_1=portala.xchange.com
PORT=2507

SOCKET_TYPE_2=tcp
IP_OR_HOST_2=portala.xchange.com
PORT_NUMBER_2=2506

SOCKET_TYPE_3=ssl
PORT_NUMBER_3=2508
IP_OR_HOST_3=portala.xchange.com

5. Set up the second acceptor for server cluster communications with the
following server cluster settings:

ENABLE_INTERBROKER=TRUE
IB_CONFIG_SERVER=tcp://ntconfig:2506
INTERBROKER_ACCEPTOR=2

More information on setting up clustered servers is available in the SonicMQ
Installation and Administration Guide.

Setting Up Global Queues in a Cluster

You must configure each of the servers in the cluster to support the appropriate
global queues. (The access control to these queues is set in the security
database maintained by the configuration server.)
146 SonicMQ Deployment Guide

High-level Architecture
For example, you can use the following script to create the queues for the
server PortalB:

//
// Setup file for each server in the portal cluster.
//

connect broker portalb.xchange.com Administrator Administrator

// Create incoming global queues.
set queue appQ global
set queue direct.B global

// Override properties of system queues.
set queue SonicMQ.deadMessage local 1200, 1400, 20000
set queue SonicMQ.routingQueue local 1200, 1400, 4000

// logout

bye

Configuration Server Security Configuration

After the preceding configurations are complete, you must establish groups,
users, and access control permissions in the configuration server’s security
database. You can use the Admin tool, Explorer, or the Management API. You
can follow these rules to simplify the process:

� All trading partners are part of a larger TradingPartner group.

� This group can send to the global queues (appQ, direct.A, etc.) on the
Portal.

� The Portal Applications will all log in as a common user (pUser). They
might use separate user names, but for this example add them into a single
group: RoutingUsers.

� Portal members of RoutingUsers have access rights to:

– RECEIVE from appQ queue

– RECEIVE from direct.* queues

– SEND to inQ

Note You must specify the appropriate incoming global queue for each server in the
cluster when creating incoming global queues. For the server PortalB in the
preceding case, the command is: set queue direct.B global.
SonicMQ Deployment Guide 147

Chapter 8: Implementing Multi-node Installations
The following Admin shell script shows the commands necessary for setting
up the Portal:

//
// Setup file for Portal security database
//

connect broker ntconfig Administrator Administrator

// Create a group for all the internal portal applications.
// Add the necessary local users to this group

add group RoutingUsers
add user pUser pwd
add groupuser RoutingUsers pUser

// Create a group for all the trading partners
// (routing users will be added to this group, later).

add group TradingPartners

// ACLs -- Prevent everyone from accessing all Queues
// unless explicitly granted below.

set queue acl # PUBLIC -snd -rcv

// ACLs -- Portal Applications can receive from appQ/direct queues
// and send to the trading partners inQ/tmpQ

set queue acl appQ RoutingUsers -snd +rcv
set queue acl direct.* RoutingUsers -snd +rcv
set queue acl inQ RoutingUsers +snd -rcv

// ACLs -- the TradingPartners can only send to appQ/direct queues
set queue acl appQ TradingPartners +snd -rcv
set queue acl direct.* TradingPartners +snd -rcv

// logout

bye

Portal Configuration for Adding a New Trading Partner

You are now ready to create a new Trading Partner and configure it in the
security and routing databases for the Portal cluster. This sample creates the
information for Acme at ssl://www.acme.com:2507.

� To add a new Trading Partner (Acme) at the Portal:

1. Add the routing user Acme. The user name is AcmeCo. By adding
AcmeCo to the TradingPartners group, you automatically give it the
correct access permissions.
148 SonicMQ Deployment Guide

High-level Architecture
2. Add the routing connection for the Acme site. The routing node name is
Acme.

This configuration can be done with the SonicMQ Explorer, Admin tool,
or Management API. The following Admin shell script shows the
commands necessary for setting up the Portal:

//
// Setup file for adding user "Acme" to the portal.
//

connect broker ntconfig Administrator Administrator

// Create the new user in the TradingPartners group.
add routing user AcmeCo Acme pwd
add groupuser TradingPartners AcmeCo

// Set up the routing to Acme using the username/password
// that is expected by Acme's security database.
// Use a 5 minute timeout and a direct (not load-balanced)
// connection.

set routing Acme "ssl://www.acme.com:2507" thePortal pwd 300 /
advertise static

// logout

bye

You have now completed the configuration of your Trading Partner and Portal
installations.
SonicMQ Deployment Guide 149

Chapter 8: Implementing Multi-node Installations
150 SonicMQ Deployment Guide

Chapter 9 Running a Sample Multi-node Application
with the Dynamic Routing Architecture
Introduction
This chapter walks you through a sample setup procedure for a possible
scenario using SonicMQ’s Dynamic Routing Architecture. This chapter does
not cover all the features available in SonicMQ, but rather demonstrates a
particular application of the Dynamic Routing Architecture with SonicMQ.
You will use scripts and sample programs to set up global routing between a
Trading Partner and a Portal. This example is only one of a variety of
applications of global routing intended to provide a specific example of the
implementations discussed in more detail in Chapter 8, “Implementing Multi-
node Installations.”

This chapter shows you how to do the following:

� Create a Portal

� Create a Trading Partner

� Define default routing between these routing nodes

� Use the SonicMQ GlobalTalk sample application across these nodes

Note The example in this chapter uses security features and global routing concepts.
If you are getting started for the first time with SonicMQ, see the samples
provided in Getting Started with SonicMQ, which do not enable security
features or apply global routing concepts.
SonicMQ Deployment Guide 151

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
Scripts are provided to help you set up your Portal and Trading Partner. These
scripts are printed at the end of this chapter.

Assumptions
In this example you will install SonicMQ on two machines. For simplicity, this
example specifies the install directory c:\sonic on both machines. This
example provides the commands for Windows operating systems. You can
perform this example on Unix operating systems by following the same steps
but using the equivalent Unix commands.

This example includes a Portal named Xchange and a Trading Partner named
Acme. The steps show you how to install the Portal Xchange on a machine
named ntportal and the Trading Partner Acme on a second machine named
ntacme.

Note If you want to change the install directory for your installation, you must make
the appropriate changes in the commands that follow.
152 SonicMQ Deployment Guide

Introduction
Figure 38 shows the completed installation configuration:

Figure 38. Configuration for Dynamic Routing Architecture

BROKER_NAME=SonicMQ
ROUTING_NODE_NAME=Acme

Server

inQ

Routing Queue

Client
(GlobalTalk Sample)

Computer: ntacme

BROKER_NAME=Portal1B
ROUTING_NODE_NAME=Xchange

Computer: ntportal

Server

appQ

Routing Queue

direct.B

Client
(GlobalTalk Sample)
SonicMQ Deployment Guide 153

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
Before You Start
The Admin shell scripts contain the commands to set up the security, routing,
and queues for the portal and trading partner used in this example. When you
set up your Portal and Trading Partner, you will modify these scripts to include
the names of your Portal and Trading Partner machines.

The associated scripts for the Admin Shell management tool are contained in
C:\Sonic\samples\Marketplace\scripts and are printed at the end of this
chapter. If you do not find the scripts in the \scripts directory specified here,
you can copy the scripts from this book into text files and store them in the
directory path used in this chapter.

Before you continue, perform the following steps to determine your Portal and
Trading Partner machine names and set the admin.echo system property.

Determining Your Machine Names
On the Portal machine and on the Trading Partner machine, perform the
following steps to determine your machine names:

1. From the Windows desktop select Start >> Settings >> Control Panel.

2. Double-click the Network icon.

3. Select the Identification tab.

4. Record your Computer Names:

– Portal (to use in place of ntportal):__________________

– Trading Partner (to use in place of ntacme):__________________

Note Perform the following procedures on BOTH the Portal and Trading Partner
machines.
154 SonicMQ Deployment Guide

Before You Start
Installing SonicMQ for Your Portal and Trading Partner
Perform the following steps to install SonicMQ on your Portal and Trading
Partner machines.

� To install SonicMQ on your Portal machine:

1. Install SonicMQ to the c:\sonic directory on the Portal machine ntportal.

Change the name of the server to PortalB during the installation.

2. Check your SonicMQ installation. Select:

Start >> Programs >> Progress SonicMQ >> Start Broker

Ensure that the server starts. You might consider opening the SonicMQ
Explorer to further check your installation.

Shut down the server after you confirm your installation.

� To install SonicMQ on your Trading Partner machine:

1. Install SonicMQ to the c:\sonic directory on the Trading Partner machine
ntacme.

2. Check your SonicMQ installation. Select:

Start >> Programs >> Progress SonicMQ >> Start Broker

Ensure that the server starts. You might consider opening the SonicMQ
Explorer to further check your installation.

Shut down the server after you confirm your installation.

Note Remember to use the appropriate name for the Portal machine in your Trading
Partner setup.

Note This server name change is not strictly necessary unless you plan to create a
cluster in the future with this server.
SonicMQ Deployment Guide 155

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
Setting the admin.echo System Property
This example assumes you are using a Windows system and uses the Admin
shell script feature that echoes commands to the console. If you are using a
UNIX or Linux system, you might consider modifying your system behavior
accordingly.

It is useful to edit the admin.bat file to set the system property for
admin.echo=true.

� To set the system property for admin.echo:

1. Edit c:\sonic\bin\Admin.bat.

2. Find the line that begins:

“%SONICMQ_JRE%” %SONICMQ_SSL_CLIENT% ...

3. Add the following parameter to the command that starts Admin:

-Dadmin.echo=true

The line should now read as follows:

“%SONICMQ_JRE%” %SONICMQ_SSL_CLIENT% -Dadmin.echo=true -cp...
156 SonicMQ Deployment Guide

Setting Up the Portal: Xchange
Setting Up the Portal: Xchange
Perform the following procedures on your Portal machine (ntportal) to set up
a Portal.

� To preconfigure the Portal Admin shell script:

The Admin shell scripts contain the commands to set up the security, routing,
and queues for the Portal and Trading Partner used in this example. You must
preconfigure the Portal_Add_TP.txt Admin shell script with the correct URL
for the SonicMQ server. Change the following parameter based on your setup,
using the appropriate name for your Trading Partner machine (see the
“Determining Your Machine Names” section).

1. Replace ntacme with your machine name in the following URL:

ACME_URL � tcp://ntacme:2506

Your Trading Partner URL: tcp://___________________:2506

2. Edit the file Portal_Add_TP.txt in the directory
c:\sonic\samples\Marketplace\scripts

Replace ACME_URL with the URL for your trading partner machine in the
following line of the Portal_Add_TP.txt script:

set routing Acme "ACME_URL" thePortal pwd 3600 static

� To set up your Portal for security and global routing:

1. Edit c:\sonic\broker.ini on the portal machine, changing the following
properties as shown:

ENABLE_SECURITY=TRUE

ROUTING_NODE_NAME=Xchange

2. Re-create the database using the SonicMQ dbtool to reconfigure the basic
tables and create the security database. Open a console window and enter
the following commands in the \sonic\bin directory:

c:\sonic\bin> dbtool /r basic

c:\sonic\bin> dbtool /c security

Note Remember to use the appropriate name for the Portal machine in your setup.
SonicMQ Deployment Guide 157

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
3. Start the server:

Start >> Programs >> Progress SonicMQ >> Start Broker

� To use scripts to configure security, routing, and queues:

1. On the Portal machine, open a console window and go to the install
directory, c:\sonic.

2. Enter the following commands to pipe in each of the following Admin
shell scripts from the \JumpStart\Scripts directory:

c:\Sonic> bin\Admin <
samples\Marketplace\scripts\Portal_Config_Setup.txt

c:\Sonic> bin\Admin <
samples\Marketplace\scripts\Portal_Add_TP.txt

c:\Sonic> bin\Admin <
samples\Marketplace\scripts\Portal_Broker_Setup.txt

Note If you have clusters, you must run the Portal_Broker_Setup.txt step on each
of the servers in the cluster. Run the other two scripts on the configuration
server only. You should also give the direct.* queue a unique name (direct.A,

direct.B, etc.) for each server prior to setting up.
158 SonicMQ Deployment Guide

Setting Up the Trading Partner: Acme
Setting Up the Trading Partner: Acme
Perform the following procedures to set up a Trading Partner.

� To preconfigure the Trading Partner AdminShell script:

The Admin Shell scripts contain the commands to set up the security, routing,
and queues for the portal and trading partner used in this example. You must
preconfigure the TP_Setup.txt Admin Shell script with the correct URL for the
SonicMQ server. Change the following parameters based on your setup, using
the appropriate name for the portal machine (see the “Determining Your
Machine Names” section).

1. Replace ntportal with your machine name in the following URLs:

PORTAL_URL � tcp://ntportal:2506

Your Portal URL: tcp://___________________:2506

2. Edit the file TP_Setup.txt in the directory
c:\sonic\samples\Marketplace\scripts.

Replace PORTAL_URL with the URL for your machine in the following
lines of the TP_Setup.txt script:

// Portal is at "PORTAL_URL". Use Load-balanced connection.

// Advertising is required connection to clusters.

set routing Xchange "PORTAL_URL" AcmeCo pwd 3600 lb advertise

� To set up your Trading Partner for security and global routing:

1. Edit the c:\sonic\broker.ini file on the trading partner machine,
changing the following properties as shown:

ENABLE_SECURITY=TRUE

ROUTING_NODE_NAME=Acme

Note Remember to use the appropriate name for the Trading Partner machine in your
setup.
SonicMQ Deployment Guide 159

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
2. Re-create the database using the SonicMQ dbtool to reconfigure the basic
tables and create the security database. Open a console window and enter
the following commands in the c:\sonic\bin directory:

c:\sonic\bin> dbtool /r basic

c:\sonic\bin> dbtool /c security

3. Start the broker:

Start >> Programs >> Progress SonicMQ >> Start Broker

� To use scripts to configure the security, routing, and queues:

1. On the trading partner machine, open a console window and go to the
install directory:

c:\sonic

2. Enter the following command to pipe in the Admin Shell scripts from the
\JumpStart\Scripts directory:

c:\sonic> bin\Admin < samples\Marketplace\scripts\TP_Setup.txt
160 SonicMQ Deployment Guide

Testing Your Setup with the GlobalTalk Sample Application
Testing Your Setup with the GlobalTalk Sample
Application

You are now ready to test your setup using a sample application. If you wish,
you can first start the SonicMQ Explorer on one or both of the machines and
look at the Queues, Users, Groups, and Routings:

Start >> Programs >> Progress SonicMQ >> Explorer

In the SonicMQ Explorer, you can connect with a user name of Administrator
and the default password of Administrator. Once you connect, you can review
users, groups, routings, and queues to investigate the scripts.

The following steps tell you how to send messages between the trading partner
and portal using the GlobalTalk application. See the “The GlobalTalk
Application (PTP)” section for more information about this application.

� To run GlobalTalk on each server with the appropriate startup options:

1. On the trading partner Acme, simulate a trading partner application that
has logged in as user1/pwd. This application will send to the portal at
Xchange::appQ and listen on the inQ. Open a console window and enter the
following command in the GlobalTalk directory:

cd c:\sonic\samples\QueuePTP\GlobalTalk

..\..\SonicMQ GlobalTalk –u user1 –p pwd –qs Xchange::appQ –qr
inQ

2. On the portal Xchange, simulate a routing application that has logged in
as pUser/pwd. This application will send to the partner at Acme::inQ and
listen on the appQ. Open a console window and enter the following
command in the GlobalTalk directory:

cd c:\sonic\samples\QueuePTP\GlobalTalk

..\..\SonicMQ GlobalTalk –u pUser –p pwd –qs Acme::inQ –qr appQ

3. You can now type messages in either GlobalTalk application and have
them sent to the remote queue on the other routing node.
SonicMQ Deployment Guide 161

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
Troubleshooting Your Setup
The following issue might arise when you use the JumpStart scripts.

Permission Problems When Sending Messages to Valid
Queues

You might encounter permission problems when you send messages to queues
that you know to be valid. This problem might be caused by a security setting
in the security startup scripts.

The JumpStart scripts are modeled on portal/marketplace situations where
security is an issue. There is a command line in the setup scripts for both the
Portal and the Trading Partner that sets the default security to deny all users
access to all queues. This line is:

set queue acl # PUBLIC -snd -rcv

You can remove this line from the security setup scripts:
Portal_Config_Setup.txt and TP_Setup.txt.

Sample Application and Scripts
This chapter uses the GlobalTalk application and four Admin Shell scripts. The
following sections provide more information about GlobalTalk and the scripts.

The GlobalTalk Application (PTP)
This example uses the GlobalTalk application to illustrate your trading partner
and portal setup. This section explains the GlobalTalk application. The steps to
start GlobalTalk and send messages between the Accounting and Orders
windows are provided here to illustrate how the application might be used. You
do not need to perform these steps to test your trading partner-portal setup.

In the GlobalTalk application, whenever a text message is sent to a given queue,
all active GlobalTalk applications are waiting to receive messages on that
queue, taking turns as the sole receiver of the message at the front of the queue.
162 SonicMQ Deployment Guide

Sample Application and Scripts
� To start GlobalTalk:

The first GlobalTalk session receives on the first queue and sends to the second
queue while the other GlobalTalk session does the opposite.

1. Open a console window to the \samples\QueuePTP\GlobalTalk folder, then
enter:
..\..\SonicMQ GlobalTalk -u Accounting -qr SampleQ1 -qs SampleQ2

2. Open another console window to the \samples\QueuePTP\GlobalTalk

folder, then enter:
..\..\SonicMQ GlobalTalk -u Orders -qr SampleQ2 -qs SampleQ1

� Talking:

� In the Orders window, type any text and then press Enter.
The text is displayed in only the Accounting window.

In the Accounting window, type text and then press Enter.
The text is displayed in only the Orders window.

The Admin Shell Scripts
The following four scripts set up your Portal and Trading Partner
configurations for the example used in this chapter.

Shortcuts used in this example include:

� Using default acceptors (tcp on port 2506)

� Setting up all routing nodes as stand-alone servers (not clusters)

To set up your Portal, use these scripts:

� Portal_Broker_Setup.txt — Sets up queues for the servers

� Portal_Config_Setup.txt — Sets up Portal security

� Portal_Add_TP.txt — Adds a new user to the Portal and sets up routing
to the Trading Partner

To set up your Trading Partner, use this script:

� TP_Setup.txt — Adds new users, sets up queues, and sets up security for
the Trading Partner
SonicMQ Deployment Guide 163

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
Portal_Broker_Setup

The Portal_Broker_Setup.txt script provides a setup file for each server in the
Portal cluster. This script:

� Creates incoming global queues

� Overrides the properties of the system queues

//
// Setup file for EACH server in the portal cluster.
//
connect broker localhost Administrator Administrator

// Create incoming global queues.
// -- appQ will exist on all servers
// -- direct.B will only exist on one (e.g. PortalB)
set queue appQ global
set queue direct.B global

// Override properties of system queues.
set queue SonicMQ.deadMessage local 1200,1400,20000
set queue SonicMQ.routingQueue local 1200,1400,4000

// Close the Admin Shell.
bye

Portal_Config_Setup

The Portal_Config_Setup.txt script provides a setup file for the Portal security
database. This script:

� Creates a group for all the internal portal applications

� Creates a group for all the Trading Partners

� Sets the Access Control List (ACL) to:

– Prevent everyone from accessing all Queues

– Allow Portal Applications to receive from appQ/direct queues

– Allow TradingPartners to send only to appQ/direct queues
164 SonicMQ Deployment Guide

Sample Application and Scripts
//
// Setup file for Portal security database
//
connect broker localhost Administrator Administrator

// Create a group for all the internal portal applications.
// Add the necessary local users to this group
add group RoutingUsers
add user pUser pwd
add groupuser RoutingUsers pUser

// Create a group for all the trading partners
// (routing users will be added to this group, later).
add group TradingPartners

// ACLs -- Prevent everyone from accessing all Queues
// unless explicitly granted below.
set queue acl # PUBLIC -snd -rcv

// ACLs -- Portal Applications can receive from appQ/direct queues
// and send to the trading partner's inQ.
set queue acl appQ RoutingUsers -snd +rcv
set queue acl direct.* RoutingUsers -snd +rcv
set queue acl inQ RoutingUsers +snd -rcv

// ACLs -- the TradingPartners can only send to appQ/direct queues.
set queue acl appQ TradingPartners +snd -rcv
set queue acl direct.* TradingPartners +snd -rcv

// Close the Admin Shell.
bye

Portal_Add_TP

The Portal_Add_TP.txt script provides a setup file to add a new user to the
Portal and to set up routing to the Trading Partner. This script:

� Creates a new user in the Trading Partners group

� Sets up the routing to the Trading Partner

//
// Setup file for adding user "Acme" to the configuration
// at the Portal (Xchange).
//
connect broker localhost Administrator Administrator

// Create the new user in the TradingPartners group.
add routing user AcmeCo Acme pwd
add groupuser TradingPartners AcmeCo

// Set up the routing to Acme.
// This is not a load-balanced connection. Always use
// this routing (static) and not any advertised routings
SonicMQ Deployment Guide 165

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
// from the partner.
set routing Acme "ACME_URL" thePortal pwd 3600 static

// Close the Admin Shell.
bye

TP_Setup

The TP_Setup.txt script provides a setup file for the Trading Partner. This
script:

� Creates local application users in an Applications group

� Sets the Portal to PORTAL_URL using a load-balanced connection

� Configures the Portal user to allow Xchange to call back into this routing
node

� Creates incoming global queues

� Overrides properties to the system queues

� Sets the Access Control List (ACL) to:

– Prevent everyone from accessing all Queues

– Allow applications to send to appQ and direct queues

– Allow the portal user to send only to inQ

//
// Setup file for Trading Partner (Acme)
//
connect broker localhost Administrator Administrator

// Create local application users (in an "Applications" group)
// Add sample users to the group
add group Applications
add user user1 pwd
add user user2 pwd
add user user3 pwd
add groupuser Applications user1
add groupuser Applications user2
add groupuser Applications user3

// Portal is at "PORTAL_URL". Use Load-balanced connection.
// Advertising is required connection to clusters.
set routing Xchange "PORTAL_URL" AcmeCo pwd 3600 lb advertise
166 SonicMQ Deployment Guide

Sample Application and Scripts
// Configure thePortal user (to allow "Xchange" to
// call back into this routing node)
add routing user thePortal "Xchange" pwd

// Create incoming global queues.
set queue inQ global

// Override properties to the system queues.
set queue SonicMQ.deadMessage local 1200,1400,15000
set queue SonicMQ.routingQueue local 1200,1400,2000

// ACLs -- Prevent everyone from accessing all queues
// (unless explicitly granted below).
set queue acl # PUBLIC -snd -rcv

// ACLs -- Applications can send to appQ and direct queues
// (on Xchange), and receive from the inQ (defined above).
set queue acl appQ Applications +snd -rcv
set queue acl direct.* Applications +snd -rcv
set queue acl inQ Applications -snd +rcv

// ACLs -- the portal routing user can only send to inQ.
set queue acl inQ thePortal +snd -rcv

// Close the Admin Shell.
bye
SonicMQ Deployment Guide 167

Chapter 9: Running a Sample Multi-node Application with the Dynamic Routing Architecture
168 SonicMQ Deployment Guide

Appendix A Performance Tuning
Your SonicMQ application performance will vary based on your specific
functional requirements and your individual deployment environment.
However, you can tune some parameters of your SonicMQ configuration to
optimize the overall performance of your implementation. Depending on your
application, you might choose to adjust some or all of the parameters discussed
in the following sections.

Tuning Your JVM Properties
Your choice of Java Virtual Machine (JVM), Java heap size, and memory
settings will have significant impact on your SonicMQ performance. The
following sections discuss some issues you should consider when optimizing
your JVM.

Choosing a Java Virtual Machine for the SonicMQ Server
Both the SonicMQ server and standard client are written in Java. The Java
Virtual Machine that you use to run the SonicMQ broker can have a significant
impact on overall messaging performance. Recent JVM advances allow for
just-in-time compilation of Java classes, enhanced garbage collection, efficient
input and output processing, and other significant capabilities. These advances
can improve overall performance by as much as 300%, making the choice of
JVM critical to attaining high performance levels.
SonicMQ Deployment Guide 169

Appendix A: Performance Tuning
Setting the Java Heap Size
A significant performance factor is the size of the Java heap, which you can
specify in the JVM command line with the -mx parameter as explained in
“Tuning JVM Parameters.” Typically this parameter is set to 128 or 256MB. If
you plan to send or receive very large messages or have multiple concurrent
sessions in your application, you should increase the java memory for the client
machine.

You should determine your maximum heap size based on your available
memory and on the size and number of messages and queues you anticipate
handling. The following sections discuss these considerations.

Using the Maximum Available Memory for the Server

To optimize performance, you should set the maximum Java heap size possible
for your SonicMQ broker. This maximum size should correspond to the
available memory on your machine. The more memory you set, the less Java
will use the garbage cleanup. Less use of the garbage cleanup results in better
performance.

However, you should be careful not to set the Java heap size too high. If this
parameter exceeds the memory available to the JVM process, performance can
significantly degrade as a result of page swapping in the underlying operating
system. The memory available to the JVM might not match the total memory
in the server machine due to the memory requirements of other processes. In
this case, lowering the total heap for the JVM will increase performance.

Anticipating the Size and Number of Messages and Queues on the
Server

You should base your JVM memory size on the size and number of messages
you expect to have in all queues on your SonicMQ server. Similarly, you
should set the size of your queues to the maximum size of the messages you
expect to store. You can determine the required JVM memory size by
anticipating the maximum message size you expect to store in the queue, and
multiplying that size by the number of messages you plan to store at one time
on the queue. Total the memory needed for all queues in your application, and
base your JMV memory size on this figure.
170 SonicMQ Deployment Guide

Tuning Your JVM Properties
Tuning JVM Parameters
Table 10 describes properties in the broker.ini and the startbr.bat (NT) and
setenv (UNIX) files that affect performance for the JVM and the SonicMQ
server.

Table 11 lists the default settings for the JVM_PARAM and
MAX_LOG_FILE_SIZE parameters. These parameters are set during the
SonicMQ installation based on your product choice. The
MAX_LOG_FILE_SIZE resides in startbr.bat on Windows. On UNIX, use
setenv.

Table 10. JVM Settings

Option Description

-ms<n> Sets the initial Java heap size

-mx<n> Sets the maximum Java heap size

-oss<n> Sets the maximum Java stack size for any thread

-ss<n> Sets the maximum native stack size for any thread

Table 11. JVM Settings for SonicMQ Editions

SonicMQ Edition Suggested Settings

SonicMQ Developer
Edition

JVMParamString=”-mx32m -ss64k -oss64k”
logFileParamString=”10000000”; // 10 MB

SonicMQ Professional
Developer Edition

JVMParamString=”-ms32m -mx256m -oss64k”
logFileParamString=”104857600”; // 100 MB

SonicMQ E-Business
Edition

JVMParamString=”-ms32m -mx256m -oss64k”
logFileParamString=”104857600”; // 100 MB
SonicMQ Deployment Guide 171

Appendix A: Performance Tuning
Setting Buffer Limits in Message Flow Control
When clients send messages at a faster rate than they can be received at their
destination, a server must save them for delivery. When the server’s capacity
limits are reached, the sending client must be throttled using flow control to
avoid losing messages. This throttling results in the reduction of the client’s
send rate. You can either predefine the server’s capacity limit administratively
or determine this limit based on limitations in memory or disk space. How and
when you apply flow control can significantly alter the performance results of
your messaging system.

When you configure a server with a high buffer limit, messages accumulate in
that server’s memory before flow control is applied. As a result, the sending
client attains a high level of performance until the flow control point is reached.

On the other hand, if you configure the server with a lower buffer limit, there
is a shorter period of time during which client send rates are higher than receive
rates. As a result, less memory is used on messages buffered for delivery.

Another effect of setting high buffer size limits is increased delivery time for
each message, since buffered messages spend more time in memory and take
longer to arrive at a receiver.

In addition to send rates, you should consider the total number of messages
delivered in a system under load. Excessive buffering typically hinders
absolute throughput. Flow control takes effect any time the send rate exceeds
the receive rate. As a result, messages might be buffered in the server and
remain undelivered for a measurable period of time.

The appropriate size limits that govern flow control will vary between
applications. You might find it advantageous to enable a high send rate for a
client, particularly if the number of messages will be small and buffering will
not have a great effect.

SonicMQ allows you to adjust the effect of flow control by setting tunable
buffer sizes for Pub/Sub and Queues. For queue-based messaging, the size of
the queue affects when flow control is applied:

� You can set the parameter OUTPUT_QUEUE_SIZE in the broker.ini file
to adjust the buffer size for each client’s delivery queue. The default value
of this parameter is 150000 bytes.
172 SonicMQ Deployment Guide

Setting Queue Save/Retrieve Extents
� You can set the parameter GUAR_QUEUE_SIZE to set the buffer size
limit per client for messages that have been delivered and are waiting for
acknowledgement. The default value of this parameter is 150000 bytes.

Setting Queue Save/Retrieve Extents
When flow control is not appropriate, it is possible to have a very large queue
by forcing some messages to disk rather than being stored in memory. For these
cases SonicMQ provides the Save_Extent parameter on every queue. The
save/retrieve extents define:

� The maximum size of the queue (max extent)

� The in-memory portion of the queue (save extent)

� When to retrieve messages from the database (retrieve extent)

The Save_Extent parameter defines the queue size at which messages are saved
to the database. When the in-memory portion of the queue falls below the
retrieve extent, messages are retrieved from the database to fill the queue. By
setting the save extent larger than the max size, you can ensure that queue
messages are never saved to the databases. This technique avoids the overhead
of database operations and is appropriate for fast-moving queues.

Reducing the Number of Syncpoints
A syncpoint in SonicMQ is the time when the running state of the message
server is saved in the recovery log files. This information ensures the delivery
of persistent messages. (Non-persistent messages are not written to the log.)
Syncpoints provide a safe starting point for recovery operations in the case of
server machine failure and allow older recovery information to be discarded
once the syncpoint is complete.

In SonicMQ, a syncpoint is performed when the server fills one log file and
switches to the second. The length of the log files therefore determines how
often the syncpoints occur. You set the log file size with the parameter
MAX_LOG_FILE_SIZE. See Table 11 for the default settings for the
MAX_LOG_FILE_SIZE parameter.
SonicMQ Deployment Guide 173

Appendix A: Performance Tuning
You can also set the SYNCPOINT_INTERVAL parameter to determine the
number of bytes of log between syncpoints. You should base the length of this
parameter on the anticipated sizes of your messages.

Because the syncpoint process consumes resources in the server, longer files
yield higher performance levels overall. The SonicMQ server provides a
warning when syncpoint operations account for more than 50% of the total log
file size.

Choosing Automatic Message Acknowledgement
When you use messaging, you can choose to have messages acknowledged in
one of the following ways:

� Acknowledged automatically by message receivers

� Acknowledged through client acknowledge, which is under the control of
the receiver

When you choose CLIENT_ACKNOWLEDGEMENT, the server cannot send
subsequent messages until the acknowledgment occurs. Choosing to have
messages acknowledged asynchronously can help your system avoid
unnecessary slowdowns when using guaranteed messages.The
DUPS_OK_ACKNOWLEDGE is the fasted acknowledgement mode you can
choose.

Disk Drive Caching

Disk file access from the server can have a major influence on overall
performance. Increased drive speeds directly translate to higher message
throughput when your system processes guaranteed messages. Many disk drive
controllers support write caches that allow disk writes to be delayed, increasing
write speeds for the operating system. However, while a write cache increases

Warning DO NOT use disks configured to use a write cache. This can lead to failure to
recover messages in the event of a server failure. Reliability cannot be
guaranteed if you use disks configured to buffer writes.
174 SonicMQ Deployment Guide

Using Queue Prefetch
performance, it also increases the possibility that messages will be lost when a
server machine fails. For this reason you should not use disks configured to use
a write cache.

Using Queue Prefetch
SonicMQ supports prefetching messages from a queue to optimize overall
throughput. Prefetching allows a client to receive messages from the SonicMQ
server before the client explicitly requests the messages, eliminating the
overhead of server requests on a per-message basis. However, prefetching also
changes the operation of the SonicMQ system by allowing messages to
accumulate at the client until the number of messages reaches the application-
defined count.

You can achieve some performance gain with prefetching primarily on lightly
loaded servers, where a receiving client tends to govern overall throughput.
When the server is operating at full capacity, other factors (such as queue size and
disk I/O) tend to limit message-delivery rates.

Queue Cleanup Thread
The queue cleanup thread parameters specify how often SonicMQ checks for
expired messages. This checking takes time, and so reducing the frequency of
the checks, or eliminating them altogether, can help improve your SonicMQ
performance.

You can set the following broker.ini parameters to adjust the frequency of or
eliminate the queue cleanups:

� ENABLE_DYNAMIC_QUEUE_CLEANUP — This parameter defaults
to TRUE, enabling queue cleanup. Setting this parameter to FALSE eliminates
queue cleanup.

� QUEUE_CLEANUP_INTERVAL — This parameter determines the
amount of time between cleanup (in seconds).

Note Mapped drives typically cache disk writes.
SonicMQ Deployment Guide 175

Appendix A: Performance Tuning
Message Size
As you increase message size, you should adjust other parameters to optimize
your system performance with your selected message size. These parameters
include message latency, message type, and log queue size.

Message Type
You might be able to reduce your message size by converting text messages to
bytes messages. Each character in a text message is two bytes, which doubles
the size of the message (compared to the size of the same message converted
to bytes). Unless your application requires double byte size, you can reduce
your text message size by converting to bytes.

Latency
The output queue size directly affects the message latency. As a large number
of messages collects in a queue, the messages coming into the queue take
longer to be delivered. To optimize your performance, you should base your
queue size on the size of the messages, so that the number of messages buffered
at any one time is minimized.

Log Queue Size
The log queue size determines the maximum amount of memory (in bytes) that
can be used by messages being written to the log. If this parameter is set too
low for your application, large messages (that is, messages whose size exceed
the log queue size) will be logged one by one. This individual logging
decreases your system performance. Setting your log queue size to a higher
value allows more events to be queued up in memory before the log is flushed
to disk. If the flush operation takes a significant amount of time and there are
a significant number of publishers/senders, flow control might be activated to
reduce publish/subscribe rates until space opens up on the log’s event queue.

You can set the LOG_QUEUE_SIZE parameter in the broker.ini file. The
default value of this parameter is 500000 bytes.
176 SonicMQ Deployment Guide

Security
Security
Security requires that your system use encryption, which results in slower
performance. If only some of your clients require security, you can increase
performance by enabling security only for those clients that require it.

You can enable or disable security by editing the parameter
ENABLE_SECURITY in the broker.ini file. The default setting for this
parameter is TRUE, which enables security. Changing this value to FALSE

disables security.
SonicMQ Deployment Guide 177

Appendix A: Performance Tuning
178 SonicMQ Deployment Guide

Index
@ A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
A
adjacent routing node 28
Admin shell sample scripts 163
administrative notification 38
advertising

global queues 31
routing connection information 117

agent applications 94
architecture

multi-node 27
AUTHENTICATED 119

routing user name 86
authentication

connection 53
authorization

connection 55
automatic message acknowledgement

performance tuning 174

B
base64 encoding 87
bastion host 70
broker.ini file

security 86

BSAFE-J SSL 68
buffer limits

performance tuning 172
buffer writes

unreliability when using 174

C
caching 174
certificate management tools 68
chain topology 98
client access

to load-balanced connections 62
client.jar file 81
cluster 34

functionality limitations 24
multi-server 22
scalability 22, 22
size limitation 23

configuration
multi-node 23
portal 142

using Admin shell scripts 157
single-server 21
trading partner 136

using Admin shell scripts 159
connect URL 120
SonicMQ Deployment Guide 179

Index
CONNECT_IDLE_TIMEOUT 119
connection

and routing node name 31
load-balanced 113
portal-initiated 120
security 121
timeout 119
URLs 60

connection authentication 53
connection authorization 55
connect-time failover 59

D
data transformation 93
dead message 37
Dead Message Queue 37, 38, 128

default properties 42
enabling features 40
full 46
modifying access control 42
monitoring 40
notification factor 41
system 39, 41

DEFAULT_ROUTING_ACCEPTOR 118, 119
delivery mode

NON_PERSISTENT 38
De-Militarized Zone 69
deployment topologies 93
direct access queue 144
disconnected operation 24
disk drive caching

performance tuning 174
DMQ

See dead message queue
DMZ

See Demilitarized Zone
DNS

See Domain Name Service
documentation, available 15
Domain Name Service 77
DRA

See Dynamic Routing Architecture
Dynamic Routing Architecture 24, 29, 97, 109

application 151

E
ENABLE_LOADBALANCING 61
enterprise-level connection security 24
expired message 38

F
failover

connect-time 59
with routing 60

firewall
log files 77
setting rules for 76
testing rules for 77

firewall architecture
basics 69
screened subnet 72
SonicMQ 72
three-legged

See firewall architecture, screened subnet

G
getbrokerURL() method 63
getConnectionURLs() method 61
getLoadBalancing() method 62
getSequential() method 61
global messaging scalability 28
global queue 31

advertising 31
Trading Partner 120

GlobalTalk sample application 161, 162
guaranteed exactly-once delivery

See once-and-only-once delivery
guarenteeing delivery 39
180 SonicMQ Deployment Guide

Index
H
HTTP 1.0 specification

Keep-Alive connection header 81
HTTP 1.1 specification

Persistent Connection 81
HTTP tunneling

direct connection 78
using 81

http.proxyHost system property 82
http.proxyPort system property 82
HTTPClient package 81, 82
hub-and-spoke topology 100
Hypertext Transfer Protocol (HTTP) 78

I
IAIK SSL 68
indoubt message 39, 39
indoubt timeout

expired 52
INDOUBT_TIMEOUT 115
installation

multi-node 131
portal 131
SonicMQ 155
trading partner 131

Internet deployment
with proxy server (figure) 79
with reverse proxy server (figure) 80

J
jar file, client 81
jar file, webclient 81
Java

javakey plug-in 85
keytool plug-in 85
sandbox 84

Java heap size
performance tuning 170

JMS client access
to failover connections 61

JMS_SonicMQ message properties 43

JMSReplyTo header 128
JVM

identifying 17
performance tuning 169

L
latency

performance tuning 176
load balancing 61

across Portal Applications 122
and routing 62
and routing (figure) 124
Trading Partner connections 113

local management 24
log queue size

performance tuning 176

M
MAC

See Messge Authentication Code
machine name

determining 154
management

Portal 127
system 127
Trading Partner 127

message
dead 37
expired 38
indoubt 39
JMS_SonicMQ properties 43
lost 57, 57
SonicMQ Deployment Guide 181

Index
NON_PERSISTENT 38
PERSISTENT 115
size

performance tuning 176
undeliverable 38
undelivered

handling 44
too large 56
types 47

unroutable 39
Message Authentication Code 88
messaging models 93
multi-CPU machines 22
multi-node

architecture 27
configuration 23
installation 131

multi-server cluster 22
mutual authentication 113

N
node 24
NON_PERSISTENT 129

message 38
notification factor 41

O
once-and-only-once delivery 116
outgoing routing connection table 119

P
password, encrypted 89
PBETool 86–91

command syntax 87
peer-to-peer topology 104
performance tuning 169

automatic message acknowledgement 174
buffer limits 172
disk drive caching 174
Java heap size 170

JVM properties 169
latency 176
log queue size 176
message size 176
queue cleanup thread 175
queue prefetch 175
queue save/retrieve extents 173
security 177
syncpoints 173

portal 109
configuration 142

adding a trading partner 148
using Admin shell scripts 157

installation 131
Xchange 117

progress.message.jclient package 61, 62
proxy

client-side forward 82
proxy server

reverse 74

Q
queue

appQ 123
global 31

advertising 31
inQ 110, 126, 129
Portal::appQ 110
remote 30
SonicMQ.deadMessage 115
tmpQ 110, 129
TP name::inQ 110
TP name::tmpQ 110
Xyz 125, 126
Xyz::inQ 125, 126

queue cleanup thread
performance tuning 175

queue prefetch
performance tuning 175
182 SonicMQ Deployment Guide

Index
queue routing
Portal to Trading Partners 125
store-and-forward 110

queue save/retrieve extents
performance tuning 173

QueueSender.receive() method 128

R
random list access 59
reason code

authentication failure 53
authorization failure 55
indoubt timeout 52
invalid destination 50
invalid node 49
message too large 56
routing timeout 51
TTL expired 48

remote queue 30
request and reply

synchronous 128
round-robin algorithm 113
route table 32
route table forwarder 33
routing 93, 97

configured and advertised information 33
failure scenarios 115
incoming-connection 118
portal to partner (figure) 125
store-and-forward 105

routing app 102
routing application 96
routing communication (figure) 111
routing connection

defaults 117
table 32

routing destination
invalid 50

routing node 28, 30, 30, 34
adjacent 28
invalid 49
Mart 117

routing queue 25
in SonicMQ server 31

routing table 97
routing timeout 51
RSA Security 68
RTF

See route table forwarder

S
scalability

global messaging 28
scalable 24
security 65–91

maintaining 69
performance tuning 177

Security Administrator 67
security policy 67
sequential list access 59
server cluster 113
set routing command 118
setConnectionURLs(…) method 61
setLoadBalancing(…) method 62
setSequential(…) method 61
single-server configuration 21
SonicMQ

installating 155
SSL

BSAFE-J 68
IAIK 68

stateless processing 123
static flag 118, 121
store-and-forward 97
store-and-forward routing 105
sun.misc.BASE64Encoder class 89
support, technical 16
syncpoint

performance tuning 173
syntax

notations used in this manual 13
system Dead Message Queue 39, 41
SonicMQ Deployment Guide 183

Index
T
technical support 16
time to live 48
topologies

deployment 93
topology

chain 98
hub-and-spoke 100
peer-to-peer 104

tracking number 116
trading partner 109

adding to a portal configuration 148
configuration 136

using Admin shell scripts 159
installation 131

transformation applications 95
troubleshooting

GlobalTalk sample application 162
TTL

See time to live
typographical conventions 13

U
undeliverable message 38
undelivered message

handling 44, 44
reason code 115
too large 56
types 47, 47

unroutable message 39, 39
URLs, default 113

V
validation 93

W
webclient.jar file 81
write cache

unreliability when using 174
184 SonicMQ Deployment Guide

	SonicMQ Deployment Guide
	Preface
	About This Manual
	Conventions in This Manual
	Typographical Conventions and Syntax Notation
	Note, Important, and Warning Flags

	Available Documentation
	Worldwide Technical Support

	Part�I Planning Your Deployment
	Chapter�1 Types of Deployments
	Single-server Configurations
	Multi-server Clusters
	Clusters and Scalability
	Multi-CPU Machines

	Clusters and Availability

	Multi-node Configurations
	Cluster Size Limitations
	Cluster Functionality Limitations
	The Dynamic Routing Architecture Solution

	Chapter�2 Multi-node Architecture
	Global Messaging Scalability and Routing Nodes
	Dynamic Routing Architecture
	Routing Nodes
	Behavior of a Routing Queue in a SonicMQ Server
	Configured and Advertised Routing Information
	Routing Nodes and Clusters

	Chapter�3 Guaranteeing Messages
	Working with Dead Message Queues
	What Is an Undeliverable Message?
	Using the System Dead Message Queue
	Guaranteeing Delivery
	Enabling Dead Message Queue Features

	Monitoring Dead Message Queues

	The System Dead Message Queue
	Default DMQ Properties
	Modifying Default DMQ Properties
	Modifying DMQ Access Control

	JMS_SonicMQ Message Properties

	Handling Undelivered Messages
	Sample Scenarios of Handling Dead Messages
	Preserving Expired Messages and Throwing an Administration Notification
	Using High Priority and Throwing an Administration Notification

	What to Do When the Dead Message Queue Fills Up

	Types of Undelivered Messages
	TTL Is Expired
	Routing Node Is Invalid
	Routing Destination Is Invalid
	Connection Cannot Be Established Before Routing Timeout
	INDOUBT_TIMEOUT Expires
	Connection Authentication Fails
	Connection Authorization Fails
	Message is Too Large
	Other Cases Where Messages Might Be Lost

	Chapter�4 Failover and Load Balancing
	Connect-time Failover
	Failover and Routing
	Defining the List of Connection URLs

	Client Access to Failover Connections

	Load Balancing
	Load Balancing and Routing
	Client Access to Load-balanced Connections

	After Connecting

	Chapter�5 Security
	SonicMQ Security Basics
	The Need for Security
	Security Tools
	Overall Security Policy
	Corporate Security Policy
	Security Issues Covered Elsewhere
	SSL Support
	Certificate Management Tools

	Securing the SonicMQ Data Store
	Maintaining Security
	Firewall Architecture Basics
	SonicMQ Firewall Architecture
	Advantages of the Screened Subnet Architecture
	Setting the Firewall Rules for a SonicMQ Application
	Adding and Testing Your SonicMQ-specific Rules

	Client-side Security Issues
	HTTP Overview
	Understanding HTTP Tunneling in SonicMQ
	HTTP Tunneling
	Using a Client-side Forward Proxy
	Using a Server-side Reverse Proxy
	Using an ActiveX Client with HTTP Tunneling

	Signed Applets
	Browser-specific Tools
	Java Plug-ins

	Certificate-based Mutual Authentication
	Password-based Encryption (PBE) Tool
	Encryption
	Decryption
	Using the Encrypted broker.ini File

	Chapter�6 Designing Messaging Models
	Client Functions
	Agent Applications
	Transformation Applications
	Routing Applications
	Dynamic Routing Applications

	Topologies
	Chain
	Hub and Spoke
	Central Hub
	Peer-to-peer
	Store and Forward

	Part�II Implementing Your Deployment
	Chapter�7 Dynamic Routing Architecture in a Multi-node Application
	Store & Forward Queue Routing from a Trading Partner
	Load-balanced Trading Partner Connections
	Routing Under Failure Scenarios
	Exchanging Connection Information for Indoubt Resolution
	Advertising Routing Connection Information

	Connection Timeout
	Portal-initiated Connections
	Connection Security
	Load-balancing Across Portal Applications

	Queue Routing from Portal to Trading Partners
	System Management
	Portal Management
	Trading Partner Management

	Dead Message Queue
	Trading Partner Request/Reply Example

	Chapter�8 Implementing Multi-node Installations
	Introduction
	Definition of Terms
	High-level Architecture
	Trading Partner Configuration
	Firewall Setup
	SonicMQ Trading Partner Configuration
	SonicMQ Static Configuration
	SonicMQ Admin Configuration

	Portal Configuration
	Firewall Setup
	Configuration Server Setup
	Clustered Server Setup
	Setting Up Global Queues in a Cluster
	Configuration Server Security Configuration
	Portal Configuration for Adding a New Trading Partner

	Chapter�9 Running a Sample Multi-node Application with the Dynamic Routing Architecture
	Introduction
	Assumptions

	Before You Start
	Determining Your Machine Names
	Installing SonicMQ for Your Portal and Trading Partner
	Setting the admin.echo System Property

	Setting Up the Portal: Xchange
	Setting Up the Trading Partner: Acme
	Testing Your Setup with the GlobalTalk Sample Application
	Troubleshooting Your Setup
	Permission Problems When Sending Messages to Valid Queues

	Sample Application and Scripts
	The GlobalTalk Application (PTP)
	The Admin Shell Scripts
	Portal_Broker_Setup
	Portal_Config_Setup
	Portal_Add_TP
	TP_Setup

	Appendix�A Performance Tuning
	Tuning Your JVM Properties
	Choosing a Java Virtual Machine for the SonicMQ Server
	Setting the Java Heap Size
	Using the Maximum Available Memory for the Server
	Anticipating the Size and Number of Messages and Queues on the Server

	Tuning JVM Parameters

	Setting Buffer Limits in Message Flow Control
	Setting Queue Save/Retrieve Extents
	Reducing the Number of Syncpoints
	Choosing Automatic Message Acknowledgement
	Disk Drive Caching
	Using Queue Prefetch
	Queue Cleanup Thread
	Message Size
	Message Type
	Latency
	Log Queue Size

	Security

	Index

